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Preface 

This book is dedicated to the memory of Professor J6zef Joachim Telega 

(1943- 2005) who carried the burden of his illness with exemplary bravery. 

Throughout his life, he devoted his outstanding intellectual capacity with 

enormous energy and persbtence to the mathematical treatment of problems 

of mechanics, in particular of biomechanics. 

This text is meant to serve as an introduction and overview for students 

with an interest in biomechanics. Its purpose is to demonstrate the wide 

range of mathematical principles and procedures which are necessary to cover 

the enormously large field of biomechanics which extends from molecular to 

macroscopic dimensions. Mathematical rigor and completeness of theories 

including the derivation of formulas are thereby not in the foreground, rather, 

it is attempted to present the material in a concise, easy to follow fashion 

and provide the student with a working knowledge. It is however assumed 

that the reader is familiar with the basic principles of analysis and linear 

algebra. 

Biomechanics, as an interdisciplinary field, has numerous connections and 

overlapping areas with mathematics and physics on the one hand, and with 

biology, physiology, pathophysiology as well as clinical medicine on the other. 

Even a partial treatment of the subject is hardly possible for one single 

author. Accordingly, this text contains selected material which covers basic 

theoretical principles of general validity as well as specific applications serving 

as illustrative examples without going into details. 

Peter F. Niederer 
Zurich, November 2005 

niederer@biomed.ee.ethz.ch 
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Chapter 1 

Introduction 

Rigid Bodies ¢:;, Continua 

The science of biornechanics is concerned with the quantitative analysis 

of the mechanical behavior of biological systems. The range of the systems of 

interest thereby extends from the molecular to the macroscopic level. In order 

to arrive at useful results and practical applications , the classical engineering 

methods are being applied, i.e. measurements performed on the real system 

or on a laboratory model, as well as mathematical analysis and modeling of 

a usually simplified system which is representative and exhibits all features 

of interest. 

Real bodies, solid or fluid (the latter liquid or gaseous), undergo defor­

mations when forces act on them. In case that the vectorial sum of all the 

external forces is different from zero, the center of mass of the body is fur­

thermore acceleratf'd, and, if the moment is not zero, there will be rotational 

accelerations. 

The first step in any mechanical analysis consists of outlining the system 

under consideration. This may then be composed of numerous solid of fluid 

bodies which interact with or are independent from one another. Under all 

circumstances, however , the system as a whole has a common center of mass 

which obeys Newton 's second law of motion ("principle of solidification"). 

Yet, the various components of a system may exhibit marked differences 

with respect to deformations and accelerations. Particularly important dif­

ferences exist between solids and fluids which have to be taken into account 

in their mathematical description. Since biological bodies always consist of 
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10 1. INTRODUCTION 

solid and fluid materials, the entire range of classical mechanics is needed for 

their modeling (we disregard aspects of quantum mechanics and relativity in 

this book, since masses, dimensions and velocities of interest here are outside 

the range where such theories are of importance). 
Under a given loading pattern, the size of the deformations of biological 

solids depends on the deformability of the material(s) the body consists of 

while accelerations are determined by masses and moments of inertia. To 
some extent, deformations and accelerations can be treated independently 

from one another. Fluids, in contrast to solid bodies, have no fixed reference 
configuration in that fluid particles can rearrange themselves to a large ex­

tent freely. A separation of deformation and displacement is physically not 

meaningful. 

In biomechanics, a distinction is often made between "soft" and "hard" 

tissues. Soft tissues include, e.g., muscle, skin, liver, brain, connective tissue, 

etc., whereas hard tissue is generally calcified (bone). Within the framework 
of a linearized Hookean approximation, the Young's modulus of soft and 

hard tissues differs by orders of magnitude in that typical soft tissues have 

a modulus of elasticity between some ten kPa and several hundred kPa, 

while in the case of hard tissue it is way up in the hundred MPa range. 

Accordingly, the deformations that the different tissues experience in daily life 

differ greatly. This is reflected consequently in the wide range of mathematical 

treatment strategies which are applied to analyze the phenomena of interest 

in biomechanics. 

Under physiological loading conditions, the skeleton deforms little, oth­
erwise, injury may occur. For many purposes, therefore, in particular for 

motion analysis, the human body may be approximated as a system of rigid 

bodies. A rigid body is an approximation which is useful whenever defor­
mations are sufficiently small in comparison with the displacements which 

the body under consideration executes and whenever they are rnoreover not 

of interest for the problem at hand. This approximation has an important 
mathematical consequence. A rigid body moving freely in space has six de­

grees of freedom which implies that the position and orientation in space can 

uniquely be determined by 6 generalized coordinates. Likewise, any system 

consisting of a finite number of rigid bodies has a finite number of degrees of 

freedom. Their exact number depends on the connectivity of the system as 
well as on eventual external constraints that have to be observed. The equa­

tions of motion that describe the system are ordinary differential equations, 
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1. INTRODUCTION 11 

mostly nonlinear, with singularities if collisions are modeled. The number 

of independent equations thereby corresponds to the number of degrees of 

freedom. 

As molecular and cellular aspects gain increasing importance in biome­

chanics, methods of molecular dynamics and modeling are more and more 

applied for the analysis of physiological problems. The procedures used in 

these approaches are largely based on rigid body dynamics, in fact, the me­

chanics of mass points are often applied. Thanks to the enormous increase in 

computational power, e.g., the interaction and functional behavior of large 

biomolecules can be studied. A great number of simultaneous equations has 

often to be treated thereby. 

The concept of a continuum implies in turn that any part of the body, 

regardless how small it may be, still has an infinite number of degrees of 

freedom (the atomistic nature of any substance is disregarded). Whenever 

deformations of a solid body are of interest or in the case of fluid flow, an 

analysis based on continuurn mechanics is required since any kind of distor­

tion, solid or fluid is continuous in nature. Local noncontinuities (disruptions) 

or non differentiable regions in deformation or flow fields (e.g., shock waves) 

may nevertheless occur. The equations to be solved are partial differential 

equations. 

Physiological processes in the human body take generally place within 

a relatively small temperature interval around 37.5°C. For many purposes, 

therefore, isothermal conditions can be assumed and thermodynamics need 

not be taken into account. Yet, diffusive processes including osmosis play an 

important role in biology (also in biomechanics) such that statistical mechan­

ics or certain aspects of thermodynamics have nevertheless to be considered 

if such processes are to be understood. Also energy balances associated with 

physiologic processes from a molecular to a macroscopic level are subjected 

to the laws of thermodynamics. 

Systems investigated in biomechanics (organs, cells, etc.) are character­

ized in general by an irregular geometry and complex nonlinear mechanical 

properties. An analysis based on analytic solutions of differential equations 

is mostly not possible; computational procedures are therefore of primary 

importance. Nevertheless, simplified models which allow for closed form so­

lutions are often helpful in order to obtain insight into the general properties 

of a system; in particular, a sensitivity analysis with respect to the influence 

of system parameters can readily be made. In contrast, a numerical solution 
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12 1. INTRODUCTION 

always represents a particular case and does not necessarily reflect a basic 

behavior. In order to derive general properties, numerous calculations and 

a time consuming procedure are often necessary. 
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Chapter 2 

Rigid Body Dynamics 

2 .1. Basic Kinematics 

Rigid body approximations have various applications in biornechanics, in 

particular for human or animal motion analysis, for molecular modeling or 

for a simplified preliminary investigation of an otherwise complicated process 

in general. In most cases, systems of rigid bodies are considered which are 

connected in joints (e.g., a model for the human body) or have interactions 

through external forces (e.g., molecules). 

An unrestrained rigid body has 6 degrees of freedom in space which are 

parameterized by 6 quantities (generalized position coordinates). The par­

ticular parameterization of use is determined according to the problem to be 

solved; e.g., 3 linear Cartesian coordinates x 1, x2, X3 denoting the location 

of the center of mass r = x1 e1 + x2e2 + x3e3 in a reference system with or­

thogonal unit vectors (e1 , e2, e3), and 3 angles (specified later) l) are chosen. 

In the following, we will use for brevity the matrix notation 

r = [:~] 
X3 

to denote a vectorial quantity (although, mathematically correct, vectors and 

!)Throughout this book, we restrict ourselves to rectangular coordinate systems, such 

as Cartesian, cylindrical or spherical systems. Scalar quantities are denoted with italics, 
vectors with lowercase bold letters and tensors of higher rank with bold uppercase letters. 
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14 2. RIGID BODY DYNAMICS 

their components in a coordinate system have to be clearly distinguished and 

r = [::] [e) 
X3 

would have to be written u~ing the base vectors, abbreviated here symboli­

cally by [e)). 

As such, the body is characterized by its position and orientation in space 

with respect to an inertial reference system. The inertial properties, to be 

used later, are furthermore given by the mass m and the moment of inertia 

tensor I. The shape or outer contour of the body has to be considered when 

collision problems are to be solved, whereas the interior structure is generally 

not of importance. If the number of degrees of freedom is reduced due to 

constraints, the number of generalized coordinates is reduced accordingly. 

Besides an inertial reference, it is often useful to introduce other reference 

systems, e.g., a body-fixed system, because, as the body executes some mo­

tion in space, the components of the moment of inertia tensor are constant 

in time with respect to such a system. Its location and ~patial orientation 

change with time however, and they have to be related to the inertial refer­

ence system, ~ince the equations of motion have to be formulated in inertial 

coordinates (each reference ~ystem is associated with a coordinate system 

where a complete ~et of generalized coordinates is defined; in the follow­

ing, Cartesian coordinates are assumed). Accordingly, we have to establish 

transformations between coordinate systems which may depend on time. 

Two coordinate systems can always be made to coincide by a translation 

and a rigid rotation in that, first, the two origins are brought together by 

a translation; second, a sequence of rotations is made such that the axes (or 

direction of base vectors) coincide. While the translation is given by a spatial 

vector , the rotation is de~cribed by a matrix since the relation between the 

coordinates can be expre~sed as a linear mapping. In order to investigate the 

properties of this matrix, we make use of the fact that a given vector , 

C= [~:]' 
has the same length lei = ~when it is decomposed in another coor­

dinate system (inertial or arbitrarily moving in space). The scalar product, 
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2.1. BASIC KINEMATICS 15 

( c · c), is thereby defined as the matrix product 

Scalar products are indicated by a dot and the superscript T denotes a trans­
position 2). 

