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1. Introduction 

Remodeling of bone is assumed to be a process induced by the mechanical 
factor, or, more precisely, by the response of the system to the mechanical 
stimulation. External load causes the system response (the stress and strain 
field, and their rates), which provides the signal (called in the following stimu
lus) to the bone formation/resorption activity. It is assumed, that there exists 
the remodeling equilibrium state (RE), and if the current state of structure 
differs from RE, the remodeling takes place, resulting in the modification of 
the structure. Note that the load external to the bone may be dependent on 
the bone state, therefore the feed-back mechanism may occur. 

Macroscopically the remodeling manifests itself in the evolution of prop
erties of the bone material, as well as in changes of the shape of bone. Remod
eling models known from literature usually treat these processes separately, 
distinguishing the internal remodeling and the surface (or external) remod
eling. 

Models following the idea described above attempts to simulate cause and 
effect without a consideration internal mechanisms. Such models are classi
fied as phenomenological, and usually follows the idea of adaptive elasticity, 
recently vastly reviewed by Cowin [5]. 
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The internal remodeling deals with changes of (averaged) physical prop
erties of bone material, and is related to the formation/resorption process at 
the surface of trabeculae. It is assumed that the internal remodeling rate is 
moderated by the internal available specific surface area. A number of au
thors dealt with the internal remodeling, proposing different stimulus and 
evolution rules [7, 11, 2, 1, 17, 15], for review see Cowin [4] and Weinans and 
Prendergast [18). 

The surface remodeling describing the changes of the external shape of 
bone is commonly associated with the formation/resorption activity at the 
external surface (boundary) of the bone, and is modeled by the rate of bound
ary geometry. Surface remodeling was considered, for instance, by Cowin [3], 
Luo et al. [13), van Rietbergen et al. [14]. The models of surface remodeling 
mentioned above have been developed to simulate the apposition of the new 
bone, or its local resorption, observed, for instance, after the arthoplasty, or 
to reflect changes of cross-sections of long bones registered experimentally. 

An interesting approach is pesented in [16] where the remodeling process 
is modeled as a time-dependent shape optimization problem, resulting in 
extension of the adaptive elesticity theory with insight into microstructure 
of bone material. 

The aim of this paper is to propose the model of bone adaptation that 
treats both the internal and the external remodeling in the same way. The 
remodeling is considered as a sole process, which manifests itself through 
changes of macroscopic properties of the material of bone as well as through 
variability of the domain occupied by the bone. The same remodeling rule 
deals with both types of remodeling measures. The approach constitutes 
the extension of the model for internal remodeling proposed by Tanaka et 
al. [15) by adding the mechanism of shape modification and deriving the 
remodeling rule from the hypothesis of optimal response of bone proposed 
by Lekszycki [ 12 J. 

The model considered here is purely mechanical and phenomenological. 
It means that the transmission of mechanical signals and the activity of cells 
responsible for the bone formation and resorption are described by the set of 
postulated relations and by the remodeling rule derived from the mechanical 
hypothesis. 

2. Remodeling mechanism 

Assume that at the macroscopic level the bone remodeling process reveals 
itself in changes of apparent density of bone and associated with this process 
the evolution of its mechanical properties, as well as in changes of the domain 
occupied by bone. These effects allows to distinguish the internal remodeling 
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related to evolution of bone material, and the external remodeling describing 
changes of geometry. 

FIGURE 1. Kinematics of the remodeling process 

Focus first on the kinematics of the process. It is assumed that due to 
the external remodeling the load-free configuration evolves. The initial load 
free configuration Y0 with the boundary r 0 at the time instant T = t takes 
the current configuration yr with the boundary rr, so the point X E Y0 

shifts to the new position xr E yr, Fig. 1. This evolution can be described 
by the remodeling displacement field ur and remodeling velocities vr defined 
as follows 

. r dur dxr 
u =dt=dt. 

