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Objective functions for discounted cost optimization based on a continuous re­
newal model for a series of cases are presented. They include failures and subse­
quent renewals by crossings of loading processes or random disturbances out of 
safe states of structural components, failures due to aging, non-constant benefit 
and damage functions, finite renewal times, repeated reconstructions at renewals 
and inspection and repair. A method for reliability-oriented time-variant struc­
tural optimization of separable (independent) series systems using first order reli­
ability methods (FORM) in standard space is developed generalizing theories pro­
posed earlier for component problems and time-invariant series system problems 
in a special one-level approach. Certain improvements by taking account of de­
pendencies among failure modes are also proposed. Numerical Lap lace transforms 
are proposed for the treatment of aging components. The optimization problem is 
solved by a newly developed gradient-based algorithm. A one-level optimization 
is proposed by adding the first-order K uhn-Tucker optimality conditions for the 
design points of the series system reliability problem as constraints to the cost 
optimization problem using first order reliability methods (FORM) in standard 
space. Some algorithmic details are discussed . The approach is demonstrated at 
examples. 

Key words: structural reliability, one-level optimization, time-variant problems, 
outcrossing approach, series systems. 

1. Introduction 

The calculation of failure probabilities or reliability indices for given sets 
of basic variables or random processes, limit state functions and deterministic 
parameters is well known. It requires solution of an optimization task if mod­
ern FORM/ SORM is used. The determination of a certain design parameter 
set, e.g., initial cost or weight of a structure, in order to maximize benefits or 
to make efficient use of resources is much more difficult and involves another 
optimization task. Reliability-oriented optimization of design parameters is 
more expensive than simple reliability analysis. Both tasks can, however, be 

http://rcin.org.pl



346 H. STREICHER and R. RACKWITZ 

combined in the inverse problem of finding optimal designs with or without 
reliability restrictions. In this one-level approach the first-order Kuhn-Tucker 
optimality conditions of the reliability problem(s) are added as constraints 
to the overall cost optimization problem. Techniques have been developed so 
far for time-invariant and time-variant component problems [27, 28, 30) and 
for time-invariant series system problems [29] based on this concept. Time­
variant series systems are first dealt with in [54). Although conceptionally 
similar, each of the cases requires special handling of the details. 

Time-variant optimization concepts making use of a simple renewal model 
have been proposed as early as 1971 by Rosenblueth/ Mendoza (45) with 
special reference to earthquake resistant design. More generality has been 
added by Hasofer [20) and Rosenblueth [46) and lately in [21) and [40]. In this 
paper the classical renewal model is briefly reviewed. The tools of Laplace 
transforms are found to be extremely useful. An attempt is then made to 
further generalize the model to cover new fields of application, for example, 
finite renewal times, repeated reconstruction at renewal, series systems and 
inspection and repair. This requires new computational methods which are 
developed to a certain extent. 

The paper is organized as follows. A review of the readily available relia­
bility models is given first. Then, the basics of renewal theory as needed for 
the further developments are presented. Section 4 is devoted to the detailed 
discussion of the renewal model in the context of cost-benefit optimization of 
technical systems including some new results. Section 5 summarizes the dif­
ferent types of possible constraints and gives a brief overview on some recent 
results on suitable public risk acceptance criteria. Section 6 then focuses 
on the details of the techniques of cost-benefit optimization in a one-level 
approach. Several illustrative examples conclude the paper. 

2. Review of Reliability models 

It is assumed that classical FORM/ SORM is used. Safe and failure do­
mains are separated by differentiable limit state surfaces h(x, p,t) = 0 where 
x is a n-dimensional vector of uncertain (process) variables with continu­
ous distribution function Fx(x, p, t) , p = a parameter vector and t = time. 
Also, it is assumed that a unique probability distribution transformation 
x = T(u) exists where u is an independent standard normal vector so that 
g(u, p,t) = 0 (see [22) or approximate transformations in (10, 60]). Finally, 
it is assumed that a unique /3-point for each failure mode exists, i.e. for 
which !3k = llu*ll = max{llull} for {u: 9k(u,p,t) :s; 0}. Note that !3k > 0 for 
9k(O, p,t) > 0 and 11k :s; 0 for 9k(O, p,t) :s; 0. It follows that the instantaneous 
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componental failure probability is (36] 

PJ,k(t) = j cp(u) du"' if>( -(Jk(t))C, 

gk(u,p,t):SO 

(2.1) 

where C is a correction either determined by SORM [3] or any other suit­
able method for an improvement of FORM results such as importance sam­
pling (24]. 

Time-variant problems are substantially more complicated and computa­
tionally also more difficult. Failure time distributions are required and the 
failure probability is defined as: 

Pt(O, t) = P(T ~ t) = Fr(t). 

For strictly monotonic cumulative damage phenomena Fr(t) can be com­
puted from 

Fr(t) = Pt(t) = P(g(X,t) ~ 0)) ~ <I>(-,B(t))C, (2.2) 

where ,B(t) is the usual geometric reliability index and C is a correction factor. 
Quite generally, one ignores such corrections. The failure density is f(t) = 

-cp((J(t)) d~\t) and r(t) = - :~:H d~it) the risk function which according to 
our assumption is increasing. ean and variance of the failure times can be 
computed from 

00 

E[Tk] = j ktk-1(1- Fr(t))dt 

0 

(2.3) 

for T 2: 0. For k = 1 we obtain the mean E[T) and for k = 2 the second 
moment E[T2), respectively, and therefore V ar [T] = E[T2] - E[T)2 . 

Because straightforward analytical results for failure time (first passage) 
distributions under random process loading are almost entirely missing one 
uses the so-called outcrossing approach for time-variant problems instead. 
One can derive an upper bound 

(2.4) 

with the mean number of outcrossings E [N+(o, t)) given as 

t 

E [N+(o,t)] = j v+(r)dr, (2.5) 

0 
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and where v+ ( T) is the outcrossing rate defined as 

+( ) _ . P( {X(T) E V(T)} n {X(T + 19) E V(T + 19)} 
V T - hm 

19 
. 

19--+0 
(2.6) 

V (.) and V (.) denote failure and safe domain, respectively. Clearly, for sta­
tionary processes we have E [N+(o, t)) = v+t. The vector X(T) collects all 
simple random variables and random processes. Under certain conditions 
(strong mixing of the outcrossing process) an important asymptotic result 
has been proven [9) 

PJ(O, t) = P(T s t) rv 1- exp [-E [N+(o, t)]], (2.7) 

i.e., the exponential distribution for failure times which will turn out to be 
of utmost importance in the following. In this model outcrossings form a 
Poissonian point process. 

In the stationary case, arbitrary limit state function and loading by a 
combination of a vectorial rectangular wave renewal Gaussian process with 
jump rates Aj and a vectorial differentiable Gaussian process with covariance 
function matrix R(T) the outcrossing rate according to FORM is [58, 5): 

v+(p) = (t A;<I>2(,6(p), -,B(p); p;(p)) + wo <pu:))) . (2.8) 

<P2(., .; .) is the bivariate standard normal integral with correlation coefficient 
Pi= 1-a;, ,B(p) = llu*ll and wo is the central frequency with which the pro­
cess outcrosses the limit state function (i.e.: w6 ~ n(u*, p)TR(O)n(u*, p), 

n(u*,p) = -aT(u*,p) = - 13(;), R(O) = E [uur]). A combination of a 

rectangular wave renewal process and a differentiable process is possible 
because crossings are assumed to be regular processes, i.e. processes for 
which more than one crossings in a short time interval have probability-+ 0. 
Eq. (2.8) may be multiplied by a SORM-correction factor CsoRM(P) involv­
ing curvature information of g(u, p,t) = 0 in u* [4, 38, 39, 40). For brevity of 
notation this is not done herein. Rectangular wave renewal processes must 
have independent components but can have arbitrary distribution functions. 
Certain non-normal differentiable processes can also be handled after a suit­
able probability distribution transformation [10, 60). Outcrossing rates have 
also been established for non-stationary problems which are not given here. 

If in some application one is forced to use a time-variant reliability method 
for non-stationary problems the asymptotic life time distribution is 

F(t) = 1- exp [ -/ v+(r)dr] (2.9) 
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with density 

f(t) = v+(t) exp [- j v+(r)dr] . (2.10) 

Instead of Eq. (2.9) it is frequently better to use the well-known upper 
bound, at least for aging problems 

t 

Fr(t) = Pf(t) :;:: PJ(O) + j v+(r)dr:;:: 1, 

0 

where Pj(O) = 0 in many cases. The corresponding density is 

/r(7) ~ P,(o)c5(0) + v+(7). 

(2.11) 

(2.12) 

This density should be close to the exact one for aging problems but is 
less suitable for the stationary case. The advantage of these formulations is 
that well-known FORM/SORM-methodology is applicable, at least for more 
complicated problems and for outcrossing rates v+(7) depending on a random 
vector R (49] . 

3. Elements of Renewal Theory 

Renewal processes generate a sequence of points whose interarrival times 
are independent. They have proven to be a very powerful tool in reliability 
theory. Assume that a component is replaced after failure by a new, stochas­
tically identical component. 

At first we determine the number of renewals in a given time interval. The 
components have independent identically distributed life times 7i, 72, ... , 7n 
and the failure times are T1 = 71, T2 = T1 + 72, ... , Tn = Tn-l + 7n (see 
Fig. 1). Obviously, 

n 

P(N(t) > n) = P(Tn ~ t) = P( L7i ~ t) = Fn(t) (3.1) 
i=l 

1f lt 't4 

FIGURE 1. Trajectory of renewal process. 
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and 

P(N(t) = n) = Fn(t)- Fn+l(t), (3.2) 

where Fi(t) = P(L:~=l Tj ::; t). Assume that the random life times have finite 
moments up to arbitrary order. The mean number of failures in [0, t] then is 

00 00 

H(t) = E[N(t)] = L n P(N(t) = n) =I: n(Fn(t)- Fn+l(t)) 
n=l n=l 

00 00 t t 

= L Fn(t) = L j fn(u)du = j h(u)du 
n=l n=l 0 0 

(3.3) 

Fn+l(t) can be replaced by J Fn(t- u)dF(u). Therefore, in terms of an 
integral equation it is equivalently 

00 t t 

H(t) = F(t) +I: j Fn(t- u)dF(u) = F(t) + j H(t- u)dF(u) (3.4) 
n=lo 0 

This equation is called renewal equation. It is mainly of theoratical interest. 
The function H(t) = E[N(t)] is denoted by renewal function. Its derivative 

h(t) = lim P(one or more renewals in [t, t + ~t]) 
t-+O+ ~t 

= BH(t) = ~ fn(t) (3.5) 
8t ~ 

n=l 

is denoted by renewal density or renewal intensity but in the context of 
reliability problems also by failure rate. The quantity h(t) can be determined 
easily only in some special cases. For a exponential reliability function R( t) = 
exp [- .Xt] one determines H ( t) = .Xt and h( t) = .X as one can easily verify from 

H(t) = L:~=l n P(N(t) = n) = L:~=l n(~r exp [-.Xt] = .Xt. For normally 
distributed renewal times we have 

~ 1 (t- nm) 
h(t) = ~ ~ <.p y'n ' 

n=l ayn a n 
(3.6) 

where m is the mean failure time and a its standard deviation making use 
of the fact that a normal distribution is maintained under convolution. Since 

http://rcin.org.pl



OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED.. . 351 

failure time distributions are valid only fort 2: 0 a more appropriate assump­
tion is the r -distribution for integer k, also stable under convolution, and 
m = k I A and a = Vk I A 

00 Anktnk-1 A k-1 

h(t) = ~ r(nk) exp [-At] = k [; <(k)i exp [At(<(k)i- 1)] , (3.7) 

where E(k) = cos(27r I k) + i sin(27r I k) for k > 1. The renewal density has a 
characteristic damped oscillation type curve (see Fig. 2). The oscillations are 
larger for larger coefficients of variation of the individual failure times but, 
as illustrated, damp out rather soon. 

Renewal density/(1/mean) 

2.5 .--------.,....--------------., 
i 

V= 0.2 
2 

1.5 

0.5 

0 ~0~-~-~2--73-~4.,....-----5~-~6 

Urnean 

FIGURE 2. Renewal intensity divided by asymptotic value versus time divided 
by mean failure time. 

For H ( t) there are some simple bounds which can easily be verified: 

F(t) :'0 H(t) :'0 1 ~~(t) (3.8) 

Further, several important asymptotic results have been proven [2]: 

lim H(t) = !__, 
t-+oo t m 

(3.9) 

lim [H(t + T)- H(t)] = !_, 
t-+oo m 

(3.10) 

http://rcin.org.pl



352 H. STREICHER and R. RACKWITZ 

lim h(t) = _!_ if tf(t) --t 0 for t --t oo, 
t-+oo m 

(3.11) 

t a 2 1 
t~~[H(t)- m]= 2m2- 2· (3.12) 

Equation (3.9) coincides with intuition. The mean number of failures is in­
versely proportional to the mean value of life times m. The second statement 
(3.10) has a similar interpretation and is stronger than (3.9). The third and 
forth statements concern stationarity. Equation (3.12) with a the standard 
deviation of the failure times provides a better estimate for the renewal func­
tion. From Fig. 2 one concludes that the asymptotic result Eq. (3.11) holds 
in good approximation for all renewal processes unless the coefficient of vari­
ation of the interarrival times is very small. 

The foregoing describes a so-called ordinary renewal process. For the mod­
ified renewal process it is assumed that the first time to failure has another 
distribution than all the other failure times. This generalization is useful 
for aging components and whose age is known. For the equilibrium renewal 
process it is assumed that renewals have occurred already for infinitely long 
time. The zero of the time axis, therefore, falls randomly in between two 
consecutive renewals. 

