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Preface 

These Lecture Notes include material from 12 lectures and two seminars 

which I have given in March-April 2003 as a Visiting Professor at the Centre 

of Excellence for Advanced Materials and Structures ( AMAS) in the Insti­

tute of Fundamental Technological Research, Polish Academy of Sciences, in 

Warsaw. It is my pleasure to thank Prof. Zenon Mr6z for inviting me to visit 

AMAS and to present a series of lectures on Colloid Physics . I am grateful to 

Ms. Izabela Sleczkowska for her help with travel and accommodation, and for 

an endless supply of transparencies. Moreover, I am grateful to Mr. Tomasz 

Zielinski for assistance in preparing these lecture notes for publication. Many 

thanks to Prof. Tomasz Kowalewski for explaining me the interesting activi­

ties in his lab, for helping me to connect my notebook to the internet, and for 

having shared with 1ne the wonderful experience of Mozart 's Don Giovanni 
at the Warsaw opera. I thank Prof. Andrzej Majhofer for having explained 

to me part of the history of Warsaw. I am obliged to Prof. Jan Dhont, Re­

search Centre Jiilich, who wrote Chapter 7 on dynamic light scattering. Most 

notably, I want to express my deepest gratitude to Dr. Maria Ekiel-Jezewska 

and to Prof. Bogdan Cichocki for their overwhelming hospitality, for fruitful 

scientific collaboration, and for sharing with me their deep insights into (hy­

dro )dynamic problems. I really enjoyed the numerous discussions with Maria 

and Bogdan, and I have benefitted a lot from it. 
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Chapter 1 

Static properties: introduction 

Liquids and dense atomic or colloidal fluids are distinguished from dilute 

gases by the importance of short-range correlations and particle collision 

processes, and from crystalline solids by the lack of long-range order. The 

distinction between a liquid and a gas is only a quantitative one, since there 

is no change in symmetry in going from the gas phase to the liquid phase. 

The most simple liquid systems are monoatomic liquids consisting of 

spherically shaped atoms (e.g., argon or neon), or else of quasi-spherical 

molecules such as methane. The interactions between the atoms can be char­

acterized by si1nple pair potentials which depend only on the interatomic 

distances. Colloidal fluids consist of mesoscopically large colloidal particles, 

typically a few hundred nanometers in size, dispersed in a low-molecular 

solvent such as water. There are strong local correlations in the positions of 

these particles ("super atoms") so that they form a colloidal liquid in the liquid 

(solvent). The omnipresence of colloidal dispersions in chemistry and biol­

ogy, and the unsurpassed variety and tunability of their particle interactions 

explains their importance both in industrial applications and fundamental 

research. Well-studied examples of simple colloidal fluids are suspensions of 

silica and polymethyl-methacrylate spheres in organic solvents, and aqueous 

dispersions of globular proteins or polystyrene latex spheres. 

While the friction-dominated, diffusive dynamics of colloidal particles is 

quite different from the ballistic one of atomic liquids, atomic and colloidal 

liquids are very similar in terms of their equilibrium microstructure, i.e. in 

terms of the average particle ordering. There are just orders of magnitude 
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8 1. STATIC PROPERTIES: INTRODUCTION 

differences in the relevant length and time scales. Diffusion of colloidal par­
ticle suspensions will be explored in great detail in the second part of these 

lecture notes (Chapters 6-9). 
In the first part of the present lecture notes (Chapters 1-5), I will discuss 

a versatile class of liquid state theory methods which allows to determine 
theoretically the microstructural and thermodynamic properties, both for 
colloidal and atomic liquids, from the knowledge of the particle interactions. 
These so-called integral equation schemes are based on the Ornstein-Zernike 
(OZ) equation. Some of the most relevant OZ schemes will be introduced, 
and we will explore their predictive power in comparison with computer 
simulations and experiment. The quantities of central importance calculated 
using these integral equation schemes are the radial distribution function, 
g( r), of an isotropic liquid, and the associated static structure factor S ( q). 
The latter quantity is essentially the Fourier transform of g(r), and it is 
directly measurable by appropriate static scattering techniques. A Fourier 
analysis of S(q) provides then information about g(r). In case of suspensions 
of large micron-sized colloidal particles, g(r) is more directly accessible by 
means of video microscopy or confocal scanning microscopy. 

Typical atomic and colloidal liquids of spherically shaped particles will 
be briefly characterized in Chapter 2 in terms of their interaction potentials. 
Chapter 3 provides an overview on general properties of g(r) and S(q), and 
on their relation to scattering experiments and thermodynamic properties. 
Chapter 4 introduces the fundamental Ornstein-Zernike equation with the 
associated concept of direct orrelations. As a first application of the OZ equa­
tion, I will address the phenomenon of critical opalescence in near-critical 
liquids. Various approximate closure relations are discussed which lead to 
closed integral equations for g(r). Particular focus is given to hard-sphere 
fluids, since they can serve as a reference system of uncharged liquids, simi­
lar to the harmonic solid in solid-state physics. Chapter 5, finally, deals with 
the generalization of the Ornstein-Zernike integral equation schemes to liquid 
mixtures. These generalizations will be applied to the important case of a sus­
pension of charge-stabilized colloidal particles. We will calculate the screened 
electrostatic interaction between the colloidal particles by contracting the 
neutralizing counter- and salt ions out of the description. For this purpose 
and for analytic simplicity, we use the so-called mean-spherical approxima­
tion (MSA), which is a direct generalization of the celebrated Debye--Hiickel 
(DH) theory for dilute electrolytes to dense systems. 
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Chapter 2 

Model systems and pair potentials 

In the following we exernplify pair potentials suitable for describing the pair 
forces acting in simple and colloidal fluids of spherical particles. Simple flu­
ids of non-polar atoms or molecules will be considered first, followed by a 
discussion of pair interactions in suspensions of spherical colloidal particles. 

The Lennard-Jones 12-6 potential [1, 2) 

(2.1) 

prov-ides a fair description of the interaction between pairs of rare-gas atoms 
like in argon, krypton and xenon, and also of quasi-spherical molecules such 
as CH4. A sketch of the potential curve is provided in Fig. 2.1. 1\vo param­
eters characterize the potential: the collision diameter a where u( r) = 0, 
and the depth, f, of the potential minimum at r = 2116 a. The values of a 

u(r) 

r[nm] 

-E 

FIGURE 2.1. Lennard-.Jones pair potential for atomic liquids. 
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10 2. MODEL SYSTEMS AND PAIR POTENTIALS 

and E have been determined for a large number of atoms using, e.g., atomic 

scattering techniques. For argon, OAr= 0.34nm and EAr/kB = 119.8K. The 
short-range repulsive part of the pair potential proportional to r- 12 repre­
sents approximately the electronic repulsion of two atoms. The longer-range 
van der Waals attraction between two atoms at a distance r is described by 
the r-6 part. 

The most simple pair potential one can think of is the potential between 
hard spheres of diameter a, i.e. 

u(r) = {: 
for r <a, 

for r >a. 
(2.2) 

While there exists no atomic fluid of hard atoms, colloidal suspensions of 
hard spheres are realized within good approximation, by coated polymethyl­
methacrylate (PMMA) spheres dispersed in a refractive index-matched non­
polar solvent like cyclohexane. The coating consists of a thin layer, as com­
pared to a, of adsorbed polymer chains (cf. Fig. 2.2). The polymer brush gives 
rise to a short-range repulsion between the colloidal spheres which counter­
balances the remnants of the van der Waals attraction. The sizes of the 
colloidal hard spheres are in the range of several hundred to a few thousand 
nanometers. 

FIGURE 2.2. Model of colloidal hard spheres: PMMA spheres in non-polar solvent 
with surface-grafted polymer hairs. 

PMMA particles in a non-organic solvent are a paradigm for sterically 
stabilized dispersions. 

A well-studied example of charge-stabilized colloidal dispersions are poly­

styrene latex spheres dispersed in a polar solvent like water [3]. The latex 
particles acquire a high surface charge through the dissociation of ionizable 
surface groups. Each colloidal particle is surrounded by a diffuse layer of 
oppositely charged counterions, which are monovalent in the simplest case. 
Overlap of the electric layers of two colloidal macroions leads to an electro­

static repulsion which counteracts the van der Waals attraction and prevents 
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2. MODEL SYSTEMS AND PAIR POTENTIALS 

OH--~~~--

(.____ 
u '- ""' t. rl 

r 

FIGURE 2.3. Left: electrostatic and van der Waals potential contributions to the 
total effective pair potential u(r) (inner curve). Right: colloidal macroions and 
dissociated counterions. 

11 

the particles from irreversible aggregation (cf. Fig. 2.3). As will be shown 
in Sec. 5.2 the screened electrostatic repulsion between the charged colloidal 
spheres in a solvent of dielectric constant f is approximately described by the 
effective pair potential 

( 

eK.a ) 2 
f3uet(r) = LaZ

2 

1 + Ka 
r 

r >a, (2.3) 

which is the repulsive electrostatic part of the celebrated Derjaguin-Landau­
Verwey-Overbeek (DLVO) potential. Here, Z is an effective or dressed surface 

charge number of a colloidal particle of radius a = a /2, f3 = 1/(kaT), and 
La = e2 /(fkaT) is the so-called Bjerrum length. This length is the char­
acteristic distance, for a pair of elementary charges e, where their Coulomb 
interaction energy is comparable to the thermal energy kaT. For water at 
room temperature, L B = 0. 71 nm. In case of dispersions of highly charged col­
loidal particles, the effective charge number in Eq. (2.3) can be substantially 
smaller than the bare macroion charge as defined in a more refined many­
component Primitive Model picture of spherical macro ions and micro ions ( cf. 
Sec. 5.2) 

The Debye-Hiickel screening length, "'-l, is defined through 

K
2 = 47rLa L PaZ~ (2.4) 

Q 

where the sum is taken over all types of microions (i.e. counter- and salt 
ions) of number densities Pa and charge numbers Za. For a concentrated 

suspension, the densities Pa refer actually to the fluid volume accessible to 
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12 2. MODEL SYSTEMS AND PAIR POTENTIALS 

the microions. The right-hand-side of Eq. (2.4) includes then an extra factor 
of 1/(1- <I>), where <I> is the volume fraction of colloidal spheres. 

Notice that the range of the potential can be controlled by adding or re­
moving small ions. The total effective pair potential, u(r), of charge-stabilized 

colloidal particles is the sum u( r) = Uet ( r) + UvdW of Uel ( r), and of the at­
tractive van der Waals pair potential, Uvdw(r). The van der Waals part for 
two identical colloidal spheres can be described as 

AeJJ [ 2a
2 

2a
2 

4a
2 

] Uvdw(r) = --
6

- 2 4 2 + - 2 + ln (1- - 2 ) , 
r - a r r 

r >a, (2.5) 

with Uvdw(r) "' -r-6 for large r, and Uvdw(r) "' -(r- a)- 1 near contact 
distance r = a ( cf. Fig. 2.3). The effective Hamaker constant, AeJ f, incorpo­
rates to some extent electrodynamic retardation and non-additivity effects 
on the dispersion forces. For non-metallic colloidal spheres, Aef f is typically 
of the order of a few k B T. For more details on dispersion forces, we refer 
to the textbooks of Russel, Saville and Schowalter [4), and of Mahanty and 
Ninham [5). Recall that the van der Waals forces between two identical par­
ticles are always attractive. However, repulsive dispersion forces can occur 
for non-identical particles when the dielectric susceptibility of the dispersing 
medium is of a value in between the ones of the two particles. 

For dispersions of highly charged colloidal particles, UvdW ( r) becomes 
completely masked by the electrostatic part Uel(r). In this case one frequently 
refers to the colloidal particles (with associated microion layer) as Yukawa 
spheres, since their microstructural properties are determined only by the 
Yukawa-like, exponentially screened Coulomb potential Uez(r). 

It is commonly assumed that the potential energy, U(rN), of aN-particle 
liquid system can be approximated by a sum of pair interactions 

N N 

U(rN) ~ L u(lri- rjl) = L u(rij) (2.6) 
i<j i<j 

for any configuration rN = { r1, ... , r N} of position vectors { ri} pointing 
to the particles centres. The quality of this pairwise additivity assumption 
depends on the choice of u(r), and on how certain many-body aspects (non­
additive dispersion forces, influence of solvent molecules, electrostatic screen­
ing etcetera) are approximately included in the pair potential. Typically, u(r) 
is temperature and density dependent. Notice that U(rN) is exactly pairwise 
additive only for systems of ideal hard spheres. 
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2. MODEL SYSTEMS AND PAIR POTENTIALS 13 

Under the premise of Eq. (2.6), the thermodynamic and microstructural 
properties of the fluid are solely expressible in terms of u( r), and of its associ­
ated radial distribution function g(r). The latter constitutes the most simple 
and 1nost relevant reduced distribution function. 
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Chapter 3 

Pair distribution functions 

In this Chapter we discuss salient properties of g(r) , and of its associated 

Fourier transform pair S(q), denoted as static structure factor. From a knowl­

edge of g( r), one can calculate macroscopic thennodynamic properties and 

analyze the local microstructure. Furthermore, knowledge of static pair corre­

lations is an essential ingredient of most theoretical approaches to the trans­

port and rheology of simple and complex fluids. The aim of the liquid state 

theory is therefore to calculate g( r) from the particle interactions and to 

determine from it scattering properties and the thermodynamics. 

3 .1. Basic properties 

The concept of reduced distribution functions has proven to be most use­

ful in liquid state theory. Consider a system of N identical spherical particles 

in a volume V at temperature T (canonical NVT ensemble). The function 

e-f3U(rN) 

PN(rN) = ~N(V, T)' 

with configurational integral 

(3.1) 

ZN(V, T) = J dr1 · · · drN e-!3U(rN) = J drN e-!3U(rN), (3.2) 

is the probability density that theN particles are at the positions r1, ... , r N. 

It provides far more information than is necessary for the calculation of 
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16 3. PAIR DISTRIBUTION FUNCTIONS 

scattering properties and thermodynamic functions. What is really needed for 
are the reduced distribution functions for a small subset of n << N particles 
irrespective of the positions of the remaining N - n particles. 

Hence we introduce the n-particle distribution function [1, 6) 

/;}(rn) = N(N- 1) · · · (N- n + 1) j drn+l · · · drN PN(rN) (3.3) 

of finding any set of n particles at a specified configuration rn = { r 1, ... , rn}, 
regardless of how these n identical particles have been labelled. Of major 
importance are the reduced distribution functions of order n = 1, 2. For a 
homogeneous system 

(n)( ) _ (n)( ) PN r1, ... , rn - PN r1 + t, ... , rn + t (3.4) 

for an arbitrary displacement vector t. Then p~) = p = N /V is equal to the 

average particle number density, p, and p~) (r1, r2) = p~\r1 - r2) depends 
only on the vector distance r12 = r1 - r2 (to see this choose t = -r2). 

The correlation length ~ (T) is a characteristic distance over which two 
particles are correlated. For fluids,~ is typically of the range of u(r) or larger 
to some extent, but under certain conditions (i.e., at a critical point) it can 
become extremely large. For a n-particle cluster of large mutual distances 

rij = lri - rj I >> ~ and N >> 1 

. n 

P~) (r1, ... , rn) ~ IJ p~) (ri) = pn (3.5) 
i=1 

since these particles are then uncorrelated. To describe pair correlations in a 
fluid relative to a classical ideal gas of uncorrelated particles at the same den­
sity and temperature, we introduce the pair distribution function, 9N(r1, r2), 
in the NVT -ensemble as 

(2) ( ) PN r1, r2 
9N(r1, r2) := (1) (1) , 

PN (r1) PN (r2) 
(3.6) 

such that 9N(r1, r2) ~ 1 for r12 ~ oo. If the system is isotropic as well as 
homogeneous (no spatially varying external force field, no crystals), p~) and 

9N are functions only of the separation r = r12· Then, 9N(r), with 

p~2) (r) N(N- 1) j N 
9N(r) = --2 - = 2 dr3 · · · drN PN(r ) 

p p 
(3.7) 
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3.1. BASIC PROPERTIES 17 

is usually called the radial distribution function. It plays a central role in 
one-component fluids, since it is indirectly measurable by radiation scattering 
experiments. Moreover, thermodynamic quantities can be written as integrals 
over 9N(r) and u(r), provided that the particles interact by pairwise additive 
forces (cf. Sees. 3.3-4). 

As an important observation, we note that P9N(r) is the average density 
of particles a distance r apart from a given one. In fact, integration of pg( r) 
over the system volume leads to 

J N(N -1) J J N p drgN(r)= p dr12 dr3···drNPN(r )=N-1 

since J dr12 = v-1 J dr1dr2. Likewise, Eq. (3.8) can be rewritten as 

1 + p j dr [9N ( r) - 1] = 0. 

v 

(3.8) 

(3.9) 

Notice in this context for the canonical 9N(r) that 9N(r ---+ oo) = 1- N-1 

since there are N- 1 particles left besides the one at r = 0. Equations (3.8) 
and (3.9) are only valid for a system of finite and fixed N, where particle 
number fluctuations are absent. In order to be independent of the specific 
statistical ensemble used in calculating static properties, it is understood 
that the thermodynamic limit of very large systems, i.e. N, V ---+ oo with 
p = N /V kept fixed, is taken at the end of each calculation. Then 

g(r) := lim 9N(r) 
N,V-+oo 

(3.10) 

defines the ensemble-independent radial distribution function, g( r), of a 
macroscopic system. 

Let us summarize general properties of g( r) which follow readily from the 
definition of 9N(r) in Eq. (3.7): 

g(r) > 0, g(r---+ oo) = 1, (3.11) 

g(r) ~ 0, for {3u(r) >> 1, (3.12) 

g(r) e-{3u(r) + O(p), (3.13) 

g(r) continuous for u( r) continuous. (3.14) 
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g(r) 

3. PAIR DISTRIBUTION FUNCTIONS 

correlation length ~rn 

r/a 
L{-1~ 

1. correlation 2. correlation 
shell shell 

g(r) 

. ,. 
" ,. .. .. 
I o 

FIGURE 3.1. The g(r) of a Lennard-.Jones liquid (left), and of hard spheres (right) . 

The typical behavior of g( r) for an atomic liquid with a soft pair po­
tential of Lennard-Jones type, and for a hard-sphere fluid is sketched in 
Fig. 3.1. Regions of r with g(r) > 1 (g(r) < 1) have a larger (lower) prob­
ability of finding a second particle from a given one at r = 0, than for an 
ideal gas at the same T and p. The main features are a small-r region where 
g(r) = 0 owing to strong repulsive forces exerted by the particle at the origin, 
and several peaks representing increasingly diffuse shells, for increasing r, of 
next neighbors, second next neighbors and so on. This shell layering man­
ifests the granularity (non-continuum nature) of the fluid. The oscillations 
in g(r) decrease in amplitude with increasing r. Eventually, g(r) approaches 
its asymptotic value one for r > ~(T, p). The oscillations in g(T) become 
more pronounced with increasing p. Whereas the Lennard- Jones g( r) is con­
tinuous at any r, the hard-sphere g(r) jumps from zero to values 2: 1 at 
r =a, due to the singular nature of the hard-sphere u(r). For hard spheres, 
g(r) = O(r -a) + O(p) according to Eq. (3.13). Hard-sphere systems are 
athermal (i.e., T-independent) since the probability for a given particle con­
figuration is either zero or one, independent of {3, depending only on whether 
two or more spheres overlap or not. 

3.2. Potential of mean force 

There is a remarkable relation between g(r) and the so-called potential 
of mean force, w(r). For N >> 1, w(r) is defined in terms of g(r) by 

g(r) =: e-{3w(r) (3.15) 

http://rcin.org.pl



3.2. POTENTIAL OF MEAN FORCE 19 

or 

w(r12) = -kBTlng(r12) 

-kBT [In j dr3 · · · drN e-flU(rN) +In(~:)] . (3.16) 

To reveal the physical meaning of w(r), we take the derivative of -w with 
respect to the position vector r1: 

I dr3 · · · drN ( -Wrt) e-f3U N 
-V1w(r12) = I d d -{3U = ( -V1U(r )\ 2 . 

r 3 · · · rN e , 
(3.17) 

The quantity on the right can be interpreted as the force on particle 1 if we 
hold particle 2 fixed, and average over the positions of all the other particles 

(as denoted by (· · · h,2 ). w(r) is the potential for that force and is there-­
fore called the potential of mean force. Likewise, w(r) can be interpreted as 
the reversible work for a process in which two particles are moved through 
the system, at constant N, V and T, from infinite separation to a relative 
separation r. To see this explicitly, recall from statistical mechanics that 

F(r12l = -kBT in j dr3 · · · r Ne-flU(rN) + Fo(N- 2, V, T) (3.18) 

is the Helmholtz free energy of a N - 2-particle system in the presence of 
two fixed spheres at a distance r 12. The spheres 1 and 2 influence the system 
through their excluded volume and longer-ranged interactions. Moreover, Fo 
is the (non-interesting) configuration-independent part of the free energy. 
Consequently 

(3.19) 

and 
(3.20) 

with w(r) defined such that w(r -t oo) = 0. The first and second laws of 
thermodynamics tell us for a reversible displacement that 

dF = -SdT- pdV + J-LdN + 8Wrev. (3.21) 

This means that dF = 8Wrev = -V12w(r12)·dr12 is the reversible (maximal) 
work done by the N - 2 particle system to achieve an infinitesimal displace-­
ment dr12 of the two boundary particles at fixed temperature, system volume 
and particle number. 
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20 3. PAIR DISTRIBUTION FUNCTIONS 

The function w( r) is generally a considerably more complicated object 
than the mere pair potential u(r), since it involves the effects of particles 1 
and 2 on the configurations of the other particles. Only in the limit p -t 0 

follows that 
w(r) -t u(r) i.e. g(r) -t c-/3u(r), (3.22) 

as will be shown shortly. A sketch of w(r) for hard spheres at finite density is 
shown in Fig. 3.2. As seen, two hard spheres effectively attract each other at 
distances r ~ 1.5a. This many-body effect arises from an unbalance of forces 
on the two spheres when the gap between the two particles is depleted from 
the other ones. Depletion interactions of this kind may occur in any system 
with excluded volume interaction contributions. This explains why depletion 
effects have attracted considerable interest in the past few years. 

,, .. -·...... :, ..... \ 
I I I I 
·~ ... ___ ,. '.. ... __ ,,. 

! g(r) 

1 : 

0 

--- -------rr----- ,···· .. G-E0 ·····. ~ } ( : 
...... _...... .. ...... ' 

r ("\ r < 2cr '.. ... __ ,,. 

FIGURE 3.2. Potential of mean force of hard spheres (left) and depletion attrac­
tion (right). 

Assuming pairwise additive interactions where 

-\l1U(rN) =- L \l1u(rli), 
i>l 

the force law for w in Eq. (3.17) can be rewritten as 

J g(J) (r1, r2, r3) 
-\l1w(r12) = -\l1u(r12)- p dr3 ( ) 'Y'1u(r13), 

9 r12 

or likewise, 

(3.23) 

(3.24) 

since the surface integral vanishes for a sufficiently short-ranged pair poten­

tial. Here, 

(3.26) 
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3.3. STATIC SCATTERING EXPERIMENTS 21 

is the triplet distribution function of an isotropic and homogeneous liquid. 
Actually g(3) depends only on the separations r 12 , r 13 , and on the angle 

between r13 and r12. The mean force on particle 1 in the presence of particle 2 
at distance r 12 is thus the sum of a direct interaction between 1 and 2, 

and the interaction of 1 with a third particle at r3, weighted by the factor 
g(3)(r1, r2 , r3)jg(r12). The latter gives the probability of finding a particle at 

r3, given that there are certainly particles at r1 and r2. The above equation is 

the lowest order one of the Yvon-Born-Green hierarchy of equations for the 
reduced equilibrium probability density functions. Finally, Eqs. (3.13) and 

(3.22) are limiting cases, for p -t 0, of Eq. (3.24). 

3.3. Static scattering experiments 

In the following, we briefly explain how pair correlations can be measured 

indirectly by radiation scattering. A scattering experiment will have to probe 

distances of the order of the particle sizes and next neighbor distances, which 
are Angstroms in case of atomic liquids, and fractions of microns in case of 

colloidal dispersions. Therefore, X-rays and neutrons are used for atomic liq­

uids whereas colloids are probed by light scattering and small angle neutron 

scattering. 
A schematic view of a scattering experiment is shown in Fig. 3.3. 

Monochromatic radiation of wavelength A impinges on a fluid sarnple and 
is scattered at an angle {) into a detector which measures the average inten­
sity, I(q), of scattered neutrons or photons. 

Laser 

FIGURE 3.3. Typical scattering experiment setup. 

For single and quasi-elastic scattering from spherical particles 

I(q) ex (N) P(q) Sc(q) (3.27) 
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22 3. PAIR DISTRIBUTION FUNCTIONS 

where q ( 47r I A) sin( 'l9 12) is the modulus of the scattering wave vector 
q = kJ - ki, and (N) is the average number of particles in the illuminated 
volume part of the sample. The so-called (normalized) form factor P(q) con­
tains information on the scattering material distribution inside a particle, 

i.e. information on the particle size (and fonn). The most relevant quantity 
in Eq. (3.27) including information on inter-particle correlations is called the 

(collective) static structure factor Sc(q). Its statistical mechanical definition 

reads 

(3.28) 

where ( · · ·) denotes an equilibrium ensemble average. By expanding the dou­

ble sum into self, l = p, and distinct, l =f p, parts, it can be shown that 

00 

J . j 2 sin(qr) 
Sc(q) = 1 + p dretq·r h(r) = 1 + 47rp dr r h(r) qr , (3.29) 

0 

where, h(r), with 
h(r) = g(r)- 1 (3.30) 

is called the total correlation function. Notice that h( r -t oo) = 0, and 
Sc( q -t oo) = 1. As a result, the static structure factor determines the Fourier 
transform, h(q), of h(r). Since Fourier transforms are one-to-one mappings, 

Sc(q) can be inverted to determine h(r) and thus g(r): 

g(r) = ;:- 1 
[ Sc(q~- 1

] = 1 + 
2

7r; prJ dqq sin(qr)[Sc(q)- 1]. (3.31) 

0 

In principle, this would require to n1easure Sc(q) at all wave numbers q where 

Sc( q) exhibits significant oscillations. This is often not possible to do since 

the largest accessible q is limited by Qmax = 47r I A, which corresponds to 

backward scattering. 
We have used here the following basic result on Fourier transforms: sup­

pose h(r) is an arbitrary isotropic function, with h(r) -t 0 sufficiently fast for 

r -too. The three-dimensional Fourier transforrn, h(q), of h(r) is defined as 

J . 100 

2 sin(qr) h(q) := F{h(r)} = dretq·r h(r) = 47r dr r h(r) qr (3.32) 

0 
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where the third equality follows from performing two angular integrals In 
spherical coordinates. The Fourier inversion theorem states then that 

1 1 J 0 

h(r) = ;:- {h(q)} = (
2

1r)
3 

dqe-tq·r h(q) 

00 

_1_ J d 2 h( ) sin(qr) 
2

2 qq q . 
7r qr 

(3.33) 

0 

For notational simplicity, Fourier transformed functions are distinguished 
from their real-space counterparts only by their argument q. As an important 
example we quote the following Fourier transform pair: 

with Fourier transform 

e-KT 

f(r)=-, 
r 

47r 
f(q) = 2 + 2 

q "" 
for "" 2: 0. This result will be used subsequently. 

3.4. Thermodynamic properties 

(3.34) 

(3.35) 

There exist several routes through which thermodynamic properties of 

liquids can be related to integrals involving g( r) and u( r). In the following, 
we review the three most important ones. 

The energy equation 

(3.36) 

expresses the internal energy, E, of a one-component N-particle system in 
terms of u(r) and g(r). The internal energy is the sum of a kinetic part, 
(3/2)NkBT, and an interaction part, (U(rN) ). The latter can be under­
stood on physical grounds as follows: for each particle out of N, there are 
47rr2 p g( r) dr neighbors in a spherical shell of radius r and thickness dr, and 
the interaction energy between the central particles and these neighbors is 
u( r). Integration from 0 to oo gives the interaction energy part of E, with 
the factor 1/2 correcting for the double counting of particle pairs. 
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The pressure equation 

00 

21r 2 J 3 I P = Pkin +Pint = pkBT- 3P dr r g(r) u (r) (3.37) 

0 

relates the thermodynamic pressure, p, to an integral over g(r) and the deriva­
tive, u'(r), of the pair potential. Here, Pkin = pkBT is the kinetic pressure of 
an ideal gas. The pressure contribution, Pint, due to particle interactions can 
be derived along the same lines as the energy equation. For a repulsive pair 
potential with u'(r) < 0, Pint is a positive pressure contribution originating 
from the stronger thermal bombardment of container walls by the mutually 
repelling particles. A colloidal dispersion consists of colloidal particles and of 
the solvent. For colloids, Eq. (3.37) gives the osmotic pressure exerted by the 
particles on a membrane permeable to the solvent. 

The compressibility equation, 

X~= lim Sc(q) = 1 + pjdr [g(r)- 1], xr q-o 
(3.38) 

links the (osmotic, in case of colloids) isothermal compressibility, xr, de­
fined as 

1 (av) 1 (ap) 
XT := - V 8p T = p 8p T 

(3.39) 

to an integral involving only g(r). Here, x¥1' = (pkBT)- 1 is the compressibility 
of an ideal gas. The compressibility equation holds more generally than the 
energy and pressure equations, since it is valid even when the interparticle 
forces are not pairwise additive. According to Eqs. (3.29) and (3.38), xr can 
be determined experimentally from measuring Sc(q) in the long-wavelength 

limit q---+ 0 (i.e., for q~ << 1). 
The compressibility equation can be derived only in the grand canonical 

ensemble representing an open system, at constant V and T, which allows 
for fluctuations in the particle number. This is perfectly appropriate since 
Sc(q) is related to the intensity of quasi-elastically scattered radiation. The 
radiation beam samples only a fraction of the system volume, and in this 
subvolume the number of particles, while macroscopically large, fluctuates. 

To derive the compressibility equation, we need thus the definition of 
g( r) in the grand canonical ensemble. For N finite and fixed, we know 
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from Eq. (3. 7) that 

p2gN(r) = N(N- 1) J dr3 · · · rNPN(rN) 

N(N- 1) J dr3 · · · rNPN(rN) ~ J dr1dr2 8 (r- r12) 

N(N- 1) 1 \ N ) V (6(r- r12)) N = V I: 6(r- rij) (3.40) 
~#J N 

where (- · ·) N denotes the canonical (i.e., fixed N) ensemble average. The 
canonical 9N(r) has been formulated by the most right equality in terms of 
an ensemble average invoking Dirac 6 functions. Next, to obtain the grand­
canonical g( r), we merely need to replace the canonical average by the grand 

canonical one, denoted as ( · · · ) gc: 

((· · · )) N = J drN PN(rN)(· · ·) --+ ((· · · ))9c := L P(N)((· · · )) N. (3.41) 
N 

We have introduced here the grand canonical probability, P(N), of finding 
a system with exactly N particles. The grand-canonical pair distribution 

function is thus defined as 

(3.42) 

For finite and fixed N, it follows from Eq. (3.8) that 

J N(N- 1) 
p2 dr 9N ( r) = V . (3.43) 

For an open system this leads to 

zJ (N(N- 1))gc- (N)~c 
p dr [g( r) - 1] = V V 

= p [(N2)gc- (N)~c - 1] (3.44) 
(N)gc 

with p = (N) gc/V. The variance of the number fluctuations in an open sys­
tem is related to the isothermal compressibility through the thermodynamic 

relation 

(3.45) 
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This completes our derivation of the compressibility equation. There is 
no contradiction between the compressibility equation and the canonical 
ensemble result in Eq. (3.9). On first sight the latter might suggest that 
limq--+0 Sc(q) = 0 is exactly valid. However, Eq. (3.9) applies only to a closed 
system with zero particle number fluctuations. Notice further, for N and V 
finite and fixed (at given density p), that physically allowed wave numbers 
are restricted to q > v- 113 : it makes no sense to consider particle density 

fluctuations of wave lengths ("' q-1) larger than the system size. The ther­
modynamic limit of a macroscopic system should be performed first, then 
the limit q -+ 0. 

The particles of a liquid near the triple point of the gas-liquid-solid co­
existence are densely packed such that XT is very small. Furthermore, the 
compressibility is nearly zero for a classical crystal near T = 0, since there 
are hardly any vibrations of the atoms around their equilibrium positions. In 
contrast, XT diverges at the critical point which is the terminal point of the 
gas-liquid coexistence line. The divergence is due to a long distance tail in 
h(r) which causes the phenomenon of critical opalescence observed in light 
scattering studies near critical points. We will study critical opalescence in 
Sec. 4.2. As a summary, we note 

{ 

0, fluid near triple point, 
XT ,...._ 
id "' 0, ideal crystal, 
XT 

oo, fluid at critical point. 

(3.46) 

Special care is needed for the case of state-dependent effective pair poten­
tials u(r) = u(r; p, T). Potentials of this type occur for liquid mixtures in the 
process of tracing out the particle degrees of freedom associated with all but 
a single component. The liquid mixture is hereby mapped onto an equivalent 
system of pseudo-particles governed by an effective state-dependent pair po­
tential. An example of such a one-component reduction is given in Sec. 5.2, 
for the case of charged colloidal particles, with a resulting effective pair po­
tential as quoted already in Eq. (2.3). In case of a state-dependent u(r), the 
energy and pressure equations must be generalized, in particular, to 

00 

3 1 J 8 E = 2NkBT + Nuo(p) + "2 pN dr47rr2 g(r) 
813 

(f3u(r)), (3.47) 

0 
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and 

00 

p = pk8 T + p2 du;~p) -
2
; p2 J dr r2 g(r) (r! -3 p :p) u(r). (3.48) 

0 

Here, u0 (p) is a structure-independent free energy contribution, called volume 
energy, which depends on the average density of pseudo-particles. The volume 
energy is a consequence of the one-component reduction. It may significantly 
influence, e.g., the therrr10dynamic properties of charge-stabilized dispersions 
in the limit of low added salt concentrations. For an interesting derivation of 
the effective pair potential and volume energy of charged colloids based on 
the analogy between charge-stabilized colloidal dispersions and liquid metals 
the reader is advised to consult [7] and [8]. 
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Chapter 4 

Ornstein-Zernike integral equation 
methods 

We proceed to discuss theoretical methods which allow to calculate the g( r) 
and Sc(q) of dense liquids from a given pair potential. All these methods are 
based on the so-called Ornstein-Zernike (OZ) equation, initially introduced 
by Ornstein and Zernike (1914) in their investigations of critical opalescence 
in near-critical liquids. The OZ equation introduces the direct correlation 

function, c(r ), as a very useful concept. Closed integral equations determin­
ing g(r) can be derived from the OZ equation, when c(r) is additionally 
involved in some physically appealing approximation to g( r) and u( r). These 
additional relations are known as closure relations. We will introduce various 
closure relations, and discuss their merits and shortcomings. 