(2.1) 

The remodeling displacements should be restricted in the way that a rigid 
body movement is eliminated. Denoting by r~ the part of the boundary r0 

with prescribed remodeling displacements u.r these conditions can be written 
as 

(2.2) 

The current configuration yr is subjected to a mechanical load originated 
from a muscle action and from an interaction with other tissues, resulting 
in the elastic deformation. The current deformed configuration denote as Y 
and its boundary as r. Due to the elastic deformation the point xr E yr 
shifts to the position x E Y, so elastic displacements and velocities can be 
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defined as 

. e due dxe dxr 
u =-=---

dt dt dt 

(2.3) 

The elastic deformation can be treated as small, therefore the small strain 
tensor is applied 

(2.4) 

and in the following configurations vr and V are not distinguished. 
Denote by r~ the part of the boundary rr with prescribed elastic displace

ments ue, and by r~ the part subjected to surface traction f. The boundary 
conditions can be written in the usual way 

an= 1 on r~. 
(2.5) 

where u is the stress field and n denotes the unit vector normal to the 
boundary rr. Denote by K the set of kinematically admissible displacements 

K = { u I u = ue on r~} . (2.6) 

Applying the virtual work principle we can write the weak form of equilibrium 
equation 

Viiu E }( G (h;, cp;, ur, u•; .Su) = J <T : .Se dVr-J f · .Su df'r = 0 (2.7) 
vr rr 

where 8e are admissible strains defined on the current configuration vr , 
namely 

_ 1 ( T ) . _ 1 ( 88ui 88uj ) 
8e - 2 \l8u + \l 8u , 8Eij - 2 Bxj + Bxi . 

Note, that the term related to body forces is omitted in (2.7) because ob
viously the self-weight of bone is much smaller than loads generated by the 
muscle action, or by the interaction with other tissues. 

The incremental equation can be obtained by the time differentiation of 
the equilibrium equation (2.7), resulting in the following formula 

V8u E K J [(o- : .Se)' + ( <T : .Se) div ur] dVr 
vr 

= j [j + f (divtir- n · V'Tur n) ]· .Sudrr 

rr 
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It can be shown that 

(8ci-)" = - ~ (88ui auk + 88uj auk) 
J 2 axk 8xj axk 8xi 

or in the operator notation 

(8e)" = -~ (V8u \lur + VTur \JT8u). 

Applying some properties of symmetric tensors the incremental equilibrium 
equation can be presented in the form 

V8u E lC 

J (& : lie- ( <T 'VT ur) 
8 

: lie - (u 'VT urt : liw + (u : lie) div ur) dVr = 

(2.8) 
where 

bw = ~ (V 8u- \JT8u), 

and ( 0" \IT ur) 
8 

and ( 0" \IT ur) w are respectively the symmetric and skew
symmetric part of the tensor product 0" \IT Ur, namely 

(u yrT ur) s 

(u yrT ur) s 

= ~ (u \!Tur + \lur u), 

1 2 (u\/Tur- Vur u). 

The remodeling process is associated with the production/resorption of 
mass of bone. The total mass of bone at the time instant t is the integral of 
density over the remodeled domain, 

M= J pdVr. (2.9) 
vr 

Variations of mass are related to changes of density, and also to the evolution 
of domain described by the remodeling displacement field ur. Therefore the 
mass rate can be expressed as 

(2.10) 
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3. Stimulus and remodeling rule 

Tanaka et al. (15] elaborated the model of internal remodeling belonging 
to the family of models following the Cowin and Hegedus idea of adaptive 
elasticity (6, 10], for review see Cowin (5]. The substantial difference from 
other models is the concept of modeling of the transmission of mechanical 
stimulus to bone cells, and dependence of the final stage of bone on the actual 
load history. In the model of Tanaka the remodeling manifests itself through 
the changes of apparent density. The bone is assumed to be isotropic and 
linearly elastic, therefore the stiffness tensor can be expressed as C = C ( E, v) 
with the Poisson ratio v = const and the Young modulus E related to the 
apparent density p through the power law 

(3.1) 

The relation above has been derived theoretically for the foam-like struc
tures [9] and is commonly used in modeling of trabecular bone. Experimental 
identifications provide the factor k ranging from 1 to 3. 