In the following we will extensively work with Laplace transforms. Laplace 
00 

transforms are defined by f*(!) = J e-1t f(t)dt. If f(t), t :2: 0, is a probability 
0 

density, it is /*(0) = 1, /*(oo) = 0 and 0 < !*(!) ::; 1 for all 1 :2: 0. 
The La place transform can also be written as f* ( 1) = Er [ e-'T] . In the 
transformed space one can easily show that there ish*(!) = f*('y)g*(!) for 

00 

h(t) = J f(t- r)g( r)dr. For independent, identically distributed interarrival 
0 

times of failures the density of the time to the n-th event fn(t) then is fn(t) = 
00 

J fn-1(t- r)f(r)dr and, therefore/~(!) = /~_ 1 (!)!*(!) = f*(!)n- 1 f*(l)· 
0 
It is seen that the convolution operations necessary, for example, in Eq. (3.5) 
can be performed very easily. In particular, the La place transform of the 
renewal intensity in Eq. (3.5) is 

00 oo 00 

h*("Yl = j LJn(t) exp 1-"YtJ dt = L f*("YWbt-! = 1 ~·j?irr (3.13) 

0 n=1 n=1 

Finally, the asymptotic result for the renewal density in Eq. (3.11) is restated 
in terms of Laplace transform (see [8), p. 55): 

lim h(t) = lim {h*(!) = _!_ =A for f(t) --tt-oo 0, (3.14) 
t-+oo -y--+0 m 
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where m is the mean time between renewals (or failures) and A is the failure 
rate. 

4. Objective functions 

4.1. General 

A structural or any other technical facility is optimal if the following 
objective function is maximized: 

Z(p) = B(p)- C(p)- D(p). (4.1) 

Without loss of generality it is assumed that all quantities in Eq. (4.1) can be 
measured in monetary units. pis the vector of all safety relevant parameters. 
B(p) is the benefit derived from the existence of the facility, C(p) is the cost 
of design and construction, usually decomposed into a cost Go independent of 
p and cost dependent on p, and D(p) is the cost in case of failure. Statistical 
decision theory dictates that expected values are to be taken (59). In the 
following it is assumed that B(p), C(p) and D(p) are differentiable in each 
component of p. And it is reasonably assumed that C(p) increases whereas 
D(p) decreases in each component of p. 

The structure which eventually will fail or replaced after some time will 
have to be optimized at the decision point, i.e. at time t = 0. Therefore, all 
cost need to be discounted. A continuous discounting function is assumed 
which is accurate enough for all practical purposes 

8(t) = exp [-rt], (4.2) 

where r is the (tax-free) interest rate. For example, if failure with conse­
quences Do occurs- at time t (in years) the discounted damage is D(t) = 

Do exp [-rt). If a yearly discount rate r' is defined we have r = ln(1 + r'). 
Also, it is assumed that construction cost C(p) are without cost of financing. 
They can, however, be included easily. 

In general, one has to distinguish between at least two replacement strate­
gies; one where the facility is given up after service or failure and one where 
the facility is systematically replaced after failure or obsolescence. One third 
possibility is replacement after inspection and repair. Further we distinguish 
between structures which fail upon completion or never and structures which 
fail at a random point in time much later due to service loads, extreme ex­
ternal disturbances or deterioration. The first option implies that loads on 
the structure are time-invariant. At first sight there is no particular prefer­
ence for either of the replacement strategies. For infrastructure facilities the 

http://rcin.org.pl



354 H. STREICHER and R . RACKWITZ 

second category is a natural strategy. Structures used only once, e.g., spe­
cial auxiliary construction structures, boosters for space transport vehicles 
or devices exploiting limited deposits, might fall into the first category. In 
this paper focus is on time-variant problems and systematic reconstruction. 
For one mission structures the reader is referred to [21] and [40]. 

4.2. Standard time-invariant case [45] 

The objective function for failure during or immediately at the start of 
operation and abandonment after failure is: 

Z(p) = B* RJ(P)- C(p)- H PJ(P) = B*- C(p)- (B* + H)PJ(p), (4.3) 

where RJ(P) = 1- PJ(P) is reliability and Pj(P) failure probability. For fail­
ure at the start of operation and systematic reconstruction (until a realization 
survives) one has 

00 

Z(p) = B*- C(p) - (C(p) +H) L iPJ(P)i RJ(P) 
i=l 

= B*- C(p)- (C(p) +H) PJ(P) , 
1- PJ(P)) 

because for independent failure events 

00 00 

L iPJ(P)i RJ(P) = (1- Pj(P)) L iPJ(P)i 
i=l i=l 

(4.4) 

This result for infinite sums will turn out to be very important in the follow­
ing. 

After failure one usually investigates the causes of failure and updates the 
design. Here, we assume that the design is already optimal so that there is 
no reason to change the design rules and new realizations are stochastically 
independent. 

For a intended service time t8 the benefit term becomes 

ts 

B(t,) = J b(t).S(t)dt. (4.5) 

0 
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For constant benefit rate b( t) = b it is 

b 
B(t8 ) = - [1- exp [-Its]], 

I 
(4.6) 

and therefore for t 8 ---+ oo 

B* = ~. 
I 

(4.7) 

4.3. Standard time-variant case (40] 

For easy reference the standard case is first rederived for systematic re­
construction. For the moment, assume reconstruction times to be negligibly 
short. The times between failure (renewal) events have identical distribution 
function F(t, p) with probability density f(t, p) and are independent. The 
independence assumption needs to be verified carefully. Here again, one has 
to assume that loads and resistances in the system are independent for con­
secutive renewal periods and there is no change in the design rules after the 
first and all consecutive failures. Even if designs change failure time distribu­
tions must remain the same. For constant benefit per time unit b( t) = b and 
fn(t, p) the density of the time to the n-th renewal an objective function can 
be derived by making use of the convolution theorem for Laplace transforms 

00 00 00 

Z(p) = j be-"~'dt- C(p)- (C(p) +H) L j e-'Yt fn(t, p)dt 
0 n=lo 
00 00 

= j be-"~'dt- C(p)- (C(p) +H) L J'(l', p)n-l J*(l', p) 
o n=l (4.8) 

= ~- C(p)- (C(p) +H) J*(l, p) 
I 1- f*(l, p) 

b 
=-- C(p)- (C(p) + H)h*(1,p), 

I 

where h*(I,P) is the Laplace transform of the renewal density (renewal in­
tensity) h(t, p) = I:r=l fk(t, p) (see Eq. (3.13)). His the expected monetary 
loss in case of failure including direct failure cost, loss of business and, of 
course, the cost to reduce the risk to human life and limb. We may also 
include the cost of demolition in H. 

In principle, renewal theory also allows for the case that the time to the 
first renewal is different from all others. This refinement by the modified 
renewal process is done here only for the case just considered, for the sake 
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of easy notation in the following. Let f 1 ( t) be the density of the time to first 
failure and f(t) the density of all other failure times. It is, in fact, easy to 
show that 

00 00 00 

Z(p) = j be--ytdt- C(p)- (C(p) +H) L j e--rtfn(t,p)dt 

o n=Io 

00 00 

= j be--rtdt- C(p)- (C(p) +H) Lf*(!',pt-1 Ji(r,p) 
o n=I 

(4.9) 

= ~- C(p)- (C(p) +H) fi(l, p) 
I 1- f*(l, p) 

b 
=-- C(p)- (C(p) + H)hi(l, p). 

I 

Laplace transforms are analytic only for a few failure models. For easy 
reference some important models are collected in Table 1 [40]. 

The one for a normal failure time distribution is especially important 
because it is also approximately the (two-sided) Laplace transform for an ar­
bitrary failure time distribution with known mean m and standard deviation 
a provided that V = ~ is small and 1 ~ 2m/a2 [20). For this we use the 
"cumulant-generating function". For the case of a Laplace transform we have 

where K (B) is the usual cumulant-generating function of f ( t). If we assume 
that 1 is low enough to neglect powers of 1 above 2, we have 

(4.10) 

which coincides with the two-sided Laplace transform for the untruncated 
normal distribution. If the failure times have an exponential distribution one 
obtains 

h*(l, p) = A(p)' 
I 

( 4.11) 

since f*(l, p) = ~~~~)' This result is especially relevant because the pa­
rameter A(p) may be replaced asymptotically by the stationary outcross­
ing rate v+ (p) frequently used in time-variant structural reliability analysis 
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TABLE 1. Laplace transform for some failure models. 

Name 11 Density function f(t) Laplace transform /* ("') 

Deterministic 8(a) exp [-a"Y] 

Uniform 1 exp(-a')'j-cxp(-b"'rl 
b-a "'r(b-a) 

Exponential Aexp[-At] >. 
"'r+>. 

Gamma 
>.k k-1 

r(k)t exp[-At] ("'r~>.)k 

Rayleigh 2t [ (' ) 2] ~exp - ;; yw~fi erf c ( ~"fW) exp [ t"Y2 w 2
] + w 

Normal (t 2: 0) 1 1 [ 1 e-m) 2] 1 ~;; exp - 2 - 17- 4>(~) 
1+erf[ ~(m-')'<7 2 ) 

exp [ ~"' ("Ya
2 

- 2m)] · ~4>t~) 

Inverse Normal !o.(27rt3)-1/2 exp [- a2t + ~ - A] <7 ~ <7 2<7 t exp [-to J ~ + ~ - ~] 
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(see Eq. (2.7)). If v+(p) depends on an uncertain parameter vector Rand/or 
a random sequence Q one should use ER,Q[v+(p, R, Q)] instead: 

Z(p) = !?_- C(p)- (C(p) +H) ER,Q [v+(p, R, Q)]. (4.12) 
r r 

It is seen that continuous discounting and continuous failure models lead to 
relatively simple, analytical results. Completely parallel results, however, can 
be obtained for discrete failure models and discrete discounting [57]. 

4.4. Random disturbances [20, 46] 

If, at extreme loading events (e.g., flood, wind storm, earthquake, explo­
sion) having a density f(t) of interarrival times, (independent) failure occurs 
with probability Pj(P ),the density of times between failures is 

n 

9n(t, P) = L fk(t)Pj(p)Rj(Pl-l, (4.13) 
k=l 

and after taking Laplace transforms [20, 46]: 

g*('y, p) = ~ /*('y)Pt(P)[f*('y)Rt(P)Jn-l = 1 ~~~i~;;:i"') (4.14) 

with R f (p) = 1 - Pj (p). The damage term becomes: 

D(p) = (C(p) +H) g*(!, p) = (C(p) +H) PJ(P)f*(!). (4.15) 
1- g*(!,P) 1- f*(!) 

It may sometimes be realistic to change to a modified renewal process in 
which case f*(!) in the numerator of Eq. (4.15) has to be replaced by fi(r)· 

If, in particular, the loading events follow a stationary Poisson process 
with intensity A we have 

h*( ) = APJ(P) ,,p . 

' 
( 4.16) 

It is noted here that the memoryless nature of a Poisson process for the 
disturbances implies that!*(!)= fi(r)· 

For uncertain H in the failure event ( exceedance of different limit states) 
one replaces H byE [H] = L Pi Hi (Pi = probability of exactly failure loss Hi, 
Li Pi = 1). More generally, the damage term may be replaced by a so­
called risk integral, i.e. by J(C(p) + H(x,p))J(x)h*(x,{,p)dx where x a 
damage parameter and f(x) its probability density. If there are Poissonian 
disturbances of different kind whose failure leads to the same losses one 
replaces A by L Aj. 
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4.5. The case of a one-mission structure 

The case of giving up the facility after failure or completion of the in­
tended task is extensively treated in [40]. Here, we present only the main 
idea. Suppose that the structure is abandoned after the first failure and let 
F1 (t) be the distribution function of the timeT to first failure, with proba­
bility density function f 1 ( t). Assume that the expected benefit per unit time, 
b, is constant during the life of the structure. Then the discounted expected 
benefit B for t 8 ---+ oo is given by 

oot 00 

B J J bexp( -')'T)dr fi(t)dt ~ j(l - e-"'')!I(t)dt = 
0 0 0 

( 4.17) 

where 
00 

fib) = j e-'Yt /J (t)dt ( 4.18) 

0 

is the Laplace transform of the density function of the time to failure, with 
parameter 1, the interest rate. Similarly, the discounted expected cost D is 
given by 

00 

D = H J e-"'t ft(t)dt = H 1{(-y). 

0 

(4.19) 

The case of random disturbances is also interesting. Under the same as­
sumptions as before one arrives at essentially the same result for t8 ---+ oo 

00 

hi(!, P) = 'L J;(!)f~-1 (!)PJ(p)RJ(P))n-l 
n=l 

= ~ j*( ) [/*( )]n-1 p (p)R (p)n-1 = PJ(P)fi(!) 
~ 1 1 1 f f 1- RJ(P)f*(!)' 

The present value of the damage is 

and the benefit: 

D(p) = Hhi(!, p), 

B = ~(1- hi(!, p)). 
! 

(4.20) 

( 4.21) 

(4.22) 
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For a Poissonian disturbance process one determines: 

However, in this case and b = b( T) one can integrate directly: 

ts t 

B(t., p) = J J b( r)e--yr dr APJ(P} exp [-APJ(P }t] dt 

0 0 

= 'Y + A~J(P) ( 1- exp [-('y + APJ(P))ts] · 

· ( (1 + .XP~(p)) exp ['Yts] - .XP~(p))). 

t .• 

D(t.,p) = H J e-'Y1APJ(p)exp[-APJ(p)t]dt 

0 

'APJ(P) 
=HI+ >..PJ(P) (1- exp [-(1 + >..P1(p))t 8 ]). 

