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Preface 

This volume contains the text of 7 lectures given during the month of June 
2002 at the Centre of Excellence for Advanced Materials and Structures 
in the Institute of Fundamental Technological Research, Polish Academy of 
Sciences, Warsaw. 

It begins by summarizing the framework of a thermodynamical descrip­
tion of continua, including a description of the kinematics of deformation, 
and a summary of the equations governing the motion. 

Determination of the evolution of system is studied through the definition 
of functionals presented in the case of non-linear dynamics. After a short 
description of the motion of the system and of mechanical interactions, the 
first part is devoted to the Lagrangian and to Hamiltonian functionals of the 
system. Quasistatic characterization is then deduced. 

The case of evolution of elastoplastic system is investigated. The formu­
lation of the rate boundary value problem for the system evolution is given 
in term of variational inequality. Conditions of uniqueness are discussed. 

In the some manner, the framework is extended to fracture mechanics. 
The condition of propagation of cracks is analysed and a generalisation of 
Griffith's law based on energy criterion is proposed. The formulation of the 
rate boundary value problem has the same form as in elastoplasticity pro­
vided that the internal variable for the structure is reduced to the crack 
length. 

For damage material and wear, a similar energetical approach is proposed. 
It is based on the dissipation associated with moving surfaces along which 
the mechanical fields experience discontinuities. Such discontinuities produce 
entropy and dissipation. If we consider that the moving surface is governed 
by an energy criterion of the some type as in classical rupture mechanics, the 
formulation of the rate boundary value problem of propagation of damage 
front is given. 

http://rcin.org.pl



6 PREFACE 

Finally, the energy approach is applied to homogeneisation in non-linear 
mechanics for locally plastic or damaged material. Some properties are given 
in connection with the analysis of stability and bifurcation of equilibrium 
path. 

I would like to express my appreciation to Professors Zenon Mr6z, Woj­
ciech Nowacki, J. Joachim Telega, Henryk Petryk for their kindness and 
hospitality during my visit to Warsaw. 

Warsaw, June 2003 Claude Stolz 
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Chapter 1 

Introduction 

Determination of the evolution of a system is studied through the def­
inition of functionals presented here in the case of non-linear dynam­
ics. After a short account of the necessary notions for the description 
of the motion and of mechanical interactions, this introduction is de­
voted to the Lagrangian and Hamiltonian functionals of the system. 

1.1. Some general features 

In order to explain and to predict the motion and the equilibrium of 
bodies or structures subjected to various physical interactions, a kinematical 
description of the motion is first performed. In the case of continuum, such a 
description must ensure the continuity of the body during its motion. Usually 
one looks for the motion of a material point X from a reference configuration 
by describing its displacement y(X, t). 

After the kinematical description of the body, one has to deal with the 
mechanical interactions. Many statements permit the description of these in­
teractions, for example the virtual power statement can be used. This shows 
the manner to describe the mechanical interaction between each material 
point of the body with respect to a given loading distribution. For sake of 
simplicity and conciseness of this presentation, a thermodynamical descrip­
tion of interaction is chosen. 

http://rcin.org.pl



8 1. INTRODUCTION 

1.2. Description of the motion 

Let a body n be submitted to external forces described by vector fields 
[_ in n and vector fields T along the boundary an. The external forces are 
generally functions of time. 

Under these loadings the body is transformed and deformed. The actual 
position± of a material point is a function~ of it's initial position X and of 
the time. The displacement y is then defined by: 

±(X, t) = <P(X, t) =X+ y(X, t). (1.1) 

Consider now two material points X and X + dX, then we have: 

a<P 
±(X+ d±, t) = <P(X + dX, t) = <P(X, t) +ax .dX + o(dX) (1.2) 

Hence, a material element dX is convected by the motion in the actual ma­
terial element d±, the corresponding transformation is the linear application 
associated with the gradient F: 

ax 
d±= ax·dX=F.dX. (1.3) 

The actual length of the material element is given by: 

(1.4) 

The variations of the local geometry, stretching of fibers and gliding, are 
determined by the Cauchy-Green tensor C = FT .F. 

In small perturbations the gradient of the displacement is small and the 
strain is reduced to the linearized strain e(y): 

2 e(y) = grady + gradT y. (1.5) 

For the sake of simplicity, all subsequent studies will be made within the 
framework small perturbations. 

1.3. The mobility and the interactions 

The body n is considered as a continuous set of elements, positions of 
which are denoted by ±· This material element of volume dn has an elemen­
tary mass dm = p dn, where p is the mass density. 
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1.3. THE MOBILITY AND THE INTERACTIONS 9 

The mobility of the body is defined by its set of virtual motions associated 
with any vector field jL* which can be interpreted as a virtual velocity field. 

Forces are defined by a linear form: jl*---+ P(jL*) where Pis a real number, 
named the virtual power of the forces developed by the virtual motion jl*. 

In classical continuum mechanics, the external forces applied to the body 
are given by vector field [_ defined over the volume n and by vector field 
I defined over the boundary an. In this case the virtual power of external 
forces is expressed by: 

Pe( 1L*) = { [_.jl* dO+ { T.1L* dS. 
ln lao 

(1.6) 

The power of internal interactions is given by a field of second-order tensors 
o"(.~) such that: 

P;(i!.*) = -in a :grad ll* d!1, (1.7) 

where u is the Cauchy stress tensor. This expression is the simplest form for 
a local description of internal interactions compatible with external loading 
defined only in terms of vector fields. 

The axiom of objectivity states that the power of local interaction 'Pi is 
equal to zero for any rigid body motion: 

'Pi(li*) = 0, V jl* E n.B.M. (1.8) 

The set n.B.M is the set of rigid body motions: 

n.B.M = {li I ll = !lo + Wo.X}, (1.9) 

with wr = -Wo. By application of (1.8) to any domain n, we conclude that 
the Cauchy stress u is a symmetric second-order tensor. 

If we assume that there is no jump for the velocity, the virtual power of 
acceleration is given by: 

A(!t) = 1n fYl·i!.* d!1, 1 = i/. (1.10) 

Virtual Power. The fundamental statement of dynamics is written in tenns 
of virtual power: the sum of the virtual power of internal intemctions and of 
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10 1. INTRODUCTION 

the virtual power of external forces is equal to the virtual power of acceleration 

quantities: 

(1.11) 

for any virtual motion ~·. 

Using this equality for any virtual motion and any subdomain n•, the 
local form of the balance of momentum is obtained: 

divu + p[_ = fY1., uT = u, u.n =I. (1.12) 

By the same reasoning the principle of action and reaction is recovered. 
Along an elementary internal surface dS with normal 11 the stress vector is 
continuous, if there is no jump of velocity: 

+ -
(7' ·!! = (7' ·!! . (1.13) 

These equations of conservation are not sufficient to determine the inter­
nal state, some complementary information are needed. 

A thermodynamical point of view is chosen. The body is a thermody­
namical system formed by a collection of small elements defined as material 
points. Each small element has a density p and the local state is characterized 
by a set of state variables. 

1.4. Conservation of energy 

The internal state is described by the actual value of a set of state vari­
ables. To described effectively the behaviour of the material, we must measure 
a great number of mechanical quantities; to gain in efficiency the concept of 
internal parameters is adopted. The choice of these parameters is governed 
by the observation and the ability of the modelisation to describe the stud­
ied phenomenon with sufficient accuracy. The state variables are the strain 
e, the temperature T and a set of internal variables a. Attached with these 
parameters are the internal energy density e and entropy density s. Then the 
internal energy and the entropy of the body n are given by integration over 
the body: 

(1.14) 

http://rcin.org.pl



1.4. CONSERVATION OF ENERGY 11 

Conservation of energy 

The conservation of energy is written as: 

{1.15) 

Assuming that the calorific power is due to conduction: 

PeaL=- f q.n dS =- f divq d!l, lao.- lo. - {1.16) 

the local expression of the energy conservation is deduced from {1.11), {1.15), 

{1.16) applied to any volume n: 

p e = (T: e(Q)- div9:. {1.17) 

Entropy production 

The second law for the whole system is written as: 

. { q.n 
S +Jan -T dS ~ 0. {1.18) 

After integration by parts we obtain: 

f ( 1 ) f q. grad T lo. ps + T div9: d!l- lo.- T2 d!l ~ o. {1.19) 

The two terms have different origin, the first one is due to internal mechanical 

irreversibility, the second one is due to conduction. 
In non-linear mechanics the internal state is generally associated with 

irreversibility. Then the fundamental inequality of thermodynamics implies 
that the internal production of entropy must be non-negative. 

In the total dissipation we distinguish the ·part due to the conduction and 

the part due to internal forces. We assume that the choice of state parameters 
is a normal set of variables. In this case, a variation of temperature does not 
induce variation of kinetic energy, so the two dissipations are individually 

positive: 

Dm = ps + ~ div 9: ~ 0, 

q.gradT 
Dth =- T2 ~ 0. 

(1.20) 

(1.21) 

http://rcin.org.pl



12 1. INTRODUCTION 

By introducing the conservation of energy in the first equation, we can use 
the free energy w instead of internal energy e = w + sT. Then, the intrinsic 
dissipation Dm is rewritten as: 

Dm = u: e(Q)- p(w + sT) ~ 0. (1.22) 

This inequality must be satisfied by any real evolution of the body, from the 
state defined by the actual values of the state variables e, a, T. 

1.5. The linear thermoelasticity 

When the constitutive behaviour is elastic, all thermodynamical quanti­
ties are functions only of the actual state e, T. 

For linear thermoelasticity and small perturbations around a natural state 
at the temperature T0 , the free energy has the following form (r = T- T0 ): 

1 1 2 
p w = 2e : C : e + k.eT - 2cr , (1.23) 

The positivity of entropy production is satisfied by any real variations of the 
state near a thermodynamical equilibrium state (i.e. mechanical equilibrium 
under uniform temperature), then we deduce the equations of state: 

aw 
u=p-, 

ae 

aw 
8 =-aT" (1.24) 

In this case the stress u must satisfy the balance of momentum. Therefore 
the elastic behaviour is essentially reversible. 

1.6. More general cases 

In general, the intrinsic dissipation Dm has a form driven by the choice 
of the free energy w, which depends on the strain e, internal parameters a 

and temperature T. The entropy production is rewritten as: 

D ( aw) . ( aw )T. 8w . O 
m= u-pae :e-p aT+s -paaQ~ . (1.25) 

Defining the thermodynamical forces associated with the state variables 
by the state equations: 

aw 
s=--, 

aT 
(1.26) 

http://rcin.org.pl



1.6. MORE GENERAL CASES 13 

the dissipation takes the form: 

Dm = (u- ur) : e +An= O"ir : e +A.a. :2: 0. (1.27) 

There exists two sources of entropy production, namely one due to the 
variations of internal parameters and the second due to the strain rates. 

The equations of state don't provide the full constitutive equations, some 
complementary laws are needed to describe the evolution of the irreversibility. 
Such laws are determined by observations and experimentations. First we 
must define the domain of reversibility, we must discuss the influence of the 
strain rates and finally we must determine constitutive relations between the 
rates e, a and the thermodynamical forces u ir, A. 

Generalized standard materials. 

A powerful method is to consider the existence of potential for the dissipa­
tion. Let us assume that the behaviour belongs to the class of the generalized 
standard materials, (B. Halphen and Q.S. Nguyen [1975)). This ensures the 
existence of dissipation potentials and the evolution of the internal state 
satisfies normality law: 

ad ad 
or A = aa. , u ir = ae . (1.28) 

The potentials d* and d are convex functions of the variables, with a minimum 
value at the origin. 

Cases of linear visco-elasticity 

For example, the potential of dissipation is: 

d( .) 1. . e = 2e: 7J: e, (1.29) 

with 7] a positive definite operator. The complementary law gives: 

ad . 
0" ir = ae = 7] : e. (1.30) 

The stresses u used in the balance of momentum is decomposed in two terms 

0" = (J'r + O"ir· 

• For the model of Kelvin-Voigt of linear viscoelasticity, the two poten­
tials take the form: 

1 
p w(e) = -e: C: e; 

2 
d( .) 1. . e = 2e: 7J: e, (1.31) 

http://rcin.org.pl



14 1. INTRODUCTION 

and then the constitutive behaviour implies that: 

(T = c : e + "1 : e. (1.32) 

• The Maxwell description is obtained by choosing the thermodynamical 
potential in the following form: 

1 
p w(e, a) = 2(e- a) : C : (e- a), (1.33) 

and the pseudo-potential of dissipation in a quadratic manner: 

d 
1. . 

= 2a: "1: a. (1.34) 

Then u ir = 0, A = C : ( e - a) and the complementary law gives the 
relation: 

A=ry:a. (1.35) 

Then the constitutive behaviour is given by: 

u = C : ( e - a), A = C : ( e - a) = "1 : a. (1.36) 

Normality rule 

In the case of a regular and differentiable function, the convexity of the 
potential of dissipation gives us the characterization of internal state evolu­
tion by the equalities: 

8d 8d 
t:l'ir = ae' A= aa. (1.37) 

More generally the definition of the gradient is replaced by the notion of 
subgradient l). 

Normality rule. The internal state satisfies the evolution laws given by the 
normality rule 

(1.38) 

The set 8d is the set of thermodynamical forces whose satisfy the inequality: 

d(e, a)+ uir : (e* -e) +A : (a* -a) $ d(e*, a*), 

for all admissible values e•, a• . 

(1.39) 

We observe that the existence of a potential for the dissipation ensures 
the positivity of the entropy production: 

uir : e +A: a=< 8d(e, a), (e, a) > ~ d(e, a)- d(O, o) ~ o. (1.40) 

l) Elements of convex analysis are synthesized in J . .J. Telega (2002). 
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1. 7. THE QUASISTATIC EVOLUTION 15 

1. 7. The quasistatic evolution 

Consider a body n submitted to some prescribed boundary conditions. 
The boundary is decomposed into OOu where the displacement is imposed 

and anT where the stress vector is prescribed, an = OOu u OOr and 
0 = OOu n anr. A solution ( .Y., a, T) of the problem of quasistatic evolu­
tion satisfies: 

• the compatibility equations for strains and displacements: the strain 

field e is associated with the displacement .Y., e( .Y.) = (grad .Y. + 
gradT y) /2, the displacement satisfies the boundary condition y = yd 

on OOu, 

• the state equations: 

aw aw aw 
Ur=p-, A=-p-, s=--, ae aa: aT 

(1.41) 

• the equations of evolution for the state variables: 

(uir, A) E 8d(e, a), (1.42) 

• the constitutive law: 
(1.43) 

• the conservation of the momentum and boundary conditions: 

div u = 0, on n, U.'[! = Td on OOr. (1.44) 

For the overall system the rule of the free energy is replaced by the global 
free energy: 

W(E,ii,i') = fo pw(E,cx,T) dll. (1.45) 

We recall the definition of the Gateaux differential: 

8F -• 
1
. F(ij + TJii*) - F(ij) 

8ij . q = '1~ 1J ' (1.46) 

and then we get for our particular case: 

8W -• _ f 8w -• dO 
8ij · q - ln P 8ij q · (1.47) 

The equations of state are now relations between fields: 

iTr = ~~· A=-~:. S=-c;;. (1.48) 

In a global description the equations of state have the same form as in the 

local one, and the state of the system is defined by fields of state variables. 
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16 1. INTRODUCTION 

Dissipative function 

By integration over the body of the dissipation density we define the total 
dissipation function: 

D(t, <i) = in d(E:, a) d!1. (1.49) 

By integration of the local inequality (1.39), we get: 

n(k, &) - n(e*, a*)+ irir · (e*- k) +A· (a*-&) ~ o, (1.50) 

for all admissible fields (e*, a*). This shows that the evolution of internal 
state satisfies the normality rule, rewritten in terms of fields: 

For example, in the case of regular dissipation function we have: 

~~ · e(Ou) =in u;r : e(Oy) d!1, 

a~ · 8a = { A.8a dO. aa ln 
These equations can be rewritten as: 

_ an 
Uir = ak, 

- an 
A=--· a a 

The isothermal boundary value problem 

(1.51) 

(1.52) 

Consider now, for the sake of simplicity, an isothermal process. Let us 
assume that the external loading derives from a potential given in terms of 
traction Td applied on the external surface 80T of the body. Then, the global 
free energy W is replaced by the potential energy £ of the system: 

£(y, a, Td) = r p w(e(y), a) dO- r ~.y dS. ln lonT (1.53)' 

By combining all the equations in terms of fields of the state variables, the 
quasistatic evolution is then given in a global manner by the variational 
system: 

0 
a& ~ _ an _ ( ~ ) =- · uu+-- ·euu ay-at -' (1.54) 

o = a& . 8a + a~ . 8a. 
aa aa (1.55) 
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1.8. THE LAGRANGIAN AND THE DYNAMICAL CASE 17 

These equations are defined on a set of admissible fields, the displacement is 
submitted to the boundary condition Y. = yd over anu. Then the fields 8Y. 
must satisfy 8y = 0 over anu. The 8<i can have some constraints depending 
on the nature of irreversibility. 

