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1. Large blood vessels 

1.1. Introduction- the cardiovascular system 

The heart is a pump that circulates blood to the lungs for oxygenation 
(pulmonary circulation) and then throughout the systemic arterial system 
with a total cycle time of about one minute. From the left ventricle of the 
heart, blood is pumped into the aorta, which in adult humans has a diameter 
of about 2.5 em and has a complex three-dimensional geometry. The three 
coronary arteries branch directly off the aorta to supply the heart. Daughter 
arteries branch directly from the aorta with further divisions ultimately down 
to the smallest blood vessels, the capillaries, in which the main exchange 
processes between the blood and tissues take place. 

The blood returns via venules through a converging system of veins. 

Arteries 

The walls of the arteries have a three-layer structure made of similar 
materials but in different proportions resulting in different mechanical prop­
erties (Fig. 1). 

I. The intima - lined with a single layer of cells called the endothelium, 
where atherosclerotic plaques first develop. 

II. The media- consists of multiple layers of an elastic material, elastin, 
whose direction changes radially, separated by thin layers of connective tissue, 
collagen, with a few muscle cells. 

III . The adventitia -loose connective tissue of elastin and collagen fibres. 
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16 N .A. HILL 

FIGURE 1. Structure of the arterial wall. 

The media is structurally most important and renders the arteries to be 
pre-stressed, non-linearly elastic tubes. 

Blood 

Blood consists of cells in plasma, which is a fluid with a viscosity of 

45% by volume of blood consist of red blood cells which are very deformable 
biconcave disks with viscous contents (Fig. 2). They may aggregate. 

------

FIGURE 2. A red blood cell. 
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PHYSIOLOGICAL FLUID DYNAMICS 17 

Viscosity 

For shear rates > 100 s- 1 , the fluid is approximately Newtonian, with 
viscosity 

and denisty 

In the arteries and veins, with diameters > 100 J-Lm, blood can be treated as 
homogeneous and Newtonian. 

1. 2. One-dimensional theory of pulse propagation in arteries 

We want to explain the mechanism and speed of propagation, changes in 
the shape of the pressure waveform (peaking and steepening downstream) 
and of the velocity waveform. 

Consider an infinitely long, distensible tube of uniform undisturbed 
area, A0 , containing an incompressible, inviscid fluid of density, p. Assume 
the wavelengths of the disturbances >> diameter of the tube which implies 
that velocity profile is flat and lateral velocities can be neglected (Figs. 3 
and 4). 

FIGURE 3. Observed velocity profiles are fiat, entry-type flows. 

FIGURE 4. Development of entry flow. 
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18 N.A. HILL 

Variables: 

• p(x, t) - excess pressure, 

• A(x, t) - area, 

• u(x, t) i -cross-sectionally averaged fluid velocity. 

1.2.1. Conservation of mass. Consider a small region of the pipe between 
x and x + 8x (Fig. 5). In time 8t, the net flux into the region is approximately 

p [(uA) lx- (uA) lx+8x] 8t 

and the resulting change in mass is approximately 

p [A (x, t + 8t) -A (x, t)] 8x. 

Equating these gives 

(uA) lx- (uA) lx+8x A (x , t + 8t)- A (x, t) 
8x 8t 

and, as 8t , 8x ---4 0, we get 

aA a 
at + ox ( uA) = 0. (1.1) 

FIGURE 5. Conservation of mass sketch. 

1.2.2. Conservation of momentum. Directly from the Navier-Stokes 
equations on setting u = u(x, t)i and the Reynolds number R oo, we 
have au au 1 8p 

-+u-+-- =0. at ax pox 
(1.2) 
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1.2.3. Constitutive relation. 

p = Pe- Po= P(A) =transmural pressure, 

i.e. pressure is a function of the cross-sectional area. 

1.2.4. Linear theory. For small amplitude disturbances, let 

A = Ao +a, lal << Ao, lui << 1 

and note that from Eq. (1.3) 

: = P'(Ao) ~~ + O(a
2
). 

Equations (1.1) and (1.2) give 

1 ap+au_
0 

AoP'(Ao) at ax - ' 

au ~ ap- 0 
at+ pax- ' 

on neglecting small quantities. Eliminating u gives 

a2p- 2a2p 

at2 -co ax2' 

where 

and 

or equivalently 

c6 = (pDo)- 1 

d (a) 1 
dp Ao =Do 

1 
Do= AoP'(Ao)' 

19 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

is the distensibility of the tube. Equation (1.5) is the wave equation and has 
solutions 

l 
p = f (x ± eot), 

with: u = =t= (pco)- 1 f (x ±cot), 

a= Ao (pc6)-1 f (x ± eot), 

(1.8) 

representing waves propagating with speed eo. This linearisation is valid pro­
vided I u I<< eo. co can be estimated from values of Young's modulus, E, for 
arteries (Fig. 6). 
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20 N.A. HILL 

FIGURE 6. Idea: increase in pressure l:::.p leads to increase in hoop tension f:::.T. 

T T + GT 

FIGURE 7. Definition sketch for Young's modulus. 
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PHYSIOLOGICAL FLUID DYNAMICS 21 

(Effective, incremental) Young's modulus (see Fig. 7): 

OT = Eh OR£ + 0 ( Oh Oe£) . 

