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Abstract

The thesis presents theoretical investigation of spin relaxation in magnetic nanostructures

within the quantum-mechanical approach, including novel methods developed in this PhD pro-

ject. The Gilbert damping constant α which enters the Landau-Lifshitz-Gilbert (LLG) equation

describing the dynamics of magnetisation is found for bulk ferromagnetic transition metals and

various ultrathin magnetic metallic layered systems employing the torque-correlation model by

Kamberský. The expression for α is generalised to an arbitrary direction of magnetisation.

Calculations are performed within a realistic tight-binding model including the spin-orbit inter-

action and their efficiency is remarkably improved by introducing finite temperature into the

electronic occupation factors and subsequent summation over the Matsubara frequencies. Fur-

thermore, two alternative formulas, not limited to the TB model, for α in terms of the Green

function are derived. The results are reported for bulk ferromagnets, ferromagnetic films, ferro-

magnet/nonmagnet (Co/NM) bilayers (NM=Cu, Pd, Ag, Pt and Au) as well as NM/Co/NM,

Co/NM1/NM2 trilayers, L10 Co/NM superlattices (ordered alloys) and [Co/NM]N multilayers.

The obtained dependence of α on the electron scattering rate for bulk Fe, Co and Ni is in

good agreement with the previous ab initio calculations. The dependence of α on Co and NM

thicknesses and the effect of the nonmagnetic caps are investigated and found to be in accord

with experiment. The calculated α in Co/NM bilayers and Co/NM1/NM2 trilayers is enhanced

due to adding the nonmagnetic caps, particularly in the case of NM, NM2=Pd and Pt. This

enhancement is explained by the large spin-orbit coupling of such NMs, combined with their

large density of states at the Fermi level ϵF. The enhancement in Co/NM1/Pt trilayers is shown

to decay with the increasing thickness of the spacer NM1=Cu and Ag. Nonlocal origin of the

damping enhancement is proved by visualising large contributions to α from the nonmagnetic

part. Contributions to α from individual atomic layers and its k-space distribution are determ-

ined and analysed in several layered systems. It is revealed that in the Co/NM bilayers including

NM metal with the d band crossing ϵF the major contributions to the Gilbert damping come

from a few atomic layers in the NM close to the Co/NM interfaces, whilst for those with NM d

bands below ϵF the main contributions originate from the Co part. Investigations in the k-space

show the existence of hot spots in the Brillouin zone that give the largest contributions to α.

Additionally, the nonadiabatic spin-transfer torque coefficient β entering an extended form of

the LLG equation is calculated for bulk ferromagnets and ferromagnetic films. Its evaluation

method is improved by using the Hellmann-Feynman theorem to calculate the electron velo-

city. In each case, comparison with results of other theoretical approaches, such as the ab initio

calculations and the spin pumping theory, as well as experiment is performed.
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Streszczenie

W rozprawie zostały przedstawione teoretyczne badania relaksacji spinu w nanostruktu-

rach magnetycznych w oparciu o podejście kwantowo-mechaniczne, zawierające nowe meto-

dy opracowane w obecnym projekcie. Stała tłumienia Gilberta α, występująca w równaniu

Landaua-Lifszyca-Gilberta (LLG) opisującym dynamikę magnetyzacji, jest wyznaczona dla obję-

tościowych ferromagnetycznych metali przejściowych oraz różnych ultracienkich magnetycz-

nych metalicznych układów warstwowych przy użyciu modelu Kamberskiego wykorzystującego

funkcję korelacji momentu siły. Wyrażenie na α zostało uogólnione na przypadek dowolnego

kierunku magnetyzacji. Obliczenia zostały przeprowadzone przy użyciu realistycznego modelu

ciasnego wiązania uwzględniającego oddziaływanie spin-orbita, a ich efektywność poprawiona

przez wprowadzenie skończonej temperatury do czynników obsadzeniowych i sumowanie po

częstościach Matsubary. Ponadto otrzymano dwa alternatywne wyrażenia na α zależne od funk-

cji Greena. Uzyskano wyniki dla objętościowych ferromagnetyków, warstw ferromagnetycznych,

dwuwarstw ferromagnetyk/niemagnetyk (Co/NM) (NM=Cu, Pd, Ag, Pt and Au) oraz układów

trójwarstwowych NM/Co/NM, Co/NM1/NM2, supersieci L10 Co/NM (stopów uporządkowa-

nych) i wielowarstw [Co/NM]N . Otrzymana zależność α od współczynnika rozpraszania elektro-

nów dla objętościowych Fe, Co i Ni jest zgodna z uprzednimi obliczeniami ab initio. Zbadano

zależność α od grubości Co i NM oraz wpływ warstw niemagnetycznych i stwierdzono ich

zgodność z obserwacjami eksperymentalnymi. Obliczona wartość α w układach dwuwarstwow-

ych Co/NM i trójwarstwowych Co/NM1/NM2 ulega zwiększeniu w wyniku pokrycia kobaltu

warstwami niemagnetycznymi, szczególnie w przypadku NM, NM2=Pd i Pt. Wzrost ten został

wyjaśniony przez silne sprzężenie spin-orbita w tych niemagnetykach, w połączeniu z dużą

gęstością stanów na poziomie Fermiego ϵF. Pokazano, że wzmocnienie tłumienia Gilberta w

układzie Co/NM1/Pt ulega zanikowi wraz ze wzrostem grubości warstwy buforowej NM1=Cu

i Ag. Nielokalne pochodzenie wzmocnienia tłumienia magnetycznego zostało wykazane przez

wizualizację dużego wkładu warstwy niemagnetycznej do stałej α. Wkłady do α pochodzące

od poszczególnych warstw atomowych oraz rozkład α w przestrzeni wektora falowego k zostały

wyznaczone i analizowane dla różnych układów warstwowych. Stwierdzono, że w dwuwarstwach

Co/NM z NM o pasmie d przecinającym ϵF główny wkład do tłumienia Gilberta pochodzi

od kilku warstw atomowych w NM blisko powierzchni międzywarstwowej Co/NM, zaś dla

układów z NM o pasmie d leżącym poniżej ϵF wkład ten pochodzi od warstwy Co. Analiza

w przestrzeni k ujawniła istnienie niewielkich „gorących” obszarów strefy Brillouina dających

największy wkład do α. Dodatkowo obliczono, dla ferromagnetyków objętościowych i warstw

ferromagnetycznych, współczynnik β nieadiabatycznego momentu siły związanego z transferem

spinu, wchodzący do rozszerzonej postaci równania LLG. Metoda obliczania tego współczynnika

została ulepszona przez zastosowanie twierdzenia Hellmana-Feynmana do wyznaczania prędkości

elektronowych. W każdym przypadku otrzymane rezulaty porównano z wynikami innych metod

teoretycznych, takimi jak obliczenia ab initio i teoria pompowania spinowego, oraz wynikami

eksperymentalnymi.
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Chapter 1

Introduction

It was the after study of Uhlenbeck and Goudsmit that an intrinsic angular momentum of

electron called spin was discovered (1925) [1], although it was already observed in the Stern-

Gerlach experiment (1922) [2]. The concept of spin has played a key role in quantum description

of physical and chemical phenomena. In particular, the magnetic properties of materials originate

from spins of electrons and their orbital motion (nuclear magnetic moments, about 103 times

smaller than the electron magnetic moment, are usually neglected in solid state physics, though

they are at the heart of some physical effects like nuclear magnetic resonance which is used to

investigate atomic configurations of molecular systems). Apart from electronic current which

is due to the charges of electrons and serves as the basis of electronics, moving electrons can

also form spin current which has to be taken into account in theories of electronic transport in

magnetic materials. There are two main differences between a spin current and a charge current:

unlike charge current, spin current is invariant under time reversal and it is associated with a

vector quantity which is the angular momentum. Intensive efforts have been made to employ and

manipulate the internal spin degree of freedom giving rise to many applications in spintronics

that is a fascinating field which has emerged in the two recent decades [3, 4, 5].

Properties of magnetic materials are mainly determined by the orientation of electronic

spins which can exhibit a long-range order as in ferromagnets, antiferromagnets, ferrimagnets

and magnetic helical structures or be only locally ordered as in spin glasses. Ferromagnets are

materials with spontaneous macroscopic magnetisation (collective magnetic moment per unit

volume due to electronic spins) which is present below the Curie temperature Tc whilst above

this critical temperature the long-range order is distorted by thermal fluctuations and, as a

result, magnetisation vanishes. Ferromagnetism originally results from a compromise between

atomic-like exchange interactions and interatomic hybridisation. The former tend to align spins
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CHAPTER 1. INTRODUCTION

and the latter tends to lower the kinetic energy by reducing the spin polarisation. Magnetisation

in ferromagnetic transition metals is formed by spins of localised electrons from the d band. In

the absence of external magnetic fields, the equilibrium magnetic configuration of a ferromagnet

below Tc has the form of the domain structure where in each domain the nonzero magnetisation

is uniform (homogenous) and aligned along one of the directions corresponding to magnetic

easy axes, specific to the ferromagnet, its crystallographic lattice and the sample geometry. The

domain configuration in equilibrium corresponds to the minimum value of the total energy of

the whole ferromagnet which includes terms due to magnetic dipole-dipole interaction, magneto-

crystalline anisotropy (MCA) as well as the energy of the domain walls (DWs) which depends

on the strength of the exchange interaction. In the presence of an applied magnetic field, the

boundaries of magnetic domains change so that some domains grow and others shrink which

finally leads to the monodomain state with fully saturated magnetisation along the direction of

the field when it becomes very large (of the order of a few Teslas). The magnetisation orientation

in magnetic materials, in particular, has the capacity to be used in information technology, in

magnetic storage devices like hard-disk drives, in particular.

Conservation of angular momentum results in very interesting phenomena in magnetic ma-

terials. As already mentioned above, an electric current (moving charges) passing through a

magnetic material can lead to a spin current (moving spins) due to different numbers of conduc-

tion electrons with spin up (~/2) and spin down (−~/2) where ~ is the reduced Planck constant.

Thus, spin currents due to conducting sp electrons can carry a net angular momentum which

can be transferred to the magnetisation due to d electrons in other parts of the system. This

phenomenon is known as the spin-transfer torque (STT). The total angular momentum of the

system remains conserved during such spin transfer process. The physical effect reverse to the

STT is the emission of a spin current by precessing magnetisation in a ferromagnet/nonmagnet

(FM/NM) system. This effect is predicted by the spin pumping theory [6, 7] which is discussed

in more detail below.

Both the STT and spin pumping can have strong effect on the magnetisation dynamics.

In particular, in a FM/NM/FM spin-valve structure the direction of magnetisation in the free

ferromagnetic layer can be reversed (switched) by passing electric current as long as its density

is sufficiently large. The STT effect is also crucial for current-induced motion of magnetic DWs

in ferromagnetic nanowires. Such dynamic magnetic processes are profoundly affected by how

fast a precessing magnetisation can relax to its equilibrium direction, which depends on mag-

netic damping phenomena due to either spin-flip scattering or other processes that change spin

angular momentum. Magnetic damping is commonly present in real materials since the factors

2
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from which it originates, like the spin-orbit (SO) interaction combined with electron scattering

on lattice vibrations and defects, are unavoidable. Theoretically, magnetic relaxation in ferro-

magnetic metallic systems is usually assumed to be governed by the so-called Gilbert damping

which enters the phenomenological Landau-Lifshitz-Gilbert (LLG) equation [8, 9] describing the

dynamics of magnetisation in such systems. This and some other spin relaxation mechanisms

are discussed in more detail below.

Magnetic damping plays a crucial role in magnetic systems, in particular those with layered

structures. Such damping is also the mechanism through which energy dissipates in magnetic

systems, therefore it is responsible for energy loss (transfer from macroscopic motion of mag-

netisation to microscopic thermal motion of atomic lattice). The torque due to the damping

opposes the macroscopic driving torque due to a time-dependent oscillatory external magnetic

field or spin polarised current and then the net energy loss or gain is achieved by the com-

promise between these two torques. This phenomenon occurs particularly in current-carrying

FM/NM/FM spin-valve structures with one ferromagnetic free-layer whose magnetisation pre-

cesses around an applied static magnetic field. It has also been proposed that considering the

Gilbert damping is the only way to explain the angular dependence of the peak-to-peak ferro-

magnetic resonance (FMR) spectra linewidth [10].

Controlling magnetic damping in nanostructured materials is of great interest. It has been

shown that the presence of magnetic damping is crucial for propagation of DWs along a magnetic

nanowire [11]. In particular, it determines the DW velocity in current-carrying domain wall

(CCDW) structures where fast propagation of DWs is of great importance for applications in

high-speed spintronic devices such as magnetic racetrack memory [12]. One of the key points in

application of CCDW structures is the critical (minimum) electric current or critical magnetic

field required for depinning the domains. The magnetic damping also determines the operational

characteristics of STT-based devices. The switching current in such systems is proportional to

the damping constant. Thus, the Gilbert damping is a key factor in understanding magnetisation

dynamics in magnetic nanostructures.

Transition metal multilayers built of ferromagnetic and nonmagnetic ultrathin layers (with

thicknesses of a few nanometers) have attracted a great deal of interest in recent decades since

they have several unique magnetic properties that make them particularly suitable for applica-

tion in existing and future spintronic devices [13, 14]. It was after discovery of interlayer exchange

coupling in 1986 [15] that magnetic layered nanostructures began to attract many scientists to

this area. The 2007 Nobel Prize in physics, thereafter, went to Grünberg and Fert for the dis-

covery of the giant magnetoresistance (GMR) which followed the discovery of antiferromagnetic

3
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CHAPTER 1. INTRODUCTION

coupling in an Fe/Cr/Fe system [16, 17]. The GMR effect has also been reported theoretically

alongside its discovery in 1988; see Refs. [18, 19, 20] for more details. The interlayer exchange

coupling is the coupling between ferromagnetic layers separated by a thin nonmagnetic (or an-

tiferromagnetic) layer like in Co/Cu/Co (or Fe/Cr/Fe) trilayers. As a result the directions of

magnetisations in the two ferromagnetic layers can be either parallel or antiparallel depending

on the sign of the coupling. The strength of this coupling depends on the nonmagnetic spacer

layer and it has been shown to oscillate with its thickness [21, 22]. The GMR effect is referred

to as a large change in electrical resistance of FM/NM/FM spin valves as the directions of mag-

netisations in the two ferromagnetic layers are switched from parallel to antiparallel [23, 24].

The resistivity for the antiparallel magnetic configuration (RAP) is larger than for the parallel

configuration (RP) due to large mismatch of energy bands for majority and minority spins in

the FM. The GMR effect is characterised by the ratio (RAP-RP)/RP which can be as large as

40− 60% at room temperature [25, 26, 27].

A similar system built of an ultrathin insulator layer sandwiched between two ferromagnetic

metallic layers is known as magnetic tunnel junction (MTJ) in which the magnetisation direction

plays a crucial role in the electrical resistivity. The parallel or antiparallel configuration of

magnetisations of the two ferromagnetic layers in MTJs results in low or very high resistivity

(RP or RAP), respectively. This is due to different quantum tunneling of electrons through the

insulator barrier for the two magnetic configurations and, therefore, it is known as the tunnel

magnetoresistance (TMR) effect, discovered in 1975 [28]. In this case, the ratio RAP−RPRP
can be

very large, more than 1100% at 4.2 K and about 600% at room temperature [29], so that it

is much larger than in the GMR effect. The paper by Mathon and Umerski [30] on tunneling

properties of an Fe/MgO/Fe system in 2001, reporting over 1000% TMR ratio, also illustrates

the point. Thus, the TMR effect is an excellent practical example of electron tunneling predicted

by quantum mechanics (see Ref. [31] for a detailed review).

Magnetic layered systems can also exhibit a large perpendicular magnetic anisotropy (PMA)

[32, 33, 34, 35, 36] and an enhanced magnetic damping [37, 38, 39]. In particular, this concerns

Co/NM bilayers including Co/Pd and Co/Pt bilayers which have been intensively studied [40,

41, 42] due to both their large magneto-optical Kerr rotation and large PMA. The PMA effect

corresponds to the out-of-plane orientation of magnetisation, i.e., perpendicular to the film

surface. The origin of this effect is the SO interaction combined with the reduced symmetry at

FM/NM (and FM/vaccum) interfaces. This can lead to an increase of the MCA term of magnetic

anisotropy energy so that it can dominate the shape anisotropy term for ultrathin films. The

possible mechanisms of the magnetic damping enhancement and other relevant experimental

4

http://rcin.org.pl



reports are discussed in further parts of this introduction as well as in chapter 2.