4.1. Ornstein-Zernike equation and direct correlations 

The Ornstein-Zernike equation of a homogeneous and isotropic system is 
given by 

(4.1) 

It introduces the direct correlation function, c(r), as a new function and can 
be viewed as the definition of c( r) in terms of the total correlation function, 

h(r) = g(r)- 1, of two particles a distance r = r12 apart. Equation (4.1) can 
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be recursively solved for h(r12) to give 

h{r12) = c{r12) + p J dr3 c(r13)c(r23) 

+ p2 J dr3 dr4 c{r13) c(r24) c(r34) + O(c4). {4.2) 

This leads to the following physical interpretation of the OZ equation: the 
total correlations between particles 1 and 2, described by h(r12), are due in 
part to the direct correlations, c(r12), of these particles but also to an indirect 
correlation propagated by direct correlations via increasingly large numbers 
of intermediate particles. 

Once information is available about c( r) in form of a closure relation in­
volving u( r), the OZ equation can be viewed also as a closed integral equation 
for h(r). Some information on c(r) derives from Eq. (4.1) in the low-density 
limit p---+ O"where c(r)---+ h(r). With Eq. (3.13) follows then 

c( r) ---+ f ( r) for p ---+ 0 , (4.3) 

where 
f(r) := e-f3u(r) - 1 (4.4) 

is called a Mayer-f function. It follows then that 

c(r) = -{3u(r) (4.5) 

for r---+ oo. Without proof we note that the long-distance asymptotic result 
( 4.5) holds true for a wide class of pair potentials even at finite densities. 
The range of c(r) is thus comparable with that of u(r), and the fact that 
h( r) is generally longer ranged than u( r) can be ascribed to indirect cor­
relation effects. One word of warning: we refer here and in what follows to 
one-component liquids of electrically neutral particles. Ionic fluids must be 
distinguished from neutral fluids in that the effect of screening (cf. Sec. 5.2) 

in such systems is to cause h( r) to decay exponentially at large r, whereas 
c(r) still has the range of the infinite Coulomb potential and therefore decays 
as r-1. In principle, ionic liquids consist of at least two charged components 
of opposite sign to enforce overall charge neutrality. 

To relate c(r) to Sc(q), we slightly rewrite the OZ equation as 

h(r) = c{r) + p j dr' c{lr- r'l) h{r') (4.6) 
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using r = r12, r' = r23 and lr- r'l = r13· Fourier transformation of both 
sides of the OZ equation leads to 

or 

h(q) = c(q) + pc(q) h(q) 

ph(q) = pc(q) ' 
1- pc(q) 

(4.7) 

(4.8) 

where c(q) is the three-dimensional Fourier transform of c(r). Noting that 
Sc(q) = 1 + ph(q), we obtain Sc(q) in terms of c(q): 

1 
Sc( q) = 1 ( ) ~ 0 , - pc q 

(4.9) 

from which we learn that p c( q) ::; 1. 

In the derivation of Eq. (4.7), we have employed the convolution theorem 
of Fourier transformation theory. The convolution (german: "Faltung"), !1 * !2, 
of two integrable functions !1(r) and !2(r) is defined as 

(h * h)(r) := j dr' !J(r')h(r- r') = j dr' h(r')!J(r- r'). ( 4.10) 

The convolution theorem states that 

J dreiq·r (!J * h)(r) = !J(q)f2(q) ( 4.11) 

i.e. the Fourier transform of the convolution of two functions is equal to the 
product of their Fourier transforms. 

Using Eq. ( 4.9), we finally obtain the compressibility equation in terms 

of c(q): 
00 

k ~ = 1- pc(q ~ 0) = 1- 47rpfdrr2 c(r). 
P B XT 

( 4.12) 

0 

4.2. Theory of critical opalescence 

In the following, we explore the behavior of g( r) near a critical point. 
Consider a one-component system with an attractive part in the pair poten­
tial, like a Lennard-Jones-type system (say, argon) or a suspension of sticky 
colloidal spheres. For a purely repulsive u( r) like the hard-sphere potential, 
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there is only one fluid phase and thus there is no liquid-gas critical point in 

the one-component case. However, a critical point of a liquid-gas-type demix­

ing transition may occur in two-component, size-asymmetric dispersions of 

colloidal hard spheres due to the depletion attraction effect discussed earlier 

(cf. Fig. 3.2). 

p 

v T 
FIGURE 4.1. Schematic p- V and p- T phase diagrams of a Lennard--.Jones 
system (argon). 

Schematic p- V and p- T phase diagrams of a Lennard-Janes system 

are displayed in Fig. 4.1. The gas-liquid coexistence line in the p- T diagram 

terminates in a critical point at the critical temperature Tc and pressure 

Pc· It is the location of a continuous (i.e., 2nd order) phase transition. On 

approaching the critical point along the coexistence line, the (density-) dif­

ference between liquid and gas phases ceases to exist. At the critical point, 

strong and long-living density fluctuations occur (cf. Eq. (3.45)) such that XT 

becomes arbitrarily large in the thermodynamic limit (cf. Fig. 4.1): 

( ap) = 0 i.e. XT = oo. 
av T 

According to Eqs. (3.38) and ( 4.9), 

( 4.13) 

lin1 Sc(q) = 1 + pfdrh(r) = ~ ) ---> oo for T---> Tc, (4.14) 
q-+O 1 - pc q ~ 0 

which means that Sc(q) becomes very large for small q as the critical point 

is approached. Then, regions of larger and smaller densities develop. As the 

size of these regions approaches the wavelength of visible light, there is in 

fact so much scattering that the fluid appears cloudy or opalescent. This 

phenomenon is therefore called critical opalescence. It is due to the occurrence 
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of long-range spatial correlations between particles in the vicinity of a critical 
point such that the volume integral over h( r) diverges in the limit of an 

infinite volume. As T ~ Tc, 

00 

c(q _, 0) = 47T jdr r 2 c(r) _, ~ 
0 

(4 .15) 

which means that, contrary to h(r) and g(r), c(r) remains short-ranged with 
finite second moment. 

Since c(q) is well behaved at Tc, we assume that it can be expanded 
in a truncated Taylor series around q = 0 up to O(q2). Using sin(x)/x ~ 
1- x2 /6 + O(x4 ), c(q) is thus approximated, for small q, by 

00 

pc(q) = 47rp rdr r 2 sin(qr) c(r) =co- C2Q2 + O(q4 ) 
j' qr 
0 

with expansion coefficients 

00 

41Tp j dr r 2 c(r) _, 1 for T _, Tc, 

0 
00 

c2 = 
2
; p j dr r 4 c( r) . 

0 

(4.16) 

( 4.17) 

( 4.18) 

We restrict here our attention to small q and thereby to large distances r. 

Note that co= pc(q = 0) :::; 1. Substitution of this truncated expansion into 
Eq. ( 4.9) then gives 

1 1 1 
Sc(q) ~ 1- CO+ C2 q2 = C2 ~-2 + q2 (4.19) 

as an approximation of Sc(q) for small q, more precisely for qRu << 1. This 
is the small-q approximation for the near-critical structure factor originally 
proposed by Ornstein and Zernike around 1917. The range of the interaction 
potential is denoted as Ru, and we have further introduced the correlation 
length 

.t~~2oy; ·, ·,, 
·,'-' · -,..C:-;'· ... \ 

/ ,...: ·~:· . 

by assuming the fourth moment, c2, of c( r) to exist and to bE{ $os\~.iz:~~· e~· 
With the compressibility diverging for T ~ Tc in a power-la~ fashichlt·.-;: - · 

\ t. j •) 

\ :· :!'. 
\ '- ' ,~ / 

.. , ___ ~ ~ .. -~·~~/ 

~(T) := (~) 1/2 = [c2 8(0))1/2 = (c2 X!') 1/2 
1- CO X~ 
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as XT ex (T - Tc)-1', it follows that the correlation length diverges like 

~ ex (T- Tc)-1'12 . The numerical value of the critical exponent 'Y is pre­

dicted as 'Y = 1 in a simple Landau-type mean-field approximation. How­

ever, the accepted value of 'Y for the liquid-gas transition is 1.24, as derived 

from renormalization group calculations of critical phenomena and verified 

by high-precision experiments on critical fluids [9, 10). 

Fourier inversion of the OZ approximation for Sc(q), using Eqs. (3.34)­

(3.35), gives the asymptotic form of h(r) for large pair separation r >> Ru 

1 J · 1 e-r/f. 
h(r) = (

2 
)
3 

dqe-tq·r [Sc(q)- 1) ~ -
4 
---. 

7r p 7rpc2 r 

At the critical temperature, ~ becomes infinite with 

which corresponds to 

0<: 

1 
h(r)ir=Tc rv - for r >> Ru 

r 

1 

I(q) 

1 for q << Ru- . 

FIGURE 4.2. Experimental Ornstein-Zernike plot of argon. After [llJ. 

( 4.21) 

(4.22) 

(4.23) 
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The total correlation function decays thus algebraically, and not exponen­
tially, at the critical point. 

If the OZ approximation (Eqs. ( 4.19)-( 4.23)) is valid, then 

1 1 [ -2 2] 
l(q) <X Sc(q) = C2 ~ + q (4.24) 

i.e. a plot of the reduced inverse scattered intensity against q2 should yield 
a straight line of practically constant slope, c2, and an intercept c2/~2 that 
approaches zero forT--+ Tc. Figure 4.2 shows such an experimental Ornstein­
Zernike plot for argon. It suggests that the mean-field-type OZ approximation 
is valid to good approximation at least as long as q and IT - Tel are not very 
close to zero. 

Experiments performed very close to Tc reveal in fact deviations at small q 

from the OZ approximation prediction for Sc( q). Improved modern renormal­
ization group theory calculations of critical phenomena lead to a corrected 
asymptotic scaling behavior of h(r) at Tc, given in three dimensions by [9, 10J 

( 4.25) 

or, equivalently, 

(4.26) 

with a small but nonzero critical exponent TJ. The accepted theoretical value 
for TJ is 0.04. The reason for the failure of the OZ approximation very close 
to Tc is that, by assuming a truncated small-q expansion of c( q) to hold, one 
does not account for the full spectrum of correlation fluctuations existing 
at all length scales. We finally remark that the liquid-gas transition at Tc 

belongs to the same universality class of second-order phase transitions as 
the ferromagnetic-paramagnetic transition in uniaxial ferromagnets ( cf. the 
three-dimensional Ising model). All members of the same universality class 
show the same critical exponents. 

4.3. Various closure relations 

After having explored the long-distance behavior of g(r) in a near-critical 
liquid, we discuss now various closure relations which express c( r) approxi­

mately in terms of h( r) and a given pair potential u( r). These relations, and 
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a deeper understanding of the meaning of c( r), can be obtained by diagram­
matic and density functional derivative methods. We take here a pragmatic 
point of view and establish the closure relations most simply using plausi­
bility arguments. In combination with the OZ equation, the closures lead to 
closed integral equations for g(r). These integral equations have been found , 
in comparison with computer simulation results and scattering data, to be 
most useful in calculating the full r-dependence of g( r) and thermodynamic 
properties of dense liquids. 

For a system with a hard-core excluded volume part in u(r), any closure 
relation should be consistent with the exact condition 

h(r<a)=-1, i.e. g(r<a)=O, ( 4.27) 

which states that two spheres of hard-sphere diameter a can not interpene­
trate, and the asymptotic result 

c(r) = -{3u(r), for r ~ oo (4.28) 

valid for a wide class of pair potentials. 

Mean-spherical approximation (MSA) 

The exact asymptotic form of c( r) forms the basis of the so-called mean­
spherical approximation, first introduced into liquid state theory by Lebowitz 
and Percus (1966). In MSA, c(r) is assumed to be given approximately by 
the closure relation 

c(r) ~ -{3u(r) (4.29) 

for all non-overlap distances r > a. Together with Eqs. (4.27) and (4.29), 
the OZ equation ( 4.6) becomes a linear integral equation determining g( r) 

for r > a, and c( r) for r < a. The most attractive feature of the MSA 
closure, as compared to other ones, is that analytic solutions exist, even 
in the many-component case, for various pair potential models, namely for 
the hard and sticky hard-sphere potentials, the square well potential, the 
Coulomb potential, attractive and repulsive Yukawa-type potentials, and for 
the dipolar hard-sphere potential. These potentials are of particular interest 
for molten salts, electrolyte solutions and in colloid science. No analytic MSA 
solution exists for the Lennard-Janes potential. 

While the MSA is well suited for short-range attractive and repulsive 
potentials, it can predict non-physical negative values for g(r) close to contact 
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distance in case of dilute systems of strongly repelling particles. At very low 

density (more precisely, small volume fractions <I>), the MSA predicts that 

g(r) = 1 + c(r) + C'J(<I>) ~ 1- {3u(r) + C'J(<I>), r >a, (4.30) 

with a negative g(r) for {3u(r) > 1. This wrong prediction should be con­

trasted with the exact zero-density form of g(r) given in Eq. (3.13). The vol­

ume fraction <I> = ( 1r /6)pa3 is defined as the fraction of the system volume 

filled by the spherical particles. 

Rescaled MSA 

For fluids of (colloidal) particles, where the physical hard core is masked 

by strong and long-range repulsive forces, there exists an improved variant of 

the MSA which preserves the positive semi-definiteness of g(r). This variant 

is called the rescaled MSA (Hansen and Hayter, 1982). It is based on the fact 

that the g( r) of such systems is continuous at all distances r. Moreover and 

most importantly, two particles in these systems are virtually never closer to 

each other than a certain distance a' > a, so that g( r) ~ 0 for r < a'. 
In RMSA, the actual system is replaced by a fictitious system consisting 

of particles of enlarged diameter a' > a, at the same number density p and, 

for r > a', with the same pair potential u(r) than the original one. The 

g(r) 

2r----------------------------

20 30 

r/cr 

<I> = 1.1 . 10"" 
0=50nm 

- RMSA-g(r) 
• MC-g(r) 

50 

FIGURE 4.3. Radial distribution function of a charge-stabilized Yukawa-type dis­
persion. Comparison between RMSA-g(r) and Monte Carlo computer simulation 
results. After [3J. 
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(density-dependent) effective diameter, a', is determined from · the continuity 
of g( r) at r = a', by demanding that 

g(r =a'; p, <I>')= 0, (4.31) 

with g(r) calculated in MSA for a larger rescaled volume fraction <I>' = 
<I>( a' /a) 3 > <I>. The RMSA-g(r) is positive semi-definite since the volume 
fraction, <I>', of the fictitious system is so much larger than <I> that Eq. ( 4.30) 
does not apply any more. 

Figure 4.3 includes the RMSA-g( r) for a dilute aqueous suspension of 
highly charged polystyrene spheres interacting by the Yukawa-type DLVO 

potential of Eq. (2.3). The charge number, ZRMSA = 257, employed in the 
RMSA calculation has been selected such that the height of the principal 
peak of the RMSA g(r) is coincident with that of the "exact" g(r), generated 
by Monte Carlo (MC) computer simulations using a smaller charge number 

ZMc = 205. Since ZRMSA > ZMc, the RMSA underestimates the structural 
ordering in systems of strongly correlated particles. However, once Z has been 
adjusted to fit the actual peak height, the overall shape of g( r) is remarkably 
well predicted by the semi-analytical RMSA solution. The RMSA has been 
extended to multi-component systems of mutually repelling Yukawa particles 
( cf. Ref. [3]). The predictions of the RMSA for the effective charge number 
Z can be further improved by correcting for the penetrating background of 
(uniform) microion charge density which maintains electroneutrality [12). 

Perc us-Yevick (PY) closure relation 

Aside from the linear MSA, there exist a variety of non-linear integral 
equation schemes. The Percus-Yevick approximation (Percus and Yevick, 
1958) is among the most popular ones. To introduce the PY closure relation, 

we reformulate the OZ equation as 

c(r)=g(r)- [l+p j dr'c(r'){g(lr-r'J)-1}] =:g(r)-9ind(r). (4.32) 

The term in brackets, 9ind ( r), describes the indirect part of the pair correla­
tions. Since g(r) = exp(-,Bw(r)), one can approximate 9ind(r) by 

9ind(r) ~ e-.B[w(r)-u(r)J' (4.33) 

or, equivalently, c( r) by 

c(r) ~ g(r) [1- e.Bu(r)] = g(r)- y(r) = f(r)y(r). (4.34) 
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This is the PY closure relation for c( r) . It is an exact relation up to first order 

in the density, as one can show from a density expansion of h( r) and c( r) 
based on the iterated OZ Eq. ( 4.2). We have introduced here the so-called 

cavity function, y(r), defined as 

y(r) := el3u(r) g(r). (4.35) 

Contrary to g( r), which for hard spheres has a jump discontinuity at r = a 
wholly contained in the factor exp[-.Bu(r)], y(r) has the useful property of 

being continuous at all r. It agrees with g( r) for all r where u( r) = 0. In PY 
approximation, c( r) is thus assumed to be zero whenever the pair potential 

vanishes. The continuity of y(r) is easy to see, using Eq. (3.7), and noting 

that 

(4.36) 

for pairwise additive forces , with the pair { i, j} = {1, 2} omitted from the 

sum. Hence y(r) is a smooth and non-zero continuation of g(r) into the 

overlap region ("cavity") r < a. 

Substitution of Eq. (4.34) into the OZ equation gives the non-linear PY 
integral equation 

y( r) = 1 + p J dr' [ e -iJu(lr-r'l) y( lr - r'l) - 1] [ e -llu(r') - 1] y( r') ( 4.37) 

for y(r) or, likewise, g(r). This equation can be solved analytically in three 

dimensions for the important case of hard spheres (cf. Sec. 4.4), and by nu­

merical methods for arbitrary pair potentials. 

Hypernetted-chain (HNC) approximation 

Another frequently used approximate integral equation scheme is the 

hypernetted-chain approximation (van Leeuwen et al., 1959). The name 

stems from its diagrammatic derivation. The HNC closure relation in terms 

of c(r) is 

c(r) ~ -.Bu(r) + h(r)- ln [1 + h(r)] = h(r) -ln y(r). ( 4.38) 

Exponentiation gives 
g(r) ~ e-{3u(r)+h(r)-c(r) I ( 4.39) 
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showing that in HNC approximation the positive definiteness of the exact 
g(r) is preserved at any density. Since from Eq. (4.38) 

c(r) ~ -f3u(r), r ~ oo ( 4.40) 

the HNC approximation leads further to the correct asymptotic behavior of 
c( r) for arbitrary p. On the other hand the PY -c( r) gives the correct long­
distance behavior in general only for small densities. 

The HNC closure combined with the OZ equation leads to 

In [ el1u(r) g(r)] "" h(r) - c(r) = p J dr' c(]r- r'i) h(r'). ( 4.41) 

Introducing the cavity function, Eq. (4.41) can be re-expressed as 

In [y(r)J = p J dr' h(r') ( -,6u(]r- r'l) + h(]r- r'i)-lng(]r- r'J)] 

( 4.42) 
This is the non-linear HNC integral equation for g(r) . It can be solved only 
numerically even for hard spheres. Like in the PY approximation, the HNC 
approximation predicts g( r) correctly to first order in the density. 

The PY is quite successful for hard spheres but, contrary to the MSA, does 
not work so well for systems with attractive tails. The HNC is complementary 
to the PY in the sense that it is unsatisfactory for hard spheres but appears 
to account satisfactorily for the effects of soft cores and, in particular, for 
long-range repulsive potential tails as given in ionic fluids and dispersions of 
Yukawa particles. All three integral equation schemes have severe deficiencies 
near a critical point. 

HNC results for a Yukawa system ( cf. Eq. (2.3)) of moderately charged 
colloidal particles (Z = 107) of diameter a = 160 nm and fixed screening 
parameter "'a in an organic solvent ( E = 10) are shown in Fig. 4.4. The 
charge Z was determined from a fit of the HNC peak height of Sc(q) to the 
experimentally given one. There is then rather good agreement between the 
theoretical and experimental Sc( q). The deviations at small q and around 
the minimum can be attributed to polydispersity effects, that is to a spread 
in the experimental particle sizes. With increasing volume fraction <P, there 
is increasing ordering visible through more pronounced undulations in g( r), 
and the system becomes less compressible (decreasing S(O)). The particles 
avoid each other as much as possible because of the strong and longer-ranged 
electrostatic repulsion so that g( r < 1.5a) = 0. In monodisperse systems with 
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FIGURE 4.4. HNC radial distribution function g(r) at various volume frac­
tions (left), and static structure factor S(q) = Sc(q) (right) of charge-stabilized 
dispersions of silica spheres. Open circles: light scattering results of Sc(q). Af­
ter [13]. 
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long-range repulsion, the position, qm, of the principal peak of Sc(q) increases 
with volume fraction approximately as qm r-v <t> 113 . Away from a critical point, 

the location, rm, of the main peak of g(r) is approximately related to qm by 

27r 
( 4.43) 

Random phase approximation (RP A) 

Suppose we can separate the pair potential of a liquid system into a short­
range reference part, uo(r ), and a long-range perturbational part, Ut(r) ( cf. 
Fig. 4.5), with 

u(r) = uo(r) + Ut(r). ( 4.44) 

Let us further assume that the direct correlation function , eo ( r), of the ref­
erence system (where u = uo) is known exactly or to a good approximation. 
For a reference system of hard spheres, e.g., we could use the analytic PY 
solution for eo(r) derived in Sec. 4.4. The true direct correlation function, 
c( r), of the system can then be approximated by 

c(r) ~ eo(r)- f3ut(r) , r > 0 ( 4.45) 

which is asymptotically correct at long pair separations. For historical rea­

sons, this closure relation is referred to as the random phase approximation. 
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FIGURE 4.5. Pair potential consisting of hard-sphere reference part, uo(r), and a 
longer-ranged, attractive perturbational part u1(r) . 

In this approximation one obtains 

1 1 
Sc(q) = 1- pc(q) ~ 1- pco(q) + {3pul(q) · ( 4.46) 

The static structure factor is thus expressed in terms of the structure factor, 

S~ ( q), of the reference system and the Fourier transform, 

00 

Ul(q) = J dreiq·r ul(r), 

0 

( 4.47) 

of the perturbational part of u(r). Eq. (4.46) can be rewritten in the 

mnemonic form 
1 1 

Sc(q) ~ Sg(q) + f3pul(q). ( 4.48) 

The RPA is the most simple perturbation theory for fluid microstructures, 

usually suited only for small wave numbers. Its multi-component extension 

has been successfully used for the calculation of monomer-monomer structure 

factors of polymer blends [14). For an ideal gas as reference system, one has 

co(r) = 0 and S~(q) = 1. The RPA reduces then to the MSA for point­

like particles, referred to in the literature as a version of the Debye-Hiickel 

approximation. One should notice that the perturbation must be sufficiently 

weak, or the density sufficiently low, to ensure that f3pul(q)S~(q) > -1 with 

Sc(q) > 0. Furthermore, the RPA does not ensure that g(r <a)= 0 in case 

of a hard-sphere reference system. This non-physical feature of the RPA is 

related to an ambiguity in the choice of the perturbation potential Ut ( r) for 

r <a in Eq. (4.47). The true g(r) should not depend on this choice. 

In the optimized random phase approximation (ORPA), u1(r) is extended 

into the hard-core regime r <a such that g(r <a)= 0. While the ORPA is 
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a considerable improvement of the RPA, there is a price to pay in form of a 
much larger numerical effort to calculate Be( q). 

4.4. Percus-Yevick solution for hard spheres 

Hard spheres serve as a reference system in the theory of uncharged liq­
uids, as an ideal gas does in the theory of dilute gases, and a harmonic solid 
in solid-state physics. The PY approximation leads to an integral equation 
for the hard-sphere cavity function y(r) which can be solved analytically. 

The solution proceeds as follows. For hard spheres, 

c(r) = g(r) [ 1- e,Bu(r)J = 0, r >a ( 4.49) 

in PY approximation, i.e. the hard-sphere direct correlation is approximately 
set equal to zero for non-overlap distances. As a matter of fact, the true c( r) 
has a small but non-vanishing tail for r > a. As can be noticed here, the 
PY closure becomes identical to the MSA closure ( cf. Eq. ( 4.29)) in case of 
a hard-sphere fluid. 

The hard-sphere cavity function reads 

y(r) = e,Bu(r)g(r) = { g(r), 
-c(r), 

r >a, exact, 

r <a, PY aproximation, 
(4.50) 

where the lower equality follows from the PY closure in Eq. (4.34). It follows 
that c(r) and g(r) have a jump discontinuity at r = a, with g(r = a+) = 
-c(r =a-), since y(r) is continuous everywhere. 

Upon inserting the hard-sphere potential into Eq. (4.37), one obtains a 
quadratic integral equation for y(r) of the form 

y(r)=l+p jdr'y(r')-p j dr' y(r') y(lr- r'l). ( 4.51) 

r'<u r' <a, lr-r'l>u 

It is required to solve this integral equation within r < a for c(r) = -y(r), 
since c(r > a) = 0 is known already. Following Wertheim [15], we use a 
third-order polynomial 

(4.52) 

as a trial solution of c(r <a), with yet unknown density-dependent expansion 

coefficients { ai}. This ansatz is suggested from the low density form of c( r), 
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which is a third order polynomial in case of hard spheres. For a proof of 
this statement use Eq. ( 4.2) to show that to first order in density (volume 
fraction <I>), y( r) is given by 

y(r) = 1 + p J dr'f(r') J(lr- r'l) + O(p2
). ( 4.53) 

For hard spheres, the Mayer-f function is f ( r) = -1 for r < a and zero 
otherwise. The convolution integral in Eq. ( 4.53) is then equal to the volume 
of overlap of two spheres of equal radii a with centres separated by r. As a 
consequence 

( 4.54) 

with x = r /a. The overlap volume is zero for x > 2 as expressed by the unit 
step function () ( 2 - x). Recall that the PY approximation is correct for g ( r) 
to first order in p. In using the polynomial ansatz in Eq. ( 4.52), it is assumed 
that the functional form of c(r) is the same for all volume fractions. 

The four expansion coefficients, { ai}, are determined by employing the 
continuity of y(r) and its first two derivatives at r = a. Their continuity 
follows from Eq. ( 4.51) and its first two derivatives. A fourth condition follows 
from the PY integral equation ( 4.51) evaluated at r = 0: 

y(O) = 1 + p jdr' y(r'). (4.55) 

r'<a 

After inserting Eq. ( 4.52) in Eq. ( 4.51) and making use of the four boundary 
conditions to determine the { ai}, a lengthy calculation gives the following 
PY result for the hard-sphere c( r): 

with 

c(r <a)=- [.xi (1 + ~<I>x3) +A2x] (4.56) 

,\ - (1 + 2<1>) 2 

I- (1-<J>)4' 
,\ - - 6<1> (1 + 0.5<1> )2 

2- (1- <I>)4 (4.57) 

The PY result for -c( r) reduces, for small <I>, to the correct first order density 
form of y(r) given in Eq. (4.54). 

Fourier transformation of c(r) leads with Eq. ( 4.9) to an analytic expres­

sion for Sc(q). This expression reads explicitly [3] 

(4.58) 
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where 

and 
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X(y) 

Y(y) 

1 - 12 4> (A /1 (y) + B f2(y)] 

-124>[Af3(y)+Bf4(Y)], 

JI(y) 

1 + 24> 
A= (1- 4>)2' 

y- sin(y) 
y3 

f3(Y) = f2(Y) + __!__ 
y 2y' 

B = 1 + 0.54> 
(1 - 4> )2 ' 

f ( ) 
_ cos(y) - 1 

2 y - ' y2 

f4(Y) = -yfi(Y) · 

We have introduced here the reduced wave number y = qa. 

45 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

The reduced isothermal compressibility follows in PY approximation as 

r s () (1- 4>)4 
q~ c q = (1 + 24> )2 ' 

(4.64) 

which is a monotonically decreasing function in 4>. For given analytical Sc(q), 
the hard-sphere g(r) can be determined in principle by numerical Fourier­
inversion. However, to avoid problems caused by the jump discontinuity in 
g( r), it is safer to calculate first the function !( r) := h( r) - c( r) by Fourier­
inverting !(q) = pc(q)h(q) = [Sc(q)- 1] 2 /(pSc(q)). The hard-sphere g(r) 
follows then in py approximation from g(r) = y(r) = 1 + r(r) for r > a. 
Contrary to g( r), !( r) is continuous also at r = a as one can deduce directly 
from the OZ equation. Notice here that the identity y( r) = 1 + !( r) holds 
true only within PY approximation. 

While the full PY -g( r) of hard spheres can not be represented analytically, 
one can derive closed expressions for the contact values of g(r) and its first 
derivative from the continuity of y(r) and its derivative at r =a: 

and 

- + - 1 + 0.54> 
g(r- a ) - (1- 4>)2' 

dg 
a-(r=a+)= 

dr 
4.54> (1 + 4>) 

(1-4>)3 

( 4.65) 

(4.66) 
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An analytic expression for the Laplace transform of rg( r) has been derived 

by Wertheim (15), viz. 

00 - j exp{ -s} [A + Bs] 
G(s) = dxexp{-sx}xg(x) = s2 [1-12<I>(A</>2(s) + B¢1(s))] ( 4.67) 

0 

with </>1(s) = (1-s-exp{-s})/s2 and ¢2(s) = (1-s+s2/2-exp{-s})/s3
. 

As seen, G(s) decays exponentially for large s, and it diverges at s = 0 
like s-2. The pole at the origin originates from g( r ---+ oo) = 1. The static 
structure factor follows directly from Eq. ( 4.67) by noting that 

24 <I> -
Sc(Y) = -- ~ {G(s = iy)}. 

y 
(4.68) 

The analytic form for G ( s) is useful in evaluating the specific integrals, 

00 00 

j dx 9~~) exp{-sx} = j duG(u) (u:t)n, (4.69) 

1 8 

and 
00 

J dn 
dxg(x)xn+ 1 exp{-sx} = (-1)n dsn G(s), (4.70) 

1 

for n = 0, 1, . .. and s ~ 0. These integrals are needed when thermodynamic 
properties like the isothermal compressibility (cf. Eq. (3.38)), and diffusion 
coefficients ( cf. Chapter 9) are calculated. 
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FIGURE 4.6. Percus-Yevick direct correlation function {left) and radial distribu­
tion function (right) of hard spheres. 

s 
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PY results for the hard-sphere c( r) and g( r), and for the static structure 
factor, are shown in Figs. 4.6 and 4.7, respectively, for various volume frac­
tions. For <I> = 0.1, we further show the cavity function with y(r) = -c(r) 
for r < a. The PY approximation provides a quite good representation 
of the true hard-sphere Sc(q) and g(r) for volume fractions <I> :::; 0.35. At 
larger values of <I> it underestimates the contact value of g( r), as can be seen 

3 .---------------, 

2.5 

S(q) 2 

1.5 

0.5 0.1 , 

0 ~·~----'" 
0 5 10 15 

qcr 

FIGURE 4.7. Percus- Yevick static structure factor S(q) = Sc(q) of hard spheres. 

g(r) 

FIGURE 4.8. Hard-sphere g(r) for a volume fraction <I>= 0.49 close to the freezing 
transition. Comparison between PY (solid line) and MC computer simulations 
(filled circles) . 
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from Fig. 4.8 in comparison with Monte Carlo (MC) computer simulation 
results. The PY approximation further fails to predict the liquid-solid freez­
ing transition which occurs for hard spheres at <I> f = 0.49. This failure is 
not restricted to the PY approximation: none of the Ornstein-Zernike in­
tegral equations discussed in this lecture can, per se, predict a first-order 
liquid-crystal phase transition .. 

Verlet-Weis (VW) correction for hard spheres 

Based on the analytic PY solution for hard spheres, Verlet and Weis [16) 
have provided a simple prescription to obtain results for the hard-sphere g(r) 
and S(q), which are in very good agreement with computer simulation results 
up to the freezing volume fraction. 

For given physical diameter a and volume fraction <I>, the Verlet-Weis­

corrected g( r) is determined, for x = rIa > 1, by 

-(J..L-l)x 

gvw(x; <I>)= gpy(x a'; <I>')+ A e cos [J.L(x- 1)], 
a x 

( 4. 71) 

with a rescaled volume fraction 

<I>' = <I>(1 - _!_<I>) 
16 ' 

( 4.72) 

and a rescaled diameter a' = (<I>' I <I>) 113 a < a. Moreover, 

A(<I>') = 3<I>'
2 
(1- 0.7117 <I>'- 0.114 <I>'

2
) 

. 4(1 - <I>') 4 
(4.73) 

and 
I 24A(<I>') 

J.L(<l>) = <I>'gpy(1+;<I>') (4.74) 

The PY hard-sphere contact value as quoted in Eq. ( 4.65) is evaluated at the 
rescaled volume fraction. 

Equation ( 4. 72) for the rescaled volume fraction has been obtained from 
minimizing the integral over lg(rla; <I>)-gpy(rla'; <I>')I for an interval ranging 
from r = 1.6 a to r = 3 a. Thus, the region close to contact is ignored. Here, 
g(r) is the 'exact', i.e., computer-simulated radial distribution function. In 
Eq. (4.71), the amplitude A of the exponentially decaying and thus short­
range correction term added to g py (rIa'; <I>'), has been determined from 
demanding that 

gvw(a+; <I>)= gpy(ala'; <I>')+ A= gcs(a+; <I>), (4.75) 
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where 

( 4.76) 

is the contact value of g( r) derived from the accurate Carnahan-Starling 
equation of state in Eq. ( 4.81 ). The exponent JL was determined from enforc­
ing the isothermal compressibility in the Verlet- Weis prescription to be equal 
to the Carnahan-Starling expression, 

(4.77) 

(4.78) 

The static structure factor in the Verlet-Weis prescription follows from a 
Fourier-sine integration of Eq. (4.71). It is nearly sufficient to integrate over 
the PY-part of 9vw(r) only, i.e. srw (qa; ~) ~ srY (qa'; ~'),since the near­
contact region contributes only little to the Fourier integral. 

3.5 

3 

a 2.5 

~ 
u 

CZ) 2 

1.5 

I 
0 

1 + 0.644 <t> gcs<o+;<t>) -­
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FIGURE 4.9. Hard-sphere principal peak of Sc(q) versus <1>, as predicted in PY 
and in the Verlet-Weis scheme. Solid line is drawn according to Eq. (9.75). 

In Fig. 4.9, the principal peak height, Sc(qm), of the structure factor is 
plotted versus ~. The PY approximation overestimates the peak height near 
the freezing concentration, but the agreement with the Verlet-Weis corrected 
scheme is good for ~ < 0.42. The solid line is the result of an accurate 
parametrization for the peak height given in Eq. (9.75). See the text following 
this equation for a discussion of the Hansen-Verlet freezing criterion (17). 
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4.5. Thermodynamic consistency and Rogers-Young 
scheme 

One important reason for the failure of the PY approximation at higher 
densities is its thermodynamic inconsistency: due to the approximate nature 
of the PY-g(r), the thermodynamic routes in Eqs. (3.36-3.38) give pressure 
curves, p(p), which become increasingly different from each other with in­
creasing density. The results for the thermodynamic properties obtained via 
the three routes are in general different for all OZ integral equations dis­
cussed so far. This lack of thermodynamic consistency is a common feature 
of approximate theories. 