Resolving radially (per unit length) over angle 60, 

26Tsin(60/2) ~ 6T60 ~ 6p(r60) ===} 6T = r6p. (1.9) 

6T Eh b€ = Eh br 
€ r 

Eh6A 
since 

2 A = (
A= 1rr2 ===} 6A = 21rr6r = 26r) . 

A 1rr2 r 
(1.10) 

From Eqs. (1.6) and (1.7), 

2 AoP'(Ao) Ao 6p c - -0 - p - p 6A 

and, using Eqs. (1.9) and (1.10), we see that 

c6 = Eh/2pro, (1.11) 

where ro is the mean radius of the tube. This is the Moens-Korteweg wave 
speed (1878), although first discovered by Young in (1809). 

co as calculated from Eq. (1.11) is quite accurate predicting that co ~ 
5 ms-1 in the human thoracic aorta and increases to about 8 ms-1 in the 
large peripheral arteries. However, refinements of the elastic theory to include 
longitudinal stresses and dynamic elastic properties increase co by about 25% 
worsening the agreement with experiments. 

Also Eq. (1.8) predict that the velocity and pressure wave forms will be 
the same and propagate without change of shape, in contradiction to the 
following observations, so other effects need to be included. 

1.2.5. Observations. 

1. Velocity wave form different from pressure wave form 

• use viscous fluid theory in a rigid tube and can successfully predict 
velocity wave form from pressure wave form. 

2. Peaking of pressure wave 

• explained by reflections. 

3. Attenuation (experiments at high frequency) 

• need viscoelastic effects to model successfully, viscous fluid is in­
sufficient. 

http://rcin.org.pl



22 N.A. HILL 

1.3. Wave reflections 

The aim is to explain the peaking of the pressure pulse (see Fig. 8). 

FIGURE 8. Wave reflection at a bifurcation. I - incident wave, R- reflected wave, 
T- transmitted wave, A- cross-sectional area, c- wave-speed. 

We begin by analysing the reflection and transmission of a wave at an 
isolated bifurcation. The incident pressure wave is PI = PI f ( t - x / c1). PI is 
the amplitude, f is the wave form. The flow rate associated with the incident 
wave is A1 UI which equals 

where Y1 = A1/ pc1 from (1.8), is the characteristic admittance. (Here A1 is 
the undisturbed area and we have neglected the perturbation, a.) 

The reflected wave has pressure 

and flow 

and, for the transmitted waves, 

Pj = Pjhj(t- x/cj), Qj = YjPjhj(t- x/cj), 

where 

Yj = Aj/ PCj (j = 2, 3). 
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PHYSIOLOGICAL FLUID DYNAMICS 23 

We need to match the pressure and the flow rate at the bifurcation at all 
times at x = 0, thus 

and 

Notes: 

==} g(t) = hj(t) = f(t), 

Pr + PR = P2 = P3 and Y1(Pr- PR) = Y2P2 + Y3P3 

PR yl - (Y2 + y3) 
==}-=-----

Pr Y1 + (Y2 + Y3) 

(1.12) 

(1.13) 

1. If Y2 + Y3 < Y1 , then the reflected pressure wave is in phase with the 
incident wave at x = 0 and the combined amplitude I1 + PR is greater 
than Pr alone. This is a "closed end" type of junction. 

2. If Y2 + Y3 > Y1 , PR is of opposite phase and the combined amplitude 
Pr - PR is less than Pr alone. This is an "open end" junction. 

3. If Y2 + Y3 = Y1, PR = 0, there is no reflection and the junction is 
well-matched. 

4. Most cardio-vascular junctions are well-matched except, notably in 
man, the iliac bifurcation which is of the closed-end type. This is cer­
tainly a contributing factor to the peaking of the pressure pulse, al­
though taper is also important. 

1.4. Effect of viscosity - Womersley's problem 

We examine the effect of viscosity on a flow driven by an oscillatory pres­
sure gradient in a rigid tube. The assumption of a rigid tube is satisfactory 

-- ... - - ----

1_p :::- G-Ct- ) 
o-z. 

-.._ --- ________ .,. 

FIGURE 9. Wormersley's problem. 

http://rcin.org.pl



24 N.A. HILL 

because the distance travelled by a fluid element in 1 cycle << wavelength 
and thus the tube is approximately parallel-sided (see Fig. 9). 

The pressure gradient is given as a Fourier expansion in t: 

(1.14) 

4- 6 modes are usually sufficient to model the pressure pulse and about 10 
modes suffice for the velocity wave form. 

The z-component for the Navier-Stokes equations in cylindrical polar 
coordinates gives 

Pz J1 ( 1 ) Ut = -- + - Urr + -Ur , 
p p r 

. h b , { u = 0 on r = a, 
wit .c. s 0 r __ O. 

Ur = on 

Suppose that the Fourier series for u(r, t) is 

00 

u = uo(r) + L un(r)einwt. 
n=l 

Substitute into Eq. (1.15) and solve the linear ODE's term by term. 
The fundamental mean flow is 

Poiseuille flow. 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

The oscillatory terms come from solutions of Bessel's Equation (Exercise): 

where 

a~ = pnwa
2 

/ J-L, 

a2 = pwa2/J1 ( = o:I), 

is the Womersley parameter. 

(n 2 1), (1.19) 

(1.20) 

(1.21) 

For details of Bessel functions, see e.g. I.N. Sneddon, "Special Functions of 
Mathematical Physics and Chemistry", 3rd edition, Longman, pp. 130-132, 
which gives 

J0(i312x) = I0(i 112x) = ber (x) + i bei (x). 

http://rcin.org.pl



-G 

PHYSIOLOGICAL FLUID DYNAMICS 

lrur L'1- ) 
J 1..-----
0~------~~~~------~~~~ 

FIGURE 10. Sketch of the Kelvin functions. 

25 

Ber and bei are known as Kelvin (or Thompson) functions (see Fig.10). 

