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Preface 

This volume summarises the lectures delivered at the Center of Excellence for 
Advanced Materials and Structures (AMAS) in the Institute of Fundamental 
and Technological Research, Polish Academy of Sciences, Warsaw. 

It begins by a brief survey of different aspects of cellular materials such as 
manufacturing, applications and mechanical behaviour under static loading 
(Chapter 1), which is followed by an introduction of elastic and viscoelastic 
wave propagation theories (Chapter 2). Particular attentions have been paid 
to the wave dispersion aspects in the cylindrical bar, which are useful for 
understanding of experimental methods involving bars. More detailed infor­
mation can be found in Gibson and Ashby (1988, 1997) for cellular materials, 
and in Achenbach (1978) and Graff (1975) for wave propagation theory. 

Chapter 3 provides general descriptions of possible factors affecting the 
rate sensitivity of cellular materials, such as the rate sensitivity of cell wall 
materials, the pressure of air entrapped in the cell, the microinertia effect, 
and the shock enhancement. Cellular materials have dispersive and complex 
micro-structures and it is difficult to formulate theoretically its rate sensi­
tivity. Therefore, the experimental studies play an important role in looking 
for appropriate constitutive descriptions. It leads to the following Chapters 4 
and 5, which deal with experimental techniques under impact loading. Chap­
ter 4 describes the most common impact testing techniques and provides some 
critical analyses of their measuring accuracy. Interested readers can refer to 
the relevant chapters of books of Zukas (1982,1991), Meyers (1994). Chapter 5 
presents recent developments of soft nylon Split Hopkinson Pressure Bar for 

testing soft cellular materials. Different methods to find accurate wave dis­
persions are introduced. Wave separation method for measuring large strains 
is also presented. 

Studies on the rate sensitivity of various cellular materials such as poly­
meric foams, aluminium honeycomb and aluminium foams are presented 
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6 PREFACE 

in Chapter 6. Specific experimental difficulties such as heterogeneous stress 
and strain fields are described. The dominant factors of the rate sensitiv­
ity for each material are also provided. Presented examples are chosen from 
published works co-authored with Professor G. Gary in (LMS-Ecole Poly­
technique) and from recent works performed in LMT-Cachan with my Ph.D 
students S. Abdennadher and I. N asri. Here I would like to express my ap­
preciation to have worked with them. 

Chapter 7 presents a model-structure study aimed at understanding in­
ertia effects in a progressive folding process. Square tubes (the chosen model 
structure) made of rate insensitive base materials (brass) are studied exper­
imentally, numerically and theoretically. It is shown that the apparent rate 
sensitivity of aluminium honeycombs and IFAM aluminium foam can be ex­

plained by the inertia effects in the progressive folding process. Interested 
reader can find details in the Ph.D thesis of S. Abdennadher. 

I would like to express my appreciations to Professor W. K. Nowacki 
(acting director of IPPT) and Professor Z. Mr6z (Scientific Coordinator of 
AMAS) to invite me for this very interesting visit. I appreciated stimulating 
discussions with Professor H. Petryk, Professor J. J. Telega, and other staff 
members. I am grateful to M. Basista, K. Dolinski, T. G. Zielinski for their 
kind helps and to I. Sl~tczkowska for having arranged all my practical requests 
during my visit. I am specially grateful to Dr. Qingming Li for his careful 
proof reading of the manuscript. 

Lastly, I would like to express my thanks to my wife Ying and my daugh­
ters Anne and Claire, who had to cope with my travelling absences and 
frequent over night writings. 

Palaiseau, September 2003 Han Zhao 
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Chapter 1 

Cellular materials: applications, 

manufacturing and behaviour 

1.1. Introduction 

Lightweight structure designs were mostly developed in the past decades 
for aircraft and aerospace structures where structural weight should be min­
imized. It becomes nowadays an important issue in transportation vehicle 
designs. For example, a heavier car means more oil consumptions, more air 
pollution, and more damages in a crash accident. An economical way to re­
duce the mass is to use sandwiched structures with the core made of cellular 
materials. 

Cellular material can be defined as solid made of relatively regular, either 
open or closed hollow cells. The cell could be directional hollow columns 
to form for example a two-dimensional honeycomb or more isotropic hollow 
sphere such as soup bubbles to fill an arbitrary three-dimensional space. 

The most important feature of cellular materials is their low density, or 
more exactly low relative density, defined as the ratio between the density 
of the cellular material and that of the cell wall material. Common cellular 
materials for structural uses have a relative density around the value of 0.1 
and the void occupies most of spaces. 

Generally, cellular materials differ slightly from porous materials by a 
relative density smaller than 0.3. It should be noted that the difficulty for the 
porous material analysis are the interaction between a quasi-incompressible 
liquid phase and a deformable solid phase because of the pressure variation 
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8 1. CELLULAR MATERIALS: APPLICATIONS, MANUFACTURING AND BEHAVIOUR 

due to skeleton deformations under mechanical or thermal loading. In open 
porous solids, there exists additional problem of the flow transfer of the liquid 
phase. In the contrary, for cellular materials, the pressure variation of the gas 
contained in the pore is generally small enough to be neglected. The large 
void space and the small thickness of the cell wall or edge lead to bending or 
buckling-dominant deforming modes of cell wall. 

1.2. Applications 

Cellular materials become popular in industrial applications due to their 
high specific resistance in terms of weight. They are used mostly in various 
sandwich beams or plates in order to improve the strength/ weight ratio for 
structures in aircraft, aerospace, automotive, rail vehicle and sport industries. 
The dominant parameters are the stiffness and the yield stress. 

They are also frequently used to absorb energy in accidental impacts. For 
example, aluminium honeycombs or foams are used in the sandwich shield­
ing of an airplane to reduce bird-impact damages, in the survival cell of a 
high-speed train to protect conductors, or in the filled box column to absorb 
kinetic energies in the collision of cars. Cellular materials are also popular in 
package industry where low resistance (so less expensive) polyurethane and 
polystyrene foams and paper or thermoplastic honeycombs are used to pro­
tect goods in transportion. In this case, important parameters are the mean 
crushing strength and the lock-up strain where cellular materials densify and 
their strength increases rapidly. This lock-up strain is obviously smaller than 
the porosity and following empirical formula fits most of cellular materials: 

p* 
Ed= 1- 1.4-. 

Ps 
(1.1) 

Other interested properties of cellular materials are their high thermal 
and acoustical insulating abilities assodated with closed c:ell struc:tures, or in 
the contrary their good heat transfer and chemical exchange capacities for 
the open cell structures. 

All these properties are often used in a combined way. For example, to 
protect an aircraft reactor from accidental impacts, sandwich panels with 
aluminium honeycomb cores are used for their capacity of energy absorptions. 
They are meanwhile lightweight structures with a good acoustic insulation. 
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1.3. MANUFACTURING PROCESSES 9 

1.3. Manufacturing processes 

1.3.1. Honeycombs: directional regular cells 

Soft woods can be considered as a natural cellular material. Observations 
of cork or balsa woods under microscope show that their basic cells are rather 
regular hollow hexagonal columns as a honeycomb of bee. R. Hooke has 
already reported cellular structures of corks in 1664. 

Common commercial honeycomb for structural use is made of aluminium 
sheets. Large thin aluminium foils are printed with alternating, parallel, thin 

stripes of adhesive and then stacked in a press. Once the adhesive cures, 
the stack of aluminium sheets can be cut through their thickness. The cut 
slices are afterwards stretched and expanded to form the panel of continuous 
hexagonal cell shapes like an accordion (Fig. 1.1). When thicker sheets are 
needed to make higher resistance honeycombs, they are shaped through a 
pair of corrugated rolls and cemented together afterwards. Meanwhile, basic 
materials could be papers (often dipped in a tank of resin after expansion), 
Nomex paper (kevlar fibre sheets) as well as thermoplastics. The latter are 
usually manufactured by direct extrusions. 

FIGURE 1.1. Honeycomb manufacturing by expansion process. 

The main parameters of honeycombs are the cell size, the cell wall thick­
ness as well as the angle between adjacent walls, which can be easily con­
trolled by the pulling displacement in the expansion process. 

1.3.2. Foams: more isotropic cells 

Polymeric foams are another type of the most common cellular materials. 

There exist many foamable polymers. The polyurethane is mostly used for 
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lQ 1. CELLULAR MATERIALS: APPLICATIONS, MANUFACTURING AND BEHAVIOUR 

quite low strength flexible foams. Stronger PVC foams are manufactured for 

structural composite cores. These foams are generally obtained by dispersing 

a gas phase into polymer melt, often with aid of a chemical blowing agent. 

The cell nucleation takes place under suitable temperature and pressure. 

Cells are initially closed, then their sizes increase with the thinning of cell 

walls, which gives different density of closed cell foams. The coarsening coa­

lescence and collapse may happen afterwards which produce so-called open 

cell foams (Fig. 1.2). 

open cell closed cell 

FIGURE 1.2. Foaming process for polymers. 

These techniques are also applied to make stronger but more expensive 

metallic (mostly aluminium) closed cell foams. Within aluminium melts, gas 

bubbles can be created by injecting gas directly (e.g., Process of Cymat, 

Canada) or using a blowing agent (e.g., Process of Alporas, Japan). However, 

gas bubbles formed in metallic melts tend to rise to the free surface, a higher 

viscosity of the molten metal is needed to reduce the rising speed. A common 

technique consists in adding, for example, ceramic powders in the melt. 

Another way to obtain metallic foams is to use a powder metallurgical 

method. Precursor materials are composed of metallic powders (e.g., alu­

minium alloy) and blowing agent powders (e.g., titanium hydride). The pow­

der mix is at first consolidated by cold isostatic pressing and then followed by 

hot extrusion to form the desired shape. Foaming is carried out by heating 

at high temperature. One major advantage of this quite expensive method is 

the possibility to make final products directly without machining, for exam­

ple, to put the powder mix between two skin sheets to make sandwich panels 

with foam cores directly. 

The open cell metallic foam (sponge) is obtained by electro- or vapor­

depositions on precursor open cell structures made of polymers. It can be 

also produced by an investment casting process. 
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1.4. MECHANICAL BEHAVIOUR UNDER QUASI-STATIC LOADING 11 

1.4. Mechanical behaviour under quasi-static loading 

1.4.1. Mechanical behaviour of honeycombs 

For a regular cell cellular material, such as honeycomb (Fig. 1.3), it is easy 
to give a theoretical expression of its relative density, which is the ratio of the 
cross sectional area of the cell wall over the area occupied by the cell (1.2). 
The essential feature is that the relative density is proportional to the ratio 
of the wall thickness t over the cell length h. The change of the cell shape 
only influence the coefficient of proportionality. 

p* 3ht t 
-= cx:-
Ps 2h cos O(h + h sin 0) h' 

(1.2) 

where p*, Ps are the density of honeycomb and the density of the base material 
respectively. 

FIGURE 1.3. Honeycomb, idealised hexagonal cells. 

(a) Out-of-plane behaviour {x3 direction) 

Out-of-plane behaviour is the most interested property of honeycombs 
because of their favourable stiffness and strength in this direction. The ratio 
of the foam Young's modulus Ej over that of the base material and the yield 
stress a;t in tension over the base material yield stress are equal to the 
relative density because the deformation is in an uniform stretching mode 

p* -, 
Ps 

a*+ p* 
~= 

' ays Ps 
(1.3) 

where E 8 , ays denote Young's modulus and yield stress of the base material. 
However, under compression, which is the loading scenario for energy ab­

sorption applications, the deformation mode is progressive folding of the cell 
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12 1. CELLULAR MATERIALS: APPLICATIONS, MANUFACTURING AND BEHAVIOUR 

h/2 plastic hinge 

!_ 
h/2 

FIGURE 1.4. Progressive folding of cell walls, out-of-plane buckling. 

wall. Its strength can be estimated using energy balance. Assuming that the 

half-wave length of folding is equal to the cell length h for simplicity (Fig.1.4), 

an energy balance between the work of crushing force and total energy re­

quired in the rotation of the plastic hinge line can be made 

a;32h cos B(h + h sin B)h = ~ay8 t27r3h, (1.4) 

where a;3 is the compressive yield stress. 

It leads to the following formula: 

a;3 1r(h + 2h)t2 
( t) 2 

ays = 8hcos8(h+hsin8)h ex h ex 
(1.5) 

For a cellular material with relative density of 0.1, the progressive folding 

strength is about 1/ 10 of its stretching strength. 

{b) In-plane behaviour (x1- or x2-directions) 

The in-plane deformation mode in linear elastic regime is elastic bending 

of sheets in microscopic scale. The relation is between the applied bending 

moment M and relative deflection 8 

M FhsinB 
8 = 6E

8
1 = 12E

8
1 2 (1.6) 

where I denotes the moment of inertia of the cross section. 

The bending moment is then related to the crushing force distribution 

(nominal stress a1 in x1-direction) and the nominal strain c:1 is propositional 
to the ratio of deflection 8 over the cell length h: 

M = ~a1h(1 + sinB)bhsinB, 
8 sin() 

El = hcos ()" (1.7) 
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1.4. MECHANICAL BEHAVIOUR UNDER QUASI-STATIC LOADING 13 

1\1 

F 

FIGURE 1.5. In-plane bending dominant deformation mode (after Gibson and 
Ashby, 1988). 

> From Eqs. (1.6), (1.7), we obtain that the elastic moduli Ej, E2 in 
directions x 1 and x2 (with similar analysis) scales with the cube of the relative 
density (1.8): 

Ej ( t )
3 

cosO E2 = (!) 3 
(1 +sinO). 

Es = h sin2 0(1 +sin 0)' Es h cos3 0 (1.
8

) 

Yield stress can be obtained using the same analysis based on the energy 
balance as in the out-of-plane case, supposing the rotation angle ¢ is very 
small: 

(1.9) 

It leads to the conclusion that the yield stresses az1 , az2 in the direc­
tions x 1 and x2 are proportional to the square of the relative density of the 
honeycomb: 

az1 1 ( t) 2 

ays = 2(1 +sin 0) sin 0 h ' (1.10) 

1.4.2. Behaviour of foams 

Foams do not have regular cell shapes and sizes as honeycombs and there­
fore, an accurate formula is impossible. However, a dimensional analysis can 
be made to understand the dependence of the main mechanical characteris­
tics on the relative density. 

(a) Open cell foams 

For the open cell foams, an idealised cell structure is drawn in Fig. 1.6. 
The relative density is the ratio of the volume of cell edges over the volume 
occupied by the cell. 
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14 1. CELLULAR MATERIALS: APPLICATIONS, MANUFACTURING AND BEHAVIOUR 

b 

FIGURE 1.6. Idealised open cell foam model (after Gibson and Ashby). 

It can easily be shown that the relative density is proportional to the 
square of the ratio of beam thickness t over cell size h: 

p* t2 
Ps <X h2 . 

