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Preface 

Part of my research activity in the last few years has potentially applications 
in the field of ceramic materials. In the notes which follow, I have not at­
tempted to provide· a comprehensive guide to the mechanical behaviour of 

ceramics. Instead, I have collected together a number of unpublished contri­
butions, in which I was involved at different levels. These regard particular 
and often unrelated aspects of mechanical behaviour of ceramics. Moreover, 
results have been obtained following an approach peculiar to Solid Mechanics 
and they are not based on extensive_ experimental results. However, I hope 

that some of the presented material might stimulate the scientific curiosity 
of researchers in the field. 

All the results presented have been obtained in co-operation with dif­
ferent researchers, to which I would express my sincere gratitude. In par­
ticular, I owe much to Giancarlo Celotti, Goffredo De Portu, Leonardo Es­
posito, Alessandro Gajo, Massimiliano Gei, Stefano Guicciardi, Alexander B. 
Movchan, Andrea Piccolroaz, Enrico Radi, Sergei K. Serkov, Anna Tampieri, 
Antonella Thcci, Monica Valentini. 

Povo di Trento, January 2002. Davide Bigoni 
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Chapter 1 

An introduction to the mechanical 
behaviour of ceramics 

D. Bigoni I) 

Mechanical behaviour of ceramics is summarized with emphasis 

on some issues that will be addressed in the subsequent chapters. 

Elastic, plastic and viscous behaviour, fracture and large strain 

effects are considered. 

1.1. Preliminaries 

Since neolithic times ceramics have played a fundamental role in man's 
development and survival (Scott, 1954). But during the last thirty years the 
technology of ceramic design and production has undergone a spectacular 
growth. 

The peculiar optical, electrical, and magnetic characteristics, connected 
to the excellent thermo-chemical stability at high temperatures drives the 
industrial exploitation of ceramics. Following a modern definition of ceramics, 
these are materials manufactured from non-metallic, inorganic substances 
exhibiting high thermal stability. A broad class of materials falls within the 

l) Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento, Via Mesia­
no 77, 38050 Trento, Italy. 
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8 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

above definition, including - for instance - superconductors, tiles, diamonds, 
zirconia, alumina, and glasses (Pampuch, 1991). 

Structural ceramics are the main focus of the present notes. These differ 
from traditional ceramics essentially because of their high purity and the 
presence of substances different from silicates, such as oxides, carbides, ni­
trides, etc. Moreover, mechanical properties are a crucial design target within 
this class of materials. 

Our main interest here is the mechanical behaviour of structural ceramics 
related to fracture initiation and growth under service conditions. In partic­
ular, the present monograph is articulated as follows. 

A brief review of the mechanical behaviour of ceramics is included in 
Chapter 1. The treatment is far from exhaustive and the interested reader is 
referred to De Portu (1992), Evans (1984), Green (1998), Lawn (1993), Munz 
and Fett (1999) for a comprehensive view of field of ceramics and to Ashby 
and Jones (1980), Bridgman (1952), Cottrel (1964), McClintock and Argon 
(1966) and Nadai (1950) for more general notions of material science. 

Stable, rectilinear crack propagation in zirconia-containing ceramics is 
analyzed in Chapter 2. The focus is on the toughening mechanism related to 
stress-induced phase transformation in the near crack tip zone. 

Deflection of crack path as induced by inhomogeneities in the form of 
cavities, rigid/soft inclusions or cracks is analyzed in Chapter 3. Toughen­
ing may be connected to crack deflection, so that the investigation becomes 
important for ceramic materials. 

A peculiar failure mode, namely, failure under uniaxial compression is 
analyzed in Chapter 4 for silicon nitride at high temperature. Performed 
experiments demonstrate an elastic-plastic behaviour. Failure is interpreted 
in the framework of bifurcation theory. 

Chapter 5 is devoted to the analysis of cold forming of powders. Problems 
related to forming technology involve the major part of ceramic materials and 
are connected to the analysis of density and residual stress distributions in 
greens. 

1.2. Elastic behaviour 

Deformation in the elastic range of crystalline materials is related to ( re­
versible) movements of atoms, which - for instance - may be experimentally 
demonstrated using x-ray diffraction during deformation of a material ele-

http://rcin.org.pl



1.2 ELASTIC BEHAVIOUR 9 

ment. At room temperature, linear elasticity is a common behaviour of many 
ceramics, such as alumina (Al203) or silicon nitride (Si3N4). 

Within the realm of linear elasticity, stress u and strain E are related 
through a linear relationship 

u = E[E], (1.1) 

where the fourth-order tensor e may describe a broad class of anisotropic 
behaviours ( e is characterized, in the most general case, by 21 material con­
stants, when a stress potential is assumed). The behaviour of single-crystals 
is always anisotropic and the particular class of crystal symmetry defines the 
number of elastic constants (Love, 1927). For instance, three or five elastic 
constants describe cubic or hexagonal single crystals (Fig. 1.1). 

FCC BCC HCP 1\Jngsten Carbide 

FIGURE 1.1. Crystal lattice structures: Face Centered Cubic, Body Centered Cubic, 
Hexagonal Close Packed, Tungsten carbide. 

At a macroscopic scale, polycrystalline ceramics often consist of a random . 
array of single-crystals, so that an isotropic elastic behaviour follows. In this · 
case, the elastic constants reduce to two, the Young modulus E and the 
Poisson's ratio v. The elastic fourth-order tensor thus becomes: 

e = >-.I ® I + 2J.LI0I, (1.2) 

where 
)..- vE 

- (1 + v)(1 - 2v)' 
E 

(1.3) 
J.L = 2(1 + v)' 

are the Lame constants (J.L is the shear modulus, often denoted by G) and 
I® I and If!JI are fourth-order tensors defined, for every second-order tensor 
A, in the following way: 

I® I[ A] = (tr A)I, (1.4) 

Indicative values of the elastic constants for some materials at room temper­
ature are reported in Table 1.1 (data taken from Green, 1998; Kingery et al. 
1960; Meyers and Chawla, 1999; Munz and Fett, 1999; Shackelford, 1985). 

http://rcin.org.pl



lQ 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

TABLE 1.1. Elastic constants E, vat 20°C. 

II Material I Young modulus E (GPa) Poisson's ratio v II 
1040 carbon steel 200 0.3 

304 stainless steel 193 0.29 

3003-H14 aluminum 70 0.33 

Copper 129.8 0.343 
Polyamides (nylon 66) 2.8 0.41 
Acetals 3.1 0.35 
Borosilicate glass 69 0.2 
Silicon nitride (HPSN) 320 0.28 
Sintered alumina (95% dense) 320 0.20-0.26 

Sintered stabilized zirconia 150-240 0.22-0.30 
Ceramic fibre SiC 430 -

Glass fibre (S-glass) 85.5 -

Polymer fibre (Kevlar) 131 -

Ceramic whisker Ah03 430 -

Ah03 whiskers (14 vol%) in epoxy 41 -

1.3. Fracture 

At room temperature, ceramics are typically brittle materials, which usu­
ally fail as a consequence of rapid and catastrophic fracture propagation 2) . 

Perhaps the major research goal of the last thirty years (in the field of ce­
ramics!) has been indeed directed to emend this characteristic, which is un­
acceptable in many technological applications. 

There are essentially two approaches to linear elastic fracture mechan­
ics: the energy approach and the stress intensity approach. The former was 
initiated by Griffith (1920) and is equivalent to the latter, that is followed 
below (for a detailed presentation of fracture mechanics see Anderson, 1995; 
Broberg, 1999; Lawn, 1993). With reference to the coordinate system intro­
duced in Fig. 1.2, the asymptotic stress fields near a crack tip in an isotropic, 

linearly elastic material, subject to symmetric boundary conditions - the 
so-called Mode I problem - can he expressed as (Westergaard, 1 939) 

( B) 

} { 

( 1 - sin ~ sin 3t ) 
au r, K B 
a22(r,B) = ~cos 2 (1+sin~sin 3t). 

( B) v 21fr 
a12 r, sin fl. cos 30 

2 2 

(1.5) 

2
) Brittle crack propagation occurs essentially by bond rupture, for cracks of atomic 

sharpness. 
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1.3 FRACTURE 11 

Xz 

cr22(r,O) 

FIGURE 1.2. Polar and cartesian coordinates used to describe crack fields. The stress 
component a22(r, 0) is also reported. 

It should be noted that fields (1.5) satisfy equilibrium with null body forces 

divu = 0, (1.6) 

the traction-free boundary conditions on crack faces 

(1.7) 

and the symmetry condition ahead of the crack 

a12(r,O) =0, (1.8) 

for every value of K I. 

Two key points emerge from an analysis of (1.5), namely: 

• the stress field is proportional to the unknown amplitude K1, the so­
called stress intensity factor; 

• the stress field is singular, in the sense that the stress approaches in-
finity when the distance to the crack tip r tends to zero. 

The stress intensity factor completely characterizes the near-tip stress state 
and therefore depends on the particular geometry of the loaded structure. For 
instance, in the case of an infinite plate subject to a remote tensile stress a, 

for a through-thickness crack of length 2a and 

for an edge crack of length a. 

http://rcin.org.pl



12 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

Being the stress infinite at the crack tip, it cannot be sustained by any 
real material. However, the fracture concept introduced above follows from a 
mathematical model, so that on one hand a perfectly sharp crack is impossible 
in a real problem and, on the other hand, an elastic material is also an ideal 
notion. Consequently, for brittle materials it is assumed that the stress is high, 
though not infinite, at a real crack tip and that it is reasonably described 
by representation (1.5), at least outside a process zone, which is very small 
when compared to the problem size. Therefore, let us analyze loading of 
a structure containing a crack. Under the hypothesis that a given stress 
combination leads to failure, the achievement of this must correspond to the 
attainment of a critical value of the stress intensity factor Klc· A fundamental 
assumption of fracture mechanics is that the critical stress intensity factor 
depends only on the nature of the material and is therefore independent of 
the geometry and size of the fractured body. As a consequence, once K 1 c is 
known for a given material, a failure analysis can be performed for a structure 
made up of that material. 

In addition to the symmetric mode illustrated above, there are other two 
types of loading that a crack may experience, so that Mode I, Mode II and 
Mode III are distinguished (Fig. 1.3). However, brittle materials are more 
prone to fracture by normal tensile stresses than by shear stresses, so that 
Mode I loading has the most practical importance. 

Mode I Mode II Mode Ill 

FIGURE 1.3. The three modes of crack loading. 

The fracture toughness K1c can be experimentally determined by intro­
ducing an artificial crack in a testing structure, subsequently loaded to failure . 
Different test settings are used for ceramic materials (Anderson, 1995; Green, 
1998). Some indicative values of toughness in different materials are reported 
in Table 1.2 (data taken from Ashby and Jones (1980); Cook and Pharr, 1994; 
Evans, 1989; Green, 1998; Meyers and Chawla, 1999; Shackelford, 1985). 

http://rcin.org.pl



1.3 FRACTURE 13 

TABLE 1.2. Toughness K1c of materials at room temperature. 

II Material I K1c (MPa Jiii) II 
Mild steel 140 
Medium-carbon steel 51 

High strength steel (HSS) 50-154 

Aluminum alloys 23-45 

Cast iron 6-20 

Rigid PVC 3-7 
Polyamides (nylon 66) 3 
Cement/ Concrete 0.2 

Soda-lime glass 0.7-0.9 

Ah03 3-5 
SiC 3-4 

SbN4 4-7 
Zirconia ceramics 5-35 
E-glass (73.3 vol %) in epoxy 42-60 

Fibre reinforced Glass/C 20 
SiC fibres in SiC 25 

SiC whiskers in Ah03 8.7 

Wisker reinforced SbN 4 14 

The above presented scenario for fracture is very simple. In reality, cracks 
interact with material microstructure, during propagation. This interaction 
strongly influences toughness. In view of the fact that brittleness still perhaps 
remains the most important limiting factor in the design of ceramics com­

ponents, it follows that the understanding of the micromechanics of fracture 
propagation becomes crucially important. Following Green (1998), toughen­
ing mechanisms can be classified in three groups (Figs. 1.4-1.6) : 

1. Crack tip interactions: 

(a) crack bowing, 

(b) crack deflection. 

2. Crack tip shielding: 

(a) transformation toughening, 

(b) micro crack toughening. 

3. Crack bridging. 

During crack bowing process, the crack front interacts with obstacles -

such as tough second phase particles - impeding propagation and does not 

http://rcin.org.pl



14 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

crock propagation 

crack bowing crack deflection 

FIGURE 1.4. Crack tip interaction with a periodic composite. 

~ tronsfooned particle 
c::> untronsfooned particle 

Transfonnation toughening 

molncrack ~ 

mlcroc~ 

Mlcrocrack toughening 

FIGURE 1.5. Crack tip shielding. 

unbroken ligaments 

broken ligaments r-- bridging zone ----1 

FIGURE 1.6. Crack bridging. 

remain straight. This mechanism is related to an increase in toughness, as 
evidenced by Bower and Ortiz (1991). 

Crack deflection occurs when fractures deviates from rectilinearity, so that 
mixed mode loading is involved. Note that crack deflection produces non­
planar fracture, whereas crack bowing corresponds to nonlinear crack front. 
Both toughening mechanisms are often concurrent and strongly influenced by 
the morphology and contact conditions of the second-phase particles. Crack 
deflection, which is experimentally revealed by the roughness of the final 
fracture surface, was analyzed by Cotterel and Rice (1980) and Faber and 

http://rcin.org.pl



1.4 PLASTIC BEHAVIOUR 15 

Evans (1983). An alternative analysis is provided in Chapter 3, under the 
assumption that the particles inducing deflection are far enough from the 
fracture trajectory. 

'fransformation toughening is related to dilatant, stress-induced phase 
transformation of particles in a ceramic matrix, a problem addressed in Chap­
ter 2. 

Microcracks can be present in ceramics as induced by the fabrication 
process or may nucleate as a consequence of a state of prestress or, finally, 
can be induced by stress. 

Under certain circumstances, a microcracked zone around a larger crack 
may yield a crack tip shielding effect 3). This effect, analyzed in (Evans and 
Faber, 1981; Evans and Fu, 1985; Fu and Evans, 1985; Clarke, 1984; Rose, 
1986; Rubinstein, 1986 and Hutchinson, 1987; Duan et al., 1995), is however 
controversial in the sense that it may be almost entirely counterbalanced by 
the resistance reduction caused by the presence microcracks in the material 
(Ortiz, 1988; Ortiz and Giannakopoulos, 1989). Crack deflection as induced 
by interaction with a diluted distribution of cracks can also be analyzed with 
the model presented in Chapter 3. 

Finally, crack bridging occurs when there are fibres or particles in the 
wake of the crack pinning its faces and therefore reducing the crack tip stress 
intensity factor (Rose, 1982, 1987; Cox and Marshall, 1988, 1994; Budiansky 
and Amazigo, 1989; Movchan and Willis, 1993; Movchan and Willis, 1996, 
1997 a, b, 1998). With the exception of transformation toughening, crack 
bridging is the most important toughening mechanisms among all discussed 
above (Pezzotti, 1993; Pezzotti et al., 1996). 

1.4. Plastic behaviour 

Inelastic deformation is usually related to dislocation activity. In mono­
lithic ceramic materials such as alumina, temperatures superior to 1300° C are 
needed to make dislocation motion appreciable. Therefore, although ceram­
ics are crystalline materials like metals, plastic deformation is not exhibited 
in ordinary conditions. However, micromechanisms different from dislocation 
activity may also induce irreversible deformation. For instance, inelastic de­
formation of silicon nitride at high temperature is related to the viscous flow 

3
) Porosity decreases toughening as evidenced by Rice, 1984; Zimmermann et al. (1998) 

and Zimmermann and Rodel (1998). 
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16 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

of a a glassy phase often present in the grain boundaries of this material. 
An example of such a behaviour is presented in Chapter 4. Completely dif­
ferent micromechanisms of plastic deformations take place during forming of 
ceramic powders. These are presented in Chapter 5 and, in summary, consist 
in rearrangements, deformation and collapse of particles. Finally, inelastic 
deformation is connected to phase transformation occurring - for instance -
in zirconia-containing ceramics. Elastoplastic constitutive laws are therefore 
employed in Chapter 2, when analyzing transformation toughening during 
crack propagation. 