Following Fyhrie and Carter (8], the specific strain power (strain power 
per unit mass) was proposed as the stimulus of remodeling, namely 

(3.2) 

and the local remodeling equilibrium was defined as follows 

RE = p- Pr (Rn) = 0 -no remodeling, 
(3.3) 

RE = IP- Pr (Rn)l # 0 -remodeling, 

where Pr(Rn) is an internal state function, that indicates the desired value 
of apparent density resulting from the actual load history. In the following 
this function will be called the reference density. Rn is the signal function 
discussed later on. The remodeling rule proposed in [15] can be presented in 
the form 

(3.4) 

where (·) denotes Macaulay bracket defined as (x) = xU(x) where U(x) is 
the unit step function, a (p) is the function taking into account the free sur
face of trabecular bone where the process of bone formation/resorption take 
place, and a f, ar are the formation and resorption coefficients, respectively. 
The term p- Pr(Rn) is used as the remodeling driving force, therefore this 
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remodeling rule assures that the apparent density changes toward the refer
ence density value, and the change is proportional to the current difference 
between the apparent density and the reference one. 

The signal function Rn reflects the history of mechanical stimulation, 
and is defined as the solution of the following set of subsequent differential 
equations 

Ro = P ( S) - ro Rb , 
k;, = ri (~-1 - ~) , i = 1, ... , n 

~ (t = 0) =it, i = 0, ... , n 

(3.5) 

Here P(S) denotes the prescribed function of mechanical stimulus, l, ro, ... , rn 
are model parameters, and it, i = 0, ... , n denote initial values of signal func
tions ~. For detailed discussion of this transformation, including the initial 
conditions, see Tanaka et al. [15). 

Our aim now is to extend the approach described above to the simulta
neous internal and external remodeling. The remodeling rule is derived by 
applying the hypothesis of optimal response of bone, developed by Lekszy
cki [12). The main idea of the hypothesis can be formulated descriptionally 
as follows: 

the biological activity uses the remodeling ability in such a way, that 
the system approaches the remodeling equilibrium as quickly as possi
ble. 

Let us express the hypothesis mathematically in terms of the model con
sidered. First we need to define the control functional of remodeling describ
ing the deviation of the actual state of bone from the remodeling equilibrium. 
Therefore the functional should depend on actual values of remodeling pa
rameters as well as on the expected state of remodeling equilibrium. Note 
that in the Tanaka's model the latter is dependent on the load history. 

Next an optimization problem controlling the adaptation process should 
be stated with the rate of the control functional as the objective and rates 
of remodeling variables as design parameters. Such an optimization problem 
allows to specify the steepest approaching of remodeling equilibrium. 

Assume, that at each point of bone the external remodeling is described 
by remodeling displacements ur, while the internal remodeling is associ
ated with the apparent density p. Collect all remodeling variables in the 
n-element column vector v = {p, (ur)T}T, and their rates in the column vec
tor v = {p, ( ur) T} T. Define at each point of the structure the local character
istic function of remodeling F [p- Pr (Rn)] describing locally the deviation 
of actual state from the remodeling equilibrium. The function F (y) should 
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hold the following conditions 

F:n~n 

Vy E 'R F (y) ~ 0, 

F (y) = 0 ==> y = 0 , 

dF . 
y =I= 0 ==> dy sign (y) > 0 

The function F equals zero when the remodeling equilibrium locally takes 
place (p = Pr) and increases monotonically with increasing IP- Pr I· Note 
that when the remodeling equilibrium is attained in whole bone then 

Vxr E yr F (p - Pr) = 0 

and at this stage the apparent density at distinct points may differ, because 
the reference density Pr depends on the history of mechanical stimulus at 
point. The mean value of function F, 

G = ~r J F (p - Pr) dVr (3.6) 
vr 

provides the information about the deviation from remodeling equilibrium in 
whole bone. From the definition ofF we can conclude that 

G=O if Vxr E yr F = 0 , 
(3.7) 

G>O otherwise, 

it means that G = 0 only if at all points the remodeling equilibrium takes 
place. 

