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Preface 
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Centre of Excellence for Advanced Materials and Structures (AMAS) in the 
Institute of Fundamental Technological Research, Polish Academy of Sciences 

(IFTR PAS), Warsaw in May-June 2003. I want to express my thanks here 
to some of the many people who made my stay pleasant, stimulating and 
memorable. I thank Prof. Zenon Mr6z for his invitation to visit AMAS and 
present a series of lectures. I thank Miss Izabela ~>lftczkowska for help with 
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assistance in preparing these notes for publication. I thank Prof. Tomasz 
Kowalewski for explaining the interesting work of his group. Above all I 
thank Prof. Bogdan Cichocki of the Institute of Theoretical Physics of the 
University of Warsaw and Dr. Maria Ekiel-Jezewska of the Department of 
Mechanics and Physics of Fluids in IFTR for continuous and overwhelming 
hospitality and for scientific collaboration of the highest quality. 
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Chapter 1 

Introduction 

Diffusion is a process of the widest occurrence, important as a transport 
mechanism in physics, chemistry, biology and engineering. It is seen in all 
phases of matter, solid, liquid and gaseous and it rests on a common set of 
theoretical ideas which give coherence to an enormous range of phenomena. 
Our theoretical understanding of diffusion originates in the work of Ein­
stein [1), Smoluchowski [2, 3] and Langevin [4]. The initial description by 
Einstein referred to translational diffusion but as early as 1913 Debye [5, 6] 
extended the ideas to the rotational motion of polar molecules in order to 
understand the dielectric properties of polar liquids. Although we are much 
more familiar with translational diffusion, both translational and rotational 
diffusion are present in liquids and gases and the use of experimental tech­
niques like depolarized light scattering, fluorescence depolarization, nuclear 
magnetic resonance, and more recently, photo-bleaching/fluorescence recov­
ery as well as phosphorescence anisotropy has made it possible to observe 
rotational diffusion directly and in detail. For ferrofluids and suspensions of 
rigid rod polymers, rotational diffusion underlies and explains much of the 
macroscopic dynamical behaviour. For dense glassy colloid suspensions and 
for porous media filled with liquid, rotational diffusion is a useful probe of 
the local microstructure. In these lectures I shall introduce some of these 
ideas and applications but always starting from quite elementary situations. 
I will derive and explain the ideas explicitly in simple model cases, giving 
references to the literature for more technical aspects. 
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8 1. INTRODUCTION 

In Chapter 2 I introduce the ideas of diffusional dynamics in the context 
of translational diffusion. Using a simple Langevin description to get an idea 

of the time and length scales involved, we see how, on an appropriately long 

time scale, a Smoluchowski equation description can be set up to describe 
mesoparticle dynamics. Taking advantage of the simplicity of translational 
diffusion, a number of formal properties of Smoluchowski dynamics are illus­

trated. In Chapter 3 I consider Debye's original problem [5] of 1913, a sphere 

constrained to rotate about a fixed axis, in order to introduce the concept of 
rotational diffusion. I sketch briefly the two simple problems of response and 

relaxation which Debye posed and solved in that paper to set the background 

for later extensions of these two archetypal problems. In Chapters 4 and 5 
I extend the description to full three-dimensional rotations as Debye did in 

1929 [6]. In Chapter 6 a brief discussion of non-spherically symmetric parti­

cles is used to point out an area where difficult problems remain. In Chap­
ter 7 I introduce the interaction of permanent and induced dipole moments 

with an external field with a description of the polarization and birefringence 

phenomena that follow from that interaction. In Chapter 8, the relaxation 

problem of De bye is extended to sudden changes of field which do not involve 

turning off the field completely. It is shown here how the time dependence 

of polarization and birefringence is controlled by the eigenspectrum of the 
adjoint Smoluchowski operator. In Chapter 9, Debye's problem of response 
to a sinusoidal field is extended to study the linear response in the pres­

ence of a static non-vanishing background field. For strong harmonic fields 
I show in Chapter 10 how one can study the non-linear response and how 
the Smoluchowski equation description can be approximated by an effective 

field description. In Chapter 11 the full generalized Smoluchowski equation 
for a many-body suspension of particles with rotational degrees of freedom 

is introduced and in Chapter 12 I outline how depolarized light scattering 
measurements can be used to extract information about both translational 
and rotational dynamics in the presence of many-body hydrodynamic inter­

actions. In a final afterward I sketch some outstanding problems of current 
int-erest and give further reading suggestions to extend the content of the 

lectures and to point the way to physical applications for which there was no 
room in the lecture course. 
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Chapter 2 

The physical assumptions 
underlying diffusion 

Let us start by recalling the physical picture that underlies Einstein's dis­
cussion of the Brownian motion of a mesoscale sized particle suspended in 
a liquid of much smaller molecules. The mesoparticle is a particle of linear 
scale L where 5 nn1 ~ L ~ 1 J.-Lm and it is suspended in a molecular fluid 
of small, roughly spherical molecules of size fmolecule ~ 0.3 nm. Such a large 
particle is subject to incessant collisions with the fluid molecules, each colli­
sion lasting of the order of 10-12 sec. In each single collision the momentum 
of the mesoparticle is scarcely changed. However, what we observe on a much 
longer time scale of times greater than about 10-6 sec is an erratic trajectory 
of the particle in configuration space. Thus the time scale of observation is 
much longer than the time scale of the microscopic dynamics (individual col­
lisions). This separation of time scales is necessary to get a simple theoretical 
picture and it will be a feature of all the examples I shall discuss below. 

The microscopic dynamics is given by Newton's equations for all the 
particles both large and small, or, alternatively, by the Liouville equation 
in the phase space of the mesoparticles and suspending molecules. However, 
we need a simplified description on the long time scale which incorporates 
the underlying physical picture of many extremely rapid collisions leading to 
slow erratic movement in configuration. We can incorporate both elements 
in a phenomenological way by using the Langevin description [4, 7, 8] . For 
simplicity we look at a one-dimensional system. Let x(t) be the position 
of the mesoparticle at time t. Then, we simplify its equation of motion by 
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10 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

writing 
mx = Force due to all other fluid particles 

= Average Force + Fluctuating Force . 

The average force on a moving particle is a drag force which we represent by 
-(± with friction constant (, and we can approximate ( by its Stokes Law 
value (for a spherical particle) 

where 'fJ is the shear viscosity of the suspending fluid and a is the radius of 
the particle. 

We represent the fluctuating force by a stochastic force called the Langevin 
force L(t). The force L(t) is regarded as a stochastic process defined only by 
its statistical properties. These statistical properties relate to an ensemble of 
mesoparticles each one of which is a realization of a diffusion process. Statis­
tical averages are interpreted as averages over this ensemble of systems. To 
specify L(t) uniquely we must specify all its time correlation functions [7]. 
Specifically, L( t) has zero mean 

(L(t)) = 0, (2.1) 

delta function 2-point correlations 

(L(t)L(t')) = r8(t- t'), (2.2) 

and factorization of higher order correlations 

(L(t1)L(t2)L(t3)L(t4)) = (L(t1)L(t2))(L(t3)L(t4)) 

+ (L(t1)L(t3))(L(t2)L(t4)) + (L(t1)L(t4))(L(t2)L(t3)), (2.3) 

with analogous factorization for general 2n-point correlations and vanishing 
of all odd order correlations. With these properties we say that L(t) is ·an 
example of Gaussian white noise [7]. 

The mesoparticle equation of motion now becomes 

mx = -( x + L( t) , (2.4) 

which makes x(t) itself a stochastic process (linear functional of L(t)) whose 
stochastic properties follow from those of L(t). To see this explicitly, we can 
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2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 11 

integrate the Langevin equation in the following form 

:t ( e<t!mm±) = e<t!m L( t) ' 

t 

x(t) = voe-<t!m + _!_e-<t!m J e<tt!m L(t1)dt1 
m ' 

(2.5) 

0 

where vo is the initial velocity ±(0). If we average (2.5) over the ensemble we 
get for the mean velocity 

(±(t)) = voe-<t/m, (2.6) 

which vanishes as t--+ oo with a decay time Tp =m/( which is a characteristic 
momentum decay time. We can next look at the mean of the squared velocity 
using the delta correlation (2.2) 

(±2(t)) = v5e-2(t/m 

t t 

+ ~2 e-2(t/m J e<tdmdt1 J e<t>lm(L(t1)L(t2))dt2, 
(2.7) 

0 0 

(:i:2(t)) = v5e-2(t/m + 2~( ( 1- e-2t;tfm). 

As t --+ oo, this gives (x2 (t)) --+ 2~, but from equilibrium statistical me­
chanics this limit should be ( !m±2)eq = !kBT giving 

(2.8) 

which is an example of the fluctuation-dissipation theorem. 
We can integrate once more to obtain the configuration x(t). 

t 

x(t)- x(O) = j :i:(t)dt 

0 

t t tt 

= vo J e-(ti/mdtl + ~ J e-(ti/mdtl J e<t2/m L(t2)dt2, 

0 0 0 

t 

x(t)- x(O) = mt ( 1- e-(tfm) + Z J ( 1- e((t,-t)/m) L(t1)dt1. 

0 
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12 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

Next we can calculate the mean squared displacement 

((x(t)- x(0))2 ) = ( mzo) 2 

( 1- e-(tfm) 
2 

t 

+ ~ J ( 1 - e((t1 -t)/m) 2 
dt1 , 

0 (2.9) 

((x(t)- x(O)f) = ( 7) 2 

( v5- k:T) ( 1- e-(tfm) 
2 

+ 
2kt [t -7 (1- e-(t/m)] 

In doing the integrals here we have used (2.2) and then the fluctuation­
dissipation relation (2.8). In the limit of large t we get 

2 2kaT (m) 2 
( 2 3kaT) ((x(t)- x(O)) )t--+oo ~ -(-t + ( Vo----:;:;;,-

= 2kt t + T; ( v5 - 3k;T) ' 
where Tp is the damping time of the momentum. Thus on a long time scale 
we have the diffusive result 

((x(t)- x(0))2 )t--+oo ~ 2Dt, 

where the diffusion coefficient is given by the Einstein relation 

D = kaT 
( . (2.10) 

It is useful to estimate the magnitude of some of the quantities introduced 
above. For that purpose let us treat the mesoparticle as a hard sphere of 
radius a, mass density p, in a fluid of shear viscosity 11· Then, from m = ~1ra3 p 

and ( = 61r17a we find 
m 2pa2 

Tp = ( = --g:q' (2.11) 

which for values a = 100 nm, p = 103 kg m -J, and 1J = 0.01 poise, gives 
Tp ~ 2 x 10-9 sec. For the diffusion coefficient D we find D = kaT/( ~ 
2.2 x 10-12 n12 sec- 1. We can ask for the time Tc required to move a distance 
equal to the particle radius 
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2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 13 

giving 

(2.12) 

For the particle above with radius a = 100 nm, we find Tc = 2.3 x 10-3 sec 
while for a radius of one micron Tc = 2.3 sec. The point to remember here 
is that Tc >> Tp, the momentum of the particle has relaxed long before we 
could observe any appreciable change of configuration. Thus the slow time 
scale on which diffusion is manifest is truly macroscopic as opposed to the 
microscopic time scales of the momentum dynamics. 

We note that if on this slow time scale we neglect momentum change in 
the Langevin equation (neglect particle inertia), we have the simpler equation 
0 = -(± + L(t) or 

X= ~L(t). (2.13) 

Exercise 2.1: Integrate this simplified equation and show that 

(2.14) 

There are gross over-simplifications above but the qualitative picture is 
extremely useful in identifying important timescales in the problem. If we 
want a simplified description of our system on the slow time scale t >> Tp, in 
which only configuration x(t) plays a role, we use a Smoluchowski descrip­
tion [3, 7, 8, 9]. In this picture we consider an ensemble of N mesoparticles 
with a probability density P(x, t) of finding a particle at position x at timet. 
The number density n(x, t) of particles at x at time t is n(x, t) = N P(x, t). 
The probability density is normalized and obeys a conservation equation, 

j P(x,t)dx = 1, (2.15) 

8P(x, t) 8j(x, t) ---'--- = 
8t 8x 

(2.16) 

The flux or current density is related to P(x, t) by Fick's Law 

.( ) _ -D8P(x, t) 
J x, t - 8x ' (2.17) 

where we introduce the macroscopic diffusion constant D. From (2.16) and 
(2.17) we get 

8P(x, t) = D8
2 
P(x, t) = '1"\P( ) 

8t 8x2 v x' t ' (2.18) 
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14 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

which is the diffusion equation or the Smoluchowski equation, with Smolu­
chowski operator 

(2.19) 

We can select the sub-ensemble of particles that were at position x0 at 
time t = 0 and we introduce a special solution P(x, tlxo), the probability 
density of finding a particle at position x at timet, given that it was at x0 at 
timet= 0. This special solution of the Smoluchowski equation has as initial 
condition 

P(x, Olxo) = 8(x - xo) . (2.20) 

Explicitly it is 

v 1 -(x- xo)2 

P(x, tlxo) = e t 8(x - xo) = v'41fDt exp 
4
D 

41rDt t 
(2.21) 

Exercise 2.2: Using 

00 

O(x- xo) = 2~ J eik(x-xo) dk' 

-oo 

derive (2.21) by applying the operator exp(Vt) and doing the integration 
over k . 

It follows from (2.21) that the mean squared displacement in time t is 
given by 

00 

((x(t) - x(0))2
) = j (x- xo)2 P(x, tlxo) dx = 2Dt, (2.22) 

-00 

recovering the same result as we had from the Langevin equation on the long 
time scale t >> T P. 

Next, suppose that the particle is subject to an external'force arising from 
a potential V(x), F(x) = -av;ax. The Langevin equation is modified to 

mx = -(± + F(x) + L(t), 

where we assume that L(t) has the same statistical properties as in the 
absence of F(x). Note that, apart from harmonic potentials, the Langevin 
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2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 15 

equation is no longer linear. In the light of the time scale discussion above, 
we again neglect the inertial term to get the first order equation 

X = ~F(x) + ~L(t) = 11-F(x) + 11-L(t), (2.23) 

where we have introduced the mobility, J.L = 1/(. If we average this equation 

(±) = J.L(F(x)) , 

and assume that F(x) varies slowly in space, (F(x)) ~ F( (x) ), we see that 
the external force produces a steady drift at a velocity determined by the 
mobility, 

(±) = J.LF( (x)) . (2.24) 

In the Smoluchowski description we argue that the presence of the force 
F(x) generates an advective current iAd associated with the force which is 
in addition to the Brownian current iB arising from Fick's Law, 

. . . Dap ( ' )P 
J = J B + J Ad = - 8x + X ' 

j(x, t) = -D8P~:· t) + Jl.F(x)P(x, t) (2.25) 

= -D8P(x, t) _ 8V(x) P( ) 
8x J.L 8x X' t ' 

leading to a Smoluchowski equation [3) 

aP =-ai =Da
2
P + !_((av)P) 

at ax 8x2 J.L ax ax . (2.26) 

For free diffusion (F = 0) there is no steady solution, but in a po­
tential V(x) there can be such an equilibrium solution characterized by 
8Peq/8t = 0, jeq = 0, 

. aPeq av 
Jeq = - D 8x - J.L 8x p eq = O . 