Let us consider behaviour of an elastic-plastic material deformed in uni­
axial tension, as illustrated in Fig. 1. 7. 

(J 

hardening/softening plasticity ideal plasticity 

FIGURE 1.7. Elastoplastic models. 

When unloading occurs after a plastic state has been reached, e.g. point A, 
the inelastic deformation EP is not recovered. A key ingredient in any phe­
nomenological theory of plasticity is the fact that plastic deformation is pos­
sible only when the stress state satisfies a yield criterion. For isotropic ma­
terials, a yield criterion may be visualized as a locus in the principal stress 
space representing elastic states of the material (Fig. 1.8) . Plastic deforma­
tion is possible only when the stress state lies on the boundary of the yield 
locus, namely, the yield surface. 

Plastic or elastic deformation actually takes place if a loading/unloading 
criterion is met. This criterion is necessarily incremental. In fact, starting 
from point A in Fig. 1. 7, incremental plastic or incremental elastic deforma-

http://rcin.org.pl



1.4 PLASTIC BEHAVIOUR 17 

von Mises Tresca Drucker-Prager Coulomb-Mohr 

FIGURE 1.8. Yield surfaces in the principal stress space. 

tions may occur. As a consequence, time independent, inelastic deformation 
is described by a rate theory, as briefly explained below (the interested reader 
is referred to Hill, 1950; Besseling and van der Giessen, 1994; Lubliner, 1998). 

The skeleton of a generic phenomenological theory of plasticity usually 
consists in the following hypotheses: 

AI. Additive decomposition of total strain e into an elastic part and a plastic 
part: 

(1.9) 

A2. Elastic law (1.1) defined by the constant fourth-order elastic tensor e 
and relating the stress to the elastic deformation: 

(1.10) 

A3. Yield function defined in terms of stress u and K, a generic set of internal 
variables of arbitrary tensorial nature, so that: 

f ( u, K) < 0 elastic behaviour is only possible, 
f ( u, K) = 0 plastic deformation rate may occur, 
f ( u, K) > 0 is not defined. 

(1.11) 

A4. Plastic flow rule in terms of a symmetric, second-order tensor P, the 
flow mode tensor: 

(1.12) 

where A ~ 0 is the non-negative plastic multiplier and a dot over a sym­
bol denotes the derivative with respect to a time-like, non-decreasing 
scalar parameter governing the rate problem. 

http://rcin.org.pl



18 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

A5. Hardening law: 

IC =At, (1.13) 

where K is a continuous function of the state variables. 

The above equations yield the rate constitutive equations in the general 

form (Bigoni, 2000) 

iT= { £[€) - Jt < Q · £[€) > E[P) if f(u, K) = 0, 

£[€) if f(u,K) < 0, 
(1.14) 

where the operator < · > denotes the Macaulay brackets which associates to 
any scalar a the value <a>= max {a, 0}, tensor Q is the yield function 

gradient 

Q = 8f 
au' 

and the plastic modulus His related to the hardening modulus h through 

H=h+Q·E[P]. 

The hardening modulus h, defined as 

8f -
h = -- ·K atc ' 

(1.15) 

(1.16) 

describes the type of hardening of the material. In particular, h is positive 

for strain hardening, negative for softening and null in the case of ideal plas­
ticity. When h is constant, linear hardening occurs, but h may be function 

of the state, thus describing a nonlinear hardening law (Fig. 1. 7). When the 

hardening is strictly positive, h > 0, the constitutive law (1.14) can be in-

verted 

e = { e -1 [a-J + ~ < Q . a- > P if J ( u, K) = o , 
e- 1[&) if j(u,K) < 0. 

(1.17) 

In the particular but relevant case in which the flow mode tensor is equal 
to the yield function gradient, P = Q, the yield function is called "associa-

tive". 

Comparing to linear elasticity (1.1), two key points emerge from the anal­

ysis of the constitutive equations (1.14) or (1.17), namely: 

• the constitutive equations (1.14) are written in rate form . This does 

not imply dependence on physical time, rather time is identified with 

any scalar parameter governing the loading process. 
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1.5 VISCOUS BEHAVIOUR 19 

• the constitutive equations (1.14) are incrementally nonlinear, due to 

the presence of the Macauley brackets. 

It follows from the above points that in any problem of plastic flow, the 
constitutive equations have to be integrated with respect to the time-like 
parameter governing the flow. 

1.5. Viscous behaviour 

When deformation depends on physical time, the behaviour is viscous. 
Viscous flow, typical of fluids, may also occur in solids and its occurrence is 
related to the period of time over which the stress is applied 4). The simplest 
viscous constitutive equations are those for an incompressible Newtonian 

fluid 

0' = -pi+ 2fJ€, tri: = divv = 0, (1.18) 

where rJ is the viscosity of the fluid, v its velocity and i: the Eulerian strain 
rate (the symmetric part of the velocity gradient), finally, p = - trf is the 
pressure at a point of the fluid. 

As a crucial point, we note that Eq. (1.18) relates the Eulerian strain rate 
to the current stress. 

In a number of circumstances, fluids are involved in the industrial ap­
plications of ceramics, for instance during injection molding or slip casting. 
During the latter process, emulsions and slurries are usually employed, con­
sisting of suspended solid particles in a fluid. Flow of these material is usually 
sensible to the volume fraction of particle and violate Newtonian behaviour 
in several ways. First, the viscous flow becomes nonlinear, so that the shear 

stress is a nonlinear function of strain rate. Second, the shear stress depends 

not only on the local strain rate, but also on its history (so-called "memory 
effect"). The latter is described by viscoelasticity, which - according to the 
Kelvin-Voigt scheme - can be viewed as an "parallel" combination of (1.1) 
and (1.18) 

tri: = divv = 0, (1.19) 

4
) For instance, the hot rocks of the Earth's mantle may be considered as solid when 

deform under the action of seismic waves. On a completely different time scale - on the 
order of a million years - the same rocks are unable to support shearing stresses and flow 
as a fluid. 
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20 1. AN INTRODUCTION TO THE MECHANICAL BEHAVIOUR OF CERAMICS 

or - according to the Maxwell scheme - can be viewed as a "series" combi­
nation of (1.18) and (the rate of) (1.1) 

ir = -pi + 2J-L E. - .!_ (pi + u) , 
T 

trE. = divv = 0, (1.20) 

where T = 'fJ/ J-L is the relaxation time. Constitutive equations (1.19) and 
(1.20) describe two specific incompressible, viscoelastic behaviours (further 
details can be found in Malvern, 1969). 

Finally, in applications at high temperature, ceramics often exhibit a 
time-dependent plastic deformation, the so-called creep. An elastic-visco­
plastic behaviour can be defined as a generalization of (1.20), where a thresh­
old for viscous behaviour is introduced (Duvaut and Lions, 1976; Loret and 
Prevost, 1990) 

ir =£E.- .!.(u- uo)H(f(u(t)), 
T 

( 1.21) 

where His the Heaviside function (H(x) = 1 for x > 0, otherwise H(x) = 0), 
f is the yield function, dependent on current stress u(t), and uo is the 
projection of u on the yield surface at time t. Differently from the usual 
definition employed in rate-independent elastoplasticity, positive values of 
f(u(t)) are fully allowed in (1.21). Constitutive equation (1.21) describes an 
elastic rate-indepedent behaviour within the yield function. When the stress 
intensity corresponds to positive values of the yield function, the material 
flows with a viscous deformation rate proportional to lu- uol-

1.6. Large strains 

Large deformations may occur in the elastic or inelastic range. For in­
stance, ceramic whiskers- such as SiC- or silica-glass fibres may often be so 
strong that deformation can proceed beyond the limit of linearity to a range 
of nonlinear elastic deformation (Green, 1998). Moreover, during compaction 
of ceramic powders large plastic strains occur, while elastic deformation usu­
ally remains small. An example of this large strain elastic-plastic behaviour 
is presented in Chapter 5. 

In other cases, deformations are actually small, but effects such as in­
stabilities (for instance buckling of fibres which may occur in a composite) 
may be properly captured only within a theory taking into account large 
strain effects. For instance, failure of silicon nitride cylinders subject to uni­
axial compression is described in Chapter 4, employing bifurcation theory of 
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1. 7 REFERENCES 21 

finitely deformed, elastic solids. Strains are actually not so large in that case, 
but large strain effects are necessary to predict bifurcations. 

In a large strain theory, the constitutive equations involve objective mea­
sures of stress and strain. For instance, in an Eulerian description, an elastic 
constitutive law may be generically written in the form: 

(1.22) 

where B is the left Cauchy-Green strain tensor and the scalars /3i, i = 0, 1, 2 
are functions of the invariants of B (Gurtin, 1981). 

In any rate theory of plasticity at finite strain objective rates of stress 

and strain replace the rates iT and £. A presentation of finite strain theory is 
far beyond the scope of the persent introduction and the interested reader is 

referred to (Bigoni, 2000; Gurtin, 1981; Ogden, 1984; Holzapfel, 2000). 
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Chapter 2 

On toughening in 
zirconia-containing ceramics 

Davide Bigoni l) and Enrico Radi 2) 

Transformation toughening in zirconia-containing ceramics is re­

lated to dilatational, inelastic volumetric strain. .A. model for 

steady-state, Mode I crack propagation in a pressure-sensitive, 

dilatational elastic-plastic material is presented, based on the 

Drucker-Prager yield criterion. In the framework of asymp­

totic analysis, results demonstrate a toughening effect related to 

pressure-sensitivity and volumetric inelastic strain. Asymptotic 

field representations may yield a deep understanding of near-crack 

tip stress-deformation phenomena. 

2.1. Introduction 

Zirconia (Zr02) is often used in ceramic alloys as a toughening agent. 
In fact, zirconia ceramics exhibit a marked inelasticity and a relatively high 

l) Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento, Via Mesia­
no 77, 38050 Trento, Italy. 

2
) Dipartimento di Scienze e Metodi dell'Ingegneria, Universita di Modena e Reggio 

Emilia, Via Fogliani 1, 42100 Reggio Emilia, Italy. 
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28 2. ON TOUGHENING IN ZIRCONIA-CONTAINING CERAMICS 

fracture toughness, which make them suitable for different industrial applica­

tions, as for instance adiabatic engine components (Robb, 1983). The tough­
ening effect is related to the martensitic phase transformation- accompanied 

with large shear (up to 16%, in an unconstrained crystal) and volumetric 
(up to 5%, in an unconstrained crystal) strains 3) -in which tetragonal zir­
conia transforms to monoclinic (t-Zr02 ~ m-Zr02). More in detail, the 
tetragonal phase, usually found at high temperature, may be retained at low 
temperature, when the zirconia precipitate is sufficiently constrained by the 
surrounding material. This occurs when the zirconia particle is smaller than 
a critical size (which for instance is inferior to 0.5 J-Lm, for a t-Zr02 particle 
to be retained at room temperature, Green, 1998). During fracture propaga­
tion, a stress-induced transformation has been experimentally demonstrated 
to occur near the crack tip (Evans and Heuer, 1980; Marshall et al. 1990; 
Dadkhah et al. 1991; Green et al. 1991). This gives rise to a nonlinear, irre­
versible 4) deformation which extends during propagation in the crack wake 
and yields a crack tip shielding effect (Evans, 1984; Evans and Cannon, 1986). 
In particular, though unstable fracture propagation would occur in the pure 
matrix material, stable crack growth has been observed- on the order of sev­
eral millimetres - and R-curves have been measured in zirconia-containing 
ceramics (Stump and Budiansky, 1989). 

There are different theoretical approaches to evaluate toughening as­
sociated with stress-induced phase transformation. Initial approaches have 
assumed a purely dilatational transformation strain, characterized by the 
macroscopic hydrostatic stress vs. dilatation strain shown in Fig. 2.1. 

In particular, phase transformation initiates at a critical mean stress a~ 
(point 1) and proceeds until point 2. If the slope of the 1-2 line is steeper than 
a critical value, the transformation is unstable (supercritical case), otherwise 

it is stable (subcritical case) and the phase change occurs gradually, with the 
zirconia particles only partially transformed (for states represented by points 
between 1 and 2). Assuming the above model, McMeeking and Evans (1982), 
Budiansky et al. (1983), Lambropuolos (1986a,b), Rose (1986), Amazigo and 

3
) Due to the constraint of the matrix phase on the zirconia precipitate, transformation 

occurs with extensive microcracking and shear strain is accomodated by twinning, thus 
resulting in an overall shear strain which may be remarkably less than 16%. 

4
) The stress-induced transformation is usually considered irreversible, even if reversible 

transformations have been often observed (Marshall and James, 1986; Marshall and Swain, 
1989). 

http://rcin.org.pl



2.1 INTRODUCTION 29 

/loading 

: 2 

/j ,//unloading 

4 Dilatation 

FIGURE 2.1. Hydrostatic behaviour of ceramics containing particles suffering a 
dilatational phase transformation. 

Budiansky (1988), Stump and Budiansky (1989), and Hom and McMeeking 
(1990) performed various analyses at different levels of sophistication, both 
in the subcritical and supercritical ranges. The analyses essentially show 

that the shielding effect due to stress-induced phase transformation induces 
a rising in the R-curve, without changing the toughness when a stationary 
crack is present in an non-transformed material 

In contrast with the purely dilatational behaviour, detailed experiments 
provided by Chen and Reyes-Morel (1986), Chen (1986) Reyes-Morel and 
Chen (1988), Reyes-Morel et al. (1988), and Subhash and Nemat-Nasser 
(1993) evidence a strong coupling between dilatational and shear strains, so 
that a model neglecting the latter should be considered merely approximated. 
The above-mentioned experiments also indicate the Drucker-Prager (1952) 
criterion as the best candidate for describing yielding of zirconia-containing 

ceramics. Moreover, calculations performed by Lambropoulos (1986b) reveals 
that the effect of shear transformation strain on the shape of the transfor­
mation zone may be very strong. 

Therefore, a more fundamental approach has been followed by Starn et al. 
(1994) and Starn and van der Giessen (1995, 1996a,b), employing the model 

proposed by Sun et al. (1991) and Sun and Hwang (1993a,b). The numeri­
cal results presented confirm findings obtained with the simple dilatational 
model. Recent analyses based on the Sun model (Yi and Gao, 2000; Yi et 

al. 2001) again show a shielding effect related to stress-induced phase trans­

formation. However, the Sun and Hwang model is sufficiently complicated 

to discourage analytical approaches to crack propagation analysis. Simpli-
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fied plasticity models- retaining the key ingredients of plastic dilatancy and 

pressure-sensitive yielding - have been therefore employed to develop ana­

lytical solutions to crack growth near-tip fields. In particular, a stationary 
crack was analyzed for power-law (Li and Pan, 1990 a, b) and elastic-perfectly 

plastic (Li, 1992; Ben-Aoun and Pan, 1993) materials. However, according to 
the simplified analyses by McMeeking and Evans (1992) and Budiansky et 
al. (1993), the shielding effect related to phase transformation should become 

more evident in conditions of crack growth. Steady-state fracture propaga­

tion was considered by Amazigo and Hutchinson (1977), Ponte Castaneda 

(1987) and Bose and Ponte Castaneda (1992) for J2-fiow theory of plasticity. 

Their approach has been generalized to various pressure-sensitive models by 

Bigoni and Radi (1993, 1996), Radi and Bigoni (1993, 1994, 1996), Potthast 

and Hermann (1996, 1997, 2000) and Zhang and Mai (2000), Radi et al. 
(2001). 

In particular, Bigoni and Radi (1993) and Radi and Bigoni (1993) have 

provided the first asymptotic solution for steady crack growth in a Drucker­

Prager elastoplastic material with linear strain hardening under Mode I, 

plane strain and plane stress conditions , for associative and nonassociative 

flow rule. The results of Bigoni and Radi (1993) and Radi and Bigoni (1993) 

are concisely presented below in a way to give evidence to the connections 
with fracture behaviour in zirconia-containing ceramics. 

