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It is of first importance for research-workers, in particular in the domain of con
crete and cement-based materials, to relate the properties of materials with the 
micro- or macro-structure. Of course, structural parameters can be obtain by 
physical means like X-Rays, acoustic emission, porosimetry, for instance or by 
mechanical tests. Nevertheless, these methods of investigation give global mea
surements. Contrariwise, direct methods of observation (microscopy, macroscopy) 
give further information and give access to more accurate and local details if 
needed (but in 2D only, unless tomography or stereology model are used). 
The natural extension of direct observations consists in the image analysis. It 
undergoes a great development since more than twenty years in laboratories but 
it also begins to have some applications for industrial purposes. 
The paper deals with three aspects of image analysis: 

• the first one, a bit mathematical, will show how images of fibre reinforced 
mortars can be analyzed by different ways, 

• the second lecture, more philosophical, will evoke some strategic questions 
about investigation in microcracking of concrete, 

• the third will cover a technological aspect and is related to a quality re-
quirement concerning the surface of concrete. 

These topics have been covered or are actually in development in the "Laboratoire 
Materiaux et Durabilite des Constructions" in Toulouse, France; the name of the 
main contributors will appear in the head of each Section. 

I. On Fibres in Concrete 

K. FANUTZA, A. TOUMI, A. BASCOUL, E. RINGOT 

LMDC INSA/UPS, 135 avenue de Rangueil, 31077 Toulouse, France 
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66 E. RINGOT 

1. Introduction 

Fibres are more and more frequently used in reinforced concrete for new 
buildings or for pavements reparation. 

They play a major role in the mechanical behaviour of concrete: they may 
increase the elastic modulus, they decrease the brittleness of the material and 
control the opening and the development of cracks. 

To improve the properties of such mixed materials so as to understand in 
a more precise way their mechanical ~ehaviour, it is necessary to know how 
fibres are distributed and oriented in the volume. 

FIGURE 1. Cross section of a fibre reinforced concrete. 

For example, the strength of a plane section depends not only on the 
number of fibres that intercept this section, but also on their leaning. 

The most common fibres are cylindrical. So, in this Section, the attention 
will be turned to the characterisation of the numbering and the orientation 
of cylinders intercepted by a plane (Fig. 2). Of course, the intersection of a 
cylinder by a plane gives an ellipse, therefore ellipses will be at the heart of 
this subject. 

The length of the major axis of an elliptic shape depends of the leaning of 
the fibre but the length of the minor axis is theoretically always equal to the 
diameter of the fibre. Obviously, if it is possible to find the orientation ( (}) 
in the plane and the ratio of the two axes; consequently it is also possible to 
determine the leaning (a). 

Note that the sign of a is undefined. 
To analyse ellipse orientations, one has to proceed in two steps at least: 

1. detection of the ellipses, 

2. shape analysis. 
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y 

(a) (b) 

FIGURE 2. (a) Cylinder in the 3D space. (b) Cross-section of a fibre . 

Images must be taken at a scale allowing for an accurate determination 
of the particles. The authors claim that the narrow side of each particle must 
count twenty pixels at least. 

All the difficulty consists in finding a strong algorithm which makes pos
sible the true shapes to be detected. It will be seen later that it can be 
necessary to complete this step by an enhancement process. 

Once the objects of interest are extracted from the background, the shape 
analysis can be performed either by edge analysis or by particle analysis. At 
first, this implies that a particle segmentation is carried up as shown in the 
following Section. 

2. Particle segmentation 

2.1. Edge detection 

The first method, edge detection needs derived images obtained by various 
operators such as Sobel, Prewitt, gradient or Laplacian ones (Fig. 3). In most 
cases, a preliminary filter is necessary to avoid artefacts. 

A thresholding followed by a cleaning leads to the contour extraction (see 
Fig. 4). 

The drawback of such a technique is that the contours can be open. 
Other techniques are available which leads to closed contours. Among them, 
let us evoke the watershed operator [S. Beucher, 1990). This method is more 
complex to apply because it requires to regularise the gradient function and 
to mark both the objects to extract and the background. 
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Original grey level image Laplacian image 

Morphologic gradient image Sobel image 

FIGURE 3. Basic edge detectors. 

00 0 
... 

0 0 

FIGURE 4. Filtered and binarized Sobel image. 
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2.2. Particles detection by isodata technique 

Among many techniques, let us focus on the isodata algorithm [E. Diday, 
1982]. In such an algorithm, each pixel is associated with a set of properties, 
for example the couple {grey level, local gradient} in grey level images, or 
the triplet {R, G, B} in the case of colour images. Other combinations of 
parameters are possible of course, depending on the purpose. 

The pixels are projected into the space of their properties (or parameters) 
and they are grouped into classes (the user have to choose the desired number 
of classes). In each class, the parameter values are similar and the pixels are 
found to be distributed around a 'kernel' (Fig. 5). 

Parameter 1 

kernel 
oo 

0 

• 
lsodata method 

FIGURE 5. Parameter space representation of pixels. 

Let us define: 

• N - the number of classes, 

• P - the number of parameters, 

• 9i - the kernel of the class ci. 

The inertia of the class Ci is calculated by 

wi = L d2 (x,gi), 
xECi 

where d is the Euclidian distance in the parameter-space I RP of P dimen
sions. 

So, the total inertia is: 
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70 E. RINGOT 

Among all the possible sets of partitions, the optimal one minimises W. 
This problem of minimisation can be solved in an iterative way. For this 
purpose we need two functions: 

1. One function h for the representation, which determines the kernel for 
each class: in fact, 9i is often the gravity centre of the class Ci: 

h : { C} ---+ {g} : gi = ~. 2::: Xi (there are P components). 
'xECi 

2. One function f for the affectation which determines the unique parti
tion associated with the kernels Yi. The class Ci if formed by all the 
pixels that are nearer 9i than any else kernel: 

f : {g} ---+ { C} : Ci = {x E Image, Vj # i, d(x, Yi) < d(x, g;)}. 

The initialisation of the algorithm is made by an initial evaluation of the 
kernels (or by randomisation). The algorithm is given in Table 1. At each 

(a) (b) 

(c) (d) 

FIGURE 6. Starting (a), intermediate (b,c), and final (d) stages of an isodata 
process. 
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step, it is possible to replace each pixel by the kernel of its class to visualise 
the intermediate images (see Fig. 6, from (a) to (d)). 