Employing magnetic multilayers, including combinations of ferromagnetic and nonmagnetic

layers, in spintronic devices has lead to a great leap in data storage and data transfer technology.

This includes, in particular, the use of GMR-based read heads in computer hard drives. The

occurrence of the GMR effect in FM/NM multilayers makes such systems suitable for application

even in biochemistry, e.g., as magnetic biosensors [43]. The application of MTJ structures in

magnetic random access memory (MRAM) has also made them being of primary interest for

data transfer and data storage technology.

Different mechanisms have been assumed to be responsible for the relaxation of magnetisation

in magnetic layered systems. Apart from the Gilbert damping [44, 45], the two-magnon scattering

[46, 47] and spin pumping [6, 7] are also proposed to account for such a relaxation.

The existence of imperfections in magnetic samples can give rise to scattering of magnons

from the uniform mode to two or more nonuniform modes as it can occur in FMR, for instance.

In other words, magnons are coupled together by scattering of FMR uniform magnetisation

precession mode which is usually called two-magnon scattering. Two-magnon scattering is an

extrinsic effect which arises due to lattice imperfections like surface roughness, defects or dis-

order and it is important in films rather than bulk ferromagnets since such defects are likely to

occur in layered systems due to their growth process. This effect is especially remarkable in the

case of long-wavelength spin waves for which scattering centres are of atomic scale themselves.

Therefore, unambiguously, structural defects and disorder are essential factors in spin relaxation

processes. Two-magnon scattering is a common theoretical explanation of spin relaxation in

ferrites [48] and has been shown that it can be also utilised for metallic films [49].

It has turned out that the observed FMR linewidth ∆H (due to damping) in magnetic thin

films can be accounted for by the two-magnon scattering effect merely at nonzero magnetic field

(being shutted off as the field and, subsequently, the FMR frequency approach zero) and for

films with in-plane magnetisation (being quenched with magnetisation tipping out of the plane).

More specifically, the two-magnon scattering contribution to the FMR linewidth is shown to

be completely quenched when the angle between the magnetisation and the film plane is larger

than 45◦ (in particular, for magnetisation perpendicular to the film surface) [47]. Thus, the two-

magnon scattering is disregarded for films with out-of-plane direction of magnetisation [50] and

in this case the magnetisation dynamics is governed solely by the Gilbert damping, both intrinsic

and extrinsic in the spin pumping scenario described below. Although it has been assumed that

the two-magnon mechanism can be responsible for the extrinsic damping (extra observed FMR

linewidth in comparison with bulk value of ∆H), it has been shown that two-magnon scattering

5
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CHAPTER 1. INTRODUCTION

cannot explain film thickness dependence of the FMR linewidth in magnetic layered systems [51].

Thus, another scenario, namely nonlocal Gilbert damping is of main interest in such systems.

Furthermore, it has been shown that considering the nonlocal Gilbert damping, alongside the

two-magnon scattering, is indispensable in Co/Pt multilayers to explain the angular dependence

of FMR linewidth [52].

The presence of the nonlocal damping in magnetic multilayers was first explained, theoret-

ically, by Berger [45]. The mechanism of damping enhancement proposed by him is based on an

idealised picture where conduction sp electrons are coupled by exchange to localised d electrons

forming magnetic moments in the ferromagnet and carry spin through the FM/NM interface to

the nonmagnet where it is dissipated. As mentioned above, a similar, though partly phenomen-

ological, theoretical description of spin transport in magnetic layered systems that is usually

referred to is the spin pumping theory [6, 7]. In this theory, the effective magnetic damping in

such systems is assumed to be the sum of intrinsic damping (bulk value) plus a term due to the

spin pumping (α = αb+αpump) [6, 7, 55]. The observed enhanced damping in a magnetic layered

system is then explained by the transfer of angular momentum from its ferromagnetic part to

the nonmagnetic or antiferromagnetic part, through the interfaces. Interfaces play a crucial role

in many phenomena in magnetic layered systems. In particular, magnetisation, as it precesses,

pumps a spin angular momentum through the interfaces into adjacent materials. The pumped

spin angular momentum is transferred and dissipated in the nonmagnetic part. The rate of dis-

sipation depends on the nature of the adjacent nonmagnetic metal. If the adjacent metal is a

perfect spin sink (such as Pt or Pd), the spin accumulation in it is negligible which means that

the transferred spin angular momentum is almost totally absorbed in the nonmagnetic part.

But, if a poor spin sink (such as Ag or Cu) is used as the adjacent nonmagnetic metal the trans-

ferred angular momentum is not fully absorbed and there is a backflow of this momentum into

the ferromagnet. That is because of the large spin-diffusion length of such nonmagnetic metals

which does not allow the spin angular momentum to be totally absorbed in the nonmagnetic

part which gives rise to a substantial spin accumulation and consequently a backflow of spin.

The spin-diffusion length of the nonmagnet is a known major factor in such extrinsic (non-

local) damping process since to achieve the effective relaxation of magnetisation due to spin

pumping in FM/NM bilayers the thickness of the nonmagnetic layer has to be greater than its

spin-diffusion length [39]. If two nonmagnetic layers are used to form a FM/NM1/NM2 trilayer,

the spin-diffusion length of the spacer layer (NM1) plays the dominant role [53]. The pumped

spin current in magnetic multilayers, which gives rise to the damping enhancement, depends on

the spin-diffusion length of the nonmagnet as well as it is inversely proportional to the thickness

6

http://rcin.org.pl



of the ferromagnetic film [6, 7, 54, 55]. In Ref. [6] the spin pumping model for the enhanced

Gilbert damping in an NM/FM/NM system has been proposed and compared with experiment.

The spin pumping theory proposed in Refs. [6, 7] is now commonly used in interpretation

and analysis of magnetic damping experimental results [39, 54, 56, 57, 58]. It has also been

applied in first-principle calculations of the Gilbert damping in Fe/Au bilayers and trilayers [59]

with the nonmagnetic Au layers assumed to be perfect spin sinks. Although the spin pumping

theory provides a simple explanation of nonlocal magnetic damping taking place in nonmagnetic

metals in contact with ferromagnetic metals, it does not include a quantum description of the

SO coupling responsible for spin relaxation in the nonmagnetic part of the system. Instead, the

relaxation mechanism is represented only with a phenomenological spin-flip relaxation time. On

the other hand, the spin pumping theory accounts merely for the extrinsic damping, and not

the intrinsic damping, in magnetic layered systems. Thus, fully quantum calculations including

the SO coupling, like the torque-correlation model, should give an insight into the damping

processes on a more fundamental level.

Except for the aforementioned theories that account for the spin relaxation in magnetic

systems, each with its own limitations, no fully quantum-mechanical calculation in magnetic

multilayers has yet been addressed. In this thesis, a quantum-mechanical description is presented

and it is found to account for the observed nonlocal magnetic damping in magnetic layered

systems, in accordance with experimental measurements and predictions of the spin pumping

theory. Thus, calculation of the Gilbert damping constant α is the central topic of this thesis.

A long time ago (1935), a landmark paper by Landau and Lifshitz [60] followed by a later work

by Gilbert [8], provided a prototype for phenomenological description of magnetic damping. They

proposed a fundamental equation of motion for the magnetisation in magnetic materials, known

as the Landau-Lifshitz-Gilbert (LLG) equation. This phenomenological equation, in its original

or extended form, is now widely used to describe dynamics of nonuniform magnetisation. In the

recent decades, a great effort has been made to use spin-polarised electric current, a current with

nonequal numbers of spin up and spin down electrons, in spintronic devices. The properties of

such currents have been studied by both theoreticians and experimentalists working in the realm

of spintronics. One of these properties is the interaction of a spin-polarised electric current and

magnetic DWs in current carrying ferromagnetic metals. Such interaction can be investigated

with an extended form of the LLG equation including different terms, each responsible for a

different aspect of the magnetisation dynamics, as it will be discussed in detail in the next

chapter. The torque due to the magnetic field is followed by the damping term including the

Gilbert damping constant α as the prefactor. The torque arising from the Gilbert damping
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CHAPTER 1. INTRODUCTION

pushes the magnetisation towards its equilibrium direction. Two other terms in the extended

LLG equation are due to the flowing spin current and are known as the adiabatic STT and

nonadiabatic STT which is accompanied by the coefficient β [61, 62]. The latter torque appears

to be more effective in narrow DWs [63].

As explained above, the two coefficients α and β are present in an extended LLG equation

which describes the dynamics of magnetisation in the presence of external magnetic field and

electric current flowing through the system. Thus, both coefficients determine the spin relaxation

in magnetic metallic structures. In particular, they affect the DW velocity (proportional to β/α)

in current-carrying ferromagnetic systems where fast propagation of DWs is desired. Moreover,

the nonadiabatic STT, particularly, is one of the main factors which affects the threshold current

needed for depinning DWs in such structures. The mutual relation between the two dimensionless

coefficients α and β is the subject of yet inconclusive debate. The claim [64, 65] of their equality,

β = α, is seriously challenged by experimental data [66] and few available theoretical results for

bulk metals [67, 68]. Calculation of β in magnetic layered systems is the second (minor) topic

of this thesis in addition to the evaluation of α.

Experimentally, the Gilbert damping constant can be gained from the peak-to-peak linewidth

of the microwave absorption peak, ∆H, measured in the FMR spectroscopy,

∆H(ω) = ∆H(0) + ∆HGil +∆H2mag (1.1)

where ∆HGil = αωγ (γ is the gyromagnetic ratio). The two-magnon contribution ∆H2mag sat-

urates for larger ω = 2πf and thus the damping constant α is acquired from the slope of

∆H against the resonance frequency f [69, 70]. Alternatively, the so-called effective damping

parameter can be found from the relation αeff = (2πfτ)−1 with τ as the relaxation time [71, 72].

The Gilbert damping and its enhancement have been the main subjects of numerous exper-

iments. In Ref. [37], using the FMR technique for tetragonal Ni films on Cu(001) substrate, an

enhanced magnetic damping, in comparison to bulk Ni, has been reported. Such an enhancement

has also been observed in bcc Fe films on Ag(001) [73] as well as in Cu/Py/Cu/Pt and Cu/Py/Cu

layered structures [10]. FMR measurements were also applied to study the magnetisation relax-

ation in Fe3Si and Fe20Si80 films [74] as well as the Gilbert damping parameter G = γMsα

(where Ms is the saturation magnetisation) in FexCo1−x alloy films, and Co/Cu(001) films for

the magnetic field applied in the direction of either hard or easy axes of magnetisation [75]. Fur-

ther, an increase of the Gilbert damping in [Co/Pt]N multilayer films with increasing stacking

number N has been demonstrated using time-resolved magneto-optical Kerr effect (TRMOKE)
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[76]. In Ref. [77], the TRMOKE technique has been used to measure the Gilbert damping con-

stant in L10 ordered-alloy FePdPt films. Experimental reports on the Gilbert damping and its

enhancement in some other layered systems with FM/NM interfaces can be found, e.g., in Refs.

[39, 55, 57, 58, 78, 79, 80, 81, 82].

Early theoretical work on the Gilbert damping has done by Kamberský and dates back to

1976 [44, 83]. He established a quantum-mechanical approach to the Gilbert damping in magnetic

materials by introducing two different models for the damping process, namely the breathing

Fermi surface model and the torque-correlation model, which will be discussed in more detail

later in this thesis. The two models are based on the usual assumption that the Gilbert damping

has origin in the SO interaction. This relativistic effect causes spin-flip scattering of electrons

which gives rise to transfer of angular momentum and energy from spin degrees of freedom to the

lattice. The SO interaction is also an essential factor in spin relaxation processes in magnetic

systems which are of main interest in the present work. It also largely affects the magnetic

anisotropy (leading to its magnetocrystalline contribution in thin films which can dominate the

shape anisotropy) and it is at the heart of the spintronic effects such as the spin Hall effect or

the Rashba effect.

There have been other theoretical methods of investigating spin relaxation, reported later

on, such as direct calculation of the spin relaxation torque [84], which includes the effect of

the SO coupling on magnetic damping, or determination of spin-wave spectrum within the

random-phase-approximation [85, 86]. Also, the expression for the damping constant α in the

torque-correlation model has been re-derived [68, 87], or directly applied [88, 89, 90, 91], in

several theoretical studies for bulk ferromagnets, half metals [92], transition metal binary alloys

[90], Fe1−xSix films [93] as well as, very recently, surfaces of ferromagnetic metals [91]. In Ref.

[61] considering the solution for a long-wavelength spin-wave in a one-band model, Edwards

and Wessely found expressions for various coefficients in an extended LLG equation. Despite

all these theoretical reports, the quantum-mechanical approach has hardly been used to study

the Gilbert damping and its enhancement in transition metal layered systems (apart from Ref.

[91] and recent paper by the present author [94]) and the underlying physics of the enhanced

magnetic damping in layered structures is not yet fully understood.

The prime purpose of this PhD thesis is calculation of the Gilbert damping constant α and

the nonadiabatic STT coefficient β in bulk ferromagnetic metals as well as various magnetic

nanostructures such as metallic films and multilayers. The particular attention is paid to the

enhancement of the Gilbert damping in various magnetic layered structures, such as FM/NM

bilayers. The research in the present PhD project is focused on two aspects. One is theoretical
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CHAPTER 1. INTRODUCTION

contributions to the quantum theory of spin relaxation whilst the other is calculations of the

coefficients α and β for different systems and development of methods for analysis of the obtained

results.

The Gilbert damping constant α is found with the general expression originally obtained

by Kamberský [44]. An alternative derivation of this expression by Edwards [113] is presented

in the present work. It is obtained by comparing frequency of the long-wave solution of the

LLG equation with complex spin wave energy found within a time-dependent linear-response

quantum-mechanical approach. The determination of the nonadiabatic STT coefficient β is based

on a quantum-mechanical expression derived by Gilmore et al. [67] but slightly modified by

employing the Hellmann-Feynman theorem for calculation of electron velocities defined as de-

rivatives of band energies with respect to the wave vector. The calculations of both α and β

are performed within a realistic nine-band tight-binding (TB) model [95] with the SO coupling

included. The expressions for α and β obtained in the TB model can be utilised at both zero

and finite temperature and they are applicable to a wide variety of magnetic structures. The

so-called Matsubara frequencies are, particularly, employed for evaluation of α and β at finite

temperature. With these expressions established, one is able to investigate α and β in magnetic

layered systems, e.g., their dependences on layer thicknesses and the electron scattering rate.

The expression for α is presently extended to arbitrary direction of magnetisation. Thus, an

explicit quantum-mechanical expression for the damping constant α in bulk and layered mag-

netic system with arbitrary direction of magnetisation is obtained. Its alternative form in terms

Green functions is also determined. Furthermore, an explicit formula for the contributions to

the damping constant α from individual atomic layers is found. Taking the advantage of this

formula, it is feasible to visualise and explain the nonlocality aspect of the Gilbert damping,

related to spin pumping, in magnetic layered systems.

Calculation of α and β for the considered magnetic systems required numerical integration

over the Brillouin zone (BZ). The author’s own Fortran codes have been developed and applied

for calculation of electronic structure (quantum states and their energies), layer-projected density

of states as well as coefficients α and β for the considered magnetic layered systems.

The results for Gilbert damping constant α are reported for bulk iron, cobalt and nickel,

purely ferromagnetic metallic films, cobalt/nonmagnet (Co/NM) bilayers, NM/Co/NM and

Co/NM1/NM2 trilayers, L10 [Co/NM] superlattices (ordered alloys) as well as [Co/NM]N mag-

netic mulilayers. The dependence of α on the electron scattering rate Γ as well as on thicknesses

of ferromagnetic and nonmagnetic layers is investigated and compared with recent experiments.

The effect of the SO coupling on the Gilbert damping constant in Co/NM bilayers is also stud-
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ied by modifying the SO coupling of the constituent NM metals. Finally, to shed light on the

obtained results, layer contributions from various atomic layers in a slab as well as k-point

contributions coming from various k-points in the BZ to the Gilbert damping are also analysed.

