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evaluation methods" by M.Sc. Yuriy Tasinkevych

Interdigital transducers play a key role in SAW devices; they determine the device frequency response - the most important
characteristic of widely applied SAW bandpass filters.

It is known that the frequency response of IDT results from the spatial spectrum of electric charge distribution on its fingers.
Thus the electrostatics of interdigital transducers is rather nonstandard one - the most important is not the spatial distribution (as
in ordinary electrostatics) but rather its spatial spectrum. Noticing that the distribution is a square-root singular function at the
strip edges and there are tens up to thousands strips with two edges each, it is evident that the evaluation of the spectrum must be
a difficult task. It is even tougher for IDTs working at their overtones, in which case the spectrum must be evaluated with great
details over wider spectral range. Naturally, there is no direct relation between the evaluation accuracy of spatial distribution
(within ordinary electrostatics) and its spectrum (the considered problem). This is the reason that the ordinary methods fail and
the problem, although investigated since beginning of the SAW technology, still remains open in the literature.

The dissertation brings substantial progress to the subject. First, three most advanced methods of evaluation of the charge spatial
spectrum are carefully analyzed. This has shown that the third and relatively newest method is the most promising for most
frequently applied transducers (excluding ones counting several hundred strips which are treatable by any method). The analysis
has also shown that the original form of the method yields severely inaccurate results when applied for longer transducers.
Careful inspection of the sources of difficulties allowed author to overcome most of them and enlarge the method application
domain significantly, making it really advanced numerical tool (a numerical solver) for analyzing and designing of interdigital
transducers and SAW devices.

This progress to the electrostatics of interdigital transducers has been achieved particularly by

- developing an extended algorithm for evaluation of multiple (several tens in series) convolution of functions approximated by
their discrete representations,

- modification of the third discussed method by optimized evaluation of the generating functions (in fact, dynamical definition of
new generating function is applied) to reduce their range of values from trillion or more to mere thousands,

- what applied in the carefully developed solver of the resulting badly conditioned system of linear equation (the known elliptic
problem property), made it possible to obtain sufficiently errorless solution in wide spectral domains.

This confirms well the author's developed knowledge of modern numerical methods in applied physics.

It is shown that the chosen method investigated primarily in the dissertationmost has this property that the resulting numerical
inaccuracies can be made well visible in the verifying computation of the spatial distribution. This confirms the correctness of
the author's choice of the method to investigate and to develop.

Moreover, substantial extension of this third method has been developed by including the case of semi-finite screen besides
thetransducer. This problem, although very important in applications because the screen modifies the charge spectrum, was
never solved in the SAW literature (it is not treatable with the other methods discussed here).

Summarizing, my opinion about the dissertation is highly positive as making good progress to numerical methods applied in

very important technology domain - the SAW devices, and generally - to electrostatics of planar systems of strips which
applications are much wider, connected with semiconductor technology, biological sensors etc.

Prof. E. Danicki
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Nomenclature

H(w) - frequency response of the transducer

H,(w), H,(w) - frequency response of the unapodized and apodized IDT

w - frequency

Jo - central frequency

B, — width of band-pass

B, — transition bandwidth

A¢ - in-band phase variation

A - IDT strip period

a, b — positions of the k-th IDT strip edges

di - k-th IDT strip half-width

&k - k-th IDT strips center position

p - IDT structural period

@« — k-th IDT strip charge

Uy — voltage of IDT neighboring strips

¢« - potential of k-th IDT strip

o(r) — spatial spectrum of electric charge distribution

T —spectral variable

o (1) — spatial distribution of surface electric charge

x - spatial variable

€g - dielectric permittivity of vacuum

¢, - effective dielectric permittivity of piezoelectric substrate

€p - dielectric permittivity of piezoelectric substrate for large wavenumbers.
€ - dielectric permittivity tensor of an anisotropic substrate

¢(7) — spatial spectrum of electric potential

¢ET), dsaw (r)- electrostatic and SAW components of ¢(r), respectivelly
ko, k:n — SAW wavenumbers for free and metallized piezoelectric half-plane, respectivelly
Up, U — SAW phase velocity for free and metallized piezoelectric half-plane, respectivelly
#(a) - spatial distribution of electric potential



¢, ¢4 — the SAW amplitudes propagating in —z and +z directions, respectivelly
¢saw(z) — SAW component of ¢(x)

D - electric displacement vector

E — electric field vector

Ji — Bessel function of the first kind of order k

Tk - Chebyshev polynomials

P, — Legendre polynomials of the first kind

ENF)(z), ENH)(r) - spatial and spectral generating functions, respectivelly



Abbreviations

SAW - surface acoustic wave

IDT - interdigital transducer

UDT - unidirectional transducer

SPUDT - single phase unidirectional transducer
FEUDT - floating electrode unidirectional transducer
DDL - dispersive delay line

REJ - stop-band rejection of the SAW filter

AR - in-band amplitude ripple

IL — insertion loss

FFT - fast (finite) Fourier transform

DFT — discrete Fourier transform

LU - lower-upper (matrix decomposition)



1. Introduction

1.1. What is a SAW Device?

Surface acoustic wave (SAW) is mechanical wave motion which travels along the surface of
a solid material. It was discovered in 1885 by Lord Rayleigh, and is often named after him.
Rayleigh showed that SAWs could explain one component of the seismic signal due to an
earthquake, a phenomenon not previously understood. As the wave passes, each particle of
the material traces out an elliptical path, repeating it for each cycle of the wave motion. The
particles move by smaller amounts as one looks farther into the depth, away from the surface.
Thus, the wave is guided along the surface. In the simplest case (an isotropic material), the
particles move in the so-called sagittal plane, i.e. the plane which includes the surface normal
and the propagation direction. Nowadays, these acoustic waves are often used in electronic
devices because of their particular properties that make them very attractive for specialized

purposes.

Figure 1.1: Basic SAW Device.

A basic SAW device — bandpass filter, shown in Fig. 1.1 generally consists of two interdigital
transducers (IDTs) residing on a piezoelectric substrate such as quartz. The IDTs consist
of interleaved metal electrodes connected to the bus-bars. The SAW is used to achieve

signal processing capabilities. The input transducer connected to the source of electric



voltage converts the electrical signals to the acoustic electrical signals, which then travel
along the surface through a solid propagation medium to the output transducer. Here
they are reconverted back to the electrical signals. As the acoustic wave propagates on the
surface of the material, any changes to the characteristics of the propagation path affect the
amplitude or velocity of the wave.

The IDT geometry is capable of almost endless variation, leading to a wide variety of
devices with required characteristics. Nowadays SAW filters are the key components of com-
munication for the terminals and base stations of mobile radio networks, satellite receivers,
TV, video and audio and multimedia equipment, detection sensitivity in a radar, location

accuracy in an Electronic Warfare (EW) system.

1.2. Piezoelectricity

For electronic devices, we need to generate the SAWSs from an electrical input signal, and
then use the SAW to generate an electrical output signal. The conversion process (electric
to acoustic, or acoustic to electric) is called "transduction”. To explain this, we first have
to consider piezoelectricity, which is a property of many solid materials. In a piezoelectric
material there is a mechanism which offers coupling between electrical and mechanical dis-
turbances. Hence, application of an electric field sets up mechanical stresses and strains.
Conversely, a mechanical stress due to pressure, for example, gives an electric field, and
hence a voltage.

Basically the electric quantities such as electric potential and charge spatial distributions
on the surface of the piezoelectric substrate induced by the input IDT can be considered as
dependent only on one coordinate along SAW propagation direction, say . The following

relationship holds between the spatial spectrums of these quantities [1]

_ _o(r)
¢(r) = ear)’ (1.1)

r is the spectral variable, ¢, is effective dielectric permittivity, ¢(r) and o(r) are the spatial
spectra of corresponding spatial distributions of electric potential and charge, and are rep-

resented by their Fourier transforms.

