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The aim of the paper is threefold. First, available results on finding the ef­
fective macroscopic elastic moduli of compact bone by using homogenization 
are reviewed. It is shown that proper framework for studying such biological 
materials with hierarchical microstructure is that of reiterated homogenization. 
r -convergence theory is applied to obtain general formulae for the effective elas­
tic moduli of a material with three structural levels. Second, effective models 
of cancellous bone with various architectures are overviewed. Third, influence of 
marrow on torsional behavior of long bone is discussed. 

1. Introduction 

Bones occur in two forms: as a dense solid (compact bone) and as a porous 
network of connecting rods and plates (cancellous or trabecular bone). The 

FIGURE 1. Photograph of proximal part of the human femur, after Galka et 
al. [37]. 
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most obvious difference between these two types of bones appears in their 
relative densities measured by volume fractions of solids, cf. Fig. 1. 

Bone with a volume fraction of less than 70% is classified as cancellous 
while that over 70% is compact, cf. [39). Most bones in the body are of both 
types, the dense compact bone forming an outer shell surrounding a core of 
spongy cancellous bone, cf. Fig. 2. In this paper we summarize the results 
of modeling both compact and cancellous bone by using homogenization 
methods. 

Bone cells produce two types of tissue, the well-organized lamellar bone 
and the poorly organized woven bone. When lamellar bone occurs in the 

FIGURE 2. The basic structure of compact bone, after [29]. 

FIGURE 3. Typical bone structure in the diaphysis of the femur, after Cowin [29]. 
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midshaft of a long bone, it consists of concentrically arranged laminae as 
illustrated in Fig. 3. 

The thickness of the lamina is about 200 f.-LID. Between each lamina and 
the next there is a net-like system of blood vessels which is essentially a 
surface. Occasional large radial vessels through a lamina connect the surface 
nets. Each lamina is divided into the three zones shown in Fig. 3. The first 
zone, which extends from the surface of the vascular network to about one 
third of the way across the lamina is composed of highly organized dense 
bone. The second zone, which extends the next one third of the distance is 
composed of poorly organized tissue. This zone is interrupted in the middle 
by a line that, under ordinary light microscopy, appears to be bright. This 
bright line is the boundary between the two blood supply networks bounding 
the lamina. 

Cortical Haversian bone is also illustrated in Fig. 3 and its structure is fur­
ther detailed in Fig. 4. It consists of quasi-cylindrically shaped elements called 
osteons or Haversian systems. The individual Haversian systems themselves 
are composed of concentric lamellae about 3 to 7 f.-LID thick. These thin lamel­
lae, in turn, are constructed from wrapped collagen fiberes impregnated at 
regularly spaced sites with hydroxyapatite and other mineral crystals about 
20 to 40 nm long, cf. also [94]. 

T£ 
MINERAL CRYSTALS 
!200-400 A LONGl 

FIGURE 4. The detailed structure of an osteon, after Cowin [29). 

Osteons are typically about 200 f.-LID in diameter, the same thickness as the 
laminar bone, and about 10 to 20 mm long. The thickness is the same because 
the blood supply for the Haversian system is a central lumen containing a 
blood vessel, and thus every point in the Haversian system is no more than 
100 f.-LID from the blood supply, as was the case with laminar bone. Haversian 
bone is organized to accommodate small arteries, arterioles, capillaries and 
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venules of the microcirculating system. Haversian bone is never formed as 
a primary event, but forms as the result of the vascular invasion of bone. 
In young animals, woven bone is formed initially, the endosteal capillaries 
invade the avascular bone forming Haversian systems. 

The osteons of Haversian bone and the laminae of laminar bone are ba­
sically just different geometric configurations of the same material. In both 
geometric configurations no point in the tissue is more than 100 J-Lm away 
from the blood supply. The interfaces between the laminae in both Haver­
sian and lamina bone contain an array of roughly ellipsoidal-shaped cavities 
called lacunae which contain bone cells, and from which extend numerous 
fine canals called the canaliculi. The thin layer between adjacent osteons is 
called the cement line and the three-dimensional region between osteons is 
filled with irregular pieces of lamellar bone. The canaliculi do not cross the 
cement line nor do they cross the bright lines between laminae in laminar 
bone. 

Both Haversian and laminar bone occur simultaneously in the long human 
bones and in many animal bones including cattle. In the very young, the 
long bones are composed of woven bone with a few osteons, called primary 
osteons. With maturation the woven bone is coverted to laminar bone and, at 
maturity, there is a partial conversion to Haversian bone. According to [29], 
the convesion from laminar to Haversian bone is somewhat of a biological 
enigma. Haversian bone is known to have a less efficient local circulation 
system and to have a less mechanical strength compared to laminar bone 
and generally increases with age. 

The composition of bone tissue is, very roughly, equal thirds by volume 
of minerals, water, and the extracellular collagenous matrix. If one tries to 
be more more precise about bone composition, then one must specify the 
species, the age, the sex, the specific bone in question, the type of bone 
tissue (cancellous or cortical), and whether the individual is experiencing a 
bone diseese or not, cf. [30). 

Smith [71] proved the existence of several types of osteons composed 
of concentric lamellae. Ascenzi and Bonucci [11, 12, 13, 14) and Ascenzi et 
al. [15, 16) described the structure of bone consisting of three types of osteons 
with lamellae and fibers within these lamellae. Frasca [34) and Katz [49) 
described the fourth type of osteon, cf. also [5, 6, 7, 8, 9, 10, 15, 17, 18, 35). 
The properies of single osteonic lamellae were studied in [10, 35, 65). 

It seems that the first results pertaining to application of homogenization 
methods to finding macroscopic elastic moduli of compact bone are due to 
Aoubiza (3], Aoubiza et al. [4], Crolet [32) and Crolet et al. [33). Telega et 
al. [36) claim that the macroscopic moduli can be derived provided that the 
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microscopic organization of bone in specified by the elasticity tensor 

( X X X) 
cijkl(x) = cijkl -, 2' 3 ' 

€ € € 
(1.1) 

where e > 0 is a small parameter. There are thus three microscopic levels 
specified by ~' ~' ~- The determination of the macroscopic moduli ctkz 
means passing to zero withE and is based on the so called reiterated homog­
enization. In [76] the authors proved that the effective moduli ctkl can be 
found by applying the r -convergence theory. 

Typical examples of trabecular bones are shown in Figs. 5-7. These fig­
ures provide interesting visualization of human trabecular bone architecture 

FIGURE 5. Micro-CT image of a trabecular bone specimen with rod-like archi­
tecture and a bone volume fraction of 26%, after [92]. 

FIGURE 6. Trabecular bone with distinct rod-like columnar structure, after [57]. 
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FIGURE 7. Micro-CT image of a trabecular bone specimen with plate-like archi­
tecture and a bone volume fraction of 26%, after [57] . 

obtained by micro-computed tomography, cf. Muller and Ruegsegger [57]; 
Ulrich et al., (92]. According to Muller and Ruegsegger [57] specimens with 
diameters of a few millimeters to a maximum of 18 mm can be measured. 

Figure 8 provides examples of idealized structures of cancellous bone. 
Different and combined architectures can also be envisaged. 

The authors of the present synthetic paper published several articles on 
modeling of cancellous bone provided that it is treated as a cellular solid, 

(I) (b) 

(c) (d) 

FIGURE 8. Models for the structure of cancellous bone: (a) the low-density 
equiaxed structure, (b) the higher-density equiaxed structure, (c) the stress­
oriented prismatic structure and (d) the stress-oriented parallel plate structure, 
after [39). 
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starting from the paper [75]. Our results will be presented in this paper. In 
fact, cellular solids many be viewed as a specific case of porous materials. 
For various results on modeling cellular solids, including foams, the reader is 
referred to Roberts [67], Hohe and Becker [43], Shi and Tony [70), Overaker 
et al. [62], Warren and Kraynik [95), Roberts and Knackstedt [68), Vajjhala 
et al. [93], Ohno et al. [59, 60], Okumura et al. [61), Theocaris [79], Gibson 
et al. [40], Triantafillou et al. [91), Moore and Gibson [56]. 

Microstructure analyses of trabecular bone have followed the general ap­
proach used in the cellular plastics fields. McElhaney et al. [55) developed a 
porous block model of trabecular bone based on integration of spring stiffness 
loaded in parallel or in series. Using this model, they found good agreement 
between prediction of apparent stiffness and experimentally measured stiff­
ness values in some internal layer of human skull. Pugh et al. [66] modeled 
the subchondral trabecular bone as a collection of structural plates and con­
cluded that bending and buckling were major modes of deformation of the 
trabecular bone. Williams and Lewis [96) modeled the exact structure of a 
two-dimensional section of trabecular bone with plane strain finite elements 
to predict the apparent transversely isotropic elastic constants. Gibson [38) 
developed models of trabecular bone structure using analytical techniques for 
porous solids. He predicted the dependence of apparent stiffness on appar­
ent density for different structural types of trabecular bones. Beaupre and 
Hayes [21] developed a three-dimensional spherical void model of trabecu­
lar bone and used finite element analyses to predict apparent stiffness and 
strength, as well the stress distribution within the trabecular. Hollister et 
al. [44, 45] applied the homogenization theory [25, 52, 69, 72) to an investi­
gation of mechanical behavior of rod-like structures modeling the trabecular 
bone. By using the finite element method they evaluated the apparent, or­
thogonal Young's moduli and compared them with the experimental data 
obtained for proximal humerus, proximal tibia and distal femur, cf. also [42). 