The preceding equations are general. They contain the essential structure 
of a problem of quasistatic evolution. The first equation of this system ex­
plains the conservation of the momentum taking into account the constitutive 
law: 

div (7' = 0, (7' = Ur + l7'ir, u.n. = Id on anT, (1.56) 

the second one provides the complementary law as a relation between the 
forces A and the internal parameters: 

A. 8a =- ae . 8a = a~ . 8a. (1.57) aa aa 

1.8. The Lagrangian and the dynamical case 

By definition, the Lagrangian is the difference between the kinetic energy 
and the potential of interaction applied to the system. For all kinematically 
admissible fields, the potential of interaction is the potential energy: 

&(Y., a, T, Td) = [ w(e:, a, T)p dfl- [ rd.y_ dS. (1.58) ln lanT 
The kinetic energy is defined as: 

K:(il) =In ~Pll2 dfl, (1.59) 

and the Lagrange's functional is then: 

.C(Y., il, t, fd) = K:(il)- &(Y., a, t, td). (1.60) 

The acceleration is denoted by 1' 1 = fl.. Some variations of the Lagrangian 
are useful: 
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18 1. INTRODUCTION 

m is the mass flux through the moving surface r along which the velocity 
v has discontinuities [ v 1r. The equations of the motion are given by the 
conservation of the momentum: 

div (T = P'1.. on n, (1.61) 

(1.62) 

Then a variational form for the conservation of momentum is easily deduced: 

f u: e(6y) d!l = f n.u.6y dS + f n.[ u 1r·6Y dS + f p 1_.6y d!l. (1.63) 
ln lan lr ln 

The stress u is decomposed as previously as u = u r + u ir taking the con­
stitutive law into account. r is a moving surface, where the velocities have 
discontinuities. Taking all these relations into account, the evolution of the 
system is governed by the generalized Lagrange's equations: 

-( i a.c- a.c). 6u =a~. e(6u) 
dt 8fl ay - at - ' (1.64) 

a .c . 6a = a~ . 6a 
aa: aa: ' (1.65) 

a.c - 1 ---=. 6T = ps6T dn. 
aT n 

(1.66) 

These equations are a generalisation to non-linear dynamics (C. Stolz 
(1988]) of the classical Lagrange's formulation, they have the same form as 
the expression given by Biot (M.A. Biot (1978]) in viscoelasticity. In this 
formulation, we have defined as previously the dissipative function by: 

D(t, &) = fo d{£, &) dO. (1.67) 

The first equation is the equation of motion, the second one the evolution 
law for the internal state, the last one defines the local entropy. To this set 
of equations we must append a conduction law for completeness. 

1.9. The Hamiltonian 

The Hamiltonian is a Legendre transformation of the Lagrangian, with 
respect to the velocity and temperature (C. Stolz [1988]): 

rt(i!, p, a, s, Td) = f (p. y + T p s) dn - .C(i!, ~,a, t, fd). (1.68) - ln-
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1.9. THE HAMILTONIAN 19 

Then we have: 

1l(j!, e. a, s, Td) = In irl I p dn + In p e( e(y)' o:, T) dn - Ln Td ·'!! dS. 

where l!. is the momentum py_. In this expression the density of internal energy: 
e = w + T s appears. In a global formulation, we obtain successively: 

IJH -· - -· dy -· ap_ . l!. = Y. . l!. = dt . l!. ' 

IJH
8

_ . 6Y. = f p 
8
8
w : e:(6y) dn- f :rd.6y dS 

Y. ln e: looT 
= fur: e:(6y) dn- f Td.6y dS. 

ln lanT 
Taking account of the conservation of: the momentum, decomposition of the 
stress into reversible and irreversible parts, of the boundary conditions and 
of jump conditions, the expressions are then modified to: 

: · Oy =- {a;.: e(Oy) dn- { P1·0'1! dn + {!!·[a Jr.Ol! dS. _ ln ln lr 
Recall that uir = 8Df8t and consider the relation: 

:t fnp_.Oy dn =In P1·0'1! dn + 1 m[!!.]r.Ol! dS. (1.69) 

We then obtain the conservation of the momentum in the Hamiltonian's 
form: 

81t · 6u =-
8~. e(6u)- i f p.6u dn. 8Y - 8t - dt ln- - (1.70) 

Finally, the Hamiltonian formulation of the evolution problem is obtained: 

81t -· - -· d - -· .q.;;.-- • ~ = _v • ~ - -u · p 
vp - dt- -' 

IJH -• 8D -(-*) d (jJ -•) -·u =---·e:u -- ·u oft - oe(Y.) - dt - - ' 

81t -• 8D -• 
{}(i . a = - a& . a ' 

81t -• T- -88 . s = . ps. 

As previously a conduction law must be specified and the positivity of 
the entropy production must be verified to determine the evolution of the 
system. 
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20 1. INTRODUCTION 

1.10. Some properties 

Generalisation 

The definitions of the Lagrangian and Hamiltonian can be extended to 
structures like beams or plates. The proposed description is performed when 
the behaviour of the system is described by two potentials: a global free 
energy and a dissipative function. If some particular internal constraints exist, 
the preceding description must be modified. 

Conservation of energy 

For the real motion, the value of the Hamiltonian is the sum of: the kinetic 
energy, internal energy and potential energy of the external loading. Then 
the conservation of the energy of the system can be easily rewritten as: 

d1t 81-l dtd 
dt - IJi'd . dt ='Peal· {1.71) 

When the external loading is time independent ~~ d = 0, the exchange of 

energy is only due to the heat rate supply 'P col· Generally this quantity has 
the form: 

'PcoJ = - f q.n dS, Jan- {1.72) 

where ~ is the heat flux. This result is useful in fracture mechanics to quantify 
the heat generated by the propagation of crack as presented in the following 
section. 

Conservation law 

In the case of conservative system, in an adiabatic evolution ('PcoJ = 0), 
the Hamiltonian is constant, i.e.: 

1-t(t) = 1-£{0). {1.73) 

This property can be rewritten in terms of the Lagrangian: 

£- fl· ~ = 1t(O}. (1.74} 

Property of stationarity 

The Lagrangian has the property of stationarity in elasticity or viscoelas­
ticity: let us consider the variation of the Lagrangian in isothermal evolution: 

~~ 8£ r- 8£ r- d {8£ r-) 8D -{.t ) {1.75) 
UJ.., = - · uv + - · uu = - - · uu + -- · e uu 8fl - Of! - dt 8fl - 8t - , 
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then 

(1. 76) 

where 8D is the total viscous dissipation during the variation. 
Finally, let us note that the above results may be adapted to the case of 

other type of boundary conditions. 
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Chapter 2. 

Elasto-plasticity 

For almost any metal and at rather small rates of loading, we obtain 
a mean curve u(e) during a tensile experiment: this is a static curve. 
The whole static curve may be analysed with the help of several 
successive mathematical relations, which are models of the elasto­
plastic behaviour. 

2.1. Introduction 

Consider the tension curve on a test specimen. The behaviour is linear 
below a limit value u 0 , whilst above this value some permanent strains ep 
are present after a total unloading. The reversible part of the strain e - Ep is 
the elastic strain. The form of linear elastic behaviour is preserved: 

u = C: (e- ep) (2.1) 

At the microscale metals are crystalline solids, this means that they con­
sist of atoms arranged in a pattern which is periodically repeated. The whole 
system is build of unit cells or lattice. To each lattice we can associated a 
triad of vectors. 

The plastic transformation of monocrystal is generally described by slip 
lines contained in crystallographic planes: the slip-plane of normal vector!!· 
The two parts of the crystal at both sides of this plane were submitted 
to a relative small displacement along a crystallographic direction, the slip 
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24 2. ELASTO-PLASTICITY 

5.10"1 c 

FIGURE 2.1. A quasi-static tensile curve. 

direction m. This mode of deformation is the slip process. The set consisting 
of the slip plane and slip direction characterizes the slip system (!h m). The 
activation of this transformation is reached when the resolved shear stress on 
the slip system attains the limit value, that is the Schmid law: 

f(u) = 11.lT.m- To~ Q. (2.2) 

Those sets depend upon the crystallographic class of crystal. Metals are poly­
cristalline media, composed of an aggregate of different shape a.nd orienta­
tion. The modes of deformation of polycrystals stay the same as those of 
monocrystals but the grains boundary introduce supplementary modes of 
transformation. It is rather difficult to modelise directly the behaviour of 
elasto-plasticity of polycrystal, we adopted some simplified modelisation of 
such a complex reality. 