TABLE 1. Isodata algorithm. 

1. Initialize the N kernels { g0
} . 

2. Build the set of classes { ck+1} = f (gk) around the kernels. 

3. Build the new set of kernels: { gk+ 1 } = h ( ck+ 1 ) . 

4. Determine the total inertia Wk+I = W ( ck+1, gk+I). 

5. If {gk+I} = {gk} then stop (stationarity) else go to step 2. 

Then the class( es) concerning the particles is (are) extracted, filtered and 
closed (see Fig. 7). 

(a) (b) 
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FIGURE 7. Class corresponding to fibres (a), and after filling and morphologic 
filtering (b). 

2.3. Contour enhancement with snakes 

The enhancement of the edges detected by the procedure of segmentation 
is useful to obtain more convex shapes as expected by the researcher. It can 
be also used to close edges, if necessary. 

Kass [M. Kass, 1987) has proposed a model called "active contour" or 
"snakes" with the aim of forming a contour the form of which is influenced 
both by internal and external constraints. 

A snake is a contour defined by a set of control points. The contour passes 
through these points. In fact, it is not necessary closed but here only the case 
of closed snakes will be evoked. 

The position and the shape of the snake must comply with intrinsic prop
erties that are imposed (smoothness or elasticity for example) and image-
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related properties that are desired (for instance, accordance with the gradient 
of the image g(x, y)). 

Based on these properties, an energy functional, depending on the contour 
v( s) is defined: 

Esnake = f esnake ( V( S)) ds, (2.1) 

where Esnake represents the global energy and esnake the local one which can 
be decomposed into two terms of energy esnake = eint + eext, given by 

1 ( 2 2) eint = 2 a(s) lvs(s)l + ,B(s) lvss(s)l , (2.2) 

eext = I grad(g) I = (aaxg)2 + (8agy)2 (2.3) 

In these expressions, v8 (s) is a first order term which increases when the 
distance between two control points becomes large and a ( s) represents the 
local elasticity. 

v88 (s) is a second order term which increases with the curvature of the 
contour and ,B(s) represents the binding factor. The relative weights of a 
and ,8 depend on the chosen influence of the elasticity on the curvature. 
Concerning the enhancement, it is pertinent to give a large value to ,8 so 
that the minimization of Esnake occurs when the contour is very smooth. 
Contrariwise, a small value for ,8 (i.e. null) would enable sharp corners to 
appear in the contour. 

Theoretically, the problem must be solved by a variational calculus, but 
it can be shown [A. Amini, 1988 ] that in a discrete context, an iterative 
process called 'dynamic programming' can be successfully applied. 

The discrete formula for the snake energy becomes: 

(2.4) 

D.J. Wiliams and M. Shah [D.J. Williams, 1991] have proposed the following 
estimators for each term: 

1. The first term, also called 'continuity term', has not the usual expres
sion v! = lvi - Vi-II because it would contribute to minimize the dis
tance between two consecutive points, thus leading to a shrinking of 
the snake. It seems more pertinent to encourage even spacing to reflect 
the desired regularity of the contour. Thus the final expression uses the 
difference between the mean distance d and the local distance, so that, 
the continuity term becomes v! = lvi- Vi-II- d. 
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2. The second term, or 'curvature term', is estimated by: v!s = I ~s~i I ~ 
lvi-l- 2vi +Vi+ II· Here it is assumed that the points are spaced at unit 
interval, or at least that they are evenly spaced as they are supposed 
to be, according to the previous 'continuity term'. 

3. The third term is the gradient magnitude derived from Sobel's or Pre
witt's transformation applied to the original (filtered) image. 

Finally the algorithm is almost simple, see Table 2 and Fig. 8. 

do 

TABLE 2. Snake algorithm. 

flag down 
E_min = BIG_VALUE 
for each control point i 

for each neighbour j 
E_j = alpha • v_s-j + beta • v_ss-j + gamma • e_ext-j 
if (E_j < E_min) then 

E_min • E_j 
j_min • j 

end if 
end for j 
move point i to location j_min 
if (j_min not current location) then 

flag up 
end if 

end for i 
until flag 

Neighborhood of vi 

FIGURE 8. Part of an active contour. 

The algorithm has been implemented to enhance one contour at a time. 
Images presented in Fig. 9 show an example of the successive steps of such 
a process. The control points are taken from the initial edge. Note that it 
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cannot be asserted that the final shape, although smoother and more convex 
than the initial one, is a perfect ellipse. 

FIGURE 9. Example of a snake process. 

3. Shape analysis 

3.1. Diametrical variation of elliptic shapes 

This Section applies to particle after its detection. 
It is necessary to introduce the concept of diametrical variation of a par

ticle. Let us consider a network of parallely oriented straight lines drawn in 
the plane. These lines go across a particle. If the distance between two lines is 
denoted by dD2 (a), the diametrical variation in the direction a is given by: 

(3.1) 

where the function 'TJo ( P) indicates if a line gets out of the particle at point P 
on the edge (8L) (value 1) or not (value 0). 

Note that, in the case of non-convex particle, the diametrical variation is 
different from Ferret's diameter in the same direction. 

Of course, the diametrical variation D2 (a) depends on the orientation a 
of the lines. 

For instance, among other applications of D2 (a), the mathematician 
Cauchy showed that the perimeter of a particle is given by: 

0=7r 

p= j D2(a)da. (3.2) 

o=O 

In the case of image analysis, and particularly in the case of square lattice 
images, only some directions are available because of the discretisation of the 
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FIGURE 10. Diametrical variation of a particle. 

space. The expression D2 ( o:) = faL 'TJo: ( P) dD2 must be replaced by a digitized 
one: 

(3.3) 

where N2(o:) is the number of lines leaving the particles. In fact, no line is 
drawn on the image, but N2(o:) is obtained from the detection of particular 
configurations of pixels. 

In a square lattice, height directions can be examined, as shown in Table 3. 
Generally the width to height ratio of a pixel is equal to the unit because 

square pixels are generated. 

FIGURE 11. Non-oblique (or "parallel") ellipse. 

The equation of the ellipse in its own system of axes is: 

(3.4) 
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TABLE 3. The height discrete directions of a rectangular lattice and their corre
sponding neighbours. 

