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Abstract 
The upper forest limit is principally controlled by climate factors, mainly temperature but locally also other 
factors, such as snow avalanches, debris flows, and wind throw. Therefore, the timberline course may be use 
as a proxy of these drivers. The aim of the study was to employ the morphometric features of the upper for-
est limit for remote detection of avalanche paths. We introduced the Morphometric Avalanche Index (MAI), 
which combine simple parameters such as: Perimeter Development, Altitudinal Difference, Elongation Ratio, 
Area, and the existence forest patches. This tool was tested in four valleys in the Tatra Mountains, wherein 
103 known avalanche paths. The employment of MAI resulted in remote identification of 90% of avalanche 
paths existing and acknowledged in this region. Additionally 28 avalanche paths that had not been previously 
indicated as such were detected. 
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Introduction

The boundary between the forest and the 
open space above it is recognised as one 
of the most important natural boundaries 
(Troll 1972, 1988; Holtmeier 2009; Körner 

2012). The division between dense wood veg-
etation and non-forest area is related to sev-
eral borderlines: biological (Körner 2003, 
2004), climatological (Hess 1965; Walter & 
Medina 1969; Holtmeier 1974, 2005), and 
geoecological (Kotarba & Starkel 1972; Troll 

GP_2016_1.indb   91 2016-03-21   12:25:42



92 Barbara Spyt • Ryszard J. Kaczka • Michał Lempa • Zofia Rączkowska

Geographia Polonica 2016, 89, 1, pp. 91-111

1972; Kotarba 1992). At a given location, 
it results from past and recent interactions 
among different natural factors (climate, 
relief, soil) (Wright & Mooney 1965; Bosheng 
1993) natural processes (snow avalanches, 
debris flows, wind, fires, insect outbreaks) 
(Walsh et al. 1994, 2003), and human inter-
ventions (Adamczyk et al. 1980; Price 1981; 
Sarmiento 2002; Kozak 2005). Although the 
character and intensity of these drivers vary, 
in most cases it is possible to identify the pre-
dominant one shaping the line at a particular 
location (Zientarski 1985; Jodłowski 2007). 
Therefore, the borderline could be recog-
nised not only as a product of different driv-
ers (Allen & Walsh 1996; Holtmeier 2005) but 
also as a proxy providing information about 
the character and intensity of the dominant 
ones (Veblen et al. 1994; Kulakowski et al. 
2006). This task requires the utilization 
of a detailed representation of the forest limit. 
Among several, broad or specified definitions 
of the borderline between a dense forest and 
a non-forest area, the terms timberline (Imhof 
1900; Marek 1910; Körner 2012) or empiri-
cal timberline (Fries 1913; Sokołowski 1928; 
Holtmeier 2009) and tree line seem the best 
such proxies.

The study of timberline features is usually 
limited to the investigation of the dynamics 
of the tree dimensions (Paulsen et al. 2000; 
Kullman 2010) and the species composition 
of the forest (Walter 1968; Armand 1992). 
The timberline zone is widely explored by den-
drochronologists as a location where the 
strongest climatic signal may be derived from 
tree rings (Büntgen et al. 2007, 2008; Lara 
et al. 2005; Kaczka et al. 2015). Studies of the 
geometry of the line constituting the forest 
limit are rare (Treml & Banaš 2000; Treml 
2007; Guzik 2008; Shandra et al. 2013) and 
usually focused on a small area (Czajka et al. 
2012; Kaczka et al. 2015; Chhetri 2015). How-
ever, recent developments of remote sensing 
and GIS techniques allow easy access to high 
quality orthophotomap and create an oppor-
tunity to perform complex computations 
of relatively huge datasets within a short time 
(Zhao et al. 2014; Czajka et al. 2015b).

Geomorphometric tools are often 
employed in earth sciences, in research 
on geomorphological processes and trans-
formations of relief (Pike 2000). Tools of auto-
matic detection are used in the analysis of: 
i) underwater debris flows (Micallef et al. 
2007); ii) landslide flow direction (Niculiţă 
2015); iii) hydrographic networks and direc-
tions of water runoff (Tribe 1992); iv) erosion 
processes (Buccolini & Coco 2013); and v) 
an avalanche release zone in the Swiss Alps 
(Maggioni et al. 2002) and one in the area 
of Kasprowy Wierch in the Tatra Mountains 
(Chrustek 2008).