Classical triaxial test are performed on cylindrical samples. These tests 
show that the pressure tr u does not influence the plastic behaviour of most 
metals. Some other results are concerned with the determination of the do­
main of reversibility in stress space. If initially the shape of this domain is 
nearly an ellipse, this shape becomes complicated after loading history. There 
are three effects: an expansion, a global translation in the direction of the 
loading point and a local deformation near the stress point which can be 
very pronounced. It was also pointed out that the projection of the plas­
tic strain increment is almost normal to the elastic boundary in the stress 
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2.2. THE DOMAIN OF ELASTICITY 25 

~~~~----~----~--~~~~~~ 

en 107P• 

FIGURE 2.2. Experiments on copper, after H.D. Bui (1972). 

space (Fig. 2.2). The test shows also that the domain of reversibility Cis con­
vex in the stress space. This is the principal argument to admit the principle 
of maximal plastic work. 

Maximal plastic work, normality rule. The principle of maximal plastic 
work defines the evolution of the plastic strain 

Let u E C; for all u* E C, (u- u*) : tp ~ 0. 

The plastic strain is normal to the convex set C. 

2.2. The domain of elasticity 

The domain of elasticity is modelised by a convex function f on the stress 
sp~ which depends on internal parameters E; these parameters are often 
chosen to represent also possible change of shape of the domain in the stress 
space: 

C = { u I /(u, E) :50}. (2.3) . 

Taking into account the principle of maximal plastic work we deduce the 
property: 

{ 
I ( u) < o, tv = o, 

f(tT) = 0, €p = 1-';~. Jl ~ 0. 
(2.4) 
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26 2. ELASTO-PLASTICITY 

Generally, the function f is taken as invariant by translation of tr u, then f 
depends upon the deviatoric part of u, i.e. s = u - tr3u I. The normality 

rule induces then that the plastic strain is isochoric. 

The function f must be invariant under the group of material symmetry. 
Consider now an isotropic material; then the function f depends only 

upon the invariant of the stress: 

1 
It= tru, I2 = 2 tru.u, 

1 
13 = 3 tr u .u ~u, (2.5) 

or on the principal stresses: 

(2.6) 

Generally the function f is not a polynomial of the invariants. Some typical 
yielding functions are the Tresca criterion and the Huber-von Mises function. 

The Tresca criterion: The domain of elasticity is defined by the function 

f(u) = sup {ui- Uj- U 0 } ~ 0, 
i,j€{1,2,3} 

where the value u 0 has the following interpretation: 

• u 0 is the limit of elasticity in tension, 

• ~u0 is the limit of elasticity in shear. 

This function depends only on the deviatoric part of the stress 8. 

(2.7) 

The Huber-von Mises criterion: The domain of elasticity is defined by 
the function 

f(u) = .J.h- k ~ 0, (2.8) 

where J2 = ~ tr s.8, and k is interpreted as follows: 

• k is the limit in shear, 

• kJ3 is the limit in tension. 

To mod elise the expansion of the domain of elasticity, the value k or u 0 is 

a function of some hardening parameters E and the translation in the stress 
space is obtained by replacing u by A= u- a( E). 

2.3. The evolution of internal state 

The domain of elasticity being defined by such a function f, the evolution 

of the internal parameters ep, a, E satisfies the complementarity conditions: 

f ~ 0, J.t ~ 0, J.tf = 0. (2.9) 
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2.3. THE EVOLUTION OF INTERNAL STATE 27 

By derivation with respect to time of the last equation, we can deduced that: 
for a state of stress on the boundary of the domain of elasticity f = 0, we 
have obviously j ~ 0. Then a necessary condition to obtain J.t 2:: 0 is the 
consistency condition j = 0, whose expression is: 

(2.10) 

To determine J.t effectively, one must give complementary laws for the hard­
ening: 

E = J.t g(u, a, Ep, £), (2.11) 

where g is a given function of the local state. Considering now the constitutive 
law for the stress: 

u = C : (e - ep), 

we determine the value of J.t l) 

8fT 
<a:c:t> 

J.t = 8fT U 8f 8fT ' 
au : c : au - 8£ g 

(2.12) 

(2.13) 

'f h h d . d 1 H 8 IT c 8 f 8 IT . . . Th £ 
1 t e ar ening mo u us = au : : au - 8£ g lS positive. ere ore, 
the evolution of the stress satisfies: 

8fT . 
. . <a:c:e> 8! 
u = C: €- 8fT U 8f 8fT C: 8u' (2.14) 

au : c : au - 8£ g 

and the local behaviour is determined by the potential U(e), (Hill [1958]): 

8fT C . 2 
1 1 <a= :e> 

U(t) = 2t: c: t- 28fT u 8! 8fT ' (2.15} 

au : c : au - 8£ g 

ir = ~~. {2.16) 

Combining these properties, the equations of equilibrium div ir = 0 in n, the 
boundary condition I = ir .fi over lKlr and the boundary condition ll = 'Qd 

l) The positive part of any quantities F is< F >= ~(F + IFI). 
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28 2. ELASTO~PLASTICITY 

on the complementary part aflu, the solution ll of the rate boundary value 
problem is a stationary point of the functional: 

among the set of admissible ll* satisfying the condition ll* = lld on aflu. 

Proof. Consider the variation of the functional U: 

among the set of kinematical fields ~ll* satisfying 6y_* = 0 oo Dflu. After 

· · b · · b · h · au t' fi th dt-.1 ·ub · Integration y part, It Is o VIOUS t at tT = lJe sa IS es e ~w num 
equation and the boundary condition over OOr. 

2.4. A model of perfect plasticity 

The model of perfect plasticity is illUstrated by the tensile curve (Fig. 2.3). 
In this case the domain of reversibility is constant. The convex function f 
depends only upon the stress tT. The relation between stress and strain is 
given by: 

tT = C : ( E - Ep). (2.19) 

The free energy is reduced to: 

1 
pw = 2(e- Ep) : C: (e- Ep)· (2.20) 

(J 

£ £ 

FIGURE 2.3. Elastic-perfectly plastic tensile curve 
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The increment of plastic strain is normal to the domain of reversibility: at a 
point u such f = 0, 

(2.21) 

Obviously, for all states of stress, we have 

p,f = 0, p, ~ 0, f '5:. 0. (2.22) 

The evolution satisfies a consistency condition, which is obtained by 
derivation of the equation (2.22) with respect to time: 

(2.23) 

The only way to have p, ~ 0 implies that j = 0. This is the consistency 
condition, which defines the value of p,: 

fJjT C (' . ) 0 ou : : e - ep = . (2.24) 

Hence we deduce that 

(2.25) 

2.5. The rate boundary value problem 

In the case of generalized standard materials, the free energy is a function 
of the strain e and of internal parameter a. We assume that there is no 
viscosity and we consider isothermal problem. The equations of state are: 

lJw lJw 
u = poe , A = - p oa. (2.26) 

The evolution of the internal state is defined by the normality rule associated 
With a convex domain C in the A-space: 

c ={A I /(A) '5:. 0}. (2.27) 

At each time the body n is decomposed in two domains, one where the evolu­
tion is reversible and the other one where the evolution can be irreversible np: 

np ={X 1 /(A(X)) = o}. (2.28) 

Due to the definition of the evolution, the rate of the internal parameter 

is O.(X) = ~t(X) !~ where ~t(X) ;::: 0 if and only if X is in flp, ~t(X) = 0 
otherwise. 
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30 2. ELASTO-PLASTICITY 

Characterization of equilibrium 

A state of equilibrium is defined by a field of displacement y and a field 
of internal parameter a satisfying the set of local equations: 

• the displacement is compatible with the boundary condition prescribed 
on {)flu: .Y = .Yd, and the strain is e(y) = (grad .Y + gradT y) /2, 

• the equations of state define the internal forces u, A: 

aw 
u=p-, 

ae 
ow 

A=-p-, a a 
(2.29) 

• the stresses u are statically admissible with the boundary conditions 
prescribed over OOT, 

• d . ' 
dlVU = 0, on n U.'fl = T over anT, (2.30) 

• the forces A are plastically admissible, that is /(A) ~ 0 everywhere. 

For this state of equilibrium, the plastic domain flp is known. 
For a given distribution of the internal parameter a, a solution of equilib­

rium is obtained also by the property of stationarity of the potential energy. 
This energy is defined by the internal potential of strain and the potential of 
external loading, so that: 

e(y, a, Td) = { pw(e(y), a) dO- { rrG.y-dS. (2.31) ln lanT 
For any internal state a, a state of equilibrium satisfies 

at: 
{}y. 6y = 0. (2.32) 

It is necessary to verify that the field A(a, y) is also plastically admissible. 
The expression (2.32) is differentiated with respect to time to obtain, the rate 
equilibrium equations. The variation of the total potential energy is given by: 

:t (:) · Oy = f tT: e(O!!) dfl- f -fd.Oy dS = 0. _ ln looT 
The stress rate ir verifies the constitutive law: 

. 82w . 82w • 
u = Paeoe: e+paeoo.a. 

The rate of internal parameters satisfies the normality rule: 

. , of 
a=l'\aA' A~ 0, A/= 0. 

(2.33) 

(2.34) 

(2.35) 
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The consistency condition must be taken into account: 

• if /(A)= 0 and j = 0, then A~ 0, 

• if /(A)= 0 and j < 0, then A= 0. 

This condition is rewritten equivalently as the inequality: 

(A- A*)j ~ 0, (2.36) 

among the set of admissible fields A*: 

1C ={A* I A*(x) ~ 0, if /(A(x)) = 0 and A*(x) = 0 otherwise}. (2.37) 

Taking the constitutive law into account, (A= -p ~), the consistency 

condition is rewritten as: 

The average of this inequality over the whole volume gives an inequality 
defined for the system. 

The solution of the boundary value problem satisfies the equilibrium and 
the normality rule, these conditions are rewritten in a global manner using 
sets of compatible fields (~y, ~*): 

{ 82w 82w a f { . d 
0 =ln. e(~y): (8e8e : e(Q) + 8e8o: A 8A)p dfl- lan.T T .~y dS, 

{ 8fT 82w 8fT 82w 8f 
0 ~ln. (A- A*)( a A ao:ae : e(ll) + aA ao:ao: A aA )p dfl. 

The potential of the rate. For any kinematically admissible fields (Q, A) 

(Q, A) E (!!.,A) I Q = Q , on aflu, A E 1C { 
- d - } (2.39) 

we define the functional 
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The rate boundary value problem. The solution (!l, .X) E K:.A. of the 
rate boundary value problem satisfies the variational inequality: 

a:F. (v- v*) + a:F(.X- .X*)< 0 . 
8'Q - - a.x - , (2.41) 

among the set of admissible fields: 
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Chapter 3 

:Fracture Mechanics 

We consider the problem of the propagation of a crack in a continuous 

medium. First we study the case of cla.ssicallinear fracture mechanics, 

we investigate the asymptotic singular stress field and we propose a 
global approach to rupture. A variational formulation is given to solve 

the rate boundary value problem. Some extensions to finite strain and 
dynamics are presented. 

3.1. Introduction 

Consider a body n with a crack, represented by a straight line. Around 
the crack tip we distinguish three domains determined by the distance from 
the tip (see Fig. 3.1): 

• Zone I, the nearest zone, is the domain where all physical processes of 
rupture occur, that is the process zone. 

• Zone II, where the mechanical fields are represented by singularities 
outside the process zone. 

• Zone III, where the mechanical fields satisfy all matching conditions 
with given conditions at infinity. 

The crack is represented at our scale by a line oriented by ~. The normal is 
~~~ in the plane, and ~z normal to the plane. 

If the singularities of mechanical fields govern the propagation of the 
crack, it is not necessary to take into account the process of rupture. This 
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e 
X 

FIGURE 3.1. The description of the behaviour near the crack tip. 

is an approximation which leads to a global approach of rupture. Such a 

description is powerful and constitutes the key point for describing classical 
fracture mechanics. In this case the singularities characterize the loading 

applied to the process zone. 

3.2. Case of linear elasticity 

The global approach of rupture is based on the study of the singularities 
of the mechanical fields. 

FIGURE 3.2. The geometry to study the singularities in a corner 
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The asymptotic stress fields near a crack tip in a linearly elastic mate­
rial are given by solving a classical homogeneous boundary value problem 
with vanishing loading condition at infinity. The local displacement y is the 
solution of the set of local equations given by: 

• the constitutive law: D' = C : E over f2, 

• the compatibility: 2E = grady + gradT y in 0, 

• the equilibrium, with null body forces: div D' = 0 in n, 
• the boundary conditions: fixed displacement y = 0 or traction-free con­

ditions on crack faces u ·.!! = 0, or mixed conditions, fixed displacement 
on one face and free-traction on the other face, 

• vanishing conditions at infinity: u-. 0 as r-. oo. 

The solution of this problem is given by a displacement of the form: 

(3.1) 

In general, the power a is a complex function which depends on the local 
behaviour. For isotropic linear elastic homogeneous body, the value depends 
on the Poisson ratio v, angle <P and boundary conditions along the crack 
surface: 

a= a(v, B.C, </J). (3.2) 

However, for traction-free boundary conditions along a line crack, <P = 1r, we 
obtain: 

(3.3) 

Associated with this power, we can distinguish three eigenfunctions for 
the problem of singularities, which correspond to three modes for opening 
the crack: 

• mode 1: 

(Ylr·~y ~ 0, (3.4) 

• mode II: 

(Ylr·~ "I 0, (3.5) 

• mode Ill: 

(Y]r&z "I 0. (3.6) 

Then with these properties the stresses have singularities: 

(3.7) 
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36 3. FRACTURE MECHANICS 

where K denotes the stress intensity factors ( K1, Ku, Kui) and the eigen­
functions f are known functions for mode I and II: 

K1 9 . 9 . 39 Ku . 9 9 39 
an = --cos -(1 - s1n- s1n-) - -- s1n -(2 +cos- cos-), v'2iT 2 2 2 v'2iT 2 2 2 

K 1 9 . 9 39 Kn 9 . 9 . 38 
0'12 = -- COS - Sln- COS - - -- COS - (1 - Sln- Sin __... ), v'2iT 2 2 2 v'2iT 2 2 2 

K 1 9( . 9 . 38) K11 • 9 9 . 38 
t122 =--cos- 1 +sin-sin- ---sin-cos-cos-, v'2iT 2 2 2 v'2iT 2 2 2 

[ ] 
_ Kn('1 + i) {T.r 

Yr·~- JJ V~' · 

where 11 = 3- 4v in plane strain. The anti plane solution (mode III) satisfies: 

Kn1 . 9 
0'13 =---sin-/2iT 2' 

Kn1 9 
0'23 = rn= cos -2, 

v27rr 

4Kni fr 
[Y]r&z = -J.t-y 2m· 

The mechanical fields being determined, we study now the propagation of 
the crack. We assume that the propagation is rectilinear. 

3.3. Characterization of the propagation 

The essential difficulty of the problem of propagation is the dependence 
of n on the crack length and the presence of moving singularities accompa­
nying the crack. . 

One possibility has been investigated by Destuynder and :Qjaoua .(1981]; 
by introducing a geometrical Lagrangian description. We pr~p~e· to ~pply 
to our description the concept of singularity transport (Q.S. Nguyen [1980], 
C. Stolz [1998]). Inside a moving frame in translation with the crack tip, the 
nature of the singularity is conserved. The crack singularity is surrounded 
by a curve r delimiting a domain Vr. This domain tfanslates wjth th~ tip 
of the crack position given by a function l(t). All mechanical quantities are 
expressed in terms of the classical fixed coordinates outside Vr and in terms 
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d 
D 

FIGURE 3.3. The boundary value problem. 

y 

X 

FIGURE 3.4. Decomposition of {} in S'lr U Vr. 

of moving coordinates inside Vr: 

X= X -l(t), 

y=Y. 

37 

All mechanical quantities F possesses time derivative given by f*, which 
represents the variation of f in the moving frame: 

F(X, Y, t) = f(x, y, t), (3.8) 

Applications of these definitions to average quantities on the whole domains 
are used to separate the contribution of the crack tip in the expression of the 
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dissipation: 

:F = { f p dO = { f p dO + { f p dfl, 
lo. lo.r lvr 

d:F dl 1 -d = -d ( J p dO) + !* p dO, 
t t O.r Vr 

: ( { fpdO) = { jpdO- { JpinxdS. 
t lo.r lnr lr 

Let us introduce the notations: fx = f.fk, "V xf = "V f·!k· 

Dissipation 

The dissipation of the whole system can be rewritten as 

Dm = Pe - :t fo wp dQ ~ 0, (3.9) 

where the power of external forces is given in term of local stresses, taking 
into account the conservation of the momentum: 

Pe = foo 'f!.CT.J!. dS. (3.10) 

This quantity is decomposed in two terms using the divergence theorem: 

f n.u.Jl dS = f u: e(!!.) dO+ f n.u.Jl dS. (3.11) 
lao. lor lr 

Using now the decomposition of the overall volume (0 = Or U Vr) we first 
obtain 

d
d f wp dO= dd ( f wp dO)+ f w*p dO. (3.12) 
t lo. t lo.r lvr 

Next, by application of general relations: 

: { wp dO = { wp dO - { pwnx dS i, (3.13) 
t lor lor lr 

. f w* p dO= f n.u.Jl* dS, (3.14) 
lvr lr 

where the traction-free boundary condition u.n = 0 along the crack has been 
taken into account. The dissipation takes finally the form: 

Dm = f (u: e(!!.)- pV;) dO+ f (n.u.(!!.- 11.*) + pwn.fk i) 4S ~ 0. (3.15) 
lor lr 
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The displacement y is continuous along the curve r. The condition of 
compatibility implies Hadamard relations on the rates: 

(3.16) 

Then the dissipation is decomposed in two terms: a volume part due to 
irreversibility of the body and a surface term associated with the propagation 
of the crack: 

Dm = { (u: e(ll)- ptb) d!l + { ( -'[!.0'."\1 x.Y. + pwnx) dS i ~ 0. {3.17) 
lnr lr 

If the constitutive law is linearly elastic, the local behaviour is reversible 

d aw h h . d' . . . h 1 an 0' = p ae, t en t ere lS no lSSlpatiOn In t e VO ume: 

f ( u : e(~) - p'liJ) d!l = 0. 
lnr 

When r is reduced to the crack tip, the result is conserved: 

lim f (u: e(~)- p'liJ) d!l = 0. 
r-olnr 

The global dissipation contains only the contribution of the crack: 

Dm = ~~r (-'[!.t7.Vx!!+ pwnx) dS i. 

(3.18) 

(3.19) 

(3.20) 

The thermodynamical force associated with the propagation is the free 
energy release rate Q defined by: 

(3.21) 

3.4. Energy interpretation 

The total potential energy for the system is given by: 

E(y, l, Td) = { p w(e(y)) d!l- { Td.y dS, (3.22) ln lanT 
whilst the dissipation is rewritten as: 

(3.23) 
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By derivation of the potential energy with respect to its atguments we 
obtain: 

(3.24) 

Since 

(3.25) 

hence 

(3.26) 

Release of the rate of energy. For the overall S1JStem, ~he only if}t~mal 
parameter is the length of the crack. The thermodynamical .force associated 
with the propagation is the release rote of energy g obtained ·by the global 
state equation: 

(3.27) 

Remark. We must emphasize that this result is due to: 

• the homogeneity of the constitutive material, 

• the absence of discontinuity of velocity inside Vr, 

• some hypothesis due to stationarity and self-similarity of processes 
which are related to the regularity of f*. 

3.5. Invariance and J-integral 

Consider now a closed loop S inside a domain n, over which the body 
forces are null. For an homogeneous linearly elastic material the density p is 
uniform. The stresses satisfy both the equation of state and the conservation 
of the momentum: 

Consider the integral C 

ow 
0" = p-, diva= 0 on n. 

8e 

C = Is (pw nk - 11;;Ui,kn;) dS, 

then by divergence theorem the integral is equal to 

(3.28) 

(3.29) 

1 8(pw) 8(aijUi,k) 1 8ai; -- - dn = (a· ·e· · k- o-· .,,_~ ·k- _,,.~ k) dn. (3.30) a a IJ IJ, IJ"""f,,J Q """"'• 
~ ~ ~ ~ ~ 
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Using now the conservation of momentum, the integral C vanishes. This is 
the expression of the law of conservation of energy. 

>From this result it follows that the integral Jr: 

(3.31) 

is independent of the choice of the loop r, provided that of the free-traction 
condition along the faces of the crack is taken onto account. Hence 

Jr = lim Jr = Q. r-o 
(3.32) 

Invariance in non-linear elasticity. Consider now a closed loopS inside 

a body n. Let a non-linear elastic behaviour be defined by the free energy func­
tion of the expansion tensor C. The nominal stress 8 satisfies the equation 
of state and the conservation of momentum: 

(3.33) 

By the same reasoning we deduce that: 

(3.34) 

i.e., 

(3.35) 

(c.f. Knowles and Sternberg {1981}}. The invariance is obtained with the same 

properties as in small perturbations. 

3.6. On the rate boundary value problem 

To solve the problem of evolution of a crack inside a body n a law of 
propagation is needed. 
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Griffith's law 

We consider a propagation law of Griffith's form. 