00 00 

ber(x) =I) -1) 8 (x/2)48 /(2s!) 2, bei (x) = :L:) -1) 8 (x/2) 48+2 /(2s + 1)!2. 
s=O s=O 

What does the Womersley parameter measure? 

(i) a2 = 0 ( [ c;;:] I [v ~:~] ) = an unsteady Reynolds number. 

viscous diffusion time 
(ii) a 2 = (a2 /v) / (1/w) ex . d =frequency parameter. 

per10 

(iii) 

For fluids of small viscosity, so that n 11 >> 1, Eqs. (1.17) - (1.20) show 
that 

Go ( 2 2 a2 ~ Gn . 
u rv - a - r ) + - L...t - sm nwt 

4J..L J..L n=l Q~ 

a
2 

(a)l/2 
00 

G rr; [ J --;;: La;e-an(l-r/a)/v 2 sin nwt-an(1-r/a)/v'2, 
n=l n 

using the asymptotic behaviour of Jo. 
This shows that when n 11 >> 1, the flow consists of Poiseuille flow upon 
which is superimposed an unsteady core flow surrounded by a boundary 
layer of thickness O(a~ 1 ). 

a radius 
a - -- - (Exercise). - JV7W - stokes b.l. thickness 

If a is small, then taking the limits of the Bessel's functions, we find 
that lun I << 1 for n ~ 1 and the uo - terms give quasi-steady Poiseuille 
flow. Interpretation (iii) shows that the boundary layers fill the tube. 
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26 N.A. HILL 

If a is large, then (iii) shows that the boundary layers are thin and (ii) 
shows that vorticity (w = V · u) does not have time to diffuse across 
the tube before the flow reverses. 

Experiments in which the pressure gradient waveform and the flow rate 
Q(t) were measured, show that this theory is successful in explaining the 
differences between the waveforms. 

The flow rate Q(t) = J
0
a u(r) 2nr dr and using Eq. (1.19) 

Q(t) = 7ra2 { Goa2 + ~2 f Gn [1- F(an)] einwt}' (1.22) 
8J-L 2J-l 1 a~ 

where 

~ l 1- i~2 a.s 
2 1 

il/2a (1 + 2a) as 

a ~ 0 (good for a < 4), 
(1.23) 

a~ oo (good for a> 4). 

1.5. Nonlinear theory 

The governing Eqs. (1.1)- (1.3) are hyperbolic so we expect to be able to 
use the ideas of Riemann invariants, characteristics and shock waves. 

We begin by rewriting Eqs. (1.1) - (1.3) as 

At + Aux + uAx = 0 (1.24) 

and 
Ut + UUx + ( c2 I A) Ax = 0, (1.25) 

where 
c2 (A) = AP'(A)Ip, (1.26) 

which is not constant. Adding ±ciA times (1.24) to (1.25) gives 

(! +(u±c)!) [u± L: ;, dA'] =0. (1.27) 

( 
a {A(x,t) aA ) 

Note that at J Ao g(A *) dA * = g(A) at etc. 

Compare at + ( u ± c)ac with D I Dt = at + uax in 1-D fluid dynamics: if 
(at + uax)f = 0, it means that the rate of change off for a fluid particle 
moving with speed u is zero. 
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PHYSIOLOGICAL FLUID DYNAMICS 27 

Thus, from Eq. (1.27) we have that the Riemann invariants 

1A c 
R± = u ± A* dA *, 

Ao 
(1.28) 

are constant on the characteristics, C±, given by 

dx 
C±: dt = u± c (1.29) 

and so nonlinear waves propagate in the ± x-direction with variable speeds, 
u±c. 

1.5.1. Shock formation. Propagation speeds are not uniform in general 
so characteristics can run together and form discontinuities or shocks. 

Consider the situation in Fig. 11 where blood is ejected from the left 
ventricle with velocity 

{ 
> 0 at x = 0 for t ~ 0, 

U(t) : 0 at x = 0 for t < 0. 

FIGURE 11. Pulse wave moving into undisturbed fluid. 

The front of the pulse wave is moving into undisturbed fluid for which 
c =co and so it propagates with speed co (unless a shock forms at the front). 
This implies that 

A = Ao, c = co and u = 0 for x > cat. 

Define 

1A c(A*) 
V(c) = ~ dA*, then V(eo) = 0 

Ao 
(¢:::=A= Ao when c =co). 
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28 N.A. HILL 

We can draw an (x, t) phase diagram (Fig. 12) to show the characteristics. 

FlGURE 12. The characteristics for the propagation of the pulse wave. 

We know that R± = constant on dx / dt = u ± c. 
In x > cot, u = 0, c = co and 

R_ = 0 ~ u = V(c), 

on all C_ characteristics originating in x > cot, even when they move into 
the disturbed region. 

u = V(c) , throughout the fluid. 

Consider the c+ characteristics in X < cot. 

u = V(c) everywhere~ R+ = u + V(c) = 2u 

~ u = constant everywhere 

~ c = constant everywhere 

(-.· u = V(c)) ~ C+ characteristics are straight lines, 

although they can have different slopes. 
Shocks form where the characteristics intersect and we can calculate when 

this will first happen (Fig. 13) . 
A typical c+ characteristic starting at t = 7 from X = 0 is 

X= (U(7) + c(U(7)) (t- 7), (1.30) 

with neighbouring characteristic 

X= (U(7 +<57)+ c(U(7 +<57))) (t- 7- <57). (1.31) 
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FIGURE 13. Shock formation . 

Equations (1.30) and (1.31) and letting 6r -----t 0 tells us that the character­
istics meet at time 

ts = T + F(U( r) )/u( r)F' (U( r) ), 

where 
F(U(r)) = U(r) + c(U(r)). 