The components of the vector c, written in two different coordinate sys­

tems (Fig. 2.1), 

3 3' 

2' 

2 

FIGURE 2.1. Vector c decomposed in two different coordinate systems. For clarity, 

the two coincident origins, 0 and 0', respectively, are displaced. 

and 

respectively, are related by a linear mapping 

(2.1) 

2
) Although covariant and contravariant components are the same for rectangular coor­

dinate systems, it is useful to distinguish between column and row vectors such that the 

rules of matrix multiplication for scalar and vector products can be applied. 

http://rcin.org.pl



16 2. RIGID BODY DYNAMICS 

Again, as for vectors, the abbreviated matrix notation 

is used to indicate tensors instead of the correct symbolic notation 

A first property of D is obtained from the condition of invariant length, 

Le.' 

e · e = (De') · (De') (2.2) 

from which follows 

D T · D = 1 as well as det D = 1. (2.3) 

Accordingly, the matrix D is orthogonal and its determinant is equal to 1. 

If D relates e.g. a body fixed to an inertial reference system, it will in 

general depend on time. It can therefore be differentiated with respect to 

time and one finds from Eq. (2.3a) 

d ( T ) T • · T T • ( T • )T dt D · D = D · D + D · D = D · D + D . D = 0. (2.4) 

Upon defining DT. :0 = n, (2.4) yields n = -nT which implies that n can 

be written in the form 

(2.5) 

(The choice of the signs and of the indices will be justified later.) From the 

definition of n one finds furthermore the important relation 

D=D · O. (2.6) 

We now look at a fixed point P, on the moving body at timet and t + tlt, 
respectively. The body fixed vector, P Po is denoted by b. From Fig. 2.2 it is 

seen that the relation holds 

r(t) + b(t) + tlr (t + tlt) = r (t + tlt) + b (t + tlt) 
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2.1. BASIC KINEMATICS 17 

FIGURE 2.2. Motion of a rigid body in space with a body-fixed vector b 

or 

r(t) + b(t) + d(6.r(t)) 6.t = r(t) + d(r (t)) 6.t + b(t) + d(b(t)) 6.t 
dt dt dt 

for small 6.t. Accordingly, with 6.t -----+ 0, we obtain 

d (6.r) = v(P) = dr + db = v (Po)+ db. 
dt dt dt dt 

But, using b = D · b = D · n · b and observing that for 6.t -----+ 0, D -----+ 1, we 

arrive at 

v(P) = v (Po)+ n. b = v (Po)+ w X b (2.7) 

with the angular velocity vector 

The definition of the conlponents of n has previously made such that the 

angular velocity vector appears in the well known form given above. 

We turn our attention now to the parameterization of the orthogonal 

matrix 

Since the group of spatial rotations is noncommutative, care has to be taken 

in the choice of an appropriate form, and in fact various formulations have 

been used in the past depending on the problem at hand. 
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18 2. RIGID BODY DYNAMICS 

z 

y 

FIGURE 2.3. Definition of Euler angles 

The oldest form, m;eful to describe gyroscopes, was introduced by Eu­
ler: the three Euler angles (Fig. 2.3) ( r.p , e, 'ljJ) characterize a rotation around 
a body axis (self rotation , ~J, if the body has the largest principal axis at 
rest in z-direction)' a precession ( <P) and a nutation (e). It is thereby implic­
itly assumed that the rotations are related to a fixed point in space. Upon 
applying the transformations 

[ 

cos r.p sin r.p 

D1 = - sin r.p cos r.p 

0 0 

D2 = ... ; 

(the first describes the rotation around r.p , the associated matrices for the 
rotation around the other two angles can be found by interchanging the rows 
and columns accordingly and replacing the angles) in the indicated sequence, 
one finds by matrix multiplication 

D= 

[

cos 'ljJ cos r.p - cos e sin r.p sin 'ljJ 

-sin 'ljJ cos r.p- cos e sin r.p cos 'ljJ 

sin() sin r.p 

cos 'ljJ sin r.p + cos e cos r.p sin 'ljJ sin 'ljJ sin el 
-sin 'ljJ sin r.p +cos e cos r.p cos 'tP cos 'ljJ sin e 

- sin e cos r.p cos e J 

Since the angles r.p and 'ljJ are not readily defined for e = 0, the Euler angles 
are not particularly useful for the description of spatial rigid body motions, 
in particular, if numerical applications are made. 

Similarly, the expressions yaw, pitch, and roll which are adapted from 
nautical language denote rotations around the three orthogonal axes of a fixed 
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2.1. BASIC KINEMATICS 19 

reference system. D can again be found by multiplication of three successive 

rotations. 

A more general forrnulation (from the point of view of applications) can 

be found if the two coordinate systems under consideration are related by 

a rotation with an angle 19 around a fixed axis which is given by a unit vector 

J-t , (1~-tl = 1) (this is called a simple rotation). By executing, if necessary, 

a suitable translation, this can always be achieved. From Fig. 2.4 we find 

that 

D = 1 cos {) - 1 x J-t sin {) + J-t 0 J-t ( 1 - cos {)) . (2.8) 

B 

0 

FIGURE 2.4. Simple rotation: r' = OC + CB" + B''B', OC = J-L(J-L · r) = J-LJ-L T r, 
CB" =cos '19(1- J-LJ-L T)r, B''B' = -sin '!9J-L x r 

The symbol 0 denotes a dyadic product and 

The four quantities J-t, {) are not independent because of 1~-tl = 1. With the 

aid of the expression 

1 
Eijk = 2 (i- j) (j- k) (k- i), i,j,k = 1,2, 3 

as well as the Kronecker syrnbol 6ij the components of the matrix associated 

with D are obtained as 

dij = 6ij cos{) - L Eijk/lk sin{) + /li /lj (1 -cos{)). (2.9) 
k 
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20 2. RIGID BODY DYNAMICS 

A further useful relation is based on direction cosines. Two coordinate systems 

with base vectors e.i and e~ , respectively are related by the cosines Cij = 

( ei , ej) in the form 

[

cu 

D = C2 1 

C3 ] 

C12 

C22 

C32 

CtJ] 
C23 · 

C3;} 

(2.10) 

This relation is found by decomposition of the base vectors of one system 

with respect to the other. 

For completeness, two further parametrizations are mentioned. A repre­

sentation using quaternions is obtained if the definitions 

are introduced. Since I:i=l Er = 1, the 4 quantities have the properties of 

quaternions . If this representation is used , the quaternion property has to be 

restored after each integration step . This disadvantage is however offset by 

the fact that this involves a fitting procedure which adds to the stability of 

the integration. 

Directly related with the quaternions are the three Rodrigues parameters 

Ei 
Pi = -: i = 1, 2, 3. 

E4 

Since these parameters can become infinite, they are usually not used in 

numerical procedures. 

Two of the representat ions outlined above (J.-L , 19 and direction cosines) 

are well suited for numerical applications which involve the integration of 

linear and angular accelerations. Accordingly, the time derivative of D or an 

expression for w , respectively, are needed in terms of the parameters . 

While in the case of the direction cosine parameterization, Eq. (2.6) cau 

be used direct ly, Eqs. (2.6), (2.8) and (2.9) yield , after some calculation, 

'8 = (w · J.-L) , 

1 sin~ 
j.L = -W X J1- ( ) (w X J.-L) X J-l. 

2 2 1 -cos~ 

(2.11) 

Once w is determined from the equations of motion (see below), the direction 

matrices can be updated along with the position vectors. 
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2.2. NlEASUREMENT NlETHODS 21 

2.2. Measurement Methods 

The measurement of human body motions is mostly based on optical 

methods (position measurements) or on the application of acceleration sen­

sors (Fig. 2.5). While velocities and accelerations from position measurements 

are obtained by differentiation, accelerations have to be integrated in order 

to determine velocities and positions. In case of differentiation , noise amplifi­

cation is a well known problem, and appropriate filters have to be applied in 

order to ascertain recording of the useful signal contents. Linear accelerom­

eters, in turn. which measure accelerations in one direction can be made 

small and light-weight; the measurement of angular or rotational accelera­

tions is in contrast more critical although angular accelerometers for various 

measurernent ranges and purposes exist. 

I Positions I Positions 

~ v 
Velocities Velocities 

~ 
Accelerations I Accelerations I 

(a) (b) 

FIGURE 2.5. l\1easurement on the basis of positions (a) or accelerometers (b) 

It is sometimes attempted to obtain angular accelerations with the aid 

of a combination of linear accelerometers. Since these elements are usually 

fixed on the human limbs and therefore change their orientation, i.e. , their 

measurement direction in space when the body moves, the term "strap-down" 

measurement is used . Under such conditions, linear and angular accelerations 

with respect to inertial reference cannot be obtained in a straightforward 

manner. A problem exists in particular because accelerometers always sense 

gravity and a signal is recorded already when a linear accelerometer is rotated 

with respect to the direction of gravity. 

We consider the output of a linear accelerometer which moves in space. 

According to (2. 7) , after differentiation with respect to time, we obtain for 

the acceleration a , measured at a fixed point P on the body 

a(P) = a(Po) + w x b + w x w x b (2.12) 
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22 2. RIGID BODY DYNAMICS 

in relation to a reference point Po on the same limb (the distance P Po = 

I b I has to be constant in time). Theoretically, 6 independent measurernents 

ai(Pi) suffice to determine a(Po) and w if the distances PiPo are known (the 
points Pi have thereby to be chosen appropriately, in particular, collinearity 

has to be avoided). Due to the fact however, that w appears in quadratic 

form in Eq. ( 2.12), this procedure is associated with intolerable errors. 
With a minirnum of 9 linear accelerometers, which are arranged accord­

ing to the scheme shown in Fig. 2.6, the quadratic terms can be eli1ninated 

(definition of symbols according to Fig. 2.6). In direction x the measurements 

read 

Yi, Zi denote the location of the accelerometers. 

FIGURE 2.6. Configuration of linear accelerometers when 9 accelerometers are 
used for the recording of spatial motions. The small arrows indicate the positive 
direction. 

The other two directions (y, z) yield similar formulas (the ±orientation 

of the accelerometer has thereby to be observed). Upon substituting for the 

quadratic terms, one arrives at 
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2.3. DYNAMICS 

. a~ - ag ao - a4 
2wx = + , 

zs - zg Yo - Y4 

(a3- a1) (Y2- Yl) 
(y3- Yl) (z2 - z1)' 

23 

(2 .13) 

These equations can readily be integrated, however, a drift problem occurs. 

This is not the case if position measurements are made. A drawback never­

theless exists because by the differentiation and necessary filtering process 

bandwidth is lost, accordingly, high speed recording requiring intensive light 

is necessary. In contrast, the bandwidth of accelerometers is sufficient for all 

practical purposes. 

2.3. Dynamics 

Most dynamic phenomena of interest in biomechanics are such that their 

complexity does not allow for an analytic treatment, rather, numerical pro­

cedures have to be applied. Accordingly, the following considerations are 

restricted in view of computer modeling. For further analysis, the reader is 

referred to the books [1, 2]. 

