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THERMODYNAKICS OF A RATE SENSITIVE PLASTIC iIATERIAL

1. Introduction

The basic object of the present paper is the formulat-
ion of the thermodynamic theory of a rate sensitive plastic
material within the framework of thermodynamics of material
with internal state variables¥,

In thermodynamic theory of plastic solids at finite
strains there are two basic difficulties. The first of them
is connected with kinematic description of plastic deformat-
ion., In this description it is usually assumed the additivi-
ty of the elastic and inelastic parts of the deformation ten-
sor™, The second difficulty in thermodynamic description of
plastic deformation_is connected with the problem of choice
of thermodynamic variableg of state., This choice in thermo-
dynamics of plastic deformation is-not unique™, The import-
ant question rises here whether the plastic deformation ten-
gor may be treated as the thermodyneamic state variable.

We intend to establish the thermodynamic theory of an
inelastic material in which both these difficulties may be

# Thermodynamics with intermal state variables has been
presented independently by Coleman and Gurtin [1967, 1]
and Valanis [1967, 6], The application of the concept-
ion of internal state parameters to the description of
the properties of viscoelastic materials may be found
in several papers /Vid. Schapery [1964, 2], lLieizmer
(1966, 2], and Valanig [1966, 5], [1967, 5], for example/

% Green and Naghdi (1965, 2] assumed the postulate of ad-
ditivity. Backman [1964, 1] and Lee and Liu {1967, 2]
presented a different approach to this problem, Perzy-
na [1966, 4] has formulated the theory of elastic-visco-
plastic materials in which no division of the deformat-
ion tensor into two parts is needed. In the papers
f1966, 3] ,,2967, 4] and [1967, 7] the additivity postu-
late have been also assumed.

#x% Cf., Green and Naghdi (1965, 2] and Kestin 1966, 1],
for example,
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taken into account. Assuming the deformation tensor and
temperature as thermodynamic state variables and the com-
ponents of the inelastic deformation tensor as internal
state parameters /hidden parameters/ the thermodynanic
theory of a rate sensitive plastic material is formulated.
Thus, the basic conception is %o treat a rate sensitive
plastic material as a material with internal state vari-
ables. lio connection between the deformation tensor and the
inelastic deformation tensor is postulated, The deformation
tensor is implied by kinematics of the given motion for a
body B and the inelastic deformation tensor is determined
by the solution of the initial-value problem for ordinary
first order differential equation.

The full system of reduced constitutive equations de-
seribing the behaviour of an elastic/viscoplastic material®
in thermodynamic process has been given. The restrictions
imposed by thermodynamic postulate of a nonnegative entropy
production have been investigated. The conditions under
wanich the equilibrium state may be reached have been discus-
sed, It has been shown that the asymptotically stable equi-
librium state may be reached for an elastic/viscoplastic
raterial in the isothermal relaxation process. The mathema-
tical description of the isothermal relaxation process has
been presented. For isotropic material the polynomial repre-
sentations for response functions have been given. The limit
case which leads to an elastic-plastic material has been
discussed. The full discussion of thermodynamic theory of
an elastic-plastic material is shown.

2. Constitutive assumptions for a material
with internal state variables

Let us consider a body B .with particles X and assume

% For the definition of zn elastic/viscoplastic material
vide infra,
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that this body may deform and conduct heat, .Je shall assume
that couple stresses and body couples are abtsent.

The thermodynamic process of a body B 1is described by
nine functions {X%. T, b, w, q,7%, n, v, A} of the
particle X and time t . These functions have following
infterpretations. The function of motion Ef{X,t} determines
the spatial position occupied by the materiazl point X  at
time t , which in reference confizuration % occupied the
position X , i.e.,

5. "X,(X’c) /2.1/

The components of the function & are assumed to be continu-
ously differentiable. The function T(X 1) is symmetric
Cauchy stress tensor, b(X.t) is the body force per unit
mass, np(i‘t) denotes specific free energy per unit mass,
g,(X,t) the heat flux vector, +(Xt) the heat supply
per unit mass and unit time, n(X,t) is the specific entro-
py, (X, the local absolute temperature and A (X%
is the internal state tensor. We assume that é is symmetr-
ic second order tensor. '
Since we identify the material point X with its posi-
tion x in the reference configuration R , hence the de-
formation gradient F is determined by

F = Grad %(X,4), /2.3/

where Gred is computed with respect to material coordi-
nates E . We shall introduce the second Fiola-Xirchhoff
stress tensor

—
i

JE T, /2.3/

where Sn=dgtf 50 . Similarly, the heat flux vector per
unit surface in the reference configuration R  will be
define as follows
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‘}g = }f C} /2.4/

The system of nine functions {¥,T,b 4, q,,1,1, ¥, A}
defined for every particle X in B and for any time t
is called the thermodynamic process in B if, and only if,
it is compatible with the condition for the balance of li-
near momentum /Cauchy s first law of motion/

Div(ET) + G0 =, X /2.5/

and with the balance of energy /the first law of thermo-
dynamics/

%ir(?@)- chl/u' qv_(«iua'lfp-ﬁ'th&* =0, 2.6/

where operator Dv is computed with respect to material co-
ordinates X , (:w. is the mass dengity in the reference
configuration ® , the dot denotes the material different-
jation with respect to time t , and C is the right Cau-
chy-Green deformation tensor

Q = ETF /2.7/

In order to define a thermodynamic process in % ,
it suffices to prescribe the seven functions [z,,'i',qp‘qrqﬁ"é},
The two remaining functions b and T .are then u.niquely
determined by equations /2.5/ and /2.6/.

We shall require that for any time ! for a thermo-
dynamic process in % the thermodynamic postulate will be
satisfied. This is equivalent to the following inequalityx:

% This inequality is implied by the Clausius-Duhem inequali-
ty /cf. Truesdell and Holl [1965, 1]/.
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which must be satisfied for every particle XA in %

Similarly, we shall assume that all constitutive equat-
ions describing the physical properties of a material
satisfy the principle of material frame-indifference formu-
lated by No1l¥,

A material with internal state variables is characterized
in particle X by five constitutive equationsZHE

V= $(C, ¥ GrodV, Al

7= (¢, 7, Grd ¥, A),

T=T(C, ¥ 6radd, A), /2.9/
9(C, ¥, Grad ¥, A) |

A(C, Y Grad¥, A).

It is obvious that in constitutive assumptions /2.9/ we
take use of the principle of equipresence formulated by
Truesdel1l ™%,

For definiteness we agsume here that the internal state
tensor A remains invariant upon a change of freme, i.e.,

A—A

We shall say that the thermodynamic process in B de-

scribed by the system of functions {'K_.,'-_‘[",'\Jg,ch,f], 3', 67‘

T

2

(=
I

% Cf, lioll (1958, 1] and Truesdell and Holl (1965, 1.

#% Vid. Coleman and Gurtin (1967, 1] and Valanis [1967, 6].
In the baesic system of constitutive equations describ-
ing material with internal state variables Coleman and
Gurtin [1967, 1] and Valanis (1967, 6] assumed the vec-
tor parameter o& =(ot,,...:,ot,) defining the internal state.
For our aim it is convenient to introduce the tensor in-
ternal parameter A.

#=xx Cf, Truesdell and Noll [1965,1] .



is called an admissible process in B if it is compatible
with constitutive equations /2.9/ at each point X of $
and for all time t .

To investigate the restrictions which are imposed on
the constitutive equations /2.9/ by the thermodynamic postu-
late /2.8/ we compute

F

y= (34 @)m&«’;‘(&»«'}wﬁ-w& +1e(9,% ). /2.10/

Substitution the result /2.10/ into the inequality
/2.8/ gives

r tr[("f-?.qt?t_@)@‘(911"’\’*'?)-3’ Yty ¥ Gradd /2.11/
’. -~ . ’
-te(2,pA) - s,q - Grad 2 0.
- Qa

Choosing arbitrary values C, ¥ eanda Grdd it ig
possible to determine an admissible thermodynamic process
in ® ¥, Hence, to satisfy the inequality /2.11/ one has
to assume

sV =9, /2.12/
TﬁZQnQEQ(Q"&-&) 1 pady
1=-9,4(C.%,4), /2.14/

A~ ~ z /2.15/
(9, 4¢3, 0A] + c—“gq_,( Y Grod¥ A)-Crod T £0.

% Vid. Coleman and Gurtin (1967, 1] and Valanis [1967, 6].



o I om

The relation /2.12/ implies that the response function
of free energy Y 1is independent on Grad 7, The equations
/2.13/ and /2.14/ determine the response functions for stress
tensor 1 and for entropy ﬁ by means of the response func-
tion 4(C,¥,A) .. The inequality /2,15/ is called the gene-
ral dissipation inequality.

We introduce the definition of internal dissipation func-
tion as follows

€=6(C. Y, Crad?, A)
/2.16/

-

%—’w[‘)ﬁ{y(g,#, AVA(C, ¥, Cnd ¥, 4)).

The general dissipation inequality /2.15/ implies that for
Grad v =0 the internal diseipation inequality is satisfied

6(C, ¥, 9,A)20. /2.47/

w

3. Description of an elastic/viscoplastic material

The experimental investigations of dynamical properties
of materials have shown that many materials behave in dif-
ferent way under dynamic loading and under static loading.
These results have also proved  that the basic reason of
these differences is the strain rate sensitivity of the ma-
terial investigatedx. The influence of strain rate effect
may be takén into account within the framework of viscoplast-
icity. We assume that before yielding material has only
elastic properties, and affer yielding has viscoelastic and
plastic properties. This is why we shall call the rate sen-
gitive plastic material an elastic/viscoplastic.

% A discussion of the results of experimental investigations
in the domain of dynamic loads acting on metals can be
found in the paper [1966, 5] .



The aim of the present paper is the description of an
elzstic/viscoplastic material within the framework of ther-
modyniamics with internal state variables, From the relation
for internal dissipation /2.16/ one can see that the inter-
nal state tensor A 1is introduced to describe the dissipat-
ion of the material, For an elastic/viscoplastic material
such a parameter will be the inelastic deformation tensor

‘Q‘ . From previous researches in v1scoplast101ty we
know that the rate of the inelastic deformation tensor é
for an elastic/viscoplastic material is proportional to the
function &(F) , where ¥ is the statical yield func-
tion., Since an elastic/viscoplastic material before yield-
ing has only elastic properties, hence the initial yield
condition can be assumed to be similar as in inviscid theo-
ry of plasticity. Thus, the statical yield condition can be
defined as follows

K3, 3,0 .t 4

l}. x )

/3.1/
where the isotropic work-hardening parameter € 1is determin-
ed byxz

% = t{N(T, ¥, /3.2/

Tne functions { and N are tensor functions. The func-
tion @(?} may be chosen to represent the results of tesis
on the dynamical behaviour of materials. At the same time
the proper choice of §(¥) enables a description of the
influence of the rate of deformation and the temperature

cn the yield 1limit of the material., It is postulated that
the following differential equations determines the tensor
internal state parameter 1§ for an elastic/viscoplastic
nmaterial

# ¢f. Perzyna

953, 1,2}, (1967, 4, , (1968, 1], Perzyna
and Wojno (1956,

3] and Vojno (1967, 7] .
#x Cf. Green ard Lazhdi [12€5, 2)



o=y (9o (FM(T, 2. %), /3.3/
where 9¥(¥) is a temperature depsndent
cient of a meterial, the symbol <(&.(%)>
lows
0 {or T£0,
(&{?)> = { F 9. &d
@(?) *01‘ f}->0’ ! Je5;

and M denotes the symmetric tensor function, i.e., M =tf
To ensure that the internal state tensor ‘Q is invariant
upon a change of frame it ie sufficisnt to assume that the
tensor function M is objective.

The equation /3.3/ postulates that the rate of the in-
elastic deformation tensor '@ is the function of the ex-
cegs of stress over the static yield condition. We notice
here that the equation /3.3/ is the generalization of the
known relation for shear strain rate in the physical theory
of dislocation for face-centred cubic crystals based on
thermal activation processl.

The constitutive assumption /3.3/ yields to the follow-
ing dynamical yield criterion

inzy 'l2 B
%(’"5,5,‘9)=°€{4+32"i(12"}-‘ (tr t‘z]%]}- /3.5/
()
This relation may be interpreted as z description of actuel
change of the yield surface during fthne thermodynamic nrocess.
This change is caused by isotrcpic zn? aniscotropic work-
hardening effects and by influence of the rete of inslastic

# Vid. Seeger [1365, 1] . The physiecal foundations of an
elastic/viscoplastic material have been fully discussed
in the paper (1968, 1]. /0f. also Iindholm [1957, 3]/.
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deformation tensor and temperature on the yield limit of
a material®. ‘

Hotice that the relation /3.5/ is a base for experiment-
al investigations which aim to examine the theoretical as-
sumptions.

Due to previous results and the constitutive assumptions
introduced the full system of the constitutive equations
for an elastic/viscoplastic material may be written as fol-
lows

v =42, /3.6/
T =2¢.2,9(C. v, '), /3.7
g =-9,%(C. 7., /3.8
%= 4 (C. 7, Crad ¥ ). /3.9/
E = g(9)<EE> M, YY) /3.10/

Thus, an elastié/viscoplaatic material is described in
a thermodynamic process by the response functions ﬁ:, @&'
M, &(T) and by viscoeity coefficient ¥(¥).

Due to relation /3.7/ the differential equation /3.1Q/
which determined the tensor parameter of internal state‘g
can be written in the following form

't =g(c,¥.'), /3.11/

where tensor function € is a Bymmetrié tensor and is de-
fined by function M and &(F) .
The equation /3.11/ may be treated as the definition of

the inelastic deformation tensor ‘Q » This equation

% In physical theory of Seeger [1955, 1] exists similar
relation between actual stress, temperature and strain
rate.
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shows that the present theory of an elastic/viscoplastic
material takes account of the history of deformation and
temperature. This is implied by the fact that to integrate
the differential equation /3.11/ and to detgrmine the actual
value of the inelastic deformation temsor 'C(t) at X
in B we have to know the initial value 'C’  and the
full histories of the inclastic deformation fensor KQ
the deformation tensor ( and temperature ¥ at X .

In the present theory the general dissipation inequality
has form

(€, 6o ¥, 'C) Grad T £0 /3.12/

-!

TR A Rt

" =

and ensures the fulfilment of the thermodynamic postulate

/2.8/.
The internal dissipation function 6 is determined by
the relation

6‘=§(E.3»19 /3.13/
== £ V0@ (2 G u(T, )]

=y by b s e, v ol
4. Equilibrium state and the relaxation process
The triple (C* ¥*,'C*) which satisfies the condition
(L% . T=0 and Crd¥=Q /4.1/

is called the equilibrium state of a material at X .
Since for an elastic/viscoplastic material, after using the
relation /3.7/, we have

(¢, 7,0 = ¥(IS(TM(T, ¥, 0), /4.2/



- 12 -

then the condition /4.1/ czn be satisfied if
$(¥F) =0 i.e.J ¥ =0, /4.3/

The tensor function M in whole domain of variability of
C, ¥ and i@ can not be equal to zero. This is implied
by physical feature of an elastic/viscoplastic material,
For this material ‘¢ =0 if, and only if, T £0
and € #0 for F>0

After Coleman and Gurtin (1967, 1] we introduce the de-
finition of the domain of attraction of the equilibrium
state (¢*. 3‘,f§*) at constant strain and temperature as
a set D(C, I,'¢")  of all initial values <’ such
that the solution ‘C ="C(%) of the initial-value problem

C=6(C" 3", | o) =T /4.4/
exists for all t 20  and tends to iCF , i.e.,
W -t /4.5/

The equilibrium state (QF,3*f§‘!is called asymptotical-
ly stable at constant strain and tempera'turex if the domain
of attraction of equilibrium state at constant strain and
temperature D(C*, ¥*,'¢") contains a neighbourhood of e
i.e., if there exists a ¢ >0 such that every tensor of
internal state ‘Q° gatisfying the condition

\'u{.;o _ i(:\é-'g /4'6/

is in D(C*, ¥*,'¢") . _

Let us assume that there exists a triple ((*, ¥*, ‘C')
defining the equilibrium state and investirmate the solution
of the initial-value problem /4,4/ with condition /4.6/.
From physical features of an elastic/viscoplastic maferial

% Vid. the definition given by Coleman and Gurtin [1967, 1].
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we know that 'i'_. 20 « The thermodynamic prccess consider-
ed 1s characterized by constancy of the deformation tensor

C =¢* and temperature J=3" in interval of time
[t., ®) . The inelastic deformation tensor in such thermo-
dynamic process id described by the equation /4.4/ and the
stress tensor byK

T=2¢9 ¥(c, 9.0 /8.7

The process described by /4.4/ and /4.7/ is the isothermal
relaxation process for an elastic/viscoplastic material.
For such process

g ot /4.8/
and

T — ., 39, /4.9/
where the function iC‘ is determined by the condition

T =0. /4.10/

Thusy we have proved the following remark: )

The asymptotically stable equilibrium state ((”, 3’,LQ')
for an elastic/viscoplastic material is only reached in the
igothermal relaxation process.

For the isothermal relaxation process and for Grmd,ﬂ7=g
from the thermodynamic postulate /2.8/ yields

‘\1'40 /4.11/

# From the equation /4.7/ we can eagily compute the Cauchy
stress tensor
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Thus, we can write
TR ST (a0 /4.12/

for all internal state tensor parameters ‘C in a neigh-
lps : i
bourhood of . C . Hence

‘3; ¥ . '-'"0 [4 .
fﬁ\'g L 7Y 74.13/

The equation /4.13/ is called the equation of the internal
equilibrium of an elastic/viscoplastic material.

This implies the following remark:

In the isothermal relaxation process for an elastic/viscc
plastic material the free energy has minimum value at the
asymptotically stable equilibrium state.

Let us assume that for any arbitrary pair of deformation
and temperature (g‘,-&ﬁ exists only one internal state ten-
sor ‘("  such that /4.1/ is satisfied, i.e., the triple
(e*, ¥, {g’) is the equilibrium state of a material at
point X . This is a case for an elastic/viscoplastic ma-
terial if the condition /4.,3/ is satisfied, hence exists
the relation

sgl - \Ct(gi, 3&%‘)’ /4.14/
which may be called the equilibrium response function for
the internal state tensor ‘Q' . Using the equations
/3.6/ = /3.9/ we can determine the equilibrium response
functions &*, 7* T* and f&: as functions of (* and &
only

= () = O T, e
'?' =Fl'(§‘.3'), /4.16/

) /4.17/
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% =9 (¢, ). /4.18/

It can be proved that q;.==Q *, Computation of 3aqf
gives )

2N =2, 4062, Bla e, 3002, T g 3)]. /4419

Similar relation is satisfied for '3(@‘

Thus, due to the relation /4.13/ we have following re-
mark: .

If a triple (C*, J* 'g‘) is the asymptotically stable
equilibrium state, for which the condition of internal equi~
librium /4.13/ is satisfied, then the following relations
for stress tensor and for entropy are valid

it
1

N e T (o i /4.20/

’ -ga.':l"(r:'$&‘). /4.21/

'-‘-3
u

5. Isotropic material

The constitutive equations /3.6/ - /3.10/ describing the
properties of an elastic/viscoplaatic material are valid for
arbitrary initial anisoiropy. We shall now assume that mater-
ial considered is initially isotropic. In this case there may
exist for the response tensor functions the polynomial repre-
sentations™, .

The fundamental response function 4,(9,3;‘9) may have

# The proof is similar to that given by Coleman and Gurtin
1967, 11.
xx Cf. Truesdell and Noll (1965, 1].
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the polynomial representation of ten invariants

3 i L2 in%

JC'[’%} *;Tgta t*’g) Jﬁ'g’tfg ’.J‘!g’

. + L /5-1/
’ . oy

e, et welt, Wt

Thus we can write

-1 ) .

Ge,7,0) = 4, () +4 (MtrC r (Ot e (Mt
A :’I’u(‘n tr.‘t,_' +”¥s@1 br ig. * ‘Q’Gm t'rig’ /5.2/
RO ARACE AR AC I SLAG s

For stress tensor and entropy, due to equations /3.7/ -
/3.8/ and /5.2/, we deduce following relations

T =26 [ (ML r2,(3C +3 (N

~ L S wi A H P i /5-3/
4,09+ Gy (9 + 2 (LT 12 (L]
Al ~ Al Ay y
B EACEEAC T SEAC PR EAC T
Al ' I Al H A tad
+ 4, (' (Ot + (N U /5.4/
(e G+ G (LT r g (N T (e,
where '\Tf;(&}, « w sithay ({V'w[-&) are the derivatives with re-
gpect to temperature ~f of the temperature dependent coef-
ficients «‘;},m, cee .,'G(W(&j
The differential equation determining the internal state
tensor ‘¢ /3.10/ may be written in the form
T = I(NGE[f 444, T+t + ¢ T,
(Tt ) (T’ Ty) /5%
YT T (T T,
where the functions T and o, .- -,¢y depend on tempera-

ture § and ten invariants



- 17 -

Wit Wi, Wit 1551

6. Elastic-plastic material

The dynamical yield condition /3.5/ implies that an elast-
ic/viscoplastic material loses its strain rate sensitivity
if, and only if, the viscosity coefficient ¥(¥) —> oo,

In this case the statical yield condition

F =0 /6.1/

is satisfied, the material loses its viscosity properties
and behaves as an elastic-plastic material, From the defi=
nition of the symbol <$(F)> /ef. the relation /3.4//

we see that the differential equation determining the plast-
ic deformation tensor "¢  takes the following form

e =AM(T.Y", /6.2/

where the parameter A =9%(3)¢<$(¥)> may be determined from
the condition that the point representing in temperature-
gtress space the actual state of temperature and stress
lies on the yield surface

HE.5 T ==, /6.3/

where the work-hardening parameter is determined by the re-
lation /ef. the definition /3.2//

w = WIN(T, ") %} /6.4/
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From the yield condition /6.3/ and the definition /6.4/
one can deduce the following criterion of loading

= T + 3
A= and, tr('})i‘f'{:) 2,49 >0. /6.5/
Similarly, the criteria
. e ' <
b=x wd (234 T) 0,4 Y 20 /6.6/
define unloading and neutral state, respectively.
To satisfy the condition that the point representing the

actual state of loading and temperatﬁie lies on the yield
gurface it is sufficient to fulfil *’=€b s a0y

4T oo f e (0 4= win (T, 6.7y

Using /6.2/ and /6.4/ from /6.7/ we have

A =M br(24 )+, 4 ¥, e
where
L=fel (T, 5% -9, MG, 2t 6.9/

We shall assume the condition

A >0, /6.10/

The relation for A /6.8/ and the criteria of loading,
unloading and neutral state have shown that the different-
ial equation determining the internal state tensor Wg
for an elastic-plastic material can be written as follows

’¢ =Mh('ziﬁ_)mﬁ{?srj(w":,&,"g), /6.11/
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where symbol Ctr(2:47) + 94* I is defined by

. [ 1« =9t oud [ 0,
([’“("’iﬁ]“?; = Tor Iz /6.12/

O +4 lf=7z. ad [ %0 or;\»lr(.q?,,
The full system of con-titutive equations describing the

behaviour ¢f an elastic-plastic material in material point
X in B during thermodynamic process has the form

v=(c,¥,%), 16137
T =200 4(8. 9, /6.18/
n=-2,4(¢,4,%), /6.15/
‘i.rfa_tg(f;,&, Grad ¢ ) /6.16/

R A S P (IE A  FAATL

where the tensor functions j'l, and l_;lz are gymmetric, and
can be determined by substitution oi the relation /6.14/
into the right-hand side of the equation /6.11/.

The equation /6.17/ is the definition of the plastic de-
formation tensor P(:.

It should be pointed out that the equation /6.17/ is in-
variant under a change of time-scale.

To satisfy the thermodynamic postulate by an elastic-
plastic material the constitutive equations /6.13/-/6.1T/
should fulfil the general dissipation inequality

R CECRACEXCRA A R NCEA S R

"oy %6 Caddt)- Cruad £0,
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The internal dissipation function E for an elastic-
plastic material is determined by the relation

§=—%h<h(‘2§'ﬂ;ﬂ*%w>t"[ W(C,J,Q) M)

/6.19/
AU TR (NCRAI AR AT

=L I -1

Similarly as for an elastic/viscoplastic material one
can write the polynomial representations for the elastic-
plastic response functions,

References

1955 ~{1] Seeger, A., The generation of lattice defects by
moving dislocations, and its application to the
femperature dependence of the flow-stress of
f.c.c, crystals, Phil., Mag., 46, 1194 - 1217,

1958 [1] moll, W., A mathematical theory of the mechanic-
al behavior of continuous media, Arch., Rational
lech, Anal., 2, 117 - 226,

1963 [1] Perzyna, P., The comstitutive equations for rate
sensitive plastic materials, Quart. Appl. lath.,
20, 321-332.

[2] Perzyna, P., The constitutive equations for work-
hardening and rate sensitive plastic materials,
Proc. Vibr. Probl., 4, 281 - 290,

1964 {1] Backman, i,E.,, Form for the relation between
gtress and finite elastic and plastic strains
under impulsive loading, J. Appl. Phys., 35,

2524 - 2533,

{2] Schapery, R.A., Application of thermodynamics to
thermomechanical, fracture, and birefringent phe-
nomenon in viscoelasgtic media, J. Appl. Phys.,

35, 1451 - 1465,



1965

1966

1967

]

(2]

(1]

(2]

(3]

(4]

{51

(6]
(1]

(2}

-21 -

Truesdell, C,, and W.Noll, The Non-Linear Field
Theories of Mechanics, Encyclopedia of Physics,
vol,III/3, Springer, Berlin. '

Green, A.E., and P.M.Naghdi, A general theory of
an elastic-plastic continuum, Arch. Rational Liech.
Anal., 18, 251 - 281.

Kestin, J., On the application of the principles
of thermodynamics to strained solid materials,
IUTAN Symposium on Irreversible Aspects of Conti-
nuum lechanics, Vienna, _

Lieixner, J., Consequences of un inequélity in
non-equilibrium thermodynamics, J. Appl. lLiech.,
33, 481 - 488,

Perzyna, P., and W.Wojno, On the constitutive
equations of elastic/viscoplastic materials at
finite strain, Arch., Mech, Stos., 18, 85 - 100.
Perzyna, P., On thermodynamic of elastic-visco-
plastic material, Bulletin de I Academie Polon,
Scien., Ser. scien., tech., 14, 409 - 416.

Perzyna, P., Fundamental problems in viscoplasti-
city, Advances in Applied lechanics, vol.9, 243 -
377.

Valanis, K.C., Thermodynamics of large viscoelast-
ic deformations, J. Math, Phys., 45, 197 - 212,
Coleman, B.D., and l,.E.Gurtin, Thermodynamics

with internal state variables, J. Chem. Phys.,

47, 597 - 613.

Lee, E.H,, and D.T.Liu, Finite-strain elastic-
plastic theory with application to plane-wave
analysis, J. Appl. Phys., 38, 19 - 27.
Lindholm,U.S,, Some experiments in dynamics plasti-
city under combined stress, Symposium on the le-
chanical Behavior of Haterials under Dynamic Loads,
September, San Antonio.



1967 (4]

(5]
{61

-22-

Perzyna, P., On thermodynamic fourfietions of
viescoplasticity, Symposium or the iechanical
Behavior of katerials under Dynamic loads,
September, San Antonio,

VYalanis, K.C., Entropy, fading memory and Onsa~
ger s relations, J. Math. Phys., 46, 164 - 174,
Valanis, K.C., Unified theory of thermomechanic-
al behavior of viscoelastic materials, Symposium

. on the Mechanical Behavior of Materials under

71"

1968 {1]

Dynamic Ioads, September, San Antonio. :
Wojno, W., On thermodynamics of elastic/visco-
plastic materials, Thesis, Institute of Funda-
mental Technical Research, Polish Academy of .
Sciences. ' '
Perzyna, P., On'physical foundations of visco-
plasticity, In preparation.