(1.11) 

In the elastic range, the dominant deforming mode is bending as in the 
case of in-plane deformation of honeycomb, except that the basic elements 
are beams instead of plates. The elastic bending equation relates the applied 
force F and deflection fJ (1.12), which leads to a relation between nominal 
strain E and nominal stress C/: 

fJ Fh2 C/h4 

E<X-h<XE 4<XE 4' st st 
(1.12) 

The ratio of elastic modulus E*over that of base material is proportional 
to the square of relative density: 

(1.13) 

>From Fig. 1.7(b), the interested reader may estimate the value of the yield­
ing stress by repeating the limit analysis: 

(1.14) 
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1.4. MECHANICAL BEHAVIOUR UNDER QUASI-STATIC LOADING 15 

(a) (b) 

t F t t, 
___ l ___ l 
--sT --oT 

h h 

pl:•slic: 
hingl's 

FIGURE 1.7. Deforming mode of open cell foams, elastic bending of edge beam (a), 
and plastic hinge rotation (b), (after Gibson and Ashby). 

The yielding stress of open cell foams depends on the cube of square root of 
the relative density: 

(1.15) 

(b) Closed cell foam case 

Closed cell foams are a combination of rather thick cell edges and much 
thinner cell membrane (Fig. 1.8) because of the manufacturing process (see 
Fig. 1.2). Microscopic observations of the deformation mode show that the 
edges and membranes are dominated by bending and stretching respectively. 

The mechanical behaviour should also be a combination of these two kinds 
of deformation modes. Assuming that the weight percentage of edge part is 
cp and the membrane part is 1-cp, the elastic modulus depends then on the 

square of bending part and linearly on the stretching part: 

E* ( p* )
2 

1 p* - = c1 cp- + C1(1- cp)-, 
Es Ps Ps 

(1.16) 

where cl' c~ are coefficients, with values close to 1' according to experimental 
data on different foams. 
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16 1. CELLULAR MATERIALS: APPLICATIONS, MANUFACTURING AND BEHAVIOUR 

I' 

FIGURE 1.8. Idealised closed cell foams (after Gibson and Ashby). 

It can also be easily deduced that the yield stress depends on the cube of 
the square root of bending part and linearly on the stretching part: 

(1.17) 

where C2, C~ are also coefficients and their experimental values are 0.3 
and 0.4, respectively. 
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Chapter 2 

Wave propagation in elastic 
and viscoelastic media 

2.1. Introduction 

Structures under impact loading are neither in an equilibrium state as 
under quasi-static loading, nor in a stationary motion state like vibrations . 
They are in a transient changing state depending on the wave propagation. 

Therefore, to study the impact behaviour of cellular materials, the wave 
propagation knowledge is necessary to understand dynamic testing tech­
niques as well as the analysis of impact response of structures involving 
cellular materials. 

2.2. Elastic wave propagation in infinite media 

For infinite media, the dynamic equilibrium equations are written as 

(2.1) 

where p, aij, ui are the mass density, stress and displacement in the solid, 
respectively. 

The assumption of small perturbations implies: 

(2.2) 
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18 2. WAVE PROPAGATION IN ELASTIC AND VISCOELASTIC MEDIA 

The constitutive equation of the linear elastic solid is given by: 

(2.3) 

where A and J-L are the Lame coefficients. 
If the body force is neglected, the dynamic motion of elastic infinite me­

dia (2.2)-(2.2) is described by the Navier equations: 

II, u· .. +(A+ 1/.)U. "= pu· ,. l,JJ ,...., J,]t '/, (2.4) 

or 

(2.5) 

Here \l is the gradient operator. 
Taking a natural decomposition of the displacement vector u into the 

dilatation part and distortion part, we write 

u=\l¢+\lxH, (2.6) 

where ¢ is a scalar function and H a vectorial one. 
Substituting (2.6) into Eq. (2.5), we get 

This implies two wave propagation equations: 

(2.8) 

~~ = fpv2
H. (2.9) 

Equation (2.8) defines the dilatation wave speed as J(A + 2J-i)/ p and 
Eq. (2.9) gives the distortion wave speed equal to yJ;{P. 

For a bounded domain, the dilatation wave reflects and transmits at the 
boundary to generate both dilatational and distortional waves; and so do the 
distortional waves. For a 3D boundary problem, there is no way to follow the 
wave propagations and interactions to get a simple analytical solution except 
for some simple cases. 
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2.3. ONE DIMENSIONAL WAVE PROPAGATIONS 19 

2.3. One dimensional wave propagations 

One-dimensional elastic wave propagation is a special case of the general 
wave equations and some interesting features of wave propagation can be 
explained. The governing equations are written in the following form: 

a2u aa 
p at2 = ax' 

For a linear elastic behaviour we have 

a= Ec. 

au 
c =ax· 

It leads to the one-dimensional elastic wave propagation equation: 

a2u E a2u 
at2 p ax2 · 

(2.10) 

(2.11) 

Equation (2.11) admits the following general solution of displacement u(x, t): 

u(x, t) =!(Cot- x) + g(Cot + x), (2.12) 

where Co = y'E/P is the one-dimensional elastic wave speed, f and g are 
arbitrary functions (f is the wave propagating in the positive direction of x 
and g represents the wave in the opposite direction). 

Let us consider a single wave (function for g); Eq. (2.12) shows the time­
space equivalence of these types of functions. It can be easily deduced that 
the stress a(x, t), strain c(x, t), and particle velocity v(x, t) associated with 
one single wave are all proportional: 

a(x, t) = Ec(x, t), v(x, t) = ±Coc(x, t). (2.13) 

Another method to solve wave propagation is the characteristic equation 
and the jump condition. It is noted that Eq. (2.10) can be rewritten as a 
system of first order differential equations: 

aa av 
-=p­ax at 

aa = Eav 
at ax 

==* :x (a -pv:) = 0, 

==::} !..._ (a -Ev at ) = 0. ax ax 

(2.14) 

It leads to the following characteristic equations, which sometimes are also 
called the jump condition: 

da = ~pCodv at dx = ±Codt. (2.15) 
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20 2. WAVE PROPAGATION IN ELASTIC AND VISCOELASTIC MEDIA 

FIGURE 2.1. Collision between two thin rods. 

As an example, let us consider now the wave propagation in a long thin 
bar generated by the impact of a shorter bar of the same size at a velocity 
of V (Fig. 2.1). The time-space diagrams (Lagrange diagram or x-t diagram) 
separate time-space region with the lines of a slope ±Co (see Eq. (2.15)). 
The values of velocity and stress can be derived one by one from the jump 
condition (2.15) and boundary conditions. 

2.4. Harmonic waves, wave dispersion in infinite elastic 
cylindrical bars 

Harmonic waves are sinusoidal wave motions (Fig. 2.2) defined by the 
oscillating frequency w, wave number~' and amplitude of vibration uo: 

u(x, t) = uoei(~x-wt). (2.16) 

The wave speed C is calculated by the following formula: 
w 

C=~· (2.17) 

In the case of one-dimensional wave propagation, the general solu­
tion (2.12) can expressed as combinations of harmonic waves: 

u( x, t} = 2~ j (A( w )ei({(w )x-wt) + B ( w )ei({(w )x+wt)) dw. (2.18) 

However, all the harmonic wave components should propagate with the same 
speed to ensure that wave profile does not change during propagation (non­
dispersive wave). 
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FIGURE 2.2. Harmonic wave motions. 
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FIGURE 2.3. Wave dispersion effect. 

Figure 2.3 shows the case of the wave profile generated by impact between 
two rods. The one-dimensional analysis gives a rectangular wave profile which 
is different from experimental recording. It can be concluded that the elastic 
wave in a rod is normally dispersive and one-dimensional theory is only a 
first-order approximation. 

To describe this dispersive wave propagation Pochhammer (1876) and 
Chree (1889) derived a longitudinal wave solution for an infinite cylindrical 
elastic bar based on harmonic waves. 

According to the propagation of harmonic waves, the displacement vector 
is written in the following form: 

+oo 

u(X, t) = 2~ J u*(X,w)e-iw1dw 
-00 

(2.19) 

with u*(X,w) = u'*(r,B,w)ei~(w)z, 
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22 2. WAVE PROPAGATION IN ELASTIC AND VISCOELASTIC MEDIA 

where u(X, t), u *(X, w) are displacements as functions of time and frequency, 
respectively. The components of the space vector X are represented in cylin­
drical coordinates by r, (), z, cf. Fig.2.4. 

X 

z 

FIGURE 2.4. Cylindrical coordinates for infinite rod. 

Substituting this displacement vector into wave equations (2.5), a general 
solution can be found. The boundary condition on the lateral 8urface of the 
cylindrical bar should be satisfied, i.e., 

Trr = Tr(J = Trz = 0. (2.20) 

It will lead to the so-called Pochhammer-Chree's frequency equation that 
gives a relation between the wave number ~ and the frequency w (Pochham­
mer, 1876; Chree, 1889). Detailed development is given in the following (for 
an infinte viscoelastic bar). 

2.5. Wave propagation in infinite viscoelastic cylindrical 
bars 

2.5.1. Viscoelastic frequency equation 

In the case of a linear viscoelastic bar, a similar harmonic wave solution 
can be obtained. Considering a linear viscoelastic media, the constitutive law 
can be written in the frequency domain as follows (Bland, 1960): 

u*(w) = A*(w) tr (e*(w))l + 2p,*(w) e*(w), (2.21) 

where u*, e*, and A* and p,* are respectively the stress tensor, the strain 

tensor, and two material coefficients. 
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The harmonic wave displacement components u* (X, w) must satisfy the 
following dynamic equation of motion (Achenbach, 1978): 

J-L*(w)\72 u*(X,w) + (.X*(w) + J.L*(w))\7\7 · u*(X,w) = -pw2u*(X,w), (2.22) 

where \7 is the gradient operator and p is the mass density. 
As in the case of elastic media (Graff, 1975), each wave displacement 

u *(X, w) can be expressed as a function of the dilatational wave part </>*(X, w) 
and distortional wave part H* (X, w): 

u*(X,w) = \7¢*(X,w) + \7 x H*(X,w). (2.23) 

Substituting Eq. (2.23) into the dynamic equation of motion (2.22), we get: 

with 

2 

\72¢*(X,w) + ~2 ¢*(X,w) = 0, 
1 

2 

\72H*(X,w) + ~2 H*(X,w) = 0, 
2 

.\*(w) + 2J-L*(w) 
p 

(2.24) 

This equation must be satisfied, respectively, by the dilatational and the 
distortional parts of the displacement (Zhao, 1992). 

For an infinite cylindrical bar, the assumption of the harmonic wave ( 2.19) 
means that the displacement must show a sinusoidal variation along the axial 
direction of the bar. The solutions ¢*(X,w) and H*(X,w) are then expressed 
in the following form: 

</>*(X,B,w) = ~(r,w)ei~z, 
(2.25) 

Furthermore, in the case of longitudinal wave, owing to the axi-symmetry of 
the problem, the functions </>*(X, w) and H* (X, w) are written in a simpler 
form: 

</>*(X,w) = ~(r,w)ei~z, 

H*(X, w) = he(r, w) ei~zee. 
(2.26) 
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24 2. WAVE PROPAGATION IN ELASTIC AND VISCOELASTIC MEDIA 

Replacing ¢*(X,w) and H*(X,w) in Eq. (2.26) by those given in 
Eq.(2.26), the functions <p(r,w) and he(r,w) can be determined. Then, we 
have: 

where 

¢*(X,w) = A(w)Jo(nr)ei{z, 

H*(X,w) = B(w)JI(f3r)ei~z, 

2 
Q2 = pw - ~2 

A*(w) + 2J1!(w) ' 

2 
{32 = .!!:::!_ - ~ 2 

J-L*(w) . 

(2.27) 

(2.28) 

Here Jo and J1 are zero and first order Bessel's functions, while A(w) and 
B(w) are coefficients. 

The displacement can then be calculated from equation (2.23). The strain 
and the stress tensors are found by using Eq. (2.21). The homogeneous bound­
ary conditions at the external surface of the bar ( r = a), which must be 
satisfied by the solution (2.27), lead to an equation relating ~ and w. A ''vis­
coelastic frequency equation" is then obtained. This equation takes the same 
form as in the classical elasticity. However, in the present case the argument~ 
in the equation is a complex number (Zhao, 1992): 

f(~) = (2n/a)({32 + ~2 )J1 (n.a)J1 ({3.a) 

- ({32 - ~2 ) 2 Jo(n.a)JI ({3.a) - 4~2 n.f3.JI (n.a)Jo(f3.a) = 0. (2.29) 

In this equation,~ is a complex function of the frequency w. Its real part gives 
the relation between frequency and associated phase velocity whilst the imag­
inary part gives the relation between frequency and associated attenuation 
coefficient. 

2.5.2. Numerical resolution method 

The harmonic wave propagation in an infinite cylindrical rod was stud­
ied in the elastic case (Bancroft, 1941; Davies, 1948; Mindlin and McNiven, 
1960), where numerical results were also given. 

In the case of viscoelastic rod, the explicit relation~ (w) has to be found 
numerically from equation (2.30) by solving a non-linear two-dimensional 
optimisation problem: 

Re [!(Re(~),Im(~))] = 0, 

Im [! ( Re(~), Im(~))] = 0, 
(2.30) 

where Re and Im denote the real and imaginary parts of complex number. 
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It could be difficult to obtain a very accurate solution of such a system. 
Fortunately, in our case the complex derivative f' ( ~) can be calculated ana­
lytically, and an iterative formula of Newton type generalised to the case of 
complex variables is constructed: 

f(~n) 
~n+l = ~n - f'(~n) · (2.31) 

The convergence of this method depends on the initial value ~o of the argu­
ment. For a given frequency w, different values of~ are found as analytical 
solutions of Eq. (2.29). The procedure is similar to the elastic wave propaga­
tion where different "modes" are found (Davies, 1948). Assuming that only 
the first order solution (corresponding to the lowest velocity) is needed for 
the dispersion correction, the initial estimate ~0 is taken as the solution of 
the one-dimensional wave propagation equation: 

2 pw2 

~ (w) = E*(w)' (2.32) 

where E*(w) is the complex modulus. 
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Chapter 3 

Rate sensitivity of cellular 

materials 

3.1. Rate sensitivity derived from base materials 

In the micromechanical analyses developed in Chapter 1 the ratio of cellu­
lar material strength over that of the cell wall material depends on a certain 
power function of the relative density. It takes into account only the rate 
sensitivity of the cell wall material and the rate sensitivity of foam should be 
the same as of the base material. However, it is extremely difficult to deter­
mine accurately the local strain rate because of the deformation localisation 
and the average strain rate always under-estimates the actual strain rate. It 
is also difficult to know exactly the cell wall material behaviour because the 
material compositions in the skin and edge of the foam may be quite different 
from base polymers or metals. 

5/2 . 

h/2 ~~ti:c :hin:g;!==:> 

h/2 

FIGURE 3.1. Honeycomb crushing. 
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28 3. RATE SENSITIVITY OF CELLULAR MATERIALS 

An approximate relation between the strain rate of cell wall material 
and the nominal strain rate of cellular material can be however evaluated. 
Taking the honeycomb loaded in the x3-direction, as an example (Fig. 3.1), 
we assume that the deformation mode is a progressive folding with the wave 
length of about h. 

Assume that the specimen has the length L, the nominal cellular material 
strain rate iN is proportional to the crushing rate J: 

. J 
eN=-

L 

The geometrical relation of the bending system in Fig. 3.1 yields: 

J = h¢cos¢. (3.1) 

Thus, the nominal honeycomb strain rate is related to the angle changing 
rate ¢. On the other hand, the strain rate of base material in the plastic 

hinge can be approximately related to this angle changing rate ¢. With the 
assumption that a plastic hinge length is about four times the thickness, the 
mean curvature change rate k, is ¢!4t. 