The analysis of rigid body motion is based on linear and angular momen­

tum balance. For each rigid body of a system (N is a number of bodies or 

segments), the following two equations hold: the momentum equation: 

mnrn=Lrnk+Lrnj, n=1, ... ,N 
k j 

where: 

mn is the mass of rigid segment n, 

r n is the center of mass of segment n , 

fnk is the force k, acting on segment n, 

fnj is the force of the joint j, acting on segment n. 

(2.14) 

In body-fixed reference for each segment n, the angular momentum bal­

ance is 
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24 2. RIGID BODY DYNAMICS 

In. Wn = -Wn X (Inwn) + Dn. ( ~ n;;:'. Pnk X fnk 

+ L D~ 1 
· "'-nj X fnj + L D.~ 1 

· tnl + L Tnm) (2.15) 
j l m 

where: 

In is the inertia tensor of segment n in body-fixed reference, 

Wn is the angular velocity of segment n, 

D~ 1 is the transformation from body-fixed into inertial system, 

Pnk is the point of application of the external force fnk, 

"'-nj is the point of application of joint force fnj, 

tnl is the torque l, acting on segment n, due to joint constraints, 

T nm external torque m, acting on segment n. 

The term on the left side of Eq. (2.15) and the first term on the right side 

originate from 

d ( -1 ) - D n InWn 
dt 

where the relation (2.6) has been used. This is a useful formulation since the 

inertia tensor I is constant in a body-fixed system; the equation is written in 

inertial reference, however. The entire equation is finally multiplied with D n 
in order to transform it onto body-fixed reference. 

In addition to these basic equations , there are usually a number of con­

straints due to joints (ball and socket, hinge , etc.) and external conditions 

(e.g., sliding along a plane). All of these constraints are assumed to appear 

in the form 

f (Dn, rn, rn, angles, Wn , external parameters) = 0 (2.16) 

with first order time derivatives at most 3). These equations are added to 

the basic equations of motion and the entire set can directly be utilized 

for numerical integration. The constraints reduce the degree of freedom of 

the system and the first step during the integration procedure of Eqs. ( 2.14-

2.16) consists therefore of eliminating "superfluous" variables. Although this 

3 )In case of viscoelastic damping, a hereditary integral may be involved. 
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2.3. DYNAMICS 25 

complicates the 1nethod, an important advantage consists of the flexibility 

which is maintained in that changes of the model , of the connectivity of 

a rigid body systen1, of joint properties or of external constraint can readily 

be imple1nented. Likewise, quantities in inertial or body-fixed reference are 

easily calculated (Example I). 

An approach based on the Lagrangian formulation leads to M equations 

(number of degrees of freedom of the entire system, each degree of freedom 

is thereby parameterized by a generalized coordinate qk) for the system con­

sisting of N bodies 

!!_ ( 8T) _ 8T = 8V + Qk k = 1, ... 'M. 
dt oqk 8qk 8qk ' 

(2.17) 

The kinetic energy is 

N 

2T = L rnn ( V n · V n) + L ( Wn · (In · Wn)) 
n=l 

and V denotes a potential. The generalized forces Q k include forces which 
cannot be described by a potential and have to be derived with the aid of 

the principle of virtual work (note: also internal forces may contribute, e.g., 

friction). 

This approach leads to a minimal set of equations because all the con­

straints are included in the formulation. The disadvantage derives from the 
lack of flexibility such that this method is usually not used in general purpose 

programs. 

Other procedures have been proposed and can be found in the literature; 

the two methods outlined here are however the most important (and are 
moreover the basis for other formulations). For the numerical integration an 

integrator which is adapted for stiff equations is needed. After each integra­

tion step, the orthogonality of the transformation matrices has usually to be 

restored by a fitting procedure. A simple (but not exhaustive) control can be 

made by following the common center of mass of the system under consid­

eration which has to execute a linear, constant motion if external forces are 

absent. Likewise , an energy balance can be performed. 

An important aspect is related to the sensitivity of the calculated results 

with respect to the initial conditions and system parameters. Small changes in 

the initial conditions or in the values of the system parameters may sometimes 

lead to large deviations and variability of the resulting motions, in particular 
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in case of collisions. Often, numerous parametric variations are necessary in 

order to validate the significance and usefulness of a simulation. 

Collisions may cause difficulties in that within the framework of rigid 

bodies, collisions lead to singularities (infinite forces acting over an infinitely 
short period of time). There are in essence two ways to deal with this problem. 

First , the bodies are "softened" such that there are no infinite forces. To this 

end, a force-penetration model is developed for which the outer contours 

of the segments are needed. Mutual penetration can readily be calculated 

from the centers of mass and orientation matrices. Second, each collision 

configuration is determined exactly (machine precision) by interpolation and 

the collision is bridged with the aid of conservation laws. 

2.4. Molecular Modeling 

Atoms interact with one another primarily through their atomic shells 

consisting of electrons. Covalent bindings, e.g., derive from a direct inter­

action of electrons. Likewise, ionic bonds are based on electron exchange. 

Along with the nuclei, dipole effects are furthermore of importance, in addi­

tion , noncovalent bonds, hydrogen bridges, van der Waals forces, hydrophilic­

hydrophobic interactions (of particular i1nportance for biomolecules), in case 

of metallic materials still other effects, excited electronic states , interactions 

with electromagnetic fields, etc., have to be taken into account. 
The electron mass and dimensions under consideration are such that the 

principles of quantum mechanics, in particular the Schrodinger equation has 
to be applied for the analysis of atomic systems. This equation incorporates 
the probability function W (r, t), i.e., the wave function describing the prob­

ability that a particle is at a certain location r at time t; the volume integral 

satisfies J I'll 12 dV = 1 as is required for probabilities . 

. a-w n 2 In-
8 

= --'J 'lJ(r, t) + V (r, t) 'lJ (r, t). 
t 2m 

(2.18) 

Here m denotes the mass of the particle whose probability distribution is 

calculated, 'V2 the Laplace operator, n is Planck's constant divided by 21r , 

V (r, t) is a potential, and i =A . 
A solution of this equation for a system involving a large number of atoms 

is not possible with present computational techniques; yet , it is not neces­

sary for many particularly interesting (from the standpoint of biomechanics) 
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applications. Such applications involve, e.g., the interaction and functional 

properties of large protein molecules including their behavior under the in­

fluence of forces. 

A usual procedure of treating the Schrodinger equation consists of intro­

ducing a separation ansatz 

iEt 
\lJ (r, t) = 'ljJ (r) · e-T 

into Eq. (2.18) which leads to the time-independent Schrodinger equation 

(2.19) 

with the Hamiltonian (energy) operator H = - ~ \72 + V and the energy E. 
Next, the Born-Oppenheimer approximation is applied. Since the mass 

of an electron is more than three orders of magnitude smaller than the mass 

of a nuclear particle (proton or neutron), the motion of the nucleus can be 

assumed to be independent of the motion of the electrons. A further factoriza­

tion is therefore possible. This approximation allows to model the electrons 

in a summary fashion as a static cloud and replace their influence by a po­

tential function which mimics the forces which they cause upon interaction 

with neighboring atoms (see below). 

According to Ehrenfest 's theorems, furthermore, the expectation values of 

the Schrodinger wave function \lJ obey the laws of classical mechanics. In case 

that the de Broglie wavelength ,\ = yf21rn2 /(mkT) (k denotes Boltzmann's 

constant, T the absolute temperature) is small in comparison with the typi­

cal dimension of the problem under investigation (e.g., atom-atom distances), 

molecular dynamics can therefore adequately be described by classical me­

chanics. Already the mass of a helium atom ( ~ 10-26 kg) is sufficiently large 

that this approximation is justified. 

Since atomic nuclei are small in comparison with molecular dimensions, 

"simple" point rnass mechanics can be applied for each element i (mass mi, 

location ri(t)) 
d2ri 

mi-d 2 = Lrik· 
t k 

(2.20) 

While this is rather straightforward, the formulation of the interacting forces 

(2:::: fik, k extends over all interactions), i.e., the derivation of potential func­

tions representing the electrons within the framework of the Born-Oppen­

heimer approximation is not, since this has to be derived from quantum 
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v 

FIGURE 2.7. Lennard-Janes potential (schematically) 

mechanics or empirical knowledge. A large body of literature can be found 

on this difficult and crucial subject. A typical potential, which is often used, 

is the Lennard-Jones potential which may serve as an example 

(2.21) 

This potential (Fig. 2.7) describes the strong repulsion (ex r- 12 ) that atoms 

are exposed to when their electron clouds are overlapping as well as the van 

der Waals attraction at larger distances (ex r- 6 ). C1 and C2 are constants 

which have to be fitted according to the specific interaction to be modeled. 

A further problem arises from long range interactions such as electrostatic 

forces which exhibit a 1/r dependence. Accordingly, in a large system, all 

particles can in principle interact and many-body interactions can occur. In 

case of thousands of particles, this leads to an untreatable complexity such 

that further approximations are necessary. 

Two circumstances render molecular dynamics simulations expensive 

(computer hardware) and time consuming. First , the number of particles 

along with their interactions may be very large. Second, typical integration 

steps are of the order of 10-15 to 10- 14 sec. This small step size is given by 

the internal dynamics of the molecules , e.g. , vibrations. An enormous number 

of integration steps have therefore to be made in order to reach useful time 

spans. Verlet or Gear-type integrators which are adapted for stiff equations 

are mostly used. 

Thanks to the rapid increase of computational power, large molecules, 

in particular biomolecules including the environment consisting of a large 

number of water molecules are arnenable to a simulation (Example II). 
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Chapter 3 

Continuum Mechanics 

3.1. Deformations: Strain 

We consider an arbitrary partial or total volume of a continuous solid 

material in an initial state which we denote as reference configuration. Since 

in the case of homogeneous isotropic fluids without memory effects, particles 
can be rearranged freely, there is no particular configuration which could be 

used as representative initial state. The following derivations with respect to 

deformations are therefore not directly applicable for fluids. 