Bone may be viewed as a structurally hierarchical porous material. It is 
then possible to use the iterative homogenization [25) to derive the formu­
lae for the macroscopic elastic moduli, cf. [3, 4, 32, 33). Optimal design of 
structures often involves homogenization and relaxation methods [22, 24, 50, 
52, 54). Such an approach may be used to model bone microstructure via 
adaptive elasticity. Payten et al. [63) presented an optimization process that 
has, as its basis, an algorithm originally developed for predicting anatomical 
density distributions in natural human bones. 

The microstructure of bone is such that at the macroscopic level its be­
haviour is anisotropic. To model bone anisotropy one can use Cowin's fabric 
tensor, see [30, 31, 46, 53) and the references cited therein. Jemiolo and 
Telega [46) proved that compact bone is close to transverse isotropy whilst 
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trabecular bone is approximately orthotropic, cf. also [97] and the relevant 
papers in [31]. The approach employed in [46] exploits Cowin's fabric tensor. 
Detailed study of various approaches to fabric tensors in bone was performed 
by Jemiolo and Telega [47]. In [97] the authors claim to use the homoge­
nization method for finding the orthotropic elastic constants yet no precise 
formulation was unfortunately given. 

A challenging problem in the estimation of bone elastic moduli is the 
influence of marrow. No satisfactory modeling of this problem seems to have 
been proposed so far. Kasra and Grynpas [48] proposed an idealized three­
dimensional finite element model of a rod-like trabecular bone structure to 
study its static and dynamic response under compressive loading. Static anal­
ysis of the model predicted hydraulic stiffening of trabecular bone due to the 
presence of bone marrow. The predicted power equation relating the trabecu­
lar bone apparent elastic modulus to its apparent density was in good agree­
ment with those of the reported experimental data. The influence of marrow 
was also studied by the first, second and fourth authors of the present paper, 
see Sec. 9, [77, 78, 87, 88, 90] and the paper by Arramon and Nauman in [31] 

The aim of this paper is to present our macroscopic models of compact 
and cancellous bone by using the homogenization methods. General consid­
erations pertaining to reiterated homogenization of linear elastic solid with 
three-scale microstructure are performed .in Sec. 2. Section 3 is concerned 
with application of reiterated homogenization to finding effective macroscopic 
elastic moduli of compact bone with three structural levels. In Sec. 4 general 
homogenization procedure for the determination of elastic moduli of linear 
elastic porous material is sketched. The general approach is next used, in 
Sees. 5 and 6, to plate-like trabecular bone. Rod-like architecture is exam­
ined in Sec. 7. Honeycomb architecture is examined in Sec. 8. Section 9 is 
concerned with torsion of long bone where marrow is treated as a viscous 
material. 

Homogenization problems considered in Sees. 5 and 7 involve two small 
parameters: c and TJ. The first parameter is standard in the homogenization 
whilst the second parameter characterizes the thickness of plates or rods ( tra­
beculae). To derive the formula for the elastic macroscopic moduli we first 
pass with c to zero and next let TJ tend to zero. By properly choosing the 
geometry of the basic cell one can model anisotropic ( orthotropic or trans­
versely isotropic) behaviour of the cancellous bone at the macroscopic level. 
If a = {3 = 1, at the macroscopic level the bone reveals the cubic symmetry, 
cf. formula ( 6.1). More complex architecture of trabecular bone requires more 
independent parameters. Such problem requires further studies. 
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2. Reiterated homogenization via r -convergence 

In the next section the compact bone is modeled as the material with a 
hierarchical structure. Only three structural levels are considered. It is thus 
reasonable to assume that the elasticity tensor is given by 

(2.1) 

where cijkl (x,yl,Y2,Y3) is yl X y2 X Y3-periodic in the second, third and 
fourth variables, and Yl = x/c, Yl E Y1 etc. Particularly, it may happen that 
Y1 = Y2 = Y3, cf. Allaire and Briane [2]. We make the following assumptions, 
cf. Bensoussan et al. [25], Chapter 1, Sec. 8) , Allaire and Briane [2]: 

(i) Cfjhl E Loo(O), 
(ii) there exists positive constants co and c1, c1 2: co such that 

almost everywhere in 0 X Y1 X Y2 X Y3. 

Here E~ denotes the space symmetric 3 X 3 matrices, and n c JR3 is a bounded, 
sufficiently regular domain representing the linear elastic body in its uncle­
formed configuration. For fixed E > 0 the functional of the total potential 
energy is given by 

where 

Je:(u) = Ge:(u) - L(u), 

G,(u) = ~ j Cf;h1(x)ei; (u)eht(u)dx, 

n 

(2.2) 

(2.3) 

and L( u) stands for the functional of the external loading. For instance, if 
the body is subjected to body forces f = (/i) only, then 

L(u) = j j;uidx. 

n 

The strain tensor e(u) is linear: 

(2.4) 

(2.5) 

To perform homogenization when E ~ 0 the precise form o L is not re­
quired. It suffices to assume that L is a so called the perturbation functional, 
continuous in weak topology of H 1 ( 0) 3 = [ H 1 ( 0) ]3. 
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Applying the r -convergence theory we conclude that the homogenized 
functional Jh is given by 

Jh(u) = ~ j C;jkl(x)e;j(u)ekz(u)dx- L(u), 

n 

(2.6) 

where the macroscopic elasticity tensor Ch is defined by the inductive ho­
mogenization formulae: 

(a) C(3) = C(x,yl,Y2,Y3), 

(b) C(2) = C 2(x, Yl, Y2) is obtained by periodic homogenization of 
C(3)(x,yby2, ~), 

(c) c(l) = C(1) (x, yi) is obtained by periodic homogenization of 
C2 (x,y1, ~), 

(d) Ch(x) = C 0 (x) is obtained by periodic homogenization of C(1)(x, ~). 

More precisely, to derive the moduli C(2), c(l) and C 0 we proceed as follows: 

(2) _ aw2 
Cmnpq(x, Yl' Y2) - 8Epq8Emn 

= ~~3 l J C;jpq(x, Yl, Y2, Y)(efj(X(mn)) + c5;mc5jn)dy (2. 7) 
y3 

where 

W2(x,y1,y2, E)= inf { rm} f Cijkz(x,yl,Y2,y)(ef1(v) + Eij)x 
y3 (2.8) 

(e%l(v) + Ekt)dy I v E ii~er(Y1) 3 , E E E~, 

and ii~er(Y3) = { v E H 1 (Y3) I v assumes equal values on the opposite sides 
of Y3, (v) = 0 } . Here 

y ( ) - 1 ( 8vi avj) 1 J e .. v -- - +- and (v)yk = lvkl vdy, k = 1,2,3. 
'LJ 2 8yj 8yi .ll 

(2.9) 

yk 

The function v, the solution of the minimization problem on the r.h.s. of (2.8) 
depends linearly on E, i.e., v = X(mn) Emn· The functions X(mn) E H~er(Y3) 3 

are solutions to the following local problem: 

J Cijkl(x, Yl ,Y2, y)(efj (X(mn)) + c5;mc5jn)e~1 (w)dz = 0 (2.10) 

y3 
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for any w E H~er(Y3) 3 . Obviously, the functions X(mn) (y3) depends also on 
x, Yl and Y2· 

The moduli cgkl(x, yi) are found similarly. Finally, the macroscopic elas-

tic moduli ctkl(x) = ci~kz(x) are given by 

h ( ) - aw - _1 1 (1) ( )( y ( (mn)) ~- ~. ) y ( ) cmnpq X - 8Epq8Emn - IYII cijpq x, y eij ~ + UtmUJn ekl w dy 
yl 

(2.11) 
where 

and ~(mn) E ii~er(Y1)3 is a solution to 

1 dlkz(x,y)(efj(if1(mn)) + 8im0jn)e~z(c/>)dy = 0 '<!</> E if~(Yd (2.13) 

yl 

Remark 1. More general scaling than that described by c, c2 and c3 is 
possible. The elasticity tensor ce can be given by, cf. Allaire and Briane (2] 

(2.14) 

provided that 

(2.15) 

This means that each scale can be distinguished from the others (separation 
of scales), i.e., they are not of the same order of magnitude. In (2.1) we 
obviously have 

Ek = ck, k = 1, 2, 3. (2.16) 

Remark 2. The reiterated homogenization procedure can be extended 
to perforated domains described as follows. For each k = 1, 2, 3, the basic cell 
Yk is divided into a material part Yk and the whole Tk. The case where Tk 
is empty is not precluded. Now the integrals in (2.3) and (2.4) are calculated 
over the domain ne, being the multiscale perforated domain, cf. Allaire ans 
Briane (2]. We observe that peforated materials are more appropriate as 
models of bone tissue. 
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To derive the homogenized moduli we proceed similarly as previously, 
except that now the integrals over Yk, k = (1, 2, 3) are to be replaced by inte­
grals over Yk* and the spaces ii~er(Yk*) replace the spaces ii~er(Yk)· Moreover, 
if L is given by 

L,(u) = j /;u;dx + L1(u), (2.17) 

n£ 
then 

Lh(u) = j 8/;u;dx + L1(u) (2.18) 

n£ 

where 8 = 818283 is the overall volume fraction of material, 8k = IYk*l· 

3. Application of reiterated homogenization to the determi­
nation of effective elastic moduli of compact bone 

As we already know, compact bone is characterized by many structural 
levels. Here we are going to consider three of them, most important from 
the point of you of finding the macroscopic elastic moduli. We follow the 
thesis [3] and [4, 32, 34, 36] . 