The mean stretching strain rate on the external surface of the plastic 
hinge is estimated by the following formula: 

. kt ¢ 
Ebase = 2 = g· (3.2) 

Equations (3.1) and (3.2) provide a relationship between the strain rates 
in the cell wall material and in honeycomb: 

. ¢ L . 
cbase = B = 8h COS ¢ c N. (3.3) 

If the length of the specimen L is about 10 times cell buckling length h, 
in a reasonable range of the angle ¢ (from 90° to 36° corresponding to a 
locking strain of about 0.6), the coefficient between the strain rate of cell 
wall material and the nominal honeycomb strain rate ranges from 1 to 2. 

Unfortunately, such a simple analysis cannot explain all the experimen­
tal observations. There are other explanations which are discussed in the 
following Sections. 
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3.2. PRESSURE INCREASE OF THE AIR ENTRAPPED IN THE CELL 29 

3.2. Pressure increase of the air entrapped in the cell 

Strain rate sensitivities may be also due to the existence of the gas/fluid 
phase (Gibson and Ashby, 1988; Deshpande and Fleck, 2000a). Taking an 
open cell foam as an example, when the foam is loaded very slowly, the gas 
filled in the foam will escape without resistance (it becomes another problem 
if the foam is filled with viscous incompressible fluids). Under high speed 
impact, the gas entrapped in the foam may have no time to move out. They 
will then take part in the foam resistance by the increase of pressure due to 
the volume change. Evidently, the quicker the loading is, the more the air is 
entrapped. The enhancement of the foam strength with the loading rate can 
be partially explained by this assumption. 

The importance of this supplementary air pressure can be easily evaluated 
by the gas volume change. Assuming that the gas occupies initially all the 
foam volume V subtracted by the solid skeleton volume, the initial gas volume 
V

0
gas is then 

V
0
gas = Vo ( 1 - p* ) , 

Ps 

where Vo is the initial volume of the foam. 

(3.4) 

In the range of large crushing strains, the lateral expansion is generally 
rather small and difficult to quantify. Here we neglect this lateral expansion, 
knowing that this will slightly overestimate the volume change. The actual 
foam volume V can simply be expressed as follows 

V = Vo(1- c). (3.5) 

The volume change of the solid phase is supposed to be negligible so that 
all the volume change is attributed to the gas phase. Under the assumption 
that all the air is totally trapped to get an upper limit, the actual volume 
occupied by gas is 

p* 
Vgas = Vo ( 1 - c - -). 

Ps 
(3.6) 

Supposing the loading is done under adiabatic condition, the actual pres-
sure of gas is 

(3.7) 

where pgas, P~as denote actual and initial air pressure. 
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The contribution of the air pressure for the foam strength is given by the 
following equation: 

(3.8) 

It yields: 

t::,.pgas = p~as [ ( 
1 

- f • ) 
1 

_ 1] . 
1-c:-E:. 

Ps 

(3.9) 

>From Eq. (3.9), for a foam of 0.1 relative density with air (specific coeffi-
cient of 1.4), one can deduce that the amplitude of contribution of air pres­
sure is around 2 times the initial pressure at 50% of strain (only 0.1 times 
at 10% strain). The upper limit of air pressure is about 0.2 MPa. Such influ­

ence should be taken into account only for very weak cellular structures, for 
example, in the case of low density open cell polymeric foams. It can bene­
glected in most cases, especially for metallic core materials such as aluminium 
honeycombs and foams. 

3.3. Micro-inertia effect 

Micro-inertia is another factor that may cause overall strain rate effect. 
It is known that the lateral inertia may cause a significant strength enhance­
ment in a buckling problem. The early fundamental work in this domain was 
reported by Budiansky and Hutchinson (1964). It is experimentally shown 
that the buckling of a column under compressive impact occurs later be­
cause of lateral inertia, so that the apparent critical buckling force is higher 
than static one because of strain hardening (Gary, 1983). Other known works 
( Calladin and English, 1984; Tam et al., 1991) explain in detail the role played 
by the lateral inertia. They developed simple models describing the buckling 
and post buckling behaviour of simple column under impact loading. 

3.3.1. Simple rigid plastic model 

To recall the basic idea without mathematical details, let us consider 
a simple model made of 2 rigid plastic bars linked by a plastic hinge and 
a concentrated mass in the middle (Fig. 3.2). 

This mechanical system is well defined and the following geometrical re­
lationship holds: 

-6v = L sin(} 60. (3.10) 
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F 

v 

X 

v 

FIGURE 3.2. Rigid plastic models for lateral inertia. 

Under static loading, the system will crash (the angle () will increase rapidly) 
once the maximum moment due to the applied force F overcomes the fully 
plastic moment of the plastic hinge Mp: 

Mp = bt2as 
4" 

It leads to an estimate of the crushing force: 

F = -M 28() = a8 bt
2 

P 28v 4L sin () · 

(3.11) 

(3.12) 

The initial imperfection (deviation from a vertically straight position) is 
characterized by the angle (). If the angle is zero, there will be no buckling 
but only compression. For a reasonable small angle, the buckling peak load 
is close to the product of the flow stress with the cross sectional area. 

However, when the model is loaded at higher speeds, the problem is that 
the concentrated mass in the middle is initially at rest and its acceleration 
is limited by the following equation: 

mx = 2asbt sin(). (3.13) 

It means that the concentrated mass will be accelerated progressively from 
zero to the speed corresponding to the loading impact velocity. During this 
period of acceleration, the crushing displacement is mostly compression of 
rigid plastic bars. Thus, before the mass is accelerated to an important ve­
locity, the buckling can not take place. It should be noted that the initial 
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imperfection play a very important role here. The smaller the angle is, the 
smaller is the accelerating force so that the acceleration duration (or inertia 
protection duration) will be longer and the strain reached before buckling 
higher. 

Consequently, the basic difference between static and dynamic loading 
is the compressive strain reached before bending. For a strain hardening 
material, a difference of buckling forces will be observed because under impact 
loading the column is more compressed. It explains why the dynamic buckling 
peak load appears higher. 

3.3.2. Inertia sensitive structures 

Such a basic concept is accepted by a number of authors and applied in 
several structural cases. For example, Langseth et al. (1996, 1999) claim that 
the lateral inertia is a cause of the strength increase observed in steel and 
aluminium square tubes. Suet al. (1995) provided a classification oi different 
structures which are rate sensitive or not. 

They found that structures having a quite flat force-displacement dia­
gramme after yield point (classified as type I) present very limited rate sen­
sitivity. The typical example is the traversal compression of circular tubes. 

In contrast, structures classified as type II have a sharp drop of the crush­
ing force after a critical loading point and rate sensitivity is observed in such 
structures . The buckling of a straight beam is a good example of type II 
structure. 

As a matter of fact, the key point is whether there exists a branching 
point between two possible deforming modes during the crushing. When this 

branching point exists the inertia under impact loading may change the oc-

F 

----- t)pe II 
b 

FIGURE 3.3. Inertia sensitive structure classifications. 
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curring chance for each particular deforming mode. Taking example of beam 
buckling, the lateral inertia under impact maintains the deforming mode of 
uniform compression because the bending becomes impossible, even though 
the compression needs more energy. 

Such a selector effect is very clear in a polymer composite plate test , 
see Fig. 3.4. 

FIGURE 3.4. Deforming mode selections (an example) . 

During the static loading, the microbuckling is the least energy demand­
ing deforming mode (on the left of the photograph). Under impact loading, 
the splitting becomes possible because microbuckling is locked by lateral in­
ertia. Nice works on the strength enhancement in fiber composite have been 
reported by the team of G. Ravichandran ( Oguni and Ravichandran, 2000, 
2001). 

Another example of deforming mode selection example can be found in 
balsa wood. In a progressive folding, the mean crushing strength depends 
strongly on the wave-length. The shorter the wave length is, the higher the 
crushing strength. In the case of balsa wood it can be seen, for example, 
that the locking strain under impact is smaller than that in the static case 
and this indicate that the folding wave-length becomes smaller (Vur~L~Il~ 
G. Ravichandran, 2003). /:~:,;~ 1 ~ w/cr. ' _ :.>,, . '"~) . -(;,. \ 

Such a wave length in the case of prism hollow box can be e~"(fm~ted by :%\ 
I .:;:, -, / J -

the minimisation of the energy needed for crushing. However, ifZ:j:>ertut~~' "· 
the wave length will change. For example, the prism tube filled,\vith foabl,' .:. '-" 

'·<:.: ._f::;'d_;,~~· . 
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deforms with a different wave length from the initial hollow tube (Langseth 
et al., 1996). It was also shown that when the impact velocity is high enough, 
the wave-length in the folding is modified by stress wave propagation (Kara­
giozova et al. 2000). 

3.4. Shock wave effect under hyper-velocity impact 

3.4.1. Shock wave forming 

For the sake of simplicity, the shock wave is introduced in the one­
dimensional case, where the governing equations is written as follows: 

fPu aa 
p (Jt2 = ax. (3.14) 

The behaviour of an arbitrary solid can be described by a differentiable 
stress-strain function: 

a= f(e). (3.15) 

Substituting (3.15) into (3.14) yields 

82u 1 da 8e 1 da 82u 
(Jt2 = p de ax = p de 8x2 . 

(3.16) 

Equation (3.16) implies that wave propagates at wave speeds varying with 
the strain or stress level: 

C(c)=~. (3.17) 

In the case where the function a = f (e) is convex as for a usual elastic­
plastic solid, the wave speed decreases with the strain and wave disperse 
on propagating. In the case where the function a = f(e) is concave, the 
wave speed increases with the strain so that early created waves at small 
strain propagate at lower speeds than those generated later. The latter will 
somehow catch the former waves during propagation and a single shock wave 
front is inevitable. 

Such kind of concave constitutive function is quite unusual for solid ma­
terials, except under high pressure (several GPa). For example, in the plate 
impact test mentioned later on in Sec. 4.4 (the interested reader can also 
refer to Meyers, 1994), the shock wave is generated at high pressure due to 
the existence of concave pressure-volume relation. For a cellular material, 
the densification part of the stress-strain curve is a concave function and the 
shock wave may be formed under the usual one-dimensional condition. 
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3.4.2. Conservation laws through shock front 

Let us consider a one-dimensional plane shock wave shown in Fig 3.5. 
Before the shock front arrives, the material state is given by the density po, 
particle velocity vo, stress ao, and the internal energy Eo. Behind the shock 
front, the material is described by another state Pb VI, ai, EI. 

v 
l 

FIGURE 3.5. Conservation laws through shock front. 

t=to +dt 

Conservation laws should be satisfied. For the conservation of mass, the 
balance of mass for a short time dt is as follows: 

dM = S[- VI dtpi + vodtpo + U dt (PI- Po)] = 0. (3.18) 

It yields: 

PI (U- vi) = Po(U- vo). (3.19) 

The balance of kinematical quantities for the time period dt is: 

Substituting the mass conservation law into Eq. (3.20) we obtain 

ai - ao = Po(U- vo)(vi- vo). (3.21) 

Similarly, the energy conservation law is obtained in the form 

E1 - Eo = -(a1 + ao) - - - . 1 (1 1 ) 
2 PI Po 

(3.22) 
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3.4.3. Shock enhancement of cellular materials 

Shock wave can be formed in cellular materials when a very high velocity 
irnpact is applied. Indeed, when the foam reaches the locking strain, the con­
stitutive equation becomes concave and the shock front can be formed. Reid 
and Peng (1997) considered a simple model case of foam material crushing 
against a rigid wall, see Fig. 3.6. 

/ 

FIGURE 3.6. Foam shock wave model. 

Assuming that the foam behaviour can be approximated by rigid-plastic­
rigid-locking model (Reid and Peng, 1997), see Fig. 3.7, a unique shock front 
propagation at velocity U will be formed . 

(J 
s 

(J 

) 
/ . --=-----·· : 

FIGURE 3.7. Simplification of cellular material behaviour (after Reid and Peng, 
1997.) 

The boundary conditions are given by 

vo = V, VI= 0. (3.23) 

The stress ahead of shock front is the plastic flow stress of foams as and 
the stress behind shock front is thP- so-called shock enhanced stress ad: 

(3.24) 

Using this simplified rigid locking model , the density behind shock wave 
is given by 

Po 
Pl = -

1
--, 
- €d 

where Ed denotes the locking strain. 

(3.25) 
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The mass conservation (3.19) leads to: 

PI U = Po ( U - V). (3.26) 

It provides an explicit expression of the shock wave speed U: 

(3.27) 

Substituting (3.26) into the conservation of kinetical quantities (3.21) 
leads to: 

Po a1- ao = P1UV = --UV. 
1- Ed 

Taking account of Eq. (3.27) we have: 

The shock enhancement is finally written as follows: 

(3.28) 

(3.29) 

(3.30) 

We observe that the enhancement exists under particular condition of the 
shock front forming. The stress calculated from Eq. (3.30) can not be consid­
ered as material characteristics and the energy absorption under this shock 
enhancement is still an open question. Therefore, it should not be applied 
simply to the energy absorption design. 
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Chapter 4 

Introduction of impact testing 

techniques 

4.1. High speed testing machine 

One of the commonly used impact testing devices is the high speed hy­
draulic testing machine. It differs from an ordinary hydraulic testing machine, 
since high delivery hydraulic pressure generator combined with accumulators 
of air pressure is required (Fig. 4.1) . It should be emphasized that such ma­
chines provides only a single impact at a given initial speed (up to 20m/s). 
It is impossible to control other parameters of loading (holding, unloading) 
as in a static testing machine. The force measurement is usually done by a 
load cell mounted at the top of the machine. 

Loading cell 

servo-valve 

qt) 

FIGURE 4.1. High velocity testing machine. 
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This testing configuration raises the measuring difficulty because the 

recording sensor can not be put in contact with the sample. If the top column 

is assumed thin enough, it can be considered as a one-dimensional elastic bar 

subjected to a sudden impact force applied at the column end by the loaded 

sample (Fig. 4.1, on the right). Using the boundary and jump conditions for 

one-dimensional elastic waves (2.15), the stress and the particle velocity can 

be calculated for three positions: 

1. at the top of the column, 

2. at the middle, 

3. at the contact interface with the sample. 

The stress and particle velocity time histories are shown in Fig. 4.2. These 

time-histories are different. We observe that the average stress and velocities 

are similar. Thus, if the test is slow and a small sampling rate is required, one 

can have just one sample point in one oscillating period to measure accurately 

the mean value at any position. However, if a high velocity test is made and 

a high sampling rate is necessary, the recording profile at the position 2 is 

absolutely different from the signal at the position 1. 

qt) \{t) 
I\ :b 3 
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FIGURE 4.2. Analysis of loading measurement. 

4.2. Weight drop hammer 

The weight drop device is another very popular impact testing methods. 

As shown in Fig. 4.3, a compact mass guided in a rail falls and hits the 
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Accelerorreter 

FIGURE 4.3. Drop weight testing device. 

sample. The deceleration of that mass is measured by an accelerometer. The 
associated force and displacement are then found. The recorded accelerometer 
signal is not always of sufficient quality because of vibrations of the weight 
and of its guiding rail or suspension system. Draconian but not justified 
filtering has to be processed to get acceptable curves. 

