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The note presents a few developments in the field of the saturated geomaterials 
behavior obtained using the micro-macro approach. The main ideas of the 
micro-macro approach, i.e. an averaging method and homogenization technique, 
are exposed . Special attention is paid to the homogenization technique for 
periodic structures. Different processes taking place in saturated porous media as: 
filtration, consolidation and sorption are then studied using the homogenization 
method. The effect of porous material microstructure on the values of 
poroelasticity material constants is clearly pointed out. The effective stress 
concept is validated in the inelastic behaviour range for the case of micro­
homogeneous skeleton material. 
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1. Introduction 

It is obvious that the mathematical description of physical processes 
occurring in a porous material depends on the observation scale. For instance, 
while a sample of a given material in a natural observation scale might be 
treated as a homogeneous one then microscopically, due to a presence of 
pores, it is clearly heterogeneous. Thus, a description of such material in the 
natural observation scale is, within the framework of continuous mechanics, 
a certain approximation as well as any such-scale laboratory investigation is 
in fact a relationship between averaged physical fields observed during the 
experiment. 
Generally, when one consider porous material saturated or not with fluid, 
two different modeling approaches are possible. The first, the so-called 
phenomenological one, ignores the distances of the order of pore diameters 
(microscopic distances) and takes into account only the macroscopic 
distances. The porous medium is treated as the continuous one. When the 
porous medium is filled with a fluid then, within this approach, each point 
of the space is occupied by the skeleton and the fluid simultaneously and 
both the phases are treated as continuous. Hence, the multiphase medium 
is modeled as a system of overlapping continua. The conservation laws 
are introduced directly at the macroscopic level analogous to the laws for 
a single-phase continuum medium, supplemented however with additional 
terms expressing interactions between the phases. 
The other kind of modeling is based on the so-called micro-macro approach, 
i.e. a passage with a mathematical description from micro- to a macro­
scale. The starting point of this approach is a micro-scale description, i.e. a 
mathematical description of the process investigated formulated at the scale 
of heterogeneities. At this scale each distinct space point is occupied by only 
one distinct component which is considered as a continuous medium with its 
own strain-stress relation, balance equation and boundary conditions on the 
phase separation surface. Finally, the macroscopic description is formulated 
by using an appropriate averaging operator or as a limit obtained by letting 

http://rcin.org.pl



422 D. LYDZBA 

the microscale tend to zero. 

These notes intend to give a brief summary of a few developments in the 
field of the saturated geomaterials behavior obtained using the micro-macro 
approach. The chapter is written in the following sequence. In the subsequent 
section different formulations of the micro-macro approach are discussed first 
and then the so-called asymptotic homogenization technique is presented 
in details. The main ideas of the asymptotic homogenization method are 
exposed and explained based on a solution of one-dimensional diffusion 
problem. Necessity of normalization of the micro-scale description is pointed 
out by investigation some features of homothetic transformation. The next 
section is concerned with the poroelasticity theory founded by Biot. Using 
the asymptotic homogenization technique the poroelasticity equations are 
recovered and the effect of porous material microstructure on the values 
of poroelasticity material constants is carefully studied. The mathematical 
modeling of sorption and sorption swelling phenomena in saturated with 
gas geomaterials is a subject of the next section. Once more the macroscopic 
description is formulated based on the asymptotic homogenization technique. 
This section presents also the material constants identification. Recent results 
concerning the so-called stress- and strain equivalence principles for saturated 
porous material end the paper. 

Throughout the paper the index notation with Einstein's convention of 
summation over repeated indices is used, as well as the classical sign 
convention of the continuum mechanics (tension as positive). 
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2. Homogenization method 

The aim of the micro-macro approach is to formulate a macroscopic 
description of a process considered based on knowledge of a mathematical 
description of the process at the heterogeneities scale (so-called microscopic 
description). The notions of the micro- and macroscopic description are 
understood as the description that takes into account the heterogeneous 
structure of the medium and that for an equivalent homogenous medium, 
respectively. Roughly speaking, the microscopic description can be treated, 
in some sense, as the exact one whereas the macroscopic - as some 
approximation, useful for engineering calculations. Furthermore, using the 
micro-macro approach one assumes at the same time a possibility of defining, 
for a given heterogeneous material, an equivalent homogeneous medium. 
Therefore, such heterogeneous medium is very often called as the micro­
heterogeneous one in order to emphasize its heterogeneous structure and at 
the same time a possibility of defining for it the equivalent homogeneous 
medium. In practice, this is known as the macro-homogeneity condition, 
which is classically assumed in geomechanics, for instance. 

Methodologically, one can distinguish at least two different formulation of 
the micro-macro approach. The first one is based on a notion of the so-called 
representative volume element (REV) and consists in an averaging process 
of the physical field of the microscopic description, i.e.: 

(u) (x) = j u(y)m(x- y)dy (2.1) 

VREO 

where: u(y) is a certain physical field of the microscopic description whereas 
( u) ( x) is assumed to be the corresponding physical field of the macroscopic 
description, m{x-y) is the so-called weight function. Concluding, this micro­
macro passage consists in smoothing of the rapidly oscillating physical field 
of the microscopic description by using the averaging operator. 

http://rcin.org.pl



424 D. LYDZBA 

The second formulation is known as the homogenization. The micro­
macro passage is realized, within this formulation, by considering a family 
functions uc parameterized by a certain scale parameter c > 0 representing, 
for instance, the typical size of a pore (Fig. 1). The macroscopic description 
is obtained by determining the limit at c -t 0, i.e.: 

u(x) =lim uc(x) 
c-+0 

(2.2) 

and finding differential equations that the limit u(x) satisfies. Concluding, the 
macroscopic description is obtained, within the homogenization approach, by 
letting the scale parameter tend to zero. 

Figure 1: Schematic view at the homogenization concept 

2.1. One-dimensional diffusion problem 

In order to clarify the homogenization idea let us consider a simple one­
dimensional diffusion problem (Fig. 2). It is assumed that a sample of length 
Lis composed of N the same base cells, each of length l=L/N. Furthermore, 
the value of a diffusion coefficient within the base cell is supposed to be 
described by a following distribution function: 

Do 
D (x) = (1TX), 

1 + cos2 -
l 

where: D0 - a distribution parameter. 

(2.3) 

Hence, for the sample composed of N base cells, the distribution of diffusion 
coefficient within the sample is described by: 

DN (x) = D(N1TX). 
1 +cos2 --

L 

(2.4) 
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The above function depends on the number N of base cells of which 
the sample is composed. The homogenization method uses, however, the 
microscopic description parameterized by a scale parameter £ representing, 
for instance, a ratio between a characteristic length of heterogeneity l (size 
of the base cell) and a characteristic length of the sample L, so £= l / L ( = 

1/ N). Using this scale parameter the relation (2.4) can be expressed as: 

impermeable 

L 

Figure 2: One-dimensional diffusion problem 

) 
Do 

De (X = ( 7r X) . 
1 + cos

2 L£ 
(2.5) 

and finally, the parameterized description of the stationary diffusion process, 
within the sample considered, becomes as: 

(2.6) 

where: Ce ( x) represents a mass concentration within the sample at the point 
x. The superscript £ denotes that this concentration corresponds to an actual 
assumed£ -value or equivalently to an actual number of the base cells of which 
the sample is composed. 
Assuming the boundary conditions as: Ce(O) = Co and Ce(L) = 0 one gets: 

X 

De(x) dC;}x) =A, d Ce( ) A! dx C an x = De (x) + o (2.7) 

0 

where the value of A is uniquely determined by the boundary conditions. 
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Using the relation (2.5) for ne:(x), the solution can be finally written as: 

C"(x)=Co(l-L)-c~;;sin(~ G))· 
The above equation implies also the following relations, i.e.: 

dc;;x) = -7 { 1 +~cos C; G))} , 
Qe: = _De: ( ) dCe: (X) = ~ D Co 

x dx 3 ° L ' 

where Qe: denotes a flux of diffusing mass. 
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Figure 3: Fluctuations of diffusion coefficient along the sample (Do = 10 is assumed): (a) 
sample consists of 16 periodic base cells, (b) sample consists of 1 periodic base cell 

The relation (2.8) may be rewritten in the form: 

ce: (x) = C (x) + cC1 (~) (2.11) 

http://rcin.org.pl



POROMECHANICAL COUPLING IN SATURATED GEOMATERIALS . . . 427 

where 
C (x) = limCe: (x) = C0 (1- ~) 

e:-o L ' 
(2.12) 

and 

C1 (y) = ---S'tn -y 2C0 . (27r ) 
3 47r L ' 

(2.13) 

The function c (X) describes the macroscopic behavior of the function ce: (X)' 
whereas the function C1(y), called as the corrector, describes the local 
fluctuations of the function ce:(x). By virtue of the equations (2.10) and 
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Figure 4: Mass concentration within the sample (Co = 1 is assumed): (a) sample consists of 16 
periodic base cells, (b) sample consists of 1 periodic base cell 

(2.12), one gets also: 

Q = limQe: =-(~no) dC (x). 
e:-o 3 dx 

(2.14) 

The above expression can be interpreted as the macroscopic constitutive 
equation since it defines the relation between the macroscopic flux and the 

2 
macroscopic concentration gradient. The coefficient '3 Do represents the so-

called effective diffusion coefficient and it is the material property of the 
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equivalent homogeneous medium. It can be shown that: 

(2.15) 

Finally, the macroscopic description of one-dimensional diffusion process has 
the form: 

.!!_ (neffdC (x)) = 0 . 
dx dx 

(2.16) 

The relations (2.14) and (2.15), as the constitutive equation and the material 
property definition respectively, could not depend on the type of the 
boundary conditions applied in the homogenization process, as well as the 
other possible external excitation ·of the process considered. The next example 
considered below assesses the above statements. 
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Figure 5: Fluctuations of concentration gradient within the sample ( C n = 1 is assumed): (a) 
sample consists of 16 periodic unit cells, (b) sample consists of 1 periodic unit cell 

The microscopic description (2.6) is modified by adding an additional 
source term, i.e.: 

(2.17) 
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The distribution function of the diffusion coefficient De ( x) is, of course, 
assumed to be the same as before, as well as the boundary conditions. Finally, 
one gets: 

(2.18) 

The above relation leads to: 

By letting the scale parameter tend to zero, the appropriate macroscopic 
fields are obtained, i.e.: 

e 3 fo ( X) C (x) = ~~ C (x) = 4 Do x (L- x) +Co 1- L , (2.20) 

Q ( ) _ l . Qe ( ) _ ( 2 D ) dC (X) 
X - 'Lffi X - - - 0 -d- . 

e-O 3 X 
(2.21) 

It is clearly seen that the constitutive equation (2.21) is of the same form as 
before, as well as the value of the effective diffusion coefficient. The additional 
excitation does not affect the homogenization result. 