2.2. Asymptotic crack-tip fields 

The determination of asymptotic stress and strain fields in the plastic 

zone near a crack tip is a basic problem in the understanding of fracture 

propagation mechanisms. Our interest here is in asymptotic analyses, which 

give an accurate description of near tip fields. The validity of these is re­
stricted to within an annular zone which - on one hand - is close enough 

to the crack tip to justify the dominance of certain terms in the asymp­
totic expansion of unknown tip fields, but - on the other hand - is greater 

than the fracture process zone, where microscopic separation processes occur 

(Hutchinson, 1983). 

This is sketched in Fig. 2.2, where r 1 denotes the radius of the fracture 

process zone and r2 sets a outer limit to the asymptotic analysis. 

In the fracture propagation problem that is considered, the crack tip 

steadily and rectilinearly moves in an elastic-plastic material characterized 
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PLASTIC 
ZONE 

FIGURE 2.2. Validity limits of asymptotic analysis. 

31 

by the bi-linear constitutive law in shear shown in Fig. 2.3, where 1 is the 
engineering strain, T the shear stress and G and Gt are the elastic and hard­
ening shear moduli, respectively. 

FIGURE 2.3. Shear stress T vs. engineering strain 'Y for the assumed model. 

We refer to a fully incremental theory of plasticity, so that during crack 
propagation, elastic unloading and plastic reloading zones form, as schemat­
ically illustrated in Fig. 2.4. 

Obviously, only the initial tangents to the plastic and elastic sectors are 
"viewed" in an asymptotic analysis, so that the analyzed situation looks like 

that sketched in Fig. 2.5, where fh and fh denote the angular coordinates of 

the elastic unloading and plastic reloading sectors, respectively. 
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v 
)IIIIa E 

trajectory of a material particle 

p . 

wake I 
crack-tip zone 

FIGURE 2.4. Sketch of crack propagation in a plastic material. 

elastic 
unloading 

crack-tip 

plastic 
loading 

FIGURE 2.5. Sketch of elastic unloading and plastic reloading sectors during crack 
propagation. 

It may be important to remark that a plastic reloading sector must be nec­
essarily present on crack flanks during crack propagation (Ponte Castaneda, 
1987). 

2.2.1. Constitutive equations 

Small strain version of the Rudnicki and Rice (1975) model, with lin­
ear strain hardening is characterized by the following nonlinear incremental 
relationship between strain i: and stress i:T rates: 

E = ~ ((1 + v)tT- v(tr&)I + * < Q · tT > P), if f(u) = 0, 

(2.1) 
. 1 + v . v ( . )I 
€= --u-- tru 

E E ' 
if f(u) < 0, 

where v is the Poisson's ratio, E the Young modulus, h the ratio between 
the hardening modulus and E, the operator < · > is the Macaulay brackets, 
and the yield function gradient Q and plastic mode P tensors are 
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Q - !!:_I __!___ 
- 3 + 2/J2' 

f3 s 
P= -1+--

3 2/J2' 
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(2.2) 

in which J2 = S · S /2 is the second invariant of deviatoric stress S and p, 

and f3 are two material parameters governing the pressure-sensitivity and the 

dilatancy of the material, respectively. Finally, f(a) is the Drucker-Prager 

yield function 

f(a) = ~tra + .J];- k, (2.3) 

where k is 1/ .;2 time the radius of the deviatoric section of the yield surface 

with the ?T-plane in the Haigh-Westergaard stress space. 
Even if the above-described constitutive model has been thoroughly em­

ployed in rock mechanics (where p, and f3 may range between 0.4 and 1 and 

0.2 and 0.5, respectively), there are only few experimental data for ceram­

ics. In particular, Chen and Reyes-Morel (1986) and Reyes-Morel and Chen 

( 1988) reported J-l = f3 = 0.69 for zirconia-containing ceramics. These ex­

perimental results support the validity of the associative flow rule, which is 

however usually violated for geomaterials. We will limit the presentation in 

the following to the Mode I plane-strain condition with associative flow rule, 

1-l = {3 . 

2.2.2. Crack propagation 

We refer to steady state crack propagation, so that, adopting a Cartesian 
reference system with origin attached to the moving crack tip (Fig. 2.6), the 

time derivative of a generic field may be replaced by the spatial derivative 

()=-V(),l, (2.4) 

where the axis 1 is in the direction of crack propagation and V is the (con­

stant) crack propagation velocity. In a cylindrical coordinate system, the 

equilibrium equations under plane-strain condition become 

FIGURE 2.6. Moving crack and reference systems. 
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( rarr) ,r + aro,o - aoo = 0, 
(2.5) 

(raro),r + aoo,o + aro = 0, 

(where arr, aro and aoo are the three in-plane stress components) and the 
kinematical compatibility conditions 

Err = Vr,r, E()() = V(),() + Vr' 
r 

. 1 ( Vr,O- V()) 
tr() = 2 V() ,r + T ' f.33 = 0, (2.6) 

where Vr and vo are the two in-plane components of velocity, Err 1 Ero, coo the 
three in-plane components of strain rate and the index 3 denotes out-of-plane 

components. 

The steady-state condition (2.4) allows us to express the stress rates in 
terms of spatial derivatives with the following time derivative rule 

ar(} = v --(arT- a00 + aro 0)- ar0 T COS 0 l 
. (sinO ) 

r ' ' 

. (sinO ) a TT = v -- (a TT 0 - 2a r()) - a TT T COS 0 , 
r ' ' 

(2.7) 
. (sinO ) aoo = V --(aoo o + 2aro)- aoo r cosO , 

r ' ' 

a33 = v --a33 0 - a33 T COS 0 . (
sinO ) 

r , , 

A substitution of Eqs. (2.6) and (2.7) into the constitutive equations (2.1) 
together with the equilibrium equations (2.5) yields a system of six PDEs 

for the six unknowns functions Vr, vo and aro, arr, aoo, a33· The key math­
ematical point is now to reduce the PDEs system to a system of ODEs, 

looking for solutions in the separable variable form proposed by Amazigo 
and Hutchinson (1977) 

V ( r )s Vr = -; B Wr(O), 

aro = E (~)s Tro(O), 

aoo = E (~)s Too(O), 

VO = : ( ~) s W() ( 0), 

arr = E (~) s Trr(O), 

a33 = E (~) s T33(0), 

(2.8) 

where the negative exponent s denotes the strength of stress and velocity 

singularity and B denotes a characteristic dimension of the plastic zone. 

http://rcin.org.pl



2.3 RESULTS 35 

Having assumed the representation (2.8), the angular functions Wr, wo and 
Tro , Trr, Too, T33 and the field singularity s become the unknowns of the 
problem 5). These may be obtained through a Runge-Kutta numerical inte­
gration, combined with a shooting method to satisfy all boundary conditions. 
In the particular case of Mode I propagation, the boundary conditions are 
the following. 

1. Mode I symmetry conditions (and regularity of angular functions) 

wo(O) = Tro(O) = 0, 
(2.9) 

Wr,o(O) = Trr,o(O) = Too ,o(O) = T33 ,o(O) = 0, 

2. Boundary conditions on crack faces 

Too(7r) = Tro(7r) = 0, (2.10) 

3. Continuity across the elastic-plastic boundaries of all field quantities. 

It is worth noting that possibility of elastic unloading and plastic reload­
ing has to be checked and taken into account during numerical integration 
of the ODEs system. 

2.3. Results 

Extensive numerical investigations including plane-strain , plane-stress sit­
uations , effects of flow rule non-associativity, porosity, and fluid-saturation 
can be found in (Bigoni and Radi, 1993, 1996; Radi and Bigoni, 1993, 1994, 
1996; Radi et al. 2001). Therefore, we limit the presentation here to the 
findings that may be relevant in the field of ceramic materials. 

Values of the singularity s and elastic unloading fh and plastic reloading 
e2 angles as functions of the pressure-sensitivity parameter 1-l are reported in 
Figs. 2.7 and 2.8, respectively. 

Small and high strain hardening are considered, corresponding to the 
values 0.001 and 0.75 of the hardening parameter a defined through 

1 1 
-=1+----
Q 2(1+v)h. 

(2.11) 

s) The present asymptotic problem gives the leading term in the asymptotic expansion 
of crack tip fields . It is a homogeneous problem, so that the amplitude factor B remains 
undetermined. 
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FIGURE 2.7. Singularity of stress and velocity fields s as a function of pressure-sensitivity 
parameter Jl for small (a= 0.001) and high (a = 0.75) strain hardening. 
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FIGURE 2.8. Elastic unloading (h and plastic reloading (h angles for small (a= 0.001) 
and high (a= 0.75) strain hardening. 

It should be noted that the Poisson's ratio v was found not influence much 

the results and has been chosen equal to 0.3 . The angular function describing 

the stress and velocity components are reported in Fig. 2.9 and Fig. 2.10, 

respectively, where different values of pressure-sensitivity are considered for 

small hardening a = 0.001. 

Figures 2.7- 2.10 are sufficient to draw the main conclusions of our study, 

namely, that an increase of the pressure-sensitivity and related dilatancy 
yields 

• a reduction in the singularity of the stress and velocity fields; 

• a decrease in the stress deviator ahead of the crack tip. 
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The above two facts imply a crack growth stabilization connected to an in­

crease of pressure-sensitivity and related plastic dilatancy. This conclusion is 

therefore consistent with the well-known fact that the dilatancy associated 

with stress-induced phase transformation is directly related to the shielding 

effect. An analysis based on nonassociative flow rule - where plastic dila­

tancy is unrelated to pressure-sensitive yielding (J.-L # (3) - shows that for 

a fixed pressure-sensitivity, plastic dilatancy is the key constitutive feature 

controlling crack stabilization (Radi and Bigoni, 1993). 

2.4. Conclusions 

We have presented a simple model for steady-state, Mode I crack propaga­

tion in transformation-toughened ceramics. Though based on linear harden­

ing (of the type shown in Fig. 2.3, instead of the more elaborate constitutive 

law sketched in Fig. 2.1), the model retains a number of features typical of 
behaviour of zirconia-containing ceramics. These are: 

• nonlinear, inelastic deformation, 

• pressure-sensitive yielding, 

• inelastic dilatancy, 

• coupling between shear and dilatant inelastic deformation. 

Moreover, the model is simple enough to permit an asymptotic analysis of 

all relevant fields, including full treatment of loading/ unloading conditions 
in the crack wake. If, on one hand, the analysis yields the known result that 

plastic dilatancy and pressure-sensitive yielding induce a crack stabilization 

effect, on the other hand, a detailed representation of near tip fields, possible 
with our analytical approach, may become important for design purposes. 

In conclusion, we note that the approach presented in this Chapter has 

been extended to rather complicated situations. For instance, Radi and Bigoni 

(1995, 1996) analyzed isotropic and anisotropic hardening for Gurson yield­

ing; Radi et al. (2001) included fluid saturation; Potthast and Hermann 

(1996, 1997, 2000) and Zhang and Mai (2000) considered dynamic and tem­
perature effects. It may be therefore reasonable to think that the asymptotic 

scheme presented in the present Chapter could be further refined for material 

modelling of zirconia-containing ceramics. 
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Chapter 3 

Crack deflection in ceramic 
materials 

Monica Valentini 1), Davide Bigoni 1), 

Leonardo Esposito 2), Alexander B. Movchan 3) 

and Sergey K. Serkov 4) 

Predictions of a mathematical model developed for analyzing de­

viations from rectilinearity of a crack in brittle elastic materials 

containing a dilute distribution of voids and elastic inclusions are 

compared with experimental results relative to some ceramic ma­

terials: a glaze, a porcelain stoneware, and a zirconia. All these 

materials contain spheroidal pores. The investigation involves sim­

ple experimental setting, namely crack deflection of median-radial 

cracks induced by Vickers indentation. This is finally compared to 

the predictions of the analytical model. Despite of the strong hy­

potheses (plane deformations and small ratio between inclusion di­

ameter and crack distance) the simulation results are qualitatively 

accurate. Under these assumptions one can obtain analytical solu-
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tions. This may suggest the use of the analytical model as a tool 

for the design of ceramic porous or composite materials. 

3.1. Introduction 

Analysis of crack propagation and failure in ceramic materials is a basic 

problem with implications on many design aspects. Structural and traditional 
ceramics are usually brittle materials and the presence of porosity or second 

phases strongly influences fracture mechanisms. In particular, crack trajecto­
ries may be perturbed and deflected from rectilinearity by grains (Bower and 

Ortiz, 1993), defects, pores, inclusions, particles (Xu et al. 1997). Though 

with proper reserves (see Pezzotti, 1993; Pezzotti et al. 1996), deflection of 
crack trajectory may be related to material toughness (Evans, 1990); there­

fore, an analysis of the perturbation of a crack path due to the interaction 

with voids and inclusions may have practical applications in the design of 

composite ceramics. Motivated by this interest, a certain experimental and 
theoretical research effort has been addressed to the mechanics of cracks in 
elastic media containing defects, cracks or inclusions (Claussen, 1976; Cot­

terel and Rice, 1980; Hoagland and Embury, 1980; Faber and Evans, 1983; 
Clarke, 1984; Fu and Evans, 1985; Evans and Fu, 1985; Rubinstein, 1986; 

Rose, 1986; Hutchinson, 1987; Ortiz, 1988; Ortiz and Giannakopoulos, 1989; 

Duan et al. 1995) Moreover, in a series of papers, Movchan and co-workers 
(Movchan et al. 1992; Movchan, 1992; Movchan and Movchan, 1995) have 

developed an asymptotic model for the interaction of a semi-infinite crack 

and small defects. In the model, the defect is characterized on the basis of 
the Polya Szego (1951) matrix. Defects modelled as elliptic elastic inclusions 

and voids have been considered in (Bigoni et al. 1998; Valentini et al. 1999). 
The solution for the crack trajectory is obtained by introducing a number 
of simplifying hypotheses, which make the problem solvable in analytical, 

closed-form. These assumptions are: 

• plane strain (or stress), 

• isotropic elasticity, 

• small ratio between inclusion diameter and distance of the inclusion 

centre to the crack trajectory, 

• crack of semi-infinite length, 

• non-interaction between defects, 
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• use of the pure mode I (Ku = 0) fracture propagation criterion (Sih, 
1974), an assumption which may be motivated invoking the brittleness 

of the matrix material. 

In the present article the possibility of an application of the above ana­

lytical model is explored to predict crack paths in some ceramic materials. 

A well-known alternative to our method is the use of a numerical technique, 

e.g. finite elements. Numerical results are often problematic in situations 

involving singularities (as in the present case) and may be unpractical for 
design purposes. Therefore, a closed-form, analytical model becomes partic­

ular appealing. We restrict the attention to the simplest experimental setting, 

considering ceramic materials with spheroidal pores and inducing fractures 
with a Vickers indenter. In particular, on the surface of suitably prepared 

samples of zirconia, porcelain stoneware, and glaze, cracks were induced by 

Vickers indentation technique. The trajectories resulting from propagation of 

the median-radial cracks emerging from the corners of the impression have 
been observed. These are found to be influenced - generally attracted - by 

the voids. The experiments have been finally compared to the predictions 
of the analytical model for crack propagation as influenced by the presence 
of ellipsoidal voids. The applicability of the theory to the experiments is 

conditioned by the above-mentioned assumptions. Despite that, we have al­

ready verified a surprisingly good qualitative adherence of simulated to real 

crack trajectories in a few experiments on a porcelain stoneware (Valentini 

et al. 1999). The more systematic results reported in this chapter are also 
encouraging, and suggest the possibility of using the analytical tool in design 

situations relative to not fully densified or composite ceramics. 

3.2. Mathematical model 

To make the chapter self-contained, the model for the analysis of crack 

trajectory as influenced by elliptical defects is briefly described in this section 

(for a detailed presentation, the interested reader is referred to Movchan et 

al. 1992; Movchan, 1992; Movchan and Movchan, 1995; Valentini et al. 1999; 
Bigoni et al. 1998). 