4.3. Split Hopkinson Pressure Bar 

4.3.1. Experimental setup 

The SHPB (Split Hopkinson Pressure Bar), also called the Kolsky ap­
paratus, is a commonly used experimental technique to study constitutive 
laws of materials at high strain rates. (Hopkinson, 1914; Kolsky, 1949, 1963). 
A typical SHPB, shown in Fig. 4.4, is composed of the long input and out­
put bars with a short specimen placed between them. The impact between 

Pro\,tile Input bar Foam Output bar 

""' ~ ""' ~----~~---- lcl~------~~c------~ 
Isomm 

1.25m 3m 3m 

FIGURE 4.4. Split Hopkinson Pressure Bar setup. 
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the projectile and the input bar generates a compressive longitudinal incident 
pulse Ei(t) in the input bar. Once this incident pulse reaches the specimen-bar 

interface, a reflected pulse er(t) in the input bar and a transmitted pulse et(t) 
in the output bar are developed. With strain gauges fixed to the input and 
output bars, one can record those three pulses that allow for the determina­
tion of the forces and particle velocities at both faces of the specimen. 

The conventional analysis is based on the mechanics of the elastic wave 
propagation in bars. According to the theory of elastic wave propagation, 
the stress and particle velocity of a single wave can be accurately determined 
from the associated strain (2.13) measured by strain gages. 

4.3.2. Analysis of SHPB 

The standard SHPB analysis is based on two assumptions. First, it is 
assumed that the wave profiles are not only known at the measuring points 
but everywhere in the bar because an elastic wave can be shifted to any 
locations according to the uniaxial elastic wave propagation theory. Thus, 
the transmitted wave can be shifted to the output bar-specimen interface to 
obtain the output force and velocity, whereas the input force and velocity 
can be determined via the incident and reflected waves shifted to the input 

bar-specimen interface. 
The forces and the velocities at both faces of the specimen are then given 

by the following equations: 

Finput(t) = SBE [ei(t) + er(t)], 

Foutput(t) = SBE €t(t), 

Ylnput(t) =Co [ei(t)- er(t)], 

Voutput(t) = Coet(t), 

(4.1) 

where Fin put, Foutput, Ylnput, Voutput are forces and particle velocities at the 
interfaces; SB, E, Co are the cross sectional area of the bars, Young's mod­
ulus, and the longitudinal wave speed, and Ei(t), er(t), Et(t) are the waves 
known at the bar-specimen interface. 

Secondly, from forces and velocities at both bar-specimen interfaces, the 
standard analysis assumes the axial uniformity of stress and strain fields in 
the specimen, and thus, the stress strain curve can be obtained (like those 
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obtained from quasi-static test): 

. (t) = Voutput ( t) - \!input ( t) 
Es ls ' 

(4.2) 

(t) = ~output(t) 
as Ss . (4.3) 

Equations ( 4.2), ( 4.3) give the usual two-waves formula of Split Hopkinson 
Pressure Bar test: 

t 2Coj Es(t) = ----z; Er(t) dr, 

0 

i 8 (t) = 
2~0 

Er(t), 

SBE 
a 8 (t) = S.Et(t). 

(4.4) 

As such a homogeneous assumption is not really correct under dynamic 
loading, at least at the early stage of the test because of the transient effects: 
the loading starts at one face of the specimen whereas the other faces remain 
at rest. Investigations on this point were reported by Conn (1965), Hauser 
(1966) and Jahsman (1971), using a one-dimensional simulation of the wave 
propagation in the specimen. A two-dimensional numerical simulation was 

given by Bertholf and Karnes (1975). Experimental observations of the strain 
field using the diffraction grating technique were reported by Bell (1966). It 
has been proved that stresses and strains are not axially uniform, especially 
at the early stage of the test. However, such analyses become quite realistic 
after a great number of wave reflections in the specimen when a short metallic 
specimen is tested. 

A three-waves analysis has been proposed to use the average of the two 
forces to calculate the stress (4.2) instead of Equation (4.3) (Lindblom, 1964). 

(t) 
= Fin put ( t) + ~output ( t) 

as 2Ss . (4.5) 

It leads to the following three wave SHPB formulas: 

SBE [ ) as(t)= 
28

s Et(t)+cr(t)+Ei(t), 

is(t) = ~0 [ct(t) + Er(t)- c;(t)], 

(4.6) 
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t 

E5 (t) = ~0 J [c,(t) + Er(t)- Ei(t)] dr. 

0 

(4.6) 
[cont .] 

Equations ( 4.4) or ( 4.6) are usually applied, provided they are derived 

from non-dispersive wave propagation and homogeneous stress strain field 

assumptions. However, it should be emphasized that the homogeneous stress­

strain fields assumption is not necessary for the test using SHPB. If one stops 

at Eq. (4.1) of SHPB analysis, such a test provides an accurate measurement 

of forces and velocities at both sides of specimen. 

4.3.3. Other derived Hopkinson bar techniques 

The split Hopkinson bar technique, which has been initially used in com­

pression, was extended to the tension (Harding et al., 1960) and torsion 

(Duffy et al., 1971). For the tensile test, an impact tube is used to strike a 

T-shape incident bar (Fig. 4.5) to generate a tensile pulse. The main diffi­

culty lies in the attaching system between specimen and bars. An important 

artificial initial peak is often observed in such tests. 

outputb\ -B ~- V .... 

..____gag-:7~'---,~ 
Impact tube 

FIGURE 4.5. A typical tensile Hopkinson bar. 

In compression test, the friction between bars and specimen induces 

an overestimation of sample strength. In order to minimise friction effects, 

Davies and Hunter (1963) recommend an optimal length/diameter ratio of 

specimen. The correction of friction effect, based on the assumption of the 

a..xial uniformity of fields, is proposed. Other suggestions for the correction 

of inertia and friction effects can be found in later works (Klepaczko, 1969; 

Dharan and Hauser, 1970; Malinowski and Klepaczko, 1986). Most of those 

corrections were analysed and proved by the numerical simulation work of 

Bertholf and Karnes ( 1975). 

The loading system of the torsion bar is different because it is difficult to 

impose the rotating impact. However, the torsion wave can be generated by 
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accumulating torsion energy in a part of incident bar, separated by a brake. 

When the brake is suddenly broken, a torsion wave will propagate in the 

incident bar (Fig. 4.6). We observe that the torsion wave in a cylindrical bar 

is not dispersive. 

brake 

\ output bar 

\ Inp>A 
G-01 't ~ ~----~-----+~----~l .. l ______ .-+-~8----~ 

. \ 7' 
Torsion gage! sample gage2 

FIGURE 4.6. Torsion bar setup. 

An arrangement which permits loading with only one pulse in compres­

sion, as well as in tension (Fig. 4.7), has been reported in the work of Nemat­

Nasser and co-workers (1991). It is very useful for post test observations. A 

summery of the recent development of this SHPB technique can be found in 

(Zhao and Gary, 1996). 

Mass 

v Output bar 

I 
B -

I 
Projectile 

FIGURE 4.7. Arrangement to provide a tension-compression cycle 

The impacting velocity for a SHPB setup is limited by the yield stress of 

bar, and it leads to the following relation: 

(4.7) 

where ay is the yield stress of the bar. 

Taking the nylon bar as an example, it would be dangerous to strike 

over 30 m/s. In order to know the behaviour at higher velocity, a modified 

Hopkinson bar setup should be used. A simple solution is to put specimen at 

the front of the input bar (Fig. 4.8) to protect the bars from a direct impact 

of the projectile. 
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spe\d measurement 

D Foam measure point 

r--------. /- / I 

1.25m 3m 3m 

FIGURE 4.8. A modified SHPB setup, block bar. 

However, we lost the measurement of the force and velocity of the input 
side of specimen. However, assuming that the forces at both side of foams 
are nearly the same, the velocity at the impacting face can be calculated. 
The projectile is supposed decelerated by the force measured by Hopkinson 
bar from its measured initial impacting velo~ity V0 (by an optical device). 

Taking into account the one-dimensional wave propagation in the projec­
tile we have: 

Vprojectile = Vo - S 
1 

C [F(t} + t 2F(t- nT)l, 
pPp P n=l (4.8) 

if NT~t~(N+1)T, 

where Sp, pp, Cp are the cross-sectional area, the density and the wave ve­
locity of the projectile, respectively, while N = int(t/T), and T is the char­
acteristic time, i.e. time needed for the wave to travel twice the projectile 
length. 

4.4. High velocity impact tests 

For much higher velocity impact behaviour, the most common test is the 
plate-impact test which consists of launching a flying plate with a gas gun at 
the speed range from 100 m/s to several kilometers per second to impact a 
target plate. From measured free surface velocity history of the target plate 
(by the Visar system for example) and impacting velocity, wave propagation 
information in the target plate is known which gives indirect information 
about target material behaviour (Fig. 4.9). 

It should be noted that the material information in the centre of the 
target is under one-dimensional strain state because the waves have no time 
to reach the lateral free surface during impact. Such a situation yields an 
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Flying pl~te 
/pins 

·" ·"""""" "" ·'- N 

r 
.__ 

~~ System VISAR 

Sabot ... Laser 

ll~v 
'- 0 

_l \ 
_\ target plate 

Gas gun 

FIGURE 4.9. Plate impact tests . 

important hydrostatic stress: 

[

€1 0 0] 
e = 0 0 0 

0 0 0 

0 
(4.9) 

Other high velocity tests such as Taylor's impact test or ring expansion 
tests are not presented here. The interested reader can easily find necessary 
information in (Zukas, 1982, 1991; Meyers, 1994; Zhao, 1995). 

http://rcin.org.pl



Chapter 5 

Viscoelastic SHPB for soft 
(cellular) materials 

5 .1. Introduction, need for large diameter soft bars 

>From the analysis presented in Chapter 3, it can be seen that SHPB 
tests provides more accurate experimental data of material behaviours at 
high strain rates. However, such tests can not be applied directly to cellular 
materials because of the following difficulties. 

First, for large cell cellular materials, specimens must be large enough to 
be representative of the studied materials. Bars of large diameter are needed 
to ensure a sufficient sectional area. 

Second, the main characteristics of foams is their relatively weak resis­
tance compared to solid materials so that the force to be measured is small. 
Such a small force yields very small strains in the output bar if the usual steel 
bars are used. According to Eq. (4.1), the transmitted wave Et(t) is propor­
tional to the force at the bar-specimen interface, but inversely proportional 
to the product of the cross-sectional area and the Young modulus of the bar. 

One method to enhance the signal is to embed a piezoelectric film in the 
bar. It may improve the recorded signals in the output bar (Chen et al., 1999, 
2000, 2003). However, it does not solve the problem for input bar where the 
force to be measured is the difference between incident wave and reflected 
wave, which are close to each other. Therefore, reducing the impedance of 
pressure bar is necessary for testing soft specimens. 
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In this Chapter, a solution consisting in using soft nylon bars with large 

diameters is suggested in order to improve the impedance ratio and conse­

quently the signal/noise ratio. 

5.2. Wave dispersion correction for large diameter nylon 
bars 

Soft nylon bars are unfortunately viscoelastic and the wave dispersion in­

creases greatly with the diameter of the bars. Kolsky's original SHPB analysis 

is based on the basic assumption that the wave propagation in the bars can 

be described by the one-dimensional wave propagation theory. As the three 

waves are not measured at bar-specimen interfaces in order to avoid their su­

perposition, they have to be shifted from the position of the strain gages to 

the specimen faces, in terms of both time and distance. This shifting requires 

the knowledge of wave propagations along the bar. 

Wave dispersion in a cylindrical bar was extensively studied in past 

decades. Following Davies' works (1948), Pochhammer and Chree's harmonic 

wave propagation theory has been used in the data processing. The oscilla­

tions due to wave dispersion effects observed in average stress-strain curves 

were decreased (Follansbee and Franz 1983; Gorham, 1983; Gong et al., 1990; 

Lifshitz and Leber, 1994; Zhao and Gary, 1996). 

The correction of wave dispersion due to viscoelastic behaviour coupled 

with geometrical effect is indispensable. Based on Pochhammer's and Chree's 

longitudinal wave solution for an infinite cylindrical elastic bar, the dispersion 

correction was extended to viscoelastic bars (Zhao and Gary, 1995). Even 

though the Pochhammer-Chree solution is not an exact solution for a finite 

bar, it is sufficiently accurate for long bars. Such a correction procedure is 

then accepted and applied by many authors. 

Assuming that the exact solution for the harmonic wave propagation in 

an infinite linear viscoelastic rod can be represented by a combination of 

harmonic waves for all frequencies, the displacement u(r, z, t) can be then 

expressed as follows: 

+oo 

u(r, z, t) = 2~ J ii(r, w) eil{(w)z-wtJdw. (5.1) 

-00 

The complete 3D analysis gives the frequency equation between frequency 

w and complex wave number ~. The real part of~ defines the relation between 
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frequency and associated phase velocity, and its imaginary part gives the 
relation between the frequency and the associated damping coefficient. The 
solution of this frequency equation leads to the dispersive relation ~(w) which 
depends on the mechanical properties and on the diameter of the bar. It takes 
into account coupled geometry and material effects. 

We observe that performing the wave shifting by simply adding the effects 
of the elastic geometry dispersion and the one-dimensional viscoelastic wave 
propagation is not correct. This is mostly due to the strong coupling between 
the geometry and the attenuation coefficient (Zhao and Gary, 1995). 

Once the dispersive relation is known, one can calculate the wave u~ ( t) 
propagated at a distance ~z from the rneasured wave u~(t). According to 
Eq. (5.1), the components in the z-direction at the surface of the bar u~(t) 

and u~(t) are: 

+oo 

um(t) = _l_ J ii (r w) ei[~(w)zo-wt]dw 
z 271" z o, ' 

-oo 
(5.2) 

+oo 

uP(t) = _!__ j ii (r w) ei[~(w)(zo+~z)-wt]dw z 271" z o, . 
-oo 

The wave shifting procedure is then performed numerically by the Fast 
Fourier Transform: 

(5.3) 

5.3. Identification of the material parameters of nylon bar 

As mentioned in the introduction, a series of papers gave satisfactory wave 
dispersion correction based on the Pochhammer-Chree's model for elastic 
rods. For a viscoelastic bar, the same process can be used with the method 
presented here if the viscoelastic wave propagation characteristics ~(w) of the 
bar is known. In practice, these characteristics are not given and they cannot 
be measured with a quasi-static test. Thus, an impact identification of its 
viscoelastic characteristics must be performed. 

Different methods can be used to obtain this complex function ~(w) = 

a(w) + i{3(w), the real part of which defines the wave dispersion whilst the 
imaginary part the attenuation. For example, waves generated by a simple 
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impact can ~e recorded at two or more different points. From two recorded 

signals ~ a direct experimental determination is possible (Blanc, 1993; Rumen 

and Potesil, L993; Bacon, 1998, Bacon and Brun; 2000). From Eq. (5.3) we get 

i~(w)~z _ FFT [u~(t)] 
e - . 

FFT [u~(t)] 
(5.4) 

It leads to a direct dependance of {3(w) from the modulus of the ratio between 

two signals li,nd that of a(w) on the angle of this ratio. 

