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1. Introduction 

Super hard materials based on polycrystalline cubic boron nitride ( CBN) 
and diamond (PCD) were developed in the 70-ties of the last century. The 
most important features of these materials are very high hardness and wear 
resistance. Due to these properties they are widely used for high quality 
cutting tools, drilling bits and wire drawing dies. 

Diamond is the first and cubic boron nitride the second hardest material 
known. As single crystals they are hard but susceptible to cleavage along 
certain crystallographic planes. This propensity for cleavage can be greatly 
reduced in polycrystalline materials containing a big number of randomly 
oriented grains. It is the main idea which led to the development of superhard 
polycrystalline materials based on diamond or CBN. 

Production process of such materials involves high-pressure (5-8 GPa), 
high-temperature (1500-2300°C) sintering of diamond or CBN powder mixed 
with specially selected binder-catalyst phase. The material produced in this 
process is a composite containing grains of diamond or boron nitride sur­
rounded by a softer binder-catalyst phase. Macroscopic properties of such 
materials depend on the proportion of superhard to binder phase as well as 
on the arrangement of the two phases within the material. One of the most 
important structural features is presence of direct bonding (bridges) between 
grains of superhard phase. 
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CBN and PCD composites present considerable difficulties for conven­
tional material testing methods. They are produced in the form of cylindrical 
compacts which sizes are too small to prepare samples for standard mechan­
ical tests. Special techniques for determination of tensile strength, transverse 
rupture strength and fracture toughness have been developed but due to their 
complexity and destructive character they have very limited application. 

In view of these problems ultrasonic method became one of the most 
important testing techniques for PCD and CBN superhard materials. Ultra­
sonic techniques can be used for detection of defects in sintered compacts 
as well as for determination of elastic constants of their material. Elastic 
properties of composite material are directly related to its composition and 
microstructure. The correlation can be established on the bases of compara­
tive experimental measurements or from the theoretical models. 

Some authors have already tried to correlate ultrasonically measured elas­
tic constants of PCD and CBN materials with their composition and grain 
size. Lammer [1] established some empirical relation between diamond grain 
size, content of cobalt binder phase and elastic modulus for PCD materials. 

D'Evelyn and Taniguchi [2] have measured the elastic constants of several 
grades of PCD and CBN materials and compared the results with theoretical 
values calculated from the Hershey-Kroner-Eshelby equation. Their exper­
imental results showed that elastic moduli of the considered materials were 
strongly dependent on the content of binder phase. On the other hand the 
Hershey-Kroner-Eshelby equation allows for calculation of theoretical mod­
uli only for pure polycrystalline materials (without any content of binder 
phase). Clearly, this model didn't account for a very important feature of 
PCD and CBN composites i.e. dependence of their macroscopic properties 
on the type and amount of binder-catalyst phase. 

Another limitation of existing works on elastic properties of super­
hard composites is commonly adopted assumption about their macroscopic 
isotropy. This assumption was essential in experimental determination of 
elastic moduli from ultrasonic and resonance measurements [1, 2]. However it 
should be noted that PCD and CBN composites are sintered in high pressure 
apparatus which create rather axially symmetric then isotropic stress state. 
Such non-hydrostatic stress can cause non-uniform orientation distribution 
of crystalline grains (texture) leading to macroscopic material anisotropy. 
Such anisotropy was found in many polycrystalline materials and should be 
taken into account also in case of PCD and CBN composites. The correla­
tion between texture and the elastic constants of macroscopic samples can 
be investigated on the base of a proper theoretical model. 
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2. Formulation of the problem 

The macroscopic elastic properties of PCD and CBN cmnposites can be 
determined by measurements of ultrasonic velocities or by dynamic resonance 
method. The measured values of elastic constants can be interpreted in terms 
of composition and microstructural features of considered materials. To this 
effect various theoretical models of composite material can be adopted. 

The main aim of the present work is to develop a theoretical model of 
composite material enabling calculation of macroscopic elastic constants on 
the bases of phase composition and texture. The modelled material consist 
of predominant super hard phase ( dian1ond or cubic boron nitride) and addi­
tional binder-catalyst phase. It will be assumed that the material possesses 
axial symmetry imposed by sintering conditions. From the microscopic point 
of view it means that statistical orientation distribution of constituent crys­
tallites has cylindrical symmetry around a technological axis. 

