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The series of lectures is centered on application of micromechanics to 
describe nonlinear response of rock-like solids (rocks, concrete, ceramics) 
subject to mechanical loading and/or aggressive environmental agents. Firstly, 
microcrack models of brittle deformation under quasi-static loading conditions 
are presented. Starting with basic mechanisms of microcrack growth under 
tension and compression, nonlinear stress-strain relationships are derived 
within the Rice thermodynamic framework with microstructural internal 
variables. Specifically, expressions for the Gibbs complementary energy are 
computed using micromechanical analyses from which the micromechanical 
fluxes and the conjugated thermodynamic forces are identified. The kinetic 
equations for the microstructural internal variables are obtained. Making use 
of the Rice (1971) fundamental micro-to-macro transition relation, nonlinear 
macroscopic incremental constitutive equations are derived and confronted with 
test data. Microcrack interaction effects are accounted for using the method 
of Kachanov (1987) extended to account for cohesive-frictional resistance on 
crack faces in compressive stress fields. Secondly, a chemo-micromechanical model 
of environmental damage in concrete due to chemically aggressive ambient 
is presented. In particular, this model deals with deformation of hardened 
concrete exposed to chemical corrosion by sulfate ions migrating from the 
ground water through the pore network of a concrete structure. The model 
involves several coupled physico-chemical processes such as nonsteady diffusion, 
heterogeneous chemical reactions, expansion of reaction products, microcracking 
of heterogeneous matrix (hardened cement paste with ettringite inclusions) and 
percolation . These processes are modeled on the microscale and the resulting 
equations are volume-averaged leading to macroscopic expansions which closely 
match the test data on ASTM recommended specimens. Thirdly, the advantages 
and deficiencies of lattice modeling applied to microcracked brittle materials are 
discussed . 

Key words: brittle deformation, microcracking, crack interaction, chemo-damage, 
lattice models 
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MICROMECHANICAL MODELING OF MICROCRACKED BRITTLE SOLIDS 13 

Preliminaries 

The deformation of rocks, concrete and ceramics (collectively rock-like 
materials) under quasi-static mechanical loading has a number of features 
in common which result from the intrinsic heterogeneous microstructure of 
these materials. For example, the nonlinear behavior reported from tension 
or compression tests is, according to numerous literature sources, to be traced 
back to the internal micro cracking (damage) rather than plastic deformation 
provided that brittle-ductile transition has not taken place. Typical failure 
modes observed in this class of materials are splitting and shear banding. 
A particular failure mode strongly depends on the amount and sign of the 
lateral pressure as well as end-boundary conditions. 

The tensile damage in polycrystalline rocks loaded in displacement­
controlled tests consists in gradual activation of the most favorably oriented 
and largest preexisting microcracks located at the grain boundaries or within 
the grains of inferior strength. A destabilized microcrack grows unstably until 
it is forced to stop by the superior toughness of an adjacent grain. As the 
external load is further increased, more and more preexisting microcracks 
become activated causing nonlinear overall rock response. The tensile fracture 
of a brittle rock is relatively simple and thoroughly understood. At a certain 
load level, one of the previously activated and arrested microcracks becomes 
critical again as the K1 at its tip exceeds locally the fracture toughness K1c 
of the surrounding material. In all probability, the rock inhomogeneity is 
unable to trap the crack again for the much longer crack sees the surrounding 
material as nearly homogeneous. The final rupture may thus be seen as an 
unstable growth of a single macroscopic crack. 

When exposed to compressive loading, polycrystalline rocks exhibit a very 
complex nonlinear response. The following effects are usually observed in 
confined and unconfined compression tests (cf. [16, 47, 86, 118]): threshold­
type deviation from linear elastic behavior, gradual degradation of elastic 
constants, influence of confining pressure on ultimate strength and failure 
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14 M. BASISTA AND W. WF,;GLEWSKI 

modes, positive dilatancy (nonlinear volume increase), anisotropy induced 
by directional process of microcrack evolution, hysteresis loops in stress­
strain curves in loading-unloading-reloading cycles, pronounced permanent 
volumetric strain after complete unloading, softening regime in strain­
controlled tests. Most of these features are intimately related to material 
damage and fracture processes accompanying rock deformation. Generally 
speaking, the compressive damage in rocks is much more complex than 
the tensile one since it is not just instability of a single most favorably 
oriented crack but a cooperative action of a distributed microcrack array. 
The cooperative damage process by which these microcracks produce the 
macroscopic failure has remained one of the most elusive problems of modern 
fracture mechanics. There is no doubt, however, that final failure occurs 
at a stress which can be much larger than the one at which individual 
microcracks become active. Hence microcrack interactions must play a vital 
role in compressive fracture of rocks. The confining (compressive) stress plays 
a stabilizing role in the microcrack growth. If there is no confinement, the 
final failure is typically unstable and is brought about by the propagation of a 
few axial cracks forming a vertical splitting surface. By contrast, even a small 
amount of lateral compressive stress makes individual microcracks extend in 
a stable manner. A microcrack will extend once the fracture toughness K1c 

is exceeded locally to relieve the local stress concentrations, and will then 
arrest. However, under compression the stress intensity factor is a decreasing 
function of the microcrack length and individual microcracks only extend 
until equilibrium K1 = K1c is reached. An increase in stress difference is 
needed for further growth of the arrested microcracks and to activate other 
as yet dormant microcracks. Once the microcrack has grown relaxing the 
stress locally in a high stress zone, it becomes a relatively low stress zone. 
It is very likely that the next stress relief will be accommodated by the 
growth of a different microcrack rather than by further extension of the 
same microcrack since the latter is embedded in a low stress zone. Under 
the conditions of increasing stress, the population of activated microcracks 
reaches eventually a density at which microcrack interactions start to play a 
crucial role. When this has happened, the simple scenario of stress relief is no 
more valid since the cooperative action of interacting microcracks may induce 
stress amplification effects on other microcracks leading ultimately to overall 
instability and failure. In stress-strain diagrams this situation corresponds to 
a flip from strain hardening to strain softening. 
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As for overall failure, brittle rocks in compression may fail in a bewildering 
variety of modes. In unconfined compression tests specimens tend to fail 
by vertical splitting. At low and intermediate confining pressures failure 
occurs by localization of deformation on a shear band (or cone fracture). 
At high confining pressures a single failure surface does not form but the 
specimen deforms in a pseudo-ductile mode ( cataclastic flow) with large 
scale deformations and many short, homogeneously distributed microcracks. 
In this case, the material may flow at constant stress or manifest strain 
hardening. 
The deformation and failure mode in rocks tested in compression are highly 
dependent on the end-boundary conditions. During compressive loading a 
frictional constraint develops at the interface between the specimen and 
loading device. A cylindrical geometry when placed in direct contact with 
rigid platens takes on a barrel shape and a nonuniform stress state develops 
throughout the cylinder. In material testing the occurrence of a non-uniform 
stress state is a serious hindrance since the observed response may then 
be due to unknown boundary conditions - an undesirable effect. Hence, 
much effort in the laboratory work goes into achievement of homogeneous 
deformation by finding an appropriate friction reducer, (62]. Incidentally, 
the compressive strength (a constant critical stress at failure), being a very 
useful failure parameter for ductile materials, becomes of limited utility for 
rock-like materials because it varies with lateral pressure, specimen size and 
geometry. Instead, the fracture toughness is found to be the fundamental 
property dictating compressive failure. This fact has long been recognized in 
materials science but it seems not to be the case in rock mechanics where 
fc still persists despite its obvious lack of universality, (54]. 
The outburst of micromechanical damage models in the past two decades 
can, to some extent, be explained as search for remedy for the shortcomings 
of CDM models (cf. (56, 78, 82]). The attribute micromechanical is 
commonly attached to the class of models relating macroproperties 
and macroresponse of a material to its microstructure. As such, these 
models span two different scales, one of which is typically inhomogeneous 
(microscale) while the other (macroscale) is, for computational expedience, 
approximated by a homogeneous effective continuum. An unquestionable 
merit of micromechanical damage models is in their ability of explaining 
the physics of damage with a minimum of ambiguity and arbitrariness. The 
constants in a micromechanical model have clear physical interpretation. 
This is not to say, though, that their magnitudes can always be 
measured using available experimental techniques. 
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The response of a brittle solid in the ascending part of the stress-strain 
curve depends predominantly on the volume averages of defects. The effect of 
microcracks is felt by the material in a smoothed sense involving orientation­
weighed volume averages of microcracks. Consequently, the pre-peak response 
can accurately be represented using micromechanical models based on 
the representative volume element (RVE) and the effective continuum 
concept ( cf. self-consistent method, differential scheme, etc.). Also, carefully 
constructed, i.e. inspired by micromechanics, phenomenological damage 
models have a good chance for success in the pre-peak regime. As the external 
load increases, the evolving defects reach a certain threshold density at which 
their hitherto-dilute concentration (ordered state) is replaced by a large 
defect cluster (disordered state). The emergence of a single dominant cluster 
(crack band or macrocrack) is preceded by intensive cooperative action of 
defects involving their own interactions and interplay between the hot spots 
(stress concentrations) and weak links (cleavage planes, interfaces, etc.). The 
transition from an ordered state to a disordered state is a non-deterministic, 
non-local, non-linear and non-equilibrium process which requires different 
methods of analysis than those of continuum mechanics, (56). Such methods 
are offered by the physics of critical phenomena - a branch of modern 
statistical physics dealing with the behavior of disordered systems. The 
most known and probably the most appealing theory of that kind is the 
percolation theory (e.g. (107]). Originally applied to transport phenomena 
like conduction and diffusion, the percolation theory turned out to be a 
powerful tool when applied to brittle damage and fracture problems. The 
aim of the percolation studies is twofold: (1) determination of percolation 
thresholds, i.e. critical defect densities at which infinite clusters are formed, 
and (2) disclosure of scaling laws for the transport properties in the vicinity 
of the percolation threshold. On the credit side, no simplifying assumptions 
with regard to crack shapes and sizes, distributions of weak spots, etc., 
are necessary for the percolation theory to be applicable. On the debit 
side, percolation theory relies heavily on large-scale numerical simulations 
requiring considerable computational work when determining the percolation 
thresholds and universal parameters needed in applications. 
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1. Micromechanics of rock inelasticity: tension 

Consider an elastic plate (RYE) with N non-interacting, randomly 
distributed open microcracks under plane stress (Fig.l). The objective here 
is to formulate a micromechanical damage model whose basic ingredient is 
the behavior of a single microcrack in a homogeneous tensile stress field. The 
analysis is confined to the two-dimensional case, small elastic deformations 
and isothermal conditions. 
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Figure 1: RYE with N randomly oriented microcracks in plane stress 
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1.1. Thermodynamic considerations 

The Gibbs energy density for the RVE with N rectilinear microcracks is given 
by 

(1.1) 
where 'ljJ0 ( u) is the Gibbs energy density for the virgin matrix material, 
l::i'ljJ (u, a) is the change in that energy due to appearance of the microcracks, 
S~kl is the elastic compliance tensor of the matrix material, Eb = Eo in plane 
stress or Eb = Eo/ (1- v5) in plane strain, Eo, vo are Young's modulus and 
Poisson's ratio of the matrix material, Kf, Kfi are the Mode I and Mode II 
stress intensity factors at the tip of the L-th microcrack, l::iA denotes the 
area of the representative surface element. 

In the three-dimensional case all three SIFs must enter Eq. 1.1. It 
is a common modeling practice to assume the penny-shape geometry of 
real microcracks since for such cracks K I, K I I, K I I I are often available in 
analytical form. 

In the plane case, K f and K fi can be expressed as 

Kf = aL..;;-;;L, Kh = TL..;;-;;L. (1.2) 

Using elementary relations between the tractions and the stress tensor, we 
get 

(1.3) 

For non-interacting microcracks, Eq. (1.1) can be integrated by use of Eq. 
(1.3): 

Incidentally, the second order symmetric tensor 

N 

w = ;A L (a2n ® n)L, 
L=l 

(1.5) 
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is the so-called crack density tensor, well-known in the damage mechanics 
literature (cf. [49, 71, 80, 113]). A dual derivation to Eq. (1.4) was presented 
in [52), where the elastic potential of a microcracked body was expressed via 
the crack opening displacements. 

From Eq. (1.4), the general incremental form of the strain-stress relation 
reads 

a2'1/J a2'1/J 
dEij = a () dakl +a a dwkl· 

aij akl aij Wkl 
(1.6) 

After respective differentiation operations, the final expression becomes 

v0 1 + v0 21r 
dEij =- E' dakk6ij + ----g-daij + E' (wikdakj + dwikakj), (1.7) 

0 0 0 

where the increment of the microcrack density tensor is given by 

N N 

dwik = L (dNika2)L + 2 L (Nikada)L. (1.8) 
L=l L=l 

The dyad Nik = nink characterizes the microcrack orientation. Note that for 
self-similar microcrack growth dN = 0, in all other cases dN =/= 0. 

1.2. Kinetics of microcrack growth 

Even though the initial orientation of microcracks is a random variable, only 
those microcracks which are perpendicular or nearly perpendicular to the 
maximum tensile stress direction will experience a substantial growth. The 
material inhomogeneity may somewhat disturb this picture since microcracks 
often become trapped by higher energy barriers (hard particles, grain 
boundaries, etc.) and are forced to change their path. Nevertheless, when 
zoomed out, a tortuous microcrack path generally follows the direction 
normal to the greatest principal stress direction, say a I I. Guided by the 
LEFM solution, it is further assumed that inclined microcracks will evolve 
by sprouting curvilinear wings from the tips of the original microcracks. As 
the deformation goes on, the wings will promptly align themselves with the 
path normal to a I I, Fig. 2. 

Since the SIFs for the kinked microcrack are not available in closed 
analytical form, the following simplifications are made with regard to the 
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micro crack kinetics: ( 1) actual kinked microcrack is represented by a fictitious 
straight microcrack of the length 2 (a+ da) as shown in Fig. 2; (2) microcrack 
starts to grow if the stress and microcrack length projected on the plane 
normal to the maximum tensile stress direction attain threshold values 
yielded by the fracture condition. 