Integra~ing to find P eq gives 

(2.27) 

with normalizing constant Z. However, from equilibrium statistical mechan­
ics we know that P eq has Boltzmann form, 

1 V(x) 
Peq(x) = z exp- kBT ' (2.28) 
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16 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

giving J..L/ D = 1/kBT or D = kBTJ..L = kBT /( which is the Einstein rela­
tion (2.10) again. Using this result we re-express the current as 

j=-Dap -Da{3V P, 
ax ax 

(2.29) 

where {3 = 1/kBT , and the diffusion equation as 

aP = D [a2p + !__ ((a{3V) p)] = VP' (2.30) 
at ax2 ax ax 

with Smoluchowski operator 

(2.31) 

In conjunction with the Smoluchowski operator we can introduce a scalar 
product between real functions of configuration u(x), v(x), 

00 

(u, v) = j u(x)v(x) dx. (2.32) 

-oo 

Associated with this scalar product is a Green identity obtained by integrat­
ing by parts 

J a a 
(u, Vv) = D u(x) ax e-{3V ax e{jV v(x)dx' 

= D j (e!W !,e-f3V~~) v(x)dx = (.Cu,v), 
(2.33) 

where we assume appropriate boundary conditions so that all surface terms 
vanish. The operator 

[, = De{jV !_e-{3V !__ = vt 
ax ax 

(2.34) 

is called the adjoint Smoluchowski operator. 
The operator [, is of great usefulness in expressing time dependent aver­

ages. For example, given an observable M(x), we can ask what is its condi­
tional average at time t given that the particle started at xo at time t = 0 

(M(x(t)))x0 = j M(x)P(x, tixo)dx = j M(x)evtO(x- xo)dx 

= j (ectM(x)) O(x- xo)dx = ectM(x)ix=xo. 
(2.35) 
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2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 17 

Here we have integrated by parts repeatedly as in (2.33) to replace the op­
erator V by the adjoint operator£. For infinitesimal timet= dt, we expand 
exp £dt = 1 + dt£ + O(dt2) to calculate 

(M(x(t)))x0 = M(xo) + dt.CM(x)lx=xo +... . (2.36) 

Thus, for M(x) = x, 

_ [JV a -{JV ax 
(x(dt))xo - Xo + dtDe axe ax lx=xo + ... 

a {JV(x) 
= Xo - dtD ax lx=xo + ... 
= xo + dt{JDF(xo) + ... , 

or 

(x(dt) - x(O))x0 = dt JLF(xo) + ... , (2.37) 

where we recognize the drift velocity expression from (2.24). 

Exercise 2.3: Show that 

((x(dt) - x(0))2)x0 = 2Ddt + O(dt2
). (2.38) 

Exercise 2.4: Show that for even integer values n 

(2.39) 

If, instead of these conditional averages, we are interested in equilibrium 
time correlation functions we proceed somewhat differently. If A(x) and B(x) 
are two observables, then we can express the time correlation function CAB(t) 
as follows where angled brackets denote equilibrium averages 

CAB(t) = (A(x(O))B(x(t))) = j dxodxPeq(xo)P(x, tixo)A(xo)B(x) 

= j dxodxPeq(xo)B(x) (e'Dt5(x- xo)) A(xo) 

= j dxodxPeq(xo) (ec1B(x)) A(xo)5(x- xo) 

= j dxPeq(x)A(x)ect B(x) = (Aect B). 

(2.40) 
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18 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

The Laplace transform of time correlation functions is also of interest. It can 
be expressed as 

00 00 

GAB(s) = j e-•tcAB(t)dt = j dxPeq(x)A(x) j dt e-<s-C)t B(x) 

0 0 
(2.41) 

= (A(s- .c)-1 B). 

Equivalently we can use a Fourier-Laplace transform, s--+ -iw, 

00 

GAB(w) = j eu.tcAB(t)dt = -(A(iw + £)-1 B). (2.42) 

0 

We can say something about the detailed time dependence of CAB ( t) from 
the eigenvalue spectrum of the operator .C. Consider the eigenvalue problem 

(2.43) 

which, from the form of .C given in (2.34), has the special eigenvalue Ao = 0 
corresponding to the eigenfunction 4Jo ( x) = 1. From the form of the operators 
V, .C given in (2.31) and (2.34) there follows the identity 

VPeq(x)f(x) = Peq(x).Cf(x), (2.44) 

for any function of configuration f ( x), so that if we define functions 7/Ji ( x) = 
Peq(x)4Ji(x), we find another eigenvalue problem with the same spectrum, 

(2.45) 

The special eigenfunction corresponding to the zero eigenvalue Ao = 0 is sim­
ply the equilibrium distribution, 7/Jo(x) = Peq(x)4Jo(x) = Peq(x). Using (2.33) 
it is easy to show that 

(2.46) 

Thus we can choose the 4Ji, 7/Jj as a bi-orthonormal set 

(2.47) 

Moreover, from the expression (2.34) for .C we deduce 

(2.48) 
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2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 19 

We can use the eigensolutions to expand observables A(x), B(x) as 

00 

A(x) = L ~i<Pi(x), ai = (1/li, A), 
i=O 

00 
(2.49) 

B(x) = L bi<Pi(x), bi = (1/li, B), 
i=O 

noting the special expansion coefficients associated with the zero eigenvalue, 
ao = (1/lo, A) = (Peq, A) = (A), bo = (B). Using these expansions in the time 
correlation function expression (2.40) gives 

CAB(t) = (A)(B) + L aibie-D>.it. 
i>O 

(2.50) 

Since Ai ~ 0, we see that the time correlation functions are examples of 
relaxation processes, given as a sum of decaying exponential functions of 
time. We define normalized relaxation functions as follows 

r AB(t) = CAB(t)- CAB(oo) = CAB(t)- (A)(B) 
CAB(O)- CAB(oo) (AB)- (A)(B) ' (

2
.
51

) 

with the properties r AB(O) = 1 and r AB(t-+ oo) -+ 0. 
There are two important correlation times we can define to characterize 

the relaxation. One is a short-time decay timers defined by the initial slope 
of r AB(t), 

-1 . CAB(O) (ACB) 
Ts = -r AB(O) = 

___ ....;.._;, __ = 
(AB) - (A) (B) 

(2.52) 
(AB) - (A) (B) . 

There is a long-time relaxation timeT£ defined by 

00 

TL = J r AB(t)dt. 
0 

If we use the eigenfunction expansion (2.50) and define LlA 
LlB = B- (B), we can show that 

(LlA c-1 LlB) 
T£ = - (LlA LlB) . 

Exercise 2.5: Show that 

-1 rs = (LlACLlB) 
(LlA LlB) . 

(2.53) 

= A- (A), 

(2.54) 

(2.55) 
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20 2. THE PHYSICAL ASSUMPTIONS UNDERLYING DIFFUSION 

As a final observation in this section I note yet another way to write the 
current density in the Smoluchowski equation. We can re-write (2.29) as 

. (akBTlnP av) 
J = -p, ax + ax p = p,(FB(X, t) + F(x))P(x, t), (2.56) 

where we have introduced a so-called Brownian force FB(x, t) which is ex­
pressible in terms of a Brownian potential VB, 

VB(x, t) = kBTlnP(x, t), FB = _ avB. 
ax 

(2.57) 

Each force, FB and F, can be thought of as giving rise via the mobility to an 
associated velocity VB = p,FB, V Ad= p,F, in terms of which the current (2.56) 
takes the form 

j = (VB + VAd)P = vP . (2.58) 

The Smoluchowski equation then has the simple form of an equation of con-
tinuity, 

(2.59) 

Although we have spent this entire chapter discussing translational diffusion 
in one dimension, all of the results will be generalized in the following chap­
ters to describe rotational diffusion. Each of the formal properties discussed 
above will have its analogue in the more complicated description of rotating 
particles. 
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Chapter 3 

Debye's problem of a rigid rotator 

3.1. Smoluchowski description of rotation 

Consider next a spherical particle with a special direction picked out in 
it, say a net dipole moment m which we can write as m = mu with u a 
unit vector. Suppose further that the particle is constrained to rotate only 
about a fixed axis through its centre which is perpendicular to u and that it 
is immersed in a molecular fluid. By choosing x and y axes in the plane in 
which u moves we can represent the configuration by a single angle c.p . 

y 

X 

FIGURE 3.1. 
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22 3. DEBYE'S PROBLEM OF A RIGID ROTATOR 

Collisions with the fluid molecules will generate a fluctuating torque on 
the sphere, while on the other hand, if we try to rotate the sphere by an ex­
ternally applied torque there will be a systematic drag resistance to rotation. 
Thus we could write a Langevin-like equation for the angular momentum L 
about the rotation axis (z-axis) 

(3.1) 

where I is the moment of inertia about the rotation axis, (r is a rotational fric­
tion coefficient and TB is a fluctuating Brownian torque with statistical prop­
erties similar to those of the earlier Langevin force L(t) given in (2.1), (2.2), 

(TB(t)) = 0, (TB(t)TB(t')) = rr<5(t- t') . (3.2) 

We can average the equation to get 

(3.3) 

It follows that on average, the angular momentum will decay with a decay 
timeT£ = I/ (r. For a sphere of uniform density p and radius a, I = 2ma2 /5 = 
81rpa5 /15 . . The rotational drag is given by the Stokes friction for rotation, 
(r = 81rrya3 , so we find 

(3.4) 

where Tp is the momentum relaxation time given in (2.11). As in the earlier 
estimate, for a particle of size a = 10-7 m, angular momentum will decay 
on a time scale of 10-9 sec. Thus, just as with translational motion, on time 
scales longer than about 10-6 sec we can ignore the inertial term to get a 
rotational Langevin equation of the form 

(3.5) 

We integrate exactly as in the translational case to get 

At long times, t-+ oo, we find that the mean squared angular velocity tends 
to a constant value 

l . ( ·2( )) rr kBT 
t2.~ <p t = 2I ( 1' = -I- ' 
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3.1. SMOLUCHOWSKI DESCRIPTION OF ROTATION 23 

where we used the equilibrium equipartition result (~Jcp2 )eq = ~kBT. We 
find the fluctuation-dissipation result corresponding to (2.8) 

(3.7) 

For angular displacements we find on the slow time scale as in the transla-
tional case 

(3.8) 

with rotational diffusion coefficient 

(3.9) 

However, in interpreting (3.8) we must remember that physically the angles <p 
and <p + 27r are identical so that the result is identical to that for translational 
diffusion only in a mathematical sense. 

To write the corresponding Smoluchowski equation we introduce a prob­
ability density P(<p, t) for finding the vector u at angle <p at time t. Again 
write a continuity equation 

with current 

8P(<p,t) 
at = 

8j(<p,t) 
8<p 

.( ) _ -Dr8P(<p, t) 
J <p, t - 8<p ' 

giving a rotational diffusion equation 

(3.10) 

(3.11) 

(3.12) 

As in (2.56) and (2.57) we can express the current in terms of an angular 
velocity arising from a Brownian torque TB through a rotational mobility 

where 

JB(<p, t) = c{JBP(<p, t), 

c{JB = 1.1/TB, T8 = _ avB 
8<p ' 

VB ( <p, t) = k B T ln P ( <p, t) . 

(3.13) 

(3.14) 

http://rcin.org.pl



24 3. DEBYE'S PROBLEM OF A RIGID ROTATOR 

The only difference from translational diffusion (2.18) is that physically we 

have periodicity in <.p, P( <.p + 21r, t) = P( <.p, t), and the physical space is com­

pact and finite rather than infinite. Once again we can ask for the conditional 

probability density, P(c.p, tlc.po), of finding the vector u at angle <.pat timet 
given that it was at <.po at time t = 0. We solve (3.12) with initial condition 

P ( <.p, 0 I <.po) = 8 ( <.p - <.po) • (3.15) 

The solution is easily found using a Fourier series 

P(rp, tlrpo) = 2~ [ 1 + 2 ~ e-D'm't cosm(rp- rp0 )] 

1 1 -Drt 
= 

2
7r 8a(2(c.p- <.po), e ) , (3.16) 

where 83(z, r) is the Jacobian theta function of the third kind. By using the 

result from Whittaker and Watson (10) 

(3.17) 

we obtain P( <.p, tlc.po) also as 

p 1 ~ [ (c.p-<.po-2n7r)
2

] 
( <.p, tlc.po) = J 47r nrt n~oo exp - 4Drt (3.18) 

For short times and for values <.p ~ <.po, we have 

1 [ ( <.p - <.po) 
2 

] P(c.p, tlc.po) ~ J41i1)rt exp 
4
D + ... , 

47rDrt rt 
(3.19) 

where the omitted terms are exponentially small. Thus at short times the 

conditional probability looks like translational diffusion but at long times 
the behaviour is quite different, 

1 
P( <.p, tlc.po) ~ 

2
7r , t ..-. oo. (3.20) 

Suppose now that there is an external torque due to an electric field E 
in the x-direction. There will be an external potential energy 

V(c.p) =-m · E = -mEcosc.p, (3.21) 
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3.2. INTERACTION WITH WEAK EXTERNAL FIELD 25 

corresponding to a torque 

Text=-~:= -mEsin<p =(m x E),. (3.22) 

The flux density in the Smoluchowski equation now has an extra contribution 
(compare (2.58)) 

(3.23) 

giving the Smoluchowski equation for rotation in a field as 

aP = Dr!_ (ap + a{3V p). 
m a~ a~ a~ 

(3.24) 

This looks very like translational diffusion, but with a subtle difference. 
Whereas a I ax was the generator of infinitesimal translations along a line 
a 1 a~ is the generator of infinitesimal rotations about the z-axis. If we intro­
duce the notation Lz = a1a~ we can write the Smoluchowski equation as 

a: = Dr L, (L,P + (L,{JV)P), (3.25) 

where we note also that the torque Text= -Lz V. 

3.2. Interaction with weak external field 

Debye introduced his model because he was interested in the possibility 
that molecules with permanent dipole moments could interact with time 
dependent electric fields to give information about molecular properties. He 
considered two problems of this nature: 

1. the steady response of a dipole to a sinusoidally oscillating weak exter­
nal field, 

2. the relaxation of the average dipole moment if a weak constant electric 
field is suddenly switched off. 

To outline his calculation we first express the potential energy (3.21) in terms 
of a dimensionless field {(t) = mE(t)lkBT, 

{3V(<p, t) = -{3mE(t) cos~= -{(t) cos~. (3.26) 

The Smoluchowski equation now looks like 

aP Dr a ( aP ( ) . p) 7it = a<p a<p + e t s1n ~ . (3.27) 
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26 3. DEBYE'S PROBLEM OF A RIGID ROTATOR 

For problem (1) Debye assumed a weak external field E(t) = E0e-iwt , which, 
in dimensionless form, is ~(t) = ~oe-iwt with ~o = mEo/kBT << 1. In this 
weak field limit we can solve for the first order linear response by expanding 
the distribution function in the small parameter ~o as 

P = Po + ~oPI + ... , (3.28) 

with the zero-field uniform distribution Po = 1/27r. The equation for PI is 

8 PI - nr 8
2 
PI - nr __!:__ -iwt 

8t 8cp2 - 27r cos cp e ' (3.29) 

with solution 
cos cp -iwt 

PI ( cp, t) = 
2 

( 
1 

. ) e , 
7r - 'tWTr 

(3.30) 

where a characteristic time appears, Tr = 1/ nr. For a dilute suspension of 
such particles with number density n, the polarization is calculated as 

271" 

J nm2 . 
Px = nm coscpP(cp, t)dcp = 

2
k

8
Tx(w) Eoe-twt, (3.31) 

0 

where we have defined a complex susceptibility 

( ) 1 '( ) . "( ) 1 . WTr 
X w = 1 . =X w + tX w = 1 + 2 2 + 21 + 2 2 . 

-~~ w~ w~ 
(3.32) 

This famous result of Debye was used by him to calculate the complex dielec­
tric function of the suspension E(w) and the corresponding frequency depen­
dent complex index of refraction. Debye proposed this mechanism of rota­
tional diffusion as an explanation of anomalous dispersion in certain liquids, 
the phenomenon that the real index of refraction and the absorption of the 
medium vary with frequency. In Figs. 3.2 and 3.3 we plot the real and imagi­
nary parts of the susceptibility, x'(w), x"(w) against log10 (wTr)· They reveal 
a characteristic shape with the imaginary part x"(w), which describes ab­
sorption of energy from the applied field, having a resonant maximum at the 
characteristic frequency Wr = 1 I Tr = nr. 