The field observations and the study 
of recent and historical cartographic mate-
rials and scientific reports lead to the state-
ment that snow avalanches are the pre-
dominant factor driving the course of the 
timberline in several mountains of the tem-
perate zone (Ives et al. 1976; Carrara 1979; 
Butler et al. 1992; Walsh et al. 1994; Veblen 
et al. 1994), including the Tatra Mountains 
(Czajka et al. 2012; Kaczka et al. 2015). This 
process is responsible for local but significant 
lowering of the timberline course (Fig. 1A 
and B) and fragmenting of the forest body 
into separate patches of forest (Fig. 1C). 
Therefore, the geometry and spatial pat-
terns of the timberline may be linked with 
the destructive power of the avalanche (Bebi 
et al. 2009; Kaczka et al. 2015; Czajka et al. 
2015c; Lempa et al. 2016). The question 
whether these features may be quantified 
and used as a proxy to detect and analyse 
avalanche paths was the inspiration for the 
study presented below.

Study area

The study area is located in the Tatra Moun-
tains, the largest and highest massif of the 
Carpathian arc. The area of the Tatra Moun-
tains covers 785 km2, and its highest peak 
is Gerlachovský štít at 2655 m a.s.l. There 
are more than 3,800 potential avalanche 
paths there (Žiak & Długosz 2015). The tool 
detecting avalanche paths influencing the 
timberline was tested in four major valleys. 
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The selected valleys in the Western Tatras 
were Kościeliska Valley and Žiarska Valley, 
and in the High Tatras, Mengusovská Valley 
and Rybi Potok Valley. The studied valleys 
are situated symmetrically in relation to the 
main ridge and characterised by northern 
and southern exposure (Fig. 2). The analyses 
were focused on the upper parts of the val-
leys, above 900 m a.s.l., in particular on the 
zone of the timberline (1030-1640 m a.s.l.). 
In the study area, there are 103 reported ava-
lanche paths (over 3.5 km2) exerting a direct 
impact on the spruce forest (Map 1934; 
Kłapowa 1976; Map 1999/2000; Žiak & 
Długosz 2015). Most of them were observed 
in Kościeliska Valley (55), while the lowest 
number was observed in Mengusovská Valley 
(7) (Tab. 1).

Materials and methods

After preliminary analyses of morphologi-
cal and morphometric characteristics of the 
known avalanche paths in the area of the 
Tatras, five morphometric parameters were 

proposed. Four of them describe the geomet-
rical characteristics of the upper limit of the 
forest, and one is associated with its altitude 
above sea level.

The input data was derived from the 
recent orthophotomaps and Digital Eleva-
tion Model. The linear objects were cre-
ated by mapping limits of the subalpine 
forest using high resolution satellite ortho-
photomaps from DigitalGlobe resources 
(resolution of 0.5 m, accuracy of 10.2 m) 
taken in 2009 (Mengusovská Valley and Rybi 
Potok Valley) and 2010 (Žiarska Valley and 
Kościeliska Valley). Orthophotomaps are 
made available through the service of World 
Imagery, ArcMap 10.2 registered by ESRI. 
The orthophotomaps are available for 
licensed ArcMap users. Numerical elevation 
data were obtained from the global, open 
source of the ASTER GDEM-2 model. ASTER 
GDEM is a product of METI and NASA. The 
horizontal resolution of the model is 72 m, 
and the vertical error for mountain regions 
is +7.4 m (Tachikawa et al. 2011). Most of the 
data necessary for following the procedure 

Figure 1. The course of the timberline in the upper part of Rybi Potok Valley (A); view of forest on the 
slopes of Żabi peak (B) and Szpiglasowy Wierch peak (C). 23% of the timberline is driven by avalanche 
processes. This leads to the significant lowering of the timberline (B) or creation of patches of forest 
separated by the avalanche paths (C) (Photos by Ryszard J. Kaczka)
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of semi-automatic detection of avalanche 
paths are accessible from freely available 
sources. 

Spatial analyses were performed using 
the ArcMap 10.2 program by Environmen-
tal Systems Research Institute (ESRI). Similar 
analyses may be easily made using other 
GIS software, which may, however, require 
minor modifications of the technical aspects 
of the algorithm employed for the presented 
analyses.