Generally ¢,(r) is a very complicated function depending on the material properties and type
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of waves, existing in the media. For the case of piezoelectric Rayleigh wave, which is of most

interest in IDT modelling, the following approximation was proposed [12]

lr) = s, (12)
where ¢, is a permittivity of the piezoelectric for large wavenumbers of SAW, kq and k,,, are
SAW wavenumbers for free and metallized piezoelectric half-space. In this approximation
the spatial spectrum of electric potential can be represented as a sum of two components
describing electrostatic effects and SAW phenomenon

#(r) = a(r) + dsaw(r) = 1 o)+ ||1 ks — ’;;;a(r) (1.3)

In [1] it is shown that spatial distribution of electric potential can be written as a sum of
three terms representing two SAWs propagating into the opposite directions and localized
electrostatic potential of the IDT strips

d(x) = p_U(—z)e"™* + ¢, U(z)e %" + ¢p(z), (1.4)

¢_ and ¢, are the SAW amplitudes and U(z) = 1 for z > 0 and U(z) = 0 otherwise. For the
purpose of IDT modelling the most important is the electric charge spatial spectrum which
is generally evaluated within the frame of the so-called electrostatic approximation. The
essence of it lies in the fact that SAW generation is neglected when evaluating the electric
charge on IDTs electrodes. In the other words, the potential of SAW which can be written
in the following form [1]

dsaw(z) =

V0 — Um 0(Fko) zikex
I (L.5)

€p
is neglected in the area of IDT. In Eq.(1.5) the upper signs correspond to the case z > 0
and the lower ones to z < 0, and vy, v,, are the SAW phase velocities for free and metallized
piezoelectric half-space. Such an assumption is justified since the electrostatic part of poten-
tial in (1.4) vanishing at infinity approximately as ~ -:: can be neglected far from the IDT
but has predominant value near the one. If the [DTs strips have potentials £V then in the
region occupied by the transducer the electrostatic part |¢pg(z)| < V. On the other hand the

Uy — Y,

electric potential related with SAW can be roughly estimated as |¢psaw| < V. The




Up — Um

coefficient of electromechanical coupling given by the ratio = for weak piezoelectric
is of an order 0.1% (for instance, quartz, 34° Y-X, 0.13%). Thus, for weak piezoelectric,
the electric potential associated with travelling SAW is not less than 4 orders of magnitude

smaller than that of electrostatic part of potential.

1.3. IDTs Summary

As was remarked above that IDTs are widely used for excitation and detection of SAWs
and forms the basic part of almost all SAW devices. The IDTs characteristics determines
the quality and efficiency of the device as a whole. Thus, detailed knowledge of them is
very important for the analysis and design of a SAW device. The IDT consists of thin
conducting electrodes placed on the piezoelectric surface. IDT characteristics are mostly
determined by finger geometry and the number of fingers or in the other words, by its
topology. It determines the electric charge spatial distribution on the IDT fingers which
Fourier transform is involved in Eq. 1.3. So, in this work, the IDTs characteristics are
considered as dependent only on its topology in the frame of electrostatic approximation.
Huge variety of IDT constructions with different topology makes it possible to design SAW
device with arbitrary required characteristics. Below some most common and frequently

used IDT constructions are shortly discussed.

1.3.1. Uniform IDT

Typical constructions of the uniform (periodic) IDTs are shown in Figs. 1.2-1.4.



P A

Figure 1.2: Single-electrode-type IDT.

Figure 1.3: Three-finger-type IDT.

P ‘ A

Figure 1.4: Double-electrode-type IDT.

Typical transducer consists of periodic cells, which in turn for different IDT types may
contain several finger connected in some specific way to the bus bars. The IDT strip width
and spacing are equal. Two fundamental parameters of IDT are: the period of cells or the
structural period of the IDT which is denoted as p, and the strip period which is denoted as
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A in Fig. 1.4. Generally the structural period p of the transducer should be equal or close
to the SAW wavelength to ensure efficient SAW excitation. The single-electrode-type IDT
has the most simple topology and relatively wide strip width (= Asaw /4, here Agaw is a
SAW wavelength). For some reason (to avoid the Bragg reflection of SAW from strips in the
working passband of the filter), the three-finger-type (see Fig. 1.3) and double-electrode-type
(see Fig. 1.4) IDTs are more frequently used. The symmetry of all presented above uniform
IDTs geometry implies the symmetrical excitation and of SAW in both direction from the
transducer ends. Therefore these transducers are also known as bidirectional the half of the
applied electric power is transformed by the IDT into the SAW which propagates in undesir-
able direction. This fact reduce by half the efficiency of SAW device as a whole. To suppress
the unwanted SAW the so-called unidirectional transducers (UDT) were proposed. Two
types can be distinguished among them. The first type uses the periodic and equally spaced
finger geometry and the multi-phase electrical inputs applied to them. The most popular
here are the UDTs exploiting the three-phase inputs [2] and the two-phase inputs [3]. In the
former case the unidirectional properties are achieved by applying the inputs, corresponding
phases of which are shifted by 120°, while the other one employs the inputs whose phases
are 90° shifted. The other type of UDT is the single-phase UDT (SPUDT) [4]. It uses the
asymmetric finger geometry that allows to achieve the unidirectionality by exploiting inter-

nal SAW reflections from strips. The example topology of the SPUDT is shown i Fig. 1.5.

Figure 1.5: Single-phase UDT (SPUDT).

The so called floating-electrode-type UDT (FEUDT) [5] is another type of unidirectional
transducer based on the same principle (internal SAW reflections). It’s typical construction

is illustrated in Fig. 1.6.



Il

Figure 1.6: Floating-electrode-type UDT (FEUDT).

The construction in Fig. 1.6 has 6 strips per period. Two electrodes are connected to the
bas-bars, the other ones are floating: two of them are interconnected and another two are
isolated. The SAW excitation is mainly due to the active (connected) electrodes and those

interconnected ones, while the isolated strips are mainly responsible for SAW reflection.

1.3.2. Weighted IDT

Modelling of SAW filters requires a modification of the IDT topology to achieve the desired
characteristics of the synthesized device. Such modification can be realized by weighting of
the IDT. There are various weighting techniques used in applications. The most frequently
used are those shortly outlined below. The first, most frequently used, technique is apodiza-

tion [6] which is illustrated by the example construction in Fig. 1.7

Figure 1.7: Apodized-weighting technique.

The weighting function for the apodized IDT describes the fingers overlap length and corre-
sponds do the impulse response h(t) of the transducer. The function h(t) is an IDT output
signal as a response to the short input signal (in theory this short input signal is modelled by
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Dirac d(t) function.) The Fourier transform of the function h(t) yields the freqguency response
of the transducer H(w) — its most important characteristic which describe the dependence
of the amplitude and phase of the output signal on frequency of the input sinusoidal signal.
Thus, for the case of apodized IDT the frequency response can be calculated directly from
the weighting function. Hence it follows the simple algorithm of IDT synthesis. Namely, if
the function H (w) is known, the impulse response and hence the weighting function can be
evaluated by Fourier transformation yielding the apodized IDT topology.

Another weighting technique is withdrawal weighting |7] which is illustrated by the example

construction in Fig. 1.8.

Figure 1.8: Withdrawal-weighting technique.

Here the weighting function describe which electrodes should be withdraw from the uniform

(generally single-electrode-type) IDT. This sort of weighting is used in the cases when the

SAW diffraction reduction is critical.

Figure 1.9: Width-weighting technique.