(4.23) 

(4.24) 

(4.25) 

This gives information how fast asymptotic conditions will be reached. For 
ts ~ oo we have 

and therefore: 

B*(p) = B(oo, p) = 'Y + A~J(P), 

D(p) = H >..PJ(P) ' 
I+ 'APJ(P) 

Z(p) = b- >..PJ(p)H _ C(p). 
I+ 'APJ(P) 

4.6. Non-constant benefit function [21] 

(4.26) 

(4.27) 

(4.28) 

Assume that the benefit rate is not constant but an arbitrary function of 
time. At each failure (and renewal) it starts at b(O). Following (21], let Un be 
the time between then- 1-th and the n-th arrival and let 

n 

Tn = LUr (4.29) 
r=l 
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be the time to the n-th arrival. We recollect that Un is independent of Tn-1 
for n = 2, 3, .... Given the Un, the total discounted benefit Br is given by 

and with 
t 

Bn(t) = j e--yub(u)du, 

0 

00 

Br = BD(UI) + ~ e-'YTn-l BD(Un)· 
n=2 

Taking expectations it follows that 
00 

B = E(Br) = E[BD(UI)] + ~ E (e--rTn-l) E[BD(Un)] 
n=2 

= l Bn(t)f(t)dt + (~l e-"'t fn-!(t)dt) l Bn(t)f(t)dt 

Using the results on La place transforms, we obtain 

B = l Bn(t)f(t)dt + (~ f'('y)[f*('r)t-2
) l Bn(t)f(t)dt 

00 00 

= j Bn(t)f(t)dt + [ 
1 
~·;?~ !')] j Bn(t)f(t)dt 

0 0 

00 

= 1 _ ~·('y) j Bn(t)f(t)dt, 
0 

and for a homogeneous Poissonian failure process with rate .X(p ): 
00 

(4.30) 

( 4.31) 

( 4.32) 

(4.33) 

B = (1 +A~)) j Bn(t)A(p)exp[-A(p)t]dt. (4.34) 

0 
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4. 7. Non-constant damage 

Also, the damage term may depend on t. For example, the damage cost 
H(t) can accumulate over time due to gradual storage of valuable goods or the 
reconstruction cost net of inflation can increase over time due to increasingly 
scarce resources. By generalizing a result in [16] it is possible to consider 
time-dependent damage cost K(t, p) = C(t, p) + H(t) (see also [57J) 

00 

J exp [-,t] K(t, p)f(t, p)dt 

D(p) = o 1- f*(T', p) (4.35) 

Clearly, the nurnerator is no more the classical Laplace transform of a failure 
density and the integral must remain finite. 

4.8. Finite renewal times 

Next we consider finite renewal times, i.e., finite reconstruction times, 
ignoring the rare case of failure under an external extreme loading event. 
During these times the facility cannot be used and it cannot fail. Let Tw 
be the (random) renewal times with density fw(t) and TN be the (random) 
times of use with density !N(t). Therefore, T = Tw +TN is the time between 
failures (or renewals). An exact consideration is complicated. However, re­
newal theory shows that the availability of a system asymptotically equals: 

t 
. 1 J E[TN] 

Aw(oo) = t~~ t Ainst(x)dx = E [Tw] + E [TN ]' ( 4.36) 

0 

where Ainst(x) is instantaneous availability. It follows that the benefit has to 
be multiplied by Aw(oo) so that: 

Z(p) ~ B Aw(oo)- C(p)- (C(p) ·+ H)Aw(oo)h:4(1',p). ( 4.37) 

The renewal intensity hA ( 1', p) is most easily be determined from the density 
of times between renewals fA ( t) as a convolution of fw ( t) and f N ( t) whose 
Laplace transform simply is JA.(t) = fiv(t) f'N(t). During a finite renewal 
the structure is supposed not to fail. Therefore, in first approximation the 
damage term is also multiplied by Aw( oo ). 

4.9. Repeated reconstruction at renewal 

One also can consider possibly repeated failure at construction (or recon­
struction), i.e., the facility is reconstructed after failure in the construction 
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phase according to the same rules until it can be put into service. It is suf­
ficient to consider the additional cost of reconstruction at a time which are 
(see also Eq. ( 4.4)) 

Dw(p) = (Cw(p) + Hw) f: iPt,w(P)iRt,w(P) = (Cw(P) + Hw) ~f,WiP~. 
i=l f,W p 

The result is: 

Z(p) = B- ( C(p) + (Cw(p) + Hw) ~~.:i:D 
- (C(p) +H) (1 + PJ,w(P) (Cw(P) + Hw)) h*('Y,p). (4.38) 

RJ,w(P) (C(p) +H) 

The additional factor reflects the fact that the reconstruction and damage 
cost (Cw(p)+Hw) can happen multiply with probability Pj,w(p). Successful 
construction happens with probability RJ,w(P) = 1-PJ,w(p). Note that the 
first construction also needs an additional term. It is useful to distinguish 
between reconstruction cost Cw (p) and damage cost H w in the erection 
phase and the reconstruction and damage cost C(p) + H during use of the 
facility. 

This model also enables to estimate the length of the finite renewal time. 
If E [Tw,1) is the expectation of independent, identically distributed recon-

struction times, then, since E [Y) = E [2::~ 1 xi] = E [X) E [N) (N random 

and geometrically distributed according to p(n) = Pj,w(p)n-l Rj,w(P)) we 
have E [Tw) = E [Tw,d /(1- Pj,w(p)). In general, this time is only insignif­
icantly larger than E [Tw,I] for (1- Pj,w(p)) ;S 1. 

4.10. Independent failure modes and different failure causes 

Assume for the moment two independent failure modes, denoted by "V1" 
and "V2", respectively, each requiring renewal after failure. The times between 
renewals then are distributed as F(t) = 1- (1- Fv1 (t))(1 - Fv2 (t)) = 1-
Fv1 (t)Fv2 (t). The corresponding density is f(t) = /v1 (t)Fv2 (t) + /v2 (t)Fv1 (t) 
and its Laplace transform is /** ( r' p) = J~:w2 ( r) + /~;lVI ( r). It follows that 

(CI(P) + HI)J~:IV2 (r) + (C2(P) + H2)/~;jV1 (r) 
D(p) = 1 (/** ( ) + !** ( )) . (4.39) 

- v11V2 ' v2!V1 ' 

This equation is derived as follows: Let (}i = ti - ti-1 be the times between 
renewals with density fv~, v2 ( t) and, for example, Cv1 and Cv2 the cost asso-
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ciated with the two types of renewals. Then, the expected cost is 

00 

=LE [exp ( -IO)t-1 E [(Cv1 + Cv2 ) exp [-10]] 
n=l 

_ E [ ( G\r1 + CvJ exp [ -10]] _ Cvl ft:w2 + Cv2 f~;IVi (I) 

- 1- E [exp ( - 10)] - 1- (Jt:w
2 

( 1 ) + J~;W1 ( 1 ))" 

Here, we distinguish between ordinary La place transforms f* ( 1) for densities 
and modified La place transforms f** ( 1) for which f** ( r) ~ f* ( 1). One can 
generalize to more (independently) caused renewals: 

( 4.40) 

with 

and therefore 

00 

ft,~ln -~-v- (1) = jexp [-1t] fi(t) IT · _J.· Fj(t)dt. 
' Jr' J Jr'L 

0 

Frequently, the upper bound can be used and this has also been proposed 
in (29) and [55). For independent Poissonian failure modes one can show easily 
that the upper bound is the exact result. 

4.11. Obsolescence 

At this point it is useful to introduce obsolescence as an important cause 
for renewal. Obsolescence occurs if the technical facility no more fulfills its 
function. For example, a bridge may become too narrow for the increasing 
traffic, a fabrication hall is replaced because the machinery inside this hall 
has to be modernized and restructured, certain vehicles are put out of service 
because they become too uncomfortable, too uneconomical or unserviceable 
because of outdated equipment. Usually, this happens in spite of full struc­
tural integrity. In fact, most structures will be replaced not because they fail 
or deteriorate but because they become obsolete. Unfortunately, very few 
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data are available about this well-known fact (25). Obsolescence is almost 
always completely independent of the structural state. But this is just the 
case dealt with in the foregoing section where one of the failure modes, i.e. 
cause for renewal, is treated as obsolescence. With A denoting all cost for 
demolishment and removal of debris it is: 

( 4.41) 

Table 2 collects the modified Laplace transforms for a few obsolescence 
models given exponential times between failures. 

TABLE 2. Modified Laplace transforms for some obsolescence models given that 
failure is caused by a Poisson process with parameter A. 

/A(t) 

fv(t) 

8(a) 
-Xexp [--Xt] 

I 
/3 exp [-/3t] 

. -Xexp [--Xt] 

-Xexp [--Xt] 

-Xexp [--Xt] 

CXl 

f~jvb) = J exp [--yt] f A(t) exp [--Xt] dt 
0 

CXl -

f~jA(T, p) = J exp [--yt] -Xexp [--Xt] FA(t)dt 
0 

exp [-(!+-\)a] 
~A {1- exp [-( -y +-\)a]) 

A exp(-h+A)f] 
h+A)a 

4.12. Dependent failure modes 

An improvement for dependent failure modes is easiest for the stationary 
case in Eq. (4.16). Here, one replaces the upper bound solution ,\ L~=l Pf,k 
by the discount factor involving either one minus the probability of survival in 
all modes or the upper and/or lower bound for a union of failure events (12), 
i.e. by 
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with PJ,k = P( {U E Vk} = P(gk(U) :::; 0) ~ P(o{U+f3k S 0) and Pj,knj ~ 

P( { a{U + f3k s 0} n { aJU + {3j :::; 0}) requiring either the computation of 

the s-dimensional multinormal integral or the computation of ( s - 1? /2 
bivariate normal integrals. 

Consider next a non-redundant series system under stationary renewal 
rectangular wave loading, i.e. a system where before the jump the process 
must be in the safe domain of all components and in the failure domain of 
at least one of the components after the jump and Vs = {Uk=I9k(u) S 0}. 
The outcrossing rate is [37]: 

vJ(vs) = f.xi [p (LJ {v:t n rl V;j})] 
t=l k=l J=l 

= t A; [p ( u ~t) -p ( u >it n n V;i)] 
t=l k=l k=l J=l 

s n 

:::; LLAiP(~t) ( 4.43) 
k=li=l 

with 

A=ma.x 

p ({v;t} n ta V;j}) 
-LP( {~t} n {~t} n { n \tij })k>l,o 

i<k j=l 

( 4.44) 

and where ~k = {U{ E Vk}, Vik = {Ui E Vk}, ~j = {Ui E ~} and where 
the subscript "k> 1" indicates that this term equals zero for k = 1. The 
computation of the correction term involves s + 1- and s + 2- dimensional 
normal integrals, respectively, if Vk = {gk(u) ~ af u+f3k S 0}. Dropping A 
leads to a less sharp bound and dropping the max-term produces the trivial 
upper bound. The events Vrs and the corresponding failure domains as well 
as the jump rates Ai can be made dependent on t but there is no more any 
guarantee of sufficient accuracy. 

Crossings by stationary Gaussian vector processes into time-invariant 
componential failure domains can also be considered, at least approximately. 
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For linearized limit state surfaces, i.e. for. Vs = {Uk=l9k(u) ~ 0} with 
8Vk = {gk(u) ~ o{ u+f3k = 0} and 9k(O) > 0 for all k = 1, ... , s one 
obtains after some computation (50]: 

with 

vt(Vs) = t { E [ ( -a{(J)+IU = u] 'Pn(u)ds(u) 
k= 1 lavk 

= ~ lav. IJI(mk(u),ak)'Pn(u)ds(u) 

s 

~ L \ll(mk(uk), ak)'P(f3k) [1 - <I>s-1 (bk; Bk)], 
k=1 

bk = {f3r- f3ko:'[ O:ki 1 ~ r:::; s; r i= k}, 

Bk ={a'[ O:t- (o:'[ o:k)(o:[ o:k)i 1 ~ r, t ~ s; r, t i= k}, 

\ll(mk(uk), ak) = E [ ( -o:r(J)+Iu = u] 
_ (mk(uk)) + ( *)<I> (mk(uk)) - O"k'P mk uk ' 

O"k O"k 

(4.45) 

where (y)+ = max{O, y }, <I>o(.; .) = 0, f3r = o:'{: u;, f3k = o:f uk, a~ = o:f (R­

RRT)o:k = o:[Ro:k, mk(uk) = -o:fRu~ = 0, and 2 ~ s ~ n as well as 
uk the s different {3-points. If Vs(t) = {uk=1gk(u,t) ~ 0} with 8Vk(t) = 
{gk(u,t) ~ o:[(t)u+f3k(t) = 0} one replaces mk(uk) by mk(uk)- ak where 
ak = /3k(t) + '2:/j=1 akj. Dropping the term [1 - <I>s-1 (bk; Bk)] in Eq. ( 4.45) 
leads to the trivial upper bound. 

For a combination of jump and differentiable processes we finally have: 

v+(Vs) ::; ~ { ~ A; [ ( P (v;t) - 'f~ { P(v;t n v;j) tJ -A] 
+ IJI ( mk( uk), O"k )<p(,Bk) [1 - <I> s-1 (bk; Bk)] } . ( 4.46) 

It is noted that the result is an upper bound to first order for both differ­
entiable processes and for rectangular wave renewal processes. One can then 
use Eq. (2.12) with Eq. (6.4) in first approximation. 

The case of monotonically decreasing state functions can be solved as 
follows. Assume that there are s time-dependent failure modes and whose 
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state functions are given by 9k(u,t) ~ o{(t)u+f3k(t) so that Vk(t) = P(Tk ~ 
t) = P(gk(U,t) ~ 0) = P(Zk ~ -f3k(t)). The failure probability at time 
ti then is F(t) = P(U~=l {Zk ~ -!3k(t)}) = 1- P(n~=l {Zk ~ f3k(t)}) ~ 
1 - ~s(f3(t); R) where /3(t) = { o{ uk(t); k = 1, 2, ... , s}, llakll = 1, k = 
1, 2, ... , s; uk(t) = min {!lull} for { u :gk(u,t) ~ 0} and R = E [zzT] = 
{Pii} = { af aj; i, j = 1, 2, ... , s}. In good approximation it is assumed 
that the matrix of correlation coefficients R varies little with time so that 
ftak(t) ~ 0 and, hence, ftPij(t) ~ 0 and there is 9k(O,t) > 0 for all k. The 
general case of ft Pii ( t) -=/= 0 is given in the Appendix. The failure density is 

with Ck = /3k(t) - f3k(t)p~; and Rk = R- p~(p~)T where Pk is the k-th 
column vector of R and the superscript means that the k-th row and col­
umn, respectively, are deleted from the original vector and matrix, respec­
tively. This result is obtained from regression analysis. Note that Rk needs 
to be re-normalised and therefore also Ck. The result a,a~(t)~s(f3(t); R) = 

<f?l (!3k(t))~s-I (ck; Rk) is due to [48). Here, s -!-dimensional normal integrals 
have to be evaluated for each t. Suitable computation schemes for ~r(b; B) 
have been given in [19) and elsewhere. Due to the substantial numerical effort 
when computing multi-normal probabilities this scheme can only be applied 
to smaller systems. Dropping the terms ~s- 1 (ck; Rk), i.e. the survival prob­
abilities in the other failure modes, corresponds to the upper bound solution: 
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where 

00 

$ H,kr) = j exp [--yt] 'PI ({:i;(t) )dt. 