The one-dimensional diffusion problem considered enables to formulate 
the following statements, i.e.: 

Remark 1 
Parameterized function ce (X)' being the solution of the microscopic 
description, exhibits the asymptotic character with respect to the parameter 
c, (see the equations. (2.11) and (2.18)), i.e. 

Ce (x) = c(a)(x) + cC(l) ( x, ~) + c2C(2
) (~) , (2.22) 
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Remark 2 
All the terms of the above asymptotic development are periodic with respect 
to the variable y = xj£ with a period Y =l/£=L. This means that the 
assumed periodic structure of the sample induces periodic fluctuations of 
the parameterized field ce (X). 

Remark 3 
The arguments X and y = X I£ of the function ce (X) can be treated as the 
independent Space variables and then the function ce (X) can be interpreted 
as the locally periodic one, i.e. periodic with respect to the y- variable. 
Calculating a space derivative one should, however, take into account that 
dy 
dx = £-

1 and hence: 

dee (x) ace (x, y) -1 ace (x, y) 
_.........;....~= +£ 

dx ax ay 
(2.23) 

Remark 4 
The macroscopic description (so called the homogenized limit) is obtained 
by letting the scale parameter £ tend to zero or equivalently by letting the 
number of base cells of which the sample is composed tend to infinity. The 
increase of the base cells number in the sample with fixed length is realized, 
within homogenization, by homothetic transformation of the base cell. 

The above statements are the basis of the general methodology known as 
the two-scale asymptotic expansion technique. 

2.2. Asymptotic homogenization method 

The central assumption of this homogenization technique is the condition 
that the medium exhibits a periodic structure, i.e. it is a periodicity -
generated from a single element, the so-called base cell or unit cell (Fig. 6). 
The necessary condition for homogenization to be possible is the so-called 
separation of the scales, i.e. if l denotes a characteristic length of the unit 
cell and Lone of volumetric dimension of the medium being considered, the 
following must be satisfied: £=l/ L<<l. 

The asymptotic homogenization method seeks for the solution of 
the microscopic description assuming that the parameterized field being 
considered exhibits the asymptotic character with respect to the scale 
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parameter E, i.e.: 

uc (x) = u<o) (x,y)+eu<l) (x,y)+e2 u(2) (x,y) + ... + where y = .:_. (2.24) 
€ 

Furthermore, it is postulated that each term u(i)(x, y) of the asymptotic 
development is Y-periodic in y which means that they take equal values on 
the opposite site of the unit cell, i.e. 

u(i) (x, y + Y) = u(i) (x, y) . (2.25) 

The arguments x and y are treated as the independent space variables, so 
the spatial derivative operator is modified as: 

(2.26) 

Figure 6: The periodic structure and the base cell of a medium. 

The method consists in incorporating the expansion (2.24) into the 
microscopic description and in identifying terms with the same powers of 
E. As the result, the sequence of equations for each term of the expansion is 
obtained. When imposed on the particular terms of u(i)(x, y), the periodicity 
condition make us look for the solutions of thus-obtained the so-called cell­
boundary value problem. In consequence, this process results in the sought 
macroscopic description of the issue being considered. 

Noticeably, the process we described is relatively simple, being at the 
same time very effective, which is proved by many important results obtained 
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in this way. It has to be marked, however, that the result obtained using 
the asymptotic homogenization method is, from the mathematics point of 
view, only formal. It is obtained by postulating the asymptotic character 
of the parameterized solution of the microscopic description which is not a 
priori guaranteed. So the result, to be mathematically rigorous, has to be 
supplemented by a proof that: 

limuc (x) = u(O) (x) 
c--+0 

(2.27) 

In most problems, a mathematical proof of the above convergence is available 
using, for instance, the so-called energy method of Tartar (see for more details 
the appendix in [11]). 

A certain variant of the two-scale asymptotic expansion method is the so­
called two-scale convergence method. This method gives a rigorous deductive 
procedure for obtaining the macroscopic equations along with the convergent 
theorem. 

An objection which rises as to the applicability of the asymptotic 
homogenization method to any porous media is the periodicity assumption of 
the structure. It appears, however, that independently of whether the medium 
is random or periodic, the form of the macroscopic equivalent description 
remains unchanged ( [ 18) and [ 19]). 

Remark 

The base cell is subjected, during the homogenization process, to a 
homothetic transformation. This transformation does not affect the values of 
dimensionless microstructure parameters, as for instance: a volume fraction, 
a relative distances between the components, shape of the grains (Fig. 7). 

I 

1 dll=tflf 

Figure 7: Homothethic transformation of the base cell. 
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The homothetic transformation affects however the values of microstructure 
parameters with metric units, as for instance: a specific surface of porous 
medium (Fig. 8) or diameters of pores. So, if a physical process depends on the 
microstructure parameters sensitive for the homothetic transformation then 
its effective parameters depend also on the absolute size of the base cell. It is 
also necessary to normalize all the equations of the microscopic description, 
before applying the homogenization procedure described above ([15]). 

~ ~ 
0 0 

0 0 

~ ~ 
0 0 

0 0 0 0 

I K1=21fR//
2 I I K2=2'K1 I 

Figure 8: Variation of a porous medium specific surface due to homothetic transformation. 
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3. Poroelasticity and homogenization 

The poroelasticity theory founded by Biot has largely been used in 
modeling of porous media behavior. Many papers deal with the physical 
interpretation of the material coefficients with respect to laboratory 
measurements and their relations with the elastic constants of the bulk frame 
and skeleton material ([1, 3, 23]). In many cases, however, discussions are 
limited to isotropic saturated porous media. Only a few of investigations (for 
instance [23] and [6]) have been devoted to anisotropic cases but generally 
the link between microstructural geometry and macroscopic poroelastic 
parameters has not been established in a systematic way. On the other hand, 
laboratory tests performed on saturated rocks have clearly shown strong 
connections between the microstructure of porous material and the overall 
poroelastic responses ([20]). For instance, a strong correlation has been found 
between the Biot's effective stress coefficient and the growth of microcracks. 

The purpose of this chapter is to investigate, using the asymptotic 
homogenization method, the influence of microstructure on overall 
poroelastic behavior of saturated porous media. As the Biot's poroelasticity 
theory gives the fundamentals for modeling of poromechanical coupling, 
it appears essential to study at first correlation between microstructural 
parameters and material coefficients involved in Biot's theory. 

Firstly, the Biot 's poroelasticity theory is recovered using the asymptotic 
homogenization method. Basic relations about the overall poroelastic 
parameters obtained from the homogenization method are then used to study 
the influence of the microstructure on the values of poroelasticity material 
coefficients. 

3.1. Homogenization process 

We consider a consolidation process of two-phase medium composed of a 
porous skeleton V s and an incompressible Newtonian liquid - VL (Fig. 9). It 
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is assumed that a deformation process of the skeleton is quasi-static and a 
liquid flow in pores is slow and quasi-permanent. In addition, the skeleton is 
postulated to be periodic and composed of a linearly elastic material. 

Figure 9: Two-phase medium considered: n- a bulk volume of the medium, 
V = V s + Vt- a unit cell volume. 

3.1.1. Local description 

With the above assumptions, the microscopic description is given by: 

1. for liquid in the pores: 

• balance equations (the small Reynolds' number is assumed) 

a~j,i = 0, in Vi , (3.1) 

• mass conservation law 

Vi,i = 0, in Vi , (3.2) 

• constitutive equations for an incompressible Newtonian liquid 

O"~j = -p8ij + J.ll ( Vi,j + Vj,i), in Vl · 

2. for skeleton material: 

• balance equations 
afj,i = 0, in V8 , 

(3.3) 

(3.4) 
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• constitutive equations of the linear elasticity 

afj = cijkhekh(u), where eij(u) = ~ (ui,j + Uj,i), in Vs. (3.5) 

The set (3.1)-(3.5) is completed with the boundary conditions on the interface 
r between the solid and fluid, i.e. (see Fig. 9): 

• continuity of the stress vector 

• continuity of the velocity vector 

where: 

Ui - Vi = 0 on r ' 

afr stress tensor component in the skeleton material, 

Cijkh - stiffness tensor component of the skeleton material, 

Ui - displacement vector component in the skeleton material, 

aL -stress tensor component in the liquid, 

p - value of a liquid pressure, 

Vi - velocity vector component in the liquid, 

J.Ll_ a liquid viscosity, 

Ni- component of a unit normal N to the common surfacer, 

6ij -Kronecker's symbol. 

(3.6) 

(3.7) 

The flow of the Newtonian liquid through a network of pores strongly 
depends on a absolute value of a pore diameter. Therefore, the filtration 
process is sensitive for a homothetic transformation of the base cell. This 
implies a necessity of the microscopic description normalization, before 
performing the homogenization process. 

The normalization affects only the constitutive equations of the liquid 
and finally leads to (see for more details: [2) or [15]): 

(3.8) 

http://rcin.org.pl



POROMECHANICAL COUPLING IN SATURATED GEOMATERIALS . . . 437 

Using the above equation and making some manipulations on the set 
(3.1)- (3.7), the following normalized form of the microscopic description 
is obtained, i.e.: 

c2 
JlVi,jj - P,i = 0, on vl' (3.9) 

Vi,i = 0, on Vl , (3.10) 

[cijkhekh (u) ] . = 0, on Vs, 
,'I. 