The width weighting technique illustrated in Fig. 1.9 is an example of the so-called disper-
sive IDT [8]. Dispersive IDT has that property, that group time delay is dependent on the

input signal frequency. They are widely used in dispersive delay lines and filters for impulse
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compression in radars. Generally, the dispersive IDT is is designed to obtain it’s impulse
characteristic h(t) being a time-inversion of the input signal. Filters possessing this property
are known as matched filters.

All the above examples, illustrating the variety of IDTs topologies most frequently used
in practical applications, show what sort of problems are considered in analyzing the electric
charge distribution on transducer fingers. Namely, there may be strips of different width,
forming periodic and non-periodic systems with arbitrary connections (connected to the
bus-bars, interconnected or isolated etc.). The transducers may contain a few, up to several

thousands of strips.

1.4. SAW Filters Design

The most important characteristic of SAW device is its frequency response function H(w)
which was discussed above in subsection 1.3.2. Typical SAW device structure contains two
IDTs. The essence of the design procedure in this case is to synthesize the the IDT's topology
providing the desired frequency response of the device as a whole. Generally one of the IDTs
is apodized while the other one can be arbitrary chosen according to the the specified SAW
device type: it can be uniform IDT as well as dispersive width weighting type transducer.

In Fig. 1.10 the typical SAW filter construction is shown as an example.

SAW
v ~= IE

Figure 1.10: Typical SAW filter construction.

The frequency response of the SAW filter is the product of corresponding frequency responses
H(w) = Hy(w) - Ha(w), (1.6)

or the sum, when operating with convenient logarithmic scale [dBJ:
H(w)|dB] = Hy(w)[dB] + Ha(w)[dB. (1.7)
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In Egs. 1.6, 1.7 H,(w) and H,(w) denotes the frequency responses of unapodized and
apodized IDTs making the SAW filter. As was said the unapodized IDT may be chosen
arbitrary to some extent. Typically, it is much shorter than the apodized one [9] (the num-
ber of strips of dispersive IDT is 38 while the apodized one contains about 850 strips in the
dispersive delay line considered in [8] for instance). It is crucial to evaluate the frequency
response of such chosen unapodized IDT precisely for SAW device synthesis. Once the func-
tion H,(w) is known, the required frequency response of the apodized IDT can be evaluated
from (1.7) so that the specified characteristic H(w) be achieved. The apodized IDT synthesis
technique is quite straightforward and was shortly discussed in subsection 1.3.2.

The typical SAW filter frequency response is shown schematically in Fig. 1.11. Having
the unapodized IDT chosen (arbitrary), its frequency response can be evaluated numerically
(red curve in Fig. 1.11). Then, on power of Eq. 1.7, the frequency response of an apodized
IDT can be evaluated as Hy(w)[dB] = H(w)[dB] — H,(w)[dB] (blue curve in Fig. 1.11) to
obtained the specified frequency response of the filter (black curve in Fig. 1.11).

)
=]

z : 0dB
I; x""\ IL
il
4\_/1
I
g
< : ' | REJ
]
|
i
1
1

M~

Frequency

Figure 1.11: Typical SAW frequency response. Red - Hy(w), blue - H,(w).

The main parameters which need to be specified are: center frequency fy, width of passband
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B,, in-band amplitude ripple AR, in-band phase variation A¢, transition bandwidth B,,
stop-band rejection REJ, insertion loss /L. In this work the main attention is paid to the
amplitude function, although the phase is not less important for signal processing.

1.5. Considered Problem

As it was mentioned earlier the very long apodized IDT as a part of SAW filter can be
modelled and synthesized by means of well developed methods. But it is very important
to know the frequency response of the other, unapodized, transducer. Unfortunately, the
numerical methods for an analysis of unapodized IDT, which generally may possess very
complicated non-periodic topology (e.g. dispersive), meet a lot of difficulties and require
intensive development and improvement. This is the main task of this work.
Although unapodized IDT is considered, the results have more principal significance, as any
apodized IDT can always be split into several ’canals’ with unapodized strips in each of
them, although with different connections to the bus-bars, as shown in Fig. 1.12.

Figure 1.12: Equivalent representation of apodized IDT by means of unapodized transducers.

Thus, unapodized IDT modelling is fundamental for the SAW filters design. In this work their
frequency response is modelled by means of appropriately chosen numerical method,based on
electrostatic approach, earlier proposed in literature . As it will be shown in details in subse-
quent sections, this method, as well as the others discussed there, is vulnerable to numerical
errors, which mainly originate from the physical nature of the electrostatic problem. This
restricts its applicability to the cases of short IDTs (about 20 periodic electrodes). We intend
to overcome the existing numerical difficulties and extend as much as possible the method

range of applications. The problem requires detailed inspection of the origin of
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numerical difficulties then, the proper improvement and numerical development
of the method can be done based on implementation of the advanced numer-
ical techniques and new algorithmic solutions so that the frequency response
of longest possible IDTs, mainly non-periodic (dispersive), could be adequately
modelled.

To achieve the task, we get over the following numerical problems:

e Evaluation of multiple convolutions by means of FFT (Fast Fourier Transform) algo-

rithm. This matter is discussed in the Section 3.4.

o Integration of square root singular (at both integration limits) function (the integrals
form a matrix of the ill-conditioned system of linear equations: the matrix is numeri-

cally close to singular). This matter is discussed in the Section 3.5.

e Summation of functions which span large range of amplitudes (over 14 orders of am-

plitudes). This problem is treated in the Section 3.6.
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2. Electrostatics of Planar System of Strips

by the Theory of Analytic Functions

2.1. Preface

The IDT frequency characteristics are mostly determined by it’s fingers’ geometry. It is
known that the spatial spectrum of the induced electric charge distribution on the IDT
strips, introduced in Eq. 1.1, approximates well the transducer frequency response, which
is the most important characteristic (see for example Fig. 1.11). Thus, evaluation of the
electric charge spatial distribution on the transducer’s fingers is important for SAW device
modelling. As it was stated in Section 1.2 for typical weak piezoelectric substrates the
quasi-static approximation can be used for evaluation of the charge. According to this
approximation the piezoelectric substrate is replaced by dielectric substrate, and electrodes
have specified electrostatic potentials or charges. Also, the electrodes are assumed to be of
infinitesimal thickness and infinitely long. Thus, a two-dimensional problem is considered.
The analytical form of the spatial spectrum of electric charge distribution on IDT fingers
can be found only for simplest topologies, for example consisting of few strips (up to 3) [10],
[11], or for an infinite periodic system of electrodes [11], [12]. But for practical cases it is
important to analyze the longest possible systems of arbitrary electrodes (see Fig. 1.10 in
Section 1.4). This problem can only be solved numerically.

Three known numerical methods may be mentioned to be most appropriate for the task.
In the first method [13] [14], the topology of real IDT is approximated by the system of
periodic narrow strips. Each transducer finger is modelled by a group of strips connected to
each other, while spacings are represented by isolated strips. The analytical form of electric
charge distribution evaluated in [12] for such a system of strips is exploited. The subsequent
two methods use the analytical form of the solution of electrostatic problem for arbitrary
system of strips. Electrostatic problem is reduced to a mixed boundary problem of the ana-
lytic function theory [17], [18]. The second method [15] puts stress on evaluation of charge
spatial distribution, then the spatial spectrum is evaluated by means of Fourier transforma-

tion. The third method [16] evaluates the spatial spectrum of electric charge distribution
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directly, providing powerful tool for modelling of IDTs, since there is no numerical evaluation
of Fourier transformation (by means of FFT algorithm or similar) of the function that has
square-root singularities at the electrode edges (this is well known property of electric charge

distribution on strips). The electrostatic problem is formulated in the next subsection.
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2.2. Problem Formulation

Let’s consider a system of N infinitely long strips parallel to z-direction located on the sur-
face y = 0 of a homogeneous anisotropic dielectric surface. The media is characterized by
symmetric permittivity tensor €. (Fig. 2.1). The strips have infinitesimal thickness, coordi-
nates of their left and right edges are a,, b,, respectively. All the strips have the specified
potentials ¢, k= 1..N.

ty ’ x

ay by a2 by a3 bs ay by

Figure 2.1: A system of three strips making a simple IDT.