{3.36) 

Similarly to plasticity, the evolution satisfies the following property: 

{3.37) 

By derivation with respect to time we have: 

{3.38) 

At an equilibrium state such that g = Gc, the propagation satisfies the 
inequality: 

v {3 ?:. 0, (i - f3)Q ?:. 0. {3.39) 

This formulation characterizes the evolution of the crack. 

The equations of the rate boundary value problem 

The solution of the rate boundary value problem in terms of rate of 
displacement and rate of propagation satisfies the local set of equations: 

• the conservation of momentum: diva= 0 on n, u.n = Td on anT, 
• the compatibility conditions: E = E(ll) on S1, ll = lld on 8flu, 

h . . 1 . [)2w . C . . o 
• t e constitutive aw: tr = oe:oe: : e: = : e: In u, 

• the propagation law. 

Choice of representation 

Introducing now the decomposition of the domain S1 =Or u Vr to take 
into account the presence of the singularity and the rate J of any field f: 

{ ~ES"lr, f=i, 
~EVr, f=J*, 

then j is discontinuous on r: 

· where [J]r = j- f*. 

{3.40) 

{3.41) 
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Therefore for the mechanical fields we obtain: 

iT= ir, 
A • u=u. 

and 

0 = ( idr + i V xY, 

0 =!!·(iT ]r + j n.V xU· 

Expression of Q 
Q is given by path independent integral 

Q = £ (!!· V xtT .'Q• - !!-tT*. V x!!.) dS. 

43 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

The proof is obtained by time differentiation of g in the moving frame 

which first gives the expression: 

Q = £ u: e*nx- !!.tr.V x!l.•- !!-tr*.V x!!. dS. (3.46) 

The result follows by taking into account the following property: 

The path independence is naturally deduced from the definition of g. A direct 

proof is given using the Green's formula applied to the fields: 

u* = C : e•, div u* = 0. 

Then we get the relation 

(3.48) 

(3.49) 

{ ( div(Vxu.u*) + Vxu: e*- u*: Vxe- div(u*.Vxy)) dS = 0, (3.50) 
lvs 

which ensures that for a closed loop S we have: 

Is (!!.tT. V x'l!.* - !!·tr*. V x!!.) dS = 0. (3.51) 
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Global formulation of the rote boundary value problem 

The necessity to take into account the singularities leads to the formu­
lation of the rate boundary value problem in terms of rate fields ~, {r. The 
formulation of the rate boundary value problem with this representation is 
given by following equations: 

• the conservation of the momentum: 

divfr = 0 on n, fr.n = Td on anT, (3.52) 

[ {r lr·!! + i v zO'.fi = 0 on r; (3.53) 

• the compatibility: 

e = e(fl) in n, fl = 'Qd on Dnu, 

[~lr + i v xl! = 0, on r; 
• the constitutive law: ir = c : e, in n; 
• the propagation of the crack: 

(3.54) 

(3.55) 

If the propagation is known, the velocity 11. is a solution of a non-classical 
problem of linear elasticity. Indeed, fl is not continuous on r and surface 
forces i v iD' ·!! are applied on r. 

The rate boundary value problem. The solution (~, i) satisfies the in­
equality 

IJ:F . (v - v) + 8~ (i - a) > o 00 - - IJl fJ - , 

among the set of kinematically admissible fields 

X:.A = { (fl,{J) I ll = 'Qd on Dnu, {3 EX:, [ 1dr + f3VxY = 0, on r }· 

Here :F is the functional given by 
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Proof. The proof follows immediately from the properties of the fields. 
The variation of the functional F is given by 

where 

6 f ~e : C : e dO = 6 f ~t : C : t dO + 6 f ~e:• : C : e:• dO, k ~ 4 
and then 

6 f ~e: c: e dO- f td.63l dS = f (- n.D-.6Q + n.u*.63l*) dS. 
k ~T k 

Taking into account the compatibility of the fields 

(3.56) 

the last term is rewritten as 

£ (- n.(o-- u*).61!* + 6! n.U.V:r!!) dS. (3.57) 

Substituting all the terms in the functional we obtain: 

6:F = t '!!·( -17 + u•) .611.* dS - t i !!· V :rO' .61!* dS + t 6! n.c7. V :r!! dS 

-t 6! '!!· V :rO' ·1!* dS + i6l t '!!· V :rO'. V :r!! dS, 

and finally for any variation we have 

6:F = £ ( '!!·( -6- + u*) - i '!!· V :rO') .611.* dS 

+ £ 6!( (n.c7 + i n.V:ru).V:r!!- n.Vzu.1J.•) dS. (3.58) 

In the last term we recognize (n.D- + i ll· V xD'). V xY. = n.u•. V xY.· The terms 
correspond respectively to the jump of the stress vector and to the propaga­
tion law. 
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3.7. Interaction of cracks 

For a body with many cracks, we can apply the same reasoning for each 
tip of crack, i = 1, ... , n. 

The rate boundary value problem for many cracks. The solution 

(~, ii) satisfies 

a:F . (v - v) + '""' a~ (f. - /3·) > o av - - ~ ati ' ' - , 
t 

among the set of admissible fields (K.A); moreover, the functional :F is 

:F(~, ii) = { ~E: c: E d!l- L { ii'!1·'V'iCT·'Q* dS 
. ~ i ~ 

K.A = { (il.,[!) I il. = 'Qd on anu, {!_ E K, [ il.]r + /3i'V'iY. = 0 on ri }, 

K = {f!.. I /3i ~ 0 if(Ji = Gc, /3i = 0 otherwise}. 

It is easy to prove in an analogous manner as previously that a solution 
of the inequality satisfies the set of the classical local equations given below: 

• the compatibility of the velocity 

e(~) = ~(Vil + V'Til) in !1, Q = 'Qd, on OOu 

[fdr + iiViY. = 0 on each ri, 
• the conservation of the momentum: 

divir = 0 inn, 

'J1.[ fr 1r + ji'!1·'tJiCT = 0 On each ri, 
• the constitutive law: ir = c : e(~) in n, 

• the propagation law: 

K = {[!_/ f3i ~ 0, if gi = Gc, /3i = 0 otherwise}, (3.59) 

'Vf!._ E K, L<ii - /3i) gi ~ 0. (3.60) 
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3.8. CASE OF HYPERELASTICITY 47 

These equations are classical equations of an elasticity problem with non­
classical boundary conditions along each r i. The solution v is a linear function 
of vd(S) and ii: 

By substitution of il in terms of the propagation of cracks we obtain a 
reduced functional F*(ii): 

The existence of a solution is ensured by the positivity condition: 

where 

/C = {~ I /3i = o,gi < Gc, /3i ~ 0, if gi = Gc}· 

The condition of uniqueness is given by 

~.B.~~o, 

'V~ E {~ I /3i = 0, gi < Gc, and /3i anything otherwise}, 

(3.62) 

(3.63) 

{3.64) 

The global formulation of the rate boundary value problem give us crite­
rion for study the stability and the uniqueness of crack growth. 

3.8. Case of hyperelasticity 

The case of propagation of cracks in non-linear mechanics is more com­
plex and only few results exist for specific classes of behaviour. The case 
of propagation of crack under antiplane shear have been studied by some 
authors for the class of Knowles and Sternberg materials: 

The shear curve is plotted in Fig. 3.5. 
Due to the presence of non-linearities the equations of motion have par­

ticular properties, which are summarized as follows: 
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t 

n=l 

FIGURE 3.5. Illustration of Knowles and Sternberg materials. 

• n > ! : Equations of motion are always elliptic, this ensures the pres­
ence of singularities near the crack tip. 

• n < ! : Equations of motion are elliptic before the maximum and are 
hyperbolic after. Near the crack tip this induces jumps of gradient of 
displacement. 

In the first case, the previous analysis is conserved, the existence of g is 
related to singularities. In the other cases the existence of jump of the gra­
dient of displacement determines a shock curve along where the dissipation 
is distributed (see Fig. 3.6}. 

y 

e 

H 

X 

•........... ··· 
Shock line 

FIGURE 3.6. Shock curve. 

In this case the expression of the dissipation in terms of the limit ( nx = 

11·~): 

(3.66} 
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must be reconsidered in the presence of discontinuities inside Vr: 

(3.67) 

Then we get 

Dm = f!"fs £ ( -'[!.tT. V z'!! + pwnz ) dS i ?_ 0. (3.68) 

Hence the energy release rate takes the form: 

(3.69) 

The dissipation is distributed along the shock curve and the singularities 
disappear. The process of dissipation has been changed. 

3.9. Case of dynamics 

For the dynamical case we use the notion of Hamiltonian. We decompose 
the volume 0 into 0 =Or u Vr; then the Hamiltonians of each domain are: 

Ho.r = { (P
2

2 

+ p(w + sT)) dO- { Td.y dS, lor P lao.T 

Hvr = { (p
2

2 

+ p(w + sT)) dO. 
lvr P 

Since the conservation of energy can be expressed by: 

iH- oH .iTd =- { q.ndS 
dt OTd dt- lao-- ' 

(3.70) 

(3.71) 

(3.72) 

we deduce a relation between variations of the Hamiltonian and power heat 
supply: 

aH. j 
al 

l = - lim q.n dS, 
r-o r-

(3.73) 

where the variation of the Hamiltonian is: 

BH· . { 1 2 • 
- ol l =- f~Jr ( -n.u.'YxY + 2P1l nx + pnz(w + sT)) dS l. (3.74) 

Consider now the entropy production: 

S = lim { ( -n.o'. 'V xY + !pQ2
nx + pnzw) dS i, (3. 75) 

r-olr T 
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then two different energy release rates are distinguished: one for heat source 
and one for entropy source: 

{3.76) 

{3.77) 

When strong discontinuities are present into the volume. Vr, the limit to 
the crack tip is replaced by the limit to the line of discontinuities. 

If we denote by f the mean value of f along the line S of discontinuities, 
we have the property 

1 2 ] -2[ll ls = [ll s·ll, 

and the conservation of the momentum implies 

[ u ] 5 .~ = m['Q] 5 , m = pivx. 

Taking into account the Hadamard relations along the line S, the jump of 
velocity is given by 

Finally we get 

1 2' - . 
[ -~.U.'Q + 2PVx'Ql] 5 = -~.u.[V'y]5 .~l. 

The velocity has disappeared, the relation is objective, and the two energy 
release rates take the following form: 

Gei = - f~ fr ( -!!.0' .Q + ~ P!?nxi + pnx( w + sT)i) dS, 

1 2. . 

G l
. . fr { -11:.U.'Q + ?.pnx'Q l + pnzwl) S 

8 =hm T d. r-s r 

(3.78) 

Assuming that the temperature is continuous along the line S we finally 
obtain: 

Ge = -ls{-!!,.it.[\ly]5 .~ + [p(w + sT)]s.!!·~ dS, 

G, = is (-,!!.it.[ V'Y.]s ·~ + [pw Is!!·~) dS. 
. {3.79) 

We can notice that for isothermal evolution only one energy release rate is 
needed. 
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Chapter 4 

Moving Discontinuities 

The propagation of moving surface inside a body is analysed within 
the framework of thermomechanical couplings, when the moving sur­

face is associated with an irreversible change of mechanical properties. 
The moving surface is a surface of heat sources and entropy produc­

tion, intensities of which are related to particular energy release rates 
defined in terms of Hamiltonian gradients. As example, we analyse 
the evolution of partial damage in a composite sphere. 

4.1. Introduction 

The propagation of damage has been usually studied in connection with 
fracture mechanics and different approaches based on macroscopic and mi­
croscopic descriptions of degradation of mechanical properties have been pro­
posed. 

During a loading history damage in continuum mechanics can be induced 
by the initiation and growth of micro-cracks and micro-cavities. These de­
scriptions, which are based on the evolution of the microscopic properties, 
propose to take into account the growth of pores or micro-cracks, through 
the idea that when some threshold value is reached, the material can not 
support further tensile loading. 

Variational formulations were performed to describe the evolution of 
the surface between the sound and damaged material (Bui et al. [1981); 

http://rcin.org.pl



52 4. MOVING DISCONTINUITIES 

Pradeilles-Duval and Stolz [1995]). In the framework of tbermom.echanical 
coupling, similarly to fracture mechanics the analysis defines two different 
energy release rates associated with the heat and entropy production (Stolz 
[1995); Stolz and Pradeilles-Duval [1996]). 

This Chapter is mostly concerned with the description of damage on 
the evolution of a moving interface along which mechanical transformation 
occurs. Some connections can be made with the notion of configurational 
forces, (Gurtin [1995); Maugin [1995); Truskinovsky [1987); Grinfeld [1980, 
1991]). 

4.2. General features 

The domain 0 is composed of two distinct volumes 01, 02 of two mate-
. rials with different mechanical characteristics. The contact between the two 
phases is perfect and the interface is denoted by r, (r = 801 n 802). The 
external surface an is decomposed in two parts anu and anT on which the 
displacement yd and the loading ~ are prescribed, respectively; 

The material 1 changes into material 2 along the interface r by an ir­
reversible process. Hence r moves with the normal velocity -~ - == 'l/J~t in the 
reference state, It is the outward normal to 02; then 4> is positive. 

When the surface r is moving, any mechanical quantity I can. experience 
a jump denoted by [I 1r = l1 - l2, and any volume average has a rate 
defined by 

d
d { I dO = { j dO - { (I 1r C.Jt dS 
t Jo(r) lo(r) lr 

(4.1) 

The state of the system is characterizeq by the displacement field y, from 
which the strain field e is derived. The other parameters are the temperature 
T and spatial distribution of the two phases given by the position of the 
boundary r. 

We analyse quasistatic evolution of r under given loading prescribed on 
the boundary an. 

The behaviour of the phase i is defined by the free energy density w;, 
function of the strain e and temperature T. The mass density p of the two 
phases is the same. The state equations of each phase are 

Ow; 
s=--

8'1'' 
(4.2) 
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where u is the reversible stress and s the entropy. If the materials have no 
viscosity then u is the stress satisfying the momentum equation. 

Assume now that the two phases are linear elastic materials. 

The two phases are linear elastic 

The potential energy £ of the structure !1 (Ot U !12) has the following 
form 

The potential energy plays the role of the global free energy in a thermo­
dynamical description; we can notice that the position of the interface r 
becomes an internal parameter for the global system. The characterization 
of an equilibrium state is given by the stationarity of the potential energy 

(4.3) 

for all «5y kinematically admissible field satisfying «5y = 0 over OOu. This 
formulation is equivalent to the set of local equations: 

• local constitutive relations: 

(4.4) 

• momentum equations: 

div 0' = 0, on n, [ 0' 1r·~ = 0 on r, u.n = Td on anT, (4.5) 

• compatibility relations: 

They are equations of a problem of heterogeneous elasticity. The solution 
is denoted by y 8ol' this field depends upon the quantities ( ud' Td' r). For an 
equilibrium state 

(4.7) 

This equation expresses the fact that the position of the interface r plays 
the role of internal parameters. 

At a given state of equilibrium, for a given value of the prescribed loading 
(yd, Td), the position of the interface r is known. At this time a variation of 
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s 

)=0 

FIGURE 4.1. Propagation of the interface. 

the loading is imposed, the mechanical quantities evolve and propagation of 
the interface can occur according to a given evolution law. For a prescribed 

history of the loading, we must determine the rate of all mechanical fields 
and the normal propagation ¢ to characterize the position of the interface r 
at each time. Along the interface r perfect bonding is preserved at each time. 
Let us introduce the notion of convected derivative. 