We consider an infinite, brittle-elastic body with a semi-infinite crack. 

The elastic properties are specified by the Lame constants ,\ and 1-L· The 

crack is assumed to be a Mode-I crack propagating through the body under 

an external loading corresponding to a stress intensity factor K1 greater than 
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the critical one. An elastic defect with Lame constants ..\0 and J-Lo is present 

in the infinite elastic medium in such a way that it is far from the trajectory 

of unperturbed (reference) crack (Fig. 3.1). 

H(l) 

FIGURE 3.1. Sketch of the analyzed crack geometry. 

This is the straight trajectory that would be described in the absence of 

defects. The defect has the shape of an ellipse centered at the point (x~, xg) 
with major and minor semi-axes denoted by a and b, respectively. The major 

axis is inclined of an angle () with respect to the x1-axis of the Cartesian 

plane. Due to the presence of the defect , the crack trajectory deviates from 

rectilinearity and this perturbation can be summarized in the closed-form 

formula for the crack trajectory H(l) as a function of the crack tip abscissa 

l (the details of the derivation are given by Valentini et al. 1999): 

H(l) = abo {r(p4 - 8)(t + t2 - 2) 
4x2 

+ 2p2Y8 [sin 21J(t + t2
) (2t- 1) Vl=t2- cos 21J(t- t3 )(1 + 2t)] 

+ P~:
4

e (t - t3
) [ ( 1 + 2 cos

2 
21J) (1 - t)(1 + 2t)2 

+ ( 1 + 2 sin2 21J) (1 + t)(2t - 1)2 
- 2 sin 41JV!=i2( 4t2 

- 1)] } , (3.1) 

where the variable t depends on l through the relation 

fa+b 
and p= v~· (3.2) 
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The elastic properties of the inclusion and matrix influence the crack 

trajectory via the constants: 

Jlo - J1 
8= ' 

"'Jlo + J1 

~ 28(n, + 1)J1o 
.::. = p4 [(n,o - 1)J1 + 2J1o] + 8[(n,o- 1)J1- 2KJ1o]' (3·3) 

T = 2[(n,- 1)J.Lo- (n,o- 1)J1] , 
p4 [(n,0 - 1)J1 + 2J1o] + 8[(n,o- 1)J-L- 2KJ1o] 

where, for plain strain, n, = (.X+ 3J-L)/(.X + Jl). The crack trajectory H(l) and 

the position of the centre of the ellipse are given in an orthogonal co-ordinate 

system with the axis x1 corresponding to the unperturbed crack trajectory, 

i.e. the straight trajectory representing the crack path in the absence of any 

defect. 

The analysis of the formula for crack propagation leads to the interest­

ing observation that the elastic properties of the materials affect the crack 

trajectory via Dundurs constants (Dundurs, 1967): 

Jlo(K + 1) - Jl(Ko + 1) 
a12 - -------­

- Jlo(K + 1) + Jl(Ko + 1)' 
{3 

_ Jlo(K- 1) - Jl(Ko - 1) 
12 - . 

Jlo ("' + 1) + J1 ( Ko + 1) 
(3.4) 

These dimensionless elastic invariants play an important role in the theory of 

elastic composites (Thorpe and Jasiuk, 1992). In fact, the stress field in two­

dimensional, two-phase elastic composites depends on these two parameters 

only, rather than on the four elastic constants (shear and bulk moduli of both 

phases). 

In our model, the constants (3.3) can be rewritten in terms of Dundurs 

invariants: 

28 
(3.5) .... - p4 ( 1 - n) - 8 ( 1 + n) ' 

T = 2 . 
p4(f2-1 - 1) - 8(0-1 + 1) 

In particular, it can be concluded from (3.5) that the crack trajectories 

belong to a two-parametric family of curves. 

In the case where the inclusion is a void, the formula for the crack tra­

jectory may be obtained taking Jlo = .X0 = 0 in (3.1)-(3.3): 
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H(l) = R: [2(1 + m 2
) - t (2 + t - t2 + m2 (1 + t) 

2x2 

+2m cos 20(1 + 2t)(1- t2
)- 2m sin 2B(2t- 1)(1 + tb/l=t2)], (3.6) 

where 
R= a+b 

2 
and 

a-b 
m--­- a+ b. 

Note that formula (3.6) is independent of the mechanical characteristics 

of the material and depends only on the morphology of the void, namely, 

inclination of the major axis, dimension and aspect ratio of the ellipse, i.e. 
parameters (), R and m. This may be viewed as a corollary of the statement 

that the crack trajectory (3.1) depends on Dundurs constants and defects 

morphology only. The constants (3.4) and (3.5) for an elliptical void reduce 

to the simple expressions: 

0'12 = -1, 

n ~ -oo, 

1 - K:Q 
(3 ---<0 

12 - 1 + K:Q - ' 
e = -1, 

2 = 0, 
2 

1=--4. 
1-p 

It may be interesting to note that imperfectly bonded circular inclusions have 
been considered in (Bigoni et al. 1998). 

3.3. Experimental results 

3.3.1. Materials 

In order to check the expectations of the mathematical model, the fol­

lowing materials have been selected: 

• a slip cast yttria tetragonal zirconia polycrystal TZP (TZ-3YS , Tosoh 

Co. Japan), preparation reported elsewhere (Salomoni et al. 1992), 

c a porcelain stoneware, 

• some glaze tiles. 

The choice of the commercial traditional ceramics has been suggested by 

the possibility of exploiting their high intrinsic porosity. In fact, as a con­

sequence of the industrial processing, pores with spheroidal geometry are 

usually present in the microstructure of the porcelain stoneware, when con­

taining a large amount of glassy phase. In the glaze tiles, on the other hand, 
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pores of spheroidal geometry are usually trapped in the glaze layer, and often 

emerge on the proper surface. 
Samples of TZP and porcelain stoneware were polished to mirror like, to 

perform a clear surface analysis. Samples of TZP were preliminary observed 

with SEM (Jeol, T330, Japan) to detect surface defects, for subsequent inves­

tigation of crack interaction. A selection of suitable samples of glazed ceramic 

tiles with porosity emerging on the proper surface was made on the basis of 

preliminary SEM observations. In this material, quasi-spherical pores were 

found on the proper surface with an average diameter ranging between 5 and 
20 J-Lm. These samples did not require any preliminary surface preparation. 

3.3.2. Experiments 

On the surface of the samples cracks were induced by Vickers indentation 

technique, applying indentation loads ranging between 19.62 and 49.05 N. 

The resulting crack paths have been finally observed both with optical and 

scanning electron microscopes. Note that for TZP samples Vickers indenta­

tions were induced near already detected surface defects, whereas, due to the 
high intrinsic porosity, indentations were induced in random positions for 
porcelain stoneware and glaze and subsequently observed. 

For all investigated materials, a particular care was taken to the gener­

ation and development of median-radial cracks, arising from corners of the 

impression. Not always, in fact, the crack systems were suitable to verify the 
expectations of the model. For instance, sometimes the median-radial cracks 

were intercepted and stopped by a pore. In other cases at high indentation 
loads, material removal phenomena - consequent to induced lateral cracks 

- prevented any clear and correct observation of crack trajectory. On the 

other hand, indentation loads lower than 19.62 N may not even be sufficient 

to induce well developed median-radial cracks for fracture toughness deter­

mination (Marshall and Lawn, 1977). The experimental procedure was found 

particularly delicate in the case of porcelain stoneware, and was abandoned 

after few experiments were performed (the most representative of these are 

reported by Valentini et al. 1992, Bigoni et al. 1996, and Valentini, 1998). 

Other experiments were attempted in a zirconia/alumina composite and in a 

borosilicate glass containing copper platelets (Valentini, 1998). These mate­

rials did not fit correctly the model hypotheses and therefore results are not 

reported here. 
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3.3.3. Model prediction 

In the following, the micrographs of the most representative experiments 
are shown, together with the corresponding simulations obtained from the 

analytical model, formula (3.6). The formula is used with a direct estima­
tion of the needed geometrical parameters, namely, dimensions, orientation, 

shape, and relative position of the defects. Note that the use of formula (3.6) 
- relative to ellipsoidal voids in an elastic matrix - does not require any con­

sideration of the mechanical characteristics of the material. Moreover, the 

simulations have a qualitative meaning, therefore all measures have been re­
ferred to a grid of points in an arbitrary length units, in the sense that only 

FIGURE 3.2. Crack path near two circular voids in glaze: SEM micrograph 
(bar = 10 p.m). 
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FIGURE 3.3. Crack path near two circular voids in glaze: simulation of the crack path. 
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Let us analyze the results in detail. Two circular voids of different dimen­
sions present in a glaze sample are shown to attract a crack in Fig. 3.2. The 

corresponding model prediction is shown in Fig. 3.3. 

Figure 3.4 is obtained with an optical microscope on a glaze sample. It 
may be observed that the crack trajectory starts from the indentation on the 

left side of the photograph, and is initially attracted by the void of small 

size and subsequently by the second, larger void. The simulation is presented 

in Fig. 3.5. 

A crack interacting with three voids in a glaze sample is shown in Fig. 3.6. 
Two of the voids are approximately circular an the third has an elliptical form 

FIGURE 3.6. Crack interacting with two circular and an elliptical void in glaze: SEM 
micrograph (bar = 8.3 J.Lm). 
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FIGURE 3. 7. Crack interacting with an elliptical and two circular voids in glaze: 
simulation of the crack path. 
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Let us analyze the results in detail. Two circular voids of different dimen­
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Figure 3.4 is obtained with an optical microscope on a glaze sample. It 
may be observed that the crack trajectory starts from the indentation on the 
left side of the photograph, and is initially attracted by the void of small 

size and subsequently by the second, larger void. The simulation is presented 

in Fig. 3.5. 

A crack interacting with three voids in a glaze sample is shown in Fig. 3.6. 
Two of the voids are approximately circular an the third has an elliptical form 

FIGURE 3.6. Crack interacting with two circular and an elliptical void in glaze: SEM 
micrograph (bar = 8.3 J.Lm). 
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FIGURE 3. 7. Crack interacting with an elliptical and two circular voids in glaze: 
simulation of the crack path. 
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(voids of smaller dimensions have been neglected in the simulation) . The 

crack trajectory is deflected initially by the elliptical void and subsequently 

by the void closest to the crack path. The analytical result gives the prediction 
shown in Fig. 3.7. 

Figure 3.8 is relative to a crack propagated in a glaze sample containing 
a number of voids having different dimensions. It is possible to compare the 

situation shown in Fig. 3.8 with the simplified geometry proposed in Fig. 3.9. 

It may be observed in Fig. 3.10 that in a nearly symmetric distribution of 

defects the effects of each void tend to be compensated for the others. The 

FIGU RE 3.8. Crack interacting with several voids in glaze: SEM micrograph 

(bar = 12.5 JLm). 
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FIGURE 3.9. Crack interacting with several voids in glaze: simulation of the crack path. 
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FIGURE 3.10. Crack interacting with several voids in glaze: SEM micrograph 
(bar = 10 J.Lm). 
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FIGURE 3.11. Crack interacting with several voids in glaze: simulation of the crack path. 

resulting trajectory is in fact weakly deflected from the straight direction, a 
result once more consistent with the simulation shown in Fig. 3.11. 

Figure 3.12 is relative to a slip cast TZP material, with a 130 p.m-diameter 
spheroidal voids. This is much larger than those present in the glaze. The 
crack trajectory results clearly attracted by the void and is simulated in 
Fig. 3.13. 

A general conclusion evidenced from the performed experiments is that 
the crack trajectories appear to be deflected, in particular attracted, by the 
voids. Moreover, the qualitative model predictions result to be in fairly good 
agreement with the experiments. 

http://rcin.org.pl



3.4 CoNCLUSIONS 55 

FIG URE 3.12. Crack interacting with a void in a slip cast TZP ceramic: SEM micrograph 
(bar = 100 J.Lm). 
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FIGURE 3.13. Crack interacting with a void in a slip cast TZP ceramic: simulation of the 
crack path. 

3.4. Conclusions 

Results obtained with a simple experimental setting on crack trajecto­

ries in ceramics containing nearly spherical voids have been presented. These 

results have been compared to the predictions of an analytical model. De­

spite of the limitative assumptions on which the model is based, a satisfactory 

agreement has been found. This encourages, on one hand, a systematic exper­

imental investigation on various materials and, on the other hand, a practical 

use of the model in design and reliability analyses of ceramic components. 
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Chapter 4 

Failure of silicon nitride in uniaxial 
. 

compression 

Massimiliano Gei l), Stefano Guicciardi 2) 

and Davide Bigoni 3) 

Failure modes of silicon nitride cylinders have been investigated 

under uniaxial compression at 12000C in air. Samples with differ­

ent aspect ratios (h/d) have been tested: 5/ 2, 4/2, 2/2, and 1/2 

(mm j mm). In all cases, the stress/strain curves evidence an initial 

linear portion followed by a peak and a slight softening, denoting a 

plastic behaviour. Most of the tests were interrupted at about 3-4% 

of load drop after the peak, and the samples observed with optical 

and electronic microscope. Two samples catastrophically broke in 

correspondence of the test stop and further observations were pre­

cluded. In all the other cases, the observed failure patterns involve 

modes presenting interesting symmetries. Particularly, surface ex­

foliation seems to play a central role in limiting the load-bearing 

capacity of the sample. The reason of such a behaviour may be in­

terpreted in different ways, though we believe that a surface bifur-

l) Dipartimento di Scienze e Metodi dell'Ingegneria, Universita di Modena e Reggio 
Emilia, Via Fogliani 1, 42100 Reggio Emilia, Italy 

2
) IRTEC-CNR, Via Granarolo 64, 48018 Faenza, Italy. 

3
) Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento, Via 

Mesiano 77, 38050 Trento, Italy. 
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cation mechanism is the more likely to have occurred. In addition 

to this surface mode, traces of localized patterns of deformations 

- which initiated and propagated macro-cracks - can be found in 

some samples. A bifurcation analysis, which takes into account the 

surface residual stress induced by machining, has been carried out 

in order to describe the specific failure mode in terms of surface 

instability. The first failure mode predicted by this approach is an 

antisymmetric mode, while symmetric modes almost immediately 

follow. However, antisymmetric modes may be partially hampered 

by friction at the specimen/ cushion contact. 1\!Ioreover, the bifur­

cation analysis does not provide information for the post-critical 

behaviour, so that a possible interpretation of the observed failure 

mode is that the exfoliation mechanism may result as an evolution 

of a first antisymmetric mode into a symmetric one and that local­

ized patterns of deformations follow to produce final macrocracks 

growth. 

4.1. Introduction 

Advanced ceramics are known to be a good candidate as materials for 

high temperature structural applications (Larsen et al. 1985; Ichinose, 1987; 
Davidge and van de Vorde, 1990; Meetham, 1991 ; Raj, 1993). Unfortunately, 

the large use of ceramic components is restricted by intrinsic limits, like 
the low fracture toughness, and by a poor knowledge of the mechanical be­

haviour under the particular conditions in which the material will operate. 

Being brittle materials, advanced ceramics are mainly tested in tension, as 

this is considered the most harmful stress condition. However, this does not 
mean that failure cannot occur when compression loads are involved. For 

instance, a picture (taken with an optical microscope) is shown in Fig. 4.1 

where an alumina water jet pump plunger is shown, which failed during ser­

vice as a consequence of the seizure caused by the presence of hard dust 

particles in the water , a situation involving compressive rather than tensile 

stresses. From scientific point of view, failure in compression is an intrigu­

ing mechanism, much less investigated than fracture in tension (Horii and 

Nemat-Nasser, 1985; Ashby and Hallam, 1986; Sammis and Ashby, 1986; 

Meyers and Chawla, 1999). 
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FIGURE 4.1. Failure of a pump plunger (external diameter 32 mm). 

