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Notation 

Latin letters 

Quantities are dimensionless unless otherwise stated. Symbols of dimen­

sional quantities are constructed from dimensionless ones by adding a star 

superscript (*): 

a dimensional sphere radius 

C dimensional couple acting on sphere (except in the context of 

Saffman's equation (3.5)) 

c ICI 
e unit vector 

f friction factor 
F dimensional force exerted by the fluid on the sphere 

F IFI 
F' dimensional force exerted by the sphere on the fluid 

F' IF'I 
h dimensional distance between parallel plane walls 

K1 migration velocity coefficient appearing in Eq. ( 4.4) 

K3 migration velocity coefficient appearing in Eq. (4.7) 

K5 migration velocity coefficient appearing in Eq. ( 4.9) 
Kf migration velocity coefficient appearing in Eq. ( 4.13) 
Kg migration velocity coefficient appearing in Eq. ( 4.3) equiva­

lently, migration velocity coefficient in Eq. ( 4.13) 

dimensional distance from sphere centre to nearest wall or to 

a given wall (depending on context) 

n unit vector originating from the sphere centre 

p perturbed fluid pressure in the frarne of the sphere centre 

p perturbed fluid pressure in an absolute frame of reference 
P stretched value of pin term of the stretched space variables 
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10 

r 

r 

R 
R 
R 

R 
R 

Re 

u 

u 

v 

v 
v 

V' 
V' 

NOTATION 

position vector from the sphere centre to a point in the flow 

field 

lrl 
stretched position vector , Oseen variable 

IRI 
stretched position vector, Saffman variable, defined either 

from ~ or from JI[e;, depending on context 

IRI 
(1) dimensional tube radius 
(2) in Saffman's calculation, the radius of a large sphere en­

closing fluid 
Reynolds number based on some relative velocity (in general) 

canal Reynolds number 
Reynolds number based on the slip velocity 

Reynolds number based on the shear rate J<i, 

Reynolds number based on the global shear rate Um/h 

dimensional time 

perturbed fluid velocity in the reference frame of the sphere 

centre 
perturbed fluid velocity in an absolute frame of reference 
value of u in term of the stretched coordinates 

dimensional unperturbed fluid velocity 

dimensional maximum value of fluid velocity in Poiseuille flow 
dimensional average fluid velocity in Poiseuille flow 

dimensionless unperturbed fluid velocity 
perturbed fluid velocity in the absolute reference frame (or in 

the frame of the walls) 

dirnensional sphere translational velocity 

lVI 
-V 
IV' I 
migration velocity of sphere 

dimensionless particle translational velocity based on Uma/ h 

dimensional characteristic velocity of the fluid relative to the 

particle 
V8 slip velocity, viz. velocity of sphere relative to undisturbed 

flow 
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V' s -Vs 
coordinates 

NOTATION 

x,y,z 

X,Y,Z stretched coordinates 

Greek letters 

E ratio of the Oseen distance to the Saffman distance 

K shear rate of shear flow or Poiseuille flow 

A ratio of the distance to the wall to the Saffman distance 

p, fluid dynamic viscosity 

v fluid kinematic viscosity 

p fluid density 

u stress tensor 

~ l/h -1/2, where lis the distance to a given wall 

n dimensional sphere rotational velocity 

w dimensionless sphere rotational velocity based on V /a 
Wp dimensionless sphere rotational velocity based on Um/ h 

Subscripts 

11 

p denotes dimensionless quantities based on the shear rate 

Um/h 
S Stokeslet 

S S Stresslet 

x in the x direction 
y in the y direction 

z in the z direction 
0 in the limit of vanishing Reynolds number (1st term in the 

expansion for low Reynolds number) 

1 2nd term in the expansion for low Reynolds number 

Superscripts 

r 

t 

* 

rotational 

translational 
relative to shear flow 

dimensional 
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12 NOTATION 

Other symbols 

stretched variable or quantity in term of stretched variable, 

using a Saffman like stretching defined either from ..;Re;., or 

from~ 
Fourier transformed 
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Chapter 1 

Introduction 

1.1. Motion of particles in the low Reynolds number ap­
proximation 

The practical goal of this booklet is to show how the motion of small 

particles in a viscous fluid may be influenced by small fluid inertia effects. 
The size of particles considered here is typically of the order of 100 f.-till or 

smaller and the fluid may be either a liquid or a gas. Such small scales 

are encountered in various applications, such as separation techniques in 
analytical chemistry, transport at small scale, microfluidics, biological flow 
fields, transport of sediments. 

The present approach is focusing on the modelling of such microhydro­
dynamics phenomena, based on the following assumptions: 

• Particles considered here are solid in the sense that the fluid velocity 
should satisfy the classical no-slip boundary condition on their surfaces. 

• Moreover, for simplicity, particles are also considered to be spherical. 
Although this is a somewhat limiting condition, note that small drops 

in a liquid or in a gas or small bubbles in a liquid may also be considered 
as solid spherical particles [1] because of impurities adsorbed at their 
surfaces. 

• Suspensions of particles considered here are sufficiently dilute so that 

the hydrodynamic interactions between particles are negligible. In other 
words, each particle behaves as if it were alone in the fluid. 

http://rcin.org.pl



14 1. INTRODUCTION 

• A natural Reynolds number for the flow field around a particle is based 
on the particle radius, say a, and a characteristic velocity of the fluid 

relative to the particle, say Vr. This Reynolds number is defined as: 

Re = avr. 
l/ 

where vis the fluid kinematic viscosity. Because of the small size of the 
particles considered here, this Reynolds number is usually low: 

Re << 1. 

Note that we write this condition a priori; but strictly speaking, the 

validity of this condition should be verified afterwards, when the fluid 
velocity has been calculated for the given physical conditions. 

The motion of particles in a fluid depends on the force and torque that the 
fluid exerts on them. In order to obtain. these main quantities, the flow field 

around each particle has to be determined first. The N avier-Stokes equations 
for the flow around a particle are written in dimensionless form as: 

V·u 0, (l.la) 

(l.lb) 

where u, p are the "perturbed" fluid velocity and pressure (viz. perturbed 

by the presence of the particle) . From the assumption of a low Reynolds 

number Re << 1, the underlined inertial terms drop out and we obtain Stokes 
equations which ~e linear. As shown in detail in Sec. 1.2, the linearity of 
Stokes equations implies that the velocity of a particle is usually aligned 

I 
with that of the ambient or "unperturbed" fluid flow. As a result, particles 
follow the streamlines ·of that flow. 

However, a cornerstone experiment by Segre & Silberberg (presented be­

low in Sec. 1.3) showed that small particles in a pipe flow migrate across 
streamlines. This unexpected result, apart from being a curiosity, has now 

various applications; for example, it is now currently used in separation tech­

niques presented in Sec. 1.4. As to the reason for the particles migration, 
Segre & Silberberg anticipated that it is due to fluid inertia effects. That is, 

the modelling should consider a non-zero Reynolds number. The Reynolds 

number being small, a second order expansion in Re has to be derived. But 

performing a second order expansion in Re may raise a singular perturbation 
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1.2. PROPERTIES OF THE STOKES EQUATIONS ... 15 

problem (in the sense defined e.g. in the handbook of van Dyke [2]). Some 
background about singular perturbation problems related to small fluid in­

ertia effects will be given in Sec. 1.5. It will be shown why some perturbation 

problems happen to be singular while others involve simply a regular pertur­
bation, that is a straightforward expansion for low Reynolds number. 

The quest for the modelling of Segre & Silberberg experiment was an 
incentive for many theoretical papers solving various perturbation problems 

for low Reynolds number. These works, briefly presented in Sec. 1.6, are con­
sidered in detail in the following Chapters. Some perturbation problems are 

singular and some ot}:lers regular. Both types of problems will be presented. 

Before going into these theories, we start by some background about the 
Stokes equations. 

1.2. Properties of the Stokes equations. The Bretherton ar­
gument 

When Re -t 0 the Navier-Stokes equations (1.1) reduce to the Stokes 

equations: 

V·u 

Vp 

0, 

o2-v u. 

(1.2a) 

(1.2b) 

Since the original work of Stokes [3], there has been numerous solutions of 

the Stokes equations for the flow around particles (see e.g. [4]). An inter­

esting consequence of the linearity of these equations was pointed out by 

Bretherton (5]. 
Consider e.g. a spherical particle held fixed in a shear flow (far from the 

particle) along a wall (see Fig. 1.1). This particle is submitted to a force which 
may a priori have any direction; that is, the force represented in Fig. 1.1 (left) 

FIGURE 1.1. Application of Bretherton argument. 

http://rcin.org.pl



16 1. INTRODUCTION 

has a drag component in the same direction as the incident shear flow and 
a lift component perpendicular to it. Now reverse time. From linearity of 

Stokes equations, if the shear flow velocity is reversed, so are the local fluid 

velocity around the particle and the local pressure perturbation (relative to 
the pressure at infinity). From the linearity of the integral of stresses on the 

particle, the force exerted by the fluid is reversed as shown in Fig. 1.1 (middle). 
Next, transform the figure with a symmetry relative to a plane perpendicular 

to the wall and to the velocity at infinity. Obviously (Fig. 1.1, right), the 

original shear flow at infinity is recovered, whereas the force on the sphere 

is not. Bu~ having a different flow field is impossible by uniqueness of the 
solution of the Stokes equations. The only possibility for the force to be 
unchanged is that the lift component vanishes. 

This argument may be repeated to show that a freely moving sphere in 

the same condition will move along the wall. 
Note that the problem of a freely moving sphere in a shear flow along 

a wall may be obtained, again from linearity of the Stokes equations, by 

adding up several flow fields: 

n 

d 0 ----- + ----- + __.__ ____ _ 

F* 0, 

C* = 0. 

As shown schematically, adding up flow fields due to a sphere translating 

(with velocity V) and rotating (with velocity 0) in a fluid at rest and that 
due to a sphere held fixed in a shear flow (K.z, where z is the coordinate 
normal to the wall) gives the problem of a sphere translating and rotating 
in a shear flow. Each of the first three flow fields gives a force and a torque 

on the sphere, which by linearity of the Stokes equation are respectively 

proportional to the relevant characteristic velocities. Here the forces and 

torques are normalized (J-L denotes the dynamic viscosity) and we defined 

dimensionless friction coefficients denoted with f for the forces and c for the 
torques. For the translation problem, the motion along the wall (say, along x) 
gives a force along x and the friction coefficient is denoted f~x. When the 

http://rcin.org.pl



1.3. THE SEGRE & SILBERBERG EXPERIMENT 17 

sphere is far away from the wall, the classical Stokes [3] drag force should be 

recovered so that f~x ~ 1; this is the reason for the present normalization. 

Likewise for the rotation problem along axis y (perpendicular to the plane of 

the figure), there is a torque along y with normalized friction coefficient c~Y. 

When the sphere is far away from the wall, the classical rotation problem for 

a sphere in infinite fluid is recovered provided c~Y ~ 1. The normalization 

for the shear flow problem comes from Faxen relation in infinite fluid (see 

e.g. [4]). Here, l denotes the distance from the sphere centre to the wall. From 

the linearity of the expressions for the force and torque, the values F*, C* for 

the final problem are then obtained by summing up the ones for the three 

composing problems. Now, if the sphere is freely rnoving, both F* and C* 
vanish. This gives a linear system to be solved for the translational velocity V 
and rotational velocity 0. The solution is then: 

This approach is classical [6, 7]. Novel more precise results for these prob­

lems have been obtained by the method of bipolar coordinates [8]. In any 

case, there is no lift on the sphere and no migration velocity (that is no ve­

locity perpendicular to the flow at infinity) as anticipated from Bretherton 

argument. 

That is, whenever experimental results show that a spherical particle is 

submitted to a lift force or a migration velocity, this is due to non-linear 

inertial terms of the N avier-Stokes equations; then a second order expansion 

in Re is needed to model it. Such lift forces or migration velocities were for 

the first time described in detail in the Segre & Silberberg experiment, that 

we will present now. 

1.3. The Segre & Silberberg experiment 

In this experiment [9] (cf. also the more comprehensive reports in [10, 11]), 

neutrally buoyant spherical particles are injected in a Poiseuille flow in a tube. 

The data are as follows: 

http://rcin.org.pl



18 1. INTRODUCTION 

Thbe radius 
Mean velocity 

Fluid viscosity 
Fluid density 

Pipe Reynolds number 

Particles density 
Particles diameter 

R = 1.16cm 
(U) ~ 0.5m/ s 

11 = 0.4 Pa.s 

p = 1.18 g/ cm3 

2R (U)p/ 11 = 17 
= fluid density 
2a = 0.8 to 1.6 mm 

Particles are uniformly distributed at the tube entrance and it is observed 

that at some distance downstream the particles gather at mid-distance be­
tween the tube centre and the wall, as shown schematically in Fig. 1.2. This 

appears as a "tubular pinch" [9]. The final distribution sketched in Fig. 1.2 

only appears after a distance from the tube entrance f"" 1/(U), thus after an 

advection time t "" f/ (U) "" 1/ (U? giving a radial velocity "" R/t "" (U) 2
. 

Since this radial velocity is proportional to the square of the mean velocity in 

the tube, Segre & Silberberg claimed that the migration of particles across 
streamlines is due to fluid inertia. The following theories prove that they 

were right . 