Convected derivation. The convected derivative V¢ of any function 

f( Xr, t) is 

V f l
. f(Xr + cPJ!.T, t + T)- f(Xr , t) 

¢ = liD . 
T-0 T 

(4.8) 

With this definition, we can express the transport of the normal vector 
at point~ 

(4.9) 

where ~1 , ~2 is a basis of the plane tangent to r at point ~· We can notice 
that the equation of the surfacer, S( X, t) = 0 satisfies immediately 

as . as 
V¢S= ax ·X+at=O, (4.10) 

which defines the normal velocity f of f: 

as as 
f=¢J!., J!.= axl II ax II , ( 4.11) 

and finally for any differentiable fields f the convected derivative takes the 
form 

(4.12) 
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Hadamard's relations 

On account of perfect bonding between the phases, the displacement and 
stress vectors are continuous along r. Their rates have discontinuities accord­
ing to the general compatibility conditions of Hadamard, rewritten in term 
of the convected derivative: 

• continuity of displacement 

• continuity of the stress vector 

[ u 1r·~ = 0 =>Vel>([ u lr·~) = [ ir 1r·~- divr([ u lr 4>) = 0. (4.14) 

The last equation is obtained by taking into account the equilibrium 
equation. Indeed, we have 

where 

Vel>[ U Jr = [ ir lr + l/J~.[ Vu lr·~· 

Using the conservation of momentum 

~.Vu.~ + ~.Vu.~ = 0, 

and the expression of the surface divergence given by 

divrF = div F- ~.VF.~, 

the required result is obtained. 

Orthogonality property for discontinuities 

Since the displacement is continuous along the interface: 

[Y)r = 0, => [VY)r·~ = 0, 

the discontinuities of the gradient must satisfy 

[ Vy)r = U(x) ® ~· 

Since the stress vector is continuous on r: 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

the discontinuities of u and of V y have the property of orthogonality as 
pointed out by Hill [1986]: 

[u]r: [VY]r = 0. (4.22) 
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4.3. Dissipation analysis 

The mass conservation leads to the continuity of the mass flux m = p<f>. 
The first and second laws of thermodynamics imply the local equations inside 
the volume and along the moving boundary r: 

pe = 0' : t - div ~' in n, 

0 = m[ e lr- ~.O'.[!dr + ~.[~]r, on r. 

(4.23) 

(4.24) 

Here e is the internal energy density ( e = w + T s), and ~ is the heat flux 
associated to the heat conduction. 

Due to Hadamard compatibility equations, the heat power supply is given 
in terms of the release rate of internal energy Qth as an objective quantity 
defined along r 

-~.[~]r = gth</>, with gth = P[ e lr - 0' : [ E lr· (4.25) 

The value of Qth is obtained considering the orthogonality condition on the 
discontinuities. When </> = 0 in the reference state the interface r does not 
move, and the normal heat flux is continuous. When the transformation 
occurs, the moving interface is a surface of heat sources intensities given 

by gth<l>· 
The total internal energy of the structure is equal to 

E(y,r, T,Td) = f p e d!l- f Td.y dS = E + f p sT d!l. (4.26) 
1 O.(r) 1 8fh 1 O.(f) 

For quasistatic evolution, the first law of thermodynamics is written as fol­
lows: 

d aE . d r 
dtE- 8Td.T =- 1ao~·'!1 dS. (4.27) 

Taking into account the momentum conservation we have 

aE. r r ar·r = 1r[~lr·~ dS =-1r Qth<l> dS. (4.28) 

Then the derivative of the total energy relatively to the position of the in­
terface determine the source of heat due to the irreversible process with the 
intensity is governed by the internal energy release rate: 

8E 
gth = -ar· (4.29) 
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The entropy production is given by 

{ . div q \lT f q 
Jn (ps + T-- 9:· T2) d!l + lr ( -m[ s lr- ~.[ T lr) dS;::: 0. (4.30) 

Under the assumption of separability of the two dissipations, the volume 
term is reduced to the conduction, whilst the term along the surface is then 

D = P[ w 1r- u: [ e lr A-= 9s A-> O 
r T \f' T\f'_' (4.31) 

where Q 8 is the release rate of free energy. 
This quantity has a form similar to the driving traction force acting on a 

surface of strain discontinuity proposed by Abeyaratne and Knowles [1990). 
The criteria governing the evolution of the interface may be written as func­
tion of this quantity. 

In a thermomechanical coupling, two different release rates must be dis­
tinguished. One, defined in terms of variation of the total internal energy, 
gives rise to the heat source associated with the moving surface; the second 
one implies the production of entropy. 

In the case of isothermal evolution the total dissipation is given in terms 
of the derivative of the potential energy relatively to the position of the 
interface 

ae . r ae ar .r = - Jr 9s¢ dS, or 9s(~) = - ar (~). (4.32) 

with 9s = p[w]r- u: [e]r· 
In this case, there is only one energy release rate characterizing the prop­

agation, it gives the sources of entropy production and the dissipation. 
These relations can be generalized to the dynamical case by replacing the 

internal energy of the system by its Hamiltonian.An extension to the case of 
running cracks, and to more general behaviour and structures is also possible 
(Stolz [1995), Stolz and Pradeilles-Duval [1996, 1997]). 

4.4. Quasistatic evolution 

In isothermal evolution, to describe the irreversibility we must specify 
complementary relations. An energy criterion is chosen as a generalized form 
of the well-known theory of Griffith. Then, we assume 

¢;::: 0, if 9s = Gc on r, or¢== 0, otherwise. (4.33) 
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This is a local energy criterion. At each equilibrium state, the interface· r is 
decomposed into two subsets where the propagation is either possible or not. 
Let us denote by r+ the subset of r where the critical value Gc is r~ed. 
The evolution of the interface is governed by the consistency condition. If at 
the geometrical point ~r(t) the criterion is reached: 

(4.34) 

then the derivative of Q8 following the moving surface vanishes 'D<~JQ8 = 0 . . 
This leads to the consistency condition written for all points belonging to r+ 

(4.35) 

otherwise <P = 0. 

Evaluation ofV<PQs 

Along the interface the displacement is continuous; then the velocities 
satisfy the Hadamard relation: 

(4.36) 

To calculate V<~JQ8 , we derive term by term, the first of them is the jump of 
the free energy 

Then we get 

V<PQ = V<P[ w 1r - V<Pu2 : [ Vy)r - u2 : [ V<P Vy)r 

= [ u Jr : (V!lt + </JVVy.~)- (&2 + <jJVu2.~) : [ Vy)r· (4.38) 

Hence, after rearrangement of terms we obtain 

(4.39) 

where 
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4.5. The rate boundary value problem 

The solution (!!, ~) must satisfy: 

• the constitutive law: ir = Ci : t in n, 

59 

• the strain-displacement relation: t = ~(Vll + VT !!) in fl, and the 
boundary condition: ll = lld on anu' 

• the conservation of the momentum: div ir = 0 in n, and ir .n = Td 

on OOT, 

• the compatibility conditions on the moving perfect interface: (Vq,ll]r 
= 0, (Vq,(u.~) 1r = 0, 

• the propagation law: 't//3 E /C, (/3- ¢)Vq,Q ~ 0. 

This system is now written in a global form. 

The rate boundary value problem. The evolution is determined by the 
functional 

The solution satisfies the inequality 

8F • 8F 
0 ~ Bll (ll - ll ) + 8¢ (/3 - ¢), (4.41) 

among the set JC.A of admissible fields (ll*, ¢*): 

JC.A = { (!!, ¢ I ll = lld on anu, [ ll]r + ¢(VY)r = 0, ¢ E JC }, (4.42) 

JC = {/3 1 f3 ~ o on r+, 13 = o otherwise}. ( 4.43) 

Proof. The variation of the functional is given by: 

6F = f e(ll): C: e(6ll) dfl- f i'd.6ll dS ln laoT 

-£ 04>[ tr lr : V~1 dS + lr </>0</>Gn dS -£ 4>[ tr lr : V0~1 dS. 

After integration by part we obtain: 
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8:F = r n.[ u.8Q]r dS + r (u.n- Td).8Q dS- r ¢[ 0' 1r : V'8Ql dS 
lr lanT lr 

-fr &,P[ rT lr : V'u1 dS + fr <I>"<PGn dS. 

Using now the compatibility conditions for the variation: 

we finally obtain: 

8:F = f (~.[ u 1r- divr(¢[ u 1r)).8Q1 dS + f (n.u- Td).8:Q dS 
lr lanT 

-fr &,P( [ rT lr : V' ll1 - &2 · [ V' 1! lr - <P G;.) dS. 

Hence, we recover the conservation of the momentum and the propagation 
law. 

Stability and bifurcation 

The discussion of the stability and bifurcation during an evolution process 

can be investigated as in Pradeilles-Duval and Stolz (1995]. 
Consider the velocity :Q, a solution of the rate boundary value problem 

for any given velocity ¢. The field :Q satisfies: 

d . . 0 . a2w ( ) . n 
IV u = ' u = p 8e8e : e :Q m .H., 

v = vd on an - - Ul 

and non-classical boundary conditions on r: 

Consider the value W of :F for this solution, i.e., for Q(¢, :Qd, Td): 

d ·d d ·d ·d W(¢, :Q, T) = :F(:Q(¢, Q ,T ),¢, T ). ( 4.45) 

The stability of the actual state is determined by the condition of the exis­
tence of a solution 

(4.46) 
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and the uniqueness and non-bifurcation is characterized by 

( 4.47) 

The functional W has a complicated form and can be written as follows: 

W = 1r 1r ~¢(s).B(s, s')¢(s1
) dS dS' -lr Q.¢(s) dS, ( 4.48) 

where B(s, s') is an integral operator. 

4.6. An example 

Consider a composite sphere with kernel and shell composed from linear 

elastic materials with different moduli , see Fig. 4.2. The sphere is submitted 

to an isotropic loading, the radial displacement is prescribed on its external 

boundary (r = Re)· 

FIGURE 4.2. The composite sphere. 

The solution of the elasticity problem is given considering a radial dis­
placement 

The imposed boundary conditions are: 

For a given history of E , the traction on the external surface is radial: 

On the interface r the energy release rate has the form 

9E2 

9(~ , E) = D 2(c) (~1 - ~2)(3~2 + 61-£1)(3~1 + 41-£1), 

( 4.49) 

( 4.50) 

( 4.51) 

( 4.52) 
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where 

4. MOVING DISCONTINUITIES 

R~ 
C - " - Ra· 

e 

The loading parameter E is increasing. Initially, the kernel does'nt evolve, 
the critical value Gc is not reached. At a certain instant the critical value 
is reached and the radius of the kernel increases. The actual value of R;, is 
determined by the implicit equation 

Q(R;,(t), E(t)) = Gc. (4.53) 

This is the consistency condition. 
If all the sphere. is not deformed, the decreasing of the loading ensures 

that Q(R;,(t), E(t)) < Gc, then the composite sphere behaves as elastic het­
erogeneous medium with new concentration c = R~ / R~. The global bulk 
modulus decreases with the deformation. 

With the given propagation law for the interface we have, successively, 

E<Ec, Q(R;,, E) < Gc, R;,(t) = R;,(O), 

E>Ec, Q(R;,(t), E(t)) = Gc, => R;,(t) < R, 
(4.54) 

E/r, Q(Re, E/r) = Gc, [4(T) = Re, 

E>E/r, R;,(t) = Re, 

and the response can be plotted as in Fig. 4.3. 

T 

E 

FIGURE 4.3. The response of the composite sphere. 
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4. 7. Dissipation analysis in dynamical case 

Now we take into account the inertia effects. Thus the two thermody­
namical principles must be rewritten. The mass conservation leads to the 
continuity of the mass flux m = {X/>, where p denotes the mass density. The 
first and second laws of thermodynamics lead to local equations in the volume 
and on the moving surfacer: 

pe = (T: i- div q, inn, 

v2 
0 = m[ e + 2 lr- ~.[ t:T.:Q]r + ~.[qlr on r. 

Then taking into account the conservation of the momentum and the conti­
nuity of the displacement: 

(4.55) 

we obtain the heat power supply defined by the internal energy release rate 

9th (u = ~(u1 + u2)): 

-~.[9_]r =9th</>, 9th= p[e]r- ~.u.[VY]r·~· 

The Hamiltonian of the structure is the sum of the kinetic energy and the 
total internal energy; the potential energy is defined as above: 

1£ =In ~1!.2/p dfl +E +In psT dfl (4.56) 

The momentum conservation is then given by the set of equations: 

: • 61!. = In 1!.·61!. dfl, (4.57) 

8'H d1 ~ o«5y= --d p.«5yd0, 
vy t o-

(4.58) 

where l!. is the momentum. These equations lead to the classical equation of 
motion. The first law of thermodynamics is rewritten as follows: 

d'H. 8'H . d { 
dt- 8I'd.T = Joo. -q.n dS. (4.59) 

Now taking into account the momentum conservation, we have 

(4.60) 
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The second law has the same form as previously. The interface is perfect 
at each time. Under the assumption of separability of the two dissipations 

the volume term is reduced to the conduction whilst the surface term is then: 

Dr = ?.;. ¢ where 9s has also the form of the energy release rate: 

(4.61) 

In case of a thermomechanical coupling, two different release rates must be 
distinguished; one defined in terms of variation of the Hamiltonian leads to 

the heat source associated with the moving surface whilst the second one 
describes the production of entropy. 

In the case of isothermal evolution, we can define another Hamiltonian 

( 4.62) 

and the total dissipation is then given by: 

( 4.63) 

4.8. Connection with fracture 

In this section we briefly investigate some connections with fracture. 

Consider a crack in mode III in an infinite medium. The displacement 
has the form 

1f. = W (X, y) ~z , 

and the stress field is 

Consider now that the crack is a layer of depth h with a continuous 
boundary in which the criterion g = Gc is reached. The applied loading are 
the stresses obtained by asymptotic expansion in mode III, at infinity. That 

is a matching condition between the classical crack and the quasicrack. 

The solution exists and we found that r is a cycloid (H.D. Bui [1978]). 
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FIGURE 4.4. A quasicrack. 

If we compare the dissipation obtained by classical fracture mechanics for 

a steel and the dissipation obtained by damage modelisation, the depth of 
the damaged zone can be evaluated as follows: 

(4.64) 

This value is evaluated by assuming that the critical value Gc is the elastic 

energy at a strain of the order of percent and Kc has the value typical for 

classical steel. 
More general results are given by Bui and Ehrlacher [1980]. 
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Chapter 5 

Delamination of laminates 

We propose another application of moving surfaces. The previous 
description depends on only two poten~ials, where the first is the free 
energy and the second the potential of dissipation. The change of 
mechanical characteristics along moving front is used for the study of 
degradation of laminates. The propagation of delamination front is 
analysed when the laminate is considered as an BSSemblage of beams 
or plates. 

5.1. Introduction 

To study the delamination of laminates we assume that a sound laminate 
(domain 0) with known characteristics is transformed into two laminates ( 1 
and 2), separated by the crack of delamination as shown in Fig. 5.1. The lam­
inate i (i = 0, 2) is described by an homogeneous plate or by an homogeneous 
beam. 

FIGURE 5:L Dela.mina;tion of a plate. 

One has to choose, at different scales ~r levels, kinematical properties 
for describing the system. The kinematic modelling of beams and plates 
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r r 

FIGURE 5.2. Modelisation with beams. 

has a great influence on the behaviour of the delamination as well as on the 
modelling of the continuity relations of displacements along the delamination 
front , thus inducing specific value for the energy release rate. 

The choice of the free energy allows us to study different regime of trans­
formation by taking into account particular non-linearities. We can describe 
delamination within the framework of small strain or finite strain and then 
we can study the interaction between buckling and delamination. 