In the electrostatic approximation, considered here, the effects of piezoelectric coupling be-
tween electromagnetic and acoustic waves are neglected; the electrostatic field is considered
alone. The fundamental relations between electric field components are described by the

following system of Maxwell’s equations in electrostatic approximation

vXE=0

v:-D=0 (2.1)

D=¢-E,aty<0, D=¢FE, aty>0

where D and F are the electric displacement and the electric field vectors, € and ¢, are the
dielectric permittivity of the substrate and vacuum, respectively.

The electrostatic potential ¢, satisfying equation

E=-v¢ (2.2)
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must obey the system of partial elliptic differential equations resulting from (2.1)
¢ ¢ 32¢

c,,-é-m—g—l-Q,,aay 5 =0 aty <0,
92
¢ ayf—l] aty > 0, (2.3)

CxxCyy — €2y > 0, €2x > 0.

Using the properly chosen coordinate transformation, the equation for y < 0 can be converted

to the standard Laplace equation [11]

\/ szew €zy 82¢ 82¢
= — = ; 24
y! =z~ ewy ay,g 0, y<0 (2.4)
The transformation (2.4) leaves the boundary surface unchanged (does not change the bound-
ary y = 0).

With help of Eq. (2.4) the system of differential equations can be rewritten in the form

2 2
3 ¢ 61,;2 =0aty <0,
(2.5)
6"’4;5 8’¢
6:.-:“ 6y3 =0 aty>0.

Thus, if the solution of electrostatic problem in vacuum is known, the electric field compo-

nents in anisotropic media can be found:

E;(z,y) = EO(@Y),

€ €x
Ey(z,y) = —EQ(2,y) - 2 ED(y), (2.6)
vy

vy

€= \fCzzbyy — (ny)za

where E(o)(a: y') and E(O)(x’ ,y') are the electric field components in vacuum in the trans-
formed coordinates. Some numerical examples showing the electric field in a system of
metal electrodes placed in vacuum and on the anisotropic substrate are presented in the Ap-

pendix A. The anisotropy distorts the field making it asymmetric (see Figs. A.3, A.4).
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The electric charge distribution on strips is defined by the discontinuity of the normal

component of the electric displacement vector D, at the boundary y =0
o(z) = Dy(w,+0) — Dy(z,—0). (2.7)

Substituting (2.6) into the last equation in (2.1), the corresponding normal components
of the electric displacement vector can be expressed in terms of normal component of the

electric field vector E,(,O)(x’,y’} as follows

D,(z,40) = B («, +0),
(2.8)
D,(z,+0) = ¢E (2, —0).

From (2.4) it follows, that 2’ = z and 3’ = 0 if y = 0. Hence, the electric charge spatial
distribution can be expressed in terms of normal component of the electric field solution for

the system of metallic strips in vacuum:
o(z) = B (z,40) — eE (x, —0). (2.9)

To this end, the solution of electrostatic problem in vacuum is sufficient, since it allows us
to find the electric charge distribution and its spatial spectrum on the strips for the case of
dielectric media. Thus, further analysis concerns the electrodes placed in vacuum. For this

case the system of equations (2.1) can be rewritten as follows

- 9E, OE,
v-E=0 = e +F'y“—0,
(2.10)
- 9E, OE,
VXE=0 = Bmway =0.

On the surface y = 0 the field components satisfy the following boundary conditions
Ex(x,0) =0, for z € | J(ax, bs)
(2.11)
E,(:‘L‘, 0) =0, fO‘l’ TE R\ U(akl bk)
The boundary conditions in (2.15) have straightforward physical sense. The first condition

reflects the fact that the tangential component of electric field equals to zero at the perfectly
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conducting surface of electrodes’ area. The second boundary condition in (2.11) concerns
the spatial distribution of electric charge introduced in Eq. (2.7), which must vanish between
the electrodes and results from Eq.(2.9).

The solution of the above electrostatic problem can be obtained by means of the theory
of analytic functions, namely the solution of the so-called mixed boundary value problem
for a half-plane is used. This result is known as the Keldysh and Sedov formula [17], also
presented in [18] and [19]. The outlines on the mixed boundary value problem for a half-plane
is given in the Appendix B.

2.3. Solution of the Electrostatic Problem

From the symmetry of the problem, the electric field components should satisfy the following

conditions
Ez(xl y) = E::(xs _y)i Ey(z’ y) = —E‘,(.‘I.‘, _y)' (212)

The system of partial differential equations (2.10) together with (2.12) may be interpreted

as the analytic conditions of the function of complex variable, defined below
B(z) = Eu(z,y) — iBy(z,y), z=z+iy (2.13)

The function E(z) is analytic function in any charge free region of complex plane. The

following property takes place (compare Eq.(B.8))
E(z) = E(2) (2.14)

These analytic properties of the function E(z) are used to great advantage for the formulation
of the electrostatic problem (2.10), (2.11):
One needs to find the function E(z) which is analytic in the half-plane y > 0 from the

boundary conditions on the real azis:

Re (E) = E.(2,0) =0, for z € | J(ak, be)
(2.15)
Im (E) = Ey(x,0) =0, for z € R\| J(ax, b¢)
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This corresponds to the particular homogeneous case of the mixed boundary value problem
for a half-plane given in the Appendix B. Hence, the solution of the problem for real systems,
vanishing at infinity as
1
E(z)=0 (;2-) p (2.16)
in consequence of vanishing of the electrostatic potential (2.2) at z — co’, can be written in

the similar manner as in (B.16)

Py_s(z) |
E(2) TG (2.17)
here,
N=-2
PN—?(z) = Zaﬂz“s

n=0

(2.18)
N
Ry(z) = H(Z = an)(z — by).

In (2.17), (2.18) a,,b, — coordinates of the left and right edges of the nth strip, N — the
number of strips, a, — arbitrary real coefficients. In contrast to (B.16), in Eq. (2.18) the
polynomial of order N — 2 is chosen to satisfy the condition (2.16). Generally, \/m
includes all the analytic branches in the complex plane with cuts along a,,b, on the real
axis. But here, analogously to (B.16), the chosen property of branches is: \/R(z) > 0 on

the real axis for = > by.

Due to (2.2) the function E(z) can be written as

dd
dz'

E(z) =

where ®(z) = ¢(z,y) + id(z,y) is analytic function, which real part is just the harmonic function (2.2)
and its imaginary part ¢(z,y) is conjugated to ¢(z,y) and is not generally unique. Since function ¢(z,y)
is single-valued and limited (vanishes for real systems of strips) in the neighborhood of z = oo, it can be

expanded into series for large |z| [18]:

oz = e (a3
k=1

and therefore, for large |z|

ﬁ(z) =0 +chz"‘, E{z) = q)’(z) =0 (z_li) i

k=1



The electric field at y = 0 is of our most interest. Taking the limit y — 0 of (2.17) and
using the branch of \/Rxn(z) that is positive on the real axis for x > by the surface field

components are

0, z € (@m,bm) m=1.N,
Ez(:c$ 0) =
_1yNm Pr-2(2) .
( 1] B HN(:C) y TE (bm!a'm+1) m—ON,
(2.19)
. I N+mPN-2(x) -
(=1 T - € (am,bm) m=1.N,
E,(z,+0) =
0, z € (bmy @Gmy1) m = 0..N.
Here the function
N
Hy(z) = \J [ - a)(@ - ba)| (2.20)
n=1

is introduced. In (2.19) bo, an4. stand for —oo and oo respectively.
The coefficients o, of the polynomial Py_z(z) are to be determined from the Kirchhoff’s
2nd law, yielding the conditions on specified voltages of the neighboring strips