0 

The trivial upper bound may be useful but its application is limited to smaller 
systems because Laplace transforms of densities must remain smaller than 
unity. Clearly, a trivial lower bound is formed by the largest member in the 
sum. A better lower bound is found by replacing <I>s-l(ck; Rk) by rr~=l <I>(ck) 
because <I>m(x; R) ~ <I>m(x; K) if for some ij there is {Pij} ~ {~ij} but R ~ 0 
and K ~ 0 [51]. 

For the general case, i.e. ftPij(t) -::J 0, we have: 

!s(t) = :t (1 - <I>s(f:l(t); R(t))) = - t [
8
8

13 
<T>8 ({3(t); R(t)) B{:i~(t) 

k=l k 

+I: ~<T>.({:I(t); R(t)) 
8

Pkj(t)]. (4.48) 
j=l 8pkj at 

The first term in the sum is given in Eq. (4.47), the second sum needs to be 
written out in more detail: 

~<I> s (f3(t); R( t)) 8pkj ( t) = 82 <I>s (/3( t ); R( t)) 8pkj (t) 
8pkj at 8f3k8/3j at 

2 /3;(t) !3k(t) 

= 8{3~8{3j J J <I>s-2(f:i(t); RI zk = f:ik(t), zj = {:ij(t)) 
-oo -oo 

where 
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and ap~{(t) gt (ak(t)T aj(t)) = aaa~t)T aj(t) + ak(t)T 80:§?). The notation 
follows the same rules as explained below Eq. ( 4.4 7). This result is due to 
Ditlevsen in this form [13). The same reference also gives 

aak(t) = -(I+ f3k(t)Gk) 1 a \lu 9k(u, t) 
at ll\lu9k(u, t)ll at 

with 
a \lu 9k(u, t) = { a2

gk(u, t) . . = 1 } 
at aui at ' ~ ' ... ' n 

and 

For almost plane failure surfaces the second order derivatives occurring 
in the last equation are almost zero and we have approximately 

1 a \lu 9k(u, t) 
ll\lu9k(u,t)ii at 

For a combination of cases treated in Eq. (4.47) with those in Eq. (4.46) 
one usually has to resort to the upper bound Eq. (4.47). 

On similar lines one could attempt to consider the case when the failure 
density must be cornputed using Eq. (2.10). We refrain here from presenting 
results because the formulae become very complicated and may, nevertheless, 
have rather limited practical application. 

4.13. Inspection and repair of aging components 

In the literature maintenance cost frequently have been assumed to in­
crease continuously with time. More realistic in the structures area is the 
case where maintenance cost are the sum of inspection and possible repair 
cost. Assume inspections at regular intervals a, 2a, 3a, .... Repairs occur only 
at these points in time (or with some delay, say at a+~' 2a + ~' 3a + ~' ... ) . 
Inspections and repairs occur only if renewals have not occurred before due 
to obsolescence or failure. Assume further that repairs, if undertaken, restore 
the properties of a component to its original (stochastic) state, i.e. repairs 
are equivalent to renewals. Inspection and repair times are assumed negligi­
bly short. Of course, it makes only sense to consider aging components with 
increasing risk function r ( t). 
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Consider first the case with only one failure mode. A renewal occurs either 
after failure or at times a, 2a, 3a, ... . and renewal (repair) times are negligibly 
short. In (1) this is denoted by age replacement. Then, we obviously have (18): 

Z(p,a) = B _ C(p) _ (C(p) + H)fir**(l, p,a) + ft(p) exp [-1a] Fv(p,a) 
1- (fv**(l, p,a) + exp [-1a] Fv(p,a)) 

( 4.49) 
with ft(p) the cost of repair and ft(p) < (C(p) +H). 

If there are regular inspections there is not necessarily a repair because 
inspections are uncertain (or the signs of deterioration are vague). Denote 
the failure model for the aging component by "V" whereas "A" stands for any 
other (independent) failure mode (or obsolescence as another cause for re­
newal). Then, inspection and repair cost must also be included in the damage 
term: 

Z(p,a) = B(p,a)- C(p)- D(p,a). (4.50) 

Including now one failure mode "V'' with subsequent renewal and obso-
lescence "A" 

where 

ND 
D(p,a) = D ( 4.51) 

N D = (C(p) + A)(f~jt(l, a)+ All)+ (C(p) + H)(f~jA(I, p,a) + Al2) 

+ Io((l- PR( a)) exp [-1a] FA(a)Fv(p,a) + A21) 

+ (Io + ft(p))(PR(a) exp [-1a] FA(a)Fv(p,a) + A22), 

D =1- (!~jt(l, a)+ All+ f~jA(I, p,a) + A12 

+PR( a) exp[-la]FA(a)Fv(p,a) + A22), 

oo n-1 

All =LIT (1- PR(ja))f~jt*(l, p, (n- l)a ~ t ~ na), 
n=2j=1 

oo n-1 

Al2 =LIT (1- PR(ja))f~jA*({, p, (n- l)a ~ t ~ na), 
n=2j=1 

oo n-1 

A21 = L(l- PR(na)) IT (1- PR(ja)) exp [-1(na)] FA(na)Fv(p,na), 
n=2 j=1 

oo n-1 

A22 = L PR(na) IT (1- PR(ja)) exp [-1na] FA(na)Fv(p,na). 
n=2 j=1 

http://rcin.org.pl



372 H. STREICHER and R. RACKWITZ 

Here the following notation is introduced: 

Pn(a) = probability of repair after inspection, 

Pn(a) = 1 - Pn(a) = probability of no repair after inspection, 

a = deterministic inspection interval, 

la = cost per inspection, 

h (p) = repair cost, 
a a 

f~j?(!, p,a) = J exp [-rt] fx(t)Fy(t)dt < J exp [-rt] fx(t)dt = incom-
o 0 

plete, modified La place transform of f x ( t), 
na 

f~j?(!, p, (n- l)a ~ t ~ na) = J exp [-rt] fx(t)Fy(t)dt. 
(n-1)a 

Moreover, one has to extend the renewal interval to 2a, 3a, ... if an inspection 
is not followed by repair. The terms All, Al2, A21 and A22 vanish for 
Pn(a) ---+ 1 and are significant only for relatively small a. Note that the 
renewal cost C(p) can also be different in the two cases. 

If the benefit is constant in time we simply have B(p,a) = ~· For non­
constant benefit b(t) it is in analogy with Eq. (4.51): 

where 

a 

NB 
B(p,a) = D 

NB = j Bn(t)f A(t)Pv(p, t)dt + Bll 

0 
a 

( 4.52) 

+ J Bn(t)fv(t,p)PA(t)dt + B12 + Bn(a)PA(a)Pv(p,a) + B2, 
0 

oo na n-1 

Bll = L J BD(t) rr (1- PR(ja))!A(t)Pv(p, t)dt, 
n=2(n-1)a j=1 

oo na n-1 

B12 = L J BD(t) rr (1- PR(ja))fv(t,p)PA(t)dt, 
n=2(n-1)a J=1 

oo n-1 

B2 = L Bb(na) rr (1- Pn(ja))FA(na)Fv(p, na), 
n=2 j=1 
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t 

Bv(t) = j exp [-Jt] b(t)dt, 

0 

t 

B[,(t) = j exp [-Jt] b(t)dt. 

(n-1)a 

The denominator in Eq. (4.52) is the same as in Eq. (4.51). Some extra 
consideration can also include delay times 6. of repairs. 

The repair probability depends on the magnitude of a suitable damage 
indicator. For cumulative damage phenomena Pn (a, p) increases with a. For 
example, Pn(a, p) = P(S(a, X, p) > se) with S(a, X, p) a monotonically 
increasing damage indicator and X a random variable taking into account 
of all uncertainties during inspection. Frequently, the length of inspection 
intervals is taken as an optimization parameter. The case without inspection 
and Pn(a,p) = 1 is already dealt with in the literature [18, 57). Repair after 
inspection is interpreted as preventive renewal (replacement of an aging com­
ponent after a finite time of use a). Renewal after failure is called corrective 
renewal. It must be mentioned that optimal inspection/repair intervals do 
not always exist. Preventive renewals must, in fact, be substantially cheaper 
than corrective renewals. Also, the repair probability must be sufficiently 
high at a. 

4.14. Block replacements 

In some cases an aging component of a system will be replaced whenever 
it fails but at some time all components in a system will be replaced simul­
taneously independent of their history. This replacement strategy is denoted 
by block replacements. Block replacements can have organizational reasons. 
In [1) it is shown that although the number of block replacements will be 
stochastically larger than for age replacements the mean number of failures, 
i.e. renewals with large consequences, per unit time is smaller. 

Assume that the block replacements occur at times a, 2a, 3a. Then, mak­
ing use of the La place transform for deterministic renewals (see Table 1) 

a 
C(p)e--ya + (C(p) +H) 2::~=1 J e--yt fn(t)dt 

D(p,a) = 0 
1 - e--ya 

a 
C(p)e--ya + (C(p) +H) J e-'Yth(t)dt 

0 

(4.53) 

where h(t) = 2::~ 1 fk(t) is the renewal intensity after failures with fk(t) the 
density of the time until the k-th renewal. Obviously, the second term in the 
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numerator takes account of the renewals after failure between the interval 
[0, a]. As mentioned only very few analytical results for h(t) exist. But one 
can derive an upper bound in using 

t 

fk(t) = j fH(t- r)f(r)dr, 

0 

interchanging the order of integration in line 2 and making the substitution 
v = t - T in line 3: 

a t 

j e-"'t j !k-1(t- r)f(r)drdt 

0 0 
a t a a 

= j j e-"'t !k-1(t- r)f(r)drdt = j j e-"'t fk-1 (t- r)f(r)dtdr 

0 0 0 T 

a a-T a a-T 

= j f(r) j e-"'(T+v) !k-1(v)dvdr = j e-"fr f(r) j e-"fv fk-1 (v)dvdr 

0 0 0 0 

= j e-"fr f(r) (J e-"fv fk-1(v)dv- j e-"fv fk-1(v)dv) dT 

0 0 a-T 

a a 

::; j e-"fr f(r)dr J e-"fv fk-1(v)dv. 

0 0 

A pp lying this scheme k- times yields 

For a ---t oo the exact Laplace transform of the k-fold convolution of f(t) 
with itself is obtained. Therefore, 

a 
C(p)e-1a + (C(p) +H) L~l J e-1 t fk(t)dt 

D(p,a)= o 
1- e-la 

< C(p )e-1a + ( C(p) +H) 1 ~~···'~a 
- 1- e-la 

http://rcin.org.pl



where 

OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED. . . 375 

a 

!**("!,a) = J e-~t f(t)dt 

0 

is the incomplete La place transform of f ( t). 
For constant b we have B = ~, as before. On similar lines one can also 

derive the benefit term for non-constant benefit function b( t). Unfortunately, 
it will in turn be only an upper bound so that it is not given herein. 

4.15. Serviceability losses 

For completeness a simple serviceability model is also derived. Loss of 
serviceability, in general, has two effects: (1) repair is necessary at usually 
much lower cost than a repair corresponding to a complete renewal, and (2) 
loss of benefit after the event and during repair. In some cases serviceabil­
ity losses including cost of repair and loss of benefit form a large part of 
the total cost of a project. We make use of simple asymptotic arguments. 
If the occurrence process of serviceability losses also forms a renewal pro­
cess with mean interarrival time ms the additional discounted repair cost 
are Cs = Cs(Ps)/(rms) to be added to C(p) where PS is a parameter con­
trolling the frequency and (mean) duration of downtimes. Also, for constant 
benefit outside the downtimes due to serviceability failure the benefit must 
be reduced by the (asymptotic) availability As(oo) = E[r!l~~}[TN] where Tv 
is the (random) downtime during repair and TN the time of use of the facility 
(see also section 4.9). Therefore, in first approximation as a generalization 
of Eq. (4.8) for Poissonian failures and systematic reconstruction and where 
we have taken into account that during downtimes there cannot be failure 
(if this is appropriate): 

b 1 A(p) 
Z(p) ~ -As(oo)- C(p)- Cs(Ps)-- (C(p) + H)As(oo)-. (4.54) r {ffiS r 

If failure can occur also during down times, e.g., by an external distur­
bance, the term As ( oo) must be deleted from the damage term. However, 
classical reliability theory has developed more sophisticated models for this 
case. 

4.16. A note on interest rates 

In passing it is appropriate to make a few further comments on discount­
ing. In consideration of the time horizon for structural and other technical 
facilities of 20 to more than 100 years the interest rate used should be a long 
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term average net of in/ deflation. In accordance with economic theory benefits 
and (expected) cost should be discounted by the same rate as done above. 
Different parties, e.g., the owner, operator or the public, may, however, use 
different rates. While the owner or operator may take interest rates from the 
financial market the assessment of the interest rate for an optimization in 
the name of the public is difficult. The benefit a society derives from the eco­
nomic activities of its members is approximately the sum of economic growth 
rate per capita ( and demographic growth rate n so that (3::::::: ( + n (see [43) 
for further discussion). The requirement that the objective function must 
be non-negative leads immediately to the conclusion that the interest rate 
must have an upper bound lmax depending on the benefit rate b = (3C(p) 
(see [21]). For the model in Eq. (4.8) with Eq. (4.16) we have 

(3C(p) - C(p)- (C(p)+H) APJ(P) = 0, 
I I 

( 4.55) 

and, therefore, by solving for 1 and given (optimal) p = p* 

(4.56) 

implying 1 < (3 for APJ(P) << (3. It follows that the benefit rate (3 must be 
slightly larger than lmax· From Eq. ( 4.55) one also concludes that there must 
be 1 > 0 because the limit 1 --+ o+ is ±oo or at least undefined. 