(3.11) 

(3.12) 

Ui- Vi= 0, on r. (3.13) 

3.1. 2. Asymptotic developments and averaging process 

Introducing into the equations (3.9)- (3.13) the asymptotic developments 
for v, p and u, i.e.: 

{0) ) {1) ( ) 2 {2) ( ) vi (x, y, t) = vi (x, y, t + cvi x, y, t + E vi x, y, t + ... 
X 

y = -, (3.14) 
c 

( ) {0) ( ) (1) ( ) 2 {2) ( ) p x, y, t = p x, y, t + cp x, y, t + E p x, y, t + ... 
X 

y = €' (3.15) 

{0) {1) 2 {2) ) ui (x, y, t) = ui (x, y, t) +cui (x, y, t) +c ui (x, y, t + ... 
X 

y =- (3.16) 
c 

and taking into account the transformation rule (2.26) for the spatial 
derivative operator, one gets: 

-1 op<o) o [ a ( a (o)) op<o) ap<1)] 1 - . 
-E ~+c J.L-

8 
~vi - ~- -

8 
+c [ ... ]+ ... - 0, 1n Vi, 

u~ ~ u~ u~ ~ 

(3.17) 
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a (o) [a (o) a (1)] 1 V · 0 V· V · 1 
c- _at + c ~ + _at + c [ ... ] + ... = o, in Vz , 

Yi UXi Yi 
(3.18) 

e:-2 ~i { Cijkhe%h ( u(O)) } 

+C1 {a~. [ cijkhe%h ( u(O)) + Cijkhe%h ( u(l)) l + a~i [ Cijkhe%h ( u(O)) l} + 

+ e:0 {a~; [ C;jkhe%h ( u<o>) + C;jkheXh ( u(ll)] + 

+ a~, [ C;jkhe%h ( u(ll) + C;jkhe%h ( u(2l)]} + 

+ £ 1 
[ ... ] + ... = 0 , in V8 , 

(3.19) 

c- 1 [cijkhe~h (u(o>)] Ni +c:0 [cijkheh\ (u<o)) +Cijkhe~h (u(l>) +p(o)oij] Ni+ 

+e: 1 
[ C,Jkhekh ( u<ll) + C;JkheXh ( u<2l) + p(ll§,, -1'1 

( a;t + iJ;t~l)] N, 

+c2 
[ ... ] + ... = 0, on r 

(3.20) 

(3.21) 

The following notations has been above applied, i.e.: 

(3.22) 

Grouping the terms with the same powers of c, we get sets of equations to 
be satisfied by the consecutive terms of the asymptotic expansions. 

I local problem: Eq. (3.17) at c- 1 

f)p(O) 
~=0, 
UYi 

in V[. (3.23) 
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The above equation together with the periodicity condition imply: 

p(O) (x, y, t) = p(O) (x, t), in \li. (3.24) 

II local problem: Eq. (3.19) at c-2 and Eq. (3.20) at c-1: 

_!____ [c·. y ( (o))] - o 8yi tJkhekh u - ' in V8 , (3.25) 

on r. (3.26) 

The solution can be written as: 

u(o) (x, y, t) = u(o) (x, t) , in \'s. (3.27) 

III local problem: Eq. (3.17) at c0 , Eq. (3.18) at c-1 and Eq. (3.21) at c0 : 

J-t_i_ (_i_v~O)) - 8p(O) - {)p(1) = 0, 
8yj 8yj '£ OXi 8yi 

in Vi, (3.28) 

8 (0) 
vi - 0 Vi -- in l, 
8yi - ' 

(3.29) 

U• ~O) - V~O) = 0 r " " , on . (3.30) 

Existence and uniqueness of the above local problem is preserved by Lax­
Milgram lemma. Since p(0)(x, t) and u<0)(x, t) do not depend on the y­

variable, therefore: 

(0) ( t) _ . (0) __ kij (y) {)p(O) 
vi x, y, ui - l 8 ' 

J-t Xj 
in Vi (3.31) 

8p(O) 
p(1)(x, y, t) = Xi(Y) 8xi + p(1)(x), in Vi, (3.32) 

where: p(1)(x) is an arbitrary function independent on y-variable, kij(Y) and 
Xi(Y) are the tensorial and vectorial fields, being the solution of the following 
local boundary-value problem, i.e.: 

in Vi, (3.33) 
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8kij (y) - 0 
8yi - ' 

in V[, (3.34) 

kij (y) = 0, on r. (3.35) 

Volume averaging of the equation (3.31) results in the well-known Darcy law, 
i.e.: 

t.r. - . {0) ( t) - -K·. 8p(O) (x, t) 
Vi nUi X, - t) a , 

Xj 

where: 

n- porosity of the medium considered, 

Kij - the filtration tensor, 

Vi - component of a filtration velocity defined as: 

1 J (0) Vi= II VII vi dV, 
\lj 

K;j = II ~II J k;j (y) dV. 
\lj 

inn, (3.36) 

(3.37) 

(3.38) 

IV local problem: Eq. (3.19) at c:-1, Eq. (3.20) at .::0 (the result (3.27) has 
been also taken into account): 

~i [ C;jkhe%h ( u<o)) + C;ikheXh ( u<1>)] = 0, in V., (3.39) 

[ Cijkhe%h ( u(O)) + Cijkhe~h ( u(l)) + p<0>oij] N; = 0, on r. (3.40) 

Similarly as in the II local problem, the above boundary-value problem is a 
classical problem of the elasticity theory. The fields u<0)(x, t) and p(0)(x, t) 
as y-independent are treated as known, whereas the field u(l)(x, y, t) is a 
solution we are looking for. The above set is linear, hence: 

in Vs, (3.41) 

where: 
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~fk (y) -component of a displacement vector corresponding to ejk ( u(0)) = 1 
and p(0)= 0, 

TJi (y) -component of a displacement vector corresponding to p(0) = 1 
and ejk ( u(o)) = 0, 

u(l) (x) - an arbitrary function of x-argument. 

V local problem: Eq. (3.19) at c-0 , Eq. (3.20) at c-1: 

a:; [ C;jkhekh ( u<o)) + C;jkhe~h ( u{l))] + 

+ O~; [ Cijkhekh ( u{l)) + C;jkhe~h ( u<2
))] = 0, in V, 

(3.42) 

onr. 

(3.43) 

Volume average of the equation (3.42), after some transformations, results in: 

a:; [ ( h(y)( Cijkhekh ( u(o)) + C;jkhe~h ( u<1l))- (1- h(y))p5;j)] = 0, in fl. 

(3.44) 

Defining a total stress tensor for the two-phase medium considered as: 

T (0) { 1 if y E Vs 
aij=h(y)aij-(1-h(y))p bij, whereh(y)= OifyEVi, in V, 

(3.45) 

one gets a macroscopic balance equation: 

inn. (3.46) 
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as well as the macroscopic constitutive equations for the two-phase medium 
considered, i.e.: 

inn, (3.47) 

where the effective parameters are defined by the following relations: 

Cij~h = ( h (y) ( Cijkh + Cijlm efm ( ~kh))), inn, (3.48) 

aij = n6ij - ( h (y) Cijkh e%h (rJ) ), Ill f2. (3.49) 

The symbol () denotes the volume average, i.e.: 

(3.50) 

VI local problem: Eq. (3.18) at £ 0 and Eq.(3.21) at £ 1 : 

8v~0) 8v~1 ) 
_t_ + _t_ - 0 in Vz, 
8xi 8yi - ' 

(3.51) 

U. ~ 1 ) - v~l) = 0 r 
1 "' , on . (3.52) 

Finally, after the averaging process, the above system results in the 
macroscopic mass conservation law for an incompressible liquid, i.e.: 

(3.53) 

where the effective properties are given by the following relations: 

"Yij = n6ij- (h(y)e%h (~ij))' f3 = (h(y)e~ (ry))' inn. (3.54) 
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3 .1. 3. The macroscopic description 

The governing set of the macroscopic description consists of: 

• filtration law 

Vi - . {0) ( t) - -K·. ap(O) (x, t) 
't nui x, - 'tJ a ' inn, 

Xj 

• mass conservation law for a filtrating liquid: 

a (Vi- n u~0)) 
--=-----~ = -"' ·. e·~ . (u<o)) + {3p·(O) . n a Xi u.tJ tJ ' Ill .l r., 

• balance equations for a two-phase medium: 

a (a&) 
a = 0, inn, 

Xi 

• constitutive equations: 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

The governing set of equations obtained above is the same as that of the 
Biot 's poroelasticity theory. It has to be marked however that the Darcy 
law was not assumed but obtained from the equations describing the flow of 
Newtonian liquid through a network of pores. 

3.2. Study of poroelasticity material coefficients as response of 
microstructure 

In order to study the relations between microstructure and the values 
of macroscopic poroelastic coefficients, the properties of the solutions f.kh(y) 
and TJ(Y) have to be examined. 

The fields f.kh(y) and TJ(Y) are the solutions of the following boundary value 
problems stated for the base cell, respectively, i.e.: 

8~i [ Cijkh + CijlmeYm ( ~kh) ] = 0, in V., 

Cijtmerm ( f.kh) Ni = -CijkhNi, on r 
(3.59) 
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8~i [ cijlmeYm (17)] = o, in v.. 
(3.60) 

Cijlm efm (ry) Ni = -6ijNi, on r. 

In a following, a variational formulation of the above boundary-value 
problems will be used in order to examine the solutions considered. 

Let (H~(V)/IR) 3 to be a Hilbert space of vector-valued functions having 
square-integrable derivatives, defined by 

(H~ (V) /IR) 3 
= { v, v E [H1(V)J

3 
;vi- Yperiodic} 

Then, the corresponding variational formulations of the systems (3.59) and 
(3.60) read: 

• boundary-value problem {3.59) 
find ~kh(y) E (H~(V)/IR) 3 so that: 

B ( e\ w) =-J C;JkherJ(w) dV, (3.61) 

• boundary-value problem (3.60) 

find ry (y) E ( H~ (V) / R) 3 
so that: 

Vs 

B (rJ, w) =- j ef; (w) dV. 

Vs 

The bilinear form is defined by: 

B (v, w) = J Cijkh erj (v) eXh (w) dV. 

v. 

(3.62) 

(3.63) 

It is worth noting that due to the ellipticity and the symmetry of the elastic 
stiffness tensor of the skeleton material, the existence and uniqueness of the 
solutions of the variational formulations (3.61) and (3.62) are proved, as well 
as the symmetry of the bilinear form (3.63), i.e. B(v,w) = B(w,v). 

Before proceeding with the further analysis and in order to make 
it tractable, some simplifying assumptions regarding the microstructural 
properties of porous medium are now introduced. In fact, the main interest 
of this work is to verify the role of pore geometry, i.e. the shape, the size 
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and the arrangement. So, it is assumed that the skeleton material is isotropic 
and homogeneous at the microscopic (grain) level, in the following. This 
means that we are focusing on the influences of the pore geometry and the 
average values of the elastic constants of the skeleton material only. However, 
the assumption of the micro-isotropy does not imply a micro-isotropy of the 
porous material. On the contrary, the porous material will exhibit a structural 
anisotropy due to directional arrangement of pores and fissures. 