I I 
au 

I I I 
- --. 

fictitious microcrack - projected microcrack --. 

- --. 
qJ+a : (j( - A~~. · ,' --. 

- --. 2(a+da) 

- actual (kinked) microcrack. --. 

l l l l l 
Figure 2: Model mechanism of inclined microcrack growth under biaxial tension 

To include, albeit approximately, the effect of rock heterogeneity the 
classical Griffith criterion is replaced in the present model by the R-curve 
concept, namely 

(1.9) 

A more precise form of Eq. (1.9) can be deduced from the available data 
of the crack resistance curve K1c (~a) for a particular rock (e.g. [46, 72, 73, 
76, 101 , 108]). These data suggest that a typical K1c (~a) curve for rocks 
(also concrete or mortar) is initially very steep and keeps rising until a steady 
state (plateau) is reached where the curve becomes flat, Fig. 3. 

Based on the above reasoning, the following exponential form for the 
material function K1c (~a) is proposed [7]; see also [110]. 

~a 
-ry-

K/c (~a) = Kcu- (Kcu- Kcl) e ao (1.10) 
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where Kcu, Kct, 7J are material constants and ao is the initial microcrack 
half-length. It should be stressed that the specific choice of the material 
function (1.10) is not crucial for the present model. Other possible expressions 
for K1c (~a), accounting for the energy barriers distribution, can be 
incorporated if required. 

The slope of the Kic (~a) curve may vary with specimen's size and 
geometry - an undesirable effect. However, for small cracks in an infinite 
plate ( cf. present model) the assumption of a size and geometry independent 
crack resistance curve is reasonable, [72]. 

In view of the introduced simplifications, Eq. (1.10) takes the form 

a . ·nfnl! v;;;;?aP = K - (K - K ) e-7Jf:l.aP fa6 
'LJ 'L J cu cu cl ' (1.11) 

where the superscript P stands for "projected" on the line AB in Fig. 3 

Kk 
K -K (K K ) -hllala0 /c:- Cll- Cll- d e 

Kcu ------- - ·-------

K
1
c = const. 

Kd~-----------------------------

!la 

0 

Figure 3: Material function K1c (L:l.a) 

From Eq. ( 1.11) the stress tensor and microcrack length are related as 

where Nf; = nfnf. 
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The use of a rotating microcrack ( cf. Fig. 2) involves a change in the 
microcrack orientation represented by the tensor dNik, namely 

dN;k =de/> (N;tvzk + vkzNu), vzk = [ ~1 ~ ] · (1.13) 

Finally, the present model is completed by two geometrical relations: 

daP - da 
- cos ( <p + a) ' 

da 
d¢= -tg(<p+a) 
. a 

(1.14) 

1.3. Illustrative example 

A simple case of an RVE with a single microcrack under uniaxial tension will 
now be considered. The microcrack is perpendicular to the applied stress 
direction and it remains so as the load increases (self-similar growth). In this 
case the Gibbs energy density can rigorously be expressed as 

(1.15) 

Introduce dimensionless variables and material constants defined as 
follows 

a=a/ao, €=£/co, a= a/ao, * Kcu 1 '=->. Kcl -
(1.16) 

The microcrack growth condition Eq. (1.11) can be recast into a simple 
form 

iT = ~ [ -y• + (1 - -y•) e~(l-ii) ]. (1.17) 

Finally, the strain-stress relation follows from Eqs. (1.6), (1.15)-(1.17) as 

d€ = - 1- [1 + Kii2 + 4Kii2 -y•- (r -:-) 1) e~(i-Q) ] da. (1.18) 
1 +K ('Y* -1) eTJ I-a (27Ja+ 1)- 'Y* 

Note that K can be interpreted as a microcrack density parameter. 
It can be deduced that for non-interacting microcracks K should not 
exceed 0.1 (cf. [35]). 
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The stress-strain curves in the integrated form obtained from Eq. (1.18) 
are shown in Fig. 4. Qualitatively these curves correctly reflect the linear and 
hardening regimes. In the present form, the model does not aspire, though, 
to handle the softening regime. 

Figure 4: Predicted stress-strain curves in uniaxial tension for some values of ry, 'Y* 

The specific expression (1.10) for the fracture toughness function 
K1c (~a) emphasizes the role of material inhomogeneity and inelastic 
processes in the neighborhood of the microcrack tip. It leads eventually to 
nonlinear stress-strain curves closely matching the shape of the experimental 
curves. Note, however, that an alternative microcracking scenario is often 
invoked. It assumes that K1c is constant while the observed nonlinear 
behavior results from sequential activations and arrests of the preexisting 
microcracks, [34, 58, 109]. 
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2. Micromechanics of rock inelasticity: compression 

The rock-like materials loaded in compression may deform according to 
different micromechanisms. For porous brittle materials, the pore-squeezing 
mechanism (Fig. 5a) is often employed to account for the appearance 
and growth of tension microcracks parallel to the direction of maximum 
compressive stress, [98). Other idealizations, based on K1-solutions, identify 
bending of elongated inclusions (Fig. 5b) or mismatch in the elastic constants 
of material constituents (Fig. 5c) as potential sources of brittle microcracking, 
[53] . Also, the mechanism shown in Fig. 5d is invoked when investigating 
compressive damage in concrete ( cf. [34, 84] . 

! l (b) 

*~re 
~ ~ ! 

...... -...... 

...... 

...... 

...... 

! ! ! 
(c) (d) 

-- microcrack 

i i i i 
Figure 5: Several mechanisms of microcrack nucleation and growth under compression: (a) 

pore-squeezing (b) bending of elongated inclusion (c) mismatch in elastic constants (d) squeezing 
out of aggregates 
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2.1. Sliding microcrack mechanism 

The sliding crack mechanism (Fig. 6) originated · in Brace and Bombolakis, 
[15], and pursued thereafter by many authors (e.g. [8, ·29, 33, 45, 48, 50, 53, 
64, 65, 77, 81, 94, 98, 115]) is considered to be one of the major sources of 
rock inelasticity. It seems to capture most of the characteristics of the pre­
peak response of rocks under compressive stresses. Apparently, it is for this 
versatility that it has been so widely used in rock mechanics. On the othe,r 
hand there had been a long debate whether this mechanism actually occurs 
in real brittle materials . Some authors argued that the SEM observations do 

Q' 

\ 

(} \ 
- _::· -j_ 

Figure 6 : Sliding microcrack model of brittle deformation under biaxial compression 

not support the existence of winged microcracks but seem to favor complex 
configurations of tensile microcracks propagating from different sources. 
Recent data from the AE tests do indicate that both tensile and shear events 
occur . during brittle rock deformation, [70, 117]. 

For compact and relatively homogeneous rocks such as granite, this 
mechanism indeed seems to be a major contributor to inelastic deformation. 
However, more sophisticated experimental techniques and problem-oriented 
experimental programs are still necessary to settle that dispute. 
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2.2. Constitutive model 

A key hypothesis of the Rice, [91, 92], thermodynamic framework is that 
every irreversible process of quasi-static deformation over a statistically 
homogeneous material sample under macroscopically homogeneous strain 
and temperature may be viewed as a sequence of (fictitious) constrained 
equilibrium states at which internal variables 6, ~2, •.. , ~n are somehow 
frozen so as to have the same values as in the actual state. Within this 
framework Rice, [91], derived a fundamental micro-macro formula relating 
the increments of internal microscopic variables to the inelastic portions of 
the macroscopic strain increments: 

(2.1) 

where H denotes the current collection of values of ~b ~2, ... , ~n 

characterizing the current state of arrangement of the material constituents 
within the volume Vo of an RVE; f o: is the set of thermodynamic forces 
conjugate to ~o:. 

The basic premise of Rice's approach, stating that material response 
be purely elastic when internal variables are held constant, is satisfied for 
frictional microcracks as well. No energy is dissipated if the slip displacements 
and the wing microcrack lengths are fixed through appropriate constraints. 
Hence, if the total strain increment is decomposed as 

(2.2) 

then its inelastic part is derivable from (2.1). The instantaneous compliance 
tensor Mijkl is given by 

(2.3) 
H fixed 

so that Mijkl is symmetric on interchange of ij and kl (diagonal symmetry). 
For open microcracks, the instantaneous compliance M coincides with the 
secant (effective) compliance S which is symmetric and anisotropic, [44]. 
It should be noted that at fixed microcrack lengths, M is nothing else but 
the unloading compliance. This is so because open cracks are usually assumed 
to close perfectly upon unloading. However, for frictional sliding on closed 
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microcracks the secant compliance matrix is non-symmetric, (e.g. [48, 52]) 
and the elastic potential defined as in Eq. (2.3) does not exist. The secant 
effective compliance is not the unloading compliance due to frictional effects. 
In conclusion, all basic relations of the Rice thermodynamic framework 
remain valid except that the instantaneous compliance M is not the secant 
compliance anymore. It is just an auxiliary concept which can be expressed 
in terms of M 0 and the wing microcrack length l, [6]. 

The nucleation and growth of tension wings are induced by the wedging 
action of the frictional sliding on the surrounding material. In order to make 
the analytical model tractable, the curvilinear wings will be represented by 
the equivalent straight ones whose orientation B is to be determined by 
maximizing K1 (B) at a given straight wing length l. Consequently, the curved 
trajectory of the wing tip will be modeled as a sequence of positions of the 
straight wing cracks rotating around the corner points P or P' by the angle 
for which K1 reaches a maximum. 

The Gibbs energy density due to N non-interacting winged microcracks 
in the RVE is [8] 

[ 

c b(y) l l 
t'!.t/1 (u, H)=~ 1 I Txy (o-, b)dbdy + 2 I G (u, l, (}) dl 

= ~ [2c l Txy (u, b)db + ~b 2/ (KJ + Kii} dl 

(2.4) 

c 
where G is the elastic energy release rate, b = J b(y )dy is the average slip 

-c 
displacement, and Eb has already been defined in Eq. (1.1). The integrated 
form of (2.4), although analytic, is rather lengthy and is not displayed here. 

The inelastic change of 'lj; reads 

d},,, =a~ db o'lj; dl o'lj; dB = 
o/ ab + az + aB 

= ~ [Txy2c db+ 2Gdl + :(} ( 2/ Gdl) d(}] = ~ t /o~o· (2.5) 

From Eq. (2.5), the microfluxes and the conjugated thermodynamic forces 
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for a single microcrack are 

l , - ;ac · h = Txy2c, ~~ = db; /2 = G, d~2 = dl; /3 = . {)() dl, ~3 =dB. (2 .6) 

0 

The explicit expressions for h, /2, !3 are contingent on the actual shear 
stress Txy on PP' and the stress intensity factors KI and Ku at the wing 
tips. 

Using stress superposition and balancing the forces projected on the line 
PP' in the cross section QPP'Q " (Fig. 6), it follows that 

Teff2C- [an cos2 (II+ cp) + a22 sin2 (II+ cp) + TJ2 sin(2(11 + cp))] 21 sinll+ 

+[~(an - a22) sin (2 (II+ cp)) - TJ2Cos(2(11 + cp))] 21 cosll + 2Pel (b, I) = 0, 

(2.7) 
where Fez (b, l) =FfzsinB + Ffzi cos() is the sum of the projections on PP' of 
the appropriate elastic crack-closing forces Ffz, Ffzi in Mode I and Mode II, 
respectively. The Fe~' Ffzi are the forces in elastic material due to stress 
singularities at the crack tip. In view of Eqs. (2.6) and (2.7), the force 
conjugated to db becomes 

h = r~2c- an2lsincp cos (B + cp) + a222lcoscp sin (B + cp) + 
- T122lcos ( () + 2cp) - 2Fel (b, l) 

(2.8) 

The exact solution for the SIFs at the tips of curvilinear wings can 
be obtained only numerically [45, 64]. However, numerous closed-form 
approximations of K I and K I I are available in the literature. They can be 
arranged in two classes: displacement-driven models (e.g. [81]) and force­
driven models (e.g. [43, 53, 77, 115]). The displacement-driven and the 
force-driven models of the basic mechanism are depicted in Fig. 7. Recently, 
Lehner and Kachanov, [68], published an exhaustive overview of all available 
approximations of the SIFs for the winged crack. 

In the displacement-driven model, the rectilinear wings are pushed 
sideways by a rigid wedge whose dimensions are determined by the 
preexisting microcrack length 2c and the varying slip displacement b. Here, 
the SIFs involve complete elliptic integrals of the first and second kind K ( k) 
and E(k), cf. [111]. These SIFs are not expressible by means of analytic 
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functions except for the special case of a semi-infinite wedge, which would 
correspond to a pair of separate straight wing microcracks not interacting 
with each other. This might be a realistic approximation only for the initial 
phase of kinking when the wings are very small ( l << c). 

.... 
~Q}tf +-

(J2 .... +-

+-

(a) (b) 

Figure 7: Two models of sliding crack mechanism: (a) displacement driven, (b) force driven 

For separate wings, there is no wing-wing interaction thus the modulus k 
equals zero and the SIFs at the tips Q and Q' are (e.g. (111]) 

K1(b,l,u)= 

Eb bsinO ffl 2 = + -
2 

[au cos (0 + cp) + 
2J27r (l + l**) 

+ a22sin
2 (0 + cp) + T12sin (2 (0 + cp))], 

Ku(b,l,u) = 

E' bcosO ffl 
O - - [712COS (2 (0 + cp)) + 

2J2n (l + l**) 2 
= 

- ~(au- a22) sin (2 (0 + cp))] , 

(2.9) 

where l** = 0.27 7r2c/32 is the nucleus wing length introduced in (81) to get 
the correct behavior of Eq. (2.9) in the short wing limit. 