5. Constraint functions 

5.1. Normal constraints 

The set of constraints generally consists of three groups: reliability con­
straints, deterministic constraints and simple bounds on design parameters. 
Usually, reliability constraints have a form of inequalities enforcing optimal 
design to satisfy assumed minimal level of reliability. For so called elemental 
formulation of a problem reliability constraints have the form: 

(5.1) 

where each constraint corresponds to the beta index of a single failure mode 
(failure element). The system formulation exists as well and has a very similar 
form: 

s 

f3s = -<P-l(P(U 9i(u, p) ~ 0)) ~ (3min (5.2) 
i=l 
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where "S" denotes the system reliability index and is its minimal admissible 
value. According to a specific model, elemental and system constraints can 
be mixed. Reliability constraints can alternatively be expressed in terms of 
failure probabilities. 

If failure occurs at a random time, the reliability-based optimization prob­
lem is formulated within the framework of time-variant reliability. Then, 
bounds on reliability indices have to be replaced by bounds on failure rates, 
for example 

(5.3) 

with obvious generalization to series systems. It is important to use asymp­
totic failure rates as in Eq. (3.14) implying a exponential distribution of 
failure times. Any other assumption leads inevitably to an inversion of the 
Laplace transform of the renewal intensity which is numerically a notoriously 
difficult problem. 

Additionally, the set of constraints assuring the mathematical and physi­
cal admissibility of the design parameter vector and simple lower and upper 
bounds for the transformed basic variable vector and the design vector should 
be observed: 

ht(P) ~ 0, f = 1, ... ,q, 

Umin ~ Uj ~ Umax, j = 1, ... ,n, (5.4) 

Pmin,k ~ Pk ~ Pmax,k, k = 1, ... , m, 

where ht(P) may contain inequality constraint and equality constraints for 
the design parameters. Simple lower and upper bounds on stochastic variables 
resp. design parameters usually are also introduced. 

5.2. Constraints based on societal criteria for risk acceptance [43) 

Recently, interesting concepts have been proposed for the assessment of 
public risk acceptance [33, 41, 31, 34, 43, 42) . Those considerations are valid 
for the acceptance of involuntary risks to human life and limb from technical 
installations or the natural environment by an anonymous member of society. 
In essence, they set out from a composite social indicator, the societal life 
quality index, also to be interpreted as a utility function which encompasses 
three important indicators of life quality, that is life expectancy, consumption 
(income net of taxes) and the time necessary to raise the total income by 
paid work, i.e. the time not available for leisure. In [43) the following version 
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au 
gq J gq-

LE=- ed(a,, (, p, n)h(a, n)da = -E 
q q 

0 

au 

E= j ed(a,(,p,n)h(a,n)da, 
0 

(5.5) 

(5.6) 

au [ t ] exp((p + (- n)a) 
ed(a, (, p, n) = f(a) ! exp - ftJl(T) + (p + (- n))dr dt, 

h( ) 
= exp [-na] f(a) 

a,n au 

J exp [-na] f(a)da 
0 

(5.7) 

(5.8) 

In these formula g ~ 0.6 GDP is the part of the GDP available for risk 
reduction interventions (approximately the part available for private use), 
q = l~w a risk aversion parameter with w the life working time as a fraction 

au 
of life expectancy at birth e(O) = J f(a)da with survival probability f(a) = 

0 
a 

exp[- J J..L(t)dt] at age a and J..L(t) the age dependent mortality obtainable from 
0 

life tables, ed( a, (, p, n) the "discounted" remaining life expectancy given that 
a person has survived until age a, p the socalled time preference rate, n the 
population growth rate, ( the rate of economic growth and h( a, n) the density 
of the distribution of ages in a (stable) population. Dividing Eq. (5.5) by the 
marginal utility u' (g) = gq-l gives the so-called societal value of a statistical 
life 

SVSL =~E. 
q 

(5.9) 

Using Eq. (5.5) a small relative change in the societal life quality index 
can be assessed as 

dLe dg 1 dE 
-- =- + ---=-, 
Le g q E 

so that the requirement dL E 2: 0 leads to a general acceptance criterion 

(5.10) 
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The change in age-averaged, discounted life expectancy can be expressed 
in terms of a change in (crude) mortality as 

- d -
d~ ~ dXE(x) lx=O x = _ cxe((, p, n) dm. (5.11) 
E E m 

The societal willingness to pay is finally defined as 

C 1 cxE ( (' p, n) G ( ) d y=-dg=g- dm= xE(,p,ndm. 
q m 

(5.12) 

The demographic constant cxE ( (, p, n) depends on the mortality reduc­
tion scheme x of a particular intervention, for example whether the inter­
vention reduces mortality proportional to age-dependent mortality or simply 
as a constant at all ages. In the following only constant mortality changes 
denoted by scheme .6. will be considered. 

Application to technical objects requires that the mortality change is 
expressed in terms of changes in the failure rate. Let dm be proportional 
to the increment in the mean failure rate dh(p), i.e. it is assumed that the 
process of failures and renewals is already in a stationary state that is for 
t ~ oo (see Eq. (3.14)). Rearrangement and introducing the incremental cost 
and the failure rate as a function of a (scalar) parameter p yields 

dCy(p) > -k ctl.e((, p, n) ~ =-kG - (' ) 
dh(p) - m g q tl.E ~' p, n (5.13) 

where 
dm = kdh(p), 0 < k ~ 1, (5.14) 

the proportionality constant k relating the changes in mortality to changes 
in the failure rate. Note that for any reasonable risk reducing intervention 
there is necessarily dh(p)jdp < 0. k (0 ~ k ~ 1) must be determined by 
careful failure consequence analysis. 

The life saving cost (LSC) or implied cost of averting a fatality (ICAF) 
can be obtained from the equality of Eq. (5.10) after replacing E bye= e(O), 
separation and integration from g to g + .6.g and e to e + .6.e, i.e. the cost 
.6.C = -.6.g per year to extend a person's life by .6.e is: 

e.c = -e.g = g [ 1 - ( 1 + ~e)-~] . 
Because .6.C is a yearly cost and the (undiscounted) LSC has to be spent for 
safety related investments into technical projects at the decision point t = 0, 
one should multiply by er = .6.e and 

(5.15) 
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follows. The societal equality principle prohibits to differentiate with respect 
to special ages within a group. The conditional (remaining) life expectancy 
given that the person has survived up to age a is: 

e(a) = j :i:~ dt = £(~) j exp [- j !'(r)dr] dt. 
a a 0 

(5.16) 

Therefore, averaging the remaining life expectancy over the age distribution 
leads to the societal life saving cost (SLSC): 

au 

SLSC = j LSC(e(a))h(a,n)da 

0 

(5.17) 

where h(a, n) is the density of the age distribution of the population with n 
its population growth rate. 

The criterion Eq. (5.13) is derived for safety-related regulations for a 
larger group in a society or the entire society. For a specific project it makes 
sense to apply criterion (5.13) to the specific group exposed. Therefore, the 
"life saving cost" of a technical project with N PE potential endangered per­
sons is: 

HF = SLSC kNPE· (5.18) 

The monetary losses in case of failure are decomposed into H = H M + H F in 
formulations of the type Eq. ( 4.8) with H M all losses not related to human 
life and limb. 

Criterion (5.13) changes accordingly into: 

dCy(p) 
dh(p) 2: -G~e((,p,n)kNPE· (5.19) 

All quantities in Eq. (5.19) are related to one year. For a particular tech­
nical project all design and construction cost, denoted by dC(p), must be 

· raised at the decision point t = 0. The yearly cost must be replaced by the 
erection cost dC(p) at t = 0 on the left hand side of Eq. (5.19) and discount­
ing is necessary. The method of discounting is the same as for discharging 
an annuity. If the public is involved dCy (p) may be interpreted as cost of 
societal financing of dC (p) such that dCy (p) =dC (p) 'Y expt "(t., 

1 
. The (real) exp 'Y ,, -

interest rate to be used must then be a societal interest rate. Otherwise the 
interest rate is the market rate. g in G ~E ( (, p, n) also grows in the long run 
approximately exponentially with rate (, the rate of economic growth in a 
country (see [32) for an empirical verification). It can be taken into account 
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by discounting. The acceptability criterion for individual technical projects 
then is (discount factor for discounted erection cost moved to the right hand 
side): 

dC(p) exp [rt 8 ]- 1 G _ (( ) ( exp [(ts] kN -- >- ~E p n PE 
dh(p) - 1exp [rts] ' ' exp [(ts]- 1 

( 
-+t.~-oo -G ~E( (, p, n )kN p E :y 

(5.20) 

where t 8 is service time. For ( -+ 0 as well as 1 -+ 0 we have the interesting 
limiting result for arbitrary t8 : 

dC(p) 
dh(p) ~-+(-o,1-o -Ge((,p,n)kNPE· (5.21) 

Here, a slight inconsistency is encountered because there is double dis­
counting with respect to g and G ~.E( (, p, n) by (. Alternatively, discounting 
can be performed with the same rate in Eq. (5.20) so that the effect of dis­
counting cancels. Generalizing now to a vectorial parameter p we have 

VpC(p) + G~e((,p,n)kNpEfVph(p) ~ 0 
1 

(5.22) 

which is easily seen to be equivalent to the solution of the following opti­
mization task: 

Minimize: Z'(p) = C(p) + G~e((, p, n)kNpEfh(p). 
1 

(5.23) 

Equation (5.22) is seen to be the optimality condition VpZ'(p) = 0 of the 
(unconstrained) optimization problem Eq. (5.23). Eq. (5.23) allows solving for 
vectorial parameter p. A solution to Eq. (5.22) or (5.23) can always be found 
because V pC(p) usually grows approximately linearly in p whereas V ph(p) 
decays exponentially. 

Some numerical values for the various economic and demographic quan­
tities entering Eq. (5.22) or Eq. (5.23) are given in Table 3 [43). According 
to (43] the discount rate is computed from 

1 = p+ €( > 0, (5.24) 

and the rate of time preference p is bounded to the below by 

p~n+((1-E). (5.25) 

Here E > 0 is the elasticity of marginal consumption (income) and is deter­
mined to be E = 1 - q. It should be observed that a complex interaction 
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TABLE 3. Social indicators for some countries. 

Country 

USA 11 34260, 22030 1.8 0.87 o.9o 1 11 0.22 1.3 2.3 8.7· 105 4.8· 106 2.1· 106 

Germany 25010, 14460 1.9 1.04 0.27 78 0.17 0.6 1.9 5.7· 105 3.7· 106 2.1· 106 

Poland 9030, 5630 1.6 1.00 -0.03 73 0.19 0.2 1.3 1.9· 105 1.4· 106 7.2· 105 

Switzerland 29000, 17700 1.9 0.88 0.27 79 0.17 0.6 1.8 7.0· 105 5.3· 106 2.5· 106 

UK 23500, 15140 1.3 1.07 0.23 78 0.19 0.5 1.3 5.7· 105 3.4· 106 2.3· 106 

Japan 11 26460, 15960 1 2.1 1 o.83 1 o.11 1 8o 1 o.2o 1 o.7 1 2.3 1 6.0· 105 

Australia 11 25370, 15750 1 1.2 1 o.12 1 o.99 1 78 1 o.21 1 1.2 1 1.9 1 6.9· 105 

I) in PPPUS$, 2
) private consumption in PPPUS$ according to (56], J) average yearly economic growth in% for 1870-1992, 

after (32], 4> crude mortality (2000) in % (6], 5
) population growth (2000) in % [6], 6

) estimates based on [15J including 
1 hour travel time per working day and a life working time of 45 years, 7

) SLSC computed with g and age-averaged life 
expectancies, B) computed from recent period life tables, ~ indicates constant additive mortality changes. 
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between economic, work-leisure time aspects and demographic factors deter­
mines the given values of SLSC, Gb.E and SVSL. It may also be mentioned 
that mortality reduction scheme corresponding to G b.E is most appropriate 
for technical facilities or natural hazards. 

It should be clear that criteria like Eq. (5.22) are gradient constraints 
which, depending on the solution algorithm, impose rather strong differen­
tiability requirements on C (p) and h(p). 

6. Numerical techniques 

6.1. Principles of a one-level approach 

Let p be a parameter vector which enters in both the cost function and the 
limit state function g( u, p) = 0. Benefit, construction and damage function as 
well as the limit state function(s) are differentiable in p and u. The conditions 
for the application of FORM/SORM hold. In the so-called ,B-point u* the 
optimality conditions (Kuhn-Thcker conditions) are (26]: 

u 

llull 

g(u, p) = 0, 

= 
Y'ug(u,p) 

IIY'ug(u,p)ll" 

(6.1) 

The geometrical meaning of ( 6.1) is that the gradient of g( u, p) = 0 is 
perpendicular to the vector of direction cosines of u*. The basic idea men­
tioned first in (17] and elaborated in (26] now is to use these conditions as 
constraints in the cost optimization problem thus avoiding a hi-level opti­
mization. It will turn out that this concept is crucial for further numerical 
analysis as described below. 

It is important to reduce the set of the gradient conditions in the Kuhn­
Thcker conditions by one. Otherwise the system of Kuhn-Thcker conditions 
is overdetermined. It is also important that the remaining Kuhn-Thcker con­
ditions are retained under all circumstances, for example, if one or more gra­
dient Kuhn-Thcker conditions become eo-linear with one or more of the other 
constraints possibly included in the cost-benefit optimization task. Otherwise 
the so-called ,B-point conditions are not fulfilled. 

6.2. Formulations for time-variant problems 

In the simplest stationary, one-component case we have: 

Z(p) = B- C(p)- (C(p) +H). v+(p) 

' 
(6.2) 
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subject to: 

g(u, p) = 0, 

uiiiY'ug(u,p)ll + Y'ug(u,p)illull = 0, i = 1, ... ,n- 1, 

hk(P) ~ 0, k = 1, ... , q, 

v+(p) ~v~missible 

or Y'pC(p) + Gxe((,p,n)kNpE5_\7pv+(p) ~ 0, 
I 

depending on whether a reliability constraint is imposed exogeneously or 
criterion (5.22) is used. 