It is important to note that the reference configuration can be chosen 
arbitrarily. The body (or part thereof) is in particular not necessarily in 

a stress-free state, in fact, a solid body needs not even to have a stress­

free configuration. We define a Cartesian coordinate system such that every 

point P (location r) of the body is associated with coordinates X, Y, Z 
whereby capital letters and hat over the vector symbol are used to denote 

the reference configuration (a generalization to other rectangular coordinate 
systen1s is performed later) 

P:f= [~] =(X,Y,z)T 

Like in Chapter 2, a mathematically imprecise, but convenient abbreviated 

notation is used and vectors as well as tensors and their matrix representation 
of components are not distinguished. 
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32 3. CONTINUUM MECHANICS 

Let Q with position vector f + df be a second point, located at an in­

finitesimal distance, df = (dX, dY, dZ), from P : 

[

X +dX] 
Q : f + df = Y + dY 

Z+dZ 

After some displacement and deformation, the (material) points P, Q are 

located at new (spatial) positions P', Q' with associated position vectors 

(Fig. 3.1). 

z 

X 

FIGURE 3.1. Definition of displacement vector u 

[

X+ uxl [x(X, Y, Z)l 
P' : f + u = Y + uy = r( X, Y, Z) = y( X, Y, Z) 

Z+uz z(X,Y,Z) 

and 

Q': f+df+u+du= Y + dY + uy + duy =r+dr= y + dy respectively. 
[

X + dX + Ux + dux] [X + dxl 

X + dZ + Uz + duz z + dz 

u(X, Y, Z) = [ux(X, Y, Z), uy(X, Y, Z), ·uz(X, Y, Z)]T is denoted as displace­

ment vector and lower case letters are used to refer to actual positions. Since 

r = f + u, dr can be written as 

dr = [ ~~] , whereby 
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3.1. DEFORMATIONS: STRAIN 33 

( ( 8ux)) (8ux) (8ux) = dX +dux = 1 + ax dX + BY dY + az dZ, 

dy = .. . 

dz = .. . 

dy and dz are obtained by cyclic permutation. Accordingly, 

dr = ( 1 + J) df = F df. 

The displacement gradient J is defined as 

[~ 
~ 

~] ax 8Y az 
~ ~ GUy 

J = ax aY az 
~ ~ ~ ax 8Y az 

(3.1) 

whereas F = 1 + J is referred to as the deformation gradient. 

In order to obtain a measure for the local strain resulting from a de­

formation of the body, we calculate the length of df in the deformed state 

(dr): 

)dr]2 = (dr, dr) = dr2 = [dx, dy, dz) · [ ~~] = (dr) T dr. 

The change in length is given by 

dr2
- dR2 = (df)T (1 +JT)(1 +J)df- dR2 

= ( df) T ( J T + J + J J T) df = ( df) T ( F T F - 1) df ( 3. 2) 

whereby it is again noted that the reference configuration may already have 

internal strains. 

Note: In case of small deformations and in the absence of rigid displacements, 

the nonlinear term JT J can be neglected and the engineering strain tensor is 

obtained 

~ l (~+~) l(~ + ~) ax 2 aY ax 2 az ax 

~(JT + J) = l (GUy+~) ~ l (~ + ~) (3.3) 2 ax aY av 2 az av 

l(~ + ~) l(~+8uy) ~ 
2 ax az 2 av az az 
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34 3. CONTINUUM MECHANICS 

The factor 1/2 derives from the expansion of the square root, if the actual 

length, and not the length squared, is calculated. 

From (3.2) is seen, that the quantity 

E = !(FTF- 1) 
2 

(3.4) 

which is denoted as Green-Lagrange tensor describes strain also in case of 

large deformations. In addition, the right Cauchy-Green deformation tensor, 

(3.5) 

is often used in constitutive equations. 

3.2. Forces: Stress 

While the previous paragraph is related primarily to solids , the concept 

of stress applies equally for fluids or solids. We consider the interior of a fluid 

or solid continuum, in particular an element of a (virtual) interior surface, 

in a deformed and / or displaced state, df = dy dz. The outer normal (unit 
vector n) of this element has x-direction. The element of force , dp, which 

the adjacent material exerts on df is written as dp = pdf with the aid of 

the stress vector p (force per unit area); p is decomposed into the three 

components 
a xx = ax normal stress, 

Txy, Txz shear stresses 

whereby the indices are chosen such that the first index denotes the outer 

normal of the surface element under consideration while the second index 

indicates the direction of the component (Fig. 3.2). 

Upon application of the same procedure to the other coordinate direc­

tions, an em;emble of components is obtained as 

(]" = [~: 
Tzx 

which is denoted as Cauchy stress tensor (Fig. 3.3). That this has in fact 

the properties of a tensor is seen when the particular coordinate system 

(x, y, z) is subjected to a rotation; it will be seen that u then transforms as 
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n 

D 
FIGURE 3.2. Interior surface of a body, virtually cut into two pieces. The vector 
pdf denotes the force acting on the surface element df which is exerted by the 
connecting surface (in order to keep the state of deformation, the internal forces 
acting along the virtual cut have to be applied). n, (lnl = 1) is the outer normal 
of df. 

FIGURE 3.3. Definition of the components of the stress tensor 

y 

dV 

z 

FIGURE 3.4. Momentum balance around z- axis. The other stress components 
acting on the cube do not contribute to the moment around this axis. 

35 
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a' = n- 1 ·a ·D. The stress tensor is furthermore sy1nmetric. This follows 

from angular equilibrium (Fig. 3.4): The moment acting with respect to the 

center of mass of the cube around the z-axis is due to the shear stresses 

Txy and Tyx only and is proportional to the edge length ( dl)3 , because the 
forces are proportional to (dl? and the moment ann to (dl) 1, while the 

moment of inertia is proportional to ( dl) 5 because the mass is proportional 

to ( dl) 3 and the radius of inertia to ( dl) 2 . If the moment would not be zero 

i.e. Txy f Tyx, there would be infinite rotational accelerations as dl ~ 0. The 

same holds for the other axes, accordingly, the tensor has to be sym1netric. 

An element of surface area with an arbitrary spatial orientation is now 

considered (Fig. 3.5) , 

The forces acting on the infinitesimal tetraeder have to be in equilibrium, 

because the forces are proportional to (dl) 2 while its mass is proportional to 

( dl) 3 . If the forces were not in equilibrium, the tetraeder would experience 

an infinite acceleration as dl ~ 0. Accordingly, 

or 

a~Enxdf + Tyxnyd.f + Tzxnzd:f =pxdf, 

Txynxdf + aynydj + Tzynzdf =pydj, 

Txznxdf + Tyznydj + a znzdf =pzdf, 

dp =a· ndf 

z 

(3.6) 

FIGURE 3.5. Equilibrium of an infinitesimal tetraeder. The unit vector n denotes 
the outer normal to the surface element df 
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3.2. FORCES: STRESS 37 

where the dot is used to denote a scalar product. 

Note: Upon application of a t-ransjoTmation D to Eq. (3.6), one obtains 

D · dp = D ·a · ndj = D · a · D- 1 
· D · ndf 

which shows that a tTansfor-ms as a tensor. 

From now on, solids and fluids have to be treated separately. 

Solids 

The Cauchy stress tensor is always related to a surface element in the de­

formed state. In case of large deformations , however, a surface element given 

in a specific state of deformation changes its shape and size as the defor­

mation process continues such that the Cauchy stress tensor is defined with 

respect to a different surface element after each deformation step. A consis­

tent procedure is reached, if the stress tensor is always related to a surface 

element in the reference configuration which can be made in the following 

fashion. The quantity a · (b x c) is equal to the volume of a body formed 
by the arbitrary vectors a, b, c (not collinear). For every matrix M whose 

determinant is not zero, the theorem holds (from linear algebra, the fonnula 

is related to the volume of a parallelepiped with edges a, b, c): 

Ma · (Mb · Me) = det (M) a · (b x c) . 

From this follows 

df (actual configuration) = det (F) F-T df (reference configuration). 

Upon application of this relation to the Cauchy stress tensor, one finds that 

P = det (F) aF-T (3.7) 

which is denoted as nominal or first Piola-Kirchhoff stress tensor (in general 

non-symmetric!). It relates the stresses in the actual configuration to the 
equivalent surface element in the reference configuration. It is convenient to 

express also the stresses with respect to the reference configuration, which 

can be achieved by multiplication with F- 1 

(3.8) 

This is a useful formulation to describe stresses under large deformations; 
T is called the 2nd Piola-Kirchhoff stress tensor which is again symmetric, 

but has no direct physical interpretation. 
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Fluids 

Homogeneous isotropic fluids have no reference configuration; accordingly, 

stresses occur only when internal friction effects due to gradients in flow fields 
are present. In particular, only the momentary state of flow is of importance 

(fluids with memory effects , like liquid crystals, are not considered here). 

This will be considered in the next paragraph. 

3.3. Constitutive Equations 

The mechanical properties of a solid or fluid body with respect to de­

formability are introduced by way of the constitutive equation which relates 

the state of deformation (or its derivative with respect to time) to the stress 

state. Solids and fluids have to be treated differently. 

Solids 

There are numerous ways to describe the constitutive behavior of the 

existing vast variety of solid materials which can be found in the literature 
on continuum mechanics. A straightforward method to formulate a consti­

tutive equation which is useful for large-deformation and nonlinear cases 

consists of the choice of an appropriate scalar function W which describes 

the elastic strain energy density (hyperelastic material). A scalar function is 

invariant under transformations, therefore, the isotropy group of the mate­

rial (isotropic, orthotropic, etc.) can easily be integrated. Dissipative effects 

(internal friction) are thereby not included, however. 

In order to arrive at a formulation which is valid for nonlinear and large­
deformation problems, the 2nd Piola-Kirchhoff stress tensor has to be used 

which is obtained according to 

(3.9) 

For a derivation of the relation (3.9) which is based on the fact that the 
2nd Piola-Kirchhoff stress tensor and the Cauchy-Green deformation tensor 

are connected in the sense that the work per unit of time performed by the 

stresses equals Li,j (T)ij · ( C)ij see e.g. [1]. Since W is invariant , it has to be 
a function of the invariants Ii associated with C. The number of invariants 

thereby depends on the isotropy group of the material under consideration: 

3 for isotropic, 5 for transversely anisotropic, etc. 
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For is•otropic materials, the invariants are 

11 =trC, 

12 =~ ( (trC)2
- trC2

), 

13 =detC. 

For Veranda-Westmann materials, e.g., the expression is 

39 

W = a1 ( e02 (h - 3) - 1) + a3 (12 - 3), 

13 = 1 (incompressibility). 
(3.10) 

Here a 1, a2, a3 are constants which have to be fitted to experimental mea­

surements. Figure 3.6 shows the application of this expression to uterine tis­

sue of a rabbit in uniaxial tension. 

F [Pa] 

175000 including 12 

150000 without 12 

125000 • measurements 

100000 

75000 

50000 

25000 
/... 

1.2 1.4 1.6 1.8 2 2.2 2.4 

FIGURE 3.6. Veronda Westmann model (force F as function of the stretch ratio 
). = I/ 10 , i.e . the relation of the actual length to the original length of a strip of 
material) fitted to rabbit uterine tissue in uniaxial elongation. Measurements are 
adopted from 12]. 

In case of transverse anisotropy (direction n, In I 
variants are introduced 

14 = n · C · n, 

h = n. C 2 . n. 