The first step was to obtain the geometry 
of the upper limit of the forest data. Photo 
interpretation of the orthorectified satellite 
images constituted the basis for determining 
a detailed course of the timberline (TML) and 
a more general course of the tree line (TL), 
both as linear objects. For the purpose of the 
analyses, timberline was defined as the actu-
al extent of a dense forest with a tree height 
of at least 8 m and a density above 40% (Fries 
1913; Sokołowski 1928; Rubner 1953; Plesnik 

Figure 2. Location of the research area in the Tatra Mountains: KV – Kościeliska Valley; RV – Rybi Potok 
Valley; MV – Mengusovská Valley; ZV – Žiarska Valley. The shaded relief was produced from GDEM

Table 1. Basic geographical characteristics of the studied valleys

Study area Kościeliska 
Valley

Rybi Potok 
Valley

Mengusovská 
Valley

Žiarska 
Valley

Code KV RV MV ZV

Location Western Tatras High Tatras High Tatras Western Tatras

Aspect Northern Northern Southern Southern

Highest peak [m a.s.l.] Starorobociański 
Wierch (2,173)

Rysy (2,499) Vysoka (2,547) Baranec (2,185)

Minimum altitude [m a.s.l.] 1,035 1,305 1,405 970

Valley area [km2] 35.2 9.7 15.6 18.4

Land cover Subalpine forest km2 15.1 1.5 1.0 5.4
% 43 15 6 29

Dwarf mountain 
pine zone

km2 5.5 1.2 2.8 4.1
% 16 12 18 22

Alpine zone km2 14.6 7.0 11.9 8.9
% 41 72 76 48

Avalanche 
paths*

Number 55 21 7 20
Area [km2] 1.61 0.53 0.24 1.14

* The total area of avalanche paths reaching the upper limit of the forest – according to reference materi-
als (Map 1934; Kłapowa 1976; Map 1999/2000; Žiak & Długosz 2015).
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1959; Guzik 2008; Czajka et. al 2015a), 
whereas tree line was defined as the line con-
necting the uppermost dense forest, which 
often represents only a potential borderline 
(Sokołowski 1928; Ellenberg 1958, 1959; 
Guzik 2008; Holtmeier 2009). The tree line 
as a whole is a hypothetical line and express-
es the maximum extent of the climatic range 
of the forest (in the case of the Tatra Moun-
tains – thermal) not modified by other natural 
(avalanches, debris flows, wind fallen trees, 
etc.) or anthropogenic (pastoralism, tourism 
infrastructure, forestry clearance) factors 
(Sokołowski 1928; Holtmeier 2009; Körner 
2012) (Fig. 3A).

The linear objects representing the tree 
line and the timberline obtained through 
photo interpretation were combined into one 
linear layer (Fig. 3B). The non-forest areas 
between the potential line of the maximum 
extent of the forest (tree line) and its actual 
position (timberline) were defined and con-
verted into polygon objects (Fig. 3C). These 
polygons indicate the loss of the forest being 
the result of operating non-climatic factors 
and stationary barriers e.g. rocky ridges 
(Holtmeier et al. 2003; Van Bogaert et al. 
2011). The altitudinal and geometric char-
acteristics were assigned to the obtained 
polygons. Each of the polygons was given 
an altitude coordinate a.s.l. (Z) acquired 
from GDEM-2 data by using the Interpolate 
shape tool (Fig. 3C). This procedure consisted 

of transforming two-dimensional polygons 
into three-dimensional terrain models (3D 
polygons). This measure was used to identify 
non-forest areas as elements of the environ-
ment closely correlated with the terrain. 
Furthermore, basic parameters, such as the 
area (A) and perimeter (P) were assigned 
to the polygons.

For each of the generated polygons, Alti-
tudinal Difference above sea level was calcu-
lated using the formula (Fig. 4A):

AD = Maxaltitude – Minaltitude 

This indicator, along with the Elongation 
Ratio, helps differentiate the polygons locat-
ed parallel to the slope inclination from the 
polygons oriented perpendicular to the slope 
inclination. Both of these features facilitate 
determining the position of non-forest poly-
gons in relation to the slope.

The next step was to determine the shape 
of the individual non-forest areas, which was 
done using indexes describing the ratio of the 
polygon elongation and the complexity of the 
polygon shape (Figs. 4B and 4C).