Of interest here for us is the behaviour of ceramic materials at high tem­

perature and subject to compressive uniaxial stresses. For the specific ce­

ramics under investigation, sometimes sintering aids are needed to obtain 

fully dense components. Usually, these sintering aids remain as intergran­

ular vitreous phase in the final microstructure of the material. Being less 

refractory than the ceramic itself, at high temperature this phase becomes 
viscous promoting viscous flow and grain sliding when a stress is applied 
(Tsai and Raj, 1982; Wilkinson and Chadwick, 1991; Chan and Page 1993; 
Lueke et al. 1995). Moreover, under stress, due to the high hydrostatic pres­

sure which sets up at the triple grain boundary junction, the intergranular 

glassy phase is the place where cavitation occurs mostly, even in compres­
sion (Lange et al. 1980; Crampon et al. 1997). At high temperature, when the 

above-mentioned relaxing mechanisms come into play, both the tensile and 
the compressive strengths of the material drop. The ratio of the tensile to the 

compressive strength, which at room temperature is about 1/10 (Atkins and 
Mai, 1988), could be higher when the temperature is increased, depending 
on which failure mechanism prevails. 

A few works on short-term tensile tests appeared in the literature on 

advanced ceramics at high temperature (Ohji et al. 1990; Lin et al. 1993; 

Ohji and Yamauchi, 1994), while little or nothing can be found about short­

term compression tests. This study represents an initial contribution in this 

almost unexplored field. In particular, we observe peculiar modes of failure of 

our tested cylindrical specimen and we propose an interpretation in terms of 

bifurcation theory, in which initiation of failure is explained by the occurrence 
of a surface bifurcation mode. 
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4.2. Experimental 

The selected material was prepared by mechanically mixing an a-Si3N4 
powder (S-Stark LC 12 SX, H. C. Stark, New York , NY) with 8 wt% Y 203 
and 3 wt% Al203 as sintering aids. The mixture was uniaxially hot-pressed in 

a graphite crucible under a pressure of 30 MPa at 1810°C. X-ray diffractom­

etry of the as-sintered material revealed that the main phases were .B-Si3N4 
with ~ 10% residual a-SbN4. Some relevant microstructural and mechani­

cal properties are summarised in Table 4.1 (measured at room temperature 
unless otherwise indicated) . Further information can be found in Biasini et 

al. (1992). 

TABLE 4.1. Microstructural and mechanical properties of the tested silicon nitride. 

Density (g/cm3
) 3.28 

Mean grain size (J.Lm) 0.8 
{3- grain aspect ratio -:::::;7 

Thermal expansion coefficient (10 6 oc 1) 3.25 

Hardness (GPa) 20.7 ± 0.9 

Young modulus (GPa) 301 

Toughness (MPaJrll) 4.8±0.15 

Flexural strength (MPa) R .T. 895±35 
1000°C 603±39 
1300°C 281±22 

From the pellet ( 45 mm in diameter and 15 mm height), cylinders with a 
diameter of 2 mm were obtained by machining with their axis parallel to 

the hot-pressing direction. Samples with different heights were prepared: 

1 mm, 2 mm, 4 mm and 5 mm, respectively. The tests were conducted in air at 

1200°C using an Instron machine mod. 6025 (Instron Ltd., High Wycombe, 

U.K.). To avoid excessive friction at the interface, two larger Si3N4 cylinders 

( 6 mm in diameter and 3 mm in height) machined from the same billet of the 

samples were inserted between the sample and the alumina pushrods. All 
the tests were conducted at a nominal strain rate of 5 x 10-5s-1. The strain 

rate was calculated from the specimen height and the crosshead displace­

ment rate. The heating rate was 10°C/min and, before loading, the sample 
was allowed to soak for 18 min to insure thermal equilibrium. Most of the 

tests were stopped after a load drop of about 3-4% of the peak load. The load 

was removed before the cooling down. Two out of nine samples broke just 

after the test stop. To observe the full evolution of damage, one thick sam-

http://rcin.org.pl



4.3 RESULTS AND DISCUSSION 63 

ple, 1 mm height, was deformed up to 0.12. The sample failure patterns were 

observed by optical (Leitz DMRME, Leica, Wetzlar, Germany) and scanning 

electron microscope (Cambridge Instruments, Cambridge, U.K.). 

4.3. Results and discussion 

Values of the peak loads for the investigated specimens are reported in 

Fig. 4.2, with reference to the sample height. The peak load shows a slight 

tendency to lower when the height of the sample is increased, Fig. 4.2. This 

slenderness effect will be later explained in terms of bifurcation theory and 

has been also documented for concrete (Hudson et al. 1971). Including all the 
values reported in Fig. 4.2, the peak load averages 4509 N with a standard 
deviation of 303 N. 

6000 
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.Q I • .::.:. 4500 • • ro • • Q) • Cl. 4000 

3500 

2 3 4 5 6 

Sample height, mm 

FIGURE 4.2. Compression peak loads vs. sample height for ShN4 cylinders tested at 
1200°C in air. 

A standard procedure may be applied to the load-displacement curves in 
order to evaluate the effective strain of the sample. The system compliance 

can be estimated according to the following relationship: 

(4.1) 

where Cr is the total compliance, h the initial height of the sample, E the 

Young modulus, S the cross section of the sample and Cs the system com­
pliance. Using at least three samples with different heights, it is possible to 

evaluate, by a linear regression analysis, the Young modulus of the material 
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and the system compliance. Subtracting the system compliance from the mea­

sured total compliance, the true load-displacement curve of the sample (and 

whence the nominal stress-deformation behaviour) is obtained. The stress­

strain curves calculated in this way are reported in Fig. 4.3. The regression 

analysis gives a Young modulus value of about 105 GPa. 
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FIGU RE 4.3. Compression stress-strain curves for Si3 N4 cylinders tested at 1200°C 

in air; h is the sample height . 

The general shape of the stress-strain curve does not indicate any signif­

icant difference among samples with different height [this is also consistent 

with results presented in Hudson et al. (1971) for concrete, where the strong 

difference in the stress/ strain curves is relative to the post-peak behaviour]. 

SEM micrographs of the samples are reported in Figs. 4.4- 4.8, for differ­

ent aspect ratios. Figures 4.4 and 4.5 pertain to aspect ratios 2/ 2 and 1/2, 

respectively. In both cases a surface exfoliation is evident. The exfoliation 

layer was quantified to be about 30-35 J..Lm, Fig. 4.4. Internal cracks can also 

be observed, Fig. 4.5. Surface exfoliation is also very clear from Fig. 4.6 (as­

pect ratio 4/ 2). However, this sample was longitudinally sectioned and cracks 

almost parallel to the loading direction were observed , Fig. 4. 7. 

These may be interpreted as a localized axial-splitting failure mode. The 

thick sample (aspect ratio 1 / 2) , Figs. 4.8 and 4.9 , shows once more the sur­

face exfoliation failure mode. Interestingly, this exfoliation is , in this case, 

a progressive mechanism: at least four exfoliated layers can be detected in 

Fig. 4.9 (particular of Fig. 4.8), with almost equal thickness of about 70 J..Lm . 

Summarizing, axially-symmetric surface exfoliation is the dominant fail­

ure mechanism (also consistent with the failure pattern of the pump plunger 

reported in Fig. 4.1). This is a well-known mechanism in rock mechanics (Var-
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FIGU RE 4.4. SEM micrograph of a sample 2 mm height after test. Top view. 

FIG UR E 4.5. SEM micrograph of a sample 1 mm height after test . 

doulakis and Sulem, 1995, their Fig. 1.2.6) and also found in axial compres­

sion of concrete (Hudson et al. 1971). The observed failure can be interpreted 

from a number of perspectives. It can be related to the effect of friction at 

the specimen/ cushion contact, but in our case the test set up was specifically 

arranged to minimize this effect. Another possibility is to explain failure as 
an axial splitting phenomenon occurring as consequence of a branching of an 
inclined crack into a vertical fracture (Horii and Nemat-Nasser, 1985). This 

explanation appears rather weak in our case for different reasons. First, the 

crack branching mechanism would generate vertical, planar cracks instead of 

the observed axisymmetric modes. Second, that mechanism is typical of brit-
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FIGURE 4.6. SEM micrograph of a sample 4 mm height after test . 

FIGURE 4.7. Longitudinal section of sample 4mm height after test (Fig. 4.6). 

tle materials, but in our case there is an evident ductility, so that behaviour 
of our material can be classified as "brittle-cohesive". Third, the presence 
of microcracks in the material before the test initiation cannot be a priori 

excluded in our case, but is strongly unlikely. 
Alternatively, failure of our samples can be interpreted as the analogous 

for, say, a brittle-cohesive material of the surface effects observable in metal 

specimens (Rittel, 1990; Rittel et al. 1991). From this point of view, it may 

be interpreted as a bifurcation phenomenon: the homogeneous deformation 

pattern corresponding to the cylindrical shape may cease to be unique and 

bifurcate into an inhomogeneous pattern with surface undulations, which de­
cay rapidly away from free surface. The problem of bifurcation of a cylindrical 
specimen subject to uniaxial compression was analyzed by Chau (1992) for 

rock-like materials and by Bigoni and Gei (2001) for metals. An analysis of 

these results reveals that the surface mode corresponds usually to bifurca­

tion loads higher than those corresponding to barrelling or antisymmetric 
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FIG URE 4.8. SEM micrograph of a sample 1 mm height deformed up to 0.12. Top view. 

FIGURE 4.9. Detail of micrograph 4.8. Note the successive exfoliations formed during 
the test. 

modes. Therefore, the explanation of the experimental results needs often to 
resort to some peculiar physical mechanisms. In rock mechanics, the pres­
ence of cracks parallel to the free surface is often invoked for bifurcation to 

occur (Vardoulakis and Sulem, 1995) . For the analyzed material, such type 
of cracks are first unlikely and, second, they would not produce failure in 
a axisymmetric fracture mode. On the other hand, due to the fabrication 

process, a thin layer of material subject to residual stress may exist close 
to the free surface due to machining. This layer, often detected in ceramic 

materials (Samuel et al. 1989), could give rise to a surface bifurcation mode 

http://rcin.org.pl



68 4. FAILURE OF SILICON NITRIDE IN UNIAXIAL COMPRESSION 

occurring before other modes, a situation that can be anayzed in our case 
using models developed in (Bigoni et al. 1997; Bigoni and Gei, 2001). 

In closure of the present discussion, it may be worth noting that the failure 

modes observed in our specimens share some similarities with modes rela­

tive to the triaxial compression of sand specimens (Desrues et al. 1996). In 

those specimens, failure has been attributed to a localization of deformation 
organized in a conical geometry. Although we do not completely agree with 

that conclusion 4), strain localization still remains a possibility of explaining 

our experimental results. Strain localization may be analyzed in terms of a 

bifurcation of the response of an infinite medium subject to increasing homo­

geneous strain (Rudnicki and Rice, 1975; Rice, 1977). For the material under 

consideration, there is not enough experimental evidence to adopt a definite 

constitutive framework. Anyway, a rough modelling may correspond to the 

Drucker-Prager model (Rudnicki and Rice, 1975). For this model strain local­
ization was thoroughly analyzed. In our case, to interpret strain localization, 
a localized band must be found (almost) parallel to the loading direction. For 
the material under consideration, the ratio between tensile and compressive 

uniaxial yield stresses may be estimated to be around 1/7. This value lies 
beyond the range of parameters analyzed in (Rudnicki and Rice, 1975). How­

ever, simple calculations show that a band parallel to the loading direction 
is predicted during softening and for values of plastic dilatancy sufficiently 

close to the value corresponding to associativity, so that localization does not 
appear to be excluded in the present context. To clarify this and the related 
issue of diffuse bifurcation modes - remaining the most likely explanation 
for the observed surface exfoliation - we present in the next section explicit 

calculations of diffuse and localized bifurcations. 

4.4. Bifurcation analysis 

Testing of materials at high temperature poses such difficulties that the 
presumption of extracting enough data from experiments to build a refined 

constitutive model for our material is simply illusory. Therefore, we propose 
a simple, hyperelastic model taken from the framework of J2-deformation 

4
> For fixed top of the testing machine, we think that strain localization should occur 

along the two weaker planes, inevitably present in any real specimen. Therefore, we be­
lieve that the localization observed in the sand specimens should have occurred after an 
axisymmetric bifurcation mode has occurred. 
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theory of plasticity, to describe our uniaxial experiments. The model will be 

tailored on our experimental results to describe a smooth transition from 

hardening to softening behaviour in uniaxial compression. 

Loss of uniqueness in the incremental response of an incompressible, elas­
tic cylinder subject to uniaxial compression is examined. A bifurcation point 

is detected when , at a certain stage of the primary path of equilibrium, an in­

homogeneous field (called bifurcation mode) is found to satisfy the incremen­

tal equilibrium equations (in addition to the trivial homogeneous response). 

In order to reproduce the physical conditions of the tested samples two 
problems have been considered: 

• bifurcation of incompressible, homogeneous cylinders of 2 mm diameter 

and heights equal to 1, 2, 4 and 5 mm; 

• bifurcation of cylinders with the above geometry and constitutive law, 
but with a circumferential residual stress of -200 MPa distributed in 

an external layer of the specimen of 10 J.lm thickness. 

Compared to the former, the latter analysis did not give appreciably differ­

ent results, so that we have concluded that residual stress does not influence 
significantly our problem. Therefore, only the former setting is considered be­

low. Here, we briefly summarize the equations and the methodology, referring 

the interested reader to Bigoni and Gei (2001) for further details. 

Let us consider a cylinder of radius R and height h in the undeformed, 
natural configuration (C), whose points are labelled by x, subject to a pre­
scribed homogeneous deformation cp. The current configuration C = cp(C), 
whose points are denoted by x, is described by a cylindrical coordinates 

system (r, e, z) , with z coincident with the axis of the cylinder and origin 

at the lower base of the body. The incompressibility constraint ( det F = 1, 
where 5) F = Gradcp) allows us to express the current state in terms of a 

single parameter, the logarithmic axial strain t: (t: < 0 in compression), so 

that the current radius, f, and height, h, are given by f = exp( -t:/2)R and 

h = exp(t:)h, respectively. In the context of small deformations t: reduces to 
the axial principal strain. 

The lateral surface of the cylinder is traction-free and a uniaxial stress is 

present directed along its axis. The following expression for the true stress a 

is particularly suited to fit the experimental stress-strain curves reported 
in Fig. 4.3 

5
) The operator Grad is calculated with respect to C. 
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a = K exp (__!___) tanh(!_) , ( 4.2) 
CEO Eo 

with K = 1650 MPa, c = 30, and Eo = 0.007. Equation ( 4.2) corresponds to 

a nominal stress s of the form 

s =_a = Kexp(_!_- E) tanh(!_). 
ex p (E) C E 0 E 0 

(4.3) 

Let us consider now an incremental displacement field u ( x) = x superim­
posed upon the current deformation. In an updated Lagrangian formulation, 

the incremental equilibrium equations may be expressed in terms of incre­

ment in the first Piola-Kirchhoff stress tensor, S 6), as 

div S = 0. ( 4.4) 

The boundary conditions that complete the formulation of the incremental 

boundary-value problem are: 

• null tractions at the lateral surface, 

Brr = Bor = Bzr = o, at r = r; (4.5) 

• perfectly smooth contact with a rigid, flat constraint on the faces z = 0 

and h, 

Boz = Brz = Uz = 0, at z = 0, Ji. (4.6) 

The constitutive equations are taken to be linear relationships between 
S and L = grad u and are expressed in terms of three incremental moduli, 

Jli (i = 1, 2, 3). In cylindrical components, these are 

Brr = P + 2J12Lrr + 2(/11 - J12)Loo, 

See = p + 2J.L2Loo + 2(/11 - J12)Lrr, 

Bzz = p + (2J.L1 - a)Lzz, 

Bro = Sor = (2/12- 111HLro +Lor), 

Brz = (113 + i) Lrz + (113- i) Lzr, 

Bzr = (113- i) Lrz + (113- i) Lzr, 

B) The first Fiola-Kirchhoff stress tensor is defined as S = det(F) cr F-T. 