5.2. The kinematic of the plates 

The motion of a material point of the plate is described by the motion of 
the middle surface and by the rotation of the section. 

A point of the middle surface S has curvilinear coordinates ( x 1 , x2). The 
normal to this surface is denoted by ~. A point on this normal vector is 
referred to the coordinate X3. We consider a kinematical description defined 

e 
a Y 

FIGURE 5.3. Kinematics of plates. 
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by a function of position on the surface and coordinate along the normal at 
this point. 

The displacement of the point (x1, x2, x3) is defined by: 

where y is the plane displacement, w is the normal displacement and(} is the 
local rotation of the normal vector of the middle surface. With these fields, 
the strain inside the plate has the following form: 

(5.2) 

where the distortion is defined by 

1= Vw-fl., (5.3) 

and the local rotation has the form 

(5.4) 

We observe that the membrane strain e(y) satisfies 

(5.5) 

The free energy 

The free energy of the plate is chosen naturally as a function of the 
generalized strains: 

W = W(e(y), "'' 1)· (5.6) 

The generalized stresses associated to the generalized strains are given by 
the local state equations: 

N=aw 
oe' 

The assemblage of beams or plates 

It is useful to introduce global notations: 

• the set of generalized parameters Qi: 

Q=aw 
- {}y_. (5.7) 

(5.8) 
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• the associated generalized strains: 

V qi = (V lfi, \lwi, \l~i), 

The free energy takes the form: 

from which the generalized stresses are derived: 

Kinematical aspects of assemblage 

T· _ oFi 
::...&- oq.· _, 

(5.9) 

(5.10) 

(5.11) 

Along the front, the section of the sound plate (i = 0) imposes its motion 
to the two others plates ( i = 1, 2): 

~i=~. 

(5.12) 

(5.13) 

(5.14) 

These continuity conditions are easily rewritten by using the set of general­
ized parameters: 

qi = zi·9.o, ~ e r. (5.15) 

Then the associated Hadamard condition takes the form: 

(5.16) 

Therefore, the derivation of the continuity relations with respect to tangent 
vector I. yields: 

Hence, in terms of generalized relations we have . 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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5.3. Conservation of the momentum 

By using the method of the virtual power the equilibrium equations are 
derived. We assume that the power of internal state of stresses for each plate 
is defined by 

'P;(Jl•) =-Is, N;: e(yZ) + M;: KJ(~) + Q;.(Vwj- ~) dS. (5.21) 

The external forces are reduced to given quantities acting on external middle 
surface: 

Pe = f (T.y* + T3w* + C.D_*) dS. las 
The equilibrium state satisfies the set of field equations: 

O=divN, 

0 = div Mi + Qi, 

0 = divQi, 

and the boundary conditions on as 

N 0 .'f1 = T, Mo.n=C, 

(5.22) 

{5.23) 

{5.24) 

(5.25) 

{5.26) 

The virtual velocity field are chosen such as the continuity relations are 
satisfied. Consequently the continuity conditions on the stress vector on r 
are obtained in the form: 

0 = (N1 + N 2
- N 0 ).!!, 

0 = {M1 + h1N1 + M 2 + h2N2
- Mo)·!!, 

0 = ( Ql + Q2 - Q ) ·!! . 
- - ....:.0 

Characterization of equilibrium 

The state of equilibrium in terms of general field ~ satisfies: 

• the state equations associated with the free energy: 

aFi oFi w = Fi( q., v q.), tTi = av , L = 8 , (5.27) _, _, q_i q_i 

• the continuity of displacement along the front: 

{5.28) 
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• the equilibrium equation: 

0 BFi d' i T d' S =a- lVU =-i- lVUiOn i, 
q_i 

(5.29) 

0 = ~.(- L ui.li + Uo) = ~.[lullr on r, (5.30) 
i=1,2 

(5.31) 

Here the tractions Td are imposed on · 8Sr and q_ = q_d on the comple­
mentary part 8Sq. 

We have introduced the useful notation [lfllr = fo - L:i=l,2 fili. 
The solution of the problem of equilibrium is obtained also by searching 

stationary points of the potential energy e. Consider the potential energy of 
the system: 

£(~) = L f Fi dS- f Td.q_ ds, 
i=o,2 1 si 1 asT 

(5.32) 

defined for any kinematically admissible fields ~: 

~ E 1\:.A. = { ~· I q_* = q_d on 8Sq, q_; = li. q; on r}. 

A kinematically admissible variation 8 q_ satisfies: 

8 q_ = 0 on 8Sq, 8 q_i = li.8 ~ on r. 

Then the variation of the potential energy takes the form: 

8£ _ "' 1 8Fi 8Fi i rnt~. a- . 8 q_ = ~ a·8 q_i + 8V : 8V q_i dS- .!.- .8 q_ ds. 
q i=0,2 si q_i q_i asT 

(5.34) 

Using the global notation and taking account the definitions of u and T we 
write: 

:e_ · 5~ = L f (T;.5q. + <7;: 5V q.) dS- f Td.5 ~ ds. (~.35) 
q_ i=o,2 1 si 1 asT 

Integrating by parts, the condition of stationarity 
8
8

&_ · 8 q = 0 yields: 
q_ -

0 = L f (-divui + Ti).8~ dS + f 1!·Ui.8~ ds- f ~.8q ds. 
i=o,2 1 si 1 asi 1 asT ., 

Taking into account the admissibility of 8 q_, the equilibrium conditions are 
recovered. 

http://rcin.org.pl



5.4. DISSIPATION ANALYSIS 73 

5.4. Dissipation analysis 

The dissipation is given by the balance of the power of external loading 
and the reversible stored energy: 

The definition of the energy release rate is recovered 

r ae. 
Dm = Jr Q¢ dS =-ar·r ~ 0, 

where the thermodynamical force g is the field: 

ae 
Q(s) =- ar(s). 

The free energy release rate is expressed locally as: 

(5.37) 

(5.38) 

Q = Fo- J!..Uo.V 9.o·!!.- L (.Fi- J!..ui.V 2:cJ!.). (5.39) 
i=1,2 

By using the continuity conditions, the following expression is obtained: 

i=1,2 

Propagation law 

A normality rule is considered. The propagation law is an extension of 
Griffith's law: 

{ 
Q(s,t) < Gc, ¢ = 0, 

Q(s,t) = Gc, ¢ ~ 0. 
(5.41) 

The propagation is possible when the critical value is reached. The solution 
of the normal propagation of delamination is defined on the set: 

K = {¢* I ¢*(s) ~ 0, if Q(s) = Gc, ¢* = 0, otherwise}. (5.42) 

5.5. The rate boundary value problem 

The rate boundary value problem is written in terms of rate of displace­
ment! and normal propagation¢. The solution (q, ¢) of the rate boundary 
value problem satisfies: 
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• the constitutive law: 

Q2Fi . Q2Fi v· s 
D-i = oq_oV q_. t + 8V qoV q. lJ.i on i, (5.43) 

• the compatibility relations for the velocity along the front r: 

t + l/JV lJ.i·l! = li.(i, + l/JV 9.o-~), i = 1 or i = 2, (5.44) 

• the compatibility relations for the stress vector on r: 

Vq,(~.( E tTi.li- t70 )) = Vq,(~.[ltTIJr) = 0, (5.45) 
i=1,2 

• the propagation law on r: 

The effective expression of the consistency condition gives a relation between 
the rate of the displacement and the velocity of propagation. 

Derivation of the energy release rote 

By using the definition of the convective derivation, we determine succes­
sively the contribution of each term of Vq,g: 

• for the free energy: 

Vq,Fi = !loVFi : (V q. + l/JVV q .. ~) + ~Fi .(qi + l/JV q .. ~) v q. _, _, vq. . ~ _, ~ 

= tTi: (V q. + l/JVV q .. ~) + ~Fi .( q. + l/JV q .. ~), (5.47) _, ~ vq. _, ~ 

~ 

• for the stresses: 
(5.48) 

• for the normal vector: 

Vq,~ = -Vl/J.~ ~· (5.49) 

The boundary conditions on the stress vector is evaluated as 

i=l,2 i=1,2 i=l,2 
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Finally we get 

Then, using the equilibrium equations on the surface, the variation of g is 
given by: 

i=l,2 

Hence 

vl/Jg = (ID'I]r : 'D4J(V ~)+[I Tl)r :'DiP~+ L 'DifJ(D',).(V q,, -l,.V ~) 
i=l,2 

and 

Gn = -[ID'I]r : VV ~-!!.- [I Tl]r : V ~-!!. + L (VD',.!!_).(V q,, -li. ~). 
i=l,2 

5.6. The variational formulation 

Consider the potential F{ ~, t/J) depending on the rate quantities: 

-£ ( (luiJr : Vi, - (I TIJr : i, )ct> dS + £ ~¢2Gn dS 

- f Td.q ds. 
las -

Then the solution of the rate boundary value problem is characterized by the 
following property: · '· 
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The rate boundary value problem. The solution of the rote boundary 
value problem (~, ~) E K:.A is a solution of the variational inequality 

aJ= - - aJ= - -
~.(q- q*) + -- .(¢- ¢*) ?_ 0, 
aq_ - - a¢ 

among the set (q*, ~*) E K:.A. 

K:.A. = { (q, ~) I ~i + ¢V 9.c~ = li·(9.o + ¢V 9.o·~) on r, 

9.o = q_d on as, ¢ E K:}. 

(5.51) 

Proof. The variations 8 q., 8 q , 8~ are constrained by the Hadamard re-
. _, ~ 

lations on f: 

8 q_i + 8¢\l q_i.~ = li.(8 9.o + 8¢\l 9.o·~). (5.52) 

The variation of J= is given by 

aJ= - aJ= -
8J= = -- . 8 q + --=- . 8¢. 

a~ - a¢ 

Then we obtain 

Let us introduce the notation: 

. EPFi . EPFi n· 
D'i=a a""' .q.+a""' a""' .vq., q. v q. _, v q. v q. _, 

~ _, _, _, 
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Then the variation of F are rewritten as follows: 

~:F = L 1 ( T;.Oqi + tT;.'i702;) dS 
i=0,2 si 

- [ 4> [I Tl]r8 q dS- [ 4> [lullr : '\18 q dS- [ Td.8 9: dS lr ~ lr ~ lasT 

-fr 01/>([laiJr : 'i7 !L, + [I LIJr !L, - </>Gn) dS. 

Using now the Hadamard relations and integration by part, we obtain: 

O:F = L 1 (-clivtT; + 1';).02; dS 
i=1,2 s 

+ f ( L ~.tT;.Oq;- ~.a •. oi,) dS -fr 4> [ITilrOi, dS 
lr i=t,2 r 

- f 4> [luiJr: V8q dS- { Td.8q dS 
lr ~ lasT 

-fr 04>( [laiJr : 'i7 !L, + [I TIJr· !L,- </>Gn) dS. 

Finally, we recover: 

• the equations of equilibrium in each beam: 

-divui + t = 0, (5.53) 

• the boundary conditions on the interface: 

-~.[lullr + divr([lul1r4>) - [I TIJr4> = 0, (5.54) 

• the expression for Vq,Q: 

'Dq,Q = [luiJr : Vi,+ [I TIJr i, -4>Gn + L Ui : ('V ~ -li· 'V t,)· (5.55) 
i=1,2 

This framework can be extended to alternative models of beams or plates 
and to dynamics using kinetic energy and hamiltonian formalism (Stolz 
[1995]). 
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Chapter 6 

A thermodynamical approach 
to contact wear 

Wear phenomena due to contact and relative motion between two 
solids depend on the loading conditions and material mechanical 
properties. Friction between contacting bodies induces damage of 
materials, producing surface and subsurface cracks. Particles are de­
tached from sound solids when some local criteria are satisfied at 
the boundary. Wear leads to geometrical changes and modification of 
contact conditions. Wear debris induce a specific layer with partic­
ular properties. Then the interface between the bodies is a complex 
medium made of detached particles, eventually a lubricant Buid, and 
damaged zones. We propose to describe the evolution of the interface 
using the framework developed before for inducing the general form 
of a wear-law. 

6.1. Introduction 

The system consists of two sliding contacting bodies Ot, 02 separated by 
a contact interface Oa. We assume the properties of Oa are known, and we 

attempt to characterize the behaviour and evolution of the interface, taking 
into account modelisation of wear phenomenon. Such an interface 0 3 must 
be considered at a macroscopic level as an homogeneous body obtained by 
some averaging process through the thickness H of 0 3. This thickness is so 
small compared to the size of the contact zone and tribological system that 
the condition of homogeneity is acceptable. 
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FIGURE 6.1. Macroscopic description of contact. 

6.2. The energy approach 

The behaviour of each zone is defined through the free energy Wi and 
dissipation potential. As a result of wear, the boundary ri moves. Along each 
front ri, the normal !!.i is oriented toward the sound solid. We denote by ¢i!!.i 
the normal velocity of the surface ri. Along these boundaries, mechanical 
quantities with jump ( f] r . = Jt- fi-. By expressing the conservation laws in 

' ni and across each r i, we get a set of local equations for the characterisation 
of the rate quantities: 

• mass conservation 

{~n ri, mi = Pi</Ji!!.i, 

In ni, Pi+ div Pi'll. = 0, 
(6.1) 

FIGURE 6.2. The moving boundaries and the interface medium. 
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• momentum conservation 

(6.2) 

• energy balance equation 

{ ~n r;, :~w +. sT)r, - ~<T.[!dr, + ~·[~Jr, = 0, (6.3) 

In nt, pe- u. e(Q.)- dlv 2:· 

• continuity of the displacement along each r i 

6.3. The dissipation 

The internal entropy production is positive and is decomposed in three 
contributions: 

• the volume thermal conduction 

VT 
Dth = -2:· T 2 , 

• the volume term due to intrinsic mechanical irreversibility 

Dm = ~ ( u : grad Q. - p( w + sT)), 

• the surface term due to mechanical discontinuities 

(6.5) 

(6.6) 

(6.7) 

We observe that if the mass flux mi is zero, the velocity ¢i is zero too. 
Then the velocity jump verifying the Hadamard relation is zero, and no 
dissipation on ri occurs. Thus the dissipation Dr is a characteristic feature 
of loss of matter and consequently of the phenomenon of wear. 

Description of the interface 

The interface f23 is described by its middle surface r with the equation 
S(X, t) = 0, normal vector n(X, t) and thickness H(X, t) = 2h(X, t). 

The two boundaries r 13, r 23 are then defined by 

x1 = x + h(X, t)n, x2 = x - h(X, t)n. (6.8) 
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Denoting ¢ the velocity of r, it is obvious that 

(6.9) 

The continuity of the displacement is then rewritten as 

(y(X ± h(X, t)n, t) Jr . = 0. 
' 

(6.10) 

The dissipation by unit area of r is then equal to 

Dm = Dr13il + Dr23h + i d.n j(z) dz, (6.11) 

where Jl = j(h), j2 = j( -h), j(z) = det( I- zb) and b is the curvature 
tensor. 

FIGURE 6.3. The mesoscopic description. 

Interpretation 

The contributions to the dissipation have different nature. The dissipation 
on the interface f 13, f23 are characteristics of the loss of sound material. The 
last term in ( 6.11) is the dissipation due to the irreversibility inside the 
interface. For example, if n3 is a viscous fluid, this term is due to the shear 
stresses, and consequently we have the possibility to describe some resistance 
to slip. The term 

Da = 1 d.n j ( z) dz = i ( u : e - W) j ( z) dz, (6.12) 

describes the friction associated with the relative motion of solids. 
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For a given mechanical behaviour of the interface, the resolution of the 
evolution equation must be completed by evolution laws allowing to deter­

mine the propagation of the damage material. For example, we may consider 
the Griffith criterion: 

{

Q(X, t) < Gc, c/> = 0, 

Q(X, t) = Gc, 4> ~ 0. 
(6.13) 

Main difficulty consists in choosing an appropriate modelisation to describe 
the behaviour in the interface and a procedure for its identification. 