A shock will first form when t8 ( T) has a minimum. 
Example 

Take P(A) = pc6A2 /2A6 +constant 

{ 
Uo [1- (1- t/t0 )

2
] 

and U(t) = 
0 

(see Fig. 14). 

0:::; t:::; 2to, 

t < 0 and t > 2to. 

(1.32) 

(1.33) 

Then c = coA/Ao, V(c) = co(A- Ao)/Ao = c- co and therefore F = 

2U +co. 
Equation (1.32) gives 

ts(r) = T +(co+ 2U) t6/4Uo(to- r) 

which has a minimum at T = 0, so that the first shock appears when 

ts = coto/4Uo at Xs = c6to/4Uo. 

For typical physiological conditions in man, Xs is longer than the aorta 
and a shock would not be expected to form. However, when there is "aortic 
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FIGURE 14. Ejection velocity. 

valve incompetence", the heart compensates by ejected a greater volume of 
blood and clinicians report a "pistol-shot pulse", which is likely to correspond 
to the formation of a shock. 

2. Spermatozoa and micro-organisms 

Many microscopic creatures, including bacteria and algae, are very active 
swimmers and have a great variety of sensing mechanisms to find the opti­
mum place to be in their environment. However because they are so tiny, the 
fluids in which they move (typically water) appear to them to be extremely 
viscous. Mathematically, the Reynolds number is very small, i.e. 

R = UL/v << 1 

and, taking R = 0, the Navier-Stokes equations reduce to 

Vu=O, 

(2.1) 

(2.2) 

plus b.c. 's. These are the slow flow or Stokes Equations. We see that the 
inertial terms 

Du au 
P Dt =Pat+ (u.V)u, 

have been neglected so that 

(i) the Stokes equations are linear and we can use superposition of solu­
tions, and 

(ii) time enters the equations only through the motion of the boundaries, 
i.e. it behaves as a parameter. 
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As an immediate consequence of linearity (i), it is straightforward to prove 
that for any given b.c. 's, the solution of the Stokes equations is unique, unlike 
the full Navier-Stokes equations (up to a constant added top)-.--

Reversibility 

Consider Vp = J.L\72u, V.u = 0 with b.c.'s u = uB(x) on a boundary S. 

Let p =PI (x), u = u1 (x) be the unique solution. 

Now reverse the b.c. 's, i.e. set u = -uB(x) on S. 

The unique solution is 

u = u2(x) = -u1(x), p = P2(x) = -pl(x). 

This has an important interpretation: reversed boundary conditions lead to 
reversed flow. 

Consider a mechanical fish which moves according to the Stokes Equations 
and flaps its tail up and down as shown in Fig. 15. 

When the tail flaps downwards, the "fish" may make a little forwards 
progess but, because the flow is exactly reversed when the tail flaps upwards, 
it will return to its starting position. Thus a swimming motion which may 
work well at high Reynolds numbers will not work at all at low Reynolds 
numbers! 

The solution is to use a motion that is irreversible e.g. Figs. 16 and 17. 

2.1. The swimming of a thin, flexible sheet 

(G.I. Taylor, Proc. Roy. Soc. Lond., A209, pp.447-461, 1951) 

This model illustrates the basic ideas in low R swimming and can be 
applied to ciliated micro-organisms (Fig. 18). 

We shall consider the flow in the fluid above the sheet shown in Fig. 19. 
The coordinates of the particles on the sheet are 

Xs=X, Ys=asin(kx-wt). (2.3) 

The particles move in the y-direction only with speed 

dy8 /dt = -wacos (kx- wt) (2.4) 
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FIGURE 15. A mechanical fish. 

~ 
P..E<..o~Y srR.oKE 

FIGURE 16. Two steps forward and one step back as used by the alga Chlamy­
domonas nivalis: left-power stroke, right-recovery stroke. 

FIGURE 17. A sperm or a bacterium passes a helical, rotating wave along the 
tail. 

FIGURE 18. A typical ciliated micro-organism. 
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J 

0 ~--~~----~~~~~~~ 

~ ---t>c.-1-ll~ 

FIGURE 19. A swimming sheet. 

and a wave travels along the sheet in the positive x-direction with speed 

c = w/k. (2.5) 

Notice that as the particles move up and down, the spacing between them 
varies so that the sheet stretches and is extensible. A model for a flexible 
membrane would need to be modified so that it would be inextensible. 

The motion is irreversible; reversing the b.c's reverses the direction of 
propagation of the wave. 

We shall show that the oscillations of the sheet induce not only an oscil­
latory flow but a steady flow component 

Ui = 21r2 (a/ A) 2 ci, 

where A = 21r / k is the wavelength in the case when a << A. Equivalently, if 
the fluid far away from the sheet is at rest, then the sheet moves to the left 
with speed U. 

We can automatically satisfy incompressibility in this 2D model by using 
a stream function '1/;(x, y) defined by 

u = 8'1/;/oy, v = -8'1/;/8x. (2.6) 

The lines 'lj; = constant are the streamlines for the flow, since on streamlines 

dx dy - = - ¢:::::::> u dy - v dx = 0 
u v 

{::=::} d'lj; = o'lj; dx + 8'1/J dy = 0 {::=::} 'lj; =constant. 
8x 8y 

8u 8v 82'1/; 82'1/J 
Check: V · u = ox + 8y = 8xoy - 8y8x = O, 

so Eq. (2.2) is satisfied. 
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2.1.1. Governing equation. Equation (2.1) implies that 

ap - '\72a'lj; 
ax- J..l ay' (2.7) 

ap = -J-t'\72 a'lj;. 
f)y ax 

(2.8) 

Taking ajay (2.8)- ajax (2.9) gives 

(2.9) 

- the biharmonic equation. 