Strictly speaking, the original sliding microcrack is displacement-driven. 
The SIFs at the wing tips are directly proportional to the relative slip of 
the slanted micro crack faces. However, during the forward- or backsliding, 
the wedging action on the wings may equivalently be seen as force­
driven. Then, the wedging effect can be represented by two collinear 
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splitting forces F = - 2cTef 1, Fig. 7 b· If the curvilinear wings are further 
approximated by the straight cracks whose orientation Be satisfies the 
condition K1 (Be) -?max, the estimates of the SIFs are, (43): 

K1 (F, l, u) = 

FsinB r-; 2 
---;::==;::;::===;:::;:: + v 7r l [ 0" 11 cos ( B + <p) + J1r (z + z·) 
+u22sin2 (B + <p) + T12sin(2 (B + <p))] , 

Ku (F, l, u) = 

-FsinB - hl [-! (un- u22) sin(2 (B + <p)) + 
-v;=7r::::::;:( z=+=z=·) 
+ r12cos(2 (B + <p))] , 

(2.10) 

where l* = 0.27 c plays the same role as l** in the displacement-driven model. 

The inelastic strains induced by the coupled effects of frictional sliding 
along preexisting flaw, wing extension, and its simultaneous rotation can 
now be computed. It should be kept in mind that the wing rotation 
is just a by-product of the adopted model of the curvilinear wing tip 
trajectory. The wing length itself is calculated from the K1 = K1e condition. 
The inelastic strain increments are obtained from the fundamental relation 
(2.1) using the derived microstructural thermodynamic forces Eqs (2.6), 
(2.8) and the approximate expressions for the SIFs, Eqs (2.9), (2.10). It is 
essential that the conjugate forces fa be symmetrized in the components of 
u and all three components of the stress applied at infinity be included when 
performing differentiation in Eq. (2.1) . This differentiation is to be carried out 
at fixed H , i.e. at b, fheld constant, where b = b/c and i = l/c. In the force­
driven model (Fig. 7b), the effect of frictional sliding along P P' is represented 
by the action of two collinear splitting forces F. Once the internal variables 
b, i are held frozen, so are the splitting forces F. Therefore, the physical law 
(i .e. friction) for F should not be substituted in the expressions for the SIFs 
prior to the differentiation operation in Eq. (2.1). 

The total strain increment consists of the following terms 

(2.11) 

which represent, in order of appearance, the contributions from elasticity, 
frictional sliding, wing extension and wing rotation. Limited by space, the 

http://rcin.org.pl



MICROMECHANICAL MODELING OF MICROCRACKED BRITTLE SOLIDS 31 

explicit expressions for the individual terms in Eq. (2.11) are here omitted 
and can be found elsewhere, [5]. 

The constitutive framework is made complete by specifying the kinetic 
equations for the rates d~d dt. Since no crack-crack interaction is included, it 
suffices to consider kinetic equations for the three internal variables b, l, 8 
of a single winged microcrack. Consequently, the overall strains may be 
estimated afterwards using a simple averaging procedure that sums up the 
individual contributions of all active microcracks while accounting for their 
spatial distribution. 

In general, the slip displacement b is to be computed from the forward­
or backsliding activation condition, the wing length l from the winged 
microcrack growth condition, the orientation angle 8 of the equivalent 
straig~t .microcrack from the maximization of K1 with respect to 8. The 

rates b, l, iJ expressed in terms of the applied stress rates aij are obtained 
imposing the consistency requirements upon the above conditions. 

The sliding activation condition is obtained by combining the equilibrium 
(2. 7) and the Mohr-Coulomb condition for frictional glide: 

0 8 = O'll [ COS<p ( sin<p - J.-L COS<p) + L COS ( 8 + <p) sin<p] 

- a22 [ sin<p ( cos<p + J.-L sin<p) + lsin ( 8 + <p) cos<p] (2.12) 

+ 712 [cos2<p + J.-L sin2<p -l cos (8 + 2<p)] + Tc + c-1 Pel= 0. 

As noticed by Moss and Gupta, [77], it is difficult to determine Fez because 
the stress-COD expression for the entire kinked microcrack is not available. 
Consequently, some approximate solutions were sought. For example, Moss 
and Gupta, [77], neglected the initial slit ( c ~ 0) and considered two limiting 
cases: 8 ~ 90° (locally Mode I microcrack) and 8 ~ 0° (Mode II microcrack). 
Assuming that the wings grow parallel to a1 direction (i.e. 8 + <p = 1r /2), 
these authors obtained from Eq. (2.12) that 

Fez= b Eb/4. (2.13) 

Estimation of the elastic restoring forces makes the . computation 

of b straightforward. Furthermore, the kinetic equation for b can now be 
derived from the sliding activation Eq. (2.12) by time differentiation. For the 

http://rcin.org.pl



32 M. BASISTA AND W. W§GLEWSKI 

sake of completeness, we recall also an alternative algorithm for computing 
b proposed by Nemat-Nasser and Obata (81). These authors did not analyze 
the equilibrium of the slanted microcrack but assumed that b can be derived 
from a duality of K1 factors upon requiring that K1 of the displacement­
driven model Eq. (2.9) be equal to that of the force-driven model Eq. (2.10) 
when the sliding mechanism is active. 

The remaining kinematic variables land B are obtained as functions of 
stresses from the following conditions 

8K1 =O 
ao ' (2.14) 

where K1 is given by ~q. (2.9) or (2.10) depending on the considered model. 

Kinetic relations for land 0 follow from Eq. (2.14) by time differentiation. 
The resulting equations are algebraically quite involved thus were solved 
numerically using the symbolic algebra softwares. In the long-wing limit, 
these equations take simpler forms and for the uniaxial compression are even 
solvable analytically. 

The above equations were derived for loading regime. Unloading in case of 
sliding microcracks is a complex phenomenon since any reduction of applied 
stresses does not necessarily mean elastic unloading. The energy may locally 
be dissipated on backsliding or wing growth of some microcracks despite the 
fact that the overall stress is actually decreasing. Also, unloading on some 
sliding microcracks may happen if the load path is changed, the load itself 
being not necessarily reduced. Possible cases of unloading are discussed in 
detail in [8], where the corresponding dEij - daij equations are also derived. 

2.3. Application 

The developed constitutive model was implemented numerically 
using Mathematica and applied to reproduce the test data of 
Zoback and Byerlee, [118], on . Westerly granite under unconfined 
compression. Westerly granite is a relatively homogeneous and nearly 
brittle compact rock. For these reasons it was selected for the verification of 
the present analytical model. 

At distributed damage, the overall stresses and strains may fairly well 
be approximated by simple area averages of the contributions of individual 
sliding microcracks. Assuming a finite number of specific orientations of the 
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preexisting microcracks, the average strain increment may be computed as 

1 R 
dEij = R L dEij ( 'Pr, wo( 'Pr)) , 

r=l 

(2.15) 

where R is the number of considered orientations ( 'Pr ). In the example to 
follow , an isotropic distribution of preexisting microcracks is assumed, i.e. all 
microcrack orientations are likely to appear. From symmetry arguments, the 
shear strains in the global coordinate system disappear. 

The material constants used in computations were identified as follows: 

Eo = 58GPa, vo = 0.23, auc = -204M Pa, J.L = 0.65, Tc = 12M Pa, 
r= -4 (2.16) 

Klc = 0.7 M Pay rn, wo = 0.375, R = 90, c = 5 10 m. 

The numerical values for Eo, vo, auc were read off from the test curves in (118]; 
see also (22]; auc denotes the highest compressive stress recorded in loading. 
The friction coefficient J.L, the average initial microcrack half-length c, and the 
fracture toughness K1c were estimated using the values for Westerly granite 
reported in (22, 47, 77, 81] . No data were available for Westerly granite with 

regard to the initial microcrack density parameter wo = ~~
2

• The selected 
value provided the best fit with the data, and is rather consistent with those 
assumed in [77, 81]. 

The solid curves depicted in Fig. 8 represent (a - c) equations 
predicted by the present model while· dots are the data measured by 

UNIAXIAL COMPRESSION 

200r-------~----------~ 

'iii 150 
a.. 
~ 
(/) 

~ 100 
CI: ._ 
(/) 

50 

VOLUMETRIC STRAIN *1 0"3 
Figure 8: Predicted stress-volumetric strain curves (solid lines) vs. test data on Westerly 

granite from unconfined compression (from [81) 
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Zoback and Byerlee, [118), on cylindrical specimens in uniaxial compression. 
Note that material parameters used in computations are well documented in 
the referenced literature. Typically of micromechanical models, the present 
formulation contains no fitting parameters. 

2.4. Interaction of microcracks under compression 

Consider two closed cracks in an infinite, linear elastic plate (Fig. 9) with 
the local (crack-attached) coordinate systems (xL, yL) and the global 
coordinate system (x11 x2) . To facilitate drawing, only two cracks are shown 

~ ~ ~ 
00 

a2 

A 00 00 a, a, - - - -- - - -- - - -- - - -+ - - - -- - - -- - - -

+ 

Figure 9: Superposition of stresses for interacting frictional cracks in infinite, linear 
elastic plate under compression 

but the ensuing equations are formulated for an arbitrary 2D crack array 
( L = 1, 2, .... , N). The actual (contact) shear and normal stresses existing 
on the faces of L-th crack are denoted by r:fy, u~. The boundary-value 
problem A can trivially be decomposed into two subproblems B, C. On 
the other hand, the problem C can be represented as a superposition of 
N subproblems, each involving only a single crack but subjected to unknown 
shear and normal stresses r;f, u;L. The adopted sign convention is that of 
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continuum mechanics, i.e. compression is viewed negative. Consequently, for 
closed frictional cracks it follows from Fig. 9 that 

(2.17) 

a*L = aL- (a00L + LlaL) (2.18) y y y y ' 

where r~L, aC:L are the resolved shear and normal stresses in the continuous 
material along the line of L-th crack; Llr}'y, Llaff are the interaction terms, 
i.e. shear and normal stresses generated by all other cracks along the line of 
L-th crack in the continuous material. As long as the crack remains closed, 
it holds a;L = 0. Otherwise, a;L = - ( aC:L + Llaff). 

A necessary prerequisite for computation of the SIFs is determination of 
the loading of crack faces ( r;ff, a;L). Once r;ff, a;L are known, the SIFs can 
be computed according to the well-known formulas, [111]: 

(2.19) 

(2.20) 

where p*L = -a*L r*L = -r*L due to the sign convention and cL denotes y ' xy 
the half-length of a straight crack. For closed cracks only (2.20) is relevant. 

In essence, the method devised in [51] for open cracks is based on the 
following A nsatz: 

The unknown tractions induced on the considered crack by the presence 
of other cracks can be approximated by tractions that would have been acted 
on the considered crack if the other cracks were loaded by uniform average 
(normal and shear) tractions. 

It is claimed now that irrespective of whether interacting cracks are open 
or frictional, the central assumption of the Kachanov method remains valid, 
i.e. the unknown crack interaction stresses Llaff, Llr}'y are induced only by 
uniform average tractions (as yet unknown) acting on the other cracks' faces. 
A far-reaching consequence of this assumption is that it yields a functional 
form for the unknown stresses Llaff, Ll r}'y since the problem of a single 
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crack loaded by uniform tractions has analytical solution. Denote by PiJ 
and Ti1 standard stress fields that are generated in the continuous material 
by the K-th crack loaded by uniform normal and shear tractions of unit 
intensity, respectively. These standard stress fields can be computed using a 
suitable Westergaard function (as it is done in this chapter) or can be found 
in textbooks on linear fracture mechanics. Hence, the crack interaction terms 
~a{:, ~ r}'y, (generated in the continuous material) can be expressed in the 
following general form, [51], 

~a~=-n~L) [~1(a;K)+7if(r;:)J n)L), K,L=l, ... ,N; (K-:/=L), 
(2.21) 

~r;y = -n~L) [Pi1 (a;K) +Ti1 (r;:)J mJL), K,L = l, ... ,N; (K-:/= L). 
(2.22) 

Here, the sum convention applies to the repeated indices K while it does 
not apply to the indices placed in parentheses i.e. (L); nL, mL are the 
crack-attached normal and tangential unit vectors; the bracket () denotes 
the average value of the bracketed quantity. 

The actual stresses Txy, ay induced by the frictional-cohesive contact 
on the crack faces are interrelated through a law of dry friction . A simple 
Coulomb-Mohr law is adopted for this purpose: 

(2.23) 

where Tc is the cohesion and f-l is the coefficient of dry friction, both being 
positive constants. In Eq. (2.23) and the equations to follow, the upper 
signs hold for cracks oriented at 0 < <pL < ~ while the lower ones for 
-~ < <pL < 0, Fig. 9. 

From the above equations it follows that 

The averaging of Eq. (2.24) leads to 

(r;~) ==fTc± J-LaC:L- r:L ± J-L (~a~)- (~r;y), 

where: 
(~a~)= -AtL (a;K)- A~L (r;;), 

(~r;yl = -A~L (a;K)- A!{l (r;;), 

K,L = 1,2, ... ,N. 
(2.24) 

(2.25) 

(2.26) 

(2.27) 

http://rcin.org.pl



MICROMECHANICAL MODELING OF MICROCRACKED BRITTLE SOLIDS 37 

where A~L are the Kachanov, (51], transmission factors (interaction 
matrices) defined as follows 

A{\L = n~L) ( ~J) (L) n;L) 

A~L = n~L) ( TiJ) (L) n;L) 

A!{/= n~L) ( ~J) (L) m;L) 

A~L = n~L) ( TiJ) (L) m;L) 

A K L = 0· (K = L). 
'tJ ' 

(K # L) (2.28) 

(2.29) 

For convenience, the notation of the transmission factors in 
Eqs (2.28)-(2.29) has been slightly changed (cf. (5]) as compared with that in 
the original paper ((51]). For example, AfAL denotes the average shear stress 
(lower index 2) on crack L due to unit normal stress (lower index 1) on crack 
K. Note that to compute the transmission factors the standard stress fields 
generated by the uniformly loaded K -th crack have to be integrated along 
the line of L-th crack. For a given configuration of N cracks this is usually 
done by numerical integration. 