The present thesis is organised in five chapters as follows:

After chapter 1 with the introductory survey of the thesis’ field and its main objectives, chapter 2

reads the basic concepts of the magnetisation dynamics, theoretical framework and mathematical

tools whereby the Gilbert damping constant α is calculated. In this chapter an expression for α

is derived, which is in fact a re-derivation of Kamberský’s formula, and the applied TB model

of electronic structure is presented. Moreover, in section 2.7 of this chapter an expression for

α in terms of Green functions is obtained. Chapter 3 deals with the calculation of the Gilbert

damping constant α in various magnetic nanostructures. The dependence of magnetic damping

on the magnetisation direction is also discussed in this chapter. Chapter 4 includes breakdown

of the Gilbert damping in real space (atomic layer contributions for which an explicit expression

is derived) and momentum space (k-point contributions). In chapter 5, based on the results

of Ref. [67] an expression for nonadiabatic STT coefficient β is obtained within the TB model

and calculations of β for bulk ferromagnets and ferromagnetic films are presented. The thesis is

ended with the summary and four brief appendixes.
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Chapter 2

Theory

2.1 Spin-transfer torque and domain wall motion

The faster manipulation of spin, lower energy cost than in charge manipulation as well as applic-

ation in atomic-scale magnetic memories make spin-based (spintronic) systems promising can-

didates for future electronic devices. Fundamental to these systems are spin currents which have

specific properties not found in charge currents. In particular, unlike charge currents J = J↑+J↓,

the spin currents Js = J↑− J↓ decay during propagation in current carrying systems (J↑ and J↓
correspond to spin-up and spin-down electrons, respectively). They are retained only within the

scale of a few micrometers. Spin currents can propagate through magnetic systems even if there

is no net charge current. Beside accompanying charge currents, pure spin currents can also be

carried by spin waves or induced in the spin Hall effect (SHE) [96]. Such pure spin currents can

be detected, e.g., by the inverse SHE in which an electric current is induced using spin current.

Understanding the occurrence and properties of pure spin current is the topic of many recent

works [97, 98]. Spin currents are behind many novel magnetic phenomena in layered systems.

In ferromagnetic nanostructures there exist domains with different directions of magnetisa-

tion. Regions where the magnetisation changes its direction are known as domain walls. The

finite width of DWs is a result of the compromise between exchange energy and magnetic an-

isotropy, so it is different for different systems. It is usually of the order of 10-100 nm (100-150

atoms) but it can be as thin as a few nm in nanowires [99]. DWs can be moved through a

magnetic structure (e.g., a nanowire) by two means: electric current and magnetic field. The

velocity of a magnetic DW depends on the magnitude of applied magnetic field or the intensity

of the flowing electric current.

When electrons flow through a magnetic DW structure the net spin angular momentum,

carried by the spin current, can be transferred to the local magnetisation, a phenomenon known
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2.1. SPIN-TRANSFER TORQUE AND DOMAIN WALL MOTION

as the STT. In other words, as the spin-polarised current passes through a magnetic system it

exerts a torque on the magnetisation. This torque, perpendicular to the local magnetisation of

the ferromagnet and applied by conduction electrons onto the ferromagnet, is the so-called STT.

As already mentioned in the introduction the same effect is present in FM/NM/FM trilayers

where the electron current passes from a thick ferromagnetic layer through the nonmagnetic

metal spacer into a thin ferromagnetic layer. In all these processes there are a few major torques

engaged: the precessional torque, due to the effective magnetic field, the STT and the damping

torque. Magnetisation reversal (switching) occurs, e.g., in spin-torque-MRAMs, if the STT over-

comes the damping torque. Since, the STT is not merely limited to metallic ferromagnets (but

can be also present in antiferromagnets and semiconductors) and is subject to interfacial effects

in magnetic multilayers like MTJs, its occurrence has opened a new playground for research

with applications in the growing field of spintronics. There also exists a phenomenon opposite

to the STT, the so-called spin pumping effect in which precessing magnetisation emits a spin

current [7].

The occurrence of the STT leads to the following scenario in the case of a DW. As itinerant

electrons pass through a DW, the electron spins precess and their angular momentum under-

goes a change. The flow of spin angular momentum is changed due to the torque exerted on

the flowing spins (spin-polarised current) by the magnetisation. To compensate this effect, an

equal but opposite torque must be exerted on the ferromagnet by the flowing charge carriers

so that the total angular momentum of the system is conserved. Thus the angular momentum

of the traversing electrons is transferred to d electrons localised on magnetic ions and changes

the directions of magnetic moments. The change of local magnetisation direction due to this

transferring process has an immediate implication on the displacement of the DW known as

current-induced DW motion. That is how a DW moves by means of an electric current. DWs

motion can be achieved without any applied magnetic field if the density of the applied cur-

rent exceeds a threshold value known as the Walker breakdown, proportional to the DW width

and the Gilbert damping constant. Seeking materials with lowest Walker breakdown (such as

magnetic semiconductors) is one of the most interesting objectives in spintronics.

A massive study has been launched in recent years on controlling the DWs’ motion [12, 100,

101]. This is due to their ability to be employed in data storage devices in which propagating

magnetic DWs (regions of nonuniform magnetisation) can serve as bits of information. In par-

ticular, displacement of DWs is the subject of an intensive and promising research on racetrack

memories developed by Stuart Parkin’s group at IBM. They have been proposed to be compet-

itors for the new high capacity hard disk drives, a GMR based technology that brought Parkin
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CHAPTER 2. THEORY

the 2014 Millennium Technology Prize.

2.2 Damped precession, Landau-Lifshitz-Gilbert equation

The configuration of magnetisation (as a function of position) at equilibrium is given by (nonlin-

ear) Brown’s equations which correspond to the condition that at equilibrium there is no torque

exerted on magnetisation by the effective magnetic field. These equations arise as a result of

minimizing the total energy of the system at equilibrium which leads to formation of stable

domain structures.

To get an insight into the magnetisation states out of the equilibrium one can first use the

similarity with classical or semi-classical model of spinning top. A spinning charged particle like

an electron posseses a magnetic moment which interacts with an applied magnetic field. The

equation of motion for such a particle with the total angular momentum J (J = S + L, with

spin S and orbital angular momentum L) is expressed as (in CGS units)

∂J

∂t
= γJ ×Heff (2.1)

where γ = e
2m0c

g = − |e|m0cg = −
gµB
~ = −|γ| is the electron gyromagnetic ratio (dependent on the

Landé g-factor g) with e as the electron (negative) charge,m0 as its mass, ~ as the reduced Planck

constant, c as the light velocity in vacuum and µB as Bohr magneton. Heff = H +Hex +Hk

is an effective (externally applied H, exchange Hex, anisotropy Hk) magnetic field, which can

be found from the negative gradient of the Gibbs free energy with respect to the magnetisation

M . Knowing that M = γNJ (N is the number of magnetic moments per unit volume in the

system), an analogous equation for magnetisationM can be written as

∂M

∂t
= γM ×Heff . (2.2)

According to this equation the change of the magnetisationM in the unit of time t is equal to

the torque exerted onM by the effective fieldHeff . This torque vanishes at equilibrium whenM

is parallel to Heff . This equation can also be obtained within the quantum-theoretical approach

as follows.

In ferromagnetic metals the spontaneous magnetisation comes almost entirely from the spin

of electrons since their net orbital moments are quenched due to periodic potential. This quench-

ing is perfect in the absence of the SO interaction whilst its presence restores a small orbital
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2.2. DAMPED PRECESSION, LANDAU-LIFSHITZ-GILBERT EQUATION

component of the total angular momentum. If the SO interaction is neglected, the Hamiltonian

of an N -electron system is given by

H = Hkin +Hext +Hee +HZ (2.3)

where Hkin = ~2
2m0

∑N
i=1 p

2
i is the kinetic energy, Hext =

∑N
i=1 e Vext(ri) represents the interaction

of electrons with the electric field E = −∇Vext(r) coming from the nuclei and external sources,

Hee = 12
∑
i

∑
i ̸=j

e2

|ri−rj | is the Coulomb interaction between electrons, and lastly

HZ = −γ
N∑
i=1

Si ·B −
1
2
γ
N∑
i=1

Li ·B = −γStot ·B −
1
2
γLtot ·B (2.4)

is the Zeeman term. Here, Stot and Ltot, the operators of total spin and orbital angular mo-

menta, respectively, are composed of individual electronic spins Si and angular momenta Li.

The equation of motion for the spin operator Stot(t) = eiHt/~Stote
−iHt/~ (in the Heisenberg

picture) gives

dStot
dt
=
1
i~
[
Stot ,H

]
=
1
i~
[ N∑
j=1

Sj ,HZ
]
=
1
i~
(−γ)

N∑
i=1

[
Si ,Si ·B

]
(2.5)

since only the Zeeman term in the Hamiltonian depends on spins Si. The x-component of the

commutator can be expressed as follows [102],

[
Sxi ,Si ·B

]
=

[
Sxi , S

x
i Bx + S

y
i By + S

z
i Bz

]
=

[
Sxi , S

y
i

]
By +

[
Sxi , S

z
i

]
Bz = i~Szi By − i~S

y
i Bz

= −i~ (Si ×B)x. (2.6)

where the commutation rules for the spin operators Sxi , S
y
i , S
z
i are used. In a similar way, it is

found that

[
Syi ,Si ·B

]
= −i~ (Si ×B)y, (2.7a)[

Szi ,Si ·B
]
= −i~ (Si ×B)z (2.7b)

so that the equation of motion takes the form

dStot
dt
= γ Stot ×B. (2.8)
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Figure 2.1: Damped precession of magnetisation M in the presence of effective magnetic field
Heff .

If the total magnetic moment Mtot comes from electron spins, like in metallic ferromagnets,

this moment is given by the expectation value Mtot = γ⟨Stot⟩ of the total spin operator Stot.

This value is equal to ⟨0|Stot|0⟩ in the ground state |0⟩ or to the trace tr(ρStot) including the

density matrix ρ at finite temperature. In both cases the classical equation for the precession of

magnetisation

dM

dt
= γM ×B, M =Mtot/V (V is the system volume) (2.9)

is now obtained within the quantum-mechanical approach.

To better describe dynamics of the magnetisation in metallic systems, different phenomen-

ological damping terms have been added to the equation of motion (2.9). The first attempt to

include damping in modeling magnetisation dynamics in metals was carried out by Landau and

Lifshitz in 1935 [60]. Their proposed equation, known as Landau-Lifshitz (LL) equation, reads

∂M

∂t
= −|γ|M ×

(
Heff +

λ

M2
M ×Heff

)
(2.10)

where λ is the damping parameter which is material specific. The first term of the LL equation

describes the torque that leads to the magnetisation precession and the second term is the

damping torque in response to this precession. The latter works as a centripetal force that

pushes the magnetisation to be aligned with the effective magnetic field (see Fig. 2.1). The LLG

equation well describes the magnetisation dynamics when the damping is small, but it appears

to be problematic for large damping rates. Thus, providing a more flexible equation was of

significant importance.

Later on (in 1955) Gilbert proposed a modified version of the LL equation known nowadays
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approach in which expressions for various coefficients of the extended LLG equation have been

obtained by finding expressions for the real and imaginary parts of the spin wave energies in the

long wavelength limit (i.e., small q). In this method, coefficients of different powers in q stand

for different aspects of the spin wave propagation. In the lowest order (q = 0) the real part of

the spin wave energy is given by the Larmor frequency ω1, but to find the imaginary part ω2 one

needs to calculate the corresponding dynamical susceptibility of the system. The Heisenberg’s

equation of motion is used to find an explicit expression for the dynamical susceptibility. The

poles of the dynamical susceptibility are nothing but the spin wave energies ω = ω1 − iω2. In

this way, the damping constant can be found as α = ω2/ω1 (at q = 0) by comparing the spin

wave energies calculated quantum-mechanically and obtained from the spin-wave solution of the

LLG equation.

In the presence of the non-uniform magnetisation the usual extension of the phenomenological

LLG equation describing the magnetisation dynamics of metallic systems has the following form

∂m

∂t
= −|γ|m×Heff + αm× ∂m

∂t
+ 2Am× ∂2m

∂x2
− v0

∂m

∂x
+ βv0m×

∂m

∂x
(2.13)

where A stands for the exchange stiffness constant. The first term in Eq. (2.13) describes Larmor

precession of magnetisation around the effective magnetic field Heff , applied externally and/or

arising due to magnetic anisotropy. This field can be found as Heff = − ∂U∂M where U is the

magnetic energy (or the Gibbs free energy at finite temperature). It is followed by the relaxation

term proportional to the dimensionless Gilbert damping constant α. This damping term acts as

a torque that pushes the magnetisation toward the effective field. The remaining terms in Eq.

(2.13) are effective only for non-homogenous magnetisation m(x) (varying with the position x)

as in spin waves or DWs. The fourth and the fifth terms, introduced by Zhang and Li [106, 107],

describe adiabatic and nonadiabatic STT, respectively. They both arise due to the electric

current J , with finite spin polarization P in ferromagnets, and are defined by the parameter

v0 = gµBPJ/(2|e|Ms) [108]. Although it is known that the DW velocity is independent of the

adiabatic term, it can be controlled by the nonadiabatic term which is known to be more effective

for narrow DWs [63]. It can be shown [107] that uniform DW motion can be driven by a current

with velocity v = (β/α)v0. Both α and β are therefore important in magnetisation dynamics

and it is noteworthy that they both depend on the SO coupling. In this thesis, however, the

main focus is on the damping constant α, though β is also addressed briefly in chapter 5. Other

terms shown in Eq. (2.13) can also be included in further extensions of the LLG equation [61].

Magnetic damping is also the mechanism through which energy (irreversibly) dissipates in
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magnetic systems. Although it is already known that a moving DW in a magnetic nanowire

dissipates energy due to the Gilbert damping [11], there is still no accepted recipe for the

relation between the energy dissipation rate and the DW velocity. The energy dissipates solely

when the magnetisation is not parallel to the effective magnetic field, i.e., the first term in Eq

(2.13) is nonzero. Based on the Walker special mobility formula the energy dissipation rate is

inversely proportional to the Gilbert damping constant. On the other hand, there are some other

works testifying that DW velocity is proportional to the energy dissipation rate and, therefore,

an enhancement of the energy dissipation will speed up the DW propagation [11].

Calculation of the damping constant α is highly desirable since it plays a key role in magnet-

isation dynamics of magnetic systems. As already discussed in the introduction (chapter 1), there

have been a few different approaches to describe the magnetic damping with models based on

various physical processes. Some of the proposed mechanisms are intrinsic to the material, such

as those due to magnetoelastic scattering, and others are considered extrinsic like two-magnon

scattering from lattice imperfections [46, 47] or the spin pumping in FM/NM structures [7]. It

has emerged that the torque-correlation model by Kamberský [44], based on electron-hole pair

generation due to the SO interaction in the presence of lattice vibrations, describes the dom-

inant source of intrinsic damping in a variety of magnetic systems including the ferromagnetic

semiconductors [109] and transition metals [88].

The magnetic damping in magnetic nanostructures can be split into two terms: intrinsic (size-

dependent) damping and extrinsic (size-independent) damping. The former is, usually known as

the bulk value of the damping, due to the SO coupling and interactions of electrons with magnons

or phonons, whilst the latter is due to spin pumping or two-magnon scattering by defects or

imperfections in the system. What is measured in experiment as the magnetic damping is the

total (intrinsic + extrinsic) damping known sometimes as the effective damping. The extrinsic

damping arises basically in layered structures where the damping alters with changing thickness

of the system. The extrinsic damping is of particular interest in magnetic layered systems like

FM/NM bilayers, since it originates from the nonlocal damping in the nonmagnetic parts of the

system. In a FM/NM bilayer, for example, the magnetisation is present in the ferromagnetic

part FM, but the relaxation (damping) of this magnetisation can be affected by the presence

of nonmagnetic part NM. In other words, the magnetic moment precesses in the FM but it can

be damped mainly in the NM. This effect is particularly strong if the NM part is a perfect spin

sink, like Pt or Pd. Such nonlocality of the magnetic damping can also be seen in spin valves

or trilayer systems with different NM spacer and cap metals, as it will be shown in the present

thesis (see Sec. 3.5). According to the spin pumping theory the nonlocal damping in FM/NM
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bilayers is related to the spin-diffusion length of the NM part and it is inversely proportional

to thickness of the FM layer. To achieve an effective nonlocal damping the thickness of the NM

metal has to be comparable to its spin-diffusion length. Further discussion on spin pumping in

FM/NM bilayers can be found in Sec. 3.4.

Another possible source of the magnetic damping in layered structures is eddy currents [110].

The contribution to the damping in layered systems caused by the eddy currents is proportional

to square of the film thickness and that is why it is assumed to be negligible in ultrathin magnetic

films and, therefor, it is disregarded in this thesis. Note also that, the threshold film thickness

below which the eddy currents can be neglected varies with metal (about 25 nm for Fe but about

100 nm for Py).