In Fig. 3.4 we plot x" against x', the so-called Cole-Cole plot [11], showing 
a perfect semicircle, characteristic of the simple De bye formula for x( w). 

In the 1913 paper, Debye solved another problem as well. In the second 
calculation he assumed the dipole is in equilibrium in constant field ~(t) = ~o 
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28 3. DEBYE'S PROBLEM OF A RIGID ROTATOR 

for times t ~ 0 and then, at t = 0, the field is suddenly turned off for all 

subsequent times. Now the calculation involves free diffusion but with an 

initial value. For t > 0 the probability density P( r.p, t) satisfies 

8P- Dra2p 
at- 8r.p2 , 

but with initial value (weak field again) 

1 
P( r.p, 0) = 

2
7r (1 + ~o cos r.p). 

It is trivial to check that the solution is 

(3.33) 

(3.34) 

(3.35) 

Whereas the first problem was a linear response calculation, the second prob­

lem concerns a relaxation process in which there is pure single-exponential 

decay with the same characteristic time that appeared in the first problem. 

Although these calculations seem simple, they represent a significant first step 

in the understanding of polar liquids since Debye envisaged that the rotating 

particles were the molecules themselves and thus showed that measurements 

of anomalous dispersion could be used to infer molecular properties. 
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Chapter 4 

The three dimensional rotator 

We now generalize the problem to that of a sphere with permanent embedded 
dipole moment m= mu which is free to rotate in three dimensions instead 
of being confined to rotate only about a fixed axis [6). The configuration is 
specified by the unit vector u which can also be represented ~ a point on a 
sphere of unit radius. 

FIGURE 4.1. 
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30 4. THE THREE DIMENSIONAL ROTATOR 

The molecular collisions will drive the vector u stochastically over the 
surface of the sphere. We may use spherical polar coordinates B, c.p to describe 
the configuration space and we must consider a probability density P( u, t) = 

P( (}, c.p, t) for finding the dipole moment to point in the direction (}, c.p at 
timet. The normalization condition is 

j P(u,t)du = j P(O,<p,t)sinOdOd<p = 1. (4.1) 

The rotational diffusion problem can now be regarded as the diffusion of a 
point on a unit sphere. The Smoluchowski equation is again a continuity 
equation of the form 

8P(u,t) _ -D· .. ( ) 
{}t - lV 3 B U, t , (4.2) 

with Brownian current density 

iB(u,t) = -Dr GradP(u,t), (4.3) 

where Div and Grad are defined on the surface of the unit sphere, a curved 
manifold. For infinitesimal displacement on the unit sphere du, the gradient 
operator is defined in terms of the infinitesimal change in a scalar function 
f ( u) by df = Grad f ·du , where, in local coordinates, du = dB eo+sin B dc.p ecp 
and df = (of joB) dB+ (of joc.p) dc.p , giving 

of of ecp of 
Grad f(u) = ou =eo 88 + sinB oc.p' 

a a ecp a 
- =eo-+----. 
au ae sin (} oc.p 

(4.4) 

The divergence operator follows from Gauss' Theorem on the sphere 

j Div j sinOdOd<p = j j · nds =Flux out of Area A, (4.5) 

A C 

where n is the outward pointing normal to the bounding curve C of the area 
A, and ds is infinitesimal arclength along the curve C. Applying this theorem 
to an infinitesimal area on the sphere bounded by the coordinate values B, 
(} + dB, c.p, c.p + dc.p, we find 

D
. . 1 a ( . Ll • ) 1 ojcp a . 
1v .3 = -=----e 

88 
s1n u.Jo + -:----

8 
-
8 

= -
8 

· 3 . 
Sln Sln c.p U 

(4.6) 
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4. THE THREE DIMENSIONAL ROTATOR 31 

The Laplacian follows from 

D. G d P nr [ 1 a ( . Bap) 1 82 P] 
IV. ra = - sin(}{)(} Sin 8(} + sin2 (} 8c.p2 (4.7) 

Exercise 4.1: Using 8eo/8c.p =cos Be~~', fJe~~'/88 = 0, verify that 

Div·GradP(u,t) = :u · !P(u,t). (4.8) 

Exercise 4.2: For single valued scalar functions A( u) and vector func­

tions B( u) on the unit sphere, verify that 

J fJ J 8A A- · Bdu = - - · Bdu, 
fJu fJu 

(4.9) 

where the integration is over the entire unit sphere. 

Using these results the Smoluchowski equation becomes 

{) p . . r [ 1 {) ( . {) p) 1 [)2 p] 
fit= -Div·JB(u,t) = D sin888 SinB {)(} + sin28 fJc.p2 ' 

{)P =Dr~.~P=VP. 
fJt fJu fJu 

(4.10) 

Exercise 4.3: Show that for free rotational diffusion 

c = vt = v. ( 4.11) 

The initial value problem requires us to find the conditional probability 
density P( u, tluo) with initial condition 

P(u, Oluo) = <5(u- uo), ( 4.12) 

which is given in operator form by 

P( u, tluo) = evt <5( u- uo). ( 4.13) 

Just as for translational diffusion we can calculate expectation values of an 
observable A( u), 

(A(u(t)))u0 = j A(u)P(u, tiuo)du = ect A(u)iu=Uo. (4.14) 

To apply this result to the observable u itself we need two preliminary 
results. 

http://rcin.org.pl



32 

Exercise 4.4: 

Exercise 4.5: 

4. THE THREE DIMENSIONAL ROTATOR 

a 
au u = eoeo + ecpecp = K = 1 - uu. 

a 
auK=-Ku-uK. 

From these results we calculate 

or 

giving 

Thus we compute 

a a 
-· -u= -2u, 
au au 

-2Drt (u(t))u0 = e uo. 

(4.15) 

( 4.16) 

( 4.17) 

(4.18) 

(4.19) 

(4.20) 

Remembering that u(t) is a unit vector we compute the mean squared dis­
placement 

( 4.21) 

where we simply expand the square and use (4.20). For short times, t ~ dt, 

(4.22) 

while at long times, t ~ oo, 

( ( U ( t) - U ( 0)) 2 ) u 0 ~ 2 . (4.23) 

Thus at short times the result is identical to translational diffusion in a two­
dimensional flat space, while at longer times, the curvature and compactness 
of the sphere totally changes the limiting behaviour as compared with trans­
lational diffusion in a noncompact and infinite Euclidean space. We have 
eXJUilined the time dependence of only the simplest observables here which 
are linear or quadratic functions of u. The results (4.15), (4.16) could also 
be used to consider observables which are general polynomial functions of u. 
However, there is another formulation of the three dimensional problem which 
gives an alternative method which is important for problems where the dipole 
moment is subject to an external field. 
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Chapter 5 

The dual formulation 

In Chapter 4 rotational diffusion was presented in terms of the translational 
diffusion of a point on a sphere, but it is also possible to think of it as 
diffusion in a space of directions. To see how this other point of view is 
described mathematically we introduce the operator 

which also satisfies 

f) f) eo a 
L = u X au = etp {)(} - sin (} O<p ' 

a 
uxL=-au· 

Thus the gradient operation can be written as 

Gradf{u) = az) = -u X Lf(u), 

and 

(5.1) 

(5.2) 

(5.3) 

df(u) = Grad/ · du = -(u x Lf) · du = (u x du) · Lf = dw · Lf, (5.4) 

whe_re dw = u x du is an infinitesimal rotation and L is the generator of 
rotations in the space of unit directions u. Note that du = dw x u as we 
expect for a rotation. 

Exercise 5.1: 

Div · Grad = ~ · ~ = L · L. 
8u 8u 

(5.5) 
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34 5. THE DUAL FORMULATION 

Exercise 5.2: 

a 
au . (A(u) X f(u)u) = L. (f(u)A(u))' (5.6) 

where A(u) and f(u) are respectively vector and scalar functions of orien­
tation. 

Suppose now that u has an additional rigid body angular velocity nAd 

imposed on it by an external torque acting on the dipole moment. In addition 
to the Brownian current density - nr Grad P we have an advective current 
as well 

iAd =(!lAd X u)P, 

with total current 

j = j B + j Ad= -Dr Grad P +(!lAd x u)P. 

The Smoluchowski equation has the form 

~ = - Div -j = D' Div · Grad P- Div ·((!lAd x u)P), 

which by use of (5.6) can be put in the final form 

~ =D'L·(LP-OAdP)=-L·j, 

j = -Dr LP+ SlAdp. 

(5.7) 

(5.8) 

(5.9) 

For a dipole m in an electric field E, there is a torque arising from the 
potential V(u) =-m· E =-mu· E which can be expressed as 

T =m x E = -LV(u). (5.10) 

By Stokes' Law for rotation a steady torque produces an angular velocity n 
of the form 

n 1 r ( ) u Ad = (r T = J-l T , 5.11 

so that the current j can also be expressed as 

In equilibrium the current must vanish which implies that nr ln P + 1-lrv is 
constant. Thus we have for the equilibrium distribution 

(5.12) 
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5. THE DUAL FORMULATION 35 

where C is a constant. By comparing with the Boltzmann form, P eq = 

z-l exp-V(u)fk8 T we find again the Einstein-Debye relation 

(5.13) 

In analogy to (2.57) we can introduce a Brownian potential Vn and its 
associated Brownian torque TB, 

(5.14) 

Using the rotational mobility J.-Lr we have angular velocities 0 8 = J.-LrT8 , 

OAd = J.-LrT, in terms of which the current can be expressed analogously 
to (2.58) 

(5.15) 

The rotational Smoluchowski equation again takes the form of an equation 
of continuity as in (2.59) 

aP at + L · (OP) = 0. (5.16) 

We get a more explicit form by combining (5.9),(5.10) and (5.13) to give 
the Smoluchowski equation as 

aP(u, t) = -L · j = Dr L ·(LP+ (L(,BV))P) 
at (5.17) 

= Dr L · e-f3V Lef3V P = V P . 

Alternatively, from (5.5) we can also write it as 

8P(u, t) = _!..._. j = nr ~. (ap + (8(,8V)) p) 
at au . au au au 

= nr !..._. e-,{3V !_e{3V p = VP. 
au au 

(5.18) 

Exercise 5.3: 

(5.19) 
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This dual formulation in terms of the rotation operator L is particu­
larly useful since mathematically the operator L is related to the quantum 
mechanical angular momentum operator LQM by 

This correspondence allows us to use many mathematical results that have 
been worked out for the quantum mechanical theory of angular momentum. 
As an example of this, consider free diffusion again in the dual picture, where 
we must solve the free Smoluchowski equation 

8P = DrL2P' 
at 

(5.20) 

to find the conditional probability P( u, tluo) . We can use a spherical har­
monic expansion [12) in the form 

P(u, tluo) = L atm(t)Ytm(u), (5.21) 
lm 

where 

(5.22) 

Putting the expansion into the Smoluchowski equation gives for the coeffi­
cient functions atm ( t) the differential equation iLtm ( t) = - nr £( £ + 1 )atm ( t) 
with solution 

(5.23) 

The initial condition gives 

P(u, Oluo) = <5(u- uo) = L aem(O)Ytm(u), 
tm 

from which we identify atm(O) = Yt~(uo) and find 

P(u, tluo) = L e-vrt(l+l)tyt~(uo)Ytm(u). (5.24) 
lm 

By the spherical harmonic addition theorem [12) we have 

4 m=l 
Pt(uo · u) = 2£: 1 L Ytm(uo)Yt~(u), 

m=-l 
(5.25) 
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where Pt is the Legendre polynomial of order f . Thus by combining (5.24) 
and (5.25) we can easily compute the conditional average 

4 m=l J 
(Pt(u(O) · u(t)))u0 = 

2
£: 

1 
L Ytm(uo) P(u, t!uo)Yt~(u)du 

m=-l (5.26) 

= e-Drt(l+l)t Pt(Uo. uo) = e-Drt(l+l)t' 

where we recall that Pt(uo · uo) = Pt(l) = 1. As we shall see later, such 
averages enter the analysis of certain light scattering experiments. 
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Chapter 6 

Asymmetric particles 

The results so far refer to spherical mesoparticles whose rotational diffusion 
is described by a single scalar diffusion coefficient, Dr = k B T / (r. In such a 
case applied torques and resultant angular velocities are collinear. However, 
for non-spherical particles, the relations become tensorial in nature and hence 
more corn plicated, 

T = (r · n, (6.1) 

with the friction and mobility given by symmetric second rank tensors [13). 
Thus for prolate or oblate spheroids, in the body-fixed frame of reference with 
z-axis along the axis of rotational symmetry, the friction tensor is diagonal 

(6.2) 

However, in a general laboratory frame of reference (r is n~t diagonal and 
its elements will change with time as the particle changes its orientation. To 
avoid this complication we may work in the body-fixed frame of reference 
where (r and J.Lr are diagonal and unchanging. In that frame the relation 
between current density and torque becomes 

j = (flB + flAd)P = J.Lr ·(TB+ T)P 

= -J.Lr · (LVB + LV)P = -Dr ·(LP+ L({3V)P), 
(6.3) 
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where we have a tensorial Einstein relation 

(6.4) 

The Smoluchowski equation can be written in the body-fixed frame as 

a;:= -L · j = L · Dr ·(LP+ L({3V)P). (6.5) 

For a spheroid the orientation may still be described by a unit vector u fixed 
in the body and pointing along the symmetry axis. However, for the most 
general asymmetric body the configuration space is more complicated than 
the space of unit vectors in three dimensions. One may use Euler angles (14] 
or coordinates on a hypersphere in four dimensions [15, 16, 17]. If we solve 
the Smoluchowski equation in the body-fixed frame there is still the neces­
sity to transform results back to the laboratory frame. For the analysis of 
light-scattering from such asyrnrnetric particles Berne and Pecora [14] have 
given these transformation formulae in terms of an Euler angle description. 
The mathematical link with the theory of angular momentum in quantum 
mechanics which was mentioned in Chapter 5 is of particular use in this 
application. 

Life may be yet more complicated. If the particle shape is suitably chosen 
(a propeller shape for example), then as it rotates at angular velocity f! it 
generates not only a torque but a force as well. Conversely, if it translates at 
velocity U it generates both a drag force and a torque. The relation of forces 
and torques to velocities and angular velocities must be written as 

(6.6) 

or, for short, 

F = (· U, (6.7) 

where ( is a symmetric 6 x 6 matrix comprised of the 3 x 3 blocks Ctt, ctr, 
Crt, err. In summary then, for asymmetric particles there may be translation­
rotation coupling. The Smoluchowski equation becomes 

8P 
at=\/· D · (\/ P + \l(,BV)P), (6.8) 

where 

(6.9) 
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and the probability density P(R, 1/J) is a function of both centre of mass po­
sition Rand general orientation variables 1/J. These much more complicated 
problems are of current theoretical interest with the development of repro­
ducible experimental systems of axisymmetric particles (rods and disks (18]) 
which may interact with external fields [19, 20), but we are unable to devote 
any more time to this topic in an introductory set of lectures such as this. 

A final remark is in order here to conclude this description of single par­
ticle rotational diffusion. The use of a Smoluchowski equation description is 
based on the picture of a separation of time scales with strong over-damping 
due to rapid collisions of the surrounding small molecules with the mesopar­
ticle. This picture fails for particles in a dilute gas or for small molecules in a 
fluid of other small molecules. In such a case one must also track the momen­
tum relaxation as well as the configuration relaxation. To do this people have 
modified the simple Debye diffusional model in various ways or have turned 
to a full Langevin description or a Fokker-Planck equation describing a prob­
ability distribution of velocities and configurations. For further discussion of 
these extensions of the theory, see Berne and Pecora (14) or McConnell (8). 
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Chapter 7 

Polar and polarizable particles 

We now must consider more closely what properties of the mesoparticles 
make it possible to observe the effects of rotational diffusion. There are two 
distinct sorts of particle that lead to easily measured properties: 

1. particles with a permanent and/or induced dipole moment, 

2. particles with an internal crystal structure that gives them a non-
isotropic dielectric tensor at optical frequencies. 