·--·-----·-·1 z:: :> ·-·-·-·-·-·-·-·-·--·-·-·-·-·-···--------------·--------- --·-----·------·-·--·----·-·-·-·-·-·-·-------·-·-
FIGURE 1.2. Schematic representation of the final equilibrium position of neu­
trally buoyant particles in Poiseuille flow I9J, at mid-distance between the tube 
axis and the tube wall. 

In the aerodynamic literature, it is known that a combination of trans­
lation and rotation in the motion of fluid at high Reynolds number around 

a body gives a lift force; this is the so-called Magnus effect l) . Then, Segre 

& Silberberg anticipated some kind of Magnus effect which, as the following 

theories will show, is not right but not far from the truth. 
They also realized that a lift force would make particles migrate across 

the streamlines without stopping, so that some wall effects were needed to 

explain the peculiar distance to the wall ; following theories prove that they 

were also right. 

I) The lift force on a sphere is sometimes also called the Robins effect, the Magnus effect 
then being then the lift force on a cylinder, see e.g. I12J . 
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1.4. SEPARATION TECHNIQUES IN ANALYTICAL CHEMISTRY 19 

Finally, they anticipated that "it may find application in the fractionation 

of particles of different sizes", which is realized today by the Field Flow 

Fractionation (FFF) technique in analytical chemistry. 

The articles [ 9, 10, 11] were followed by other experiments designed to 

observe the migration of spheres in circular tubes (see e.g. the review in [13]). 

1.4. Separation techniques in analytical chemistry 

Two techniques will be briefly presented here. For a more comprehensive 

review, the reader could consult e.g.[14]. 

The Field Flow Fractionation (FFF) consists essentially of a Poiseuille 
flow between two close walls: the distance between walls is a fraction of a 

millimeter and the length of the canal is of the order of 50 em. The canal being 

horizontal, particles are first injected at the canal entrance. As opposed to the 

Segre & Silberberg experiment in which the particles were neutrally buoyant, 

particles to be separated are usually heavy and therefore settle down towards 
the lower wall. Then the flow is started. For non-Brownian suspensions (the 

particle size being typically larger than a micrometer), it is observed that the 

largest particles arrive first at the end of the canal, as represented schemati­
cally in Fig. 1.3. This is because the large particles migrate higher than the 

smaller ones and then reach streamlines with a higher velocity. This is called 
the "hyper-layer" mode in FFF (as opposed to the "classical" mode for which 

the larger the particle, the lower the streamline as intuitively expected; that 

mode occurs for Brownian suspensions). Indeed, Segre & Silberberg found 

that the migration velocity varies like a4 . Such a migration velocity also oc­

curs here and is due to a lift force varying like a4 . Particles eventually reach 
an equilibrium position in which the lift force balances the weight (which 
varies like a3), so that a separation in sizes occurs. 

FIGURE 1.3. Schematic representation of the migration of particles in Field Flow 
Fractionation in the "hyperlayer" mode. Particles with a larger diameter migrate 
higher and thus move faster along the tube so that they are separated from smaller 
particles. 
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20 1. INTRODUCTION 

In the SPLIT Thin flow fractionation (SPLITT) cell, the canal is similar 

to the one in FFF but is separated typically in two parts at the entrance and 

at the exit , as represented schematically in Fig. 1.4. A mixture of different 

particles is injected in the upper part of the entrance. Some heavier particles 
settling down faster come out through the lower exit whereas lighter particles 

come out through the upper one. As opposed to FFF, this is a continuous 
separation process. In general, particles to be separated are moved across 
streamlines by some field force (not necessarily gravity). Also, the relative 

flow rates in the two entrance and two exit channels may be adjusted, which 

is practically equivalent to adjustable separations . 

. --.-.:--: - -- _ -------------------~ 

FIGURE 1.4. Schematic representation of the SPLIT Thin flow fractionation, or 
"SPLITT" cell. In a force field , say gravity, heavier particles move down faster 
and are separated in the lower exit whereas lighter particles leave through the 
upper exit. 

In the present case, the migration velocity due to the shear rate is not 
large enough to lift particles like in FFF. However, it is still present and 

appears as a hindrance which must be taken into account. 

1.5. Small fluid inertia effects for a translating sphere. 
Whitehead paradox and Oseen solution 

Before entering into the details of various theories, some background on 

the second order perturbation solutions for low Reynolds number is pre­

sented. It is important to distinguish between regular and singular pertur­

bation problems and the conditions for which these different cases arise will 
now be exposed. 

We start with the classical Whitehead paradox which appeared in the 

course of the calculation of a second order term following the classical Stokes 

result. 
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1.5. SMALL FLUID INERTIA EFFECTS FOR A TRANSLATING SPHERE 21 

1.5.1. Whitehead paradox 

Consider a sphere moving with velocity V in a fluid at rest. For van­

ishing Reynolds number Re = Vajv (where V = lVI), the Navier-Stokes 
equations (1.1) give the Stokes equations (1.2) as seen above. The solution 
of these equations for this translation problem was obtained by Stokes him­

self [3]. The results for the fluid velocity and pressure are in a fixed frame of 
reference: 

u* 
3a [V + n(V · n)] a3 [V- 3n(V · n)] 
4 r* + 4 r*3 ' 

(1.3a) 

p* = 
3a (V · n) 
2J.L r*2 · 

(1.3b) 

Here and belqw, quantities with a star superscript(*) are dimensional (quan­

tities without the star will be non-dimensional, except the sphere velocity 
that will always be denoted V for simplicity). Let r* denote a position vec­

tor from the sphere centre to a point in the flow field, r* = lr* I and n = r* /r* 

a unit vector. Integrating the stress ( u* · n, where u* is the stress tensor) 

due to this flow field on the sphere surface, Stokes found the now celebrated 

expression for the drag on the sphere: 

F* = -61faJ.L V. 

It is important for the following developments to calculate the flow field 
obtained by a point force applied to the fluid, or Stokeslet. This flow is ob­

tained when the sphere becomes vanishingly small, that is a ~ 0, at constant 
F'* = - F*, where F'* is the force acting on the fluid. The result for the ve­

locity is the first term, that is the one in 1/r* in (1.3a): 

v* = I + nn . ( F'* ) 
s r* 81r J.L 

where I is the identity tensor. Note that the second term in (1.3a) then 
amounts to a volume effect of the sphere. The result for the pressure due to 

a point force is simply from (1.3b): 

F '* ·n 
p* --­s- 47rr*2 . 

We now proceed to calculate the second order term in Re << 1. We use a 
frame moving with the sphere centre in which the flow field is steady. The fluid 
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velocity in this frame is u* = u*- V and the velocity at infinity is V' = - V. 

Dimensionless quantities are defined with a as a reference length and V' as a 

reference velocity. Thus, the dimensionless fluid velocity u satisfies u -t ex at 

infinity, where ex denotes a fixed unit vector. The other boundary condition 

is u = 0 on the sphere. 

The non-dimensional N avier-Stokes equations for the flow around the 

sphere are: 

V·u 0, 

Re (u · Vu) 

The unknown fluid velocity and pressure are searched as expansions: 

u uo + Reu1, 

P Po+ Rep1. 

(1.4a) 

(1.4b) 

Introducing these expansions into the Navier-Stokes equations (1.4), we ob­

tain Stokes equations for (uo,Po), the solution of which is given in dimensional 

form in (1.3); and for (u1,pi): 

0, 

uo · Vuo, 

(1.5a) 

(1.5b) 

with boundary conditions: u1 = 0 on the sphere, u1 -t 0 at infinity. Proceed­

ing to solve this problem, Whitehead (15] found that the boundary condition 

at infinity cannot be applied. It is realized today that this is a singular per­

turbation problem at infinity but at that time it appeared as a paradox. 

1.5.2. Oseen scaling 

Indeed, as observed by Oseen [16L in the Navier-Stokes equations (1.4) 

the underlined inertial term Re (u · Vu) is of the sarr1e order as the viscous 

term V 2u at a normalized distance e rv 1/ Re. Then the straightforward 

expansion breaks down. In order to describe the flow field at distances of the 

order off, it is then appropriate to stretch the space variable r by using an 

Oseen variable: 

R = Re r. 
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1.5. SMALL FLUID INERTIA EFFECTS FOR A TRANSLATING SPHERE 23 

If we keep IRI of the order of unity in the process Re ~ 0, then lrl is of the 
order of 1/ Re. This is the Oseen limit process, which applied to Navier-Stokes 

equations then gives Oseen equations. That is, Oseen equations are valid at 

such large distances Ord( 1/ Re) whereas the second order Stokes equations 
which Whitehead tried to solve are only valid near the sphere. 

The adequate technique to reconcile these descriptions was later formal­

ized by the pioneer work of Kaplun [17]. Classical notions about singular 

perturbation problems and their treatment by the method of matched asyrnp­

totic expansions are recalled in Appendix A. For a more thorough presenta­
tion, the reader could consult e.g. [2]. 

As to the Oseen problem, the proper way to proceed further will be de­
scribed in Chapter 2 which will cover the more general problem of a trans­

lating and rotating sphere. 

1.5.3. Saffman scaling 

The Oseen variable is appropriate to the translational problem, but in 

general the suitable stretched coordinate depends on the flow at infinity. 

_Saffman [18] considered a sphere moving in an undisturbed shear flow (i.e. 
a shear flow at large distance from the sphere) with shear rate /'\,. Then the 
Reynolds number based on the shear rate is defined as: 

It is assumed to be low compared with unity. Again, the second order prob­

lem in Re,.. is singular at infinity. The inertial terrn in the N avier-Stokes 

momentum equation then scales as: Re,.. (u · Vu) rv Re,.. (e Vu). It is of the 

order of the viscous term 'V2 u at a normalized distance e rv 1/ ~- Then 
the appropriate stretched variable is Saffman variable: 

R=~r. 

1.5.4. Regular and singular perturbation problems 

At this point, we have discovered the importance of two characteristic 

length scales, the Oseen one a/ Re and the Saffman one a/~- If now the 
flow is bounded by walls, another important length scale is the distance l 
from the sphere centre to the nearest wall. Then comparing these various 

length scales allows a classification of regular and singular problems. 
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If both a/ .;Re;. and a/ Re are small compared with l, this is a singular 

perturbation problem. Saffman considered the sub-case a/ .;Re;. <<a/ Re << l 
to simplify his calculation. The classification of length scales for the Saffman 
problem is represented schematically in Fig. 1.5. 

aj.;Re;. 

FIGURE 1.5. Singular case. 

On the other hand, if l << (a/ .;Re;., a/ Re), this is a regular perturbation 
problem (see Fig. 1.6) since walls happen to make the second order Stokes 
flow regular as proven rigorously by Cox & Brenner [19) (such a case was 
solved in [20]). 

FIGURE 1.6. Regular case. 

In the next Chapters, we will start by considering singular perturbation 

problems without walls, then regular perturbation problems with walls and 

finally singular perturbation problems with walls. The various theories mo­
tivated by the Segre & Silberberg experiment will be first presented shortly, 

classifying the problems as regular and singular ones. 
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1.6. THEORIES MOTIVATED BY SEGRE & SILBERBERG EXPERIMENT 25 

1.6. Theories motivated by Segre & Silberberg experiment 

Rubinow & Keller [21], following the suggestion of [9], derived a lift force 
similar to the Magnus force but for low Reynolds number. They showed that 
such a force arises from a combination of translation and rotation. Their 
calculation will be presented in detail in Chapter 2. This is a singular per­
turbation problem. 

There is no ambient flow in [21] but Saffman [18] found that a lift force 
also arises from the combination of the sphere translation with an ambient 
shear flow. For the case that he considers, he also found that Rubinow & 
Keller [21] lift force is an order of magnitude smaller. This is also a singular 

perturbation problem. Saffman's work was a guide to many following papers, 

as we will see. 
Ho & Leal [20] considered neutrally buoyant particles in a two­

dimensional Poiseuille flow; they showed that a migration velocity arises from 

the combined effect of the local shear flow and of distant walls. They were the 
first ones to find limit equilibrium positions which are rather close to the ex­
perimental ones of [9]. But they considered a Poiseuille flow between parallel 
walls whereas the experiment [9] is concerned with a tube flow. Moreover, in 
their theory, the canal Reynolds number is low compared with unity whe.reas 

in experiment [9], it is of the order of 20. Their theory is based on a regular 

perturbation problem. Vasseur & Cox [22] revisited the Ho & Leal theory 
and, moreover, considered a more general case of a non-neutrally buoyant 
particle in a pure shear flow and in a Poiseuille flow between parallel walls. 
They found a variety of values of the lift force, depending in particular on 
the ratio of velocities of the particle and the ambient flow. 

Segre & Silberberg experiment continued to be a motivation for many 
years. Indeed, Ishii & Hasimoto [23] considered the migration of a particle in 
Poiseuille flow in a cylindrical pipe. In their case, the pipe Reynolds number 
is also low. Like in [20], this perturbation problem is regular. 

Schonberg & Hinch [24] solved again the problem for a sphere in a 
Poiseuille flow between parallel walls but, in their case, the canal Reynolds 
number may not be small (indeed, values up to around 100 are consid­
ered). They found equilibrium positions which are closer to the experimental 
ones [9]. The perturbation problem in this case is singular. 

Asmolov [25] reconsidered the Poiseuille flow between parallel walls, but 
with an even larger canal Reynolds number (up to the order of 1000; of course 
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with the limit that the flow should stay laminar). Then other equilibrium 
positions arise. The perturbation problem is again singular. 