The proposed model overcomes the main limitations of Hershey-Kroner­
Eshelby solution in case of PCD and CBN composites. First of all it accounts 
for the effect of binder-catalyst phase and gives the possibility to calculate 
elastic constants for different grades of superhard materials with any content 
of binder phase. Such theoretical values can be considered as a reference 
points for elastic constants measured on real samples. 

The second aspect of the proposed 1nodel is that it takes into account 
the textural anisotropy of PCD and CBN materials. It enables to find the 
anisotropic elastic constants on the basis of orientation distribution function 
(ODF) of its constituent crystallites. It can be also useful in elaboration of 
experimental data concerning elastic constants of superhard materials. 

The basic assumptions of the proposed model are summarised below: 

• The modelled material is composed of crystalline grains of cubic sym­
metry (diamond or cubic boron nitride) surrounded by perfectly iso­
tropic binder-catalyst phase. 

• The sizes of the crystalline grains are uniform in all directions and are 
much smaller than dimensions of the macroscopic sample. 

• The material posses cylindrical symmetry around technological axes 
caused by non-uniform orientation distribution of constituent crystal­
lites (texture). 

• The macroscopic elastic constants are calculated as Voigt, Reuss and 
Hill averages over the crystalline grains and binder phase volumes. 

• Averaging over different orientations of crystalline grains is performed 
with the weighting function given by orientation distribution function 
(ODF) possessing cylindrical symmetry. 
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The application of relatively simple Voigt, Reuss and Hill averaging pro­
cedures (so called VRH model) for the calculation of effective eastic con­
stants of considered materials is justified by the results of previoru works on 
single phase, isotropic polycrystalline materials. Sisodia et al. [~ reviewed 
available data for a few tens of polycrystalline materials and concuded that 
Hill's averaging procedure had given elastic modulus in good agrerment with 
solutions of Hershey-Kroner-Eshelby equation and with experimental data. 
Based on these results it can be expected that VRH model will gNe reason­
able approximation of elastic constants also for anisotropic poly;rystalline 
composites. 

Another advantage of the VRH model is fact that it can be ecsily gener­
alized for multi-phase materials with non-random orientation dist.·ibution of 
grains. In this way two important characteristics of the real PCD and CBN 
composites can be included in the theoretical model. 

3. Orientation distribution function 

Quantitative description of texture in polycrystalline materiJ.l requires 
knowledge of orientation distribution function w('ljJ, (}, c.p) of crystalites in the 
macroscopic sample. The orientation of individual crystallite in 1he sample 
coordinate system is specified by the three Euler angles: (}, 'ljJ, p [4). The 
angles specify the consecutive rotations of crystallite-fixed coordimte system 
X, Y, Z with respect to sample-fixed coordinate system x, y, z. 

z 

~ 
y 

X 

y 

FIGURE 1. Crystallite coordinate system X, Y, Z with respect to samplt coordi­
nate system x, y, z. 

The orientation distribution function w(~, 'ljJ, c.p), where ~ = <Os 0, is de­
fined as the probability of finding a crystallite having an orientatim specified 
by the angles~' '1/J, c.p with respect to the sample coordinate systen. The inte-
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gration of this probability function over all possible orientations must satisfy: 

271" 271" 1 

j j j w({, 1/J, <p) cl{ d1/J d<p = 1. (3.1) 

0 0 -1 

According to mathematical formalism developed by Roe [4], the orienta­
tion distribution function w( ~, (), c.p) can be expanded in a series of generalized 
spherical harmonics as: 

00 l l 

w(~,'lj;,c.p) = L L L WtmnZlmn(~)e-im1/J e-in<p, (3.2) 
l=O m=-l n=-l 

where Zlmn(~) is the generalisation of the associated Legendre functions de­
fined in [4] and Wtmn are expansion coefficients given by: 

271" 271" 1 

lo/lmn = 
4
:2 j j j w({, 1/J, <p) Ztmn({) eim,P ein"'d{ d,P d<p. (3.3) 

0 0 -1 

From the fact that all crystal classes posses inversion symmetry it can be 
shown that in the expansion series (3.2) all coefficients Wtmn with 1 odd must 
vanish. The expression (3.2) can be further simplified by considering specific 
symmetry requirements assumed for our model in Section 2. 

The cylindrical symmetry imposed on the orientation distribution func­
tion requires that w('lj;, (), c.p) should be independent of angle 0. Consequently 
all the expansion coefficients with m#- 0 must vanish: 

Wtmn #- 0, m=O 
(3.4) 

Wtmn = 0, m#- 0. 