For particles of type (1) we can measure the polarization/magnetization and 
the susceptibility in externally applied fields and we can observe both static 
and dynamic birefringence (Kerr effect [21, 22]). For particles of type (2) we 
can observe depolarized dynamic light scattering which gives direct informa­
tion on rotational correlation functions [14). 

In addition to these techniques, mesoparticles can now be labelled with 
dyes like eosin and rhodamine which exhibit fluorescence and phosphores­
cence [23). The atomic transitions causing phosphorescence have relatively 
long life-times (up to 4ms) and can be excited with polarized light pulses 
that create a subset of particles which will emit polarized light. The excita­
tion probability is proportional to IlL A· nil2 and the emission probability is 
proportional to IJLE · nil2 where JLA and JLE are transition dipole moments 
for absorption and emission respectively and ni and n f are initial and fi­
nal polarization states. These dipole moments are fixed relative to the dye 
molecule and hence to the mesoparticle. Thus the orientation of JLE relative 
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to J.L A and n 1 will change with time due to rotational motion of the particles. 
For rhodamine doped spheres it is possible to photo-bleach permanently a 
sub-population with an intense laser pulse polarized in a particular direction, 
thus creating in the remainder of the population an anisotropic distribution 
of unbleached particles. As these unbleached particles rotate, the fluorescence 
response to a weak laser probe beam reveals the rate of rotational diffusion 
within a wide range of times from milliseconds to seconds. For further expla­
nation of these methods and for details of experimental results using them 
see [23). 

Consider the simplest case first, a dilute suspension of particles which 
carry a permanent electric dipole moment m= mu, subject to an external 
electric field E(t), producing a potential energy 

V(u) =-m· E =-mu· E = -mEcosO. (7.1) 

Note that although I use electrical language, by letting m be a magnetic 
dipole moment and replacing the electric field E by a magnetic field H, 
we get an equivalent description of a suspension of magnetic particles, a 
ferrofiuid. For suitably dilute suspensions we can ignore dipole-dipole inter­
actions and hydrodynamic interactions (which I will mention later) so that 
the dynamical description reduces to the rotational dynamics of single parti­
cles. To make the discussion as simple as possible I assume that the particles 
are spherical in shape and characterized by a scalar rotational diffusion co­
efficient nr. 

The basic observable for such a system is the mean polarization (P). If 
the particle suspension has number density n then 

(P(t)) = (nm(t)) = nm(u(t)) = nmF(t), (7.2) 

with the dimensionless polarization F defined as 

F(t) = (u(t)) = j uP(u,t)du, (7.3) 

and P(u, t) a solution of the Smoluchowski equation given earlier in (5.18) 

{}P = Dr !_ . ({}P + (8({3V)) p) = 1JP. 
{}t au {}u {}u 

(7.4) 

For the rest of this chapter let us assume that the electric field is un­
changing in time. We introduce spherical polar coordinates with polar axis 
along the direction of the external field E. 
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E 

FIGURE 7.1. 

Then, using (7.1) and (4.4) we calculate 

8({3V) . ---a;;- = ~ sin Bee , 

8({3V) . 8P _ c . BaP 
8u 8u - ~ Sill 8B ' 

~ · a({3V) = 2~ cos(} , 
au au 

where we introduce the dimensionless field strength 

~ = {3mE. (7.5) 

In spherical polar coordinates the Smoluchowski equation (7.4) becomes 

8P = Dr (-1_!.._ (sinB8P) + _1_8
2
P 

at sin B aB aB sin 2 (} 8c.p2 

+{ (2cos6P+sin6~:)). (7.6) 

The equilibrium solution is 

P. ( ) __ 1_ -{3V __ 1_ ~cos(} 
eq u - Z(~) e - Z(~) e , (7.7) 
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with partition function 

(7.8) 

The equilibrium dimensionless polarization is 

F = (u) = -
1
- je~cosOudu 

eq eq Z(~) . (7.9) 

By symmetry the x and y components vanish and for the z component we 
have 

1 j a 1 Feqz = Z(~) e~coso cosOdu =a~ lnZ(~) = coth~- ~ = L(~), (7.10) 

where we introduce the Langevin function L(~). 
We can look at the form of the adjoint operator £ = vt in this case. 

Exercise 7.1: We had from (5.19) 

£ = Dr ef3V ~. e-f3V ~ = Dr (~ _ 8({3V)) . ~. 
au au au au au 

Show that in spherical polar coordinates 

·r nr ( 1 a ( . e a ) 1 8
2 

. e a ) 
J.., = sin 8 ae Sin 88 + sin 2 8 at.p2 - ~ Sln ae . 

Exercise 7.2: Show that if we define f(u, t) by P(u, t) = Peq(u)f(u, t) 
then f obeys the differential equation 

a f rf nr ( 1 a ( . ea f) 1 8
2 f . a f) 

8t = J.., = Sin 8 ae Sln ae + sin 2 8 at.p2 - ~ Sln O a0 . (7.11) 

Exercise 7.3: For short times t = dt, given that u = u 0 at timet= 0, 
use the method of calculation outlined in Chapter 4 to show that, to first 

order in dt, 

where the torque To is To = muo x E, and that for the mean squared 
displacement we have 
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The existence of a dipole moment m may also be associated with a polar­
izability of the mesoparticles that can lead to interesting optical phenomena. 
For simplicity let us assume that our particles have an axisymmetric polar­
izability. In consequence, they will not scatter light isotropically and as they 
rotate the scattering pattern will change. To keep things simple I assume 
that the polarizability symmetry axis is aligned with the dipole moment axis 
u. In the presence of an applied electric field E there will be an additional 
induced dipole moment 

mE=a·E, (7.12) 

where the polarizability tensor a is a symmetric second rank tensor which 
can be diagonalized in a set of principal axes as 

(7.13) 

where n.l.' nu are polarizabilities perpendicular to and parallel to the optic 
axis defined by u. 

With our assumptions above, we see that the only vector quantity on 
which a can depend is u, so we can write 

a=a1+buu. 

Clearly u is one principal axis so 

a. u =(a+ b)u = nuu' 

and from the trace of a , 

Tra = 3a + b = 2n1. +nu, 

giving a = n1., b = nu - n1. which can be summarized as 

1 
a= 3rra 1 +(nu- n1.)S = n 01 + bS, 

where no = (2n.l. + nu)/3 and the traceless tensor s is defined by 

1 s = uu- -1, 
3 

(7.14) 

(7.15) 

(7.16) 

with 1 the unit tensor. Note that S is proportional to the nematic order 
parameter tensor for hard rod liquid crystals [24, 25]. 
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In the presence of an external field E the interaction energy is altered 
from (7.1) to 

1 
V(u) =-m· E- 2,E ·a· E, 

which, up to an orientation independent term, can be written as 

,BV(u) = -€ cos(}- a cos2 
(}, (7.17) 

where the dimensionless coefficient a depends quadratically on the applied 
field, a = ,B(nu-n.l)E2 /2. In a static field the equilibrium distribution now is 

P. ( u) = 1 e~cos0+acos2 0 
eq Z(€, a) ' 

Z(~, a) = j e{cos9+ucos'Odu. 

(7.18) 

The partition function can be explicitly evaluated as shown elsewhere (26, 27]. 
Already, for free rotational diffusion, we have seen in (5.26) of Chapter 5 

that the characteristic time scale for the relaxation of an initial orientation 
uo is proportional to Tr = 1/ nr. Using the same parameters as used to 
estimate Tp just after (2.11), we calculate Tr ~ 6.07 x 10-3 sec. For external 
fields that vary on time scales greater than or equal to Tr the mesoparticles 
can respond to the changing field, both absorbing and dissipating energy. 
However, for optical frequency fields there is no time for a dynamical response 
on the time scale of diffusion so that optical fields act simply as probes of the 
polarization properties but do not themselves affect the dynamics. At optical 
frequencies there is an optical polarizability a 0 where 

1 
a 0 = 3Tra0 l + (nW- aj_)S. 

The induced polarization is 

with optical susceptibility tensor given as 

n 
X0 = n(a0

) = 3Tra0 l + n(nW- aj,)(S). 

We calculate the optical frequency dielectric tensor as 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

http://rcin.org.pl



7. POLAR AND POLARIZABLE PARTICLES 49 

The averages above are with respect to the equilibrium distribution (7.18) 
for static external field E. 

Consider a coordinate system with the z-axis along the direction of the 
external field E and let an optical frequency electromagnetic wave be incident 
propagating in the direction of the positive y-axis with electric field E 0 lying 
in the x-z plane. In this coordinate system € 0 will be diagonal 

c~x 0 0 
€0 = 0 0 0 f.yy 

0 0 f.~z 
)=('t f~ ~), 

0 0 f.ll 

and 

0 - 0 1+4 0 2 Exx - €1.. = 1rXxx = nx , 

0- 0_1+4 0- 2 Ezz - f.ll - 1rXzz - nz ' 

with nx, nz the refractive indices with respect to waves polarized in the x 

and z directions respectively. We calculate the difference of refractive indices 

n; - n; = (nz + nx)(nz - nx) = 2n~n, 

n;- n; = 47r(X~z- X~x) = 47rn(a"- aj_)( (Szz) - (Sxx)), 

so that we expect to see birefringence with 

~n = nz- nx = 
2
;n (a"- aj_)( (Szz)- (Sxx)). (7.23) 

In the equations immediately above note that n denotes the number density 
of the suspension while n = (nz + nx)/2 is the mean refractive index. 

Given an external static field in the direction e, E = Ee, we calculate 
the mean value of S as 

(S) = j Peq(u)Sdu =cl+ dee, 

since e is the only vector on which (S) can depend. The tracelessness of S 
gives c = -d/3 so that 

from which we calculate 

1 
(S) = d(ee- 31), 

2 J 1 2 e · (S) · e = 3d= Peq(u)((e · u)2 - 3)du = 3(P2(cosO)), 
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with P2( cos 0) the Legendre polynomial of order 2. The mean value of S then 
has the form 

1 
(S) = (P2(cosO))(ee- 3l). 

If the external field E is aligned along the z-axis so that e = e z, we find 

(Szz)- (Sxx) = (P2(cosO)), 

so that the difference of refractive indices becomes 

(7.24) 

which gives the magnitude of the static Kerr effect. If the external field E is 
slowly varying in time then (S) will have a slow dynamics as well and the 
birefringence will be time-dependent (dynamic Kerr effect) [21, 22]. 

We conclude by noting that the polarization Feqz in (7.10) can be written 
as Feqz = (P1(cosO)) while (P2(cosO)) appears just above in the expression 
for the birefringence. The quantities (Pt(cosO)) for .e = 1, 2 can be regarded 
as order parameters describing the effect of the static external field E in 
aligning the dipolar particles. 
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Chapter 8 

Response to external fields: 

sudden change 

Thus far we have considered single particle properties in a fixed external field. 
An important generalization is to consider time-dependent external fields 
which was the original problem that Debye [5, 6) wanted to solve. There are 
at least four interesting situations: 

1. sudden change of external field followed by relaxation phenomena, 

2. adiabatic change of external field, 

3. linear response to an external sinusoidal field, 

4. non-linear response to a sinusoidal field. 

The first problem above has been treated by many authors, both in the 
context of dielectric particles [21) and of magnetic particles (28). I will mainly 
follow some recent work which has introduced a new approach (26, 27, 29). 

For simplicity, consider dipolar particles with moment m= mu and no ad­
ditional polarizability, in equilibrium in external field Eo = Eoez at time 
t = 0. At that instant, the external field suddenly changes magnitude, 
Eo ---. E1 = E1ez. For dilute suspensions we can again neglect interparti­
cle interactions and describe the dynamics by the single particle probability 
P(u, t). Fort> 0 P(u, t) satisfies 

8P 
{jt = V1P, (8.1) 

where V1 is the Smoluchowski operator in field E1. At timet= 0, however, 
we have the initial condition P(u,O) = Peqo(u) = z-1 (~o)exp(~ocos8) as 
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52 8. RESPONSE TO EXTERNAL FIELDS: SUDDEN CHANGE 

given in (7.7). As t ---... oo, we expect P(u, t) to relax to a new equilibrium 
Peql(u) = z- 1 (6)exp(~1 cos B) and the associated single particle polariza-
tion, 

F.(t) = j u.P(u, t)du = j cosOP(u, t)du (8.2) 

relaxes as well from an initial value Fz(O) = L(~o) to final value Fz(oo) = 

L(6). We introduce an associated normalized relaxation function by 

(8.3) 

with rz(O) = 1 and rz(oo) = 0. 
To elucidate the structure of the relaxation we proceed formally to solve 

by an eigenfunction expansion analogous to that mentioned earlier in the 
discussion of time correlation functions in Chapter 2. In doing so it is conve­
nient to work with eigenfunctions of the adjoint Smoluchowski operator £ 1. 

Thus we factor out the final equilibrium distribution function by writing 

P(u, t) = Peql(u)f(u, t), (8.4) 

where f( u, t) is a solution of 

(8.5) 

with initial condition f(u, t) = Peqo(u)/Peq1(u). Define eigenfunctions <Pi 
and dimensionless eigenvalues Ai as earlier, 

(8.6) 

together with the biorthonormal functions 'l/Ji = Peq1</Ji which satisfy 

(8.7) 

and 

(1/J;, </>;} = j 1/J;(u)</>;(u)du = 6;;. (8.8) 

Expand the distribution function f( u, t) 

00 

f(u, t) = E fi(t)<Pi(u), (8.9) 
i=O 
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and insert in (8.5) using biorthonormality to obtain 

Normalization gives 

j P(u, t)du = j Peql(u)f(u, t)du 

= j '1/Jo(u)f(u, t)du = fo(t) = 1, (8.11) 

and for the polarization Fz ( t) we have 

F.(t) = f f;(O)e-D' >.;t j UzPeql ( u)</>;(u)du 
i=O 

00 
(8.12) 

= L(~l) + L /i(O)gie-Dr,\it, 
i=l 

where 9i = (uz, 1/Ji)· The relaxation function becomes formally 

rz(t) = f fi(O)gi e-Dr,\it = tpie-,\it/rr' (8.13) 
i=l L(~o) - L(~t) i=l 

where the relaxation time scale is set by Tr = 1/ nr. The Ai are dimensionless 
relaxation rates. The amplitudes Pi obey a sum rule 

(8.14) 

and we can define a mean relaxation time TM as 

00 00 

TM = J r.(t)dt = r, LP;/ A;. 
0 t=l 

(8.15) 

There is also a short-time decay rate To 

-1 . 1 ~ 
To = -r(o) =- L...JPiAi, 

Tr i=l 

(8.16) 

which is given by the initial slope of the relaxation function. The Laplace 
transform of r z ( t) is given by 
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Thus the decay rates (eigenvalues) Ai appear as simple poles of f'(s) with the 
amplitudes Pi as the associated residues. 

The eigenvalue problem is not so easy to solve, however, there is a much 
faster numerical approach to obtain the rates Ai and amplitudes Pi [29). In 
the problem above we have azimuthal symmetry so that in spherical polar 
coordinates with polar axis along E1 we have f(u, t) = f(cosO, t) = f(z, t) 
where z =cos(), and we can expand f(z, t) in Legendre polynomials , 

00 

f(z, t) = L fe(t)Pe(z). (8.18) 
l=O 

Normalization gives 
00 

L fe(t)(Pe(z))eql = 1, (8.19) 
l=O 

where 

1 j {1 cosfJ ( ) It+l/2(6) ( ) 
(Pt(z))eq1 = Z(~I) e Pe cos() du = h;2 (~I) = Le 6 , (8.20) 

where the It+l/2 are Bessel functions of imaginary argument [30). The func­
tions Lt(6) generalize the Langevin function [28), L(~I) = £1(6). The initial 
conditions give 

21!+ 1 J ft(O) = -
2

- Pe(z)f(z,O)du 

= (21! + 1) Z(6)Z(~o- ~1) L (c - c ) (8.21) 
47r Z(~o) t ~o ~~ . 