To illustrate the thermodynamic inconsistency of the PY approximation 
for the case of hard spheres we integrate the compressibility in ( 4.64) with 
respect to <P. This yields the compressibility equation of state 

(4.79) 

Using instead the pressure (or virial) equation of state, Eq. (3.37), one obtains 

{3pv - 4 n,. ( - +) - 1 + 2<P + 3<P2 
p -1+ '*'gr-a - (1-<P)2 , ( 4.80) 

which agrees with the pressure, pc, derived from the compressibility equation 
only up to third order in the volume fraction. The pressure Eq. (3.37) is 
referred to also as virial equation of state, since it can be derived from the 
virial theorem of classical mechanics. The first equality in Eq. ( 4.80) between 
pressure and contact value of g( r) is an exact statement for hard spheres. 

The energy equation, Eq. (3.36), can not be used to derive the excess 
pressure, since the internal energy of hard spheres is of purely kinetic origin. 

The PY and HNC compressibility and pressure (virial) equation of states 
for hard spheres are plotted in Fig. 4.10, in comparison with the "exact" 
pressure curve obtained from computer simulations. The exact hard-sphere 
equation of state is very well described in the fluid regime (<P ~ 0.49) by the 
Carnahan-Starling formula 

Pes = _..!__ [! pv + ~ pc] = 1 + <P + <P
2

- <P
3 

Pid Pid 3 3 ( 1 - <P )3 
( 4.81) 

The exact pressure is bracketed by pc and pv, with increasing differences be­
tween pc and pv for increasing <P. The PY is obviously a better approximation 
for hard spheres than the HN C. 
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FIGURE 4.10. Hard-sphere compressibility and pressure (virial) equations of 
states in PY and HNC approximations. Dashed line: exact pressure curve. Af­
ter [1]. 

Rogers-Young (RY) approximation 

Rogers and Young (18] have combined the PY and HNC approxima­

tions in an integral equation scheme which removes part of their thermo­

dynamic inconsistencies. This hybrid scheme was suggested from the obser­

vation ( cf. Fig. 4.11) that computer simulation data for the structure factor 

of systems with purely repulsive pair potentials are bracketed, around qm, by 

the PY and HNC structure factors . The RY closure relation is given by 

g(r) "" cf:lu(r) { 1 + f ~r) [ ef(r)[h(r)-c(r)] - 1] } (4.82) 

with a mixing function 
f(r) = 1- e-o:r ( 4.83) 

including a mixing parameter a E {0, oo }. The closure relation is constructed 

in such a way that for 

r or a--+ 0: 

r or a--+ oo: 

f(r) --+ 0 

f(r) --+ 1 

RY--+ PY, 

RY--+ HNC . 

( 4.84) 
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g(r) 
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FIGURE 4.11. Radial distribution functions of an aqueous charge-stabilized 
Yukawa-like suspension with monovalent counterions at volume fraction <I> = 
0.2, diameter a = 50 nm, LB = 0.71 nm , Z = 100, and number density 
p,, = n .,/2 = 415 J.LM. Reduced screening parameter: Ka = 4.25 with (Ka)2 = 
(LB/a) [24ci>IZI + 81rp.~a3 ] . Comparison of the RY, HNC, and PY approxima­
tions with MC results. After I19J . 

Hence the RY y(r) reduces to its PY value for r ~ 0 and to its HNC value for 
r ~ oo. This is consistent with the observation that whereas the HNC closure 
is correct at large separations, the PY approximation is expected to be more 
reliable at small r, at least for strongly repulsive potentials. The parameter a 

determines the proportion in which HNC and PY are mixed at intermediate r. 

Its numerical value follows from requiring partial thermodynamic consistency 
by demanding the equality, xj = xj,, of the compressibilities obtained from 
the pressure and compressibility equations od state. Since xr is directly 
related to the long-wavelength limit of the static structure factor, one may 
expect that the RY approximation will provide reliable results for Sc(q) at 
finite q. 

The RY mixing scheme has been found to perform very well for three­
dimensional liquids with purely repulsive pair potentials. Its predictions of 
the pair structure are less precise for two-dimensional systems. Monolayers 
of charged or magnetic colloidal particles at a liquid-gas interface or between 
two narrowly spaced plates are well-studied examples of such (quasi-) two­
dimensional systems. Figure 4.11 includes a comparison of RY, HNC and PY 
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results for g(r) with Monte Carlo simulations of a three-dimensional colloidal 

dispersion of Yukawa spheres, with a pair potential as given in Eq. (2.3). 

The true (i.e., Monte Carlo) g(r) is strongly overestimated by the PY ap­

proximation, whereas the fluid microstructure is somewhat underestimated 

by the HNC approximation, and even more so when the RMSA is used (the 

g( r) of the latter is not included in Fig. 4.11). The RY approximation, on 

the other hand, reproduces the MC data rather perfectly. The suspension in 

Fig. 4.11 includes 415J.LM of added 1-1 electrolyte. Figures 4.12 and 4.13, 

respectively, show the g(r) and S(q) of a dei-ionized (i.e., salt-free) sus­

pension of charge-stabilized spheres close to the freezing transition. In this 

numerically more demanding case of strongly interacting spheres, even the 

RY scheme underestimates somewhat the oscillations in the pair distribu­

tion function. In comparison, g(r) is trernendously overestimated by the PY 

scheme (not included in the Figure). 

We observe here the ordering relations gR.flsA < gfiNc < gR.f;x :::; 9Mc < 
grpf;x, typical for a system of Yukawa-like particles. Addition of a modest 

2.5 

2 

~ 
-- 1.5 
~ 

RMSA 
HNC 
RY 

• MC 

FIGURE 4.12. g(r) of a concentrated suspension (<I>= 0.185) of strongly coupled 
charge-stabilized colloidal spheres (salt-free: p .• = 0). System parameters: a = 
125 nm, Z = 155, LB = 0.902 nm (corresponding to T = 294 K and ( = 63), 
monovalent counterions. Comparison of RY, HNC, and RMSA approximations 
with Monte-Carlo simulation results. After I20J. 
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FIGURE 4.13. Static structure factor Sc(q) corresponding to Fig. 4.12. After (20J. 

2 

1.5 

0.5 

py 
RMSA 
HNC 
RY 
MC 

0o~_.._.__.._._~~~~-L~2~~~~~-L~3~~~-L~~4. 

r/cr 

FIGURE 4.14. g(r) for system parameters as in Fig. 4.13, but with 100 J.LM added 
1-1 electrolyte. After (20J. 
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amount of 100 {LM 1-1 electrolyte to the salt-free system in Fig. 4.12 leads 
to a significant reduction in the microstructural ordering (cf. Fig. 4.14), and 
again to good agreement between the RY and MC-generated g(r). 
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Chapter 5 

Generalization to fluid mixtures 

The concept of pair and direct correlations, and the Ornstein-Zernike inte­

gral equation schemes described in Sees. 4.3-4.5, can be generalized without 

difficulty to multi-component liquids and polydisperse (colloidal) systems. 

We will discuss these generalizations in the following section. As an interest­

ing application of the many-component liquid state theory we will present a 

derivation of the effective pair potential in Eq. (2.3). This potential describes 

the screened electrostatic interaction of charged colloidal particles. 

5.1. Partial correlation functions 

Consider an atomic or colloidal liquid consisting of m components of 

spherical particles of diameters a 0 and partial number densities p0 = N 0 /V. 
We employ Greek symbols, with a = 1, ... , m, to label the m components 

which build up the liquid. The particles within each component are identi­

cal. We assume that the particle interactions can be described by pairwise 

additive forces. The following replacements 

u(r) ~ U 0 13(r ), (5.1) 

g(r) ~ 9a{3(r ), 

c(r) ~ C0 13(r), 

h(r) ~ ho/3 ( r) = 9o{3 ( r) - 1, 
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are needed for a generalization to a m.-component mixture. There are 

m( m + 1) /2 partial pair potentials 'Uo:f3 ( r), radial distribution functions 

9o:{3 ( r), total correlation functions ho:{3 ( r) , and direct correlation functions 

Co:{3(r) (with a,{3 E {1, ... ,m}) necessary to characterize the fluid mi­

crostructure. Here, Uo:{3( r) is the pair potential of two particles belonging 

to component a and {3, respectively. Furthermore, 9a{3(r) gives the relative 

conditional probability of finding a ;3-type particle a distance r apart from a 

given a-type particle. The partial pair potentials are obviously symmetric in 

the two component indices, i.e. Uo:f3 ( r) = Uf3a ( r). The remaining functions in 

Eq. (125) are also symmetric. 

The one-component OZ equation is replaced in mixtures by a set of 

m(m + 1)/2 coupled OZ equations, one for each ho:{3(r). In case of a ho­

mogeneous and isotropic liquid mixture, these OZ equations are given by 

ha13(r) = Caj3(r) + f p~ J dr' Ca~(lr - r'l) h~13(r'). (5.2) 
"Y=l 

Fourier-transformation gives the OZ equations in q-space: 

m 

h0 {3(q) = C0 {3(q) + L p"Y Co:"Y(q) h"Yf'(q). (5.3) 
"Y=l 

The total correlation function, ho:f3, between two particles of components a 

and {3 is thus written as the sum of a direct correlation part, Co:f3, and an 

indirect correlation part mediated through all other particles of components 

r = 1, ... , m with relative weight p"Y. 

Since there are m(m + 1)/2 unknown functions, Co:f3(r), in the OZ equa­

tions one needs the same number of closure relations to obtain a complete 

set of integral equations determining the partial radial distribution func­

tions. We quote here only the multi-component generalization of the MSA 

since it is used subsequently. All other integral equation schemes discussed 

previously can be generalized accordingly to mixtures. The multi-component 

MSA closure relations are 

(5.4) 

Together with the exact non-overlap conditions 

ho:{3 ( r) = -1 , (5.5) 

and the OZ equations one obtains a closed set of integral equations for ho:{3( r). 
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5.2. Effective interaction between charged colloidal parti­
cles 

Our aim is to calculate the effective electrostatic interaction between two 

charge-stabilized colloidal particles of radius a and charge Ze immersed in 

a supporting electrolyte solution ( cf. Fig. 5.1 ). For this purpose we model 

the colloidal particles, the counterions of charge Zce dissociated from the 

colloidal particle surfaces, and the salt/electrolyte ions as uniformly charged 

hard spheres dispersed in a solvent which is described as a structure-less, 

uniform continuum of dielectric constant E. This is the so-called Primitive 

Model which has been frequently used as a model for electrolytes and charge­

stabilized colloidal dispersions. It is "primitive" in the sense that the structure 

of the solvent and particle surfaces, and polarization effects are completely 

disregarded. 

• • . ··8.· ~.- . 
• • • • • • • Zce 

FIGURE 5.1. Primitive Model of charged colloidal hard spheres (macroions) of 

radius a and charge Ze plus point-like counterions of charge Zce. 

The counterions and salt ions are much smaller than the colloidal particles 

(macroions). Therefore we assume these microions to be point-like, i.e. of zero 

diameter. For the sake of simplicity and to minimize the number of particle 

components to two, only the point-like counterions will be considered for the 

time being. Overall charge neutrality requires then that 

Pl Z + PcZc = 0 . (5.6) 

Typically, IZcl = 1 and IZI >> IZcl· According to Eq. (5.3), there are thus 
three coupled Ornstein-Zernike equations 

for components 1 and 2, i.e. for the colloidal macroions of density p1, and for 

the point-like counterions of density P2 = Pc· The subscript c is used here to 

label the counterions, and not the colloidal particles. The three OZ equations 
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include information on macroion-macroion (11), macroion-counterion (12) 
and counterion-counterion (22) pair correlations. However, we are only inter­
ested here in the macroion-macroion correlations (11 ). To eliminate explicit 
reference to the counterions we define an effective one-component Ornstein­
Zernike equation for the macroions alone as 

hn(q) = Cejj(q) + PlCejj(q) hn(q). (5.8) 

By demanding h11 to be the same as in the original OZ equations, the effective 

direct correlation function, Cef f ( q), is determined by 

PcCI2(q)
2 

Cejj(q) =en (q) + 
1 

( ) . 
- PcC22 q 

(5.9) 

It is thus related to all three partial direct correlation functions. Eq. (5.8) 
is formally identical with the OZ equation of a genuinely one-component 

system. It describes the microstructure of particles 1 (macroions) immersed 
in a bath of particles of component 2 ( counterions). The counterions do not 

appear explicitly in Eq. (5.8). Their effects are hidden in CeJJ(q). 
Suppose CeJJ(q) and its Fourier-inverse, CeJJ(r), would be already known 

from Eq. (5.9). The effective pair potential, UeJJ(r), describing the interaction 
of two ("counterion-dressed") macroions follows then, at least asymptotically, 
from noting that 

lim hn (r) = lim Cef j(r) = -f3uef j(r) for r ---+ "oo" , 
P1--+0 Pl--+0 

(5.10) 

where the second equality is valid in general only at large pair distances. The 
zero-macroion-density limit is performed at the end since we are interested 
only in the effective interaction of two isolated macroions (MacMillan-Mayer 
picture). 

Our task is thus to calculate first the three partial direct correlation 
functions Caf3 from solving the coupled Ornstein-Zernike equations with ap­
propriate closure relations. Next, CeJJ(r) can be determined using Eq. (5.9) . 
We will use here the linear MSA closure for analytical simplicity. 

The direct correlation function of the point-like counterions is approxi­

mated in MSA by 
(5.11) 

where 

(5.12) 
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Using Eqs. (3.34) and (3.35), Fourier inversion gives 

2 1 
C22(q) = -41TLBZc 2 · 

q 
(5.13) 

Notice in this context that in the limit of point-like ions, or for ionic systems 
at infinite dilution, the MSA reduces to what is known in electrolyte theory as 

the Debye-Hiickel (DH) approximation. When dealing with direct correlation 
functions of charged particles, which have short-range (i.e. excluded volume) 
interaction contributions aside from the long-range Coulomb interactions, it 
is very helpful to split Co:{3(r) into a short-range part, c~{3(r), and a long-range 
Coulomb part according to 

(5.14) 

since it holds quite generally that 

(5.15) 

In this way, the colloid-counterion direct correlations are expressed as 

(5.16) 

The colloid-colloid direct correlation function is written accordingly as 

z2 
en (q) = ch (q)- 47rLB2. 

q 

Substitution of Eqs. (5.13), (5.16) and (5.17) into Eq. (5.9) results in 

Cejj(q) = cil(q) + Pc[ci2(q)]2 - 41fLB [Z + PcZcci2(q)]2 
2 

1 
2 K- + q 

(5.17) 

(5.18) 

where we have introduced the Debye-Hiickel screening length, K-- 1 , with 

(5.19) 

Hence the screening parameter is determined by the concentration and charge 
("ionic-strength") of dissociated counterions. 

The large-r asymptotic behavior of CeJJ(r) is determined by the factor 
[K-2 + q2] -l in Eq. (5.18), since ci2(q) and ci1 (q) are Fourier transforms of 
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short-range functions. Fourier inversion leads, with Eqs. (3.34) and (3.35), to 
the intermediate result 

Ceff(r) = (2~)3 J dre-iqr Ceff(q) ~ -f3g e~Kr r ___, oc (5.20) 

with a yet undetermined interaction strength g. The magnitude of g is de­
termined by the pre-factor of [1'£2 + q2]-

1 
which includes ci2(q). The effec­

tive macroion pair potential is asymptotically of the Yukawa-type, with a 

screening parameter determined by the Debye-Hiickel relation Eq. (5.19) . 

The counterions (and salt ions) distribute themselves around the macroions 
to screen the colloid-colloid Coulomb repulsion. The only approximation used 
to obtain the asymptotic result in Eq. (5.20) is the DH approximation for the 
counterion correlations c22 ( r). 

To determine g analytically we further apply the MSA to the colloid­
colloid and colloid-counterion direct correlation functions: 

cu (r) 
z2 

= -f3uu(r) = -LB-, 
r 

r >a= 2a, 

ZZc 
c12(r) = -{3u12(r) = -LB-, r >a. 

r 

(5.21) 

(5.22) 

In MSA the short-range direct correlation parts are thus zero outside the 

overlap region, i.e. ch ( r) = 0 for r > a = 2a and ch ( r) = 0, for r > a. As 
a consequence, the MSA predicts the counterion-colloid short-range direct 
correlation part to be a linear function of the colloid charge number. This 
linearity in Z is exactly valid for the true ch only in the limit of weak 
particle charges. For larger macroion charges, the MSA underestimates the 
accumulation of counterions close to the surface of a colloidal macroion. 

Using these properties of the MSA-c~.8 ( r), application of the convolution 
theorem to the second and third term on the right-hand-side of Eq. (5.18) 

shows that g ex Z 2 and 

- ( ) - 4 L F-1 { (Z + PcZcch(q))2} z2 e-""r 
Cef f r - 7r B ') 2 ex 

1'£" +q r 
r >a. (5.23) 

That CeJJ(r) ex exp(-t£r]/r holds for all r >a and not only at asymptotically 
large distances is a consequence of the approximation ch(r >a) = 0 used in 
MSA. 

So far, we have accounted only for the counterions whose number den­

sity Pc , according to Eq. (5.6), and thus 1'£ become zero when PI --+ 0. One 
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can rather easily include the effects of point-like added salt ions of number 
density Ps and charge number Zs (for each additional component s) by in­
creasing accordingly the number of components in Eq. (5.7). For an overall 
neutral system 

LPsZs = 0, (5.24) 
s 

where the sum runs over all components of salt ions. When the MSA closure 
is used again for the salt ion- salt ion direct correlation functions, Eq. (5.18) 

is easily generalized to 

n=s,c 

where c1n ( q) is the short-range part of the colloid - microion direct corre­
lations functions. The screening parameter is now determined by the ionic 
strengths of all microions, i.e. salt- and counterions: 

(5.26) 

In a final step, we employ the limit Pl ---+ 0 of very small macroion con­
centrations, where the macroion-microion direct correlation functions, cla(r) 
and h la ( r), can be calculated analytically in the MSA ( = D H approxima­
tion). The details of these calculations are given in the following section, with 
final results results: 

(5.27) 

CJa(r) = - [ 1 + LaB ZZa ( 
1 

:aKa)] O(a-r)- ( LB z:") O(r-a), (5.28) 

and 

(5.29) 

The total correlation function, h1n ( r), describes the distribution of a­

type microions around a colloidal sphere. It decays exponentially at large r 
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due to screening, whereas CJa(r) still has the infinite range of the Coulomb 

potential. As noted already in Sec. 4.1, this feature distinguishes ionic from 

neutral liquids. An interesting observation for the DH-g10 (r) in Eq. (137) is 

that 

L Pa J dr 9Ia(r)Zae = -Ze 
a=c,s 

(5.30) 

which means that the total charge of the microionic cloud exactly cancels the 

charge of the colloidal particle in its centre. This is a special case of general 

local electroneutrality conditions for ionic systems [1]. One can show that the 

MSA and HNC closure relations are compatible with these exact conditions. 

Using finally the D H expression for cf0 ( r) in the Fourier-inverted form of 

Eq. (5.25), and noticing that in MSA 

(c~0 * c~13 ) (r > 2a) = 0 (5.31) 

for the convolution of two colloid - microion short-range direct correlation 

function parts, we obtain our final result 

2( eKa )2 e-Kr 
f3ueff(r) =- li1n CeJJ(r) =- li1n hu(r) = LBZ --

PI-o Pl-o 1 + K,a r 

r >a (5.32) 

for the effective macroion pair potential quoted already in Eq. (2.3). Within 

the linearization approximation of weak particle charges, 

9ll (r) = e-/3w11 (r) ~ 1 - f3wn (r), (5.33) 

which is consistent with the DH-MSA approximation of direct correlations, 

UeJJ(r) can be identified, for a non-zero amount of excess electrolyte, with the 

macroion-macroion potential of mean force w 11 ( r). One rnight expect from 

the mean-spherical-type approximations entering into its derivation that this 

form of the effective pair potential applies only at long distances r and for 

weakly charged particles. However , it has been shown that the range of ap­

plicability of Eq. (5.32) can be substantially extended when Z is treated not 

as the bare macroion charge, but as an effective or dressed colloid charge 

smaller than the bare one. In this way one accounts approximately for the 

stronger screening close to strongly charged macroion surfaces. For a deter­

mination of the effective macroion charge using a spherical Wigner-Seitz cell 

model calculation, consult [21, 22, 23]. 

http://rcin.org.pl



5.3. MSA VERSUS DH THEORY OF ELECTROLYTES 65 

5.3. MSA versus DH theory of electrolytes 

The MSA reduces to the De bye-H iickel approximation for a special Prim­
itive Model system of point-like microions and infinitely dilute macroionic 
species. 

To see this explicitly consider an m-component Primitive Model system 
consisting of an infinitely dilute macroion species (tracer: T = 1, with p1 = 0) 
with spheres of radius a and charge number Zr, immersed in a (m - I)­
component electrolyte solution of point-like ions (a E {2, ... , m} ). Our aim 
is to calculate the tracer-micro ion two-body correlation functions using the 
MSA closure relations. 

The T - a part of the Ornstein-Zernike equation follows here as 

hra(r) = cra(r) + fP-, j dr' hr-,(r') C.,a(ir- r'l). 
"f=2 

(5.34) 

Application of the MSA closure for r > a leads to 

ZrZa ~ j 1 1 ZrZ'Y 
hr0 (r) = -LB-r-- LB ~ p'Y dr hr'Y(r) lr _ r1l . (5.35) 

Since the MSA is linear in the pair potential, we may substitute 

hra(r) = ZrZa h(r), (5.36) 

which gives a linear integral equation for h(r). Explicitly 

h(r) =- LB- K-2 jdrl h(rl) 
r 47r lr- r11 ' (r > a) (5.37) 

with 
m 

K-
2 

= 47r L B L p'Y z~ . (5.38) 
"f=2 

Application of the Laplace operator on both sides of this equation results in 
the homogeneous Helmholtz equation, 

(r >a), (5.39) 

with the isotropic general solution 

e-Kr eKr 

h(r) = Ct- +C2-. 
r r 

(5.40) 
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The outer boundary condition h( r --. oo) = 0 implies that C2 = 0. An 
inner boundary condition, and hence Ct, are obtained using the continuity 

/Ta(a+) = /Ta(a-) of /Ta(r) = hra(r)- cra(r) at r =a: 

(5.41) 

For cr0 (a-), we invoke the OZ-MSA equation for r <a, 

- [1 + cr0 {r)] = -LaZo t p..,z..,{CtZrZ.., j dr' r'l:-~rr'l 
1'-2 r'>a 

- j dr' lr ~ r'l}. {5.42) 
r'<a 

Next, we use electroneutrality and the integral over the unit sphere, 

to show that 

J 1 47r 
dO.r r'lr- r'l = (r')2 ' 

47r 

(r <a< r') 

Thus, the direct correlation function is constant in the overlap region. 

(5.43) 

(5.44) 

Finally, this determines the integration constant Ct in Eq. (5.40) as 

with 

cra(r <a)= - [ 1 + L: Zr Z0 1 
:atro] , 

and (cf. Eq. (5.36)) 

We further quote the Fourier transforms of cr0 (r) and hra(r), 

( ) _ 3v: { Jt (qa) LB z z [ Ka Jt (qa) cos(qa)] } era q - - vr -- + - T a ---- + ---~ 
qa a 1 + Ka qa ( qa )2 

(5.45) 

(5.46) 

(5.47) 

(5.48) 
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and 

{ 
j1 (qa) LB ZrZo [ (Ka) (qa) . ] } 

hr0 (q) = -3Vr -- + - ( )2 ( ) 2 cos(qa) + 
1 

)1 (qa) 
qa a Ka + qa + Ka 

(5.49) 
with Vr = ( 47r /3)a3 . 

The matrix inverse of the microionic partial structure factors, S0 13(q) = 

80 {3 + (PoP{3) 112 h0 [3(q), is given by 

(5.50) 

The DH-MSA tracer-microion direct and total correlation functions are re­
lated to each other by 

m 

Po 1/
2 Cro(q) = L s;;~(q)p-y 1/

2 hr-y(q). (5.51) 
-y=2 

This is an exact relation valid for nr = 0. 

What is left to prove is that the MSA reduces to the linear DH approx­
imation for the system under consideration. To this end, consider the total 
mean charge density, n~l)(r), with the tracer located at the centre of the 
co-ordinate system, 

m 

n~l)(r) = Zre8(r) + Lp-yZ-yegr-y(r). (5.52) 
-y=2 

Since we are interested only in the mean electric field outside of the core of 
the tracer sphere (i.e., r>a), we assume for simplicity that the charge Zr is 
concentrated at the origin. Of course, any spherically symmetric volume or 
surface charge distribution localized to r ::; a gives an identical field outside 
of the core. The mean charge density is related to the total mean electrostatic 
potential, </>r(r), by the Poisson equation of electrostatics, 

(5.53) 

where we disregard any dielectric differences between solvent an tracer sphere 
(Primitive Model). The mean electric field follows from Er = -'V</>r(r) . In 
the Poisson-Boltzmann (PB) mean-field theory, 9To(r) is approximated by 

WTo(r) Zoe </>r(r)} 
9To(r) = exp{- kaT } ~ exp{ kBT . (5.54) 
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Hence, the potential of mean force: wra(r), between the tracer and an a-type 
microion is approximated by the mean electrostatic energy of an a-type ion 
moving statistically independent from other ions in the presence of the mean 
electrostatic potential. The PB approximation amounts to disregarding local 
ion-correlation effects which can cause oscillations in wra ( r) and 9Ta ( r). The 
non-linear PB equation for ¢r(r) reads explicitly 

47re [ ~ { Z e <Pr(r) }] l:l.<f>r(r) = --€- Zr6(r) + O(r-a) ~p~Z~exp - ~kaT . (5.55) 

It must be supplemented by the outer boundary condition <Pr(r -t oo) = 0 
in case of an infinite electrolyte solution. Integration over a sphere of radius 

a gives the inner boundary condition, 

d Zre 
-<Pr(r =a+)=--. 
dr €a2 (5.56) 

The electric field at the surface is of Coulombic form, since the tracer core is 
impenetrable to the microionic cloud. 

For a dilute electrolyte solution and for sufficiently small ionic charges 
where it holds that Zre<f>r(r) << kBT, we can linearize with respect to 

¢r(r), 

(r > a). (5.57) 

The potential is then more simply determined by the linear DebyEr-Hiickel 

(DH) equation, 

2 47re 
tl.¢r(r) = B(r- a)K <Pr(r)- -Zr 8(r), 

€ 
(5.58) 

where ¢r(r) is now linear in Zr. The isotropic solution of Eq. (5.58) for 

r >a is 

(5.59) 

conforming to the outer boundary condition fj;.y(oo) = 0 (so that 9To(r ~ 
oo) = 1). The integration constant D 1 follows with Eq. (5.56) as 

Zre eK-a 
Dl = -----. 

f 1 + Ka 
(5.60) 

According to Eq. (5.58), we have thus shown that g!f/! (r) is equal to the 
MSA result in Eq. (5.47). Finally, from Eqs. (5.59) and (5.60), we obtain the 
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following linear D H relation between the surface potential and the charge of 

the tracer sphere, 
LB Zr 

{3e¢r(a) = --;- (1 + K:a) . (5.61) 
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Chapter 6 

Dynamic properties: introduction 

In the second part of these lecture notes (Chapters 6-9), I discuss diffusional 
properties of suspensions consisting of spherically shaped colloidal particles, 
and of binary melts of homopolymers. 

The most important experimental tool to study diffusion in these systems 
is dynamic light scattering (DLS). In Chapter 7, the principles of dynamic 
light scattering are discussed on a heuristic level, without involving Maxwell's 
equations. Various kinds of dynamic structure factors are introduced, which 
describe different types of diffusion processes like self-diffusion, collective 
diffusion, rotational diffusion, and interdiffusion. 

These diffusion processes, and their relation to corresponding types of 
structure factors, are explored in Chapter 8, again on a heuristic and intu­
itive level. For pedagogical reasons, I will discuss first translational and ro­
tational diffusion in very dilute systems ( cf. Sec. 8.1). Diffusion processes of 
concentrated systems, where the particles interact both by direct forces and, 
in case of colloidal dispersions, by solvent-mediated hydrodynamic forces, 
are explored in Sec. 8.2. In my lectures, I am mostly concerned with diffu­
sion mechanisms in one-component systems, except for interdiffusion which 
is particularly relevant to the dynamics in binary polymer melts. 

In Chapter 9, various types of diffusion processes are quantified that were 
treated in Chapter 8 on a heuristic level. For this purpose, theoretical short­
and long-time predictions and computer simulation results are explored and 
compared to experimental findings. In Sec. 9.1, I discuss various forms of 
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the generalized Smoluchowski equation (GSE) of colloidal systems. The GSE 
is a time evolution equation for the probability density function of particle 
positions and orientations. Most theoretical studies of diffusion in colloidal 
systems and polymer solutions are based on appropriately selected variants 
of the GSE. In fact, the GSE is nearly as important for the theory of colloid 
dynamics, as the Schodinger equation is for quantum mechanics. 

In Sec. 9.2, theoretical tools and computer simulations based on the GSE 
are explained, and applied to calculate diffusional properties. Hereby, one 
neeeds to distinguish between short-time and long-time transport proper­
ties. Short-time properties are more easy to compute since only equilibrium 
distribution functions are involved in their calculation. A colloid scientist's 
life is more difficult in case of long-time transport properties, for one needs 

to account for so-called memory effects. The colloidal systems considered in 
Sec. 9.2 comprise one-component bulk dispersions of neutral and charged col­
loidal spheres, quasi-two-dimensional suspensions of charged particle mono­
layers between narrow plates, magnetically interacting particles confined to 
a liquid-gas interface, and mixtures of colloidal hard spheres. 

Diffusion in binary polymer blends will be addressed in Sec. 9.3. Here, 
earlier discussed general relations for interdiffusion are explicitly quanti­
fied within the Flory-Huggins approach, using the dynamic random phase 
approximation (RPA). This Section shows that general concepts of many­
component diffusion apply equally well to colloidal suspensions and polymer 
blends. In polymer blends, however, there is no solvent involved. Therefore, 
the dynamic RPA is used instead of the generalized Smoluchowski equation. 

It should be realized from the many comparisons in this lecture notes 
between theoretical results and experimental findings, that there is an intense 
and very fruitful interplay between theory and experiment in the field of 
colloidal and polymeric soft matter. 
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Chapter 7 

Principles of dynamic light 

scattering 

Light scattering by colloidal suspensions and polymers is a major experimen­
tal toJl to study the statistical properties of these systems. In this section, 
light fcattering is introduced on a heuristic basis, without considering explicit 
soluti)ns of the Maxwell equations. The content of this Section is much along 
the li:les of [24]. Besides this reference, more about light scattering can be 
found in [25, 26, 27, 28]. 

7 .1. The scattered electric field 

Consider an assembly of points, fixed in space. These points will later 
be identified as infinitesimally small volume elements that constitute the 
colloidal particles or polymers. A plane wave of monochromatic light impinges 
onto this assembly of points. Each of the points is supposed to scatter the 
incident beam of light in such a way that neither the wave length nor its 
phase is changed. Such a scattering process is referred to quasi-elastic, since 
the o:1ly energy transfer between the photon and the scatterer is due to 
excha1ge of kinetic energy. Due to the extreme difference between the mass 
of an ~lementary scatterer and a photon, the change of the wave length after 
the collision of the photon with the scatterer is extremely small, and will 
be neglected. A scattering process of this sort can be thought of as follows. 
The it1cident electric field induces a dipole moment which oscillates with 
the sc.me frequency as the incident field. This oscillating dipole then emits 
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electromagnetic radiation with the same frequency, and hence with the same 

wave length. 

The scattered intensity is detected in a certain well-defined direction. The 

total electric field strength that is scattered in that direction is the sum of the 

scattered electric fields by the individual points. Clearly, the phase difference 

of the scattered light from two points depends on their relative positions, 

as well as on the direction in which the electric field strength is measured, 

as can be seen from the sketch in Fig. 7.1. Let us first calculate the phase 

difference of electric field strengths scattered by two point scatterers with 

position coordinates r and r' say, into a direction that is characterized by 

the scattering angle 8 s, which is the angle between the propagation direction 

of the incident plane wave and the direction in which the scattered field is 

detected (see Fig. 7.1 ). 

• • 
• 8 

• 8 • 
s 

r • 
I 

X ~ · ·· 

FIGURE 7.1. A schematic representation of the scattering of light by an assembly 
of point scat terers ( •). Each macromolecule (a colloidal particle or a polymer 

molecule) comprises many of such point scatterers. After [24]. 

The incident wavevector q 0 is the vector pointing in the propagation 

direction of the incident field, and its magnitude is 2rr I A, where A is the wave 

length of the light. Similarly, q 8 is the scattered wavevector: its magnitude 

Qs =I Qs I is equal to that of the incident wavevector, 

Qo = Qs = 2rr I A . (7.1) 

The phase difference ~<I> of the electric field strengths scattered by the two 

points located at r and r' under a scattering angle 8 8 is equal to 2rr~l A, 
where ~ is the difference in distance traversed by the two photons: ~ = 
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AB+BC (see Fig. 7.1). Now, AB = (r'-r)·q0 jq0 , and BC = (r-r')·q8 jq8 • 

Hence, using this relation between phase difference and optical path length 
together with Eq. (7.1), 

~<I> = ( r' - r) · ( Qo - Qs) · (7.2) 

One can thus associate to each point r a phase equal to r · ( q 0 - Qs). The total 
scattered electric field strength Es is then the sum of exp{ ir·( q 0 -q8 )} over all 
volume elements, weighted by the scattering strength of the point scatterers, 
which is defined as the fraction of the incident field strength that is actually 
scattered. Now, each point scatterer can be identified as an infinitesimally 
small volume element with volume dr, from which the colloidal particle or 
polymer molecule is built. The scattering strength of a point scatterer is 
now written as dr F(r), where F is referred to here as the scattering strength 

density. Replacing the sum over point scatterers by integrals yields 

E 8 = J dr F(r) exp{i(q0 - q 8 ) • r} Eo, (7.3) 

where Eo is the incident field strength, and V8 is the scattering volume, which 
is the volume from which scattered light is detected. The scattering strength 
density is proportional the polarizability a(r) of the volume element, relative 
to a constant background polarizability ao : the additional scattered field due 
to the macroscopically large, homogeneous background is zero for scattering 
angles unequal to 180°. For a colloidal system, the background polarizability 
can be taken equal to that of the solvent, while for a binary polymer melt 
one can take the spatial average of the polarizability, 

F(r) rv a(r) - ao. (7.4) 

We note that the polarizability is related to the refractive index for frequen­
cies equal to that of light. The integral in Eq. (7.3) may be rewritten in 
order to make the distinction between interference of light scattered from 
volume elements within single particles and from distinct particles. Since the 
scattering strength is only non-zero within the colloidal particles or poly­
mers, Eq. (7.3) can be written as a sum of integrals ranging over the volumes 
Vj,j = 1, 2, ... , N, occupied by theN particles in the scattering volume, 

N 

Es = L J dr F(r) exp{i(q0 - q 8 ) • r} Eo. 
J=l Vj 

(7.5) 
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The integration range Vj is the volume that is occupied by the jth particle. 
For non-spherical particles this volume depends on the orientation of the 
particle, and for any kind of particles, also for spherical particles, Vj depends 
on the location of the jth particle. Let r j denote a fixed point inside the jth 

particle, which is referred to as its position coordinate. The position coor­
dinate dependence of Vj can easily be accounted for explicitly, by changing 
for each j the integration variable to r' = r - r j. The new integration range 
\1.i0 is the volume occupied by the particle with its position coordinate at 
the origin. For spherical particles, with their positions chosen at the center 
of the spheres, \1.i0 is the volume of a sphere with its center at the origin. 
For non-spherical, possibly flexible particles, \1.i0 depends on the orientation 
and the internal configuration of particle j. In terms of these new integration 
variables Eq. (7.5) reads 

N 

Es = L Bj(q) exp{iq · rj} Eo, 
j=l 

where we abbreviated 

B1(q) = J dr' F(r') exp{iq · r 1
}. 

vo 
J 

Here, Bj is referred to as the scattering amplitude of particle j, and 

(7.6) 

(7.7) 

(7.8) 

which is referred to as the scattering wavevector. From Eq. (7.1) it is easily 
verified that the magnitude of this scattering wavevector is equal to 

q = ~ sin{8s/2}, (7.9) 

where 8s is the scattering angle that was introduced before as the angle 
between q 0 and Q.s, and .X is the wave length of the light in the scattering 
volume. The exponential functions in Eq. (7.6) containing the position coor­
dinates r j describe the interference of light scattered from different colloidal 
particles, while the scattering amplitudes Bj describe interference of light 
scattered from different volume elements within single particles. 