Another possibility is to use an identification process based on an inverse 

calcula;;ion technique. It is assumed that the functions .X*(w), J.L*(w) in the 

wave propagation equation (2.29) have a pre-defined form with some param­

eters to be ctetermined. Using the wave at a recording point as input data, 

the paramett~rs can be determined by comparing the predicted wave with the 

recordEd wave at another point. 

As an example, the model describing a nylon bar is constructed from 

the one-dimensional rheological model: four Voigt elements and a spring, 

connec1ed in series. Assuming that the material is homogeneous and isotropic 

with ccnstant Poisson's ratio, the functions .X*(w), J-L*(w) can be constructed 

with nine parameters to be determined (Fig. 5.1). 

El E2 E3 E4 

FIGURE 5.1. Rheological model. 

To lllustnate the excellent quality of the identification of those parameters, 

the original Jrecord and two other records at respective distances of 4 m and 

8 m of the or•iginal one, as well as their corresponding predictions, are shown 
in Fig. 5.2. 

Ancther method based on the frequency resonance of the bar is also 

possible. For · a finite length bar, the duration of the round trip of the wave 

propagation depends on the wave speed and length of the bar. If the time 

signal i5 me8]sured for a sufficiently long time, there should be a resonance 

frequerry pe~ak in the spectrum of corresponding signal (Othman et al., 2002). 
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Strain hi story 

..ea~red and recoVered signa~l:s~~~t~S.~;JB;ii~P.--....-

8 288 888 ti.e (ps) 

FIGURE 5.2. Test of the identified parameters (after Zhao and Gary, 1995). 
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FIGURE 5.3. Comparison of input and output forces. 

In order to show the quality of this correction, a SHPB test without 
specimen is carried out. In such a test, the input and output forc~es should be 
equal. Figure 5.3 presents a comparison between these two forces for a 60 mm 

diameter nylon bar. It proves the efficiency of the proposed correction. 
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5.4. Wave separation methods 

The measuring technique using pressure bars relies on the knowledge 
of two elementary waves propagating in opposite directions. Once they are 
known, they can be shifted in time to the desired cross-section (for exam­
ple, to bar specimen interfaces) to calculate the force and particle velocity 
at that point. However, the directly measurable quantities such as strains 
or velocities anywhere on the bar are the sum and the difference of the two 
elementary waves. The SHPB technique uses long bars and a short loading 
pulse so that there exists a cross-section where the total incident pulse and 

first part of reflected waves (of the same duration) can be recorded sepa­
rately. There exists a maximum pulse duration depending on the length of 
the pressure bars. The measuring duration ~T of a classical SHPB set-up is 
limited (Kolsky, 1963) to ~T ~ L/C where Cis the wave speed and L the 
length of the bar. Consequently, the total relative displacement ~l between 
the two bar-specimen interfaces is limited by ~l ~ V ~T for a given loading 
speed V. For material behaviour tested at a given average strain rate, the 
maximum measurable strain is limited (Emax ~ i~T). For instance, the mea­
surable duration does not exceed 400 JlS for a SHPB set-up made of 2m long 
steel bars (C ~ ~OCOm/s) and the measurable maximum strain is limited 
then to 20%, for a test performed at the average strain rate of about 500 s- 1 

(and only 1% for 25 s-1). The SHPB technique then fails in testing of cellular 
material because the maxiw.um strain attained is insufficient to investigate 
the locking strain. 

One solution is to built a very long SHPB bar system (Albertini et al., 

1993). On the other hand, some earlier workers have analysed the multiple 
reflections in bars to increase the measuring duration of SHPB. Campbell 
and Duby (1956) reported a method based on one-dimensional elastic wave 
theory. Lundberg and Henchoz (1977) also proposed a simple explicit formula 
(within one-dimensional wave propagation assumption) to separate the two 
elementary waves and to measure the particle velocity outside observation 
window, using two signals recorded at two different cross-sections in the bar. 

Considering the two elementary waves in the bar, the wave propagating 
in the positive direction (arbitrarily defined) is named the "ascending" wave 
and the other one the "descending" wave (to avoid the confusion with the 
classical SHPB, the terms "incident wave" and "reflected wave" are not used 
here) . The strain c:(t) at each section is the sum of the contribution of the 
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elementary "ascending" wave Ease ( t) and that of the elementary "descending" 
wave E"des(t), and the velocity v(t) is proportional to their difference: 

e(t) = €ase(t) + €des(t), 

v(t) = Co(ease(t)- €des(t)], 
(5.5) 

where Co is the wave speed. 
At the section where the strain is measured, a prior knowledge of the 

contribution of one elementary wave will allow to calculate another one. 

£ A(t) £ (t) 

I ------------------t 
,, (T = = ~=1----- - - ----- = = = = = c ~(t) 

A --

RA - -=--=--=-- - - - - - - - - - ~ st reflection I£ ~(t) 
£~(t)l 

o--~~--------------------~~----~--~--~ z 

A B 

FIGURE 5.4. Wave separation scheme. 

Two strain gages are then cemented at distinct points A and B of the 
bar, as shown in Fig. 5.4. The strain histories at those two points eA(t) and 
€B(t) are recorded. Since the bar is loaded at one end (by the projectile for 
the input bar and by the specimen for the output bar) while the other end 
remains at rest, the recorded signal at the first measuring cross-section A is 
due to a single elementary wave until the reflection at the other end comes 

back. The "ascending" wave Ease A ( t) at A (because of positive direction of 
z-axis) is then equal to the measurement at point A for the period t < RA. 
Similarly, the "descending" wave at point B €des B ( t) is equal to zero for the 
period t < RB: 

€aseA(t) = €A(t), if t < RA, 
(5.6) 

€desB(t) = 0, if t < RB· 
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In order to exhibit "ascending" and "descending" waves from measure­
ments at A and B which become afterwards mixtures of both elementary 
waves, an iterative process is constructed. The strain measurements c-a(t) and 
c-a(t) are divided into small pieces c-~(t) and ch(t) of constant time length !::it 
as shown in Fig. 5.4. This interval !::it is twice the time needed by the waves 
to travel between the two gages. In other words, c-i (t), c-i (t), ... , c~ (t) and 
c-k(t), c-~(t), ... , ch(t) are obtained through the characteristic function of the 
intervals [(i- 1)/::it, i!::it) (i = 1, 2, 3, ... ): 

. {cA(t), CA (t) = 
0, 

i { c-a(t), 
c-8 (t), = 

0, 

if RA + (i- 2)/::it ~ t ~ RA + (i- 1)~t, 

otherwise, 
(5.7) 

if R8 + ( i - 1 )!::it ~ t ~ Ra + i!::l.t, 

otherwise. 

This operation can be applied to both virtual elementary "ascending'' and 

"descending" waves at points A and B to obtain c~cA(t), c~cB(t), c~esA(t), 
and c~esB(t). According to Eq. (5.6), the "ascending" wave at A for i = 1 
(RA- !::it~ t ~ RA), c-!scA (t) is known. Knowing how the waves propagate, 
the "ascending" wave at point B can be found from the "ascending" wave 
at point A by applying the shifting function (transportation without shape 
change in one-dimensional wave propagation theory) 

(5.8) 

Using Eqs. (5.5) at the point B for i = 1 (Rs ~ t ~ Ra + !::it), the corre­
sponding part of the "descending" wave at point B is 

(5.9) 

The same process is performed to calculate the "ascending" wave at point A 
for the next interval from the knowledge of the "descending" wave given by 
Eqs. (5.5). Following this procedure, an iterative formula is constructed and 
both "ascending" and "descending" waves can be calculated for all the time 

intervals. 
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5.5. Wave dispersion correction in wave separation itera­
tive process 

As indicated by some authors (Campbell and Duby, 1956; Lundberg and 
Henchoz, 1977, Bacon et al., 1994, Lataillade et al., 1994; Lundberg et al., 

1990), such a method is valid only if the wave dispersion effect can be ne­
glected. If the wave dispersion effects are not taken into account, the ac­
curacy of the two strain measurement method becomes rapidly insufficient 
with the increase of the propagation distance. Consequently, a more accu­
rate Pochhammer-Chree type propagation theory must be used and so-called 
wave dispersion effects are to be taken onto account, as it has already been 
introduced in the SHPB to improve the accuracy of the shifting process. 

It is then natural to use this wave propagation theory. Such an approach 
relies on the assumption that waves in the bar are harmonic so that all the 
associated variables can be described by their harmonic components. For 
instance, the strain e(z, t) can be expressed as follows: 

+oo 

e(z, t) = J e*(w) eil{(w)z-wtJdw, (5.10) 

-oo 

where the upper asterisk denotes frequency components of corresponding 
temporal functions. 

The dispersion relation ~ = ~ ( w) between the wave number ~ and the 
frequency w, describing the propagation of each frequency component, is 
defined through the so-called frequency equation derived from the solution 
of the three-dimensional wave propagation in an infinite bar (see Chapter 2). 

The signal £A asc ( t) or £s asc ( t) at section A or B is considered as the 
component £ z asc of the strain tensor e in the axis of the bar ( z-axis). For any 
elementary wave we have: 

+oo 

EAasc(t) = Ezasc(ZA, t) = J c;asc(w) ei[~(w)zA-wtJdw, 
-oo 

+oo 
(5.11) 

£s (t) = £ (zs t) = J £* (w) ei[~(w)zs-wt]dw asc z asc ' z asc · 

-00 

The wave shifting between A and B (separated by the distance Az = 

zs - ZA) is obtained by multiplying the frequency components by a term 
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depending on the dispersive relation: 

E* (w) = E* (w) ei~(w)~z 
Base Aasc · (5.12) 

5.5.1. Approach in the time domain 

For the time separating scheme presented above, the shifting function 

used in Eq. (5.8) is obtained with this wave propagation theory and evaluated 

numerically using the Fast Fourier Transform (FFT): 

(5.13) 

We observe that the time separation scheme becomes theoretically not 

exact because of the incompatibility between the temporal cuts and infinite 

stationary wave propagation theory. For example, the interval of duration 

!:l.t has been previously defined as "twice the time required by the waves for 

a travel between two gages", but a common value with respect to frequency 

components of !:l.t cannot be defined because the wave velocity now depends 

on the frequency. 

To overcome this difficulty, one can separate each frequency component 

and apply this time domain separation scheme for each component and 

to combine all the separated frequency components jointly (Jacquelin and 

Hamelin, 2003). 

In order to test the overall efficiency of the method in a real situation, 

a bar with three strain gages is used. Figure 5.5(a) shows the strain record­

ings at the points A and B of viscoelastic nylon bar. Using this new sep­

aration method, we can recover the strain history at any point of the bar. 

Figure 5.5(b) illustrates the comparison at C between the measured value 

and that recovered with the method (C was here chosen as the middle point 

of the bar). 

The ny Ion Lar is only slightly viscous and the recorded signals is similar 

to those recorded from elastic set-up. However, the one-dimensional elastic 

wave approximation does not offer results of sufficient accuracy (Lundberg 

and Henchoz, 1977). The comparison between the recovered signal obtained 

by the one-dimensional elastic approximation and the measured signal is 

shown in Fig. 5.5(c). It shows that a more accurate description of the wave 

propagation is indeed necessary in this case. 
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FIGURE 5.5. (a) Direct measurements at points A and B. (b) Measurement at 
point C compared with reconstructed value. (c) Measurements at point C com­
pared with theoretical values obtained using the one-dimensional approximation 
(after Zhao and Gary, 1997). 
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5.5.2. Approach in the frequency domain 

Since the wave shifting is defined in the frequency domain, it should be 

easier to conduct separating scheme in this domain. Indeed, the linearity of 

Eqs. (5.5) shows that the frequency components of the strain can be expressed 

as the sum of the components of "ascending'' and "descending" waves: 

c-A.(w) = c:ScA(w) + cdesA(w), 

ca(w) = c:Sca(w) + cdesa(w). 
(5.14) 

Using Eq. (5.12), we can substitute the "descending" wave at A by that at B 

and vice versa so that Eqs. (5.14) leads to: 

c-* (w) - c-* (w) e-i~(w)~z 
€ * (w) = --=B=---...;,..--..,-A=--------:-..,----

asc A ei~(w)~z _ e-i~(w)~z ' 

c-* (w) - c-* (w) e-i~(w)~z 
c-* (w) = --=A~....:......-,-=B....:...___.;._.,--,-__ 

des B ei~(w)~z _ e-i~(w)~z 

(5.15) 

It has been found that numerically it is difficult to reach sufficient accu­

racy with thif method. A :eliable evaluation of high frequency components 

of the strain measurement c-A.(w) and c-8(w) requires a fast sampling rate 

whereas the evaluation of low frequency components requires a long observ­

ing duration. 

Besides, the denominator in Eq. (5.15) could become null when an elastic 

bar is used (for ~(w)~z = k1r, ~(w) being a real number). It becomes also 

nearly null for a viscoelastic bar. This problem is related to the inability of 

the set-up to "see" waves having a wave length equal to the distance between 

two gages. For all the frequencies near those singular points, it is difficult to 

obtain accurate results (Bacon, 1999). 

An accurate solution of this problem was found with the integration along 

a path on the imaginary half-plane rather than on the path along the real 

axis (Bussac et al., 2002). 
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Chapter 6 

Rate sensitivity of cellular 
materials: examples 

6.1. Polymeric foams 

Mechanical properties of polymeric foams are often involved in the crash­
worthiness study in automobile industry. For example, anthropomorphic 
dummies have been developed to investigate the response of the human body 
and to analyse their interaction with the occupant compartment, where poly­
meric foams are frequently used. In addition to experimental car crash in­
vestigations, numerical crash simulations have been widely used to evaluate 
the occupant protection in the early phases of car design. The modelling 
of the mechanical behaviour of polymeric foams, and especially their rate 
sensitivity, is indispensable. 

The behaviour of polymeric foams at relatively high strain rates has been 
studied since 1960s. Experimental results using different devices such as the 
falling weight or impacting mass technique (Faruque et al., 1997; Lacey, 1965; 
Schreyer et al., 1994; Traegar, 1967; Zhang et al. 1997), rapid hydraulic test­

ing machine (Chang et al., 1998; Rehkopf et al., 1996; Wagner et al., 1997), 
split Hopkinson bar were reported (Rinde and Hoge, 1971, 1972; Zhao, 1997; 
Chen and Winfree, 2002). 

Phenomenological constitutive models at high strain rates (Chang et al., 

1998; Faruque et al., 1997; Rehkopf et al., 1996; Schreyer et al., 1994; Wagner 
et al., 1997; Zhang et al. 1997) and those based on the micromechanical 
analysis were also developed (Mills, 1997; Shim et al., 1992). 
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62 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

6.1.1. Heterogeneous stress and strain field and inverse methods 

As mentioned in the last Chapter, there are two technical difficulties 
for the use of the SHPB device for foam testing. One is due to the low 
impedance ratio between the foam specimens and metallic split bars. This 
leads to imprecise measurements of the input force, output forces and output 
velocity. For example, Rinde and Hoge (1971 , 1972) had to use quartz crystals 
for the measurement of specimen stress, which are not sufficiently accurate 
at the early stage of loading so that it is impossible to measure the apparent 
Young modulus and the yielding stress. Another particular feature of foam 
testing is the need to achieve a large maximum strain (up to 80%) for the 
study of the densification, associated with a significant increase of the stress. 
The experimental results presented here are obtained with 40mm diameter 
nylou SHPB bar (density of 1200kgj m3 and sound speed of 1700m/s). 