It is also worth mentioning that the Gilbert damping in magnetic layered systems is altered

for magnetisation along different crystallographic axes. It is only slightly modified for (001),

(110) and (111) surfaces of fcc Co, for instance [91]. Also in Ref. [111] the Gilbert damping

has been investigated experimentally in Fe/V multilayer samples with the magnetic field along

different crystallographic directions. Therein, it has been shown that the the Gilbert damping

is significant for [110] and [001] directions. In this thesis, however, except for Sec. 3.7 that is

devoted to the Gilbert damping for arbitrary direction of magnetisation, the Gilbert damping

is calculated for bulk cubic metals with magnetisation along the [001] axis and films with out-

of-plane magnetisation.

2.3 Quantum mechanical approach to Gilbert damping

The first proposed expression for the Gilbert damping constant dates back to 1976 to the works

by Kamberský [44]. He introduced two different models for the magnetic damping process: the

breathing Fermi surface model and the torque-correlation model, which lead to the same results

in the low scattering rate limit [88]. The breathing Fermi surface model leads to an expression for

the damping constant in terms of electron scattering lifetime and derivatives of electron energies

with respect to the spin direction. This model correctly predicts the damping at low temperature

limit corresponding to low scattering rate. The magnetic damping in the torque-correlation

model stems from two types of electron transitions between energy bands: intraband (diagonal)

transitions and interband (off-diagonal) transitions. The diagonal (intraband) elements of the

SO torque operator, appearing in the torque-correlation model, can be written in terms of the

electron energy derivatives appearing in the breathing Fermi surface model. A direct connection

between parameters appearing in the breathing Fermi surface model and the torque-correlation
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model can be found in [88].

In the torque-correlation model, set up nearly 40 years ago [44], the magnetic damping is

attributed to the SO interaction, as the physical factor that does not conserve spin, combined

with electron-lattice scattering. The latter turns out to strongly affect the magnetic damping

since the scattering of electrons on lattice vibrations (phonons) leads to broadening of electronic

quantum energy levels and, thus, a finite lifetime of electron states. Kamberský’s original de-

rivation of the expression for the Gilbert damping constant α is based on comparison of the

transverse magnetic susceptibility found from the LLG equation with the formula obtained for

this susceptibility in the random phase approximation (RPA) within the linear-response theory.

The effect of the electron-lattice scattering is included in an approximate way based on the

coherent potential approximation (CPA).

Below, Kamberský’s formula is rederived in a similar way, but different significantly in details

which makes the derivation clearer in the author’s opinion. Such derivation was introduced by

Edwards and Wessely [61] for one-band model with a spin dependent potential to mimic HSO

and later extended by Edwards [113] to a general case of multi-band system with the full SO

interaction HSO. It is done by comparing the complex frequency ω = ω1 − iω2 of the spin-wave

solution of the LLG equation with the frequency of a long-wavelength spin wave propagating in

a many-electron quantum system.

A system of N electrons in an external magnetic field B = (0, 0,−Bext) is described with

the semi-relativistic many-electron Hamiltonian

H = Hkin +Hee +Hext +HZ +HSO (2.14)

where the consecutive terms stand for the kinetic energy, the electron-electron interaction energy,

the interaction of electrons with electric field due to nuclei and/or external sources, the Zeeman

interaction, respectively, all defined below Eq. (2.3), and finally the SO interaction

HSO =
N∑
i=1

ξLi · Si (2.15)

with the SO coupling constant ξ. The Zeeman interaction, Eq. (2.4), can be written as

HZ = −2µBBextSz − µBBextLztot (2.16)

and it depends on the z component Sz =
∑N
i=1 S

z
i of the total spin S composed of individual

electronic spins Szi (hereafter, in this section and in Appendix B the index“tot” is skipped in

Sztot = Sz and S
±
tot = S

± for simplicity). The SO interaction term, Eq. (2.15), is written here in
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a simplified form (its full form is discussed in Sec. 2.5). In the present Hamiltonian (particularly

in its Zeeman and SO terms) as well as in the following part of this thesis, it is assumed that the

angular momentum is measured in units of the Planck constant ~ so that the spin and orbital

angular momentum operators S and L are dimensionless. The minus sign of the z component

of the external field B = (0, 0,−B) is chosen to have the usually assumed positive sign of the

total electron spin ⟨Sz⟩ in the case of a ferromagnetic electronic system. The total spin magnetic

moment −2µB⟨Sz⟩ is then negative due to the negative electron charge e.

The time-dependent transverse component M⊥(r, t) = (Mx,My, 0) of magnetisation in a

ferromagnetic spin system subject to a magnetic field B⊥(r, t) = (Bx, By, 0) perpendicular to

the magnetisation direction at equilibrium and oscillating in time and space can be determ-

ined within the linear-response theory. The corresponding response function is the transverse

dynamical susceptibility χ⊥(q, ω) that links the applied transverse field of the frequency ω

and the wave vector q to the amplitude of the induced transverse magnetisation M⊥(q, ω) =

χ⊥(q, ω)B⊥(q, ω). The following expression is obtained for this susceptibility within the time-

dependent linear-response theory [112],

χ(q, ω) =
∫
dt ⟨⟨S−q (t) , S+−q(0)⟩⟩ e−iω−t (2.17)

with ω− = ω − iη (η → 0+) and the operator S±q =
∑
n e
iq·rnS±n . The factor appearing under

the integral in Eq. (2.17) is given by

⟨⟨S−q (t) , S+−q(0)⟩⟩ =
i

~
⟨
[
S−q (t), S

+
−q(0)

]
⟩ θ(t) (2.18)

where ⟨X⟩ denotes the average of the operator X defined, at finite temperature T , as the trace

tr(ρX) with the density matrix operator ρ = e−βH/tr(e−βH), β = 1/(kBT ) where kB is the

Boltzmann constant. At zero temperature (T = 0) this average reduces to the expectation value

⟨X⟩ = ⟨0|X|0⟩ in the many-electron ground state |0⟩.

The transverse dynamical susceptibility corresponding to the uniform magnetisation preces-

sion (q = 0) is then given by

χ⊥(ω) = χ⊥(0, ω) =
i

~

∫ t
0
dt ⟨
[
S−(t), S+(0)

]
⟩ e−iω−t (2.19)

where S± =
∑
n S
±
n . This susceptibility satisfies the following relation [61],

χ⊥(ω) =
−2⟨Sz⟩

~(ω − bext)
+

1
~2(ω − bext)2

{
χA(ω)− ⟨[A−, S+]⟩

}
(2.20)
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where
χA(ω) =

i

~

∫ t
0
dt ⟨[A−(t), A+]⟩ e−iω−t (2.21)

is the correlation function for the SO torque

A− =
[
S−,HSO

]
, (2.22)

A+ = (A−)† = [HSO, S+] is its Hermitian conjugate and bext = |γ|Bext = 2µB
~ Bext denotes

the Larmor frequency, following the notation of Refs. [61, 113]. This relation for χ⊥(ω) can be

obtained using the general method introduced by Edwards and Fisher [114] and based on the

equation of motion for the spin operator S−(t) in the Heisenberg representation. The detailed

derivation is given in the appendix B.

The dynamical susceptibility χ⊥(q, ω) has pole at the frequency ω(q) of the spin wave with

wave vector q,

χ⊥(ω) = −
2⟨Sz⟩

~(ω − ω(q))
. (2.23)

In the presence of SO interaction the spin-wave frequencies ω(q) = ω1(q)− iω2(q) are complex

that results in damping of the spin waves. The imaginary part of such poles is nothing but

the inverse lifetime of the spin wave mode or the FMR linewidth for q = 0. In this work, the

attention is turned to the energy ~ω(q) of a long-wavelength spin wave (very small wave vector

q), corresponding to the uniform precession of magnetisation in the limit of q = 0. Such energy

is also found as a solution of the phenomenological LLG equation for a spin wave with zero wave

vector q that leads to ω1 = bext+△ω and ω2 = α bext as previously discussed in Sec. 2.2. The shift

△ω of the precession frequency bext is due to an additional term △B in the effective magnetic

field arising from the presence of the MCA due to the SO interaction which also yields finite ω2.

The general dependence of the dynamical susceptibility around a spin-wave frequency pole, Eq.

(2.23), can then be represented using the formula for the geometric series (1−x)−1 = 1+x+ ...,

χ⊥(ω) =
−2⟨Sz⟩

~(ω − bext −△ω − iω2)
=
−2⟨Sz⟩

~(ω − bext)
1

1− △ω+iω2ω−bext + ...

=
−2⟨Sz⟩

~(ω − bext)
− 2⟨Sz⟩

~(ω − bext)2
(△ω + iω2) (2.24)

where terms of higher order in x = (ω + iω2)/(ω − bext) are neglected. This equation has the

same form as the general relation (2.20). Whilst the first terms in the two relations are identical,

the comparison of the second terms leads to the following identification

−2⟨Sz⟩(△ω + iω2) =
1
~

{
χA(bext)− ⟨

[
A−, S+

]
⟩
}

(2.25)
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where χA(ω) has been superseded by the zeroth order term χA(bext) in the expansion around

ω = bext. In this way the following formula is obtained for the imaginary part of the spin-wave

frequency

ω2 = −
1

2~⟨Sz⟩

{
ImχA(q, bext)− Im⟨

[
A−, S+

]
⟩
}
. (2.26)

Thus, the calculation of the imaginary part of the spin-wave frequency ω2, which defines the

Gilbert damping, is reduced to evaluation of the SO torque correlation function χA(bext) and

the mean value of the commutator [A−, S+].

The correlation function at T = 0 can be expressed in terms of the eigenstates |n⟩ of the

many-electron Hamiltonian as

χA(ω) =
i

~
∑
n

∫ t
0
dt
{
⟨0|A−(t)|n⟩⟨n|A+|0⟩ − ⟨0|A+|n⟩⟨n|A−(t)|0⟩

}
e−iω−t (2.27)

where the unit operator
∑
n |n⟩⟨n| = 1 has been used. Using the definition of the time evolution of

the operator A−(t) in the Heisenberg picture, one can calculate the expectation values appearing

in (2.27)

⟨0|A−(t)|n⟩ = ⟨0|eiHt/~A−e−iHt/~|n⟩ = ei(E0−En)t/~⟨0|A−|n⟩, (2.28a)

⟨n|A−(t)|0⟩ = ⟨n|eiHt/~A−e−iHt/~|0⟩ = ei(En−E0)t/~⟨n|A−|0⟩ (2.28b)

where En are the eigenenergies, including the ground state energy E0. After substituting the mat-

rix elements (2.28) into (2.27) the expression (in the curly brackets) representing ⟨0|[A−(t), A+]|0⟩

is found

{
...
}
= ei(E0−En)t/~⟨0|A−|n⟩⟨n|A+|0⟩ − ei(En−E0)t/~⟨0|A+|n⟩⟨n|A−|0⟩ = ... . (2.29)

The evaluation of the time integral yields

∫ ∞
0

ei(−ω∓
En−E0

~ +iη) t dt =
1

i
(
ω ± En−E0~ − iη

) . (2.30)

Thus, using the relation limη→0+ Im(x− a− iη)−1 = πδ(x− a), the imaginary part of χA(bext)

is expressed as

ImχA(bext) =
π

~
∑
n

|⟨n|A+|0⟩|2 δ(bext +
En − E0

~
)

− π

~
∑
n

|⟨n|A−|0⟩|2 δ(bext −
En − E0

~
). (2.31)
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However, the first term vanishes since En − E0 ­ 0 whilst bext > 0. Thus, using the scaling

property of the Dirac δ-function, aδ(ax) = δ(x), the following formula is finally found from Eq.

(2.26),

ω2 =
π

2~⟨Sz⟩
∑
n

|⟨n|A−|0⟩|2 δ(Ω− En + E0)

=
π

2~⟨Sz⟩
∑
n

⟨0|A+|n⟩⟨n|A−|0⟩ δ(Ω− En +E0) (2.32)

where Ω = ~ bext is the energy of a spin wave in the uniform precession mode. In this formula for

ω2 it is also assumed that the second term in Eq. (2.26) vanishes. This can be proved as follows.

The imaginary part of ⟨0|[A−, S+]|0⟩ can be written as

Im ⟨0|X|0⟩ = 1
2i

{
⟨0|X|0⟩ − ⟨0|X|0⟩∗

}
=
1
2i
⟨0|X −X†|0⟩ (2.33)

where X = [A−, S+] with A− = [S−,HSO]. General commutator rule [[A,B], C] = [A, [B,C]]−

[B, [A,C]] (valid for arbitrary operators A, B and C) allows us to express X as

X =
[
S−, [HSO, S+]

]
−
[
HSO, [S−, S+]

]
= [S−, A+] + 2 [HSO, Sz] (2.34)

where the relations A+ = [HSO, S+] and [S−, S+] = 2Sz have also been used. Thus, one finds

X† = [A−, S+] + 2~ [Sz,HSO] = X − 2 [HSO, Sz] (2.35)

which gives finally

X −X† = 4 [HSO, Sz] = 4 [H,Sz], (2.36)

since the SO interaction is the only term in the total Hamiltonian H that does not commute

with Sz. The obtained relation for the difference X − X† allows us to immediately prove that

the imaginary part of its expectation vale in the ground state |0⟩ vanishes,

Im ⟨0|X|0⟩ = 2
i
⟨0|[H,Sz]|0⟩ =

2
i
⟨0|HSz − SzH|0⟩

=
2
i
(E0⟨0|Sz|0⟩ − E0⟨0|Sz|0⟩) = 0. (2.37)

Extending this proof to show that ⟨X⟩ = tr(ρX) = 0 at finite temperature is straightforward.

The obtained expression (2.32) for ω2 can be evaluated within the Hartree-Fock approxima-

tion (HFA), using the singly exited many-electron states |n⟩ = c+f ci|0⟩(1− nf )ni, represented in

the second quantisation picture by the action of the annihilation and creation operators, ci and
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c+f respectively, on the ground state |0⟩. In such ground states, one of initially occupied state

by electron, |i⟩, is excited to an originally empty final state |f⟩ whose process is represented by

the factor (1− nf )ni. The energy difference En −E0 is then given by the difference of the one-

electron levels ϵf − ϵi. Since δ(Ω−En+E0) = δ(Ω− ϵf + ϵi) vanishes for ϵf < ϵi and Ω > 0, the

factor (1− nf )ni can be safely replaced by ni − nf (at T = 0). The matrix element ⟨n|A−|0⟩ of

the one-body operator A− =
∑
k,m⟨k|A−|m⟩ c+k cm, expressed in the second quantisation picture,

reduces then to ⟨f |A−|i⟩. In this way, one obtains

ω2 =
π

2~⟨Sz⟩
∑
i,f

|⟨f |A−|i⟩|2 δ(Ω− ϵf + ϵi)(ni − nf ). (2.38)

After expressing the occupation factors as ni = θ(ϵF − ϵi), nf = θ(ϵF − ϵf ), with the Fermi

energy ϵF, and introducing an integral over energy ϵ the expression (2.38) can be rewritten as

ω2 =
π

2~⟨Sz⟩
∑
i,f

|⟨f |A−|i⟩|2
∫
dϵ δ(ϵ− ϵi)δ(Ω− ϵf + ϵ)

[
θ(ϵF − ϵ)− θ(ϵF − ϵ− Ω)

]
(2.39)

where ϵi, ϵf have been superseded by ϵ and ϵ + Ω, respectively, due to the presence of the two

δ-functions. The last part of the integrand (i.e., the difference of the two θ-functions) determines

the actual integration interval,

ω2 =
π

2~⟨Sz⟩
∑
i,f

|⟨f |A−|i⟩|2
∫ ϵF
ϵF−Ω

dϵ δ(ϵ− ϵi)δ(ϵ− ϵf +Ω). (2.40)

The leading term in ω2, linear in Ω = ~ bext, proportional to the magnetic field Bext is then given

by

ω2 =
πΩ
2~⟨Sz⟩

∑
i,f

|⟨f |A−|i⟩|2 δ(ϵF − ϵi)δ(ϵF − ϵf )

=
πbext
2⟨Sz⟩

∑
i,f

⟨f |A−|i⟩δ(ϵF − ϵi)⟨i|A+|f⟩δ(ϵF − ϵf ). (2.41)

In real systems electrons are subject to scattering due to lattice vibrations (phonons), im-

perfections and other factors. As a result the lifetime τ of electronic states becomes finite and

electronic levels like ϵi, ϵf , infinitely narrow in the absence of scattering, have a finite width.