(4.7) 
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Soz = (113 + ~) Loz + (113- ~) Lzo, 

Szo = (113- ~) Loz + (113- ~) Lzo, 

71 

(4.7) 
(cont .) 

where p is the Lagrange multiplier associated with the incompressibility con­
straint . 

The incremental moduli are functions of the pre-stress which affects the 
incremental response of the solid. In the framework of the finite strain gen­
eralization of the J 2 -deformation theory (Hutchinson and Tvergaard, 1980; 

Neale, 1981), they depend on the tangent modulus (Et = da/dc:) and secant 
modulus (Es = a/c:) of the curve (4.2) at a 7) , namely 

1'3 = ~E,ccoth G c). (4.8) 

In order to simplify the formulation, we note that, exploiting the condition 

of incompressibility of the incremental deformation [ur,r + (ur + uo,o)/r + 
Uz,z = 0], the components of u can be written in terms of two displacement 
potentials, 0 = O(r, e, z) and 'II= w(r, e, z), as 

Ur = n,TZ + W,o/r, U(j = fl,oz/r- 'lf,r, Uz = -M(O), (4.9) 

where M ( ·) = ( ·) ,rr + ( ·) ,r / r + (-) ,oo / r 2 is the two-dimensional Laplacian 
operator in polar coordinates. 

Bifurcations are sought in the separate variables form 

l 
O(r,B,z) = w(r)cosnBsin7]z, 

'll(r,B,z) = 'lj;(r)sinn0cos7Jz, 

p ( r' e' z) = q ( r) cos ne cos 1] z' 

( 4.10) 

where 1J = k1r /h (k = 1, 2, ... ) and n (n = 0, 1, 2, ... ) are, respectively, 
the longitudinal and the circumferential wave numbers. The definition of 17 

assures that boundary conditions ( 4.6) are satisfied. 

7
) In general, Es and Et are calculated with respect to the equivalent stress (ae = 

.J3 u dev • u dev /2) - uniaxial logarithmic strain (le-I) curve, where ( · )dev denotes the devi­
atoric part of the relevant argument. In our case ae = lal. 
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Substitution of ( 4.10)1,2 into ( 4.9), ( 4. 7), and ( 4.4) yields two ordinary 

differential equations for w(r) and 'lj;(r) and an expression for q(r). The so­

lutions for the three functions are 

{ 

w(r) = a1Jn(Pl7Jr) + a2Jn(P27Jr), 

'lf;(r) = bln(P37Jr), 

q(r) = (2/-ll- J-l3- a/2)7JLn(w)- (J-L3- a/2)£;(w)/7J, 

( 4.11) 

where ai (i = 1, 2) and b are arbitrary constants, Jn(x) and In(x) are -

respectively - the ordinary and the modified Bessel functions of order n, 

Ln(-) = (-)" + (·)'/r- n 2 (-)/r2 is the Bessel operator, p; (i = 1,2) are the 
solutions of the characteristic equation 

(J-L3 -a /2)p4 + 2(J-Ll + /-l2 - /-l3)P2 + (J-L3 +a /2) = 0, (4.12) 

and 

2 J-l3 +a /2 
P3 = · 

2J-L2- I-ll 
( 4.13) 

It is worth noting that the nature of roots ±p1 and ±p2 of ( 4.12) defines 
the classification of regimes: complex conjugate ±p1 and ±p2 in the elliptic 

complex regime (EC); pure imaginary ±p1 and ±p2 in the elliptic imaginary 
regime (EI); real ±p1 and ±p2 in the hyperbolic regime (H); two real and 
two pure imaginary ±p1 and ±p2 in the parabolic regime (P). It should be 
noted that failure of ellipticity corresponds to localization of deformation. 

Therefore, the investigation of bifurcation is restricted to the elliptic range, 

where /-l3 +a /2 > 0, 2J-L2 - J-ll > 0, so that the coefficient P5 ( 4.13) is always 
positive either in (EI) or in (EC) regimes. 

Equations ( 4.9)-( 4.11) fully specify the displacement field and, 

through ( 4. 7), the incremental stress state. The imposition of the bound­

ary conditions on the lateral surface ( 4.5) provides a homogeneous algebraic 

system for the constants ai (i = 1, 2) and b. Non trivial solution are obtained 
if the determinant of the associated matrix vanishes (bifurcation condition). 
Once the current geometry and state is known, the bifurcation mode has to 

be selected in terms of the circumferential wave number n and of the di­

mensionless parameter 7Jf, so that the bifurcation condition determines the 

critical logarithmic strain Ebif. 
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4.4.1. Results 

Bifurcation points and modes for samples with aspect ratios 1/2, 2/2, 4/2 
and 5/ 2 have been computed and reported in Figs. 4.10 and 4.11. The bifur­
cation points are marked in Fig. 4.10 on the uniaxial stress vs. logarithmic 
strain curves with vertical segments, since they correspond to two different 

values of Cauchy (or true) and nominal stresses, but to the same value of 

strain. 

In the present problem, localization of deformation occurs when the 

(EC) / (H) boundary is touched, i.e. at lcJoc I = 0.0693, as can be calculated 
from Eq. ( 4.12) . The point corresponding to strain localization is reported in 
the first plot of Fig. 4.10, where it can be clearly appreciated that localization 

occurs in the strain softening regime. 
The critical, i.e. occurring at lowest strain, bifurcation point for each of 

the four aspect ratios considered are reported in the first plot of Fig. 4.10. 
All the four critical bifurcations correspond to an antisymmetric mode, char­

acterized by n = 1. Note that the critical bifurcation occurs 

• when the material is still in the hardening regime, for the aspect ratios 

h/d = 4/2 and 5/2, 

• at around the peak of stress/strain curve, for the aspect ratio 

h/d = 2/2, 

• during softening, for the aspect ratio h/d = 1/2. 

However, bifurcation modes with n 'I= 1 become available at strains 
slightly higher than the critical, specially for thick samples. In order to 

present a complete picture of the bifurcation landscape, the first six modes 

for every aspect ratio are indicated in Fig. 4.10 and the relative parameters 
listed in Table 4.2. 

For h/d = 1/2 (second plot in Fig. 4.10), the mode P, following the 
mode M, is a surface-type mode with double longitudinal wave number -
corresponding to half wavelength - and n = 4. Moreover, the mode H (ax­

isymmetric) is almost coincident with the mode G ( antisymmetric) for the 

aspect ratio 2/ 2 (third plot in Fig. 4.10). 

After the sixth mode is attained, infinite bifurcation modes follow one 

upon other and become closer and closer towards the pointS, representing the 

surface instability threshold (IEsil = 0.0349). Continuing along the uniaxial 

curve, strain localization occurs as a final instability. 
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FIGURE 4.10. True (Eq. 4.2) and nominal (Eq. 4.3) stress vs. logarithmic strain curves 

(the former is dashed), with superimposed critical points for bifurcation. S denotes 

surface instability that occurs at lcsi I = 0.0349. Characteristics of modes A through U are 

reported in Table 4.2. 
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FIGURE 4.11 . Sketch of mode G (critical mode for the specimen h/d= 2/ 2) and mode P. 

TABLE 4.2. Bifurcation mode parameters of Fig. 4.10. 

Mode n ryf lcbirl Mode n ryf lcbirl 
A 1 1r /5 0.0131 K 1 3rr/4 0.0204 

B 1 1r /4 0.0143 L 0 3rr/4 0.0205 

c 1 2rr /5 0.0165 M 1 1r 0.0245 

D 0 rr/4 0.0175 N 2 3rr/2 0.0273 

E 0 1r /5 0.0176 0 3 3rr/2 0.0278 

F 0 2rr/5 0.0177 p 4 2rr 0.0282 

G 1 rr/2 0.0178 Q 2 1r 0.0285 

H 0 rr/2 0.0179 R 3 3rr 0.0298 

I 0 3rr/5 0.0185 T 6 3rr 0.0299 

J 1 3rr/5 0.0188 u 8 4rr 0.0315 

From the reported results it can be clearly understood that 

strain localization will never occur in a homogeneously deformed 

specimen, but will take place on a bifurcated deformation path B). 

We observe that the surface modeS corresponds to an "orange-peel" pat­

tern where both nand 'fJT diverge. Something similar was found, for a simpler 

B) Therefore a calculation of strain localization performed assuming homogeneity may 
retain some validity only when the bifurcated path followed by the specimen does not 
involve high strain inhomogeneities. 
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uniaxial stress-strain law than ( 4. 2), by Bigoni and Gei ( 2001) for uniaxial 

tension, but not for compression. 

In terms of total compression loads, the nominal peak load calculated 

from the constitutive law (4.3) is equal to 4788 N. For h/d = 4/2 and 5/2 
bifurcation occurs for a load of about 4749 N and 4706 N, respectively, in­
dicating the presence of the slenderness effect noticed in the experimental 
results (Fig. 4.2). This effect, that is a consequence of loss of uniqueness in 

the hardening branch, may be observed in specimens having h/ d > 1. 

4.5. Conclusions 

Experimental results have been presented, relative to uniaxial compres­

sion at 1200°C in air of silicon nitride cylinders. Results pertain to different 

diameter /height ratios. In the experiments, this parameter did not influence 
much the overall features of the stress-strain curve (which in the present 
case were interrupted just after the peak) and of the failure modes. For all 

investigated diameter /height ratios, failure was initiated by surface exfolia­

tion followed by the formation and growth of macrocracks. Three possible 

interpretations of this behaviour seem to cover all possibilities. These are: 

1. effects related to specimen/ cushion friction; 

2. effects related to the presence of microcracks; 

3. effects related to a bifurcation mechanism emerging during deforma-
tion. 

The first possibility should be minimized with the assumed experimental 

setup and microcracks can also be excluded, so that the second possibility 

is also ruled out. Only the last possibility appears relevant to our situation. 

Bifurcations fall within the following classes: 

• diffuse bifurcations: 

axisymmetric modes, 

antisymmetric modes; 

• surface modes; 

• localized modes. 

Presented calculations, performed with a material model suitable to de­

scribe our uniaxial experiments, show that: 

• the first bifurcation mode occurs around (before for slender specimens, 

after for thick) the peak of the uniaxial stress/strain curve, in agreement 
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with the observed failure. This explains the observed slight decrease 

in the peak load, as related to the increase of the slenderness of the 

specimen; 

• the first possible bifurcation mode is always antisymmetric for all con­

sidered geometries; 

• the surface modes follow after diffuse mode, but occur "not far" from 

the first mode; 

• localized modes always follow after surface modes; 

• the above results remain practically unchanged even if a circumferential 

residual stress is considered. 

Following the bifurcation approach, it can be concluded that the observed 

failure starts at around the peak of the stress-strain curve as an antisymmet­

ric mode 9) and degenerate during postcritical behaviour to a surface mode, 

leading to final failure, with possible strain localization. 
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Chapter 5 

Forming of advanced ceramics 

Andrea Piccolroaz 1), Alessandro Gajo 1) 

and Davide Bigoni 1) 

Cold compaction of powders is a basic process in ceramics forming. 

After a review of existing phenomenological models for mechani­

cal behaviour of powders, experiments are presented, which were 

performed on a commercial alumina powder. These are used to cal­

ibrate a plasticity model for soils, namely, the Cam-clay. F.E. simu­

lations are finally presented of a simple forming process and results 

are shown to be in qualitative agreement with experiments. 

5.1. Introduction 

Powder compaction is a process 1n which granular materials are made 
cohesive through mechanical densification. These may or may not involve 

temperature and permit an efficient production of parts ranging widely in 

size and shape to close tolerances with low drying shrinkage (Reed, 1995). 

l) Dipartimento di lngegneria Meccanica e Strutturale, Universita di Trento, Via 

Mesiano 77, 38050 Trento, Italy. 

http://rcin.org.pl



82 5. FORMING OF ADVANCED CERAMICS 

Metallurgical (German, 1984) and pharmaceutical (Lordi and Cuitiiio, 
1997) applications are common; moreover, forming of traditional (for in­

stance: ceramic tiles, porcelain products) and structural ceramics (for in­

stance: chip carriers, spark plugs, cutting tools) involves essentially powder 

compaction. The focus of this chapter is the analysis of cold compaction of 

ceramic powders to obtain a constitutive model capable of describing green 

body formation. 

In the case of advanced ceramics, a ceramic powder is usually obtained 

through spray-drying and is made up of particles (granules) of dimensions 
ranging between 50 and 200 1-1m (Fig. 5.1), coated with the binder system. 

The granules are aggregates of crystals having dimensions on the order 1 J.lm. 

FIGURE 5.1. SEM micrograph of the analyzed alumina powder (bar = 100 J.Lm). 

Figure 5.1 refers to the specific material analyzed in the present article. 

This is a commercial ready-to-press alumina powder (96% purity), manu­

factured by Martinswerk GmbH (Bergheim, Germany) and identified as 392 

Martoxid KMS-96. The data presented by the manufacturer are given in Ta­

ble 5.1. It can be noted from Fig. 5.1 that the granules have a mean diameter 

of 250 J-Lm . 

Densification of ceramic powders induced by cold pressing can be divided 
in three main stages (Matsumoto, 1986; Reed, 1995; Bortzmeyer, 1996): 

• Phase I granule sliding and rearrangement, 

• Phase II granule deformation, 

• Phase III granule densification. 

http://rcin.org.pl



5.1 INTRODUCTION 83 

TABLE 5.1. Granulometric and density properties of the tested alumina powder. 

MWM 28 Vibration sieving 
sieve residue > 300 pm 3.9% 
sieve residue > 150 pm 56.3% 
sieve residue < 63 pm 2.5% 

Bulk density (g/ cm3
) 1.219 

Green density (p = 50 MPa) (g/cm3
) 2.39 

Fired density (T=1600°C, 2h) (g/cm3
) 3.77 

The three phases of densification can be distinguished by the changes in 

the inclination of the semi-logarithmic plot of density versus applied pressure. 

These determine the "breakpoint pressure" and "joining pressure" points. The 

Phase I always occurs in early volumetric deformation of granular materials 

(at low stress), so that it has been thoroughly investigated for geomateri­

als. However, densification process in ceramic powders is often highly non 

homogeneous, so that usually at least two phases coexist. With reference to 
continuum mechanics modelling, phases II and III of deformation are related 
to the gain in cohesion of the material and have been scarcely investigated. 

5.1.1. The need of research 

Many technical, unresolved difficulties arise m the forming process of 

ceramic materials (Brown and Weber, 1988; Bortzmeyer, 1996). In fact, if on 
one hand the compact should result intact after ejection, should be handleable 

without failure and essentially free of macro defects, on the other hand, 
defects of various nature are always present in the greens (Deis and Lannutti, 

1998; Ewsuk, 1997; Hausner and Kumar-Mal, 1982; Glass and Ewsuk, 1997; 

Thompson, 1981b), badly influencing local shrinkage during sintering (Deis 

and Lannutti, 1998; Hausner and Kumar-Mal, 1982). Defects can be caused 

by densification process, that may involve highly inhomogeneous strain fields, 

or by mold ejection, often producing end and ring capping, laminations, shape 

distortions, surface defects, vertical cracks, and large pores (Glass and Ewsuk, 
1997) 0 

In view of a reduction in the defects - crucial in setting the reliability 

of the final piece - simulations of the forming process become an important 

tool to optimize ceramics design (in terms of shape of final piece and type 

and composition of the powder). 

http://rcin.org.pl



84 5. FORMING OF ADVANCED CERAMICS 

5.1.2. A state-of-the-art 

Though compaction of granular materials has been the focus of intense 

research, ceramic powders have been scarcely considered. We review vari­

ous contributions and methodologies developed for mechanical modelling of 

granular materials of different nature. 

Metallic powders. Several phenomenological or micromechanical mod­

els have been developed to describe Phases I and II densification for various 

metallic powders . Some of them are reviewed below. 