Figure 6.1 shows the comparison between the input and output forces 
measured on two faces of an open cell polyurethane foam specimen. There is 
no equilibrium states at the early stage of the test. 

Force <KH> 
18 

5 

8 
8 188 

4avl4 

288 388 ti..e (JIS) 

FIGURE 6.1. Non-equilibrium forces on two specimen faces (after Zhao et al., 
1997). 

Pictures were taken during the test of foam specimens printed with a 
regular grid before the test. Figure 6.2(a) was taken at early stage of about 
lOOts which shows a non-homogeneous strain field. Figure 6.2(b) provides a 
picture near the end of the test. 
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6.1. POLYMERIC FOAMS 63 

(a) (b) 

FIGURE 6.2. High speed camera photographs during testing. 

It is emphasised that this non-homogenous strain field is due to the char­

acteristic of this foam, independent of the experimental arrangement used in 

the test . In order to study the stress field in the specimen, additional load 

cell is needed in any test (even if it is a standard testing machine or a falling 

weight equipment). It is then necessary to develop a method which permits 

relating the material behaviour to the measured forces and velocities without 

the assumption of the stress and strain uniformity. 

The measurements of the forces and particle velocities at both specimen 

faces can be used to provide the data on material behaviour. With an inverse 

approach, an appropriate form of the material behaviour can be assumed 

first, and then parameters can be determined using measured signals. 

Let us consider a given domain 0 where forces and velocities are measured 
in a part of the boundary anm. 

FIGURE 6.3. Inverse calculation method. 
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64 6 . RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

A constitutive framework is assumed with several parameters Pk to be 
determined: 

(6.1) 

The direct problem is defined by the governing equations in the domain 0 
and prescribed boundary conditions: 

(6.2) 

(6.3) 

(6.4) 

For the boundary where forces and velocities are measured, we use a part of 
the information as input data (for example the displacement field): 

This condition gives a well-defined direct problem and it determines the forces 
at the boundary for a given set of parameter Pk. 

The inverse problem is the identification of material parameter Pk with 
the minimisation of a deviation between the measured and the calculated 
forces: 

min J IIFm ~ Fc(uj", Pk)li ds. (6.5) 

anm 

Theoretical analysis shows that this inverse technique can provide good 
results provided that appropriate form of material behaviour of foams is 

found (cf. Bui, 1993). In the case of SHPB bar test, using one part of data 
as input data (for example velocities) , the remaining data (the two forces) 
can be used to determine those parameters that give the best fit between the 
measured and calculated forces (Rota, 1997). 

6.1.2. Experiments 

We proceed to the presentation of general features of testing results. Most 
polymeric foams exhibit strong rate sensitivity because of the rate sensitivity 
of the base material. Their mechanical properties depend also on the tem­
perature and moisture. Figure 6.4 shows the rate sensitivity of polyurethane 
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Stress OIPa) 
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FIGURE 6.4. Rate sensitivity vs. density (after Zhao and Gary, 2002). 

65 

rigid foams as a function of its density. The specimen is a 40 mm long cylin­
der, 40 mm in diameter. Figure 6.4 shows that, at room temperature, static 
as well as dynamic stress levels increase with the density. However, the rate 
sensitivity is nearly the same for foams of different densities. Thus the rate 
sensitivity of foams mostly depends on materials of which they are made. 

FIGURE 6.5. Cell damage effect (after Zhao and Gary, 2002). 
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66 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

Another interesting feature is the weak effect of the foam cell damage, 
especially for flexible foams. Figure 6.5 shows stress-strain curves derived 

from three successive SHPB tests on the same sample (diameter 40 mm, 
length 20 mm, density 105 kg/m3 ) in the same testing condition (strain rate 
325/ s) during 15min. The deformation of this kind of foams is mostly due 
to elastic bulking of hollow polymeric structure. 

Figure 6.6 shows the rate sensitivity of foams in its complete range of 
strain. The test at 250/s is performed by a nylon SHPB. The generalised 
two-gage method provides 4 loading-unloading cycles corresponding to the 
reflections of the input pulse in the input bar whereas the classical analysis 
gives only half of a cycle. The test at 25/ s is performed by a so-called "slow­
bar" technique which uses the bars as measuring device and a high speed oil 
jack as loading device. 

Stress OtPa) 
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4 Uld las 

FIGURE 6.6. Rate sensitivity of closed cell polyurethane foam. 

6.2. Aluminium honeycombs 

Simple analysis of honeycomb presented in Chapter 1 provides a rea­

sonable prediction of their behaviour. More accurate models with similar 
micromechanical analysis can be found in the relevent literature. Wierzbicki 
(1983) developed an out-of-plane large deformation crushing model that gives 
an analytical prediction of the crush pressure; Klintworth and Strange (1988, 
1989) have formulated a large-deformation behaviour of the in-plane crush­
ing that takes account of localised deformation band effects. Related topics 
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6.2. ALUMINIUM HONEYCOMBS 67 

such as fracture detection using elastic waves (Thwaites and Clark, 1995), 

negative Poisson's ratio honeycombs (Prall and Lakes, 1997), and foam-filled 

honeycombs (Wu et al., 1997) have been also reported in the open literature. 
Applications of such analyses under impact loading imply that the rate 

sensitivity is derived from that of the base materials as it is the case for most 
polymeric foams . 

However, Goldsmith and co-workers (1992, 1995) reported some exper­

imental work on out-of-plane crushing and on ballistic perforation of hon­
eycombs. They fired a rigid projectile to a target made of honeycombs and 
showed that mean crushing pressure sometimes increases up to 50% with 
respect to the static results. These authors claim that the accuracy of the 
technique is not always satisfactory. Wu and Jiang (1997) also studied out-of­
plane crushing with a similar experimental technique. Their results confirm 
significant enhancement of the crushing strength in the x3-direction. Honig 
and Strange (2002) reported numerical results in the x1- and x2-directions. 

6.2.1. Honeycomb specimen and nylon bar testing device 

Experimental results on the behaviour of honeycomb materials under im­
pact loading presented here are obtained with the Split Hopkinson Pressure 
Bar (SHPB, or Kolsky's bar) technique. The studied honeycomb resistance 

Force (Jdt) 
20 
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FIGURE 6.7. Equilibrium check for honeycomb tests. 
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68 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

is quite low (typically, 5 MPa in the x3-direction, 0.2 MPa in the x1- and the 
x2-directions). 

Two ny Ion ( Pa 6. 6) bars ( 3 m length, 40 mm diameter) were used to test 
these specimens. The two-point strain measurement method was applied for 
tests at 2 m/ s. Simple formula (Eqs. ( 4.2) and ( 4.3)) are used to obtain the 
pressure-crush curves for all the tests where the equilibrium check is satis­
factory. Figure 6. 7 shows the input and output forces in a typical test at 
10 m/s. Non-equilibrium state was not observed between forces at two sides 
of honeycomb, even though the homogeneous state of deformation was not 
achieved. 

6.2.2. Rate sensitivity of the studied honeycomb 

Cubic specimens (about 36 x 36 x 36 mm) are used. Two types of alu­
minium honeycombs (Table 6.1) are tested in three directions. Because sim­
ilar results have been obtained for both honeycombs, only the results for 
honeycomb No.1 are presented. For a given loading rate, the experiment 
is repeated at least once. To make figures more legible, only one curve is 
presented for one loading rate. 

TABLE 6.1. Specimen characteristics. 

Cell size Thickness Density 
No. 

h [mm] t [mm] [kg/ m3
] 

1. 4.7 0.08 130 

2. 6.2 0.08 100 

(a) (b) 

FIGURE 6.8 . Post-test observations. 
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6.2. ALUMINIUM HONEYCOMBS 69 

The post-mortem observations of crushed specimens do not reveal visi­
ble differences between static and dynamic loading. The out-of-plane crush­
ing mode (x3-direction) is a regular multiple localised folding (Fig. 6.8(a) 
and 6.8(b)-left). For in-plane crushing, a regular folding is observed in the 
x1-direction (Fig. 6.8(b )-center), whereas irregular patterns are found in the 
x2-direction (Fig. 6.8(b)-right), similar to those observed by Klintworth and 

Stronge (1988, 1989). 

(a) Out-of-plane behaviour 

A summary of experimental data in the x3-direction is shown in Fig. 6.9. 
The difference in the maximum strain is due to the limitation of the measure­

ment duration of the standard SHPB system (tests at 10m/sand 28m/s): 
the final crush depends on impact velocities. 

Pressure UWd) 
Z8 

18 

9 
8 Bit/. Crush (X) 

FIGURE 6.9. Mean crushing strength in direction x 3 . 

The significant differences between static and dynamic loading ( 40%) have 

been found for the mean crushing pressure in the x3-direction. However, mean 
crushing pressures are nearly the same (about 5.4 MPa) for impact velocities 

from 2 m/ s to 28 m/ s. This result differs from those of Wu and Jiang (1997) 
but agrees with those of Goldsmith and Sackman (1992). The densification 
point seems independent of the loading rate (at 65% crush). 

Table 6.2 shows the rate sensitivity for different honeycombs. 
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70 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

TABLE 6.2. Rate sensitivities. 

tjh Density Static Dynamic Difference 
[mm/mm] [kg/m3

] [MPa] [MPa] [%] 

0.08/4.7 130 3.9 5.4 +38 
0.08/6.2 100 2.8 3.6 + 28 

(b) In-plane behaviour 

The mean pressure in the XI-direction is nearly the same (0.09 MPa) for 
dynamic (impact at 2 mls, 10 mls, 28 ml s) and quasi-static loads (Fig. 6.10). 
The densification points at different loading rates exhibit a spread but are 
located at about 70% of crush. 

Pressure ctiPa) 
1.8 

8.6 ... .. ...................... ...... ......... ......... .. ... ... .. .... ..... ......... .... ....... . . 

8.1E-····· ···· ··· ··· ·· ····· ········' · ·· ·· ·························· · "· ·· ····· ····· ·· ···· ··· ·· 

8 88'1. Crush ( :1.) 

FIGURE 6.10. Behaviour in x1-direction. 

The pressure-crush curve in the x2-direction is less regular under dynamic 
loading (Fig. 6.11), although the mean pressure is close to that under static 
loading. This is probably a consequence of the irregular deformation mode 
(Fig. 6.8(b)). The densification point (about 80% crush) is, again, indepen­
dent of the loading rate. 

Significant differences between static and dynamic results are only found 
in the out-of-plane crushing. The rate sensitivity of aluminium foils from 
which the tested honeycombs were made was then investigated. Static and 
dynamic tests (with steel SHPB) were performed with a crushed honeycomb 
(in the XI-direction and before the full contact of foils). A 10% difference 
of flow stress between static loading (1 o-4 1 s) and dynamic loading ( 6001 s) 
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FIGURE 6.11. Behaviour in x2-direction. 

71 

is found, which agrees with the known results in previous works (Lindholm, 
1964). This result indicates that the increase of the flow stress of aluminium 
foils is not the major cause of the observed enhancement of the crushing 
strength. 

Other observations also support such a conclusion. There is no significant 
enhancement of the crushing strength in the two in-plane (lateral) directions. 
This indicates that the large enhancement in the x3-direction is related to 
structural effects. In addition, for the two different tested honeycombs (Ta­
ble 6.2), the increase of the crushing strength in the x3-direction appears to 
be proportional to the mass density, implying a correlation with structural 
inertia. 

6.3. Aluminium foams 

Metallic foams have been studied by many authors. The open cell Nickel 
foam or closed cell aluminium foams have been studied in the case of various 
loading path (Badishe et al., 2000; Chastel et al., 1999; Blazy, 2003). The 
microstructure of foam can be characterised by computer tomography images 
(Maire et al., 2003). Such microstructural data can be used to evaluate the 
stiffness and strength of foams (Fazekas et al., 2002). Studies on foam filled 
structures are also reported in the literature (cf. Hanssen et al., 2000). 
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72 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

Regarding the rate sensitivity of aluminium foam, the same conclusion 

as for the aluminium honeycomb can be drawn from the simple model de­

veloped in Chapter 1. Deshpande and Fleck (2000b) used a standard SHPB 

arrangement (diameter 12.7mm) with a polymeric output bar to test Alu­

light and Duocel open cell foams. The results obtained exhibit considerable 

scatter partially because of small size of specimen and no rate sensitivity was 

found. Mukai et al. (1999) investigated, using standard SHPB arrangement, 

Alporas foams obtained by direct foaming of aluminium melts with a blowing 

agent. The rate sensitivity was observed. Tan et al. (2002) reported impact 

tests using a gas-gun to launch Hydro-Cymat foam, manufactured by direct 

foaming of melt with gas injection technique, against the target. They used a 

Hopkinson bar to measure the crushing pressure and proposed a shock-wave 

theory to explain the observed enhancement in their tests. 

> From the experimental point of view, impact test of metallic foam in­

volves two major difficulties. The first difficulty is related to the weak strength 

of foam material, but it can be eventually overcome by the use of soft poly­

meric bar. The second difficulty is the large scatter due to small ratio (spec­

imen size/ cell size) . Therefore a large diameter pressure bar to host a larger 

specimen is required. A 60 mm diameter nylon SHPB arrangement is in LMT­

Cachan used to improve the measuring accuracy. 

6.3.1. Rate sensitivity of Cymat foam 

45 mm x 45 mm x 55 mm Cymat foam samples manufactured by the gas 

injection process are cut from foam plates of about 200 mm thickness. The 

FIGURE 6.12. Microstructure of Cymat foam sample. 
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6.3. ALUMINIUM FOAMS 73 

average density is about 250 kg/m3 . Figure 6.12 shows the microstructure of 
this quite brittle foam. 

Tests under static and dynamic loading have been performed. The scat­
ter is significant, because the crushing mode is the micro-fracture of cell 
walls which are brittle due to the addition of silicon carbide in the process 
(see Chapter 1). No convincing rate sensitivity is found because of the huge 
scatter. 
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FIGURE 6.13. Cymat foam rate sensitivity. 

6.3.2. Rate sensitivity of IFAM AA6061 powder metallurgy 
foam 

IFAM foam samples are obtained from Aluminium powder blowing pro­
cess. Precursor materials are composed of pre-alloyed AA6061 powder and 
0.5 wt.% titanium hydride powder as a blowing agent. The powder mixture 
was first consolidated by cold isostatic pressing and followed by hot extrusion 
to long rectangular rods. The foaming was carried out in a batch furnace with 
indirect conductive heating and atmosphere circulation at 730°C (Lehmhus 
and Banhart, 2003). The final specimens are cylinders of 45 mm diameter 
and 60 mm height with closed outer skins. As one of the advantages of IFAM 
foaming process is the direct foaming process to make final product without 
any machining (sandwich plate, etc.), the out skin will exist anyway in the 
final product. Therefore it is interesting to test the IFAM foam with its skin. 
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74 6. RATE SENSITIVITY OF CELLULAR MATERIALS: EXAMPLES 

The density of the specimen is about 620 kg/ m3 . X-ray Computer To­

mography images reveal that the foam is not really homogeneous, and irreg­

ular holes can be found inside the specimen. A group of less heterogeneous 

specimens (according to the CT images) is selected to carry out this study. 