The cubic symmetry of constituent crystallites imposes another set of re­
strictions on Wtmn. Fourfold rotation symmetry around the crystallographic 
Z-axis yields: 

Wtmn #- 0, 

Wtmn = 0, 

n =4k 

n #- 4k, k E C. 
(3.5) 

From the twofold symmetry around X or Y crystal axis we conclude that for 
all nonzero Wlmn we have: 

Wtmn = Wtmril where n = -n. (3.6) 
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Fourfold rotational symmetry around X or Y crystallographic axis leads to 
additional linear relations between nonzero coefficients Wzmn [5]. For a few 
lower values of index 1 they can be explicit written as: 

for l = 2 

for l = 4 

for l = 6 

W2oo = 0, 

5 
W404 = r.:m W4oo, 

v70 

W604 = -1.8708 W6oo. 

(3.7) 

Taking into consideration all the above symmetry conditions for Wlmn 
the expansion series (3.2) may be rewritten in a much simplified form: 

w(~, 'l/J, <p) = WoooZooo(~) + W4ooZ4oo(~) + W404 Z4o4(~)e-i4<p 

where 

+ W404 Z4o4(~)ei4<p + W6ooZ6oo(~) + W6o4 Z6o4(~)e-i4<p 

vv; - 1 
000- 4/27r2' 

+ W6o4 Z604(~)ei4<p + ... , (3.8) 

W4o4 = W4o4 = !m W4oo, (3·9) 
v70 

W6o6 = W6o6 = -1.8708 W6oo, etc. 

In spite of considerable reduction of terms in expansion series (3.8) their 
number is still infinite. It will be shown that using the VRH averaging pro­
cedure only the terms up to l = 4 do not vanish. It means that the elastic 
anisotropy of considered materials can be fully described by only one pa­
rameter of crystallographic texture; namely the coefficient W4oo of the ODF 
expansion series. It should be noted however that this important conclusion 
is valid only for materials composed of cubic crystallites which are distributed 
according to 0 D F function possessing cylindrical symmetry. 

4. Calculation of averaged elastic constants 

4.1. Voigt averaging procedure 

In Voigt-type averaging procedure it is assumed that effective elastic con­
stants of polycrystalline material are calculated as an average of single crystal 
elastic constants over all possible orientations of crystalline grains with ODF 
function as a weighting function. The procedure, in the case of sir.gle phase 
polycrystalline aggregates, was described by Pursey and Cox [6], ~ayers (10) 
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and Hirao and others [12]. In the present work the Voigt-type averaging pro­
cedure is modified by extension of the averaging integrals over the second, 
binder-catalyst phase. Mathematically it can be expressed by the formula: 

( 4.1) 

where: 

e~j - the elastic constants of a crystalline grain referred to the macroscopic 
coordinate system of the sample, 

< <j > - average of the elastic constants over the orientation distribution 
of grains, 

e~j - elastic constants of isotropic binder-catalyst phase, 

V - volume fraction of superhard phase in the composite material. 

The directional averaging over the binder-catalyst phase is avoided be­
cause of the simplifying assumption that this phase is perfectly isotropic. 
The averaging over orientation distribution of superhard phase is expressed 
by the formula: 

27r 211" 1 

< C:i > = J J J w(~, '1/J, <p) c;i (~, ,P, <p) df, d,P d<p, ( 4.2) 

0 0 -1 

where the notation <j (€, 'ljJ, c.p) formally shows the dependence of elastic con­
stants of the crystallite on its orientation with respect to the global sample 
axis. 

To obtain the explicit form of this dependence we have to transform 
the single-crystal elastic constants of a grain from its crystallographic co­
ordinates XY Z to the global coordinates xyz. This transformation may be 
accomplished by the Bond matrix formalism described by Auld [7]. 