In the above analysis we did not consider polarization effects. Consider 
the oscillating dipole P that is induced by the incident electric field, from 
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which emitted radiation is detected in the direction q 8 • The component of 
the dipole parallel to Qs does not contribute to the electric field emitted in 
that direction : looking "onto the head" of a dipole, one can not tell whether 
the dipole oscillates or not, and therefore it can not radiate in that direction. 
The part of the dipole that gives rise to emitted radiation in the direction Qs 
is the part that is perpendicular to q 8 (see Fig. 7.2). This "effective dipole" 
is equal to 

peff = [I - CtsCts] · P , 

where Qs = q 8 /q8 is the unit vector in the direction of q 8 . 

I 
I 
I 
I 

[I- 'is 'is] • P ~- - - - - - - - ~ P 

(7.10) 

FIGURE 7.2. An observer only probes that part of an oscillating dipole P that is 
perpendicular to the observation direction rv q .•. 

Secondly, the polarizability may be anisotropic, that is, the polarizability 
may depend on the polarization direction of the incident field. For example, 
for long and thin rods, the polarizability for light with a polarization direction 
parallel to the rods long axis may be different from the polarizability of 
light that is polarized in a direction perpendicular to the long axis. Such an 
anisotropic polarizability is the result of the anisotropic microstructure of 
the rods material. For such anisotropic polarizabilities, the induced dipole 

generally has a different orientation than the incident electric field. In such a 
case, the scattering strength Fin Eq. (7.4) is a tensor, denoted as F, rather 
than a scalar. Thirdly, in an experiment one usually measures, by means of 
a polarization filter, the scattered intensity with a prescribed polarization 
direction, which is characterized by the unit vector ft8 • The detected electric 
field strength is simply ft 8 • E 8 • Taking these polarization effects into account, 
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generalizes Eq. (7.6) to 

N 

Es = Ds · Es = Ds · [i- QsQs] · L Bj(q) exp{iq · rj} ·Eo, 
j=l 

(7.11) 

where Bj is now defined by Eq. (7.7), with the scalar F replaced by the 
tensor F. Note that the polarization direction is always perpendicular to 
the propagation direction, so that, fts · Qs = 0. Introducing the polarization 
direction n0 of the incident field, where Eo= n0 Eo, with Eo the magnitude 
of the incident electric field strength, Eq. (7.11) simplifies to 

N 

Es = L [ns. Bj(q). no] exp{iq. rj} Eo. 
j=l 

(7.12) 

This equation is at the basis of the analysis of quasi-elastic light scattering 
experiments. 

Two assumptions, which are implicit in the above analysis, should be 
mentioned. First of all it is assumed here that the incident field strength is 
the same at every point in the scattering volume. This is only true if the 
various scattering elements scatter only a very small fraction of the light. 
This amounts to what is commonly referred to as "the first Born approxima­
tion". Secondly, multiple scattering is neglected. That is, scattered light is 
assumed not to be scattered by a second and further volume elements. Both 
these assumptions are satisfied when, according to Eq. (7.4), differences in 
polarizability of the material within the scattering volume are small. 

The value of the scattering wavevector q is of special importance. Since 
the exponential function in Eq. (7.12) hardly changes when the position co­
ordinates _rj are changed by an amount less than about 2rr/q, the scattered 
electric field strength changes when particles move over distances of at least 
rv 21rjq. Equivalently, from Eq. (7.7) it follows that particle orientations and 
internal modes ·can only be probed when the scattering angle is chosen such 

that the linear dimensions of the scattering particles is at most rv 2rr / q. We 
can therefore introduce an effective wave length 

A= 2rr/q, (7.13) 

which sets the structural length scale on which dynamics is probed. For ex­
ample, if the length of a colloidal rod is smaller than A, rotation of the rod 
leaves the scattering amplitude (7. 7) virtually unchanged, and does therefore 
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not affect the scattered electric field strength. For such a wavevector, noth­
ing can be learned from a light scattering experiment about the rotational 
dynamics of these rods. Similarly, if one is interested in the dynamics of in­
ternal degrees of freedom of a polymer molecule, the scattering angle should 
be so large, that A is smaller than the linear dimension of the polymers. For 
larger A, only translational motion of the polymers is probed. For the same 
reason, displacements of particles that are smaller than A are not seen in a 
light scattering experiment. According to Eq. (7.9), the scattering angle thus 
sets the length scale on which the dynamics is probed by light scattering. 

7.2. Dynamic light scattering 

Due the Brownian motion of the center of mass r j, and of the orienta­
tion of particles and their internal fluctuations (which renders the scattering 
amplitude Bj time dependent), the scattered intensity fluctuates with time. 
Clearly, these fluctuations contain information about the dynamics of these 
degrees of freedom, which are generally affected by interactions between the 
colloidal particles or polymers. In a dynamic light scattering experiment one 
measures the so-called intensity auto- correlation function g I ( q, t), hereafter 
abbreviated as IACF, which is defined as 

9I(q, t) = < i(q, to) i(q, t +to) >, (7.14) 

where the brackets < · · · > denote ensemble averaging. For an equilibrium 
system, the IACF is independent of the reference time t 0 , which we shall 
therefore set equal to 0 from now on. The IACF contains information about 
the dynamics of the above mentioned degrees of freedom. The instantaneous 
intensity is related to the scattered electric field strength as 

i ( q, t) rv E s ( q, t) E; ( q, t) , (7.15) 

where the wavevector and time dependence of the scattered electric field 

strength is denoted explicitly. The asterisk denotes the operation of complex 
conjugation. The IACF is thus an ensemble average of a product of four 
electric field strengths, 

9I(q, t) rv < E 8 (q, t) E;(q, t) Es(q, t = 0) E;(q, t = 0) > (7.16) 

The scattered field strength in Eq. (7.12) can be written as a sum over many 
statistically independent terms, where each term itself is a sum over "clusters" 
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of interacting particles. The linear dimension of a cluster is the distance over 
which interactions between particles extends. These clusters of particles are 
statistically independent. The central limit theorem implies that the scat­
tered electric field strength is a Gaussian variable (with zero average), pro­
vided that the scattering volume contains a large number of such independent 
clusters of particles. According to Wick's theorem for Gaussian-distributed 
random variables [24), the four-point ensemble average in Eq. (7.16) can thus 

be written as a sum of products of two-point averages (henceforth we simply 
write E 8 (0) instead of E 8 (t = 0)), 

9I(q, t) rv < Es(O)E;(o) >< Es(t)E;(t) > 

+ < E8 (0)E8 (t) >< E;(o)E;(t) > 

+ < E8 (0)E;(t) >< E;(o)Es(t) > (7.17) 

For systems in equilibrium, the first of these terms is nothing but / 2 , where 
I is the mean scattered intensity. Defining the electric field auto-correlation 

function (EACF) 9E as 

9E(q, t) = < E8 (0) E;(t) >, (7.18) 

the third term in Eq. (7.17) is equal to I 9E 1
2 . This will turn out to be the 

interesting quantity in DLS. The second term in Eq. (7.17) is equal to zero for 
non-zero wavevectors. This can be seen as follows. The second term consists 
of ensemble averages of the following form 

< exp{iq · (ri(O) + rj(t))} >, 

where i and j are either different or equal. Let P(rj, t I ri, 0) be the condi­
tional probability density function (pdf) for the position rj of particle j at 
time t, given that the position of particle i at time t = 0 is ri. This proba­
bility density function is only a function of the difference coordinate ri - rj 

for homogeneous systems : P(rj, t I ri , t = 0) = P(ri- rj, t). The ensemble 
average is then equal to (with r' = ri(t = 0) and r = rj(t)) 

< exp { iq · ( r i ( t = 0) + r j ( t))} > 

= J dr' J dr P(r'- r, t) P(r') exp{ iq · (r' + r)}, 

Vs Vs 

where P(r') is the equilibrium probability density function for the position 

coordinate. Since P(r') = 1/Vs for the homogeneous equilibrium system con­
sidered here, this can be written, in the thermodynamic limit (where Vs ~ oo 
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and p constant) as 

~ [ lim V.
1 j d(r' + r) exp{ iq · (r' + r)}] x j d(r'- r) P(r'- r, t), 

8 V~--+oo s 
v~ 

where the factor 1/8 is the Jacobian determinant of the variable transforma­
tion 

( r', r) ~ ( r' + r, r' - r) . 

The integral with respect to (r' - r) is well behaved, since the probability 
density function is a normalized function. The integral between the square 
brackets is equal to unity for q = 0, and is zero for q =j:. 0, since that integral 
is proportional to the delta distribution of q (for sufficiently large scattering 
volumes). Hence, the ensemble average is zero for non-zero wavevectors, so 
that the second term in Eq. (7.17) does not contribute. The IACF can thus 
be written in terms of the mean scattered intensity and the EACF (7.18), 

(7.19) 

This equation is usually referred to as the Siegert relation. The IACF is 
measured, and interpreted through the more simple EACF via the Siegert 
relation. 

7 .3. Dynamic structure factors 

Several types of dynamic structure factors can be defined, each of which 
describes a different type of diffusion process. The experimental relevance of 
these structure factors relates to the Siegert relation (7.19). Substitution of 
Eq. (7.12) into the definition (7.18) of the EACF leads to 

N 

9E(q,t) "-J L <Bf(q,t)Bf*(q,O)exp{iq·(ri(l)-rj(O))}>, (7.20) 
l,j=l 

where rj(O) is the position coordinate at t = 0. For brevity, we have intro­
duced, 

(7.21) 
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where a superscript "p" is used to indicate that polarization effects are taken 
into account. Time dependencies are denoted explicitly here. The collective 
dynamic structure factor is now defined as 

N 1 
Sc(q, t) = ( L N exp{ i q · (rt(t)- rj(O))}). (7.22) 

l,j=l 

This structure factor is proportional to the experimentally obtained EACF, 

when the scattering amplitudes Bf can be omitted in Eq. (7.20). These scat­
tering amplitudes contributes to the EACF due to rotation and possibly 
fluctuations of internal degrees of freedom of a particle. Rotation and in­
ternal degrees of freedom are not probed when either the wave length A in 
Eq. (7.13) is larger than the linear dimensions of the scattering particles, or 
when the particles are rigid and spherically symmetric. In the latter case, ro­
tation does not change the scattered intensity and internal degrees of freedom 
that could contribute to scattering are absent. For such cases, the scattering 
amplitudes can be omitted in Eq. (7.20). It should always be kept in mind, 
that DLS-data on non-spherical particles at relatively large wavevectors can 
not be interpreted directly in terms of the collective dynamic structure factor; 
the time dependence of the latter is solely determined by the translational 
dynamics of the center-of-mass positions. 

The collective dynamic structure factor can be related to density fluctu­
ations as follows. The microscopic density is defined as 

N 

p(r, t) = L 8(r- rj(t)), (7.23) 
j=l 

where 8 is the Dirac delta distribution. On ensemble averaging the right-hand 
side, it is easily shown that the macroscopic density is obtained. The Fourier 
transform of the microscopic density with respect tor yields 

N 

p(q, t) = L exp{iq · rj(t)}, 
j=l 

(7.24) 

where q is the Fourier variable conjugate to r. The collective dynamic struc­

ture factor (7.22) can thus be written as 

Sc(q,t) = (~ p(q,t)p*(q,O)). (7.25) 
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The collective dynamic structure factor is thus related to collective motion 
of many particles. In the next Section it will be shown how this structure 
factor is related to the so-called collective diffusion coefficient, which under 
certain conditions reduces to the Fickian or gradient diffusion coefficient. 

Consider now an experiment on a binary mixture of particles, where one 
sort of particles is very dilute and one sort possibly concentrated. Suppose 
that the possibly concentrated species does not scatter any light, that is, their 

scattering amplitudes Bj in Eq. (7.20) are 0. These particles are referred to 
as the host particles. All the scattered intensity originates from the dilute 
species, the so-called tracer particles. The concentration of tracer particles 
is chosen so small, that they do not mutually interact. The summations in 
Eq. (7.20) range only over the tracer particles, since the scattering ampli­

tudes are 0 for the host particles. Let us furthermore assume once more, that 
the wavevector is small enough in order to neglect the contribution of the 

scattering amplitudes Br Since the tracer particles do not interact, we then 
have, for i =J j, 

< exp{iq · (ri- rj)} > = < exp{iq · ri} > < exp{ -iq · rj} > (7.26) 

Since the exponential functions are equally often positive and negative (for 
q =J 0), this ensemble average is 0. For monodisperse tracer particles the 
EACF is now proportional to the so-called self-dynamic structure factor, 

S 8 (q, t) = < exp{iq · (r(t)- r(O))} >, (7.27) 

where r( t) is the position coordinate of a tracer particle. This structure factor 
contains information about the dynamics of a single particle, possibly inter­
acting with other particles. Its relation to the mean-square displacement and 
the so-called self-diffusion coefficient is discussed in the next section. 

A third kind of dynamic structure factor, which is of importance, is the 
distinct dynamic structure factor Sd, defined as 

1 N 
Sd(q, t) = ( N L exp{ i q · (rl(t)- rj(O))}). 

l~j=l 

(7.28) 

The distinct dynamic structure factor is that part of the collective dynamic 
structure factor which describes time-correlations between distinct pairs of 
particles only. 
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Chapter 8 

Heuristic considerations on 

diffusion processes 

For dispersions of rigid colloidal particles in a solvent and for polymer melts, 
there are three fundamental types of diffusion processes to be distinguished, 
which are related to translational particle motion: self-diffusion, collective 

diffusion, and exchange or interdiffusion between different particle species. In 
addition to translational diffusion, the particles or polymers undergo further 
rotational diffusion which is coupled in general to the translational motion. In 
this section, we shall discuss each of these diffusion processes on an intuitive 
level, for a colloidal system of the most simple particle shape: a suspension 
(i.e. an assembly) of rigid colloidal spheres embedded in a low-molecular­
weight fluid (i.e. the solvent) of small molecules as compared to the size of 
the spheres. The various translational diffusion mechanisms will be further 
exemplified for binary blends of polymer chains, within time- and length 
scales accessible to dynamic light scattering. 

The basic understanding of diffusion of rigid colloidal spheres is very 
helpful in improving the understanding of diffusion mechanisms of more 
complicated non-rigid macromolecules in solution, like polymers and poly­
electrolytes, where the fluctuating internal degrees of freedom related to the 
motion of monomers affect the diffusion properties of the macromolecules. 
We consider first very dilute colloidal dispersions where the interactions be­
tween the colloidal spheres can be disregarded. For this most simple case, 
only a single diffusion mechanism is present, namely self-diffusion. We then 
focus on the general case of diffusion in systems of interacting particles. 
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8.1. Diffusion in very dilute colloidal systems 

Translational self-diffusion refers to the random walk of the center of 
mass of a tagged colloidal sphere (the "tracer particle") in a quiescent and 
homogeneous suspension caused by thermal collisions with surrounding sol­
vent molecules and other colloidal particles (the so-called "host particles"). 
For very small sphere concentrations, the dynamics of the colloidal tracer is 
governed only by the thermal bombardment of the solvent molecules. 

The most important quantity that characterizes the translational self­

diffusion of the center of mass of a particle is the so-called mean-square 
displacement W ( t) (hereafter abbreviated as MSD), which is defined as 

1 
W(t) = 

2
d <I r(t)- r(t = 0) 12 > . (8.1) 

Here, r( t) is the position vector of the center of ma..<;s of the tracer sphere at 
timet, and hence, ~r(t) = r(t)- r(t = 0) is the sphere displacement during 
a time interval t. A factor 1/2d has been included into the definition of the 
MSD for later convenience, where d denotes the system dimension. For a 

homogeneous suspension in thermal equilibrium, the reference time "t = 0" 
is of no significance (stationarity property). The brackets < · · · > denote, in 
general, an ensemble averaging. 

Suppose that at timet = 0 a colloidal tracer sphere in an unbound solvent 
has a translational velocity v 0 . For very short times, say t << TB, when the 
sphere velocity has hardly changed under the impact of solvent molecules, 
r(t) - r(O) ~ vo t, and hence, 

t << TB. (8.2) 

For times large as compared to the momentum relaxation time TB, when the 
sphere has experienced many collisions with solvent molecules, the MSD has 
changed into a linear function of time, i.e., 

W(t) =Dot, t >> TB, (8.3) 

where Do is referred to as the single particle or Stokes-Einstein diffusion 

coefficient. 
The time scale TB can be inferred from the following reasoning originally 

due to Langevin. A sphere with velocity v experiences through the solvent 
impacts an average friction force that is equal to _, v, where r is referred to 
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as the friction coefficient, and a fluctuating force f(t). For a sphere, the fric­
tion coefficient 'Y is given by the Stokes law 'Y = 6rrryoR, where 'fJo is the shear 
viscosity of the solvent and R is the radius of the sphere. For times large as 
compared with the mean collision time, T 8 , of solvent molecules (typically, 
Ts ~ 10-13 s), the colloidal sphere has experienced many collisions by the 
solvent molecules. Then the force f(t) can be described as a Gaussian dis­
tributed fluctuating quantity completely characterized by its first and second 

moments 

<f(t)>=O, < f ( t) · f ( t') > = 2dB fJ ( t - t') . (8.4) 

Here, < · · · > is an average over the fast solvent collisions, and B is a measure 
of the strength of the fluctuating force. In thermal equilibrium, B = kBT"f, 

i.e. the strength is proportional to the temperature and friction coefficient. 
The delta function in time indicates that, as seen from a coarse-grained time 

level t >> T 8 , there is no correlation between solvent impacts at different 
times. 

The Newtonian equation of motion for a Brownian sphere of mass M is 

thus given, for times t >> Ts, by 

dv 
M dt = -"( v(t) + f(t). (8.5) 

with the solution 

< v(t) > = vo exp {-~ t} (8.6) 

for the solvent-collision-averaged velocity. As seen, the velocity remains on 

average almost equal to the initial velocity v 0 for times t << Atf/"(, which sets 
the time scale 

M M 
TB:=- = ---

"( 6rrryoR 
(8.7) 

for the average velocity relaxation of a colloidal sphere. For times t >> TB, 

the average velocity of a tagged particle decays towards zero. Using typical 
values for aqueous colloidal dispersions, one finds that TB ~ 10-8 -;- 10-9 s, 

SO that TB >> Ts. 

So far we have considered the Brownian motion of a sphere with given 
fixed initial velocity vo,. In dynamic light scattering experiments, an addi­
tional average is performed with respect to a Maxwellian distribution of ini­

tial particle velocities since light is scattered from many spheres in thermal 
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equilibrium. Multiplication of Eq. (8.5) by vo and subsequent averaging over 
solvent collisions and initial velocities gives 

1 kaT { t } 
¢v(t) = d < v(t) · v(O) > = !vi exp - Ta (8.8) 

for the velocity auto-correlation function (VAF), ¢v(t), of an isolated Brow­
nian sphere. Here and in the following, < · · · > means a full equilibrium 
ensemble average. Due to equipartition of energy at equilibrium, < v 2 ( t) > 

t 
= dkaT / M. Using that r(t) - ro = J dt'v(t') one can easily show for sta­

o 
tionary systems that ¢v(t) is related to the MSD by 

t 

W(t) = J du (t- u) <f>v(u). (8.9) 

0 

This relation is valid also for non-dilute system of interacting particles. The 
MSD of an isolated sphere follows from the substitution of Eq. (8.8) into 
Eq. (8.9) as 

[ 
T ( )] { ;~; t2, Tc << t << Ta, ( ) W(t) =Dot 1- ta 1- e-t/ra ---.. 8.10 

Dot, t >> Ta, 

where Do is related to the friction coefficient by the Stokes-Einstein relation 

Do= kaT. 

' 
(8.11) 

Equation (8.10) interpolates between random ballistic flight for t << Ta and 
linear diffusive behavior for t >> Ta. 

The sphere displacement ~r( t) during time t is a Gaussian random vari­
able, since it is linearly related to v(t) and to f(t). The probability density 

function, P( ~r, t), for such a displacement is thus 

(8.12) 

with 

W(t) = 2~ j drd P(t.r, t) (t.r)2 
. (8.13) 
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The probability density function is the solution of the diffusion-like equation 

(8.14) 

where 

V(t) = :t W(t) =Do [ 1 - e-t/Ta J , (8.15) 

subject to the initial condition P(!:lr, t = 0) = 8(/:lr). The latter follows 

from Eq. (8.12) specialized to t = 0. Here, \7 is the d-dimensional gradient 
operator. Knowing the probability density function we can calculate from 

Eq. (8.12) the self-dynamic structure factor 

S8 (q, t) = j d(b.r) e;q.c.r P(b.r, t) = exp{ -q2 W(t)}, (8.16) 

which, for uncorrelated spheres, depends on time only through W(t). Note 
that for the dilute dispersions of uncorrelated particles considered here the 

collective dynamic structure factor Sc(q, t) reduces to the self-dynamic one. 
In typical dynamic light scattering experiments on colloidal suspensions, 

times t > 10-6 s >> TB and hence distances large compared to (DoTa) 112 

are resolved. In this so-called diffusive regime, Eq. (8.14) reduces to the one­
particle diffusion equation 

a 2 at P(!:lr, t) = Do \7 P(!:lr, t), (8.17) 

which has Eq. (8.12) specialized to W(t) = Do t as its fundamental solu­
tion. The diffusion Eq. (8.17) is statistically equivalent to the overdamped 
Langevin equation 

1 
v(t) = - f(t), 

' 
(8.18) 

and f according to Eq. (8.4), which expresses a force balance, i.e an inertia­

free sphere motion for times t >> Ta. 
In fact, Brownian motion of a colloidal particle is adequately described 

by the Langevin Eq. (8.5) with 8-correlated random force only when solvent 

inertia is negligible, i.e. for times t >> Ta only, where it reduces to Eq. (8.18). 

The Langevin equation disregards, for shorter times t :::::: Ta, the feedback 

on the particle velocity from the surrounding solvent. The solvent can not 
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instantaneously follow the changes in the particle velocity. Through the re­
tarded response of the solvent, the sphere velocity is influenced by its values 
at earlier times. This leads to an enlarged persistence in the velocity au­
tocorrelations. These solvent memory effects on the sphere velocity can be 
adequately described, for d = 3, by the retarded (one-particle) Langevin 
equation 

t 

dv J Jvf dt =- du1(t- u) v(u) + f(t), (8.19) 

-oo 

which includes a time-dependent friction function !'(t) obeying a generalized 
fluctuation-dissipation relation 

< f(t) · f(t') > = 3kBT!'(t- t'). (8.20) 

The random force in the retarded Langevin equation is still Gaussian, how­
ever it is now correlated for different times, due to cooperative effects of the 
fluid motion. The friction function can be calculated, for times t >> T 8 , using 
macroscopic equations of motion for the solvent flow. Substitution of the hy­
drodynamically determined !'(t) into the retarded Langevin equation results 
in closed expressions for the MSD and <Pv ( t). We only quote the asymptotic 

forms valid for t >> T.,., viz. [29, 31, 30] 

[ 
2 (Try)l/2] W ( t) ~ Dot 1 - fo t (8.21) 

and 

d2 1 kBT ( t ) -J/
2 

cPv(t) = dt2 W(t) ~ 9fo--:;;;-- Try ' (8.22) 

where Try= a2p8 /TJo = (9/2)(p8 / PM )TB is the time needed for a viscous shear 
wave in the solvent of mass density Ps to diffuse across a particle radius. The 
mass density, p M, of colloidal particles is close to Ps, and T 11 and Ts are thus 
of the same order of magnitude. 

The positive feedback of the solvent flow on the sphere velocity implies 
an algebraic rather than exponential decay of the VAF. Moreover, the al­
gebraic approach of the single-particle MSD to its long-time-limiting form 
W(t) = Dot is much slower than prediced by Eq. (8.10). The occurrence of 
an algebraic decay in an auto-correlation function is generally referred to as a 
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long-time tail. An algebraic tail proportional to t- 112 in W(t) was indeed ob­
served in dynamic light scattering experiments on very large colloidal spheres 

(since TB ex a2 ) through the measurement of S8 (q, t) and using Eq. (8.16) to 
infer W(t) [32]. While the non-retarded Langevin equation does not describe 
dilute colloidal dispersions for times t ~ TB, it can be applied instead for 
t ~ TB to aerosols like dust or smoke particles in air, since for these systems 

one hasPs<< PM and hence T11 << TB. 

The surrounding solvent molecules exert in addition to a random force 
a random torque, f r ( t), on the colloidal sphere, which causes a rotational 
Brownian motion of its angular velocity w(t). Neglecting solvent inertia, the 
erratic sphere rotation can be described in analogy to translational motion 
by a rotational Langevin equation, given for d = 3 and t >> T 8 by 

dw 
Mr dt =- 1r w(t) + fr(t), (8.23) 

with a stochastic torque of zero mean and 6-correlated covariance 

(8.24) 

According to this Langevin equation, the solvent-collisions-averaged angular 
velocity and the equilibrium angular VAF are, respectively, 

< w(t) >= wo exp{- :a} (8.25) 

and 

1 kBT { t } ¢w(t) = "3 < w(t) · w(O) > = Mr exp - TB (8.26) 

with the damping time 

(8.27) 

Here, 1r = 81rry0a3 is the so-called Stokes-Debye friction coefficient of a freely 
rotating sphere, and Mr = (2/5)M a2 is the moment of inertia of a homoge­
neous sphere. The damping times for the translational and rotational velocity 
are of the same order of magnitude, since T8 = (3/10)TB. 

When the hydrodynamic solvent-sphere coupling is accounted for through 
a time-dependent rotational friction function similar to the translational case, 

http://rcin.org.pl



92 8. HEURISTIC CONSIDERATIONS ON DIFFUSION PROCESSES 

the exponential decay of the rotational VAF is changed for times t >> T 17 into 
the power-law decay (33, 34] 

1 ksT ( t ) -S/
2 

¢w(t) ~ 60j7f Mr T
17 

' 
(8.28) 

which is one power in t faster than the asymptotic decay of the translational 
VAF. Depolarized dynamic light scattering is a convenient experimental tool 

to measure rotational Brownian motion of optically anisotropic spheres in 
the diffusive regime t >> Ts. As mentioned in Sec. 7.1, the polarizability, a, 

of an optically anisotropic uniaxial sphere is a tensor 

a(U) ="'II flU+ <>1_ (1- flU) = a1 + {3 (flU- ~1) , (8.29) 

where au and aj_ are the incremental (relative to the solvent) polarizabilities 
parallel and perpendicular to the optical axis of the sphere, with a = (au + 
2a_i)/3 and {3 = au - aj_, and u(t) is the unit orientation vector pointing 
along the optical axis. The orientation vector is related to the angular velocity 
of the sphere by w(t) = u(t) X (djdt)u(t). 

In depolarized dynamic light scattering, the polarization of the incident 
electric light field is chosen perpendicular to the scattering plane spanned 
by the incident and detected light beam (i.e. no = nv ), and one detects 
the in-plane component (i.e. n 8 = nH) of the scattered electric field. In this 
VH-geometry 

( ) 

1/2 
ns · a(u) ·no= {3 ~; [Y2,1(u) + Y2,-1(u)) , (8.30) 

where Y2,m is a second order spherical harmonic function. Together with 
Eq. (7.15), this results in the EACF [26] 

(8.31) 

where we have introduced the rotational self-dynamic correlation function 

Sr(r) = 47r < Y2,-1(u(O)) Y2,1(u(t)) > = < P2(u(t) · u(O)) >, (8.32) 

which includes information on the rotational diffusion. The second equality 
follows from spatial isotropy, i.e. from the m-independence of Sr(t), with 

P2 denoting here the second-order Legendre polynomial (no to be confused 
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with a two-particle probability density function). In deriving Eq. (8.32), it 

has been assumed that the rotational motion of a sphere is decoupled from 

the translational motion for all t >> TB. While this decoupling is strictly valid 
for dilute dispersions of non-interacting spheres, it is an approximation for 

non-spherical particles and for concentrated sphere dispersions. Note that 

{3 = 0 for optically isotropic spheres. Then there is no depolarized scattered 

light as long as multiple light scattering is negligibly small. 

The function S 8 (q, t) of non-interacting spheres can be calculated fort>> 

TB from the rotational diffusion equation (Debye equation) 

(8.33) 

which determines the single-sphere probability density function P1 (u, t) of 

finding the sphere with orientation u at time t. We have introduced here 

the diffusion coefficient of a single and freely rotating sphere, related to the 

rotational friction coefficient by the Einstein-De bye relation 

Do= ksT 
rr 

(8.34) 

The Debye equation is the analogue of the translational diffusion Eq. (8.17), 

with L = u X a I (au) denoting the gradient operator in orientation space. It 

describes the random walk of the tip of u(t) on the unit sphere. Eq. (8.33) 

has the fundamental solution [26] 

00 l 

pl (u, tluo) = L L Yzm(u) Yz,-m(uo) exp { -l(l + l)Do t} ' (8.35) 
l=l m=-l 

which is the probability density for a sphere to have orientation u at time t 
given that it had orientation u 0 at initial timet = 0. The rotational function 

Sr(t) is then calculated as 

Sr(t) = j dii j diio Y2,1 (ii) Y2,-1 (iio)Pl (ii, tliio) = exp { -6DQt} (8.36) 

where we have employed the orthogonality relations of the spherical har­

monics. As a consequence, the depolarized EACF of non-interacting sphere 

dispersions is 

(8.37) 
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One can determine Do and D0 simultaneously from the EACF by plotting 

the time derivative of - ln g ~ H ( q, t) versus q2 , yielding a straight line of slope 

Do and intercept D0. Plots of this kind are shown in Fig. 8.1 for depolarized 

DLS experiments on a dilute dispersion of anisotropic teflon spheres [35). 
The particle diameters determined from Do and D0, respectively, are indeed 

nearly identical. 
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FIGURE 8.1. Initial decay rate rvH = -limt----+o(djdt) lng1;H (q, t) of depolarized 
EACF versus q2

, for a dilute dispersion of anisotropic teflon spheres (<I> = 0.02). 
After [35J. 

From employing the fundamental solution, one can further calculate the 

orientation auto-correlation function 

< u(t) · u(O) > = exp { -t/Tr} 

and the orientation MSD [36) 

< [u(t) - u(0)) 2 > = 2 [ 1- e-t/Tr] ~ {
4

Do t' 
2, 

(8.38) 

TB << t << Tr , ( ) 
8.39 

t >> Tr, 

where Tr = l/(2Do) is the orientation relaxation time. The tip of u(t) per­

forms, fort<< Tr, a two-dimensional random walk on the tangential surface 

touching the unit sphere at u0 . The MSD saturates to 2 for times t >> Tr, 
since lli(t)- u(O)I ~ 2 for all t. Typical values of Tr are 10-4 -;- 10-3 s which 

implies the following sequence of time scale separations 

(8.40) 
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valid for the translational/ orientational self-diffusion of non-interacting glob­
ular particles 

8.2. Diffusion in concentrated colloidal systems 

While the diffusion of a non-interacting sphere is completely described by 

its MSD, which is linear in time in the diffusive time regime t >> TB, various 

diffusion processes have to be distinguished in non-dilute dispersions of inter­

acting colloidal spheres. These diffusion processes are controlled by different 

diffusion coefficients, ·which become equal to each other only in the dilute limit 

when the sphere interactions can be ignored. The spheres influence each other 

indirectly through the solvent flow field in which they move. These so-called 

hydrodynamic interactions (HI) propagate on a time scale Try ~ Ta, so that 

they act quasi-instantaneously on the diffusive time scale where the fast mo­

mentum relaxations of the spheres are not resolved any more. HI affects the 

sphere dynamics but not the equilibrium microstructure, since as dissipative 

forces they are not describable in terms of an interaction potential. In addi­

tion to the HI, the spheres can have potential interactions with each other 

through excluded volume, van der Waals and screened electrostatic forces. 

These direct forces become operative on the interaction time scale TJ, which 

is the time after which a particle experiences a substantial change of the po­

tential interactions through a perceptible change in its next neighbor sphere 

configuration. Very roughly, TJ can be estimated for a fluid-like suspension 

as the time needed for a sphere to diffuse across its own radius, viz. 

(8.41) 

with typical values of 10-4 ...;- 10-3 s. The short-time regime TB << t << TJ, for 

DLS is thus well separated from the long-time regime t >> TJ. 

Self-diffusion 

For short times TB << t << Tf, a sphere diffuses only over a distance small 
as compared to its own size, and the dynamic "cage" of neighboring spheres 

has thus hardly changed (as sketched in the left part of Fig. 8.2). The sphere 

diffuses then, on the average, in a potential minimum of the neighboring par­

ticles and is thus influenced only by the instantaneously acting HI. A linear 
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increase 

W(t) = D; t TB << t << T[ (8.42) 

of the MSD is thus observed at short times , with a short-time self-diffusion 

coefficient, D~, smaller than the Stokesian diffusion coefficient, D0 , at infinite 

dilution, owing to the slowing influence of HI. Note that the subscript sinD~ 

stands for "self" and the superscript for "short". At intermediate times t ~ TJ, 

the cage becomes distorted from its equilibrium spherical symmetry and the 

sphere experiences an additional hindrance by potential forces. The cage 

distortion implies a sub-linear time dependence of W(t). For long times t >> 
TJ, a sphere has experienced many independent collisions with neighboring 

spheres, as sketched in the right part of Fig. 8.2. 