If there are multiple failure modes one replaces v+~p) by I::=I;+(p), for 
example. In this case generalizing ideas in [28] (see also [55]) 

subject to: 

Z(p) = B- C(p)- (C(p) +H)· L%=1 vt(P) (6.3) 
I 

9k(uk, p) = 0, k = 1, ... , s, 

Ui,kiiY'u9k(uk,P)II + Y'u9k(uk,P)illukll = 0, 
i = 1, ... , nk - 1, k = 1, . . . , s, 

ht(P)~O, f=1, ... ,q, 

8 

L v; (p) ~v~missible' k = 1, . . . , s, 
k=l 

( 8 

or Y'pC(p) + Gxe((, p, n)kNpE-\i'p L v;(p) ~ 0, 
I k=l 

where the Kuhn-Thcker conditions have to be fulfilled separately for each 
failure mode. Note that there are s distinct independent vectors uk. 

If the problem is non-stationary it is sufficient to determine the asymp­
totic renewal intensity or the mean value of time between renewals in many 
cases (see Eq. (3.14)). Several but not always successful methods have been 
studied in [44). However, for (locally) non-stationary problems, especially 
aging problems and for problems with non-Poissonian failures, a rather gen­
eral, numerical solution can be proposed. More precisely, the Laplace trans­
form is taken numerically and each value of the failure density is computed 

http://rcin.org.pl



OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED. . . 385 

by FORM/SORM. A first model makes use of the asymptotic result in 
Eq. (3.14), i.e. requires the computation of the mean failure time. A bet­
ter failure model certainly is a model where mean and standard deviation 
of the failure times are determined. As mentioned this is also an asymptotic 
approximation for arbitrary failure models being identical to the Gaussian 
model. Both models may be used as approximations. The first two moments 
of an arbitrary failure model then need to be computed from Eq. (2.3) . The 
integrals are represented as sums of equi-distant values of the integrand: 

m 

Jk(P) = ~ L Wjik(tj, p) 
j=O 

(6.4) 

where Wj are the weights (for example according to Simpson or Newton) and 
i(tj) are the values of the integrands, that is <P(,B(tj,p)) and t/I>(,B(tj,p)) 
according to Eq. ( 2.3), respectively, for k = 1 and k = 2 (SORM-factor ne­
glected). The integrand function exp [-1t] fr(t, p) is bell-shaped. Any suit­
able integration schemes can be used alternatively. Then, with f* ( 1, p) = 
exp [~r (ra(p)2 - 2m(p))] and m(p) = E[T(p)] = ~~J=Owii1(tj,p) as 
well as a(p)2 = ~ ~J=O Wji2(tj, p) - m(p)2 the Kuhn-Thcker-conditions 
must be fulfilled at each tj and one can write similar to the procedure for 
series systems 

Z(p) ~ B- C(p)- (C(p) +H) . exp [~r (ra(p)2- 2m(p))] (6.5) 
1- exp [~r (1a(p)2 - 2m(p))] 

subject to: 

g(uj, p,tj) = 0 for j = 0, 1, .. . , m, 

Ui,jiiVug(uj,p,tj)ll + Vug(uj,p,tj)illuill = 0, 
i = 1, .. . , n- 1, j = 0, ... , m, 

hk(P)::; 0, k = 1, ... ,q, 

1 
m(p) ::; hadmissible 

( 1 
or VpC(p) + GxE((,p,n)kNpE-Vp(-( -)) 2::0, 

I m p 

where ,B(tj,p) = llujll . The vectors Uj, j = 0,1, ... ,m, are mutually inde­
pendent. Therefore, the size of the optimization problem grows as n x m. 
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The same scheme, however, applies to the full La place transform of non­
stationary problems. 

Z(p) ""B- C(p)- (C(p) +H) · f*?t) ) , (6.6) 
1- * ,, p 

subject to: 

where 

g(uj,p,tj)=O for j=0,1, ... ,m, 

Ui,jiiY'ug(uj,p,tj)ll + Y'ug(uj,p,tj)illuill = 0, 

i = 1, . . . ,n- 1, j = 0, ... ,m, 

ht(P) ::; 0, f = 1, . . . , q, 

1 
m(p) ::; hadmissible 

m 

!*(!, p) ~ ~ L Wj exp [-!tj] fr(ti, p). 
j=O 

For the case in Eq. (2.2) it is 

with d{3(tJ,P) = f,g(ui,ti,P) [23] and in the case (2.11): 
dt UVug(uj,tj,p)ll 

m 

!*(!, p) ~ ~ L Wj exp [-!tj] 
j=O 

(6.7) 

(6.8) 

( ( ~ <p({3(tj,p)))) · Pt(0)6(0) + 
6

.xi<P2({3(tj,p),-{3(tj,p);pi(tj,p)) +wo ..j'h . 

(6.9) 
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if!*(!, p, R) << 1. A similar computation scheme can, of course, be used if 
obsolescence and/or inspections and repairs are included. 

Finally, the case of multiple failure mode system is given for arbitrary 
failure models: 

subject to: 

9k(uj,k,p,tj)=O for k=1, ... ,s, j=0,1, ... ,m, 

Ui,j,kiiY'u9k(Uj,k,p,tj)ll + Y'u9k(Uj,k,p,tj)illuj,kll = 0, 
i = 1, ... , nk - 1, j = 0, ... , m, k = 1, ... , s, 

ht(P)::;o, f=1, ... ,q, 

s 1 
L -( -) :=:; hadmissible 
k=l m P 

( s 1 
or Y'pC(p) + Gxe((,p,n)kNp£-Y'p 2:(-(-)) 2:0, 

I k=l mk p 

where, for example, for the case in Eq. (4.47) 

00 00 s s 

J;*( "!) = j exp [-"tt] f,(t)dt = j exp [-"(t] L h,k(t)dt = L fi,k(t) 
0 0 k=l k=l 

(6.10) 

~ ~ A A ( -ftgk(uj, tj) ) 
~ L..,L..,Wjexp[-!tj]<pl(,Bk(tj))<I>s-l(ck;Rk) IIV ( ~ ·)ll . 

k=l j=O u9k UJ' tJ 

( 6.11) 
The problem now can be rather large, i.e. there are s x m independent 

random vectors of length nk. Clearly, the most difficult part in such calcula­
tions is the assessment of tm and m. However, the exponent term in Eq. (6.7) 
usually lets the integrand decay sufficiently fast. If reliability restrictions are 
imposed it is necessary in all practical cases to use Eq. (3.14) because the 
inversion of the Laplace transform of the renewal density is numerically ex­
tremely difficult. It is further noted that the scheme proposed above can also 
be used when the benefit is non-constant as in Eq. ( 4.33) or the damage term 
is non-constant as in Eq. (4.35). 
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6.3. Solution algorithm 
In order to solve the optimization problem a suitable optimization al­

gorithm is required. Based on sequential quadratic programming methods 
a new optimization algorithm JOINT5 has been developed from an earlier 
algorithm proposed by Enevoldsen/Sorensen (14). This turned out necessary 
because the tasks in (6.2), (6.3), (6.5), (6.6) and (6.10) require special precau­
tions which are not necessarily available in most of the off-shelf algorithms. 
For example, the algorithm includes a reliable and robust slow down strategy 
to improve stability of the algorithm instead of an exact (or approximate) 
line search which too often is the reason for non-convergence (35). A spe­
cial 'extended' equation system is solved in case of failure in the quadratic 
subalgorithm, e.g., due to linear dependence of the linearized constraints. 
In addition, the algorithm contains a careful active set strategy (for further 
details see (53]). 

Gradient-based methods need first derivatives of the objective and all 
active constraints. In case of cost optimization under reliability constraints 
first order Kuhn-Tucker optimality conditions for a design point are restric­
tions to the optimization problem. These equations are given in terms of the 
first derivatives of the limit state function. The gradients of these conditions 
involve second derivatives. Thus, the solution of the quadratic subproblem 
needs second derivatives, i.e. the complete Hessian of g( u, p). The determina­
tion of the Hessian in each iteration step is laborious and can be numerically 
inexact. In order to avoid this, an approximation by iteration is proposed. 
The Hessian is first preset with zeros. Note that linear limit state functions 
always have a zero Hessian matrix. This implies loss of efficiency, but the 
overall numerical effort needs not to rise, because calculation of the Hessian 
is no more necessary. In order to improve the results in case of nonlinear limit 
state functions, it is possible to evaluate the Hessian after the first optimiza­
tion run and restart the algorithm. The solution is the new starting point 
and the Hessian matrix is fixed for the whole run. This iterative improvement 
with subsequent restarts continues until the results differ only with respect 
to a given precision which is usually after very few steps. The results can 
be simultaneously improved by including second-order corrections during re­
iteration (see (30]) . Any other more exact improvement can be taken into 
account in a similar manner. 

All in all, the techniques proposed enable the solution of quite general 
problems. They are still based on a one-level optimization but rather strong 
requirements on differentiability of the objective, limit state functions and 
other restrictions must be made. Also, a possibly substantial increase of the 
problem dimension must be expected in extreme cases and, hence, much 
computing time will be necessary. 
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It must be mentioned that there are alternative solution algorithms such 
as a hi-level optimization (52] or algorithms based on semi-infinite program­
ming (11]. Also, very little is known how to solve problems if objectives and 
constraints do not fulfill certain differentiability requirements. 

7. Illustrating examples 

7.1. Example 1: Random capacity and random shock load (43] 

As a first example from the structures area we take a rather simple case 
of a single-mode system where failure is defined if a random resistance or 
capacity is exceeded by a random demand. The demand is modelled as a 
one-dimensional, stationary marked Poissonian renewal process of distur­
bances (earthquakes, wind storms, explosions, etc.) with stationary renewal 
rate A and random, independent sizes of the disturbances Si, i = 1, 2, .... 
The resistance is log-normally distributed with mean p and a coefficient of 
variation VR. The disturbances are independently log-normally distributed 
with mean equal to unity and coefficient of variation Vs so that p can be 
interpreted as central safety factor. A disturbance causes failure with prob­
ability: 

( 
{ l+V2} ) ln p l+V~ 

PJ(P) = <I> - • 
Jln ((1 + V~)(1 +V§)) 

(7.1) 

An appropriate objective function then is with b = b(p): 

Z(p) = _b _ _ ( 1 + C1pa) _ (1 + C1pa+ HM +Hp) APJ(P). (7.2) 
Cor Go Go Go Go r 

The criterion (5.20) has the form: 

Some more or less realistic, typical parameter assumptions are: Go = 106 , 

cl = 104
' a = 1.25, HM = 3. Go, VR = 0.2, Vs = 0.3, and A = 1 [1/year]. 

The LQ/-data is e = 77, GDP = 25000, g = 15000, m= 0.01, cLE = 0.25 
or ~E = 0.75, w = 0.15, Np£ = 100, k = 0.1 so that Hp= SLSG kNp£ = 
8.4 · 106 , G 1e(P, n)kNp£ = 2.1 · 107 and G 2e(P, n)kNpE = 6.2 · 107

. The 
value of N p E is chosen relatively large for demonstration purposes. Monetary 
values are in US$. Optimization is performed for the public and for the owner 
separately. 
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For the public bs = f3Co with {3 = 0.02 from Table 3 and IS = 0.0185 
determined from Eq. ( 4.56) are chosen. Also, we take ;fs = 1 for simplicity. 
In particular, benefit and discount rate are chosen such that the public does 
not make direct profit from an economic activity of its members. Optimiza­
tion including the cost Hp gives Ps = 4.35, the corresponding failure rate is 
1.2 · 10-5 . Criterion (5.20) is already fulfilled for Pl = 3.34 and Pu = 3.68, 
respectively, corresponding to yearly failure rates of 2.5 · 10-4 and 9.1 · 10-5 , 

respectively, but Zs(PL)/Co and Zs(Pu)/Co being already negative. It is no­
table that although the two demographic constants CrrE differ by a factor of 
three the acceptability limits are close together. It is also interesting to see 
that in this case the public can do better in adopting the optimal solution 
rather than just realizing the facility at its acceptability limit. 

The owner uses some typical values of bo = 0.07Co and /0 = 0.05 and 
does or does not include societallife saving cost. If he includes life saving cost 
the objective function is shifted to the right (dotted line). The calculations 
yield p0 = 3. 76 and p0 = 4.03, respectively, and the corresponding failure 
rates are 7.1 · 10-5 and 3.2 · 10-5 . The SLQI-based acceptability criterion 
limits the owner's region for reasonable designs. Inclusion of life saving cost 
has relatively little influence on the position of the optimum. 

2 

1.5 ~~4 
i ! 
'I 

~ ; 
Objective function 
of owner 

i I 
0.5 

0. 
0 N' 

Objective function 
-o.5 of society 

-] 

-I.5 

-2 
0 2 3 4 5 6 7 8 9 10 

p 

FIGURE 3. Objective function for society and owner (with and without life saving 
cost). 

It is noted that the stochastic model and the variability of capacity and 
demand also play an important role for the magnitude and location of the 

http://rcin.org.pl



OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED. . . 391 

optimum as well as the acceptability limit. The specific marginal cost (rate 
of change) of a safety measure and its effect on a reduction of the failure rate 
are equally important. 

This example also allows to derive risk-consequence curves by varying the 
number of fatalities in an event. With the same data as before but SLSC 
= 7 ·105 and Gxe(P, n) = 4·106 for N F = 1 we first vary the cost effectiveness 
of the safety measure (see Fig. 4). Here, only the ratio C1/Co is changed. The 
upper bounds (solid lines) are derived from Eq. (5.13) and the lower bounds 
(dashed lines) corresponds to the societal optimum according to Eq. ( 4.8) 
(bs = 0.02C0 , 'Ys = 0.0185) . 

..c: 

NF 

FIGURE 4. Acceptable failure rate over number of fatalities for different Cl/Go. 
Dashed lines correspond to optimal solution for the public. 
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Most realistic is probably a ratio of C1/Co = 0.001. The failure rate 
of approximately 10-4 per year corresponds well with the controllable crude 
mortality of the same magnitude as mentioned earlier. In Fig. 5 the mortality 
reduction regimes are varied indicating that this is of only moderate influence. 
In this figure the region between the upper bound(s) and the lower curve 
derived from the societal optimum may be interpreted as ALARP-region 
(ALA RP = As Low As Reasonably Practicable). 

10 

NF 

lOO 

CAf = 0.25 

CAf = 0.50 
CAE = 0.75 

FIGURE 5. Acceptable risk for different mortality regimes. 