In this approach the single-crystal elastic constants matrix l<jJ referred 
to the global coordinate system is obtained from the basic elastic constants 
matrix (Cij) referred to crystallographic axes by simple matrix multiplication: 
left side with the Bond matrix (M) and right side with its transposition (M]T: 

(e~j) = (M](Cij](M)T. (4.3) 

The basic elastic constant matrix for cubic crystals has the well-known 
form: 

en e12 e12 0 0 0 
e12 en e12 0 0 0 

[Cij] = 
e12 e12 en 0 0 0 

( 4.4) 
0 0 0 e44 0 0 
0 0 0 0 e44 0 
0 0 0 0 0 e44 
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The Bond matrix [M] is defined as follows: 

l~ l~ l5 2l2l3 2ltl3 2ltl2 
m2 1 m2 2 m~ 2m2m3 2m1m3 2mtm2 

[M]= n~ n~ n~ 2n2n3 2ntn3 2n1n2 
n1m1 n2m2 n3m3 m2n3 +n2m3 m1n3 + n1m3 m1n2 + m2n1 ' 
Ltn1 l2n2 l3n3 l2n3 + l3n2. ltn3 + n1l3 lt n2 + l2n1 
ltmt l2m2 l3m3 l2m3 + m2l3 l1m3 + l3m1 lt m2 + m1l2 

where l1, l2, l3, m1, m2, m3, n1, n2, n3 are the direction cosines of global 
coordinate axis x,y,z expressed in crystallite-fixed coordinate system XY Z. 

These directional cosines can be easily expressed in terms of the Euler 
angles (1/J, (), c.p) defining the rotations which transforms the global coordinate 
system xyz into the crystallite-fixed coordinate system XY Z: 

h = - sin 'ljJ sin 4> + cos 'ljJ cos 4> cos (), 

l2 = - sin 'ljJ cos 4> - cos 'ljJ sin 4> cos (), 

l3 = sin() cos 'lj;, 

m 1 = cos 'ljJ sin 4> + sin 'ljJ cos 4> cos (), 

m2 = cos 1/J cos 4> - sin 1/J sin 4> cos (), 

m3 = sin () sin 'ljJ 

n1 = -sin() cos 4>, 

n2 = sin () sin 4> - cos 1/J sin 4> cos (), 

n3 =cos e. 

(4.5) 

The execution of prescribed stiffness matrix transformation is straightfor­
ward but rather tedious. Below, we give the final expressions for some of the 
transformed elastic constants (the other are not necessary because their aver­
ages over orientation distribution function can be deduced from the condition 
of transversal isotropy of the composite material): 

c~l = cu - 2c (lrl~ + lil5 + l~l5), 
c~3 = cu - 2c ( nin~ + nin§ + n~n§), 

c~4 = C44 + c(mini + m~n~ + m§n§), 

C~2 = C12 + C (lrmi + l~m~ + l5m§), 

C~3 = C12 + C (lint + l~n~ + l5n5), 

where c = cu- c12- 2c44· 

(4.6) 
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All transformed elastic moduli depend on the orientation of the crystallite 
through direction cosines: li, mi, ni which, in turn, are trigonometric func­
tions of Euler angles ('l/1, (), <p). To emphasize this dependence we introduce 
auxiliary functions ri(~,'l/J,<p) defined as follows: 

r1 = z?z~ + z?z~ + z~z~, 
2 2 2 2 2 2 r3 = n 1n2 + n 1n3 + n2n3 , 

2 2 2 2 2 2 
T4 = m 1n 1 + m2n 2 + m 3n3 , 

T6 = Zimi + l~m~ + l~m~, 

r5 = Zini + l~n~ + Z5n~. 

(4.7) 

Using these functions the averages of single-crystal elastic moduli over the 
crystallite orientation distribution function can be written in the following 
form: 

< c~ 1 > = cu - 2c < r 1 >, 

< c;3 > = cu - 2c < r3 >, 
I < c44 > = C44 + c < r 4 >, 
I < C12 > = C12 + C < T6 >, 
I < C13 > = C12 + C < T5 >, 

(4.8) 

where unknown averages of functions ri(~, '1/J, cjJ) are given by the integrals of 
the type: 

271" 271" 1 

< r; > = J J J w({, 1/1, <p) r; ({, 1/1, <p) d{ d'l/J d<p. ( 4.9) 

0 0 -1 

The functions r i ( ~, 'ljJ, <p) can be expanded in the series of generalized 
spherical harmonics in exactly the same way as the orientation distribution 
function w(~, 'lj;, <p): 

00 l l 

(c ,.,, ) "' "' "' R(i) z (C) e-imt/Je-incp Ti ~,o/,<p = ~ ~ ~ lmn lmn ~ ' ( 4.10) 
l=O m=-l n=-l 

where the expansion coefficients are given by: 

271" 271" 1 

R~~n = 
4
:2 J J J r i ( {, 1/1, 'P) Ztmn ( {) eimt/> ein<p d{ d'l/J d<p. ( 4.11) 