FIGURE 8.2. Schematic view of a particle cage around a colloidal sphere for short 

times Ts « t « TJ (left), and long times t » TB (right) . 

This leads again to a linear time dependence of W ( t) 

W(t) = D~ t, t >> T[, (8.43) 

but with a long-time self-diffusion coefficient, D~, smaller than the short-time 

one. Summarizing, 

(8.44) 

and one can show that this ordering is valid independent of the type of 

potential interactions. All three diffusion coefficients are equal to Do in the 

absence of interactions only, whereas D~ is substantially smaller than Do 
for strongly interacting particles. On approach of a glass-transition point , a 

particle gets eventually trapped in its next-neighbor cage, with a complete 

blocking of its long-range motion characterized by D~ ~ 0 (idealized glass 
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transition scenario). In contrast, D! > 0 since a sphere in a glass can still 
perform short-time Brownian motion within its cage. 

Using Eq. (8.9), D~ can be expressed as a Green-Kubo relation 

00 

n; = J dt <l>v(t), (8.45) 

0 

i.e. in form of a time integral over the VAF. On the coarse-grained level 

t >> Ta, the VAF 

<Pv(t) = 2D~6(t)- ~c/>v(t) (8.46) 

of interacting spheres consists of a singular part proportional to D!, such 
that Eq. (8.42) is retained from Eq. (8.9), and a long-lived negative part, 
- ~<Pv ( t), originating from particle interactions (caging). One can show that 

~<Pv(t) > 0 and (d/dt)~¢v(t) < 0, consistent with D~ < D!. The regular 
part of the VAF is thus negative and increases strictly monotonically towards 
its final value zero. As one expects intuitively, the collective retarding effect 
of neighboring spheres leads to anti-correlations in the particle velocity. The 
positive-valued singular part in the VAF is the residual of the fast initial 
decay of velocity correlations mediated through the intervening solvent. The 

initial decay of the VAF manifests itself as a 6-function for times t >> Ta (see 
Fig. 8.3). 

(a) (b) 

;. {t) 

FIGURE 8.3. Schematic VAF in: (a) the diffusive regime t » TB, and (b) at very 
short times so that the initial <5-peak is resolved. 

Substitution of Eq. (8.46) into Eq. (8.9) gives 

00 

W(t) = n;t + Tm ( D!- n;)- J du(u- t)Ll</>v(u), (8.47) 

t 
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where 
00 

J dt t !::.¢v(t) 
0 Tm = _oo ____ _ (8.48) 
J dt l::.¢v(t) 
0 

is the mean relaxation time of !::.¢v ( t). It is roughly comparable to TJ. The last 
term on the right-hand-side of Eq. (8.47) is the difference between W(t) and 
its long-time asymptote. The asymptote crosses the vertical axis at the point 
T m ( n; - DD. A remarkable feature of w ( t) is that the approach towards 
its long-time form in Eq. (8.43) is very slow. In three dimension~, the VAF 
of a suspension of hard colloidal spheres has a negative long-time tail [37] 

( 
t ) -5/2 

cPv(t) = -l::.c/>v(t) ~-A Tm , t >> Tm, (8.49) 

with an amplitude A > 0 that depends on the sphere concentration. The 
MSD for large t is consequently 

[ ( 
t )-1/2] w ( t) ~ D~ t + T m ( n; - D~) 1 - -:;:; + 0( t - 1

) , (8.50) 

where Tl is a typical time scale related to Tm. Fig. 8.4 displays a sketch of a 
three-dimensional MSD. 

W(t) 

FIGURE 8.4. Mean-square displacement in three dimensions (fort~ TB)· 

The relaxation of the VAF becomes extremely slow in two dimensions 
where cl>v(t) decays asymptotically as t-2 for all concentrations, indepen­
dent of the nature of the interactions. Therefore, the two-dimensional MSD 
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includes a logarithmic long-time correction [38] 

(8.51) 

with diffusion coefficients and decay times different from the three­
dimensional case. We emphasize that the negative VAF long-time tails 
discussed above are due to configurational rearrangements of interacting 
spheres, and they should not be confused with the positive long-time tail 
in Eq. (8.22). The latter is due to unsteady solvent flow around a sphere in 

isolation, and appears on a much shorter time scale t ::::::::; r 1J. 

The long-time decay of the VAF in one dimension is proportional to 
-t-(d+2)/2 , with d specialized to one. For particles diffusing along an infinite 

line which are not allowed to pass each other (single-filing condition) there 
is, however, a subtle difference to diffusion in higher dimensions. Due to 
the strong mutual hindrance of particles moving along a line the MSD at 
long times grows only proportional to t 112 . Without HI, the MSD reads thus 
explicitly [39] 

{

2D0t, 

W(t) _, ~ ( 4~0t) 1/~ 
TB << t << TJ, 

(8.52) 
t >> T], 

with n denoting the line density of particles and interaction time r1 = 

1/(D0n 2). It is most likely that only the pre-factor of t 112 will be affected 
when HI is included. The long-time limiting form of the probability density 
function, P(x, t), for a particle displacement x during timet is given by the 
Gaussian form in Eq. (8.12) ford= 1, with W(t) according to Eq. (8.52) for 

t >> TJ. The absence of a linear long-time term in W(t) implies a vanish­
ing long-time self-diffusion coefficient for an infinite line. Single-file diffusion 
can be observed, e.g., in superionic conduction, in diffusion of bio-molecules 
through narrow-sized channels in membranes, and in the channel arrays of 
crystalline nanoporous materials (zeolites). 

Self-diffusion coefficients can be measured by a variety of techniques in­
cluding NMR, isotope labelling, light scattering experiments with partial 
refractive index matching, and by means of specialized techniques that use 
fluorescently labelled spheres. In the following, we restrict ourselves to dy­
namic light scattering. To measure self-diffusion over an extended time range 
the system now consists of a possibly concentrated suspension of host spheres, 
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with a few tracer spheres, such that the tracer spheres do not mutually inter­
act with each other. The system must be prepared such, that the scattered 
intensity from the host particles and the solvent molecules can be neglected 
against that of the tracer particles. As explained in Sec. 7.2, the measured 
EACF is proportional to the self-dynamic structure factor S8 (q, t) defined 
in Eq. (7.27), provided tracer and host spheres are different from each other 
only in terms of their scattering properties. The self-dynamic structure factor 
may be expanded in a Taylor series for small wavevectors, 

(8.53) 

meaning that 

(8.54) 

There is a time-dependent non-Gaussian correction of O(q2 ) to S8 (q, t) 
originating from particle interactions. This correction is rather small for a 
fluid-like suspension and becomes zero when the small-q limit is considered. 
Equation (8.54) allows for measuring the full time dependence of the MSD. 
To this end, -ln{Ss(q, t)}jq2 is plotted for a given timet against q2 , and 
linearly extrapolated to q = 0. The intercept is equal to W ( t). Such data 
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FIGURE 8.5. Mean-square displacement W(t) of silica tracer spheres in an index­
matched host suspension of PMMA spheres (of same size as the silica particles). 
The curves are labelled by volume fraction «P. The last two volume fractions 
represent the co-existing fluid ( 4> frccz ~ 0.494) and crystalline (<I> melt ~ 0.539) 
phases. After [40J. 
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obtained from dynamic light scattering experiments on hard-sphere suspen­
sions are given in Fig. 8.5, for various volume fractions (40]. The cross-over 

from short- to long-time behavior is clearly seen. Further note the dimin­
ishing difference between the short- and long-time self-diffusion coefficients 
when the concentration is decreased. 

At infinite dilution, D; = Do, W(t) = Dot and, hence 

(8.55) 

i.e. S 8 (q, t) reduces to the single-sphere dynamic structure factor of indepen­
dent particles. 

Collective diffusion 

In contrast to self-diffusion, which is the Brownian motion of a tagged 
particle in a sea of others, collective diffusion refers to the isothermal re­

laxation of density gradients by the coordinated motion of many colloidal 
particles. Imagine a colloidal system where the density of colloidal particles, 
at some instant in time, varies sinusoidally (such a sinusoidal density profile 
is referred to as a density wave or density mode). That is, at timet= 0 say, 
the number density p(r, t = 0) at position r is equal to 

Pq(r, t = 0) =Po+ p(q, t = 0) sin{q · r}, (8.56) 

with Po = N /V the average number density, and p( q, t = 0) the amplitude 
of the density wave. The bar indicates an ensemble average over a non­
equilibrium initial particle distribution. The wavevector q determines both 
the direction and wave length of the sinusoidal density variation. For changes 
of the position r in the suspension perpendicular to q, the phase of the sine 
function does not change, so that the direction of q is in the "propagation 

direction" of the sinusoidal variation. A change ~r of the position r parallel 
to q leaves the sine function unchanged when I ~r I= m x 21r jq, with m an 
arbitrary integer. Hence, the wave length of the density variation is 

A= 21rjq. (8.57) 

The density wave will relax away to the homogeneous state due to the 
collective motion of particles. In the initial stage of relaxation (i.e. for 

TB << t << TJ), the decay of the density wave is single exponential in time. At 
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a later stage ( t ~ TJ), the decay becomes non-exponential and slower than 
initially as a result of interactions between the colloidal particles. In the fi­

nal long-time regime (t >> TJ ), the density variation may decay once again 
exponentially in time for selected values of q, however with a decay rate that 
is usually smaller than the initial one. For a density wave of large amplitude, 
different wave lengths come into play at a later stage and its shape is then 
no longer sinusoidal. Long-time collective diffusion describes the final stage 
of relaxation of a density wave, where the density profile generally strongly 
deviates from a sinusoidal profile. 

A phenomenological description of the relaxation of density waves can 
be accomplished by using what is known as generalized hydrodynamics. The 
starting point in a generalized hydrodynamic description is the continuity 

equation 

a -
at p( r, t) = - V · j ( r, t) , (8.58) 

which relates the particle density to the particle flux density, }(r, t), and it 
expresses the conservation of the number of particles. The overbar indicates 
an average over a non-equilibrium ensemble. The flux density }(r, t) denotes 
the number of colloidal particles that cross the point r in the direction in 
which J points, per unit area and unit time. 

For small amplitudes in the density variation, and close to thermal equi­
librium, the flux is linearly related to gradients in the density, that is (note 
that at time t = 0 relaxation begins) 

t 

}(r, t) = - j dr' j dt' Dc(r- r', t- t') · 'V'p(r', t'), (8.59) 

0 

where the integral kernel tensor Dc(r, t) is referred to as the real-space col­

lective diffusion kernel. This phenomenological expression can be interpreted 
as the leading term in an expansion of the flux J with respect to the ampli­
tude of density gradients. The "Taylor coefficient" De is independent of the 
magnitude of gradients whenever these are sufficiently small. Density modes 
of different wave numbers decay then independently from each other due to 
linearity in p(r, t). The non-local space- and time dependence of Jon \lp can 
be understood as follows. The flux at a point r can depend on density gra­
dients at another point r', through interactions between the spheres. Hence, 

Dc(r-r', t-t') = 0 when I r-r'l>> R1, where R1 is a measure for the distance 
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over which colloidal particles are correlated. Moreover, the flux at timet can 
depend on '\lp at earlier times, due to the finite time it takes interactions 
to propagate. Such time-delayed effects are commonly referred to as memory 
effects. As a consequence, Dc(r - r', t - t') = 0 when t - t' >> TJ. Note that 
causality requires that Dc(r, t) = 0 whenever t < 0. The diffusion kernel is a 
tensor since flux and density gradient may not be collinear. Spatial isotropy 
requires further that Dc(r, t) = Dc(lrl, t). The so-called non-local Fickian 

law in Eq. (8.59) is valid on a mesoscopically coarse-grained level of spatial 
resolution rv (DoTJ )1/ 2 and time resolution rv TJ. 

Spatial Fourier transformation of Eq. (8.58) with the use of Eq. (8.59) 
leads to 

t ! p(q, t) = -q2 J dt' Dc(q, t- t') )'l(q, t'). 
0 

(8.60) 

where Dc(q, t) = q · Dc(q, t) · q is the longitudinal part (parallel to q) of 
the Fourier transform of the diffusion kernel, and q = q/ q. For notational 
brevity we use the same symbols for the original and Fourier transformed 
functions, where their argument (either r or q) indicates which function is 
meant. Spatial isotropy requires the Fourier transform of Dc(r, t) to depend 
only on the magnitude q of the wavevector q. We learn from Eq. (8.60) that 
the time rate of change of a density mode becomes increasingly slow with 
decreasing wavenumber, since particles need to diffuse over an increasingly 
large distance A = 21r / q to smooth out density variations. 

According to the definition of the collective dynamic structure factor, 
we find from Eq. (8.60) (using that the non-equilibrium average density p 
satisfies near equilibrium the same linear equation of motion as the equilib­
rium density auto-correlation function, which is known as an application of 
Onsager's hypothesis) that 

t ! Sc(q, t) = - q2 J dt' Dc(q, t- t')Sc(q, t'). 
0 

(8.61) 

The solution of this equation for Sc can be formulated in terms of time­
Laplace transforms. The Laplace transform of a function f is defined as 

00 

f(z) = j dt f(t) exp{ -zt}. 

0 

(8.62) 
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In terms of such Laplace transforms, the solution of Eq. (8.61) reads 

Sc(q) 
Sc(q, z) = + 2 D ( ) , z q c q, z 

(8.63) 

with a wavenumber- and frequency- (i.e. z) dependent collective diffusion 
kernel Dc(q, z). As explained above, the q-dependence of Dc(q, z) describes 
the coupling between the colloidal particle flux at a certain point with density 
gradients at other points. The z-dependence of De describes memory effects, 
that is, the coupling between the flux at a certain time with density gradients 
that existed at earlier times. For strongly interacting particles memory ef­
fects give rise to a complicated time dependence of Sc(q, t), characterized by 
a whole spectrum of relaxation times. The collective dynamic structure fac­
tor (as well as S8 (q, t)) is a strictly monotonically decaying function in time, 
for fixed q, with negative slope (d/dt)Sc(q, t) < 0. This exemplifies an impor­
tant rule stating that any auto-correlation function is strictly monotonically 
decaying in time when described within the overdamped colloid dynamics, 

i.e., fort>> TB [3]. It follows readily that Sc(q, z) > 0 and zSc(q, z) < S(q). 
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FIGURE 8.6. Collective dynamic structure factor of a charge-stabilized colloidal 
dispersion. Open squares: Brownian dynamics (BD) computer simulations (af­
ter (411); solid line: Mode coupling theory (MCT) result. 
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These inequalities in turn imply with Eq. (8.63) that Dc(q, z) and its asso­
ciated collective diffusion coefficients are all non-negative, as one expects on 
physical grounds. For fixed t, Sc(q, t) shows damped oscillations in q. A typi­
cal q-dependence of Sc(q, t) at various t is illustrated in Fig. 8.6, which shows 
theoretical and computer simulation results of Sc(q, t) for a suspension of 
charge-stabilized colloidal spheres. 

There exists a special regime where Eq. (8.63) predicts an exponential 
decay of Sc(q, t) . In this so-called hydrodynamic regime, only density wave 
relaxations are resolved with a wave length much larger than R1 ( typi­
cally rv 1 mm), and with a time resolution that is much larger than TJ (typi­
cally rv 1 s). On this strongly coarse-grained level, one can neglect non-local 
spatial dependencies and memory effects. The collective diffusion kernel is 
then equal to 

Dc(r- r', t- t') = D~ 1 <5(r- r') <5(t- t'). (8.64) 

The coefficient D~ is independent of position and time when the amplitude 
of the density profile is sufficiently small. Hence, from Eq. (8.59), 

}(r, t) = -D~ \l p(r, t), (8.65) 

which is Fick's local law of macroscopic gradient diffusion. Sc(q, t) and the 
associated density wave Pq(r, t) in Eq. (8.56) decay thus exponentially, for 
q << R1 -l and t >> TJ, according to 

(8.66) 

and 

Pq(r, t) =Po+ exp{ -q2 D~t} p(q, t = 0) sin { q · r} , (8.67) 

respectively, where Sc(q) = Sc(q, t = 0) is the static structure factor. The 
correlation length R1 can be roughly estimated by 1/qm, where qm is the wave 
number where the static structure factor attains its principal maximum. The 
average extension of the next-neighbor cage around a sphere is roughly equal 
to 27r/qm. The local microstructure around a sphere is not resolved in the 
hydrodynamic limit. This means that Sc(q << qm) in Eq. (8.66) is practically 
equal to the long wave length limit 

Sc(O) = lim Sc(q) = pokBTXr with XT = 2_ (aapo) , 
q-+0 Po P T 

(8.68) 
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where, for a one-component suspensions, XT is the isotherrnal osmotic com­
pressibility of colloidal spheres. 

The transport coefficient D~ is referred to as the long-time collective 

or gradient diffusion coefficient, since it can be determined, e.g., from 
macroscopic gradient diffusion experiments near equilibrium. Note here that 
Eq. (8.66) is equivalent to 

Sc(O) 
Sc(q, z) = + 2 Dl , (8.69) 

z q c 

which shows with Eq. (8.63) that D~ is equal to the small-wavenumber and 
small-frequency (i.e. long-time) limit of the collective diffusion kernel. Ex­
plicitly 

D~ = lim lim Dc(q, z), 
z~o q~o 

(8.70) 

where q2 / z (i.e. q2t) is kept fixed to a value of order one. The long-time 
(i.e. zero-frequency) limit t -4 oo (i.e. z -4 0) means in physical terms that 
t >> TJ (i.e. z << T1-

1 
). Likewise, the short-time (infinite-frequency) limit 

t -4 0 (z -4 oo) should be interpreted as TB << t << TJ ( TJ-l << z << Ti3 
1 

). 

As a phenomenological approach, generalized hydrodynamics provides no 
methods to predict the collective diffusion kernel Dc(q, z) and its associated 
long-time diffusion coefficient D~. An actual calculation of D c ( q, z) can be 
accomplished only on the basis of a microscopic theory that relies on a many­
sphere extension of the single-particle diffusion Eq. (8.17) as the appropriate 
time evolution equation. A microscopic theory of diffusion will be discussed in 
Chapter 9. We will address here only general features of collective diffusion. 

At short times, TB << t << TJ, memory effects are not felt yet and 

(8. 71) 

i.e there is an exponential short-time decay of Sc(q, t) for all q. We recall 
that short-time collective diffusion relates to the initial stage of relaxation of 
a density wave, where it still retains its original form, but just has decreased 
its amplitude. This process is described by a wavenumber-dependent (i.e. 
apparent) diffusion coefficient D~(q) = Dc(q,z -4 oo), which quantifies the 
initial de-correlation of density modes of wavenumber q. Equation (8.71) and 
the monotonicity of Sc(q, t) imply that the longitudinal collective diffusion 

kernel in Eq. (8.61) is decomposable as [42, 3) 

Dc(q, t) = 2D~(q)<5(t)- ll.Dc(q, t), (8.72) 
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corresponding to 

t 

:t Sc(q, t) = -q2 D~(q) Sc(q, t) + q2 J dt' t:.Dc(q, t- t')Sc(q, t') (8.73) 

0 

with a memory function contribution b:.Dc(q, t) 2: 0. The non-local memory 
effect on density relaxations inherent in b:.Dc(q, t) is operative only for times 
exceeding the short-time regime, and it causes a slower and, in general, non­
exponential decay of Sc(q, t). 

The short-time collective diffusion coefficient is defined as the zero-q limit 
of the apparent diffusion coefficient 

D~ = lim D~(q), 
q-+0 

(8.74) 

and relates to the long-time collective diffusion coefficient through 

00 

D~ = D~- lim J dt b:.Dc(q, t). 
q-+0 

(8.75) 

0 

The collective diffusion coefficients obey thus the same ordering 

(8.76) 

as the short-time and long-time self-diffusion coefficients. The coefficient D~ 
quantifies the relaxation of constant density gradients over times t >> TJ, 

through cooperative diffusion of spheres opposite to the gradient direction q. 
Therefore D~ is intimately related to the average sedimentation velocity, 
uz, as measured relative to the laboratory frame of reference, of a homo­
geneous suspension of slowly sedimenting colloidal spheres. To understand 
this explicitly, consider a homogeneous suspension of equal spheres in a 
closed macroscopic vessel at constant temperature, which sediment slowly 
(so that Pe = uta/ Do << 0) under the influence of a constant force of buoy­
ancy F = Fq. This force acting on each sphere drives a sedimentation flux 

. uz A 

Js =Po q. (8.77) 

At equilibrium, the small concentration gradient, "Vp, thereby generated will 
produce an equal, but opposite diffusive flux, jd, so that 

0 . . Ul A Dl n-= Js + Jd = Po q - c v P · (8.78) 
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The force on the solvent exerted by the sedimenting particles is balanced 
through a pressure gradient, '\lp = poF, generated by the base of the vessel 
(which is perpendicular to q). The pressure gradient drives a back-flow of 
solvent such that the zero-volume-flux condition is fulfilled: due to incom­
pressibility, the net volume flux of solvent and spheres through any plane 
perpendicular to q is zero. The concentration gradient follows next from 

'Vp = (:) 'Vp = f3Sc(O)poF Q., 
T,J.L.~ 

(8.79) 

where J-ls is the chemical potential of the solvent (osmotic equilibrium). Fi­
nally, substitution into Eq. (8.78) leads to the general relation [43, 44] 

(8.80) 

between D~ and U1, where U0 = j3D0 F is the sedimentation velocity at 
infinite dilution. Equation (8.80) can be derived more rigorously from linear 
response theory, which provides us further with a microscopic expression 

forD~. 
Very interestingly, the configurational probability density function of 

identical colloidal spheres is not distorted from the equilibrium distribution 
during sedimentation, as long as HI between spheres can be considered as 
pairwise additive. This holds true for dilute monodisperse suspensions. The 
long-time sedimentation velocity U1, which is measured in standard sedi­
mentation experiments, becomes then equal to the short-time sedimentation 
velocity us. The latter is related to the short-time collective diffusion coeffi­
cient once again by Eq. (8.80), with l replaced by s. Consequently, we have 

(8.81) 

for pairwise-additive HI. There is thus no distinction between short-time and 
long-time collective diffusion, which corresponds to a vanishing memory con­

tribution to D~ in Eq. (8.75). A density wave retains its sinusoidal shape 
during the entire process of relaxation whenever the wave length is much 
larger than the correlation length R1. This result is in marked contrast to 
self-diffusion where the long-time self-diffusion coefficient of interacting par­
ticles is substantially smaller than the short-time one even when HI is totally 
disregarded. 
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Three-body or more-body HI become highly relevant for concentrated 
dispersions. In these systems, their effect is to distort the suspension mi­

crostructure from the initial equilibrium distribution for times t"' TJ, which 
causes additional hindrance of particle motion. For t >> TJ, a new steady­
state distribution has been reached, accompanied by a small decrease in the 
sedimentation velocity such that ut < us and D~ < D~. Recent calculations 
for dense hard-sphere suspensions have revealed, however, that the differ­

ences between D~ and D~ are quite small (less than 6%), which makes them 
difficult to detect using DLS [45]. 

DLS and small-angle quasi-elastic neutron scattering experiments on col­
loidal particles which scatter equally strongly, are convenient and widely used 
tools to determine Sc( q, t) over an extended range of times and wave num­
bers. These methods allow to study in detail relaxation of density waves 
for a wave length set by the experimental scattering angle. The short-time 
and long-time collective diffusion coefficients can be extracted from linearly 

extrapolating -ln{Sc(q,t)}jq2 , measured for fixed t << TJ and t >> TJ, re­
spectively, to q = 0. The sedimentation velocity derives then from Eq. (8.80) 
when in addition Sc(q << Qm) is determined by static light scattering. 

In dispersions of strongly repelling particles, D~ and D~ can be sub­
stantially larger than the Stokes ian diffusion coefficient Do. This feature is 
mainly due to the low osmotic compressibility (i.e. Sc(O) << 0), which acts 
as a thermodynamic force driving the relaxation of local density gradients 
( cf. Fig. 8. 7). 

dem~ 1 
q 

FIGURE 8.7. Enhanced relaxation of density fluctuations through low osmotic 
compressibility. 

A typical concentration dependence of D~ for a suspension of moder­
ately charged colloidal spheres is shown in Fig. 8.8 for low and moderately 
large amounts of excess electrolyte. Note that both Sc(O) and us decrease 

with increasing volume fraction <I> of spheres (cf. Eq. (8.80)). At small vol-
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FIGURE 8.8. Theoretical prediction for the (reduced) collective diffusion coef­
ficient DU Do versus volume fraction, for typical aqueous solutions of weakly 
charged spherical micelles. Shown are two curves with (a) low amount and 
(b) moderately large amount of added electrolyte. After [3]. 

ume fraction tP, us decreases less strongly than Sc(O) leading to an initial 
increase in D~. With tP further increasing, hydrodynamic hindrance starts to 
overcompensate the electrostatic particle repulsion so that D~ goes through a 
maximum. The maximum in D~ ( tP) becomes smaller with increasing amount 
of added electrolyte, i.e. with enlarged screening of the electrostatic repul­
sion. While D~/ Do ::; 1 independent of the type of interactions, D~/ Do is 
found to be larger than one for repulsive pair interactions. For dispersions 
with attractive interaction contributions close to a critical point, however, 
D~/ Do ~ 0 due to the large osmotic compressibility of near-critical systems. 
The dynamics of such systems is thus very slow (critical slowing down). 

On various places we have noted that, aside from small wavenumbers 
q << qm, Sc(q, t) decays in general non-exponentially in time. However, recent 
calculations of Sc(q, t) for concentrated suspensions with pronounced particle 
caging have revealed that the dynamic structure factor of these systems does 
decay exponentially for long times, for wavenumbers centered around qm . 

The existence of such a collective long-time mode 

(8.82) 

characterized by a collective long-time diffusion coefficient, D~(qm), at the 
finite wave number qm has been observed indeed in DLS experiments on con­
centrated suspensions of hard spheres. This peculiar mode describes the decay 
of concentration fluctuations linked to the average extension of a nearest-
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neighbor cage. According to theory, the long-time mode ceases to exist when 
the volume fraction of hard spheres is reduced below 0.2. The caging effect 
is then too small and Sc(Qm, t) decays non-exponentially at long times. 

The long-time coefficient D~(qm) should be distinguished from the q­
dependent mean collective diffusion coefficient, Dc(q). The latter is defined by 

00 

Dc(q) = Dc(q, z = 0) = D~(q) - J dtb.Dc(q, t), (8.83) 

0 

and is related to the mean relaxation time, 7(q), of Sc(q, t) through 

00 

_() = jd Sc(q,t) _ 1 
T q - t - . 

Sc(q) q2Dc(q) 
0 

(8.84) 

Contrary to D~(q), the coefficient Dc(q) is not a true long-time diffusion 
coefficient although this has been erroneously claimed. If Dc(q, t) would decay 
sufficiently faster than Sc(q, t), the memory integral in Eq. (8.61) could then 

D 1( \JD c q,P• 0 

• D 1
( \JD c q,l' · () 

MCT 

MCT 

EXP 

EXP 

0.6 

FIGURE 8.9. Mode coupling theory (MCT) prediction (from [461) for the con­
centration dependence of the collective long-time coefficient D~(qm), and for the 
mean collective coefficient Dc(Qm) of hard-sphere suspensions. The experimental 
data for D~(qm) are from [47J. For comparison, we include experimental data 
(from [481) for the short-time D~(qm)/ Do with corresponding theoretical predic­
tions from Eqs. (9.74), (9.75). 
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be de-convoluted fort >> TJ as 

t J dt' Dc(q, t - t') Sc(q, t') "" Dc(q, Z = 0) Sc(q, t). 

0 

(8.85) 

If this holds true then Dc(q) would be a genuine long-time diffusion coefficient 
with Sc(q,t >> TJ) oc exp{-q2 Dc(q)t}. However, Dc(q,t) decays so slowly for 
finite q that the de-convolution is strictly valid only in the hydrodynamic 
limit, where Dc(q) reduces to D~. Contrary to D~(q) the mean collective 
diffusion coefficient is defined for any concentration and all values of q, even 
those where Sc(q, t) is non-exponential at long times. Note that the ordering 
relations 

(8.86) 

are valid for the range of q and <l> where D~(q) exists. A comparison between 
the coefficients D~(qm) and Dc(qm) of hard spheres, as predicted by theory, is 
made in Fig. 8.9. This figure includes also DLS data for D~(qm) which agree 
well with theory. The difference between both coefficients is rather small over 
the complete range of volume fractions where D~(qm) exists. 

Interdiffusion in mixtures 

So far we have explored diffusion processes in one-component systems of 
identical particles, as far as the sizes and interaction properties are concerned. 
In colloidal mixtures, and of course also in atomic and polymer mixtures, an 
additional interdiffusion mechanism comes into play related to the relaxation 
of thermal fluctuations in the relative concentration of two components. For 

simplicity, we will discuss only the most simple case of interdiffusion in binary 
colloidal dispersions of spherical particles, and in a ternary incompressible 
melt of two homopolymer species mingled in a matrix of a third homopolymer 
species. We will address in particular the question whether the interdiffusion 
coefficient can be expressed alone in terms of the self-diffusion coefficients of 
both components. 

The interdiffusion process mediates the relaxation of thermal fluctuations 
(under isothermal and isobaric conditions) in the relative particle (monomer) 
concentration of two components, say component 1 and 2, towards their 
equilibrium values. There might be additional components present but we 

focus here on the concentration exchange between components 1 and 2. The 
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Fourier transform of the incremental microscopic number density of compo­
nent a= 1, 2, relative to its mean density Pao = Na/V8 , reads 

No. 

Pa(q, t) = L exp{iq · rj}- Na8q,o, (8.87) 
j=1 

with (Pa(q, t)) = 0. Here, rj is the center-of-mass position vector of the j-th 
sphere (monomer) of component a, and Na is the number of particles of 
species a in the scattering volume. Small fluctuations in the relative local 
concentrations of 1-particles with respect to component 2 are quantified by 
the microscopic concentration variable 

1 
Pin(q, t) =: ffi (x2p1(q, t)- X1P2(q, t)) , (8.88) 

with N = N 1 +N2 and partial molar fraction Xa = Na/N. The interdiffusion 
process is thus related to the relaxation of Pin ( q, t), whose de-correlation in 
time is described by the interdiffusion auto-correlation function 

Sin(q, t) = < Pin(q, t) Pin( -q, 0) > 

= X1X2 [x2Su(q, t) + x1S22(q, t)- 2 (x1x2) 1/2 s12(q, t)] . (8.89) 

The interdiffusion function Sin(q, t) has been further denoted in the liter­
ature on X-ray and neutron scattering as the Bhatia-Thornton dynamic 

concentration-concentration structure factor. It is a special linear combina­
tion of three partial collective dynamic structure factors (3) 

1 
Saf3(q, t) = (NaN/3) 112 < Pa(q, t)p13( -q, 0 >, (8.90) 

with a, {3 E {1, 2} and S12 = S21· The partial structure factors, Saf3(q, t), 
describe time-correlations in the density fluctuations of components a and {3, 

and they form the elements of a symmetric and positive definite 2 x 2 matrix 
S(q, t). This matrix is the extension of the collective dynamic structure factor 
Sc(q, t) of a monodisperse system to binary mixtures. Note that the factors 
N-1/2 and (N0 N13 )- 112 in Eq. (8.88) and Eq. (8.90), respectively, have been 

introduced to make Sin(q, t) and S(q, t) intensive. The EACF for polarized 
single scattering from a binary mixture can be expressed in terms of the 
dynamic structure factor matrix as 

9E(q, t) <X Jl Su (q, t) + Ji. S22(q, t) + 2 !1 !2 S12(q, t) 

= f(q)T · S(q, t) · f(q), (8.91) 
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where we have introduced the column vector f = [!I, j 2]T of partial scat­

tering strengths fa = x:/2 ba. For a binary colloidal suspension, ba is the 
excess scattering amplitude of a sphere of component a = 1, 2 relative to the 
solvent. For a ternary homopolymer blend, ba is the scattering amplitude of 
an a-type monomer relative to the scattering strength of a matrix monomer. 
In principle, the three partial dynamic structure factors could be measured 
individually by index matching each of the two interdiffusing components 
separately to the solvent (matrix). Unfortunately, such an index matching is 
quite difficult to do from an experimental point of view and has been achieved 
to date only for a few selected systems. The index matching method is to 
some extent analogous to the isotope substitution technique used in neutron 
scattering. 

We are interested here in the hydrodynamic regime (i.e. q ~ 0 and t ~ oo 
with q2t fixed) where the internal structure of the colloidal spheres and ho­
mopolymers, and the internal dynamics of the individual homopolymers are 
not resolved. In this regime, the scattering amplitudes become independent 
of q. The time evolution of the matrix S(q, t) is shown in the hydrodynamic 
limit to be governed by 

S(q, t) = exp{ -q2D~t} S(O), (8.92) 

where D~ is the 2 x 2 long-time collective diffusion matrix, and S(O) = S(q ~ 
0, t = 0) is the matrix of partial static structure factors in the small-q limit. 
Equation (8.92) extends Eq. (8.66) to (binary) mixtures. It is found that D~ 
is in general not symmetric. However, it can be diagonalized and it possesses 
real and positive eigenvalues d+ and d_, as one expects for an overdamped 
system. To see this, we introduce the symmetric and positive definite matrix, 

p,l, of long-time partial mobilities J.-La/3 through [50, 49] 

(8.93) 

A trivial example is provided for a system of non-interacting particles, where 

f-L~/3 = fla{3Doa/(kBT). The symmetry and positive definiteness of ILl is a 
consequence of the symmetry of S(q, t), and its monotonic decay in the hy­
drodynamic limit. That D~ is diagonalizable with positive eigenvalues arises 
then from the possibility to express it as the product of a symmetric and pos­
itive definite matrix ILl and a symmetric matrix s- 1 . Explicit diagonalization 

of D leads to the normal-mode expansion [50] 

(8.94) 
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of S(q, t) as a sum of two exponentially decaying diffusive modes. The ampli­
tudes A+ and A_ can be expressed in terms of the elements of S(O) and p_l. 

The eigenvalues of D are given by 

(8.95) 

with Dav = [Dn + D22] /2 and IDI = DnD22- D12D21· In case of a binary 
colloidal dispersion, the bimodal relaxation described by Eq. (8.94) arises 
from the large differences in the relaxation times of colloidal particles and 
solvent molecules. In contrast, the relaxation time of the polymer matrix, 
which plays the role of the "solvent" in the ternary homopolymer mixture, is 
comparable to those of the other two components. The bimodal relaxation is 

here a consequence of the incompressibility constraint 

Pl ( q) + P2 ( q) + P3 ( q) = 0 , (8.96) 

valid in the diffusive limit, which enables one to express the dynamics of 
one component, identified as the "matrix", in terms of the other ones. For 
simplicity, we have assumed here that the segmental volumes of all three 
homopolymer species are equal to each other. It is clear that S(q, t) in the 
general case will contain as many exponentially decaying modes as the num­
ber of independent components. 