The Elongation Ratio indicates how much 
the shape of the polygon is different from the 
shape of the circle. It is a measure adopted 
from hydrology, wherein it defines the ratio 
of the elongation of the catchment (Ba-
sin Elongation Ratio) (Schumm 1956). This 
parameter is calculated through the following 
formula:

Figure 3. The spatial difference between the course of the tree line and the timberline (A). An example 
of merging of linear objects (B) into the polygons representing the non-forest area resulted from the 
reduction of the forest extent (C)

GP_2016_1.indb   95 2016-03-21   12:25:44



96 Barbara Spyt • Ryszard J. Kaczka • Michał Lempa • Zofia Rączkowska

Geographia Polonica 2016, 89, 1, pp. 91-111

ER = 
Lmax

2
A
π√

ER – polygon Elongation Ratio
A – polygon area 
Lmax – maximum polygon diameter

The parameter values are in the range 
of 0 to 1, where 1 is a circle-shaped polygon 
(Fig. 4B). The indicator of Elongation Ratio 
was calculated using the tool of polygon 
thickness in the package of EasyCalculate10, 
which is an add-in control to ArcMap 10 ESRI 
(Tchoukanski 2012). The A and Lmax parame-
ters are calculated through that tool.

The indicator of Perimeter Development 
(PD) (Fig. 4C) is a modified measure also com-
ing from hydrology (indicator of shoreline devel-
opment) (Hutchinson 1957; Hakanson 1981). 
It allows determining the degree of the com-
plexity of the perimeter, here the shape of the 
polygon.

PD = 
2

P
Aπ√

PD – Perimeter Development
P – perimeter of the polygon
A – area of 2D polygon

On the basis of the field observations 
and map analyses the frequent association 
of separated forest patches within avalanche 
paths was identified (from 7 in Mengus-
ovská Valley to 29 in the Rybi Potok Valley) 
(Fig. 1C). This takes place when two or more 
avalanche paths merge into a larger one. The 
merging of the tree line and timberline line 
objects results in creating a spatial pattern 
of the forest polygons accompanied by non-
forest polygons. The forest polygons occur-
ring in such patterns were so-called Inner 
Forest polygons (IF) (Fig. 4D). The complexity 
of the configuration of forest and non-forest 
polygons increases with the number of merg-
ing avalanche paths. In order to semi-auto-
matically determine the occurrence of inner 
forest polygons, two tools of EasyCalculate10 
were employed: shape_CountAllParts and 

polygon_CountTrueParts. The first one calcu-
lates the number of the polygon segments, 
while the second one counts fragments of the 
polygons to the exclusion of cavities (non-
forest polygons). The result of the logical 
function of the difference between these two 
indicators points out the occurrence of inner 
forest polygons (IF > 1) or the lack of them 
(IF = 0).

Besides the four morphometric param-
eters described above, the area of the non-
forest polygon was selected as an additional 
indicator. The polygons of a larger surface 
area are more likely to be of avalanche origin. 
The smallest of them (the total of 10% in all 
4 valleys), characterised by an area < 15m2, 
are most likely artefacts resulting from the 
merger of two empirically drawn lines: tim-
berline and tree line. These types of polygons 
are excluded using weighted index.

Compilation of all the parameters (Area, 
Perimeter Development, Elongation Ratio, 
Altitudinal Difference and Inner Forest) 
allows determining the probability of the 
avalanche influence on the difference, which 
arose between TL and TML. For the model 
calibration 50 locations where the timberline 
is distinctly lower in comparison to the tree 
line was chosen. 25 of these locations are 
confirmed avalanche paths, and the remain-
ing 25 are locations where no avalanche 
activity was ever recorded. The selection was 
random and the only criterion was in rela-
tion with avalanches. The variability of each 
parameter was analysed in both groups and 
the threshold values for each parameter was 
assessed (Fig. 5). Statement of all thresholds 
for all parameters allowed for initial interpre-
tation of the origin of non-forest polygons 
and their division into four groups: avalanche, 
likely avalanche, unlikely avalanche and no-
avalanche polygon. The parameterisation 
process and model calibration were done 
using a trial and error method, while the 
results were subject to expert validation (Sta-
cey & MacGregor 1999).