At the lowest level, the lamellar structure is considered: collagen fibres 
are embedded in hydroxyapatite crystals. In a single lamella, all the collagen 
fibres have the same orientation but the orientation of these fibres can differ 
between two adjacent lamellae. 

The second level corresponds to the structural definition of a single osteon 
and of a part of the interstitial system, an osteon being a set of concentric 
lamellae, which surround the Haversian canal. 

At the highest level, a representative volume of compact bone is examined. 
This volume consists of sufficiently large number of osteons embedded in the 
interstitial system. The osteons are packed tightly together, mutually parallel 
and oriented in the direction of the long axis of the bone. 

3.1. Modeling of the lamellar structure 

The simulation of the characteristics of a single lamella is performed in 
two steps. First, a lamella is divided into a finite number of identical cylin­
drical sectors, cf. Fig.9. By knowing the elasticity tensor of one sector, the 
elasticity tensor of any other sector can obviously be calculated. It suffices to 
perform a rotation. Secondly, the cylindrical sector is geometrically approxi­
mated by a parallelepiped sector and, through a change of axis, the directions 
of fibres are assumed to be parallel to one side of this cubic sector. In the 
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FIGURE 9. Decomposition of a lamella and approximation of a sector, after Crolet 
et al. (33]. 

FIGURE 10. Basic cell for the homogenization in a sector, after Crolet et al. [33]. 

345 

case of the cubic sector (fibrous unidirectional composite), the basic cell Y3 
is chosen to be a collagen fiber and a hydroxyapatite matrix, see Fig. 10. 

In this case the homogenization is two- dimensional. It means that the 
homogenized coefficients cij~l are calculated according to the formula (2.7). 
To solve this two- dimensional homogenization problem one can use a FEM. 
In this manner the homogenization moduli of a lamella sector are obtained. 
The direction of fibres was assumed to be parallel to the longitudinal axis of 
the lamella. In more general case, where the fibres are oriented with respect 
to the longitudinal axis one can use the transformation formula, cf. Fig. 11. 

Crolet at al. [33] and Aoubiza at al. [4] assumed that the collagen and 
hydroapatite are homogeneous, isotropic and perfectly bonded. Such an ide­
alization is enforced by available experimental data. 

3.2. Methods of calculation 

In essence, our procedure is divided into four steps. 
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Step 1. Calculation of material constants for osteon and interstitial system. 

0000 
0000 

0000 

d 
collagen fibres in 
hydroxyapatite 

homogenization ... 
rotation - 45° 

FIGURE 11. Various orientation of collagen fibers. 

To obtain the effective elastic constants for material of osteons lamella of 
type I we use the Christensen formulae (26). These formulae give the effective 
properties of mixture of circular fibers in isotropic matrix. The fibers are 
made of collagen and hydroxyapatite matrix. 
The material constants for collagen are given by (29): 

Pc = 1.40, Ec = E1 = 1.2, Vc = V1 = 0.35. 

The material constants for the hydroxyapatite are assumed to be given by: 

Ph = 3, Eh = E2 = 114, Vh = V2 = 0.27. 

If k denotes the mineral content then the volume fraction ¢ of collagen 
is derived from the formula 

¢ = ( 1 - k) PhPc 
k Pc [k Pc + (1- k) PhJ' 

(3.1) 

For the mineral content 58% (osteon) and 63% (interstitial system), we have 
¢ = 0.608 and ¢ = 0.557, respectively. The elastic effective constants for 
lamella of type I are calculated for both cases. 

Type II is obtained from the material constants tensors for type I by 
rotation through the angle 90° with respect to the Ox axis. 

Type III is obtained from material constants tensors for type I by rotation 
angle 45° with respect to Ox axis. 
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Type IV is obtained by rotation angle -45° with respect to Ox axis. 
The architecture VI is calculated as for layered structure by homogeniza­

tion formulae for anisotropic components of types I, II , III and IV with the 
volume fraction 0.25. The transversely isotropic properties of material of os­
teon and interstitial system are calculated by integration over the direction 
of lamination. 

First, material properties of lamella of type I are calculated. Next lamellae 
of types II, III and IV are investigated by appropriate rotations of fibers in 
the matrix. 

Step 2. Calculation of material constants for osteon and interstitial system. 

architecture 6 

homogenization .. 
+ rotation 

0 

mineralization 58% 
material of osteon 

mineralization 63% 
material of interstitial system 

FIGURE 12. Specific case of lamellae arrangement. 

Each osteon consists of lamellae having the same thickness and two adja­
cent lamellae are perfectly bonded, cf. Fig. 12. The results from the previous 
level are used as the data for the second level. This simulation was also used 
to obtain the moduli of the interstitial system. The latter is assumed to be a 
fragment of "old" osteons. In this case, the degree mineralization is assumed 
to be more elevated. 

Crolet et al. (33) studied six architectures of compact bones: 

• architecture No 1: one type of osteons (type I); 

• architecture No 2: one type of osteons (type II); 

• architecture No 3: one type of osteons (type IV); 

• architecture No 4: two types of osteons (I and II) in the same propor­
tion; 

• architecture No 5: three types of osteons (types I, II and III) in the 
following proportions: 25, 25 and 50%; 

• architecture No 6: four types of osteons (types I-IV) in the proportions: 
25, 25, 25 and 25%. 
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Obviously, one can also envisaged different architectures. In what follows the 
architecture 6 is considered. Secondly, the architectures VI and VII are calcu­
lated as multilayered structures by homogenization formulae for anisotropic 
components. Finally, the transversely isotropic properties of material of os­
teon and interstitial system are calculated by integration over direction of 
lamination with diffrent mineral content (less for osteon material). 

Step 3. The method of calculation of effective material constants of osteon 
with Haversian canal. 

homogenization .. 
Material of osteon 

with Haversian canal 

FIGURE 13. Osteon with Haversian canal. 

At first our FEM method was applied to calculate the effective properties 
of osteon with fixed volume fraction of Haversian canal (modeled by a cavity) 
with square section. Next, by integration over rotation angle the transversely 
isotropic moduli of osteon material with Haversian canal are calculated. This 
procedure is repeated for different volume fraction of Haversian canal: 0.133, 
0.15, 0.2, 0.25 and 0.3. 

Step 4. The method of calculation of effective material constants of compact 
bone. 

I/ 
/ ]Ill[ ~I[~· J/ 

/ ~Jil. / 

homogenization ... 
1/ / / et 

FIGURE 14. The final step of homogenization. 

http://rcin.org.pl



HOMOGENIZATION METHODS IN BONE MECHANICS 349 

Effective properties of compact bone are calculated similarly to Step 2. 
At first our FEM method was applied to calculate the effective properties of 
bone with fixed volume fracture of osteon equal to 75% for different volume 
fractions of Haversian canal in osteons with square section. Secondly, by 
integration over rotation angle the transversely isotropic moduli of compact 
bone material are obtained. 

3.3. Results 

Technical constants calculated according to the outlined procedure are 
given in Table 1 in rows 1-5, for the following volume fractions of Haversian 
canal: 0.133, 0.15, 0.2, 0.25 and 0.3, respectively. In row 6 the results due to 
Crolet et al. [33] given, whilst in row 7 the experimental data obtained on 
dry bone are provided. In Table 1, A6-1 denotes the architecture no. 6 with 
the volume fraction of Haversian canal 0.133, and similarly for A6-2, ... ,A6-5 

TABLE 1. Comparison of technical moduli. 

E1 E3 G13 G12 Z112 Z113 Zl31 

A6-1 24.33 31.12 10.69 9.95 0,22 0.19 0,24 
A6-2 3.60 30.71 10.45 9.63 0.23 0.19 0.24 
A6-3 21.48 29.46 9.75 8.71 0.24 0.18 0.24 
A6-4 19.50 28.21 9.08 7.86 0.25 0.17 0.24 
A6-5 17.66 26.98 8.43 7.07 0.26 0.16 0.24 
A6- Crolet et al. [33] 17.87 33.3 6.7 5.48 0.31 0.13 0,23 
Yoon and Katz [98] 18.80 27.40 8.71 7.17 0.31 0.19 0.28 
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FIGURE 15. Young moduli versus porosity. 

http://rcin.org.pl



350 J.J. TELEGA, A. GALKA, B. GAMBIN, and S. TOKARZEWSKI 

CPa 

11,00 

10,00 

9,00 

8,00 

7,00 

6,00 

5, 00 +---.-----.------r------.--------, 
0,10 0,15 0,20 0,25 0,30 0,35 

poros-ity 

~ 
~ 

FIGURE 16. Shear moduli as function of porosity. 
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FIGURE 17. Poisson's ratios versus porosity. 

with the volume fraction 0.15, 0.2, 0.25 and 0.3, respectively. The depedence 
of technical constants on porosity is depicted in Figs. 15-17. 