It follows from Eqs. (8.89) and (8.94) that 

(8.97) 

withe = [ JX2,- JXI] T, is a superposition of two decaying modes. Neverthe­
less, the initial decay of Sin(q, t) in the hydrodynamic limit can be described 

for t << 1/ d+ by the single exponential form 

(8.98) 

which defines the long-time interdiffusion coefficient, D~n, as 

D~n = lim lim [-
1
2 ~In Sin(q, t)] 

t-+oo q-+0 q u~ 
(8.99) 

By matching the initial relaxation rates in Eqs. (8.97) and (8.98), we find, 

using Eq. (8.93), that 

(8.100) 
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with 

A~n kBTx1 x2 eT · JLl · e 

= kBTx1x2 [x2JLi1 + XUL~2 - 2 (x1x2) 1/2 JLi 2] (8.101) 

We note that D~n is expressed here as a product of a kinetic factor, A~n > 0, 
and a thermodynamic factor equal to 1/Sin(q = 0). For a binary rnixture of 

particles nearly identical in their interactions, Sin(O) ~ x 1x 2 . For systems 

with Sin(O) < x1x2 (Sin > x1x2) the particles of components 1 and 2 have 
the tendency to mix (de-mix). 

The kinetic factor can be expressed by the Green- Kubo formula 

00 

lim jdt < Jin(q, t) Jin( -q, 0) >, 
q-+0 

(8.102) 

0 

where 

(8.103) 

is the interdiffusion flux related to Pin(q, t). Here, v~l) and vY) denote the 

longitudinal (i.e. parallel to q) velocities of component 1 and 2 particles. 

The interdiffusion flux is seen to be closely related to the relative velocity of 

the center-of-masses of the two components in the mixture. The derivation of 

Eq. (8.102) can be represented quite generally [50, 51] for any density function 

p( q, t) in Fourier space satisfying the continuity equation 

p(q, t) = iqj(q, t). (8.104) 

Here j(q, t) is the longitudinal component of the flux vector j(q, t) associated 

with p( q, t), and the dot denotes differentiation with respect to time. The 

long wave length limit of the current auto-correlation function follows then as 

lim (j(q, t) j( -q, 0)) = lim 
1
2 < p(q, t) p( -q, 0) > 

q-+0 q-+0 q 

-lim 2_ 82S(q, t) 
q-+0 q2 8f2 

(8.105) 
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where S(q, t) = < p(q, t)p( -q, 0) >.For the most right equality we have used 
the stationarity property, which states that equilibrium time-correlation func­
tions are invariant to a shift in the time origin. Next we integrate Eq. (8.105) 
with respect to time to obtain 

t 

lim jdt' (j(q, t') j( -q, 0)) = - li1n 
1
2 8

8 
S(q, t), 

q--+0 q--+0 q t 
(8.106) 

0 

where the initial condition 

a 
at S(q, t)lt=O = 0 (8.107) 

has been used. This initial condition is a consequence of time reversibility, 

i.e. < A(t)A(O) > = < A( -t)A(O) > for any dynamic variable A obeying 
the deterministic Liouville equation. The initial slope of any auto-correlation 

function is thus zero in Liouville dynamics. Of course, this does not hold 
for the irreversible dynamical regime described by diffusion equations (e.g., 
Eq. (8.17)), wherein the microscopic short-time regime t << TB remains unre­
solved. The transition to the hydrodynamic regime follows from taking the 
long-time limit of Eq. (8.107). This gives the exact relation 

00 

lim jdt (j(q, t) j( -q, 0)) = - lim liln 
1
2 ~ S(q, t), 

q--+0 t--+oo q--+0 q u~ 
(8.108) 

0 

where the order of the limits is not interchangeable. In specializing this 
equation to interdiffusion, the Green-Kubo formula for A~n is readily ob­
tained from substituting the hydrodynamic limit form of Sin(q, t) as given 
in Eq. (8.94). When Eq. (8.108) is specialized to self-diffusion by choosing 
p(q,t) = exp{iq · r 1 (t)} and using that S8 (q,t) = exp{-q2 D~t} in the hy­
drodynamic limit, one is led to the Green-Kubo formula for the VAF given 

in Eq. (8.45). For self-diffusion, A~ = D~, since the thermodynamic factor 
1/ S8 (q, t = 0) is equal to one even for finite q. 

For colloidal mixtures, one needs to distinguish between the short-time 

and long-time interdiffusion coefficient. The definition of Din = Afn/ Sin (0) 
and of its associated short-time kinetic factor Afn follows from considering 
the time evolution equation 

t ! S(q, t) = -q2 D~(q) · S(q, t) + q2 j dt' ~Dc(q, t- t') · S(q, t') (8.109) 

0 

http://rcin.org.pl



118 8. HEURISTIC CONSIDERATIONS ON DIFFUSION PROCESSES 

for S(q, t), which constitutes the generalization of Eq. (8.73) to colloidal mix­
tures. Here ~Dc(q, t) is a 2 x 2-matrix of collective memory functions, related 
to the long-time collective diffusion matrix in Eq. (8.93) by ( cf. Eq. (8. 75)) 

00 

D~ = D~- liln J dt ~Dc(q, t), 
q-0 

(8.110) 

0 

with the short-time collective diffusion matrix D~ = limq-o D~(q). Introduc­
ing the short-time mobility rnatrix through D~ = kBTJ.L8 

• S(0)-1
, Afn can 

be defined in analogy to the long-time kinetic coefficient as 

As k T T s in = B x1 X2 e · J.L ·e. (8.111) 

Contrary to the one-component case, where D~ = D~ for systems with pair­

wise additive HI, one finds for mixtures that D~ -=/ D~, and hence A~n < Afn 
and D~n < Din, even so when HI is neglected. The reason for the different 
physical behavior of mixtures is that particles of different components diffuse 
differently fast under a constant density gradient. Hence, the equilibrium mi­
crostructure becomes distorted at longer times. For the memory matrix this 

implies that limq-o ~D(q, t) -:f 0. 
The interdiffusion coefficient describes the relaxation of thermally excited 

fluctuations in the relative composition through the collective motion of par­
ticles. Therefore, there is no reason to expect that, except for a few limiting 

cases, D~n can be expressed solely in terms of the self-diffusion coefficients 

00 

D~" = j dt < vf(t)vf(O) > (8.112) 

0 

of both components, with vf denoting the longitudinal velocity of a com­
ponent a particle. That there are collective contributions to Din which are 
not contained in the self-diffusion coefficients was explicitly shown for fluid 
atomic mixtures in (52]. The importance of collective contributions to Din 

will be exemplified in Sec. 9.2 for mixtures of colloidal hard spheres. 

An ideal binary mixture is characterized by 

(8.113) 

i.e. the kinetic factor can be expressed solely in terms of a weighted sum of 
the self-diffusion coefficients. Such an ideal situation is implied, in particular, 
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according to Eq. (8.102) , when velocity cross-correlations < vi(t)vj(O) > be­

tween different particles i i= j vanish or mutually cancel each other for all t. 
A trivial example of an ideal system is a binary suspension of non-interacting 

particles, where 

(8.114) 

Here, Doa is the free diffusion coefficient of an a-type particle. Eq. (8.113) 

is the fast-mode expression for interdiffusion since for Dsl >> D8 2, Din is 

dominated by the self-diffusion coefficient of the fast component 1. The fast­

mode form of Din is approxin1ately valid for mixtures of Lennard- Jones-type 

fluids like argon-krypton. However, there are severe deviations from the fast­

mode form for mixtures of strongly dissymmetric particles. Perfect situation 

is reached only for symmetric bimodal systems, where the particles of both 

components differ only in their labelling (e.g. in their optical properties). In 

this limiting case, Sin(O) = x1x2, and 

(8.115) 

for arbitrary concentration and particle interactions. Not unexpectedly, this 

means that the concentration exchange between the two components is only 

driven by self-diffusion. The interdiffusion coefficient in a symmetric mixture 

is thus identical with the self-diffusion coefficient. Since all particles are iden­

tical regarding their sizes and interactions, there is no gradient in the local 

chemical potential difference of both species. Each particle experiences a uni­

form environment as in the case of self-diffusion. An ideal bimodal system in 

the hydrodynamic limit is further characterized by 

(8.116) 

with d_ < d+. The eigenmode with decay constant d_ ( d+) is thus identified 

with the interdiffusion (collective diffusion) process, and Din and De can be 

extracted, using index matching, from a single measurement of the EACF 

of the unmatched (labelled) component a, since then 9E(q, t) <X Saa(q, t). 
The two normal modes cannot be identified, in general, as interdiffusion and 

collective diffusion processes. Moreover, Din cannot be extracted, in general, 

from the measurement of a single dynamic structure factor, say Su (t), of one 

component. One needs a second experiment, in which the first component is 

matched away and s22(q, t) is determined. 
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Exact microscopic expressions have been derived for the interdiffusion co­
efficient of colloidal mixtures. These expressions form the basis of its actual 
calculation (cf. Chapter 9). In the case of incompressible polymer melts, an 
analogous microscopic description is of little use from a computational point 
of view. Therefore one resorts to approximate schemes like the (dynamic) 
random phase approximation (RPA), which relates the dynamics of poly­
mer mixtures to the dynamics of a single polymer chain in the mixture. In 

Sec. 9.3, we will discuss the application of the RPA to ternary blends of ho­
mopolymers. We only mention here that for a incompressible binary blend, 
the RPA predicts the slow-mode expression 

1 X2 X! -cx:-+­
Ain Dsl Ds2 

(8.117) 

for the kinetic factor, with Dsa the self-diffusion coefficient of an a-type 
monomer in the melt, and Xa the molar fraction of a-type monomers. The 
kinetic factor is dominated here by the slow component, as the name "slow 
mode" implies. The RPA states thus that, due to incompressibility, the dy­
namics of the fast component is slaved by the slow one. The binary blend is 
thus an opposite limiting case to ideal solutions of weakly interacting par­
ticles and to mixtures of nearly identical components where the fast-mode 
expression applies. 

Rotational diffusion 

We proceed to discuss salient features of rotational diffusion in suspen­
sions of colloidal spheres with spherically symmetric potential interactions, 
within the time regime accessible by depolarized DLS. As discussed already 
in Sec. 8.1, the decoupling approximation of the depolarized EACF holds then 
exactly to linear order in t. Consider first the (hypothetical) case of particles, 
which interact by direct potential forces only, and not by HI. Then the rota­
tional self-dynamic correlation function reduces, for all times t >> rs ~ r8, 
to an exponentially decaying function 

Sr(t) = exp{ -6D0t}. (8.118) 

This result follows from realizing that the orientational Brownian motion of a 
sphere with radially symmetric pair interactions is independent of the orien­
tational and translational motion of other spheres, as long as HI is not consid­
ered. Recall that, contrary to Sr ( t), the translational self-dynamic structure 
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factor S 8 (q, t) is single exponential without HI only at short times. Conse­
quently, 

g~H (q, t) ex (32 exp{ -(q2W(t) + 6D0t)} (8.119) 

is valid for all t >> TB, provided small non-Gaussian corrections to S 8 (q, t) 
can be discarded. In reality, however, Eq. (8.119) is of little use since the 
HI are very long-ranged. HI decay for long interparticle distances r as r- 1 

regarding collective diffusion, and as r-4 and r-6 , respectively, in case of 

translational and rotational self-diffusion. Therefore, HI cannot be neglected 
in comparison to direct interactions. With HI, Sr(t) decays exponentially only 
at short times. The initial decay of Sr(t) can be quantified by the short-time 
rotational self-diffusion coefficient D;, defined as 

D 1• __ 
1
. 8lnSr(t) 

s- nn ~ ' 
t-+0 u~ 

(8.120) 

where t----+ 0 should be interpreted as TB << t << TJ ~ Tr. The HI between the 
spheres cause a hindrance of short-time rotational motion so that D~ < D0. 
At infinite dilution, D~ ----+ D0. As will be exemplified in Sec. 9.2, D~ depends 
crucially on system parameters like the volume fraction, and the particle 
charge in case of charge-stabilized dispersions. 

Memory effects come into play at longer times and lead to deviations of 
Sr ( t) from the single exponential decay. For the rotational Brownian motion 
of the tip of the orientation vector u on the compact unit sphere, there is no 
analogue of the hydrodynamic q ----+ 0 limit known from translational self- and 
collective motion. At long times, Sr(t) decays in principle non-exponentially, 
with an average decay rate somewhat smaller than the initial one. Such a non­
Debye-like relaxation of Sr(t) at long times has been observed experimentally 
and theoretically for various systems. For dilute suspensions of colloidal hard 

spheres, e.g., it has been shown theoretically that Sr(t) is non-exponential 
at intermediate and long times, according to (53) 

(8.121) 

with a positive-valued function 12(t). Here, S~(t) is the rotational self­
function at infinite dilution, given by Eq. (8.118). While a genuine long-time 
rotational self-diffusion coefficient does not exist, one can always define in­

stead a mean orientational self-diffusion coefficient, Dr, which depends on 
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the overall time dependence of Sr(t) through (53) 

(8.122) 

with Cr = 0.67 for hard spheres, resulting in Dr/ D0 = 1 - 0.67<I> + 0( <I>2). 
This should be compared with the first-order virial result for the short­

time rotational self-diffusion coefficient of hard spheres, given by D~ / D0 = 

1- 0.63<I> + O(<I>2). Thus, memory effects in Sr(t) lead to a mean diffusion 
coefficient only slightly smaller than the short-time one, to first order in <I>. 

Whereas a true long-time rotational self-diffusion coefficient, D[, does 
not exist in monodisperse suspensions, we expect D[ to be a well-defined 
long-time property when interpreted as the long-time coefficient describing 
the rotation of a large tracer sphere immersed in a dispersion of small host 
spheres. Depolarized DLS measurements indicate that a tracer /host size ratio 
larger than 10 is large enough for D[ to be well-defined. Due to the separa­
tion of time scales between the slow motion of the tracer and the fast motion 
of the host spheres, the tracer experiences the host dispersion as an unstruc­
tured effective fluid, characterized by the effective viscosity TJH of the host 
dispersion. Thus, one expects that D[ obeys the generalized Stokes- Einstein 
relation for a perfectly sticking effective fluid, i.e., 

Dr_ ksT 
z-

61fTJHar ' 
(8.123) 

where ay denotes the radius of the tracer. This expectation is supported 
experimentally, and by calculating the short-time rotational self-diffusion co­
efficient of the tracer in a dilute host dispersion of hard spheres (54). For the 

latter case, D~ is described to good accuracy by (54) 

Dr = Dr [1 - 2.5 <I> + O(<I>2)] 
s 0 1 + 3A-1 ' 

(8.124) 

with A = ay /au , and <I> the volume fraction of host spheres. This equation 

describes a monotonic decline of the tracer coefficient from D~ = D0 at A = 0 
towards D~ = D0 (1 - 2.5<I>) = ksT / (67rTJo(1 + 2.5<I> )] + 0( <I>2) for A --+ oo 
(see Fig. 8.10). For very large A, the tracer sphere experiences thus the host 
solution as an effective one-component fluid, with an effective shear viscosity 
given to first order in <I> by the Einstein relation TJH = TJo (1 + 2.5<I> ). In the 
opposite limit A << 1 , the point-like (relative to the host) tracer rotates for 
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FIGURE 8.10. Reduced short-time self-diffusion coefficient, D: I D0 versus size 
ratio >. = ar I aH of a colloidal tracer sphere immersed in a dilute host disper­
sion of colloidal hard spheres. The volume fraction of host spheres is <P = 0.1. 
After [54, 55]. 

123 

short times in an essentially stationary environment of host spheres so that 
its dynamic cage is affected only by the viscosity TJo of the pure solvent. 
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Chapter 9 

Theory of diffusion 

9.1. Many-particle Smoluchowski equation 

Fort>> TB, which is the time regime of most DLS experiments, the ve­
locities of the colloidal spheres have relaxed to Maxwellian equilibrium, so 
that only the slow relaxation of the particle positions and orientations is 
probed. Therefore, the dynamics of interacting spheres is entirely described 
on this coarse-grained level in terms of a many-particle probability density 
function, P( rN, u, t), in the configuration space of positional and orienta­
tiona! degrees of freedom. The probability density function depends thus, in 
principle, on the position vectors rN = (r11 ... , r N) and orientation vectors 
fiN = (u1, ... , fiN) of all N spheres in the suspension (scattering volume 
V8 ). In compact notation, X = (fiN, rN) denotes a fiN-dimensional vector 
specifying the momentary positions and orientations of all N spheres. The 
equation of motion for P(rN, fiN, t) is a generalization of the one-particle dif­
fusion Eq. (8.17) to interacting particle systems. This many-particle diffusion 

equation is known among colloid scientists as the generalized Smoluchowski 
equation ( GSE). In the polymer science community, a particular version of 
the GSE is known as the Kirkwood-Riseman-Zimm equation (36, 56). 

The description of the configurational evolution by means of the GSE is 
founded on the separation of time scales between the strongly fluctuating 
particle velocities, and the slow configurational changes. Such a description 
cannot be applied to polymer blends since the relaxation of the matrix, which 
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plays the role of the solvent, is comparable to those of the other compo­
nents. To explore the polymer dynamics in the diffusion limit (or Markovian 
limit) of small wavenumbers and long times, we resort therefore to the semi­
phenomenological dynamic RPA. Using the RPA, we will study the interdif­
fusion process in a ternary homopolymer mixture. 

In the following, we give a heuristic derivation of the generalized Smolu­

chowski equation, on assuming quasi-inertia-free motion of solvent and 
spheres. Consider N identical colloidal spheres immersed in an unbounded 
Newtonian solvent. The interpretation of P(X, t) as anN-particle probability 
density function normalized to 

J dX P(X,t) = 1, (9.1) 

requires that P(X, t) obeys a generalized continuity equation of the 

form [3, 24] 

(9.2) 

Here, vN = (v1, ... , vN) and wN = (w1, ... ,wN) are coarse-grained transla­
tional and rotational velocities of the spheres. Moreover, \7N = (\71, ... , \7 N) 

and LN = (L 1 , ... ,LN), with Li = ui x 8/(8ui) denoting the orientational 
'gradient' operator applied to sphere i. The continuity equation can be formu­
lated in a more compact form by introducing the 6N-dimensional gradient 

N AN 
operator \7 x = (\7 , L ) . For pedagogical reasons, however, we prefer to 
distinguish explicitly the translational variables from the rotational ones. 

For t >> TB ~ Trp we assume that inertial effects in the particle velocities 
and the fluid velocity field have relaxed away. It follows that the hydrody­

namic forces, FH = (F1, ... ,FN), and torques TH = (TlJ ... ,TN), which 
are exerted on the surfaces of the spheres by the surrounding fluid are bal­
anced by the sum over all non-hydrodynamic forces, i.e. [3, 24, 42] 

-FH = FP + Fex + FB = -\7NU- \7Nuex- ksT\7NlnP' 

-TH TP + Tex + T 8 = -tN u- tN uex- ksTLN lnP. (9.3) 

Here, Ff = -\7 i U (X) and Tf = - Li U (X) are the force and torque, respec­
tively, exerted on sphere i through inter-particle interactions described by the 

potential energy function U(X) (cf. Eq. (2.6)). The latter can also depend 
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on particle orientations (through, e.g., dipole-dipole interactions). Likewise, 
Fex and Tex are the forces and torques exerted on the spheres by an exter­

nal force field (e.g., gravitational, electric or magnetic forces) with potential 
uex(x). 

The Brownian forces and torques, 

Ff - kBT"Vi lnP, 

Tf = - kBTLi lnP, (9.4) 

are due to the integrated effect (on the slow colloidal time scale) of the 
thermal motion of the fluid molecules in presence of the spheres of fixed 
configuration X. These 'thermodynamic' forces drive the colloidal system, 
for zero external forces and zero incident flow, to thermal equilibrium, 

P(X, t---+ oo)---+ Peq(X) ex exp{ -,BU(X)}, (9.5) 

when the system has been prepared initially in a non-equilibrium state. 

On the time- and length scales relevant to colloidal motion ( t >> TB and 
tlr >> (DoTB) 112 ), the fluid can be described by the creeping flow equa­
tion, i.e. by the stationary and linearized N avier-Stokes equation for (quasi-) 
incompressible flow and small Reynolds number. This equation is also fre­
quently referred to as the Stokes' equation. For creeping flow, the hydrody­
namic forces and torques are linearly related to the (angular) particle veloc­
ities in form of a generalized Stokes' law [24, 57, 58, 59], 

The advective velocities v~(X; [uo]) = (vc1, ... , VcN) and w~(X; [uo]) = 
(wc1, ... , WeN) are acquired by the spheres when they are force- and torque­
free. These velocities are linear functionals of u 0 , and they vanish for zero 
incident flow, i.e. for a quiescent suspension. To be compatible with creeping 
suspension flow, the incident flow must be a solution of the homogeneous 
Stokes' equation (59], 

- Vp(r) + Tlo !:l u(r) 0, 

V · u(r) = 0, (9.7) 

where u(r) and p(r) are the fluid flow and pressure fields, respectively. 
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The incident flow can be considered as arising from forces acting at the 
infinitely distant boundaries of the fluid. An important example for uo is 
simple linear shear flow. Here, 

u 0 ( r) = 'Y r · r = wo x r + eo · r (9.8) 

with shear rate, 'Y, and velocity gradient tensor 

(9.9) 

The tensor r is traceless, since \7 · uo(r) = 0. For convenience, we have 
split the flow field into a rotational part, characterized by the local angular 

velocity wo(r) with 

1 1. 
Wo ( r) = 2 ( \7 X Uo) ( r) = 2" E : r , (9.10) 

and a purely extensional flow part, characterized by the symmetric and trace­
less rate-of-strain tensor, 

1 1 1 
eo(r) = 2 [('Vuo)(r) + ('Vuo)T(r)] - 31 Tr('Vuo(r)) = 21 [r + rTJ. 

(9.11) 
In addition, we have introduced the totally anti-symmetric and third-rank 
tensor E. For simple linear shear flow, wo and eo are constants. 

Replacing the translational-rotational velocities in the continuity Eq. (9.2) 
by Eq. (9.6), and using further the force balance equations, leads to the gen­
eralized Smoluchowski equation for P(X, t): 

a 
at P(X, t) = 

N 

L {(vi. ng + ti. nrJ). ('Vj + /3('VjU + 'Vjuex]) 
i,j=l 

+ ('Vi · D~j + Li · DfJ) · ( t 1 + /3 [ t 1u + t 1uex]) } P(X, t) 

N 

L {'Vi. Vci + ti. Wei} P(X, t). 
i=l 

(9.12) 

Here, \7 i U, Li U, \7 i uex and Li uex are vector functions and not differential 
operators. The generalized Smoluchowski equation in this very general form 
applies both to suspensions of spheres, and to suspensions of thin uniaxial 

rods. In the latter case, Ui points into the long-axis direction of rod i. 
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In Eq. (9.12), the solvent enters only through the time-independent 
translational-translational ( tt), translational-rotational ( tr), rotational­
translational (rt) and rotational-rotational (rr) hydrodynamic diffusivity ten­
sors. These tensors describe the solvent-mediated many-body hydrodynamic 
interactions (HI) between the particles. 

The propagation of hydrodynamic disturbances (via sound and diffusion 
of shear waves) appears to be infinitely fast for times t >> T71 . Therefore, HI 
between colloidal spheres act quasi-instantaneously, and the DfJ (X), with 
p, q E { t, r}, can be determined by solving the Stokes' equation, augmented 
by stick boundary conditions on the sphere surfaces, and by outer boundary 
conditions related to uo. Yet, actual analytical calculations of the DfJ(X) 
are very difficult even in the case of spheres, and have been fully achieved 

only on the pairwise-additive level, mainly in form of inverse distance expan­
sions (57, 58, 59). Hereby one disregards the influence of other spheres on the 
HI between a given pair of spheres, an approximation which is valid only for 
large interparticle distances. Note for spheres that Df/ (rN) depends only on 
the position variables. The leading-order long-distance forms of Dtt and nrr 
are discussed following Eqs. (9.67) and (9.83), respectively. For non-spherical 
particles like thin rods, position and orientation variables are coupled by 
HI. The diffusivity tensors of uniaxial rods depend both on the position and 
orientation vectors of the rods. Contrary to spheres, little is known about 
these many-rod tensors even for very thin (needle-like) rods. Note that for 
non-spherical particles, even the single-particle friction and diffusivity coef­
ficients are of tensorial nature. 

We consider in the following only suspensions of spheres. If we ignore 
HI, then Dtt = Dol, ntr = 0 = nrt, and nrr = D0 1, with Do and D0 the 

single-sphere translational and rotational diffusion coefficients, and 1 the 
3N x 3N -dimensional unit matrix. The advective sphere velocities without 
HI follow directly from the first and second Faxen theorem for stick boundary 
conditions (cf., e.g., (24]), namely from 

1 ( H ) a2 2 --
6
-- Fi = 0 + uo(ri) + -

6 
\7 uo(ri), 

nryoa 

1 ( H ) 1 -
8 3 Ti = 0 + -

2 
(\7 x uo) (ri). 

nryoa 
(9.13) 

These theorems are generalizations, for arbitrary incident flow, of the stan­
dard single-sphere translational-rotational Stokes' laws. They express mean 
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value properties since the solutions of the homogeneous Stokes' equations are 
bi-harmonic functions, i.e. 'V4 uo = 0. 

With Eq. (9.13) for the convective velocities, one arrives at the Smolu­
chowski equation for P(X, t) without HI in simple incident shear flow. Ex­
plicitly 

N 

L {Do V; . [V; + {3 ('\7; [U + uex])] 
i=l 

+ D0 Li · [ ti + ;3 ( Li[U + uex])] 

- -y(v;-(r·r;)+~L;·(cr)) }r(X,t). (9.14) 

Restricting ourselves to orientation-independent potential functions 
U(rN) and uex(rN), we can integrate Eq. (9.14) with respect to the posi­

tional degrees of freedom, using that 

j dr;'\7; · [ ... ] = 0, (9.15) 

for P vanishing in the system boundary (e.g., by assuming an infinite wall 
potential). This gives rise to the orientational Smoluchowski equation with­
out HI, 

N ! P(UN,t) = E { DQL/- ~-yL;. (<: r)} P(UN,t), (9.16) 

with the orientational probability density function, P(uN, t), defined as 

P(UN, t) = J drN P(X, t). (9.17) 

For orientation-independent potentials and vanishing HI, each sphere rotates 
thus independently from all the others. For zero incident flow, Eq. (9.16) 
reduces to the single-sphere Debye Eq. (8.3) discussed already in Sec. 8.1. 

We can alternatively integrate Eq. (9.14) with respect to the orientational 
variables, introducing hereby the positional probability density function 

P(rN, t) = J dUN P(X, t). (9.18) 

Application of Stokes' integral theorem to a closed unit sphere, where 

j dft L ( ... ) = o , (9.19) 

47r 

http://rcin.org.pl



9.1. MANY-PARTICLE SMOLUCHOWSKI EQUATION 131 

leads then to the translational Sn1oluchowski equation without HI (24] 

a N 
ot P(rN' t) = L {Do vi. [vi+ f) (vi [U(rN) + uex(rN)])] 

i=l 

So far we have formulated the translational and rotational variants of 

the generalized Smoluchowski equation without HI only. We proceed to de­

scribe the forms of the convective velocities in presence of HI. For linear 

incident flow, only the first order derivatives in u(r) - uo(r), evaluated at 

the sphere centers, need to be considered. In the so-called friction problem, 

one prescribes the translational and rotational velocities vN and wN, and 

the incident flow uo(r). The resulting hydrodynamic forces and torques, and 

the force stresslets (4, 59], 

Sf = J dr { [(r- ri) fi(r)Js- ~ 1 Tr [(r- ri)fi(r)J} , (9.21) 

acting on spheres i = 1, ... , N, are then obtained by the linear relations (57] 

(9.22) 

Here, sH = (Sfl, ... ,S~), e~ = (eo(ri), ... ,eo(ri)), as well as u~ and w~ 
are evaluated at the sphere centers. The translational-rotational submatrix 

of the grand friction matrix in Eq. (9.22) is linearly related to the mobility 

matrix in Eq. (9.6) through (57] 

( 
(tt(r) (tr(r) ) = k T ( Dtt(r) nt7'(r) ) -~ 
(rt(r) (rr(r) B nrt(r) nrr(r) (9.23) 

In the definition for the symmetric and traceless force dipole moment tensor, 

Sf, given in Eq. (9.21), 

(9.24) 

is the force density exerted on the surface of sphere i by the surrounding 

fluid. The surface normal vector n(r) points hereby into the fluid. Moreover, 

a(r) = -p(r) 1 + rJo [ Vu(r) + (Vu(r))T] = -p(r) 1 + 2ryo e(r) (9.25) 
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is the Newtonian fluid stress tensor. The single-sphere stresslet is related to 
the incident flow field by [4] 

H 20 3 ( a2 2) si = 31r'T]oa 1 + 10 V' eo(ri). (9.26) 

This equation is referred to as the third Faxlm theorem. According to the first 
and second Faxlm theorems, FH = 0 = TH is possible even when u 0 =/= 0. In 
contrast, the third FaxEm theorem demands SH =/= 0 when the incident flow 
differs from a constant rotation. The reason for this behavior of the stresslet is 
that rigid spheres can not deform under shear. The (high-frequency-limiting) 
average suspension viscosity is therefore larger than the solvent viscosity. 

The advective velocities entering into the generalized Smoluchowski equa­
tion with incident flow, follow from Eq. (9.22) by setting FH = 0 = TH , 

solving then successively for v~ - u~ and w~ - w~. This gives 

(9.27) 

with 

(9.28) 

and 

(9.29) 

For simple incident shear flow, the translational advective velocity of sphere 
i is given by 

(9.30) 

with rs = [r + rT] /2. We have introduced here the third-rank shear mo­
bility tensor, Ci(rN), by 

N 

Ci(rN) = f3 L [ntt(rN). (s(rN)Lz. (9.31) 
l=l 

The long-distance asymptotic form of the shear mobility tensor is of or­
der r- 2 . Its divergence, however, decays like r-6 for large sphere separa­

tions [24]. 
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Substitution of the advective velocities for simple incident shear flow into 
Eq. (9.12), followed by an integration over the orientational degrees of free­
dom, leads to the translational generalized Smoluchowski equation (24], 

a N 
at P(rN' t) = L \7i. D~] . [\7 j + {3 (\7i [U(rN) + uex(rN)])] P(rN' t) 

i,j=l 

N 

- Lvi. [r·ri+Ci(rN) :rs]P(rN,t). (9.32) 
i=l 

This equation describes hydrodynamically interacting spheres under simple 
shear. 

Although these lecture notes are focused on the statics and dynamics of 
spherical colloidal particles, it is of interest to discuss briefly the form of the 
GSE for a suspension of N identical long and thin rods. For these suspensions, 
the volume fractions corresponding to the isotropic phase are very small. 

Therefore hydrodynamic interactions are probably far less important than 
for suspensions of spheres (60]. However, this assertion should be checked 
carefully in future studies. 

Without HI between the rods, nrt = 0 = ntr. Moreover, all cross terms, 

i -=/= j, of ng and DiJ do vanish. The only non-vanishing diffusivity compo­
nents (tensors) in Eq. (9.12) are the self-terms 

D~!' 
tt n01. (9.33) 

In Eq. (9.33), the single-rod translational diffusion coefficients for motion of 
the rod center parallel and perpendicular to the long axis, respectively, are 
given by (60] 

nil = 
0 

kBTln{L/D} 

27rrJo L 

Dt = ~ D~, (9.34) 

where L and D, with L >> D, are the rod length and thickness. End ef­
fects are disregarded here. The single-rod rotational diffusion coefficient, D0, 
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quantifies the rotation of a rod with angular velocity perpendicular to the 

long axis. It reads 

Dr= 3kBT ln{L/ D} 
o 7rTJo £3 · 

(9.35) 

For very large and thin rods, one can disregard rotation along the long axis. 

After inserting Eq. (9.33) into Eq. (9.12), we are led to the intermediate result 

N ! P(X, t) = L { V';. ( Dg ii;ii; + Dt (1- ii;ii;)) [V'; + (3 (V'; [U + u•xm 
t=l 

+ DQ L;. [t;+ (3 ( L;[U + uexl) ]- ( V';. Vci + L;. W;c) } P(X, t). (9.36) 

The center of a hydrodynamically non-interacting rod i, located at ri is 

advected, in presence of simple incident shear flow, with the velocity 

(9.37) 

To obtain the advective angular velocity Wei of a rod we select a co-moving 

co-ordinate system centered at ri. The tip of ui would be dragged along by the 

flow with velocity i' r · ui, if there would not be the length constraint ui
2 = 1 

which demands that fti ..lui. Hence, fti must be equal to the projection of 

the vector i' r · ui onto a direction perpendicular to ui, viz. 

(9.38) 

We only need to consider that part of the flow-induced angular velocity which 

changes the orientation of the rod. This part must be perpendicular to Ui. 
Therefore, we have (36, 60] 

(9.39) 

for the advective angular velocity of a single rod. 

In Eq. (9.36), we rewrite 

D ll ~ ~ D..L (1 ~ ~ ) 3 D (1 ~ ~ ) 0 Ui Ui + 0 - Ui Ui = 4 - Ui Ui (9.40) 

introducing hereby the single-rod mean translational diffusion coefficient 

- _ 1 [ 11 ..1_] _ 4 ..1_ D - 3 D0 + 2 D0 - 3 D0 . (9.41) 
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Insertion of Eqs. (9.37) and (9.39) into Eq. (9.36) gives the final result, 

N ! P(X, t) = t; { ~ D \7; · (1 ~ U;U;) ·['V; + {3 (\7; [U + u•x])] 

+ D0 ti · [ ti + f3 ( Li[U + uex]) J 

~ -y \7; . (r. r;) ~ -y L;( .fl, X (r. U;)) } P(X, t), (9.42) 

for the Smoluchowski equation (without HI) of long and thin rods in simple 
shear flow. This equation is the starting point for investigations on various 
interesting dynamic aspects of colloidal rod dispersions, like translational­
rotational diffusion, sedimentation, shear-induced paranematic-to-nematic 
transitions, viscoelasticity, and shear banding in inhomogeneous rod suspen­
sions (cf., e.g., [24, 60, 61, 62]). 

9.2. Dynamics of colloidal spheres 

In this section, we concentrate on quiescent suspensions of colloidal 
spheres without external fields, and with orientation-independent pair forces. 
Equation (9.32) reduces then further to the translational GSE, 

8 N "' N N ot P(r , t) = O(r )P(r , t), (9.43) 

where 

(9.44) 
i,j=l 

is the Smoluchowski differential operator, and Fj = -\ljU(rN). Here and 
subsequently, the abbreviation Dij(rN) = D~j(rN) is used for the transla­
tional diffusivity tensors. 

In equilibrium, ( 8/ {)t )P = 0, and the GSE is satisfied by the equilibrium 
probability density function Peq(rN) .ex exp{ -{JU(rN)}. The latter is inde­
pendent of the Dij(rN), which shows that the HI are dynamic forces with 
no effect on static equilibrium properties. 