Compaction of metallic powders under isostatic pressure was considered by Arzt 

(1982) and Helle et al. (1985). Other models describe the powder compaction into 

cylindrical dies with axial loading and concern generic powders (Thompson, 1981a; 

Kenkre et al., 1996). 
Brown and Weber (1988) develop an elastic-plastic model at large strains based 

on an ad hoc yield function. Both experiments and numerical simulations are pre­

sented. 
Micromechanical approaches have been developed by Fleck et al. (1992), Ak­

isanya et al. (1994) and Fleck (1995). Akisanya et al. (1994) derive a relationship 

between pressure and density defined within the context of Phase II. Fleck et al. 

(1992) and Fleck (1995) obtain analytical expressions for yield surfaces at the level 

of a phenomenological theory of plasticity. The analyses are based on a ductile 

behaviour, typical of metallic powders. Other works, based on the micro mechani­
cal approach are hardly extendible to the simulation of industrial processes with 

complex geometries (Cuitiiio and Gioia, 1999; Kuhn et al. 1991; Pavanachand and 
Krishnakumar, 1997; Subramanian and Sofronis, 2001; Ng, 1999; Parhami et al. 

1999). 
Gurson and McCabe (1992) show experimental results concerning high pressure 

triaxial tests on tungsten-nickel-iron powders and discuss possibility of simulating 

the cohesion increase by using a particular hardening mechanism. 

Tran et al. (1993) use an elastic-plastic model analogous to those developed for 

sands, in a large strain formulation. Even if the model is limited to Phase I, the 

approach allows the numerical simulation of the forming process of simple compo­

nents. 
Lewis et al. (1993) propose a computer-aided simulation procedure for metal 

powder die compaction. They develop the model within the large deformation the­

ory, using a modified von Mises criterion for porous material as proposed by Oyane 

et al. (1973). The friction between the powder compact and the rigid die wall is 

taken into account. Simulations of the die compaction of powder compact having 

variable cross-sections are presented. The main limits in this approach are the as-
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sumptions of a rigid-plastic behaviour and a yield surface independent of the third 
stress invariant. 

Jernot et al. (1994) propose a microstructural approach to simulate metallic 
powder compression, based on tools of mathematical morphology (erosion and di­
lation). 

Brown and Abou-Chedid (1994) illustrate pressing experiments and present an 
elastic-plastic model. They claim that in the field of metallic powders there are no 
experimental tests enabling to clarify the issue of flow-rule associativeness or lack 
of it. 

Lippmann and Iankov (1997) describe the process of compaction and sintering 
by means of a rigid-plastic model, which cannot describe the so-called "springback" 
effect. 

The large strain elastic-plastic model proposed by Oliver et al. (1996) is em­
ployed in f.e. simulations accounting for friction between powder and cast. In the 
constitutive modelling a yield surface independent of the third stress invariant is 
assumed. 

Ariffin et al. (1998), Lewis and Khoei (1998) and Khoei and Lewis (1999) use 
a large strain formulation of a constitutive · model which combines Mohr-Coulomb 
criterion with an elliptical cap model. Friction between powder and cast is accounted 
for and remeshing is used to follow complex geometries. This model does not describe 
the increase in cohesion when the material is subjected to hydrostatic stress states. 

Using several elastic-plastic models, Sun and Kim (1997) analyze the compaction 
of iron and copper powders and conclude that a modified Cam-Clay model is the 
more suited. 

Geindreau et al. ( 1999a; b) present experiments on lead powder for investigating 
the constitutive behaviour during hot pressing. 

Numerical simulations of the powder compaction of a cup ll.<Lve been performed 
by Redanz (1999; 2001), using two different porous material models: that by Fleck 
et al. (1992a) and a material model including interparticle cohesive strength (Fleck, 
1995). 

Gu et al. (2001) have developed a constitutive model where the plastic flow 
is assumed to be representable as a combination of a distortion mechanism and 
a consolidation mechanism. For the distortion mechanism a Mohr-Coulomb type 
yield criterion with a non-associative flow rule is used, whereas for the consolida­
tion mechanism an elliptical shape yield function with an associative flow rule is 
employed. 

A simple isotropic and two anisotropic micromechanical models of compaction 
are compared in Henderson et al. (2001). 

Subramanian and Sofronis (2001) present a micromechanical model for interac­
tion between densification mechanisms in powder compaction. Elastic deformation, 
power-law creep deformation, diffusional mass transport on the interparticle contact 
areas and pore surfaces are taken into account. 
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Sands and granular materials. The constitutive models developed in 

this field are concerned with the behaviour of geotechnical materials and refer 

essentially to low pressures, corresponding to Phase I compaction. Despite 

microstructural differences, sands and clays have similar macroscopic prop­

erties, so that constitutive models have been developed for both materials, 

assuming that the behaviour of sands and clays is governed by different zones 

of the same yield surface. For instance, it is common to assume that a dense 

sand behaves as a strongly overconsolidated clay. Other models have been 

specifically developed for sands. A fundamental feature of granular materials 

is the presence of plastic strains at low load levels, and the occurrence of a 

notable anisotropy induced by the loading process. The main elastic-plastic 

models which can describe these aspects are very briefly summarized in the 

following. 

Mr6z et al. (1978) and Prevost (1977) propose the use of vector-valued yield 
functions coupled with kinematic hardening to describe the mechanical behaviour of 
granular materials, in such a way extending to soils an approach originally proposed 
for metals by Mr6z (1967) and by Iwan (1967) . 

Dafalias and Popov (1975) and Krieg (1975) simplify the Mr6z approach, by sug­
gesting the use of two surfaces only: an inner one, describing the elastic behaviour, 
is subjected to kinematic hardening and an outer one, modelling the extent of the 
plastic strains, is fixed and named "bounding surface". A similar approach has been 
proposed also by Hashiguchi and Ueno (1977) with the so-called "subloading surface" 
model. 

More specifically oriented towards sands at low loading levels are the models 
proposed by Ghaboussi and Momen (1982) and by Poorooshasb and Pietruszczak 
(1985), based on two surfaces only, shaped as two open cones with non circular 
cross-section and with vertices coinciding with the origin of the stress space. 

Zienkiewicz and Mr6z (1984) and Pastor and Zienkiewicz (1986) propose a gen­
eralized plasticity model, in which the directions of plastic loading and unloading, 
as well as the amplitude of the plastic strains, are defined at each point of the stress 
space without making reference to a yield surface or to a consistency criterion. 

De Boer (1988) has developed constitutive equations for granular materials 
based on a "single-surface" criterion and a non-associative flow rule. A review of 
the state of the art of the macroscopic porous media theory can be find in de Boer 
(2000). 

Morland et al. (1993) describe a model for the uniaxial compaction of granular 
materials valid at small strains. 

Borja and Wren (1995) , Wren and Borja (1997) present a methodology for de­
riving the overall constitutive relations for granular materials based on microme-
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chanica! concepts. The overall response is obtained using particulate mechanics and 
considers the particle-to-particle interaction at contact points. Finally, a methodol­
ogy for calculating the overall tangential moduli for periodic assemblies of circular 
disks has been proposed. 

Anand and Gu (2000) have been formulated a large deformation three-dimensio­
nal elasto-plastic constitutive model for dry granular materials at low pressure, 
based on the classical Mohr-Coulomb criterion. The model is used to predict the 
formation of shear bands in plane strain compression and expansion and to predict 
the stress state in a static sand pile. 

The main drawback of the described models is that the same sand behaves as 
different materials at different densification levels. Such problem becomes important 
in the description of ceramic powders, where the density is a variable of the primary 
importance, subjected to evolution during the forming process. Recently, Manzari 
and Dafalias (1997) and Gajo and Muir Wood (1999a,b) have independently devel­
oped an approach originally proposed by Muir Wood et al. (1994) to account for 
the dependence of the mechanical properties from the densification level by means 
of a state parameter (Been and Jefferies, 1985). Both models are based on two open 
conical surfaces, with vertex coinciding with the origin of the reference system; in 
particular, some restrictions existing in the model of Manzari and Dafalias (1997) 
are overcome in the approach of Gajo and Muir Wood (1999a,b) by means of the 
use of a normalized stress space. Recently Gajo et al. (2001) have extended this 
model to include the elastic anisotropy induced during the deformation process. In 
this way it has been possible to show how this model can describe the onset of 
strain localization and the post-localization behaviour, both under axisymmetric 
and biaxial conditions. 

Ceramic powders. A general review of the powder pressing technology 

is given in Volume 22 of the MRS Bulletin (1997). It is explicitly stated in 

the introduction (Ewsuk, 1997) that the numerical modelling of densification 

phenomena is still an open problem, that there is a need of employing a large 

strain formulation and that several techniques (slip-casting, pressure filtra­

tion, centrifugal casting, injection molding, tape casting, gelcasting) are much 

less known than the widely used dry-powder pressing. Similar conclusions are 
reached by Schilling et al. (1998). It may be therefore appreciated that the 

state-of-the-art of mechanical modelling of ceramic densification process is 

still rather poor. Some contributions to this specific field are reviewed below. 

Shima and Mimura (1986) illustrate experimental results and formulate a yield 
criterion for ceramic powders. They claim that the experimental evidence points 
towards an associative flow-law. 
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The model by Kuhn et al. (1991) reduces the problem of Phase I densification 
to the search for the critical load of an arch. This model may be useful both for 
practical applications and in the description of experimental results. However, the 
model may be too limited to allow an adequate extension for modelling an entire 
compaction process. 

Hohl and Schwedes (1992) discuss the possibility of extending to powders the 
models used in geomechanics. However, they do not formulate a new model able to 
improve on the limits of those currently used in geomechanics. 

The relationship between density and tensile strength of ceramic powders are 
discussed by Bortzmeyer (1992a). A micromechanical model to determine the mi­
croscopic behaviour of packing during tensile tests is also proposed. Bortzmeyer 
(1992b) presents experimental results carried out on a zirconia powder with a stan­
dard triaxial apparatus and numerical simulations performed using a Cap-model 
with non-associative flow rule. 

Experimental results are given in Shima and Saleh (1993), where it is proved 
that a strong anisotropy is induced during pressing. This effect is then modelled in 
terms of kinematic hardening. 

Ahzi et al. (1993) employ crystal plasticity models for the analysis of the forming 
of BSCCO superconductive powders. Owing to the peculiar lamellar microstructure 
of their powders, their analysis is hardly extensible to powders with a different 
microstructural morphology. 

A relationship is proposed by Santos et al. (1996) to describe the variation of 
the density as function of the applied pressure, valid for alumina powders under 
pressures above 150 MPa. 

Brandt and Nilsson (1998; 1999) present an elastic-plastic model for powder 
compaction and sintering, with a kind of anisotropic hardening taken from models 
used in geomechanics (DiMaggio and Sandler, 1971; Sandler and Rubin, 1979). 

A comparison between the model of Shima and Oyane (1976) and the model of 
Fleck et al. (1992a) is presented by Kim and Kim (1998), whereas Sun and Kim 
(1997) and Sun et al. (1998) compare the same models to the Cam-clay. A similar 
work is that of Park and Kim (2001), where a yield function is proposed, with 
associative flow-law and independent of the third stress invariant. 

Phase I densification is interpreted by Cuitiiio and Gioia (1999) as a phase trans­
formation. Their model is based on a micromechanical approach and is applicable 
to a wide class of granular materials. However, it may be difficult to extend it to 
Phases II and III. 

The "CRADA group" (Aydin et al. 1997a,b; Ewsuk et al. 2001; Keller et al. 1998; 
Zipse, 1997) reports about a model for powder compaction based on a proposal by 
Sandler and Rubin (1979) for describing mechanical behaviour of concrete. Such 
model appears to be not fully adequate to the description of the ceramic powder 
behaviour in several respects (a small strain theory is used; the cohesion gain due 
to densification is not accounted for; the yield surface is independent of the third 
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stress invariant; the elastic parameters do not depend on both the current stress 
and the past history; hardening is present only in the cap region). 

On the basis of the above reported state-of-the-art, we feel it is possible 
to conclude as follows: 

• the description of industrial processes, in the presence of complex ge­
ometries, still requires the use of phenomenological models and could 
hardly be based upon micromechanical approaches; 

• a realistic elastic-plastic model, able to describe the powder compaction 
process, should include: 

a large strain formulation (during forming the material undergoes 
strains exceeding 50%); 

description of elastic phenomena (a rigid-plastic model would miss 
to capture several aspects which strongly affect the strength of the 
green bodies); 

pressure-sensitivity of yielding; 

dependence of the yield function on the third stress invariant; 

non-associative flow-law; 

closure of the yield function in compression, in order to simulate 
compaction during isostatic pressing; 

hardening and softening. In particular, the hardening must de­
scribe the increase in cohesion of the material during the pressing 
(Bortzmeyer, 1992a); 

explicit introduction of density as a state variable; 

variation of the elastic moduli with density (Brown and Weber , 
1988), an effect which could be accounted for by using the theory 
of elastic-plastic coupling (Hueckel, 1976); 

progressive anisotropy, both elastic and plastic, due to plastic 
straining (Shima and Saleh, 1993; Uematsu et al. 1995). 

• Moreover, the simulation of the forming process should include: 
effects of the deformability of the die (Matsumoto, 1986); 

effects of friction between powder and die (Song and Chandler, 
1990); 

simulation of the complete mold extrusion process, which may 
cause fracture upon unloading (Bortzmayer, 1996); 

analysis of strain localization and relevant numerical treatment. 
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5.2. Experimental 

Experimental investigation has been performed on the alumina powder 

described in Section 5.1. Experiments include uniaxial strain tests in a cylin­
drical mold, direct shear tests and biaxial flexure tests on the tablets obtained 

through uniaxial strain. 

5.2.1. Uniaxial strain tests 

Uniaxial deformation tests have been performed in a single-sided, cylin­

drical mold having inner diameter of 30 mm. A universal MTS 810 machine 
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FIGU RE 5.2. Compaction behaviour of the tested alumina powder (in a natural and 
semilog representation). 
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TABLE 5.2. Measured density as function of the forming pressure. 

Forming pressure (MPa) I Mean density (g/cm3
) I Standard deviation 

5 1.76 0.007 
10 1.89 0.007 

20 2.03 0.006 

30 2.13 0.002 
40 2.15 0.003 

50 2.19 0.007 

60 2.26 0.005 

80 2.31 0.007 
100 2.36 0.002 
120 2.38 0.003 

(by MTS Systems Gmbh, Berlin, Germany) has been employed. Tests were 

performed without lubricant at a 2 mm/min velocity of moving punch, for 
pressure levels ranging between 5 and 120 MPa. Five tests have been per­

formed at given values of pressure, selected as 5, 10, 20, 30, 40, 50, 60, 80, 

100, 120 T'vfPa. After uniaxial strain, tablets have been weighted and mea­

sured, so that the mean density has been evaluated. A quantity of 8 g of 

powder has been used for each test, discharged in the mold from an height 

of 10 em and shaken. Experiments were performed at a relative humidity 

of 28%. Results are reported in Fig. 5.2 (in a natural and semi-logarithmic 

representation) and Table 5.2. As can be noted from Fig. 5.2, points in the 

semi-logarthmic plot lies on a straight line, accordingly to DiMilia and Reed 
(1983a,b) and Lukasiewicz and Reed (1978). A representative load F versus 

vertical displacement s curve is reported in Fig. 5.3, from which the density p 

versus pressure p curve can be obtained through the simple relationships 

M 
p= ----

A(ho- s)' 
(5.1) 

(where A is the sample cross-section area, M its mass and ho its initial 

height), as shown in Fig. 5.4. The strong influence of the die and machine 

deformations can be appreciated in Fig. 5.3 . The changes in the slope of 

the curve in Fig. 5.4 identify the three compaction phases. In particular, 

the breakpoint and joining pressures are approximately 1 MPa and 20 MPa, 

respectively. However, the latter point is much less evident from the graph 

than the former. Note that results reported in Fig. 5.2 agree well with those 
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FIGURE 5.3. Load vs. displacement curve in uniaxial strain. 
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FIGURE 5.4. Compaction diagram in uniaxial strain (semilog representation) . 

reported in Fig. 5.4, except that Phase I behaviour is not visible in the former 

figure . 