Uk = 41— @5, k=1.N-1; (2.21)
here ¢«, k= 1..N are the potentials of strips
$(z,0) = ¢k, for z € | J(ax, be). (2.22)

Hence, there are N — 1 unknown constants that should be found from N — 1 constraints
(2.21). For the case of isolated strips, their charge should be evaluated which is equal zero.
If there are M isolated strips connected together, their potentials are equal and total charge

vanishes, so there will be M — 1 constraints analogous to (2.21)
U =0, k=1.M -1, (2.23)

and another one constraint, resulting from the Kirchhoff’s 1st law, namely

M
Y Qu =0 (2.24)
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3. Numerical Methods of Evaluation

of the Charge Spatial Spectrum

3.1. Fourier Transform of the Charge Distribution

The approach considered in this subsection was used in [15] for modelling of non-periodic
systems of metallic electrodes. The main idea is based on the above presented solution (2.19)
of the electrostatic problem, the Gauss formula for numerical integration and the expansion
of functions into a series of Chebyshev polynomials. The surface electric charge spatial
distribution is, see Eq.(2.9)

o(x) = 2¢0Ey(z, +0), (3.1)

what, taking into account (2.19), can be written as follows

f

N-2
Z akx“
(—1)N""2¢ = k=0 , € (ambm) m=1.N,
o(z) = < H Vl(z — ar)(z — b)) (3.2)
k=1
1 0, z € (b, @ms1) m=0..N.

Unknown coefficients ax, £ = 1...N — 1 are determined from the Kirchhoff’s 2nd law

yielding the conditions on voltages of the neighboring electrodes

N-2
1 a, 1 Zakwk
¢m+1—¢m=—f~“ E,(a:}d:cz—f ' (-N-m—=2 ,m=1.N—1.
" o I Vi@ - b
k=1

(3.3)
where ¢, k = 1... N are the potentials specified on strips. The following system of linear
equation has to be solved:

N-2

Z AkmQm = Pk41 — ¢, k=1.N —1, (3.4)

m=0
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where A
Aem = (-4 [ : (3.5)

b N
\J [1 @ - an)(@—ta)|

For numerical integration in (3.5) the Gauss formula is exploited

X - 2% — 1

[y )] e

where M is large enough to achieve the required accuracy. The linear system of equa-

tions (3.3) can be solved with the LU (lower-upper matrix) decomposition algorithm. Having

evaluated the coefficients a,k = 1... N — 1 the spatial distribution of electric charge can

be found. The charge spatial spectrum is evaluated by the Fourier transform of the charge
spatial distribution

o(r) = fw o(z)e ™™ dz, (3.7

r is a spectral variable. Substitution of (3.2) into (3.7) yields

N-2 n —jrz
oa(r) = ()M 26 Y am f xm@d N, (38
an

b V(@ = aa)(ba — 7)
where
(z) = z (3.9)
Xn.m I) = N . .
I le-a)@-bo

k=1k#n

Using the coordinate transformation in (3.8)
"o__ (I - €ﬂ}
YT

the integration region (a,,b,) can be transformed to the interval —1 < a” < 1. Here,
& = (an+bs)/2 is the nth electrode center and d, = (an — b,)/2 its half-width. To evaluate
the charge spatial spectrum in (3.8) the function xnm(z) (3.9) is represented by the sum of

M; + 1 terms of its expansion into the series of Chebyshev polynomials

M
Xﬂm(:c”) — Z Dnkak(x”); (310)
k=0
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where T(z") denote the Chebyshev polynomials, and the coefficients of the expansion Dy

are

2 f+l x.....(:c”)Tk(m”)dym"
Dnmk T
el T=a7)

where C = 1 for k = 0 and Ci = 2 otherwise. For numerical integration in Eq. (3.11) the
Gauss formula (3.6) is exploited. This yields

; (3.11)

b _ _Ci ”i’ [+d,, ( 2 -1 )] [kr 2;‘-1] —
wk = s 41 2 Xom [Snt uc0s | Xpey )| 008 (KXo 1) ‘

i=1

Evaluating the integrals in (3.8) with the help of the following expression

1 " ,—irz" 4
Tg(ﬂ?’ )e e d o Rk

R T a(=1)kit(r), 3.13
L e = v ) (313)
where Ji(r) are the Bessel function of the first kind of order k, the electric charge spatial

spectrum can be obtained

N N N-2 M,
a(r) =Y on(r) =2me0 Y _ ey am Y (—1)*5*DumkJi(dnr) (3.14)
n=1 n=1 k=0

m=0

where N denotes the number of strips.

Thus, Eq.(3.8) together with (3.4), (3.5), (3.12) enable one to evaluate numerically the
surface charge density spectrum and the Fourier transform of each IDT finger and summation
in Eq. (3.14) gives the one of the IDT as a whole. The algorithm described above conserves
stability as long as the number of electrodes N < 51 mainly due to the described above
coordinate scaling [15], but for N > 25 the computation time becomes very large. For this
reason for N >> 25, direct application of the algorithm is not recommended. To overcome
this difficulty the following modification of the numerical algorithm was proposed in [15].
Namely, the calculation of each o,,(r) in (3.8) is performed taking into account the influence
of only N; neighbor fingers from each side of the considered one (for example, N; = T for
faster calculations and N; = 10 for slower but more accurate ones, N < 16 is recommended
limitation).

The values of M and M, should be large enough to achieve the required precision of numerical
evaluation of integrals in (3.5) and (3.10) by Gauss formula (3.6). Besides, M, influences on

the accuracy of representation of the function &, by the series of Chebyshev polynomials. On
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the other hand, M and M, should not be over-increased, since it leads to the computational
time growth whereas the above mentioned accuracy improvement become negligible (for
instance, M; = 3 in (3.12) and M =4 in (3.6) proposed in [15]).

Some numerical results, illustrating the above approach to surface electric charge spatial
spectrum evaluation are presented below. In Fig. 3.1 the normalized spatial spectrum of
surface electric charge distribution on the system of 5 periodic electrodes is shown. In all the
numerical results here and in the rest of the paper concerning the periodic system of strips
the typical case is considered. Namely, the strip width and spacing equal half the IDT strip
period A. In Fig. 3.2 the normalized spatial spectrum of surface electric charge distribution

on the system of 10 periodic electrodes is shown, evaluated by the approach described in

this section.
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Uniform IDT
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Figure 3.1: Normalized spatial spectrum of electric charge distribution in the system of 5

periodic strips. K = 2w /A, A - IDT strip period. Strip width and spacing equal A/2.

Uniform IDT
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Figure 3.2: Normalized spatial spectrum of electric charge distribution in the system of 10

periodic strips. K = 2w /A, A - IDT strip period. Strip width and spacing equal A/2.
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3.2. The Electric Field in a System of Periodic Strips

In this approach used by D.Morgan for the analysis of FEDUT’s (floating point unidirectional
transducer) in [14] and proposed earlier in [13], the topology of real IDT is approximated by
the system of periodic narrow strips. Each transducer finger is modelled by a group of strips

connected to each other, while spacings are represented by isolated strips as illustrated in
Fig. (3.3)

U -
| L L [ g
11 138ss

Figure 3.3: A system of strips making IDT.

Electrostatic field satisfying the Laplace’s equation (2.5) and converging at y — oo is
considered in the following form
E, = Ae—jk:evjseklyi’
i (3.15)
Ey i— —jASkSye-Jrke_JSkklyl‘

where k is an arbitrary wavenumber and A is an arbitrary constant, Sy, S, are the sign

functions defined as

(3.16)

5 - I, n>20, (n=k,y)
: -1, n<0, (n=k,y)
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In a periodic structure the electric field referred to the plane y = 0 can be written in the

form of infinite sum of harmonic waves [12]

==l

n==00

(3.17)

oo
Ey :J Z Sr+“KE“e—j(r+nK):, y= +0,

n=—00

where r € (0, K) denotes the wavenumber of the so-called fundamental space harmonic,
K = 2w /A, A- strip period of the structure.