It is described formally by introducing a configuration average ⟨...⟩c of quantum expressions,

like Eq. (2.41) for ω2. The effect of such averaging can be represented in an approximate way,

by broadening of electronic levels, which can be formally justified within the coherent potential

approximation (CPA) [115]. Such CPA average has been used in Kamberský’s model [116] where
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the Dirac δ-functions, like δ(ϵF− ϵi), are replaced by the Lorentz functions L(ϵF− ϵi). The latter

are defined as

L(x) =
Γ
2π

1
x2 + Γ2/4

(2.42)

and characterised with the electron scattering rate Γ which is usually assumed to be state-

independent, for the sake of simplicity, and thus it represents the average scattering rate. Math-

ematically, the parameter Γ is the full width at half maximum (FWHM) of the Lorentz function.

In this way, after using the unit operator
∑
i |i⟩⟨i| = 1 in Eq. (2.41) and the definition of

trace, the final expression for the Gilbert damping constant at T = 0 is obtained,

α =
ω2
bext
=

π

2⟨Sztot⟩
tr
{
A− L(ϵF −Hs)A+ L(ϵF −Hs)

}
. (2.43)

The index “tot” is now reintroduced, for clarity, in the symbol of the total spin Sztot = Sz and

Hs denotes the Hamiltonian that gives the one-electron states: Hs|i⟩ = ϵi|i⟩. In the calculations,

Hs and its eigenstates |i⟩ are usually found within the Kohn-Sham approch of the DFT, or

in a more approximate way, within the TB model, as done in the present thesis. In the next

sections, the index “s” will be skipped for simplicity so that H will no longer denote the many-

electron Hamiltonian as it does in the present section. The SO torque operator A− = [S−,HSO],

previously defined for N electrons, acts in Eq. (2.43), in a similar way as Hs, in the Hilbert space

of one-electron quantum states. Accordingly, the same holds for the spin operator S− and the

SO interaction HSO that define A−. Thus, in all following sections of this chapter (except the

appendix B) the spin operators S−, S+, Sz and HSO refer to a single electron.

As shown by Kamberský [44] the finite temperature T can be explicitly introduced in the

calculations by replacing the value of the trace at ϵ = ϵF by the integral

α =
π

2⟨Sztot⟩

∫ ∞
−∞

dϵ η(ϵ) tr
{
A− L(ϵ−Hs)A+ L(ϵ−Hs)

}
(2.44)

where η(ϵ) = −dfFD/dϵ is obtained with the Fermi-Dirac function fFD(ϵ) = [1 + e(ϵ−ϵF)/kBT ]−1

(where kB is the Boltzmann constant).

2.4 Tight-binding model of electronic structure

This part is divided into five sections. First, the density functional theory as the background

for one-electron description of many-electron systems is reviewed and the Kohn-Sham equation
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is introduced. Then in next two sections, the TB method is presented. It is shown how the TB

Hamiltonian can be constructed for the layered structures. This is followed by the description of

TB atomic orbital basis. Finally, evaluation of the hopping integrals in terms of the two-centre

Slater-Koster parameters is described in a separate section.

2.4.1 Density functional theory as background for one-electron description

of many-electron systems

Calculations of electronic properties of molecules, solids and nanostructures are usually based on

the density functional theory (DFT) [117]. It is a powerful quantum-mechanical method which

has been honoured with the Nobel prize in chemistry in 1998, awarded to its main founder

Walter Kohn [118, 119]. In the DFT approach, a many-electronic system is represented with an

equivalent system of non-interacting particles (electrons) which has the same electron density

n(r), or, alternatively, the same densities n↑(r), n↓(r) of electrons with spin σ =↑, ↓ as the

original interacting system. As a result the non-interacting system is described within the Kohn-

Sham (KS) scheme where each electron of spin σ travels in a common effective potential V σeff(r).

This potential depends on the spin-up and spin-down electron densities n↑, n↓ not only through

the total electron density n(r) = n↑(r) + n↓(r) (i.e., the charge density) which defines the

electrostatic potential Ves(r) =
∫
n(r)|r − r′|−1dr, but also through the exchange-correlation

(xc) potential V σxc(r). The latter is defined as the functional derivative δExc[n
↑, n↓]/δnσ(r) of

the xc energy functional Exc[n↑, n↓]. This energy is the part of the total energy of the interacting

system that describes its change (reduction) resulting from correlations of electronic motions due

to the fermionic character of electrons (leading to exchange effects) and the repulsive Coulomb

interaction between electrons.

In the DFT calculations, the xc energy Exc[n↑, n↓] and the resulting exchange potential

V σxc(r) are usually expressed in the local-spin-density (LSDA) or generalised-gradient (GGA)

approximations since the exact form of the Exc[n↑, n↓] functional is yet unknown. The effective

potential V σeff = Vext + Ves + V σxc also contains the external potential Vext coming from the

interaction of electrons with the external fields due to the nuclei of atoms forming the system

and external sources if present. Additionally, the interaction of electron spin and orbital angular

momenta with external magnetic field Bext(r) can be included. However, it is not done in the

present calculations since the expression for the damping constant α is evaluated in the limit of

Bext → 0 (taken after small finite Bext is assumed in its derivation).

The quantum states (wave functions) ψσn(r) of non-interaction electrons with energies ϵ
σ
n are
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called KS states or KS orbitals. They are eigenstates of the one-electron Hamiltonian

Hσ0 = −
1
2
∇2 + V σeff(r), (2.45)

i.e., they satisfy the KS equation

Hσ0 ψ
σ
n = ϵ

σ
n ψ
σ
n. (2.46)

In the DFT approach, the KS equation is solved self-consistently since the occupied (occ) KS

orbitals have to yield such spin electron densities nσ(r) =
∑occ
n |ψσn(r)|2, (σ =↑, ↓), that lead to

the potential V σeff(r)[n
↑, n↓]. The self-consistent solution of the KS equation is found iteratively

by determining the densities n↑(r), n↓(r), and the corresponding potential Veff(r) at each step.

If relativistic corrections to the Hamiltonian are included, the external potential contains the

SO interaction HSO which is represented by a 2× 2 matrix Hσσ
′

SO (r) acting in the electron spin

space (for further details see Sec. 2.5). As a result, the total one-electron KS Hamiltonian is no

longer diagonal in spin,

H = H0 +HSO =

 H↑0 0

0 H↓0

+
 H↑↑SO H↑↓SO

H↓↑SO H↓↓SO

 =
 H↑0 +H

↑↑
SO H↑↓SO

H↓↑SO H↓0 +H
↓↓
SO

 . (2.47)
Thus, the resultant eigenstates ψn(r) of the corresponding KS equation

Hψn = ϵnψn (2.48)

do not have a definite spin since they are not eigenstates of Sz, i.e., the z component of the

electron spin operator.

In the ab initio DFT calculations the KS differential equation is solved in the configurational

space (real space) or using a large basis of atomic-like orbitals and/or plane waves. Alternatively,

an equivalent equation for the Green function can be solved like in the Korringa-Kohn-Rostoker

approximation method (KKR) [120, 121].

2.4.2 Tight-binding model: basics

The TB model was introduced by Slater and Koster back in 1954 [122] and provided a simple yet

realistic recipe for calculation of electronic band structure in solids. The TB model is based on

one-electron description of physical (many-electron) systems which is currently justified by the

DFT and takes the form of the KS equation. This model represents the eigenstates |n⟩ ≡ ψn of the

KS one-electron Hamiltonian H in a small basis of atomic-like orbital states |jµσ⟩. The orbital
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wave functions ⟨r|jµσ⟩ = φµσ(r−Rj) are usually of s, p, d spatial symmetry and they are centred

on different atomic sites Rj (i.e., the positions of atomic nuclei) in the investigated system. They

can be identified with the Wannier functions defined in the solid state theory. Importantly, in

the TB model the Hamiltonian is represented only by its matrix elements ⟨j′µ′σ′|H|jµσ⟩ which

are usually assumed to be nonzero only if the atomic sites j and j′ are the same atom or they are

first and second nearest neighbours (n.n.). These matrix elements are usually expressed within

the Slater-Koster (SK) formalism by a small set of several two-centre integrals between first and

second n.n. as well as the on-site energies corresponding to the elements on the same atomic sites

(j = j′). The values of these basic parameters are found by fitting the energy bands obtained

for bulk materials in the TB model to the energies found in ab initio DFT calculations [123].

The TB model is widely used in solid state physics for the study of electronic band structure

and related physical properties in various metallic and semiconductor crystal systems. It works

particularly well in cases of strongly localised electrons and small band width (i.e., for d -bands

and f -bands). The Hubbard model and the Anderson impurity model illustrate this point. The

TB model is associated closely with the linear combination of atomic orbitals (LCAO) method

which is used in chemistry. The basis functions to be considered are orthonormalised atomic or-

bitals |jµσ⟩. If an investigated system hasm-dimensional translational symmetry (m = 1, 2 or 3)

the atomic orbitals can be conveniently replaced by the associated Bloch basis functions depend-

ent onm-dimensional wave vector k. The use of Bloch functions reduces the size of the eigenvalue

problem and thus makes its solution easier.

2.4.3 Construction of tight-binding Hamiltonian

The TB method, outlined generally above, can be applied to construct the TB Hamiltonian for

bulk crystals as well as slabs representing layered systems which are of particular interest in this

work (see, e.g., Refs. [95]). In the latter case, the basis functions are orthonormalised atomic

orbitals |ljµσ⟩ where the index j labels different atoms which are located at positionsRlj in the l-

th atomic layer. The wave function corresponding to a basis state |ljµσ⟩ is centred atRlj and has

the form ⟨r|ljµσ⟩ = φµσ(r−Rlj) of an atomic orbital with spin σ and spatial symmetry specified

by the index µ. Layered systems, films, have two-dimensional (2D) translational symmetry since

they remain unchanged if all atoms are shifted by the same lattice vector R parallel to the film

surface. The invariance of the Hamiltonian under the 2D translations, H(r+R) = H(r), leads to

the Bloch theorem implying that the eigenstates ofH satisfy the relation ψn(r+R) = eik·Rψn(r).

Consequently, these states can be labelled with the 2D wave vector k = (kx, ky) parallel to the

film surface and often also denoted as k∥. As a result, due to the 2D translational symmetry
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the eigenvalue problem for a layered system can be formulated most conveniently using the

associated basis of Bloch functions

|klµσ⟩ = 1√
N2D

∑
j

eik·Rlj |ljµσ⟩ (2.49)

constructed from the atomic orbitals |ljµσ⟩, for each 2D wave vector k from the first 2D BZ.

Here, N2D denotes the number of atoms in each atomic plane (with periodic boundary conditions

at its edges) and it is equal to the number of k-points in the BZ. The eigenstates |nk⟩ of the

Hamiltonian can then be expanded as a linear combination

|nk⟩ =
∑
lµσ

aσnlµ(k)|klµσ⟩ (2.50)

of all Bloch basis states (of both spins σ) with the same wave vector k. Thus, each eigenstate is

represented by the probability amplitudes aσnlµ(k) = ⟨klµσ|nk⟩. These amplitudes can be found

by solving the matrix equation obtained by representing the KS equation

H|nk⟩ = ϵn(k)|nk⟩ (2.51)

in the Bloch basis. This can be done by expressing the eigenstates in the orbital basis

|nk⟩ =
∑
l′νσ′

aσ
′
nl′ν(k)|kl′νσ′⟩ =

∑
l′νσ′

aσ
′
nl′ν(k)

 1√
N2D

∑
j

eik·Rlj |l′jνσ′⟩


=

1√
N2D

∑
jl′νσ′

aσ
′
nl′ν(k)e

ik·Rlj |l′jνσ′⟩ (2.52)

using the definition (2.49) of the Bloch basis states |kl′νσ′⟩. Inserting this expression into the

KS equation (2.51) and subsequent application of the bra ⟨l0µσ| to its both sides leads us to

the equation

∑
l′νσ′

aσ
′
nl′ν(k)

∑
j

eik·Rlj ⟨l0µσ|H|l′jνσ′⟩ = ϵn(k)
∑
l′jνσ′

aσ
′
nl′ν(k)e

ik·Rlj ⟨l0µσ|l′jνσ′⟩

= ϵn(k)
∑
l′jνσ′

aσ
′
nl′ν(k)e

ik·Rljδll′δµνδ0jδσσ′

= ϵn(k) aσnlν(k) e
ik·Rl0 . (2.53)

It can be written as ∑
l′νσ′

Hσσ
′

lµ,l′ν(k) a
σ′
nl′ν(k) = ϵn(k) a

σ
nlµ(k) (2.54)
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where

Hσσ
′

lµ,l′ν(k) =
∑
j

eik·(Rl′j−Rl0)⟨l0µσ|H|l′jνσ′⟩ (2.55)

is the matrix element of the Hamiltonian H = H0 +HSO in the 2D Bloch basis. This gives the

final form of the TB eigenvalue matrix equation for layered systems.

The above procedure can also be applied to bulk systems once the layer index l is skipped

and the 2D k-vector is replaced by the three-dimensional (3D) wave vector k = (kx, ky, kz). For

bulk crystals the TB equation takes the form

∑
νσ′

Hσσ
′

µ,ν (k) a
σ′
nν(k) = ϵn(k) a

σ
nµ(k) (2.56)

from which the eigenstates |nk⟩ =
∑
µσ a

σ
nµ(k)|µσ⟩ and their eigenvalues ϵn(k), forming bulk

energy bands, can be found.

The dominant part of the TB Hamiltonian matrix for a layered system

Hσσ
′

lµ,l′ν(k) = H
σ
0; lµ,l′ν(k)δσσ′ +H

σσ′
SO; lµ,l′ν(k). (2.57)

is diagonal in spin σ. It includes the on-site energies ϵσlµ = ⟨l0µσ|Hσ0 |l0µσ⟩ and the hopping

integrals ⟨l0µσ|Hσ0 |l′jνσ′⟩, i.e., the interatomic Hamiltonian matrix elements between a chosen

central atom at position Rl0 in atomic layer l and neighbouring atoms at positions Rl′j in the

same layer (l = l′) or different layers (l ̸= l′). The hopping integrals decay quickly with increasing

interatomic distance Rl′j−Rl0. For this reason, only first and second n.n. are usually taken into

account in the sum (2.55) defining the Hamiltonian matrix elements

Hσ0; lµ,l′ν = ϵ
σ
lµδll′δµµ′ +

1st,2nd n.n.∑
j

eik·(Rl′j−Rl0)⟨l0µσ|H0|l′jνσ⟩. (2.58)

For a given atom at position Rl0, the positions Rl′j′ of its n.n. depend on the type of the crystal

lattice. For the two types of the cubic lattice present in layered systems investigated in this

work, the n.n. are at the following positions.

a) In face-centred cubic (fcc) lattice, 16 first n.n. are atRl0+(±a/2,±a/2, 0),Rl0+(0,±a/2,±a/2),

Rl0 + (±a/2, 0,±a/2); 6 second n.n. are at Rl0 + (±a, 0, 0), Rl0 + (0,±a, 0), Rl0 + (0, 0,±a).

b) In body-centred cubic (bcc) lattice, 8 first n.n. are at Rl0 + (±a/2,±a/2,±a/2); 6 second

n.n. are at Rl0 + (±a, 0, 0), Rl0 + (0,±a, 0), Rl0 + (0, 0,±a) where in both cases a is the lattice

constant.

The hopping integrals ⟨l0µσ|Hσ0 |l′jνσ′⟩ depend on the symmetry of orbitals µ, ν and their
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orientation with respect to the vector R = Rl′j−Rl0 connecting the two atoms at Rl0 and Rl′j .

This dependency is given by the SK formulas, discussed in Sec. 2.4.5. The minor part of the TB

Hamiltonian matrix is the SO interaction matrix Hσσ
′

SO; lµ,l′ν(k) = ⟨klµσ|HSO|kl′νσ′⟩. It includes

both diagonal and off-diagonal spin-pair elements but it does not depend on k and, in fact, is

diagonal in l, l′ as it is explained in Sec. 2.5.

2.4.4 Atomic orbital basis

The atomic-like orbitals used as the TB basis are products φµ(r) = fL(r)Yµ(θ, ϕ) of radial wave

functions fL(r) and functions Yµ(θ, ϕ) dependent on the polar θ and azimuthal ϕ angles, where

L is the orbital number corresponding to the orbital µ. Such form of orbitals corresponds to solu-

tions of the Schrödinger equation with a spherically symmetric potential which are eigenstates

of the square L2 of the orbital angular momentum operator L. In atomic physics and quantum

mechanical chemistry, the functions Yµ(θ, ϕ) are often chosen to be the spherical harmonics

Y mL (θ, ϕ) = (−1)m
[
(2L+ 1)(L− |m|)
4π(L+ |m|)

]1/2
PmL (cos θ)e

imϕ (2.59)

which are also eigenstates (labeled with L and the quantum magnetic numberm) of the operator

Lz; here PmL are the associated Legendre functions.