Mentioned above properties of G make this functional suitable to be the 
control functional for the hypothesis of optimal response of bone. The hypoth
esis requires, that the evolution of bone is realized in the way that minimizes 
the rate of the control functional G = d G / d t. Differentiating the functional 
G we obtain 

G. 1 J [oF . fJF 8pr 0 (F ( ) G) d' . r] dVr 
= vr fJp p + OPr fJRtt .t«-n + p- Pr - IVU ' (3.8) 

vr 

and the variation of G with respect to rates of remodeling variables can be 
expressed as 
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The overhat in the symbol 8v() has been introduced in order to distinguish 
the variation with respect to rates of remodeling variables from the kinemat
ically admissible fields 8u, 8e. 

Focus now on the variation 8vRn· Varying the system of differential equa-
tions (3.5) with respect to rates of remodeling variables v we can write 

~ . aP ~ l-1 ~ 
8vRo = as 8vS - ro l R0 8vRo 

8vlt = ri (Jv~-1- 8v~) , i = 1, ... , n (3.10) 

8v~~ = 8vf4, i = 0, ... , n, 
t=O 

and in view of (3.2) we have 

~ ( -) 1 (~ ~ ) 8vS =sign S P 811 u: ee + u : 811ee (3.11) 

where S = (u : ee) / p. In order to determine the variation 8vu examine the 
equation of equilibrium (2.7). Neither the external load f nor the remodeled 
domain vr depend on the velocity of remodeling variables v. It implies that 

(3.12) 

because in view of (3.1) the stiffness tensor depends only on the remodeling 
variables v themselves, but does not depend of their rates v. Apply now the 
incremental equilibrium equation (2.8). In view of (3.1) and (3.12) we obtain 

V8u E K, 

j [c8ve•: <le + ( ~~ Jp) e: .le - (uvTJu:).: 8e+ 
vr 

- ( u yrT Jur) w : 8w + ( u : 8e) divJur] dVr = 
(3.13) 

j [~~ 6iJ+ f ( divJur- n · vTJur n)] · 8udrr. 
rr 

If relations C = C(p) and I = l(v) are prescribed, the equation (3.13) 
constitutes the boundary-value problem with unknown 8vee. 

Introducing the quantities uo, q and f defined as follows 

u0 : 8e = - [(oC/8p)8p] ee: 8e+ (uvTJ-ur)s: 8e- (u: 8e)divJur, 

q·tJU ( u yrT Ju r) w : 8w ' 

f·8u ~~ 8v - I ( div Jur + n · yrT Jur n) . 
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Equation (3.13) can be expressed in the form 

I { [ C ( J.,e•) - cT o] : 8e - q · 8u} dVr - I ( J · 8u) dfr = 0 . (3.14) 

The remodeling process is subjected to a number of restrictions arising 
from the nature of remodeling process, such as the number of bone cells, the 
capability of single cell to form or resorbe the bone, the ability to transport 
substances for bone formation or products of bone resorption, etc.. These 
restrictions have to be introduced to the model as the constraints of the re
sulting optimal design problem. The manner of their formulation determines 
the variant of remodeling rule. Nevertheless, these limitations are not dis
cussed in detail. It is assumed that they can be modeled with constraints 
constituting the extension of the remodeling rule (3.4). 

The left-hand-side of Eq.(3.4) actually describes the local mass produc
tion, and this production is controlled by the difference p- Pr· Let us follow 
this idea, adopting it to the case of multiparameter remodeling. The local 
mass production can be expressed in terms of rates of remodeling parame
ters. Denote the measure of the local (specific) mass production as m ( v) In 
real bone both the formation and the resorption processes take place on dis
tinct free surfaces of trabeculae. Nevertheless, the model considered in this 
paper deals with macroscopic, averaged properties of bone. It justifies the 
assumption that at the given point xr both resorption and formation could 
take place simultaneously. Denote the measure of formed mass (positive) as 
(1n(v))+, and the measure of resorbed mass (negative) as (m(v))_. Let m(v) 
be a homogeneous function of remodeling variables of rank one. Then these 
measures can be expressed as 