Let’s consider one period of the structure, say x €< —A/2,A/2 > with the strip’s left and
right edges placed at x = —w/2 and z = w/2, where w denotes the strip’s width. The
boundary conditions given by Eq.(2.11) can be rewritten for one period of the structure in

the following form

og
Y. B, Kzl < A,
n=—oo

(3.18)

Y SainEne™¥%, A< |Kz|<m,

where A = mw/A. The boundary conditions for whole periodic structure are satisfied if
they are satisfied for one period (3.18) that results from the form of the solution given by
Eq.(3.17).

To solve (3.18) the following identities are exploited [12]

0, 18] < i,
> " SuPa(cos p)e™™ = (3.19)
n=co . V2ei%?
—Ssjm, p<|6] <m,
and JBeil2
2¢’
- = 16] < p,
> Pa(cosp)e™™ = (3.20)
0 u<ll <m,
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where P, denotes the Legendre polynomials of the first kind.
Comparing Egs.(3.19),(3.20) with Eq.(3.18) the summation coefficients E, can be repre-
sented as

E, = a(r)S,Pa(cos A) (3.21)

and the electrostatic field given by Eq.(3.17) that satisfies boundary conditions (2.11), (3.18)

may be rewritten as follows

E;=ar) Z SnPn(cos A}B_“r"'nxk, y=0,

n=-—0o

(3.22)

E, = —ja(r Z Pa(cos A)e™ 34Kz g — 40,
where the function of the spectral variable a(r) unknown.
The neighboring strips voltage can be found by integrating of the tangential component E.
of the electrostatic field given by Eq.(3.22)

(k+1)A (k+1)A
) = benr=be== [ Bna)do=—alr) [ Y SuPulcos )R ds
kA n=-—00
(3.23)
that results in
SnFa (COSA} e—ir(k+DA _ ,=jrkA
__ T — T 2 i 4
U(r) = == a(r) Z nH/K} e k) (3.24)
Using the property of Legendre’s polynomials
Pr(cos p) = P_n1(cos p), (3.25)
the sum in Eq.(3.24) can be rewritten in the following form
o~ SnPa(cosA) 1 1
H_Zm (n+r1/K) ZP (cos ) (n+r/K+n+1-—r/K)' 30

Applying to the sum in Eq.(3.26) the Dougall’s expansion [20]

Pofeosy=20lvE) ("“)Z 1)"( — )P,,(cosp.), (3.27)

v—-n v+n+l
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combined with another property of Legendre’s polynomials
Pa(—cos p) = (=1)" Pa(cos ), (3.28)
the expression for neighboring strips voltage given by Eq.(3.23) can be simplified to the form

Ui(r) = 1) P—ryic(—cos A) (e T EHDA _ g=irkA) | (3.29)

™
K sinar/K K
that after reduction gives

Uk(r) = a(r)AP_r/k(— cos A)e~Irk+A, (3-30)
The surface electric charge of the kth strips is obtained by integrating of the normal com-
ponent E, of the electrostatic field given by Eq.(3.22) over the electrode width

Qi(r) = 2¢0 /’:\; Ey(r,z) dz = 2¢pc(T) /kM i Pa(cos A)e=ir+mK)z g (3.31)

2 A-F n=—o0
Introducing the new variable

o' = Kz — 2%, (3.32)

the last integral in Eq.(3.31) can be converted to the following form

Qulr) = —= 2“’“ g ekl [ Z P.(cos A)e™ /&) dg. (3.33)
Substituting (3.20) into Eq.(3.33) we obtain
3 A milf-3)
Qulr) = vz 222r) e | da'. (3.34)
K a Veosz — cos A

Rewriting the last integral in Eq.(3.33)
& emilg-pe i =9 & cos(f — 1)z
-a Veosz' — cos A o Vcosz' —cosA
and exploiting the Mehler-Dirichlet’s formula [20]
;/_ # cos|(v + 2)'e)] dv
P,(cos i) = / m_ (3.36)

for evaluation of the integral given by Eq.(3.35), the expression for the surface electric charge
of the kth strip (3.33) can be simplified as follows

'}

do’ (3.35)

Qi(r) = 2e0a(r) AP,k (cos A)e ™A, (3.37)
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Integrating Eq.(3.37) over r € (0, K') we obtain the expression for the total charge of the kth
strip

1k 9 K o,

=t it 5 —jr

7 /o Qk(r) dr K j; €oa(r)AP- 4 (cos A)e dr. (3.38)
The integral (3.38) yields the value of @, if the function a(r) is assumed in the form

_ Qlejr”\
o(r) = 26AP_, x(cos A

(3.39)

Indeed, substituting the function a(r) in the form (3.39) into Eq.(3.38) after reduction we

obtain
W
Qk = E_/ Q;e"“"‘)“ dr. (340)
0

The integral in Eq.(3.40) gives @Q; if k = [ and 0 if k # . Thus, in general, for given value

of @, the function «(r) can be represented in the following form

Z Ql‘ eerA

ar) =— =
260AP_,/K(COS A} ’

(3.41)

Substituting (3.41) into the expression for neighboring strips voltage given by Eq.(3.30) and

integrating over r € (0, K) after reduction we obtain

— r(l—k—i}ﬁ
Uy = Z 5K f e’ dr, (3.42)

that yields the following system of linear equations for evaluation of unknown charges Q;

when the voltages Uy of neighboring strips are known

1 K
=% /0 Ue(r)dr = 2“ Z £~k--— (3.43)

Since for isolated electrodes @ = 0, the number of unknown charges Q; is

im, (3.44)

where N is the number of narrow strips representing the kth IDT electrode. The number

of voltages between connected together strips (Ux = 0) is



Besides, there are N — 1 voltages between IDT electrodes (have modelled by several narrow

strips). To complete the system of linear equations (3.43), the condition on the total charge
of the system must be added

Y Q=0
I

where [ varies over the number of connected together electrodes (3.44).

Some numerical results, illustrating the above approach to surface electric charge spatial
spectrum evaluation are presented below. In Fig. 3.4 the normalized spatial spectrum of
surface electric charge distribution on the system of 5 periodic electrodes is shown. Here the
typical case is considered analogous to that described in the previous section. Namely, the
strip width and spacing equal half the IDT strip period A. In Fig. 3.5 the normalized spatial
spectrum of surface electric charge distribution on the system of 100 periodic electrodes is

shown, evaluated by the approach described in this section.
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Uniform IDT
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Figure 3.4: Normalized spatial spectrum of electric charge distribution in the system of 5

periodic strips. K = 2w /A, A - IDT strip period. Strip width and spacing equal A/2.

