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Incompressible materials 
in the theory of elasticity 

Zbigniew Wesolowski 

There exists extensive literature where incompressible 
materials are defined by the demand, that only isochoric 
motions are allowed. In the nature, however, exist compres~i
ble materials only. Therefore the theory based on such a 
geometrical definition not complemented by the theorems on 
the relationship between compressible and incompressible 
materials is of mathematical interest only. Lloreover the 
eeome ·: ~ .. cal definition allows some ambiguity. Namely the 

constraint imposed on the motion does not determine uniquely 
the additional degree of freedom in the stress-strain 
relation. This indeterminancy is usually avoided by assump
tion that the extra stress does not produce work on the 
isochoric I i.e. compatible with the constraint I deforma
tions. Only in some special cases such assumption is 
justified. 

In fact the only purpose of introducing the incompressi
ble ·materials is to ·find approximate solution for the 
oryginal material, but with the aid of the equations simpler 
than the o~yginal ones. Of the principal interest is therefo
re the difference between the solution of the bounda!"'J prob
lem for the real compressible material and the solution for 
the hypotetic incompressible one. 

In the present work the l{mit incompressibl'e materj.al 
is de:f'ined as the matE:rial for which the solution of the 
boundary problem equcls the limit solution for the compressi
ble materials if the compressibility tends to zero. Because 
it was possible to find i~he linear theory more eleg~~t 

http://rcin.org.pl



4 

I 1 .s I (.>'} - J.... C · - - 1'>') c~ . J < "": J · ~/ ~ ' [ '\l 

Under assumption that the stresses remain finite the 

condition I 1.7 I assures that the deformation is isocboric 

in 'the limit case, but allows the additional constraints. 

For example if all the c ~ . "" L ---» :::...... ·the material tends to 
. .; . 

the rigid body. ~he pcssibility of the additional constraints 

is excluded by the condition I 1.8 1. 
Assume the materials M (·11) defined by· the relation 

I 1.9 I 

where a i. KL 
;J 

independent 

conditions 

I 1.10 I 

and .b tj K ~... · are constant· tensors 

of )l • The materials M (v) satisfy the 

I 1:81,1 1.9 I if and only if 

"' c . . L Ld K . = a ~~t:. + y b . -.- (' 1/'L 
() ~ I . " • 0 

If the deformation is isochoric £ n-= 0 and all the materials 

I 1.10 I have the same stress-strain relation. 

For ·arbitrary a LJ ~ l and b ~1 kL ·the relation 
/ .1.10 I can describe some degenerate material. In order to 
exclude this possibility assume that the_boundary problem 

in stresses for the material M (-v) 

I 1.11 / 
l 'l.' ' _/ .J 

r 

u ; L 
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posceses the unique solution. It follows that the only 

solution of the corresponding homogeneous boundary problem 

is the null-solution £l:J· = 0 .. It c·an be proved that from 

the -uniqueness of solution of the ooundary problem I 1.11 I 
follow.s the uniqueness of _solution of . the boundary problem 

t' 2·;· . Cl~il\t fkt.,z _-t: b~- , -,.:. Cj,. .. ; = .._9r1·· Ol . ' 

I 1. t2 I ~iJ ki_ fkL 1li t b~,~.,- CJ~ _ Ili - ~-

E = (J . r.,-

where '} is an additional ·unkriown. It follows that the 
-only solution of the corresponding homogeneous boundary 

probiem is the null-solution E y · = 0, q,. = 0. 

Consider an auxiliary one parameter family 2L · of ·the 

displaceme.nt _fields . UL CA.) ' c~ ~<:::: ·X) of· the c~ass c 3 

·such that .the c-orrespondi~g . deformation tensors f~j (")..) 