For closed frictional cracks u;L = 0, thus the following system of N linear 
equations is obtained from Eqs (2.25)-(2.29), (9], 

(8KL ± 11Af,l- A~L) (r;i/) ==fTc± JlCT:L- T~L, (K, L = 1, 2, ... , N). 
(2.30) 

The right hand side of Eq. (2.30) specifies the remote loading conditions 
and the friction-cohesion resistance on each crack's faces. In other words, it 
represents the effective (net) shear stress that drives the crack sliding. The 
crack array geometry and the influence of friction on the transmission of shear 
stresses are reflected by the left hand side. The system of equations (2.30) 
with the transmission factors (2.28), (2.29) and a given load (ur;;L, T~L) on 
crack faces constitute the governing system of linear algebraic equations from 
which the average shear stresses ( r;(/) can be computed. 

If the average values of shear stresses ( r;(/) are known, it is 
straightforward to compute the whole distribution of r;(/. From Eq. (2.24), 
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when combined with Eqs (2.22) and (2.23), it follows that 

*L ± ooL ooL (L)TK ( *K) ( (L) + (L)) 
Txy = =fTc j.L(J'y - Txy + ni ij Txy =fJ.L nj mj . (2.31) 

Finally, combining Eqs (2.31) and (2.21), the Ku factors for interacting 
frictional cracks read, [9], 

Kh (+c) =V 1r c(L) ( T~(L) ± Tc =F J.La;:'(L)) + 

+ (T;iJ) [n~L) ( JcL V'!- + ( Tl<d() (±J.Ln\L)- m\L))l J 7r c(L) t cL - ( tJ J J 

-cL 

To evaluate the predictive capability of the present model, the basic equations 
(2.30)-(2.32) have been implemented numerically. The numerical algorithm 
is relatively simple except for the weighted integrals in Eq. (2.32) which 
required some special treatment. 

In Figs 10-12 the present solutions are compared with the 'exact' 
numerical ones obtained by means of the BEM for some test examples. 
The normalized Kn factors vs. the relative distance of crack tips d/ c are 
plotted for frictionless (J.L = 0) and frictional contact (J.L = 0.3) on crack 
faces . The normalization factor K 1 IO is the stress intensity factor for the 
respective single crack under a given load with all other cracks absent. 

All figures clearly show that accuracy of the extended Kachanov method 
is excellent even at very small distances between the crack tips. There are 
at least two reasons for this accuracy. First of all, we have been dealing 
here with somewhat biased, though important, situations of straight cracks 
and distributed loading on crack faces. For such situations the Kachanov 
scheme is best suited. Secondly, the exact formulas for the SIFs (2.19), (2.20) 
involve the unknown crack-face tractions only in an integral sense. This is 
in tune with the basic assumption of the Kachanov met~od stating that it 
is the average tractions that contribute most to the SIFs. As for 3D crack 
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Figure 10: Two collinear cracks under uniaxial compression. Normalized Ku factors vs . relative 
distance of crack tips for Jl = 0; 0.3 and Tc = 0. Solid lines depict present solution, squares -
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Figure 11: Two symmetrically inclined cracks under uniaxial compression. Normalized K I I 
factors vs. relative distance of crack tips. Solid curves - present solution, squares - BEM data for 

Jl = 0, Jl = 0.3 at Tc = 0 
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configurations, it is known from the analysis of open cracks ([52]) that the 
method performs even better than in 2D cases. 

A 
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Figure 12: Two stacked cracks under uniaxial compression. Normalized Ku factors vs. relative 

distance of crack tips. Solid curves- present solution, squares- BEM data, for J.L = 0, J.L = 0.3 at 

Tc = 0 

It seems thus legitimate to state that the Kachanov method of direct crack 
interaction analysis performs exceedingly well for frictional cracks under 
compression for non-process (frozen) patterns of straight cracks. However, 
if the interacting cracks start to grow, it is clear that their growth cannot be 
considered as self-similar. Hence, the key element of the method, being the 
standard stress fields for straight cracks, ceases to be valid. 
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3. Chemo-micromechanics of corrosive damage 
in concrete 

Recent successes in micromechanical modeling, relating microstructure of 
a material to its macroresponse provide a strong stimulus for application 
of the same methodology to the problem of corrosive damage. The main 
objective here is to investigate the relation existing between the performance 
of a structure and the chemical composition of the material-ambient 
system. Gradual degradation of a concrete or mortar specimen exposed to 
sulfate attack, common to many environments, seems to be a particularly 
suitable example for the illustration of the proposed chemo-micromechanical 
modeling. 

3.1. Chemical reaction 

Sulfate attack on concrete may manifest in a variety of ways depending on 
concentration of S04, composition of concrete, source and kind of sulfate. 
The following forms of sulfate attack are distinguished, [18]: 

• sulfate attack associated with ettringite and/ or gypsum formation, 

• sulfate attack associated with brucite formation and decalcification, 

• thaumasite formation. 

Thaumasite ( CaC03 ·CaS04 ·CaSi03 ·15H20) formation is generally 
associated with concretes exposed to carbonate and sulfate at low 
temperatures and pH level above 10.5, [99]. Formation. of thaumasite occurs 
as a result of the reaction between calcium silicate hydrate (C-S-H) and 
so~-, C02 or co5- and water. The rate of thaumasite formation drops off 
markedly at temperatures somewhere between 15°C and 20°C. The damage 
of concrete due to the thaumasite formation is usually profound and is mainly 
due to the decomposition of the C-S-H phase, resulting in a loss of strength. 
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The magnesium sulfate attack on concrete at low concentration of MgS04, 
produces gypsum and ettringite, [1]. However, if sulfate concentration exceeds 
0. 75% the formation of brucite and decalcification takes the upper hand. 
In the initial stage of magnesium sulfate attack brucite layer is formed. 
The brucite formation consumes a high amount of Ca(OH)2, supplied by 
the hydrated paste. When the available Ca(OH)2 is depleted, the pH of 
pore solution gets lowered. In order to maintain its stability, the C-S-H can 
release the Ca(OH)2 to the surrounding solution, thus increasing the pH. 
This process ultimately contributes to the decalcification of the C-S-H, and 
the loss of cementitious structure. In the advanced stage, the Ca ions in the 
C-S-H can be completely replaced by the Mg ions leading to the formation 
of magnesium silicate hydrate (M-S-H) which is non-cementitious. 

Ettringite and gypsum formation are associated with concretes exposed to 
magnesium and sodium sulfate solution at strength below 0. 75%. Ettringite 
and gypsum are the primary products of the chemical reaction between 
a sulfate-bearing solution and cement hydrated or anhydrate particles. 
Ettringite formation will be described on example of magnesium sulfate 
attack. This attack is initiated by the reaction between MgS04 and 
Ca(OH)2. It is followed by the reaction of gypsum with some alumina­
bearing phases like tricalcium aluminate (3CaO·Al203, or C3A in cement 
industry nomenclature) or monosulfate (3CaO·Al203·3CaS04·32H20) to 
form secondary ettringite, as shown in the following reactions: 

Ca ( OHh + MgS04 + 2H20 --+ 

--+ CaS04 · 2H20 + Mg (OHh 

3Ca0 · Al203 + 3 (CaS04 · 2H20) +26H20 --+ 

--+ 3Ca0 · Al203 · 3CaS04 · 32H20 

(3.1) 

The first reaction (3.1) 1 is a through-solution reaction since it proceeds 
in the aqueous medium filling the pores. Calcium hydroxide dissolved from 
the walls of pores reacts with the sodium sulfate from the ambient solution 
to form gypsum ( CaS04 · 2H20) and sodium oxide which precipitates from 
the solution. The difference in volume between gypsum (reaction product) 
and Ca(OH)2 (reactant) is readily accommodated by the original porosity 
of mortar and the additional space released by the dissolved Ca(OH)2. The 
second reaction (3.1 )2, involving tricalcium aluminate, newly formed gipsum, 
and water needed to form the ettringite, is often assumed to be of the solid-
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liquid or topochemical type. It occurs directly on the surface of C3A crystal 
and may generate large swelling pressures if the space available locally is not 
sufficient for undisturbed growth of the ettringite crystal. Comparing the 
volumes of reactants and products it follows that one volume of C3A yields 
8.2 volumes of solid ettringite. Consequently, the growing ettringite crystal 
exerts pressure on the side of pores which results in local tensile stresses of a 
high magnitude. The local tensile stresses may, eventually, become sufficient 
to induce microcraking and expansion of the concrete specimen. 

The kinetics of above reactions depends on the sequence of two processes. 
Firstly, the reactant particles must be brought into contact by diffusion of 
external sulfate-bearing water through concrete. Subsequently, a chemical 
reaction between particles in contact may take place. The model of kinetics 
of ettringite formation discussed below was proposed by Pommersheim and 
Chang, [90]. They considered a spherical C3A grain, with an initial radius 
r ao, exposed to a steady supply of sulfate ions. As the reaction progresses, 
a layer of ettringite forms on the outside of the shrinking part of the C3A 
grain. The hydration of C3A in presence of gypsum is modeled as steady 
diffusion process. Therefore, from Fick's I law and stoichiometric analysis of 
reactions (3.1) it follows that: 

dra _ -D c/> ere 
dt - e e 3r a ( r e - r a) da 

(3.2) 

dr e _ 
1 

_ da r a dr a 
( ) ( )

2 

dt - ( 1 - </>) de r e dt 
(3.3) 

where De=0.5·10-12 m2 /s is the diffusivity of ettringite, cl>e=0.18 is the 
porosity of ettringite layer, c (mol/m3) is the actual molar concentration 
of sulfate, da=11261.3 mol/m3 and de=1379 .1 mol/m3 are the molar density 
of C3A and ettringite, respectively; r a and r e are the radius of C3A and 
ettringite grains, respectively. Solving these equations with initial conditions 
ra = re = rao at t = 0, one obtains the dependence of re and ra 
on (Figs 13, 14). 

As can be seen from these figures, the rate of ettringite production is 
rapid initially, and gets slower as time elapses. It is the consequence of the 
increasing thickness of ettringite layer. Note that the time necessary to fully 
convert the C3A grain into ettringite is very short in comparison with time 
of sulfate ions diffusion through concrete. Consequently, since the sulfate­
induced degradation of concrete is typically a process taking months, it seems 
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reasonable to conclude that the actual rate-controlling mechanism is the 
diffusion of sulfate ions through the mortar matrix, the rate of ettringite 
production being of secondary importance. 

ra/rao 
re/rao 

1.5 

2 3 

Figure 13: Ettringite formation at constant concentration of S04, c= O.l -103 (mol / m 3 J 
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Figure 14: Ettringite formation at constant C3A radius rao=l J..Lm 

The volumetric strain due to expansion of a spherical ettringite particle 

reads, [59] 

(3.4) 
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The maximum expansion coincides with the completion of the reaction, 
i.e. at Ta = 0. Hence, 

€~ax = d -1. (3.5) 

3.2. Diffusion with chemical reaction 

In this study, a hardened concrete or mortar is assumed to be initially 
saturated by chemically inert water. At t = 0, the specimen is immersed 
in a pool of water containing a constant concentration co of sulfate ions. The 
sulfate ions diffuse through the mortar driven by the concentration gradient. 
As they do so they encounter in their path calcium dioxide particles, react, 
form gypsum, and eventually ettringite as suggested by Eq. (3.1). 

Spatial and temporal distribution of sulfate ions within the specimen is 
governed by a modification of Fick's second law (e.g. [32]) 

ac 
at= \1· (Deff \lc) + R(c) (3.6) 

where c(x, t) is the concentration of the diffusing substance, DeJJ(x, t) the 
effective diffusivity tensor, and R(c) the rate of the reaction per unit volume 
(sink term). The reaction rate represents the time rate of change in the 
concentration of sulfate ions consumed in the chemical reaction with the 
active ingredients of the cement paste. 

From the material balance for the double-decomposition reaction (3.1) 
the sink term in Eq. (3.6) is equal to the negative tripled rate of ettringite 
formation is 

R (c) = dcR = _3 dee 
dt dt 

(3.7) 

As was already discussed, the formation of ettringite during the hydration 
of cement was found to be controlled by diffusion. However, the mechanism 
by which ettringite is formed in the course of external sulfate attack on the 
hardened cement paste differs significantly from its formation during the 
hydration of cement. Before the sulfate ions can react with the C3A particles 
remote from the main pores, they have to find their way to these particles 
through the network of micropores. Moreover, only a part of the C3A grain 
is likely to be in immediate contact with the aggressive solution, and not 
all of the pores are suitable for the ettringite build-up, [40). Since a rigorous 
microstructural modeling of this process seems to be extremely complex and 
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non-deterministic, it will simply be assumed that that the rate of ettringite 
formation is proportional to the current amounts of the reactants ( cf. [24, 59], 
i.e. 

dee ( o ) dt = kcca = kc Ca - Ce (3.8) 

where c~ is the initial concentration of CaA in the hardened cement paste, k 
is the rate constant of the double decomposition reaction (3.1) depending on 
the size, tortuosity and connectivity of the micropores. 

Substitution of Eq. (3.8) into Eqs (3. 7) and (3.6) leads to a partial 
differential equation 

ac ( 0 ) at = \7 · (Deff \i'c)- 3kc Ca- Ce (3.9) 

The associated boundary condition is that c = co on the surfaces exposed 
to the water with constant concentration of sulfate ions. Initial condition is 
that c = 0 within the specimen at t = 0. 

3.3. Transport properties 

The problem of the determination of material properties is typically and 
efficiently resolved within the effective medium approximation framework 
(e.g. [78, 82]). The most popular and most frequently used among the first­
order effective media approximations is the so-called self-consistent method 
(SCM). The SCM is based on the assumptions that: (a) the mean stress field 
of each inclusion is identical and equal to the far-field stress, (b) external fields 
of each inclusion weakly depend on the exact positions of other inclusions. 

3. 3.1. Effective medium regime 

• 1JiJ.1usivity 

The diffusivity D is a structural parameter exhibiting strong dependence 
on the tortuosity of the fluid path through the solid, [28]. In a virgin 
hardened cement paste the diffusivity depends on the pore structure, i.e. the 
distribution and connectivity of pores ¢ ( r) having different radii r. Assuming 
the pores to be perfectly random with respect to their orientation and width, 
the virgin (undamaged) hardened cement paste may be considered to be of 
isotropic diffusivity. It will be assumed that the accessible porosity ¢ and 
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isotropic diffusivity Do of the virgin hardened cement paste are known. As 
the microcracks within the specimen nucleate and grow, the tortuosity of 
the fluid path decreases and the effective diffusivity increases. This problem 
has been discussed in the past on many levels of rigor and sophistication 
(e.g. [4, 36, 97]). 