2.1.2. Boundary conditions. This needs to be solved for 'lj; subject to 
suitable b.c.'s as y --too (lui< oo) and on the sheet (x5 ,y5 ). 

On the sheet, Us = 0, v5 = -wa cos(kx- wt) (from Eq. (2.4)) 

==} y P£ = 0 } 

rfx = +wa cos( kx - wt) 
on y = asin(kx- wt). (2.10) 

Note that t only appears in the b.c. 's and is a parameter, and so we can solve 
the problem at t = 0 and calculate the flow at any other time by replacing 
kx in our solution by (kx- wt) . 

2.1.3. Scaling. Define x' = kx, y' = ky, 'lj;' = k'lj;/wa and drop the 
primes to get 

'\74'1/J=O, (2.11) 

a'lj;jay = 0, a'lj;jox = cosx on y = Esinx, (2.12) 

where E = ka = 21raj A.. (2.13) 

The flexing of the boundary ( <== y = E sin x) makes it difficult to find an 
exact solution. Instead we shall assume that E << 1 and expand the b.c. 's 
Eq. (2.12) in a Taylor Series about y = 0: 

7/Jy ly=O + E sin(x)7/Jyy ly=O +... = 0, 

7/Jx ly=O + ESin(x)'l/Jyx ly=O + .. . cos(x). 
(2.14) 

We seek a solution in powers of E: 

(2.15) 

http://rcin.org.pl



PHYSIOLOGICAL FLUID DYNAMICS 35 

Substituting Eq. (2.15) into the governing Eq. (2.11) and the b.c's Eq. (2.12), 
and equating coefficients of successive power oft to zero, we obtain 
at 0(1) 

\74'1/Jo = 0; '!/Joy= 0, '1/Jox = cosx on y = 0 (2.16) 

and at O(E) 

V 4
'1/J1 = 0; '1/Jly + '1/Joyy sin x = 0, 

'l/J1x + '1/Joyx sin x = 0 on y = 0, 
(2.17) 

etc. The general solutions of the 0(1) problem with the correct x-dependence 
are 

'1/Jo = [(A+ By)e-Y + (C + Dy)e+Y] sinx. 

(Check by substitution) 
For u and v to be bounded as y----? oo, we need C = D = 0. 

To satisfy the b.c.'s in Eq. (2.16), we need A= B = 1 so that 

'1/Jo = (1 + y)e-Y sin x. 

Substituting (2.18) into the b.c's in (2.17), we get 

,./, . 2 l.f/ly = Sln X, 'l/J1x = 0 on y = 0. 

On writing sin2 x = (1- cos 2x) /2, we seek solutions like 

'l/J1 = f(y) + g(y) cos2x 

and after substituting into the biharmonic equation find that 

(2.18) 

(2.19) 

'l/J1 = [(E + Fy)e- 2Y + (G + Hy)e+2Y] cos2x + [Ay3 + By2 + Cy + D]. 

For u, v to be bounded as y----? oo, we need G = H =A= B = 0 and then, 
on satisfying the boundary conditions (2.19), we arrive at 

,,, y y -2y 2 
'f'l = 2 - 2 e cos x. (2.20) 

Combining these results, (2.18) and (2.20) and differentiating gives 
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Returning to the dimensional variables and incorporating the parameter t 
finally yields for the horizontal component of velocity 

u = -Ewye-ky sin ( kx - wt) 

+ c2c [1/2 + (ky- ~) e-2ky cos2(kx- wt)] + ... , 
~ 

steady term 

which has a steady term U = c2c/2. 

(2.22) 

We conclude that the sheet can indeed swim with speed proportional to 
amplitude squared and the wave speed c. 

2.2. Resistive force theory for flagellar propulsion 

(Gray & Hancock, Journal of Experimental Biology, 32, 802-14, 1955.) 

Consider a flagellated micro-organisms such as a spermatazoon (Fig. 20). 

s=L 

;>c 

FIGURE 20. A flagellated micro-organism. 

A wave of bending (planar or helical) is passed backwards along C1. The 
wave is of uniform amplitude and the flagellum is inextensible. At any instant, 
the position of a material point on C1 is 

r = R(s) = [X(s), Y(s), Z(s)], (2.23) 

where 

X(s +A)= X(s) +A, Y(s +A)= Y(s), Z(s +A)= Z(s). (2.24) 
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This is different to the sheet because it is not of infinite width, can deal with 
helical waves, only requires a small slope rather than amplitude and is of 
finite length, but it approximates the fluid mechanics. 

Let A be wavelength along CL; A is its projection on to x-axis. 

The mean velocity of whole organism relative to fluid at rest at oo is -Ui. 

Assume that a << d << A < A, d << L. L is the total length of the flagellum 
and 

(2.25) 

2.2.1. Kinematics. We need to know velocity of material points on the 
flagellum relative to fluid at rest at oo and to apply the condition of inex­
tensibility (see Fig. 21). 

FIGURE 21. Velocity of material points on the flagellum. 

Suppose that a wave propagates in the x-direction with speed Vi relative 
to the mean speed, Ui, of the organism (V > U). 

A reference frame moving with speed (V - U)i relative to fluid at oo 
moves with the crests (and troughs) of the waves. 

Material points appear to move through the crests with speed 

c = V(A/A) = V/a {::::=} V = ac, (2.26) 

since over one wavelength, the arclength= A and the its projection onto the 
x-axis = A. 