~d· their gradients ~·~·,k ()..) · are ~inite. in 21 and 

E c::l t.~) and £ td /k ().) are· pointwise convergent .to the 

finite limits · l' L.J' and £ ~1 J k re spec ti velY• Asstllile 

addi t~ona],.ly that · the trace of Ei.j is equal zero 

I 1.1J I 
. . Lih-c 
).. -? ':X: 

Becaus.·e c 1).) c. ld. 1.. is a symmetrized gradient of a displacement 

field there is 

I ., .. 14 I . "'1/ 
L ,, , , • 
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In the material M (v) the deformation c·~<f ()..) 
produces the stress tensor 

/ 1.15 I 

Deca~se the first t~rm . of the right hand ~ide of I 1.15 I is . 

finite and · t~~· i·n-~ 0, it is ~ways possible 
least. one continuous mon:otonic _function · X c~) , 

·such that . --v Er,-: (). (yJ) is fi.D.i te for every v 
once differentiable finite li~t 

I 1.16 I 

to find at 
lim. ~[)I) . ~ :x...; 
y-3> '"'<; 

and has 

The function ) (>') fixes the one-to-one correspondence 

between the ma:terials M (v) and the deformatio{is E'd (A) • 

The deformation . E y ( l cv~ · is further denoted by ~·v ( ·ll) end 

the stress produc;ed in the- material M (v) by the strain 

f~ ("Y) .is denoted by rlj· (Y) 

l 1 .17 I 

. l,... · For a g:L ven fixed . domain. bounded by a smooth . 

su,rface /j the stresses I 1 .17 ·I are equilibrated by th.e 

. body forces and sUrface tractions that according to I 1. J I,. 
I 1 .4 I are 

I 1.18 I 

"~' / j 

In accord with I 1 • 1 J I and I 1 • 16 I for Y ~ ~ the forces 

5 +~~ (v) and .td <~) posses finite limits equal respectively 
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r __ 

· LYI l 
/ 

I 1~19 I 

From the above assumptions it follows that · "t is twic·e 

. . differentiable on ' . 1 and C' r is once differentiable 
' .J Td . . -.;-

~n . L • 

After this auxiliary formulae consider ·the boundar,y . 
problem / 1 • 11 I · :for .fixed once differentiable in Z.·':'" hoey 

force .S' li _ and fi~ed twice differentiable on /i surfac~ 
. . tractfon . lj • Fqr each material . M(-.;) . the unique 

solution o:f·this . problem can be found. Denote this solution 
by .. \ l .( '}) . 

(J ~ . . 

/ 1.20 I 

ec:,·.s f1r'} .1,-t · 57· (\l) = 0 01 'Lr_ 

Subtrac·ting- now I 1 '.20 ·; ·· from I 1 .18 I and ~eking into 

account ·I 1.14 / 1 · we have 

l~(jk. ( ( f~L (Y)- J ~l ()1~,: . + ')) b~,-,- .( f.s ·~J JJ)-: ~~·~ (JI)), ~ = -S( £ ·()I)- fd·) 

I 1 .21 I a. Vu( £~-.dY) -Jl< t (v;,)-nL t ih,j n-(Ess (i)-J~~ (~.vn; = td (-.J)- ~ £'f;_.J 

e ~ ='" s f Jf''t- ( c.yr ()!J - ~ ·~·-r ( Y) ), .s1 . . -= c· ,·~-~· ·z ·-

rn the iimi t . 'J ~ .:>.:; . ·it follows in accord with / 1.1J I 
and I 1.16 I 
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/ 1•22 I 
e C: -r·S t l.f-'"J . . ( 4 .--.- _i~ Wl . d-~ ,-f ), .S.q . = t:~ 

·, ~ ' 1 ,,~ov . . r 
~~,- - Lt M ,y).,... = (; . · LI-') 1 "1-. 

. ll-;) <X; 

. . . 

(. 

t...n '2. · 
J 

·rri accord with I 1 .12 I the unique solution of the boundary . 

problem I 1 .22 I is· the null-solution ·. 

/ 1 .2J I J··~. = l.i.r.-1 . cl '; ; ~ t .. ( ?i ·y -:> -~ . '"J ·. •.1 • 

· Because E Li satisfies. the relatj.ons I 1 .18 / and I 1 • 19 I 
the relation/ .1.23 I establishes the theorem: The limit . 

~olution·for · every fixed boundary problem I 1.20 I is 
the solution of the boundary -problem · 

I 1 .24 I 

Q .t · .J.. b· 1' ; . i,',H ·1 kL ' • tiff · " '.H . . 
j ' ·" t. (J 

{:1'. ~4 , f ,. 

z.:--
/ 

• C.' J1 ·-- / 
_) 

where -JL is an additional function. · This theorem holds 
) 

for .sufficently smooth gf:1· arid -~j as indicated above. 