Using the GSE (9.43), one can express equilibrium time-correlation func­
tions like Sc(q, t) and S8 (q, t) as 

(9.45) 
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with A = a, c and microscopic densities Pc(q) = p(q) (see Eq. (7.24)) and 
Ps( q) = exp{ iq · r1 }. Here 

(9.46) 

is the adjoint (or backward) Smoluchowski operator, and 

(9.47) 

is the equilibrium ensemble average. Note that the time evolution operator 
exp{ 8 B t} in Eq. ( 9.45) operates only on p A, and not on Peq. 

In the following two subsections, we describe theoretical methods based 
on the GSE. From a theoretical point of view, it is appropriate to treat short­
time diffusion and long-time diffusion separately, since the former is needed 

as an input to the latter one. 

Short-time diffusion 

In general, SA(q, t) can not be calculated exactly from Eq. (9.45), owing to 
the complicated form of the operator OB for interacting particles. However, 
for short times t << TJ, SA ( q, t) can be expressed in a series of cumulants, 
that is 

oo r(l) ( ) 
SA(q) exp{ L ( -t/ 7 } 

l=l 

SA(q) exp{ -r~\q)t + ~r~)(q)t2 + ... } (9.48) 

with SA(q) = SA(q, t). The higher-order cumulants, r~)' with l = 2, 3, ... , 
measure the deviation of SA ( q, t) from a single exponential decay. Cumulant 
analysis is a customary tool to analyze DLS data at short times, whereby 
mainly the first and second cumulants have been determined. One can al­
ternatively expand SA(q, t) in a time Taylor series, resulting in the so-called 
moment expansion 

00 ~ 1 
SA(q, t) = L n! s~n)(q) = SA(q) + tSi1)(q) + 2t2 s~)(q)' 

n=O 

(9.49) 
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with moments 

(n) 1 _..... n 
SA (q) = N (PA( -q)(Os) PA(q)) · (9.50) 

In deriving Eq. (9.50), we have expanded the time evolution operator 
exp{ 0 B} in Eq. (9.45) in powers oft. From a small-t expansion of Eq. (9.48), 
it follows for the two leading cumulants that 

s~) (q) 
SA(q) ' 

s~\q) _ [s~) (q)J 2 

SA(q) SA(q) 
(9.51) 

In specializing to A = c, the first cumulant of the collective dynamic structure 
factor follows as 

(9.52) 

Here, D~(q) is the apparent short-time collective diffusion coefficient already 
defined in Eq. (8.70), and H(q) is given by 

N 

H(q) = N~ L (q · Dlj(rN) · q exp{iq · [rl- rj]}). 
0 l,j=l 

(9.53) 

The function H(q) ~ 0 contains, through the diffusion tensors Dlj, the in­
fluence of HI on the short-time collective diffusion. For this reason, H(q) 
is known as the hydrodynamic function. Without HI, H(q) = 1, so that 

D~(q) =Do/ Sc(q) in this case. Any q-dependence of H(q) is thus an indicator 
for the non-negligible influence of HI. Comparison with the phenomenological 
Eq. (8.80) shows that 

us 
lim H(q) = n. 
q-+0 uo 

(9.54) 

Hence, the long wave length limit of the hydrodynamic function is equal to 
the relative (short-time) sedimentation velocity in a homogeneous suspension. 
According to Eq. (9.53), H(q) is indeed a short-time equilibrium average. For 
q > 0, H(q) can be interpreted as a generalized (short-time) sedimentation 
coefficient: assume a spatially periodic and weak external force of amplitude 
F ( q) to act on each colloidal sphere according to 

Fj = qF(q) exp{ -iq · rj}, (9.55) 

http://rcin.org.pl



138 9. THEORY OF DIFFUSION 

with j = 1, ... , N, and all forces collinear with the unit vector q. Then, a 

simple linear response analysis shows for TB << t << TJ that, 

Us(q) = H( ) 
Uo(q) q ' 

(9.56) 

where 

1 N 
Us(q) = < N L Vl exp{ iq · rL} >st (9.57) 

l=l 

is the wave-number dependent generalized velocity response to the ap­

plied forces, and (- · ·) st is a stationary short-time average. Here, Uo(q) = 

/3D0 F(q). For non-macroscopically large q- 1 , there is no macroscopic solvent 

backflow, since the applied force-field changes sign each half wave length, 1r jq, 
along the direction of q. Therefore no renormalization method is needed for 

calculating H(q > 0). Obviously, limq--40 U8 (q) = U8 . 

Next, the first cumulant for the self-dynamic structure factor is deter­

mined as (see Eq. (9.50)) 

(9.58) 

with the microscopic expression 

(9.59) 

for the translational short-time self-diffusion coefficient. Without HI, D~ = 

Do since at short times, the Brownian motion of a sphere is not influenced 

by direct forces. 

For large q >> qm, strong oscillations in the exponential factors in 

Eq. (9.53) cancel each other for l =I= j, and H(q) becomes therefore equal 

to the reduced short-time self-diffusion coefficient, i.e. 

(9.60) 

Likewise, D~(q >> qm) ~ D~ since Sc(q >> qm) = 1. Thus, it is in principle 
possible to determine short-time self-diffusion properties from DLS experi­

ments performed at long wavenumbers without a need for contrast variation. 

Index matching is needed, however, to determine the MSD at longer times. 
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Moments up to the third order have been calculated for SA(q, t). The 
expression for the second moment of Sc(q, t) reads without HI 

s£2l(q) = (q2 D0 )
2

{ 1 + f3;o J drg(r) (1- cos(q · r)) (Q · Y'?u(r)}. (9.61) 

It is given in terms of the pair distribution function g(r), and derivatives 
of the pair potential, u( r), between two spheres. Hereby it is assumed that 

the total potential energy is pairwise additive, that is U(rN) = I:i<j u(lri-

rjl). The second cumulant, si2)(q), of S8 (q,t) is given by Eq. (9.61) with the 
cos(q · r) term omitted, since 

Sc(q >> qm, t) = S8 (q, t) (9.62) 

due to smallness of the distinct part, Sd(q, t), of Sc(q, t) for q >> qm (cf. 
Eq. (7.28)). 

Little is known about the higher-order moments. With HI, even the sec­
ond moment becomes quite complicated, invoking now up to four-particle 
static distribution functions. Thus moment expansions are not very helpful 
in gaining information on SA ( q, t) for intermediate and long times. In the 
following section, we will describe a projection operator method, which is far 
better suited for analyzing the dynamics at long times. 

Incidentally, the second moment of SA ( q, t) does not exist for systems 
with singular pair potentials like suspensions of colloidal hard spheres. For 
the latter case, the non-analytical short-time expansion of SA(q, t) is given 
by 

4J7f 3/2 SA(q, T) = SA(q)- T + -3-CA(q; <I>)T + ... (9.63) 

with T = q2 Dot. Explicit expressions for the expansion coefficients Cs ( q; <I>) 
and Cc(q; <I>) can be found in [63, 46). 

In order to obtain explicit results for the short-time translational property 
H(q) and its limiting values us and n;, it is necessary to specify the trans­
lational diffusivity tensors Dij(rN). For this purpose, it is useful to expand 
Dij ( rN), according to 

( N) (2)( N) (3)( N) Dij r = Dol<Sij + Dij r + Dij r + · · · , (9.64) 

into contributions, D~7) (rN), originating from increasingly large clusters of 

n hydrodynamically interacting spheres. 

http://rcin.org.pl



140 9. THEORY OF DIFFUSION 

For (very) small volume fractions, it is justified to assume pairwise addi­
tivity of the HI. In this case 

with 

( N) ~ (2)( N) Dij r :=:::: Doluij + Dij r , 

nU)(rN) =Do [ii;i twu(r;- r1) + (1- ii;i)w12(r;- ri)]. 
l-::f.i 

(9.65) 

(9.66) 

The first term of Eq. (9.66) determines D 11 in Eq. (9.59) so that the ten­
sor wn modifies the short-time self-diffusion coefficient as compared to its 
value, Do, at infinite dilution. The tensor w 12 determines the distinct part, 
i -:f. j, of H(q). For one-component suspensions of spheres, series expansions 
of wn (r) and w12(r) are known, in principle, to arbitrary order. The leading 
terms in these long-distance expansions are 

w 11 (r) = -~(~)\rHJ[(~)l 

W12(r) = ~ (~) [1+ rr] + H~)3 
[1- 3ff] + 0 [ (~r] (9.67) 

where r = rjr. The long-distance (i.e. far-field) expression for WI2(r) up to 
O(r-3 ) is the well-known Rotne-Prager (RP) tensor [64). In general, n~;) rv 

O(r-(3s-5)) at larger. 

Substitution of Eq. (9.66) into Eqs. (9.53) and (9.59) leads to the expres­
sions 

Do [ 1 + Po j dr g( r) q · wu ( r) · Q] , (9.68) 

Ds j H(q) = D~ +Po drg(r)q · w12(r) · q cos(q · r), (9.69) 

valid for pairwise additive HI. The only input needed to calculate D! and 
H(q) from these expressions is the pair distribution function g(r). The latter 
gives the conditional probability of finding a second sphere a distance r apart 
from a given one. For given pair potential u( r), g( r) can be determined 
using standard integral equation methods or computer simulations [1, 3). For 
neutral hard spheres, g(r) has its maximum at contact distance, r = 2a, 
whereas it is practically equal to zero for charged spheres up to the nearest­
neighbor distance, where it attains a rather pronounced peak. This implies 
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that, contrary to dilute suspensions of charge-stabilized spheres, where only 
the leading far-field terms in Wij are of importance, many more terms need 
to be summed up for neutral hard spheres. 

The most accurate virial expansion result for the D~ of monodisperse 
hard spheres valid to second order in <I> reads [65] 

vs 
D~ = 1 - 1.832 <I> - 0.219 <I>2 + 0( <I>3

) . (9.70) 

This result has been obtained from summing up a large number of terms in 
the inverse distance expansions of ni;) and ng)' and by further account­
ing for short-range lubrication interactions between nearly touching pairs or 
triplets of spheres. Three-body terms in Du , which contribute to D~ to order 
<I> 2 , first appear in order r- 7 . For comparison, the leading-order three-body 
contribution to D12 is of order r-4 . 

Figure 9.1 depicts D~, determined according to Eq. (9 .70), in comparison 
with DLS and depolarized DLS data on hard spheres, and with the semi­
empirical formula, 

~! = (1- 1.56<1>) (1- 0.27<1>) , (9.71) 

proposed by Lionberger and Russel [66). The latter formula conforms to the 
(numerically) exact O(<I>) limit in Eq. (9.70), and it predicts D~ to vanish 

0.8 
0 e 0.6 .., .., 

0 
0.4 

0.2 

0 
0 

v DLS 
d DDLS 

- Eq. (9.70) 
--- Eq.(9.71) 

0.1 0.2 0.3 0.4 0.5 

FIGURE 9.1. Reduced short-time translational self-diffusion coefficient, DZ/ Do, 
of monodisperse hard-sphere suspensions. We compare experimental DLS [48J 
and depolarized DLS [53J data with the 0(<1>2

) expression in Eq. (9.70), and the 
semi-empirical expression in Eq. (9.71) . After [54, 69J . 
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at the volume fraction <I>rcp ~ 0.64 where random close packing occurs. As 
seen in Fig. 9.1, the second-order virial form is applicable for <I> < 0.3. The 
experimental data are overall well described by Eq. (9.71) up to <I> ~ 0.5, 
where the systems begins to freeze into an ordered solid state. 

To first order in <I>, the sedimentation velocity of hard spheres has been 
determined by Batchelor [67]. Very recently, the second vi rial coefficient of 
Us was derived by Cichocki and co-workers [68]. The second-order virial ex­
pansion reads explicitly [68] 

us 
Uo = 1- 6.546<I> + 21.918<1>2 + O(<I>3

). (9.72) 

Using that Sc(q = 0) = 1 - 8<I> + 34<I>2 + O(<I>3) , the short-time collective 
diffusion coefficient of hard spheres at low concentrations is determined as 

ns 
D~ = 1 + 1.454<I>- 0.45<I>2 + O(<I>3

), (9.73) 

indicating that D~ > D0 . The modest initial increase in D~ with <I> described 
by Eq. (9.73) is counter-operated by HI through the factor H(O), which causes 
D~ to decay towards zero for larger <I>. 

For hard spheres up to <I>= 0.5, it has been shown in comparison to exact 
low-density calculations [70], experimental data [48] and so-called Lattice­
Boltzmann computer simulation results for H(q) [48], that [46, 70] 

H(qm) = 1 -- 1.35<I>. (9.74) 

The Lattice-Boltzmann simulation method combines Newtonian dynamics of 

the solid colloidal particles with a discretized Boltzmann-type equation for 
the fluid phase (see, e.g., [71]). It is particularly suited to analyze the effect 
of many-body HI on the colloidal short-time dynamics. 

The principal peak height, Sc( qm), of the hard-sphere static structure 
factor is well described, within 0 < <I> < 0.5, by [46, 72] 

Sc(qm) = 1 + 0.644<I> g(r = 2a ~), (9.75) 

where g(r = 2a+) = (1- 0.5<I>)/(1- <I>) 3 is the Carnahan- Starling contact 
value of g(r). Note that Sc(qm) ~ 2.85 at <I> = 0.494, in accord with the 
empirical Hansen-Verlet freezing criterion [17]. This criterion states for one­
component atomic and colloidal liquids that freezing into an ordered state 
sets in when Sc(qm) exceeds 2.8 ...;- 3.0. Substitution of Eqs. (9.74) and (9.75) 
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into D~(qm) = DoH(qm)/Sc(qm) gives an analytic expression for the short­
time apparent collective diffusion coefficient, D~ ( qm), which, according to 
Fig. 8.9, is in perfect agreement with experimental data. 

Calculations of the hard-sphere H ( q) in dependence on q have been per­
formed by Beenakker and Mazur [73]. These involved calculations account in 
an approximate way for many-body HI contributions (through so-called ring 
diagrams), with results for H(q) which agree, up to <I>~ 0.3, quite well with 
experimental data and Lattice-Boltzmann computer simulations [48). 

The shape of H(q) is rather similar to that of Sc(q) for the same <I>. The 
maximum of H(q) is located close to qm. However, according to Eq. (9.74), 

H(qm) decreases linearly in <I>, while Sc(qm) is instead a monotonically in­
creasing function in <I> (see Eq. ( 9. 75)). 

Having discussed the short-time properties of colloidal suspensions with 
short-range, i.e. hard-sphere-like, pair interactions, we proceed to discuss the 
opposite case of charge-stabilized suspensions with long-range electrostatic 
repulsions among the particles. We examine in particular systems with small 
amounts of excess electrolyte (in addition to the neutralizing counterions). 
The highly charged colloidal particles in these systems are already strongly 
correlated at volume fractions as low as <I> ~ 10-4 . The strong electrostatic 
repulsion keeps the particles apart from each other such that contact configu­
rations are extremely unlikely. Contrary to hard-sphere dispersions in which 
near-field hydrodynamic lubrication forces are important, the diffusion of 
charged colloidal spheres is thus influenced only by the far-field part of the 
HI. This salient difference in the effect of the HI leads to remarkable qualita­
tive differences in the dynamic behavior of charge-stabilized dispersions and 
suspensions of hard spheres. 

The usual virial expansion in <I>, which is so successful for semi-dilute 
hard-sphere suspensions, does not apply to charge-stabilized suspensions. 
Non-linear volume fraction dependencies have been predicted instead by 
Nagele and co-workers for the short-time transport properties of monodis­
perse charge-stabilized dispersions [75, 79, 3, 77, 78, 74, 76]. In particular, 
D! obeys a fractional <!>-dependence of the form [3] 

D~ = 1 - at <1>4/3 
Do ' 

(9.76) 

with a parameter at~ 2.5, which depends only weakly on the charge of the 
colloidal particle, provided that the charge remains large enough to mask the 
physical hard core of the particle. Eq. (9.76) is valid typically for <I> :::; 0.05. 
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At larger volume fractions, three- and more-body HI come into play, and 
Eq. (9.76) becomes invalid. The <I>314-dependence of n; has been verified in 

recent DLS measurements on charge-stabilized suspensions with the excess 
electrolyte (i.e. excess salt ions) removed form the suspension using an ion 
exchange resin [80]. According to Eq. (9.76), then; of charged spheres is less 
strongly reduced by HI than for hard spheres at the same volume fraction. In 
case of hard spheres, lubrication forces between nearby spheres are operating 
whereas the dynamics of charged spheres is dominated by far-field HI. 

HI have a stronger effect on charged spheres than on neutral ones, when 
instead of D~, the sedimentation velocity in a homogeneous system is con­
sidered. In this case, theory predicts for charge-stabilized suspensions with 
<I> < 0.1 that 

us = 1 -a <t>l/3 
Uo s ' 

(9.77) 

with a nearly charge- and particle size-independent coefficient as ~ 1.8 [75, 3, 
76]. The fractional exponent 1/3 has been subsequently confirmed by mea­
surements of the sedimentation velocity in deionized charge-stabilized sus­
pensions [79]. Equation (9. 77) predicts, for <I> = 10-3 , a reduction in us 
from the zero-density limit Uo by as much as 15%, whereas the reduction for 
hard spheres at the same <I> is as small as 0.4% (cf. Eq. (9.72)). This is quite 
remarkable, for in the past the influence of HI on dilute charge-stabilized 
dispersions had been frequently considered to be negligibly small. The ori­
gin for the smaller sedimentation velocity of charged spheres as compared to 
uncharged ones at the same <I> is that charged particles are more strongly 
exposed to laminar solvent friction arising from the cumulative backflow of 
displaced fluid. This backflow friction is more effective for charged particles 
since, contrary to neutral spheres, nearby particle pairs are very unlikely. 

The strong influence of (far-field) HI on charged particles can be ob­
served further in the significant wavenumber dependence of H ( q). For charged 
spheres at <I> ::; 10-2 , it is sufficient to substitute in Eq. (9.53) the Rotne­
Prager limiting form of Dij given in Eq. (9.67). This leads to [81] 

H(y) = 1-15<I>j1(y) 
y 

00 

J { . j1 (xy) j2(xy)} + 18<1> dxx [g(x)- 1) Jo(xy)-~ + (h2 
1 

(9.78) 
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with y = 2qa, x = r /(2a), and Jn the spherical Bessel function of order n. 
DLS data of Hartl and co-workers [82] for the hydrodynamic function of 
dilute charge-stabilized suspensions are displayed in Fig. 9.2 for three differ­
ent concentrations. Notify the pronounced oscillations of H ( q) even for the 
smallest cp ~ 10-4 considered. The experimental H(q) are overall in very 

good agreement with the theoretical result in Eq. (9.78). The differences at 
small q can be attributed to the scattering contribution of residual particle 
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FIGURE 9.2. Static structure factor Sc(q)(top) and hydrodynamic function H(q) 
(bottom) versus qa for aqueous dispersions of strongly charged spheres at <I> = 

7.63·10- 4
, 2.29·10- 3

, and 4.58·10- 3 (curves from left to right). Note that without 
HI, H(q) = 1. After (82J. 
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aggregates in the experimental probes and to polydispersity effects, vhich 
are most influential at small q. The radial distribution function in Eq. !9.78) 

was determined from fitting the peak heights, Sc(qm), of the experimental 
S ( q) in Fig. 9. 2 by static structure factors calculated by means of the rescaled 
mean spherical integral equation scheme (RMSA). 

Contrary to hard spheres, the peak height, H(qm), of dilute and deicnized 
charged sphere suspensions is larger than one, and it grows with increasing <I>. 

For <I> :::; 10-2 , this peak height is well described by [70, 46) 

H(qm) = 1 + p <1>0.4' 

with a coefficient p = 1 - 1.5 moderately dependent on particle siz~ and 
charge. 

So far we have dealt with translational short-time properties. The rota­

tional short-time self-diffusion coefficient, D~, of interacting colloidal spheres 
defined in Eq. (8.120) can be calculated in analogy with the translational case 
by accounting also for the orientational degrees of freedom [42, 53, 24, 77, 54). 

In this way, one obtains the microscopic expression 

(9.80) 

for D~. The rotational diffusivity tensor, D!J:, relates the hydrodynamic 
torque, Tfl, acting on a representative sphere 1 to its angular velocity, w1, 

by 

1 nrr( N) TH 
WI = - kBT u r . I ' (9.81) 

on assuming that no hydrodynamic torques and forces are exerted on the 
remaining (N- 1) spheres. To leading order in the a/r expansion, D}l(rN) 
is given by [58) 

with 

N 

D11(rN) = Da[l + Lwrl(ri- rz)]' 
l:f=i 

(9.82) 

(9.83) 

The leading-order three-body contribution to Dl1 (rN) is of order r-9 [65, 54). 
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On the basis of Eq. (9.80), Cichocki et al. [65] have derived for hard 

spheres the second-order virial expansion result 

D~ = 1- 0.631<1>- 0.726<1>2 . Do (9.84) 

This expression describes experimental data and Lattice-Boltzmann com­

puter simulation results for D~ quite well up to surprisingly large volume 

fractions <I> = 0.4 [53, 69, 83]. 

Calculations of D~ for charge-stabilized suspensions with leading-order 

three-body HI included, reveal for small excess electrolyte concentration a 

purely quadratic <!>-dependence, viz., 

D~ = 1- a <1>2 
Dr r ' 

0 
(9.85) 

with the parameter ar ~ 1.3 rather insensitive to particle size and charge. 

Eq. (9.85) has been confirmed by Lattice-Boltzmann computer simulations, 

which show that it applies quite accurately even up to <I>~ 0.3 [83]. 

Figure 9.3 includes the comparison between the theoretical prediction for 

D~ in Eq. (9.85), and depolarized DLS measurements of Bitzer et al. [84] on 

deionized suspensions of highly charged and optically anisotropic fluorinated 

0 

0 
.... -­II) 

0 
0.9 

0.8 -- Eq. (9.85) 
---- Eq. (9.84) 

• DDLS 

0.7 '--------------~--------' 
0 0.1 0.2 0.3 

FIGURE 9.3. Depolarized DLS data (from [841) and Eq. (9.85) for the re­
duced short-time rotational self-diffusion coefficient, D:/ D0, versus <I> of charge­
stabilized colloidal spheres. The second-order virial expansion result in Eq. (9.84) 
for monodisperse hard spheres is included for comparison. 
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teflon spheres. For comparison, Fig. 9.3 contains further the hard-sphere n; 
according to Eq. (9.84). The experimental data for n; are seen to be in 
qualitative agreement with the predicted <1> 2-dependence. 

The non-linear volume fraction dependence of the short-time properties 
of charged spheres arises from the peculiar concentration dependence of the 
mean diameter, rm, of the average next-neighbor cage around a charged 
sphere. The length rm coincides with the location of the first maximum, 

g(rm), of the radial distribution function and is very nearly equal to the 
mean interparticle distance, p~ 1 /3 , which scales in <I> as q>-l/3. Using this 

characteristic property of deionized charge-stabilized suspensions, the expo­
nents in Eqs. (9.76), (9.77), (9.79), (9.85) can be derived quite easily on the 
basis of a simplified model of effective hard spheres of diameter 2rm. We refer 

to [3, 78, 76) for more details on the effective hard-sphere model. 

Long-time diffusion 

Theoretical calculations of the intermediate time and long-time behav­
ior of Sc(q, t) and S 8 (q, t), the MSD and the associated translational long­
time self-diffusion coefficient are very demanding, since these quantities are 
affected simultaneously by direct and hydrodynamic interactions. These in­
teractions give rise to time-retarded caging effects. At long times t >> TJ, 

the dynamic cage around a sphere is distorted away from its, on the aver­
age, spherical symmetry. This implies that, contrary to D~, D~ can not be 
expressed in terms of a genuine equilibrium average as the one in Eq. (9.59). 

A frequently used route to a direct calculation of time dynamic proper­
ties at intermediate to long times invokes Brownian Dynamics (BD) com­
puter simulations without and, to a certain degree of approximation, with 
HI included. The BD method allows to generate numerically the trajectories 
{ri(t)} of colloidal spheres, and it is statistically equivalent to solving the 
GSE (9.43) for the many-sphere probability density function. The ( transla­
tional) displacements of N identical colloidal spheres during a time step .6.t, 
with TB << t << TJ, are generated in this scheme through solving the coupled 
stochastic finite difference equations [85] 

N 

ri(t + .6.t)- ri(t) = Ll-.BDij(rN) · Y'jU(rN) + Vj · Dij(rN)].6.t 
j=l 
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Here, ~xi is a Gaussian-distributed random displacement vector of zero mean 
(~xi) = 0 due to isotropy, and the covariance matrix 

(9.87) 

For dilute suspensions with long-range repulsive interactions, we have argued 
before that it is sufficient to account only for the leading asymptotic form 

of Dij, given for an unbound three-dimensional suspension by the Rotne­
Prager form in Eq. (9.66). Eq. (9.86) reduces then to a more simple form, 

since \7 j · Dij = 0 within RP approximation. The RP approximation for 
Dij amounts to neglecting reflections, through other (caging) spheres, of the 
hydrodynamic flow field created by a moving sphere onto itself. Therefore, 

D~ = Do within RP approximation. For dilute charge-stabilized suspensions, 
DLS experiments show indeed that D~ ~Do. 

In a typical BD simulation, several hundred to several thousand particles 
confined in a periodically repeated simulation box are equilibrated using, 
e.g., a canonical ensemble Monte-Carlo method. After equilibration has been 
reached, several ten thousand production time steps are generated by the 
algorithm in Eq. (9.86) to obtain diffusional (and structural) properties like 
the particle MSD through 

1 I 1 N ) 
W(t) = 2d \ N ~[r;(t)- r;(0)]

2 
, (9.88) 

with t some multiple of ~t. The long-range nature of the HI requires to 
include an Ewald-type summation technique on the RP level into the BD 
algorithm, as developed by Beenakker (86). The influence of HI on dynamic 
properties can be analyzed through comparison with BD calculations where 
HI are disregarded, by setting Dij = DolSij 1. An example for a BD calcu­
lation of Sc(q, t) without HI has been discussed already in Fig. 8.6, in com­
parison with a mode coupling theory scheme which will be explained further 
down. BD simulations with far-field HI included have been performed, e.g., 
for the in-plane diffusion of planar monolayers of charge-stabilized colloidal 

spheres (87) and for one-component (88, 89, 90, 72) and bidisperse (91) sys­
tems of super-paramagnetic colloidal spheres confined to a liquid-gas inter­
face, and exposed to an external magnetic field perpendicular to the interface. 
The induced magnetic moments in the particles lead to long-range dipolar 
repulsions. A BD study of three-dimensional charge-stabilized suspensions 
with far-field HI has been discussed in (92). 
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For an interesting example of a quasi-two-dimensional colloidal suspen­

sion, consider a monolayer of electrostatically repelling colloidal spheres dif­

fusing in the midplane between two narrow parallel (charged) walls of sepa­

ration h = 2a, with a = 2a (see Fig. 9.4) . 

h .. ·····••• .. , .. ·· 
FIGURE 9.4. Charged colloidal spheres diffusing in the midplane between two 

charged plates. The spheres interact by the screened Coulomb potential u( r) = 
Q2 exp{ -ri,T} /r for r > 2a, with particle charge Q and screening parameter "' = 
1r /(hV'i) (see [87] for details). 

Due to the stronger influence of HI in such confined systems, it is neces­

sary to account for many-body near-field HI (where \lj · Dij =f. 0) between 

particles and walls (p-w HI), and among the particles themselves (p-p HI), 

including also lubrication corrections. Lubrication effects arise when two or 

more spheres or a sphere and a wall are close to contact: for stick boundary 

conditions, which we assume here to apply, the mobility for relative motion 

goes to zero at contact, due to strong lubrication stresses required to expel 

the solvent from the thin gap between the surface points of closest approach. 

Moreover, in the present system there is a non-negligible hydrodynamic cou­

pling between the translational and rotational motion of the spheres. To 

include all these hydrodynamic features of the system one can use the so­

called Stokesian Dynamics (SD) simulation method. This method is a more 

sophisticated extension of the BD scheme, pioneered and advanced by Brady 

and Bossis [93), which accounts to a good approximation for many-body HI 

contributions and lubrication effects. 

Figure 9.5 includes SD simulation results [87] for the self-dynamic and 

distinct space-time van Hove functions G8 (r, t) and Gd(r, t), respectively, 

defined as [3] (see, also, Sec. 7.3) 

Gs(r, t) = ( ~ t O(r- r;(t) + r;(O))) "' [4KW(t)]-d/
2 

exp {- 4;
2

(t)} 

(9.89) 
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FIGURE 9.5. Reduced self-dynamic and distinct van Hove functions, G .• (r, t)/ po 
and Gd(r, t)po versus r /(2a), for time t = 3.5TJ, particle surface fraction cl> = 
0.062, and an effective particle charge Q of 103 elementary charges. Figure repro­
duced from [87J. 

Gd(r, t) = ( ~ ~ 8(r- ri(t) + rj(O))) . (9.90) 

The second approximate equality in Eq. (9.89) applies only when non­
Gaussian contributions to G8 (r, t) are very small. The function G8 (r, t) gives 
the conditional probability density that a particle undergoes a displace­
ment r during the time interval t. The distinct van Hove function, with 
Gd(r, 0) = pog(r), gives the conditional probability density of finding, at 
time t, a particle a distance r apart from another one at earlier time t = 0. 
Up to the density factor po, Gd(r, t) is thus the time-dependent generalization 
of the radial distribution function. Real-space quantities like G8 (r, t), Gd(r, t) 
and W(t) can be directly measured in quasi-two-dimensional systems of 
micron-sized colloidal particles using video microscopy imaging (94, 95]. The 

functions G8 (r, t) and Gd(r, t) are the Fourier transform pairs, respectively, 
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of S 5 (q, t) and of the distinct part, Sd(q, t) = Sc(q, t)- S5 (q, t), of Sc(q, t), viz. 

S8 (q, t) j dr exp{iq · r}Gs(r, t), 

Sd(q, t) j dr exp{ iq · r} Gd(r, t). (9.91) 

The timet= 3.5TJ, at which the reduced van Hove functions G5 (r, t)/ Po and 
Gd(r, t)/ Po are depicted in Fig. 9.5 versus the radial distance r, corresponds to 
the intermediate time regime characterized by a sub-linear increase in W(t). 
Interestingly enough, the shape of Gd(r, t) with full HI (i.e p-p and p-w HI) is 
seen from the figure to be mainly determined by p-p HI. In comparison, the 
p-w HI has only a minor effect on Gd(r, t), giving rise to a somewhat slower 

decay of interparticle correlations. In sharp contrast to Gd(r, t), G5 (r, t) is 
mainly influenced hydrodynamically by the walls (i.e. by p-w HI), which act 
to slow down the self-diffusion. This is the reason why the G5 (r, t) with full 
HI and with p-w HI alone, which are nearly equal to each other, are much 
larger for smaller r than the G5 (r, t) for the non-confined cases of of p-p HI 
only and with no HI at all. 

Beside from BD and SD computer simulations, various approximate theo­
retical methods have been developed (97, 103, 101, 96, 63, 99, 98, 49, 102, 100) 
for calculating long-time diffusional and rheological properties from the 
knowledge of Sc(q) or, likewise, g(r). These methods are all based, regard­
ing Sc(q, t), on the microscopic equivalent of the phenomenological memory 
Eq. (8.73), with different approximations involved in each of these methods 
for the memory function !J.Dc(q, t). Out of these methods, we discuss here 
only the mode coupling theory (MCT) for the overdamped dynamics of dense 
colloidal suspensions [103, 101, 81, 98, 49). The MCT for Brownian systems 
has been established, through comparison with experiment and computer 
simulations, as a versatile tool for calculating dynamic transport coefficients 
and density correlation functions [104, 70, 46). 

In order to derive a microscopic evolution equation for Sc(q, t) it should be 
realized that the microscopic densities PA(q, t), with A E {s, c}, are the only 
slowly relaxing dynamic variables, at least for small q (cf. Eq. (8.104)), since 
momentum and energy of the colloidal spheres are very quickly exchanged 
with the surrounding fluid. From introducing the projection operator into 
the subspace of configurational dynamic variables: 

p (· .. ) = (( .. · )Pc( -q)) p (q) 
c NSc(q) c ' 

(9.92) 
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Nagele and Baur [81) have derived the following exact evolution equation for 

Sc(q, t): 

t ! Sc(q, t) = -l D~(q)Sc(q, t)- J du M~rr(q, t- u) :u Sc(q, u). (9.93) 

0 

This equation relates Sc(q, t) to the so-called irreducible collective memory 
function M~rr(q, t). The function M~rr(q, t) is given by an exact but for­

mal equilibrium average invoking Pc and the adjoint Smoluchowski operator 
Os(rN) (see (81, 49] for details). 

Time-Laplace transformation of Eq. (9.93) leads to 

Sc(q) 
Sc(q, z) = ---2:::-'----'--­

q ns(q) 
z + c 

1 + M~rr(q, z) 

(9 .94) 

with M~rr(q, z) the Laplace trans~orm of Mtr(q, t). It follows from this equa­
tion that the collective diffusion kernel, Dc(q, z), in Eq. (8.63) can be ex-
pressed in terms of M~rr ( q, t) via 

D ( z) = D~(q) 
c q, 1 + Mtr(q, z) (9.95) 

At this point, it becomes obvious that M~rr(q, z) renormalizes the short-time 
decay rate, q2 D~(q), of Sc(q, t) due to the presence of memory effects. As a 
generalization of the single-particle Stokes-Einstein relation Do = ksT /r 
to interacting particle systems, a wavenumber and frequency-dependent fric­

tion function, rc(q, z), can be introduced through Dc(q, z) = ksT/rc(q, z). 
Hence, with Eq. (9.95), M~rr(q, z) is identified as being proportional to the 
frequency-dependent part of the generalized friction function. For given 
M~rr ( q, z), the long-time collective diffusion coefficient can be calculated from 

(9.96) 

On the basis of the microscopic expression for M~rr(q, t), it can be shown for 
vanishing or ·pairwise additive HI that M~rr(q, t)jq2 --+ 0 for q --+ 0, which 

implies that D~ = D~. 
The MCT privides a self-consistent approximation for M~rr(q, t), which 

preserves the positive definiteness of the exact Dc(q, z). It is particularly 
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suitable for fluid suspensions of strongly correlated particles. Moreover, as 
shown in the salient work of Gotze and co-workers (see [105, 106, 107, 108]), 
it predicts a consistent dynamic glass transition scenario in good accord with 
experiment and computer simulation. This scenario is characterized by the 
appearance of non-ergodicity above a certain concentration threshold, where 
Sc(q, t) and S8 (q, t) do not relax any more to zero, and where the suspension 
viscosity diverges. 