The flagellum is inextensible ==> all material points move with the same 
speed (but in different directions) tangentially, so the velocity relative to 
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crests is -ct, where t is the tangent to surface. The velocity of material 
points relative to the fluid at oo is 

(V - U)i - ct = -w. (2.27) 

2.2.2. Resistive force theory. This theory treats each part of the flagel­
lum locally as being part of a long cylinder. Since the Stokes equations are 
linear, the normal and tangential components of the drag force on any body 
are proportional to its normal and tangential components of velocity relative 
to the fluid velocity, respectively. For a long cylinder these components can 
be calculated. 

For an element ds of the flagellum (Fig. 22), the element of force exerted 
by the fluid is 

dF = [Kt (w.t) t + Kn (w.n) n] ds. (2.28) 

Kt and K n are the tangential and normal resistance coefficients for a thin 
cylinder of unit length. 

-U..i 
s::. 0 

~ =- LU.. K~~.S1: 

FIGURE 22. Forces on an element of the flagellum. Note the sign of dF. 

The total force on the flagellum in the i - direction is minus the thrust, 
T, and thus 

-T = {L dF. i = (Kt- Kn) {L (w.t) (t.i) ds + Kn {L (w.i) ds, (2.29) 
ls=O Jo Jo 

( ~ w.i = (w.n) (n.i) + (w.t) (t.i)). 

By definition, t = dR/ds ===> t.i = X'(s). From (2.27), 

w.t= (U-V)i.t+c, 

w.i = U- V + ci.t. 

Hence 

-T = (Kt- Kn) (U- V) {L X'2 ds+Kn (U- V) L+Ktc {LX' ds. (2.30) · lo lo 
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Now foL X' ds = aL = VL/c and we write foL X 12ds = f3L, where 0 < f3 < 1 

(since IX'I :::; 1) to obtain 

+T = (V- U) [(Kt- Kn) (3L + KnL]- KtVL. (2.31) 

This result depends on the resistance coefficients, Kt and Kn, and on (3 which 
depends on the waveform and which we have to calculate for each particular 
case. 

Case: 

(i) Zero thrust swimming (no head). 

U = v ( 1 - (3) ( 1 - ')') ' 
1 = Kt/Kn· 

1 - (3(1 - !) 
(2.32) 

Thus if 1 < 1 a backwards travelling wave propels the creature for­
wards. For a smooth cylinder 1 rv 1/2). Note that only the ratio of the 
coefficients is important. 
However if 1 > 1, then the wave must travel forwards to pull the micro­
organism forwards . This really happens in nature with polychaete ma­
rine worms such as Nereis (albeit at moderate values of R) and with 
some algae such as Chrysomonad and the parasites, trypanosomatids, 
which have "hairy" or mastigoneme flagella (see Fig. 23). 

FIGURE 23. A rnastigonerne flagellum. 

(ii) The thrust balances the drag on the rest of the body or head. 
T = D = LU Kn8, say. (The term LU Kn is just a suitable scaling for 
D.) From (2.31) 

u = v (1- f3) (1- 1 ) 1 [1 + 8- {3(1- 1 )]. (2.33) 

This result can be compared with experiments as Gray and Hancock did 
for sea urchin spermatazoa. They found good agreement when 1 ~ 1/2. 
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2.2.3. Inconsistencies in the choice of/· For a long straight cylinder 
with length q >> its radius a, it is possible to solve the Stokes Equations to 
get 

Kt ~ 2rrJ-L/ log(q/Ea), Kn = 4rrJ-L/[log(q/Ea) + 1), where f.= ve/2 

1 1 
==>r=-+ . 

2 2log(q/Ea) 
(2.34) 

If 1 = 1/2 {=::=} log(q/Ea) >> 1 {=::=} q >>a and in fact q ~A . 

This is inconsistent with the assumption that the flagellum is made up of 
lots of little straight cylinders. The inconsistency arises from neglecting the 
fluid velocity due to neighbouring cylinders. Nevertheless Lighthill (1976) 
showed how to produce a rational self-consistent theory based on slender 
body theory. 

2.2.4. Mechanical efficiency. The rate at which work is done by the 
flag ell urn is 

Ws = f0Lw.dF+DU 

= J0L [(Kt- Kn)(w.t) 2 + Kn w 2] ds + DU, from (2.30) 
==> (2.35) 

Ws = KtL [(V- U) 2{3- 2(V- U)ca. + c2) 

+KnL(V- U) 2(1- {3) + KnLU26. 

Define the hydromechanical efficiency as 
7] = (rate of work needed to pull the non-swimming organism in a straight 

line through the fluid at speed U ( = minimum drag))/ (actual rate of working 
when swimming over with speed U in a straight line). Thus 

(2 .36) 

where Ws is given by (2.34). 

FIGURE 24. A sawtooth wave. 
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We can find the most efficient waveform by maximising TJ with respect to 
a and {3, which gives 

'T/max = (1 - vf1) 2 I (1 + 6), 

where 

u = v ( 1 - Ff) I ( 1 + 1) 

and thus optimum shape is the saw tooth (Fig. 24). For helical waves, we also 
need to consider torque balances about the x-axis. 

3. Red blood cells and capillaries 

3.1. Revision of thin film and lubrication theory 

L 

FIGURE 25. A lubrication layer. 

Consider a typical lubrication layer as illustrated in Fig. 25. 

• 2D here but readily extended to 3D. 

• Small gap: h << L. 

• Typical fluid speed is U. 

• Scaling arguments. 

8uU 8uU -rv->>-rv-
8y h 8x L 

82u 
v\72u ~ v 8y2' 

8
2
u vU ( h) 

and v By2 rv h2 1, L , 

since V.u = 0 ===} 
Uh vrvy· 
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For the inertial terms to be much smaller than the viscous terms in the 
Navier-Stokes equations, we need Uh2 jvL << 1. 