In such formulation. the - existence of the auxiliary family 
of the · displacements · ui. ( ;l) is not essential. It is 

evident tnat the problem I 1.24 I does not constitute 

the boundary problem of the eiasticity theory for any of 

the materials ·of the family v-i·L • 
Given the boundary problem determined ~Y 
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and M(..,) the unique solution J ~1 <-,~) can be folliJ.d. After 

substitution d~: , (.Y) = Lri.,JJ (Y) this requires solving three 
V 

second order partial . differential equations with appriopriate 

boundary condi:ions. In the case, when it suffices to know 

the limit solution L'""' L1 (Y) only, the system I 1 .24 I 
. l) ' - · ;><.; 

must be solved~ ·The lat te . .~.· is simpler than the former 

because one of the equations is of .the first order and only 

first derivatives of the function · p are involved. 

Quite fo:-r' Gl r~ 9sons make it conven±:ent to introduce if' 

possible the hypotet.ic material ·· ~:J ·I not belonging to the 

family v J.L I for which the boundary problem of the theory 

of elasticity I . 1~· 1 / 2- I 1.4 ; · reduces to the problem 

/. _ J .24 /. It follows that the reduction take.s place if and 

only if for this material 

I 1 .25 I 

where q · is an aroi trary scalar fUn.ction. Because of the 

relation I 1.25 I 2 in the hypotetic mat~rial . M ~ only · 

isochoric motions are allowed. The solution of the boundary 

problem for the material M (~) for .fixed body forces and 

surface tractions tends in the. limit v- -=-- to the 

solution of the same boundary probiem for the h.ypotetic 

material M /' 1.25 /.This material will be called further 

the liinit incompressible material. From I ·1.25 /it follows: 

·The extra stress q. b u·f" in general is not the spherical 

tensor. This stress produces work on isochoric . deformations '• 

Because in general elasticity the stored ·energy function 

does not exist this :fact . does not contradict the basic 
principles of mecha..TJ.ics. 

Consider now the hyperelastic material. Because for 

each material M c~) .of. the family I . 1.10 I the elastic 

constants must posses the symmetry I 1.6 I there is 
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I 1.26 I . . == Q_ LJk.l + )J b C~·· , -~{ . 
fJ . . : rl . ) 

I 1.27 I 

where · b is. a scalar. The rela~ion l ·1 ~ 25 11 reduces now. 

to 

I f.28 I · ·r . · 
~1 

" ~ 0 .. ( .c:kt -t q. c·y. 

where q is . an arbitrary scalar function. It follows: . The 

extra stress in the h.yperel~stic m~terials· is ·the . spherical 
tensor; Be-cause in the linear theory • every · isotropic · elasti.c 

material is h.yperelastic it fo~lowsi In. isotropic elastic . 
materials the extra · stress -is the. spherical· tensor. 

2. Non-linear elasticity • . 

Identify the .materiB.l · poin~s b~ their coordinates :x <.<. 

in the natural state B_x .. In the _deformed stat~ . B~ the 
points X -x. cccupy . the positions xi ( x·~") • · Denote the · 

metric tensors of . the coor.dinate systems . in Bx and B .x 

by . ~ CX.f3 and g i ~ - r~sJ:;ecti vel:~- . . The de:ri v~ti ves a~·/3X oc. 
~ . . . . 

constitute the deformation grc.?-ierit · F t 0( · • There exists . 

the unique multiplicative decomposition of . F i 'X . ~nto the 
·orthogonal tensor R i.tl{ and positive definite symmetric 

tensor U oc ~. · . • The quacrat ·of this tensor is the right 

Cauchy-Gree'n defor~ation tensor ~ ot. s / cf • . [2] I 

I 2.1 I ··c ~ = R i. :Jt: L-J~L- 0(. ...~ - -- . T r-tt ~- i _, . 
I . '"" on ) c. O(,J - U..x .1{ LJ /.; = r . C( r ip 

If the deformntion is isochoric 
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/ 2~2 / 

.The basic equations ·o:r. the non-linear elasticity are 

t --7 

I 2.') I 
t."J1 <1 . . /. - . ' 

I 2.4 "! 

. . <'( j . 

where h ' · is the materiai. function~ · The. density ~,)'~ and ·. 
the unit normal n;_ in the s~ate B.:x:. · ·~e uniquely 
determined by the 'density ' Yx~ . and the normal · NO(. in 

B-_x: · and the defamation gradi.emt F '- rx • The ~ppriopriat~ 
relations are g~ven in [2] . . . 