0 0 -1 
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Expanding both functions in the integral ( 4.9) in the generalized spherical 
harmonics series and utilizing the orthogonal relations between harmonics we 
obtain: 

(4.12) 

The remaining problem to solve is calculation of expansion coeffi­
cients R}~n. Analysing the expressions ( 4. 7) and ( 4.5) we can see that 
ri(€, 'ljJ, c.p) contain trigonometric functions with at most fourth powers of 
cos () or sin(). Taking into consideration the properties of generalized spheri­
cal harmonics it can be shown that in the expansion series ( 4.10) only terms 
up to l = 4 are nonzero. Formally it can be expressed as: 

(i) 
Rlmn = 0 for l > 4. ( 4.13) 

It means that the series ( 4.12) is truncated at l = 4. Because of the discussed 
earlier symmetry requirements concerning Wtmn, the series can be further 
simplified to the form: 

_ 1 R(i) 4 2 [R(i) 5 (R(i) R(i) )] W < Ti > - y'2 000 + 7r 400 + v'7Q 404 + 404 400· (4.14) 

Th l l . f 11 . d R(i) R(i) R(i) R(i) b d b e ea cu atwn o a require terms 000 , 400 , 404 , 404 can e one y 
using the integrals (4.11). After substitution of the results into (4.14) we 
finally obtain: 

1 6\1"27r2 

< r1 > = 5 -
35 

W4oo, 

1 16\1"27r2 

< TJ > = 5 - 35 W4oo' 

1 6\1"27r2 

< r 4 > = 5 -
35 

W4oo, (4.15) 

1 16\1"27r2 

< r5 > = 5 -
35 

W4oo, 

1 4\1"27r2 

< r6 > = 5 + 
35 

w4oo· 

Next, introducing <ri> into (4.8), we get the averaged stiffness moduli of 
the polycrystalline phase of the composite and then, using ( 4.1), the effective 
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stiffness coefficients for the whole composite: 

c~i = V(cu- 2c < r1 >) + (1- V)c~ 1 , 

c~j = V ( c33 - 2c < r3 >) + ( 1 - V) c~ 1, 

c~Y = V ( C44 + c < r 4 >) + ( 1 - V) c~4 , 

c~r =V (c12 + c < r6 >) + (1- V) c~2 ' 

c~j =V (c12 + c < r5 >) + (1- V) c~2' 

where c = c11 - c12 - 2c44, and: 

Cij - the stiffness moduli of superhard phase (as for single-crystal), 

V - the volume fraction of superhard phase in the composite, 

c~j - the stiffness moduli of binder phase, 

( 4.16) 

dfr - the effective stiffness moduli of the composite in the Voigt model. 

As can be seen the effective stiffness moduli of the composite in the Voigt 
model depend on the stiffness moduli and volume fractions of both compo­
nents as well as on the texture parameter W4oo of polycrystalline phase. 

The stiffness matrix of the composite has the form characteristic for a 
medium with transversal isotropy: 

ckV 
ll ~r ~r 0 0 0 

c1¥ ~r ckV 13 0 0 0 
cl V ckV ckV 0 0 0 

[ckV] = 13 13 33 
( 4.17) 

0 0 0 ckV 0 0 44 
0 0 0 0 kV C44 0 

0 0 0 0 0 ckV 
66 

h cl V _ 1 ( kV kV) w ere 66 - 2 ell - c12 . 

4.2. Reuss averaging procedure 

In Reuss-type estimation procedure it is assumed that the effective com­
pliance coefficients of a polycrystalline material are calculated as an average 
of single-crystal compliance moduli over all possible orientations of crystalline 
grains with ODF as a weighting function. In the present work the Reuss es­
timation is modified by extension of the averaging integrals over the second, 
binder-catalyst phase. Mathematically, it can be expressed by the formula: 

s~Y = V < i . > +(1 - V) s~ · tJ tJ tJ (4.18) 

where: 
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8~i - the compliance moduli of a crystalline grain referred to the macroscopic 
coordinate system of the sample, 

< 8~i > - average of the compliance constants over the orientation distribu­
tion of grains, 

8~i - compliance moduli of isotropic binder-catalyst phase, 

V - the volume fraction of the superhard phase in the composite material. 