The N avier-Stokes equations reduce to 

and V.u = 0. (3.1) 

J-t (Uh) Py ~ h2 L 

==> Py << Px ==> p = p(x) only. 

Integrating the x-component of (3.1) with respect to y gives 

1 (dp) 2 
u = 2J-t dx y + Ay + B' 

where A, B are constants to be determined from the b.c. 's. 

The flux is q = 1h u(y) dy. 

The stress tensor is 

a= -pi+ 2J-te, 

a~ -pi ==> large normal stresses at the boundaries. 

FIGURE 26. A cell squeezing through a very narrow tube. 
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3.2. Near-critical cell shapes 

The flow of a rigid particle through a narrow tube can give insights into 
the behaviour of a flexible red blood cell at near-minimal diameters. 

Consider a cylindrical particle with hemispherioda1 ends as shown in 
Fig. 26. Using lubrication theory in the narrow gap, we get 

J.L 8 ( 8u) dp 
-:;: 8r r 8r = dz 

in the axial direction, with b.c. 's 

{ 
u = 0 on the particle wall, r = r*(z), 

and 
u = uo on r =a. 

Integrating (3.2) and applying the boundary conditions gives 

where 

f
a r 

qo = u(r, z)- dr, 
r• a 

(3.2) 

(3.3) 

(3.4) 

is the "leakback", i.e. the volume flow per unit vessel circumference relative 
to the cell, which is independent of z. 

Integrating with respect to z gives the pressure drop in the limit 
as A~ 1, 

{1r/2 sin B 
where In = Jo (1 _ A sin B) dB (n = 1, 2, 3) and C = 2qo/ au0 • 

(3.5) 

(The errors in using (3.2) around the ends of the particle turn out to be small 
since the pressure gradients are much greater where the gap is narrow). 

From (3.3), the shear stress on the cell is 

* * a - r 2 * J.LUo 1 
[ 

2 *2 ] 
T r - -g r + r -

( ) - 2 ( ) r*ln(r*/a) r*ln(r*/a)" 
(3.6) 
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To evaluate qo for rigid particles, we use the "zero-drag" condition applied to 
a cylindrical region of radius a and of length equal to the length of the cell 
which gives 

1ra
2 6 p + F = 0, 

where F is the integral of the wall shear stress, Tw, over the wall. 

To obtain a simpler expression for rw, we now assume that the gap width 
is small compared to a and set r* = a(1- .X) where 0 < E = 1- .X<< 1 in (2) 
to get 

rw(.X) = [6JLqo/a2(1- ..\) 2
] - [4p,uo/a(1- .X)]. (3.7) 

Integrating (3.7) to obtain F gives 

F = 21rap,uo [(<> + -y)(3Ch- 4h) + f3 ( (1 ~CA)2 - 1 ~ .x)] · 
The integrals In can be integrated and yield 

I _ 2..\ * - 1r /2 I _ 1 + 2..\.X * I _ 1 + .X 2/2 + 3..\.X * 
1 - .X ' 2 - 1 - ,X2 ' 3 - (1 - .X2)2 ' 

where 

A'= (1 - ~2)1/2 [tan-! { (1 ~ ~2~1/2} +tan-! { (1- ~2)1/2}] · 
Thus 6p and qo can be calculated for given values of uo, a, {3, r and .X. 

Numerical studies by D. Halpern & T.W. Secomb, (1989) J. Fluid Mech. 
203, pp. 381-400, showed that in very narrow capillaries such as are found in 
bone marrow, the spleen and partially collapsed or occluded capillaries, red 
blood cells approach the limits of deformability and their shape is reasonably 
well approximated by a rigid cell. This occurs for values of a between 1.42 JLm 
and 1.55 JLm, 1.42p,m is the minimum radius and when a > 1.55p,m the rear 
of the cell starts to flatten and become concave. 

3.3. Red blood cells: single-file flow in narrow capilliaries 

Red blood cells (erythrocytes) can adopt a variety of different configura­
tions, as shown in Figs. 27, 28 and 29 (reference: Erythrocyte Mechanics & 
Blood Flow, 1980, eds. G.R. Cokelet, H.J. Meiselman & D.E. Brooks). 

Mamalian erythrocytes are highly deformable - they have to be to travel 
through capilliaries of 2: 3p,m diameter! 

Deformability and stirring of contents enhances transport across mem­
brane? 
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FIGURE 27. Erythrocytes. 

t 
6·1.~ 

J, 

FIGURE 28. Slipper shape. 

t 
f·S~ 

lr 
4--DDO 

FIGURE 29. Tank treading. 

t;k~~ 
u\sco- ..e.~~ tic. 
~(L 

FIGURE 30. Material properties of red blood cells. 

45 
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3.3.1. Membrane properties. Steady flows so we shall only need to con­
sider the elastic properties. 

• Bending modulus= 1.8 · 10-12 dyncm-1. 

• Shear modulus = 4.2 · 10-3 dyn em - 1 . 

• Dilatation modulus= 500dyncm-1
. 

(1 dyn = 10-5 N). 

There are tension, shear and bending stresses in the membrane. However 
the bending stresses are very small except at very sharp corners so they can 
be neglected. On the other hand, it's difficult to build up large shear stresses 
in the membrane without some dilatation and hence very large isotropic 
tensions. Therefore we assume that membrane is inextensible and can support 
tension. The geometry is difficult so we consider a two-dimensional model of 
an asymmetric cell. (See T.W. Secomb & R. Skalak (1982) Microvascular 
Research 24, 194-203.) 