Assume one parameter family v ~L of ~:terials M (~) , 

• Similaty_as .inthe linear theory define that 

the -materials. tend· tci the incompressible· material without 

additional constraints if and · only if, . for given finite 

and fixed· C .x. .i 

i/ , the stresses L'}J ("'J) produced in the material· M. (Yj: 

by the ·deformation C . .x .~ tend 'to infinity if det cx.t'1~ 1, 
ii/ the stres.ses T~· ('-J) produced in the material . M ().') · 

by the deformation . c 1)£.3 re~aiiJ. firii te . i:f de-t . ell( ;1= 1 ~ 
Consider the particula~,family ..,~( defined by the 

relation · 

I 2.6 / 

where 
eCB . . 

a 1 ·. and b o<! ; are fixed independent of 'Y 
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functions of C o(:J· • · The materials M (>') · satisfy the 

above. conditions i/ and ii/ if. and only' if 
i/ a <x P ( CJt'j) and b 0( is ( CJt f )remain finite for arh.i trnry 

. finite Cjc S , 

ii/ b\1(; 3 (c"e.f) = o if det cC( P = 1. 

Let XL {X~ A) constitute . the faillily ·X . of . finite 

4eformations · s.uch that x / (X~)) · arid x~tX (x~, X) . are 
pointwise convergent to the finite limits . xI. ( xa: l. and 

xLJ«-(xJt) respectively. Ass~e additionally that the limit 
. deformation x i. ~ ( x«) is isochoric 

.lim . x ; ( X ~:t. . .:t) . = x t' (X«) J 
A-70C I 

I 2.7 I lim .x ;" '){ (x_ ~. ). ) = xi (x'*') 
,;t-o:x.: . - ' Ja{ . ') 

lim det C., 11 (A~ } ) ~ 1 • 
). -:-'> ::;<.' . I 

In. accord with / 2. 7 I 1.2 the;re exist finite limits Cc'( .J , 

R L'X , n'i. and .~x ·• Because of I 2.? I;. it .is possible 
to find at least one mono tonic :f~ction ) {y)-, lim ~t (-,1)-= '.".le 

y _,. : -.... 

such that )l bO(· 1 
[ CJtf {;u~>)} . i~ finite and has finite limit 

The function · A ()1) · fi~es the one-.to.:...one correspop.dence 

between the .family of the materials M ('11) and the family 

of deformation& ·xL(xO(,, l) . Denote the quantities · 

corresponding to ,:{ c "') by ')) , e.g. C«; -~ (A (l')) .:= Coe.; (11) . 

On the basis o:f' · I 2.d 1-1 · 2.6 I the stress. produced 
by the defoi'J,llation. x"{xQ£,..,,) in,.the material. MC") 

·and the equilibrating ·body force · :f'd~ (11) and surface t~actions 
.t d ( )I) can be found to_ be- respec_ti vely I region {. ' changes/ 

r 'a I~) = F ~ r•) r .·; ( ~J [a.«, I (c' ... l.,>) f y b"': l ( C:Xi >) l 
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- 1J 

- - - o <-~>-fd~ )lj -~ jF~ eN:_< t>~) ft<>~, '( C.:~!'!i)+Vh,., '(cd(l•1Jl, ~ 1 
_1 . 2.10 I .Jx · . ' . J · _J · 

ecv) = F.~ iv) F>r~Jfz"-J( r:,f (Y) r yf·( ("'f (vY}-IL;!') 

Because according to the -above assumptions there exis~ 

. finite limits of F ·~ - (i)and )) h-J{ 1 -(C:Hf(~))there exist -also 

:finite limits of S\- ~v) , fd rv) and t.-i ("Y) . 

where · 

. I 2 .12· I 

The. limit def_ormation x l_( XO() is a solution of the 

·boundary -problem I 2.12 I. This · .bound~ pro'Qlem is not 
the elastic boundary problem for ariy mate_rial · M. (v) . ·• 

Q~ite fo~al :reasons make it· convenient to ~ntroduce the 

hypotetic material for which the boundary problem of finite 

·elasticity. I 2.) 1-1 ·2_.6 I redqce1s to the boundary problem 

I 2 .12 / • . This holds if ·and only-'if for· th'e hy.potetic · 

material 

I 2.1; -1 

where q is an arbitrary £unction. Because of the relation 

I 2. lJ 12 this ·material allo_ws isochoric _motions only • . 