In the most commonly used version of the MCT, M~rr(q, t) is approxi­
mated without HI by 

M~rr(q, t) = 2Po~;rr)3 J dk [Vc(q, k)f Sc(k, t) Sc(]q- kJ, t) (9.97) 

with the vertex amplitude [105, 106, 103, 99), 

Vc(q, k) = q · k poc(k) + q · (q- k) poc(lq- kl), (9.98) 

related to collective diffusion. Here, c(q) = [1 - 1/ Sc(q)]/ Po is the Fourier­
transform of the two-body direct correlation function c( r) [ 1]. The vertex 
amplitude Vc( q, k) in Eq. (9.97) has been derived in the so-called convolu­
tion approximation, where the contribution of static three-point direct corre­
lations is neglected. The convolution approximation for the collective vertex 
amplitude is used in most of the recent applications of the MCT to atomic 
[107, 108, 109] and colloidal dynamics [103, 49, 46, 102, 100]. 

The MCT has been formulated further for self-diffusional properties re­
lated to self-dynamic structure factor S8 (q, t). The time evolution of S8 (q, t) 
is described by the exact memory equation [81], 

t ! S8 (q, t) = -q2 D! S8 (q, t)- J du M!rr(q, t- u) :u S8 (q, u), (9.99) 

0 

which includes the irreducible memory function, M;rr(q, t), related to self­
diffusion. Without HI, n: = Do , and M;rr(q, t) is then approximated in 
MCTby 

M!rr(q, t) = (2~~Po j dk [V.(q, k)]2 Sc(k, t) s.(]q- k], t), (9.100) 

with the vertex function [99) 

V.(q,k) = q · k (1- Sc~k)). (9.101) 
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Equations (9.93), (9.97) and (9.98) constitute a self-consistent set of non­
linear equations determining Sc(q, t) for a given static structure factor Sc(q). 
The latter can be calculated independently for given pair potential using 
well-established integral equation schemes [1, 3). 

Once S(q, t) has been determined, S8 (q, t) is obtained from solving 
Eqs . (9.99)-(9.101). Knowing S 8 (q, t), the MSD can be determined from 

W( ) 
= _ 

1
. log S8 (q, t) 

t Im 2 . 
q-+0 q 

(9.102) 

The long-time self-diffusion coefficient , D~, follows then from 

(9.103) 

where Mtr(q, z) is the Laplace transform of M;rr(q, t). 

An approximate incorporation of far-field HI into the MC~ equations of 
monodisperse systems and colloidal mixtures was provided by Nagele and 
co-workers [110, 98, 49) . This leads to modifications in the wavenumber de­
pendence of Vc(q, k) and V8 (q, k), and hydrodynamic functions like H(q) 
are needed as additional external inputs. The MCT with far-field HI aims at 
describing the dynamics of charge-stabilized suspensions in the fluid regime. 
So far it has been applied with good success to the self-diffusion of moder­
ately correlated charged particles (see below), and to the electrolyte friction 
effect experienced by a charged colloidal sphere immersed in an electrolyte 
solution [111). 

Figure 8.6 shows BD results without HI for the Sc(q, t) of a charge­
stabilized dispersion, in comparison with corresponding MCT prediction 
without HI. There is no adjustable parameter involved in this comparison. 
The good agreement between MCT and BD for all times and wavenumbers 
considered confirms our earlier statement that the MCT is well suited for 
dense (in the sense of strongly correlated) particle systems. The effect of far­
field HI, which is predominant in charge-stabilized suspensions, is to enlarge 
D~ moderately, and to enhance the decay of Sc(q, t). The enhancement of D~ 
had been originally predicted in [81] from partially self-consistent simplified 
MCT calculations of D~ with far-field HI included (see Fig. 9.6), and from 
exact low-density calculations. Meanwhile, hydrodynamic enhancement of 
long-time self-diffusion has been observed in various colloidal systems char­

acterized by strong and long-range particle repulsions [88, 89, 92, 87, 90). The 
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FIGURE 9.6. MCT long-time self-diffusion coefficient of a typical deionized charge­
stabilized suspension. HI leads here to an enhancement of long-time diffusion 
(see [81, 991). 
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http://rcin.org.pl



9.2. DYNAMICS OF COLLOIDAL SPHERES 157 

far-field HI prevailing in these systems promotes the diffusion of a sphere out 

of its momentary cage. 

A neutral sphere diffusing out of its cage of neighboring hard spheres 

will, contrary to charges spheres, most probably pass by very closely to one 

of the caging particles, since the g(r) of hard spheres is maximal at contact. 

Due to the strongly reduced relative mobility of two spheres near contact, 

the long-time self-diffusion of a hard sphere is hydrodynamically reduced 

accordingly. Consider here Fig. 9.7, which shows BD results for the D~ of 

hard spheres without HI included, versus experimental data obtained from 

fluorescence recovery after photobleaching (FRAP) and DLS measurements. 

For hard spheres, D~/ Do = 1- 2.1<1> to leading order in the density. While 

there are significant differences in D~ for the various sets of experimental 

data, the hydrodynamically induced de-enhancement of D~ for hard spheres 

is clearly observable. The diverging experinwntal results for D~ arise from 

difficulties in determining the volume fraction unambiguously. Figure 9.7 

includes further the MCT predictions forD~ without and with HI. The MCT 

locates the glass transition of hard-sphere suspensions at <I> = 0.525, which 

is lower than the experimental value of approximately 0.58. To correct for 

this, <I> is rescaled in the MCT results according to <I> --+ <I> x <1> 9 /0.525, 
with a value <I> 9 = 0.62 selected son1ewhat larger than the experimental one, 

so that the MCT-D~ without HI conforms well with the BD data at large 

concentrations. The influence of many-body HI is accounted for in a semi­

heuristic fashion by Inultiplying (i.e. rescaling) D~ without HI, calculated 

using the MCT, by the factor D~/ Do where D~ is determined from Eq. (9.71). 
A rationale for this hydrodynamic rescaling is provided from noting for hard 

spheres that a particle diffusing out of its cage will move very slowly for 

a considerable amount of time in the immediate neighborhood of a caging 

sphere, as adequately described by the short-time self-diffusion coefficient, 

before it leaves the cage. According to Fig. 9.7, the D~ from the HI-rescaled 

MCT is overall in good accord with experimental data, in particular for larger 

concentrations. 

An empirical dynamic freezing rule, due to Lowen et al. [115), states that 

freezing sets in in a three-dimensional monodisperse suspension when the 

threshold value D~/ D~ ~ 0.1 has been reached. A value of 0.1 for D~/ Do 
corresponds to <I> = 0.949 within the HI-rescaled MCT. Since Sc(Qm; <I> = 
0.494) = 2.85, this is also the freezing volume fraction predicted by the 

static Hansen-Verlet freezing criterion [ 17]. This observation suggests that 
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both freezing criteria are in fact equivalent, since dynamic properties are 

derived in l'v1CT from knowledge of the static property Sc(q). The equivalence 

of both freezing criteria, and of their two-dimensional analogues, has been 

further established for systems with long-range repulsive interactions (46, 90]. 

The equivalence of static and dynamic criteria derives from a general dynamic 

scaling behavior ( cf. [90, 72] for details on this dynamic scaling), which has 

led to the formulation of additional dynamic freezing criteria in terms of 

long-time collective diffusion coefficients [72]. 

As an example of dynamic scaling, consider Fig. 9.8(a). This figure in­

cludes the master curve for D~ versus S(qm), calculated using the MCT 

without HI for a three-dimenisional suspension of highly charged spheres. 

Note here that a height of 2.85 in the static structure factor peak corre­

sponds to D~/ Do = 0.1. Recall further that D~ ~ Do for charge-stabilized 

systems with prevailing far-field HI. BD simulation results of D~/ Do ver­

sus Sc(qm) with and without far-field HI included are shown in Fig. 9.8b for 

magnetically and electrostatically repelling particles. We observe here that 

D~/ Do ~ 0.085 for Sc(qm) ~ 5.5, in excellent agreement with an empiri­

cal dynamic criterion for two-dimensional freezing proposed by Lowen (116], 

which states that D~/ Do ~ 0.085 at the freezing line, independent of the 

pair potential and the nature of the freezing process. Moreover, a value of 

Sc( Qm) = 5.5 at freezing is indeed found in computer simulations of two­

dimensional systems [117]. As seen from Fig.9.8(b), values of D~ close to 

freezing are only slightly enhanced by HI. This indicates that the dynamic 

freezing rules remain essentially untouched when far-field HI is included. 

As an application of the MCT to colloidal mixtures, we consider long­

time interdiffusion in a dilute binary mixture of colloidal hard spheres. To 

this end, one needs to employ the generalizations of the one-component MCT 

equations to colloidal mixtures, as provided, e.g., in (49]. The long-time mo­

bility matrix J.Ll, defined in Eq. (8.93), can be calculated analytically without 

HI to yield (49) 

L • l +~Do (.m. .m. )1/2 (1 + -Xa.e)
2 

+ O(.m.2) 
ksT J-la,B = Oa,B Dsa 3 a '±'a '±',B (Aa,B)3/2 '±' 

(9.104) 

where 

l [ 1 ~ 2] 2 Dsa = Doa 1- 3 ~ <I>-y (1 + A-ya) + O(<I> ) (9.105) 
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FIGURE 9.8. Reduced long-time self-diffusion coefficient, D~/ Do, versus liquid 
static structure factor peak height Sc(Qm). l'v1CT results without HI are (from [46]) 
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is the long-time self-diffusion coefficient, without HI, of an ex-type hard sphere 
in the mixture. Here, <I> is the total volume fraction of both components, 

and Ao:f3 = a{3/ao: is the size ratio of f3 to ex spheres. The MCT result in 
Eqs. (9.104) and (9.105) is not an exact one: the exact expression for D~o: is 
given by Eq. (9.105) with the factor 1/3 replaced by 1/2 [3], so that D~/ Do = 

1 - 2<1> + 0( <1> 2 ) in the mondisperse case. The MCT does not describe the 
dynamics at low densities exactly, since the low-density binary collision part 
is treated in an approximative way. 

Substitution of Eq. (9.104) for J.-Ll in Eq. (8.101) yields the following MCT 
result for the kinetic factor of a dilute binary hard sphere suspension [49): 

( x2 D~ 1 + x1 D~2) + ~ (x1 <l>2 Do2 + x2 <I>1D01) 

2 ( <I> <I> ) 1/2 D ( 1 + AI2)2 (9.106) 
3 X1X2 1 2 01 (AI

2
)3/ 2 

As has been discussed already in the part of Sec. 8.2 on interdiffusion, an 

ideal binary mixture is characterized by A~n ex ( x2 D~ 1 + x1 D~2); i.e., A~n 
can then be expressed completely in terms of the self-diffusion coefficients. 
Equation (9.106) implies that a binary mixture of hard spheres is non-ideal 
already at small concentrations. Ideality is reached only when a1 = a2, i.e. 
for labelled but otherwise identical particles. It has been shown very recently 
that HI have a strong influence on the interdiffusion process in semi-dilute 
hard-sphere mixtures ( cf. the second citation in [49]) . 

9.3. Interdiffusion in polymer blends 

In this section, we analyze the interdiffusion process in binary polymer 
blends of homopolymers, labelled as A and B. We further consider the in­
terdiffusion of A and B polymers in a matrix of C polymers. Our analysis is 
restricted to length scales accessible to dynamic light scattering. The lengths 
27f jq resolved in typical DLS experiments on polymer blends are much larger 
than the average extent of a polymer coil. The average coil size is quantified 

by the radius of gyration, Rc, with Rc = pa2 /6 for a Gaussian chain. Here, 
p is the degree of polymerization, i.e. the number of statistical segments or 
monomers [36, 56, 14), of a homopolymer chain, and a is the length of a 
statistical segment. DLS experiments performed in the macroscopic r~gime, 

i.e. in the diffusive limit where qRc << 1 holds, resolve times which are large 
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9.3. lNTERDIFFUSION IN POLYMER BLENDS 161 

as compared to the internal modes of a chain in the melt. Hence, only the 
center-of-mass diffusion of a chain is resolved. 

As discussed earlier in Sec. 8.2, the partial static structure factors in a 
mixture are expressible, in the hydrodynamic limit, as a linear superpo­
sition of exponentially decaying hydrodynamic modes (cf. Eq. (8.94)). To 
make contact with the notation commonly used in the polymer field with 
regard to interdiffusion [50, 51], we slightly redefine the partial collective dy­

namic structure factor, Sa(3(q, t), for the density correlations of a and {3-type 
monomers as Sa(3(q, t) = (p0 (q, t)p(3( -q, 0)), which differs from the defini­
tion given in Eq. (8.90) by a factor of (NaN(3) 112 . In the context of polymer 
blends, Na denotes the total number of a-type monomers in the melt, with 
a E {A, B, C}, and p0 (q, t) is the incremental number density given in Eq 
(8.87), with rj pointing to the location of the j-th monomer of type a. 

Using this redefinition of the Sa(3(q, t), the EACF for a binary blend is 
( cf. Eq. (8.91)) 

(9.107) 

where ba is the scattering amplitude of an a-type monomer (q-independent 
in the diffusive limit), related to its dielectric polarizability. Eq. (9.107) ap­
plies also to an incompressible ternary blend, with bA and bB interpreted 
now as the excess scattering amplitudes relative to the amplitude, be, of ma­
trix monomers. The incremental number density, PC, of matrix molecules is 
hereby contracted out of the description, by using the local incompressibility 
constraint ( cf. Eq. (8.96)), 

PA(q,t) +:08 (q,t) +:Oc(q,t) = 0, (9.108) 

for the coarse-grained incremental number densities, p0 (q, t). In Eq. (9.108), 
it is assumed that the thermodynamic segmental volumes of the three poly­
mer species are equal. 

The interdiffusion of A chains into B chains in the ternary mixture is 
described by the interdiffusion auto-correlation function, 

1 1 2 
Sin(q, t) = N1 SAA(q, t) + N~ SBB(q, t)- NANB SAB(q, t), (9.109) 

which differs from the definition of Sin(q, t) in Eq. (8.89) by a factor 

(NxAXB)- 1
, with N = NA + NB. Here, XA = NA/N is the molar fraction, 

i.e. the volume fraction for equal molar volumes, of A monomers relative to 
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A and B, with xs = 1- XA. The long-time interdiffusion coefficient has been 
defined in Eq. (8.98) in terms of the initial decay rate of Sin(q, t) as 

l 1 f) 
Din = - q2 fJt ln Sin(q, t)lt=O , (9.110) 

where it is understood that the diffusive limit of Sin(q, t) is taken before its 
evaluation at t = 0. The 2 x 2-matrix, JLl, of long-time partial mobilities /-Laf3 

for the components A and B is introduced, in accordance with Eq. (8.93), by 

l 1 f) 
ksTJ.1a{3 =- q2 f)tSa[J(q, t)lt=O · (9.111) 

Then, D~n in Eq. (9.110) can be re-expressed as [50] 

(9.112) 

This equation relates D~n to the long-time and long wave length limiting 
partial mobilities and partial static structure factors of A and B monomers. 
The definition of the /-Laf3 in Eq. (9.111) differs from the one in Eq. (8.93) by 
the same factor (NANs) 112 as for the partial static structure factors, so that 
D~n in Eq. (9.112) is not affected by these redefinitions. 

In the interdiffusion part of Sec. 8.2, we have pointed out that, in general , 
D~n can not be determined by a single scattering experiment . An important 
exemption from this rule is a incompressible binary blend of A and B polymer 
chains, void of any vacancies or C polymers. In this case, local incompress­

ibility, PA + p8 = 1, implies that 

SAA(q, t) = Sss(q, t) = -SAs(q, t), (9.113) 

from which follows with Eqs. (9.107) and (9.109) that 

1 1 2 l 

( )

2 

9E(q, t) ex: Sin(q, t) = NA + Ns Saa(q) exp{ -q Dint}, (9.114) 

with a = A or B. It can be shown that the amplitude A+ in the normal­
mode expansion of Eq. (8.94) vanishes in case of an incompressible binary 
blend, so that the (+)-mode with eigenvalue d+ is not observable. The relax­
ation coefficient d+ is identified here with the so-called cooperative diffusion 
coefficient, which quantifies the long-time relaxation of fluctuations in the 
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total number density PA + PB [50). In identifying the normal mode d_ with 
D~n, we can state that in an incompressible binary blend, a measurement of 
9E(q, t) yields the interdiffusion coefficient, given here as 

l 

D l k T 1-Laa in= B -
8 

, 
QQ 

(9.115) 

since J-L~a = J-L~{3 = -J-L~{3 according to Eqs. (9.111) and (9.113). 
To make further progress in determining the interdiffusion coefficient of 

binary and ternary melts, a method is needed for calculating the J-L~{3 and 

Saf3 in Eq. (9.112). For an approximate calculation of the J-l~f3' we employ 
a dynamic extension of the random phase approximation (RPA) of poly­
mer blends. The dynamic RPA is a self-consistent mean-field-type approach 
based on linear response theory, which relates the (Laplace-transformed) lin­
ear response function , -{3(d/dt)Saf3(q, t), of the actual system of interacting 
chains, to the response function, -{3(d/dt)S~f3(q, t), of a bare reference sys­
tem of non-interacting chains. For a derivation of the dynamic RPA, we refer 
to the work of de Gennes [118), Brochard and de Gennes [119), and for the 
extension of the RPA to incompressible polymer mixtures with an arbitrary 
number of components to Akcasu and Tombakoglu [120]. 

In the dynamic RPA, the static and dynamic properties of the bare system 
are assumed to be known. The bare system is commonly chosen as one which 
is identical to the original mixture in all respects except for the absence 
of interactions between the monomers and the incompressibility constraint, 
but with the chain connectivity maintained. As a mean-field-type theory, the 
(dynamic) RPA should apply only to dense systems (i.e. melts) of sufficiently 
long polymer chains where density fluctuations are small. Furthermore, its 
predictions are most reliable for small values of q (as the ones probed in the 
diffusive limit) since, as the name RPA implies, it involves an averaging over 
the directions (phase) of q. 

The mobilities {J-L~{3}, with a,{3 E {A,B}, of an incompressible ternary 
mixture are expressed in the dynamic RPA in terms of the mobilities, J-l~f3' 

of the bare system as [120] 

1 1 1 1 
-l- = -0- + -0- + 0 0 ' 

1-Laa 1-Laa J-L {3{3 J-L {3{3 + J-Lcc 

1 [ 1 1 ILCc ] a# {3' (9.116) -l- = - -0- + -0- + 0 0 

1-La{3 1-Laa J-L {3{3 1-Laa J-L {3{3 
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where flee is the mobility of a C-matrix monomer in the bare system. The 
mobilities ll~f3 are related to the self-diffusion coefficients in the bare sys­
tem by 

o No:Doa 
flo:{3 = 6o:f3 kBT ' (9.117) 

with Doo: = kBT /ro: the self-diffusion coefficient of an a-type monomer re­
lated to the monomer friction coefficient 'Yo:. This result for ll~f3 is obtained 
from adopting for the bare system the Rouse model for the dynamics of 
non-interacting and non-self-avoiding Gaussian chains [14, 36]. Here, we use 
the fact that in a dense system of chains like in a melt, each chain is to a 
good approximation Gaussian and ideal, with Rc ex N 112 . Within the Rouse 
model of non-interacting chains, 

(9.118) 

for qRc << 1 and for times t large compared to the relaxation times of the 
internal modes of a Rouse chain. Here, D'bo: is the center-of-mass self-diffusion 
coefficient of a polymer chain, related to the monomer diffusion coefficient by 

D'bo: = Doo:/Po:, and Po: is the degree of polymerization of an a-chain. Note 
that S~o:(q, t)/No: is the dynamic structure factor of a single Rouse chain. The 
monomer friction coefficient, 'Yo:, enters the Rouse dynamics as a parameter 
that must be specified as an input from elsewhere. Hence, 'Yo: and Doo: are 
usually interpreted as the friction coefficient and self-diffusion coefficient of an 
a-monomer in the actual mixture of interacting chains. As such they depend 
implicitly on the composition and temperature of the mixture. Moreover, it is 
then necessary to distinguish between systems of unentangled chains, where 
D~ = Do:/Po:, and systems of very long chains governed by the reptation 

process, where D~ = Do:/P; [14, 51]. 
For an application of the RPA, consider first an incompressible binary 

blend, without any additional matrix molecules or vacancies. Substitution of 

Eqs. (9.116) and (9.117), with 1-Lcc set equal to zero, into Eq. (9.115) leads 
for unentangled chains to 

l [ XB XA l-1 (N XAXB)Ain = Dp + Dp , 
PA OA PB OB 

(9.119) 

which is the slow-mode form for the long-time kinetic coefficient ( cf. 

Eq. (8.117)). Recall here that the definitions of A~n and Sin in Eqs. (129) 
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and (8.89), respectively, differ from the ones used in the present section 
by a factor of N(xAXB) 2 . This factor renders them into intensive, i.e. N­
independent, quantities. According to Eq. (9.119), the RPA predicts thus that 
the interdiffusion process in a binary incompressible blend is dominated, for 

ngA << ngB, by the slow component A, which enslaves the dynamics of the 
fast component B in the absence of voids. 

To obtain D~n' we need to divide A~n by Sin(q = 0). The latter is ob­
tained, for consistency, from the static limit of the RPA. For an incompress­
ible ternary blend of A and B chains in a matrix of C chains, the ~tatic RPA 
relates the 2 x 2 static structure factor matrix, S(q, t), of A and B monomers 
in the interacting system to the static structure factor matrix, S0 (q, t), of the 
bare system via (for details see (14, 120, 50]) 

(9.120) 

Here, v(q) is a 2 x 2 excluded volume matrix of elements Vaf3(q), with a., {3 E 

{A, B}, which accounts for the interactions between monomers of type a. and 
{3, and for the incompressibility constraint. 

The partial static structure factors of the bare system of non-interacting 

Gaussian chains are explicitly 

(9.121) 

where fv(x) is the Debye function (14), with fv(x) ~ 1 - x/3 for x << 1, 

and Rca is the radius of gyration of an a.-type chain. Using Eq. (9.121) 

specialized to qRca << 1, the RPA result in Eq. (9.120) simplifies for a binary 
incompressible melt to 

( _!_ + -1
-)

2 

-
1
- = !__ (-

1
- + - 1

-- 2NXAB) . (9.122) 
Na NB Sin N XAPA XBPB 

The Flory-Huggins interaction parameter, XAB, is related to the spatial 
Fourier transforms, Waf3( q), of the local interaction potentials, Waf3 ( r), of 
a. and {3 monomers by (14, 50] 

XAB = !~hn~V [wAn(q)- ~ (WAA(q) + WBB(q))] , (9.123) 

so that x = N XAB can be interpreted as the Flory-Huggins interaction 
parameter per segmental volume v8 = V / N, for equal segmental volumes 
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of both polymer components. Typically, x exhibits an inverse temperature 

dependence. Finally, Eqs. (9.119) and (9.122) yield 

l ( 1 1 ) [ 1 1 l-l n . = --+---2x +------:::;~ 
tn XAPA XBPB XAPA DbA XBPB Dba . 

(9.124) 

Experiments on binary blends (see the discussion given below) have re­

vealed that the slow-mode result does not satisfactorily describe, in general, 

the dependence of A~n on the molecular weight (say PA) of its constituents. 

The observed discrepancy between the slow-mode result for binary incom­

pressible melts and experiment may be due to the presence of vacancies, 

which add some amount of compressibility to the mixture. When instead of 

a binary 1nelt, a ternary incompressible blend of A and B chains in a ma­

trix of C-chains is considered, A~n can be derived within the dynamic RPA 

from substituting Eqs. (9.116) and (9.117) into Eq. (9.112). This leads to the 

so-called ANK expression, 

(NxAxa)A~n = [xapADbA + XAPaD'b8 

XA xa (PA D'bA- PB D'b8 ) 
2 

] 
- (9.125) 

XAPADbA + xapaD'b8 + xcpcD'bc 

for the kinetic coefficient of unentangled chains, originally derived by Akcasu 

et al. [50]. Quite remarkably, this expression reduces to the fast-mode form 
(cf. Eq. (8.113)), 

(9.126) 

in the limit of a large self-diffusivity and / or large concentration of matrix 

molecules, that is for xc PC D'bc >> Xa Pa Dba· In this 'solution-like' limit, 
9E(q, t) decays in a superposition of two normal modes where, contrary to 

the incompressible case, d_ and, likewise, d+ can not be identified with the 

interdiffusion procAss (50] . The slow-mode result is recaptured from the ANK 

formula when the matrix is removed, i.e. for xc PC D'bc -+ 0, resulting again 
in an incompressible mixture of A and B chains. If one is allowed to stretch 

the validity of the RPA result in Eq. (9.125) by allowing the matrix to consist 

of vacancies instead of homopolymers, the ANK formula predicts a gradual 

transition from the fast-mode form to the slow-mode form of A~n' when the 

vacancy concentration, or compressibility, of the mixture is reduced. 
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The approximate fast-mode and slow-mode expressions for A~n do ap­
ply only to selected polymer mixtures, with varying degree of accuracy 

in each case. The fast-mode or vacancy model appears to be more con­

sistent with lower molecular weight blends, whereas the slow-mode or in­
compressible model is more consistent in the high molecular weight regime. 

For an example of this trend, consider Figs. 9.9 and 9.10, which display 

time-resolved static light scattering data of Feng et al. [121] for the ki­

netic interdiffusion factor (called mobility M in the notation of (121]) of a 

poly(styrene) / poly(vinylmethylether) blend (PS/ PV:NIE) for varying molec­

ular weight N PS of PS. In the experiments by Feng et al., the interdiffusion 
coefficient has been determined from temperature quench experiments within 

the miscible one-phase region. The 1neasured decay of density (composition) 

fluctuations right after the quench has been interpreted in these experiments 

in terms of the celebrated Cahn-Hilliard-Cook (CHC) expression for the time­

resolved average scattered intensity of binary blends (cf. (121 , 51]). We re­
mark that the CHC expression is commonly used also to interpret the early 
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FIGURE 9.9. Inverse mobility data, 1\1/- 1 ex 1/A~11 , versus molecular weight, 
Nps , of PS in PS/PVME blends. The dashed line (solid line) is a fit of the fast­
mode (slow-mode) model to the experimental data. Both models show systematic 
deviations from the data. After [121j. 
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FIGURE 9.10. Inverse mobility data, M- 1
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at two different temperatures as indicated . The solid lines are fits of the ANK 
formula (9.125) to the data, demonstrating the applicability of the ANK-theory 
over the whole range of PS molecular weights. After !121]. 

stages of spinodal composition of binary mixtures right after a sudden quench 
into the mechanically unstable two-phase region. 

The chains in the PS / PVME blend are in a bulk-entangled state, so that 
the self-diffusion coefficient of a chain scales , different from Rouse chains, with 
the inverse square of the molecular weight. In the entanglement case, W 0 is 
not any more a local property independent of molecular weights. Substitution 
of DK.~ = Do0 )p; into Eqs. (9.119), (9.126) and (9.125) leads for the inverse 
mobility 1/M ex 1/(xAXBA~n), according to the slow-mode expression, to 
linear dependence on the degree of polymerization Pa. On the other hand, 
the fast-mode model predicts a concave curve for 1/M plotted versus p0 , 

with an infinite slope at Pa = 0 and a horizontal asymptote for large Pa (51]. 

Figure 9.9 includes experimental data of 1/ !v! for four different molecular 
weights, Nps, of PS. Neither the fast-mode nor the slow-mode expression 
can adequately fit the data. The fast-mode model applies only to the low­
molecular-weight side, and the slow-mode model only for large values of N PS 

(cf. Fig. 9.9). 
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Inverse mobility data of PS/ PVME versus N PS for two different tem­
peratures are depicted in Fig. 9.10, in comparison with the predictions of the 
ANK formula. As one can see, the molecular-weight-dependence of the kinetic 
factor in PS / PVME is well described by the ANK model, with the (third) 
matrix component interpreted as 'vacancies' . The solid curves in Fig. 9.10 

were plotted using the matrix parameter xcDco/Pc occurring in the entan­
glement version of the ANK formula as a fitting parameter. However, this 

matrix parameter can be related to the cooperative diffusion coefficient in 
a binary mixture, which is a measurable quantity [51). This deliberates us 
from needing to assign a meaning to the diffusion coefficient of a vacancy. 
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Chapter 10 

Summary and outlook 

The aim of my lecture notes was to provide an introductory overview over 

salient theoretical methods and concepts used in colloidal physics. Let me 

note here that part of the material in Chapters 1-5 is published in [122). 
Part of the material in Chapters 6-9 will be published in [123). However, a 

substantial amount of material in my AMAS lecture notes is not covered by 

these two references 

In my notes, I have followed the traditional approach by considering first 

the static properties of colloidal (and atomic) systems of spherically shaped 

particles, followed by a discussion of their dynamic properties. The second 

part on colloid dynamics was focused on diffusion mechanisms only, and on 

the theoretical methods used for calculating diffusion coefficients, and density 

correlation functions associated with dynamic light scattering techniques. 

Thansport mechanisms different from diffusion like viscoelasticity, for ex­

ample, have not been treated in the notes. I should mention in this context 

that possible theoretical links between diffusional and viscoelastic transport 

properties are currently of large interest, since certain generalized Stokes­

Einstein relations ( cf. [55]) are basic to so-called micro-rheological measure­

ments on biological systems like actin networks, protein solutions and cells. 

In the first part of my notes, I have discussed integral equation schemes for 

static properties of liquids. These schemes are based on the Ornstein-Zernike 

equation and the concept of direct correlations. The OZ-based integral equa-
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tion schemes provide an extremely versatile framework for predicting mi­

crostructural and thermodynamic properties of simple and colloidal liquids, 

from the knowledge of the pair potential. In addition, these schemes can be 

used to obtain effective pair potentials in colloidal systems of various particle 

species, by contracting the unwanted species out of the description. 

Due to the approxirnate nature and, usually, non-perturbative character 

of an integral equation scheme, one can not make decisive a priori statements 

on its accuracy. The accuracy of a scheme depends in general on the range and 

attractive or repulsive nature of u( r), the system dirnensionality, and on the 

degree of thermodynamic consistency. So-called (partially) self-consistent in­

tegral equation theories like the RY approximation, in which different routes 

to the same thermodynamic properties are enforced, are therefore superior to 

standard integral equation schemes, for the price of a larger numerical effort. 

The itnportance of OZ integral equation schemes goes well beyond the 

calculation of g(r) and S(q) from a given pair potential. In combination with 

powerful density functional theory rnethods, one can study first-order liquid­

solid phase transitions, and calculate structural properties of inhomogeneous 

fluids near a boundary or at a liquid-gas interface (e.g., layering and wetting 

phenomena). Integral equation approaches form also the basis of inversion 

schemes to deduce inforrnation on the pair potential from an experimentally 

determined g(r) or Sc(q). From the knowledge of g(r), c(r) can be deter­

mined using the OZ equation. The pair potential follows then directly (and 

approximatively) from a closure relation like the HNC closure. HNC based 

inversion scheme calculations of u( r) for a monolayer of charged colloidal 

spheres between to closely spaced glass plates suggest, for instance, the pos­

sibility of longer-ranged effective attractions between like-charged particles 

(cf. [124) for such a determination of u(r), and [87] for a consistency check 

based on computer simulations). Whether such an attraction really occurs 

and whether existing physical explanations for its existence do really apply 

is still very controversially debated. 

My lecture notes on static properties have been restricted to fluids of 

spherical particles with spherically symmetric pair interactions. The inte­

gral equation schemes and their closure relations have been broadened in 

the past to deal also with fluids of non-spherical particles, like molecules, 

rod-like viruses and polymers. The so-called reference interaction-site model 

(RISM) method has been used to calculate the site-site distribution function 

of rigid molecules whose interactions are modelled by an interaction-site po-
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tential. The molecule is hereby represented by a discrete set of interaction 
sites located at the places of the atomic nuclei [1]. The site-site distribu­
tion of non-rigid molecules like polymer chains and polyelectrolytes has been 
successfully determined on the basis of polymer reference interaction-site 
model (PRISM) calculations [125]. The structure of liquids adsorbed in a 
porous medium, like in a gel or in an arrested particle matrix, can be ap­
proximately predicted using the method of Replica Ornstein-Zernike (ROZ) 

equations [126). 

The second part of my lecture notes has been devoted to the physics of 
various diffusion processes observed in colloidal fluids of spherical particles, 
and in binary polymer melts. I have explained theoretical methods and com­
puter simulation techniques, which allow to calculate diffusional transport 
properties and scattering functions probed in dynamic light scattering. 

While DLS is nowadays a standard technique, it is certainly not the only 
experimental method to measure diffusion properties of colloids and poly­

mers. The new developments in this area are in the direction of scattering 
geometries, where the dynamics under the influence of external fields (shear 
flow, pressure, electric field and temperature gradients), near walls and within 
interfaces can be probed. In addition, somewhat slower dynamical processes 
are studied nowadays by means of optical microscopy, such as Confocal Laser 
Scanning Microscopy. Time-resolved phosphorescence anisotropy has recently 
been used to measure rotational diffusion of colloids [127, 128). Fluorescence 
recovery after photobleaching (FRAP) has been applied to probe long-time 
diffusion under oscillatory shear flow. A similar method is Forced Rayleigh 
Scattering (FRS), where a refractive index grating is created by means of an 
interference pattern, from which grating scattered intensities are measured. 
FRAP and FRS are specialized to measure long-time translational (and ro­
tational) self-diffusion coefficients of various kinds of macromolecules (also 
non-spherical molecules). 

The concentration dependence of translational and rotational diffusion 
coefficients, and of sedimentation coefficients, and the time dependence of 
mean-square displacements, van Hove functions and dynamic structure fac­
tors have been analyzed in these lecture notes by means of several theoretical 
methods. The performances of these methods (short-time cluster expansion, 
MCT, BD and SD simulations) have been scrutinized through a comparison 
with experimental results obtained from various experimental techniques. 
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I have pointed to qualitative differences in the dynamics of colloidal par­

ticles with short-range interactions (i.e., hard spheres), and systems with 

long-range repulsive interactions like charge-stabilized dispersions and mag­

netic systems. In particular, charge-stabilized suspensions at low salinity are 

characterized by peculiar non-linear density dependencies of their short-time 

transport properties. For long times, dynamic scaling is observed, which has 

interesting implications on the equivalence of certain static and dynamic 

freezing criteria. 

For systems of monodisperse colloidal spheres in the fluid phase, mean­

while a quantitative level of understanding has been reached, at least with 

regard to translational diffusion. As yet, a first-principle inclusion of many­

body HI into the theoretical description of concentrated suspensions remains 

as a major theoretical challenge. For mixtures of colloidal spheres, a semi­

quantitative level of accuracy has been reached by existing theoretical meth­

ods. Far less is known, however, about diffusion in systems of non-spherical 

particles like, to mention the most simple case, colloidal hard rods. In these 

systems, translational particle motion is coupled to the rotational one even 

at short times. 

Recent theoretical efforts are devoted to understand diffusion in confined 

geometries like in colloidal matrices and gels, to electrokinetic effects on 

charged colloidal macroions arising from the dynamics of the neutralizing 

microion clouds, and to anisotropic diffusion and shear banding in suspen­

sions under shear. 
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