The next step was to increase the unifica-
tion of the results by eliminating two interme-
diate groups and leaving only two definitive 
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Figure 4. Examples of four morphometric parameters used for describing non-forest polygons: A – 
Altitudinal Difference (AD); B – Elongation Ratio (TH); C – Perimeter Development (PD); D – Inner Forest 
Polygons (IF) 
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options: avalanche polygons and no-ava-
lanche polygons. The weighting procedure 
was performed. The threshold values are given 
four weights: two weights informing about the 
avalanche origin of the polygon (weight 2 and 
1) and two describing other polygons (weight 
–1 and –2) (Fig. 6). It was decided not to use 
neutral weight 0 to clearly separate the poly-
gons of varying origin. The sum of the weights 
of the five parameters enabled calculating the 
Morphometric Avalanche Index (MAI). 

The values of MAI for the 389 analysed 
polygons are in the range from –4 to 9. Empir-
ical tests were carried out for all the poly-
gons to establish the reliable threshold value 
of MAI (Fig. 6), which distinguishes non-forest 
areas resulting from avalanche processes 
(MAI ≥ 4) (and subsequently called the ava-
lanche polygon) from those related to other 
factors (MAI < 4) (no-avalanche polygon).

Because generating non-forest polygons 
is sensitive to tree line/timberline position, 
not to the existence of actual, individual ava-
lanche paths, the final stage involved divid-
ing, if necessary, polygons into the individual 
avalanche paths. This step is vital because 
the whole process often produces polygons 
with more than one avalanche path. In the 
study area, 24% of all the avalanche poly-
gons represent two or more neighbouring 
avalanche paths (Fig. 7). The process of 

identifying whether the polygon is associated 
with one or several paths and sorting out the 
individual paths was based on:
• the shape of the polygon, 
• existence of IF, and 
• the analyses of relief (Numerical elevation 

data were obtained from the global, open 
source of ASTER GDEM-2 model).
As reference data the cartographic docu-

mentations of known avalanche paths were 
employed: 
• a winter ski map of the Polish Tatras from 

1934, at a scale of 1: 20,000 (Map 1934);
• maps from “Avalanche danger in the Polish 

Tatras” by Kłapowa (1976) resulting from 
field mapping in the winter of 1969/1970;

• the tourist map of “the Polish Tatras – win-
ter version”, at a scale of 1: 25,000, with 
avalanche paths marked on the day of 28 
January 2003 (Map 1999/2000);

• maps of potential avalanche paths for the 
entire Tatras (Žiak 2012; Žiak & Długosz 
2015).
The verification procedure consisted 

of confronting the polygons indicated by the 
MAI with ones indicated on the maps. The 
results of the verification fell into five catego-
ries (Fig. 8):
• polygons detected by the algorithm 

as non-avalanche ones (MAI < 4) and con-
firmed as such by the cartographic data,
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Figure 7. Avalanche polygon and avalanche path: complex avalanche polygon compounded of five 
avalanche paths (A); avalanche polygon composited from two avalanche paths (B); typical, singular, 
elongated avalanche polygon (C)
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• polygons detected by the algorithm 
as non-avalanche ones (MAI < 4) and indi-
cated by other sources as real avalanche 
paths. Therefore these so-called undetect-
ed avalanche polygons were recognised 
as an error,

• polygons detected by the algorithm 
as avalanche ones (MAI ≥ 4) and indicated 
as such on the maps,

• polygons detected by the algorithm 
as avalanche ones (MAI ≥ 4), not indicated 
on the maps, however exhibiting other 
features of avalanche paths. These are 
potential locations wherein avalanche haz-
ard exists but has not yet been indicated 
on the maps,

• polygons detected by the algorithm as ava-
lanche ones, although not confirmed 
by cartographic, relief and other sources. 
Therefore, these so-called false avalanche 
polygons were recognised as an error.

Results and discussion

Within the four studied valleys, totals 
of 185 km of timberline and 43 km of tree 
line were determined. The proportion of the 
length of these lines (TL represents only 23% 
of TML) indicates how strongly non-climatic 

factors shape the upper limit of the forest 
in the study area. This influence is the most 
significant in Žiarska Valley and Kościeliska 
Valley and the weakest in Mengusovská Val-
ley (respectively 24%, 25% and 41%). These 
observations coincide with the number 
of avalanche paths per valley (Fig. 9). The dif-
ferences are the result of many variables, e.g. 
the area of study, the shape of the valley, the 
exposure of the valley and the altitudinal dif-
ference between the lowest and the highest 
point. The described changes in the timber-
line may also be caused by other processes 
such as debris flows and rockfalls. However, 
in the whole Tatra Mountains, including the 
studied valleys, merely a few of them bring 
about alteration of the boundary of the sub-
alpine forest (Jurczak et al. 2012; Długosz 
2015). Therefore, in the examined cases mass 
movements can be excluded as such factors, 
and it can be presumed that in the study 
area avalanches are the most important non-
climatic factor modifying the course of the 
upper limit of the subalpine forest. In his 
detailed studies Guzik (2008) demonstrated 
that timberline changes in the Polish Tatras 
were intensive but locally. It is mainly up-shift 
of the timberline and tree line and increase 
of forest area without any significant vertical 
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direction. Those changes are mainly connect-
ed with modification of land use; neverthe-
less, pronounced warming is observed in the 
studied region (Żmudzka 2011). 

