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Incompressible materials
in the theory of elasticity

Zbigniew WesoXowski

There exists extensive literature where incompressible
materials are defined by the demand, that only isochoric
motions aere allowed. In the nature, however, exist compressi-
ble materials only. Therefore the theory based on such a
gecmetrical definition not complemented by the theorems on
the relationship between compressible and incompressible
materials is of mathematical interest only. lLioreover the
geome’- .cal definition allows some ambiguity. Namely the
constraint imposed on the motion does not determine uniquely
the additional degree of freedom in the stress-strain
relation. This indeterminancy is usually avoided by assump-
tion that the extra stress does not produce work on the
isochoric / i.e. compatible with the constraint / deforma-
tions. Cnly in some special cases such assumption is
justified.

In fact the only purpose of introducing the incompressi-
tle meterials is to <find approximate solution for the
oryginal material, but with the aid of the equations simpler
than the oryginal ones. Of the principal interest is therefo-
re the difference between the solution of the boundary prob-
lem for the real compressible materisl and the solution for
the hypotetic incompressible one.

In the present work the limit incompressible material
is defined as the material for which the solution of the
boundary problem equals the limit sclution for the compressi-
ble materials if the compressibility tends to zero. Because
it was possible to find iﬁEhe linear theory more elegent
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Under assum;tlon thiat the stresses remsin finite the
condition / 1.7 / assures that the deformation is isochoric
in the limit case, but allows the additional constraints.

For exemple if &1l the ¢ ... - > the material tends to
the rigid body. The pcssibility of the additional constraints
is excluded by the condition / 1.8 /.

Assume the materials M(») defined by the relation
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where a § we and .bj«c are constant’ tensors
independent of » . The materisls I (v) satisfy the
conditions / 1:8 /,/ 1.9 / if and only if
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If the deformation is isochoriec &= 0 and all the materlals
/ 1.10 / have the same stress-strain relation.

For -erbitrary a |kt and b e the relation
/.1.10 / can describe some degenerate material. In order to
exclude this possibility assume that the .boundary problem
in stresses for the material i (»)
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posseses-the unique solution. It follows that the only
solution of the corresponding homogeneous boundary probiem
is the null-solution &y = 0. It cen be proved that from
the uniqueness of solution of the boundary problem / 1.11 /
follows the uniqueness of solution of the boundai'y problem
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vhere (.  is an additional ‘unkrown. It follows that the
only solution of the corresponding homogeneous boundery
problem is the null-solution E"a" =0, g.= 0.

Consider an asuxiliary one parameier family Ul of the
displacement fields . u; (1) , (€A <> of the class C°?
such that the corresponding deformation tensors E,:'J-(Dl)
and their gradients &t (2) are finite in 17 and
£ () and 4k () are pomtwme convergent to the

finite limits :-‘,,;J' and ‘4 Kk respectively. Assume
addluonally that the trace of £ i is equal zero
l;-w;c Egd'll):gid <x, Egp=0,
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Because &y (») 1is a symmetrized gradient of a displacement
field there is
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In the material M (v) the deformation &‘d (A)
produces the stress tensor '
o (A + b

/1.15 / y (9, ) = a; £ (2)
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Decause the first term of the right hand side of / 1.15 / is.
finite end - lim _&,-= 0, it is always possible to find at
least one continuous monotonic function A (¥) , 1:}31_‘1 (v). =2
such that v &, ()(,-)) is finite for every Vv end has

once diﬁ‘erenf.iable finite limit

/ 1.16 / fif'lc- Y Err (A)) = f1

The function A (%) fixes the one-to-one correspondence
between the materisls M (v) and the deformations E H)
The deformation £ ().rv)) is further denoted by E“ cv) end
the stress produqed in the material M (V) by the straln
E‘& (») is denoted by "-_«;,' (v)

7 11T & Ty) = Agjnt Ene (V) wbﬁ,-.,.- Eoeil¥)

"For a given fixed domain wr bounded by a smooth
surface /J " the stresses / 1.17'/ are equilibrated by the
body'fa'rces and surface tractions that according to / 1.3 /,
/ 1.4 / are

. —gﬁ-w) = Duwr Ery g ”)"‘vb‘)” Ess,e 1)
/ 1.18 / " '