However, in solid state theory and in the TB model, in particular, the real functions Yµ(θ, ϕ)

referred to as cubic harmonics and they are usually used instead of Y mL (θ, ϕ) which have complex

values. The cubic harmonics can be defined as linear combinations of the spherical harmonics

Y −mL and Y mL , and they are labeled with index µ describing their spatial symmetry. The cubic

harmonics for s, p and d orbitals with L = 0 (Yµ = s), L = 1 (Yµ = pµ) and L = 2 (Yµ = dµ),

respectively, are listed below.

s = Y 00 = Ns ,

pz = Y 01 = Np cos θ = Np
z

r
,

px =
1√
2
(Y −11 − Y

1
1 ) = Np sin θ cosϕ = Np

x

r
,

py =
i√
2
(Y −11 + Y

1
1 ) = Np sin θ sinϕ = Np

y

r
,

d3z2−r2 = Y 02 =
1

2
√
3
Nd(3 cos2 θ − 1) =

1

2
√
3

3z2 − r2

r2
,

dxz =
1
2
(Y −12 − Y

1
2 ) = Nd sin θ cos θ cosϕ = Nd

xz

r
,
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dyz =
i√
2
(Y −12 + Y

1
2 ) = Nd sin θ cos θ sinϕ = Nd

yz

r
,

dxy =
i√
2
(Y −22 + Y

2
2 ) = Nd sin

2 θ cosϕ sinϕ = Nd
xy

r
,

dx2−y2 =
1√
2
(Y −22 − Y

2
2 ) =

1
2
Nd sin2 θ(cos2 ϕ− sin2 ϕ) =

1
2
Nd

x2 − y2

r2
(2.60)

where Ns = 1√
4π
, Np =

√
3/4π and Nd =

√
15/4π. Having established these explicit forms of

angular dependent atomic-like orbitals which form the TB basis, one can find the SK expressions

for the hopping integrals. This is discussed in the following section and the appendix C in detail.

2.4.5 Hopping integrals and two-centre Slater-Koster parameters

The two-centre SK parameters, introduced by Slater and Koster [122], are the key ingredients

in the TB model used for calculation of the electronic band structure in solids. They are used in

evaluation of the hopping integrals which are the interatomic matrix elements ⟨l0µσ|Hσ0 |l′jνσ⟩

of the one-electron Hamiltonian Hσ0 between orbitals centred on neighbouring atoms. Atomic

orbitals are not eigenstates of the Hamiltonian anymore in a crystal system due to their overlap

with orbitals on adjacent atomic sites. Therefore, the hopping integrals (bond energies in chem-

istry) represent an effective interaction between atomic orbitals centred on two neighbouring

atoms (though such interpretation is not strict since it is not a physical interaction between

different electrons). In the TB model, the hopping integrals are expressed in terms of several

two-centre SK parameters (a separate set for each spin in the case of ferromagnets) and angle-

dependent trigonometric functions that reflect the relative position of one atom with respect

to the other. The two-centre SK parameters are generic matrix elements of the Hamiltonian

between pairs of s, p, d orbitals corresponding to orbital angular momentum quantised along the

axis joining the two neighbouring atoms. The explicit expressions for the hopping integrals in

terms of the two-centre parameters can be found in literature [122, 124, 125]. Here, a derivation

of the general formula for these integrals and a few examples of it are presented.

The hopping integrals depend on the distance between atoms, the spatial symmetry of or-

bitals and their orientation with respect to the vector R connecting these atoms (in the case

of s orbitals they only depend on the distance, due to the spherical symmetry). The occur-

rence of such dependences can be understood as follows. The angular parts of the two orbitals

φµ(r1), φν(r2) are cubic harmonics Yµ(θ1, ϕ1), Yν(θ2, ϕ2) which correspond to some orbital num-

bers L,L′, and magnetic numbers m,m′, respectively. They can be represented in terms of the

spherical harmonics Y mL , Y
−m
L (or Y mL′ , Y

−m
L′ for Yν) as it is shown in the previous section. This
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Figure 2.2: Passive transformation of cartesian coordinates

relation can be written in the following general form,

Yµ = Cmµ Y
m
L + C

−m
µ Y −mL (m = 0, 1, ..., L) (2.61)

where |Cmµ |2 + |C−mµ |2 = 1. Similar relation is satisfied between Yν and Y mL′ , Y
−m
L′ . For m = 0,

Yµ = Y 0L holds so that C
0
µ = C

−0
µ =

1
2 can be assumed in the general relation (2.61).

It is convenient to transform the coordinates from r = (x, y, z) to r′′ = (x′′, y′′, z′′) so that the

resultant axis z′′ is along the interatomic vector R = Rl′j′ −Rl0. Such a passive transformation

can be achieved by the composition of two transformations: the rotation around z axis, leading

to r′ = (x′, y′, z′) coordinates, and the subsequent rotation around y′ axis. The two consecutive

transformations (rotations by the Euler angles α = ϕR , β = θR) are

x = x′ cosϕR − y′ sinϕR ,

y = x′ sinϕR + y′ cosϕR , (rotation around z) (2.62)

z = z′

and

x′ = x′′ cos θR + z′′ sin θR,

z′ = −x′′ sin θR + z′′ cos θR, (rotation around y′) (2.63)

y′ = y′′

where the angles θR, ϕR define the direction of R = R(αx, αy, αz) in the original frame of
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reference Oxyz through the direction cosines of R,

αx = sin θR cosϕR ,

αy = sin θR sinϕR , (2.64)

αz = cos θR .

The final transformation has the form

x = x′′ cos θR cosϕR − y′′ sinϕR + z′′ sin θR cosϕR,

y = x′′ cos θR sinϕR + y′′ cosϕR + z′′ sin θR sinϕR, (2.65)

z = −x′′ sin θR + z′′ cosϕR .

This linear transformation can be written in a concise form as r = Q r′′ where r = (x′′, y′′, z′′),

and Q = Q(θR, ϕR) is the transformation matrix. The coordinates determining the positions of

atoms (l0) and (l′j′) are transformed as

Rl0 = QR′′l0 , Rl′j′ = QR′′l′j′ (2.66)

and the local atomic coordinates r1 = r−Rl0 , r2 = r−Rl′j′ of an electron, in different frames,

transform in a similar way

r1 = Q r′′ −QR′′l0 = Q(r
′′ −R′′l0) = Q r′′1 , (2.67a)

r2 = Q r′′2 (2.67b)

where r′′1 = r′′ −R′′l0 and r
′′
2 = r′′ −R′′l′j′ .

The radial parts of the electronic orbitals

φµ(r −Rl0) = φµ(r1) = fL(r1)Yµ(θ1, ϕ1) , (2.68a)

φν(r −Rl′j′) = φν(r2) = fL(r2)Yµ(θ2, ϕ2) (2.68b)

are invariant under the operator Q

fL(r1) = fL(r′′1) , (2.69a)

fL(r2) = fL(r′′2) (2.69b)

since ri = |ri| = |Q ri′′ | = |ri′′ | = ri′′ (i = 1, 2). This is because the rotation Q is an orthogonal
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linear operator.

The spherical harmonics Y mL (θi, ϕi), |m| ¬ L form a subspace of the (2L + 1)-dimensional

representation of the group SO(3) of all rotations around a point. This means that for an

arbitrary rotation Q, the function Y mL (θi, ϕi) can be expressed as

Y mL (θi, ϕi) =
L∑

m′=−L
D
(L)
mm′(γ, β, α)Y

m′
L (θ

′′
i , ϕ
′′
i ), (2.70)

i.e., as a linear combination of spherical harmonics Y m
′

L (θ
′′
i , ϕ
′′
i ) in the rotated frame Ox

′′
i y
′′
i z
′′
i .

Formally, the coefficients of this combination are given by

D
(L)
m′m(γ, β, α) = ⟨Lm

′|UQ(γ, β, α)|Lm⟩ (2.71)

where UQ = eiLzγeiLzβeiLzα = eiLyθR eiLzθR is the rotation operator for the Euler angles α =

ϕR, β = θR, γ = 0, and L = (Lx, Ly, Lz) is operator of angular momentum. Thus, it turns out

that each cubic harmonic defined by Eq. (2.61), corresponding to the orbital number L and the

magnetic numbers ±m, can be expressed as

Yµ(θi, ϕi) =
L∑

m′=−L
D̃
(L)
m′µ(θR, ϕR)Y

m′
L (θ

′′
i , ϕ
′′
i ) (2.72)

where D̃(L)m′µ = C
m
µ D

(L)
m′m + C

−m
µ D

(L)
m′,−m ; i = 1, 2.

In the two-centre approximation the TB Hamiltonian Hσ0 is approximated, in each of its

matrix elements ⟨l0µσ|Hσ0 |l′jνσ⟩, by the kinetic term and two spherically symmetric atomic

potentials V (lσ)at (|r −Rl0|) = V
(lσ)
at (r1), V

(l′σ)
at (|r −Rl′j′ |) = V

(l′σ)
at (r2) centred at Rl0 and Rl′j′ ,

respectively. Thus, the Hamiltonian reads

Hσ0 ≃ Hσ2c =
p2

2m0
+ V (lσ)at (r1) + V

(l′σ)
at (r2) (2.73)

where p2 = −~2∇2r. After change of the coordinates from r to r′′1 we have the following relation:

r = r1 + Rl0 where r1 = Q r′′1 and r2 = Q r′′2 where r
′′
2 = r′′1 + R′′ = (x′′1, y

′′
1 , z
′′
1 + R). The

vector R′′ = (0, 0, R) is the interatomic vector R = Rl′j −Rl0 transformed to the rotated frame

O1x
′′
1y
′′
1z
′′
1 , i.e. R = QR′′, R = |R|. The two-centre Hamiltonian can be expressed in the rotated

frame as

Hσ2c =
−~2

2m0
∇2r′′1 + V

(lσ)
at (r

′′
1) + V

(l′σ)
at (r

′′
2) = H

σ
2c(r
′′
1) (2.74)

(note that r1 = r′′1 , r2 = r′′2). In the local cylindrical coordinates (ρ
′′
1, z
′′
1 , ϕ
′′
1) the radii r

′′
1 =
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|r′′1 |, r′′2 = |r′′2 | are represented as

r′′1 =
√
(ρ′′1)2 + (z

′′
1 )2 , r′′2 =

√
(ρ′′1)2 + (z

′′
1 +R)2 (2.75)

and the Laplacian is given by

∇2r′′1 =
1
ρ′′1

∂

∂ρ′′1
(ρ′′1

∂

∂ρ′′1
) +
1

ρ′′1
2
∂2

∂ϕ′′1
2 +

∂2

∂z′′21
. (2.76)

Thus, the operator Hσ2c does not depend on ϕ
′′
1 which means that it is invariant under rotation

by an arbitrary angle around the z′′1 axis.

After such change of variables the matrix elements of Hσ0 ≈ Hσ2c take the form

⟨l0µσ|Hσ0 |l′j′νσ⟩ =
∫
drfL(r1)∗ Yµ(θ1, ϕ1)∗Hσ2c(r) fL′(r2)Yν(θ2, ϕ2)

=
L∑

m′=−L

L′∑
m′′=−L

(D̃(L)m′µ)
∗ D̃
(L′)
m′′ν

∫
dr′′1fL(r

′′
1)
∗ fL′(r′′2)H2c(ρ

′′
1, z
′′
1 )Y

m′
L (θ

′′
1 , ϕ
′′
1)
∗ Y m

′′
L′ (θ

′′
2 , ϕ
′′
2).

(2.77)

However, ϕ′′2 = ϕ′′1 (since the corresponding axes of the two frames O1x
′′
1y
′′
1z
′′
1 and O2x

′′
2y
′′
2z
′′
1

are parallel to each other) thus the integral
∫
dr′′1 =

∫∞
−∞ dz

′′
1
∫∞
0 ρ′′1dρ

′′
1
∫ 2π
0 dϕ1 expressed in the

cylindrical coordinates (ρ′′1, z
′′
1 , ϕ
′′
1) vanishes if m

′′ ̸= m′. This is so because

Y m
′

L (θ
′′
1 , ϕ
′′
1) ∼ eim

′ϕ′′1 , Y m
′′

L (θ
′′
2 , ϕ
′′
2) ∼ eim

′′ϕ′′2 = eim
′′ϕ′′1 (2.78)

whilst other parts of the integrand do not depend on ϕ′′1. The Hamiltonian matrix elements can

then be expressed as

⟨l0µσ|Hσ0 |l′j′νσ⟩ =
min(L,L′)∑
m′=0

FLL
′m′

µν (θR, ϕR)T σLL′m′ (2.79)

where
T σLL′m′ =

∫
dr′′1 fL(r

′′
1)
∗ fL′(r

′′
2)Y

m′
L (θ

′′
1 , ϕ
′′
1)
∗ Y m

′
L′ (θ

′′
2 , ϕ
′′
1) (2.80)

are two-centre SK parameters corresponding to orbitals which have the same or different orbital

numbers L,L′ but their angular parts are given by spherical harmonics with the same magnetic

number m′ with respect to the axis z′′ joining the two atoms. The sum in Eq. (2.79) starts with

m′ = 0 since TLL′,−m′ = TLL′,m and the function

FLL
′m′

µν (θR, ϕR) = (D̃
(L)
m′µ)

∗ D̃
(L′)
m′ν + (D̃

(L)
−m′µ)

∗ D̃
(L′)
−m′ν (2.81)

defined for m′ > 0 includes also terms with negative m′ present in Eq. (2.77). For m′ = 0 this
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function is equal to FLL
′0

µν (θR, ϕR) = (D̃
(L)
0µ )
∗ D̃
(L′)
0ν .

In this context, the numbers L,L′ and m′ are denoted as in molecular quantum chemistry

i.e., s for L = 0, p for L = 1, d for L = 2; and σ form′ = 0, π form′ = 1, δ form′ = 2. Thus, there

are 10 basic TB two-centre SK parameters T σssσ, T
σ
ppσ, T

σ
ppπ, T

σ
ddσ, T

σ
ddπ, T

σ
ddδ, T

σ
spσ, T

σ
pdσ, T

σ
pdπ, T

σ
pdπ

for each spin σ =↑, ↓. Note that here, in the T σLL′σ symbol, σ has different meaning in subscript

(m′ = 0) and superscript (spin). The parameters T σLL′σ depend on the overlap of the functions

fL(r′′1) = fL(r1) = fL(|r′ −Rl0|) (2.82)

and

fL′(r′′2) = fL′(r2) = fL′(|r′ −Rl′j′ |) (2.83)

which quickly decays. This is why the values of T σLL′σ rapidly decrease with increasing interatomic

distance R = |Rl′j′ −Rl0| so that the parameters T σLL′µ are usually assumed to be nonzero only

for the first and second nearest neighbours.

The tabulated two-centre SK parameters T σLL′m′ for 1st and 2nd n.n. can be found for several

tens of elements in Papaconstantopoulos’ book [123]. They have been obtained by fitting the TB

energy bands for bulk solid crystals to energies obtained in ab initio DFT calculations. These

SK parameters are used in the present TB calculations.

The functions F (LL
′m′)

µν (θR, ϕR), entering the expression (2.81) for the matrix elements of the

TB Hamiltonian Hσ0 , depend on the orientation (θR, ϕR) of the interatomic vector R and they

can be expressed in terms of its direction cosines αx, αy, αz. As already mentioned, the detailed

expressions for these functions are given for s, p, d orbitals in the seminal work by Slater and

Koster [122]. The angular dependence of the functions F (LL
′m′)

µν (θR, ϕR) can be derived using

the definition of the cubic harmonics and the explicit form of the coordinate transformation

r = Q r′′. A few examples of such derivation are given in the appendix C. A general method for

obtaining the two-centre SK formulas and extending them to arbitrary orbital numbers L,L′ is

given by McMahan in Ref. [124].