Various extensions of Saffman's calculation (18) were performed, in par­

ticular by Me Laughlin (26), the perturbation problem being always singular. 

The lift force on a particle near a wall is relevant for the departing par­

ticles in the FFF separation technique. Me Laughlin and co-workers (27, 28) 
obtained various results. The perturbation problem is then regular because 

of the wall. 

The most characteristic and important papers will be considered in more 

detail in this booklet. 
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Chapter 2 

Lift force on a translating 

and rotating sphere 

This Chapter is essentially a surnmary of the article by Rubinow & 
Keller {21}. The emphasis is put on matching. It is also of interest to 

consider a theorem giving a solution of Oseen equations which has 

not been much used ever since (this theorem appears in an appendix 
of {21}). 

2.1. Problem and notation 

Consider a sphere translating with velocity V and rotating with veloc­
ity n in a fluid at rest. The perturbed fluid velocity and pressure satisfy the 

steady Navier-Stokes equations if we use a reference frame (x*, y*, z*) mov­
ing with the sphere centre. The notation is depicted in Fig. 2.1. The velocity 

of the fluid with respect to the sphere centre, V' = - V, is pointing in the 
positive x* direction. Let also r* with coordinates (x*, y*, z*) be the vector 

position of a point in the fluid and let u* and p* be the perturbed velocity 

and pressure. We now define dimensionless quantities, using a as a reference 
length and the translational velocity V' = - V as a reference velocity. (Note 

that an would have been another possible choice. Anyway a relationship be­
tween these two scales will be imposed later). We define the dimensionless 

quantities: 

x = x* fa, y = y* fa, z = z* /a, r = r* fa, 

u = u*/V, w = na;v, p = p*a/(V J-L), 
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28 2. LIFT FORCE ON A TRANSLATING AND ROTATING SPHERE 

V' = -V 
> 

y* 

x* 

FIGURE 2.1. Notation for the flow around a translating and rotating sphere. The 
reference frame is attached to the sphere centre. 

with V = lVI. The Reynolds number: 

Re= Va 
ll 

is assumed to be small compared with unity. The N avier-Stokes equations 

and boundary conditions are then written in dimensionless form: 

V·u 0, 

V 2u- Vp = Re(u · V)u, 

r = 1 u = w x r, 

r---+ oo 

where r = lrl and ex is the unit vector along x. 

2.2. Stokes expansion 

(2.1a) 

(2.1 b) 

(2.1c) 

(2.1d) 

The solution is searched as an expansion in Re. First, a natural expansion 

is performed by keeping r of the order of unity. That is, we consider the flow 

field at the scale of the sphere. This is the so-called Stokes expansion: 

u = uo + Re u1, P =Po+ Re PI· (2.2) 
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The N avier-Stokes equations then give successively: 

V·uo 0, 

r=l uo = w x r, 

V · Ut = 0, 

r = 1 Ut = 0. 

29 

(2.3a) 

(2.3b) 

(2.3c) 

(2.4a) 

(2.4b) 

(2.4c) 

Applying here the method of matched asymptotic expansions in a system­
atic way, we do not know a priori whether the boundary condition at infin­
ity (2.1d) can be applied to these expansions. Indeed, this boundary condition 
will be replaced later by a proper matching with expansions valid in a domain 
far from the sphere. 

2.3. Oseen expansion 

The domain far from the sphere is defined by using the following stretched 
variables: 

X= Rex, Y = Rey, Z = Re z, R = Re r . 

The unknown velocity and pressure in terms of these variables: 

U(X, ... ) = u(x, ... ), P(X, ... ) = Re-1p(x, ... ), 

then satisfy the stretched Navier-Stokes equations and boundary conditions: 

V·U 0, 

V 2U-VP = (U·V)U, 

R-+oo U -+ ex, P -+ 0, 

(2.5a) 

(2.5b) 

(2.5c) 

where R = IRI. Since R = Ord(l) corresponds to a distance r = Ord(l/ Re) 
that is large compared with unity, it is appropriate to apply the boundary 

condition at infinity. However, it is not clear at this stage that the boundary 
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30 2. LIFT FORCE ON A TRANSLATING AND ROTATING SPHERE 

condition on the sphere can be applied. This boundary condition will be 
replaced later by a proper matching with the solutions of (2.3) and (2.4) 
valid near the sphere. 

The solution of the stretched system (2.5) is searched as an expansion for 
low Re with R = Ord(l); this is the Oseen expansion: 

P =Po+ Re P1. 

The Navier-Stokes equations then give successively: 

0, 

Uo · VUo, 

v. u1 = o, 

Uo·VU1+U1·VUo, 

R----+oo u1----+ o; P1----+ o. 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7a) 

(2.7b) 

(2.7c) 

The order zero equations (2.6a), (2.6b) are the full Navier-Stokes and noth­
ing seems to be gained at this stage. Fortunately, with the boundary con­
dition (2.6c), it has a trivial solution: Uo = ex, Po = 0. Then, the order 1 
momentum equation (2. 7b) simplifies to: 

(2.8) 

This is the classical Oseen equation. Since it is linear, it can be solved rea­
sonably easily. 

2.4. Matching and Stokes solution at order 0 

Stokes approximation is valid for r = Ord(l) and Oseen approxima­
tion valid for R = Ord(l) that is r = Ord(l/ Re). In general, one expects 
(see Sec. A.2.2) both solutions to be valid in some intermediate region where 
Ord(l) < Ord(r) < Ord(l/ Re). But here, it happens that Stokes solution is 
uniformly valid. Thus, we simply use van Dyke matching principle: 

lim uo = lim Uo. 
r~oo R~o 
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2.5. SOLUTION OF 0SEEN (ORDER 1) EQUATION 31 

The result for the order 0 Stokes term simply amounts to the classical bound­
ary condition at infinity: 

(2.9) 

That is, the problem is regular at this order. 
The solution of (2.3a) (2.3b) with boundary conditions (2.3c) (2.9) is 

found from linearity of the Stokes equations (2.3a) (2.3b) by simply super­
imposing classical solutions for the translation and rotation of a sphere: 

uo = 

(2.10a) 

(2.10b) 

2.5. Solution of Oseen (order 1) equation 

We have seen that the order 1 Oseen system consists of (2.7) in which the 
momentum equation (2.7b) simplifies to the classical Oseen equation (2.8): 

V·U1 = 

V2U1- VP1 = 

The solution is found as: 

where 

R-+ oo 

pl = 

u1 = 

V·W 

aw 
ax 

0, 

au1 
ax' 
u1-+ o; pl-+ 0. 

8¢ 
oX' 
-V¢+W, 

= 0, 

W is found due to the following theorem by Rubinow & Keller ([21), Ap­
pendix). 
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Theorem 2.1: There are two scalar functions 'lj; and x such that: 

and 

W =ex x V'lj; + V x (ex x Vx), 

2 ax 
'V x =ax· 

Another way of writing it, with X1 = 3f such that 'V2x1 = ~, is: 

I ( 1 8'lj; a'lj;) 
W=Vx + -x, -az' aY . 

The solution in the present case is obtained by using a particular case of 

the theorem (a case already mentioned by Lamb [29]) where 'lj; = 0. Then: 

and the solution for the pressure and velocity terms is: 

U1 = -V¢+W=V(-¢+X1
) 

A R - B R e ~(X- R) + ... 
R3 R3 

where the constants A and B have to be found by matching. 

2.6. Matching Oseen order 1 expansion with Stokes order 0 
expansion 

Applying van Dyke's matching principle (see Sec. A.2.1), change variable 
R = Re r in the Oseen expansion and then expand it up to Ord(Re) for 
small Re at r = Ord(l) (Stokes expansion): 

A-B r 
Uo + ReU1 =ex+ -R 3 + Ord(l) terms + O(Re). 

e r 

Next, match with Stokes solution at order 0, Eq. (2.10a): 

• The matching of ex was already done at order 0. 

• The term in 1/ Re is blowing up when Re ~ 0; it should disappear, 

thus A= B. 
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• The other Ord(l) terms, not detailed here, match with Stokes solu­

tion provided B = 3/2. 

Thus matching with Stokes solution at order 0 gives A = B = 3/2, so that: 

u1 = ~;- t;~ exp [~(x -Rl]- ~RG2 - ~3 )exp [~(x -Rl], 
3X 

PI= -2 R3. 

2. 7. Stokes approximation at order 1 

Next, we solve the system (2.4), which is recalled here: 

0, 

(uo · V)uo, 

r=l lli = 0. 

(2.1la) 

(2.11b) 

(2.1lc) 

in which uo was calculated in (2.10a). Taking the divergence of the momen­
tum equation (2.llb) and using the continuity equation (2.1la), we obtain a 

Poisson equation for PI : 

Let a particular solution of this equation be PIO· Then, there is an associated 
velocity field Uio such that: 

V · uio = 0, 

Vpw + (uo · V)uo. 

The unknown solution ui is found as: 

lli = lliO + Un, PI = PIO + Pn, 
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in which the velocity uu and associated pressure p11 should satisfy: 

V · un 0, 

r=1 uu = -uw. 

This last problem is simply a Stokes flow problem with specified conditions on 

a boundary. Lamb's [29) general expression of the solution of Stokes equations 

can then be used to find uu, Pll· Then the formal solution for u1, PI is 

obtained. Details may be found in [21). 

2.8. Matching Oseen order 1 expansion with Stokes order 1 
expansion 

Using again van Dyke matching principle, we: 

• rewrite Oseen expansion U 0 + Re U 1 in Stokes variable and expand; 

• compare with Stokes expansion uo + Re u1. 
That is, not only the order 1 terms have to be matched, but the whole 

expansions. 

2.9. Drag, lift and torque 

After having calculated the fluid velocity and pressure, the dimensional 

stress on the sphere can be calculated with the following expression [29): 

f * * v 11- [ r* * ( a 1 ) * 1 ( * * )] =u ·n=- --p + --- u +-Vr ·u 
a r* 8r* r* r* 

where u* is the stress tensor and n is the normal unit vector pointing into 

the fluid. Then integrating the stress on the sphere surface gives the force on 

the sphere: 

F*=]f*dS 
s 

=- 61ra11-V ( l+~Re) (Stokes drag force plus Oseen correction) 

+ 1ra11- Re w x V (Rubinow & Keller lift force) 

+ o(aJ.LV Re). 
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The correction to the drag is the same as the one obtained for a non-rotating 
sphere by Oseen [16) l). The essential result of Rubinow & Keller is a lift 

force, that is a force perpendicular to the sphere translational velocity. From 

the expression of the Reynolds number, the lift force may also be rewritten as 

Surprisingly, it does not contain the viscosity. One may think that it is a 

purely inertial term but it is different from the Magnus force which is for 
dominant inertial effects. The present force can rather be understood as a 

second term O(~-t0 ) of an expansion for large viscosity M· 

Rubinow & Keller also derived the torque on the sphere: 

C* = j r* x f* dS 

s 
-87ra3 ~-tfl(1 + o(Re)), 

viz. this is the classical result for Stokes flow (due to Kirchoff, cf. (29) § 334) 

and there is no inertial correction at this order. 

The rest of the article (21] is discussing Segre-Silberberg experiment, but 
following papers are more relevant to this problem. 

l) Note that further terms have been calculated for the purely translational problem [30]. 
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Chapter 3 

Lift force on a sphere translating 
and freely rotating in a shear flow 

This Chapter is based on Saffman 's article {18}. This article is impor­
tant for two reasons. First, its new exact result for the lift force has 
been exploited in many applications. Secondly, the main ideas of its 
calculation technique have been used for various singular perturba­
tion problems until today. 

3.1. Problem and notation 

Consider a sphere translating with velocity V relative to an ambient ( un­
perturbed) shear flow with shear rate K. The shear flow and sphere velocities 

z* 

FIGURE 3.1. Translating sphere. 
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38 3. LIFT FORCE ON A SPHERE IN A SHEAR FLOW 

are in the same direction, say x*. Like in Chapter 2, using a reference frame 
moving with the sphere centre allows to use the steady Navier-Stokes equa­

tions. The system of coordinates and notation is shown in Fig. 3.1. 

The sphere is also rotating with velocity rley (where the unit vector ey 
is pointing into the figure). Let V' = V' ex = - V. In the chosen frame, the 

unperturbed flow velocity or velocity at infinity is u* --+ (V' + l'i:z*)ex and 
the fluid velocity on the sphere is u* = rley x r*. 

Here, two Reynolds numbers appear: 

V'a 
Re=-, 

v 

Note that Re may here be positive or negative. Both Re andRe"" are assumed 
to be small compared with unity. Choosing V' as a reference velocity (we 

will see later that l'i:a will appear anyway through Re""); let u = u* /V' 
and w = rla/V'. Choosing a as a reference length; let r = r* /a. Let the 
dimensionless force F and torque C be defined in terms of the dimensional 

ones F* and C* by: F* = aJ-L V'F and C* = a3 p,OC, respectively. Expanding 
for small Re, we expect to find the force on the sphere: 

F = Fo + ReF1. 

3.2. Stokes expansion and order 0 Stokes solution 

We expand the fluid velocity and pressure for Re << 1 keeping r = Ord(1), 
that is the Stokes expansion: 

u = uo + Reu1, P =Po+ Rep1. 