Salganik's model, [97], developed within the SCM approximation, 
considers each inclusion to be of ellipsoidal shape, the concentration gradients 
within the inclusion s{ = 8cj8xi are homogeneous whenever the far-field 
concentrations are homogeneous as well. In the case of randomly oriented 
penny-shaped microcracks of radius a, the effective diffusivity can be cast 
into a simple formula, [97], 

(3.10) 

where 
(3.11) 

is the Budiansky-O'Connell microcrack volume density parameter 
( micromechanical damage parameter). 

• Elastic constants 

In the case considered, the mortar matrix contain both ettringite inclusions 
and microcracks growing from the matrix-inclusion interfaces. The effect of 
the water inundating the specimen is neglected. 

Comparison between overall specimen expansions (of up to 0.4%) and 
expansions of a single ettringite inclusion (d = 9.96) leads to a conclusion 
that the actual volume density of expanding inclusions is rather small. 
Even though self-consistent estimates for elastic moduli of a solid (mortar) 
containing a dilute suspension of spherical inclusions ( ettringite crystals) are 
available (e.g. [21]), it seems sufficient for the present purposes to invoke the 
much simpler mixture rule. Consequently, the effective elastic modulus of the 
mortar matrix with ettringite inclusions is 

(3.12) 

where JI = I: VI /V is the total volume fraction of ettringite crystals in 
the mortar RYE, while the indices 11 cp 11 and 11 e 11 stand for cement paste and 
ettringite, respectively. 
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The local stress concentration near the inclusions significantly exceeds 
the average macrostresses associated with the beam-column action of 
the specimen. Hence, the orientation of microcracks emanating from the 
interface will be perfectly random. Assuming that all microcracks are penny­
shaped, the self-consistent estimate for the overall elastic modulus E of the 
mortar matrix containing a dilute concentration of ettringite inclusions and 
microcracks is, [19] 

E 16 (1- v2 ) (10- 3v) 
-=1-- w 
Eo 45 (2- v) 

(3.13) 

and, implicitly, for the overall Poisson ratio v 

45 (vo- v) (2- v) 
w= -----~----~~--~----

16 (1 - v2 ) [10vo- v (1 + 3vo)] 
(3.14) 

where w is again defined by (3.11), and "0" denotes the uncracked matrix 
(with etrringite crystals, though) . 

3.3.2. Percolation regime 

Expressions ( 3.10) for the diffusi vi ty and ( 3.13) for the elastic parameters 
are valid only for dilute concentration of defects located far enough from 
each other to prevent their interaction. However, as the microcracks grow in 
size, the distance separating adjacent microcracks will decrease. As the defect 
clusters grow, they will invariably start dominating both the diffusivity and 
stiffness of the specimen. Since the location of inclusions and the ensuing 
shapes of the microcrack clusters are random, the determination of transport 
properties of the solid at this stage using traditional applied mechanics 
methods is not possible. 

The behavior of systems in the stage characterized by the emergence 
of a defect cluster spanning an observed region exhibits certain universal 
aspects. The percolation theory represents an eminently suitable framework 
for studies of systems in the vicinity of the percolation threshold defined as 
emergence of a spanning cluster. 

• Diffusivity 

Formula (3.10) is valid only if the microcracks are far apart. However, 
as soon as a cluster traversing the specimen forms, some of the liquid 
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will be transported through it as well. The percolation threshold We at 
which a spanning cluster, composed of randomly oriented penny-shaped 
microcracks of equal radii, connects two opposite surfaces of the sample has 
been determined by numerical simulations, (20] as 

(3.15) 

where N e is the critical number (per unit volume) of penny-shaped 
microcracks of radius a connected into an uninterrupted path through the 
specimen. 

The scaling law for the diffusivity attributable to the spanning cluster is, 
[107] 

Dp <X (w - We)J.L (3.16) 

where J.1 ::::::: 2 is a universal exponent (dimensional invariant independent of 
microstructure, established by numerical simulation) for a three-dimensional 
case. 

In order to account for the diffusion through the matrix containing non­
intersecting penny-shaped microcracks and the conductance through the 
spanning cluster, it seems reasonable to postulate that a parallel connection 
between the two transport phenomena exists, i.e. that the overall diffusivity 
is, (59] 

D = Do ( 1 + 
3
: w) + Dp (3.17) 

where 

D - D (w- We)2 c 
p - 0 10r We < W < Wee 

Wee- W 
(3.18) 

is the diffusivity through the spanning cluster, satisfying the conditions 

Dp = 0 for w < We and Dp = oo for w > Wee (3.19) 

Expressions (3.18)-(3.19) for diffusivity Dp acknowledge existence of two 
different universal classes of problems having different percolation thresholds: 
(a) w = We (conduction percolation threshold) at which a spanning cluster 
traverses the volume creating a worm-hole in the material, and (b) w = Wee 

(elastic or rigidity percolation threshold) at which a cluster of cracks transect 
the volume. At the elastic percolation threshold the macrostiffness vanishes 
and it is, for simplicity, assumed that the diffusion becomes practically 
instantaneous. 
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• Stiffness 

The SCM expressions for elastic moduli (3.13), (3.14) are valid for 
dilute concentration of microcracks. The elastic percolation represents a 
different universal class necessitating additional numerical and experimental 
simulations to determine the elastic percolation threshold Wee at which the 
elastic modulus E ---+ 0, and the scaling law is E ex (wee - w )f as w ---+ Wee· 
Numerical simulations, [104), indicate that 

(3.20) 

and 

E ex (wee- w)4
·
1 (3.21) 

The effective-medium response in which E is a linear function of w, 
Eq. (3.13), and the response at impending percolation during which E is 
a strongly nonlinear function of w, Eq. (3.21), are separated by a crossover 
regime. The functional dependence E (w) within the crossover regime requires 
significant numerical simulations which have still to be performed. However, 
it is interesting that a self-consistent estimate of the elastic percolation 
threshold is 

sc- 9 r-.J 0 8 Wee - 16 r-.J • Wee (3.22) 

for v = 0 in Eq. (3.13). The function E (w) and its first four derivatives 
vanish at w = Wee· Thus, the function is so flat in the vicinity of Wee that 
E (w~P) ~ 0.1Eo. Consequently, the assumption that E (w~eC) ~ 0 will be 
well within the overall accuracy. Indeed, the results of Lemieux et al., [69), 
and Sahimi and Goddard, [96) indicate that the elastic percolation threshold 
of articulated lattices is surprisingly close to the value obtained from the 
effective medium theories, i.e. assuming that SCM is valid up to the point 
at which the elastic modulus E (3.13) vanishes. Experimental and numerical 
data supplied by Sieradzki and Li, [103), Benguigui, [12, 13) lend further 
credence to this assumption, indicating that the actual magnitude of the 
elastic modulus at the critical microcrack density, (estimated using the SCM) 
is approximately 10% of its original value E 0 . Finally, numerical simulations 
for lattices, [39, 57), confirm the validity of the assumption that the SCM 
estimates of the elastic percolation threshold are quite accurate. In conclusion 
it seems reasonable to assume that the SCM estimate for the elastic modulus, 
Eq. (3.14), is valid within the entire range 0 < w < 9/16. 
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3.4. Stress-strain relationship 

The present task consists in determining the compliance of the hardened 
cement paste containing an ensemble of expanding crystals and an ensemble 
of microcracks. At this point, it will be assumed that all expanding crystals 
are spherical in shape and all microcracks are penny-shaped. Consistent with 
the analysis in the preceding section, it will again be assumed that the 
defect concentration is low to moderate, rendering their direct interaction 
inconsequential. The incubation period, i.e. the time lag between the onset 
of the reaction and the onset of the specimen expansion, [83), resulting from 
the initial unconstrained growth of the ettringite crystal within the pore, is 
short in comparison to the time needed for diffusion and will be neglected. It 
will also be assumed that relatively small pore pressures have no appreciable 
effect on the stress-strain relationship. 

3.4.1. Inhomogeneous inclusion 

Consider first the stress and strain fields surrounding an inhomogeneous 
inclusion (expanding ettringite crystal) occupying domain n, embedded into 
a homogeneous and isotropic effective medium (cement paste containing a 
dilute concentration of randomly oriented defects). Assuming the inclusion to 
be spherical in shape, the free expansion strain attributable to the difference 
between volumes of reactants and reaction products is 

(3.23) 

where cv is given by the expression (3.4) or (3.5), while 6ij is the Kronecker 
symbol. 

Denote the total eigenstrain within the inclusion by 

c~~ = cr: · + c~ · + c~ · t) t] 'LJ 'LJ (3.24) 

where cij is the equivalent eigenstrain resulting from the disparity in elastic 
moduli between the matrix and inclusion; c~j = aTr 6ij is the strain due to the 
thermal expansion associated with the heat released or consumed during the 
course of chemical reactions and crystal growth. As usual, a is the coefficient 
of thermal expansion (depending on w) and rr the temperature difference 
measured from some reference level (taken as rr = 0). A similar reaction 
taking place during the hydration of cement in fresh cement paste is strongly 
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exothermic, releasing substantial thermal energy of 1. 45 J / g of the reaction 
product ( cf. [7 4]). 

In the absence of mechanical tractions on external surfaces of the 
specimen, the expression for eigenstrain (3.24) can be derived as in Mura, 
[78), in the form 

** 3(1-v)KI r r {3 r r-nr 
c kk = ( 1 + v) K I - ( 4v - 2) K c kk + a T = c kk + a .1 

(3.25) 

where the superscript I indicates reference to the inclusion while the non­
indexed parameters characterize the surrounding effective continuum. All 
off-diagonal components of the strain tensor are equal to zero as a result of 
spherical symmetry. The inclusions grow in a degrading matrix containing a 
large number of microcracks, approximated by the effective continuum. Since 
the parameters of the effective continuum depend on the microcrack density 
w, the eigenstrain (3.25) can be written as 

(3.26) 

where the expressions for the bulk modulus K (w) and the Poisson's ratio 
v (w) of the effective continuum (contained in {3) can be obtained from 
(3.13), (3.14). Since the heat released during the exothermic reactions (3.1) is 
proportional to the mass of the reaction product expression (3.26) can finally 
be recast in a simple form 

(3.27) 

However, since no reliable estimate of the heat released during reactions 
(3.1) is available, the thermal eigenstrain will be neglected at this stage of 
the model development. The uniform radial pressure within the expanding 
homogeneous, elastic inclusion must be proportional to the eigenstrain (3.27). 
Hence, from Eq. (3.5) and (3.27), the maximum pressure (coinciding with the 
completion of the reaction) exerted on the surrounding matrix is 

p = KI ckk = Kef3 (w) (d- 1) (3.28) 

where KI = Ke is the bulk modulus of inclusion (ettringite). 

The actual ettringite-pore interaction is simplified for the modeling 
purposes as shown in Fig. 15. Assuming that initially a small notch exists at 
the inclusion-matrix interface, the K I can be approximated as 

(3.29) 
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where R is the pore radius, a the microcrack half-length, p is the swelling 
pressure. Since the SIF is not available for the three-dimensional case 
considered, expression (3.29) is derived using the solution for the line load as 
the influence function ([79], p. 671). 

pe1my-shaped 
microcrack 

mortar 

ettringite 
crvstal 

p 

Figure 15: Two-dimensional visualization of spherical ettringite crystal growing within a 
spherical pore 

For a constant radius R = rao of the C3A inclusion, it follows from the 
Griffith criterion that 

(3.30) 

where K Ic is the fracture toughness of the hardened cement paste. As soon 
as the microcrack opens, the pressure exerted by growing ettringite grain 
is released. Additional inclusion expansion is needed for further microcrack 
growth. From Eq. (3.30) it can be seen that the microcrackis stable because 
8K1 j8a < 0. From Eq. (3.28), the terminal radius of a circular microcrack 
formed around a spherical C3A grain is, [59) 

(3.31) 

3.4.2. Stress-strain relationship on macroscale 

Once the local stress and strain fields around an inhomogeneous inclusion 
have been determined , the magnitudes of the respective macrofields at 
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each material point of the effective continuum can be computed through 
a homogenization process (i.e. by averaging these fields over the tributary 
RVE). Consider, to this end, a volume V containing a reasonably dilute 
concentration of spherical inclusions having a total volume of V 1 = f 1V. 
The relation mapping the macrostresses u on macrostrains e can be 
written combining contributions of beam-column action and inhomogeneous 
inclusions: 

e = S (w) :u + e1 (3.32) 

where S(w) is the effective compliance tensor reflecting ettringite build-up 
and microcracking. Since the volume average of stress perturbations in the 
matrix (induced by ettringite crystal expansions) must by definition vanish, 
the second term on the right-hand side of Eq. (3.32) involves only summation 
of eigenstrains over all inclusions: 

e1 = j 1 e** (3.33) 

where ! 1 is the inclusion volume density and e** the eigenstrain given by 
Eq. (3.27). 

Assuming perfectly random orientations of microcracks and random 
distribution of inclusions, the components of the effective tensor S(w) can be 
computed using expressions (3.13), (3.14) for the effective Young's modulus 
E and Poisson's ratio v. Application of expression (3.32) requires, finally, 
formulation of a relation between the sulfate concentration c( x, t) obtained 
by solving Eq. (3.9) and the damage parameter w(x, t). As has been already 
shown, the actual reaction time is very small compared to the time of diffusion 
of sulfate ions through the mortar. Thus, on the diffusion time scale, the 
final microcrack length is attained instantaneously. Consequently, the rate 
of damage evolution defined by w, Eq. (3.11), is proportional to the rate at 
which C3A particles are activated. 