4. Homogenization of porous linear elastic materials 

Let n denote a bounded open subset of JR3 . As usual, by Y we denote 
the basic cell, cf. [25, 52, 69, 72). The part of Y occupied by the material 
is denoted by Y*. It is assumed that the hole T in Y does not intersect the 
boundary aY, cf. [27, 52), though this assumption may be weakened. By n; 
we denote the part of n occupied by the material. Here c > 0 is a small 
parameter. Let us consider the following boundary value problem of linear 
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elasticity (27, 28) 

a ( (x) aulc) - Cijkl - - + !i = 0 
axj c axl 

inn;, 

ulc = 0 on an, (4.1) 

ci "kl (~) auk n . = 0 on an;\ an, 
J c axl J 

where n = (nj) is the unit vector normal to an;\an. We make the following 
assumptions: 

(i) fi E L 2 (n), 
(ii) cijkl E L00 (Y*), cijkl = cklij = cjikl i, j, k, z = 1, 2, 3. 

(iii) There exist a positive constant co such that for almost every y E Y: 
Cijkt(y)eijekl ~ Coeijeij for any e = (eij), eij = eji; 

(iv) The material coefficients Cijkl(Y) are Y-periodic. 

The passage with c to zero is now standard. Let us recall the related basic 
results which will next be exploited in Sec. 5, where we will let a parameter 
TJ introduced below to tend to zero. Under these assumptions, there exists an 
extension Peuc E [HJ(n)] 3 

of uc such that, cf. (28), 

Pcue ~ u in [HJ(n)] 3 
weakly, 

with u = ( uk) being the solution to: 

h a2uk IY*I 
Cijkl axjaXl + lYT fi = 0 inn, u = 0, on an. 

We recall that I Y I = vol Y. 
The homogenized coefficient ctkl are given by 

a (mn) 

ctmn =< Cijmn > + < Cijpq ~ >, 
Yq 

where 

< . >= 1~1 J (-)dy. 
y• 

The Y-periodic functions x~mn) are solutions to the local problem 

a (c a ( (pq) ~ ) ) - . Y* ayi ijmn ayn Xm + UmpYq - 0 In ' 

(4.2) 

(4.3) 

(4.4) 
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(4.5) 

Here N stands for the inner unit vector normal to OT. Written in the weak 
form, this problem is expressed by 

V 'l1 J E Hper(Y*), ( 4.6) 

where 
Hper(Y*) = { v E H 1(Y*) I vis Y- periodic}. 

For \l1 j = Xlpq) we get 

J 
8 (pq) 8x<_pq) j 8x\pq) 

Cijmn 
8
Xm -

8
1

. dy =- Cijpq-
8

1
. dy. (4.7) 

Yn Yt Yt 
y• y• 

5. Plate-like structure 

In this section we shall derive the macroscopic moduli for a cellular solid 
with plate-like architecture. The first step of homogenization has been per­
formed in the previous section. The plates are characterized by a small pa­
rameter TJ > 0. One can easily envisage more complex plate-like architectures 
with plates (trabeculae) not necessarily orthogonal and of constant thickness. 
Plates may also be perforated. More complex architecture would require more 
independent geometrical parameters (or functions). Then, however, one has 
to resort to numerical methods to find the effective moduli, cf. Kowalczyk [51). 
In the case considered the second step of homogenization consists in passing 
with TJ to zero. Let now the basic cell Y be given by 

1 1 1 1 1 1 
y = (-2, 2) X (-2, 2) X (-2, 2). (5.1) 

Due to periodicity, the homogenized coefficients do not depend on the ba­
sic cell and consequently, one may take a translated cell of the basic one. 
Consequently we take a translated cell represented in Fig. 18. 

We observe that the thicknesses of three orthogonal plates are not neces­
sarily equal, thus allowing for a macroscopically orthotropic response of the 
trabecular bone. Let us introduce the following notation: 

yl = { y E Y, IYII ~ ~} ' 

Y2 = { Y E Y, IY2l ~ a ~} , 
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FIGURE 18. Translated basic cell. 

y3 = { y E Y, IY31 :::; {3 ~}' 

Y12 = { Y E Y, IY1I :::; ~ and IY2I :::; a ~} , 

Y23 = { Y E Y, IY2I :::; a~ and IY31 :::; f3 ~}, 

Y13 = { Y E Y, IY1I :::; ~ and IY31 :::; f3 ~} , 

Y123 = { Y E Y, l~1l :::; ~ and IY2I :::; a ~ and IY31 :::; {3 ~} , 

Y; = { Y E Y, IY1I :::; ~ or IY2I :::; a ~ or IY3I :::; f3 ~} · 

(5.2) 

Since IY17* I = (1 + a + {3) 'fJ - (a+ {3 +a {3) 'f]2 +a {3 'f]3 , we get the following 
estimate: 

(5.3) 

Obviously x(pq) depend on a, {3 and 'f/· The constant c is independent of 'fJ 

and 
Y( ) _ 1 (awi 8wj) e w -- -+- . 

2 8yj 8yi 

Using this estimate in ( 4.3) we conclude that 

-lch c* 'fJ ijmn -t ijmn 

(after extraction of a subsequence, if necessary) We can pass to the limit as 
'fJ -t 0 in the homogenized equation (4.2), whose solution is denoted by u17. 
We have 

uZ ~ uic in HJ(n) weakly, 
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where u* is the solution to: 

a2u* 
Ctjkn a ·o k + (1 +a+ /3) h = 0 in n, u* = 0 on an. (5.4) 

X; Xn 

We observe that now IYI = 1. After lengthy calculations we finally obtain: 

Ctjmn = (1 +a+ /3) Cijmn- Cijpl (C1 1
)pqClqmn 

-a Cijp2 ( C21 
)pq C2qmn- /3 Cijp3 ( C31 

)pq C3qmn· 
(5.5) 

For the proof the reader is referred to Galka et al. [37]. Here ( C2 1 
)mj and 

( C31
) mj are the components of the matrices inverse to ( C2mj2) and ( C3mj3) 

respectively. 
If we take a more general basic cell: 

11 AA BB 
y = [-2, 2) X [-2, 2) X [-2, 2) 

then we obtain the following formula: 

Ctjmn = (1 + ~ + ! ) Cijmn- Cijpl ( C!1 
)pq Clqmn 

- ~ Cijp2 (C21
)pqC2qmn-! Cijp3 (C3 1

)pqC3qmn· 

(5.6) 

Remark 3. To make the plate-like model of cancellous bone more real­
istic, the plates constituting the basic cell should have holes. Then the plates 
would be weaker and parameters characterizing the holes would intervene in 
the formula for the elasticity matrix C*. More precisely, the elastic potential 
with the elastic moduli (5.6) represents then an upper bound for plate-like 
cellular material with perforated plate-like trabeculae. 

6. Specific case: trabecular plates made of a homogeneous and 
isotropic material 

Let the plate trabeculae be isotropic and homogeneous; then 

Cijmn = J.L (c5mjc5ni + c5mic5nj) + Ac5ijc5mn· 

From (5.5) we obtain the following form of the elasticity matrix: 

41-L {a+.BH..\+1-L} ~ 2a..\y 0 0 0 2J.L+..\ 2J.L+..\ 2~-L+..\ 
~ 4 J.L{l+.BH..X+J.L} ~ 0 0 0 2J.L+..\ 2J.L+..\ 2~J-+..\ 

C*= 
2a..\y ~ 4J.L{l+a}{..\+J.L} 0 0 0 2J.L+..\ 2J.L+..\ 2J.L+..\ 

0 0 0 2J.L 0 0 
0 0 0 0 2aJ.L 0 
0 0 0 0 0 2f3J-L 
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Obviously, here Voigt's notation has been used, cf. [58]. 
Having in mind Fig. 18, the physical effective elasticity tensor, now de­

noted by ceff' is given by 

cetr = cP C* 
1+a+,B ' 

(6.1) 

where 4> is the volume fraction. In the case of C* given by Eq. (5.6) we have 

cetr = c/>AB C*. 
AB+ Ba+A,B 

By A we denote the matrix inverse to (cetr), i.e. A= ( cetr) -l. Then the 
technical elasticity constants are, cf. [46], [58], 

1 1 1 
El = Au' E2 = A22' Ea = Aaa; 

(6.2) 

1 1 1 
G12 = 2A66' G13 = 2A55' G23 = 2A44; (6.3) 

A12 A12 A1a 
l/}2 = --, ll21 = --, l/}3 = --, 

A22 Au Aaa 
A12 A2a A2a 

(6.4) 
ll31 = --, ll23 = --, ll32 = --. 

Au Aaa A22 

Let us pass now to the presentation of specific cases, which show the useful­
ness of the formulae (6.1) for the determination of macroscopic elastic mod­
uli of trabecular bone with plate-like architecture. These particular cases are 
presented in the form of Tables 2, 3 and 4 and Figs. 19-21 below. 

TABLE 2. Technical constants: cortical bone. 