Like in the Rubinow & Keller case, the order 0 Oseen expansion is trivial and 
matching with it only gives the expected boundary condition at infinity for 

the order 0 Stokes solution. Using classical solutions of the Stokes equations, 
we then obtain: 

uo = ex- ~ex· (! + rr) -~ex· (! -3rr) + Re"" zex 
4 r r3 4 r3 r 5 Re 

+~ Re"" {-5xzr (1- ~) - ~(exz- ezx)- ~(exz + ezx)} 
2 Re r 5 r 2 r3 r5 

+0 { r
1
3 (exz- ezx)} (3.1) 
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and the classical Faxen results, here written in dimensional form, for the drag 
force on the sphere: 

F* = 61raf-L V' ex, 

and for the torque: 

3.3. Order 1 Stokes expansion 

3.3.1. Expression for the force in terms of some integrals 

The order 1 Stokes momentum equation is: 

or in terms of the stress tensor u1 at order 1 and using the continuity equation 

at order 0, V ·no= 0: 

V · u1 = V · (uouo). 

The order 1 term of the expansion of the dimensionless force on the sphere is: 

F 1 = J O"J • n dS. 

r=l 

Thus, using the divergence theorem on a domain between the sphere of ra­
dius 1 and a large sphere of radius R we get: 

F1 = j u1 · ndS- j (uouo) · ndS + j (uouo) · ndS. (3.2) 

r='R r='R r=l 

Since u0 = wey x r on the sphere r = 1, then u0 · n = 0 and the last integral 
vanishes. 

Instead of calculating the full solution ( u 1, p1) of the order 1 Stokes equa­
tion, the main idea of [18] is to express the unknown F 1 in terms of some 
integrals and then perform the calculations on these integrals. 

For that purpose, using the identity: 

J V ·,PdS = ~ J V ·t/JdV = ~ J ,PndS, 
r='R r5:'R r='R 
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the deviatoric (viscous) part of the contribution fr='R u1 · ndS to F1 in 
equation (3.2) is expressed as: 

J t d J Ut J Ut (Vu1 + Vu1) · ndS = R dR R dS- R dS. 

r='R r='R r='R 

Thus the expression (3.2) for the unknown F 1 becomes: 

Ft =- j Ptr dS+R.!!_ j Ut dS- j Ut dS- j (uouo). r dS (3.3) 
R dR R R R ' 

r='R r='R r='R r='R 

so that F 1 is expressed in terms of only two unknown integrals on a large 
sphere. 

3.3.2. Solutions for the two unknown integrals 

'I\vo coupled differential equations may be derived for the two unknown 
integrals [18]: 

R!!_ j Ut dS- .!!__ j Ptr dS = 
dR2 R dR R 

j (Uo · V)uodS 
r='R r='R r='R 

n 

j rV · (Uo · V)uodS 

r='R 

The last sums are obtained from the expression (3.1) of no which is of the 

form uo = (ReKJ Re)zex +ex+ 0(1/r) + · · · and it may be shown that the 
only non zero an coefficients are for n ~ 2 and the only non zero bn are 
for n ~ 1. 
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Solving the system of two equations for the two unknown integrals, we 

obtain: 

J v;_ds L 
nn+1 

= bn ( n + 1) ( n + 2) + A + BR3' (3.4) 

r=R n#-2,-1 

f u1dS 
nn+l L an R n(n + 1) 

r=R n#-1,0 

L bn 
nn+l 

(3.5) + n( n + 1) ( n + 2) + CR + D' 
n#-2,-1,0 

where A, B, C, D denote here constant vectors to be determined. 

Since a2 f= 0, then u 1 = O(R2 ) does not vanish at infinity. Thus the per­

turbation problem is singular and the condition at infinity should be replaced 

by matching with a solution valid in a region far from the sphere. 

3.3.3. Expression for the force at order 1 

The coefficients A, D are obtained in terms of the other coefficients from: 

• the order 1 Stokes equation, 

• the boundary condition u1 = 0 on the sphere r = 1. 

The coefficients B, C should be obtained by matching. 

The result for the order 1 contribution to the force is from the expres­

sion (3.3) and the values (3.4) and (3.5) of the integrals: 

(3.6) 

The an and bn are calculated from Stokes flow. The 2::::: term gives the fol­

lowing contribution to the component of F 1 along z, in dimensional form, 

that is to Fiz: 

3 ' 11 3 ' -1rpa nv - -7rpa ~v 8 . 

The first term is the Rubinow & Keller's lift force 1rpa3!l x V for a sphere 

translating with velocity V = - V'. Another contribution, indeed the most 

interesting one, comes from the terms in B, C and will be found by matching. 
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42 3. LIFT FORCE ON A SPHERE IN A SHEAR FLOW 

3.4. Order 1 (Oseen like) Saffman expansion 

3.4.1. Scaling 

We have seen earlier that the non-linear term p(u* · V)u* is of the order 

of the viscous terms J-LV2u* in shear flow for r* rv aj ~' the "Saffman 
distance". 

In more detail: introduce the expansions u =ex+ (ReK,j Re)zex + ReU1 
and p = ReP1 into the N avier-Stokes equation 

Re(u · V)u = - Vp + V2u. 

At large distances, the z term is preponderant in the inertia term: 

The inertia term is of the order of the viscous term V2u = \72 ( Re U 1 ) at 

distances Ord(l/~). 
Thus we use the following stretched variable: 

The "Saffman limit" is now the limit Re ~ 0 while keeping R = Ord(l). We 

also rescale the velocity U 1 and pressure P1 so as to keep as many terms as 
possible in this limit: 

3.4.2. Saffman ( Oseen like) equation 

In the Saffman limit, the Navier-Stokes equations become: 

( 
Re -) au 1 - - - - 2 -
ro;:- + Z --- + W1ex -V P1 + \l U1, 

vReK, ax 
(3.7a) 

V·U1 = 0, (3.7b) 

where W1 denotes the Z component of U 1. Since these equations are valid 
far from the sphere, we may apply the boundary condition: for R ~ oo, 

U 1 ~ 0. On the other hand for R ~ 0, the solution should match the result 
of the Stokes expansion. In particular, it should match the Ord(l/r) terms, 
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3.5. ORDER 1 MATCHING 43 

viz. the Stokeslet. Saffman's original approach introduces this condition into 

the order 1 equation (3. 7a) as the Dirac delta function: 

(3.8) 

viz. the term with {J is the Stokeslet. 

3.4.3. Expression for the velocity in Saffman region 

From the solution of this equation, the expression for the velocity may be 

written as: 

where Us is the Stokeslet velocity and iJ H is regular, viz.: 

and the Hi's are homogeneous of degree 0. For R --t 0, the leftover term in 

iJH is a constant: UH(O) = H1(0). 

3.5. Order 1 matching 

For the order 1 Stokes flow, the constant H 1 (0) corresponds to a uniform 

flow at infinity, which will give the unknown force on the sphere. We apply 

van Dyke's matching principle: 

• Saffman's expansion: 

• rewritten in the Stokes variable: 

u =ex+~: Zex +Re (us+ UH(J&:Rl) +~-

• The order 1 Stokes expansion (in what follows, upv + uss + UpQ 
represent the terms in 1 I r 2 , 1 I r 4 ): 

ReK 
u =ex+ -R Zex +us+ Upv + uss + UpQ +Reu1. e -
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44 3. LIFT FORCE ON A SPHERE IN A SHEAR FLOW 

The Stokeslet term ReUs matches us. Since the under-braced terms 

llPD + uss + UpQ vanish at infinity, the only term that can match to the 

underlined constant term U H (0) when R ----7 0 is u1. As a consequence: 

j ~ dS = j u~O) dS. 

r=R r=R 

Results follow for the constants: B = 0 and C is found. 

3.6. Solution of order 1 Saffman equation 

The solution of (3.8) with (3. 7b) is found with a three-dimensional Fourier 

transform. To determine C, the needed regular part in R = 0 is calculated 
as: 

that is, there is no need to calculate the full solution in real space. 

3. 7. Saffman lift force 

Saffman studied the case Re << JR,e;, << 1. Then the Oseen like term, 
viz. the term in (Ref JR,e;,) in the left-hand-side of (3.8), drops out in the 
equation for the Saffman region. The lift force (z component of the second 

order term in the force on the sphere) is due to shear flow: 

Note that there is an error in Saffman's (1965) original paper: see the cor­

rigendum (1968) [18]. Recall that V' is the undisturbed fluid velocity with 
respect to the sphere centre. Cases in which this velocity does not vanish 

may be e.g.: 

• a non-neutrally buoyant particle in a vertical undisturbed fluid velocity; 

• a solid particle in a gas, with a high enough Stokes number (ratio of the 
characteristic time for accelerating the particle to a characteristic time 

of the carrier flow), so that the particle may have a different velocity 

from that of the carrier gas. 
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If the sphere is lagging the flow, that is if V' > 0, the Saffman lift force 
is pushing the sphere towards the positive z direction, that is towards the 
streamlines with a higher velocity. On the other hand, if the sphere is faster 
than the local flow, that is if V' < 0, the force is towards the streamlines 
with a lower velocity. 

The Saffman force is much larger than the Rubinow & Keller force. Note 
that the sphere is yet rotating. 

3.8. Various extensions of Saffman's result 

3.8.1. Sphere moving in any direction 

Harper & Chang [31] considered also the case Re << .;&;. << 1 like 
Saffman, but for the more general case of a spherical particle moving with a 
velocity in any direction V = (Vx, Vy, Vz) in a shear flow with rate of shear 
"'' plane of shear ( x*, z*) and direction x*. In the Saffman case, the lift force 
is due to a velocity in the x direction and eventually gives a velocity in the z 

direction which is of an order.;&;. smaller. But here, all velocity components 
Vx, Vy, Vz are of the same order. Miyazaki, Bedeaux & Bonet Avalos [32] 
found the same analytical results as in [31] but their numerical results differ 
considerably from (31]. The force on the particle is then from (32]: 

F; = 61ra11- [ ( 1 + 0.0735JRe:") ([V00]o- Vx)- 0.944)Re:)Vz J , 

F; = -61ra11- ( 1 + 0.577 J&:) Vy, 

F; = 61ra11- [o.343)Re:([V00]o- Vx)- ( 1 + 0.327JRe:") Vz J , 

where [Voo]o is the value of the undisturbed flow V00 taken at the sphere 
centre. Harper & Chang and Miyazaki et al recover Saffman's lift force and 
find other coefficients for the lift force when the sphere is moving perpendic­
ular to the shear flow. They also find Oseen like corrections to the drag, but 
involving .;&;. . 

3.8.2. Fluid inertia contribution to the stress tensor of a sus­
pension 

Lin, Peery & Schowalter (33] considered a neutrally buoyant freely rotat­
ing sphere embedded in a pure shear flow. They derived the sphere rotational 
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46 3. LIFT FORCE ON A SPHERE IN A SHEAR FLOW 

velocity: 

n = ~ ( 1-0.3076 (ReK) 3f 2
). 

Moreover, they showed that for a dilute suspension the fluid inertia gives a 
correction to Einstein's expression for the fluid viscosity, as well as norn1al 
stresses. 

3.8.3. Lift force in other flow fields 

Herron, Davis & Bretherton [34], following the original work of Chil­
dress [35] found components of force like in [31], but for a sphere in a cen­
trifuge. 

Drew [36] also found similar relationships for a sphere in a 2D pure strain­
ing motion and a 2D rotational motion. 

More details about the preceding extensions of Saffman's results may be 
found in [37]. 

3.8.4. Lift for concurrent translational and shear flow effects 

More recently, Me Laughlin [26] considered the Oseen like term neglected 
by Saffman. That is, he considered the general case in which translational 
and shear flow inertial effects may be of the same order of magnitude, viz. 
Re "' ~ << 1, so that all inertial terms are kept on the left-hand-side 
of (3.8). He calculated the inertial migration velocity directly from Saffman's 
expression (3.9) which appears like an entrainment velocity for the sphere 
(Note that the lift force is 61rap, times this velocity, at this order in Reynolds 
number). His results for the dimensional migration velocity in terms of E = 

~/Re are: 

if E >> 1 

3 I~ 
V m = 27r2 V y ReK J = 

if E rv 1 

if E << 1 

J = 2.255- 0.6463/E2
, 

cf. Table in [26], 

J = -32 7r
2E5 ln(1/ E2

) 

quite small for E < 0.2 ( Oseen case). 
(3.10) 

If the velocity V' of the fluid relative to the sphere is positive, then the 
migration velocity Vm is moving the sphere toward increasing unperturbed 
velocities. Saffman's result is recovered from the formula for large E when 
E ---+ oo. A plot of the normalized migration velocity J versus E is shown 
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FIGURE 3.2. Normalized migration velocity on a sphere translating in a shear 
flow, Eq. (3.10): (*) calculation points of [26]; ( -·) expansion for small t; ( --) 
expansion for large t. 
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in Fig. 3.2. The values of J become quite small for E < 0.2: then there is 
no lift and Oseen's case is recovered. Note that the expansion for E << 1 
(dash-dotted curve in Fig. 3.2) is no more valid forE> 0.1. 