[ 

[ 
0 

[ 
0 

[ 0 

http://rcin.org.pl



APPLICATIONS OF IMAGE ANALYSIS IN CONCRETE TECHNOLOGY.. . 77 

An ellipse is convex and its diametrical variation is equal to the projection 
of its edge in the direction perpendicular to a. 

Let K be the point belonging to the ellipse and the tangent whose leaning 
~ 

is a. The diametrical projection is twice as long as the projection of OK: 
D2(a) =21M. vi, where v =-sin( a) i +cos( a)]. 

~ - -Since OK= xi+ yj, therefore: D2 (a)= 21-x sin(a) + y cos(a)l. 
The coordinates of K comply with Eq. (3.4) and the local tangent can be 

derived from the differential: 

Consequently we get: 
dy b2 X 

tana =- = ---. 
dx a2 y 

Finally, solving the system: 

x2 y2 
a2 + b2 = 1, 

dy b2 X 
tana =- = ---

dx a2 y' 

D2(a) = 21-xsin(a) + ycos(a)l, 

the following expression for the diametrical variation is obtained: 

(3.5) 

(3.6) 

(3.7) 

In the case of an oblique ellipse, with an angle of obliquity equal to r.p 
(Fig. 12), the diametrical variation becomes: 

(3.8) 

It depends on the three parameters a, b, r.p. 
Now, assuming that the eight diametrical variations Di, i = 0, ... , 7, of 

an elliptic-shaped particle are known, the question is to find the parameters 
characterising the investigated ellipse. 

Five parameters are necessary to entirely determine an ellipse but if its 
centre is not concerned, only three of them are enough to define its shape: 
the two half-lengths of the axes and the orientation. 

Here, the least-square method can be proposed to deduce those three 
parameters from the eight data. Furthermore, the result must be tolerant to 
some incertitude in the initial data. 
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FIGURE 12. Oblique ellipse. 

The square of the theoretical diametrical variation is: 

[D2(a)]2 = 4 (a2 sin2 (a- <p) + b2 cos2 (a- <p)) 

= 2 [ (a 2 + b2
) - (a 2 

- b2
) cos ( 2 (a - <p))] . 

This relation can be written as: 

[ D2 (a)] 2 = u - v cos ( 2 (a - <p)) , 

with: u = 2(a2 + b2
) and v = 2(a2 

- b2
). 

(3.9) 

The square difference between the theoretical and the eight effective mea
sures to be minimised is: 

i=7 

~ = L (u- vcos2(ai- <p)- Dl)
2

, 

i=O 

where u, v, and <p must comply with the following three derivatives: 

a~ -o 
au- ' 
8~ =0, 
av 
8~ =0 
a<p . 

(3.10) 

(3.11) 
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Hence: 

L ( u - v cos 2 ( Oi - <p) - Dt) = 0, 
i 

L ( u - v cos 2 ( Oi - <p) - Dt) cos 2 ( Oi - <p) = 0, 
i 

L ( u - v cos 2 ( ai - <p) - Dl) v sin 2 ( ai - <p) = 0. 
i 

We set ei =cos 2 (ai- <p), Si =sin 2 (ai- <p), 

8u- v Lei= Lnl, 
i i 

u Lei -v Let= Ln?ei, 
i i i 

u Lsi- v Lsiei = Ln?si. i i i 
Eliminating u and v from this system, it is found that <p must comply with 
the following equation: 

[~(Lc;r- Let] [Lvfs;- ~Lsi Lvt] 
t t t t 

- [~Lc;Ls;- Lc;s;] [Lvfc;- ~Lc;Lvt] =D. (3.12) 
t t t t t t 

Solving Eq. (3.12) (for example iteratively), <p is then found. Then u and 
v are obtained from the following relations: 

Ln?ei- ~ LeiLnl 
i i i v = -~------,,------

~(Lei)2- Let 
i i 

(3.13) 

(3.14) 

Once u and v are known, it is easy to get a and b. Note that if u is found 
to be lower than v, ~ must be added to <p as well as u and v have to be 
permuted. 
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The advantage of this technique is that it is not necessary to extract each 
point of the edge. The disadvantage is that it cannot yield more than eight 
data for the calculation of the parameters. The centres of the ellipses are 
assumed to be the geodesic centres of each particle . 

.. 

'~ ~~"', ~ . "" (\ 
~- . ...__.} ... .. o'-.-) 

"" • ""' 0 

•• .... 
00 .. • 0 

... • ... 

• 0 0 
~ ~ 

FIGURE 13. Initial and final ellipses. 

The ellipses on the right image of Fig. 13 are drawn by using Bresenham's 
algorithm [J.E. Bresenham, 1977 /1985) as described in [D. Eberly, 2000). 

The quantitative results are summarized in Table 4. 

TABLE 4. Fibre analysis (example). 

There are 10 fibres: 

No. centre location axe lengths orientation 
(in pixel) (in pixel) (in degree) 

0 412 96 66 21 155 
1 561 127 80 25 163 
2 84 149 24 22 7 
3 40 180 25 22 171 
4 59 250 23 19 178 
5 242 346 26 22 1 
6 184 349 25 22 179 
7 556 364 23 19 102 
8 304 477 34 22 9 
9 445 504 28 20 9 

3.2. Specific Hough Transform for ellipses detection 

The Hough Transform [P.V. Hough, 1959) was originally imagined to 
isolate straight lines in images. Next, it was extensively developed and applied 
in other situations, in particular for circles and ellipses detection. 
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The Hough Transform (HT) requires the desired features to be specified 
in a parametric form. 

3.2.1. Straight line HT. The initial binary image is formed by a set of 
pixels derived from an edge detector. The basic idea underlying Hough Trans
formation is that each pixel belongs to a physical line. 

A parametric representation of a straight line can be expressed by: 

x cos( 0) + y sin( 0) = r, 

where r is the distance between the line and the origin 0(0, 0) of the image 
and f) is the orientation of the line (Fig. 14(a)). 

To each pixel { x, y}, corresponds a sinusoidal curve in the space of the 
two parameters { r, 0} describing all the lines that pass through this pixel 
(Fig. 14(b)). When several pixels belong to the same straight line (Fig.14(c)), 
each Hough Transform goes through the same accumulation point (Fig. 14(d)). 

(a) Initial pixel in the image space. 

(c) Three pixels on the same line. 