The adjoint Smoluchowski equation (8.5) becomes a coupled set of ordi­
nary differential equations for f = 0, 1, 2, ... 

dft(t) r ( f(f -1) 
d,t = -D f(f + 1)ft(t) + 6 21! _ 1 ft-l(t) 

• _c (f + 1)(1! + 2)/ (t)) 
~1 21! + 3 l+l . (8.22) 

For f = 0 we have dfo(t)jdt = (2/3)Dr~1f1 (t). Thus the equations for f ~ 1 
can be solved for !1(t), !2(t), ... and fo(t) then follows either from !1(t) or 
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from the normalization condition (8.19). The polarization has the form 

00 (£+1 
Fz(t) = L(~1) + L ft(t) 

2
£ + 

1 
Lt+1 (~1) 

l=1 

+ 
2
l ~ 1 Lt-1 (6) - L(6)Le(6)) , (8.23} 

and the relaxation function is 

1 
00 

(£+1 
r.(t) = L(~o) _ L(6 ) {; ft(t) 2l + 1 LH1(6) 

+ 
2
l ~ 

1 
Lt-1 (6) - L(6)Le(6)) , (8.24} 

which we write in shorthand notation as 

rz(t) = Cz · f(t), (8.25) 

where Cz = (c1, c2, ... ) and f(t) = (J1(t), !2(t), .. . ) are infinite dimensional 
vectors with components of Cz defined as 

To calculate ft(t) we Laplace transform (8.22) to get 

A £(£-1) A 

(s + £(£ + 1)) ft(s) + 6 
2
£ _ 

1 
ft-1(s) 

- ~ ( £ + 1) ( f + 2) fA ( ) = f (O) 
~1 2£ + 3 l+1 s l ' (8.27) 

which we abbreviate as 

(sI+ M(6)) · f = f(O), (8.28) 

where I is the unit operator and M(6) is an infinite dimensional tridiagonal 
matrix. 

The tridiagonal nature of M makes possible a formal exact solution of 

(8.27) in terms of infinite continued fractions [31]. However, for numerical 
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work these fractions must be truncated at finite order. We have shown that 
for numerical work it is easier to proceed in a different way [29]. If we truncate 
the infinite system (8.27) at order .e = lmax = N, we then have a finite 
dimensional matrix equation (8.28) which we can solve directly as 

(8.29) 

with AN(s), BN(s) polynomials in s of order N - 1 and N respectively 
with BN(s) = Det(s IN+ MN(~I)). The decay rates (eigenvalues) are now 
given approximately as the zeroes of BN(s), Det(s IN + MN(6)) = 0, at 
s =->..IN, ->..2N, ... , -ANN· The amplitudes PiN are given as the residues of 
AN(s)/ BN(s) at the zeroes -AjN of the denominator. The roots of BN(s) = 0 
are found easily by use of Mathematica 4.0 and the residues PiN are evalu­
ated by numerical contour integration of f zN ( S) on a small circle enclosing 
each root. This procedure is fast and rapidly convergent, even for large values 
of ~o, ~1· We found in practice that the truncation was convergent if we trun­
cated the matrices at order N ~ 2 max(~o, 1~11). Note that from the values of 
AjN, PiN we get rz(t) directly in the time domain via Equation (8.13). Our 
calculations [29] show an interesting structure in the eigenspectrum Aj (~I) as 
~1 varies, with a double degeneracy developing at large 161· This may be seen 
in Fig. 8.1 where we plot the lowest six eigenvalues Aj(6), for j = 1 (bottom 
curve) to j = 6 (top curve), as functions of ~1 in the range 0 ~ ~1 ~ 15. At 
~1 = 0 the eigenspectrum is just the one met already in Chapter 5 for free 
diffusion, >..fee = j (j + 1). 

2 4 6 8 10 12 14 

FIGURE 8.1. 
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The amplitudes Pi(~o, ~1) also vary markedly as ~o and 6 vary, being 
sometimes all positive but (for field reversal) also taking alternate positive 
and negative values. We illustrate this in Fig. 8.2 where we take the initial 
field strength to be ~o = 15 and we study field reversal with final field -15 ~ 
6 ~ 0. For strong fields the amplitudes Pi become large in magnitude so we 
have plotted the quantity J.£j(15,6) = log10[1- (-1)ipj(15,~1)] against 6, 
in the range -15 ~ ~1 ~ 0, for j = 1 (top curve) to j = 9 (bottom curve). 

-9 -6 -3 

FIGURE 8.2. 

4 
tlj 

3 

2 

This method for sudden field changes can be extended in two ways. 
Firstly, we can include polarizability which gives a more complicated ex­
ternal potential, ,BV ( u) = -~1 cos 8 - a 1 cos2 8 as defined in (7.17). We have 
found [26] that the nature of the eigenspectrum is altered with the lowest 
non-zero eigenvalue tending to zero as 6 ---+ oo. Moreover, we can calculate 
the relaxation function observed in the dynamic Kerr effect. We define the 
time dependent quantity 

F2(t} = j P2(cosO)P(u, t)du, (8.30} 

which generalizes the order parameter occurring in the static Kerr effect 
(7.24). Its normalized relaxation function is defined as 

r 2(t) = F2(t)- F2eq1 , (8.31) 
F2eqO- F2eq1 

which has a representation like (8.13), 
00 

r2(t) = LP2j e->.;t/Tr. 

j=1 
(8.32) 
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Full details of this calculation may be found in the literature [26) . 
A second generalization is to consider a sudden change of both direction 

and magnitude [27). 

z 

y 

FIGURE 8.3. 

In this more general problem the equation of motion (8.5) has azimuthal 
symmetry about the direction of the final field E 1 but the initial conditions do 
not have this symmetry. Thus we must use more general spherical harmonics 
to describe the relaxation, 

f(u, t) = f(fJ, cp, t) = L Btm(t)Pi(cosfJ)eim<p . (8.33) 
lm 

The calculation proceeds in the same spirit as the simpler one sketched above 
but with an extended eigenvalue spectrum A£m(6) and with a more compli­
cated set of observables. In addition to Fz(t) and r z(t) there is now a trans­
verse polarization component Fx(t) and its relaxation function r x(t). We 
calculate Fz(t) from the Bto(t) while Fx(t) requires the coefficients Btl(t). 
In addition we must calculate the full order parameter tensor S(t) for the 
dynamic Kerr effect which, for the axis choice above, takes the form 

S(t) = j(uu- ~l)P(u,t)du, 

= ( Bx~(t) 
Bzx(t) 

0 

Syy(t) 
0 

Bxz(t) 
0 

(8.34) 
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which has three independent components (traceless and symmetric). Here 
Bzz(t) involves Beo(t), Bxz(t) requires Be1(t) and Bxx(t), Syy(t) involve the 
Beo(t) and Bn(t). For more information see [27]. 

In this chapter the Debye relaxation calculation in Sec. 3.2 of Chapter 3 
has been generalized to changes of both field magnitude and direction. Now 
the final field values can be non-zero and the method of calculation works 
equally well for both weak and strong fields. The new feature we meet in 
comparison with the Debye result (3.35) is that the entire eigenspectrum 
of the Smoluchowski operators V, .C comes into play. At long times the re­
laxation is dominated by the smallest non-zero eigenvalue but at short and 
intermediate times several eigenvalues must be kept to obtain an accurate 
description. 
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Chapter 9 

Linear response to sinusoidal field 

Instead of considering relaxation effects after a sudden field change we can 
also calculate the response of the suspension of particles to external sinu­
soidal time-dependent fields with or without a DC background field. The 
solution to this problem enables us to obtain the frequency dependent di­
electric function for the suspension. We may study this situation for weak 
sinusoidal fields in linear response which was Debye's original problem [5) or 
for strong perturbing fields which produce a non-linear response. I recently 
studied [32) the linear response to a weak oscillating field for polarizable par­
ticles with a permanent dipole moment m subject to a steady background 
field Eo= Eoez. In this problem we assume that up to timet= 0 the system 
is in equilibrium in field Eo with single particle potential energy 

(9.1) 

where ~o = {3mEo, ao = f3(au - aj_)E5/2 and (} is the polar angle of u with 
respect to ez. Suddenly, at t = 0, we switch on an additional probe field 
E 1 e-iwt with E 1 << Eo and we ask for both the transient and steady linear 
response of the order parameter Fz(t) introduced in (8.2). This calculation 
reduces to De bye's original problem [5) if there is no background field, Eo = 0, 
and f3mE1 << 1. In linear response we can consider separately the longitudinal 
and transverse cases where E 1 is parallel to or normal to Eo. I have studied 
both [32) but for simplicity I will sketch the longitudinal case where E1 = 
Euez with E1 <<Eo. 
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In the potential energy function ( 9.1), for times t > 0, Eo is replaced by 

Eo+ E 1e-iwt and we linearize the potential energy as 

V(u, t) = Vo(u) + V1(u, t) + ... , (9.2) 

where V1 is linear in E 11 . Correspondingly we expand the one-particle distri­

bution function 

P(u, t) = Peqo(u) + P1(u, t) + ... , (9.3) 

where Peqo(u) = z- 1 (~o,O"o)exp(~ocos8 + O"ocos2 8), to get the first order 

Smoluchowski equation which is satisfied by P1 ( u, t), 

8P1(u,t) = '1""\ p ( ) Dr~. ({38V1(u,t)P. ( )) 
8u vo 1 u, t + 8u 8u eqO U . (9.4) 

Here, Vo is the Smoluchowski operator for the unperturbed system, the initial 

condition is P 1 ( u, 0) = 0 and the normalization condition on P( u, t) gives, 

fort> 0, 

j Pt(u,t)du = 0. 

Exercise 9.1: Show that 

.BVt (u, t) = - ( 1 + 
2:0° cos (I) cos (I ~11 e-iwt, 

with ~~~ = {3mE11 and ~11 << ~o-

(9.5) 

(9.6) 

The inhomogeneous term in the Smoluchowski equation (9.4) becomes 

Dr 8 ({38V1(u,t)P. ( )) DrP. () () iwt 8u . 8u eqO U = eqO U 911 U ~~~ e- ' (9.7) 

where 
4 

9u(u) = 2:9t11Pt(cos8), (9.8) 
l=O 

with 

2 16 (j~ 
9011 = - 3~o - 15 {o ' 

2 O"o 16 (jE 
9211 = 3{o + 8 ~o - 21 ~o ' 

12 
9111 = 2 - 50"0' 

12 64 0"2 

9311 = 5 0"o , 9411 = 35 e~ . 
(9.9) 
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9. LINEAR RESPONSE TO SINUSOIDAL FIELD 63 

The subsequent calculation simplifies by factoring out the equilibrium distri­
bution function Peqo(u), 

P1(u, t) = Peqo(u)~11 J11 (u, t), (9.10) 

where 
a !n ( u' t) ( ) r ( ) -iwt at = .Co f11 u, t + D 911 u e , (9.11) 

with the adjoint Smoluchowski operator .Co. 

Exercise 9.2: Show that 

.c D r ( 1 a ( . () a ) 1 8
2 

0 = sin () ao Sin ao + sin 2 () afjJ2 

-(~0 sin0 + 2a0 cos0sin0) :e). (9.12} 

The solution technique is similar to that used in the relaxation problem 
in Chapter 8. We expand fn in Legendre polynomials 

00 

! 11 ( u, t) = L B eo ( t) Pe (cos o) , (9.13) 
l=O 

giving coupled first order ordinary inhomogeneous differential equations 

dBeo r( (f-1)£ (£+1)(£+2) 
dt = -D f(f + 1)Beo + ~o (2£ _ 1) Be-10- ~o (2£ + 3) Bt+IO 

(f- 2)(£- 1)£ f(f + 1) Boo 
+2ao (2£ _ 3)(2£ _ 1) Be-20- 2ao (2£ _ 1)(2£ + 3) c 

(f + 1)(£ + 2)(£ + 3) ) r -iwt 
-2ao (2£ + 3)(2£ + 5) Bt+20 + D 9£11 e , (9.14) 

The Beo(t) for f 2: 1 are independent of Boo(t) w~ich is given in terms of the 
Beo , f =f. 0, by putting f = 0 in (9.14). The normalization condition gives a 
sum rule 

00 

L Beo(t)Me(~o, ao) = 0, (9.15) 
l=O 

where Me(~o, ao) = (Pe( cos 0) )eqO· The functions Me and the partition func­
tion are expressible as 

Z(~o, ao) = 2trNo(~o, ao), Me(~o, ao) = Ne(~o, ao)/No(~o, ao), (9.16) 
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with the Ne(~o, ao) defined by 

~ox+uox2 - ~ 2f + 1 N (~ ) n ( ) e - LJ 2 f. ~0, ao re X . 

l=O 

(9.17) 

An explicit expression for Ne(~o, ao) may be found elsewhere [27). From (9.3), 
(9.10) and (9.13) we calculate the polarization order parameter Fz (t) defined 
in (8.2) as 

F.(t) = j u.P(u,t)du = j cosfJP(u,t)du 

00 (9.18) 
= M1 (~o, ao) + ~11 L We(~o, ao)Beo(t), 

l=O 

where the weights We(~o, ao) are 

1 
We(~o,ao) = 

2
£ + 

1 
(fMe-I(~o,ao) + (f + 1)Mt+I(~o,ao)). (9.19) 

The system (9.14) is solved by Laplace transform, setting 

(9.20) 

where we have explicitly displayed the steady state pole in Beo ( s) at s = 

-iwrr. The Ceo( s) obey the inhomogeneous algebraic system 

( 
f( f + 1) ) A ( f - 1 )f A 

s + f(f + 1)- 2ao (2£ _ 1)(2£ + 3) Ceo + ~o (2£ _ 1) Ce-10 

(f + 1)(£ + 2) A (f- 2)(£- 1)f A 

- ~o (2£ + 3) Ct+IO + 2ao (2£ _ 3)(2£ _ 1) Ce-20 

(f+1)(f+2)(f+3) A 

- 2ao (2£ + 3)(2£ + 5) Ct+20 = 9tll, (9.21) 

which is again of the form (8.28) 

(sI+ M(~o,ao)) · C(s) = gll. (9.22) 

As before, the solution to this inhomogeneous equation gives Ce0 (s) as a 
function with simple poles at Bj = -Aoj(~o, ao) with residues deoj· Again by 
truncation at order f = fmax = N we find the Aoj approximately as roots of 
Det ( s IN + M N ( ~o, ao)) = 0 and the deoj are calculated by contour integration 
on a small circle encircling the roots. 
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9. LINEAR RESPONSE TO SINUSOIDAL FIELD 65 

Back transforming gives Fz(t) explicitly in the time regime as 

00 

+ ~11 2:: Poj(w) exp[-Aojt/rr] + ~uQo(w) exp[-iwt], (9.23) 
j=1 

where 
00 

Qo(w) = 2:: Wt(~o, ao) Cto( -iwrr), 
£=1 

p, ·( ) __ Doj(~o, ao) 
OJ W - . ' 

AQj -?,WTr 

00 

Doj(~o, ao) = 2:: Wt(~o, ao) dtoj(~o, ao). 
£=1 

The f = 0 solution is 

Boo(t) = ~ f 5 ~o dwj + 6 ~o d2oj exp[-Aojt/rr] 
15 j=

1 
Aoj(Aoj - twrr) 

(9.24) 

--. 
1
- [ 2~0 (C10 (-iwrr) -1) + 

4
ao (c2o(-iwrr)-

4
ao)] exp[-iwt]. 

tWTr 3 5 3~o 

(9.25) 

We can subtract off the constant background contribution to Fz(t) and 

thus identify a transient and a steady st~te response as 

with 

T() =2M1(~o,ao)~5~odwj+6aod2oj [-\ ·/] 
z t 15 L \ ( \ . ) exp Ao1t Tr 

j=1 1\Qj 1\Qj - ?,WTr 

00 
Do · - 2:: A ~ exp[-Aojt/rr]. (9.27) 

j=1 Oj- ?,WTr 

From Sz(t), the steady state part of LlFz(t), we define a complex suscepti­
bility associated with the order parameter Fz(t), 

1 . t 
Sz(t) = 3xu(w)e-tW . (9.28) 
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66 9. LINEAR RESPONSE TO SINUSOIDAL FIELD 

Note that xu(w) is not the complete physical susceptibility because it refers 
only to the contribution of the permanent dipole moments to the polariza­
tion of the suspension. There will be another contribution as well from the 
induced polarization which will involve the time-dependent Kerr effect order 
parameter 

F2(t) = j P2( cos 9) P(u, t) du. (9.29) 

For simplicity we do not consider F2(t) further although it could be calculated 
by the same technique as used for Fz(t). 