.)%f-(‘l’) P -QL:JLEL & (5’) Hy# ‘Jbl;'_(.’, £, (9) n; m,,_[.l

In accord with / 1.13 / and / 1.16 / for vy -—=c the forces
¢ h (v) and .{JH) posses finite limits equal respectively
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From the sbove assumptions it follows that 'f;j is twice
‘differentiable on .J , and gﬁf is once differentiable
in .V . ' ' _ ‘o
After this auxiliary formulae consider ‘the boundery
problem / 1.11 / for fixed once differentiable in L~ bod;y
force g‘h __and f:l.xed twice differentiable on /.f surface
.tracti'_on' ¢ . For each material M (¥) the unique
‘solution of this. problem can be found. Denote this solution
by 3y (7) - -There is ' ' '
"1‘f}*£ J;“'.‘- () + yb‘-d.ﬁ. J’SS“. (v) = —g,(;- ¢h 2.",
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Subtracting now / 1.20 /- from / 1. 18 / end teking into
account '/ 1.14 /1- we have

Fijne (‘cm )=, (")J,t" +? bU"? _(&-‘sg ()= (M) = ”Q(ﬂ () =~ E )
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In the limit »y—- % it follows im accord with / 1.13 /
and / 1.16 /
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In accord with / 1.12 / the unigue solution of the boundary-
problem / 1.22 / is the null-solution-
1.2 Y., = lim J,: &
i@y Y SZ0NT
Because fg satisfies .the relations / 1.-15 / and / 1.19 /
the relation / 1.23 / establishes the theorem: The limit
solution for every fixed boundary problem / 1.20 / is

the solution of the boundary_problem

Qij&‘i[ ';kt g f‘b"‘f‘f- f"'); e —/é i Z N
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where 4t is an additional function. ‘I'hls theorem holds
for sufficently smooth 9:‘4 and i;J as indicated above.
In such formulation the.existence of the suxiliary family
of the displacements ¥;(2) is not essential. It is
evident that the problem / 1.24 / does not constitute
the boundary problem of the elasticity theory for any of
the materials of the family i . : .

Given the boundary problem determined by {? i




and M (v) the unique solution 3*(9] cen be found. After
substitution db(ﬁj: qaj;bv this requires solving three
second order partial differential equations with appriopriate
boundary condiiions. In the case, when it suffices to know
the 1limit soluticn j&:; 45 (¥ only, the system / 1.24 /
must be solved. The lattes is simpler than the former
because one of the equations is of the first order and only
first derivatives of the function p are involved.

Quite forms) reasons meke it convenient to introduce if
possible the hypotetic material ‘i '/ not belonging to the
femily .}{ / for which the boundary problem of the theory
of elasticity / 1.1 /2; / 1.4 / reduces to the problem
/ 1.24 /. It follows that the reduction takes place if and
only-if for this material

/ 1025 / Tg = (1‘_1"‘ g}“‘- +-C/‘ h:}‘,’-r' , \.I'.',-,- =. ¢
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where q is an arbitrary scalar function. Because of the
relation / 1.25 /, in the hypotetic material. M - only
isochoric motions are allowed. The solution of the boundary
problem for the material M (¥) for fixed body forces and
surface tractions tends in the limit ¥-—=c 1o the
solution of the same boundary problem for the hypotetic
material M /°1.25 /. This material will be called further
the limit incompressible material. From / 1.25 / it follows:

The extra stress g.buvr in general is not the spherical
tensor. This stress produces work on isochoric deformations.
Because in general elasticity the stored energy function
does not exist this fact does not contradict the basic
principles of mechanics. '

Consider now the hyperelastic material. Because for
each material M (v) .of the family /. 1.10 / the elastic
constants must posses the symmetry / 1.6 / there is
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where b is a scalar. The relation / -'f.'25-/1 reduces now.
to * . 2 .

/ 1028 / L—‘_j atdhllakl T q‘clj

where q dis.an arbitrary scalar function. It follows: The
extra stress in the hyperelastic materials is the spherical
tensor. Because in the linear théorjr evefy-isoiroj:)ic'elastic
material is hyperelastic it follows: In isotropic elastic
materials the exiras stress is the sbheri-cal' tensor.