6.4. An example 

Consider now an example of such a behaviour, to emphasize the possibility 
of the combined description of the friction as well as the wear phenomena. 

Consider a rigid punch 0 1 moving on an elastic half-plane. The interface is 
composed of a viscous fluid with particles in suspension, the global behaviour 

of this fluid is defined by the bulk modulus K. and viscous modulus"' which 
are functions of the concentration of particles. This particular case has been 

studied by M. Dragon-Louiset [2002) using integral equations. 

FIGURE 6.4. Moving punch on the elastic half-space. 

We assume that the shear is essentially due to the viscosity and the elastic 
behaviour has only uniaxial effect in the direction ~y. The motion inside 03 
is approximated by a linear profile 'Jor the velocity and displacement with 

respect to the normal coordinate of the middle surface S; then e is associated 
with the jump of the velocity. 

The constitutive law inside 03 is given by: 

(6.14) 
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These expressions are compatible with experimental observations. We are 
now interested in the steady-state solution, then 

(6.15) 

The half-plane is linear elastic; the displacement on the interface r2a is 
given by solving the Galin's equations: 

11a O'xy(s) 
co1 Ux,x(x) = C02 u1111 (x) + Vp- -- ds, 

1r -a S- X 

1 la 0' 1111 ( S) 
co1 Uy,x(x) = -002 O'xy(x) + Vp- -- ds, 

1r -a S- X 

where the coefficients are: 

E 
col = 2{1- v2)' 

(1- 2v) 
002 = 2(1- v)' 

(6.16) 

(6.17) 

(6.18) 

As usual, E is the Young modulus, v the Poisson ratio, and V p f denotes the 
principal value of f in the sense of Cauchy. 

The solution is found by the method of perturbation, using an asymptotic 
expansion with respect to the concentration c of particles. Finally we get the 
following results: 

• at the 0 order, the Hertz contact solution is recovered, 

• at the first order, a dependance on the concentration is obtained. Ob­
viously, this dependance is influenced by the criterion of wear. For sake 
of simplicity, a linear law is chosen: 4> = .Xu~. 

Due to the presence of viscous fluid, the maximum pressure under the 
punch is not at the center of the contact area, as in the case of contact 
with friction, (Bui et al. [1970)). This example shows the pertinence of the 
modelisation and possibility to study the problem of thin layer interface for 
describing the interaction between wear and friction. 

FIGURE 6.5. Pressure in the contact area. 
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Global approach to the interface 

With the same hypotheses, we take the average value of the free energy 
to define the global free energy of the interface for the unit of contact area: 

'l/Js(Y1 d!2, o:) = _!._ f p(x, z)w3(e(x + zn), o:)dz, 
PS jH 

where the mass density is defined by: 

PS = Lp(x,z)dz. 

In the same way, we can define the potential of dissipation 

Ds(ll1dl2, a)= _!._ f p(x, z)d3(e(x + zn), a)dz. 
PSJH 

{6.19) 

{6.20) 

{6.21) 

As pointed out, the equilibrium on the interface is defined by the equations 
obtained by variations of the potential energy with respect to the fields lh, y 2 . 

Then we obtain: 
81/Js 8Ds 

u ·11i = Ps( £l... + -8 ). 
vu· V· _, _, {6.22) 

This result suggests a more general study of the behaviour of the interface 
by asymptotic expansion of the displacement: 

(6.23) 

with respect to the normal coordinate inside the interface 0 3. Then spe­
cific functions for the constitutive behaviour should be deduced in a similar 
manner. 
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Chapter 7 

On relationships between 
micro-macro quantities 

This Chapter is concerned with the description of the general re­
lationships between microscopic and macroscopic mechanical quan­
tities in non-linear mechanics. Many studies havedealt with rela­
tions between mechanical average quantities as stresses or strains in 
small or finite transformation Hill {1972}, Mandel {1964, 1980}, and 
Rice {1971, 1975}. 
Our purpose is to reformulate these relations in the framework of a 

thermodynamical point of view as proposed by Germain et al. {1983}. 
Some extensions of classical relations to non-linear mechanics are 
proposed. 
To determine the overall behaviour of a body, whose local properties 
are known, we must solve a complicated boundary value problem. 
The thermodynamical point of view is used to determine the partition 
between reversibility and irreversibility of the global response. 

7.1. Introduction 

Consider a small volume element; two scales are distinguished in this vol­
ume. The microscopic one, where the properties vary from point to point as in 
a highly heterogeneous body, and the macroscopic one, where the properties 
are those of a homogeneous continuum. 
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In order to determine the overall behaviour with accuracy, it is essential 
to define the so-called representative volume element (RVE), which must be 
small enough to allow us to distinguish the microscopic heterogeneities and 
sufficiently large to be representative for the overall behaviour. The scale of 
the RVE is chosen with respect to the scale of the heterogeneities and their 
interactions. A discussion can be found in Drugan and Willis (1996] how to 
specify the condition of the existence of such a RVE. 

The local behaviour is determined by two thermodynamical potentials: 
the local free energy w to define the equilibrium state and reversibility, and 
the potential of dissipation d which governs the evolution of the irreversibility. 

To characterize the overall behaviour in the thermodynamical sense, it is 
only necessary to know the corresponding two macroscopic potentials (macro­
scopic free energy W and macroscopic potential of dissipation D). 

The macroscopic free energy W is related to the equilibrium state and 
the reversible part of the evolution; the potential of dissipation characterizes 
the irreversibility. 

For sake of simplicity, we consider only isothermal processes or in a more 
general case we assume that the variation of temperature T in the RVE is 
uniform. This condition is a necessary condition to determine the global free 
energy W of the body, because this quantity is defined only for a thermody­
namical state of equilibrium. The thermodynamical state of equilibrium is a 
mechanical equilibrium under uniform temperature. 

When the two potentials are determined, the quasistatic evolution of the 
system can be studied. 

We propose to establish the relations between potentials at the microlevel 
and at the macro one, and to characterize some macroscopic state variables. 
Denoting the volume of the RVE by n, with any microscopic quantity f, we 
can associate its macroscopic value F by an averaging process on the RVE: 

(7.1) 

In this way a unique macrostate quantity is defined for each microstate. 
The macroscopic free energy at a given state is the total free energy at an 
equilibrium state, given by the solution of boundary value problem, with 
particular boundary conditions. To be efficient, these conditions must verify 
some properties, summarized in the concept of concentration process or lo­
calization process (Francfort et al. [1983]; Germain et al. (1983], Stolz [1995]). 
This concentration process is defined as a specific boundary value problem. 

http://rcin.org.pl



7.2. MODE AND PROCESS OF LOCALIZATION 89 

In particular, the bonding conditions between phases are taken into account. 
The interface between phases is assumed to be perfect. 

We analyse successively the mode of localization in the case of small per­
turbations and present applications to linear thermoelasticity, plasticity and 
partially damaged materials as defined in Pradeilles-Duval and Stolz (1995). 

7 .2. Mode and process of localization 

The mode of localization is defined by suitable boundary conditions and 
properties for the characterization of the bonding between phases. 

We denote by n the unit normal to the boundary an of n and we assume 
that an= anTuanu where anT and anu are disjoint parts of an, on which 
the stress vector and the displacement vector are prescribed, respectively. 
The boundary conditions on an must be chosen such that all equations of 
continuum mechanics are verified in a compatible manner with the averaging 
process. The local stresses u satisfy: 

• the equations of equilibrium 

divu = 0 inn, (7.2) 

• the boundary condition 

(7.3) 

In the heterogeneous media the interface between phases is perfect, so that 
the stress vector is continuous along each interface r: 

[u)r-n=Oonr. (7.4) 

All stress fields u satisfying these conditions will be called statically admis­
sible (S.A.) with E =< u > in the mode of localization. The boundary 
conditions must be compatible with the averaging process 

E = <.,. > = ~ foo {<T.!! ® x} 8 dS. (7.5) 

The local displacement y satisfies the boundary conditions y = Ud 
on anu. The strain e associated with this displacement is defined by 

(7.6) 
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inn, and the macroscopic strain is then deduced to be given by 

E = < e > = ~ jflfl. (Y. ® n + n ® y) dS. 

The displacement is continuous along all interfaces between phases 

[Y]r = 0 on r. 

(7.7) 

(7.8) 

All strain fields e satisfying these conditions will be said to be kinematically 
admissible (K.A.) with E in the mode of localization. 

Finally, the boundary conditions (Td, Ud) must satisfy the hypothesis of 
macrohomogeneity in the sense of Hill-Mandel: for any stress field u* S.A. 
with E* = < u* > in the mode and any field e' K.A. with E' = < e' '> in 
the mode, we have: 

E* : E' = < u* : e' > . (7.9) 

Since the local constitutive law is known, we can study the evolution of the 
system for a given history of the prescribed boundary conditions. However, 
the determination of the macroscopic behaviour requires that the process of 
localization, defined by the mode of localization and local constitutive law, 
ensures existence and uniqueness of the microscopic fields. In such a case 
we can deduce the form of the macroscopic constitutive law in the following 
way. For given macroscopic quantities we solve the boundary value problem 
associated with the process of localization and then the local fields are deter­
mined. Finally, using the averaging process we find the unknown macroscopic 
quantities. 

There exist three particular well-known modes of localization for which 
the boundary conditions, the average process and the Hill-Mandel conditions 
are simultaneously verified. The first one is the concentration process under 
macrohomogeneous stresses Id = E.n on an, where E is a second order 
symmetric tensor. Then for all u* S.A. in the mode, E* must be equal to E. 
The displacement y' is close to U' = E' .x on an 

f (y' - U') ® n dS = 0. 
lao. 

(7.10) 

This is obtained by taking u* = E in the Hill-Mandel condition, and then 
we have E' = < e(y') >. . 

Secondly, the concentration process under macrohomogeneous · strain 
Ud = E .x on an can be chosen. All kinematical fields y' verify automat­
ically the average condition on strains E = < e(y') >, and for any statically 
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admissible field u* we obtain from the macrohomogenous condition the av­
erage condition on stresses: E* = < u* >. 

The third mode is the periodic description. The RVE is reduced to the 
geometry of the elementary cell. 

The traction T = u ·ll are opposite on opposite sides of an, and the dis­
placement is defined as y = E.~+ Q, where !l. is a periodic field, on 8flu. The 
average condition on stresses is due the equilibrium equation, the average 
condition on strains is deduced by the compatibility of the local strain, and 
the Hill-Mandel macrohomogeneous condition is deduced from the periodic­
ity (Sanchez-Palencia [1980), Suquet [1982, 1987]). 

7 .3. Potentials and general properties 

The local behaviour is defined by the local free energy w(e, a, r), where 
e is the strain, a represents a set of internal variables and T is the variation 
of temperature. The state equations are given by 

aw aw aw 
u R = ae ' A = - aa' s = - {h . (7.11) 

u R is the reversible stress, A is the thermodynamical force associated with 
the evolution of a and s is the entropy. The Clausius-Duhem inequality of 
entropy production is reduced to 

D = u: e- (w +sf)~ 0, (7.12) 

where the stresses u are in equilibrium inside the body. Then 

D = (u- uR): e +A a~ o. (7.13) 

We have two sources of dissipation, one due to viscosity with the thermody­
namical force Uir = u- lTR, another one is associated with the evolution of 
internal variables. 

To solve the problem of evolution, we assume that a complementary law 
is given in the form of a potential of dissipation d( e' a)' which is a convex 
function of its arguments; the thermodynamical forces (uir, A) satisfy the 
normality rule: 

(uir, A) E 8d(e, a), 
where the set 8d( e' a) is defined by the property: 

1,./(. * . *) v e ,a , d(e, a)+ uir : (e*- e)+ A (a* -a) $ d(e*, a*) 

(7.14) 

(7.15) 
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We assume henceforth that the local behaviour has no viscosity, then u ir 

vanishes and the reversible stress verifies the conservation of momentum. 

The boundary value problem 

We prescribe a macroscopic strain E and a uniform variation of temper­
ature T for a given distribution of internal parameters a. We denote by .g the 
field of internal parameters. We must find the local fields y, u as functions 
of E and a by solving the boundary value problem: 

• the local stresses are statically admissible 

divu = 0, O'.fi =~on lJflT, (7.16) 

• the strain e is kinematically admissible in the mode: 

(7.17) 

• the internal interfaces are perfect, the stress vector and displacement 
are continuous: 

• the stress and strain are related by the constitutive law 

The global free energy 

8w 
u = -

8 
(e(u), a, r). 

€ -

The macroscopic free energy W is defined by 

W(E, a, r) = < w(e(y), a, r) >, 

(7.18) 

(7.19) 

(7.20) 

where y is the solution of the boundary value problem of localization, a 
and r being given at the equilibrium state. Then, from the Hill-Mandel 
macrohomogeneity condition we deduce the macroequation of state: 

aw 8w ae {}q {}q ' 
8E = < 8e : 8E > = < u : (I + 8E) > = < u > :< (I + 8E) > . (7·21 ) 

Noting that e is written as E + 'IJ, with '11 being a kinematically admissible 

strain such that < '11 >, then we have : = 0 and hence the macroscopic 

stress u is related to the macroscopic strain by the state equation 

aw 
-=<u>=E. 
8E 

(7.22) 
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The macrostress at equilibrium is defined in the same way as the microstress, 
owing to the definition of the macroscopic thermodynamical potential W. For 
a perturbation of temperature 8r, the variation of energy is 

aw aw 
-

07 
8r = - < 8r 8r > = < s > 8r = S 8r. (7.23) 

Then the global entropy S, the average of the local one, is related to the 
variation of the global free energy similarly to the micro level. 

The other state equations are expressed as follows: 

raw aw 
A • 8g = - Jn oa 8a dn = - og • 8g. (7.24) 

The internal state in a global description for the system is defined by the 
value of a(x) at each point of n, so the internal state is defined by a field 
of internal variables. This interpretation is emphasized by considering the 
potential of dissipation. 

The global dissipation function 

If the evolution of the internal parameters is given by the potential of 
dissipation d(o), convex function of o, the thermodynamical forces A are 
defined by the normality rule A E 8d( o). We define the global dissipation 
function as the function D( & ) = < d( o) > of the field of internal parame­
ters &. The expression of the normality rule is transposed in terms of fields 
by integration in n: 

\.1 ':'. 
va ' D(&)+ < A( a* - o) > ~ D(&*). (7.25) 

It is obvious that Dis a functional of o, and A is a linear form < Aa* > on 
fields a* defined in n. Then the normality rule is written in terms of fields 

A E 80(&). (7.26) 

>From a general point of view, the governing equations for the macrostate 
have the same form as the governing equations for the microstate except that 
the set of internal variables is defined by a set of fields of internal variables. 

7 .4. Macrohomogeneous body and linear elasticity 

For linear elasticity, the macroscopic elastic modulus has not the same 
value when macrohomogeneous strain or stress conditions are prescribed on 
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the boundary an. But when the body is macrohomogeneous in the sense of 
Hill [1966, 1967) and Mandel [1964) the difference between the two moduli 
vanishes. More details could be found in the paper of Drugan and Willis [1996] 
or in the book of Nemat Nasser and Horii [1993) about the relations between 
the definition of the RVE and the macrohomogeneity condition. 