In the study area, the non-forest area 
between the tree line and the timberline 
consists of 389 individual polygons of a total 
area of 4.3 km2 (Fig. 10). The highest num-
ber of the non-forest polygons was identified 
in Kościeliska Valley (176), and the smallest 
in Rybi Potok Valley (52) (Fig. 11).

The surface areas of particular poly-
gons exhibit substantial differences in size 
(Fig. 12A), from very small (less than 100 m2) 
to the polygons of an area of 0.8 km2 (Žiarska 
Valley). Most of them, however, have a sur-
face area within the range of 147-3775 m2. 
In all of the valleys, non-forest polygons con-
taining inside patches of forest (inner forest 
polygons) were also observed. That type of 
avalanche path appears in all study areas. 
Inner forest polygons are presented on convex 
forms localized between parallel paths. The 
indicator of Perimeter Development, describ-
ing the complexity of the shape, ranged 
from 1.4 to 2.2 for the majority of the poly-
gons (54%) (Fig. 12B). The PD values outside 
this range were used to determine the nature 
of the polygon. High values of PD (> 3; 14% 
of the cases) were obtained for the polygons 
of the avalanche origin but also for those 
resulting from human activities (e.g. Fig. 11a). 
Anthropogenic polygons are in many cases 
characterized by elongated and complex 
shapes. Such shapes are an effect of clearings 

on ridges or high altitude glades or of active 
pasturing in the forest (the last has not 
occurred recently in the Tatras). They could 
be differentiated from avalanche polygons 
by the Altitude Difference parameter. The 
polygons characterised by low PD values 
(< 1.4; 21% of their amount) do not meet the 
criterion of the shape empirically identified 
as associated with avalanches.

On the basis of the value of the altitudinal 
difference calculated for non-forest polygons, 
65% of them were excluded as those, which 
had not resulted from the avalanche activity. 
The small area (< 35 m) is common feature 
of this group of polygons (Fig. 12C). 
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The identification of the polygons associ-
ated with avalanches was greatly facilitated 
by use of the extreme values of the indicator 
of Elongation Ratio (Fig. 12D). The polygons 
of ER values > 0.4 (a shape similar to a cir-
cle) represent 40% of all the polygons. The 
polygons exhibiting such a shape are excluded 
from the group associated with avalanches. 
In contrast, 25% of the polygons are character-
ised by ER value < 0.2 indicating an elongated 
shape, which, with a high degree of probabil-
ity, was the result of the activity of avalanches.

Based on the results of the calculations 
of the weight index of MAI constituting the 
compilation of the 5 parameters, 97 non-forest 
polygons (25% of all the polygons) were iden-
tified as avalanche associated. They occupy 
a total surface of 3.92 km2 (91% of all the 
non-forest polygons) (Tab. 2). Verification 
of the algorithm showed that it correctly iden-
tified 52 avalanche polygons (Tab. 2), which 
represent 90% of all the avalanche paths 
indicated in all the reference materials, and 
stand for 97% of the area of all the avalanche 
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paths. In two valleys (Rybi Potok Valley and 
Žiarska Valley), the algorithm exhibited 100% 
accuracy.

Among the other polygons are those 
whose relationship with avalanches is impos-
sible or questionable. The first ones comprise 
deforestation resulting from logging, wind 
throw or represent a low position of the tim-
berline associated with orographic barriers. 
The second ones are composed of a hetero-
geneous group of the areas whose morpho-
metric characteristics did not allow for clear 
classification. 