According to the above assumption one can write: 

(3.64) 

where: E and v are the Young's modulus and the Poisson's ratio, respectively. 
Substituting the equation (3.64) into the variational formulation (3.61) leads 
to the equivalent variational formulation for the solution ~fh (y) 

J aijlm efj ( eh) efm (w) dV =- j ll;jkh ef1 (w) dV, (3.65) 

Vs Vs 

where: 
(3.66) 

It is obvious that (3.65) and (3.66) imply an independence of the solution 
~ kh(y) on values of the Young's modulus. Furthermore, the following 
statements can be formulated, i.e.: 

~fh (y) = fikh(y, v, microstructure geometry), (3.67) 

as well as ([14]) : 

aij = n8ij - 9ij ( v, microstructure geometry). (3.68) 

The j3 - coefficient can be determined through the components of 
the aij - tensor and the values of E and v. As a direct consequence of (3.61), 
the following relation can be written: 

B ( ~kh&kh, '7) = - j C;jkh 6kh ef1 ('7) dV. (3.69) 

V,, 
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E 
Ciikh 8kh = 1 _ 2v 8ii, 

therefore, after some manipulations one gets: 

1 
n- 3aij0ij 

{3= -~E,....--

3 (1- 2v) 

(3.70) 

(3. 71) 

The denominator of the equation (3. 71) represents the bulk modulus of 
the skeleton material and it is denoted as K s· 

The specific role of structural parameters will be detailed through 
numerical simulations performed for some typical pores geometries. Before 
that, however, bounds on values of macroscopic poroelastic constants will be 
presented, i.e.( details are in Lydzba&Shao, [14]): 

1 
n <-a .. 8· · < 1 (3.72) - 3 t] t] - . 

n-1 
(3.73) --<{3<0, Ks - -

where: 
E 

(3.74) Ks = 
3 (1 - 2v) 

In order to precise influences of some relevant structural parameters on 
the values of macroscopic poroelastic coefficients, numerical calculations have 
been performed for some simplified pore geometries (Fig. 10). 

The geometries I and II (Fig. 10) can be treated, in some sense, as an 
idealization of rock like porous materials whereas the geometry III - as some 
simplification of the granular medium microstructure. 
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Influence of Poisson's ratio 
The first calculation concerns an estimation of the Poisson's ratio influence 
on the values of aij and (3. The numerical simulation has been performed for 
the porosity value equated to n = 0.102 and m = a1/ a2 = 2 (Fig. 10). 

Figure 10: Simplified geometries of the base cell taken for the calculation m = ad a2 

The results are presented in Figures (11) -(14). 
1, 0 

0, 8 

0, 6 

a 
0, 4 

0, 2 

0, 0 

,. 

0 , 1 

~ ~ ......----

0, 2 0, ~ 
II 

I 
I 

v 

0, 4 0, 5 

Figure 11: Values of the coefficient a versus Poisson's ratio 
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v 

Figure 12: Values of the coefficient a versus Poisson's ratio 

As expected, the geometry I exhibiting a structural anisotropy gives a 
clear difference between the two principal values of Biot's coefficient tensor 
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a1 1 and a22. For ellipse-like pores the highest value of Biot 's coefficients 
is obtained in the direction normal to the largest axis of the elliptic pore. 
With an increase of the Poisson's ratio this feature becomes less marked 
and disappears at v = 0,5. This is in a full agreement with the well-known 
property of the tensor ll'ij that it becomes the unity tensor in the case of an 
incompressible skeleton material. 

1, 0 

I 
l'22 J 
~ ~ --- y --

0, 8 

0, 6 

a 
0, 4 

0, 2 

1--....--
0, 0 

0,1 0,2 0,3 0,4 0,5 

v 

Figure 13: Values of the coefficient a versus Poisson's ratio 

The influence of the microstructure geometry on values of the coefficient f3 
is presented in the Figure 14. 

0,0 

-0,1 

-0,2 

{JxE -0,3 

-0,4 

/ 
- II -~ -- / I 

/ 
v 

......... / -0,5 

-0,6 ~ 
-0,7 

-0,8 
0 0, 1 0,2 0,3 0,4 0,5 

v 
Figure 14: Dependence of the coefficient /3 on the value of Poisson's ratio of skeleton material 

for three microstructures considered; E- Young's modulus of the skeleton material 

Influence of microstructure's geometry 

The influence of the porosity variation is now analyzed. This time the 
value of the Poisson's ratio is kept constant and a moderate value v = 

0.2 is used. At first, the geometries II and III have been considered. These 
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gemetries imply the macro-isotropy. The results obtained for the periodic 
medium can be therefore compared with the corresponding bounds for the 
statistically homogeneous and isotropic stochastic medium. The well-known 
Hashin-Shtrikman bound for the two phase medium has been used, i.e.: 

n 
0 ~ Ko ~ Ks + 1 1 _ n . (3.75) 

--+---
Ks Ks+G 

For the plane problem, the value v = 0,2 implies G = ~ K 8 which results in: 

_Ko < _3 _(_1 _-_n-'-) 
Ks- 3 + 4n · 

(3.76) 

The appropriate bound for the scalar Biot's coefficient a are determined from 
the well-known relation, i.e.: 

(3.77) 

which together with (3. 76) lead to: 

1 > 
0 

> 1 _ 3 (1 - n) . 
- - 3 + 4n 

(3.78) 

The numerical results obtained for the geometries II and III are compared 
with the Hashin-Shtrikman bounds in the Fig. 15. Figure 15 shows that 

0 0,2 0,4 0,6 0,8 
n 

Figure 15: Dependence of the coefficient a: on porosity (v= 0.2) 

porosity increase leads to the increase of the Biot's effective stress coefficient. 
Furthermore, for an arbitrary shape of pores a critical porosity value exists 

http://rcin.org.pl



450 D. LYDZBA 

at which the value of the Biot's coefficient reaches the unity. For the 
geometry III, being an idealization of a granular medium, this critical value 
is a lit bit greater than 20% - the porosity value typical for real soils. 
It means that even for porous media involving a compressible skeleton 
material, the Terzaghi's effective stress concept can be recovered for a specific 
microstructural geometry. An influence of the porosity variation on the value 
of the effective bulk modulus is presented in the figure 16. The figure 17 
presents the evolution of the coefficient {3 with the porosity variation. 

0,6~~--~~--~----~----~----~ 

KoiKs 

0 0,2 0,4 0,6 0,8 

n 

Figure 16: The bulk modulus value as a function of the porosity (v = 0.2) 
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0 0,2 0,4 0., 6 0,8 

n 

Figure 17: Value of the coefficient {3 versus porosity: E - Young's modulus of the skeleton 
material 

The results of numerical simulation performed for the geometry I are 
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presented in the figures (18)-(23). The parametric analysis has been extended 
on the parameter m (Fig. 10) in order to verify the influence of the pore shape 
on the values of the parameters studied. 
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Figure 18: Values of the tensor o:ij versus parameter m (n = 0.05) 
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Figure 19: Values of the tensor aij versus parameter m (n = 0.10) 
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Figure 20: Values of the tensor o:ij versus parameter m ( n = 0.30) 
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Figure 21: Values of component 0:22 versus parameter m for different assumed values of n 
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Figure 22: Values of component 0:11 versus parameter m for different assumed values of n 
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Figure 23: Values of the (3- coefficient versus parameter m for different assumed values of n 

3.3. Conclusions 

The Biot 's poroelasticity theory has been recovered from the description 
valid at the pore level. At this level it has been assumed that the liquid 
flow was governed by the N avier-Stokes equations for an incompressible 
Newtonian fluid and the skeleton was linearly elastic. The macroscopic 
description has been obtained through the passage from micro-to macro­
scale. 

The use of the asymptotic homogenization method allowed also for a more 
in-depth interpretation of the physical processes occurring in the saturated 
porous material. Particularly, the macroscopic filtration law, the so-called 
Darcy law, has been obtained and not assumed. The relations between the 
microstructure of saturated porous medium and the poroelastic parameters 
have been established. The numerical simulation performed for the simplified 
microstructures quantified the influence of the porous medium porosity on 
the values of the poroelastic material coefficients. 
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4. Phenomena of sorption and sorption swelling 

Sorption is often the consequence of the contact of two volumetric phases. 
It consists in sorption of one phase by the other. In the case of the contact 
between a solid body and gas, the character of this phenomenon depends on 
the structure and surface type of the solid body. Two extreme cases can be 
distinguished (Zarzycki & Chacuk [24]): 

• A solid body is characterized by a flat, nonporous surface. The process 
takes place on the surface of the solid phase and it consists in the 
formation of autonomous sorption phase. This phenomenon is called as 
the adsorption; 

• Micro-porous structure with the pore sizes comparable to the gas 
molecule diameters is characteristic of a solid body. Gas sorption occurs 
in the whole volume of the solid body and the process is called as the 
absorption. 

Desorption is a reverse process of sorption. It consists in the release of the 
gas sorbed by the solid body. 

The our study is limited to a system of bituminous coal and carbon 
dioxide. Heterogeneous and complex porous structure of bituminous coal 
brings about that the sorption process taking place in the porous skeleton­
gas system is of a very complex character. It is possible to distinguish three 
ranges of pores in the fabric of bituminous coal, which determine different 
mechanisms of gas storing (Lason, [12]): 

• the area of network sorption: the radii of capillaries range from 0.3 
to 0.5 nm and the absorption which occurs inside them resembles a 
phenomenon of dissolution; 

• the area of micro-pores: the capillaries with radii up to 1.5 nm, in which 
the phenomenon of filling up to volume is observed; 

• the area of meso- and macro-pores which comprise capillaries of greater 
radii. 
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Such complicated porous structure of bituminous coal results in various 
mass transport processes which take place simultaneously in the medium. 
Therefore, the internal geometry of porous medium considered is simplified 
in the following. It is assumed that the medium is composed of a solid part 
and the network of macro-pores filled by the gas in a free state. The solid part 
comprises, however, the porous matrix with the capillaries of three smaller 
dimensions where the gas occurs as the constrained phase. Furthermore, at 
the pore level, it is assumed that: 

• flow of the gas in the macropores is described by the N avier-Stokes 
equations of a barotropic liquid; 

• transport process of the constrained gas is governed by the Fick 
molecular diffusion law; 

• mechanical behavior of the microporous skeleton with the constrained 
gas can be described by the equations of the uncoupled diffuso-elasticity 
theory (Nowacki ,[17]). 