1), two further in-
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40 3. CONTINUUM MECHANICS 

Viscoelastic damping can be taken into account by including a hereditary 

integral over the past history of the deformation tensor or its derivative 

with respect to time (this is not straightforward, however, and the reader is 

referred to the literature). 

Fluids 

The stress state in an ideal, inviscid, isotropic and incompressible fluid 

is described by an isotropic tensor which is invariant under transformations 

(such that no shear stresses occur). Such a tensor has the general form (the 

minus sign is by definition) 

a= [-: ~p ~ l 
0 0 -p 

(3.11) 

and describes a hydrostatic pressure state. 

In case of an incon1pressible viscous fluid , stresses in addition to the hy­

drostatic pressure develop because of internal friction effects which become 

effective as soon as the flow field is such that fluid particles execute relative 

shearing motions. Accordingly, the gradient of the flow field, v (r, t) has to be 

considered. Since derivatives involve infinitesimal changes of the momentary 

configuration, the time derivative of the engineering strain tensor (3.3) , disre­

garding large displacement and deformation effects, can be used to formulate 

a constitutive law. In the simplest case, the stress tensor and the velocity 

gradient are proportional: 

a= 2r(Vv 

~ l(~+ovy) l(~+~) ox 2 oy ax 2 oz ox 

= 2ry l (~ + ~) ~ l (~+~) 2 x oy oy 2 oz oy 
(3.12) 

l(~+~) l ( ~ + ovy) ~ 
2 ox oz 2 oy oz oz 

The proportionality factor TJ is denoted as viscosity and fluids which obey 

this law are called Newtonian fluids. Non-Newtonian fluids, such as, e.g. 

blood under flow conditions which include locations with vanishing shear 

components over extended periods of time may involve nonlinear expressions 

in the velocity gradient. In case of an incompressible Newtonian fluid , stresses 

according to Eqs. (3.11) and (3.12) are added in that the stepwise procedure 
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applied here can be regarded as part of a power expansion in the velocity 

gradient. 

3.4. Equations of Motion 

We consider a deformable body (volume V) under the influence of forces 

(Fig. 3. 7). We thereby distinguish two types of forces, viz., field forces acting 

on the entire body such as gravity or electromagnetic forces and forces acting 

on the surface F such as forces due to contacts. Momentum balance then 

requires 

! j (pv) dV = j pkdV + f u · ndF. (3.13) 

V V F 

In this equation , p denotes the density of the material , v the velocity field, 

k the field force per mass, a the Cauchy stress tensor and n the outer norn1al. 

Using Gauss ' theorem, the last term in Eq. (3.13) can be converted into 

a volume integral , 

f u · ndF = j divudV. 

F V 

Since the momentum balance has to be fulfilled for any volume, it follows 

d (pv) . 
~ =pk+d1va. (3.14) 

In this form , the equation is written in what is called the "Lagrangian" for­

rnulation which implies that the time derivative is total and follows the ma­

terial. When soft particle methods (see later) are used for numerical solution 

FIG URE 3.7. Volume V with surface f, volume element dV, surface element 
df = ndf 
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purposes, the Lagrangian form of the equation is often applied. It can be 

converted into the "Eulerian" form by introducing partial derivatives: 

8(pv) -at+ (v · V) (pv) = pk +diva. (3.15) 

For solids, this equation is worked out with the constitutive equation of 
choice, accordingly, a wide variety of equations can be found throughout 

the literature. While the velocity field v (r, t) can readily be related to the 

displacements u, the stresses u have to be expressed in the same variables 
with the aid of the constitutive relation. 

In case of incompressible Newtonian fluids, the equation of motion is in 

contrast well defined and is therefore treated in rnore detail in the following. 

Inserting (3.11) and (3.12) into Eq. (3.15) yields the Navier-Stokes equation 

8v 2 
P at + P ( v . v) v = pk - v P + 77 \7 v. (3.16) 

Incompressibility requires furthermore 

V·v=O. (3.17) 

This equation is obtained by balancing the in- and outflow of a volurne ele­

ment dV (see later). 

Note: If the last term in Eq. (3.16) is dropped, i.e. only (3.11) is used (inviscid 

fluid), a set of equations called Euler equations is obtained. 

In Eqs. (3.15) and (3.16) is seen that the velocity field v (r, t) which usu­

ally is to be calculated appears in nonlinear form. This often prevents analytic 
solutions. Numerical procedures have to be applied most often. 

Since every partial volume of a continuum has an infinite number of 

degrees of freedom , equations of continuum mechanics (fluid or solid) are 

scalable as a rule . This is demonstrated in the following with Eq. (3.16) for 

stationary flow and without the pk term. If in the equation 

the dimensionless quantities are introduced: u = vjV, f = r/D, P = pD/Vry 

whereby V and Dare in essence arbitrarily chosen quantities which are char­

acteristic for the problem under investigation (e.g. the diameter of a tube, the 
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flow velocity far away from the object under consideration), a dimensionless 

equation is obtained 

pV D ( _ T"7) _ T"7p n2--- u . v u = - v + v u. 
'l] 

The (dimensionless) parameter p V D / '1] , called Reynolds number, is a scal­

ing factor and characterizes the relation between inertial and viscous forces. 

Turbulence is observed when the Reynolds number exceeds some critical 

value which implies that the inertial forces dominate over the viscous damp­

ing forces. Problems having the same Reynolds number exhibit similar flow 

characteristics. Other scaling factors can be defined for other continuum rne­

chanics' problems. A further such scaling quantity will be introduced in the 

next paragraph. 

Many convective transport conduits in biology are long and cylindrical 

where axial flow prevails (blood vessels, lymph vessels, urethra, etc.). Cylin­

drical coordinates are more useful to describe such systems than Cartesian 

coordinates. Cylindrical coordinates (Fig. 3.8) are orthogonal but curvilinear 

which has to be taken into account when derivatives are used. 
z 

P(x,y,z) ==> P~.s.z) p 

x r cos9 

y r sinS 

z z y 

FIGURE 3.8. Cylindrical coordinates 

We consider a general transformation of a set of Cartesian coordinates x1, 

x 2 , X3 into a curvilinear, orthogonal system 6 , ~2, ~3 by way of the functions 

X1 = X1 (~1 , ~2,~3), 

X2 = X2(~1,~2,~3), 

X3 = X3(~1,~2,~3). 

(3.18) 

The rectangular base which is associated with the new system is defined by 

way of 
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r = x1 ex 1 + x2ex2 + x3ex3 is a position vector beginning at the origin. With 

"" 8r dr= ~ -d~i 
·-1 2 3· a~i 
t- ' ' 

one finds for the line element, using (3.18) 

ds2 = (dr · dr) = L hTd~f, 
i=l,2,3 (3.19) 

with 

h? = L (8Xj)2 
t ·=1 2 3 8~i 

J ' ' 

(3.20) 

In case of cylindrical coordinates, 

dr = drer + rdl)eiJ + dzez, h1 = h3 = 1, h2 = r. 

The differentiation operators \7, \72 applied to a scalar field, can be written, 
e.g. in cylindrical coordinates using Eqs. (3.19) and (3.20) 

n =(~ ~~ ~) 
v · · · 8r ' r 87.9 ' 8 z ' 

n2 -~~( ~) ~~ ~ 
v . . . - 8 r 8 + 2 aAa2 + 8 2 . rr r r -u z 

(3.21) 

The derivation of the the continuity equation div v = \7 · v = 0 in cylin­

drical coordinates proceeds as follows: 

The inflow- au tflow balance for coordinate ~2 reads ( cf. Fig. 3. 9), 

v6 (6, ~2 , ~3) h1 d6h:1d~3- v6 (6 , ~2 + d~2, d(l) h1d6 h3d~3 

= _ 0 [v6 (6, ~2 1 ~3) h1d6h3d~3] dC 
[)~2 1:,2· 

Per unit of volume, on including all three coordinates, one obtains 
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FIGURE 3.9. Derivation of the continuity equation div v = V ·v = 0 in cylindrical 

coordinates 

45 

In case of vector fields, e.g. v (r, t) = vrer + v-ae-a + Vzez the operators have 

to be applied to the base vectors also (Fig. 3.10). Using 

8er 
8{) = e-a, 8er = O 

8r ' 

8e-a = 0 
8r ' 

8e-a 
8

{) = -er, 

8ez = 8e-a = 8ez = 0 
8z 8z 8z ' 

8er = O 
8z 

8e-a = 0 
8z 

(3.22) 

one finds, after some calculation, the Navier-Stokes equation in cylindrical 

coordinates 

FIGURE 3.10. Derivatives of base vectors in case of cylindrical coordinates 
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[ 
8vr v~ l 8p [ 2 Vr 2 8v{) l p -+(v·gradvr)-- =--+rJ V' Vr-----, 
8t r 8r r 2 r 2 8{) 

p - + ( V · grad V{)) - - = -- + TJ \i' V{) - ----;- - -- , [
av{) V~r l 1 8p [ 2 V{) 2 avr] 
at r r 8{) r 2 r 2 8'13 (3.23) 

[
avz l 8p 2 

p at + ( V · grad V z) = -
8 

z + rJ \i' Vz, 

along with the equation of continuity 

(3.24) 

3.5. Analytic Solutions of the Navier-Stokes Equation which 
Are of Use in Biomechanics 

In contrast to solids, where an enormous diversity of continuum mechani­

cal equations can be derived, the Navier-Stokes equations are quite universal 

(also non-Newtonian fluids can be modeled) and are often used in biome­
chanics. 

Due to their quasi linear nature (the second order term is involved in 
a first order derivative only) the N avier-Stokes equations have however only 

a few analytical solutions. Some of them are of importance in biomechanics 
(mostly tube flow) and are presented in the following. 

3.5.1. Hagen-Poiseuille flow 

The well known Hagen-Poiseuille flow is obtained when one- imensional, 

stationary, laminar flow of an incompressible Newtonian fluid in an infinite 

straight and rigid circular tube is assumed. With Vr = V{) = ovd 8t = 0 

(i = r, fJ, z) the four Eqs. (3.23), (3.24) reduce to 

ap=8p=0 
ar 8{) 

and 
d2vz 1 dvz 1 dp 
-+--=--
dr2 r dr 17 dz · 

(3.25) 

Since the problem is invariant with respect to tranlations, the pressure gra­

dient, dp/dz = Pz is constant and represents an inhomogeneity for the (ordi­
nary) differential Equation (3.25). 

Note: From the equation of continuity (3.24) follows under the conditions 

considered here av z /8 z = 0 which implies that the nonlinear (often called 
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convective) acceleration term disappears. This is always the case in straight, 

parallel flow. The equations then become linear (and solvable), and in fact all 

cases considered in the following have this property (except sect. 3.5.3.). 