From (9.23) and (9.25) we can read off xu(w), but we can obtain a more 
useful expression by recalling that the initial condition at t = 0 implies 

~Fz(O) = 0, which gives Sz(O) = !xu(w) = -Tz(O). Thus we can finally 
express the susceptibility as 

X (w) = _ 2Ml (~o, ao) ~ 5 ~o dwj + 6 ao d2oj + 3 ~ Doj . (9.30) 
11 5 ~ .Xo ·(.Xo · - iwT) ~ .Xo·- iwT j=l 1 J r j=l J r 

The contribution to the measurable polarization is the real part of the 
complex function Fz(t), 

ReflF.(t) = {
11 

( ReT.(t) + ~Re(x11 (w)e-iw1 )). (9.31) 

From the real part of the transient term, T~ ( t) = Re Tz ( t), we can define a 
relaxation function 

with mean relaxation time 

From ( 9. 27) we get explicitly 

00 

TzM = J rz(t)dt. 
0 

( )I _ [2M1 (~o, ao) ~ 5 ~o dwj + 6 ao d2oj _ ~ Doj ] 
TzM W Tr - ~ ( 2 2 2) ~ 2 2 2 

15 j=l Aoj .X0j + w Tr j=l .X0j + w Tr 

[
2Ml (~o, ao) ~ 5 ~o dwj + 6 ao d2oj _ ~ AojDoj ] -l 

X ~ 2 22 ~ 2 22' 
15 j=l .X0j + w Tr j=l .X0j + w Tr 

(9.32) 

(9.33) 

(9.34) 
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9. LINEAR RESPONSE TO SINUSOIDAL FIELD 67 

Thus both the susceptibility and transient relaxation time are determined en­
tirely by the eigenspectrum >.oj (poles of Cto(s)) and the associated residues 

deoj· 
Debye's problem (6] corresponds to Eo = 0 in our present formalism. In 

that limit the coupled equations (9.21) reduce simply to 

( s + e ( e + 1)) 6 eo ( s) = 2 <5 n , (9.35) 

which gives Cto(s) = o fore -=1 1 and 

A 2 
Cw(s) = --

2
. 

s+ 
(9.36) 

Thus there is just a single pole at s = ->.01 = -2, with residue dw1 = 2. In 
this limit, Eo ---+ 0, one has Mt(~o, ao) ---+ 0 for f # 0 and M0(~0 , a0 ) ---+ 1, so 
that 

3D01 d1o1 
XII ( w) ---+ AQ1 - iwTr = Aol - iwTr ' 

XDII ( w) = 2 2. = 1 
- 'tWTr 1 - iWTD ' 

(9.37) 

where the De bye relaxation time TD is given in terms of Tr as TD = Tr /2 = 

1/2Dr. 

If we split the susceptibility into reactive (real) and dissipative (imagi­
nary) parts, 

xu(w) = xj
1
(w) + ixlf(w), 

we have simple resonance forms in the Debye limit, 

ID( ) 1 xu w = 1 + 2 2 ' W TD 

IlD( ) WTD 
Xu w = 1 + w2r_b 

(9.38) 

(9.39) 

As we have seen already in Chapter 3 these have a characteristic shape when 
plotted as functions of w or in the form of Cole-Cole (11] plots of xlf(w) 
against xj

1
(w). From the result (9.30) we can study these functions for a 

range of non-zero values of ~o, ao. We have calculated XII (w) for selected 
values of ~o and of the ratio ro = ao/(5 = (au- a.l.)/2{3m2 . These plots show 
significant differences from the De bye limiting results (32]. To illustrate this 
we show in Fig. 9.1 the dissipative part of the susceptibility xj[(w) plotted 
against log 10 ( WTD). 

In this plot the solid curves from the top down correspond to pure dipoles 
with ~o = 0 (the Debye susceptibility), ~o = 3, 6, 9 respectively while the two 
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-2 2 

FIGURE 9.1. 

dashed curves describe dipoles with additional polarizability, ~o = 3, ro = 0.1 
(top curve), ~o = 3, ro = 0.3 (lower curve). The effect of the background field 
is to reduce the height of the resonance peak in xlf(w) while moving it to 
higher frequency. In Fig. 9.2 we show Cole-Cole plots of xlf(w) against x!

1
(w). 

Here again the solid curves from the top down correspond to pure dipoles 
with ~o = 0 (the De bye susceptibility), ~o = 3, 6 respectively while the two 
dotted curves describe dipoles with additional polarizability, ~o = 3, ro = 0.1 
(top curve), ~o = 3, ro = 0.3 (lower curve). 

0.5 

0.4 

0.3 

0.2 

0.1 

0.2 0.4 0.6 0.8 

FIGURE 9.2. 

The transient term Tz(t) defined in (9.27) also simplifies greatly in the 
Debye limit, 

(9.40) 

r z(t) = e-tfrv , 

with mean relaxation time TzM = TD. Away from the Debye limit we can 
use (9.34) to calculate TzM(w)/Tr for various values of ~o and ro [32). We 
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9. LINEAR RESPONSE TO SINUSOIDAL FIELD 69 

finally note that everything given here for the case of a longitudinal AC field 
can be calculated similarly for transverse fields [32]. 

In conclusion then we have shown that the linear response of the suspen­
sion to weak sinusoidal fields is described in terms of the eigenspectrum >..0i 

of the Smoluchowski equation and an associated set of weights dtoj just as 
was the relaxation after sudden change of external field described in Chap­
ter 8. If we desire to go beyond a linear response calculation, however, we 
need an alternative approach. 
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Chapter 10 

Non-linear response 

10.1. Steady state solution 

In Chapter 9 we have seen how the linear response to a weak sinusoidal 
field of a dilute system of polar and polarizable particles can be obtained in 
the presence of a fixed background field. It is possible to go beyond the linear 
calculation however. To illustrate how this can be done we next consider a 
simplified problem in which there is no background field and we consider 
only permanent dipoles, m = mu, subject to an external field Et coswt 
with Et = Etez. The time-dependent potential energy of the dipole is then 

V(u, t) =-m· Et coswt =-mEt cosOcoswt, (10.1) 

with 0 the polar angle of u with respect to the axis defined by Et. After 
transients have decayed there will be a steady oscillation of the polarization 
which will be parallel to Et. 

Thus, we have azimuthal symmetry about the z-axis so that the time­
dependent distribution function P(u, t) = P(cosO, t) = P(z, t) is indepen­
dent of the azimuthal angle and satisfies the Smoluchowski equation 

0: = Dr (si~ll :ll (sinll~:)) + 6 coswt (2cos liP+ sin~~~:) , (10.2) 
with ~t = {3mEt. It is convenient to write 

1 . 
P(z, t) = 

4
7rf(z, t), (10.3) 
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72 10. NON-LINEAR RESPONSE 

with normalization 

1 

j P(z, t)du = 4~ j f(z, t)du = ~ j f(z, t)dz = 1. (10.4) 
-1 

From (8.2) and (8.30) the polarization Fz(t) and the order parameter F2(t) 
are 

1 1 

F.(t) = ~ j zf(z, t)dz, F2(t) = ~ j P2(z)J(z, t)dz. (10.5) 

-1 -1 

To solve the Smoluchowski equation (10.2) we proceed in two stages. First 
we expand the angular dependence in Legendre polynomials as in (8.18) 

00 

f(z, t) = L ft(t)Pt(z). (10.6) 
i=O 

The normalization condition (10.4) gives, for all times t, 

fo(t) = 1, (10. 7) 

while the polarization and order parameter F2(t) are simply 

(10.8) 

As with the adjoint Smolochowski equation (8.22) the Smoluchowski 
equation (10.2) is transformed into an infinite set of coupled ordinary dif­
ferential equations 

dft(t) r ( ( 1 "d,t = -D £(£ + 1) ft(t) + ~1 coswt 
2
£ _ 

1 
ft-1(t) 

- 2t ~ 3/l+!(t))). (10.9} 

In the discussion of sudden change of field in Chapter 9 we solved similar 
equations as an initial value problem. In the present case, however, we are 
content to find the steady oscillatory solution of (10.9) which is time periodic 
with the period T = 271' /w of the oscillating external field. 

One can obtain the numerical solution to the system (10.9) in two distinct 
ways. The first method involves truncation of the system at order f = fmax 
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10.1. STEADY STATE SOLUTION 73 

followed by direct numerical integration of the resulting finite set of cou­
pled first order equations with initial conditions fd 1

) (0) = 1, JP) (0) = 0, 

e = 1, 2, ... , imax· This generates a particular solution JP) (t). We then eval­

uate f J 1) ( t) at T = 21r / w and use these values as initial conditions for a second 

solution, J?)(O) = J?)(T). We iterate this procedure, J?")(O) = JJn-l)(T), 
and after a small number of iterations ( in practice three iterations) the 
numerical solution is periodic with no transient components left. The polar­
ization and order parameter follow then from (10.8). 

An alternative solution uses the fact that we seek fe(t) as a function 
periodic with period T = 21r jw. Thus, in addition to the Legendre expan­
sion of the angular dependence (10.6), we can also Fourier expand the time 
dependence [33, 34) 

00 

fe(t) = L fen einwt · (10.10) 
n=-oo 

Inserting the Fourier expansion in (10.9) leads to a set of linear algebraic 
equations for the Fourier coefficients fen , 

inwftn = -Drl(l + 1) (fen- 2(2;~ 1) Ut-1n-1 + ft-1n+l) 

+ 2(2;~ 3) (/H1n-1 + /t+1n+1)) · (10.11) 

The normalization (10. 7) gives 

foo = 1, !On = 0, n # 0, (10.12) 

and from the requirement that fe(t) be real we have 

J;n =fe-n· (10.13) 

Since the values of fon are given explicitly in (10.12), the system (10.11) is an 
inhomogeneous linear system which we can solve for all fen, e > 0. Inspection 
of (10.11) shows that the fen for odd values of e + n do not couple to the fen 
with even values of e + n. Thus we have also 

fen = 0, e + n odd. (10.14) 
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74 10. NON-LINEAR RESPONSE 

If, for f > 0, we express ftn in terms of real and imaginary parts, ftn = 
Atn- iBtn, we obtain f(z, t) in the explicitly real form 

00(00 00 ) 
f(z, t) = 1 + 2 ~ ~ Aen cosnwt + ~ Bensinnwt Pe(z). (10.15) 

Calculating Fz(t) and F2(t) we obtain 

2( 00 00 
) F.(t) = 3 ~(A1n cosnwt + ~(B1nsin nwt , 

(10.16) 

For numerical study we solve the system (10.11) by truncating at f = 

lmax, n = ±nmax and using the linear algebra routines of Mathematica 4.0. 
The solution so obtained can be checked against the direct integration de­
scribed above. For the largest amplitude studied, 6 = 20, we found conver­
gence for lmax = 16, nmax = 16. For smaller values of 6, significantly smaller 
truncations give good accuracy. 

To compare with the linear response calculation in Chapter 9 we introduce 

the quantities 

T 

P({I, w) = {Iw J Fz(t) coswtdt, 

0 

T T 

Q({I,w) ={I J d~?) coswtdt = {Iw J F.(t)sinwtdt. 

0 0 

(10.17) 

These represent non-linear generalizations of the susceptibilities x'(w), x"(w) 
with P equal to ~21r/3 times the time average of the mean potential energy 
of a dipole in the oscillating field and Q representing dissipation, the work 
done by the field in one period T. Both P and Q can be represented by a 
single complex expression 

2'TrjW 

P({I,w) + iQ({I,w) = {Iw J Fz(t)eiwt dt, w > 0. 

0 

(10.18) 
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In the weak-field limit (~1 << 1) we find 

1f 2 1 
Pw(~1,w) = 3~11 + w2Tb' 

(10.19) 
1f 2 WTD 

Qw(~bw) = 3~11 + w2Tb' 

which is proportional to the Debye result for the susceptibility (9.39). To 
compare with the linear susceptibilities we can normalize P and Q by dividing 
each by the zero frequency value P(~1 , 0), 

271" 

P({l,O) = 6 j L(6 cosr) cosrdt, (10.20) 

0 

where L is the Langevin function. To obtain (10.20) we use the fact that 
as w ~ 0, the distribution function P( u, t) becomes simply the equilibrium 
distribution functions in the instantaneous field (34) , 

1 Pad(u, t) = e{I cos8coswt. 
Z(6 coswt) 

(10.21) 

Plots of P(~bw)jP(~1,0), Q(6,w)/P(6,0) can be found in (34) where 
they are compared with the weak field result which follows from (10.19). 
In Fig. 10.1 we give one such example. There, for the strong field value 
6 = 20, we show Q(6,w)/P(6,w) as computed by the full non-linear 
method sketched above (solid curve) and the weak field Debye result (dashed 
curve) plotted against log10(wTv). We see that the peak of absorption in­
creases in magnitude and is shifted to higher frequencies compared with the 
weak field limit. 

-2 

,,'' 
··' 

-1 

0.8 

0.6 

_/_/e:4 

FIGURE 10.1. 
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10.2. Effective field approximation 

Thus far in the lectures I have used the Smoluchowski equation to de­
fine the fundamental dynamics. Because the Smoluchowski equation is not 
always easy to solve, people have looked for phenomenological effective field 
theories to bypass the direct solution of the Smoluchowski equation. This ap­
proach has been particularly important in the case of ferrofiuids (magnetic 
colloids) [28, 35]. I will derive one of these effective field equations to illus­
trate the approach and then compare its predictions with those of the full 
Smoluchowski equation. This approach, due to Martsenyuk et al [35] can be 
applied to the situation of axially symmetric systems such as those treated 
just above and also in Chapter 8 and 9. 

If we denote the dimensionless external field by ~ ( t), we have the axisym­
metric Smoluchowski equation (also called the Fokker-Planck equation in 
the magnetic system literature) 

8P(z, t) = ~ ((1 _ z2 ) (ap _ ~(t)P)) . 
m az az (10.22) 

In the magnetic problem the quantity Fz ( t) has the significance of the mag­
netization rather than the polarization and it is just the first moment of 
P(z, t) defined as 

1 

F.(t) = (z)1 = j z P(z, t) du = 21T j z P(z, t) dz. 