4.1. Homogenization process 

4 .1.1. Local description 

With the above assumptions, the micro-scale description is given by: 

1. Microporous skeleton with constrained gas: 

• balance equations: 

• constitutive equations of uncoupled diffuso-elasticity theory 

afj = aijkhekh(u)- "fcC8ij 1 in Vs, 

• mass conservation equation for the constrained gas: 

ac 
fit - DC,ii = 0, in Vs. 

2. free gas in macropores: 

• balance equations: 
atj,i = 0, in l'z, 

• constitutive equations of barotropic Newtonian liquid: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

a:j = -ptJij + >..vk,k8ij + 1-L (vi,j + Vj,i), in Vz, (4.5) 
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• mass conservation equation: 

ap at + (pvi),i = 0, in Vz, 

• the ideal gas law for isothermic processes: 

Pa 
p = -p, in Vz, 

Pa 

where: 

Vi - component of free gas velocity vector, 
p - free gas pressure, 
p- free gas density, 
C -concentration of constrained gas, 
Ui - component of skeleton displacement vector, 

(4.6) 

(4.7) 

afj, aL - stress tensor components for skeleton and free gas, 
respectively, 

aijkh -elasticity tensor component of solid skeleton, 
D - diffusion coefficient, 
r c - coefficient of sorption expansion, 
.X and 1-L - viscosity's coefficients, 
Pa - gas density at the atmospheric pressure, 
Pa - value of the atmospheric pressure, 
V s -volume occupied by the microporous skeleton, 
V l - volume occupied by the macropores. 

The above system of equations is completed by the boundary conditions on 
the phase separation surfacer, i.e.: 

• continuity of the mass flux: 

(4.8) 

• sorption isotherm equation: 

C = F(p), on r, (4.9) 

• an adhesion condition: 

( 4.10) 
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• continuity of the stress vector: 

( 4.11) 

Here Ni and ti are the components of normal and tangent vector to the 
common surfacer, respectively. In addition, the thermodynamic equilibrium 
between the phases is assumed at the initial instant. 

4.1.2. Normalization 

According to the homogenization principle, the macroscopic description 
is obtained by letting the scale parameter tend to zero. This implies, in 
the case one considers the flow process, necessity of normalization of the 
microscopic description. For the Newtonian liquid, as has been pointed out 
in the previous chapter, the normalization is equivalent to the following 
substitution: J.-L---+ c2 J.-L and A---+ c2 A (see Eq. (3.8)). 

In order to normalize the diffusion process one has to distinguish two different 
cases, i.e.: 

• case 1°: microstructure of the porous medium considered and its 
diffusion property induce the same variation rate of sorbed gas 
concentration as the variation rate of free gas pressure; 

• case 2°: microstructure of the porous medium considered and its 
diffusion property bring about that the diffusion process is much slower 
than the filtration one. 

The two cases distinguished above clearly show that the system: bituminous 
coal-carbon dioxide is characterized by two characteristic times, T1 and 
Tv, of the fluid filtration and fluid diffusion, respectively. The first case 
distinguished above implies Tv/TJ = 0(1) whereas the second one -
Tv/TJ = O(c-1 

). During the homogenization process, the base cell of 
a medium considered is subjected to a homothetic transformation. This 
operation can not, of course, affect the proportion between the characteristic 
times distinguished. 
Using the Fick law, the characteristic diffusion time can be estimated as: 

( 4.12) 
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The characteristic filtration time is given by: 

Te = 0 (_:_!_) 
f ve ' 

f 
(4.13) 

where: l is a characteristic length of the base cell before its homothetic 
transformation, Vz) and VJ denote mean values of diffusion and filtration 
velocities corresponding to the actual length of the base cell equated to e l, 
respectively. 
Using Eq. (4.12) and Eq. (4.13), one gets: 

T[; = 0 (vel~) (4.14) TJ f D 
The consequence of the viscosities' scaling (J.L ---+ e2 J1 and .X ---+ e2 .X) is an 
€ - independence of the filtration velocity VJ. The constant characteristic 
times' proportion is preserved by scaling, similarly as viscosities, the diffusion 
coefficient. For the two cases distinguished above, one gets: 

case 1. ~ = 0(1) 
f 

case 2. ~ = O(e-1
) 

f 

Te ( €) J2 = 0 Vel- = 0 (1) ==> D ---+ e D Te f D ' 
f 

~ =0 (vfl~) =0 (c1
) =>D-->t2D. 

(4.15) 

( 4.16) 

The above scaling, together with the viscosities' scaling, affect only the 
equations ( 4.3), ( 4.5) and ( 4.8) of the microscopic description. For the two 
cases distinguished they become: 

Te 
case 1. J2 = 0(1)· TJ . 

ac 
--eDC··=O 8t ,u ' 

a~j = -p6ij + e2 
.Xvk,k 6ij + e2

J.L (vi,j + Vj,i) , 

[P (Vi - Ui) + € D C, i] Ni = 0 ; 

( 4.17) 

( 4.18) 

( 4.19) 
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aC - e2 DC · · = 0 at ,tt , 

cr~j = -p<5ij + e2 A.vk,k6ij + e2 
J-L ( vi,j + Vj,i) , 

[P (vi- ui) + e2 DC,i] Ni = 0. 

Finally, the microscopic description can be presented as: 

• Microporous skeleton with constrained gas: 
balance equations: 

(aijkh ekh (u)- 'YcC<5ij),i = 0, in Vs, 

mass conservation equation for the constrained gas: 

~ -em DC,ii = 0, in Ys, 

• free gas in macropores: 
balance equations: 

e2 
J-L Vi,jj + e2 (A. + J-L) Vj,ji - P,i = 0, in Vi, 

mass conservation equation: 

ap 
8t + (pvi),i = 0, in Vi, 

the ideal gas law for isothermic processes: 

Pa p=-p, in\li, 
Pa 

• boundary condition on common surface r : 
continuity of mass flux: 

[P (vi- ui) +em DC,i] Ni = 0, on r, 

sorption isotherm equation: 

C = F (p) , on r, 

adhesion condition: 

( 4.20) 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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continuity of stress vector: 

[ aijkh ekh ( u) - rcCOij + p Oij + c2 A Vk,kOij + c2 J.1 ( Vi,j + Vj,i)] Ni = 0, on r. 
( 4.31) 

The substitution m=l corresponds to the case 1., whereas m=2-case 2. 

4.1.3. Asymptotic developments and averoging process 

Introducing the asymptotic developments for: v, p, p, u i C and modifying 
the spatial derivative operator according to (2.26) one gets: 

c-2 ~i [ tl;jkheXh (u(O))] + 

+c-1 
{ ~i [a;jkhe%h ( u<o)) +aijkh e~h ( u(ll) - 'Ycc(o)oiJ] + 

+ 8~i [aijkhe~h ( u<0l)]} + 

+c0 
{ 8~; [aijkh e%h ( u<o)) +a;Jkhe~h ( u(ll) - 'YcC(o)oiJ] }+ 

+c0 
{ ~i [aijkh e%h ( u<ll) +aijkh e%h ( u<2l) - 'YcC(

1
)8ij] } + ... = 0, in Vs, 

( 4.32) 

c ---E D- -- + oaC(o) m-2 a (aC(o)) 
at ayi ayi 

m-1 { a (ac(o) ac(l)) a (ac(o))} -
-€ D -a -a-+-a- +-a -a- + ... -o, 

Yi Xi Yi Xi Yi 
in Vs, 

(4.33) 
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in \tl, 

(4.35) 

(4.37) 

(4.38) 

0 ( (0) . (0)) 1 ( (1) . (1)) -
€ vi - ui ti + € vi - ui ti + ... - 0, on r' (4.39) 

e-1 
[ aijkhe%h ( u(o)) J Ni 

+e0 [ aijkh ekh ( u(O)) +aijkh e%h ( u(l)) - 'Yc c(O) 6ij + p(O) 6ij] Ni 

+c1 [aijkhe%h ( u(ll) +llijkhe~h ( u< 2l)- 'YcC(l),;ij + p(J),;ij 

8vkO) (8v~O) 8v)
0

) )] 
- .A--6ij - J.L _t_ + -- Ni = 0, 

ayk ayj ayi 
onr. 

( 4.40) 
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Most of the local boundary-value problems, for the succeeding powers 
of c, are similar to those considered in the previous chapter. In order to not 
repeat the steps presented before, the final solutions are therefore only stated. 

yc 
Case 1. T~ = 0 (1), m = 1 

f 

The equations: ( 4.32) at c-2 , ( 4.40) at c-1 , ( 4.33) at c-1, ( 4.39) at c-1 , ( 4.37) 
at c0 and ( 4.38) result in: 

u(o) =u(O) (x, t), 

C(o) =C(O) (x, t) = F (P(o)) , 

p(O) =p(O) (x, t)' 

p(O) =p(O) (x, t). 

( 4.41) 

The next boundary-value problem is given by: (4.34) at c0 , (4.35) at c-1 , 

(4.37) and (4.39) at c0 . Using (4.41), this problem can be transformed to the 
same form as III local problem analyzed in the chapter 3. Finally, one can 
write: 

I (0)) - . (0) - -Ko 0 8p(O) 
\vi nui - 'tJ a ' 

Xj 
( 4.42) 

As 0 the consequence of the equations: ( 4.32) at c-1 ansa ( 4.40) at c0 (the 
system (4.41) has been used also), the following system is obtained: 

a~i [ aijkhekh ( u(O)) +aijkhe%h (u(l)) -{cF (P(O)) Oij] = 0, inVs, 

[ a,Jkh ekh ( u(O)) + aijkh e~h ( u(l)) - 'Yc F (P(O)) 6,J + p(0l6,j] N; = 0, on r. 