Techn. const. human from (6.2)-(6.4) 
(average) cortical bone E = 114CPa, II= 0.27 

E1 11.7 (1.6)CPa 11.7 CPa 
E2 13.2 {1.8) CPa 14.4 CPa 
E3 19.8 (2.4) CPa 19.8CPa 

Gl2 4.53 (0.37) CPa 1.1 CPa 
Gl3 5.61 (0.4) CPa 3.27CPa 
G23 6.23 (0.48) CPa 4.36CPa 
1112 0.375 (0.095) 0.04 
1121 0.416 (0.118) 0.03 
1123 0.237 (0.083) 0.21 
1132 0.346 (0.096) 0.15 
1113 0.374 (0.108) 0.19 
1131 0.234 (0.088) 0.11 
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The third column of Table 2 provides technical constants calculated by 
using formulae (6.2)-(6.4). The following data, corresponding to the hydrox­
yapatite, cf. [30, 31, 33], are assumed: 

E = 114 GPa, v = 0.27. 

Then the Lame coefficients are given by A = 52.69 GPa, J-L = 44.88 GPa 
The calculations have been performed for 

3 
Q= 4' 

The second column in Table 2 is taken from Table 1 in [46). 
Two further specific cases are summarized in the third and fourth column of 
Table 3. To calculate the moduli given in the third column of this table it 
was assumed that 

56 73 
A = 52.69 GPa, J-L = 44.88 GPa, n = 

67
, (3 = 

134
, ¢ = 0.007. 

Similarly, the moduli contained in the fourth column were calculated for the 
following data: 

56 73 
A = 17.28 GPa, J-L = 7.41 GPa, n = 

67
, (3 = 

134
, ¢ = 0.043. 

The second column of Table 3 is taken from Table 1 in [46). According to 
Table 9 in [30], E = 20 GPa estimates the value of the elastic modulus of the 
wet human trabecula. 

We observe that the second column of Table 1 in [46) (or the second 
column in our Table 2) presents technical constants for specimens of hu­
man femoral cortical bone, where the !-direction is radial, the 2-direction 

TABLE 3. Technical constants: cancellous bone. 

human cancellous bone E = 114GPa, E = 20GPa, 
(proximal tibia) v = 0.27 v = 0.35 

E1 237 (63) MPa 496MPa 545MPa 
E2 309 (93) MPa 552MPa 604MPa 
E3 823 (337) MPa 649MPa 706MPa 

Gl2 73 (0.37) MPa 73MPa 73MPa 
G13 112 (0.4) MPa 112MPa 112MPa 
G23 134 (0.48) MPa 134MPa 134MPa 
V12 0.169 (0.304) 0.08 0.1 
V21 0.209 (0.209) 0.07 0.09 
V23 0.063 (0.217) 0.15 0.18 
V32 0.245 (0.626) 0.11 0.14 
V13 0.423 (0.356) 0.16 0.2 
V31 0.145 (0.123) 0.14 0.17 
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is circumferential and the 3-direction is longitudinal. The second column of 
Table 3 presents average technical constants for 9 specimens of human cancel­
lous bone from the proximal tibia, where the 1-direction is anterior-posterior, 
the 2-direction is medial and 3-direction is logitudinal. In Tables 2 and 3 the 
numbers in parantheses stand for standard deviations. The second column 
of Table 3 implies a possibility of appearance of negative values of Poisson's 
ratios. The plate-like architecture studied in the present paper precludes such 
possibility. Examples of cellular solids with negative Poisson's ratio are given 
in [23, 31]. Thus a natural question arises: can trabecular bone, at a certain 
stage of human or animal life, behave like a cellular solid with negative Pois­
son's ratio? From the theoretical point of view such possibility is obviously 
possible. The decisive answer, however, is to be expected from experimental­
ists. Negative Poison's ratio is in fact nothing surprizing, since it is allowed 
by the positiveness of the elastic energy of anisotropic materials. We observe 
that according to Table 9 in [ 30], the value of E equal to 1.17 G Pa character­
izes individual bovine trabeculae. This result was obtained by Christensen 
( cf. [30]) using statistical data analysis. In Table 9 in (30] one also finds the 
following values of E [GPa] for individual trabeculae: 

E = 10.90 ± 1.6 - wet bovine femur, ultrasonic test method, 

E = 12.70 ± 2 - wet human femur, ultrasonic test method, 

E = 8.69 ± 3.17- dry human distal femur, buckling test method, 

E = 5.3 ± 2.6 - dried human femur, experimental test method with finite 
element method. 

TABLE 4. Technical constants from (6.2)-(6.4) 

E = 1 GPa E = 1GPa E = 5GPa E = 10GPa 
ll = 0.35 ll = 0.35 ll = 0.3 ll = 0.35 

a:= 0.836 a:= 0.836 a:= 0.9 a:= 0.9 
{3 = 0.545 {3 = 0.545 {3 = 0.2 {3 = 0.2 

v = 0.1 v = 0.3 v = 0.2 v = 0,2 
E1 0.0633MPa 0.19MPa 0.545MPa 1.14 MPa 
E2 0.701 MPa 0.21 MPa 0.603MPa 1.23MPa 
E3 0.819MPa 0.246MPa 0.924MPa 1.87MPa 

G23 0.0156MPa 0.0467MPa 0.183 MPa 0.353 MPa 
G13 0.013MPa 0.039 MPa 0.165MPa 0.317MPa 
G12 0.008MPa 0.0254 MPa 0.0366MPa 0.0705MPa 
l/23 0.204 0.204 0.238 0.276 
l/32 0.175 0.175 0.156 0.182 
lll2 0.101 0.101 0.0164 0.0114 
ll21 0.0913 0.0913 0.0151 0.105 
lll3 0.184 0.184 0.232 0.269 
l/31 0.142 0.142 0.14 0.164 
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FIGURE 19. Young's moduli in the three orthotropic principal directions versus 
bone volume fractions; a = 56/67, /3 = 73/134; isotropic trabeculae with E = 
1 GPa, v = 0.35. 
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FIGURE 20. Shear moduli in the three orthotropic principal directions versus bone 
volume fractions; a= 56/67, /3 = 73/134; isotropic trabeculae with E = 1 GPa, 
ll = 0.35. 
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FIGURE 21. Poisson's ratio divided by Young's moduli in the three orthotropic 
principal directions versus bone volume fraction; a = 56/67, /3 = 73/134; 
isotropic trabeculae with E = 1 GPa, v = 0.35. 

http://rcin.org.pl



HOMOGENIZATION METHODS IN BONE MECHANICS 359 

According to Table 9 in [30), the estimates for the elastic modulus of the 
trabeculae of human cancellous bone vary from 1 to 20 GPa. Future research 
should be directed towards resolving this problem of great scatter of Young's 
moduli. 

Figures 19-21 correspond to the data listed in the second and third column 
of Table 4. 

7. Rod-like structure 

Let now the basic cell Y be given by 

(7.1) 

Due to periodicity the homogenized coefficients do not depend on the ba­
sic cell and consequently one may take a translated cell of the basic one. 
Consequently, we take the translated cell represented in Fig. 22. 

_.//·r " --__ .:.:::::· 
(·······••!••··· . .. ~ 
: ~~ 

i ! 
i J----- - - ---- -~-----------J 
: ,'' : ,,' 

! // ! // 
~~::: ________________________ l/,' 

FIGURE 22. Translated rod-like basic celL 

We observe that the thicknesses of three orthogonal struts are not nec­
essarily equal, thus allowing for macroscopically orthotropic response of the 
trabecular bone. More elaborate and complex rod-like structure, requiring 
more independent geometrical parameters (or functions) can likewise be en­
visaged. Let us introduce the following notation: 
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Y123 = { Y E Y, IY1I :'0 ~ and IY2I :'0 "' "'
2 
'7 and IY31 :'0 !1

2 
'7 } , 

Y17* = Y1 UY2UY3, 

Y11* = 'T}
2 

( o + {3 + o {3) - 2 'T}
3 o {3. 

Since IY17* I = (1 + o + {3) 'T} - ( o + {3 + o {3) 1]2 + o {3 1]3 we get the following 
estimate 

(7.2) 

Obviously x(pq) depend on o, {3 and 'TJ· The constant c is independent of 'T} 

and 
1 ( Wi Wj) eY(w) = - - +- . 
2 ayj ayi 

Using this estimate in ( 4.3) we conclude that 

-2ch c* 'TJ ijmn ---+ ijmn 

(after extraction of a subsequence if necessary) We can pass to the limit as 

'T}---+ 0 in the homogenized equation (4.2), whose solution is denoted by u'Tl. 
We have 

u2 ~ uj. in HJ (n) weakly, 

where u* is the solution to the equation: 

82u* 
Ctjkn

8 
.ak + (o + {3 + o{3) li = 0 inn, 

XJ Xn 
u* = 0 on an. (7.3) 

We observe that now IYI = 1. 
Let us pass to finding the limit coefficients Ctj kn. 