From the solution of the diffusion-reaction equation it is possible to 
determine the molar concentration of the sulfate consumed to form etrringite 
crystals. Integrating the kinetic equation (3.8), we get 

cR (x, t) = 3c, (x, t) = 3c~ [ 1- exp ( -k fo' c (x, t) dt)] (3.34) 

Thus, the number of C3A grains (per unit volume V) involved in the 
reaction with sulfate (3.34) is 

(3.35) 
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where m8 is the mass of magnesium sulfate (in moles) needed to convert 
completely a single particle of tricalcium aluminate into ettringite, r ao and 
Va are again the initial radius and molar volume of the C3A crystal. 

Using the relation (3.31) and the number of already reacted C3A particles 
from Eq. (3.35), the damage parameter (3.11) can be cast into following 
implicit form 

(3.36) 

The final set of governing equations comprises the equilibrium, 
compatibility and boundary conditions. 

3.5. Application 

A set of data related to the expansion of mortar specimens exposed to 
a combined external attack of MgS04 and Na2S04 has been provided by 
Ouyang et al., (85], who performed experiments in accordance with ASTM 
C1012 recommendations. It was observed that the rate of mortar expansion 
during external sulfate attack is an increasing function of time (see also (67]). 

The ASTM C490 prismatic test specimen were placed in a mixed solution 
of 0.176 mol/1 MgS04 and 0.176 mol/1 Na2S04. A tacit assumption is made 
that the action of magnesium sulfate and sodium sulfate on mortar are similar 
in the sense that both substances serve as sources for the aggressive ions 
So~-. In practice, magnesium sulfate is often more dangerous because it 
additionally decomposes hydrated calcium silicates ( cf. (67]). On the other 
hand, it has been reported that sodium sulfate solution is more corrosive than 
magnesium sulfate solution if the calculated content of C3A in the cement 
exceeds 9%, (14]. In the light of this information, the assumption of equal 
average influence of both substances on concrete corrosion seems reasonable. 

In order to determine the actual initial concentration of C3A available 
for the reaction with aggressive ions diffusing through the test specimen, it 
is first necessary to estimate how much of C3A anhydride remains in the 
cement paste after the hydration process. Denoting by j 9 the amount of 
gypsum (mass fraction) usually added to Portland cement clinker to avoid 
rapid setting, the initial molar concentration of tricalcium aluminate is 

(3.37) 
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where fa= (4.3%, 7%, 8.8%, 12%) is the mass fraction of C3A in the cement 
as given in Ouyang et al., [85]. As before, ma and m 9 are the molar masses 
ofC3A and gypsum, Mcm is the mass of cement in V =1m3 of mortar. The 
ratio (ma/3m9 ) in Eq. (3.37) results from the mass balance of reaction (3.1). 

Consider now the diffusion equation (3.9) with the diffusivity defined by 
Eqs (3.17)-(3.19). To replicate the experimental trends it seems sufficient 
to assume the diffusion to be one-dimensional (across the thickness only). 
Therefore, from Eqs (3.9) and (3.17) we have 

a c a { [- ( 32 ) ] a c} _ (~ _ ) at = a X Do 1 + -gW + Dp a X - 3kc Ca - Ce (3.38) 

In Eq. (3.38) and the equations to come, the following normalization is used: 

with T = 24h. The initial and the boundary conditions are 

c(x, o) = o, c(-1, i) = c(1, i) = 1, 
ac ax (o, i) = o. 

- DoT 
Do= -2-

wo 
(3.39) 

(3.40) 

The governing equation (3.38) is highly nonlinear, rendering the analytical 
or approximate solutions not possible. Thus, it had to be solved numerically 
using finite difference method. 

In the one-dimensional case considered, the a- e relation (3.32) acquires 
a simple form 

e = !!_+fie** (3.41) 
E 

where E is the elastic modulus of the damaged hardened cement paste 
containing both the ettringite inclusions and the microcracks. The f I is again 
the volume fraction of the C3A particles in 1m3 of mortar, given as 

! I 4N. 3 = 3 a1rTao (3.42) 

where Na is calculated form Eq. (3.35). 

Since the stress components Txy and ax vanish, and ay =a ::/=- 0 depends 
only on x, equilibrium is automatically satisfied. The compatibility conditions 
(in stresses) reduce to 

d~2 [u (X, i) + E (X, i) f (X, i) c** (X, i)) = 0 (3.43) 
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The approximate (averaged) boundary conditions at free edges (y = ±1) are 

1
1 

adx = 0 andj
1 

axdx = 0. 
-1 -1 

(3.44) 

The latter condition is satisfied automatically as a result of the problem 
symmetry. 

Solving Eq. (3.43) in conjunction with Eqs (3.44) and (3.41) leads to the 
following expression for the axial strain 

c:(X, i) = (~ i) f\:•• (X, i) E (X, i) f 1 (X, i) dX 
E x, t lo 

(3.45) 

The coupled self-consistent estimates of the effective moduli E, v are 
given by Eqs (3.13) and (3.14). However, the computations performed in 
Budiansky and O'Connell, [19], clearly show that for practical purposes Eqs 
(3.13) and (3.14) can be linearized in w as 

E"' Eo (1- 1: w) (3.46) 

v"'vo(1- ~6 w) (3.47) 

Approximation (3.46) of the effective Young's modulus holds with a very 
good accuracy for all values of the effective Poisson's ratio v in (3.13). 
Expression (3.47)) approximates the effective Poisson ratio v for those elastic 
materials whose Poisson's ratio in undamaged state vo is less than 0.3, e.g. 
for concrete. 

The parameter {3(w) now becomes 

3 [ 1 - v0 ( 1 - 16 w)] 
{3(w)= 9 

2~: (1- 1;w)(1-2ve)+ [1+vo(1- 1;w)] 
(3.48) 

The damage parameter w can now be computed combining Eqs (3.36) 
and (3.48). The resulting cubic algebraic equation in terms of w is omitted 
here for the sake of brevity. 
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So far, the microcracking due to the sulfate attack was attributed solely to 
the stress concentrations near the expanding ettringite crystals. The stresses 
resulting from the beam-column action of the specimen can be detrimental 
as well. Simple comparison of measured macrostrains, [85], indicate that 
the number of expanding crystals N a is relatively small. Consequently, 
the local stress fields in the vicinity of expanding crystals vastly exceed 
macrostresses a. Thus, the damage attributed to the compressive stresses 
in regions bordered by external surfaces represents a second-order effect 
which will be neglected in computations. On the other hand, the tensile 
stresses acting on the inner core of the specimen are capable of activating 
the preexisting microcracks, always present in the bulk of concrete due to 
bleeding, shrinkage, etc. A wide spectrum of models for the tension-induced 
damage could be found in the available literature. However, in order to keep 
the present model tractable, elastic-perfectly brittle behavior will be assumed 
in tension. Incorporation of any model of tension-induced damage is only a 
matter of computational complexity. 

In the pre-critical range (a< aut, c <cut), the axial expansion can be 
computed from formula (3.45) after solving the diffusion-reaction equation 
(3.9). Here, the following final formula is obtained 

(- O) va(d-1) C011
E(- i\ -R(- i\ f3(- i\ d-c x= = ( i\ x,t1 c x,t1 x,t1 x 

3E 0, t1 o 
(3.49) 

In the post-critical range (c > cut), the elastic solution (3.49) ceases to 
be valid. The simplest approach to determine the expansion in that range 
would consist in assuming that the stresses vanish after the tensile stresses 
reach the critical value aut, i.e. when the macrocracks appear. Therefore, the 
expansion of the specimen is equal to the volume average of the unconstrained 
expansions of the ettringite crystals in the heavily damaged matrix: 

(3.50) 

where c~ is the moles of sulfate per unit volume used to produce ettringite 
in the fractured zone s (Fig. 16). The total axial strain in the specimen 
(strain-controlled case) is obtained by superimposing Eqs (3.49) and (3.50). 
The appearance of macrocracks in the tensile zone changes the boundary 
condition (3.40)3 as follows 

;: = 0 at x = ± ( 1 - s) for t > tcr (3.51) 

http://rcin.org.pl



MICROMECHANICAL MODELING OF MICROCRACKED BRITTLE SOLIDS 59 

s , ....... , 

Figure 16: Schematic picture of damage evolution due to sulfate attack in mortar specimen 

where s = sjw0 (Fig. 16). With gradual increase in the microcrack density, 
the elastic modulus (3.46) decreases. At one point, the elastic modulus may 
vanish, i.e. the material becomes damaged to the extent that it loses its 
load-carrying capacity and disintegrates into separate fragments. The zone in 
which the material gets fragmented is contiguous to the external surface (Fig. 
16). Such a behavior (spalling) is commonly observed in structural elements 
exposed to aggressive waters (e.g. (14]). Spalling is modeled by introducing 
a fracture front separating the heavily damaged (spalled) zone from the 
material which can still carry the loads. The fracture front is preceded by a 
percolation front, i.e. a surface behind which the microcracks form the first 
continuous paths. For the present analysis, the position of the percolation 
front will be identified with the plane in which We= 0.182, Eq. (3.15), while 
the fracture front (elastic percolation) is identified by w~? = 9/16, Eq. (3.46), 
when the secant elastic modulus vanishes. The emergence of the percolation 
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and/or the fracture front(s) has a dramatic impact on the effective diffusivity 
(3.17). In particular, in the volume behind the fracture front it was assumed 
that Deff ---+ oo as w approaches the critical value 9/16. Consequently, the 
concentration of sulfate in the zone swept by the fracture front has the 
constant value c = co. 

The following numerical values of the material parameters have been used 
in the computations: Do= 0.75·10-12 m 2 js [14], accessible porosity of mortar 
¢ = 0.1, porosity of ettringite cf>e = 0.18 [90], co = 352 moljm3 , initial 
radius of C3A particle rao = 1 J.Lm [89], mass fraction of gypsum added to 
Portland cement J9 = 6 %. The parameter d equals 9.96. Lacking precise 
experimental data, reasonable values have been assigned to the remaining 
parameters: Young's modulus of mortar Eo= 13 GPa, Young's modulus of 
ettringite Ee = Eo/5, vo = 0.3, Ve = 0.2, ultimate compressive stress of 
mortar auc = 40 MPa, fracture toughness of mortar K1c = 0.2 MN/m312

. 

The estimate of the rate constant k in the kinetic equation (3.8) is based on 
the premise that no substantial degradation of mortar occurs in specimens 
with C3A content less than 5.5%. Therefore, the specimen with 4.3% C3A in 
(85] has been used for this purpose leading to k = 1.35 ·10-5 m3 /mol/ s. 

The graph depicted in Fig. 17 represents the ability of the proposed 
model to relate the macrostructural expansion to the chemical composition 
of the mortar. The data of Ouyang et al., [85], are reproduced with 
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Figure 17: Axial expansion of mortar test bars due to external sulfate attack for different C3A 
contents vs. experimental data (symbols) of Ouyang et al., I85J 
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satisfactory accuracy. The model clearly distinguishes between mortars with 
a small concentration of C3A and those rich in C3A which disintegrate 
when subjected to water-borne sulfates for a prolonged time. The actual 
diffusion process in the experiment conducted by Ouyang et al., [85], is three­
dimensional. Therefore, the lD analysis carried out here for computational 
simplicity should be viewed as a lower bound for the expansions. 

3.6. Summary and conclusions 

The principal objective of the proposed model was to establish a direct 
relation between the chemical composition of the solid-ambient system 
and its response and/or durability. This objective has been reached by 
formulating an initial boundary value problem for the spatial and temporal 
degradation of a mortar prismatic bar exposed to e~ternal sulfate attack. 
The initial boundary-value problem couples unsteady diffusion, chemical 
reaction, and mechanical response. The coupling is both direct (i.e. sink 
term in the diffusion equation) and indirect through the transport properties 
( diffusivity and degrading stiffness). All material parameters, except for k, 
have been identified directly from the documented data. The rate constant 
of the chemical reaction k has been determined phenomenologically from the 
expansion of mortars with low concentration of C3A. Once the parameter k 
had been determined by fitting the curve for the 4.3% concentration of C3A, 
the formulated model has been able to predict the response for the other 
concentrations with remarkable ease and satisfactory accuracy. 

One of the major advantages in micromechanical models is that they can 
readily be modified and extended to related problems. Various other chemical 
processes such as alkali-aggregate and cation exchange reactions, formation 
of calcium salts, carbonic acid attack, etc., causing degradation of concrete 
structures are just some of the examples that readily come to mind. Similarly, 
humidity, frost, and corrosion actions on metals belong to the same group of 
environment-assisted damage processes. In each particular case, the modeling 
strategy will be similar even though the details will change according to the 
dominant mechanism of microstructural changes. 
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4. Lattice modeling of brit~le damage 

Quite independently of the continuum mechanics community, brittle 
damage-fracture processes have also been investigated by statistical 
physicists who use an entirely different modeling methodology. Instead of 
analyzing stress fields at the crack tips (fracture mechanics) or introducing a 
priori a damage variable into a continuum constitutive description (damage 
mechanics), they simulate a continuous brittle matter by means of discrete 
(regular or random) lattices which are subjected to certain type of disorder. 
The essential feature of the representation of a solid by a discrete graph is that 
it provides an opportunity to model the inhomogeneity of the microstructure 
by assigning appropriate statistical properties to the lattice bonds. Two major 
types of disorder are usually distinguished in the relevant literature: quenched 
and annealed. The quenched disorder denotes an initial disorder introduced, 
for example, into the elastic constants or rupture thresholds of individual 
lattice elements, while the ensuing analysis of the system's fracture process 
is entirely deterministic. In the annealed disorder, the initial disorder may 
be absent but the analysis of the breaking process is stochastic. 

Of several theoretical techniques available for dealing with highly 
disordered systems, the percolation model seems to be particularly appealing. 
The advantage of the percolation model consists in its almost game-like 
mathematical structure and a transparent description for spatially random 
processes. The percolation disorder is bi-modal in the sense that a defect 
either occupies the considered site (or bond) of the lattice with the probability 
p or is absent there with the probability 1-p. As the bonds start to break 
under external tensile loading, the spatial patterns of defects (clusters) and 
their sequence of appearance are believed to mimic a real breaking process. 
The central questions posed in percolation and other statistical theories of 
disordered solids, are: 

• What is the critical defect concentration Pc (percolation threshold) 
at which an infinite cluster appears spanning the opposite 
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sides of a lattice system? 