Note that in these figures the failure rate is given by A.PJ and the number 
of fatalities is given by NF = kNPE· Therefore, these figures cover the full 
range of A. and Pf and k and NpE, respectively. However, it is to be empha-
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sized that in both figures the precise location and slope of the acceptability 
curve depend on the specific physical and stochastic model. 

7.2. Example 2: Earthquake resistant design 

A technically more involved example tries to establish a basis for the 
codification of design values for earthquake resistant design. It introduces 
so-called risk integrals. We follow closely the considerations in [47] but use 
slightly different data. In a seismic region Poissonian earthquakes occur with 
rate A = 2.9 [1/year). Magnitudes between mu = 4.0 and m 0 = 7.5 are 
considered. A truncated Weibull distribution (for maxima) has been found 
to model the data adequately 

with w = 4.35 and k = 8.11. These data are characteristic for an area with 
medium to high seismicity. With the attenuation law: 

where b1 = 0.0955g, b2 = 0.573, b3 = 0.00587, one determines the density of 
peak ground acceleration as 

k(mo-h- 1(a,rJt-l ex [- ((mo-h- 1(a,r)))k] dh- 1(a,r) 
(mo-w) p mo-W da 

!A(a,r)= [ k] 
1 - exp - ( ~:-:u) 

(7.6) 

with mu ~ h -l (a, r) = -l; ln( ~) ~ m 0 • Possible epicentra are uniformly 
distributed around the site in a radius of Tmax = 200 km. Hence, the density 
of peak ground acceleration is: 

/A(a) = rjm••/A(a,r) ;r dr. 
rmax 

(7.7) 

0 

Peak ground acceleration then varies with a coefficient of variation of 
VA = 1.55. The maximum responses given peak ground acceleration vary 
log-normally with coefficient of variation of Vs = 0.60. A simplified limit 
state function then is 

g(X) = R- KSAE ~ 0 (7.8) 
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for shear resistance versus shear demand. Herein, R is a log-normal resistance 
with VR ~ 0.2, K contains all system-specific properties and is, without loss 
of generality, assumed to equal untity, S is the log-normal variability in the 
(elastic) spectral enhancement factor with mean ms = 1 and A is peak 
ground acceleration. The systematic frequency-dependent part of S must be 
taken into account inK. E is the log-normal error in relation (7.5) with mean 
1 and coefficient of variation VE ~ 0.6. The conditional failure probability 
(fragility curve) is 

( 

In { K·ms"a·ms (J+~~~rt>} ) 
PJ(P I a)= 4> ----;:================= 

Jln ((1 + VJ)(1 + V§)(1 +Vi)) 
(7.9) 

with p = mR the design parameter because msmE = 1.0. The objective 
function (without benefit term) for systematic reconstruction is 

Z(p) = C(p)f(NPE) +EA [ ( CR(p,a)(l- Pt(P I a))f(NPE)~) 
A.PJ(P I a) l + ((C(p) +Ho+ HM(a))f(NPE) + HF(a)) I · (7.10) 

The acceptability criterion Eq. (5 .19) to be used as a constraint for 
Eq. (7.10) correspondingly reads: 

(7.11) 

The following widely verified relationship between peak ground accelera­
tion and MSK-intensity log( a) = 0.31MSK- 2.5 is assumed. We distinguish 
between normal damage to the building during an earthquake and building 
collapse. Construction, retrofitting, loss of business and physical damage cost 
are slightly underproportional to the occupation rate of a unit in a residential 
building so that we choose f(NPE) = (NPE/3) 0·8 . C(p) =(Go+ C1p6)is the 
construction cost, CR(P, a) = C(p)(1-exp( -0.25a)) is the cost of retrofitting 
taking account of the fact that retrofitting cost approach the cost of complete 
reconstruction for larger a, HM(a) = HMa0.4 is the physical damage cost. 
The physical damage term includes infrastructure losses for large accelera­
tions. Indirect cost such as loss of business is approximated by Ho = €Go. 
The estimation of human losses is difficult . They also depend on a as people 
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are increasingly trapped at collapse. Immediate death then has probability 
0.3 to 0.5 or more but some 10 to 20% die later in hospitals. This leads to 
Hp( a) = SLSC ~(1- exp( -0.25a))NPE for the compensation cost for loss 
of human life. Note that the factor ~(1- exp( -0.25a)) replaces the constant 
kin Eq. (5.19). The constant 0.25 in these relationships appears to vary with 
building type and material. The concavity of the function with respect to a 
implies convexity with respect to MS K in agreement with estimates in the 
literature. It is certainly only a rough approximation. Furthermore, we have 
Go= 106

' cl = 3. 104
' 6 = 1.1, H!v/ = 5. 105

' '= 0.02, ~ = 1, N PE = 3. It 
is beyond the scope of this paper to discuss all these special choices in detail 
but they are essentially in line with the findings in [7] and other sources in 
the literature. The damage term in Eq. (7.10) is conditional on a. The ex­
pectation operation removes the condition. The damage term is also called 
risk integral. Table 4 collects typical data for three different socio-economic 
levels. 

TABLE 4. 

Socio-economic level 11 High Medium I Low 

GDP 23500 6500 1500 

w 0.145 0.17 0.20 

e 77 65 55 

ell. 35 50 65 

f 3.62 1.0 0.23 

An additional FORM/SORM-analysis can then determine the design val­
ues a* corresponding top* and some other results of interest in the following 
results table (Table 5). 

TABLE 5. 

Socio-economic level 11 High Medium I Low 

p* 4.80 4.00 3.54 

h(p*) = >..PJ(p*) (FORM) 3.7·10-4 6.3·10-4 8.8·10-4 

Return period h(~·) 2700 1600 1100 

a• 1.03 0.97 0.84 

a•s•c:• 3.11 2.76 2.43 

C(p*)/Co 1.17 1.14 1.12 

The design values of the accelerations a* have a return period of about 
120 years. Roughly the same design accelerations for all socio-economic lev­
els indicate that the quantity EA[APJ(P I a)] decays very slowly with a. The 
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values of a* s*e* < p* are also given. Surprisingly, the acceptance criterion 
Eq. (7.11) is not active and produces values Plim of 1.5, 1.0 and 0.5, respec­
tively. These values imply an order of magnitude larger failure rates than 
the optimal solution. This example is somewhat extreme because the load­
ing side varies very much. Large changes in the values of p* result in rather 
small changes in the failure rates. This explains why the differences between 
the different socio-economic climates are relatively small. Also, in contrary 
to the previous example, both construction cost and damage cost have been 
referred to a residential unit and are roughly proportional to N F. Therefore, 
the effect of varying N F is insignificant and the failure rates in the second 
line of the results table are the individual risks due to earthquakes in that 
region. 

7.3. Example 3: Rigid plastic two-bay frame [53] 

In this simple example a double-bay frame as shown in Fig. 6 using rigid­
plastic theory with random horizontal and vertical loading and random plas­
tic moments at nodes 1 to 10 will be optimized under reliability constraints. 

The structure can fail in eight different failure modes as shown in Fig. 7. 
The first three failure events are elementary mechanisms, the others combined 
mechanisms. 

A limit state function for each failure mode is available using the energy 
theorem: 

h 
G1(x,p) = X2 + 2X3 + X4- X12 · 2, 

h 
G2(x,p) = X6 + 2X7 + Xs- X13 · 2' 

G3(x,p) = X1 + X2 + Xs + Xs + Xg + X10- Xn · h, 

h h 
G4(x,p) = X2 + 2X3 + X4 + X6 + 2X7 + Xs- X12 · 2- X13 · 2' 

Gs(x, p) = X1 + X2 + Xs + X6 + 2X7 + 2Xs + Xg 
h 

+ X 10 - X n · h - X 13 · 2, 

h 
G6(x, p) = X1 + X2 + X4 + 2X7 + 2Xs + Xg + X10- Xn · h- X13 · 2' 

h 
G1(x,p) = X1 + 2X3 + X4 + Xs + Xs + Xg + X10- Xn · h- X12 · 2' 

Gs(x,p) = X1 + 2X3 + 2X4 + 2X7 + 2Xs + Xg 
h h 

+ X 10 - X 11 · h - X 12 · 2 - X 13 · 2, 
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FIGURE 6. Loads and system geometry of the frame. 

FIGURE 7. Failure modes of the frame. 
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where Xi, i = 1, ... , 10 are the plastic moments of the frame at node i. 
X11 , X12 and X 13 are stochastic loads at node 2, 3 and 7. The stochastic 
properties of the random variables Xi are given in the following table. The 
random plastic moments at node Xi, i = 1, ... , 10 are assumed to be in­
dependently and lognormally distributed, the stochastic loads X 11, X 12 and 
X13 are normally distributed (see Table 6). 

TABLE 6. 

Stochastic variable [UnitJ M ean/St. deviat. 

Plastic moment at node 1, 2, 5, 8, 9, 10 Xi [kNmJ P1/0.l·p1 

Plastic moment at node 3, 4, 6, 7 Xi [kNmJ P2/0.1 · P2 

Load at node 2 X11 [kNJ 2/0.6 

Load at node 3 x12 [kNJ 4/1.2 

Load at node 7 X13 [kNJ 6/1.8 

The assumption of log-normal resistance variables makes the reliability 
problem slightly non-linear in the standard space. The loads at node 3 and 7 
are modeled as stationary rectangular wave renewal processes with jump rates 
A12 = A13 = 0.5 [1/year]. The load at node 2 is modeled as stationary differ­
entiable Gaussian process with autocorrelation function Pij(T) = exp( -T2). 

It follows that formula ( 4.46) applies for nJ = 2 and nD = 1. The de­
sign parameters PI and P2 are the mean values of the appropriate stochastic 
variables. The bounds for PI and P2 are as follows: PI E [5.0; 80.0] kNm, 
P2 E [5.0; 80.0] kNm. The objective function, which will be minimized in the 
optimization program, is defined as construction cost depending on the mean 
values of the plastic moments at nodes 1, ... , 10 as C(p) = p1 + 2.0 · P2· The 
failure cost are H = 900 and the interest rate is 1 = 0.02. The optimization 
problem contains of 106 optimization variables. The objective function to be 
minimized then is: 

(7.12) 

with R = (Xb ... , X2) collecting the random vector of resistances. Note 
that first line in Eq. (7.12) is exact but the Poissonian nature of outcrossings 
is lost if the different modes had also different damage cost. In this case, 
however, the damage cost are assumed to be equal for each failure mode 
and, therefore, the second line of Eq. (7.12) is also exact. The optimal cost 
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parameter for time- variant cost optimization under reliability constraints of 
this series system with h = 20 m and a time interval of one year are 

Pi= 16.95, P2 = 38.45, 

and the optimal cost are Ctot(P) = 93.85 [CU]. The time-variant failure prob­
ability in each mode is computed as: (Pj,l (p*), Pj,2(p*), Pj,3(P*), Pj,4(p*), 
PJ,5(p*), PJ,6 (p*), PJ,7(p*), PJ,8(p*)) = (9.76 ·10- 11 , 2.21·10-4, 2.53 ·10-6 , 

2.37 ·10-11 , 4.13·10-8 , 1.82·10-6 , 9.66·10-10 , 1.38·10-9 ). The system failure 
probability is 2.25 · 10-4 with corresponding equivalent reliability index 3.51. 

7 .4. Example 4: Optimal replacement of a reinforced concrete 
structure subject to chloride corrosion in warm sea water (55] 

Following [44] a simplified failure criterion for chloride corrosion in the 
splash zone in warm sea water is: 

Ccr- C,(l- erf CJ-m)l $0, 

where Ccr =critical chloride content, Cs =surface chloride content, c =con­
crete cover and D = diffusion parameter. The stochastic model is presented 
in Table 7. 

TABLE 7. 

Variable Distr. function Parameters 

Ccr Uniform 0.125, 0.175 

c., Uniform 0.2, 0.4 

c Log-normal mc,l 

D Uniform 0.1, 0.315 

The uniform distributions reflect the large uncertainty in the variables. 
The units are chosen such that t is in years. Inspection are performed at 
regular intervals a. They are followed by renewals (repairs) with probability 
PR(a) = 1 - exp [ -aRa2 ]. The optimization variables are the mean con- . 
crete cover me and the length a of the inspection interval. Erection cost 
are C(mc) = Go+ C1m~, inspection cost are Io = O.lCo, repair cost are 
It = 0.5Co and we have Co = 106

, C1 = 104
, H = lOCo, b = 015Co, 'Y = 0.03 

and aR = 0.01. the solution is a* = 66 and m~ = 6.5. It turns out that 
preventive repairs should be performed every 66 years which saves up to 30% 
of the cost. These results comply well with practical experience with such 
structures. The contributions to the total damage cost are shown in Fig. 8. 

http://rcin.org.pl



400 H. STREICHER and R. RACKWITZ 
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FIGURE 8. Total cost for regular inspections and renewals. 

180 200 

Relatively small variations in the repair model or in the cost factors will, 
however, result in cases where it is better not to inspect and repair but just 
wait for failure. It is noted that for the given failure model no mean time to 
failure exists. 

7.5. Example 5: Series system of corroding expansion joints 

A long multi-span bridge has s expansion joints which are exposed to 
corrosion due to heavy winter salting. For illustration purposes the state 
function is taken as g(X) = R(1- C.fi)- (81 + 82) where R"' LN(mn, 2), 
C "' U N(0.085, 0.115), 81 "' N(1, 0.3) and 82 "' GU(O, 0.2). If any of the 
expansion joints fails the bridge must be closed off. We investigate the quality 
of various computation schemes for series systems. The optimization variable 
is taken as the mean of resistance mn and it is assumed that there are s = 10 
joints. The objective function can be written as 

00 

h*( ) f8(mn, !) 
smR,! =1 J*( )' - s mR,! 

!S(mn, "!) = j exp [-"tt] f,(t)dt, 

0 

a a s 
fs(t) = at Fs(t) = at P( U { R(1 - Cvt) - (81,k + 82,k) ::; 0} ). 

k=l 
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It is seen that R and C are common to all spots while the other vari­
ables are assumed to be independent from spot to spot and, therefore, 
Pij(t) = nh(t) + nb(t) 2: 0. Here, we only compute the "discount fac­
tor" h!(mn, 1) for various interest rates but different computation schemes 
for m R = 8. Figure 9 shows that the upper bound solution appears to be 
rather conservative for larger s while the exact solution (with component 
correlation) and the solution for independent components are very close to­
gether. It can also be shown that consideration of the time variations in 
the correlations can as well be neglected. We also see that the upper bound 
solution breaks down for 1 < 0.04. 
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FIGURE 9. Discount factor for different solution schemes over discount rate 
(s = 10). 