With the usual procedure for inhomogeneous equations (add a particular 

solution of the inhomogeneous equation to the general solution of the ho­

mogeneous equation, then apply the boundary conditions Vz (r = R) = 0, 

Vz (r = 0) < oo) the Hagen-Poiseuille formula is found (parabolic velocity 

profile) 

_ ( -pz) R
2 

( _ ~) 
Vz - 47] 1 R2 (3.26) 

with the total flow (integrated over the cross section) Q = ( -pz) R4 / (877). 

3.5.2. Witzig-Womersley flow 

We assume the sa1ne geometrical and axial flow conditions as above, 

but the pressure gradient is now assumed to vary harmonically in time, 

dpjdz = p~ exp (iwt) (since the equations are linear, the solution for an arbi­

trary time dependence of the pressure gradient can be obtained by Fourier 

superposition). With the separation ansatz Vz (r , t) = v(r) exp(iwt) the equa-

tion 
d2v 1 dv ipw 1 0 -+--- -v= -p 
dr2 r dr r7 77 z 

(3.27) 

is obtained. Upon application of the transformation ( 2 = i 3 (wpR2 /77) the 

homogeneous equation becomes a zero order Bessel equation 

(3.28) 

With the (readily available) particular solution of the inhomogeneous equa­

tion and the same boundary conditions as above one arrives at 

( 

( 3 ) ) 
o J0 i2a"k 

v z ( r, t) = ~ p z 1 -
3 

e iwt 

zpw Jo(i2a) 
(3.29) 

with the dimensionless Witzig-Womersley parameter a 2 = wpR2 jry , see 

Fig. 3.11. (This solution was first presented by Konrad Witzig (1914) in his 

dissertation at the University of Berne, Switzerland). The Witzig-Womersley 

parameter, like the Reynolds number , characterizes the ratio of the inertial 
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forces to the viscous forces. While in stationary flow however the inertial 

forces are due to the convective contribution, in oscillating flow the inertial 

forces are due to the explicit time dependence and are dominant (often also 

in cases where the convective term in the Navier-Stokes equations does not 

disappear). 

u' 
1! 

"'iQ;" 
r, 

(a) 

1 r 
1 

(b) 

FIGURE 3.11. Pulsatile flow in straight rigid tube, velocity profiles. (a) Original 
from Witzig's dissertation (University of Bern 1914), (b) Matlab simulation for 
Q = 6.7. 

Since the tube is assumed as rigid, there is no pulse propagation (formally, 

the wave speed is infinite), in that all fluid particles along a stream line 

oscillate in phase. If a deformable tube is modeled, formulas for the wave 
speed can be obtained; however , only approximate solutions can be found. 

Note: The Equation (3.29) can readily be integrated over the cross section 

using theorems on Bessel functions to obtain the oscillating total flow. Fur­

thermore, for w --+ 0, Hagen Poiseuille flow should be obtained. That this is 

the case is seen from the power expansion of the zero order Bessel function 

Jo = 1 + i ( ~~:) + ... 

when it is inserted into Eq. (3.29). 
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3.5.3. Couette Flow 

This type of flow occurs generally in symmetrically rotating flow prob­

lems. A particular case is of importance, e.g., in viscosimeters of the form 

shown in Fig. 3.12. Such viscosimeters provide correct results for the ( ap­

parent) viscosity also in the case of non-Newtonian fluids. With the ansatz 

v = (0, v19(r), 0) , p = p(r) and after making use of the continuity equation 
the two equations result (note that the convective term does not disappear) 

v2 dp 
p- =- and 

r dr 

d2v 1 dv v 
-+----=0 
dr2 r dr r 2 · 

(3.30) 

With the boundary conditions v (r = ~) = 0, v (r = Ra) wRa the 
solution reads 

wRa 2 1 
2 ( ) v ( r) = R~ _ Rr r - Ri -:; (3.31) 

from which the 1noment acting on the inner (rotating) cylinder 

2 2 1 
M = 41rrJWRaRi R2 - R? 

a ' t 

is obtained. This allows to determine the (effective) viscosity, i.e. the viscosity 

at the shear field given by w also for non-Newtonian fluids, since the solution 

(3.31) is independent of the viscosity. 

Fluid-filled 
space 

FIGURE 3.12. Special c~e of Couette flow, typical arrangement chosen for a vis­
cosimeter. The inner cylinder is kept at a constant rotating speed; the necessary 
moment is monitored which allows to determine the viscosity of the fluid . 

3.5.4. A laminar boundary layer 

The concept of "boundary layers" was introduced by Ludwig Prandtl 

( 1905) and reflects the fact that viscous effects are of particular influence in 
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the neighborhood of surfaces where velocity gradients are high. The simplest 

case of a laminar boundary layer (there are also turbulent boundary layers) 
is obtained when a Newtonian fluid over an oscillating plane is considered 

(Fig. 3.13). Cartesian coordinates are used here, and the plane is assumed 

to oscillate according to v = ( vo cos (wt), 0, 0). The solution is based on the 

ansatz Vy = Vz = 0, Vx = Vx (y) only, furthermore , 8pj8x = 0 since the prob­

lem is translationally invariant and the pressure is assumed to remain finite 
at infinity. The Navier-Stokes equations along with the equation of continuity 

yield 

f)p = f)p = 0 and 
f)y {)z ' 

(3.32) 

From the solution 
Vx (y, t) = voe-ky cos (wt- ky) (3.33) 

with k2 = wp/(2TJ) it is seen that at a distance of 5 = )2TJ/(wp) the ampli­
tude of the oscillation decays by a factor of 1/e; 5 is denoted as the thickness 
of the boundary layer. 

v = [v0 cos( rot), 0, 0] 

FIGURE 3.13. Example of a laminar boundary layer. 

3.5.5. Hydraulic approximation 

For many purposes in biological flow problems, simplified one-dimensional 

flow conditions, incompressibility and Newtonian viscosity properties can be 

assumed (e.g. arterial pulse propagation, lymph flow , flow in the urethra, 

tear channel). Instead of a velocity profile, only an average axial velocity is 

modeled. Such an approximation leads to what is called hydraulic approxi­

mation. 
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We start from the Navier-Stokes and continuity Eqs (3.23) and (3.24). 

Basic assumptions are VrJ = 0, Vr << Vz. In the axial direction, the equation 
is treated as follows 

The resulting equation is averaged over the cross section 

21r R ( 
2 

) avz a (vz) 1 a j j Bz + Bz +;:Dr (rvrvz) rdrdfJ 
0 0 

21r R 

= if [- ~ ap + :2 ~ ~ (r avz) l r dr d'!9. 
paz p r ar or 

0 0 

After performing the integration, approximating 

with a I az ( Av2 ) and utilizing the continuity equation, one obtains for the 

axial velocity v averaged over the cross section 

(3.34) 

The friction term, 

21r R 

f =if :2~~ (r avz)rdrd'!9 = ... 27rR (TJ avz) = 21rRTw. 
p r or ar p ar p 

0 0 

Thereby Tw denotes the skin friction at the wall, according to Newton's 

friction law (3.13). There are various ways (nontrivial, not worked out here) 
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how this term (which depends on the velocity profile) can be approximated. 
Furthermore, the term 

can be integrated and vanishes providing that there is no leakage through 
the wall. 

A similar (straightforward) averaging scheme is used for the continuity 
equation which yields 

a aA 
az (Av) +at = 0. (3.35) 

Together with a constitutive equation for the wall A (p ( z, t) , z) (which may 

include viscoelastic contributions) Eqs. (3.34) and (3.35) represent the hy­
draulic approximation. 

This approximation yields good results if applied for arterial pulse pro­

pagation (Figs. 3.14, 3.15). 