(3.15) 

where (-) is the Macaulay bracket. In order to follow the idea of Eq.(3.4) 
postulate 

( m( v)) + < 1 f F (rho - Pr) , 

(m(v))- > -lrF(p-pr), 
(3.16) 

where IJ = a(p)aJ and lra(p)ar are the formation and the resorption co
efficient, respectively. The conditions (3.16) constitute a polyhedron in the 
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n-dimensional space of rates of remodeling variables v with corners at 

v = {0, ... , 0, Vi, 0, ... , 0}, i = 1, ... , n 

such that ( m ( {0, ... , 0, vi, 0, ... , 0}) )+ = "'tJF, 

v = {0, ... , 0, Vi, 0, ... , 0}, i = 1, ... , n 

such that ( m ( {0, ... , 0, Vi, 0, ... , 0}) )- = -rrF, 

v = { 0, ... , 0, Vi, 0, ... , 0, v j , 0, ... , 0} , i = 1, ... , n , j = 1, ... , n , i I= j 

such that ( m({O, ... ,O,vi,O, ... ,O,vj,O, ... ,0}) )+ = rfF, 

(m({O, ... ,O,vi,o, ... ,o,vj,O, ... ,o}) )- = -'YrF. 
(3.17) 

Introduce the function M1 ( v) such that M1 ( v, F) = 0 if v belongs to the 
polyhedron defined above, M1 ( v, F) < 0 if v is inside the polyhedron, and 
M1 (v, F)> 0 if vis outside. The conditions (3.16) are equivalent to 

(3.18) 

The numerical implementation of the constraint (3.18) may cause some prob
lems due to the non-smoothness of the limit surface M1 = 0. Nevertheless an 
alternate constraint can be proposed by replacing the limit polyhedron with 
the second rank limit surface circumscribed on the polyhedron. Denoting this 
surface as M2 (v, F) instead of (3.18) we obtain the condition 

(3.19) 

If the measure of the mass production can be expressed as 

(') am. (). m V = -. Vi = iVi 
avi 

then the limit surface takes the form 

(3.20) 

or in the matrix form 

(3.21) 

where 
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(}i(}j if i = j 

~(}i(}j if i # j 
(3.22) 

An additional constraint results from the fact that the apparent density is a 
non-negative quantity. Therefore introduce the lower bound of the apparent 
density Pmin such that p 2: Pmin· Applying also the condition (2.2) define the 
set of admissible remodeling velocities as 

(3.23) 

Now the optimization problem controlling the remodeling process can be 
state as follows 

Find 

(3.24) 
subject to 

Remind that the functional G is defined in (3.8). In view of (3.8), (3.10) 
and (3.11) the objective functional G is linear with respect to v, and the 
feasible space limited by constraints is convex. Therefore the solution of the 
minimization problem always exists, and is located at the boundary of the 
feasible space. The remodeling rule derived here is schematically illustrated 
in Fig. 2 for two remodeling variables. Figure 2(a) presents the rule with the 
polyhedral limit surface M1 ( v, F) = 0. In this case the resulting remodeling 
velocity is placed at the corner of the polyhedron through which passes the 
line orthogonal to the vector 8G I 8v and external to the polyhedron. In 
Figure 2(b) is shown the rule with ellipsoidal limit surface. The remodeling 
velocity is determined by the tangent to the ellipsoid which is orthogonal to 
the vector 8G I ov. 