2.5 Spin-orbit interaction

Spin of electrons is coupled to their orbital motion. This interaction takes the form of the

coupling of spin direction with the electron orbital angular momentum in atomic systems. Such
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SO interaction alongside other relativistic corrections gives rise to the fine structure of energy

levels in atoms. In crystalline systems with 2D or 3D translational symmetry the SO interaction

leads to (partially) removing the degeneracy of energy bands along the symmetry lines in the

BZ as well as avoiding crossings of bands with opposite spins. Although the SO interaction is a

relatively weak interaction compared to the exchange interaction (about 10-100 times smaller),

such an interaction is of great importance in the spintronic domain. In particular, it largely affects

the magnetic anisotropy (leading to its magnetocrystalline contribution which can dominate the

shape anisotropy) and it is at the heart of the spintronic effects such as the spin Hall effect or

the Rashba effect. The SO interaction is also an essential factor in spin relaxation processes in

magnetic systems which are of main interest in the present work.

The physical mechanism of the SO interaction can be explained on the grounds of the classical

electrodynamics in the following way. As an electron moves with velocity v in electric field E,

it experiences a magnetic field B′ in its rest frame and this field affects the electron spin S.

According to the transformation rules for electric and magnetic fields between two inertial frames

of reference the magnetic field in question is equal to (in CGS units)

B′ =
E × v

c
=

E × p

m0c
(2.84)

where p is the electron momentum. Such transformation of fields results from the Lorentz trans-

formation of coordinates in the special relativity theory.

Due to the interaction of the electron magnetic moment µ = −2µBS/~ with the magnetic

field, the following potential energy emerges

−µ ·B′ = 2µB
~m0c

S · (E × p) =
|e|
m20c

2 S · (E × p) (2.85)

where the definition of the Bohr magneton µB =
~|e|
2m0c

is used. This energy gives the general

form of the SO interaction in an arbitrary electric field E

HSO = −
e

2m20c2
S · (E × p) (2.86)

if the correct prefactor 1/2 is introduced as the additional relativistic correction due to the

Thomas precession [126]. The latter is a purely kinematic relativistic effect which occurs when

the acceleration a = eE/m0 of an electron has a component perpendicular to its velocity v

during the curvilinear motion of the electron in the electric field. This effect is the result of the

fact that in the special relativistic theory the composition of two Lorentz boosts (i.e., Lorentz
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transformations A(β) and A(δβ) where β = v/c) is not equivalent to a single pure Lorentz boost

A(β+ δβ) since an additional rotation of the axes of the electron rest frame, called the Thomas

rotation takes place [127]. The angular frequency of this rotation, ωT = a×v
c2 =

e
m0c2

a×v, leads

to the reduction of the energy in Eq. (2.85) by 1/2.

The correct form of the SO interaction as a quantum operator can also be derived from the

Dirac equation in the relativistic quantum mechanics. In the semi-relativistic regime, the total

Hamiltonian of an electron in an electric field E and a magnetic field B (present in an inertial

frame of reference) reads

H = m0c
2 +

[
1
2m0

(
p− e

c
A

)2
− p4

8m30c2

]
+ eϕ− e~

2m0c
σ ·B

−i e~2

8m20c2
σ ·∇×E − e~

4m20c2
σ ·E × p− e~2

8m20c2
∇ ·E . (2.87)

The quantities appearing here are the familiar Pauli matrices σ = (σx, σy, σz) which define the

electron spin S = 12~σ, the vector potential A and the scalar potential ϕ.

The term in the square brackets in Eq. (2.87) is just the relativistic form of the kinetic energy

with the leading corrections (∼ p4). The second and third terms stand for the electrostatic

potential and the Zeeman term (its spin part), respectively. The fourth (∼ σ · ∇ × E) and

fifth (∼ σ ·E × p) terms together represent the SO interaction. The former vanishes due to the

spherical symmetry of the electron static potential (∇×E = 0). Thus, one is left with the latter

term as the SO interaction given by Eq. (2.86). The last term (∼∇ ·E) is known as the Darwin

term and is effective merely for s states (L = 0).

The electric field can be expressed as E = −∇ϕ = −1e∇V (r) with the electrostatic potential

ϕ(r) or the corresponding potential energy V (r) = eϕ(r) of an electron. It should be noted here

that the potential energy V (r) is also often called the potential within the quantum theory so

that some care is needed to avoid ambiguity in discussion. In the case of solids, the SO interaction

results from the periodic crystal potential which can be identified with the effective KS potential

within the DFT approach. This potential can be well approximated, e.g., in a layered metallic

system, as the sum

V (r) =
∑
lj

V
(l)
at (|r −Rlj |) (2.88)

of atomic-like potentials V (l)at , each of which is spherically symmetric and is centred at one of

atomic sites at positions Rlj . The atomic potential V
(l)
at depends on the type of metal that the

l-th atomic layer is built of. The gradient of the potential V (l)at (r
′), dependent on r′ = |r′| where

r′ = r − Rlj , gives the electric field E = −1e
r′

r′ dV
(l)
at (r

′)/dr′ which has the radial direction
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around each atom. Thus, the SO interaction can be expressed in terms of the orbital angular

momentum L(r′) = r′ × p and spin S operators only,

HSO =
∑
lj

ξ
(l)
at (|r −Rlj |)L(r −Rlj) · S ≡

∑
lj

h
(lj)
SO (r −Rlj) (2.89)

where the function ξ(l)at (r
′) = ~2

2m20c
2
1
r′
dV
(l)
at (r

′)
dr′ defines the strength of the SO interaction. The

form of this function, with ~2 (instead of 1), is valid if angular momentum is expressed in units

of ~, i.e., L and S stand for the dimensionless operators L/~ and S/~, in fact. The largest

contributions to the SO interaction come from the atomic regions close to the atomic nuclei

where V (l)at (r
′) ≃ −Ze2r′ so that ξ

(l)
at (r

′) ∼ Z
(r′)3 . This proves that the SO coupling is the sum

of short-range interactions h(lj)SO localised around each atom. As a result, the matrix elements

⟨l0µσ|h(l
′′j′′)
SO |l′j′νσ′⟩ of an atomic contribution h(l

′′j′′)
SO to the total SO Hamiltonian HSO can be

assumed to be negligible if one or two of the atomic orbitals ϕµ(r −Rl0) and ϕν(r −Rl′j′) are

located on atoms different than the atom (l′′j′′), i.e., ⟨l0µσ|h(l
′′j′′)
SO |l′j′νσ′⟩ ∼ δll′′δl′l′′δ0j′′δj′j′′ .

Thus, the matrix elements of HSO are finite only between orbitals on the same atom,

⟨l0µσ|HSO|l′j′νσ′⟩ = ⟨l0µσ|h
(l0)
SO |l0νσ

′⟩δll′δ0j′ . (2.90)

Due to the form of the SO atomic interaction, h(l0)SO = ξ
(l)
at (r

′)L(r′) ·S, it has nonzero matrix

elements only between orbitals ϕµ(r′) = fL(r′)Yµ(θ′, ϕ′) and ϕν(r′) = fL(r′)Yν(θ′, ϕ′) with the

same orbital number L. These elements are equal to

⟨l0µσ|h(l0)SO |l0νσ
′⟩ =

[∫
dr′ϕ∗µ(r

′)ξ(l)at (r
′)L(r′)ϕν(r′)

]
· ⟨σ|S|σ′⟩

=
∫ ∞
0

drr2f2L(r)ξ
(l)
at (r)

∫ π
0
dθ sin θ

∫ 2π
0

dϕY ∗µ (θ, ϕ)L(θ, ϕ)Yν(θ, ϕ) · ⟨σ|S|σ′⟩

= ξ
(l)
at,L⟨µ|L|ν⟩ · ⟨σ|S|σ

′⟩

= ξ
(l)
at,L⟨µσ|L · S|νσ

′⟩ (2.91)

where ξ(l)at,L =
∫∞
0 drr2f2L(r)ξ

(l)
at (r) defines the SO coupling constant (dependent on L) for a

metal forming the l-th layer. As it is usually done in TB model, for each metal M, a common

SO coupling constant ξ(l)at,L = ξM is taken for all L, corresponding to the d orbitals (L = 2)

responsible for magnetic phenomena. Let us note that the SO coupling strength has a constant

value in bulk metals M (ξat = ξM) and in monometallic films, ξ
(l)
at = ξl = ξM (equal to the bulk

value ξM), whilst for multilayer systems the SO coupling constant ξl alters with the layer index

l depending on the type of metal in each atomic layer. This fact has been taken into account in

chapter 3 when dealing with magnetic bilayers, trilayers and multilayers which consist of different
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metals. The values of the SO coupling for 3d, 4d and 5d metals considered in the present thesis:

ξFe = 0.075 eV, ξCo = 0.085 eV, ξNi = 0.105 eV, ξCu = 0.12 eV, ξPd = 0.23 eV, ξAg = 0.24 eV,

ξPt = 0.65 eV and ξAu = 0.66 eV are taken from Refs. [95, 128, 129].

With the obtained relations (2.90) and (2.91) for the SO interaction elements in the orbital

basis, one immediately finds the final form of the elements of the SO interaction in the Bloch

TB basis |lkµσ⟩,

Hσσ
′

SO; lµ,l′ν(k) =
∑
j

eik·(Rl′j−Rl0) ⟨|l0µσ|HSO|l′jνσ⟩

= ⟨l0µσ|h(l0)SO |l0νσ⟩δll′

= ξ
(l)
at,L⟨µσ|L · S|νσ

′⟩δll′ (2.92)

which shows that they do not depend on k, are diagonal in layer index l and are equal to the

matrix elements of the atomic SO coupling. The matrix elements ⟨µσ|L · S|νσ′⟩ are given by

⟨µ↑|L · S|↑ν⟩ = 1
2
⟨µ|Lz|ν⟩, (2.93a)

⟨µ↑|L · S|↓ν⟩ = 1
2
⟨µ|L−|ν⟩, (2.93b)

⟨µ↓|L · S|↑ν⟩ = ⟨µ↑|L · S|↓ν⟩∗, (2.93c)

⟨µ↓|L · S|↓ν⟩ = −⟨µ↑|L · S|↑ν⟩ (2.93d)

so that they are expressed with the matrix elements of the angular momentum operators Lz and

L−. Below are listed all nonzero matrix elements of the two operators,

⟨x|L−|z⟩ = −⟨z|L−|x⟩ = 1 ,

⟨y|L−|z⟩ = −⟨z|L−|y⟩ = −i ,

⟨xy|L−|yz⟩ = −⟨yz|L−|xy⟩ = 1 ,

⟨xy|L−|zx⟩ = −⟨zx|L−|xy⟩ = −i ,

⟨yz|L−|x2 − y2⟩ = −⟨x2 − y2|L−|yz⟩ = −i ,

⟨yz|L−|3z2 − r2⟩ = −⟨3z2 − r2|L−|yz⟩ = −i
√
3 ,

⟨zx|L−|x2 − y2⟩ = −⟨x2 − y2|L−|zx⟩ = −1 ,

⟨zx|L−|3z2 − r2⟩ = −⟨3z2 − r2|L−|zx⟩ =
√
3 ,

⟨x|Lz|y⟩ = −⟨y|Lz|x⟩ = −i ,

⟨xy|Lz|x2 − y2⟩ = −⟨x2 − y2|Lz|xy⟩ = 2i ,

⟨yz|Lz|zx⟩ = −⟨zx|Lz|yz⟩ = i . (2.94)
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According to the convention applied here spin (S) and orbital (L) angular momentum operators

are expressed in units of ~ so that the Planck constant ~ is not present in the above matrix

elements in Eq. (2.94). The following relations, well-known in quantum mechanics, are applied

in calculation of these elements,

⟨Y mL |Lz|Y m
′

L′ ⟩ ∼ δLL′ , (2.95a)

⟨Y mL |L−|Y m
′

L′ ⟩ ∼ δLL′ , (2.95b)

LzY mL = mY mL , (2.95c)

L±Y mL =
√
(L±m+ 1)(L∓m)Y m±1L . (2.95d)

Additionally, the representation of cubic harmonics in terms of Y mL , given by Eqs. (2.60), is used.

The non-relativistic KS equation, which is often used in ab initio DFT calculations, leads to

electronic states with definite spin, up or down, so that they are fully spin-polarised. Such states

form doubly-degenerate energy bands in nonmagnetic systems, whilst spin-up and spin-down

energy bands are split due to exchange in ferromagnets.

The inclusion of SO interaction is of importance in band structure calculations for both

nonmagnetic and ferromagnetic metals. It modifies the electronic states which become linear

combinations of terms with spin-up and spin-down. The electronic energies are modified in the

whole BZ though it should be remembered that the Kramers degeneracy due to time reversal

symmetry is always preserved. The latter property implies, in particular, that all energy bands

in nonmagnetic systems with inversion symmetry, like cubic crystals, are doubly degenerate at

general k-points. The SO interaction has a particular large effect on energy bands in heavier

elements, like Pt and Au, since the SO coupling constant ξM scales as Z2 with the atomic

number Z of the metal M. This interaction can lift the degeneracy (due to spatial symmetry)

at high-symmetry points and along high-symmetry lines in the BZ. In ferromagnets, the SO

interaction also makes energy bands avoid mutual crossing if two bands determined in the non-

relativistic calculation (in the DFT or TB approach) have opposite spins (up and down) and

cross each other at some k-points (forming a line in the case of the 2D BZ). Near such k-points

(including high-symmetry points) where the degeneracy of energy bands is lifted due to the

SO interaction, the involved electronic states can be so strongly spin-mixed that their net spin

(along the spin quantisation axis) is very small or even vanishes at the k-points of avoided band

crossings where the spin components of the state are equal [130]. If such states with (nearly) zero

spin polarisation have energies very close to the Fermi level, the corresponding very restricted

regions of k-points on the Fermi surface (FS) are called spin hot spots. This is so because their

44

http://rcin.org.pl



2.6. CALCULATION OF GILBERT DAMPING CONSTANT

presence can enhance spin-flip scattering of electrons by several orders of magnitudes. Such

effect has been predicted theoretically [131] and later confirmed, e.g., in experiments on fcc Co

using magnetic linear dichroism (MLD) measurements [132]. It can be expected that spin hot

spots also play a major role in the relaxation of the spin direction in the magnetic systems, i.e.,

the magnetic damping investigated in the present work. This point will be discussed in Sec. 4.2

below.

2.6 Calculation of Gilbert damping constant

The goal in this section is evaluation of the expression which defines the Gilbert damping

constant α in Eq. (2.43) (at T = 0) and Eq. (2.44) (at finite T ). As seen in Sec. 2.3 the

effort to determine the Gilbert damping constant α has given rise to the following trace

trD = tr
{
A− L(ϵ−H)A+ L(ϵ−H)

}
(2.96)

where A− = [S−,HSO], A+ = (A−)† = [HSO , S+] and S−, S+ are the spin ladder operators.

This trace can be calculated in an arbitrary basis |i⟩

trD =
∑
i

⟨i|A− L(ϵ−H)A+ L(ϵ−H)|i⟩ (2.97)

but it is done most conveniently using the orthonormalised basis built of the eigenstates |n⟩ of

the Hamiltonian. Therefore, by using the unit operator
∑
n′ |n′⟩⟨n′| = 1 one obtains

trD =
∑
n

∑
n′

⟨n|A−|n′⟩⟨n′|L(ϵ−H)A+ L(ϵ−H)|n⟩ (2.98)

that leads to∑
n,n′

⟨n|A−|n′⟩L(ϵ− ϵn′)⟨n′|A+|n⟩L(ϵ− ϵn) =
∑
n,n′

|⟨n|A−|n′⟩|2L(ϵ− ϵn)L(ϵ− ϵn′). (2.99)

For bulk metals and layered systems the eigenstates |n⟩ = |nk⟩ and |n′⟩ = |n′k′⟩ of the

Hamiltonian are Bloch states labeled with the wave vectors k,k′ and the band indices n, n′. The

matrix elements
⟨n|A−|n′⟩ = δkk′⟨nk|A−|n′k′⟩ (2.100)

are diagonal in k due to the translational symmetry (3D or 2D) of the operator A− = A−(r).