(b) Hough Transform in parameter space. 

r 

r=x.cos9+y.sine 

e 

(d) Accumulation in the parameter space. 

r r=x1.cos9+y1 .sine 

/ r=x2.cos9+y2.sine 

ro •-----~~ :x3.cosO+y3.sinO 

eo 

FIGURE 14. Straight line and its Hough Transformation. 

In practice the transformation is implemented by discretising the Hough 
parameter space into finite intervals (for example from half degree to half 
degree for the angles and from one pixel to one pixel for the distances). 
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In the parameter space, a value is incremented every time a curve goes 
through a point so that a matrix of accumulator cells is built. Resulting peaks 
in the accumulator array represent strong evidence that a corresponding 
straight line exists in the image. An example is given in Fig. 15. The bright 
intersection points characterise the straight lines of the original image. They 
are extracted by detecting the maxima of grey levels in the parameter space 
represented by an image in Fig. 15(b). 

92 

<9'-[ 241, 1391= 0 

(a) Example of a bitmap 
with contours. 

(b) Hough Transform for 
line detection. 

(c) Height lines that have 
been detected. 

FIGURE 15. Schematic binary image and its Hough Transform. 

3.2.2. Circle Hough Transformation. The same procedure can be used 
in the case of circle detection. For instance, the parametric equation takes 
the form: (x- xc)2 + (y- yc)2 = r 2 , so that three parameters are needed 
(yc and xc are the co-ordinates of the centre of the circle). Obviously, the 
computational complexity increases with the number of parameters. Finally, 
the basic HT described above is only practical for simple curves. For more 
complex shapes, another algorithm is required as it is shown for the ellipses. 

3.2.3. Randomized Hough Transformation of ellipse. The problem 
of recognizing ellipses of any size, position and orientation has been studied 
by McLaughlin [R.A. McLaughlin, 1997). 

The parametric equation of the ellipse of Fig. 16 is given by: 

a(x- xc)2 + 2{3(x- xc)(y- Yc) + "t(Y- yc)2 = 1, (3.15) 

which is equivalent to: 

[ (x- xc) cos <p: (y- yc) sin<p r+ [- (x- xc) sin<pb+ (y- Yc) COS<p r= 1. 
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y 

y 

FIGURE 16. Oblique ellipse. 

Such an equation involves five parameters so that the basic HT algorithm 
is not applicable. 

The algorithm proposed by McLaughlin is a stochastic process, the so
called Randomized Hough Transform (RHT). 

Once again, the original image must be pre-processed with an edge detec
tion operator (Sobel, Canny (J.F. Canny, 1986), etc.) so that a binary image 
is available. 

The following geometric properties of the ellipse are exploited (see Fig. 17) 
[W. Wu, 1993): 

• tangent property, 

• centre. 
Given two arbitrary tangents to the ellipse at points P1 and P2 and K 

their point of intersection (Fig. 17(a)), the line going from the centre of the 
ellipse to the point K goes through the middle M of the segment [ P1 P2]. 

(a) Tangent property. (b) Finding the centre of an ellipse. 

FIGURE 17. Geometric properties of the ellipse. 
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Inversely, from three points Pt, P2, P3, it is possible to find the centre 
(Fig. 17(b) ). 

The algorithm proposed by McLaughlin was described and implemented 
by Schuler on a Matlab platform [A. Schuler, 2001). The successive steps are 
as follows: 

1. Take any 3 points belonging to the edge from the binary image. 

2. Estimate the location of the centre C of the ellipse. If the centre cannot 
be found (because the three points do not belong to the same elliptic 
edge), go back to ( 1). The tangent at points PI P2 P3 are estimated by 
a least square method applied to neighbourhood of each point. 

Surroundings of P 

FIGURE 18. Finding a local tangent. 

3. Translate the origin to the centre by modifying the coordinates of the 
three points. So that the equation of the ellipse simplifies to: 

ax2 + 2bxy + CJi = 1. (3.16) 

4. Compute the parameters a, {3, and 1 by solving the system of equations 
(PI, P2 and P3 belong to the same edge): 

(3.17) 

Check the inequality a/3- 1 2 > 0 which is always true for an ellipse. 
If false, go back to (1) . 

5. Compute the geometric parameters a, b, and(} (xc and Yc are already 
known). 
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6. Search the parameters { xc, yc, a, b, 0} among the list of already found 
parameter sets. If there is a parameter set whose values match the ones 
newly found (in the limits of the tolerance), increase the count of this 
parameter set (accumulation). Each parameter set possesses a count 
value which tells how many times these parameters have been found. 
If the new parameters do not match any parameters in the list, simply 
add them to the list and initialise their count to 1. 

7. After a specified amount of parameter sets have been found, analyse 
the list and keep the parameters for which the count is high (or above 
some threshold). 

The advantage of this algorithm is that it can detect several edges at a time. 
Results will be discussed later on. 

3.3. Straightforward computation by the least square method 

Among all other methods, ellipse recognition can be performed by fitting 
a primitive model to the image data. The typical way for that consists in 
detecting the edges, then isolating each of them and finally fitting them to 
an elliptic shape. 

Recent works relate to the problem of fitting (W. Gander, 1994), (P.L. Ro
sin, 1993). Most of the methods are iterative, fitting data to general conic 
and rejecting non elliptic shapes. 

Most of these techniques work well when data belong precisely to an 
elliptic arc; contrariwise most of them suffer of less ideal condition such as 
noise, non-strictly elliptic data or moderate occlusion (P.D. Sampson, 1982), 
(K . Kanatani, 1994), [J. Porril, 1990]. 

Let us enumerate the optimal conditions for an almost good ellipse-fitting 
method (A. Fitzgibbon, 1999): 

• ellipse-specificity, 

• inclusion and noise tolerance, 

• invariance to linear transformation of the data, 

• computational efficiency. 

Least squares methods lead to finding the set of parameters that minimise the 
distance measured between the N data points and the ellipse (R. Haralick, 
1992). 

Let an implicit second order polynomial be the equation of a conic curve: 

f(a, i) = ax2 + bxy + cy2 + dx + ey + f = 0, (3.18) 

where a= [a,b,c,d,e,f]T and X= [x2 ,xy,y2 ,x,y, 1]T. f(a,xi) is the alge
braic distance between the point (X' y) and the conic f (a, i) = 0. Fitting the 
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data to a general conic curve leads to the minimisation of the sum of the 
squared distances: 

n 

8(a) = :E f 2(a, xi)· (3.19) 
i=l 

The vector a must be constrained in order to eliminate the multiples of 
solution so as the trivial solution we have ii = 0. These constraints are either 
linear in the form C ·a= 1 [W. Gander, 1994), [P.L. Rosin, 1993), or in the 
form ifl'C ·a= 1 [G. Taubin, 1991). In the last expression, C represents a 
6 x 6 constraint matrix. 