In 10% of the studied polygons, MAI 
results did not point out the avalanche origin 
of the polygons, which actually are avalanche 

paths. Such undetected avalanche polygons 
represent 3% of the area of all the analysed 
polygons. These polygons are characterised 
by a small size (an area less than 0.008 km2), 
rounded (ER < 0.31) and poorly developed 
shape (PD < 1.8) as well as a small difference 
in altitude (AD < 75 m) (Fig. 13A-D). Their 
MAI scores ranged from –2 to 3 (Fig. 14), 
well below the adopted threshold. Such cases 
of avalanche polygons are rare on the scale 
of the Tatra Mountains, which entails difficul-
ties in the empirical calibration of the range 
of MAI values ensuring their detection. This 
applies mainly to the avalanches whose run-
out zone only slightly overlaps the timberline, 
thus lowering the timberline by not more 

Table 2. The results of employing the Morphometric Avalanche Index (MAI) for detecting avalanche 
paths in individual valleys.

All avalanche 
detections 

Valid avalanche detection Errors 

confirmed 
avalanche 
polygons

new avalanche 
polygons

false 
avalanche 
polygons

undetected 
avalanche 
polygons

Kościeliska Valley

 Avalanche polygons 53 32 8 5 8
 Avalanche paths 68 47 8 5 8
 Area [km2] 1.82 1.59 0.11 0.10 0.02
 % of the avalanche polygons area 100.0 87.7 6.1 5.3 0.9

Rybi Potok Valley

 Avalanche polygons 14 9 5 - -
 Avalanche paths 27 21 6 - -
  Area [km2] 0.58 0.53 0.05 - -
 % of the avalanche polygons area 100.0 91.0 9.0 - -

Mengusovská Valley

 Avalanche polygons 10 4 4 - 2
 Avalanche paths 11 5 4 - 2
 Area [km2] 0.30 0.15 0.06 - 0.09
 % of the avalanche polygons area 100.0 51.0 19.4 - 29.6

Žiarska Valley 

 Avalanche polygons 20 7 10 3 -
 Avalanche paths 33 20 10 3 -
 Area [km2] 1.23 1.14 0.08 0.01 -
 % of the avalanche polygons area 100.0 93.0 9.2 0.8 -

Sum

 Avalanche polygons 97 52 27 8 10
 Avalanche paths 139 93 28 8 10
 Area [km2] 3.92 3.45 0.26 0.11 0.10
 % of the avalanche polygons area 100.0 88.1 6.5 2.7 2.7
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than 35 m (Fig. 11b). Among undetected ava-
lanche polygons, there is only one of a large 
surface area (0.08 km2). The morphometric 
parameters of this polygon also differ from 
the typical characteristics of the local ava-
lanche polygon. It is an uncommon type 
of the avalanche path of a little inclination 
and a shallow, fan-shaped area of the runout 
zone (Fig. 11c). This unique type of avalanche 
path was observed only in Mengusovská 
Valley. The highest number of undetected 
avalanche polygons was recorded (8 of 10) 
in Kościeliska Valley, although it represents 
less than 13% in this valley and 1% of all the 
studied avalanche polygons (Tab. 2). In Men-
gusovská Valley, wherein the lowest number 

of avalanche paths is present, the algorithm 
indicated 2 undetected avalanche polygons. 
In Žiarska Valley and Rybi Potok Valley, errors 
of this type did not occur.

The second type of error, false avalanche 
polygons, constituted 10% of the analysed 
cases (0.11 km2 representing 2.7% of the area 
of the studied polygons). False avalanche 
polygons are generated when average val-
ues of 4 parameters and a high value of one 
is obtained (Fig. 11A-D): a large altitudinal dif-
ference (AD > 100 m2; 2 polygons), a strongly 
elongated shape (ER < 0.2; 2 polygons), 
or a significant development of the perimeter 
(PD = 3.3; 1 polygon). For this reason, their 
values of MAI are not very high, although 
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still above the threshold ranging from 4 to 6 
(Fig. 14). None of the misclassified polygons 
comprised inner forest patches, which seems 
to be an essential feature of the polygons 
of avalanche origin. Errors of this type were 
observed only in Kościeliska Valley (5 poly-
gons) and Žiarska Valley (3 polygons).