-1 

(10.23) 

Using (10.22) and an integration by parts we calculate the time derivative of 
the first moment as 

(10.24) 

Clearly this is the first of an infinite set of coupled moment equations. 
However, we can break the coupling to higher moments if we approx­

imate P(z, t) by assuming that the system is described by an equilibrium 
distribution, but in an effective field ~e(t), 

1 P(z t) ~ e{c(t)z 
' Z(~e(t)) . 

(10.25) 
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For a distribution of this form the moments simplify so that by use of (8.20) 
we calculate 

( Z) t = L 1 ( ~e ( t)) , 

2 2 1 2 1 
( Z ) t = 3 ( P2 ( Z)) t + 3 = 3 £2 ( ~e ( t)) + 3 · 

(10.26) 

However, from the recursion relation for the Legend re polynomials one can 
derive 

(10.27) 

Putting these results into (10.24) gives the effective field equations for the 
mean field magnetization FzM ( t) as 

dFzM(t) = -2Dr (F (t)- ~(t) F (t)) 
dt zM ~e(t) zM ' 

(10.28) 

FzM(t) = Ll(~e(t)). 

Exercise 10.1: Show that (10.28) can be written in terms of ~(t), ~e(t) 
alone in the form 

~e(t) = 2Dr~ (t)sinh~ (t)~e(t)cosh~e(t)- sinh~e(t) ( 1 - ~(t)). 
dt e e ~i(t)- sinh2 ~e(t) ~e(t) 

(10.29) 

By integrating (10.29) numerically for ~e(t) we get approximate values 
for the polarization and order parameter as FzM(t) = Ll(~e(t)), F2M(t) = 

L2(~e(t)). We have calculated these approximate values and compared them 
with the exact results from the Smoluchowski equation (34). We find that 
even in strong external fields, the effective field equations (10.28) give quite 
a good approximation. As an illustration of this, for field strength 6 = 20, 
and frequency w = 9.588/rr, we plot in Fig. 10.2 Fz(t) as calculated by the 
non-linear method (solid curve) and FzM(t) as calculated from the effective 

. field equations (10.28) (dashed curve). The functions are plotted against 
dimensionless time tjT where T is the period of steady oscillation. 

Other forms of effective field models are also studied in (34) which are 
not so accurate. However, the one-particle Smoluchowski equation is only 
valid for dilute systems so that in dense suspensions, a good effective field 
approximation would be of great utility. There is further discussion of such 
macroscopic relaxation equations in (34) from the viewpoint of irreversible 
thermodynamics and the free energy of the system. 
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FIGURE 10.2. 

Finally, we note an interesting feature of the analytic properties of the 
non-linear response functions as functions of frequency w. In the linear re­
sponse susceptibility (9.30) we see that, as a function of w, x(w) is analytic 
in the upper half complex w-plane with poles in the lower half plane. Such 
analytic structure rep~esents causality in the linear response framework. How­
ever, if one calculates explicitly to third order in ~, one obtains [36), 

P(~,w) + iQ(~,w) = 7r3~
2 

(
1 

~ 
-'tWTD 

_ ~2 1 1 9- iWTD + (?(~4)) . (10.30) 
60 1 + W2Tfy 1 - iWTD 3 - 2iwTD 

Clearly the higher order terms have a pole in the upper half w-plane. Thus 
the non-linear response functions P, Q do not satisfy the Kramers-Kronig 
relation which is obeyed by the real and imaginary parts of the linear response 
susceptibility. 
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Chapter 11 

The generalized 
Smoluchowski equation 

Thus far we have considered dilute suspensions in which it was sufficient to 
calculate the single particle response to external probe fields. However, if 
suspensions are not dilute, new phenomena appear as the particles interact 
with each other as well as with external fields. The theoretical description of 
such a system has to be extended to a many-body formalism and we must 
consider what experimental observations are possible in such systems. For 
simplicity we consider a suspension of N identical spherical particles whose 
centres are located at points ~' i = 1, 2 ... , N, and which are characterized 
in addition by a direction fixed in each particle and described by a unit 
vector Ui, i = 1, 2 ... , N. For example, they may be polar particles with a 
permanent dipole moment, mi = mui, or they may have an axisymmetric 
polarizability tensor a:i as in (7.12) with Ui specifying the optic axis. The 
configuration of the entire system now includes a position and an orientation 
variable for each particle which we can describe by a 6N dimensional vector 

(11.1) 

where xt, xr are 3N dimensional vectors specifying only positions or orienta­
tions respectively. The particles may interact by potential interactions which 
we assume to be given by a sum of two-body potentials. These potentials 
may depend only on positions (hard-sphere or Lennard-Jones potentials for 
example) or on both positions and orientations (dipole-dipole interactions). 
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80 11. THE GENERALIZED SMOLUCHOWSKI EQUATION 

We denote the many-body potential function by 

V(X) = L Vij(~, Uii Rj, Uj)' 

i<j 

with Vij the two-body potential. 

(11.2) 

The particles undergo Brownian motion in position and orientation on 
the slow time scale t >> Tp, T£ and we describe this by a normalized time­
dependent probability density in theN-particle configuration space, P(X, t), 

J P(X, t) dX = J P(X, t)dRt ... dRNdUt ... duN = 1. (11.3) 

We postulate that on the slow time scale the dynamics is given by a gener­
alized Smoluchowski equation ( GSE) of the form 

BP~, t) = -\1· J(X, t)' (11.4) 

where J is the probability flux and the generalized gradient operator \1 is 
a 6N dimensional operator of the form \1 = (8laR1, ... , a1aRN, 8lau1, 
... 'alauN) or, alternatively, \1 = (818RI, ... 'ai8RN, L~, ... 'LN) where 
a 1 aui is the gradient on the unit sphere which is the orientational configu­
ration space of particle i and Li = Ui X a I aui is the corresponding rotation 
generator as in Chapter 5. 

The current density J has two distinct components, J = J B + J K, ( com­
pare (2.25), (2.58) and (5.19)) where JB is a Brownian component and JK is 
associated with the forces Fi and torques Ti arising from interactions. We 
denote a 6N dimensional generalized force vector K(X) by 

K(X) = (F, T) = (FI, ... 'FN, TI, ... 'TN) 

= ( -:~1 , ••• ,- 8~N,-LtV, ... ,-LNV), 
(11.5) 

where F and T are 3N dimensional vectors of forces and torques respectively. 
The Brownian component of the current has the form 

JB = -D(X) · \1 P(X, t), (11.6) 

where D(X) is a 6N x 6N many-body diffusion matrix. To understand how 
J K is related to the force K we recall from the single particle problem of 
Chapter 2 that on the slow time scale where we can neglect inertia, there is 
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11. THE GENERALIZED SMOLUCHOWSKI EQUATION 81 

a simple relation between applied force and the resultant steady velocity of 
the particle. This relation, given in (2.24) defines the mobility of a mesopar­
ticle. In the many-body situation there is a generalization of the concept of 
mobility. To see how this arises, consider the motion of our N particles char­
acterized by rigid body translational and angular velocities U i, ni in the 
suspending fluid. On the slow time scale we can describe the fluid response 
by the zero Reynolds number Stokes' equations 

V·v(r)=O (11. 7) 

where v ( r), p( r) are velocity and pressure fields respectively. In this con­
tinuum approximation for the suspending fluid we have a boundary value 
problem in which we solve (11.7) subject to stick boundary conditions at 
the surface of the moving particles [37). For given Ui, ni we find the veloc­
ity field v( r) and can then evaluate the stress tensor which in turn can be 
integrated over the particle surfaces to give the forces and torques Fi, Ti 
exerted on the fluid by the moving particles. Since the inertia of both the 
mesoparticles and the fluid is neglected, the forces Fi and torques Ti are 
identical with the externally applied forces and torques necessary to produce 
the velocities Ui, ni. Since (11.7) is a linear system we find a linear relation 
between the Fi, Ti and the Ui, ni 

N N 

Fi = L <~}. uj + L <U · nj, 
j=l j=l 

N N (11.8) 

Ti = L <i} . uj + L <U · nj, 
j=l j=l 

which can be abbreviated to 

(11.9) 

or 

K(X) =((X)· UK. (11.10) 

The 6N x 6N matrix ((X) is called the grand resistance matrix (13). By 
inverting the linear relations (11.8)-(11.10) we obtain the many-body grand 
mobility matrix J.L(X) [37), 

(11.11) 
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UK = 11-(X) · K(X), (11.12) 

( 
U ) = ( 11-tt 11-tr ) ( p ) ' n /1-rt /1-rr T 

(11.13) 

N N 

u i = L 1-L~j . F j + L 1-L}J . T j ' 

j=l j=l 
(11.14) 

N N 

ni = L ~-ti} . F 1 + L ~-ti; . T j . 

j=l j=l 

Using the mobility matrix, the advective contribution to the current density 
is expressed as 

UK = 11-(X) · K(X) . 

The generalized Smoluchowski equation (GSE) now takes the form 

8P 
at= -\l·J= -\l·(JB+JK) 

= \1 · (D(X) · \1 P- 11-(X) · K(X)P) 

= \1 · (D(X) · \1 P + 11-(X) · (\lV)P). 

(11.15) 

(11.16) 

Just as in the single particle case, to determine the diffusion matrix D(X) 
we require that (11.16) has an equilibrium solution of Boltzmann type, 

P. (X) = _!_e-,BV(X) 
eq z ' (11.17) 

for which the total current vanishes, Jeq = 0. These two conditions give 

(11.18) 

the generalization of the Einstein relation (2.10). Using this relation we write 
the GSE as 

8P 
at= \1· D ·(\JP+ \1({3V)P) = VP, (11.19) 

defining the many-body Smoluchowski operator to be 

V= \1 · D(X) · (\1 + \1({3V(X))) = \1 · D(X)e-,6V(X) · \le,BV(X). (11.20) 

The generalized Einstein relation (11.18) enables us to express the GSE 
as a continuity equation in the space of 6N dimensional variables X. We have 
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defined an advective velocity UK and current JK in (11.15). Correspondingly 
we express the Brownian current J B of (11.6) in terms of a Brownian force 
Ks and velocity Us, 

(11.21) 

where KB arises from a Brownian potential VB, 

Vs(X, t) = ksTlnP(X, t). (11.22) 

The GSE as expressed in (11.16) now has the form of a generalized continuity 
equation 

8P at+ \1 ·(UP)= 0, (11.23) 

with U = U B + U K. This many-body continuity equation generalizes the 
one-body equations of (2.59) and (5.16). In the discussion above we have 
considered only internal forces arising from two-body potentials. The conti­
nuity equation form of the GSE is readily extended to include external forces 
and externally imposed flow fields in the suspending fluid (38). 

The formal properties of the Smoluchowski equation for translational dif­
fusion sketched in Chapter 2 can all be extended to the GSE. For many-body 
functions of configuration A(X), B(X) we define a scalar product generaliz­
ing (2.32), (2.33) and (2.44) to 

(A(X),B(X)) = J A(X)B(X)dX, 

(A(X), VB(X)) = (.CA(X), B(X)), (11.24) 

VPeq(X)f(X) = Peq(X).Cf(X). 

Here, in exact analogy to the one-particle case, we define the adjoint Smolu­
chowski operator .C by integration by parts to get 

.C = vt = (\1- \l(,BV(X))) · D(X) · \1 

= e#V(X)\1 · D(X)e-!3V(X) · \1. (11.25) 

The time correlation formulae which generalize (2.40), (2.41) are 

CAB(t) = (A(X(O))B(X(t))) = J dX Peq(X)A(X)e.ct B(X), 

00 

CAB(s) = J e-•tcAB(t)dt = (A(s- c)-1B). 

0 

(11.26) 
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Because J.L(X), D(X) are functions of configuration, the GSE (11.19) 

is said to contain hydrodynamic interactions [39, 40] as well as potential 

interactions which appear in V(X). The interactions between particles which 

are mediated by the intervening fluid are extremely complicated. They are 
long-ranged, and by their definition are many-body in character. Unlike V(X) 
which may be given as a sum of two-body terms as in (11.2) above, J.L(X) is 

not simply a sum of two-body contributions. 

Exercise 11.1: Generalize the method of exercise (7. 3) to the many­
body situation with time translation operator£ given by (11.25). Consider 
the change of configuration from X 0 at timet= 0 to X at timet= dt a short 
time later. Show that to first order in dt we have the relations {41} 

N 

(~(dt)- ~(O))x0 = dt L (Vi· D}~(Xo) + ,eng · Fj(Xo) 
j=l 

N 

(ui(dt)- ui(O))x0 = dt L ( Vj · D}i(Xo) x ui(O) 
j=l 

+ ,BFj(Xo) · D}i(Xo) x ui(O) + ,BTj(Xo) · Dji(Xo) x ui(O)) 

+ Dii(Xo) · ui(O)- (TrDii(Xo))ui(O), 

((~(dt)- ~(O))(Rj(dt)- Rj(O)))x0 = 2dtDU(Xo), 

((~(dt)- ~(O))(uj(dt)- Uj(O)))x0 = 2dtD~j(Xo) x Uj(O), 

((ui(dt)- ui(O))(uj(dt)- Uj(O)))x0 = -2dt(ui(O) x Dij(Xo) x Uj(O)). 

Here an expression likeD x u is shorthand for the tensor quantity Daf3E"ff3pUp 

with repeated component labels summed over. 

These equations can be used to define a Brownian dynamics algorithm 

[41, 42] for use in computer simulation of an interacting suspension. 
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Chapter 12 

Probing the particle environment 

Thus far we have treated particles such as polar particles which interact 
directly with an external field that we can control. By observing the response 
to the field we can learn about diffusion of individual particles. Another 
situation is possible, however, in which there may be no external fields but 
only internal fields. What can we observe experimentally in such cases and 
what can we deduce from it? 

First consider a very simple example. Suppose that a single mesosphere 
of radius a is suspended in a fluid which itself fills a spherical chamber of 

\ 
\ 

a 0
\ 

FIGURE 12.1. 
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86 12. PROBING THE PARTICLE ENVIRONMENT 

radius R. Moreover, suppose that the mesosphere is located instantaneously 
at the centre of the fluid chamber. 

A simple Stokes' flow hydrodynamic calculation gives the tra slational 
and rotational diffusion coefficients in this special geometry as 

and 

nt = nt (1- x)3(4 + 7x + 4x2
) 

0 4( 1 + x + x 2 + x3 + x4) 
(12.1) 

(12.2) 

where x =a/Rand D~, D8 are the diffusivities in unbounded fluid . As the 
caging gets tighter, R ---+ a, rotational diffusion survives much better than 
does translational diffusion. If we could measure this diffusion coefficient we 
would learn something about the size and nature of the confining walls of 
the chamber. If instead of a fixed chamber, the surroundings comprised a 
dense glassy colloidal suspension, or a nematic liquid crystal, or a gel, or the 
space inside a fluid filled zeolite structure, the measured diffusivity would 
give information about the internal environment of the moving particle. 

12 .1. Depolarized light scattering 

One way to monitor rotational diffusion in such circumstances is by using 
particles that are optically non-isotropic [43) and then making observations 
of light scattering with the initial and final polarizations controlled. This 
technique is described in great detail by Berne and Pecora [14) in their book 
on dynamic light scattering. A closely related technique uses fluorescence de­
polarization [14) or polarized fluorescence recovery [23) to measure rotational 
diffusion. It will be necessary to summarize briefly some experimental details 
to explain what can be measured and how it can be interpreted. 

To be specific, I consider a suspension of N spherical particles with axi­
symmetric polarizabilities o.i, j = 1, ... , N, as in the earlier discussion of the 
Kerr effect in Chapter 7. An initial electromagnetic wave with wave vector ki 
and linear polarization in the direction of the unit vector ni scatters in the xy­

plane producing an outgoing wave with wave vector k 1 and polarization n 1. 