The calculation algorithm of the Reuss model is now similar to the al­
gorithms described earlier for the Voigt approach. The main difference is 
that now we have to average the single-crystal compliance moduli 8ij in­
stead of single-crystal stiffness moduli Cij. Because of that we have to use 
a slightly different Bond transformation matrix for transformation of single­
crystal compliance moduli from the crystallographic coordinate system XYX 
to the sample fixed coordinate system xyz: 

(4.19) 

The Bond matrix [N] is defined as follows: 

L? l~ [2 
3 l2l3 ltl3 ltl2 

m2 
1 m~ m~ m2m3 mtm3 mtm2 

[N]= n~ n~ n~ n2n3 n1n3 n1n2 
2ntmt 2n2m2 2n3m3 m2n3 + n2m3 m1n3 + n1m3 m1n2 + m2n1 ' 
2ltnt 2L2n2 2L3n3 l2n3 + l3n2 ltn3+ntl3 it n2 + l2n1 
ltmt 2L2m2 2l3m3 l2m3 + m2l3 Ltm3 + l3m1 Ltm2 + m1l2 

where l1, l2, l3, m1, m2, m3, n1, n2, n3 are direction cosines of global coor­
dinate axis x,y,z expressed in crystallite-fixed coordinate system XY Z. 

Performing the prescribed compliance matrix transformation followed by 
averaging over orientation distribution function ODF is very similar to for 
Voigt appraoch and leads to the following expressions: 

< 8~ 1 > = 811 - 28 < r1 >, 
< 8~3 > = 811- 28 < r3 >, 
< 8~4 > = 844 + 48 < r 4 >, 

I < 812 > = 812 + 8 < T6 >, 
I < 8 13 > = 812 + 8 < rs >, 

where 8 = 8u- 812- ~844, and < ri > are given by (4.15). 

(4.20) 
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Final expressions for the effective compliance coefficients for the compos­
ite material obtained by using the Reuss approach are given by: 

8~r = V(8u- 28 < T1 >) + (1- V) 8~1, 

8~f = V ( 833 - 28 < r3 >) + ( 1 - V) 8~ 1, 

. 8~,f = V ( 844 + 48 < r 4 >) + ( 1 - V) 8~4 , 

8~f = V ( 812 + 8 < r6 >) + (1 - V) 8~2 , 

8~f =V (812 + 8 < r5 >) + (1- V) 8~2 . 

where 8 = 811 - 812 - ~844, and: 

( 4.21) 

8ij - the compliance moduli of superhard phase (as for single-crystal), 

V - the volume fraction of superhard phase in the composite, 

8~j - the compliance moduli of isotropic binder phase, 

8tR - the effective compliance coefficients of the composite in the Reuss 
model. 

The last step of calculations is the conversion the above compliance matrix 
into stiffness matrix of the composite. It can be accomplished by the standard 
formula given, for example, by Auld [7): 

kR 1 
kR 833 

ell = 2{3 + 2 ( kR _ kR) ' 8 11 8 12 

1 ckR 
44 - kR' 

8 44 
(4.22) 

kR 1 kR _ 833 
C12 - 2{3 - 2 ( kR _ kR) ' 

Su 8 12 

where: 

f3 _ 8kR(8kR + 8kR) _ 2(8kR)2 
- 33 11 12 13 ' 

cfjR - the effective stiffness moduli of the composite. 

The form of this stiffness matrix is exactly the same as the one given in ( 4.17) 
by using Voigt's approach. 
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4.3. The Hill average 

It is well-known that both Voigt and Reuss averaging procedures are 
based on non-physical assumptions concerning the stress/strain state within 
the multi phase or polycrystalline material. 

In case of the Voigt approach it is assumed that strain state is uniform 
across the material what is clearly false because to achieve such condition 
some external forces would be required on the grain boundaries to keep it in 
balance. 

On the other hand, in the Reuss approach, it is assumed that stress state 
is uniform in the material what clearly leads to material disruptions at the 
grain boundaries (the same stress in neighbouring grains, having different 
elastic constants, must produce different strains these grains). 

As was proved by Hill the Voigt and Reuss averages can be considered 
only as an upper and lower bounds of the true elastic coefficients of the 
multiphase or polycrystalline material. He proposed the arithmetic average 
of these two averages as a more reliable estimate of elastic coefficients of 
real materials. The Hill average, in spite of its simplicity, proved to be well 
justified by many more sophisticated theoretical models giving tighter bounds 
for effective elastic constants (Hashin-Shtrikman [8], Kroner [9]). 