• How would different processes and transport properties of a material 
behave in the vicinity of the percolation thresholds (scaling laws)? 

• Is there any universal law that is common to all initial defect 
distributions? 

• Does the maximum stress and the total number of ruptured bonds at 
overall failure follow any universal law? 

A deeper insight into the lattice modeling of disordered systems can be 
gained by consulting the excellent monographs by Zallen, [116], Stauffer, 
[107], Herrmann and Roux, [42], Sahimi, [95). 

4.1. Percolation model 

This subsection will be focused only on those aspects of the percolation 
theory that may be of importance in modeling brittle damage and 
fracture. When examining the existing literature on the applications of 
percolation theory to brittle fracture and confronting it with the damage 
mechanics findings, several interesting observations can be made. For 
example, a crack density parameter identical to that of Budiansky-O'Connell 
(i.e. w = N a3 /V) also appears in the percolation models. However, the 
way it was introduced is quite different and stems from purely geometrical 
considerations. It was shown by Scher and Zallen, [100], that the critical 
volume (area) fraction of spherical (or circular) non-overlapping voids at 
percolation is a dimensional invariant independent of the lattice type. To 
illustrate this statement, consider a simple case of circular voids whose centers 
are randomly located on the nodes of a regular, very large, two-dimensional 
lattice. The critical void area fraction f c (critical porosity, critical lac unity) 
can be determined directly using the site percolation model as 

fc = vp~, (4.1) 

where p~ is the site percolation threshold, v is the filling (packing) factor 
for the considered lattice. The percolation threshold p~ denotes the critical 
fraction of lattice sites occupied by voids at the moment when an infinite 
void cluster transects a two-dimensional system. This situation corresponds 
to specimen's failure in the strain controlled test. Consequently, Eq. ( 4.1) 
can be rewritten as 

(4.2) 
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According to Scher and Zallen, (100), the critical porosity fc is a universal 
constant equal to 0.45±0.03 irrespective of the lattice type, Table 1. This 
value persists to hold for all periodic two-dimensional lattices for which 
percolation data are available. A similar universality was also confirmed for 
the bond percolation model, (116) as shown by the last column in Table 1. 
As a consequence, this important result of Scher and Zallen implies that 

1 2 3 4 5 6 7 

Critical Critical 
Lattice Coordination Percolation Percolation Filling connectivity 

threshold threshold factor 
porosity 

type number 
vp~ = f c zp~ z (bond) p~ (bond) p~ v 

Triangular (2D) 6 0 .3473 0 .500 0 .9069 0 .450 2.08 

Square (2D) 4 0 .5000 0 .593 0.7854 0.470 2.00 

Honeycomb (2D) 3 0 .6257 0 .698 0 .6046 0 .420 1.96 

Face centered (3D} 12 0 .1190 0 .198 0 .7405 0.147 1.43 

Body centered (3D) 8 0 .1790 0 .245 0.6802 0 .167 1.43 

Cubic (3D) 6 0.247 0 .311 0 .5236 0 .163 1.48 

Table 1: Percolation thresholds and dimensional invariants for site and bond percolation 
on selected lattices. Filling factors given for non-overlapping circles (2D lattices) and 

spheres (3D lattices); after Zallen, [116J . 

the critical value of the Budiansky-O'Connell crack density parameter is a 
universal constant independent of the material microstructure. On the other 
hand, it should be emphasized that percolation thresholds p~ or p~ themselves 
are by no means dimensional invariants (see columns 3 and 4 in Table 1) . 
The universality of fc for lattices became afterwards a milestone for the 
development of the continuum percolation. 

In the case of overlapping (intersecting, permeable, or soft-core) voids 
the problem belongs to the class of continuum percolation and becomes 
somewhat more complicated. It is first necessary to determine the probability 
of overlapping of the neighboring voids. The percolation threshold will then 
coincide with the appearance of an infinite cluster of overlapping voids whose 
centers need not to occupy nodes of a regular lattice. Obviously, two voids 
of equal radii r will overlap if the distance between their centers is smaller 
than 2r. Shante and Kirkpatrick, (102], have shown that the probability that 
a randomly selected point does not belong to a circular void is equal to e-n, 
where n is the mean number of circular voids within a distance r from that 
point . At percolation, the critical value of n becomes nc = z p~/4, where z 
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is the coordination (or connectivity) number denoting the number of closest 
nodes. The critical fractional area of voids in a 2D case is (2]: 

fe = 1- e-Bc/4, (4.3) 

where Be is the average critical number of circle centers within a given circle 
(mean number of object intersections). In the 3D case, the critical fractional 
volume for permeable spherical voids becomes, (2]: 

(4.4) 

Similarly as the critical porosity ( 4.2) for hard-core voids, the critical 
values of Be (hencefe in Eqs (4.3) and (4.4)) manifest a universal behavior 
for soft-core voids. This universality was demonstrated by Pike and Seager, 
(88), in an extensive program of numerical simulations. 

The geometrical interpretation of the universal parameter Be is quite 
instructive. Balberg et al., (3), have found that 

Be = Ne (Aex) 

Be = Ne (Vex) 

(in two dimensions), 

(in three dimensions) 

(4.5) 

where Ne is the critical number of defects at percolation, and Vex is the so­
called excluded volume of an object, and (Vex) is the proper average of the 
objects' excluded volumes. 

The excluded volume Vex (or excluded area Aex in 2D) of an object (A) 
-is enveloped by the locus of points formed by the centers of all surrounding, 
geometrically similar objects (B) which just touch the object (A) without 
intersecting it. In other words, if the center of an adjacent object (D) is within 
the excluded volume of a similar object (A), two objects will penetrate each 
other. For the circular voids of equal radii shown in Fig. 18 the excluded 
area is simply Aex = 47r r 2 . As pointed out by Balberg, [2], the advantage of 
this concept is that it accounts for the interaction between two objects. It 
associates a volume to objects which have no volume of their own (e.g. slits) 
and is simply related through Eq. ( 4.5) to the average number of bonds per 
site at percolation Be, which is an invariant for a given object shape. 

In the case of intersecting slits, the average number of intersections Be 
is, indeed, a dimensional invariant but the critical crack density parameter 
Ner 2 is not, (93]. As for uniformly distributed disks of constant radius r 
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and vanishing thickness (penny-shaped cracks), the critical crack density is 
We = Ne r 3 = 0.182, whereas the crack intersections density at percolation 
equals Be = Ne (Vex) = 1r

2 Ne r 3 = 1.80, [20). 

Figure 18: Geometrical concept of excluded area 

The percolation studies confirm, at least for non-intersecting defects, 
the utility of the Budiansky-O'Connell crack density parameter in damage 
modeling. Although the starting points of the continuum and percolation 
models of brittle damage were quite different, both classes of models ended 
up with virtually the same parameter quantifying the evolving material 
deterioration. For non-intersecting defects, the critical value of this parameter 
has even been proven to be a dimensional invariant. Consequently, it may 
be concluded that for non-overlapping spherical or circular voids the strain­
controlled rupture always happens at a constant value of the Budiansky­
O'Connell damage parameter. A further conclusion is that Budiansky­
O'Connell parameter is apparently proportional to the volume (area) fraction 
of defects, i.e. to the porosity. However, this interpretation may be misleading 
since the same damage parameter w = N (r) 2is also derived for slits, while 
w = N (r) 3 for penny-shaped cracks, where any relation to material porosity 
is irrelevant, [5). 

There is another aspect of the percolation theory that might be useful 
for the continuum mechanics descriptions of the effective properties of 
heterogeneous elastic solids. The mere fact that a spanning cluster emerges at 
a finite (critical) microdefect concentration furnishes kind of validity check 
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for the effective media/field methods at large microdefect concentrations. 
Consider, for instance, a dilution process of a plate made of perfectly elastic, 
isotropic and homogeneous material weakened by a large number of randomly 
distributed, non-overlapping, circular voids (plane stress case). Incidentally, 
this is a classical problem analyzed by the effective media/field models 
and the percolation theory alike. The expressions for the Young modulus 
estimated by the dilute distribution method (DD), the self-consistent method 
(SCM), and the differential scheme (DS) can be found almost in any book 
on micromechanics (e.g. [82]) and are given by 

EDD 1 
= 

Eo 1+3!' 

ESCM 
-- = 1-3! 

Eo ' 

EDS 3 
- = (1-f) 

Eo 
(4.6) 

where Eo is the Young modulus of the undamaged material, f = 
I: (Avoid/A)= 1rN (r2 ) is the area fraction of voids, N being the number 
N 
of voids per unit area. On the other hand, since this is a two-dimensional site 
percolation problem, the critical value of the void density is fc = (N Avoid)c ~ 
0.45, Table 1. The variation of the elastic modulus vs. void fraction has also 
been investigated experimentally in Vavakin and Salganik, [114], Benguigui, 
[11, 12], Sieradzki and Li, [103], and others. The data provided by Benguigui, 
[11, 12], are best suited to check the accuracy of the expressions ( 4.6). 
The Benguigui's experiments were careful, force-controlled, elastic tension 
tests conducted on thin metallic sheets (Al, Cu) with non-overlapping holes 
punched randomly on the sites of a square lattice. The applied loading 
device allowed measurements very close to the percolation limit (95%p~). 
In Fig. 19, the theoretical estimations by the effective-medium methods ( 4.6) 
are depicted and confronted with the experimental results of Benguigui, [12]. 
Incidentally, Benguigui, [12] performed similar tests for circular holes allowed 
to overlap (continuum percolation). Tpese tests confirmed with a very good 
accuracy that the critical area fraction of voids in 2D· is, (102, 88, 2], 

</>c = 1- exp (1- (Aex) /4) ~ 0.68. (4.7) 

The scaling laws for the elastic modulus in the lattice (L) and continuum 
(C) percolation have the following forms 

(4.8) 

where (fc - f) and ( 4>c - </>) are the lattice and continuum proximity 
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parameters, respectively. The measured values for TL and Tc, [12, 13], fully 
agree with the theoretical numbers TL = 3.3 ± 0.5, Tc = TL + 3/2, [37]. 

As remarked in Basista, (5], several interesting conclusions can be drawn 
when examining Fig. 19. For example, the Benguigui, (12], test data closely 
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Figure 19: Effective elastic modulus E/Eo for thin metal sheet with circular voids. Squares, 
triangles and diamonds represent DD, DS, and SCM predictions (4 .6), respectively; data of 

Benguigui, ll2J, marked by circles 

match the analytical result for the site percolation according to which the 
critical porosity on two-dimensional periodic lattices equals fc = 0.45 ± 0.03. 
As for the effective medium results, substantial differences have to be 
admitted even at small void densities. Moreover, only the self-consistent 
model predicts that the elastic modulus vanishes at a finite porosity Jlc = 
0.33. This is consistent model predicts that the elastic modulus vanishes 
at finite porosity Jlc = 0.33 with the existence of the critical porosity 
f~ = 0.45, although Jlc clearly underestimates f~. The dilute distribution 
model and the differential scheme do not recognize that the percolation 
threshold actually exists. The question arises here whether the density of 
randomly nucleating defects can be increased up to filling in the space. In 
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other words, can the existence of an RVE (thus volume averaging) be justified 
at very high defect concentrations? The answer offered by the percolation 
theory is that randomly nucleating defects will eventually self-organize and 
join the largest cluster making the specimen statistically non-homogeneous. 
This seems to set limits to the applicability of the effective medium/field 
theories provided that defects are not constrained in their random nucleation. 
Note that the effective continua models and the percolation models are 
applicable in different regimes and may thus be deemed complementary. 
The relatively unexplored region between those two, called the crossover 
regime, is currently under intensive studies by applied mechanicians as well as 
statistical physicists. In terms of continuum mechanics, the crossover regime 
corresponds to the softening portion of the stress-strain curve. 

Despite unquestionable successes of the percolation theory in describing 
phenomena that approach the critical state, a certain amount of caution 
seems in order when using it to model brittle fracture processes. In a static 
case, the percolation model is not a suitable model to represent the damage­
fracture process of brittle solids. It is commonly known that microcracks in 
brittle solids start to grow from the preexisting flaws. The longest and most 
favorably oriented microcrack, i.e. the one located perpendicularly to the 
maximum tensile stress direction, is the first to grow when its elastic strain 
energy release rate reaches the critical value. This, however, does not have 
much in common with a simple bi-modal type of disorder of the percolation 
model. Also, the existing percolation models are almost exclusively confined 
to tensile loading conditions whereas for brittle solids the compressive stress 
states are of primary importance. 

On the other hand, the percolation model seems to be more suitable 
for nucleation-dominated fracture processes, e.g. dynamic fracture. Short 
duration times and high intensity of stress impulses amplify the random 
character of the microcrack nucleation and proliferation. In particular, brittle 
spall damage, which by its very nature involves random nucleation of defects 
under the action of tensile stress waves, offers a promising and yet unexplored 
field of possible applications of percolation theory. Some initial efforts in this 
direction can be found in [27) and [112) . 
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4.2. Central-force lattices 

Random nucleation processes are well captured by the percolation model. 
If, however, a damage process is dominated by the growth of microdefects 
(the case of brittle solids) more sophisticated types of disorder have to be 
employed when modeling the elastic rupture. For example, one could think of 
a continuous distribution function of the rupture strengths or stiffnesses of the 
lattice bonds. In statistical physics, these types of disorder are conveniently 
studied on regular lattice systems which are expected to mimic heterogeneous 
elastic continua. Typically, three main classes of lattices are distinguished: 

• fuse lattices - electrical networks of random fuses (scalar equivalent of 
the vector problem of elastic rupture), 

• central-force lattices (trusses) - elastic bonds (springs) that can freely 
rotate around their end points and carry axial forces only, 

• beam lattices - elastic bonds carry axial forces, transverse forces, and 
bending moments. 

In the recent past, an extensive research effort has been undertaken by the 
statistical physicists to investigate elastic rupture problem using fuse lattices 
(e.g. [25, 38]), central-force lattices ([10, 30, 39]), and beam lattices, [31, 42] . 
Limited by space, attention will here be focused on the central-force lattices. 