3.9. Conclusions 

The Saffman lift force is often quoted in applications, but is should be 
emphasized that his result is valid only for Re << ..[J.[e;. << 1, which is 
often forgotten. Under the more general condition Re rv ..[J.[i;. << 1, Mac 
Laughlin's result (Sec. 3.8.4) should be used. The sphere is always freely 
rotating in these calculations. The next order terms, partly appearing in 
Sec. 3.3.3, have not been fully calculated. Various extensions of Saffman's 
result appear in Sec. 3.8, and in Chapter 5. 
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Chapter 4 

Regular perturbation solutions 

for a sphere and walls 

In problems considered in this Chapter, the distance l from the sphere 
centre to walls (see Fig. 4.1) is rnuch smaller than the Saffman dis­
tance a/~ and Oseen distance a/ Re for which, as explained in 
Chapter 3, Stokes expansion is no more valid. Cox & Brenner {19} 
showed that the presence of walls then makes the perturbation prob­
lem regular. Although their demonstration is not straightforward, 
it may be realized intuitively from the figure that the Saffman and 
Oseen regions occupy only a small portion of the distant field as com­
pared with the walls, so that the main part of the flow field is directed 
by the boundary conditions in the Stokes region. 

FIGURE 4.1. 
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50 4. REGULAR PERTURBATION SOLUTIONS FOR A SPHERE AND WALLS 

4.1. Method of solution for a neutrally buoyant spherical 
particle 

The first authors who applied the formal theory of (19] were Ho & Leal (20] 
who calculated the inertial migration velocity of a neutrally buoyant freely 
rotating sphere in a two-dimensional shear flow and in the Poiseuille flow. 

The presentation below concentrates on the Poiseuille flow. 

z* 

FIGURE 4.2. 

Let U 00 be the Poiseuille flow velocity. For a neutrally buoyant sphere, the 
appropriate characteristic velocity is based on the shear rate. But since the 

local shear rate varies across the flow field, it is easier to build a characteristic 

velocity based on a global shear rate, that is Um/h, where Urn is the maximum 
velocity of the Poiseuille flow and h is the distance between walls. Let Vc* = 

Uma/ h be this characteristic velocity. The pertinent Reynolds number is 

based on a and ~*, thus based on the global shear rate: 

Uma2 

Rep = --;;,;:. 

This Reynolds number is assumed to be small compared with unity. Nor­

malizing then lengths by a and velocities by Vc*, we construct dimensionless 

particle translational and rotational velocities denoted as Vp and Wp· These 
unknown velocities are expanded for small Rep: 

Wp = Wpo + RepWpi· 

From Bretherton's argument (Sec. 1.2), it is anticipated that vp0 is along 

the x* axis. We also construct a dimensionless unperturbed flow velocity 
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4.1. METHOD OF SOLUTION FOR A NEUTRALLY BUOYANT. . . 51 

denoted as u 00 . The dimensionless unknown perturbed flow velocity in a 

frame attached to the sphere centre is written as u = u 00 - Vpo + v, where 

v denotes the unknown perturbation velocity. 

Since the problem is regular, it is sufficient to use the Stokes equations 

at orders 0 and 1. The straightforward Stokes expansion consists, as before, 

in expanding for small Rep while keeping length scales of the order of the 

sphere radius. The expansions for the fluid velocity and pressure are written 

as: 

v = v 0 + Rep vi, P =Po+ Rep PI· 

The N a vier Stokes and boundary conditions then become at order 0: 

V ·vo 

\72vo- Vpo 

r = 1 

On walls 

r ~ oo 

0, 

0, 

vo = -u00 + vpo + Wpo x r, 

v0 = 0, 

v 0 ~o. 

There are various ways to solve this order 0 Stokes flow problem. In [20], 

the solution is found by the method of reflexions, assuming that the ratio of 

the sphere radius to the distance to the nearest wall is small compared with 

the unity, that is: a/ l << 1. It is found that because of walls the Stokes flow 

velocity decays fast far from the sphere, lvol rv 1/r2 for r >> 1. 

Next, the Navier Stokes and boundary conditions give at order 1: 

V · VI 0, 

\72vi- Vpi = vo · \?vo + vo · \?uoo + (uoo- Vpo) · \?vo, 

T = 1 VI = V pi + Wpi X r, 

on walls VI = 0, 

T ~ 00 VI~ 0. 

Let f denote the right-hand-side of the momentum equation. An important 

result from [20] is a theorem of reciprocity giving a relationship between the 

force and sphere velocity at order 1. That is, there is no need to calculate 

the full order 1 flow field in order to obtain such a relationship. 
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4.2. The theorem of reciprocity connecting orders 0 and 1 

Consider two different flow fields for the same fluid volume V1 limited by 

the spherical particle, the wall and a hemisphere of large radius: 

• the unknown order 1 Stokes flow with velocity VI, pressure Pl, stress 

tensor O'I; 

• an alternative order 0 Stokes flow with velocity w, pressure q, stress 

tensor t, for a sphere moving with unit velocity ez normal to walls. 

The order 1 momentum equation written in terms of the stress tensor O'I is 
multiplied by w and the order 0 momentum equation written in terms of the 

stress tensor t is multiplied by VI: 

(V' . O'I - f) . w = 0, (V' · t) · VI = 0. 

Combining and integrating over the fluid volume V1 gives: 

![('\!· o-1) · w- (V' · t) ·vi] dV = J f · wdV. 

VI VI 

Using the expressions for the stress tensors and the continuity equations, it 

can be shown that, with Sf the surface surrounding the fluid: 

- Jn·(crl·w-t·vl)dS= Jr·wdV. 

Sf VI 

Here Sf is the surface made of: 

• the walls: the fluid velocity vanishes there; 

• the sphere: w = ez and VI = Vpi + Wpi x r; 

• the large hemisphere, the radius R of which may be taken R---+ oo. All 
quantities vanish there fast enough for the integral on this hemisphere 

to vanish. 

The unit vector n on Sf is pointing into the fluid domain V1. When the 
volume VJ ---+ oo, Ho & Leal [20] showed, using their result for v 0 , that the 

integral on this volume fv
1 

f · w dV is convergent. That is, the perturbation 
problem is regular. We are left with: 

j n·(o-1·w-t·v1)dS=- j f·wdV. 

s ~ 
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Replacing w and v 1 by their values on the sphere S and changing the order 

of terms in the mixed product gives: 

In this equation, 

=- Jr·wdV. 
v, 

• the first term on the left-hand-side is the unknown lift force at order 1, 

F1z; 
• in the second term the integral is the drag force on the sphere due to 

the flow (w, q); by symmetry, this force only has a component along z, 
say Tz (note that it is negative); thus the second term is -Tzvplz; 

• the integral in the third term is the torque for the flow ( w, q); this 

torque vanishes by symmetry. 

As a result, the theorem of reciprocity gives: 

F1z- TzVpiz =- J f · wdV. 
v, 

At this point, we can consider two possibilities: 

1. the particle velocity is given, say Vp. Then, Vp 

Thus, the dimensionless lift force is: 

Fz =-Rep J f·wdV. 
v, 

vpo and vpl = 0. 

( 4.1) 

2. A freely moving sphere; the force is zero and we obtain the migration 

velocity 
Rep j Vm = RepVplz = -- f · wdV 
Tz 

(4.2) 

v, 

in which f = vo·Vvo+vo·Vu00 +(u00 -vpo)·Vvo; wherevo is known 
from order 0 and w was calculated with the method of reflexions (20]. 

As expected, the ratio between the lift force and the migration velocity in­

volves the drag force for a sphere moving perpendicularly to the walls, that 

is 67raJ-L if terms of the order of afl are neglected. 
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4.3. Results for the lift force (or migration velocity) for a 
neutrally buoyant spherical particle 

4.3.1. Results of Ho & Leal (1974) with corrections of Vasseur 
& Cox (1976) 

Results of [20] were corrected in [22] for the cases where the sphere is 

near any of the two walls (not too close anyway since aIl << 1). The lift force 
is written in dimensional form as: 

* Um 4 p l 
( )

2 ( ) Fz = 67rp h a K5 h (4.3) 

where l is the distance of the sphere centre to one of the walls, viz. l I h 

increases with z and varies from 0 to 1. Here, Kf denotes a dimensionless lift 
coefficient (the reason for using this notation will appear from a classification 
introduced in Sec. 4.5.3). The variation of the lift coefficient K[ with llh 
is represented in Fig. 4.3. If K[ (i) > 0, the particle is pushed towards 
higher llh. It is understood that the lift force applies to a particle which 

1.5 

0.5 

-0.5 . . . . .. . . . 

-1 

-1.5 

-2~--~--~----~--~--~--~~--~--~--~--~ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

llh 
FIGURE 4.3. Lift coefficient on a sphere in Poiseuille flow, as defined in Eq. ( 4.3) 
and used in Eq. ( 4.18). This function is well fitted by the polynomial func­
tion (4.17). 
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is intended of moving in the z direction. To the order considered in the 
small Reynolds number and ignoring terms of the order of ajl in the friction 

factor Tz, the migration velocity Vm in the z direction is simply obtained by 
dividing the lift force by the Stokes friction coefficient 67raJ-L. 

In Fig. 4.3, the points where K[ vanish give equilibrium positions. From 
the sign of the lift force, it is realized that there are two stable equilibrium 
positions. These positions are similar to the ones observed by Segre & Sil­

berberg [9]. Moreover, the lift force in Eq. ( 4.3) varies with the fluid velocity 
squared, U~ and like a4 , as also measured in [9]. The theory of (20] was the 
first one to give a consistent model of the migration observed by Segre & 
Silberberg [9]. 

4.3.2. More exact comparison with Segre & Silberberg experi­
ment 

The preceding results concern the Poiseuille flow between parallel walls, 
whereas Segre & Silberberg [9] experiments used the Poiseuille flow in a 
cylindrical tube. A theory of the lateral migration of a spherical particle in the 
Poiseuille flow in a circular tube was performed later by Ishii & Hasimoto [23]. 
Their expansion procedure is similar to that of (20]. The calculation of walls 
effects is of course different and they used for that purpose the flow due to a 
Stokeslet in the circular tube, as calculated by Hasimoto [38]. The equilibrium 
positions are similar to the ones for the flow between parallel walls. 

In the calculations of (20] and (23] the Reynolds number based on the 
canal width and velocity is small compared with unity, whereas this Reynolds 
number is of the order of Rec rv 20 in Segre & Silberberg [9] experiments. The 
case of a larger canal Reynolds number was later considered by Schonberg 
& Hinch (24] for the Poiseuille flow between parallel walls. Their calculation 
involves a singular perturbation problem and will be presented later in Chap­
ter 5. To our knowledge, there is no calculation analogous to that of (24] for 
a circular tube, that is there is no theory matching exactly the conditions of 
the experiment described in [9]. 

4.4. Method of solution for a non-neutrally buoyant sphere 
between two walls 

When the sphere is non-neutrally buoyant and has a translational velocity 

in the same direction as the ambient flow velocity, the migration becomes 
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FIGURE 4.4. 

different. This problem was studied by Vasseur & Cox (22], Cox & Hsu (39). 
Consider then a vertical flow field which may be either a shear flow or the 

Poiseuille flow, with an embedded non-neutrally buoyant spherical particle. 

An expansion in Re = V ajv << 1 is performed and the perturbation 
problem is regular. Moreover, it is assumed that 

a 
h << 1, with: y << 1, 

a 
(h -l) << 1

' 

viz. they consider a small sphere not close to walls. 

To summarize, the solution of [22] goes along the following lines: 

• Since a/h << 1, they consider point particles. 

• They use Cox & Brenner (19) result for the migration velocity in terms 
of integrals on the fluid volume involving the Green function. 

• They calculate the Green function for a Stokes flow between parallel 
walls. 

• Their results for the migration velocity in the shear flow and in the 
Poiseuille flow are obtained for various cases depending on the dimen­

sionless numbers: Um/V and Um/V(a/h) 2
. 

The results obtained by Vasseur & Cox (22) for the migration velocity of 

a non-neutrally buoyant sphere in a fluid at rest, in the shear flow and the 

2D Poiseuille flow will be presented in the next Sections. 
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4.5. Results for the migration velocity of a non-neutrally 
buoyant sphere 

4.5.1. Fluid at rest, or in very slow motion 

The first situation, denoted here as "case 1", is that of a sphere moving 

between parallel walls in a fluid at rest or in very slow motion (let then Um 

be its maximum velocity). The result for the migration velocity is: 

• Case 1 : 

if 
Um 
-y<<1, ( 4.4) 

where Vx is the x component of V and V = IVxl· Obviously, the migration 
velocity is independent of the direction of the sphere motion. The dimension­

less lift coefficient K 1 is represented in Fig. 4.5. We may approximate it by a 
polynomial in 

~ = l/h- 1/2 
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-0.08 . . . . .. . . . 
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FIGURE 4.5. Lift coefficient on a sphere settling between parallel walls, as defined 
in Eq. (4.18) . This function is well fitted by the polynomial function (4.5). 
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as follows: 

xl (*) = -0.3125~- o.o996e + 14.34~5 

-116.3~7 + 403.7 ~9 - 518.0~11 • (4.5) 

4.5.2. Shear flow 

Following [19, 22), results are obtained for the following separated cases, 
denoted here as cases (K, n), where n = 2 to 5: 

• Case (K, 2) : 

Vm=V~a[x1 (*)+~:x;(*)] if c;=Ord(1). (4.6) 

• Case (K, 3) : 

v.rn __ VxUvrnaK
3
"" (hl) f Urn d Urn (a)2 ( ) i V >> 1 an V h << 1. 4.7 

• Case (K, 4) : 

• Case (K, 5) : 

if c; (~) 2 

= Ord(l). 

(4.8) 

U2 2 u 2 
v. rna (a) K"" 'f rn (a) rn=-v- h 51 Vh >>1. (4.9) 

Recall that a/h << 1 in all cases. Note that the orientation of the axis along 
the walls is irrelevant: indeed, the sign of the migration velocity Vrn depends 
only on the sign of Urn/Vx. 