8. Summary and conclusions 

Objective functions for cost-benefit optimization based on a continuous 
renewal model for a series of cases frequently met in practice are formulated. 
In particular, they include failures by outcrossings of loading processes and 
by random disturbances, non-constant benefit and damage functions, finite 
renewal times, repeated reconstructions and inspection and repair. Mod-
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ifications to account for serviceability losses are proposed. A method for 
reliability-oriented time-variant structural optimization of dependent series 
systems using first order reliability methods (FORM) in standard space is 
developed generalizing theories proposed earlier for component problems and 
time-invariant series system problems in a special one-level approach. Cer­
tain improvements by taking account of dependencies among failure modes 
are also proposed. Approximations for time-variant failure probabilities are 
computed via the outcrossing method for locally stationary rectangular wave 
renewal and differentiable Gaussian processes. Numerical Laplace transforms 
are proposed for the treatment of aging components. 

The optimization problem is solved by the newly developed gradient­
based, locally convergent algorithm JOINTS. It requires second derivatives 
of the limit state functions. This can be avoided by iteration. In the first 
iteration the Hessian is approximated by a zero matrix corresponding to 
linear limit state functions. In the second iteration the Hessian is determined 
once and kept fixed. The results can, thus, be improved by reiteration of the 
complete optimization task. The same reiteration loop can be used to update 
the results by SORM or any other suitable method. More details about the 
technical aspects of reliability-based optimization are contained in [53) . 

Several examples illustrate theory and numerical aspects. 

References 

1. BARLOW, R.E., PROSCHAN, F., (1965), Mathematical Theory of Reliability, Wiley, 
New York. 

2. BHAT, U .N., (1972), Elements of Applied Stochastic Processes, Wiley, New York. 

3. BREITUNG, K ., (1984), Asymptotic approximations for multinormal integrals, Jour­
nal of Engineering Mechanics, Vol.llO, No.3, pp.357-366. 

4. BREITUNG, K ., (1988), Asymptotic approximations for the out-crossing rates of sta­
tionary vector processes, Stochastic Processes and their Applications, Vol.29, pp.195-
207. 

5. BREITUNG, K ., RACKWITZ, R., (1982), Nonlinear combination of load processes, 
J. Struct. Mech., Vol.lO, No.2, pp.145-166. 

6. CIA-factbook 2001, www.cia.gov/cia/publications/factbook/ 

7. COBURN, A., SPENCE, R., (1992), Earthquake Protection, .J. Wiley & Sons, Chich­
ester. 

8. Cox, D.R., (1962), Renewal Theory, Methuen, London. 

9. CRAMER, H., LEADBETTER, M.R. , (1967), Stationary and Related Processes, Wiley 
& Sons, New-York. 

10. DER KIUREGHIAN, A., LIU, P.-L., (1986), Structural reliability under incomplete 
probability information, J. Eng. Mech., ASCE, Vol.112, No.1, pp.85-104. 

http://rcin.org.pl



OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED. . . 403 

11. RoYSET, J.O., DER KIUREGHIAN, A., POLAK, E., (2003), Successive approxima­
tions for the solution of optimal design problems with probabilistic objective and con­
straints, Proc. ICASP'03, A. Der Kiureghian (Ed.), Millpress, Rotterdam, pp.1049-
1057. 

12. DITLEVSEN, 0., (1979), Narrow reliability bounds for structural systems, Journal of 
Struct. Mech., Vol.7, No.4, pp.405-435. 

13. DITLEVSEN, 0., MADSEN, H.O., (1996), Structural Reliability Methods, Wiley, Chich­
ester. 

14. ENEVOLDSEN, 1., SORENSEN, J.D., (1992), Optimization algorithms for calculation 
of the joint design point in parallel systems, Structural Optimization, Vol.4, Springer: 
Berlin, Heidelberg, New York, pp.121-127. 

15. EvANS, J.M., LIPPOLDT, D.C. MARIANNA, P., (2001), Trends in Working Hours in 
OECD Countries, 45, OECD, Paris. 

16. FELLER, W., (1970), An Introduction to Probability and its Applications, I, 3rd ed., 
Wiley, New York. 

17. FRIIS HANSEN, F., MADSEN, H.O., (1992), A Comparison of some algorithms for 
reliability-based structural optimization and sensitivity analysis, Proc. 4th IFIP WG 
7.5 Conf. Munich, R. Rackwitz and P. Thoft-Christensen (Eds.), Springer Verlag 
Berlin, pp.443-451. 

18. Fox, B., (1966), Age replacement with discounting, Operations Research, Vol.14, 
pp.533-537. 

19. GOLLWITZER, S., RACKWITZ, R., (1988), An efficient numerical solution to the multi­
normal integral, Probabilistic Engineering Mechanics, Vol.3, No.2, pp.98-101. 

20. HASOFER, A.M., (1974), Design for infrequent overloads, Earthquake Eng. and 
Struct. Dynamics, Vol.2, No.4, pp.387-388. 

21. HASOFER, A.M., RACKWITZ, R., (2000), Time-dependent models for code optimiza­
tion, Proc. ICASP'99, R.E. Melchers and M.G. Stewart (Eds.), Balkema, Rotterdam, 
Vol.1, pp.151-158. 

22. HOHENBICHLER, M., RACKWITZ, R., (1981), Non-normal dependent vectors in struc­
tural safety, J. Eng. Mech. Div., ASCE, Vol.107, No.6, pp.1227-1249. 

23. HOHENBICHLER, M., RACKWITZ, R., (1986), Sensitivity and importance measures 
in structural reliability, Civil Engineering Systems, Vol.3, December, pp.203-209. 

24. HOHENBICHLER, R., RACKWITZ, R ., (1988), Improvement of second-order reliability 
estimates by importance sampling, Journal of Eng. Mech., ASCE, Vol.114, No.12, 
pp.2195-2199. 

25. IIZUKA, H., (1988), A statistical study on life time of bridges, Struct. & Earthquake 
Eng. Journ., .JSCE, Vol.5, No.1, pp.51-60. 

26. KuscHEL, N., RACKWITZ, R., (1997), Two basic problems in reliability-based struc­
tural optimization, Mathematical Methods of Operations Research, Vol.46, pp.309-333. 

27. KuscHEL, N., RACKWITZ, R., (1998), Design for optimal reliability, Proc. ICOS­
SAR'97, S. Shiraishi, M.Shinozuka, and Y.K. Wen (Eds.), A.A. Balkema, Rotterdam, 
pp.1077-1085. 

http://rcin.org.pl



404 H. STREICHER and R. RACKWITZ 

28. KuscHEL, N., RACKWITZ, R., (2000), Optimal design under time-variant reliability 
constraints, Structurol Safety, Vol.22, No.2, pp.l13-128. 

29. KusCHEL, N., RACKWITZ, R., (2000), A new approach for structural optimization 
of series systems, Proc. of the ICASPB Conference, Sydney, 12-15 Dec., 1999, R.E. 
Melchers and M. G. Stewart (Eds.), Balkema, Rotterdam, Vol.2, pp.987-994. 

30. KuscHEL, N., RACKWITZ, R., (2000), Time-variant reliability-based structural op­
timization using soRM, Optimization, Vol.47, No.3-4, pp.349-368. 

31. LIND, N .C ., (2002), Social and economic criteria of acceptable risk, Reliability Engi­
neering and Systems Safety, Vol.78, pp.21-25. 

32. MADDISON, A., (1995), Monitoring the World Economy 1820-1992, OECD, Paris. 

33. NATHWANI, .l.S., LIND, N.C., PANDEY, M.D., (1997), Affordable Safety by Choice: 
The Life Quality Method, Institute for Risk Research, University of Waterloo, Water­
loo, Canada. 

34. PANDEY, M.D., NATHWANI, .l.S., (2002), Canada Wide Standard for Particulate 
Matter and Ozone: Cost-benefit analysis using a Life-Quality Index, to be published 
in: Joum. Risk Analysis. 

35. PsHENICHNYJ, B.N ., (1994), The Linearization Method for Constrained Optimiza­
tion, Springer Berlin. 

36. RACKWITZ, R., FIESSLER, B., (1978), Structural reliability under combined random 
load sequences, Comp. f3 Struct., Vol.9, pp.484-494. 

37. RACKWITZ, R ., (1985) Reliability of systems under renewal pulse loading, Journal of 
Eng. Mech., ASCE, Vol.111, No.9, pp.l175-1184. 

38. RACKWITZ, R., (1993), On the combination of non-stationary rectangular wave re­
newal processes, Structural Safety, Vol.13, No.1 +2, pp.21-28. 

39. RACKWITZ, R., (1998), Computational techniques in stationary and non-stationary 
load combination - A review and some extensions, J. Struc. Eng., SERC, Vol.25, 
No.1, pp.1-20. 

40. RACKWITZ, R., (2000), Optimization- the basis of code making and reliability veri­
fication, Structurol Safety, Vol.22, No.1, pp.27-60. 

41. RACKWITZ, R ., (2002), Optimization and risk acceptability based on the Life Quality 
Index, Structural Safety, Vol.24, pp.297-331. 

42. RACKWITZ, R., (2003), Discounting for optimal and acceptable technical facilities, 
Proc. ICASP'03, A. Der Kiureghian (Ed.), Millpress, Rotterdam, pp.725-734. 

43. RACKWITZ, R., (2003), Discounting for Optimal and Acceptable Technical Facilities 
Involving Risks, to be published in HERON . 

44. RACKWITZ, R., BALAJI RAo, K., (2000), Numerical computation of mean failure 
times for locally non-stationary failure models, Proc. ICASP'99, R.E. Melchers and 
M.G. Stewart (Eds.), Balkema, Rotterdam, Vol.l, pp.l59-165. 

45. ROSENBLUETH, E., MENDOZA, E., (1971), Reliability optimization in isostatic struc­
tures, J. Eng. Mech. Div., ASCE, Vol.97, EM6, pp.1625-1642. 

46. ROSENBLUETH, E., (1976), Optimum design for infrequent disturbances, J. Struct. 
Div., ASCE, Vol.102, ST9, pp.1807-1825. 

http://rcin.org.pl



OBJECTIVE FUNCTIONS FOR RELIABILITY-ORIENTED. . . 405 

47. SANCHEZ SILVA, M., RACKWITZ, R., (2003), Socio-economic Implications of the Life 
Quality Index in the Design of Optimum Structures to Withstand Earthquakes, to be 
published. 

48. ScHALL, G., GoLLWITZER, S., RACKWITZ, R., (1988), Integration of multinormal 
densities on surfaces, Proc. 2nd IFIP WG-7.5 Working Conference on Reliability and 
Optimization of Structural Systems, London, September, 26.-28., 1988, pp.235-248, 
Springer, Heidelberg. 

49. SCHALL, G., FABER, M., RACKWITZ, R., (1991), The ergodicity assumption for sea 
states in the reliability assessment of offshore structures, J. Offshore Mech. and Arctic 
Eng. , ASME, Vol.113, No.3, pp.241-246. 

50. SCHRUPP, K., RACKWITZ, R., (1985), Outcrossing rates ofGaussian vector processes 
for cut sets of componential failure domains, Proc. ICOSSAR '85, I. Konishi, A.H.-S. 
Ang, and M. Shinozuka (Eds.), IASSAR, Shinko Printing, Vol.III, 601-609. 

51. SLEPIAN, D., (1962), The one-sided barrier problem for Gaussian noise, Bell System 
Tech. Journal, Vol.ll, pp.463-501. 

52. S0RENSEN, .J.D., P. THOFT-CHRISTENSEN, A. SIEMASZKO, J.M .B CARDOSO and 
.J.L.T. SANTOS, (1995), Interactive reliability-based optimal design, ?roe. 6th IFIP 
WC 7.5 Conf. on 'Reliability and optimization of structural systems', Chapman & 
Hall, pp.249-256. 

53. STREICHER, H., RACKWITZ, R., (2002), Structural optimization - a one level ap­
proach, Proc. RBO '02 Workshop , IPPT, Warsaw, Poland. 

54. STREICHER, H., RACKWITZ, R., (2003), Time-variant reliability-oriented structural 
optimization of series systems, ?roe. CSM4, Corfu, P.D. Spanos and G. Deodatis 
(Eds.), Millpress Rotterdam, pp.599-608. 

55. STREICHER, H., RACKWITZ, R., (2004), Renewal models for optimal life-cycle cost 
of aging civil infrastructures, in: aLife-Cycle Performance of Deteriorating Structures 
-Assessment, Design And Management", 3rd Int. IABMAS Workshop on Life-Cycle 
Cost Analysis and Design of Civil Infrastructure Systems, Lausanne, March 24-26, 
2003, D.M. Frangopol, E. Bruhwiler, M.H. Faber, and B. Adey (Eds.), ASCE, pp.401-
412. 

56. UNITED NATIONS, Human Development Report 2001, www.undp.org/hdr2001 

57. VAN NooRTWIJK, .J.M., (2001), Cost-based criteria for obtaining optimal design 
decisions, Proc. ICOSSAR 01, Newport Beach 32-25 June, Structural Safety and Re­
liability, Corotis et al. (Eds.), Swets & Zeitlinger Publ., Lisse. 

58. VENEZIANO, D., GRIGORIU, M., CORNELL C.A., (1977), Vector-process models for 
system reliability, J. Eng. Mech. Div. , ASCE, Vol.103 (EM3), pp.441-460. 

59. VON NEUMANN, J., MORGENSTERN, A., (1943), Theory of Games and Economical 
Behavior, Princeton University Press. 

60. WINTERSTEIN, S.R., BJERAGER, P., (1987) , The use of higher moments in reliability 
estimation, Proceedings !GASP 5, Int. Conf. on Appl. of Statistics and Probability in 
Soil and Structural Engineering, Vol.2, pp.1027-1036. 

-o---

http://rcin.org.pl