Using Eq. ( 4.3) and the decomposition of Y* we obtain: 

1 h IY* I 1 J ax~mn) 1 J ax~mn) 
2 Cijmn = - 2-Cijmn- 2 Cijpq a dy- 2 Cijpq 

8 
dy 

'TJ 'TJ 'TJ Yq 'TJ Yq 
yl y2 

1 J 8x~mn) 1 J 8x~mn) 
- 2 Cijpq 

8 
dy + 2 2 Cijpq a dy. (7.4) 

'TJ Yq 'TJ Yq 
~ ~~ 

We have to pass to the limit with 'T] ---+ 0 in (7.4), where the integral terms 
are taken over domains depending on 'TJ· To avoid this difficulty we transform 
Y1, Y2, Y3, and Y123 in Y. 
For instance, using the a priori estimate (7.2 ) and ( 4.6) we have 

j leY ( x(pq)) I dy :,; cry. 

yl 
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Hence, after transformation 

and using Korn's inequality, we get 

[(
a (mn)) 

2 

( a (mn)) 
2 

( a (mn)) 
2

] I ;:1 + (a 1J)-1 ;:2 + (f31J)-1 ;:3 dz :S C1, 

where X~~m) = X~~m)(z1,z2,z3) = X~mn)(z1,ll17Z2,,817z3) and C1 does not 
depend on 17 . 

Thus 
a (mn) 

Xp1 

az1 

a (mn) 
~ h(mn) ( )-1 Xp1 ~ h(mn) 

p1,1 ' a 17 az
2 

p1,2 ' 

a (mn) 

( ,8 r~)-1 Xp1 ~ h (mn) 
'I az3 p1,3 ' 

in L 2(Y) weakly. Similarly we have 

a (mn) a (mn) a (mn) 
-1 Xp2 ~ h(mn) Xp2 ~ h(mn) (,8 r~)-1 Xp2 ~ h(mn) 

17 az1 p2,1 ' az2 p2,2 l 'I az3 p2,3 ' 

a (mn) a (mn) a (mn) 
-1 Xp3 ~ h(mn) ( )-1 Xp3 ~ h(mn) Xp3 ~ h(mn) 

17 az1 p3,1 ' Q 17 az2 p1,3 ' az3 p3,3 ' 

(7.5) 

a (mn) a (mn) a (mn) 
-1 Xp123 ~ h(mn) ( )-1 Xp123 ~ h(mn) (,Br~)-1 Xp123 h(mn) 

17 8z
1 

p123,1' a 17 az
2 

p123,2' ·1 az
3 
~ p123,3' 

in L 2(Y) weakly. Here the following notation is used: 

(mn) (mn) ( ) (mn) ( ,B ) 
Xp2 = Xp2 ZI, 17Z2, Z3 = Xp 17 Z1' Z2, 17 Z3 ' 

(mn) (mn) ( ) (mn) ( ) 
Xp3 = Xp3 Z1, Z2, Z3 = Xp 17 ZI, Q Z2, Z3 ' 

(mn) (mn) ( ) (mn) ( ,B ) 
Xp123 = Xp123 Z1' Z2, Z3 = Xp 17Zl' Q 17Z2, 17Z3 . 

We observe that due to the periodicity of x~mn) one has: 

j h~';';~) dz = 0, j h~~;> dz = 0, j h~~~) dz = 0, 
y y y 
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Return to (7.4) and let rJ tend to zero. We get 

Ctjmn = (a + f3 + a{J) Cijmn - Cijpl J ( a{J h~~~) + {3 h~r;,~)) dz 
y 

-Cijp2 J (a h~7,~) + {3 h~r;,~)) dz - Cijp3 J ( a{J h~~~) + a h~7,~)) dz 
(7.6) 

y y 

To calculate explicitly the integral terms of this formula we take W i in ( 4.6) 
to be a smooth function, Y-periodic and not dependent on Yl· We have the 
following equations (not independent): 

C2jp2 J h~7,~) dz + C2jp3 J h~7,~) dz = -C2jmn 1 

y y 

C3jp2 J h~~~) dz + C3jp3 J h~7,~) dz = -C3jmn· 
(7.7) 

y y 

Similarly taking Wj in (4.6) to be a smooth function, Y-periodic and not 
dependent on Y2 we obtain 

Cljpl J h~~~) dz + Cljp3 J h~~~) dz = -Cljmn 2 

y y 

C3jpl J h~~~) dz + C3jp3 J h~~~) dz = -C3jmn· 
(7.8) 

y y 

Suppose now that Wj in (4.6) is a smooth function, Y-periodic and not de­
pendent on Y3. Then we get 

Cljpl J h~r;,~) dz + Cljp2 J h~r;,~) dz = -Cljmn, 
y y 

C2jpl J h~r;,~) dz + C2jp2 J h~r;,~) dz = -C2jmn· 
y y 

(7.9) 

The above equations enable us to obtain the components of the matrix C*. 
In the case of isotropic material with the Lame constants .X, p, and assuming 
that a = {3 = 1 we finally get: 

10!!2 +15!!>.+6>. 2 

6A 6A 0 0 0 J.L+>. 

6A 10 !!2 +15!! >.+6 >. 2 
6A 0 0 0 J.L+>. 

6A 6A 10!!2 +15!!>.+6>.2 

0 0 0 C*= J.L+>. 

0 0 0 12 J.L 0 0 

0 0 0 0 12 J.L 0 

0 0 0 0 0 12J.L 

and 

ch = ~ ¢ c* 
3 ' 
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where ¢is the volume fraction of material. The general formula for the effec­
tive rod-like (strut-like) cellular solid can be used to the estimation of elastic 
moduli of trabecular bone with such an architecture. 

Similar problem of determination of macroscopic moduli of cancellous 
bone with rod-like architecture was also considered in [83, 86),where an ap­
proximate procedure was used. 

8. Honeycomb structure 

Let us pass to estimation of the macroscopic effective elastic moduli ctkz 
for cancellous bone with honeycomb architecture, cf. Fig. 23. 

X 

FIGURE 23. Honeycomb architecture. 

These moduli are determined in an approximate manner for small volume 
fraction ¢ characterizing the solid phase. For the sake of simplicity we assume 
that d1 = d2. To determine the effective moduli ctkz, we exploit approxi­
mate solutions of the local problem ( 4.4). The effective technical coefficients, 
given by Eqs. (6.2)-(6.4), are calculated by using formulae for ctkz specified 
by (4.3). After lenghtly calculations we obtain 

C
h - (a3)2 cos2 a EA. 8 (a3)4 (c2)2 EA..3 
1111 - '+' + '+' ' 

m1 m2 
(8.1) 

(8.2) 

(8.3) 

(8.4) 
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(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

The remaining moduli disappear. In the above formulae the following 
notation is used: 

a1 = 1 +~cos( a), a2 = 1 + 2 (cos(a))2 ~, a3 =~+cos( a), 

b1 = -1 + 2 cos (a) , b2 = -1 + 2 (cos (a)) 3 , 
2 2 2 c1 = 2 (2 + ~) cos a- v a1, c2 = b2 (2 + ~) + v a1 sin a, 

m1 = (2 + ~) a2- v2 (a1)2 , m2 = (2 + ~)3 (m1)2 , 

c= ~ 
~ l2. 

The effective technical moduli are given by: 

Eh- 8 (~ + cosa)4 E-+-3 Eh- 8 (~ + cosa)2 sin4 a E-+-3 Eh E-+-
x - ( 2 + ~ )3 '+' ' Y - cos2 a ( 2 + ~ )3 '+' ' z = '+' ' 

h (sin(a))2 
8 

sin2 a b2 a3 ¢2 
vxy := cos( a) a3 + cos3 a (2 + ~) 2 ' 

vh = a3 cosa _ 16 cos(a)(a3)4 ¢2 
yx (sin(a))2 (sin(a))2 (2 + ~) 2 ' 

h - h -
llxz - llyz - lJ' 

vh ·- 8 (a3)4v ¢2 
zx .- (2 + ~)3 ' 

vh = 
8 

v (sin(a))
4 

(a3)2 ¢2 
zy (2 + ~)3 (cos(a)) 2 ' 

G~z ch 
- = 1313' 

J-l 
Table 5 gathers some available data concerning the values of elastic modulus 
of individual trabeculae, cf. [30, 31]. These data were used to depict the 
dependence of the elastic moduli on various parameters, cf. Figs. 24-29. 
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FIGURE 24. Effective shear moduli versus volume fraction; E = 20 GPa, ~ = 2, 
Q = 7r/3, v = 0.3. 
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FIGURE 25. Effective shear moduli versus a. 
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FIGURE 26. Effective Young moduli versus volume fraction; E = 20 GPa, ~ = 2, 
Q = 7r/3, v = 0.3. 
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FIGURE 27. Effective Young moduli versus a. 
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FIGURE 28. Effective Poisson ratio versus fraction ~ = h/l2 ; E 
a= 7r/4, v = 0.3. 
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FIGURE 29. Effective Poisson ratio versus versus a; E = 20 GPa, v = 0.3. 
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TABLE 5. Elastic modulus of individual trabecular, after (30, 31]. 