The functions K3, Kg are represented in Figs. 4.6 and 4.7, respectively, 
and may be approximated by: 

x; (*) = -o.o353 + o.o973e + o.2s9se- 0.4363~6 , (4.10) 

xg (*) = -0.2845~ + o.41o4e + o.4165e- 2.3364e. (4.11) 

These results for Kg correspond to a freely rotating sphere, the most standard 
situation. Results for a non-rotating sphere (not shown here) were also found 
in [22]. . 
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FIGURE 4.6. Lift coefficient on a sphere in a shear flow, as defined in Eq. (4.7). 
This function is well fitted by the polynomial function (4.10). 
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FIGURE 4.7. Lift coefficient on a sphere in a shear flow, as defined in Eq. (4.9). 
This function is well fitted by the polynomial function ( 4.11) . 
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4.5.3. 2D Poiseuille flow 

Following [19, 22], results are obtained for the following separated cases, 
denoted here as cases (P, n), where n = 2 to 5: 

• Case (P, 2) : 

Vm = V~a [KI G)+~: Kf G)] if Um = Ord(1) ( 4.12) v . 

• Case (P, 3) : 

Vm = Vx~ma K{ G) 
• Case (P, 4) : 

if Um >> 1 and v 

Vm = Vx~ma [Kf G)+~: (*r Kf G)] 
if r; (*) 2 

= Ord(1). 

0.05 .-----.-----r--.-----.------.------,---r------r-----r-----, 

-0.05'------'-------'---'------'-----'-------'---'-----'------'------' 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

l/h 

(4.14) 

FIGURE 4.8. Lift coefficient on a sphere in Poiseuille flow , as defined in Eq. (4.13). 
This function is well fitted by the polynomial function (4.16). 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

l/h 
FIGURE 4.9. Contour plot of the normalized migration velocity Vm/(V;a/v) 
of a non-neutrally buoyant particle in Poiseuille flow, from formula (4.18) for 

a/h = 1/30. 

-1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

l/h 
FIG URE 4.10. Contour plot of the normalized migration velocity Vm/(Vx2 ajv) 
of a non-neutrally buoyant particle in Poiseuille flow, for ajh = 1/30; zoom of 
Fig.4.9. 
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• Case (P, 5) : 

Vm = U~a Gr Kf G) if u; Gr » 1. (4.15) 

Again, a/h << 1 in all cases, and the sign of the migration velocity Vm only 

depends on the sign of Um/Vx. 
The coefficients K1, Kf, Kf are represented in Figs. 4.5, 4.8, and 4.3, 

respectively. K1 was approximated by a polynomial in (4.5) and Kf, Kf 
may be approximated as follows: 

1.15 ~ (0.5 + ~) (0.5 - ~) 

X [1- 1.681 (0.5 + ~) (0.5- ~)), (4.16) 

19.85 ~(0.31 - ~)(0 .31 + ~) = 1.91 ~ - 19.85 ~3 . ( 4.17) 

These results for K f correspond to a freely rotating sphere, the most stan­

dard situation. Results for a non-rotating sphere (not shown here) were also 

found in [22]. 
There is no exact solution for intermediate cases and we propose here the 

following semi-empirical formula which we assume to be valid in all cases: 

( 4.18) 

The complicated variation of the normalized migration velocity Vm/(Vx2ajv) 

with the relative lateral position l/h and ratio Um/Vx of the maximum 
Poiseuille flow velocity Urn to the sphere velocity Vx is represented as a con­

tour plot in Figs. 4.9 and 4.10. The example case a/ h = 1/30 is considered 
in these figures. 

4.6. Equilibrium positions 

From the zeros and sign of the migration velocity, various stable equilib­

rium positions may be derived. These equilibrium positions are sketched in 

Fig. 4.11. We include for completeness both the shear flow and Poiseuille flow 

results, for a non-neutrally buoyant sphere as well as for a neutrally buoy­

ant one. Obviously, some cases are symmetric, e.g. a sphere heavier than the 
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T 

Sphere heavier than fluid 

Sphere lighter than fluid 

Neutrally buoyant sphere 

FIGURE 4.11. Schematic representation of the final stable equilibrium positions 
of a solid spherical particle in a shear flow and in the Poiseuille flow. The circle 
representing the particle is enlarged for easier reading, but note that this theory 
assumes that the particle is small compared with the distance between walls. The 
particle touching the wall is a sketch meaning a final position near the wall (the 
details of this position are not treated by the present theory). 

63 

g 

g 

fluid in a downward flow and a sphere lighter than the fluid in an upward 
flow. Moreover for a shear flow, attaching the frame of reference to the moving 
wall gives the alternative equilibrium position. For a neutrally buoyant freely 
rotating sphere in Poiseuille flow, the stable equilibrium position are at: 

l/h = 0.19, 0.81. 

Actually, for Um/V > 0, the behaviour is more complicated than sketched 
in Fig. 4.11. Moreover, for a nearly neutrally buoyant sphere in Poiseuille flow, 
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the stable equilibrium positions are very sensitive to the ratio of densities of 
the particle and fluid. 

Considering the Poiseuille flow, it is observed in Fig. 4.9 that the migra­

tion velocity is zero in a large portion of the canal when Um/V is small 
compared with 50, but the zoomed Fig. 4.10 shows that this happens for 

Um/V ~ 2. Then for Um/V > 2, there are two equilibrium positions, for 
l/h ~ 0.1 to 0.15 and for l/h ~ 0.85 to 0.9. For -70 < Um/V < 2 (the 

approximated lower bound depending on a/l) there is a central equilibrium 

position. At Um/V ~ -70 there is a bifurcation and for Um/V < -70 there 
are again two stable equilibrium positions but at about mid-distance be­

tween the canal centreline and the walls. For !Um/VI ---+ oo, the Ho & Leal 
equilibrium positions should be recovered, but it is seen that even a small 

non-buoyancy may have an important influence. 

These various equilibrium positions have not been fully exploited in sep­

aration techniques and there is obviously a vast field of applications. 

4. 7. Lift on a sphere in a shear flow near a wall or in contact 
with a wall 

4. 7 .1. Method of solution 

When a sphere is near a wall, the preceding solutions based on the method 
of reflexions fail. More precise results have to be used to calculate the hydro­

dynamic interactions between the sphere and the wall. There are methods 
using special coordinates to solve such Stokes flow problems: the method of 
bipolar coordinates (when the sphere is separated from the wall) and the 

method of tangent sphere coordinates (when the sphere is in contact with 
the wall). These methods in combination with the theorem of reciprocity of 

Sec. 4.2 make it possible to calculate the lift force on a sphere near a wall or 
touching a wall. 

The problem of a sphere in a shear flow near a wall was solved in this way 
by Cherukat & McLaughlin [28]. They used the results calculated in bipolar 
coordinates by Lin, Lee & Sather [40]. The notation is shown in Fig. 4.12. 

This is a regular perturbation problem. The lift force is again from the 
theorem of reciprocity ( 4.1) given by: 

Fz =-Rep J f·wdV 

v, 
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FIGURE 4.12. 

where 

f = vo · V vo + vo · Vuoo + ( Uoo - v pO) · V vo 

and VJ denotes the entire fluid volume. The calculation of the integral has 
to be performed numerically and the sign of Fz is a priori not obvious. 

The problem of the sphere in contact with the wall was solved by Leighton 
& Acrivos [41] for a fixed sphere and by Krishnan & Leighton [42] for a moving 
sphere. These authors used the solution for the order 0 Stokes flow calculated 
in tangent sphere coordinates by O'Neill [43]. 

4 .7.2. Results for the lift force on a sphere near a wall 

Results of the integration show that, if the sphere is lagging the ambient 

shear flow, the lift force is pointing away from the wall, towards the direction 
of higher ambient flow velocity. Numerical values are shown in Fig. 4.13 for 
the dimensional lift force F; normalized by aJ.LRe8 V8 , where V8 = Vx - K,l is a 
"slip" velocity (Vx being the x component of V and K,l being the x component 
of U 00 taken at the sphere centre) and Res = V8 ajv is the Reynolds num­
ber based on this velocity. This slip velocity may be due to several reasons: 
first, there may be an external force moving the sphere along the wall, e.g. 
the gravity force; then, even a neutrally buoyant sphere does not move at 
the same velocity as the fluid near a wall, because of hydrodynamic interac­
tions [7, 8]. Cox & Hsu's [39] solution of the singular perturbation problem 
for sphere far from a wall is shown for comparison in Fig. 4.13. As for the 
sphere close to the wall, note that the solution calculated in [28] cannot be 
applied for small gaps, l /a- 1 < 0.1. We connected this solution to that for a 
sphere touching a wall[42] by a spline for practical use. But this approximate 
curve should not hide the fact that a precise determination of the lift force 
is lacking for small gaps. 
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FIGURE 4.13. Results for the normalized lift force on a sphere near a wall: (-) 
Cherukat & Me Laughlin [28]; ( o) Krishnan & Leighton [42]; (- ·-) spline joining 
both solutions;(···) Cox & Hsu's [39] singular perturbation problem for a sphere 
far from a wall. 

4.7.3. How to lift a particle sitting on a wall? 

Leighton & Acrivos [41) result for the lift force exerted on a sphere at rest 
on a wall is, in dimensional form: 

Consider, e.g., a small solid particle sitting on a wall. Is it possible to entrain 
this particle by blowing air so that there a lift force pushing the particle away 

from the wall? As an example, a boundary layer in air at 10 m/s after 1 m 

has a thickness of the order of a millimetre and the shear rate is then of the 
order of 104s-1 . Consider for instance a ratio of particle to gas density of 

Pp/ p9 = 103 and a particle radius of a = 100 J.Lm. Then we calculate that 
the lift force if 2.2 times the weight of the particle. That is, the particle 
is entrained. Note, however, that such a shear rate is large and usually for 

such high velocities, there are other effects connected with turbulent vortices 
entering the viscous sublayer. 
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On the other hand, for liquids the lift forces are much more efficient, 
being proportional to the fluid density p. There are various applications: in 

separation techniques, etc. 

4.8. Conclusions 

The Segre & Siberberg experiment motivated the elaborated singular per­

turbation problems solved by Rubinow & Keller (Chapter 2) and Saffman 

(Chapter 3), but the proper mechanism was eventually obtained from a reg­
ular perturbation problem solved by Ho & Leal (Sec. 4.1). Nevertheless the 

singular perturbation problems presented in the preceding Chapters were 
useful for the purpose of modelling the experiment, since they were later ex­

tended to model situations in which the canal Reynolds number is not small, 

thereby dropping Ho & Leal assumption; this is the topic of Chapter 5. 
Apart from the case of neutrally buoyant particles which were used in 

the Segre & Siberberg experiment, various interesting situations arise when 

the particles are non-neutrally buoyant. Then, the migration velocity may 

vary in a non trivial way with the flow parameters. These results may have 

various applications in separation techniques and elsewhere. 
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Chapter 5 

Singular perturbation solutions 
for a sphere and walls 

In this Chapter, walls are now in the Saffman or Oseen region. A 
sketch of the various length scales is presented in Fig. 5.1. The pertur­
bation problems for low Reynolds number are then singular. Appro­
priate equations in stretched quantities should apply in the Saffman 
or Oseen region. Boundary conditions on walls should then be applied 
to the solution of these equations. 

a/~ 

FIGURE 5.1. 
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5.1. A non-neutrally buoyant sphere between walls in a 
fluid at rest 

5.1.1. Problem and assumptions 

Vasseur & Cox [44) considered the problem of a non­
neutrally buoyant spherical particle moving due to 
gravity in a fluid at rest between vertical parallel walls. 
The relevant Reynolds number is based on the particle 
velocity V and radius a; this number is assumed to be 
small compared with unity: 

Va 
Re=-<<1. 

lJ 

An expansion in Re is performed under additional assumptions: 

a/h << 1, with: ajl << 1, aj(h -l) << 1, 

that is they consider a small sphere not close to walls. On the other hand, 
the Reynolds number based on the particle velocity and distance between 
the particle and the nearest wall, Vljv, may be of the order of unity. This is 
the main difference as compared with all theories presented in the preceding 
Chapters. 

5.1.2. Oseen equation and boundary conditions 

The problem is singular and Oseen equations have to be constructed like 

in Chapter 2. The matching with the sphere which appears as a point in the 
Oseen region is performed by introducing a point force or Stokeslet as the 
Dirac delta function, like in Saffman's approach, Chapter 3: 

0, 

on walls 

The difference as compared with the Saffman problem is that now there is a 
boundary condition on the walls to be applied to the solution of the equation. 
For this reason, instead of using a 3 dimensional Fourier transform to solve 
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5.1. NON-NEUTRALLY BUOYANT SPHERE BETWEEN WALLS IN A FLUID AT REST 71 

the equation, a 2 dimensional Fourier transform is used. That is, Z is kept so 
as to apply the boundary conditions on the walls on which Z is prescribed: 

00 00 

U1 (kt. k2, Z) = 
4
: 2 J J Ut (X, Y, Z)e-i(k1 X+k2Y) dX dY. (5.1) 

-00-00 

Applying this Fourier transform to the Oseen like equation leads, after some 
manipulation, to coupled equations for the Fourier transform of the velocity 
along z' wl and for the Fourier transform of the pressure, Pl. Note that af­
ter applying the 2 dimensional Fourier transform to the Oseen like equation, 
the transform of the three dimensional delta Dirac function gives a remain­
ing <5(Z). To account for that term, the equation is solved using appropriate 
jump conditions for the pressure, velocity and its derivatives. 