Assuming that all constituent phases are linear elastic, the local free en­
ergy density is defined by w( e) = ~e : c( x) : e, where c depends on the point 
X of n. The displacement y, the solution of the boundary value problem min­
imizes the potential energy of the system. When one prescribes homogeneous 
strain condition (y = E.y for yEan), the potential energy is reduced toW. 
The displacement y depends only on the given E and spatial distribution of 
the mechanical phases. 

The local stress u is obtained as the solution of a problem of heteroge­
neous elasticity, and this proves the existence of concentration tensors A for 
stresses and B for strains and Green functions .C, M for the displacement y, 

such that 

u =A : E, e = B : E, 

Y = .C : E, B = ~(V .C + VT .C), 

y = M : E, M : C = .C. 

Properties of the concentration tensors 

For fixed subscripts {p, q), Aijpq satisfies the equilibrium equations and 
homogeneous boundary conditions 

Aijpq,j = 0 in n, 
1 

Aijpqni = 2 ( np8iq + nqt5ip) on an. 
The strain e E = 8 : A : E = B : E satisfies the condition of compatibility 

(8 = c-1) and the relations between micro and macro scales can be defined 

E = C : E, C = < BT : c: B >, 

s =<AT: 8: A>= c-1. 

We have used the notation (A T)ijpq = Apqij. Moreover, we have the set of 
relations: 

8 : A= B : S, A : C = c: B, < A>= I, < B >=I. 
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For a more complex behaviour, we can solve the problem of localization 
with fixed (a, r); the solution associated with a variation of the macroscopic 
strain dE represents then an elastic response. The solution of this problem 
of heterogeneous elasticity is written as follows 

de= B: dE, du = A : dE = c : de. 

Hence the value c(x) is the local instantaneous modulus of elasticity Z::e. 
Then the concentration tensors are associated with these reversible tangent 
moduli for which we can define a macroscopic tangent modulus satisfying the 
general relation 

c = < BT : c : B > . (7.27) 

7.5. On the decomposition of the macroscopic strain 

Let E be the real macrostress and u the corresponding microscopic 
one. The local solution during purely elastic behaviour is as previously: u E 

=A: E. The stress field r = u- O'E is then self-equilibrated. 
In small strain, the total deformation e is the sum of the elastic strain ee 

and some initial strain ei. The elastic strain is related to u by the constitutive 
law ( ee = 8 : u). The initial strain ei induces an internal stress field r 
such that the local strain eres satisfies the compatibility conditions and the 
constitutive behaviour 

€res = 8 : r + ei. (7.28) 

The macroscopic elastic strain E E is the strain recovered by a purely 
elastic unloading, which corresponds locally to the interpretation of u E· The 
local strains e and eE = 8 : u E are kinematically admissible respectively 
withE and EE in the mode of localization. From the Hill-Mandel condition 
applied with A :< u >, which is statically admissible with < u > in the 
mode of localization, we obtain: 

EE =<AT: eE >, E =<AT: e > . (7.29) 

Then the definition of the macroscopic modulus is recovered as S = < AT : 

8 : A >. The difference e - e E is a kinematically admissible field associated 
with the anelastic part Eres of the macroscopic strain ( Eres = E- E E), and 
we obtain 

Eres = < €res > = < AT : €res > = < AT : ei > . (7.30) 
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Since r is a self-equilibrated stress field and s : A is a kinematically admissi­
ble field, then < r : s : A > = 0; this property is used to establish the second 
equality. The thermodynamical interpretation of Eres must be investigated, 
it depends on the local meaning of the strain ei and its evolution. 

7.6. Moving interfaces 

In is well-known that the propagation of damage has been studied in con­
nection with fracture mechanics. Different approaches based on macroscopic 
and microscopic descriptions of mechanical degradation properties have been 
proposed. 

Because of loading, damage in continuum mechanics can be induced by 
initiation and growth of micro-cracks and micro cavities. According to the 
empirical description based on different concept of effective stresses in the 
sense of Kachanov, many works describe the degradation of mechanical prop­
erties with macroscopic parameters, in a formalism similar to that used in 
plasticity. 

Many papers have also dealt with the relation between microscopic and 
macrosocpic behaviour. Such descriptions which are based on the evolution 
of microscopic properties, take into account the growth of cavities or pores 
exploiting the idea that when a critical value in strain, energy or stress is 
reached, the material does not suffer further tensile loading. Variational for­
mulations were used to describe the evolution of the interface between the 
sound and damaged materials. 

This section proposes the description of the general relationships between 
microscopic and macroscopic mechanical quantities in heterogeneous media 
with moving interfaces, similar to that presented previously. 

General features 

At each time the domain Vis composed of two distinct volumes n1 and 
n2 which are occupied by two materials with different mechanical charac­
teristics. The interface between the two phases is perfect and denoted by r. 
The phase 1 changes into the phase 2 in an irreversible manner due to the 
mechanical loading along a moving surface r, defined by an equation of the 
form S(x, t) = 0. The extension of the phase 2 is related to this moving sur­
face, the equation of the surface is obtained in an explicit manner depending 
on the history of the loading. In order to study the general formulation of the 
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relationships between microscopic mechanical fields and macroscopic quan­
tities we do not discuss the characteristics of the evolution of the interface, 
and at each point of the interface we assume that the normal velocity 4> is 
determined. 

When the interface moves, the evolution of any macroscopic quantity F 
is given by: 

. . 1 r 
F =<I>-n lr[llrl/J dS, (7.31) 

where [ 1 lr = l1 - l2 is the jump of the quantity 1 at a point of r, ~ is the 
normal vector to r outward to phase 2. As the interface moves, the transport 
condition for any mechanical quantity I at a geometrical point of r is given 
by the convected derivative D¢1 

D I 
- 1. I(~+ l/J~tlt, t + tlt) - 1(~, t) 

<P - 1m . 
at-o tlt 

(7.32) 

The displacement and the stress vector are continuous on r, then their rates 
verify the compatibility equations of Hadamard: 

(7.33) 

So, we must take into account the possibility of discontinuities. The dis­
placement is continuous on r, (Y]r = 0, hence the gradient on r of the 
displacement VrY is continuous. The discontinuity of the gradient of the 
displacement has the form 

(7.34) 

The stress vector is continuous: [ u lr .~ = 0. Combining all the properties of 
continuity, the discontinuities of u and Vy are interrelated by orthogonality, 
as pointed out by Hill (1986]: 

(7.35) 

7. 7. Case of linear elasticity 

In this section, the two phases are linear elastic media. At timet, the dis­
tribution of the phases is known and the localization process is defined by the 
equilibrium state of a heterogeneous elastic medium. The displacement u, at 
equilibrium, verifies the equations of the boundary value problem associated 
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with the mode of localization. At each time the tensors of concentration are 
defined and the macroscopic behaviour is obtained as previously by 

E=< AT: s: A>: E= ·S: E. (7.36) 

Between time t and t+dt, the concentration and the shape of the phases have 
changed, then the concentration tensors A and B evolve and their evolution 
is associated with the normal velocity ¢ of propagation of the interface. The 
variation of the geometry of the phases induces a variation of the elastic 
moduli. For a macroscopic evolution of the loading, the phase 1 is transformed 
into the phase 2 along some parts of r. The rate of A, denoted by A, is linked 
to the normal velocity of propagation, the same is true for M. So the local 
response is 

iT = A : E + A : E, v = M : E + M : E. (7.37) 

The rates of the concentration tensors satisfy Hadamard's relations on r: 

(7.38) 

The global evolution of the macroscopic quantities are then deduced, using 
the hypothesis of macrohomogeneity: 

(7.39) 

. T . 11 T E =<A : e >-n r A : [Vu]r cP dS. (7.40) 

In a similar way, the variation of the elastic moduli is given by 

. 11 S = n r 2g¢ dS, (7.41) 

where g is the density of the energy release rate along the interface. 

Total dissipation 

The total energy is given by W = !E : S : E whilst the macroscopic 
dissipation has the form 

1 . 11 Dm = 2E : S : E = n r G ¢ dS ~ 0, 

G = E: g: :E, 

http://rcin.org.pl



7.8. MORE GENERAL CASES 99 

where the quantity G is the energy release rate defined on r. So even if the 
local behaviour is reversible, the propagation of a surface of discontinuity 
inside the body generates dissipation. The macroscopic behaviour is that of 
an elastic medium with variable elastic moduli. 

7.8. More general cases 

More generally, when both materials are elastoplastic or with initial 
strains, because of the existence of incompatible strains, a self-equilibrated 
stress field r appears, and the local stress can be decomposed as follows: 

u=A:E+r=trE+r. (7.42) 

The field r being self-equilibrated the following relations are obtained 

< r >= 0, 

divr = 0 inn, r.n = 0 on an. 

The local strain e is related with E via the K.A. displacement y. Let us 
denote by ee the elastic strain 

ee = e - ep = 8 : u. (7.43) 

Next we introduce two other displacement fields: 

• the first one, YE = M : E is K.A withEE= S: E and defines the 
strain 

(7.44) 

• the second one, Yir is K.A. with Eir = < eir > and defines the strain 

(7.45) 

On account of these definitions one obtains: 

e = ee + ep = s : A : E + 8 : r + ep = e E + eir, 

E=EE+Eir· 
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For a given macroscopic evolution E, the plastic strain rate can evolve 
and the propagation of r can occur. The evolution of the state obeys to the 
decomposition: 

e=ep+s:u, u=irE+r. (7.46) 

In these relations u E corresponds to the microscopic variation for a purely 

elastic behaviour characterized by the same propagation of the interface r. 
Hence we conclude that 

(7.47) 

where the localization tensor A satisfies the Hadamard's compatibility equa­
tions. The rate of each displacement is discontinuous according to the conti­
nuity compatibility equations: 

The application of the Hill-Mandel hypothesis to these displacement fields 

and to related strain fields gives a set of the following relations 

E =<AT: E: >-~ i AT: (V!!)r tjJdS, 

EE =<AT: E:E >-~ i AT: (V!!Elr t/JdS = S: 1::+ S: :E. 

By substraction, it allows us to define the variation of the irreversible 
strain: 

(7.49) 

or 

Since the residual stress r is a self-equilibrated field, from < r > = 0, 

[ r 1r .JL = 0, we obtain 

0 =< r > - ~ Dr lr "' dS, 

0 = (D4>(r.JL) 1r· 
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Hence, the rate of internal stresses r is not self-equilibrated and the macro­
scopic irreversible strain takes the form: 

The irreversible part of the macroscopic strain is decomposed into two parts: 
one is due to the volume irreversibility, the other to the variation of the 
residual stress field, essentialy dependent on the geometry of the phases. Even 
if the internal strain has no evolution, there exists an irreversible macroscopic 
strain due to the variation of internal stresses essentially dependent on the 
evolution of the geometry of phases. 

Dissipation 

In the case of plastic behaviour, the free energy of the system takes the 
form W(E, Ep, a) = ~ < u : (e - Ep) > +h(a) where a is any internal 
variable. 

The energy associated with the residual stresses r then is: Wb = ~ < r : 

s : r >. Thus the dissipation rate is equal to: 

(7.51) 

The expression of Dm in terms of local quantities is given by 

(7.52) 

In this form two parts are distinguished; the first one is related to the plas­
tic effects, the second one is related to the moving surface. The part of the 
dissipation due to plasticity and hardening in not directly related to the ir­
reversible strain. These equations shows that the main difficulty in a macro­
scopic approach is to determine the relative part due to plasticity and to 
local rupture in macroscopic tests. 

7 .9. Typical examples 

A composite spheres assemblage of Hashin revisited 

The composite spheres assemblage of Hashin is analysed in Pradeilles­
Duval and Stolz [1995). In this paper the rate boundary value problem is 
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discussed, provided that a criterion of propagation of the interface is given 
in terms of an energy release rate. 

The system is composed of a compact assemblage of spheres with external 
radii in order to fill the whole domain. The microscopic structure consists of 
composite spheres with the core made of material 2 and the shell of material!; 
both materials are homogeneous and linear elastic. As in the general case, the 
material 1 transforms into material 2; the transformation is irreversible and 
the criterion is a generalized Griffith's one based on the energy release rate 
of the transformation. The volume fraction of the material 2 is denoted by c. 
Applying the same method as in Herve and Zaoui (1991), the assemblage is 
assumed to be well-disordered. Using the particular three phases model of 
Christensen and Lo [1979], the homogeneous equivalent medium denoted by 
material 0 is unknown. In the phase i the local characteristics are the bulk 
modulus denoted by ki and shear modulus Jl.i· In what follows kt is assumed 
to be larger than k2. 

There exists only one family of composite sphere in the structure; one 
gets the overall bulk modulus k0 in the form: 

and on the interface the energy release rate is 

g = 8~(3kt + 4J-Lt)({3k2 + 4J-LI)(k2- kt). 
2(3k2 + 4J-Lt + 3c(kt - k2)) 

(7.53) 

(7.54) 

Here 80 is the uniform strain applied at infinity (e: = 80 1). Generalized Grif­
fith's law is considered to govern the transformation: 

(7.55) 

The behaviour takes the form plotted in Fig. 7 .1. 
Now we consider the macroscopic behaviour of composite spmres assem­

blage when the two families exist in the structure; the volume frac~ions of 
the phases are denoted by CJ and CJI ( CJ > CJI). 

It can be shown in an analytical way that 

(QI- Qu)(CJ- CJI)(J-Ll - J1.2) > 0. . (7.56) 
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FIGURE 7.1. The response of the composite sphere. 

As previously, at the beginning of the loading the macroscopic behaviour is 
linear elastic until the criterion of propagation is reached for one family. So 
we have the following cases: 

• if J.t1 > J.£2, the difference between the two concentrations (q - en) 
increases until the larger reaches the value 1, 

• if J.£1 < p,2, the difference between the two concentration decreases, then 
the assemblage tends to the assemblage of only one family, 

• if J.£1 = J.£2 both concentrations could increase. 

So, if we consider the assemblage of the two families as a perturbation 
of the assemblage of one family, this study can be considered as an analysis 
of bifurcation for small difference ( q - CJI). In the first case, a new well 
disordered family can appear along the first one. So the answer of the global 
behaviour in such a case is not unique. 

Even, the system is composed by only one family of similar composite 
spheres, the local response to the loading increment is non unique. In fact, 
many kinds of bifurcations can exist. This shows the necessity to study stabil­
ity and bifurcation of each equilibrium path in homogenization of non-linear 
mechanical behaviour to ensure the existence of the macroscopic law. 

Case of plasticity 

The case of plasticity is recovered when no transformation exist on r. 
In the dissipation two kinds of hardening are then present: the hardening 
due to the incompatibility of the plastic strain and the self-hardening of 
each constituent. The hardening is described by the energy embedded in the 
residual stresses and in the self-hardening energy, which emphasizes the role 
of the embedded energy on the hardening. 
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Case of damaged material 

It is observed that the reduction of material stiffness is generally due 
to the evolution of defects such as cavities, cracks, etc. These zones cannot 
support tensile stresses. It is proposed to characterize damaged material only 
with the property that the stress vanishes in the damaged zone. It is necessary 
to distinguish between two different zones: the sound elastoplastic material 
with volume n and the damaged one where the stresses are identically equal 
to zero. The previous results of Bui et al. [1981] are then recovered. In partic­
ular, a relation between the global tangent modulus and local one is obtained 
in the form: . . f 2 

:E : E = < ir : e > - Jr V'w.n.4J dS. (7.57) 

This condition gives us a condition of stability in this case as pointed out 
by Dems and Mr6z [1985]. 
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