Uniform IDT
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Figure 3.5: Normalized spatial spectrum of electric charge distribution in the system of 100

periodic strips. K = 2 /A, A - IDT strip period. Strip width and spacing equal A/2.
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3.3. Strips Electrostatic - Spectral Approach

This method of electric charge spatial spectrum evaluation was first proposed in [16]. The
principal difference of this approach is the following. Evaluation of the spatial spectrum of
electric charge distribution is performed directly, providing powerful tool for modelling of
IDTs, since there is no numerical evaluation of Fourier transformation by means of FFT
algorithm or similar of the function that is square-root singular at the electrode edges. As
mentioned earlier the spatial spectrum of electric charge distribution on electrodes must be
evaluated to approximate the frequency response of the transducer. It results from (2.9)
and (2.19) that the normalized charge distribution for real finite system of electrodes can be
expressed by

(U”*’“M z € (m,bm) m=1.N,

%? = Eylz, +0) = o (3.45)
0, 2 € (bmy@ms1) m=0.N,
while the E,(z) is
0, € (Gmybm) m=L.N,
E.(z,0) = (3.46)
(—I)N'""ZN;—"E(;;), z € (bpyGms1) m=0..N,

where the function Hy(z) is given by the following expression

N
Hy (@) = \J [z - an)@—b2)] (3.47)

(@ny bny, n=1...N denote the coordinates of the nth electrode right and left edges).
To enable the direct evaluation of the charge spatial spectrum the following function is

introduced
£(2) = By(@,+0) + jB.(2). (3.48)

Furthermore, the polynomial Py_3(z) in Eqgs.(3.45), (3.46) and the function Hy(z), given
by Eq.(3.47), are modified as follows

Pr-z(z) = Z Um H z-&), (3.49)
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N
Hy(z) = J H |((x =&n) — d,,)((:l? = &a) +dn)), (3‘50)

where &,, d.

Gntbn  _ butoan
2 1 n = 2 ]

are the nth electrode center and half-width respectively. Substituting (3.49) and (3.50) into
Eqgs.(3.45), (3.46) and taking into account (3.48), the function €(z) can be written

fnz n=1...N

N=-2 N
_ N1 (z — &) -
> (n = 1 s 6m) o

or in more compact form
N-2

E(@) = Y (=)™ (a), (3.52)

k=0

where the so-called generating functions E™*¥)(z) are introduced

N

{Nk) (33 &m) 1
& n:)H — Em)zmlll e e (3.53)

The Fourier transform of the £(z) thus can be defined

N-2 N-2
E(r)=9 {S(x) = Z(—j)N_lakE(N"‘)(m)} = > ()" TaEMH (), (3.54)

k=0 k=0
where 7 is spectral variable, and the Fourier transforms E of the generating functions E are

in the form of multiple convolutions

]E(N"‘)(r) =Ej(r)*... *E,(r) * Exyy % ... x Ex(r) (3.55)
of terms
1 e & Jo(rd;), > 0,
i) =& = :
= {\/(d?—(a:—&.-)*)} { 0,r<0, (350
E(r) = { (z-&) } _ { —je 8 (6(r) — diJy(rdi)] r > 0, (3.57)

Vi =@ -&))

0, r<0.
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Coefficient o4 can be evaluated from the constraints analogous to those of Eq.(3.3), which
are modified due to Eq.(3.48)

ai+1 k1
pn-t=- [ B@d= [ m (@) ds. (3.58)

by

This yields the system of linear equations
A-a=U, (3.59)
where U - a vector of voltages between neighboring electrodes
$er1 = =U, k=1...N-1, (3.60)
and the elements of matrix A are the integrals
A+l T+
Air=— f Im {EW*FDY dg, $k=1...N-1, (3.61)

Eitai

or in more detailed form

k=1
H (.’.B = ’Sm)

Eiv1—aip
A = —[ Im { (—j)N! i dz, i,k=1...N—-1. (3.62)
Eitai N
\JH(dﬁ - (z-&)?)
n=1

The functions in Eq.(3.62) are square-root singular at both limits of integration. The ap-
propriate technique needs to be implemented into numerical integration algorithm based on

splitting the integral at the interior breakpoint v, € (£ + @i Emt1 — Gmt1)
T i+1—8it1
Aix=-Im ] ENE-1)(z)dz — Im f ENE-D)(1)dz (3.63)
&itai Vi

and introducing the variable transform, that allows to remove the above mentioned singu-
larities [21], [23]

b vb—a
[ f(z)dz = / 2tf(a+t3)dt, (b>a)
a 0
for singularity at a, and

b vb—a
/ f(z)dz = / 2f(b—t2)dt, (b> a)
a 0
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for singularity at b. Thus, the elements of matrix A can be finally written in the following

form

A= —Im f 2™k (& + a; + t2)dt —
0
(3.64)

—Im

f\/£¢+1—ci+1—1i
0
The system of linear equations (3.59) is usually solved by means of LU (lower-upper) matrix

218‘“"‘_1)(&4.] — @iyl — tz)dt

decomposition algorithm. Once the system of equations (3.59) is solved the function E(r)
can be evaluated as a linear combination of the modified generating functions being convo-
lutions of Bessel functions (see Eq.(3.54)). Having the function E(r) evaluated the spatial
spectrum of electric charge can be found.
Some numerical examples are presented below. In Figs. (3.6), (3.7) the normalized electric
charge spatial spectrum and the spatial distribution of electric potential referred to the plane
y = 0 in the system of 5 periodic electrodes are shown. Analogously as in the previous sec-
tions all the diagrams charge spatial spectrum are represented as dependent on normalized
variable /K, where K = 2r/A, A is the strip period of the IDT. Evaluation of integrals in
(3.62) was performed by means of numerical routine based on iterative scheme discussed in
details in subsequent sections. The above technique for evaluation of integrals of the func-
tion that is singular at both limits (see Eqgs. (3.63)-(3.64)) was exploited. Double precision
arithmetics was used for calculations. The system of linear equations (3.59) was solved by
means of LU decomposition algorithm. In all the numerical examples the neighboring strips
voltages Uy, k = 1..N — 1 are specified instead of potentials of strips ¢, k = 1..N, since for
solving the system of linear equations (3.59) the voltages are needed rather then potentials
themselves (see Eq. (3.60)). The potential bias in Fig. 3.7 results from the condition that
the total electric charge vanishes. Another numerical examples in Figs. 3.8, 3.9 represent
the normalized spatial spectrum of the surface electric charge distribution in the system of
15 periodic electrodes showing its periodicity. It should be remarked here that although we
are mostly interested in the spatial spectrum of electric charge itself, the spatial distribution
of electric potential at the plane of strips will always accompany the one since it offers the
convenient tool for visual estimation of the correctness of numerical evaluations performed.
It follows from the nature of the spatial distribution of electric potential which is continuous
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Figure 3.6: Normalized spatial spectrum of electric charge distribution in the system of 5

periodic strips. K = 2w /A, A - strip period of the IDT. Strip width and spacing equal A/2.
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Figure 3.7: Spatial distribution of electric potential in the system of 5 periodic strips. Strip
width and spacing equal A/2.
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Figure 3.8: Normalized spatial spectrum of electric charge distribution in the system of 15
periodic strips. K = 2x/A, A - strip period of the IDT. The strip width and spacing equal
A/2. Nllustration of the charge spectrum ”periodicity”.
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Figure 3.9: Normalized spatial spectrum of electric charge in the system of 15 periodic strips.

2 "periods” of the function in details.
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function taking constant values on the strips equal to their potentials ¢, k = 1..N (corre-
sponding difference of potentials of neighboring strips must equal the specified voltages). On
the other hand, the spatial spectrum of surface electric charge distribution has the familiar
smooth form as in Fig. 3.6 only for periodic systems of strips being under altering potentials
as in the case of Fig. 3.7. In applications, this is generally not the case. Thus, the spatial
spectrum of electric charge distribution is inappropriate for any visual check of the numerical
results. This will become absolutely clear from further discussion, especially in the Section 4,
representing the results of analysis for the case of non-periodic systems of strips, and from
the Section 3.7, dealing with the systems of periodic strips with semi-infinite conducting
screen. It will be shown then that such an estimation of numerical evaluation correctness
can always be done easily by visual analysis of the form of the curve, representing the spatial
distribution of electric potential at the plane of strips.