5.1.3. Matching and migration velocity 

The part U s 1 of U 1 obtained from the point singularity matches with 
the Stokeslet in Stokes flow (it was made for that purpose). Matching the 
remaining (regular) part of U 1 gives a uniform flow at infinity for the order 1 
Stokes flow (like in the Saffman case, Chapter 3). This is the migration 
velocity: 

lim (U1- Us1) 
R-+0 

N!!!o](Ut- Ust)ei(k1 X+k2 Y) dk1 dk2 

j(Ut- Ust)dkt dk2. (5.2) 

5.1.4. Results for the migration velocity of a sphere near one 

wall 

Vasseur & Cox [44] recovered the result of [39] for the migration velocity 
of a sphere settling close to a vertical wall, which was obtained as the solution 
of a regular perturbation problem when the wall is in the Stokes region: 

Vm 3 
= 

VRe 32 

Moreover, their result provides the following expansion for small Vljv: 

(5.3) 
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They also obtained an expansion for large Vl/v (obviously not too large so 
that the flow field is still laminar), that is for large distances l from the wall: 

Vm 3 [( v )2 ( v )5/2 l 
V Re = 8 V l + 2'21901 V l + .. · · (5.4) 

Results for intermediate values of the Reynolds number Vljv, that is for 
intermediate distances l from the wall, are shown in Fig. 5.2 . 

..Ym_ 
VRe 

FIGURE 5.2. Values of the normalized migration velocity Vm/(V Re) versus Vljv 
for a sphere settling along one wall; solid line: calculation of [44J; thin horizontal 
dotted straight line: asymptotic value 3/ 32; dotted line: formula (5.3); dash-dotted 
line: formula (5.4). 

5.1.5. Results for the migration velocity of a sphere moving be­
tween two walls 

Here again, Vasseur & Cox [44) recovered the result of [39) for a sphere 
near one of the walls. Results for two walls effects are shown in Fig. 5.3. It is 
found that the sphere migrates towards the symmetry plane. 
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that is 

The most general case considered here is when A is of the order of unity. 

5.2.2. Equation in Saffman region 

Including the point force for matching we write: 

( 
Re -) 8U1 -
~+Z ---+Wtex 

vReK 8X 

All terms are included like in equation (3. 7a) treated by McLaughlin (26] 
However, here a condition applies on the wall: 

z = o: u1 = o. 

The solution of this system uses 2-D Fourier transform (on X, Y) like in (5.1). 
The migration velocity is also found by the same procedure, see Eq. (5.2). 

5.2.3. Results for the migration velocity of a sphere in a shear 

flow near a wall 

Results for the reduced migration velocity 

Vm 

where v; = -Vs, are presented in term of 1/E, the ratio of the Saffman 
distance to the Oseen distance and of 1/ A, the ratio of the Saffman distance 

to the distance to the wall as a three-dimensional surface in Fig. 5.4 and as 

a contour plot in Fig. 5.5. 
From these figures we conclude that: 

• For 1/E = 1/ A= 0, the Saffman result: 

Vm 
'( )1/2 = 0.343 V8 ReK 

is recovered (since without wall v; can be identified with V'). 

• For 1/ A = 0 and any E, the quantity plotted here being 3/(2n2)J, 
results for J from Eq. (3.10) may be used. 
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that is 

A=l/~. 

The most general case considered here is when A is of the order of unity. 

5.2.2. Equation in Saffman region 

Including the point force for matching we write: 

( 
Re -) au1 -
rrs-::- + z --- + wl ex 

vRel'i. ax 

All terms are included like in equation (3. 7a) treated by McLaughlin [26] 
However, here a condition applies on the wall: 

z = o: u1 = o. 

The solution of this system uses 2-D Fourier transform (on X, Y) like in (5.1). 
The migration velocity is also found by the same procedure, see Eq. (5.2). 

5.2.3. Results for the migration velocity of a sphere in a shear 
flow near a wall 

Results for the reduced migration velocity 

Vm 

where v; = - V8 , are presented in term of 1/ E, the ratio of the Saffman 
distance to the Oseen distance and of 1/ A, the ratio of the Saffman distance 

to the distance to the wall as a three-dimensional surface in Fig. 5.4 and as 
a contour plot in Fig. 5.5. 

From these figures we conclude that: 

• For 1/c = 1/ A = 0, the Saffman result: 

is recovered (since without wall v; can be identified with V'). 

• For 1/ A = 0 and any E, the quantity plotted here being 3/(27r2 )J, 
results for J from Eq. (3.10) may be used. 
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5.2. A SPHERE MOVING IN A SHEAR FLOW ALONG A WALL 

1/A -5 1/t: 

FIGURE 5.4. Normalized migration velocity Vm/[V;(Re/<.) 112
] of a sphere moving 

in a shear flow along a wall versus the ratio of the Saffman distance to the Oseen 
distance, 1/c, and the ratio of the Saffman distance to the distance to the wall , 
1/ .\. Plotted from the results displayed in the tables of [27] . 
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1/t: 

FIGURE 5.5. Contour plot of the reduced migration velocity Vm/[V; (Re/<.) 112
] of a 

sphere moving in a shear flow along a wall versus the ratio of the Saffman distance 
to the Oseen distance, 1/c, and the ratio of the Saffman distance to the distance 
to the wall , 1/ .\. Plotted from the results of [27J, using a 200 x 200 mesh and a 
linear interpolation between the calculation points displayed in the tables of [27J. 

75 
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• For A << 1, Cox & Hsu (39) derived an expansion which may be written 
as: 

Y'm 3 _1 11 
vr;(ReK)112 = 32 € + 64 A. 

This expansion is recovered here; indeed, it is clear from Fig. 5.4 that 

for large 1/ A, the surface becomes tangent to a plane. 

• E < 0 means here that Y's < 0, that is the sphere velocity is 
smaller than the unperturbed shear flow velocity; note that for given 

Y'm/[Y';(ReK)112], the migration velocity Y'm changes sign with Y'8 • 

• For E << 1, shear flow effects are small and the results of Sec. 5.1 should 
be used. 

5.3. A neutrally buoyant sphere in 2D Poiseuille flow 

5.3.1. Problem and assumptions 

Schonberg & Hinch [24) reconsidered the modelling of the Segre & Silber­

berg experiment, taking into account the fact that the Reynolds number for 
the canal should not be small. 

h 

n 

~v 

The sphere being centered at the distance l from the wall, the local shear 
rate at the position of the sphere centre is: 

where 
l 

1'=4-8-. 
h 

(5.5) 

Let z* denote the coordinate normal to the walls and z = z* /a the dimen­

sionless one. A normalized local shear flow velocity may be defined as: 

. h a 
Wit Q = h,' 
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Thus, let the normalized perturbed velocity be o{y zex + u). 
The Reynolds number based on the local shear rate and the sphere radius 

is assumed to be small compared with unity. It may be written as: 

Note that the normalized local shear rate 1 that may be of the order of 
unity varies across the canal; thus, as already noted in Sec. 4.1, ReK, is not an 

appropriate small parameter to use. Instead, Schonberg & Hinch [24) make 

an expansion in the constant parameter Rep << 1. Note that this number 
may also be written as: 

where a<< 1, and 

R 
_ Umh 

ec- -­
v 

is the canal Reynolds number, which may be larger than unity (thus appro­
priate to Segre & Silberberg experiment). Note that Ho & Leal (see Sec. 4.1) 

also performed an expansion in Rep, but in Schonberg & Hinch [24) theory 
the distance between the sphere and the walls is always so large that the 
walls are in the Saffman region and the perturbation problem is singular. 

5.3.2. Order zero Stokes solution 

The order zero Stokes solution for the flow field around a freely moving 
and freely rotating sphere is: 

uo = --~- + 0 - . 5 xzr ( 1 ) 
2 r 5 r4 

This is the flow due to the symmetric moment of a Stokeslet, or "Stresslet". 

5.3.3. Saffman like equations and solution 

In a Saffman region, the variable r is stretc~ed as: R = ~ r. For 
simplicity of the notation, we use the same tilde ( ) notation as in Chapter 3, 

but care should be taken that the stretched variable defined here is different. 

On the large scale where R = IRI is of the order of unity, the Stresslet 
appears like the flow due to a point singularity, that may be introduced into 

the momentum equation as the derivative of a delta function. By doing that, 
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the matching condition between the order 0 Stokes equations and the order 1 
Saffman like equations is introduced in these equations: 

0, (5.6a) 

( 'Y Z- 4Re;112 Z2
) ~~1 + W1ex ( 'Y- 8Re;112 Z) (5.6b) 

-v P1 + v2u1 - 10
7r"' [!: o a_]8(ii). 

3 ' az' 'ax 
Since the walls are in the Saffman region, the following boundary conditions 
apply: 

The system is solved by using a 2 dimensional Fourier transform, Eq. (5.1), 

like was done by Vasseur & Cox. Then coupled equations a~ obtained 

for the transformed v~locity in the direction normal to walls, W 1 and the 

transformed pressure P1. After transforming the momentum equation, from 

[a~, 0, a~] 8(R) there is a remaining a~8(Z). Thus, the transformed equa-

tion is solved using jump conditions for the pressure and for the Z-derivative 
of the velocity. 

5.3.4. Matching and migration velocity 

The part iJ ss of iJ 1 obtained from the point singularity matches with the 
Stresslet in Stokes flow. Indeed, the preceding construction of the Saffman 
like momentum equation (5.6b) was made for that purpose. 

The remaining (regular) part of U 1 gives after matching a uniform flow at 
infinity for the order 1 Stokes flow (like in Saffman [18]). This is the migration 
velocity: 

!im (Ut - Uss) 
R--+0 

!iln jcu1- Uss)ei(klx+k2f) dk1 dk2 
R--+0 

= j (fh- Dss) dkt dk2. 

5.3.5. Results for the migration velocity of a neutrally buoyant 
sphere in a 2D Poiseuille flow 

The results for the normalized migration velocity are displayed in Fig. 5.6. 

The plotted quantity is also the coefficient Kf defined in the expression (4.15) 
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FIGURE 5.6. Results for the normalized migration velocity Vm/(a Rep Urn) versus 
the normalized distance to the wall l / h, for various values of the canal Reynolds 
number Rec, after [24j. 

of Vm (or in (4.3), ignoring terms of the order of a/lin the friction factor Tz), 
so that the results can be compared to the ones of Fig. 4.3. It is remarkable 
that for a canal Reynolds number Rec larger than unity and up to 15, the 

results obtained in [24] are close to the ones obtained by Vasseur & Cox [22] 
for Rec << 1. For increasing canal Reynolds number, the equilibrium position 

moves towards the wall, as observed by Segre & Silberberg. However, in 
their experiment, the particle to wall distance is not large compared with the 
sphere radius, as assumed in this theory. 

5.4. A non-neutrally buoyant sphere in 2D Poiseuille flow 

The more general problem of a non-neutrally buoyant sphere in a two­

dimensional Poiseuille flow, when the canal Reynolds number is not small, 

was considered by Hoggs [45] and Asmolov [25]. Here we present the more 

general result of [25]. In his case, the canal Reynolds number may have values 

up to 3000. Of course, it is assumed that the flow field stays laminar. 
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The same local shear rate "" appears like in Eq. (5.5) 
and it is assumed here that: 

V&,. = f?- ~ V&; = vu~:2 
Va 

Re=-<<1. 
v 

Asmolov [25] performs two types of expansions: one for 

small Re"', appropriate to a given sphere position, and 

one for small Rep like in [24], see Sec. 5.3. We present 
here the expansion in Rep. The calculation uses v; = - V8 , where V8 = 
Vx- U00 (l/h) is the slip velocity, and the normalized velocity v = ~: VRec. 
Note that for v; > 0 the particle is lagging the ambient flow field, whereas 

for v; < 0, it is ahead of it. 

5.4.1. Saffman type equation 

Again here, the stretched variable is : R = Re~/2 r. The term of the order 
of Re~/2 in the expansion satisfies a Saffman like equation: 

- 2 - - - O"U 1 duoo -
\7 U1- VP1- u ---- ---W1e 

oo ax dZ x 

0, 

u1 = 0 on walls Z = - Re112 !._ 
c h' 

Z = Re112 (1 - !._) 
c h ' 

X---+ oo. 

Here, W1 denotes the Z component of iJ 1 and 

is the flow field far from sphere, in the frame of sphere centre. The equation 

contains a delta function since the sphere is non-neutrally buoyant and the 

sphere then appears as a point force in the Saffman region, like in Saffman's 

original calculation. 
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5.4.2. Equation for the Fourier transformed velocity normal to 
walls 

The system is solved using again a 2D Fourier transform in (X, Y), 
Eq. (5.1). Combini~ then the transformed equations, it is shown that the 

Fourier transform W 1 of W1 satisfies: 

----

_2_ik _v_ d8(Z) 
211" 1 Re~/2 dZ ' 

--::- dW 1 wl = --­
dZ 

= 0 on walls, 

where X = d~2 - kr- k~ is the Fourier transform of the Laplacian in stretched 
coordinates. There are numerical difficulties to integrate for Rec > 100 since 

linearly independent solutions then become of different orders of magnitude. 

The technique used in [25] then consists in constructing a new set of inde­
pendent solutions by an orthonormalization procedure. 