In order to find the solution in the case of M1 for instance the linear 
programming can be applied. In the case of M2 let us use the optimality 
conditions method. Construct the Lagrangian of the problem (3.24), namely 

. 1 J £ = G- vr 7JM2 (v,F)dVr (3.25) 

vr 

where 17 is the Lagrange multiplier. The actual rates of remodeling variables 
can be found as the stationary point of the Lagrangian £. The stationarity 
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(a) (b) 

-YrF16; ____ t _____ _ -YrF/6; ____ 1 _____ _ 

-YrF/91 -YrF/91 

FIGURE 2. Remodeling rule, (a) polyhedral limit surface, (b) ellipsoidal limit 
surface. DG = 8Gj8v. 

condition leads to 

providing localized equations 

\/ Xr E Vr , \;/ { Jv E K:v, Jry} 
8F ~. 8F 0Pr ~ 0 (F G) d' ~. r 8M2~. _ O -uv + ---uv.tLn + - Ivuu -ry--uv-
8v 8pr 8Rn 8v 

and 8vRn is specified in (3.10). 

817 M2 (v, F)= 0 
(3.27) 

Note that the measure of mass production can be identified with the 
expression under the integral (3.1). In this case 

m (v) = p + pdivitr. 
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4. Illustrative example 

In order to illustrate the behavior of the model proposed we adopt the 
example presented in [15]. The rectangle of width a 1 and height a2 is freely 

(b) 

f(t) 

E,v,p 

t rsl 

FIGURE 3. Scheme of load and support (a) and the diagram of one cycle of time 
history of load (b). 

supported at the bottom edge and is loaded by the uniformly distributed 
cyclic force at its upper edge, 

q = qf (t) = !~ f (t), qo = const. 

The apparent density p and the width of the rectangle a1 are chosen as the 
remodeling variables. Values of parameters of the model and the history of 
load follow [ 15]. The results of simulation of remodeling process are shown in 
Fig. 4, presenting the evolution of remodeling variables in time. During the 
first simulation the amplitude of load is constant (qO=const, solid line). The 
initial conditions are set in the way, that the remodeling equilibrium occurs. 

However, due to loading the internal function Pr increases, causing there
modeling process that takes place until the saturation is achieved. The other 
curves were obtained for different load history. The amplitude of load was 
constant in the time interval (0, t 1) . At the time instant t1 the amplitude of 
load is reduced to half of its value, and at t2 it regains its primary magni
tude. Two cases are presented, the first with t1 = 100 [days], t2 = 200 [days] 
(dotted line), and the second for which t1 = 150 [days], t2 = 300 [days] 
were assumed (dashed line). In these simulations the remodeling variables 
trace the solid curve until the time instant t1, next decrease after the load 
amplitude reduction and since t2 they increased again attaining practically 
the saturation value depicted by the solid line. The increase of the apparent 
density is accompanied with the increase of the width of the sample. Note 
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that overstep before attaining the saturation values can be observed. Such 
behavior is caused by the delay of signal transmission specific for the system 
of differential equations (3.5). 

5. Concluding remarks 

The rule of remodeling proposed in this paper deals with the simultane
ous internal and external remodeling. The model constitutes the extension 
of the contribution of Tanaka et al. [15] by adding the mechanism of exter
nal remodeling. In previous contributions separate remodeling mechanisms 
have been proposed for external and internal remodeling. The elaborated 
remodeling rule is common for both kinds of remodeling. 

The remodeling rule has been derived basing on th hypothesis of optimal 
response of bone. The hypothesis allows to formulate different remodeling 
laws by the suitable selection of the control functional and of remodeling 
constraints. Other models derived from the hypothesis of optimal response 
of bone can be found in [ 12]. 

Behavior of the model is illustrated using a simple example containing 
one material and one shape remodeling variable. The example shows that 
the numerical stability of the model is satisfactory. As it could be expected, 
the saturation of remodeling parameters is observed for prescribed, constant 
load level, and occur to be not dependent of the history of load changes. In 
simulation presented here the model parameters identified in [15] were used. 
However the model requires a careful identification based on experiments in 
which the internal properties and the shape of bone are recorded. 

The proposed rule belongs to the group of phenomenological models, 
following the idea of Cowin's adaptive elasticity. The internal mechanisms 
and physiology of the process are not considered, as the aim of the work was 
to propose relatively simple model with limited number of parameters, useful 
in numerical simulation of real musculo-skeletal systems. 
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