When a quadratic constraint is imposed on the parameters ii, Bookstein 
showed that the minimisation of 8(a) leads to a generalised eigenvalue prob
lem: 

DT Da= >..Ca. (3.20) 

Here D is the data (or design) matrix based on the n data points: D = 
[ ~ ~ ~ ~ ] 
X1 X2 ••• Xi o o o Xn o 

If the parameter vector is constrained so that the conic curve it represents 
is forced to be an ellipse: 

b2
- 4ac < 0, (3.21) 

we may also write 
4ac- b2 = 1. (3.22) 

In the matrix form, this quadratic constraint ifi' C ii = 1 is written as 
follows: 

0 0 2 0 0 0 a 
0 -1 0 0 0 0 b 

[a b d !] 2 0 0 0 0 0 c 
=1. (3.23) c e 

0 0 0 0 0 0 d 
0 0 0 0 0 0 e 
0 0 0 0 0 0 I 

Note that the distance 8(a) can be also expressed by 8(ii) = liD 0 all2
. 

Consequently, the minimisation of 8(a) is equivalent to: 

Minimize 8(ii) = liDo all = iiT o Do ii, subject to iiT o Co ii = 1. (3.24) 

As a does not constitute a set of independent parameters, it is necessary to 
introduce the Lagrange multiplier).. before differentiating, so that we obtain 
the following system: 

{ 

DT o D o a- ).. o C o a= 0, 

aT oC·ii= 1. 
(3.25) 
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The first equation of the system is solved by considering the generalised 
eigenvectors of DT · D · i1 = A· C ·a. If the couple eigenvalue Ai, eigenvector Ui 
is a solution, then it is also the case for the couple { Ai, J.L x ui} for any J.L 
which satisfies ifi' · C · i1 = 1. Therefore: 

1 
J.L= . Viif. c. Ui 

(3.26) 

Finally, the solutions of the simultaneous equations are: iii = J.Li · Ui. There 
are six eigenvalue-eigenvector pairs, each of them corresponding to a local 
minimum. 

In fact, it has been proved [M. Pilu, 1996], [A. Fitzgibbon, 1999), that 
the minimisation of liD· iill2 subject to 4ac- b2 = 1 admits one and only 
one solution which corresponds, of course, to an ellipse. 

The algorithm is very simple: 

1. Let {Xi, Yi} be the coordinates of the n data points to be fitted. 

2. Generate the design matrix: 

x2 
1 XtYl y~ Xt Yt 1 

x2 
2 X2Y2 y~ X2 Y2 1 

D= X~ XitYi Yl 1 
' 

Xi Yi 

x2 n XnYn y~ Xn Yn 1 

3. Generate the combined matrix: DT · D. 

4. Generate the constraint matrix: 

0 0 2 0 0 0 
0 -1 0 0 0 0 

C= 
2 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

5. Solve the generalized eigenvalue problem: DT · D · a = A · C · a, finding 
the only positive value: i 

6. Find the corresponding eigenvector a whose coordinates are the searched 
parameters of the ellipse. 

Once a is determined, it is easy to obtain the geometric parameters of the 
ellipse. 
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Digital image containing elliptic shape 

I 
filtering 

Edge detection + - - -, Edge 
operator 

..... -
~-

Particle 
segmentation 

-Edge enhancing 
(snakes) 

\ 
~... 

Randomized 
Hough 

Transform 

Fitting by least 
square method 

FIGURE 19. 

TABLE 5. 

Technique Advantage 

Randomized • Gives the parameters of the 
Hough ellipses. 
Transform • Can detect several elliptic 

edge at a time. 

• Works well even in case of 
(light) overlapping. 

• Ellipses do not need to be 
closed. 

• Robust towards noise and 
small artefacts. 

Fitting by • Gives the parameters of the 
least square ellipses. 
method • Ellipse does not need to be 

closed. 

• Robust towards noise and 
small artefacts. 

• Non-iterative . 

Diametrical • Gives the parameters of the 
variation ellipses but not the centre. 
analysis • Somewhat fast . 

• 

Diametral 
variation 
analysis 

Disadvantage 

Due to the randomisation, 
outcome can give different re-
sults if the number of set of 
parameters is not sufficient. 

• Iterative . 

• Somewhat slow. 

• It is necessary to define a 
lot of parameters that have an 
impact on the performance: 
the number of sets of parame-
ters, the count threshold, the 
surrounding size, and so on. 

• One edge at a time . 

• Needs a great amount of 
memory due to the design rna-
trix storage. 

• One particle at a time. 

• Somewhat sensitive to noise 
(requires a good segmentation 
of particles). 
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4. Conclusion 

We have presented several techniques for detecting and characterising 
ellipses in images. The processes can be summarised in the way depicted in 
Fig.l9. 

Depending on the context (contrast, noise, number of particles), the three 
techniques that have been presented can be applied more or less successfully. 

Table 5 can be a useful guide in choosing either of them. 

II. On Concrete Microcracking1) 

A. BASCOUL, M. CYR, E. RINGOT 

LMDC INSA/UPS, 135 avenue de Rangueil, 31077 Toulouse, France. 

5. Introduction 

Even though many works about cracks and microcracks in cement based 
materials were published in the last years, some difficulties remain and this 
part of our paper aims at pointing them out and suggesting some direc
tions for future research. For this purpose, we deal either with the relation
ship between the microcracked state of concrete (or mortar) and its physical 
properties or the characterisation of the microcracking induced under various 
conditions such as thermal action, shrinkage, creep or mechanical loading. 

6. Means of observation 

Different methods of observation are recorded in Fig. 20 according to the 
accuracy of the observation (indirect techniques such as acoustic emission or 
pulse velocity are not considered). 

These means of observation are subjected to important constraints which 
are: artifact avoiding, nature of the material, place of measurement (in situ 
or experimental cores for example), easy implementation of the method, etc. 

Two techniques which gives images are available: scanning electronic mi
croscopy coupled with the replica technique and optical microscopy which 
are complementary according to their resolution. Both methods give bi
dimensional images avoiding bias. They can be applied to mortar or concrete. 
They do not require special shapes or dimensions of specimens and, finally, 
they can be easily carried up. 