For these reasons it is assumed that the Hill average is the best theoretical 
estimate of effective elastic constants of considered composite materials. The 
Hill stiffness matrix has the same symmetry and form as the discussed earlier 
Voigt and Reuss stiffness matrixes. Its components are given by: 

kH 1 ( kV kR) cu = 2 cu + cu ' 

kH 1 ( kV kR) 
C33 = 2 C33 + C33 ' 

kH _ 1 ( kV kR) 
C44 - 2 C44 + C44 ' (4.23) 

kH 1 ( kV kR) 
C12 = 2 C12 + C12 ' 

kH 1 ( kV kR) 
c13 = 2 C13 + c13 · 

5. Discussion and experimental verification 

The effective elastic moduli of composite material can be numerically cal­
culated by successive use of expressions (4.16), (4.21), (4.22) and (4.23). They 
will depend on the stiffness moduli and volume fractions of the two compos­
ite components, i.e. superhard phase and binder-catalyst phase. Moreover, 
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in contrast to the previously proposed models, they will also depend on the 
texture of superhard phase described by the W4oo expansion coefficient of 
ODF function. 

The elastic coefficients of typical components of super hard materials ( di­
amond, cBN, Co, TiN, AlN, Ti3SiC2) can be found in the literature [3, 7, 
13). The moduli used in the subsequent example calculations are listed in 
Table 1. 

TABLE 1. The stiffness coefficients of typical components of superhard composite 
materials. 

I Material I Cn [GPaJ I cl2 [GPaJ I c44 [GPaJ I Type 

cubic BN 820 190 480 single-crystal 

Co 267 - 72 isotropic 

AIN 334 - 130 isotropic 

TiN 532 - 190 isotropic 

The stiffness coefficients for the cubic boron nitride (the super hard phase) 
are similar to those for single crystals whereas the coefficients of binder­
catalyst phases are similar to those of isotropic media. It reflects the fact 
that in the model directional averaging is performed only for superhard phase 
assuming binder phase isotropic. 

Resultant anisotropy of composite material is fully described by the tex­
ture coefficient W4oo of the super hard phase. As was already noticed in earlier 
papers anisotropic properties of these kind of materials were disregarded. Up 
to our knowledge there is no experimental data on texture parameters of 
superhard composites. Such data could be obtained for example from X-ray 
or neutron diffraction experiments. 

Despite for the lack of such data for the time being it is still possible to 
make some estimation of elastic constants assuming different possible values 
of W4oo · To this end we can define three specific, border line, cases of the 
orientation distribution function ODF: 

(a) fully isotropic with a uniform distribution of crystallites orientations in 
all directions, i.e. W4oo = 0, 

(b) transversally isotropic with all crystallites oriented with [1 ,0,0) crys­
tallographic direction parallel to the sample technological axes, i.e. 
W4oo = 0.03134, 

(c) transversally isotropic with all crystallites oriented with [1,1,1) crys­
tallographic direction parallel to the sample technological axes, i.e. 
W4oo = -0.02089. 
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Considering (b) and (c) as border line cases we can expect in real com­
posites the values of texture parameter W4oo in the range from -0.02089 
to 0.03134. We will examine now how the value of texture parameter in­
fluences the effective elastic moduli of composite. Because in many technical 
papers the elastic properties of materials are expressed in terms of the Young 
modulus E and Poisson ratio v we will express our results in the same way. 
The formula for the elastic moduli on the basis of effective stiffness coeffi­
cients are given by: 

ckH 
V _ 13 
z- kH +c!:H' 

ell 12 

(5.1) 

where Ez and Vz are the moduli in the z-direction. 
The dependence of the effective Young modulus and Poisson ratio on the 

texture coefficient W4oo for typical composition of superhard material (80% 
cBN + 20% AlN) is illustrated in Fig. 2 with a solid lines. 

It can be seen that texture of superhard phase may significantly change 
the Young modulus and Poisson ratio of the composite material as compared 
to the isotropic case. In the considered example the Young modulus can 
deviate up to 15% from its isotropic value and Poison ratio even more. 

It is clear that texture of superhard phase is an important factor influ­
encing macroscopic elastic properties of composites. 

Another important conclusion which can be drawn from the presented 
model concerns ultrasonic measurements of elastic moduli of composite ma­
terials. In such measurements velocities of shear and longitudinal ultrasonic 
waves are measured in axial direction of disc shaped composite samples. 
Then, the elastic moduli of the material are derived on the bases of rneasured 
velocities and density. If at these point we make unjustified assumption that 
the material is isotropic and use for calculation of elastic moduli the stan­
dard "isotropic" formula we will obtain results considerably different from the 
right values. The extent of this problem is illustrated in Fig. 2, where such 
apparent ultrasonic moduli are shown in comparison with the right ones. The 
non-conformance is especially pronounced in estimation of the Poisson ratio 
where for highly [1,0,0] textured cBN phase we obtain negative values of this 
ratio. 