Source Type of bone A nalyticalj Estimate of trabe-
test method culae elastic modulus 

Wolff Human 17 to 20 GPa (wet) 
Bovine 18 to 22 GPa (wet) 

Pugh et al. Human, Finite elenent method Concluded that the 
distal femur modulus of the 

trabeculae was less 
than the modulus 
of compact bone 

Townsend Human, Inelastic buckling 11.38 GPa (wet) 
et al. proximal tibia 14.13 GPa (dry) 
Ashman Bovine femur Ultrasonic test method 10.90 1.6 GPa (wet) 
and Rho Human femur Ultrasonic test method 12.7 2.0GPa (wet) 
Runkle Human, Buckling 8.69 3.17 GPa (dry) 
and Pugh distal femur 
Mente Dried human Experimental with 5.3 2.6GPa 
and Lewis femur finite element method 

Fresh frozen 
human tibia 

Kuhn et al. Fresh frozen Three-point bending 3.17 1.5GPa 
human tibia of ultra small 

machined specimens 
Williams Human, Experiment with 2-D 1.30 GPa 
and Lewis proximal tibia finite element method 
Rice et al. Bovine Statist. data analysis 0.61 GPa 

model of Christensen 
Ryan and Fresh bovine Tension test, 0.76 0.39 GPa 
Williams femur single trabeculae 
Rice et al. Human Statist. data analysis, 0.61 GPa 

model of Christensen 

9. Torsional creep and relaxation of cancellous bone filled with 
marrow 

As we already know trabecular bone is a porous structure consisting of 
bony network of connecting rods, plates and prisms (elastic phase) filled with 
bone marrow (viscous phase) (38). We are also aware that various approaches 
to modeling the mechanical behavior of trabecular bone have been proposed, 
see for instance [38], (45] and [96] and the previous sections of our paper. In 
this section the structural model developed earlier by us in [77] is applied to 
predict the creep and relaxation behavior of long bone under torsion. 

To this end we introduce : .\o, J.Lo - the elastic moduli of compact bone; 
AI, J.ll - the elastic moduli of a trabecular bone; .\2, J..£2 -the bulk and shear 
viscosities of bone marrow, .\2, J.L2 = lwJ..£2 -the complex moduli of marrow; 
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/-l;ff- the homogenized (effective) complex modulus of cancellous bone, 1-l:pp 
- the apparent complex modulus of bone, <I>eff(t) and Weff(t) -the effective 
creep and relaxation functions of the cancellous bone, <~>:pp(t) and w:pp(t) 
- the apparent creep and relaxation functions of long bone, <p - the relative 
apparent density of cancellous bone. 

9.1. Basic equations 

Let us consider an idealized model of cancellous bone represented by an 
elastic rod reinforced with cylindrical viscoelastic fibers arranged in a hexag­
onal lattice. Different arrangement of fibres can also be considered. According 
to the notation introduced above, -\1 and /-£1 are the Lame constants of the 
matrix, while -\2 and J..£2 denote the Lame coefficients of fibers. By using 
the homogenization procedure, the equations defining the effective torsion 
modulus J..leff I J..ll are given by, cf. [87], 

/-l:ff = _1 J ( )8T(y) d 
/-£1 IYI J..l y 8yl y, 

y 

_!____ (J-t(y)8T(y)) + _!____ (J-t(y)8T(y)) = 0, (9.1) 
8yl 8yl 8y2 8y2 

1 J 8T(y)d 1 1 J 8T(y)d 0 8T(y) y . d" 1YI --ay.;- y = , 1YI {)y
2 

y = , fiiJ- - peno 1c, 
y y 

where nland n2 are the domains occupied by the elastic matrix and vis­
coelastic fibres, respectively. The macroscopic modulus (/-l;ff I /-£1) - 1 has an 
asymptotic expansion at y = 0 

(9.2) 

and attains discrete values indicated in Table 6, cf. [64). 

TABLE 6. Discrete values of the elastic torsional modulus J.Lcff / J.Ll -1 for hexagonal 
array of cylinders, after (64j. 

Xi <p = 0.76 <p = 0.80 <p = 0.84 <p = 0.88 
X-1 = -1 -0.8711 -0.8996 -0.9286 -0.9607 

xo = 0 0.0000 0.0000 0.0000 0.0000 
X1 = 9 3.3778 3.9489 4.6887 5.7225 
X2 = 49 5.7076 7.2600 9.7931 15.1565 
X3 = 00 6.7600 8.9586 13.0093 24.4508 
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a) scanning electron micrograph 
of cancellous bone 

FIGURE 30. Main steps of modeling of the torsional properties of typical human 
bone: a) micrograph showing cellular structure of cancellous bone, after [39), 
b) idealized microstructural model of cancellous bone, c) two-phase continuous 
model obtained via homogenization of cancellous core, d) homogeneous medium 
modeling long human bone. 

In addition, (J..L;ff / J..ll) - 1 has Stieltjes integral representation introduced 
in [87) in the form 

II.* 

z=d-1. 
J..ll 

(9.3) 

This representation generalizes that derived by Bergman (23) and rederived 
in a more general form by Golden and Papanicolaou in (41). For more details 
on application of Stieltjes function to the estimation of effective moduli the 
reader is referred to (80)-[83), [85) and [86). 

9.2. Continued fraction bounds on torsional modulus 

Let us let us consider now bounds on the effective complex modulus 
(J..L;ff(z)/J..LI) -1, z = i~ -1. 

Let us introduce the sequence of complex bounds Fj(z, T) on J..l;ff(z)/ J..LI-1 
given by 

zgo zFj(z,T) = _______ __;__=zg-=-
2
-----

1 + Z91 + --------==-=------
1 + Z93 

1 + (z- XI)94 
1 + (z- x2)VjF(z, T) 

j = 0, 1, 2, ... 

(9.4) 
where the elementary bound F(z, T) appearing in (9.4) takes the form, cf. [19), 

{ 

(1- T) 
F( z' T) = 1 + ZT ' 

(1 + T), 

if 0:::; T:::; 1, 

if - 1:::; T:::; 0. 
(9.5) 
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From (9.4) we obtain 

zFo(z, T) = F(z, T), 

(9.6) 

where the renormalizing coefficients Vj satisfy the equations, cf. Table 6, 

(9.7) 

In order to evaluate the coefficients gj, j = 0, 1, 2, ... , 5, generating via (9.4) 
the bounds on Jl;ff(z)/ Ill -1 the following input data are available: from (9.2) 
and Table 6, for <p = 0.88, we have, 

d 
dz F5(z, O)lz=xo = <p = 0.88, 

d2 
dz2 F5(z,O)Iz=xo = 0.5<p(1- <p) = -0.0528, (9.8) 

F5(X-l, 0) = -0.961, F5(XI, 0) = 5.722, 

F5(X2, 0) = 15.156, F5(X3, 0) = 24.45. 

Similar input data were obtained for <p = 0. 76, <p = 0.80, and <p = 0.84. The 
evaluated coefficients 9j are listed in Table 7. 

a) 

1.03 

0.98 

0.93 

0.88 

z = -1+i cp=0.88 

0.12 0.14 0.16 0.18 0.20 

Re(1 +f; (z,u)) 

b) 

9 

8 

7 

6 

z = -1+10i cp=0.88 

5~--~------~~ 

0.0 1.1 2.2 3.3 4.4 5.5 

Re(1 +F; (z,u)) 

FIGURE 31. The sequence of lens-shaped bounds 1 + zF(z, T), 1 + zH(z, T), ... , 
1+zF5(z, T) on the torsional complex modulus J..L:ff/J..L1 for the idealized structural 
model of cancellous bone. 

http://rcin.org.pl



HOMOGENIZATION METHODS IN BONE MECHANICS 371 

TABLE 7. The continued fraction coefficients 9i, j = 1, 2, ... , 5 and V5. 

t.p go 91 92 93 94 v5 
0.76000 0.76000 0.11242 0.00757 0.46475 0.00024 0.01928 
0.80000 0.80000 0.08929 0.01070 0.43494 0.00029 0.01954 
0.84000 0.84000 0.06456 0.01543 0.38244 0.00052 0.01955 
0.88000 0.88000 0.02400 0.03599 0.28841 0.00127 0.01939 

The bounds 1+zF(z,T), 1+zFI(z,T), ... , 1+zF5(z,T), z = -1+i, r.p = 
0.88, have also been evaluated and depicted in Fig. 31. Figure 32 presents, 
for 0.88 the multipoint Pade approximants 1 + zF5(z, 0) and 1 + zF5(z, 1), 
z = -1+iw, w = 1, 10, ... , 2000, estimating the torsional modulus J.l:ff(z)/J-LI· 

FIGURE 32. Complex torsional modulus of the elastic beam filled with vis­
cous fluid and evaluation error (idealized model of cancellous bone, t.p = 0.76, 
0.80, 0.84, 0.88). Normalizing coefficients are: J.l2 = 0.0067kgm- 1s- 1 and J.L1 = 
3.3GNm-2 , after [6]. 

9.3. Multipoint Pade approximants 

According to the definitions given in (19) and [20) the rational functions 
1 + [3/3) = 1 + Fj(z, 0) and 1 + [2/2) = 1 + zFj(z, 1) considered above are 
the multipoint Pade approximants to the effective complex modulus J-L:ff / J-LI· 
Those approximants have been evaluated explicitly in (87] and depicted in 
Table 8. 