2. Non-linear elasticity.

Identify the material pcints by their coordinates X
in the natural state By . In the deformed state B, the
points X cccupy the positions x‘( X*) . Denote the -
metric tensors of the coordinate systems ih By and B,
by & xg and g Tespectively.. The. derivatives 3x'/3X
constitute the deformation gredient” F'« . There exists

(-3

the unique multiplicative decomposition of . -into the
‘orthogonel tensor R ‘% angd positive definite symetric
tensor Uyxs .. The cuadrat of this tensor is the right
Cauchy-Green deformation tensor 2«3 / cf. 2] 7

720/ Fe=R"Uw, C
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If the deformetion is isochoric
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The basic equations of the non-linear elasticity are

/ 2.3/ . .
s '"ff'l'l,:z #d oh ) 5
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/ 2.4/ LY = F£F% F"',g-_ﬁ."._-(@fﬁ-)_:. :
/2.5 /° C;\; = Fbiac F:‘;ﬂ';

where h'%’ is the material. funct.lon. The density G, and
the unit normal n;  in the state B‘,_' ‘are unlquely
determined by the density ¢x and the normal N, in
Bx and the deformation gradient F‘«. The appriopriate
relations are given in (2] . _

Assume one parameter family H of mater:.ala M (v) , -
0L Y oo . Similary as in the linear theory define that
the materials, tend to the incompressible material without
additional constralnt.s if and only if, for given flmte
and fixed Cx3 .
i/ - the stresses ¢ J(v) produced in the material- M (v)

by the deformation Cxs3 tend to infinity if det Cx'&% 1,
ii/ the stresses T'Y(Y) produced in the material M (v) -

by the deformation C.; remain finite if det 6% Yo
Consider the partlcular family .}{ defined by the
relation ' :

a6/ 0 (ogg) 2% ) v v (oug),

where a“{F f .and B are fixed indepéndent of ¥
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functions of C «3 . The materials M (»)  satisfy the
above. conditions i/ eand ii/ if. and only if
af a*f(Cuy) and b ’(C‘,‘{,)remam finite for arbitra
finite Cutg >
ii/ b“‘(c@)- 0 if detC /' =
Ist xix™ a) constltute the faﬁai.;.;y =« of finite
deformations such that x ¢(X¥ 1) -and x t,((X A). ere
pointwise convergent to the finite limits .X° (.X"‘__].and
i'lm(x*) respectively. Assume additionally that the limit
‘deformation ¥ “( X¥) is isochoric |

X (),
% (x°),

1'

RELY x* (X“"l)
7. 8 ¥ lm x L (x* l)
11m det C, * x" 1)

In accord with / 2. '? /1 o there exist finite limits E«; i
Rix n; and 0y . Because of / 2.7 /5 it is possible
to find at least one monotonic function /1(’?), llm A) =20

such that v b~ ‘[Co.tf (;l (-;})} is flm.te and has f:mlte limit
i ] + 3 - 3
/ 2.8 /. f_;*:‘_ y b i_(;ﬁhg (,1(-9))]‘-?72 m

The function: A (%) ‘fixes the one-to~one correspondence
between the family of the materials M(v) end the family

of deformations =x (X"‘ A) . Denote the quantities- '
corresponding to A (v) by y , e.g. Cq (R{V)) Casl(v)

On the basis of / 2.1 /-/. 2.6 / the stress produced

by the deformation x “(}_{"" ) in.the materisl M (v)
‘end the equilibrating body force  f¢(v) ané surface tractions

4 (v) can be found to.be respectively / region ?-’“changes/

129/ TH)=Fot)F f*?[ (C;frv))w{a (C (»))J
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/.2.10 / _ _
5 s ' -, %3 oy
qu) = F. (,,)}-J;{v)[a - (Gf'f (,_;)+vb_ (('#r(v))]ﬂ{l-w‘}
; ;
Because aécording to the above afsumptions there exic®
-finite limits of Pix(ﬂ and v b" (L*ahﬂthere exist also
finite limits of ¢ (ﬂ , £9(v) end t4(v)

ren s ke g o fly=¢, ){’d L Hm) 4

e R e 1o

where

/232/ - Ui = Y g;:'fi.;Z&“’:"(c}fk/isz"’]ﬁ: 5
det €, = | |

The limit deformation i'if"x“) is a solution of the
boundary problem / 2.12 /. This boundery problem is not
the elastic boundary problem for any material M (v) .
Cuite formal reasons make it convenient to introduce the
hypotetic material for which the boundary p&oblem of finite
elasticity / 2.3 /-/- 2.6 / reduces to the boundary problem
/ 2.12 /. This holds if -and only- if for the hypqtetlc
material