It should be remarked here that the form of spatial spectrum of electric charge on IDTs
electrodes described by (3.54) is too difficult for direct numerical calculations for many
reasons shortly outlined below and thoroughly discussed in subsequent sections. Generally,
evaluation of the function E(r) like it stands in (3.54)-(3.57) gives reasonable results for
number of electrodes not exceeding 20 (for periodic system of strips). For longer systems of
strips the numerical inaccuracies inevitably arise, that lead to severe distortions of the charge
spatial spectrum (the advantage of the discussed method is that these become clearly visible
as mentioned above). The nature of the inaccuracies is complicated and require careful
investigation.

Generally, there are three main sources of numerical difficulties that should be overcome
to improve the numerical evaluation of the spatial spectrum of electric charge distribution

(3.54) for longer IDTs (number of electrodes greater than 20).

e The first and perhaps the most substantial source of numerical inaccuracy is associated
with evaluation of generating functions, that is evaluation of convolutions in (3.55) of
the functions given by Eqs. (3.56) and (3.57). In numerical examples presented above
in Figs. 3.6-3.9 this task was performed by means of so-called ”convolution theorem”
— well known property of the Fourier transform. This matter is discussed in Section

3.4. To overcome the difficulty, a higher order interpolation scheme for approximation
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of the function given by its samples is proposed to be implemented into convolution
evaluation algorithm based on "convolution theorem”. This is a distinctive feature of
this method, since the other two, discussed in the Sections 3.1 and 3.2 require no

convolution evaluation at all.

The second source of numerical inaccuracy is connected with the coefficients ay, k =
0...N — 2 evaluation, described above in this subsection. Because of bad convergence
of the numerical integrals (3.62) and ill-conditioning of the system of equations (3.59),
the above algorithm of coefficients ax evaluation fails for longer system of strips. The
solution to this problem is proposed that allows to avoid numerical integration. De-
tailed analysis of this problem is given in Section 3.5. The same problem arise in the
method described in the Section 3.1 where the coefficients oy, k = 0... N — 2 are to
be evaluate following the same procedure (see Egs. (3.3)-(3.5)). But the method of
solution to this problem given in the Section 3.5 can not be applied here.

And the last but not least source of numerical inaccuracy is associated with the large
range of values spanned by the generating functions (3.55). To overcome this, an ap-
propriate modification of generating functions Eq.(3.55) was proposed that is presented
in Section 3.6. This peculiarity is inherent in the method since it results from the form
of the generating functions, and it is not arise in any other method discussed in the

Sections 3.1 and 3.2.

All that restrict correct evaluation of the surface electric charge spatial spectrum to the

number of strips not exceeding 20. For longer systems numerical inaccuracies increase and

distort the charge spatial spectrum. In Fig. 3.10 the numerical example is presented that

shows the surface electric charge spatial spectrum for the case of 25 periodic electrodes dis-

torted by above-mentioned numerical inaccuracies. This work is dedicated to detailed

examination of the question of surface electric charge spatial spectrum evalua-

tion, based on the numerical method described in this section. Namely, the comprehensive

investigation of the above-outlined numerical inaccuracies and their elimination is presented

in the remaining part of this work.
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Figure 3.10: Distorted spatial spectrum of electric charge distribution in a system of 25

periodic strips.

46



3.4. Convolution Algorithm

As it was shown in the previous section, the surface electric charge spatial spectrum is
represented by linear combination (3.54) of the 'generating function’ (3.55) being multiple
convolutions of terms given by Egs. (3.56), (3.57). In the case of numerical examples of the
previous section (see Figs. 3.6-3.9,3.10) evaluation of convolutions in (3.55) was performed

using the so-called ”convolution theorem” (a property of Fourier transform)

F-! {fm G(r - r')F(f')dr’} = g(z) f(z), (3.65)

where
G(r) =F{g(x)} F(r)=3F{f(2)},

F denotes Fourier transformation and F~! is its inverse. The FFT (Fast Fourier Transform)
algorithm was used for Fourier transform evaluation. The algorithm operates over the dis-
crete finite representations of the functions that are to be convolved. That is, the functions
should be first sampled at discrete points, say r;,7 = 1..M; where M is required to be a
power of 2 if typical FFT algorithm is to be applied. The sampling step Ar and the interval
over which the function should be sampled, say < 0,75 > are critical. The following problem
arises here: first of all, since functions E;(r) and E!(r), given by Egs. (3.56) and (3.57), are
determined over the semi-infinite interval (0, co0), one should truncate them at the point rp
to obtain the finite data set, assuming the functions take zero values outside the interval.
This introduces initial inaccuracy into the convolution evaluation scheme. The part of the
function being truncated is folded over into the interval < 0,1y >. This phenomenon is
called ’aliasing’, since the function values outside of the range < 0,75 > are ’aliased’ (falsely
translated) into the interval by the very act of discrete sampling. This effect can not be
eliminated completely once the functions have being truncated and discretely sampled. It
can be only reduced to a certain degree by enlarging the interval < 0,7y >. Secondly, the
functions E;(r) and E!(r) for larger values of ¢ become faster oscillating due to the presence of
exponential term exp(—irg;), since £; (ith electrode displacement) increases (see Egs. (3.56)
and (3.57)). As it is shown in the next subsection, the Fourier integral of a fast oscillating
function, calculated numerically by means of the FFT algorithm, become systematically in-

accurate. Besides, the functions E;(r) and E(r) are slowly decaying due to the presence of
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Bessel functions Jy(rd;) and Jy(rd;). The former factor requires that the sampling step Ar
be diminished when i enlarges. The latter one requires, on the other hand, that the value
of r5; should be enlarged. In other words, the interval < 0,7y >, over which the functions
are sampled, must be extended. This inevitably leads to enlargement of input data-sets for
FFT algorithm. The typical function E(r), Eq. (3.56), is shown in Fig. 3.11 for = 4, a = 1.
In the upper figure, the real (red), imaginary (blue) parts of the function together with its
absolute value (black) are shown. In the lower figure, the absolute value of the function is

shown over the more wide interval.

Figure 3.11: An example of typical 'generating function’. a = 1, £ = 4. Red curve — real

part, blue curve — imaginary part, black curve — absolute value.

Another error, the so-called "circular convolution” phenomenon takes place while evalu-
ating the convolution by means of FFT algorithm [22]. It is shortly outlined in Appendix C

This phenomenon can be only avoided by zero-padding the data: the data-sets should be, at

least, double in length by adding zeros.
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!

Forming the original data-set by sampling of the
first function

E(r)= El(r)L::) (E)k(l...M)

___________________________ e

Forming the subsequent data-set by sampling the
corresponding function

E,(r) =>Ehra.r i=2...N

l

Zero padding of the data-sets
(E)k(l...M)+ = (O)k(un...zu)

(Ef)kﬂ T = (O)k(u+} 2M)

Evaluation of FFT
(‘g)tu...zu) = FFT {(E)k(l...zu)}

(5)&(1...2»{) = FFT {(Ei)k(l...zu)}

|

Multiplication

(c'?)k(}...zM) = (é’; )k(l...2M)

l

Evaluation of the inverse FFT

(E)k(l...ZM) = FFT™ {(C‘?)k(l...zm}

l

Truncating the spoiled data

(E)k(l...ZM) = (E)k(l...M)

Figure 3.12: Block diagram of multiple convolution evaluation.
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The block diagram in Fig.(3.12) represents the convolution evaluation algorithm. Let’s
assume that convolution of two functions, say E,(r) and E;(r), should be evaluated. The
original data-sets (E;)¢ and (Ez2)x, k = 1...M are formed first. This phase is illustrated
in Fig. 3.13. Then the corresponding data-sets are padded with zeros to avoid ”circular
convolution” (the data-sets are doubled in length), as it is shown in Fig. 3.14. That is, the
data-sets (E;)k, (E2)x, k = 1...2M are formed.

Evaluation of their Fourier transforms by means of FFT algorithm yields the dat