The angle between ki and k 1 is the scattering angle (} and k 1 is taken to 
lie in the direction of the positive x-axis, with the z-axis normal to the 
scattering plane in the direction of ki x k 1. The scattering vector q is defined 
by q = ki- k 1. There are certain standard polarization configurations which 
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z 

FIGURE 12.2. 

n· I 

y 

87 

are denoted as VV, ni = ez, nf = ez, or VH, ni = ez, nf = ey, with HV 
and H H configurations defined analogously (14). Each suspended particle 
contributes to the scattered field which has the form 

00 

Escattered(t) = cLni. o:J(t). nfeiq·Rj(t)' 
j=l 

(12.3) 

with C a normalization constant. In a dynamic light scattering experiment, 
what is observed is the autocorrelation function of the scattered light, 
(E8(0)Es(t)) where the brackets indicate a thermal equilibrium average over 
the suspension of N particles. The measured autocorrelation function is then 
proportional to 

N 

Iif(q, t) = L (a{f(O)a:f(t)eiq-(Rk(t)-Rj(O))). (12.4) 
j,k=l 

The polarizability components that contribute to the scattering have been 
abbreviated to a{1 where 

(12.5) 

with Greek subscripts denoting Cartesian components of vectors and tensors. 
The thermal average, in the absence of external fields is 

(12.6) 
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88 12. PROBING THE PARTICLE ENVIRONMENT 

Note that here I assume potentials that depend only on the position config­
uration xt = (R1, ... , RN), thus ruling out dipolar particles with dipole­
dipole interactions which couple the orientation variables Ui to position vari­
ables Rj. The !if ( q, t) can be expressed in terms of the polarization ten­

sor (14) w~ = ni13n f'Y as 

N 

IiJ(q, t) = w~w;/u L (ab'Y(O)o:':w(t)eiq-(Rk(t)-Rj(O))). (12.7) 
j,k=l 

The time-correlation function that appears in (12.7) is quite complex but 
it simplifies somewhat in various limiting situations. For example, in a dilute 
suspension with no orientation dependent interactions, or in a dense suspen­
sion at large values of the scattering vector q, the cross-particle correlations 
can be neglected so that only the j = k terms survive. For identical particles 
these diagonal terms are all identical reducing (12. 7) to 

(12.8) 

where a: and R refer to the same single particle. A second simplifying aS­
sumption is often made to interpret Iif, called the de-coupling appproxima­
tion. This consists of assuming that translational and rotational motions are 
uncoupled. For spherical particles this may be reasonable, for non-spherical 
particles it is at best a pious hope. With this second approximation we have 

(12.9) 

where the second factor now defines the dynamic scattering function for self 
or tracer translational diffusion, 

Fs(q, t) = (eiq-(R(t)-R(o))). (12.10) 

In a suspension of non-interacting spherical particles whose motion is de­
scribed by the simple Gaussian Langevin process of Chapter 2 , we would 
have the result 

(12.11) 

with D~ the non-interacting self-diffusion coefficient introduced in Chapter 2. 
Deviations of Fs(q, t) from the single exponential result in (12.11) give infor­
mation about particle interactions (14, 39, 40). The other correlation function 
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12.1. DEPOLARIZED LIGHT SCATTERING 89 

(n,e,(O)npu(t)) contains information about rotational diffusion. There are two 
common polarization measurements made [14, 40], one (VV) with initial and 
final polarization states normal to the scattering plane ( n = e z), the other 
(VH) with ni = ez, nf = ey. Thus we obtain by measurement 

Ivv(q, t) = N(nzz(O)nzz(t))Fs(q, t), 

IvH(q, t) = N(nyz(O)nyz(t))Fs(q, t), 
(12.12) 

where we have used the symmetry of o:. The VH measurement is referred to 
as the depolarized scattering. 

We can say quite a lot more about the form of (n,e,(O)npu(t)) for sus­
pensions in which potential interactions are independent of orientation and 
depend only on the interparticle distances I~- Rjl· We recall from (7.14) 
and (7.15) the form of o: for an axisymmetric optical polarizability, 

1 
o: = cx0 1 + bS = nol + b (uu- 3l), 

where no = (nu+ 2n..L) and b = (nu - n..L) is the anisotropy parameter. We 
have 

( n,e, (O)npu ( t)) = n6c5,e,c5pu 

+ nobc5,e'Y(Spu(t)) + nob(S,e,(O))c5pu + b2 (S,e,(O)Spu(t)), (12.13) 

where by time translation invariance (S,e'Y(O)) = (Srh(t)), and, for an isotropic 
suspension (isotropy being a consequence of the assumed potential interac­
tions) (8{3,) = 0. The isotropy of the suspension allow us to decompose the 
time-correlation function into isotropic Cartesian tensors as [14) 

(12.14) 

with u( t), v( t) scalar functions. By the tracelessness of S we have (using the 
summation convention for repeated subscripts) 

(S{3,e(O)Spu(t)) = (3u(t) + 2v(t))c5pu = 0, 

giving u(t) = -(2/3) v(t) and the simplified form of (12.14) 

(Sp-y(O)Spu(t)) = v(t) ( OppO-yu + OpuO,rr- ~Op-yOpu) . (12.15) 
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From this result we further calculate (again using the summation convention) 

(S13'Y(O)S'Y13(t)) = 10v(t), (12.16) 

but from the definition of S in (7.15) we also have 

2 3 2 1 2 
(S13'Y(O)S'Y13(t)) = 3(2 (u(O) · u(t)) - 2) = 3(P2 (u(O) · u(t))). (12.17) 

Putting together (12.13), (12.15)-(12.17) gives [14] 

(af3'Y(O)apu(t)) = a68!3"f8pu 

+ ~~ (P2 (u(O) · u(t))) (6,ap6-yu + 6,eAn- ~6,aA,.,.) . (12.18) 

Thus the polarizability time-correlation function measures the correlation 
between the directions u(O) and u(t). 

From the calculation of (5.26) we have, for completely non-interacting 
particles, (P2 (u(O) · u(t))) = exp(-6D0t) so that in very dilute suspensions 
we can measure the "bare" rotational diffusion coefficient of an isolated single 
particle from the polarizability correlations. If we apply (12.18) to the two 

special scattering configurations VV and V H we find 

Ivv(q, t) = N (a~+~: (P2 (u(O) · u(t)))) Fs(q, t), 

b2 
IvH(q, t) = N 

15 
(P2 (u(O) · u(t)))Fs(q, t). 

(12.19) 

For isotropic suspensions the result (12.19) can be cast in a variety of different 
forms. We had the identity (5.25) which on averaging becomes 

4 2 
(P2 (u(O) · u(t))) = ; L (Y2~(u(O))Y2m(u(t))). 

m=-2 

However, in an isotropic suspension one can show [44] that (Y2~(u(O)) 
Y2m(u(t))) is independent of m so that we can also write 

(P2 (u(O) · u(t))) = 47r(Y2~(u(O))Y2m(u(t))) = Fn(t). (12.20) 

Thus (12.19) can be expressed as 

( 
4b2 ) lvv(q, t) = N a6 + 45FR(t) Fs(t), 

(12.21) 
b2 

lvH(q,t) = N 
15

Fn(t)Fs(t). 
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Yet other forms of the scattering functions are given in Berne and Pecora [14] 
which arise from expressing nzz and nyz in (12.12) in terms of the spherical 
polar angles 8, c.p of u with respect to a laboratory frame of reference, 

b b 2 (16; 
nzz =no- 3 + buzUz =no- 3 + bcos 8 =no+ by 45Y2o(8, c.p), 

O<yz = buyuz = b sin IJ cos IJ sin <p = ilff (Y21 (IJ, <p) + Y2-1 (IJ, <p)) . 

(12.22) 
Experimental measurements in the VV and V H configurations enable one to 
extract separately [43] the two single-particle correlation functions Fs(q, t) 
and Fn(t). 

12.2. Hydrodynamic interactions 

For a suspension of spherical polarizable particles, the depolarized light 
scattering gives a way to measure the hydrodynamic interactions buried in­
side the GSE description. To examine this further, we assume that the poten­
tial energy for the suspension consists of a sum of central two-body potentials 
that depend only on particle separation but not on orientation, 

V(X) = L Vij(l~- Rjl). (12.23) 
i<j 

With this assumption the adjoint Smoluchowski operator takes the form 

£ = ~ { (~- a(,BV)) . (n~~(Xt) · _!__ + D~~(Xt) · L ·) 
~ a~ a~ "3 aR . "3 3 
i,j=l J 

+ L;. ( DU(X'). 8~; + Dij(X'). L;) } , (12.24) 

£, = ~:,tt + ~:,tr + ~:,rt + ~:,rr. (12.25) 

We have indicated that for spherical particles the diffusion tensors nab ( xt) 
are functions of position only but not of orientation. We have broken £, 

into a sum of four operators, corresponding to the four types of diffusion 
tensors involved in each. Note that because of the position dependence of 
the nab(Rr, . . . 'RN) and the occurrence of configuration derivatives a;a~, 
the different operators ~:,ab do not commute with each other. As we have 
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seen above, the typical time-correlation function that enters into the light 
scattering has the form 

N 

Fem(q, t) = ~ L (Yf~n(uj(O))e-iq·Rj(O)yem(uk(t))eiq·Rk(t)) 
j,k=l 

N 

= 47r "'""'(Y.* (u ·)e-iq·Rie.Cty; (u )eiq·Rk) 
N~imJ imk , 

j,k=l 

(12.26) 

where we have made use of .Cas a time translation operator as in (11.26). Be­
cause we cannot rigorously factor the time-translation operator owing to the 
non-commutativity of the .cab, (exp.Ct -=J exp.Cttt exp.Ctrt exp.Crtt exp.crrt), 

we see that the de-coupling approximation cannot be exact. However, for an 
isotropic suspension as assumed above, we can observe [43) that to order t 

there is de-coupling of translations and rotations. Indeed, in the absence of 
orientation dependent potentials, .C cannot couple Ui to Uj for i # j so in 
the equilibrium thermal average (12.6) all collective terms with i # j vanish, 
and for identical particles we need .look only at 

(12.27) 

Expanding the time translation operator to first order in t, exp .Ct = 1 + 
t(.ctt + .ctr + .crt +.err)+ O(t2 ), and using the isotropy of the suspension [43], 
we find no contribution from .ctr , .crt leaving only the contributions 

47r(Yf~(ul)e-iq·RI.cttYem(ul)eiq·RI) 

= 47T(yt;,_(ut)Ytm(ut))(e-iqR1 .C"eiqR1 ) =-~ (TrD~\), . (12.28) 

(12.29) 

Thus the short-time result for Fem(q, t) is 

(12.30) 

with Db and D0 the "bare" translational and rotational diffusion coefficients 

for a single isolated sphere in the suspending fluid. The functions H! and H! 
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are many-body configurational averages of the respective tracer mobilities, 

(12.31) 

H r k B T ( rr ( t)) k B T J ( ) rr ( t) 
s = 3Db TrJ.LII X = 3Db dXPeq X TrJ.LII X . 

Thus from the short-time light scattering in the VV and V H polarization 
configurations we get information about the hydrodynamic interaction func­
tions for the suspension. 

For suspensions at low to medium particle density one can evaluate these 

many-body averages using a cluster expansion in powers of <I>, the volume 
fraction of the suspended mesoparticles [45, 46]. The cluster expansion looks 
like 

(IL)'l (X')) = !L)\(Rl) + ~ J dR1dR2g(R1, R2) (IL)\ (Rh R2) - !L)\(Ri)) 

+ ;~ j dR1dR2dR3g(R1>R2,R3)( (iL!\!RbR2,R3) -!L)\!Rl)) 

- (~-t~J. (RI, R2) - J.L~J. (RI)) - (~-t~J. (RI, R3) - J.L~J. (RI))) + ... , (12.32) 

where n = N /V is the number density of the suspension and g(Rb R2), 
g(RI, R2, R3) are the pair and triplet distribution functions for the suspen­

sion. From this and a similar expression for (J.L\\) we derive virial expansions 
to second order in the volume fraction <I>, 

H! (<I>) = 1 + H! I <I> + H!2 <I> 2 + .. . , 

H~(<I>) = 1 + H~I<I> + H~2 <I>2 + .... 
(12.33) 

One experimental measurement on a heavily screened charged suspension [43] 
gave 

H~ = 1 - (0.55 ± 0.1)<1>- (1.1 ± 0.2)<1>2 + ... , (12.34) 

while a theoretical calculation for hard spheres (47] gave 

H~ = 1 - 0.6310<1> - (0. 726 ± 0.001 )<1>2 + ... (12.35) 

Although screened charged particles are not hard spheres, their interactions 
are very short ranged with a strongly repulsive core so that the degree of 
agreement between (12.34) and (12.35) is encouraging. 
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It is now possible to make similar measurements for tracer spheres in 
suspensions of spheres of different sizes [23, 48, 49], in suspensions of rods 
and discs and in gels. Quite recently measurements of rotational diffusion of 
a tracer disc have been used to deduce the viscoelastic modulus of a polymer 
entanglement network [50]. There is as yet limited theoretical understand­
ing of these more complicated suspensions as compared with suspensions of 
identical spheres. Good theoretical models of these more complicated sys­
tems will enable the experimental measurements to be interpreted in terms 
of detailed local properties of the suspension thus providing an ever more 
valuable diagnostic tool. 
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Chapter 13 

Afterword 

These lectures have traced some of the applications of rotational diffusion 
as they developed from Debye's original work in 1913. After introducing the 
mathematical description of rotational diffusion in terms of a Smoluchowski 
equation in orientation space, most of the applications from Chapter 7 to 
Chapter 12 concerned polar or dielectric particles and their interactions with 
static or dynamic electric fields. However, these examples are far from ex­
hausting the many applications of rotational diffusion to systems of dispersed 
particles. This brief afterward points the reader to additional areas where 
rotational dynamics plays an important role and where there is scope for 
progress in theoretical modelling. 

The dynamics of ferrofluids or magneto-rheological fluids (suspensions 
of magnetic or magnetizable colloidal particles) is a technologically signif­
icant area of application [51]. Although formally similar to dispersions of 
electrically polar particles, the magnetic systems have many applications in 
technology owing to the wide variety of particle size and magnetization prop­
erties achievable. A particularly interesting class of problems arises here from 
the coupling of flow fields, external magnetic fields and rotational diffusion 
which leads to phenomena like magneto-viscosity [52] and "negative" viscos­
ity [53, 54, 55] seen in the flow of a ferrofluid down a tube in the presence of 
an oscillating field. 

For suspensions of electrically or magnetically polar particles the dynam­
ics of dense suspensions represents a difficult many-body problem. We have 
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touched on the many-body problem in Chapters 11 and 12 but there studied 
only· single-particle correlation functions while ignoring the effect of long­
ranged dipole-dipole interactions. In addition to these tracer particle corre­
lation functions there are correlation functions for collective rotational and 
translational properties which are equally important [56]. By approximat­
ing and truncating the dipole-dipole interaction to a finite range Heisenberg 
interaction and ignoring hydrodynamic interactions, the effect of two-body 
rotational dynamics in semi-dilute suspensions has been studied [57]. More 
recently progress has been made on the two-body problem with the full long­
ranged dipole-dipole interaction present (58]. If hydrodynamic interactions 
are included as well as dipolar forces, computer simulation may be the only 
way to make progress in modelling dense suspensions. 

For suspensions of non-spherical particles there are interesting problems 
both for dilute systems subject to external fields [20] and for dense systems 
of linear particles such as rigid rod polymers [24, 59]. Finally we mention an 
analogue problem suggested by the observation in Chapter 4 that the con­
figuration space of orientations is compact and bounded. The extreme limit 
of a bounded configuration space would be one in which there were only a 
finite discrete set of orientations possible. We can map such a system onto 
a diffusion-reaction system where each particle has a finite set of internal 
chemical states between which transitions are possible. The analogue of the 
Smoluchowski equation in Chapter 4 becomes a discrete state master equa­
tion which can be used in a generalized Smoluchowski description instead of 
the continuous rotation operators [60]. These examples show that there are 
still many challenging applications of rotational diffusion ninety years after 
Debye's seminal paper. 
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