MEASUREMENT (INVASIVE) CALCULATED 

~~~~ 
:~:~~ 

0 2 4 6 T 0 2 4 8 T 

:~:~ 
0 .2 ... IS T 0 .2 .4 .15 T 

f2f 1•1 
Plili(5J !Lr~ 

0 2 6 T 

~ 

:~ 
0 2 4 15 T 

!l~ !Lcs:::-
0 2 .4 .15 T 0 2 4 8 T 

L;"'C:~· 
0 2 4 15 T 0 2 .4 15 T 

FIGURE 3.14. Pressure pulses in the arterial tree beginning at the heart and 
ending at the foot. Measurements (left) were made invasively, the calculations 

(right) were based on the hydraulic approximation. 
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MEASUREMENT (US DOPPLER) CALCULATED 

20~ (\·-~~ .. 
I C>. 

Aorta ascendens 

.4 T 0 

z • 
(\A pop~t .. 

J I e» rs;J \/ ' \.f ~ 

:~ 
T 0 .2 4 6 T 

(21 (4) 

(1) (3) (5) 

l~l 11-<cus acnae 

.4 .6 

[SJ A. lhoracalis 

I A A. tlb'Mia ~l 
0)~ 

FIGURE 3.15. Flow pulses in the arterial tree beginning at the heart and ending 

at the foot. Measurements (left) were made noninvasively (ultrasound Doppler), 

the calculations (right) were based on the hydraulic approximation 

3.6. Numerical Procedures 

53 

Most realistic problems in biomechanics cannot be solved analytically, 

accordingly, numerical solution procedures have to be chosen. For partial 

differential equations, three general methods have established themselves, 

two mostly applied within Euler representations, one within the framework 

of a Lagrange formulation. 

When differential quotients are approximated by Finite Difference Quo­

tients, the equations themselves are approximated. The resulting (in general 

large) set of linear algebraic equations is solved exactly (within machine pre­

cision). 

The method of choice in biomechanics is the Finite Element Method 

(FEtvl). The method is particularly well suited for irregular geometries and 

nonlinear problems. Besides , a number of highly optimized commercial pro­

grams are available. In this method, the equations remain in their original 
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forn1, but the solution is piecewise approximated. Examples 3- 6 show the 

application of FE models. 

A significant drawback of FEM is associated with meshing, in particular , 

if the problem to be solved requires remeshing as is the case, e.g. for surgery 

simulation. A similar problem exists with finite difference methods. With 

the Soft Particle Method, originally introduced in astrophysics, remeshing 

can to some degree be avoided. The method consist of incorporating field 

quantities into radially symmetrical "smoothed particles" whose location and 

size are largely arbitrary, but have to allow for a suitable representation of 

the problem including all the desired details. Particles are created with the 

aid of a scalar function W (r, h) which is called the smoothing kernel with 

core radius h (finite support). 

The function is radially symmetric and normalized , 

J W ( r, h) dr = 1. 

core area 

Typical functions have an inverted bell-like form and are zero for r > h. 

A field quantity A is interpolated from the particles as 

A· 
As (r) = L mj-

1 W (r- rj, h) (3.36) 
. Pj 

J 

where 
• j iterates over all particles 

• mj is the mass of a particle 

• Pj the density 

• rj the position 

• Aj the field quantity at rj. 

The subscript "S" denotes a smoothed quantity. As is seen from (3.36), 
derivatives act only on W. For dynamic simulations, the interaction between 

particles in the form of force fields has to be modeled such that the physical 

behavior of the material (fluid, solid) is correctly approximated. Often, the 

equations are formulated and solved in Lagrange form . 

References 

1. R.N.L. NARASIMHAN , Principles of Continuum Mechanics , J.Wiley & 
Sons, 1993. 

2. H. YAMADA , Strength of Biological Materials , Krieger Publ. Co, NY 1973. 

http://rcin.org.pl



Chapter 4 

Diffusion and Osmosis 

4.1. Diffusion 

Biological tissues are generally of a multiphase nature, whereby water is 

the primary component: about 55%- 70% of the volume of the human body 

consist of water. Accordingly, the transport of nutrients, oxygen, hormones, 

cytokines etc. from the location of uptake (intestine, lung) or production 

(glands, liver) to the cells of the various organs occurs in a water solution; 

likewise, waste products are brought to the excreting organs (kidney, liver, 

lung) through a water phase. Also intracellular transport is essentially fluid­

based although transport by or along carrier or directing molecules is thereby 

dominant. 
Driving mechanisms for transportation in biological systems are based on 

• convection, 

• diffusion, 

• active transport by or along transport molecules, 

• pinocytosis, 

• transport by cells. 

Convection and diffusion are passive in nature (with the exception of 

forced convection, see below) and can be described systematically by well 
known equations (Navier-Stokes equations in case of convection, Fick's law 

for diffusion, see below). In contrast, transport by carrier molecules and 

pinocytosis (vesicle transport through cells) involves active processes which 

are characterized by a great variety of different mechanisms most of which 

defy a "simple" mathematical description. Transportation by cells occurs, 
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e.g., in case of red blood cells which carry oxygen and C02 or with antigen­

presenting leukocytes. Again, such transportation schemes cannot be mod­
eled theoretically in a straightforward manner. 

· While the N avier-Stokes equations were treated in the last chapter, we 

turn our attention in the following to diffusion. Both convection and diffusion 

are of paramount importance for all aspects of physiological processes. While 

convection is driven by pressure gradients, diffusion is due to concentration 

gradients. Because of Brownian motion, more molecules in a homogeneous 

medium diffuse on the average from locations with a high concentration to 
locations where the concentration is lower than in the opposite direction. 

In general engineering practice, convection is thereby considered rapid and 

effective while diffusion is slow. In biology, however, this notion has to be 

applied with care because transport distances to be covered by convection 

and diffusion differ greatly. 
Typical convection distances and times, e.g., in the systemic circulation 

are on the order of centimeters to meters and seconds to minutes, respectively. 

The intravascular volume ( typicaily 5 liters of blood for an adult) circulates 

at rest once per minute because the cardiac output is around 51/ min. (70 ml 

of blood times 70 beats per min.). There is substantial variability, however, in 

that in the case of highly perfused tissues (e.g. brain) typical circulation times 

are around 20 sec. , while for bone and joints it is up to 15 min. The average 

flow velocity in the aorta is ca. 20 em/ sec. at rest with a peak of about 

1.5 m/ sec. Under conditions of heavy exercise, these values are markedly 

increased. 
To obtain an approximate relation for typical diffusion times and dis­

tances, we consider a simple one-dimensional model. We start from an arbi­

trary distribution of a substance in a homogeneous solvent (Fig. 4.1). N(x, t) 

N(x,t) 

X 

FIGURE 4.1. One-dimensional arbitrary (non-equilibrium) distribution of parti­
cles subjected to Brownian motion 
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denotes the concentration of the solute (nun1ber of particles per volume) 
at location x at time t. We ru;sume, that the Brownian motion is transla­

tionally invariant, i.e., the probability that a particle moves from the lo­

cation x to x' during the time interval ll.T due to Brownian motion de­
pends on the one hand only on the distance d = x' - x and is indepen­

dent of x itself, and on the other hand on the time interval ll.T. Let this 

probability be denoted by PD.T (x'- x) . It is furthermore symmetric, i.e., 

PD.T (x'- x) = PD.T (- (x'- x)) because the Brownian motion acts equally 
in both directions. 

At time t' = t + ~T the number of particles at location x' is 

00 

N (x' , t + t.T) = J N (x, t) · Pllr(x'- x) dx. 

-oo 

After the transformation X = x' - x we arrive at 

00 

N (x' , t + t.T) = J N (x'- X, t) · PllT (X) dX. 

-oo 

This relation is now subjected to a Taylor expansion 

( I 8NI N x , t) + ~T at t + ... 
00 

= j (N (x', t) - x8N~x , t) I + ~X2 82 ~(~ , t) I - ... ) PD.r(X)dX. 
X x=x' 2 X x=x' 

-oo 

(4.1) 

Because of the symmetry property, 

00 J XPllr(X)dX = 0 
-00 

such that the second term on the right hand side of Eq. (4.1) disappears. 

Furthermore, since PD.T is a probability, 

00 

J Pllr(X)dX = 1. 
-oo 

http://rcin.org.pl



58 4. DIFFUSION AND OSMOSIS 

Upon discarding higher order terms and retaining only the leading terms, 

Eq. (4.1) reads 

(4.2) 

-oo 

whereby (X2 ) denotes the average of the squared displacement which a par­

ticle undergoes during b,.T. Eq. ( 4.2) is known as Fick's diffusion equation 

(4.3) 

with the diffusion constant 

( 4.4) 

Note: In the derivation of eq. (4.3) it was implicitly assumed that the fre­

quency of collisions associated with the Brownian motion is sufficiently high 

such that there are numerous collisions during the time interval b,.T and 

a true average is reached. 

From a known diffusion constant typical time intervals necessary for diffu­

sive transport over a distance d can therefore be estimated using the relation 

(4.4). Table 4.1 has been derived from tabulated diffusion constants for free 

diffusion in water. 

TABLE 4.1. Typical diffusion constants D of molecules (mol. weight 40, 1000 

and 20 000, respectively) in water. Representative time intervals T which are 

necessary for molecules to diffuse on the average over a distance d were estimated 

from Eq. ( 4.4). 

D d = ..j(X2 ) T mol. 

[m2 / s] [J.Lm] [sl weight 
10-9 10 0.1 40 
10-9 100 10 

10-1 0 10 1 1000 

10-10 100 100 

10-11 10 10 20000 
10-11 100 1000 

It is seen that for short distances, diffusion may be rapid. In biological 

tissues , diffusion distances are determined by the density of capillaries which 
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varies greatly from tissue to tissue. For well perfused tissues , capillary-to­

capillary distances are on the order of 20 JLID to 100 J.Lm, accordingly, diffusion 
is sufficiently effective to keep homeostasis. 

Different conditions are encountered in tissues which are weakly perfused, 

in particular in compact bone where the bone matrix is essentially impenne­

able for fluids. Haversian or lamellar (compact) bone is composed of cylindri­

cally shaped osteons which have a diameter of about 100 J.Lm- 400 J.Lm. Each 
osteon is perfused by a central capillary located in the Haversian canal. The 

bone cells (osteocytes) are distributed throughout the shell-like solid struc­

ture of the osteons and reside in openings within the bone matrix called 

lacunae (diameter a few J.Lm). The lacunae, in turn, are connected by a dense 

net of canaliculi, through which the metabolic traffic of osteocytes occurs 

(Fig. 4.2). Since the canaliculi have diameters of less than about 400 nm and 

osteon-osteon distances are around 30 J.Lm typically, diffusion is by far insuffi­

cient to provide adequate transport capacity. This can be seen from a simple 

one-dimensional model (Fig. 4.3). 

Given the boundary conditions for the concentration c(z, t) of a sample 
substance (z denotes the axial coordinate along the one-dimensional conduit) 

which is introduced at time zero and then kept constant at the inlet of the 
tube, 

FIGURE 4.2. Schematic (not scaled) view of compact bone; (a) Haversian canal 
with central capillary; (b) lacuna, containing osteocyte; (c) canalicular network 
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t < 0 : c(z, t) = 0, 

t > 0: c(z = 0, t) =co, (constant) 

t > 0 : c(z = oo, t) = 0, 

the diffusion equation, 
82c 1 8c 
8z2 D 8t 

is best subjected to a Laplace transform 

fPc s _ 
8z2 = Dc. 

Here s denotes the variable associated with the Laplace transform and c is 
the Laplace transform of c. The boundary conditions read 

- co c(s,z=O)=-, 
s 

c(s,z = oo) = 0~ 

and the solution (after performing the inverse transform) is obtained as 

c(z, t) = coerfc CJm) (4.5) 

where erfc(x) = 1 - erf(x). The flow per unit area, Q = -D dc/dz can be 

calculated from ( 4. 5) as 

using the differentiation properties of the error function. The exponential 

factor for z = 10 ~tm, D = 10-8 cm2 / s, t = 1 s, say, is close to zero. It can be 

FIGURE 4.3. One-dimensional diffusive flow Q; z: axial coordinate of model 

canaliculus 
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shown (Example VI) that bone perfusion is primarily due to forced convec­

tion and not diffusion: As a result of the loading environment to which bones 

are exposed during normal daily activity (walking, working, etc.) the bone 