( 4.43) 

The above system is linear, therefore: 

uP) (x, y) = €r (y) ejk ( u(O)) - T]i (y) p(O) + 'TJi'YcF (P(O)) + Ui (x) ' (4.44) 

where: €fk (y) and 'TJi (y) denote exactly the same solutions as formulated in 
the chapter before. The solution ( 4.44) has been written with the assumption 
that the parameter rc does not depend on the microscopic space variable y. 
Defining, similarly as in the chapter 3, a total stress tensor for the medium 
considered, i.e.: 

T _ ( ) s(O) ( _ ( )) (0) 
00 

) _ { 1 if y E Vs, 
aij- h y aij + 1 h y p 8"'1 ,whereh(y - Oify t/:. Vs , (4.45) 
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one gets: 

( 4.46) 

( 4.47) 

as the consequence of the equations: (4.32) at c0 , (4.40) at c1 , (4.44) and the 
averaging process used. The effective parameters are defined by the following 
relations, i.e.: 

Aijkh = (1 - n) aijkh + aijlm ( efm ( ~kh)) , 

Gij = n<5ij + aijkh (e%h (TJ)) , 

'Yij = 'Yc (1- n) <5ij- 'Ycaijkh (e%h (TJ)) · 

( 4.48) 

The macroscopic mass conservation equation for a free gas is obtained by a 
direct averaging of the equation ( 4.35) at c0 and using ( 4.37) at c1 . The final 
form can be presented as: 

n 8~~o) +a:; [P(o) ( ( v)ol)- nuloJ)] + (1- n) 8F ~(OJ) 
+p(O) [ Gij efj ( U(O)) - f3 p(O) + 'Ycf3 F (p(O))] = 0. 

(4.49) 

The coefficient f3 denotes exactly the same material constant as analyzed in 
the chapter 3. 

ye: 
Case 2.: T~ = 0 (c- 1

), m = 2. 
I 

Most of the boundary-value problems are exactly the same as those for the 
case 1. The first difference appears in the mass conservation equation, i.e. in 
the equation ( 4.33) at c0 , which together with the equation ( 4.38) lead to: 

(4.50) 

C(o) = F (P(O)) , on r. ( 4.51) 

To solve it, the following substitution is applied: 

(4.52)" 
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By using the Laplace transform, we obtain: 

s .C (U)- ~ (n 8L (U)) = -£ (BF (p(O))), in Vs, (4.53) 
8yi 8yi 8t 

.C (U) = 0, on r, ( 4.54) 

where: s is the complex Laplace variable and 

00 

.C(g(t)) = j g (t) e-•'dt. ( 4.55) 

0 

The equation ( 4.53) is linear, so the solution can be written as: 

.C (U) = -.C (G (y, t)) .C (OF ~(OJ)) , (4.56) 

where function G(y, t) is a solution of the following local problem,i.e.: 

s.C (G)-~ (n 8
L (G)) = 1, in Vs, 

8yi 8yi ( 4.57) 

.C(G)=O, onr. 

By virtue of the convolution theorem: 

t 

J 
8F.(p(0)) 

U (x, y, t) =-
07 

G (y, t- r) dr, ( 4.58) 

0 

and the substitution ( 4.52), one can write: 

t 

( J 8F (p(0)) 
c(O)(x,y,t)=F p(O))- 8t G(y,t-r)dr. ( 4.59) 

0 

Averaging the above equation, the final form of the solution is obtained, i.e.: 

t 

J 
8F ( (o)) 

(c(o)(x,y,t))=(l-n) F (P(o))- a: (G(y,t-r)) dr. 

0 
(4.60) 
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The equation ( 4.60) shows that the macroscopic value of the sorbed gas 
concentration depends on a history of the first time-derivative of the sorption 
isotherm. Function (G (y, t- r)) represents a memory function. 
The form of the relation ( 4.59) modifies, with respect to the case 1, the next 
local problem. This problem is given by the equations: ( 4.32) at c:-1 and 
(4.40) at c:0 (the equation (4.59) has been used also) 

~i [ a;jkhe%h ( u(O)) + aijkhe~h ( u(l)) 

t 

-rc{ F (P(o)) - [ BF ~(O)) G (y, t- r) dr }<l;j] =0, in V8 , 

The solution exhibits a quite similar form as the solution ( 4.44), i.e 

uP) (x, y) = efk (y) ejk ( u(o)) - 'T/i (y) p(o) + 'TJilcF (P(o)) 
t 

1 8F (p(0)) _ 
+ lc ar Wi (y, t- r) dr + Ui (x), in V8 , 

0 

( 4.61) 

(4.62) 

(4.63) 

The additional term is a consequence of the integral in the relation (4.59). 
The vectorial field is a solution, in the Laplace transform space, the following 
local problem: 

8 
-
8 

[aijlm ezmy (£ [ w (y, t)]) + £ [G (y, t)] 8ij] = 0, in Vs, (4.64) 
Yi 

aijlm ezmy (£ [ w (y, t))) Ni = 0, on r. (4.65) 

The macroscopic balance equations for the medium considered is obtained by 
the averaging process of the equations: (4.32) at c:0 , (4.40) at c:1 and (4.63), 
i.e.: 

8 (a~) 
~___:_ = 0' (4.66) 

8xi 

( T) X (0) ( (0)) it 8F (p(O)) 
aij = Aijkh ekh (u)- aijP - /ijF p + 

87 
mij (t- r) dr, 

0 
(4.67) 
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where the memory function mij ( t) is defined as: 

ffiij (t) = 'Yc (G (t)) 8ij + 'Ycaijkh (e%h (w (t))) . (4.68) 

The last macroscopic equation is a mass conservation law for a free gas in 
macropores. It is a result of the averaging process of the equation (4.35) at 
e-0 with using the equation ( 4.37) at e-1 . The following form is obtained: 

op<o) _!__ [ (o) (I (o)) _ . (o)) J a ( c<o)) 
n &t + OXi p \vi nui + &t + 

+ p(O) ( <>;j€fj (u)- (3jJ + "!cf3 p (p) +I aF ~}r)) f3m (t- r) dr) = 0, 

(4.69) 

where f3m(t) is an additional memory function defined as: 

f3m (t) = -'Yc (e~ (w)) (4.70) 

Analyzing the case 2, the presentation has been limited to the relations which 
are different than corresponding ones obtained for the case 1. The Darcy's 
law is, of course, valid also for the case 2. 

4.1.4. Governing set of the macroscopic equations 

Case 2. 

• constitutive equations 

• balance equations: 

• filtration law for a free gas: 

(v·)·- nu· = -K· · ap 
t t t) £l ' 

UXj 

( 4.71) 

(4.72) 

(4.73) 
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• mass conservation law for a free gas: 

ap a [ . ] a (C) 
nat+ axi p((vi)- nui) +at+ 

+ p ( Cl<ij eijx (u)- !3P+ 'Yc/3 p (p) + la~c;) !3m (t- r) dr) = 0, 

(4.74) 

where: 

t 

(C) =(1-n) F(p)- !OF :(r)) (G(t-r)) dr. (4.75) 

0 

Case 1. The set (4.71)-(4.75) with mij(t)=O, f3m(t)=O and ( G (t)) = 0. 

The macroscopic description presented above shows that the gas constrained 
in the microporous skeleton influences . the filtration process and the 
mechanical behavior of the system considered. Constitutive equations 
obtained for the case 1 can be interpreted as mixed equations of the 
classical consolidation theory (Biot's model) and the theory of diffuso-

. elasticity. Depending on physicochemical proper.ties of the multiphase 
medium considered and its internal geometry, it has been shown that the 
medium could exhibit a strong rheological character and then its strain­
stress relation demonstrates a memory effect according to the well-known 
Boltzmann's principle of a heredity. 

4.2. Parameters identification 

The identification process is based on the relations obtained from the 
homogenization procedure, i.e. relations (4.48), (4.68) and (4.70), as well as 
the laboratory data reported in Czaplinski et.al., [8], Ceglarska-Stefanska 
& Jagiello, [5] and Tarnowski, (22]. The determination process has been, 
however, limited only to these parameters which represent the effect of a 
sorption process, i.e. the memory functions: mij(t), f3m(t) and (G(t)) and 
the material constants: rij and rc· The parameters: aij and {3, the material 
coefficients of the Biot's theory, have been care fully examined in the previous 
chapter. The macroscopic isotropy of the medium has been postulated. 
Firstly, let us examine the possible relations between the "new" material 
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constants and the material constants of the Biot 's theory. From the equations 
( 4.48), it is immediately seen that the following relation is fulfilled, i.e.: 

The macroscopic isotropy of the medium implies: 

l+a=l, 
TC 

where: rij = r6ij and aij = a6ij. 

( 4.76) 

( 4.77) 

Using the identity aijkh6ij = 3Ks6kh, it can be proved that the definitions 
(4.68) and (4.70) imply: 

{3 ( ) 
= 'Yc (G (t))- m (t) 

m t ~ ' ( 4. 78) 

where: K s denotes a bulk modulus of the skeleton material and mij ( t) = 

m( t )6ij (macroscopic isotropy condition) . 
The relation ( 4. 76) clearly shows that the coefficient rij is correlated with 
the material constant of the Biot's theory. Furthermore, the equation (4.78) 
indicates that model considered is characterized by only two independent 
memory functions, i.e. m(t) and ( G(t)). 

Memory function ( G ( t)) 

The identification is based on the theoretical consideration performed by 
Lydzba & Auriault, [13]. They assumed that the coal medium was composed 
of spherical grains made of homogeneous and microporous medium. It 
appeared that such microstructure is characterized by the following memory 
function, being the solution of the local problem (4.57), i.e.: 

( 4. 79) 

where: R denotes the assumed radii of a spherical grain, i - a natural number. 

During the laboratory tests performed by Czaplinski et.al. [8], the magnitude 
of carbon dioxide sorbed by the coal sample and coal sample swelling have 
been simultaneously measured. During this experiment the coal sample has 
been saturated with gas at constant pressure equated to 2 MPa. According to 
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the equations (4.75), the magnitude of the sorbed gas concentration is given 
by: 

t 

(C) ( t) = ( 1 - n) F (p) - j {) F : ( 7 )) ( G ( t - r)) dr . (4.80) 

0 

Supposing, that the gas penetrated the macropores immediately during this 
experiment, the above relation implies: 

Mz (t) = 1 _ (G (t)) ' 
Mz(t---+oo) 1-n 

(4.81) 

where: M z ( t) denotes a mass of sorbed gas in the sample and M z ( t---+ oo) 
represents the so-called equilibrium value of sorbed gas. 