Namely, the relation A−(r +R) = A−(r) holds for translation by any lattice vector R. Thus,

the following expression for the Gilbert damping constant is obtained from Eqs. (2.44), (2.99)
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and (2.100)
α =

π

µtot

∑
k∈BZ

∑
n,n′

|Ann′(k)|2 Fnn′(k) (2.101)

where Ann′(k) = ⟨nk|A−|n′k⟩, and µtot = 2⟨Sztot⟩ is the total spin magnetic moment (in units

of the Bohr magneton µB). The summations in Eq. (2.101) are over all k-points in the BZ and

band indices n, n′. The expression for the SO torque matrix elements Ann′(k) obtained within

the TB model are presented in the next section. The factor Fnn′(k) is given by the following

integral over energy ϵ,

Fnn′(k) =
∫
dϵ η(ϵ)L(ϵ− ϵn(k))L(ϵ− ϵn′(k)) (2.102)

at finite temperature. It reduces to the simpler form Fnn′(k) = L(ϵF − ϵn(k))L(ϵF − ϵn′(k)) at

T = 0 since in this case fFD(ϵ) becomes the Heaviside step function θ(ϵF − ϵ) and its negative

derivative η(ϵ) is the Dirac δ-function δ(ϵ − ϵF). Here, L(ϵ − ϵn(k)) and L(ϵ − ϵn′(k)) are two

Lorentz functions depending on eigenenergies ϵn(k), ϵn′(k), with band indices n, n′ and the

scattering rate Γ. The calculation of Fnn′(k) at finite T is discussed in Sec. 2.6.2 and an efficient

formula for this factor is derived in Sec. 2.6.3.

In a layered system, the number N2D of k-points in the 2D BZ is equal to the number of

atoms in a single atomic layer (with periodic boundary conditions imposed). Thus, the total spin

magnetic moment in a layered structure with one ferromagnetic layer, NFM monolayers thick,

is equal to µtot = N2DNFMµFM where µFM (in units of µB) is the magnetic moment per atom

of the ferromagnetic metal. This gives the following final formula for the damping constant in

such systems
α =

π

NFMµFM

1
N2D

∑
k∈BZ

∑
n,n′

|Ann′(k)|2 Fnn′(k). (2.103)

In layered structures with two or more ferromagnetic parts the denominator NFMµtot, which

represents the magnetic moment per surface atom, has to be appropriately modified. For bulk

metals, the prefactor becomes π
µFM

1
N3D
where N3D is the number of k-points in the 3D BZ.

2.6.1 Matrix elements of spin-orbit torque operator

The next task in evaluation of the trace appearing in the expression for the Gilbert damping

constant is to calculate the matrix elements of the operator A− = [S−,HSO]. This is done by

representing the Hamiltonian eigenstates |nk⟩, |n′k⟩ in the basis of the Bloch states |klµσ⟩

(Eq. (2.50)) and the subsequent use of their definition (2.49). Thus, one obtains the following
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expression

⟨nk|A−|n′k⟩ =
∑
lµσ

∑
l′νσ′

(aσnlµ(k))
∗ aσ

′
n′l′ν(k)⟨klµσ|A−|kl′νσ′⟩

=
1

N2D

∑
µσ, νσ′

∑
lj, l′j′

(aσnlµ(k))
∗ aσ

′
n′l′ν(k) e

ik·(Rl′j′−Rlj)⟨ljµσ|A−|l′j′νσ′⟩. (2.104)

Since the SO coupling given by Eq. (2.89) is a short range interaction, localised around each

atom, it is usually assumed that its matrix elements between orbitals centred on different atoms

vanish as it is explained in Sec. 2.5. The same argument holds for the SO torque

A− =
[
S−,HSO

]
=

∑
lj

ξ
(l)
at (|r −Rlj |)

[
S−,L(r −Rlj) · S

]
=

∑
lj

ξ
(l)
at (|r −Rlj |)A−at(r −Rlj) (2.105)

where
A−at =

[
S−,L · S

]
. (2.106)

Indeed, taking into account that ξ(l)at (|r −Rlj |) ∼ |r −Rlj |−3 one finds readily that, to a good

approximation, the following relation is satisfied

⟨ljµσ|A−|l′j′νσ′⟩ = ⟨ljµσ|A−|l′j′νσ′⟩δll′δjj′ = ξl⟨µσ|A−at|νσ′⟩δll′δjj′ (2.107)

where ξl denotes the radial average of the ξ
(l)
at (r) function, as previously defined for HSO in

Sec. 2.5. Thus, from Eqs. (2.104) and (2.107) one can find the final form of the sought matrix

elements

Ann′(k) = ⟨nk|A−|n′k⟩ =
1

N2D

∑
lj

∑
µσ

∑
νσ′

a∗nσµ(k) an′σ′ν(k)⟨ljµσ|A−|ljνσ′⟩

=
1

N2D

∑
l

∑
µσ

∑
νσ′

ξl a
∗
nσµ(k) an′σ′ν(k)⟨µσ|A−at|νσ′⟩

∑
j

1

=
∑
l

∑
µσ

∑
νσ′

ξl a
∗
nσµ(k) an′σ′ν(k)⟨µσ|A−at|νσ′⟩. (2.108)

In the last step, the matrix element ⟨µσ|A−at|νσ′⟩ between different s, p and d orbitals µ, ν ∈

{xy, yz, zx, x2−y2, 3z2−r2, s, x, y, z} of both spins σ, σ′ ∈ {↑, ↓} are evaluated. The commutator

that defines the SO torque A−at (Eq. (2.106)) coming from a single atom (with the unit SO

coupling constant) is given by
A−at = LzS

− − L−Sz. (2.109)

so that its matrix elements can be expressed in terms of elements of the orbital angular mo-

mentum operators L− and Lz. However, using the definition (2.106) of A−at one readily finds that
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the elements ⟨µσ|A−at|νσ′⟩ can be represented directly with elements of the SO coupling L ·S as

follows

⟨µ ↑ |A−at|ν ↑⟩ = −⟨µ ↑|L · S |ν ↓⟩ , (2.110a)

⟨µ ↑ |A−at|ν ↓⟩ = 0, (2.110b)

⟨µ ↓ |A−at|ν ↑⟩ = 2 ⟨µ ↑|L · S |ν ↑⟩ , (2.110c)

⟨µ ↓ |A−at|ν ↓⟩ = −⟨µ ↑ |A−at|ν ↑⟩ . (2.110d)

These elements vanish for the same spin-orbitals (µσ) = (νσ′) as well as for orbitals µ and ν

with different orbital numbers, regardless of their spins σ, σ′, since the corresponding matrix

elements of L · S also vanish [133, 134].

Nonzero matrix elements of the atomic SO torque A−at exist both for σ ̸= σ′ and σ = σ′

depending on orbitals µ and ν. Thus, the applied theoretical model predicts that the Gilbert

damping is substantially affected by two kinds of electronic excitations: spin-flip and non-spin-

flip, in which the electron spin changes or remains unchanged, respectively.

It should also be noted that the damping constant α given by Eq. (2.101) (or Eq. (2.103))

including the matrix elements Ann′(k) (Eq. (2.108)) of the total SO torque A−, contains both

intraband (n = n′) and intraband (n ̸= n′) contributions. The former originate from trans-

itions within a single energy band and give the resistivitylike term of damping, whilst the latter

correspond to transitions between different energy bands and give the conductivitylike term of

damping as it is already discussed in [44, 88] in detail. The contribution of the intraband trans-

itions to the damping constant is proportional the lifetime τ = ~/Γ of electronic states whereas

the contribution of the interband transitions behaves as 1/τ ∼ Γ. The intraband contribution is

connected to the breathing Fermi surface model. Thus, both the intraband (within one band)

and interband (between different bands) transitions near the Fermi level due to the SO coup-

ling, combined with the finite lifetime τ of electronic states due to the electron scattering on

lattice vibrations and defects, account for underlying microscopic processes of the magnetisation

dynamics that lead to transfer of angular momentum from the spin system to the lattice.

2.6.2 Gilbert damping at finite temperature

As seen in the previous section, to calculate the Gilbert damping constant α at finite temperature

one needs to perform the integration over energy which appears in the expression (2.103) for

α, instead of the mere product of the two Lorentz functions at T = 0. This integral formula

includes two Lorentzians, which do not depend on temperature, and the negative derivative of
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the Fermi-Dirac distribution function. Thus, the latter is the only factor through which the

temperature dependence of the Gilbert damping enters the calculations. This derivative can be

evaluated as follows

η(ϵ) = −∂fFD(ϵ)
∂ϵ

= − ∂
∂ϵ

(
1

1 + eβ(ϵ−ϵF)

)
=

β

2 + eβ(ϵF−ϵ) + eβ(ϵ−ϵF)
=

β

2(1 + cosh[β(ϵ− ϵF)])
(2.111)

where β = 1
kBT
. To avoid numerical problems (overflow) at energies ϵ lying far from ϵF the

equation (2.111) for η(ϵ) is rewritten in the following form

η(ϵ) =


βex

(1+ex)2
if ϵ < ϵF

βe−x

(1+e−x)2
if ϵ > ϵF

(2.112)

where x = β(ϵ− ϵF).

Clearly, the integral in Eq. (2.102) is a spectral overlap of three functions and the contri-

butions of different pairs of electron states |nk⟩, |n′k⟩ to the Gilbert damping largely depend

on the form of these functions. The presence of the negative derivative η(ϵ) of the Fermi-Dirac

distribution function confines the integration over ϵ to the immediate vicinity of the Fermi level

ϵF. Thus, damping is affected solely by states with energies close to ϵF. The actual range of con-

tributing states also depends strongly on the width Γ of the Lorentzians which represents the

electron scattering due to defects and electron-phonon interaction. The numerical calculation

of the integral over ϵ defining the factor Fnn′(k) [Eq. (2.102)] is done by employing the residue

theorem and the Matsubara frequencies. This method shall be discussed in detail below.

It is found, in the calculations done for various temperatures from the range 0 ¬ T ¬ 600 K,

that the Gilbert damping constant is weakly dependent on temperature. Indeed, the damping

constants α calculated for ferromagnetic bulk metals and films at zero and finite T ultimately

saturate to very similar values as the number of k-points increases. In particular, it is found

that in Co(5 ML) and Co(10 ML) films (see Fig. 3.4 in the next chapter) the converged value of

α is almost the same at T = 0 and T = 300 K for Γ ­ 0.01 eV, a significant discrepancy being

obtained only for Γ < 0.01 eV. Thus, using finite temperature is found almost not to affect the

actual results for the damping constant except for very small scattering rates Γ. This confirms

the previous findings of Gilmore et al. [88] in their calculations for bulk ferromagnetic metals. It

is convenient to apply the finite temperature formulation since the convergence of the numerical

integration over the BZ is much faster than at T = 0. Thus, the efficiency of the numerical

calculations is improved (see Sec. 3.1 for details).

It should also be mentioned that, to further improve the efficiency different methods of the
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integration over k in the BZ (such as the tetrahedron and trilinear interpolation methods) have

been tested but they have been found not to improve the convergence of the integration. This

failure is attributed to the specific form of the integrated function of k, especially the fact

that Fnn′(k) varies rapidly near the k-points where energy bands ϵn(k), ϵn′(k) cross ϵF. For

example in the tetrahedron method, that is used for the numerical integration over the 3D BZ,

the BZ is divided into many small cubes and each small cube into six tetrahedra, and then the

energies ϵn(k), ϵn′(k) which enter the integrand function are linearised over each tetrahedron

(see Ref. [135]). At the crossing points k of two energy bands, the functions ϵn(k), ϵn′(k) have

discontinuous derivatives over k (gradients) since the energies ϵn(k) obtained by diagonalisation

of the Hamiltonian matrix are numbered with index n, separately at each k, only according to the

ascending order of the eigenvalues ϵn(k). This unwanted property of the numerically determined

electron energies severely impairs the linearisation of the band ϵn(k) near the crossing points

with another band ϵn′(k).

2.6.3 Integration via residue theorem: Matsubara frequency method

As it has previously been mentioned the efficiency of calculations is remarkably improved by

introducing finite temperature into the electronic occupations factors and subsequent summation

over the Matsubara frequencies. In the calculation of the Gilbert damping constant at finite

temperature one encounters the integral over energy that defines the factor Fnn′(k) in Eq.

(2.102). This integration can be calculated directly but it must be done with suitable care to

get accurate results due to the rapid variation of both the two Lorentz functions as well as the

negative derivative η(ϵ) of the Fermi-Dirac function.

In this section, by employing the method of contour integration, an analytical expression

for the factor Fnn′(k) is presented. Such expression is derived by replacing the integral of F (z)

along the real axis in the complex energy plane with the integral over a finite closed contour in

the upper half-plane. Subsequent use of the residue theorem allows one to express the contour

integral as the sum ∮
F (z) dz = 2πi

∞∑
j=1

aj−1 (2.113)

of the residues aj−1 of the integrand function F (z) = η(z)L(z − ϵn)L(z − ϵn′) at all its poles zj

lying in the upper half-plane. These poles include the poles of the Lorentz functions, L(z − ϵn)

and L(z − ϵn′), as well as the poles of η(z). Here, the argument k of the electronic energies

ϵn = ϵn(k), ϵn′ = ϵn′(k) is skipped as it is not relevant in the present discussion.
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Looking for the poles of the complex function η(z), let us first note that the poles of the

Fermi-Dirac distribution function fFD(z) are found from the condition

eβ(z−ϵF) = −1 = e(2k+1)iπ (2.114)

(k = 0,±1,±2, ...). That yields

z = ωk = ϵF + iπ(2k + 1)kBT (2.115)

where kBT replaces 1/β. The complex poles z = ωk are known as the Matsubara frequencies.

Thus, in the vicinity of each pole, the FD distribution function can be written in the form

fFD(z) =
1

1 + eβ(z−ϵF)

=
1

1 + eβ(z−ωk)eβ(ωk−ϵF)
=

1
1− eβ(z−ωk)

=
1

1−
(
1 + β(z − ωk) + 12β2(z − ωk)2 + . . .

)
=
−1
β

1
z − ωk

1
1 + 12β(z − ωk) + . . .

=
−1
β

1
z − ωk

(
1− 1
2
β(z − ωk) + . . .

)
=
−1
β

1
z − ωk

− 1
2
+O(z − ωk) (2.116)

where the Taylor series for the exponential function ex =
∑∞
n=0

xn

n! and the formula for the

geometric series 1
1−x = 1+x+x

2+ . . . are used. With this representation one immediately finds

that the function η(z) can be expressed as

η(z) = −dfFD(z)
dz

=
−1
β

1
(z − ωk)2

+O(1) (2.117)

around each position ωk on the complex plane. Thus, the Matsubara frequencies ωk are the poles

of the first order of the Fermi-Dirac function, and the poles of the second order of its first-order

derivative, i.e., η(ϵ).

The Lorentz function can be represented as

L(z − ϵn) =
Γ/2π

(z − ϵn)2 + (Γ/2)2
=

Γ/2π
(z − z1)(z − z2)

(2.118)

which immediately identifies its two poles

z1 = ϵn + iΓ/2 , (2.119a)

z2 = ϵn − iΓ/2 . (2.119b)
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In the same way one finds the poles

z′1 = ϵn′ + iΓ/2 , (2.120a)

z′2 = ϵn′ − iΓ/2 (2.120b)

of the other Lorentz function

L(z − ϵn′) =
Γ/2π

(z − z′1)(z − z′2)
(2.121)

The poles z1, z′1 lie in the upper complex half-plane and they contribute to the integral in Eq.

(2.102).

To calculate the residues of F (z) at the poles z1, z′1 and ωk, the following general formula

derived in complex analysis for the residue of a nonanalytic holomorphic function F (z) at its

pole zj of the order m is applied

aj−1 =
1

(m− 1)!
dm−1

dzm−1
(F (z)(z − zj)m) |z=zj . (2.122)

For z1 (m = 1) one readily finds the residue using Eqs. (2.116) and (2.121),

a−1(z1) = F (z)(z − z1)|z=z1

= η(z)L(z − ϵn)L(z − ϵn′)(z − z1)|z=z1

= η(z)
Γ/2π
z − z2

L(z − ϵn′)|z=z1

=
Γ
2π

η(z1)L(z1 − ϵn′)
z1 − z2

=
Γ
2π

η(z1)
iΓ

Γ/2π
(z1 − z′1)(z1 − z′2)

= −i Γ
(2π)2

η(z1)
(ϵn − ϵn′)(ϵn − ϵn′ + iΓ)

(2.123)

where the relation z1 − z2 = z′1 − z′2 = iΓ has been taken into account.

Following the same procedure for z′1 (m = 1) leads to

a−1(z′1) = F (z)(z − z′1)|z=z′1 =
Γ
2π

η(z′1)L(z
′
1 − ϵn)

z′1 − z′2

= −i Γ
(2π)2

η(z′1)
(ϵn′ − ϵn)(ϵn′ − ϵn + iΓ)

. (2.124)

For the second-order poles ωk (m = 2) the residue of the function F (x) is

a−1(ωk) =
d

dz
[F (z)(z − zj)2]|z=zj=ωk
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=
d

dz

[
η(z)L(z − ϵn)L(z − ϵn′)(z − ωk)2

]
|z=ωk

= − 1
β

d

dz
[L(z − ