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Viscoplastic flow of rotationally symmetric shells
with particular application to dynamic loadings

Tomasz Wierzbicki /Warsaw/

1. Introduction

The Huber-liises yield condition for rotationally sym-
metric shells was derived by Hodge [4] . The corresponding
equations, given in the parametric form, are very complicat-
ed and therefore are not treatable mathematically. The alter-
native Tresca yield condition, although linear in the space
of siresses, when expressed in terms of moments and stress
resultants becomes again a non-linear function and so is,
the appropriate flow rule, [3] . Therefore, depending upon
a particular structure, various approximations to the latter
yield condition were proposed mainly by means of inscribing
or circumscribing much simpler geometrical figures, over the
exact yield surface [5] . An extreme case is a limited inter-
action surface which maintains all interactions between for-
ce and force and moment and moment but neglects all inter-
actions between force and moment [3] . Such procedures give
rise to numerous objections especially when applied to the
problems of dynamic loading of shells. It is well known that
Tresca yield condition, although provides a fairly good ap-
proximation ‘to the stress field it often leads to unrealist-
ic velocity fields because the resulting strain rate tensor
does not change in a continuous manner and ite directien is
piece-wise constant. The Tresca yield condition has proved
very useful in the problems of limit analysis where only the
moment distribution and values of the static load-carrying
capacity were sought for [11] . In all dynamic problems for
plates and shells the load already exceeds several times
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the 1limit value and one is usually concerned with the de-
termination of tne velocity field. For thaet purpose the
Tresca hexazone is no longer a good approximzation.

In the space of generalized stresses the Tresca yield
condition is represented by a numberlfaypersurfaces, each of
them is expressed anzlytically by a different formula. It is
very unlike that the stress profile will fall within a single
rerime i,e, only one hypersurface will be involved. Usually
i{wo or more regimes should be taken into account to.describe
a given boundary value problem. In most of the dymamic prob-
lems tne position of boundaries separating various regimes
vary with time and should be Tournd as a part of the solution.
Tnerefore the problem is reduced to the solution of several
gystems of partial differential equations in regions with
unknown and time variable boundaries. This is a formidable
mathematical task. The situation is even more complicated
in the case of viscoplastic material where in addition to
the existing regimes new regimes are created, as shown by
Frazer [10] .

Finally, it should be borne in mind that the exact
Tresca yield condition in the space of moments and stress
resultants is seldom used if any reasonable simple sclution
is to be obtained. Instead reference is made to the linear-
ized yield surface. such an linearized yield surface would
ve obtained as a result of the exact transformation of the
yield condition which is no longer the original Tresca hexa-
sone, consequently we are solving the problem for a mater-
ial much different from the one we wanted to deal. This
deficiency, never fully explained in the literature, has
not prevented the theory from being used in practical ap-
plications. This was partly due to the fact that no com-
petitive theory was developed neither for perfectly plast-

ic nor for viscoplastic boﬂiesxl. lloreover, the opinion

%/ The flow rule employed by Perrone [8] and Jones [6] are
particular cazses of tne constitutive equations for visco-
plastic shells first derived by Bykovcev et all [1 ].
These conceptis as well as ihe Prazer’s theory [10]

2ll based on the Trezca yield condition.
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has been widely spread out that only the.yield condition was
allowed to be approximated, however crudely whereas =implify-
ing assumptions of the different nature were not permissible.

In the present paper an alternative form of the linear
constitutive equations, applicable for dynamic problems are
proposed. These equations, based on somewhat different arzu-
ments, describes the behaviour of a viscoplastic material in
the space of generalized stresses and strain rates. All the
above mentioned shortcomings of the Tresca yield condition
call for an appropriate theory with the smooth yield condit-
ion. Therefore as a starting point in the present consider-
ations the constitutive equations for rate sensitive plastic
materials, based upon the Huber-lises yield condition, are
assumed. An application of the derived equations to the so-
lution of boundary value pfoblems for cylindrical shells at
large deflections is presented.

2. Linearized constitutive equations for wviscoplastic
materials

" Consider a particular case of the constitutive equat-
ions for strain rate sensitive plastic materials, derived
by Perzyna [91

/2.1/ f.q:r(fk-—'/_!-_;).{_sy_.‘i for _jz > k")
(]

69-'-"- o _ for Jz 5‘. ‘tz)

where Sz and €§' are components of stress and strain
rate deviators respectively, ué denote the second invari-
ant of the stress deviation and r’ and k are material
constants. Although equation /2.1/ is a far reaching ideal-
ization of the behaviour of real bodies it accounts for a
simultaneous plastic and viscous effects and therefore can
approximate the strain rate sensitivity charzcteristics of
certain metals. It clso constitutes a generzlization of the
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Saint-Venant Lévy-iiises flow rule as the latter equation
can be derived from /2,1/ in the limiting case by putting

r-r” and {z-yk ,[9]
12.2] & —)S“ and ,l/.-/;-?k. |
Deflne now the state of stress 5“ by the relation
Sy = '5q
e

(F$4 .5) (;,’;5 5..
with an additional requlrement that the state \53 satlsfies
aquatlon of the statlc yield condition

/2.4/ z‘si-s'.,.=k .

The state of .stress 5." will be called a "gtate of compar-
ison". Using /2.3/ equation /2.1/ can be rewritten in an
equivalent form '

/2.5/ «E:'- = e (5.—, -5"--) it -6-- 7'5?.

where (o -f/k iz a new material constant. Eq. /2 5/ is a
nonlinear relation in stresses since the-term 5" , ac-
cording ta the definition /2.3/ is a non-linear function
of 5 5 .S.1 (S‘l}

The components of the tensor 5‘ are restricted
by the yield condition /2.4/ and usually by the stress bound-
ary conditions. There is however still much freedom in the
choice of the state of comparison. Therefore equations /2.5/

/2.3/ 5

can not be of any use unless the state of comparison is
known. & ' _

In order to determine 55.‘ reference will be made to
the specific boundary value problem since 5; - 5‘:. (xi. t)
vary in general both in space and time. J !



3. Determination of the state of comparison

Congider a rigid viscoplastic body cccupyinz the three-
dimensional region Vv with a rezular suriuce S . Assume
that the time-variable surface tractions 1; (t) are applied
to the part .5, of 5;; while on the remaining nart of S
velocities W ; are prescribed. Assume further that the
variation of surface traction is proportional

sl T ()= s T

where 7: can be regarded as concentrated forces or di-
gtributed loads. At the beginning of the process the body

is at rest. Let Qi s E, and §.. be a cemplete solut-
ion of the formulated boundary value problem satisfying the
system of equations

.2 I _L' s -
/3.2/ 65_ Z(u'ﬂ_+ u_..) ,
1331 Ggi=gil;

supplemented by the constitutive equation /2.1/. At a given
point X¢; &V the solution is a function of time or any mono-
tonically increasing parameter of the process T . is such
a parameter we can conveniently choose for example the per-
manent central deflecticn of plate or shell. For the pre~
scribed dynamic process the stress trajectory in the -5;"
space form a curve - ACB , where the parameter T is continu-
ously increasing along the path ACB . At the becinning of
the process T =0 the velocities and s%rain are zero
throughout the body, thus according to the assumed model of
the material, the state of stress for a given particle of

the body x; is lying on the static yield surface, point

A ., As time proceeds thel particle X" is accelerated, the
gtrain rate increases and the stress point is forming certain
trajectory. The strain rate vector is always perpendicular
to the subsequent yield surface. Finally, the motion of the
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body ceases, the particle is brought to rest at T"= T
the corresponding stress point B must lay on the staéic
yield surface. At a given instant T= T, the state of stress
Su (T") is represented by a point C whereas the state of
stress 6 f‘!") by a point D om the static yield surface.
According to-the definition of an :l.sotroplc growth of the
yield surface with the strain rate the unit normal vectors
to the yield surface at the points C and D are equal.

Thus the strain rate tensors considered as vectors in the
nine-dimensional space are colinear

/3.4/ &g = 89 .

The velocity field W ; is the complete solution of the for-
mulated boundary value problem for a viscoplastic material
at the same time being the kinematically admissible veloci-
ty field for the corresponding boundary value problem but
for perfectly plastic material.

The kinematic admissibility of 4; follows from the
fact that this field satisfies all kinematically boundary
conditions, is continuous and a continuous straln rate field
can be obtained from Eq./3.2/. Next with each f,., or L
we can uniqually associate a stress field .5‘;; through the
flow rule /2.2/. This stress field satisfies the static
yield condition /2.4/. Finally the requirement of the posi-
tiveness of rate of plastic work is fulfilled

. p 0 .o ’
= Jsﬁ-egdv % 0.

Since W; is a kinematically admissible velocity field for
the perfectly plastic problem the corresponding stress field’
5' has not necessarily to be in equilibrium i.e., 6,3
doas not satisfy the appropriate equation of mot:.on.
To find an approximate value for 6.1 and .5” con-
gider a stress field 35 which is in the state equili-
brium
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13.6/ S,y =0 -

Solving now the same boundary value problem usznv Egs./2.4/,
3% 2/ /2 2/ and /3.6/ we find a new solution u. f:;)
sy J " . The VelOClty IL,' differs of course froru the
velocity fleld Ctb of the complete solution.

The stress field .5% is said to be a good approxi-
mation to 50."" if the velocity field for a quasi static
flow of perfectly plastic material ib; does not deviate
much from the velocity field of a dynamic problem for the
viscoplastic material a.; . In other words adding the
inertia and viscous terms into the equations describing the
perfectly plastic flow of a structure should not alter much
the kinematics of the problem which is primarily dependent
upon the boundery condition, yield condition end associate
flow rule.

Introducing the assumed approximation Eq./2.5/ is
replaced by

f o L
3.9 € r.(.sg 55).

Now /3.9/ is a linear constitutive equation provided that
the solution 6;' (x; JT) is known.

The new approximated constitutive equation /3.9/ is
still based on the smooth yield condition, consequently
the resulting velocity field is continuous.

Whether or not the assumed hypothesis is a good appro-
ximation should be investigated in each particular boundary
value problem separately. However the replacement of the
true velocity field-by a velocity field CL resulting
from the same smooth yield condition seems 1:0 be 2 much
better approximation than introduction of a discontinuous
velocity profile based on the piece-wise linear yield con-
dition. The derived constitutive equation requires con-
gideration of a single regime thus simplifying the mathe-



matics involved.

liote that in the above presentation of the theory
nothing is said about the proportionality of the loading at
a given point X; , the hypothesis which was incorporated
in the author’s early papers concerning bending solutions
for viscoplastic plates [7,13 ]. The case of proportional
loading would be obtained as a particular case of the ge-
neral equations if we assume that for a given X/ ) 53(1'3;5
const which means that 59 is independent upon the pa-
rameter of the process. In the space of stresses the cor-
responding point 5& (x,:) is retaining the same position
and the stress trajectory is reduced to the straight line.

4. Flow rule for axisymmetric shells

The state of stress in the thin-walled structures is
essentially plane, G, and 6:,_ being the p?incipal .
stresses, the corresponding strain rates are E,‘- and E.‘,_ .

Assuming the Love-Kirchhoff hypothesis the strain ra-
tes can be expressed in terms of extension rates A, ) )z
and curvature rates K and Kz of the middle surface
of the shell as

/47 =X +ZK, ) E,=22,+2K,
The position of the shell neutral surface corresponds %o
such a value of Z for which the component of the cor-

responding strain rate vector vanishes

/4.2/ g'._r-..?.‘.'. 5 7.._;

K, 2
Consider a fibre distanced at Z 53 from the shell middle
surface and prescribe a loading program in which and

_ are monotonically increasing functions of the process
parameter T . A typical, tra;jectory of the strain rate
vector form on the plane(& E’}.) a closed smooth curve
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passing through the origin. Possible sirain rate trzjec-
tories are shown on Fig.2.

With each strain rate history we can associate the cor-
responding stress trajectory through the constitutive equat-
ions /2.1/. In the case of plane stress Eq./2.1/ yields two
independent relations

'i=x(g3_-._]) 28,-§,

/4.3/ k \/72

: VJ; 26, -§

E.. = x AR ]) St P
where y ( k rJ; ’

2 2

/4.4/ ‘j2= G'."Gns'z*' v
represents a Huber-iiises ellipse in the plane (G’, )6-2)‘
Integration of /4.3/, as mentioned in the Introduction,
leads to very complicated formulas. By contrast the derived
equations /3.9/ are easily integrable and their linear form
is preserved after integration.

The generalized siresses corresponding to the extens-
ion rates ),g and curvature rates Ky are the membrane

forces Nu, and bending moments M.,_ , &K = 1,2. These
quantities are related to the stress components Gd. by
h h
-A -h

The components of the stress tensor expressed in terms of
gtrain rate vector computed from the linearized equations
/3.9/ have the form

6 -6

j‘f-‘(Zé,,-réz),
i+ ; )
. -6, = f’;(za”e,),

Substituting /4.6/ and /4.1/ into /4.5/ and integrating
over the shell thickness we get

/4.6/
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M- M, = 34 (2K,+K,) ,
% 3 0% .
/4.1/ M:.-.Mz=-§-%(z}(,_+1(‘))

8]
Ny~ Ny = 2A(23,413,), 4
where the states of comparfson M: (’\'-(;0 and Nd. (Id 3z
by hypothesis should satisfy equations of equilibrium of
the corresponding quasi-static problem. :

The structure of the new equations suggests that the
system /4.7/ is uncoupled i.e, there is no interaction
between moments and membrane forces, In fact, the inter-
action is incorporated in the present theory through the
presence of the terms M: and N: . The position of
the vector (M: y N:) on the static yield surface, deriv-
ed from the exact Huber-liises yield condition, is uniquelily
determined by the generalized strain rate vector [A‘, ’K‘).,
Thig implies that the value of each components of ﬁhe :

(ﬁ:)ﬂ:)vector depends upon all components of the (A-L J-K.r_
vector,

-g
-

N, =N* = 24 (2% « L3},

The advantage of the proposed method of linearizat-
ion becomes more apparent when the constitutive equations
/3.9/ are combined with equation of motion of a particular

‘gtructure. It can be shown that using the equation of stat-
ic equilibrium X11 unknown terms NJ (*%«,T) end M2 ("%:T)
can bz replaced by a single tem-P(x.;,_,T). This term repre-
gents the value of the external load required to maintain
a guasi-gtatic flow of rigid-perfectly plastic structure
witd iuber-liises yield condition,

It is clear that the initial value of P(T) /smell
deflections/ is equal to the load-carrying capacity of the
relevent structure ?(9) = -'Py- . For example for a uniform-
ly loaded simply supported and clamped plates this value -
is equal respectively 6.51 “O/R" and 12.5 ”‘fﬂz . For
a cylindrical shell loaded by a ring of forces the limit
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load is .94,M %R where R is the radius of the re-
levant structure.

For larger deflections the development of membrane
forces and changes in geometry produce an increase in the
value of the load carrying capacity and P is uniquelly

ralated to the central deflection 6 of the plate or shell

P= p(g).
5, Illustrative examples

Consider an infinitely long cylindrical shell of rai...
R subjectad to a ring of forces 20. . Such a problem is
aniong the simplest in the theory of thin plastic shells for
wnich the value of the collapse load was calculated using
the exact Huber-Mises yield condition [11] . o illustrate
the mzin features of the present theory only the quasi-static
flow will be considered but no difficulties arise in generzal-
izing the solution to the case of dynamic loading.

In the abscence of axial forces the generalized stres-
ses are the axial moment Mx and the hoop force Nq ._the
corresconding generalized strain rates being K and )
Zquations of equilibrium of a cylindrical shell loaded bv
a ring of forcea do not involve the inhomozeneous term

i L

Por further convenience we introduce the rollowing dimension-

/5.1/ & 7 ;

Mx Ne - N_* T
m=— , h=s — ) T= y += _lf
N, )
/5.2/ Me Ne i ﬂ
2R _ NoR

V - dN — — —---o

Wox=30, p=% Me
Since beth eqe*‘allzed stress fields (m n) and (m*) h’)
gatisfy Zq./5.1/ so does also their dlIIE"EnCe

JU
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d? * *

/5.3/ —— m_m +(n-n _-..0..
Lm-n') )

The constitutive equations /4.7/ are reduced to

= g
Mm-m "'f‘*'é'xm

/54 no-n* = L (229 +24),
v -v¥= "'-* (2 % +}1,,)=0,

where dimensionless rates of strains are expressed in terms
of the velocity - Y as

: d*v : %
BEquations /5.3/ - /5.5/ can be solved for velocity

4 s

d’V Xy i b3
/5.6/ ==, +t4Av =0, A=V7

dx
The latter relation is of the same form as the equation for
deflection in the c¢lassical theory of elastic shells, The
above mentioned analogy is easily understood in view of the
linearity of the constitutive equations /4.7/ and was first
noticed in [12] . The general solution of /5.6/ has the
form

-Ax Ax
/5.1 V(x) = € [A Sin A x +B¢°6h] +ée (Lsin)u +Dos}rJ'

ile postulate that the extent of the viscoplastic rezion is
finite, ¥ ¥ X, being the boundary between the plastic and
rigid zones. At X = 0 the shearing force |  should assume
the. prescribed value Q and the slope of velocity is zero.
At X =I.‘ y the velocity and ite first derivative should
vanish., Thus, the boundary conditions have the form
dv _ _ dv