1>Some part of this Section has been published already in Concrete and Cement Com
posite journal (2001). 
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Stereophograrrun etry (?) 

Holographic interferometry (1 mm) 
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SEM (0,1 !J.m) 
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FIGURE 20. Scales covered by different methods of observation. 

The replica technique as a tool for investigating microcracks in concrete 
was introduced by Ollivier [J.-P. Ollivier, 1985) and used extensively by sev
eral authors, cf. [E. Ringot, 1987, 1988), [V. Sicard, 1992) [A. Turatsinze, 
1996). It complies with the constraint recorded above since it allows the ob
server to take crack prints on surfaces of concrete without disturbing the 
place and the material. 

Concerning optical microscopy, the reader is referred to [L.-1. Knab, 1984) 
[H. Hornain, 1996) who developed and enhanced methods for microcracks 
study in concrete. Preliminary to the observation, a dye impregnation is 
necessary but no drying is required thus avoiding any bias. The dye which 
can be in excess must be often eliminated by a slight polishing. The dye fills 
not only cracks but also macro-pores and porous interfacial zones. 

7. Scale of observation 

Most often there is a disproportion between the size of the core-test (or 
further more the building) and the dimensions of the images (or fields). 

For example, when testing a single section of¢ 11 x 32 em cylinder, 24 im
ages are required in optical microscopy at G x 10 magnification. Each field has 
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a side of 2 em which is also the dimension of one replica. If such a replica is 
observed within a SEM at G x 100, it will be divided in 100 fields. Hence, even 
with low magnification, analysis of cracking requires a lot of data. Finally, 
image based techniques deliver data which are abundant and partial at an 
instant of time because of the relationship between the resolution and the 
studied surfaces (as shown in Fig. 21), so that one has to be careful when 
analysing these data. 

Sample <I> ll = I 
24 field-; 

Replica 2 

-t:~~~LJ4.-+--+=I~mResolution 
xlOO xlO Magnificafun 

FIGURE 21. The area covered by each field increases as the square of the resolu
tion. 

8. Image analysis and crack segmentation 

In the past, cracks were recognised by hand from photograph. However, 
attempts were performed to use image analysis in the goal of automating the 
process [M. Salomon, 1994), [Y. Alhassani, 1994), [A. Ammouche, 2000). The 
successive steps of such a process are listed below: 

1. combination of the Red-Green-Blue components into one image in the 
case of colour acquisition, 

2. filtering: for avoiding over-segmentation, 
3. binarisation, 

4. shape analysis and elimination of objects which are not cracks (this 
stage requires the individual analysis of each component in the image 
and is time consuming), 

5. skeletonisation. 

Some remarks can b~ made about crack segmentation: 

• Generally, most of noise filters introduce blur outlines and therefore 
affect boundaries of cracks. 

• Most binarisation methods are based on radiometric histogram (for 
instance, the maximisation of entropy) More sophisticated algorithms 
could be applied for extracting cracks with more accuracy; among them, 
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for instance, classification algorithms, growing form algorithms, water
shed. The employed techniques always give a positive result whatever 
cracks are present or not on the images so that the algorithm must be 
completed by a decision stage. 

• Objects different from cracks can be also extracted like granulates, 
hydrates, fibres an so one which makes possible to reconstitute the 
context of cracking. 

• Systematic skeletonisation forbids crack aperture analysis. In fact, most 
of the techniques of preparation of samples do not give accurate image 
of the aperture. 

9. 2D crack network parameters 

specific length? 

specific surface? 

Connectivity? 

Granulorretry by opening 

~ 

Roughness? 
~ .... ......,. ..... v--....., 

at what scale ? 

FIGURE 22. Some parameters in the plane of observation. 

The specific length LA, the intercepts NL(O)- or the diametrical variation 
- and the degree of orientation w are often used to characterise microcrack 
networks. 

These stereological parameters must be in accordance with the Adwiger 
laws [M. Coster, 1989]. For example, the parameter LA, most often named 
"crack density" by the authors, depends on the magnification at which the 
observations have been made. As W(AL2) -=f. A2 W(L2), the quantity L2 (from 
which LA is derived) is not scale homogeneous. This phenomenon is reported 
by Ammouche et al. in [A. Ammouche, 2000], but the authors minimise it 
(the magnifications they use varies only between G x 25 and G x 80). Small 
details of cracks disappear when magnification decreases since a sufficient 
resolution is needed to visualise the thinnest cracks. The full exploitation of 
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this simple statement could lead to information on the aperture of cracks. 
Magnification plays the role of sieve and thus it could be possible to generate 
something like a kind of "granulometry" of cracks. 

Another point must be underlined concerning how the microcrack network 
covers the observed surface. For instance, it can be distributed in a non
uniform manner, so that "holes" appear at all scales. Figure 23 schematically 
shows such a pattern like a Sierpinski carpet. A fractal dimension can be 
computed from measurements at different scales as described by Mandelbrot 
in [B. Mandelbrot, 1983). 

what is the di stri rution of cracks 
in the plane ? 

Ill The" density" (specific length) 

.., dependsofthesize of the sample 

lqJ A (measure) 

~ k>gA(s:ae) 

FIGURE 23. Cracks can have non-uniform density. -· ... 

2.8mm 

FIGURE 24. SEM replica area. 
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FIGURE 25. Different field sizes. 

As an illustration of this point, let us have a look at a study performed 
with SEM. The same area of concrete (Fig. 24) has been analysed at different 
magnifications, thus different resolutions have been used (Fig. 25). 

(a) Reconstitued crack map from 16 fields . 

ffiOIUIOO Tar .Al.J 

.. _ . 

..... ... .. _ . 

.... -,. __ 

.... ) !PIM-.1 

(b) Results from intercept analysis. 

Tar ALPRO.Ilrll 

uuo
IMlllUO! ..-. 

, 11\J!II'-............ --~ 

MINDA 
~------~--------~=r~~ 

FIGURE 26. Example of analysis._for Gx200 magnification. 

The specific length is scale dependent. Figure 27 shows how the specific 
length LA varies with the field size A in a log-log diagram. Every change in 
scale (in the range Gx48 to Gx400) verifies the equation: LA(A) oo A-a, 
where a = 1 - d 1, and d 1 is the homothetic dimension (or fractal dimension) 
of the microcracking. Here, it has been found that d 1 = 1.184. 
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TABLE 6. Results for all the scales. 