However, the scatter is significant because of holes. 

FIGURE 6.14. CT image of closed out skin IFAM foams . 

Static test is performed by using a universal testing machine. The strain 

range is voluntarily limited to about 20% because our interest is mainly fo­

cused on the plateau yield stress for the energy absorption application. Fur-
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FIGURE 6.15. Static stress-strain curves. 
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ther dynamic loading will be carried out, as presented afterwards. Figure 6.15 
shows the stress-strain curves of 5 specimens. 

One can see that some foams (as specimen No. 31) have nearly no strain 
hardening and the others (like specimen No.3) have weak strain hardening 
effect. 

Figure 6.16 shows the stress-strain curves obtained with two-wave formu­
las in a standard SHPB configuration (specimen between input and output 

bars). 

20 ,----,-----,,--------,------"T----r----.----,-, 

o.zs 0.3 0.35 

Strain 

FIGURE 6.16. Dynamic stress-strain curves. 

Direct impact Hopkinson bar test is also performed to get higher impact 
velocities up to 27 m/s. Table 6.3 summarises all static and dynamic tests. 

Figure 6.17 shows the flow stress at 10% of nominal strain with respect to 
the logarithmic value of the nominal strain rate. It shows an enhancement of 
about 15% for the mean flow stress. However, the scatter is quite important 
and the lowest value under impact loading almost coincides with the highest 
value under static loading. 

In order to eliminate uncertainty of the rate sensitivity because of the 
scatter due to the specimen morphological and mass dispersion, one possi­
bility is to do static and dynamic test on the same specimen. Such a test is 
possible at least for specimens where no strain hardening are observed. Two 
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TABLE 6.3. 

Velocity Stress at 10% Density Sample Strain rate 
[ms] [MPa] [kg/m3

] No. [1/s] 

0.01 13.25 603.2 3 0.00016 

0.01 12.8 621.4 11 0.00016 

0.01 14.5 625.75 20 0.00016 

0.01 13.25 616.5 27 0.00016 

0.01 13.3 618.37 31 0.00016 

14.6 16 609.7 7 204 

14.8 14.9 638.8 10 175 

15.0 15 622.8 33 139 

15.0 16.5 627.5 25 180 

15.6 16.6 633 186 

25 16.2 629.8 12 365 

27 14.9 631.6 13 344 
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FIGURE 6.17. Rate sensitivity of foams. 

ways allowing to combine static and dynamic loading are carried out. One is 
to perform static test to a given strain and to continue with impact loading; 

another is the inverse dynamic-static tests. 
Figure 6.18 shows a sudden enhancement under dynamic loading for spec­

imens already tested statically. The same tendency is observed for the speci-
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FIGURE 6.18. Static-dynamic rate jump test. 

men with strain hardening (specimen No.3) and the specimen without strain 

hardening (specimen No. 31). Figure 6.19 illustrates the inverse strain rate 
jump test where a sudden drop of the flow stress is observed. Both types of 
tests imply that rate sensitivity exists in this type of foam. 
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FIGURE 6.19. Dynamic-static inverse rate jump test . 
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6.3.3. Discussion 

For IFAM foams, Fig. 6.20 shows the photograph (a) of the tested spec­

imen No. 10 cut into two semi-cylinders, compared with CT image before 

testing (b). Since it is difficult to guess the right plane to cut in order to 

coincide with the CT image, quantitative match cannot be made. However, 

qualitatively it seems that the central great hole is not the weak point where 

the localisation would start. The localisation band is nearly perpendicular to 

the impact direction. It is also noteworthy that a great number of buckling 

system of the longitudinal cell wall (parallel to the crushing direction) is ob­

served. All this indicates that the crushing is the result of successive buckling 

of cell wall. 

(a) (b) 

FIG URE 6.20. Comparison between initial and crushed specimens. 

FIGURE 6.21. Micro-buckling of the cell wall. 
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Figure 6.21 shows a photograph under electronic microscope illustrating 
this micro-buckling of the cell wall. 

It seems that such a crushing mode is more like the crushing mode in 
honeycomb than the usual assumption of the bending of the transversal cell 
wall. As it is shown in (Banhart and Baumeister, 2001) that the outer skin 
has an important influence on the behaviour because of their rigidity; such 
an observation might be the consequence of the existence of outer skin. 
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Chapter 7 

Inertia effect in progressive folding: 

model structure study 

7.1. Model structure definition 

> From experimental results presented in Chapter 6, a significant rate sen­

sitivity has been inferred for cellular materials such as ductile IFAM Al6061 

foams or Al5056 honeycomb, which cannot be explained by the weak rate 

sensitivity of the cell wall material. The crushing mode of such cellular ma­

terials indicates that the main failure mode is progressive buckling of the cell 

wall so that micro-inertia may play an important role. 

One of the possible methods to understand this rate sensitivity is to 

study a model structure under quasi-static and dynamic crushing, provided 

FIGURE 7.1. Crushing by ductile progressive folding. 
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that this structure have the same crushing mode. One of such type of model 
structures is commercially available brass square tube (after suitable partial 
annealing). Crushing of such tubes is also a progressive folding process (right 
part of Fig. 7.1), which is similar to the previous cases. Another advantage 
of such a structure is that the brass is not rate sensitive in a large range of 
strain rates. 

The 35 mm x 35 mm square tube of 1.5 mm thickness is chosen because 
of the restrictions of the impact testing device. However, strain hardening 
during manufacturing processes makes these tubes brittle and the progressive 
crushing mode is not observed because of early fractures at the four ridges. 
Annealing becomes necessary in order to make them more ductile. To obtain 
a repeatable heat treatment, we measured the exact chemical composition 

of the studied brass tube (Cu 64%, Zn 36%) by an EDS microprobe. The 
corresponding phase equilibrium diagram indicates the temperature range 
where the phase diagram is less complex. The following heat treatrnent is 
performed: 30 min annealing at 450°C and water quenching. 

7.2. Experimental study of the crushing strength for brass 
square tubes 

7.2.1. Experimental characterization of the rate sensitivity of 
cell wall material 

To know if the basic material is rate insensitive, especially after annealing, 
an experimental study of the material behaviour under a comparable loading 
mode (static as well as dynamic) is necessary. Compressive tests under static 
and dynamic loading are chosen for the following reasons: 

• the main loading mode in the tube crushing is compression, 

• under dynamic loading, compression test with SHPB (Split Hopkinson 
Pressure Bar) is much more accurate than tension test because of the 
specimen shapes and relevant difficulties. 

However, very small specimens should be used to avoid buckling. The 
specimen is cut from the heat treated brass tube, the dimension of which 
is about 2 mm high and 10 mm wide. Quasi-static tests are performed with 
a MTS810 universal testing machine. The main difficulty is the strain mea­
surement. As the specimen length is as short as 2 mm, it is hard to glue 
a strain gauge or put an extensometer on the specimen. The displacement 
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measurement of the machine is supposed to be not accurate enough to ob­

tain a reliable strain measurement; even if the stiffness correction of the test 

machine can be made. An alternative is to use an optical displacement field 

measurement. The principle is to compare images of the specimen taken dur­

ing the test by means of Kodak Megaplus CCD camera and a long-distance 

microscope Questar QM100. A correlative image processing technique pro­

vides the match of the same material points in different images, and it gives 

then the displacement of this point. The software Correli developed at LMT 

is used to perform this image processing task which can give a sub-pixel pre­

cision of the displacement and offer a precision of strain at least 10-4 with 

an 8-bits 1008 x 1016 pixel optical camera (Hild et al., 1999; Chevalier et al., 

2001). Such a technique allows also for a check of strain fields during the·test 

and it provides a proof that it is really a pure compression test; even if the 

specimen size is thin and very small. 

Two typical images of the central part of brass specimen are shown 

in Fig. 7.2(a, b). The calculated displacement field is given in Fig. 7.2(c). 

(a) (b) (c) 

FIGURE 7.2. Image based displacement and strain measurement. 

Dynamic tests are carried out with Split Hopkinson Pressure Bar or Kol­

sky's apparatus which has become a very popular experimental technique 

for the study of constitutive laws of materials undergoing high strain rates 

(Hopkinson, 1914; Kolsky, 1949). The only problem in applying this tech­

nique consists in shifting properly basic waves measured at the midpoint of 

the bar to the bar-specimen interfaces where the knowledge of forces and 

velocities is required. Careful data processing is necessary to obtain this shift 

because the waves change their shapes during the propagation (Davies, 1948; 

Zhao and Gary, 1995, 1996). The classical analysis, which assumes the axial 
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uniformity of stress and strain fields in the specimen, can be used. An aver­
age stress-strain curve can be obtained which lead to the so-called two-wave 
analysis or three-wave analysis (Lindholm, 1964). 

Figure 7.3 shows a comparison of the stress-strain response of annealed 
brass at quasi static rate and various strain rates up to 2500/s. It is clear 
that there is no significant rate sensitivity. 
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FIGURE 7.3. Stress-strain relations at static and dynamic strain rates. 

7.2.2. Strength enhancement of the model structure 

Static crushing tests have been performed on heat-treated tubes with a 
MTS810 universal testing machine. To avoid global elastic buckling mode, the 
length of the tube specimen is selected as 104 mm. The progressive folding 
mode is observed. The force-displacement recordings are quite repeatable 
for tested specimens and this indicates that the applied heat-treatment is 
reproducible and homogeneous because the buckling mode is very sensitive 
on local weak points. 

Under dynamic loading, the measurement accuracy of the experimental 
arrangement available in the literature is not very satisfactory. Indeed, most 
of reported testing results are obtained using a falling weight device. In such 
tests, the deceleration of the falling mass is measured by an accelerometer 
and the associated force and displacement are then deduced. The accuracy 
is often quite low because of vibrations of the weight and its suspension 
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system. Thus, previous works in the available literature often report only the 
final crushing displacement at a given mass and initial velocity (Abramowicz 

and Jones, 1984, 1986). Here we used a large scale SHPB system (diameter 
80 mm, input bar of 6m and output bar 4m) in order to obtain an accurate 
force and displacement measurements. 

However, the crucial difficulty for these tests is the measurement duration 
required to observe the progressive peak load (after the initial peak load). A 
two-gauge method is used to obtain the signals after the first round trip of 
the waves in bars (Lundberg and Henchoz, 1977). Additional details of this 
measurement method are described in (Zhao and Gary, 1997) and (Bussac 
et al., 2002). We have used the direct impact configuration to supply enough 
energy to crush the tube (cf. Hauser, 1966) . 

A typical comparison between static and dynamic tests is shown in 
Fig. 7.4. We can see that not only the initial peak load but also the progres­
sive peak load are accurately measured. It shows that there is a significant 
enhancement of initial and progressive peak loads. 

so 
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FIGURE 7.4. Force displacement curves under static and dynamic loading. 

Table 7.1 provides the corresponding initial and progressive peak loads 
under static and impact loads. The average enhancement is about 35% for 
both initial and progressive peak loads. The last column gives the ratio of 
the progressive peak load increase to the initial peak load increase. If the 
base material had a rate sensitivity of 35% (which is not the case), it would 
explain this enhancement. 
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TABLE 7.1. Enhancement ratio for initial and progressive peak loads. 

Speed Initial peak Increase Progressive Increase Increase 
(m/s] (kN] (kN] peak (kN] (kN] ratio(%] 

Static 35 22 0 
7.7 43 9 (26%) 29 7 (32%) 77 
9.6 43 9 (26%) 28 6 (28%) 66 
11 45 11 (31%) 28 6 (28%) 54 

11.5 45 11 (31 %) 28 6 (28%) 54 
12.3 46 12 (34%) 29 7 (32%) 58 
12.6 47 13 (37%) 29 7 (32%) 53 
13.5 47 13 (37%) 30 8 (36%) 61 
15.3 49 15 (43%) 31 9 (41%) 60 

7.3. Numerical analysis of tube crushing 

In the crushing tests presented above, only force-displacement recordings 

are available. For static loading, some pictures of tubes during tests are also 

taken. There are no simp!e methods to know what was happening in the tube, 

especially under impact loading. It makes the understanding of this strength 

enhancement difficult. An alternative is to simulate the crushing of tubes 

numerically, provided that the simulation is able to reproduce accurately the 

force-displacement history and other observed events (pictures). Under such 

conditions the numerical simulation may give reliable local information, such 

as the stress state and deformation history in the tube. 

7.3.1. Validity of numerical models 

The explicit version of the commercial code Ls-dyna is used to carry out 

the simulations under impact loading, and the implicit version is adopted for 

the static loading. The same geometric file and the same Belycheko and Tsai 

plate elen1ents are used in both static and dynamic loading. It is expected 

that the numerical errors between the static and dynamic loading will be as 

small as possible. The sensitivity of the simulated results on the mesh density 

is analysed in order to choose a suitable element size for the simulation. The 

chosen element size is 2.5 x 2.5 mm, which means that there are 14 elements 

in one side. It satisfies the rule of 7 elements in the half wave length, and the 

use of smaller elements does not make significant difference. 
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For the constitutive equation, the simple Johnson-Cook law parameters 
are identified from experimental stress-strain relations, obtained from com­
pressive tests on very small specimen. The parameters for the rate sensitivity 
and temperature effect are chosen to be zero. 

The simulated results of the tube crushing strongly depend on the initial 
imperfection introduced in the geometry of the tube. Random and sinusoidal 
(sinus function of the length) perturbations of wall geometry have been used. 
The sinusoidal perturbations are more numerically stable to initiate the sym­
metric progressive mode, which is observed in all our tests. Random perturba­
tions can generate numerically an extensional crushing mode. The amplitude 
of this perturbation is also an important parameter. In the present case, the 
maximum lateral perturbation is chosen as 0.08 mm, and around this value 
the peak loads are nearly not affected. Figure 7.5 gives a comparison between 
experimental and simulated force-displacement curves under static loading. 
It illustrates that the numerical calculation gives a fair estimation of the force 
as well as the displacement. 
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FIGURE 7.5. Experimental and numerical force-displacement curves. 

It is also observed that the simulated crushing tests can give a good 
prediction of the progressive crushing events and reproduce the strength en­
hancement under impacts, which is another proof of the pertinence of sim­
ulations. All these comparisons show that the present simulations (with the 
specified element size, mode and amplitude of the initial geometrical per-
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turbation) provide a reliable description of the tube crushing. It becomes a 

virtual test, providing the user an access to global and local stresses as well 

as to deformations at any time and to better understanding of the crushing 

mechanisms. 

7.3.2. Folding events 

A careful examination of the progressive crushing events reveals that there 

exist small areas around the four corner lines remaining nearly straight, while 

the middle of plates is significantly deformed. On the left of the simulated 

figures of deformed tube (Fig. 7.6), the corner line around the ridge node A is 

straight whereas the flat plate around nodes B or B' in the centre is already 

bent. On the right of Fig. 7.6, further crushing of the tube is seen and is 

attributed to the buckling of the corner line areas. 

LL\1 Ll 

.\ ,,., \\HI ,\\1 ,, 
I II H 
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FIGURE 7.6. Detail of simulated deformed tube. 