Now we are in a position to introduce an inclusion regions rj, i.e: the 
region in the complex plane surrounded by the bounds 1 + Fj(z, T). It can 
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TABLE 8. Multipoint Pade approximants 1 + zF5(z, 0) to torsional modulus 
J..Leff/J..Ll of hexagonal array of viscous cylinders embedded in elastic matrix; <p­

the volume fraction 

<p 1 + zF5(z, 0) 1 + zF5(z, 1) 

0.76 
1 + 1.7328z + 0.9159z2 + 0.1476z3 1 + 1.3460z + 0.4066z2 

1 + 0.9728z + 0.2678z2 + 0.0190z3 1 + 0.5860z + 0.0524z2 

0.80 
1 + 1.8655z + 1.0787z2 + 0.1910z3 1 + l.3364z + 0.3881z2 

1 + 1.0655z + 0.3063z2 + 0.0192z3 1 + 0.5364z + 0.0390z2 

0.84 
1 + 1.8901z + 1.0865z2 + 0.1816z3 1 + 1.3048z + 0.3481z2 

1 + 1.0501z + 0.2717z2 + 0.0130z3 1 + 0.4648z + 0.0249z2 

0.88 
1 + 1.8582z + 1.0009z2 + 0.1345z3 1 + 1.2331z + 0.2685z2 

1 + 0.9782z + 0.1929z2 + 0.0053z3 1 + 0.3531z + O.Ol06z2 

easily be proved that for the problem considered we have 

11:ffl111 E r5 E r4 E r3 E r2 E r1, 
1 + zF5(z, 0) E r5 E f 4 E f3 E f2 E f1, 

1 + zF5(z, 1) E r5 E f4 E f3 E f2 E f1. 

(9.9) 

Since r5 is very narrow (the smallest regions in Fig. 31a,b), we can assume 
that the Pade approximant 1 + zF5(z, 0) provides a good estimate of the 
effective torsional modulus f..L:ff I f..LI· Hence we conclude that the function 

11:ff I f..Ll = 1 + zF5(z , 0), <p ~ 0.88 (9.10) 

solves the boundary value problem (9.3) with satisfactory accuracy. The tor­
sional modulus given by (9.10) is presented in Table 9 and depicted in Fig.33. 

Now we are in a position to investigate the influence of marrow on the real 
part of the complex torsion modulus. To this end we use the characteristic 
time T = 1121 f..Ll = 3 .~.~~9 Pois~xm

2 = 2.03 · 10- 11 s. From Fig. 33 follows that 
the hydraulic stiffening starts for WT ::::: 5. Hence we immediately obtain: 
w = 51(2.03 ·10-11 s) = 2.463 ·1011 Hz. The effect of the presence of the bone 
marrow is observable for very high oscillating frequency exceeding 2.463 · 
lOll Hz. On account of that the influence of bone marrow can be neglected 
in physiological situations. 

The value obtained should be treated with caution since the considered 
model of torsion of long bone is constituted of both the compact and cancel­
lous .bone. More refined models are required to better estimate the influence 
of marrow on the mechanical behavior of long bone. 
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FIGURE 33. Complex torsional modulus and its real part for the model of cancel­
lous bone (the elastic beam filled with viscous fibers); <p = 0.76, 0.80, 0.84, 0.88. 
Normalizing coefficients are: JJ,2 = 0.0067kgm- 1s- 1 and J.L1 = 3.3GNm-2

, af­
ter [39]. 

TABLE 9. The torsional modulus JJ-•/JJ-1 for the inhomogeneous beam filled with 
the viscous fibres distributed in hexagonal array of cylinders 

<p 11-~ff /11-1 = 1 + zFs(z, 0), z = 1
':- 1, x=~ 

~2 

0.76 7
_
760 

_ 60.980x _ 0.0974x 0.0431x 
-

10.09x- Iw 4.157x- lw 2.831x- lw 

0.80 9
_
957 

_ 102.62x _ 0.1831x .0218x 
-

12.56x- Iw 3.814x- lw 2.603x- lw 

0.84 14
_
01 

_ 209.39x 0.4192x 0.0192x 
- -

17.27x- Iw 4.210x- Iw 2.477x- lw 

0.88 25
.4

5 
_ 737.96x 1.6569x .02234x 

- -
31.67x- Iw 5.446x- Iw 2.388x- Iw 

9.4. Torsional creep and relaxation functions 

The modulus J.L(z)/J.LI and compliance J.LI/J.L*(z), z = (Iwjx)- 1, x = 
J.L1/ J.L2, divided by Iw are the Fourier transforms of the torsional creep func­
tion 4>(t) and torsional relaxation function w(t), respectively, cf. [26]. 
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TABLE 10. The torsional modulus f..£ I/ f..£• for the inhomogeneous beam filled with 
the viscous fibers distributed in hexagonal array of cylinders. 

<p f.-£1/ f-L~tr = 1 + zFs(z, 0), Z = 1
';- 1, X= J:!:.l. 

f.J.2 

0.76 0.129 + 0.0146x + 0.0655x + 0.9348x 
4.196x- Iw 2.887x- Iw 2.124x- Iw 

0.80 0.100 + 0.0476x + 0.0666x + 0.9226x 
3.911x- Iw 2.643x- Iw 2.095x- Iw 

0.84 0.071 + 0.07551x + 0.0925x + 0.9011x 
4.397x- Iw 2.521x- Iw 2.066x- Iw 

0.88 0.039 + 0.1339x + 0.1471x + 0.8608x 
5.956x - I w 2.450x - I w 2.034x - I w 

Hence we can write 

-- J-Ll 
J-LICI>(Iw) = IwJ-L*(z)(z)' 

J-L*(z)(z) 
IWJ-LI ' 

z = IWJ-£2 _ 1. 
f.-Ll 

(9.11) 

The inverse of the Fourier transformations of CI> (I w) and \II (I w) take the 
forms, cf. Table 11 and Eq. (9.11) 

(9.12) 

Here the coefficients de, dr, b~, b~, a~ and a~ take the values provided in Ta­
ble 11. 

TABLE 11. Coefficients for the evaluation of torsional creep and relaxation func­
tions, the input data for (9.12). 

<p de b! b2 b3 a! a2 a3 
0.76 0.1289 0.0146 0.0655 0.9348 2.1958 0.8867 0.1238 
0.80 0.1004 0.0476 0.0666 0.9226 1.9109 0.6432 0.0948 
0.84 0.0714 0.0755 0.0925 0.9011 2.3972 0.5213 0.0656 
0.88 0.0393 0.1339 0.1471 0.8608 3.9565 0.4500 0.0344 

<p dr b! b2 b3 a! a2 a3 
0.76 7.7600 60.980 0.0974 0.0431 8.0939 2.1575 0.8312 
0.80 9.9586 102.62 0.1831 0.0218 10.557 1.814 0.6035 
0.84 14.009 209.39 0.4192 0.0192 15.275 2.2101 0.4768 
0.88 25.451 737.96 1.6569 0.0223 29.669 3.4456 3.4456 
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FIGURE 34. The torsional creep function <I>(t) and relaxation function \ll(t) for 
the porous beam consisting of hexagonal array of viscous fibers spaced in the 
elastic matrix. Normalizing coefficients are: J.L2 = 0.0067kgm- 1s-1 and /-Ll = 
3.3 GN m- 2

, after (38). 

For cancellous bone we have x = 1/T = 4.926 x 1010 s-1. From Fig. 34 
follows that the hydraulic stiffening starts for xt 8 :::::: 5. Hence t 8 = 5/4.926 x 
1010 = 1.015 x 10-10s. On account of that the influence of bone marrow on 
creeping and relaxation of cancellous bone is negligible. 

10. Concluding remarks 

The aim of this comprehensive paper was to synthesize our results per­
taining to macroscopic modeling of compact and cancellous bone by using 
homogenization methods. 

In compact bone three distinct levels were distinguished. To find the 
elastic macroscopic moduli, reiterated homogenization was applied. 

Cancellous bone was modeled as a cellular solid. Three types of cellular 
structures were considered: plate-like, rod-like, and honeycomb. Obviously, 
periodic microstructures are an idealization of real bone tissue. Each of the 
models proposed involves several geometrical parameter thus ensuring certain 
flexibility in applications. Thabeculae were assumed to be isotropic, according 
to available axperimental data. General formula ( 4.3) for the determination 
of the homogenized elastic moduli of porous elastic materials enables to cope 
with very complex microstructures of cancellous bone. For instance, the ge­
ometry of trabeculae can be described by several independent parameters or 
functions. Then, however, the difficult problem is to solve the periodic cell 
problem (4.4), (4.5) or (4.6). For more complex (periodic) architectures such 
a problem can only be solved numerically, cf. [51). 
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As is well-known, bone is an inhomogeneous material. Inhomogeneity 
can easily be included in homogenization procedures for bone, since then, 
for instance, the elastic moduli cijkl appearing in (2.1) depend on the local 
variables and macroscopic variable x. In this case the homogenized moduli 
Ctkl also depend on X En, cf. also (2.1), (2.11). 

A broader class of microstructures requires using stochastic homogeniza­
tion, cf. [73, 7 4). We observe that periodic homogenization is a specific case 
of the stochastic homogenization. To characterize cancellous bone treated as 
a porous material with random distribution of microinhomogenities (pores) 
one can use the geometry of random fields. For an excellent review the reader 
is referred to the comprehensive paper by Adler and Thovert [1], cf. also [74). 

The third topic presented in this paper concerns influence of marrow on 
long human bone behaviour under torsion. By using Pade approximants and 
continued fraction technique the analytical formulae predicting the hydraulic 
stiffening of a human bone due to the presence of marrow were obtained. 
According to the presented model, the mechanical role of marrow in physio­
logical loads of frequences is negligible. 
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