Resolu- Field Analysed Total Specific Specific Degree of 
Gx orienta-

tion height area length length area tion 

/y TJ A L2 LA Sv w 
J..I.ID J..I.ID mm2 mm mm/mm2 mm/mm2 % 

x48 3.99 2043 5.859 15.714 2.682 3.413 18 

x100 1.92 983 5.399 17.728 3.283 4.178 17 

x200 0.96 492 5.399 19.556 3.622 4.609 15 

x400 0.48 246 5.399 23.433 4.340 5.523 13 

r r 
.X ----+ log-log ~ LA 

~ 
~ 

-----------
-.......... 

........ ...___ ----~~ 
~ 

10 

100 1000 

dimCIIIion de clump [rniaon[ 

FIGURE 27. Specific length versus scale. 

Attention must be paid to the roughness of the crack pattern. Several 
techniques based on image analysis were proposed to determine another as
pect of the fractal dimension due to the roughness. Among them, Richard
son's method of compass, Minkowski's method of dilation, the method of 
the boxes and the method of density-correlation are reported in the follow
ing references [M. Coster, 1989], [B. Mandelbrot, 1983], [K. Sandau, 1996], 
[J. Teixeira, 1985], and summarised in [Y. Al Hasanni, 1998]. 

Finally it has to be noticed that efforts must be made to characterise aper
ture and other parameters in relation to transport properties of the material. 
For example, B. Gerard and J. Marchand [A. Ammouch, 2000] proposed a 
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predictive model of the diffusion properties of concrete based on two parame
ters: the crack density and the mean effective crack aperture £4. However, it 
appears that their model needs also a tortuosity parameter ( T) and is based 
on the hypothesis of the continuity of the crack pattern. This interesting work 
shows clearly the direction for future researches on crack pattern: roughness, 
aperture, spacing and connectivity must be accurately quantified. 

10. 3D crack network parameters 

Plane observation gives a partial characterisation of the state of micro
cracking of concrete. So, it is necessary to extend the results to the three
dimensional space. The alternative ways are described in Fig. 28. 

Spatial orientatnn ? Percolation (continuity) ? 

FIGURE 28. How to obtain quantitative parameters in 3D space. 

Reconstruction of the spatial crack pattern from observations made in dif
ferent planes would be the most accurate way for obtaining three-dimensional 
data. This technique is similar to tomography used in medical science, pro
vided that the planes are parallel. Unfortunately, this approach is not real
istic in materials science because it requires an enormous collection of data 
(J.-P. Tricart). 

In fact, in most of actual situations, 2D results are extended to 3D-space 
by applying stereological laws restricted to the crack density. For example, 
assuming the isotropy of the crack pattern in all the 3D directions, the specific 
surface of cracks is derived from its density by the formula Sv = ~LA. This 
last hypothesis is not always checked because of lack of study on various 
oriented planes. In fact, when there is a privileged direction due to geometry 
of the sample and the direction of the loading, this stereological relation is 
not adequate. 

3D simulation could be a consistent way enabling to give accurate results 
and realistic geometries with a reasonable amount of data. Boolean mod-
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els, introduced by Jeulin [D. Jeulin, 1979], have been successfully used by 
Quenec'h et al. [J.-L. Quenec'h, 1993] or Ringot and Cros [E. Ringot, 1996] 
for describing the structure of materials. 

11. Conclusion 

Characterisation of cracking and microcracking in relation with the mate
rial properties still poses problem. However, image analysis and recent tech
nological improvements in acquisition and processing, encourage more sys
tematic and more accurate measurements. Additionally further works have to 
be done, particularly in order to develop methods for determining objective 
aperture distribution of cracks, to make multi-scale studies for determining 
how cracks occupy the space and finally to establish statistical models of the 
crack pattern. This is the price to be paid to reach quantitative correlation 
between the spatial crack pattern and the mechanical and physical properties 
of concrete. 

III. On Surface of Concrete 

G. LEMAIRE1•2), G. ESCADEILLAS1), E. RINGOT1) 

l) LMDC INSA/UPS, 135 avenue de Rangueil, 31077 Toulouse, France 
2) GTM-Construction, 61 avenue Jules Quentin, 92000 Nanterre, France 

12. Introduction 

In construction field, architects and building owners often request about 
the quality of the concrete surface [Menard, 1999]. These requests mainly con
cern flatness, tint and presence of surface bubbles. In France, specifications 
are given with reference to an AFNOR standard [AFNOR, 1989]. Although 
the examination of flatness generally will not pose a problem at the building 
site, this is not the case for the tint and the quantity of bubbles. These last 
two issues often constitute a subject of conflict between owners, architects 
and building firm. Here we present an evaluation tool based on image analy
sis. The images are preliminarily corrected to take into account the light and 
the nature of the camera. 

The analysis enables professionals to use the standard in a more objective 
way and it gives laboratories new qualification possibilities for evaluation of 
concrete surface. The originality of the method lies more in the industrial 
application than the complexity of the image analysis procedures. 
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In this Section two aspects of qualifying concrete surfaces are discussed: 
the colour factor and the surface bubble parameter. 

13. Colour analysis 

13.1. Imaging and correction 

The images of concrete surfaces are produced by a digital camera under 
natural ambient light. Of course, the colour distribution in the raw image 
depends on the type of camera as well as on the incident light intensity. So, 
a comparison of images of the same surface but taken under various light 
intensities or with different cameras is not accurate. Images require an ad
justment to take into account ambient conditions and camera characteristics. 
A process was developed to allow it [Lemaire and al., 2001). The first step 
transforms the own colour camera code in a universal system as CIELab. 
The second step modifies the image to simulate the condition of a standard 
illuminate {D65) defined by the CIE [colorimetry, 1986). 

The corrections require additional measurements on the site such as re
flectance curves of concrete surface and the colour temperature of ambient 
light [Lemaire et al., 2001). For these purposes, a colorimeter which gives re
flectance properties and a light meter which gives illuminate characteristics 
[Minolta, 1994) are used. 
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FIGURE 29. Typical curves of reflectance of a same concrete surface but at dif
ferent places. 
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After deduction of the light spectral curve, three images, corresponding 
to the three colour components, i.e. luminance (L*), tint (h*) and saturation 
(C*) [Trouve, 1991), are computed from each photograph. It is important 
to note that the tint and the saturation are in a narrow range for the same 
concrete surface (Fig. 29). Only the luminance appears to be a significant 
signal. 