In accord -with its properties call this material the limit 
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incompressible .Diaterial. 
· The limit deforn:iation . X t' . ( . X«~) is a· solution of the 

boundary problem for ·the mate-rial I 2.1) /. In general 

however the definition ·I 2.1) I is not· self.consi~tent. 
Namely the definition of -the .limit incompres~ible material 

·must depend · on . the famiiy vH of the materials M tv) only, 

and be independent of the .particular family of the deforma
tions ~~ .us.ed_. If for two· familj es of deformatio:1s · ~"b-J 
and -~(~) that tend to the same Iimi t .C « 1 · , det C-" .·1 = 1 
the .limits m~ 3 

. and mr~;1 I 2.8 I are .. different it is 
(.1) - ,;.. . 

-impossible to .define · the limit incompressible material M. 
Therefore: In general in the non•linear the~ry the limit 

incompressible ·material does not exist. 
· Assume that b ~ ~.--, is a continuous function of C ,.. t: • 

.) 

In this case for all the families x that tend to the 

~ame limit def~rmation C « 11 , det C o<. :) = 1 we obtain the 
same m. ;x. .~. • For families · 60' with other limit deformation 

·c 'oc 3 we obtain in general · n{o<. 3 :; m t)(.f~ •. Assume therefore 

that·· m011t ·3 is not a constant tensor, but depends -on _ C.,.;~ 
mtl(~ · = ni~ :., (Cx: ~) and is defined on the hypersurf.ace 
.det . C «- P. · = 1. -lt. follows: If b ~.-' is continuous function 

of C :tt f the ·.limit incompressible material alwa,vs exists 
and is defin~d by I 2. t J I where m ~ , l is a function of 

C ?t ~ defined ·on the hyperslirfece det · C ~ _:; = 1. For such 

a modified definition it follows: There exi'sts · the set of 

~he solutions ' for compressibl~materials, the limit of which 
is the solution for the . limit incompressible material. 

Because in the finite elasticity the uniquene~s fails, there 

can exist other solutions. From l 2. 13 I it follows: The. 

extra stress in general elasticity is not the . sBherical 
·tensor. 

Let pass to the hyperelastic material. For such materia] 

there is : I cf. ( 1] I 
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I 2.14 I 

where .. J ( crkf.) is the stored energy. function. because the 
form of the ft.mction h "<" J is preserved .for everJ ")) 
there is 

I 2.15 I 

where 1J1.~ and ;'_)0 are scalar functions; such t hat . 
..... --

()ct + "'J . oh is the stored _energy • . In accord with · th.e demands 
following I 2.6 I there is 

I 2.16 I 6 <!(i~ /c:.. f .J == . " : r ('•' t ( j <TL \.. ( . dEL -Jt ~ = J_ . ". 

It follows that on the whole hypersurface det C 
1 
... f = 

there is 5;, =- const. 

In order to find the limit . I . 2.8 I represent :)r, as 
;~ -~ ' 

a Taylor series in the neighbourhood of c"',.;, det C~ -~= 1 

12.17:1 
- I . a ::>"";, / ( C' ·~ ) 1 a! o-;, ~· I. ~· \(,;. ·~ ) 

oh = ob/~ -1- H;., ., "' ~' -L~, t 2.iC~)C_..f f l C~, -c~, i(C,,i- ~( t 

~ 
In accord with I 2. 16 I to the· first' order in C ~i1 - C~.1 

there is I the first .term only influence the limit 
li-m -v boti1 (cJt_r (yJ) I 

. 'Y ~ov 

oc ·l ( . / . ) a~'-)-,~:, / ( , ; ) 
I 2.18 I b ' (<Hf = d(,,)(~5 "' (.Jrf -t;,5 . 

x-
Consider infinitesimal differer.ce Cdt! . - Ckf . • Tt ·-~nsor 

. t 
b (l(_ i1 is equal to zero if this difference satisfies .. · .2 I 2 ~ 

It follows that 

I 2.19 I 
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for- arbitrary point on the hypersurface det eo(!~= 1. The 

scalar function h depends on C ~ 1 • Therefore 

I 2.20 I 

I 2.21 I 

It follows: In the byperelastic materials the extra stress 

is the spherical ·· tensor. 
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