5.4.3. Results for the migration velocity or the lift force on a 
non-neutrally buoyant sphere in 2D Poiseuille flow 

The order 1 dimensionless migration velocity is obtained as in the preced­
ing theories from matching with the regular part of the Saffman flow, that is 
subtracting out the Stokeslet part: 

Vm - -
112 = lim (WI- Ws). 

Rep Um R--+0 

Asmolov normalizes the migration velocity by the slip velocity: 

and represents the normalized lift force: 

R 1/2V' ep s 

611" Vm 

R 112v, ep s 

versus l/h for various values of Rec. Values for a non-neutrally buoyant 

sphere, for v = 8, -8, are displayed in Fig. 5.7. It is observed that for v = 8 
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0.2 

4 

0.1 

611Vm 
Re~12 v~ 

0 

l 

-0.1 
li 

FIGURE 5.7. Values of the normalized lift force 61l'Vm/[Re~12 V:J on a non­
neutrally buoyant particle versus the dimensionless distance to one wall, ljh, 
for Rec = 100,300, 1000,3000 (curves 1 to 4), for v = 8 (left) and v = -8 (right). 
After [25J. 

there may be either 1 (curves 1, 2) or 3 (curves 3,4) equilibrium positions; 
whereas for v = -8 there may be either 2 (curves 1, 2, 3) or 4 (curve 4) 
equilibrium positions. 

5.4.4. Equilibrium positions of a neutrally buoyant sphere in 2D 
Poiseuille flow 

Extending the results of (24], Asmolov [25) obtains more values for the 
migration velocity of a neutrally buoyant sphere. His results, expressed as a 
normalized lift force 

F* z 

are presented in Fig. 5.8. The represented quantity is also the coefficient Kf 
from the definition (4.3). Stable equilibrium positions are found from the 
zeros and sign of the lift force. From this figure we conclude that for a higher 
Reynolds number, the equilibrium position is closer to the wall. However, 
there is still no satisfactory comparison with Segre & Silberberg experiment 
for large Rec. The reasons may be summarized as follows: 

• Segre & Silberberg use a cylindrical tube. 

• The particle Reynolds number Re is not so small in the experiments 
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F* 
p(Um/h)2a4 

0.1 0.2 

-10 

0.3 

l 
h 

0.4 0.5 

FIGURE 5.8. Values of the normalized lift force F; /[p(Um/h) 2 a4
] on a neu­

trally buoyant particle versus the dimensionless distance to one wall, lfh. Al­
ternatively, this represents 67rVm/[(a/h)RevUm] = 61rK[. Solid lines 1 to 5: for 
Rec = 15, 100, 300, 1000,3000 [25]. Dashed-dotted line: for Rec = 15 [24]. Dotted 
line: for Rec « 1 [22]. 

when Rec becomes large; indeed the corresponding values are: 

Re Rec 
0.34 116 

0.68 232 
1.00 346 

83 

• The lift force is normalized by a slip velocity; but this quantity is not 
easily measured. 

• Moreover, the slip also depends on the hydrodynamic interactions with 
walls. 

5.5. Conclusions 

When walls are in the Oseen or Saffman region, singular perturbation 
problems arise. Then, even though the Reynolds numbers relative to the 
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particle are small compared with unity, the Reynolds number based on the 

particle to wall distance or on the canal width is of the order of unity; it may 

even be larger than unity (but not too large, since the flow is assumed to be 
laminar). 

Various solutions have been presented, for a particle falling in a fluid at 

rest between two vertical plane walls (Sec. 5.1) , for a sphere moving in a 

shear flow along a wall (Sec. 5.2), for a neutrally buoyant (Sec. 5.3) and non­

neutrally buoyant (Sec . 5.4) sphere in two-dimensional Poiseuille flow. Note 

that the quoted articles contain more results than presented in this Chapter. 
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Chapter 6 

Conclusion 

6.1. The quest for the modelling of Segre & Silberberg ex­
periment 

The cornerstone experiment of Segre & Silberberg has motivated the so­
lutions of perturbation problems at low Reynolds number for more than 
40 years! 

The mechanism responsible for particle migration across streamlines in a 
Poiseuille flow is now clear: it is a combination of fluid inertia appearing in 
the second order terms of the expansion in small Reynolds number and of 
wall effects which appear already in the first order (only viscous) terms. 

The various perturbation problems have been separated in singular and 
regular ones (Sec. 1.5.4), depending on how the distance between the sphere 

centre and the walls compares with the Oseen and Saffman distances. 
The singular perturbation problem solved by Rubinow & Keller (21] and 

presented in Chapter 2 is of interest from the point of view of the calculation 
technique but following papers are more interesting in term of application of 

the results. 
The pioneer paper of Saffman [18) (presented in detail in Chapter 3) 

for the singular perturbation problem of a sphere in an infinite shear flow 
has been a guide for many following theoreti~al papers. In particular, all 
following papers apply his matching technique. A large number of papers 
oriented towards applicationi quote Saffman force as a synonym of lift force: 
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care must be taken that the conditions of application prescribed by Saffman 
are not always taken into account by these papers. In this point of view of 
applications, results of more recent papers quoted in this review have not 
been fully exploited. 

Cox & Brenner [19) have shown that a number of important problems 
involving walls are in fact regular. Various problems of this kind have been 
exposed in Chapter 4. Following this line, Ho & Leal [20) have found the 
basic mechanism responsible for the migration of neutrally buoyant particles 
observed in the Segre & Silberberg experiment. Various regular perturba­
tion problems involving non-neutrally buoyant particles and walls have been 
solved later. 

When the Reynolds number based on the length scale of walls is of the 
order of unity, the perturbation problem is singular and more results for the 
migration velocity have been found (Cf. Chapter 5), approaching the actual 
conditions of the Segre & Silberberg experiment. These results may also be 
of interest in separation techniques; e.g. results by McLaughlin (Sec. 5.2), 
Asmolov (Sec. 5.4), would deserve various applications. 

6.2. What is next? 

Yet, Segre & Silberberg experimental results are not fully interpreted! 
A number of problems remain: 

• To our knowledge, the lift force in a cylindrical geometry has only 
be studied by Hasimoto and coworkers (23, 46) in the case of a low 
Reynolds number for the pipe flow. But if this Reynolds number is not 
small compared with unity, the perturbation problem for low particle 
Reynolds number becomes singular (like for the two-dimensional canal 
flows presented here); this problem is yet unsolved. 

• Effects of a close wall on the motion of a particle are important in 
particular for the application to separation techniques. More precise 
estimates of the lift force are needed in the near wall region because 
this is the region particles are departing from in the FFF separation 
technique. 

• Unsteady fluid flow effects may combine with fluid inertia when the 
particle-wall geometry varies with time. This is true in particular when 

the particle is in the near wall region. In this case, in the frame of ref-
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erence of the particle centre the flow field is not steady. Then unsteady 
effects have to be calculated explicitly. 

• Various problems concern the interactions between particles, which 
have not been presented here. Some results concern two spheres and a 

wall in a fluid at rest [44) . It is clear that more configurations have to 
be solved. 

• In particular, the effect of lift ·due to fluid inertia has to be com­
pared with the "shear-induced migration" [47), also called "hydrody­
namic diffusion" later, that is due to viscous interactions between 
spheres. Indeed, both effects may occur together, e.g. in separation 
techniques [14, 48). 

• The effect of fluid inertia on hydrodynamic interactions between non 
spherical particles could be considered as well. 

The present booklet was limited to solid particles. For deformable parti­
cles, the problem is different since they may migrate across streamlines even 
within the Stokes flow approximation [49). 
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Appendix A 

Singular perturbation problem 

and the method of matched 

asymptotic expansions 

A simple singular problem will be first presented on an example, 

Sec. A.l. The van Dyke and Kaplun matching principles will be re­

called in Sec. A.2. 

A.l. Friedrichs {1942) example 

A.l.l. A singular perturbation problem 

This example is taken from van Dyke's book [2]. Consider the following 

differential equation for f ( x): 

d2 f(x) df(x) 
E dx2 +~=a, 

f(O) = 0, 

!(1) = 1, 

(A.1) 

(A.2) 

(A.3) 

in which a is a constant and E is a small parameter: E << 1. If we let c --+ 0, 

the first term vanishes and we obtain a first order differential equation. Then 

we cannot apply both boundary conditions at the same time (except in the 
particular case a= 1). This is a singular perturbation problem. Such a prob­

lem appears when a differential equation or a partial differential equations 

changes type. Usually, it is associated with a problem in the application of 

boundary conditions. 
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A.1.2. Outer and inner limits 

In the present case, let use keep only the boundary condition (A.3) in x = 

1. Obviously, the region close to 0 should be treated in some particular way. 

To study this region in 1nore detail , we use an "inner variable" X defined by: 

x=cX, f(x) = F(X). (A.4) 

We call the "inner limit" the limit c ~ 0 when keeping X = Ord(l). With 
this inner limit, x ~ 0 with c. Note that the limit c ~ 0 was taken above by 

keeping implicitly x = Ord(l): this is the "outer limit". 

A.1.3. Inner solution 

In inner variable, the system (A.l) , (A.2), (A.3) becomes: 

d2 
F(X) dF(X) (A.S) 
dX2 + dX = aE, 

F(O) = 0, F(l/c) = 1. (A.6) 

Applying the inner limit, this system becomes: 

d2 F(X) dF(X) _ O 
dX 2 + dX - ' 

F(O) = 0, 

F(oo)=l. 

(A.7) 

(A.8) 

(A.9) 

At this stage, since we study the region close to X = 0, we just keep the 

boundary condition (A.8) and drop the boundary condition (A.9). The solu­
tion of this system, or "inner solution", is: 

(A.lO) 

where Cis a constant. 

A.1.4. Outer solution 

With the outer limit, and dropping the boundary condition (A.2), the 

system (A.l), (A.3) becomes: 

df(x) 
~=a, 

f(l) = 1. 

(A.ll) 

(A.12) 
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Its solution, that is the "outer solution", is: 

f ( x) = 1 - a + ax. (A.13) 

A.1.5. Matching 

We dropped the condition (A.2) at x = 0 for the outer solution and the 

condition (A.3) at x = 1 for the inner solution. Instead, we "match" these 

two solutions in the following way: 

1. with the outer variable x, the inner region X = Ord(1) appears to be 

at x = 0 when c --+ 0; 

2. with the inner variable X, the outer region x = Ord(1) appears to be 

at X = oo when c --+ 0. 

Then, van Dyke matching principle consists in prescribing that the solution 

should have the same value in these limit regions: 

j(O) = F(oo). (A.14) 

Applying it here, we find the constant: C = 1 - a. 

A.1.6. Compare the inner and outer solution with exact solution 

The interest of Friedrichs example is that the solution of the system ( A.1), 

(A.2), (A.3) can be calculated exactly with the result : 

1- e-x/e 
f ( x) = ( 1 - a) 11 + ax. 

1- e- e 
(A.15) 

This solution is plotted in Fig. A.1 together with the outer and inner solu­

tions , in the example case a = 0.4. It is observed that the exact solution is 

close to the outer solution near x = 1 and the to the inner solution near 

x = 0. On the other hand, both outer and inner solutions are rather far from 

the exact one for intermediate values of x. 

A.l. 7. Composite expansion 

For this reason, it is useful to obtain a better approximation to the solu­

tion by combining the outer and inner expansions into a "composite expan­

sion". Van Dyke proposes to construct it in the following way: 

fcomposite(x) = f(x) + F(X)- Ct (A.16) 

http://rcin.org.pl



92 A. SINGULAR PERTURBATION PROBLEM 

0.9 

0.8 
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0.6 

J(x) o.5 
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0.3 

0.1 - Exact solution 
- - Outer solution 
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OL_--~---L--~--~L---~--~---L~~====c=~ 

0 0.1 0.2 0.3 0.4 0.5 
X 

0.6 0.7 0.8 0.9 

FIGURE A.l. Friedrichs example for the example case a = 0.4: exact solution 
(solid line), outer solution (dashed line) and inner solution (dotted line). The 
composite expansion is practically superimposed onto the exact solution. 

where the constant Ct is the common value obtained by matching 

Ct = lim f(x) = lim F(X). 
x__.O X __.oo 

Here, Ct = 1- a. Values of the composite expansion fcomposite(x) are prac­
tically superimposed onto the exact solution in Fig. A.l. 

A.2. Other more elaborate matching principles 

In principle, the outer and inner expansion can be constructed further 

term by term. At each stage of the construction, a matching has to be applied. 

A.2.1. Van Dyke matching principle 

The most classical one is due to van Dyke [2): 

m terms inner expansion of the (n terms outer expansion) 

= n terms outer expansion of the (m terms inner expansion). 
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Note that this matching principle assumes a priori that the outer expansion 
can be expressed in the region where the inner expansion is valid, and vice 

versa. Obviously, this is not always true. 

A.2.2. Kaplun matching principle 

The outer region being where x = Ord(l) and the inner region where 

x = Ord(a(c)), in which a(c) is a function which vanishes with E, it may 

happen that both inner and outer expansion are valid simultaneously only 
in a limited domain of x such that: 

Ord(a(c)) < Ord(x) < Ord(l). 

Kaplun's [17) matching principle consist in rewriting the outer and inner 
expansions in an intermediate variable X appropriate to the intermediate 

domain, expanding again for X = Ord(l) and prescribing that both expan­

sions should then be identical. 
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