158/ ax =0, T()=Q V(%)*'O) a;{ =0,

A=0 X=y,
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According to the assumed approximation the position of the
boundary 1, for the viscoplastic and perfectly plastic
golutions is the same,

The shearing force 't dx can be expressed in terms
of the wvelocity

- 3% & ‘“ .
/5.9/ t-1 3(* dx

Using the second boundary condition /5.8/ the. latter equat-
ion yields

/5.10/ q’

I
<o
+
|
I

3f» dx’ l x=0
where q, = 1,949 is the value of static load-carrying capa-
city obtained in [11] on the basis of the exact yield con-
dition. At the same time the corresponding value of X, was
not computed. The necessary data are given for the sandwich
shell with Huber-iiises yield condition q' = 1,905, x‘ = 3,467.
After evaluation of the constants of integrations A, B ,
C, D from /5.8/ and /5.10/ the solution is found to be

plx g }
V(x/( =@ (0.5055,,, Ax 10,9(]5(.93,\:) -e x(ﬁ.oodﬂl Sindx +
/5.11/

Gt = 3 :a[ i_ii) | -0-000'5“95;\.:),
) g A2

The plot of the wvelocity profile (x)/\!(o) is nresented in
Fig.3, full line. The broken line corresponds to the exact
velocity profile calculated in [11] using the Huber-liises
yield. condition for sandwich shell, The general agreement of
both solution indicates to the usefulness of the proposed
method of linearization in computing velocity fields for
rigid-viscoplastic shells with Huber-liises yield condition.
An mportant feature of the solution /5.11/ is that
the velocity proflle of the shell v(x) /v(o) is not affect-
ed by the value of the limit load q” + This remark is of
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interest in view of the lack of published data on the static
load-carrying capacity of structures with Huber-Mises yield
condition. Usually the approximate value of q'* should be
accepted but this simplification introduces no error in the
computed velocity profile. #

velo .\tIn the limiting case when r-P“’ 9 $ the central
&a-i.eoz-;oﬂ V(D} is an undetermined quantity as in the so-
lution for perfectly plastic shell. The derived solution is
valid only for small deflections.

In real facts in order to maintain the quasi-static
flow of the shell the load must continuously increase since
the geometry changes and development of membrane forces
causes a strengthening of the structure. It was shown that
this effect is significant in the early sgstages of the deform-
ation process and becomes decisive on the shell response for
deflections of the order of the wall thickness h (2].

The modified equations of equilibrium which takea into
account the changes 'in geometry have the form

N
/5.12/ ;?m “pT ?i—; th - P(t) =0,
2T =0,
Ax
N R: : -

where Y= =2 and = =— are respectively dimension-
less membrane force and internal pressure, If the dynamic
loading is considered Eqs./5.12/ should be supplemented by
the proper inertia terms.

By hypothesis the components of the generalized stress
vector of the auxiliary problem are in equilibrium with the
value of limit load P* (X T)

l * ¥*
/5.13/ ""'" /37'42';}4 + ﬂ’— P (XJT) =0,
@."_ =0

R
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Since the velocity and deflection profiles are in both so-

lutions identical, substracting /5.13/ from /5.12/ we obtain
2

/5.14/%3 (m-m*} -/s(f-r')g—z-; +(n -n*) - (P-F‘)=a,

Tlow applying directly the flow rule /4.7/ the bending mo-
ments and membrane forces can be eliminated from /5.14/.
liaking use of the appropriate geometrical relation the sys-
tem of governing equations can be reduced to two simultane-
ous partial differential equations for two components of the
displacement vector (&,HJ provided that the term P‘%(X,T)
is known for each particular boundary value problem.

Using equations /4.7/ and /5.14/ and the appropriate load-
deflection relation the variety of boundary value problems
for cylindrical shells at large deflection can be formulat-
ed and solved,