3.3.2. The membrane equations. Consider the force balance on an ele­
ment of a cell's membrane (Fig. 31). 

FIGURE 31. A tank treading red blood cell. 

dB 
Po-p= t- and 

ds 

dt 
ds = -T. 

3.3.3. The 2D model for tank-treading. Consider a tank treading ery­
throcyte as shown in Fig. 32. 

• Reference frame moves with cells. 

• Pressure =Po within cell so that the back is floppy. 

• Viscosity of cytoplasm is negligible. 
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p-=0 0 p= pes 

----------~~--~--~----------4~Uo 
(: ~ 

FIGURE 32. A tank treading red blood cell. 

• Narrow gaps along AB, CD===} lubrication theory. 

• p =Po in narrow gaps too, otherwise non-zero tension ====> membrane 
is curved. 

• p = 0 at front end ====> constant tension between A and C ====> circularly 
shaped nose. 

• 2-D model with tank-treading and asymmetry. 

• Force balance on cell ====> tension falls with distance towards rear. Ten­
sion = 0 at B and D. 

• uo, A are given. Seek to determine po, u1, ha, hb, t(O). 

3.3.4. The lower gap OCD. Use lubrication theory in the almost parallel 
region (Fig. 33). 

&lc) 
~~-------------------v~. 

--~~------------------~~uo 

FIGURE 33. The lower gap in the model of a tank treading red blood cell. 
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82u 1 dp 
P = p( s), a 2 = d , y J-L s 

1 dp y 
U = -- - y( h - y) + U! + ( Uo - U!) -. 

2J.-L ds h 

In steady flow, the flow rate qo = const, where 

1h 1 h3 dp . 
qo= udy=-(uo+ui)h---. 

o 2 12J.-L ds 

The membrane equations give 

Po - p = t d(} / ds, where sin(} = dh/ ds 

and 
dt J-L hdp 
- = --(uo- u1) + --. 
ds h 2 ds 

3.3.5. Non-dimensionalisation. Lengths "' hb = 2qo/uo(1 +a), where 
a= u1/uo (from the flux equation with dp/ds = 0). 

Independent variable: S = s/hb. 

Dependent variables: H = h/hb, P = (Po- p)hb T = t 
J-LUo(1 +a)' J-LUo(1 +a) 

( 

p ) ( 6H-3 - 6H-2 ) 
==> .!!:.._ T = H-1(2 + 4a)((l +a)- 3H-2 

. 

dS H SinO 
(} P/T 

(3.8) 

- a system of ODE's. 

3.3.6. Boundary conditions. 

• (} = -1r /2 at S = 0 - where the theory fails! 

• (} ~ 0, H ~ 1 and P ~ 0 as S ~ oo. 

• T(O) or P(O) is given. 

3.3. 7. Numerical solution. 

• Linearised analysis ~ solutions in which H increases exponentially 
with both increasing and decreasing values of S. To avoid the solutions 
that "blow-up", integrate upstream from S = oo. Give small perturba­
tions to the downstream conditions and integrate until (} = -1r /2. 

• Covered a range 25 < T(O) < 100 and lal :s; 1/2, noting that the results 
are insensitive to these values of a. 
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3.3.8. Results. The numerical results (Fig. 34) can be summarised as fol­
lows: 

1. The greatest pressure change occurs near 0, which is consistent with 
lubrication theory. 

0 

FIGURE 34. Results of the numerical model for a 2D tank treading cell. 

2. The tension does not change greatly between 0 and D: T(D) ~ T(O) 
empirically. 

3. Curve fitting to the numerical results gives, to within a few %: 

H(O) = k1 [T(O)]k2
, 

P(O) = k3[T(0)] 1
/
3, 

where k1 = 0.925, k2 = 0.571 and k3 = 2.142. 

In dimensional variables, 

(3.9) 

(3.10) 

b I ho = kl[t(O) I f-LUo ( 1 + a) ]k2 at the lower gap, (3.11) 

blho = kl[t(O)I f-LUo(1- a)]k2 at the upper gap. (3.12) 

4. Equation (3.10) gives ha, hb given Po, a. To deduce po, a, integrate 
Eq. (3.8)2 along the length of the cell and assume t = t(O) at A, D and 
t = 0 at B and C to get 

t(O) = f-LUolo(1- a)(1 + 'A)Ihb, 

t(O) = f-LUolo(1 + a)(1- 'A)Iha. 

Thus we can deduce po, a given uo and 'A. 
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3.3.9. Inaccuracy. Equation (3.10) ==> Po= h"b 1
k3 t 113(0) [puo(1+a)]213 

for the lower gap with a similar expression at the upper gap. This 

hb/ ho: = __ a > 1. (
1 + ) 2/3 

1-a 

But (3.11) (which comes from (3.9)) gives 

hb = (1 + a)k~ 
ha 1- a 

Assuming that these errors arise from the curve-fitting, the best thing is to 
average the two values geometrically. 

3.3.10. Results for a,po, ha, hb given lofb. See Fig. 35. 

FIGURE 35. The numerical results. 

1. a j as A j. 

2. hb j, ha rv const. as A j until A > 0. 7 and a > 0.8. The theory fails 
when A> 0.7. 

3. p l as A j so dissipation decreases as A increases ==> that a natural 
system would tend to be asymmetric. 

4. Consistent with observations. 
A fully 3-D model for a cell in a cylindrical tube was published by 
R. Hsu and T.W. Secomb [2]. The most recent work has concentrated 
on the non-uniformity of the capillary walls and the effects of glycocalyx 
lining the walls, e.g. white blood cells - a deformable solid rather than a 
fluid-filled sac whose shape is determined by the pressure distribution. 
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