The buckling of these ridge zones corresponds to the decrease of the global 

crushing load. Figure 7. 7 shows the displacement in two perpendicular lateral 

directions of node A at the corner with the corresponding global crushing 

force. The displacement value of 41 mm corresponds to the moment where 

the corner node begins to move laterally and the global crushing force begins 

to decrease. Furthermore, Fig. 7.8 shows the profile of lateral displacement of 

an adjacent plate from the middle (point B) to the corner (point A) at this 

instant. It can be seen that just before the force decrease, the corner elements 

are not laterally moved whereas the central element is alraedy displaced 

laterally in both the static and dynamic cases. 
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FIGURE 7.8. Lateral displacement of 7 elements in half width of the flat plate 
(position 1 denotes the element in the middle of the flat plate, position 7 - the 
element in the ridge line). 
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Let us extract an idealized crushing square box model (Abramowicz and 
Wierzbicki, 1989; Wierzbicki and Huang, 1991; Markiewicz et al., 1996; Meng 
and Al-Hassani, 1983) shown in Fig. 7.9. The crushing process can be divided 
into two stages. The first one is mainly bending of central plates in an X­
form, one plate turns out of the box and its adjacent plate turns into the 
box. The kinematical compatibility can be obtained by the rigid turning of 
two vertically adjacent triangular elements and the vertical compression of 
these triangular elements. The second phase is the buckling of these 8 angular 
elements around the four ridges. 

h 

FIGURE 7.9. Kinematical motions during crushing. 

It is also interesting to examine the stress profile in the crushing direction, 
e.g., in the cross section from node B to node A (see Fig. 7.6). It shows 
that the corner element supports most of the crushing load (Fig. 7.10). It 
explains why the buckling force of these zones determines the peak loads in 
the progressive folding process. Similar conclusions can be drawn for static 
as well as dynamic cases. 

The folding peak load is related to the buckling forces of the quasi-straight 

triangular zone. Indeed, the apparent imperfection is very important in this 

progressive folding process {beudi·ng of X-form, plate). As most part of pro ­

gressive crushing load is supported by the straight comer zones with small 

imperfections and consequently inertia sensitive, the inertia effect will affect 

this progressive folding peak load. 

> From Fig. 7.11, one can see that in the dynamic case the von Mises 
equivalent strain profile is higher than that in the corresponding static case, 
and this is especially true for the corner elements. It reveals that in these 
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small areas, elements are more compressed under dynamic loading because 
of the inertia effect, as in the case of a straight column. As the base material 
(brass) is strain hardening, the buckling theory for a straight bea.m under 
dynamic loading may explain such a strength enhancement under impact 
loading. 

We observe that the stress and strain shown here are the values at the 
Gauss points in the neutral mid-surface of the plates. 

7 .4. Theoretical analysis of the model structure 

In Table 7.1, the enhancement of initial and progressive peak loads are 
very close, hence we conclude that in both cases they may be due to the same 
cause- the inertia effect. 

7 .4.1. First peak load 

The initial peak load arises with the increase of the impact velocity. If 
one divides the crushing force by the cross section of the tube, the calculated 
nominal stress follows the stress-strain curve of the base material as predicted 

by the buckling theory of a straight column (Fig. 7.12). This initial peak load 
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FIGURE 7.12. Force divided by cross section area vs. displacement divided by 
length. 
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is determined by the compressive load at the moment when the structure 
leaves the simple compression loading. 

The static initial peak load can be estimated with the flow stress for the 
buckling strain multiplied by the tube cross sectional area. Thus, under static 
loading, the strain before buckling is about 1.5% of that corresponding to 
the flow stress (about 175 MPa). The following estimate is readily obtained: 

Under impact loading, the inertia effect mentioned in the introduction leads 
to a more important strain of 3% and the corresponding flow stress of about 
225 MPa, so that 

Such an initial peak load implies that a possible bending mode other than 

uniaxial compression may exist when the force is greater than this load. Tak­
ing the idealized box column model of Fig. 7.9 for a given small angle () 

corresponding to the strain of about 2%, one can apply a small perturbation 
on this state state (just after initial buckling) to get an energy balance anal­
ysis. Figure 7.13 gives a simplified case of this idealized buckling box with 
the wave length equal to band the middle length of the X element being b/2. 

c 

8 

FIGURE 7.13. More detailed crushing box column model. 

The energy increment is contributed by the 4 X-form bending elements 
and 8 triangular corner elements. The total energy increment is then the sum 
of the partial energies of 8 trapezoids BB'CC' and 16 triangles ABC. Let us 
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consider a small crushing increment 6v which is a vertical displacement of 
the line CC' with respect to the symmetrical central line BB'. 

To calculate the energy increment in one of the 16 triangular elements 
(ABC) corresponding to the crushing displacement 6v , a uniform strain state 
in the triangle and no displacement in x-direction are assumed. Within the 
framework of incompressible plasticity, it leads to the following strain state: 

0 
6v 

0 
b/2 

6eP = 
6v 6v 

(7.1) 
b/2 b/2 

0 

0 0 
6v 
b/2 

We recall that b/2 and b/ 4 are the lengths of AC and AB of the triangle 
ABC (Fig. 7.13), respectively. 

The equivalent strain is 

~ P _ {2 6v 
uc:eq- 4y 3 b. (7.2) 

If as, t denotes the flow stress and the wall thickness, the energy increment 
in all the small triangles is 

(7.3) 

By assuming that the energy of X-form elements is absorbed only by 
plastic hinge lines (CC', BB', BC, B'C') and the X-form element is free from 
compression or shear, a perturbation rotation of 6(} about hinge line CC' 
leads to a rotation 26(} about hinge line BB' . In the present situation, the 
hinge lines BC and B'C' will rotate by 6tp. 

To calculate the bending energy increment in the X-form element, the 
relationship between 6tp and 6(} is required (Fig. 7.14). Here <p denotes the 
angle between the triangles BCE and ABC. The normal directions of the 
triangle BCE and ABC are, respectively: 

[

cos(}] 
V1 = 0 , 

sin(} [

cos 2(}] 
v2 = si~2(} (7.4) 
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FIGURE 7.14. Relationship between rotation angles() and cp. 

The angle <pis calculated by: 

cos<p = v 1 · v2 = cos0cos20. (7.5) 

For a very small angle, we can make following approximation: 

<p = 30 and 6<p = 360. (7.6) 

For the general case, we have the following differential relation: 

sin <p6<p = (sin 0 cos 20 + 2 cos 0 sin 20) 60. (7.7) 

Let us define the density of the plastic moment per unit length within 
the hinge line as 

(7.8) 

The whole bending energy of the square box can be defined as follows: 

Using the geometric relation between the vertical displacement and the ro­
tation angle in Eq. ( 3.1), the angle 60 is related to 6v by: 

60 = 2~v . 
bs1nO 

(7.10) 
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Finally the bending energy increment is 

~ 2 2£5v 
~Ebending = (3 + 3vu)ast -b . 

0
b. 

Sln 
(7.11) 

The energy balance is written as: 

r,:; 2 2£5v ~ 2Fb'v = (3 + 3v u )a 8 t --:--
0 

+a 8 4 ;- b'v bt, 
sm 3 

(7.12) 

so that the applied load becomes 

t2 ~ F = 3(1 + /5)a8 --;--() + a 8 2 - bt. 
Sln 3 

(7.13) 

The angle () is related to the ridge line variation ratio (i.e. the strain for 
the ridge element) by the following relationship: 

b- bE 
cosO= -b-, 

where E is the strain at the ridge line. 

(7.14) 

At the instant just after initial buckling, the ridge line strain is about 
2% (see Fig. 7.12) and it leads to an angle of 11 o. In the present case where 
b = 35 mm, t = 1.5 mm, a 8 = 175 MPa (static case), we have: 

(7.15) 

Equation (7.15) shows that at the given strain (2%), the present bending 
model yields the same crushing load as that of the previous pure compressive 
situation. It means then that the initial peak load corresponds to the buckling 
of X-form elements in the centre of each plate. The inertia effect under impact 
loading leads to an increased strain before buckling and consequently to a 
higher peak load. Equation (7.15) provides also the respective contributions 
from bending (first term) and from triangular elements (second term). 

7.4.2. Progressive peak load 

However, our interest is the progressive peak load because it is the basis 

of the crushing strength enhancement for cellular structures. The simulations 
in Sec. 7.3 show that buckling of the vertically straight triangular elements 
determines the progressive peak load. One should analyze further crushing 

of the idealized crushing box shown in Fig. 7.14 obtained by further bending 
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of X-form central plates and compression-shear of the straight triangular 
elements. 

Let us consider the instant just before the buckling of these straight trian­
gular elements. The angle() is 28.4° for the ridge strain of 12% (see Fig. 7.14). 

> From the simulated results (Fig. 7.10), further crushing leads to a linear 
distribution of the strain and stress in the triangular elements. By assuming 
that the further drop of point C will induce a linear plastic strain distribution, 

the strain increment becomes 

0 
8v 

0 
b/2 

4x 8v 8v 
8cP(x) =-

b/2 b/2 
0 

b 
(7.16) 

0 0 
8v 
b/2 

and the equivalent strain is 

(7.17) 

The energy increment in these small triangles is then given by 

(7.18) 

where the flow stress is also a linear function of x (see Fig. 7.10). It varies 
from as (compression flow stress just before initial peak load as used in 
Eq. (7.15) to a~ (maximum flow stress at the ridge line before the progressive 
folding load). 

The bending energy increment is defined according to Eq. (7.9) with 8cp ~ 
28() for the angle () = 28.4° (see Eq. (7. 7) ): 

r,; 2 28v 
~Ebending = (3 + 2v t))ast -b . ()b. 

Sill 
(7.19) 

The energy balance yields: 

(7.20) 
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In the present case we have: b = 35 mm, t = 1.5 mm, a 8 = 175 MPa, 
a~= 350 MPa (see Figs. 7.10 and 7.3), so that: 

F ;~~~~ssive peak ~ 35 mm 2 as + 42 mm 2 a~ + 14 mm 2 a 8 ~ 23 kN. (7.21) 

Under dynamic loading, the strain is increased before buckling, which leads 

to as = 225 MPa, a~ = 425 MPa, and therefore 

F ~:~:!sive peak ~ 35 mm 2 as + 42 mm 2 a~ + 14 mm 
2 

as ~ 29 kN. (7.22) 

Such a simple model does not reflect exactly the real folding process. For 
example, the x-displacement is not zero and the base size of the triangular el­
ement increases during crushing. However, it offers a good explanation of the 
progressive peak load. Equations (7.19) and (7.20) provides also respective 
contributions of X-form bending elements (first terms) and of the triangular 
elements. Another feature of this model is that the vertically straight trian­
gular elements take more than 80% of crushing load (see also the last column 
of Table 7.1). The progressive folding load is very sensitive to inertia because 
the contribution of the bending to inertia sensitivity is relatively small. 

7.5. Post-buckling micro-hardness measurement for the 
validation 

The above simulations and analyses suggest that the inertia effect is the 
origin of the strength enhancement under dynamic loading. To prove that, 
the micro-hardness test on the crushed tubes at various crushing stages has 
been performed. It provides an experimental examination of the local infor­
mation given by the simulation. The micro-hardness of the material reveals 
an average strain hardening state of the material. It is also known that the 
hardness measurement and the plastic strain are not directly and quantita­
tively related. However, if reference tests on the base material for a series of 
given strain levels are performed, a quantitative relationship can be derived 
for this material under such loading. 

The strain states for small specimens are known according to the com­
pressive stress-strain curves (Fig. 7.3) of the base material. Post-buckling 
micro-hardness measurements on these small specimens give correspondence 
between the micro-hardness and known plastic strain. This correspondence 
for treated brass material is shown in Fig. 7.15. The same micro-hardness 

measurement is applied to the square tubes. 
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FIGURE 7.15. Micro-hardness vs. plastic strain. 

Qualitative and quantitative matching can then be sought between simu­
lations and experiments. Figures 7.16 and 7.17 show a typical micro-hardness 
measurement operation. Three crushing states under static loading are used 
for this matching. The first is the one just after the first peak load (see 
Fig. 7.16(a), left), and the second is the one just after the second peak load 
which is the progressive peak load (middle). The last one corresponds to the 
case after full crushing (right). Figures 7.16(b) and 7.16(c) show the specimen 
preparation and the stamp of the indentation for the micro-hardness measure­
ment. It is noted that the measurement presented in Fig. 7.17 is performed in 
the middle of the plate (half-thickness position). Actually the hardness near 
the plate surfaces is quite different because of the bending effect. 

Such a measurement proves that: 

• just after the first initial peak load, the plastic strain is nearly uniform 
in a section; 

• afterwards, only the region near the ridge line is loaded. 

Thus the theory developed above is confirmed. Furthermore, an excellent 
match between simulation and post-buckling micro-hardness measurement is 
found (Fig. 7.18). It validates the results given by simulations. 
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(a) (b) 

(c) 

FIGURE 7.16. (a) crushed tubes, (b) prepared piece for hardness measurement, 
(c) stamp. 
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FIGURE 7.17. Plastic strain profiles at three crushing stages (position 1 denotes 
the element in the middle of the fiat plate, position 7 denotes the element in the 
ridge line). 
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FIGURE 7.18. Comparison simulation and micro-hardness measurement. 

7.6. Summary 

This Chapter treats the rate sensitivity due to structure effect by studying 
a model structure of a Cu-Zn alloy square tube. Actually, the observed crush­
ing mode of this square tube is a progressive folding process, which is also 

the crushing mode for cellular structures such as IFAM aluminium foam and 
honeycombs. The static and dynamic crushing tests of annealed brass square 
tubes under a symmetric progressive folding mode were presented. Tests un­
der dynamic loading were performed with a large scale (80 mm diameter, and 
10m long) SHPB system, using recently developed two-gauge method to ob­

tain a sufficient measuring duration. It provides an accurate measurement of 
force-displacement curves, with accurate values not only for the initial peak 
load, but also for the progressive folding peak load. An enhancement of the 
progressive folding peak load is observed. 

Careful characterization of the behaviour of the base material is per­
formed and it shows that there is no observable rate sensitivity up to 2500/s. 
Tests on tubes and also on the base material show that the progressive fold­
ing peak load of square tubes made of a rate insensitive base material can 
have an important enhancement under impact loading. To understand this 
significant enhancement for square tubes, a numerical simulation of these 
tests is performed, using a rate insensitive constitutive law (Johnson-Cook 
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law with zero rate sensitivity). The material parameters are determined us­
ing experimental results on samples cut from the tubes. The influence of 
the element size and the initial imperfection amplitude on the final results 
was also studied. The simulations reproduce the observed deformation map 
and the event sequences, as well as the crushing force and the displacements 
measured during the tests. 

These virtual tests provide all the details in stresses and strains during 
crushing of tubes, which is very difficult to measure in the experiments. 
Careful examinations of the stress and strain profiles show that small zones 
around the four ridges of square tubes remain straight and support the main 
loading in the folding process. Buckling of these zones corresponds to the fall 
of the crushing force. Under impact loading, buckling takes place at a larger 
strain than the static case. Post-buckling micro-hardness measurements at 
various crushing stages confirm this result. 

A simple model of box column crushing is used to illustrate the progres­
sive folding process and the role played by inertia. It was shown that the 
vertically straight corner zones support about 80% of the crushing load. This 
inertia sensitive structure is responsible for the observed progressive peak 
load enhancement under impact loading. 
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