5.2:2. Biaxial flexure strength tests 

Biaxial flexure strength tests have been performed on the tablets obtained 

through uniaxial strain, following the indications of ASTM F 394. For this 

test the velocity of the cylindrical ram was 0.4 mm/min. The increase in biax­

ial flexural strength as a function of the forming pressure is shown in Fig. 5.5. 
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FIGURE 5.5. Biaxial flexure strength as related to forming pressure. 

Results are in good agreement with existing data (Reed, 1995) and clearly 
show the mechanism of cohesion increase, as related to densification. 

A SEM micrograph of the fracture surface after a biaxial flexural test of a 

tablet formed at a pressure of 50 MPa is shown in Fig. 5.6. Note that 50 MPa 
is the optimal forming pressure indicated by the powder manufacturer. 

FIGU RE 5.6. Fracture surface of a tablet formed at 50 MPa pressure (bar = 100 J.Lm) . 

Fracture results to be partially transgranular and partially intergranular. 

It may be noted that there are clusters of deformed granules with low in­
tergranular porosity. Figure 5. 7 is a detail of a fractured granule, where the 

aggregate crystals are visible. 
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FIGURE 5.7. Particular of Fig. 5.6 (bar = 10 11m) . 

5.2.3. Direct shear tests 

A few direct shear tests have been performed using a standard geotech­
nical apparatus. The apparatus consists of a shear box which contains the 

sample and which is split in the mid-height. When a normal force is applied, 

the horizontal force required to induce a movement of the upper half of the 

sample with respect to the lower half is measured. This test is useful for 

the evaluation of the friction angle of a granular material, like the alumina 

powder in Phase I of densification. In order to investigate the shear strength 
of the cohesionless material, a low vertical pressure was applied: three values 

were considered, namely, 200, 500, and 1000 kPa. The samples were formed 
by carefully pouring the ceramic powder within the shear box. Shearing was 
performed at a velocity of 0.2 mm/min. The variation of the vertical dis­

placement of the sample upper surface and of the applied shear force during 
shearing is shown in Figs. 5.8 and 5.9. 

The samples have the typical behaviour of a loose sand, with compressive 

volumetric strains during shearing, without a peak strength followed by a 

softening phase. The fact that the samples sheared at 500 kPa and 1000 kPa 

of vertical pressure have the same volumetric strains is probably related to a 
slightly looser initial condition of the former sample. It can be observed that, 
except for the test performed under a vertical stress of 200 kPa, the steady 

state condition typical of the critical state is not reached and at the end of the 

test the strength and the volumetric strains of the samples are still slightly 

increasing. This effect is more pronounced at larger applied vertical pressures 
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FIGURE 5.8. Vertical vs. horizontal displacements of three samples, for different vertical 
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FIGURE 5.9. Shear force vs. horizontal displacement of three samples, for different 
vertical pressures (200, 500 and 1000 kPa). 

and is probably connected to the progressive deformation and rupture of the 
grains constituting the alumina powder occurring during shearing even at 

low confining pressures. This is consistent with the experimental evidences 

that very large shear strains are necessary to reach the steady state in sands 
when grain crushing occurs. 

The maximum shear force reached at the end of the test is plotted 
in Fig. 5.10 as a function of the applied vertical load. The results clearly 
lie on a straight line and may be interpreted following the Coulomb-Mohr 
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FIGURE 5.10. Maximum shear force at different vertical loads. 

failure criterion, to yield a friction angle approximately equal to 32°. Accept­

ing a slight approximation, this angle was considered the critical state friction 

angle in the following simulations. Moreover, since experimental information 

on the shear strength of the cohesive material after compaction are missing, 
the measured friction angle was assumed to characterise also the behaviour 

of the material after compaction. 

5.3. Modelling and calibration 

It can be concluded from the above reported experiments that a plastic­

ity model is the best candidate for a phenomenological description of powder 

compaction. First, in fact, an elastoplastic model is needed to simulate the 

irreversible deformation representing the forming process itself, second, it 

allows determination of residual stresses after forming , a fundamental pa­
rameter for design purposes. 

In general, an elastoplastic model is formulated as a nonlinear relationship 
V' 

between objective rates of stress T and strain D 

~= { £[D] - ~ < Q · £[D] > £[P] 

£(D] 

iff( T, K) = 0, 

if j ( T, K) < 0 , 
(5.2) 

where £ is the elastic fourth order tensor, the operator < · > denotes the 

Macaulay brackets which associate to any scalar a the value< a>= max {a, 0}, 
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f is the yield criterion, function of the stress measure T and of a generic col­
lection of state variables K (which may for instance describe the density of 
the material), Q and P are the yield function and plastic potential gradi­
ents, respectively ( Q = P for associative elastoplasticity). Finally, the plastic 
modulus H is related to the hardening modulus h through 

H = h+ Q·e[P]. (5.3) 

Elastoplasticity as described by the rate equations (5.2) is a broad context 
in which many constitutive assumptions are to be introduced. The similar­
ity of the Phase I compaction with the deformation of granular materials 
suggests the possibility of using a model already developed for geomaterials. 
In particular, on the basis of our experimental results, we have decided to 
employ a finite strain version of the Cam-clay model (Roscoe et al. 1958, 
1963; Roscoe and Poorooshasb, 1963; Roscoe and Burland, 1968; Schofield 
and Wroth, 1968). The model is based on the following assumptions: 

AI. Yield function: 

(5.4) 

where p = -trT /3 is the hydrostatic stress component, q = v'3J2 (with 
J2 = T · T - 3p2 ) is the Mises stress, M is a material constant and Pc 
is a hardening parameter. 

A2. Associative plastic flow rule: 

where S = T - (tr T) /31 is the stress deviator. 

A3. Isotropic hardening rule: 

1- JP 
Pc = Pco exp (1 +eo) A_ K.JP, 

(5.5) 

(5.6) 

where JP = det FP, being FP the plastic part of the deformation gra­
dient F, Pco and eo are the initial values of hardening parameter and 
void ratio, respectively, (the void ratio is defined as the ratio between 
the volume of voids and volume of solid phase). A is the logarithmic 
hardening modulus and K. the logarithmic elastic bulk modulus and are 
represented by the slopes of plastic and elastic branches of the e vs. 
logp curve obtained under isotropic compression. 
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It may be anticipated, however, that the Cam-clay model has definitive 

limitations when applied to the modelling of ceramic powders . In particular, 

a more refined model should include the following features, not considered 

in the Cam-clay: 

• the yield function should depend also on the third stress invariant; 

• a non-associative flow-law should be introduced; 

• the hardening should describe the increase in cohesion of the material 

during the pressing; 

• the elastic moduli should depend on the increase in cohesion during 

densification (an effect that could be accounted for by using the theory 

of elastic-plastic coupling, Hueckel, 1976). 

Among the above points, the dependence of the cohesion on the relative 

density is the more important. In the Cam-clay model, in fact, the material 

remains cohesionless during all the process of inelastic deformation. On the 
contrary, the proper description of cohesion gain during forming is a funda­

mental aspect for design purposes. 

Calibration of the model has been performed on the basis of our experi­

ments (with the exception of the Poisson's ratio, which was estimated from 

values available in the literature). In particular, the values of the parameters 

A and /'\, were deduced from the slopes of curves obtained by loading and un­

loading the samples in the uniaxial strain test. For this evaluation, we have 

assumed a constant ratio between the horizontal ah and vertical av stresses 
equal to 0.47, as deduced from the formulae 

ah 1 . --" - = - Sln\.f/, 
av 

which is currently used for granular media ( ¢ is the angle of internal friction). 

The values of parameters used in the subsequent numerical simulations are 

summarized in Table 5.3. 

TABLE 5.3. Values of material parameters estimated from experiments. 

--------------------
Elastic logarithmic bulk modulus"' 0.040 

Logarithmic hardening modulus A 0.290 
Material constant M 1.287 

Initial value of hardening parameter Pco (MPa) 0.648 

Initial values of void ratio e0 2.054 

Initial confining pressure po (MPa) 0.063 
Poisson's ratio v (taken from literature) 0.26 
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5.4. Numerical simulations 

Numerical simulations with finite elements have been performed - within 

the environment allowed by the commercial code ABAQUS (Hibbitt, Karls­

son & Sorensen, 2001) - to simulate forming of the (axisymmetric) piece 

shown in Figs. 5.11 and 5.12. Four pieces where formed at a final mean pres­

sure of 100 MPa starting from 5 g of powder. The axisymmetric mesh used in 

the simulations is shown in Fig. 5.13. Axisymmetric 4-node elements (CAX4) 
have been used. 

FIGURE 5.11. Photograph of the formed piece. 

<P 15 

<P 13 

<P 25 

FIG URE 5.12. Geometry of the formed piece (dimensions in mm) . 

The following assumptions have been introduced: 

• the die is undeformable; 

• the contact between powder and die walls is smooth; 

• the initial configuration is that shown in Fig. 5.13. 
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t_l 
FIGURE 5.13. Initial mesh. 
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FIGURE 5.14. Deformed mesh at the end of step 1. 
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FIGURE 5.15. Initial and deformed (end of step 1) meshes. 
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It may be worth noting that the above assumptions are not particularly 

strong in our specific analysis. In particular, we remark that, due to the 

large strains that will be reached during pressing, the assumption that the 

initial configuration shown in Fig. 5.13 is homogeneous does not affect much 

final results . 
After the initial state - defined by initial values of void ratio and confining 

pressure - has been defined, the loading history is assigned, which is divided 

in the following three steps: 

1. forming is prescribed by imposing the motion of the upper part of 

the boundary (3. 78 mm, corresponding to the value measured during 

forming at the final load of 50 kN); 

2. unloading is simulated by prescribing null forces on the upper part of 

the boundary; 

3. ejection is simulated by prescribing null forces on all the boundary. 

Due to the fact that the Cam-clay model is not defined for tensile stresses 

and is singular for null mean stress, the last of the above steps cannot be con­

cluded and the analysis ends up when the applied external forces are reduced 
to a minimal percent of the values at the beginning of the step. Obviously, 

a more fundamental constitutive approach would require the definition of a 
gain of cohesion and related variation of elastic properties, as mentioned in 

Section 5.3. 
The deformed mesh at the end of step 1 is shown in Fig. 5.14, whereas 

the same mesh superimposed on the initial mesh is shown in Fig. 5.15. It can 
be noted that the elements near the corner of the punch are unphysically 

distorted so that results in this zone should not be considered realistic. 

It is immediate to conclude from Figs. 5.14, 5.15 that the deformation 
suffered by the piece is quite high. The hydrostatic stress component p (taken 
positive when compressive), the Mises stress q and the void ratio are reported 

in Figs. 5.16-5.18, respectively, at the end of step 1. 
Excluding the small, unrepresentative zone near the corner of the punch, 

the hydrostatic stress p ranges from 25.3 MPa to 108 MPa and the Mises 

stress q from 15.4 MPa to 70.1 MPa. These values show that the stress is 

highly inhomogeneous. The qfp ratio ranges from 0.31 to 1.14, so that it is 

always inferior than the value of M. 

Values of the hydrostatic and Mises stress components at the end of step 2 

are reported in Figs. 5.19 and 5.20, whereas the map of void ratio is shown 
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PRESS VALUE 

FIGURE 5.16. Distribution of hydrostatic stress component (MPa) at the end of step 1. 

MISES VALUE 

FIGURE 5.17. Distribution of Mises stress (MPa) at the end of step 1. 

VOIDR VALUE 

+4 . 42E-01 

+4 . 94E-01 

+5 .4 5E-01 

+5.97E-01 

+6.49E-01 

+7.00E-01 

+7 . 52E-01 

+8.76E-01 

FIGURE 5.18. Void ratio distribution at the end of step 1. 
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PRESS VALUE 

FIGURE 5.19. Distribution of hydrostatic stress component (MPa) at the end of step 2. 

MISES VALUE 

+1. 03E+Ol 

+1 . 52E+Ol 
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+3 . OOE+Ol 
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FIGURE 5.20. Distribution of Mises stress component (MPa) at the end of step 2. 
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FIGURE 5.21. Void ratio distribution at the end of step 2. 
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in Fig. 5.21. It may be important to note that residual stress is quite high, 

due to the lateral constraint still present at the end of step 2. The knowledge 

of the lateral stress is important for practical purposes since the force needed 
for the ejection of the final piece can be estimated through Coulomb friction 

law, when the lateral stress at the end of step 2 is known. A rough, but simple 

evaluation can be immediately obtained from numerical output at the end of 

step 2 employing the formula 

ejection force = a tan¢ (mean lateral stress x lateral surface of the piece), 

where ¢ is the powder friction angle (equal to 32° in our case) and a is a 
coefficient dependent on the roughness of the die wall and ranging between 

0 and 1, typically a= 0.6. 

The deformed mesh at the end of step 3 is shown in Figs. 5.22 and 5.23. 

In the latter figure, the deformed mesh is superimposed on the initial. The 

springback effect and the shape distortion are evident. 

/:, 

A 

w H-1 
H-

I I \ I 
I I I I I I 

FIGURE 5.22. Deformed mesh at the end of step 3. 
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FIGURE 5.23. Initial and deformed (step 3) meshes. 
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PRESS VALUE 
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FIG URE 5.24. Distribution of hydrostatic stress component (MPa) at the end of step 3. 

MISES VALUE 

FIG URE 5.25. Distribution of Mises stress component (MPa) at the end of step 3. 
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FIGU RE 5.26. Void ratio distribution at the end of step 3. 
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The residual stress distribution at the end of forming is reported in 

Figs. 5.24 and 5.25, where the hydrostatic stress and the Mises stress compo­

nents are also shown. The void ratio distribution is finally shown in Fig. 5.26. 

Excluding the small, unrepresentative zone near the corner of the punch, 

the hydrostatic stress p ranges now between 0.038 MPa and 2.64 MPa and 

the l\tlises stress q between 0.32 MPa and 5.22 MPa. Moreover, the void ratio 

varies between 0.54 and 0.95. It can be noted that the minimum void ratio is 

usually associated with the maximum residual mean stress. The results sug­

gest that two annular, concentric zones of material are formed, the inner of 

which is subject to high compressive mean stresses, whereas the outer tends 

to be subject to tensile stresses. This can represent a potentially danger­

ous situation, in which the tensile stresses tend to open possible microcracks 

induced by ejection on the external surface of the piece, leading to serious de­
fects formation in the green. However, even when the green is approximately 
free of macro defects, its mechanical behaviour and shrinkage during future 
sintering are deeply affected by the inhomogeneities in the residual stress and 

density distributions. 

Finally, we note from Figs. 5.24-5.26 that an annular zone of very dense 

material forms near the bottom of the sample. This prediction is indeed 

confirmed by the visual inspection of the formed sample, clearly showing an 
annular dark zone, Fig. 5.27. 

FIG URE 5.27. Photograph of the bottom side of the formed samples. 
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Experimental and simulated load displacement curves during forming of 
the piece shown in Fig. 5.11 are compared in Fig. 5.28 (natural and semilog­

arithmic representations are reported), where a satisfying agreement can be 

noted. 
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FIG URE 5.28. Experimental and simulated load vs. displacement curves, in a natural and 
semilog representation. 

5.5. Conclusions 

Results discussed in the present chapter represent a first step toward the 

development of a model capable of realistically describing forming processes 

of ceramic materials. Even if the experimental results are still incomplete and 

the employed elastoplastic model, the Cam-clay, does not describe properly 
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some important feature of material behaviour - as for instance the strong 

relation between density and cohesion - our results demonstrate that it is 

possible to realistically predict: 

• the springback effect and related shape distortion, 

• the force needed for mold ejection, 

• the residual stress distribution, 

• the density distribution and the related presence of defects in the green 

body. 

The final remark is related to the prediction of defects in the sintered piece 

and therefore its investigation has an important practical meaning. 
In closure, we mention that the modelling presented in this Chapter can 

be extended in different directions. Referring to thermoplasticity, the sin­

tering phase might be covered by modelling, so that simulation could be 
extended to the entire production process. Moreover, both sintering aids and 
powder characteristics might enter the elastic-plastic constitutive laws, so 

that the optimal powder composition and morphology could be predicted for 
different forming problems. 
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