The memory function considered has been assumed, according to the 
equation (4.79), as: 

( 4.82) 

where: T1, T2, ... and 91, 92, ... are the parameters to be determined. 
Verification of the model proposed against the laboratory results is presented 
in the Figure 24. The really satisfactory result is obtained. The following 
values of the constants have been determined: 91 = 0,3086, 92 = 0,4735, 
T1 = 2246 sand T2 = 278 s. 

Memory function m ( t) 
According to conditions of the experiment discussed above, the constitutive 
equations ( 4. 71) imply: 

t 

-p = Kat:v (t)- ap- 1 F (p) + J {)F :(r)) m (t- r) dr, 

0 

(4.83) 

where: Ev denotes a volumetric strain of the sample and K 0 represents the 
effective bulk modulus of the sample. 
Using the well-known relation: 

(4.84) 
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as well as (4.77), the equation (4.83) can be rewritten as: 

t 

Ev (t) = _ _E_ + rc F (p)- -1 J [}F (p (r)) m (t- r) dr. 
Ks Ks Ko or ( 4.85) 

0 

Once more supposing, that the gas penetrated the macropores immediately, 

M,(t) 
M,(t ~ oo) 

0 10 20 30 40 t [min] 

Figure 24: Relative value of a gas being sorbed versus time. Free gas pressure p = 2 MPa. 

the above equation implies: 

(4.86) 

Denoting by Pz - specific density, without any sorbed gas, of microporous 
skeleton and by M s - mass of coal sample also without any sorbed gas, the 
equation ( 4.86) can be expressed as: 

(4.87) 

where: 
( 4.88) 

can be interpreted as an effective extension coefficient due to sorption process, 
whereas Mz(t-+ oo)/Ms as an equilibrium value of sorbed gas in unit mass 
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of the skeleton. From the experimental data it has been determined that 
M z( t---+ oo )/ M s = 0,0589. 
Assuming, similarly as for the memory function ( G ( t)), the approximation 
to be valid: 

(4.89) 

the following values have been estimated, i.e.:>.= 0,2136, m1 = 0,0803 and m2 

= 0,7978. The values of T1 and T2 have been kept as constants. Furthermore, 
a typical value of the skeleton bulk modulus equated to K s = 8000 MPa has 
been assumed. 
Figure 25 presents verification of the function proposed against the laboratory 
data. Once more the result is really satisfactory. 

1,2 

1,0 

Cv 

[%] 0, 8 

0,6 

0,4 

0 10 20 30 40 

t [min] 

Figure 25: Sorption swelling versus time. Free gas pressure p = 2 MPa 

Sorption isotherm F (p) The most used sorption isotherm equations are: 

• Langmuir's equation: 

(4.90) 

• Freundlich's equation 

~: = k (:J 1/nl ' (4.91) 

where F(p) = PzM z/ M s· 
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Verification of the sorption isotherms described by ( 4.90) and ( 4.91) against 
the laboratory data is plotted in the Figure 26. It is obvious that the 
Langmuir's equation is a proper isotherm for the system: bituminous coal­
carbon dioxide. Determination of the sorption isotherm equation ends the 
identification process. Concluding, it has to be marked that the model 
proposed very well verifies the experimental data. 

0 0,5 1 1, 5 2 2,5 3 

p [MPa] 

Figure 26: Sorption isotherm 
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5. Stress and strain equivalence for saturated porous 
media 

Mathematical modeling of saturated porous media is usually simplified 
using the effective stress concept. This concept provides a possibility to 
extend the constitutive equations and complementary plastic laws of dry 
material to saturated media by using the strain and stress equivalence 
principles (R. de Boer & P.V. Lade, [7]). These principles can be formulated 
as, [17]: 

Strain Equivalence: the overall stress-strain relation for the saturated porous 
medium is obtained from the corresponding relation of the dry porous 
medium by substituting the effective stress tensor for the applied nominal 
stress; Stress Equivalence: the overall yield function for the saturated porous 
medium is obtained from the overall yield function of the dry porous medium 
by substituting the effective stress tensor for the applied nominal stress. 

The validity of the strain equivalence principle in the elastic domain has 
been confirmed from theoretical point of view in the chapter 3. The validity 
of the effective stress concept in the inelastic behavior range is still an open 
problem, particularly for cohesive materials like rocks and concrete. Recently 
Coussy has proposed a so-called plastic effective stress tensor for the modeling 
of porous media inelastic behavior, [4]. The assumption used by Coussy in [4] 
needs, however, to be checked. More strict results, based on a homogenization 
approach have been presented in [9, 10, 14]. It has been shown, that the 
failure criterion of a saturated porous medium can be expressed by that for 
dry material replacing the usual stress by the effective one. The appropriate 
form of the effective stress depends on the kind of failure criterion used at 
the micro-level. 

The chapter presents a generalization of these works to the full plastic­
hardening domain. The results have been obtained by the author jointly with 
prof. J.F. Shao and published in [16]. During the analysis, the porous medium 
is assumed to be composed of a micro-homogeneous and micro-isotropic 
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skeleton material. It is also assumed that the macroscopic behavior of the 
dry material is entirely determined. This lets us to proceed with the so-called 
comparison analysis which consists in a comparison of appropriately stated 
local problems for dry and saturated material, respectively. Any prerequisite 
assumptions concerning pores geometry and arrangement are not needed. 

5 .1. Stress localization law 

For a clearness of description, the simplified notations are adopted in the 
following, i.e.: the macro-strain tensor, previously represented by efj(u<0 )), 

is now denoted by Eij whereas the micro-strain tensor, formerly e¥j(u), as 

eij(u). In addition, the term p(o) is simply denoted by p whereas the second 
term of the asymptotic development of the displacement field u, i.e. u(l), 

is now distinguished by a symbol ui(y) . The local elasto-plastic problem, 
stated for a unit cell, is concluded from the IV local problem presented in 
the chapter 3 (Eqs. (3.39)-(3.40) ), for saturated as well as dry state. The dry 
state is obtained by letting p = 0. It has to marked, however, that the elasto­
plastic problem involves, in addition, the plastic strain and yield function . 

Dry material: For the porous medium without any liquid in the pores, a local 
boundary value problem with a prescribed distribution of plastic strain inside 
the unit cell can be presented as: 

(!~ .. = 0 
tJ,t 

a[jni = 0 

afj(Y) = Cijkh [ekh(u)- c~h] 
ui(Y) = EijYj + ut(y) 

f ( afj) $ 0, ut (y) - Y periodic, 

in Vs 
on r 
in Vs 
in Vs 
afjni - antiperiodic 

(5.1) 

where afj (y) are components of the solid micro-stress tensor, Ui (y) - the 
displacement field , u; (y )- the fluctuating part of the displacement field, Eij­
the solid macro-strain tensor (treated as given), eij (u)- the solid micro-strain 
tensor and cfj (y)- the plastic micro-strain tensor (considered as given), Cijkl­
the elastic stiffness tensor of the skeleton material. The function f ( ai_i) :::; 0 
represents the plastic yield criterion (at microscopic level). Vs is the volume 
of the solid material within the unit cell, r - the phase separation surface. 

Using notions of a plastic macro-strain tensor E~ and a self-equilibrated 
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residual stress field a[J8 (y), the above local problem can be transformed to: 

afj (y)- a[J8 (y) = [ Cijkh + Cijlmelm ( ~kh) J (Ekh- E~h), (5.2) 

and, finally, to the stress localization law (Suquet, [21]): 

aij (y)- a[J8 (y) = Lijkh (y) L.fch; Lijkh (y) = [cijpq + Cijlmelm (~PQ)] S~;J:h 
(5.3) 

The tensor Ef; ( = ll~ll J. o-f; (y)dy) is the solid macro-stress tensor, S~:;;J. is 

the overall elastic compliance tensor, Lijkh (y) are components of the stress 
localization operator and ~fh (y) are components of the fluctuating part of 

the displacement field at { cfj (y) = 0, Eij = 8ik8jh}, 8ij is the Kronecker 

symbol and II VII denotes a measure of the unit cell volume. 

The plastic macro-strain tensor E~ and residual stress field a[J8 (y) are 
determined by the following formulae (Suquet, (21]): 

Ef; = ll~ll J Lkhii (y) ~h (y)dy (5.4) 
Vs 

o-[J' (y) =- j R;;kh (y, y')eJ:h (y') dy' (5.5) 

where ~jkh (y, y') depends only on the geometry of microstructure within 
the unit cell. 

Fully saturated material: For the porous material saturated with a liquid 
pressure p and with a prescribed distribution of plastic strain tfj (y), a local 
boundary value problem reads: 

at? .. =0 tJ,t 

afjni = -p8ijni 

afi (y) = Cijkh [ekh (u)- ~h] 
ui (y) = EiiYi + u; (y) 

f ( afi) ::; 0, ui (y) - Y periodic, 

in Vs 
onr 

in V8 

in V8 

afjni - antiperiodic 

(5.6) 

In the same manner as for the dry material, the above local problem can be 
transformed to: 

aii (y) - a[Js (y) = [ Cijkh + Cijlmezm ( ~kh)] [ Ekh - E~h] + Cijkhekh ( TJ) P 
(5.7) 
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where: E~ and a[J8 (y) are again the linear funtionals (5.4) and (5.5) of the 
plastic micro-strain field E'fj (y), 'r/i (y) are components of the fluctuating part 
of the displacement field at {E'fj(Y) = 0, Eij = 0, p = 1} (Auriault&Sanchez­
Palencia, [1]). 

Using the assumption of the micro-homogeneity and micro-isotropy of the 
skeleton material it can be shown that (Lydzba&Shao, [14]): 

. ( ) - ~fh (y) ~kh 
'r/t Y - 3Ks . (5.8) 

The above realation enable to rewrite the equation (5. 7) as: 

af; (y) - iT[j" (y) + p6;; = [ Cijkh + Cijlmelm ( €kh)] [ Ekh - E~h + ~~:] 
(5.9) 

which after some manipulation results in the stress localization law for the 
saturated material: 

(5.10) 

where E1J( = ll~ll j (afi (y) + p6;;)dy) is the so-called Terzaghi's effective 

Vs 
stress tensor, Ks is a bulk modulus of the skeleton material. 