To get reliable estimation of elastic moduli from measurements of ultra­
sonic velocities in one direction it is necessary to ensure that the material is 
truly isotropic. In the case of substantial anisotropy the measurement pro­
cedure must be considerably modified by using additional propagation di-

http://rcin.org.pl



THEORETICAL MODEL FOR CALCULATION OF ELASTIC COEFFICIENTS . . . 175 

0 

~ 
en 
-5 
en en 
'(5 
Q.. 

1~--~------~----~----~------~----~--. 

1000 
80%cBN + 200/oAIN 

actual mechanical E modulus in z-direction -­
estimation f rom ultrasonic velocities in z-direction 

o~~-----~---~---~--~----~~ 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-o.os 

-o.1 

.0.15 

-0.2 

-o.02 -0.01 0 0.01 0.02 0.03 
AnisotrOPv Faktor W400 

80%cBN + 20°/oAIN 

actual mechanical Poisson's ratio in z-direction -­
estimation from ultrasonic velocities in z-direction 

-o.02 -0.01 0 0.01 0.02 0.03 
AnisotroPv f aktor W400 

FIGURE 2. Dependence of Young modulus and Poison ratio on the texture coef­
ficient W4oo for typical composition of superhard material. 

rections and more sophisticated calculation algorithm. Moreover, in such a 
case the description of elastic properties of composite material should be ex­
pressed rather in terms of stiffness coefficients than the Young modulus and 
Poison ratio. 

To make full experimental verification of the proposed model it is neces­
sary to compare theoretical results with the experimental elastic coefficients 
determined on the samples with controlled anisotropy. Unfortunately, in all 
available experimental papers on elastic properties of superhard composites 
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the authors assumed isotropic condition without any evidence of experimen­
tal verification. It means that their data may be subject to errors in case the 
tested materials were not truly isotropic. 

Nevertheless in Fig. 3 we present the available experimental data on the 
Young modulus of different grades of cBN composites [2) together with the­
oretical estimations calculated from the proposed model. The materials have 
different contents of superhard phase (from 65 to 97 vol% of cBN) and dif­
ferent kinds of binder-catalyst phases (TiN, AlN, Co). Because of lack of 
data on the actual texture of measured samples in theoretical calculation, we 
assumed perfect isotropy (W4oo = 0). 
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FIGURE 3. Comparison of theoretical and experimental values of Young modulus 
for different grades of superhard composite based on cubic boron nitride. 

In spite of this simplifying assumption (adopted both in the elabora­
tion of experimental data and in theoretical n1odel) the agreement is rea­
sonably good. The measured values of the Young modulus are generally 
slightly below the calculated Hill averages. The main reasons for observed 
discrepancies, except the simplifying assumption of isotropy, are uncertain­
ties concerning actual phase composition of modelled materials and actual 
values of elastic moduli of binder-catalyst phase. The mentioned uncertain­
ties are consequence of the fact that during high-pressure, high-temperature 
composite synthesis initial components can react making different additional 
compounds and/or solid solutions. 
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6. Conclusions 

The theoretical model was proposed for calculation of the effective elas­
tic moduli of superhard composites on the basis of polycrystalline diamond 
(PCD) and cubic boron nitride (cBN). We use simple Voigt, Reuss and Hill 
averaging procedures over orientation distribution of crystallites and volumes 
of component phases. 

Our approach, as compared to the previous ones, takes into account the 
texture of superhard phase. The texture of composite material can be a 
consequence of anisotropic synthesis condition in the high-pressure chambers. 

The model shows reasonably good agreement with experimental data ob­
tained on commercial grades of CBN composites but for full verification of 
its accuracy it is necessary to have experimental data on elastic moduli to­
gether with data on texture of superhard phase. Experimental works in these 
direction are planned. 

The elastic moduli calculated from the model can serve as reference values 
for the elastic moduli measured on fabricated composite samples. Combined 
with ultrasonic measurement techniques it can give a valuable tool for eval­
uation of new grades of composite materials . Such reference values can also 
be useful in non-destructive quality control in production process. 
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