28 polygons (21% of all the avalanche 
polygons, Area = 0.26 km2) were detected 
as avalanche polygons, which had not been 
indicated on any reference maps (Tab. 2). 
These polygons are characterised by values 
of MAI from 5 up to the highest 9 (Fig. 14). 
In each valley, from 4 (Mengusowská Valley) 
to 10 (Žiarska Valley) previously unidentified 
avalanche paths are present (Tab. 2). Half 
of them are typical in terms of morphometry: 
extended avalanche paths of a steep inclina-
tion and a varied shape (Fig. 13A-D, Fig. 11d). 
The remaining group of the new avalanche 
polygons is related to the dyna-mics of the 
process of avalanches. Based on the analysis 
of the limit of the forest, it was determined 
that the recent course and extent of ava-
lanches (2009-2010) is different from those 
existing on earlier maps (1934, 1976) (Czajka 
et al. 2012; Kaczka et al. 2015). The obtained 
results might be also related to the inaccurate 

indications of avalanche paths on the exist-
ing maps (Czajka et al. 2010). The field obser-
vations, analyses of the historical timberline 
location, and analyses of the relief within 
the avalanche polygon and above it pointed 
to the conclusion that these polygons are 
of actual avalanche origin. 

The final stage of analyses was deriving 
information about the actual avalanche paths 
from polygon analyses. 131 avalanche paths 
exerting direct impact on the forest of the sur-
face of 3.81 km2 were detected. They consti-
tute approximately 42% of all the avalanche 
paths in the study area. In terms of morpho-
metry, the majority of the avalanche paths 
are vast elongated areas of orientation per-
pendicular to the slope, varied shapes and 
significant inclination. Within their range, 
there are frequent patches of forest separat-
ed from the subalpine forest by gullies. The 
spatial correlation of the non-forest polygons 
with the reference to avalanche paths proved 
that 57 confirmed avalanche polygons rep-
resent 93 avalanche paths (Fig. 15). Some 
of the detected avalanche paths, in the lower 
part of their course, merge to form one major 
avalanche path (Fig. 3). MAI index identified 
90% of the avalanche paths being marked 
on the cartographic reference materials. 
It also correctly detected all the avalanche 
paths typical in terms of morphometry. 
A major achievement of this method is iden-
tification of new avalanche paths, unmarked 
in the previous cartographic materials, which 
constitute 21% of all avalanche paths in the 
four studied valleys. The real avalanche char-
acter of the indicated paths has to be posi-
tively verified by independent sources, e.g. 
field observations.

Challenges and possible solutions

The greatest challenge of the established 
method is detecting large, convex and shal-
low avalanche paths in the shape of a fan, 
and small avalanche paths, which only slightly 
modify the TML forest. One possible solution 
is to include additional morphometric param-
eters, e.g. the shape of the slope (concave 
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or convex) located within the polygon and 
above it. This would exclude errors arising 
from classifying small areas within a small 
ridge into the avalanche group, and could 
simultaneously allow detection of extensive 
and convex accumulation cones in the bot-
toms of the valleys, above which troughs 
of a concave shape of the slope are present.

It should be also noted that the robust-
ness of the proposed method depends on the 
accuracy of input data, especially linear 
objects representing the timberline and the 
tree line, determined through photo interpre-
tation. In turn, their accuracy depends on the 
resolution of satellite or aerial images as well 
as the on the preciseness and expertise of the 
person performing their orthorectification 
and photointerpretation (Kaczka et al. 2015).

Improvement of the method could also 
include developing a tool for semi-automati-
cally dividing the positively verified and new 
avalanche polygons into avalanche paths.

The implementation of the MAI algorithm 
in regions other than the Tatra Mountains 
might also require the calibration of thresh-
old in local environments.

Conclusions

• The combined course of the treeline and 
the timberline are a good indicator of ava-
lanche paths.

• The MAI index (Morphometric Avalanche 
Index) incorporating five morphometric 
parameters was developed. Applying MAI 

resulted in the detecting of 71% (Mengus-
ovská Valley) to 100% (Rybi Potok Valley 
and Žiarska Valley) avalanche paths indi-
cated in the existing cartographic materi-
als. In total, for all four tested valleys 90% 
of the avalanches were indicated.

• It was possible, by using the algorithm, 
to point out some new locations where ava-
lanches have not been recorded but prob-
ably occurred. The new method detected 
from 12% (Kościeliska Valley) to 36% (Men-
gusovská Valley) more avalanche paths 
than are indicated on the existing maps 
and other sources of information. 

• In the studied area, the biggest challenge 
was to detect big and shallow, fan-shaped 
avalanche paths and small avalanche 
paths that only slightly encroach the sub-
alpine forest. This kind of the avalanche 
path constitutes ~3% of the whole studied 
population.
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