5.2. Form of the effective stress 

Following (Suquet, [21]), the closure of the elastic domain in the macro­
stress space, at prescribed distribution of residual stress field, can be 
expressed as: 

• dry material 

Ev ( { a[J'}) = { Ef; /I (L;;kh(y)E~h + a[J'(y)) :0: 0 Vy E Vs} , 
(5.11) 

• saturated material 

Es (p, { i7if'}) = { E1JIJ (L;jkh(y) E%I- pJ;i +<Tij' (y)) :0: 0 Vy E V.}. 
(5.12) 
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The set Es(p; { a[J8
}) denotes, at prescribed residual stress field and value of 

p, the closure of the elastic domain in the Terzaghi's effective stress space. 

The above definitions clearly show that determination of the elastic 
domain, for both cases, requires the knowledge of the whole field of the 
residual stresses: {aij8 (y)} and {a[J8 (Y)s} for the dry material and for the 
saturated material, respectively. 

In practice, some approximate models are used. For instance, assuming 
the strain-hardening rule to be valid for the dry material, the closure of the 
elastic domain is then approximated as: 

(5.13) 

where Fv (Efj; x( E~)) represents the macroscopic loading function for the 
dry material. 

In the following, the concept of effective stress is examined by considering 
two qualitatively different plastic yield criteria for the skeleton material, 
namely: a pressure insensitive and a pressure sensitive one. 

The Von-Mises criterion: This criterion is pressure insensitive. Defining 
for the saturated material an equivalent stress as: 

(5.14) 

one gets the following identities: 

(5.15) 
The property (5.15b) together with the definition of the elastic domain (5.12) 
imply: 
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The identities (5.15) enable also to transform the local problem (Eqs. (5.6)) 
to the equivalent one: 

a~9. = 0 
e~''L 

aij ni = 0 
eq ( ) _ C [ eq ( -) -P ] aij Y - ijkh ekh u - Ekh 

- ( ) Eeq * ( ) . h Eeq E- p8ii Ui y = ij Yi + ui y Wit ij = ij + 3Ks 

f ( a7J) :S 0, u; (y) - Yperiodic, 

in Vs 
onr 

in Vs 

in V8 

a:Jni - antiperiodic 

(5.17) 
Assuming, for the plastic deformation of the skeleton material to be governed 
by an associative plastic flow rule, the properties (5.15b) lead to: 

..:.p ( ) Eij y = 

8J C .eq ( ) 
aa~i klmnemn y 8f 
----::.::.;...----=-=---- for f (a:J (y)) = 0 1\ j (a:J (y)) = 0 

8f c 8f aa:J 
a eq klmn -8 eq 

akl amn 
0 otherwise 

(5.18) 
The system of equations (5.17)-(5.18) represents the local elasto-plastic 
problem for the saturated material expressed by the equivalent fields 
introduced. It is of the same form as the corresponding local problem for 
the dry material, except it contains the equivalent strain and stress fields 
instead of solid's strain and stress as for the dry state. 

Consider now the saturated porous material, initially free of the plastic 
micro-strain field, subjected to a history {Eij(t),p(t)}. The pair: 

(5.19) 

characterizes a solution of the local elasto-plastic problem for the saturated 
material, i.e. the loading history and corresponding micro-strain fields 
induced in the unit cell. As a direct consequence of the system (Eqs.(5.17)­
(5.18)), the following equivalences can be written: 

{ E7J (t)} ~ { e:J (u (y, t)), tfi (y, t)} (5.20) 

or: 

{ Eij (t) = E7iq (t)} ~ { eij (u (y, t)) = e:J (u (y, t)), cfi (y, t) = tfi (y, t)} 
(5.21) 
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The latter relation represents a solution of the local problem for the dry 
material. It indicates that the solution for the saturated material can be 
recovered from the solution of the local problem for the dry material by 

imposing the history { E;j ( t)} = { E;j ( t) + ~~: 6;j } . Furthermore, as a 

consequence of the functional relations (5.4)-(5.5) as well as the constitutive 
equations, one gets also: 

{ 
afj (y, t) = a:J (y, t); ags (y, t) = a-rjes (y, t) Vy E Vs _ p(t) 

forE· ·(t) = E· · (t)+-~· · 
E1!. (t) = E1!. (t) · Eo? . (t) = E~! (t) "'1 

"'
3 3K s '

3 
' 

'tJ 'tJ ' 'tJ 'tJ ' 

(5.22) 

where the variables on the left side of the equations (5.22) correspond to the 
dry material whereas on the right side to the saturated material. 

The final step consists in comparison of the corresponding definitions 
of the elastic domains (5.11) and (5.16), for dry and saturated states, 
respectively. Taking into account the relation (5.22) one gets: 

(5.23) 

which clearly indicates that the Terzaghi 's effective stress fulfills the stress 
equivalence principle for the material considered. It is obvious that this 
statement can be extended also for porous materials composed of a uniform 
material obeying any arbitrary pressure insensitive yield criterion with an 
associative or a non-associative plastic flow rule. For the case of non­
associative plasticity, the plastic potential has to be, however, of the form: 

(5.24) 

where I 1 is the first invariant of stress tensor, J3 is the third invariant of 
deviatoric stress tensor, g (J2, J3) is an arbitrary function of J2 and J3 ,'a' 
is a parameter (could be a=O). Such the form of the plastic potential allows 
to express the rate of the plastic micro-strain using the equivalent fields 
introduced above and the formula is of the same form as for the dry material. 
Therefore, the relations (5.22) as well as the identity (5.23) are still hold true. 

According to the approximate models, if a description for the dry material 
uses, in a plastic range, the loading function (5.13) and a plastic flow rule as: 

E;l!. = .x ac (Ekh) 
"1 8E~ -t.J 

(5.25) 
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therefore, it follows from (5.22) that:· 

(5.26) 

(5.27) 

The equations (5.26) and (5.27), for the saturated state, are as good 
approximation of plastic behavior as the approximation (5.13) and (5.25) 
for the dry state. The results (5.26) and (5.27) prove also that the Terzaghi's 
effective stress fulfills, in the plastic range, the stress as well as the strain 
equivalence principles for saturated media. It has to be marked, however, 
that the result has been obtained with the assumption that the yield function 
was the pressure insensitive. 

The Coulomb-Mohr criterion: The criterion is a pressure-sensitive. This 
time a particular loading history is only considered, namely the case 
corresponding to a so-called drained condition, i.e. {Eij(t),p(t) = const.}. 
The equivalent stress is now defined as: 

eq afj + pOij 
a . . =--=----

tJ 1 + p tg(cp)jc 
(5.28) 

The stress fulfills the identity: 

f(afj) = (1 + p tg(cp)jc)f(a7J) (5.29) 

where: <p represents a friction angle( <p ~ 0), c is the internal cohesion of the 
skeleton material ( c > 0 is assumed) . 

Since p ~ 0, the equation (5.29) implies: 

8 f ( aii) 8 f ( a7J) 

8akh = 8a%~ 
(5.30) 

The relations (5.30) enable to transform the local problem (Eqs. (5.6)) to the 
equivalent one described by the system (5.17) . The equations (5.17c) and 
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(5.17 d) are now, however, expressed by the new equivalent variables, i.e.: 

eq eq - ckh 
( 

p ) 
aij (y) = Cijkh ekh (u)- 1 + ptg(cp)/c with 

with 

Furthermore, a rate of the plastic micro-strain 
associated plastic flow rule is assumed): 

- p8kh 
ekh (u) + 3K 

eeq (u) - s 
kh - 1 + ptgcpjc 

- p8ij 
Eij + 3K 

E~9 = s 
tJ 1 + ptg(cp)/c 

(5.31) 
can be written as (the 

. a eq klmnemn y aj . 
~j(y) = ~~ aj aa~l! for f(a:J(y)) = 01\ f(a:J(y)) = 0 . 

[ 

aj C ·eq ( ) 

1 + p tg(<p)jc a eq cklmn -a eq lJ 
akl O"mn 

0 otherwise 
(5.32) 

Once more, the local elasto-plastic problem for the saturated material, 
expressed by the equivalent fields, is of the same form as for the dry material. 
Therefore, considering the pair: 

(5.33) 

one gets also: 

{ E;; (t) = E7;" (t)} >--> { e;; (u (y, t)) = e~J (U (y, t)), cf; (y, t) = 1 :; ;:{~)/c} · 
(5.34) 

The relation (5.34) implies: 

l afj (y, t) = a:J (y, t); 

er:. (t) 
EP (t) - tJ · 

ij - 1+ptg(cp)/c' 

ares (y t) 
res ( t) _ ij ' 

aij y, - 1 + ptgcpjc Vy E Vs 

Efi (t) = E:J (t) 
(5.35) 

where the variables on the left side correspond to the dry material whereas 
on the right side to the saturated material. The macroscopic equivalent stress 
tensor is the volume averaged equivalent micro-stress tensor (5.28): 

eq _ E~J _ 1 J eq ( ) 
Eij - 1 + p tg(cp)/c - IIVII aij y dy. (5.36) 

v., 
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Using above tensor, the elastic domain for the saturated material can be 
defined as: 

Eeq (p, {u;"j"}) { E~J It ( L;jkh (y) E~'l, + 1 :;:~~)/c) :::= 0 lfy E V.}, 

(5.37) 
which together with the definition of the elastic domain (5.11) and the 
relations (5.38) result in: 

(5.38) 

The equivalent macro-stress defined by (5.36) fulfills the stress equivalence 
principle, at the drained condition. It is clear that this statement is also valid 
for a non-associative plastic flow rule described by the potential (5.24) with 
a function g (J2, J3) being a homogeneous function of deviatoric stress of the 
degree one. 

According the approximate model, it follows from (5.35) that: 

Eeq (p, E~) = { E~J Fv ( E~J; X (1+ p~;(cp)fc)) ::; 0}, (5.39) 

E~ ac (~~1) 
1 + p tg(<p)jc =.X 8~~J . (5.40) 

5.3. Conclusions 

The effective stress concept has been validated for saturated porous media 
composed of micro-homogeneous and micro-isotropic skeleton material. 
Particularly, it has been shown that the appropriate form of the effective 
stress tensor depends on the form of yield function used at the micro-level. 
Two different form of the effective stress have been determined. It has to be 
marked, however, that the assumption of the skeleton micro-homogeneity is 
the crucial one. Without this assumption one can prove that the Terzaghi's 
effective stress gives only .a potentially safe approximation of failure criterion 
for saturated porous medium. This case is carefully studied in Lydzba (2002). 
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