. B . B e _ J- -
12030 T LG [a(cy)rgn™], el €

where q 1is an arbitrary function. Because of the relation
/ 2.13 /, this’'material allows isochoric motions only.
In accord ‘with its properties call this material the limit
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incompressible material. :

. The limit deformation x ¢ ( X%) is a solution of the
boundsry problem for the material / 2.13 /. In genersal
however the definition / 2.13 / is not self consistent.
Namely the definition of -the limit in¢ompressible material
must depend on the family .i{ of the materials M (v) only,
and be independent of the particular family of the deforma-~
tions o' used. If for two femilies of deformaticns ‘-\’}_:J
and ., that tend to the seme limit Cu., , det C,~’ =
the limits mif . and xl(:{l / 2.8 / ere.different it is
-impossible to define the limit incompressible msterial .
Therefore: In general in the non-linear thegry the J._imit
incompressible material does not exist.

-Assume that b™” ’'is a continuous function of Cu¢ .
In this case for all the families = ¥ that tend to the
same limit deformation E.gf, , det . =1 we obtain the
seme m>> . For families <0’ with other limit deformation
C'xy - we obtain in general ‘m*3 # m*P . Assume therefore
that' m*> is not a constant tensor, but depends on Cxg ,
p¥P=g>*? ('C;L-g) and is defined on the hypersurface '
det. Co P'= 1. It follows: If b’ is continuous function
of C ﬂr;c the limit incompressible materisl always exists
and is defined by / 2.13 / where m *% js a function of
Cx¢ defined on the hypersurfece det C..* = 1. For such
a modified definition it follows: There exists the set of
the solutions for compressible materiesls, the limit of which
is the solution for the limit incompressible material.
Because in thé finite elasticity the uniqgueness fails, there
can exist other solutions. Froz / 2.13 / it follows: The
extra stress in general elasticity is not the_s_;:herical

-tensor. :
Let pass to the hyperelasltic material. For such material
there is. / ef. [1] / '
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Aoc:...’(‘(v )= ‘aJ-(C:q)

A2 Wel . Bl .

where - J (C,ﬁ.}.) is the stored energy function. Secause the
form of the function h ¥~ is preserved for every V¥
there is

/2457  a% =9 /9(-?;- b A,

where' Ja and -'J‘;, are scalar functions,; such tha _
5'q +9 0y is the stored energy. In accord with’ th,e dem&nds
following / 2.6 / there is

1206/ - A(C ) =0 o det G =1

It follows that on the whole hypersurface det C,§= 1
there is 9, = const. o

In order to find the limit /. 2.8 / rerresent 9a as
8 Taylor series in the neighbourhood of 'C‘Irxl';, det 5;';= 1

/217 / 0%%9/ F Sg / C“ )5’ /(C 4 (w *<)

In accord with / 2.16 / to the i’zrst order in Cc(; - C.,“
there is / the first term only influence the limit

lim v b*P (Cuy ) /

Y 20 y
: e %
} - B Jb
/2.18/ 6% = / C‘ -(:"a‘)
( ) afd‘)(#f ( ch ‘,Jrj .
Consider infinitesimal difference C_ ™ C,q . Th  ~=nsor
b%® is equal to zero if this dlfference satisfies .2 /,.

‘It follows that

/29,  AT(G,)= =k (e JaN(s *)”(Cm Jf_;)
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for arbitrary point on the hypersurface det C_”= 1. The
scalar function h depends on C.. . Therefore

/ 2.20 / v.'gm yh ( ffﬂ) (@)
raas T = PRt (G gt

It follows: In the hyperelastlc materlals the extra stress
_13 the sgherlcal tensor.
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