More than a decade ago Hansen et al., [39], published an important 
study devoted to the rupture of central-force lattices. Inspired by that paper, 
Krajcinovic and Basista, [57], presented some links between the numerical 
simulations on central-force networks, and the analytical predictions of a 
simple parallel-bar model used in damage mechanics. Hansen et al., [39], 
considered a regular, 2D triangular lattice (Fig. 20a) consisting of nodes 
joined by elastic-brittle springs of identical elastic constants set to be unity. 
The quenched disorder was introduced in the bond rupture thresholds fc· 
In Hansen et al., [39], the quenched disorder has the form of a uniform 
distribution of the rupture thresholds, Fig. 21a, which means that fc can 
take any value between 0 and 1 with equal probability. The bottom and 
top rows of the lattice are attached to the rigid bars in order to assure 
uniformity of the applied displacement A. The boundary conditions in the 
horizontal direction are periodic, and the whole problem is treated within 
the limits of small deformations. Having introduced the quenched disorder 
in the bond rupture strengths, the forces in the bonds are computed using 
the conventional (deterministic) truss analysis. Four lattice sizes L=4, 8, 16, 
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24 were considered to ascertain the size effect. 

L=4 

/= l 

(a) (b) 

Figure 20: (a) Central-force triangular lattice with rigid bars. {b) Estimation of 
strain in bond, [5J 

(a) (b) 

~~~--------~---~ 

O /; fc11JIX = 1 fc 

Figure 21: Probability density function for bond rupture thresholds: (a) in terms of forces (b) 
in terms of strains 

If the force in a bond exceeded its rupture threshold, the bond was 
removed from the lattice, the forces in the extant bonds were recomputed 
and checked against the rupture criterion again, the next broken bond was 
then removed, and so on until the elastic modulus of the whole lattice dropped 
to zero. The computations were performed for each simulation (physical 
realization) which differed by the spatial distribution of bonds with different 
rupture strengths. Hansen et al., {39} generated 10000 4x4, 1000 8x8, 300 
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16xl6, and 30 24x24 lattices over which the results were averaged. It is 
advisable to recall the basic symbols: 

-L is the lattice size (number of rows), 
- fc is the bond rupture threshold, 
-A, Ac is the total external displacement (subscript c indicates 

that "bond break was observed"), 
-F, Fe is the total external force, 
- fj is the local force in a bond, 
-N is the total number of diagonal (force carrying) bonds, 
-n is the number of broken bonds, 
-Fmax is the maximum force recorded during a numerical simulation, 
-nmax is the number of bonds broken at the maximum force, 
- ( ·) denotes an averaged quantity, 
-K is the elastic modulus of the pristine lattice (set to 1 in, [39}) . 

In order to make the main results of Hansen et al. , [39], traceable, the 
following mean-field analysis (not contained in the original paper) will now be 
performed. Consider a single lattice element, Fig. 20b and apply the external 
elongation A to the rigid bars. The strain in a stretched bond is given by 

~li A J3 
€i = T = £ 2' (4.9) 

where the bond length l is set to 1. Since the overall displacement is a stretch 
and the boundary conditions are periodic, only the diagonal bonds carry the 
forces thus are susceptible to rupture. It can be shown that the total number 
of diagonal bonds is N = 2£2 . Choosing the number of ruptured bonds n as 
the history-recording parameter, a physically appealing damage measure is 
the following scalar 

n n 
D = N = 2£2. (4.10) 

On the other hand, the damage parameter ( 4.10) can be interpreted 
statistically as the cumulative probability· function P (fi) of the assumed 
probability density function p (!c) for the bond rupture thresholds: 

li 

D = J PUc)dfc = P(fc < /;), ( 4.11) 

0 

where the rupture threshold of the weakest bond is 0. Damage is thus defined 
as the probability that the force in a bond fi exceeds its rupture threshold 
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fc· For the assumed uniform distribution of rupture thresholds (Fig. 21a) the 
damage parameter ( 4.11) takes the form ( cf. [5]) 

fi E:i 

J 1 h J 1 ~ D = --dfc = -- = h, or D = --dEc=--= Ei, 
fmax fmax Emax Emax 

( 4.12) 

0 0 

where the latter of these formulas is expressed · in terms of strains 
(cf. Fig. 21b). Comparing the two definitions of D, i.e. (4.12)2 and (4.10), 
we get 

( 4.13) 

which is identical to the relation (4) in [39]. Moreover, when Eq. (4.13) is 
combined with Eq. (4.9), an important linear equation (3) of the original 
paper Hansen et al., [39], is recovered: 

1 n 
A(n) = J3 r;· (4.14) 

Finally, dividing both sides of Eq. (4.14) by L, a linear proportionality 
between the damageD= n/ (2£2

) and the overall strain E =A/Lis revealed. 
Remarkably, this linear regime was clearly confirmed by the respective 
numerical simulations in [39]. 

The primary objective in (39), though, was to establish a universal (size­
independent) relation between the overall (average) force (Fe (n)) and the 
total elongation (Ac ( n)), with the number of broken bonds n being a control 
variable. As a first step, the data (Fe) vs. n up to the apex were fitted 
according to the following parabola, [39]: 

(Fe ( n)) = ( 1 - a ; 2 ) ( Ac ( n)) . (4.15) 

Equivalently, one can say that a linear correction (1- an/ £ 2) was sought 
to the lattice elastic modulus (set to be 1 by definition). The authors hoped 
to find a value for the parameter a that is constant for all lattice sizes. 
However, it turned out that the best fit of the form (4.15) was obtained 
for a = 1.0, a = 1.25, a = 1.5, a = 1.65 corresponding to L = 4, L = 8, 
L = 16, L = 24, respectively. In conclusion, the linear Ansatz (4.15) proved 
insufficient to capture the degradation of the elastic modulus without a scale 
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effect. Hence, a universal relation was sought in the space of different variables 
assuming the following functional dependence, [39]: 

(4.16) 

where (3, 1 are unknown exponents and 4.> is a universal function 
independent of the lattice size. In other words, 4.> may be considered a 
universal function if the force-displacement data obtained from the numerical 
simulations for different lattice sizes, can be collapsed on a single master 
curve plotted in the reduced variables {(Fe ( n)) / £!3} vs. { (Ac ( n)) / L 'Y}. The 
authors found out that for (3 = 1 = i the trial function (4.16) fitted the 
simulation data exceedingly well. The only exception was the smallest size 
(L = 4) for which the computations were disregarded as unreliable. The 
parabolic fit (4.15) when combined with the mean-field estimate (4.14) gives 

( 4.17) 

where the averaging symbols have been omitted. The form of a is dictated 
by the rescaling relation (4.16) as 

(4.18) 

with (3 = i, [39]. In addition to the central-force model, similar rescaling 
was obtained for the fuse model, [25], and for the elastic beam model, 
[42]. Quite surprisingly, the value of (3 = i seems to be universal for 
all three models. In the post-peak regime, statistical fluctuations were 
very strong, thus it was not possible to find a universal exponent for 
all {Fc(n)jLf3} vs {Ac(n)jLf3} curves. Hence, in that regime the overall 
behavior of the lattice systems was multifractal. 

It has been noticed in, [57], that the proportionality (4.18) can actually 
be expressed in the following exact form 

(4.19) 

where the proponality factor and the universal exponent coincide having 
the constant value of (3 = }. This simple observation has far-reaching 
consequences. Each scaling law in, [39], can now be expressed in a closed 
analytical form, Table 2. 
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Inserting the equality ( 4.19) in the assumed force-displacement relation 
( 4.17) yields 

(4.20) 

where k = K ( 1- iJ) is the effective elastic modulus. Note that the elastic 

modulus of an undiluted lattice (set to 1 by definition) is here purposely 
marked by K. This formal labeling is needed in the anticipated comparison 

Hansen et al., (39] Krajcinovic and Basista, [57] 
Acmax <X Lf:J Ac max = 2;f..;3Lf:J 

ncmax <X Lf:J+l nc max = d=s£f3+l 

Fcmax <X Lf:J F. -lA cmax- 2 cmax 

Table 2: Closed-form expressions obtained in [57], for scaling laws in [39] 

with the parallel bar model. The damage parameter emerging in Eq. ( 4.20) 
is linearly proportional to the displacement Ac (or strain, c = Ac/ L) and is 
a function of the lattice size, namely 

( 4.21) 

In contrast, the effective elastic modulus (secant stiffness) k = Fe/ Ac 
is independent of the lattice size. The last of the equalities ( 4.21) shows 
how the rescaled damage parameter b is related to the density of ruptured 
bonds D, ( 4.10). Except for the scale effect, both parameters manifest linear 
dependence on the overall displacement. The damage parameter b can also 
be rewritten as a function of the externally applied force 

(4.22) 

It follows from Eq. ( 4.22) that in the unstressed state D(F = 0) = 0, 
while at the apex Dmax(Fc max) = 1/2. 

The parameters computed from the above analytical expressions are 
arranged in Table 3. The corresponding numerical data read off from Fig. 6 
in Hansen et al. (1989) are added in parentheses. As suggested in Hansen et 
al. (1989) the data for L = 4 is disregarded. 
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Recall now the simplest form of a disordered system, i.e. a parallel bar 
model (fiber bundle with global sharing rule), Fig. 22. The parallel bar 

L a nc max nc max/N Acmax Fe max Dmax 

4 1.06 {1.00) 9 (-) 0.280 1.09 (-) 0.54 (-) 1/2 (0.500) 

8 1.26 (1.25) 25 (26) 0.195 1.83 (1.91) 0.92 (0.94) 1/2 (0.521) 

16 1.50 {1.50) 85 {81) 0.166 3.08 (3.00) 1.54 {1.56) 1/2 (0.487) 

24 1.66 {1.65) 173 {178) 0.155 4.17 (4.13) 2.09 {2.15) 1/2 {0.495) 

Table 3: Data from (39) (in parentheses) vs. analytical formulas of Krajcinovic and 
Basista, [57) 

model has been known since the early work of Daniels, [23], and often used 
afterwards in damage mechanics, [55, 60, 61] and statistical physics, [87, 105], 
to describe failure processes. It is a bundle of N loose bars (links) of equal 

N 

Figure 22: Parallel bar model 

stiffness k carrying the external tensile load F. Since the links are loose 
there are tensile forces within the system but no shear forces. The rigid 
bars (buses) located at both ends of the system enforce equal elongation of 
all links. The initial stiffness of the whole system is K = N k. Each link 
is linear elastic and breaks when the tensile force in the link exceeds its 
rupture strength fc· When a bond ruptures its force is released and has to 
be taken over (quasi-statically) by the remaining bonds. The distribution of 
link rupture strengths is prescribed in advance (quenched disorder) by the 
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probability density function p (fc). The position of a link in the bundle is 
inconsequential since all extant links equally participate in carrying the load 
(mean-field approximation). The parallel bar model rules out any spatial 
interactions. Also, the fiber bursting, [41], is not considered here. Hence, the 
macroresponse depends solely on the fraction of ruptured links (n/N). The 
scale effect is not accounted and, since there is no length parameter, the 
model is local. The process of damage and final rupture is attributed to the 
disorder in the rupture thresholds of material constituents. The model is not 
capable of accounting for the stress concentrations (hot spots). For such a 
system, the equilibrium of forces yields 

( n) K -F = (N- n) f = N 1- N N A= K (1- D) A= K A, (4.23) 

where A is the elongation, while the force-displacement relation for an extant 
link is f = k A= (K / N) A; D = (n/N) is the damage parameter (fraction of 
ruptured links) and k is the current secant effective elastic modulus of the 
system. 

If the number of links is very large (rigorously speaking - infinite), the 
equilibrium equation ( 4.23) can be cast into an integral form as, [56): 

fmax [ fmax ] 

F = N J fPCfc)dfc = kA N J PCfc) dfc = K (1- D) A, 

f ku 

( 4.24) 

where the term in brackets represents the number of non-ruptured links. 
For the uniform strength distribution (Fig. 21), the force-displacement curve 
takes the form of a quadratic parabola, [60): 

F=K (1-~)A, 
fcmax 

(4.25) 

where f cmax is the rupture strength of the strongest link. The damage 
parameter D = kA/ fcmax is linearly proportional to the elongation of the 
system. A similar dependence was observed for the central-force lattice, Eq. 
( 4.14). It is easy to see that at the apex of the force-displacement parabola 
( 4.25), it holds again 

Fcmax = ~KAcmax· (4.26) 

Comparing the last columns of Tables 3 and 2 with Eq. ( 4.26) it can be 
seen that for the same distributions of bond rupture thresholds the central­
force lattice and the parallel bar system manifest identical response at the 
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apex, [57). This is rather an unexpected result since the central-force lattice 
accounts for defect interactions whereas the parallel bar model totally ignores 
any defect interaction. Also, the size effect that is included in the central­
force model disappears at the apex. In the parallel bar model the size effect 
is absent by definition. 

4.3. Conclusions 

Several important conclusions can now be formulated on the basis of the 
presented analysis. 

1. The secant elastic modulus seems to be the proper choice for a damage 
parameter because: 

• all force-displacement simulation data in Hansen et al. (1989) can 
be collapsed on a single master curve irrespective of the lattice 
size, 

• at the apex it holds Kcmax = ~ K irrespective of the lattice size 
( 4, 8, 16, 24), 

• at the apex it holds Kcmax = ~ K irrespective of the lattice type 
i.e. central-force lattice vs. parallel bar system; this conclusion 
needs to be checked for other network models. 

2. The fraction of broken bonds (density of microcracks) is a poorer 
damage parameter as it manifests a size effect, cf. Eq. ( 4.21). 

3. The lattice response under tension within the hardening regime is 
weakly affected by the defect interactions. The defect interactions, 
if present, should be profound at the apex and beyond it. The 
( F cmax - Acmax) equations that have been proved identical for the 
central-force lattice and parallel bar system at the apex indicate rather 
the opposite. 

4. The mean-field assumption used in the analysis of the central-force 
lattice turned out to be correct. Consequently, it suffices to consider 
only the volume averages of microstructural disorder while higher 
statistical moments seem unnecessary when modeling the tensile lattice 
response. 
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