matrix undergoes small deformations. Since the fluid contained in the lacuna­

canalicular system is nearly incompressible , load-induced pressure gradients 

build up which set the fluids in motion. Load-induced fluid flow or forced con­

vection has been found to be an extremely powerful and affective transport 

mechanism. 

4.2. Osmosis 

A particularly important effect associated with diffusion occurs in sys­

tems which are subdivided into compartments separated by semipermeable 

membranes, i.e. barriers which are permeable selectively for certain molecules 

only. While the solvent, e.g., water can diffuse freely between the compart­

ments through the diffusive barrier, the solute cannot, because, e.g., the 

molecules are too big to penetrate the membrane. Whenever concentration 

differences exist across the barrier, a pressure difference develops in ther­

modynamic equilibrium, called osmotic pressure. It is found that osmosis 

is an important driving mechanism in many biological transport processes. 

In practice, and analysed in the following, an osmotic pressure is observed 
whenever a semipermeable membrane separates two fluid spaces containing 

mixtures with different concentrations, whereby the membrane is permeable 

for the solvent and impermeable for the solute. 
A short derivation of van't Hoff's law, which describes the simplest form 

of osmotic pressure is given in the following (a more general treatment can 
be found in [1) or [2]). Van't Hoff's law is valid for diluted solutions and small 

molecules. 

We consider first a homogeneous system consisting of one substance. Ac­

cording to the second law of thermodynamics, the change of entropy, dS, of 
such a system when subjected to an infinitesimal state change, can be written 

as 

dS ~ Lxkdxk. (4.6) 
k 

Xk thereby denote "intensive" quantities (independent of the amount of ma­

terial such as the temperature T, or the pressure p) while the associated Xk 

are "extensive" quantities (dependent on the amount of material such as the 
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internal energy, U, or the volume, V). The equality holds for reversible pro­
cesses, whereas in case of irreversible state changes, the entropy increases by 

an additional amount. 

If the system can be described by the aforementioned four quantities, 
Eq. ( 4.6) reads 

(4.7) 

In this equation, the entropy appears as a function of the extensive quantities 

U, V as independent variables. Since we will be considering transport pro­

cesses, it is more useful to have a representation with intensive quantities as 

independent variables. This is reached by the following transformation -which 

introduces the Gibbs potential, G, 

G = U +pV -TS. (4.8) 

Upon calculating the total differential, dG, and using (4.7), one obtains 

dG(p, T) ~ -SdT + V dp 

which exhibits the desired form and from which follows, among other, 

acl = v. 
op r 

(4.9) 

(4.10) 

We turn our attention now to homogeneous mixtures of various sub­
stances, i, i = 1, ... , k. The numbers of moles of each substance in the 

mixture, ni, thereby serve as additional extensive quantities. The associated 

intensive quantities , J-Li, are denoted as chemical potential of each substance, 

such that 

dG(p, T, ni) ~ -SdT + V dp + L J-Lini. 
k 

( 4.11) 

It is furthermore useful to relate all intensive quantities for each substance 

to the number of moles, i.e., 

v; = ~~ IP T n · ' 
' ' J 

jf::i 

such that (4.11) can be written as 

dG ~ L [( -sidT + vidp) ni + J-Lidni]. 
k 

(4.12) 

( 4.13) 
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Equation (4.13) shows that the chemical potential, J-li, has the meaning of 
the molar Gibbs potential, i.e., 

(4.14) 

For what follows, we will make use of the pressure dependence of the chemical 

potential of an ideal gas. From 

( 4.15) 

one obtains 

Pi Pi 

/-Li- J-L?(T)j = jvidpl = j RT dp = RTlog (Pi) 
po T=const p Po 

( 4.16) 

Po PO 

where the ideal gas law, PiVi = RT, has been applied; Po denotes some 

arbitrary reference state, while Pi is the partial pressure of the component 
i in the mixture. According to Dalton's law, for ideal gases, the following 

relations hold. 

p = LPi and 
k 

Pi 
p n 

( 4.17) 

Since we consider liquid mixtures we need the pressure dependence of the 
chemical potential of a liquid. This is obtained from the equilibrium between 

the liquid and associated vapor phase of a fluid. When dn moles of the liquid 

phase evaporate into the vapor phase, the Gibbs potential changes according 
to 

dG = (J-L v - /-Lli )dn (4.18) 

whereby /-Lv denotes the chemical potential of the vapor and /-Lli the chemi­

cal potential of the liquid phase, respectively. The Gibbs potential changes 

spontaneously in an irreversible fashion until thermodynamic equilibrium is 

reached, i.e., dG = 0. This implies that the chemical potentials are equal, 
i.e., 

J-L!i = J-Lr I + RT log ( Pi ) 
Po Po 

(4.19) 

if it is assumed that the vapor obeys the ideal gas relation. 
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0 

FIGURE 4.4. U-shaped tube with two compartments separated by a semiperme­
able membraneS. (1) pure solvent; (2) solution, 1r: osmotic pressure difference 

Upon introducing the total pressure p, we obtain 

IL~i = llil + RT (log pi- logpo + logp- logp) 
Po 

= JLfiPo + RT (log(~) + RT (:O)) = JLlt + RTlog (~). (4.20) 

Following Dalton's law ( 4.17), finally one obtains the relation 

( 4.21) 

After these preparatory derivations, we look at the system shown in 

Fig. 4.4. It consists of a U-shaped tube which is separated into two halves by 

a semipermeable membrane at the bottom. The tube is filled with a diluted 
solution and the membrane is permeable for the solvent but impermeable for 
the solute. The one side (side 1) of the tube contains a solution consisting 
of n~~) moles of solute inn~) moles of solvent (n(l) = n~~) + n}:)), while on 

the other (side 2) there is only solvent. It is empirically observed that the 

pressure on side 1 is higher by an amount, 1r, called osmotic pressure, than 

on side 2. 

At equilibrium, the chemical potential of the solvent is the same on both 
sides of the membrane, J..L};), J..L};), respectively, because otherwise fluid is 

exchanged until the Gibbs potential reaches a minimum (in an analogous 

process as is formulated in Eq. (4.17)): 

(2) (1) nls 

( 

(1) ) 

f..Lls (pure solvent) (p) = f..Lls (solution) n(l) 'p + 7r . ( 4.22) 
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Utilizing Eq.(4.20) and (4.15) yields 

( 
(1)) p+7r ( (1)) 

(2) ( ) (1) ) nls (1) j n!s 
f1Is p = J-l~s (p + 1r + RT log n(l) = f-1Is (p) + vdp + RT log n(1) . 

p 

( 4.23) 

Since the molar volume v, of a liquid is approximately constant under the 
pressures of interest here and J-Li;) (p) and J-L}?) (p) are the same, the integral 

in Eq. ( 4.23) equals v1r. Accordingly 

nls nso nso 

( 
(1)) ( (1)) ( (1)) 

v1r = - RT log n,(l) = - RT log 1 - n(1) ~ RT n(l) 

or, since in case of a diluted solution, the total volume V ~ vn(l), 

1r = RT (n~~)) = RT (-c-) (van't Hoff's law). 
V Mso 

(4.24) 

Here lv/80 denotes the molecular weight of the solutes, and c the concentra­

tion , 

c- nso !vfso 

( 

(1) ) 
- v . 

Van't Hoff's law in the form ( 4.24) holds for diluted solutions and solutes 
with small molecular weights. For increasing M 8 , 1r is seen to decrease. Yet , 

the ideal gas approximation is not valid in case of large molecules because in 

such substances the intermolecular potentials cannot be disregarded (in an 
ideal gas, there are no interactions between the particles other than collisions 

causing equilibrium; there are in particular no intermolecular potentials). 

Osmosis still occurs in case of solutions involving large molecules (pro­

teins), but its effect cannot be derived in a straightforward manner. A method 
called virial expansion which is based on a correlation analysis (second or­

der correlations relate to pair-wise interaction of molecules, the third order 

to triple interactions , etc.) allows to expand the osmotic or oncotic pressure 

(sometimes called "oncotic" in order to distinguish it from the previous form) 

according to 

"= RT (;., + A2c
2 + A3c

3 + ... ) . ( 4.25) 

The Ai are called virial coefficients. 
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In the case of blood, where water is the solvent, the osmotic pressure 
caused by the electrolytes in solution (Na+, Ca++, Cl-, etc., ca. 1 g/ 100 ml 

plasma) is about 750 kPa. This enormous pressure does not occur in the hu­

man circulation, however, because the capillaries are generally permeable for 
all molecules of this (small, see below) size (the permeability of larger blood 

vessels is such that osmotic pressures do not develop across the vessel wall). 

An important exception consists of the vasculature of the central nervous 

system where capillaries are largely impermeable for all molecules (blood­

brain barrier; exchange of substances across this barrier is essentially based 

on active transport processes). 
The blood contains also large molecules, viz., the plasma proteins ( molec­

ular weight from some 10 000 up to 300 000 Dalton). As a rule of thumb, 

"small" and "large" refers to a Inolecular weight of less than or more than 

5 000 Dalton. Capillary walls, in particular on the arterial side, including the 
endothelial glycocalix are to a great extent impermeable for large molecules, 

i.e. for proteins. Accordingly, an oncotic pressure develops which for a plasma 

protein concentration of about 7.5 g/100 ml plasma is around 3.3 kPa. This 

is the basis of Starling's hypothesis which represents a simple model for the 

description of capillary exchange in tissues other than the CNS. 

Starling's formula for the fluid flow per unit area through the capillary 

wall J is usually given as 

J = Pc (t:J.p- ct:J.1r) ( 4.26) 

whereby Pc is a parameter characterizing the permeability of the wall, t:J.p 
the hydrostatic pressure difference (difference between the fluid pressure in­

side the capillary and the interstitial space), and t:J. 1r the oncotic pressure 

difference (difference due to the different plasma protein concentration in 
the intra- and extravascular space); £ is a correction factor ("reflection coeffi­

cient") which takes into account effects such as the small leakage of proteins 

through the capillary wall , mostly on the venous side due to large openings, 

called "fenestrations". 
Starling's hypothesis has been substantiated qualitatively in many tissues 

mostly in animal experiments. Nevertheless, the microcirculation is different 

from tissue to tissue and depends largely on the local physiological charac­

teristics. In addition to the passive flow approximated by Eq. ( 4.26), there 

are numerous active transport processes. 
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70 EXAMPLES 

ExAMPLE I. Cyclist trapped in tram rail. The cyclist as well as the bicycle were 

modeled as systems of rigid bodies. Contacts were approximated with the aid of 

a mutual force-penetration algorithm. 

ExAMPLE II. Snapshots of the insertion of a peptide (red-blue-green) into a 

biological membrane (yellow-gray), after 0.25 nsec. (left) , 0.35 nsec (middle) and 

0.42 nsec (right). Above and below the membrane are numerous water molecules. 

For details the reader is referred to A.A. Gorfe , R. Pellarin, A. Caflisch, Membrane 

localization and flexibility of a lipidated ras peptide studied by molecular dynamics 

simulations, J. Am. Chern. Soc. 126 : 15277, 2004. Used with permission. 
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EXAMPLES 

I G FA / Experimental FEM/ Simulation 

EXAMPLE III. Image guided fa ilure analysis: deformation of a trabecular bone 

sample under compressive load as recorded by p,CT (left). Corresponding math­

ematical model , FE simulat ion (right). (Courtesy: R. Muller , ETH Zurich ) 

EXAMPLE IV . Anisotropic heart model : Fiber architecture as determined from 

fiber peeling (left) , corresponding FE model (right ). 

71 
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EXAMPLE V. FE model for injury analysis: thorax and abdomen including inter­

nal organs (left) and whole-body pedestrian impact model (right). 

loaded unloaded 

ExAMPLE VI. Forced convection in compact rat bone: an anesthetized rat was 

perfused systemically for 5 minutes with procion red (inert fluorescent dye, molec­

ular weight 200 Dalton). The lower leg was subsequently subjected to cyclic load­

ing representative for walking (microscopic preparation of bone sample, left) , 

while the contralateral side remained unloaded (right). The effect of load-induced 

perfusion is seen from the intensity of fluorescence (magnification x 1000). 
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