13.2. Exploitation of luminance levels images 

Architects are interested in the conformity of the surfaces with reference 
to their initial specifications. If needed, defaults can be analysed by a char
acterisation in terms of area, shape and luminance. 

Obviously, the pertinent size of the smallest defaults that must be taken 
into account, in this evaluating work depends on the observation distance of 
the concrete surface. So, it is useful to introduce the notion of elementary 
area that can regroup several pixels on the digital image. As an example, it 
is not relevant to analyse details smaller than one square centimetre for a 
surface distant of more than fifty metres. 

Among all quantitative parameters, the luminance histogram is the first 
tool in the evaluation of the surface quality. It gives with the medium lumi
nance, the extreme values like an indication of the surface homogeneity. For 
example, the presence of several modes in the histogram or a strong spreading 
of the curve can reveal heterogeneity (Fig. 30). 

20 % 
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FIGURE 30. Unimodal histograms computed with two different sizes of the ele
mentary tile. 

A computer program has been created for the needs of this project. The 
user can choose the luminance level range that suits to him concerning the 
building contract requirements. 
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The program focuses on the areas belonging to the defined range. Every 
area out of the range, a surface defect, can be analysed to obtain its size, 
its average luminance and every other statistics parameters. As example, an 
image of the surface of the .bridge wall is selected (Fig. 31). 

(a) (b) 

FIGURE 31. (a) Studied bridge. (b) Photograph of the surface (part). 

The histogram analyses (Fig. 30) claims that 98% of the surface is located 
between the 62 and 72 luminance levels. 

The French NF P18-503 standard (AFNOR, 1989) specifies the concrete 
tint classes and gives a reference of seven grey levels equivalent to a luminance 
scale (Fig. 32). In our example, the surface could be automatically classified 
in the 3rd and 4th classes by our program. 
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FIGURE 32. Grey classes of the standard NFP 18-503 and corresponding lumi
nances. 

The localisation of each "default" can be visualised in a false colour image 
(Fig. 33). Here the global default areas cover 19% of the surface. 
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FIGURE 33. False colour image of the defaults. 

Table 7 summarises luminance and area of each default larger than three 
square centimetres for a given surface of concrete. 

TABLE 7. Statistic analysis of defaults of a surface (only the areas larger than 
3cm2 were taken into account); elementary tile= 1cm2

, L* < 65. 

area area 
No. [cm2

J Laver age Lmin Lmax No. [cm2
J Laver age Lmin Lmax 

1 44 63 61 4 16 4 64 64 64 
2 4 63 63 64 17 5 63 63 64 

3 5 63 63 64 18 5 62 56 64 
4 5 63 63 64 19 86 62 59 64 
5 4 62 62 63 20 81 62 60 64 
6 22 62 59 64 21 7 64 64 64 
7 15 63 62 64 22 5 63 63 64 
8 6 63 63 64 23 105 62 59 64 

9 6 64 64 64 24 5 62 60 65 
10 1270 63 57 66 25 26 63 61 64 
11 13 62 61 64 26 8 63 61 64 
12 5 63 63 64 27 16 62 60 64 
13 8 63 63 64 28 7 63 63 64 
14 7 64 64 64 29 4 63 63 64 
15 8 63 62 64 30 16 63 62 64 
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14. Surface bubbles analysis 

French standard gives a reference scale to analyse surface bubbles (see 
Fig. 34). A classification of the surface is roughly obtained by comparing the 
bubbles on the surface with the bubbles of the reference scale. In fact, one 
surface can regroup several types of bubbles, so the use of the standard is 
difficult and subjective. A better and a more objective evaluation can be 
obtained with image analysis. 

0.8 .-------------------.- 16 

---bubbles per cm2 1 
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FIGURE 34. Bubbles distribution (NF P18-305) and its characteristics measured 
by image analysis. 

The picture used to analyse surface bubbles must be taken close enough 
to distinguish details about one square millimetre. A ruler put on the surface 
analysed can give the ratio pixel/cm2 is known and thus the bubbles size. 

TABLE 8. Algorithm of segmentation and analysis of bubbles. 

1. Median threshold: the image is filtered by a median filter in order 
to eliminate the noise. 

2. Binary process by maximum entropy: this method detects rare 
objects on the image; thus it is suitable to extract bubbles from 
the surface images. 

3. Morphologic "opening'' allowing to eliminate the objects of irrel
evant size. 

4. Convex filter: this filter allows to complete the global geometry of 
the biggest bubbles which couldn't be entirely detected because 
of the incident light. 

5. Counting and granolometry of bubbles. 
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The digital image is processed in the way presented in Table 8. The 
method is illustrated by the next example (Fig. 35). The global area covered 
by bubbles is 3.0%. There are 300 bubbles per square metre. 

(a) (b) (c) 
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FIGURE 35. (a) Filtered image. (b) Binarisation. (c) Convex hull. 

The bubble granulometry is realised by successive morphological open
ings (Fig. 36). 
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FIGURE 36. Granulometric curve of bubbles. 

The method of analysis can be applied to the reference bubbles scale 
given by the AFNOR Table to classify concrete surfaces according to this 
standard. In this way, the given surface will be represented at the border of 
the 4th and 5th classes. 
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15. Discussion 

Civil engineers expect tools for the characterisation of concrete surfaces 
with respect to their properties in terms of tint and bubbles. The standards, 
when they exist, propose references in term of levels of grey and bubbles 
quantity, but their effective use is subjective and too rudimentary. Very few 
documents on this subject are available for the experts. 

In this context, a method for a quantitative evaluation of concrete surfaces 
based on image analysis has been presented. In reference to the normative 
texts, the developed tool allows an objective evaluation of grey levels of the 
surface and an accurate measurement of the area covered by bubbles. Of 
course, a richer information is available. 

The method presented opens new perspective for civil engineering re
search: study of the evolution of surfaces at various ages, constitution of data 
bases, correlation with the influencing parameters such as the formulation, 
conditions of molding, climatic factors, etc. 

Today the technique is already used on some building site for expertise 
and in laboratory with an aim of improving the control of quality of the 
surfaces of concrete [GTM, 2001]. 
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