7. Conclusion

In the analysis of the dynamic loading of rigid visco-
plastic-plates and shells we are primarily interested in the
determination of the velocity field and permanent deflection’
of the structure. Except of very simple situations the solut-
ion of {thus formulated non-linear problem can be obtained
through the numerical integration of governing equations.
Various simplifications are commonly introduced in order to
enable a analytical treatment of the problem. Usually the
true velocity field of the dynamic problem is approximated
by a velocity field resulting from the Tresca yield condit-
ion. [T is belleved that for some cases the velocity fie}d
corresponding to the static solution of the same problem
for perfectly plastic material obeying the Huber-iises yield
cendition would give a better approximation to the exact
rate of deflection profile. Assuming this as a hypotheses
a new theory has been developed in which the relation between
components of generalized stress and strain rate vectors are
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linear, Consequently a linear form of the governing equat-
ions is obtained, formally analogous %o the relevent equat-
ions in the classical theory of thin elastic shells where
instead of the deflection stands the deflection rate. There-
fore all elastic solution of both static and dynamic prob-
lems can be reconsidered and adapted for the viscoplastic
flow of plates and shells, The presented examplary solut-
ion of the cylidrical shell under a ring of forces exhibit-
ed an excellent agreement with the exact solution of the
same problem, The proposed method was shown to be also ap-
plicable in the analysis of nmoderately large deflection of
shells,
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Fig.1 Stress trajectory for the prescribed dynamic
process
é, 5

F:".g.z Possible strain rafe f‘rajectaries at an
arbitrary point of the uniform shell



V(x)

e
l2q x
X X
10
4
o8, A=V %;
06l TN

X
04| Sandnich M('s u>\"‘

(after Saweczwk \\
0.2 8« Hodge )

Present fheory, uniform Mises x =3.4¢7

¥ ==

0 | 1 3
. AX, =229
Fig.3 Comparison of velocity fields of the present theory and

rigid perfectly plastic theory after Sawczuk 8 Hodge



.

10

11

=5 =

References

G.I. Bykovcev znd T.D. Zemykina, On viscoplastic flow of
circvlar plates and shells of revolution /in Russian/,
Izv., Akad., Tauk, Nr 4 /1964/, 68=76.

k.Duszek, Plastic analysis of cylindrical shells subject-
ed to large deflections, Arch. liech. Stos., 18, 5 /1966/,
599-614.

P.G.Hodge, Yield condition for rotationally symmetric
shells under axisymmeiric loading, J. Appl. lieck., Trans.
ASKE, June 1960, 323-331. _ '
P.G.Hodge, The liiges yield condition for rotationally sym-
metric shells, 18, 4 /1961/, 305-311.

D.C. Drucker and R.T., Shield, Limit analysis of symmetric-
ally loaded thin shells of revolution, J. Appl. iech.,
29, 1 /1959/, 61-68. :

L. Jones, Finite deflections of a rigid viscoplastic
gtrain hardening annular plate loaded impulsively, Brown
University, Report ARPA E53.

J.ii. Kelly and T.Wierzbicki, Liotion of a circular visco-
plastic plate subject tc projectile impact, 2ALP, 18,

2 /1967/, 236-246.

N. Perrone, Impulsively loesded strain rate sensitive
plates, J. Appl. Lech,, 33, 1 /1966/,

P.Perzyna, The constitutive equations fof rate sensitive
plastic materials, Quart. Appl. Kath., 20, 4 /1963/,
321-332. :

W.Prager, Linearization in visco-plasticity, Bsterr.

Ing. Archiv, 15, 1-4 /1961/, 152-157. '

A, Sawczuk and P.G.Hodge, Comparison of yield ccnditions
for circular cylindrical shells, J. Franklin Inst., 268,
5 /1960/, 362-374.



12

13

- 20 -

T.Wierzbicki, A method of approximate solution of bound-
ary value problems for rigid, viscoplastic structures,
Acta liechanica, 3, 1 /1967/, 56-66.

T. Wierzbicki, Impulsive loading of rigid wviscoplastic
plates, Int. J. Solids and Structures, 3 /1967/, 635-
647.



Viscoplastic flow of rotationally symmetric shells
with particular application to dynamic loadings

Tomasz Wierzbicki /Warsaw/

Abgtract

Starting from the constitutive equations for rate
sensitive plastic material obeying the Huber-liises yield
condition linear relations between components of general-
ized stress and strain rate vectors for rotationally sym-
metric shells are derived, applicable for dynamic problems.
The linearization of the originally non-linear equations is
achieved by defining a new stress tensor called "the state
of comparison". The components of the new tensor satisfy
strese boundary condition and static yield condition but
not necessarily equations of equilibrium. A method is pre-
gented for the approximate determination of "the state of
comparison" for a given boundary value problem. The new
theory is illustrated by an example in which the deformat-
ion of a cylindrical shell under a ring of forces is con-
gidered. Extension of the present approach to the case of
moderately large deflections is discussed.





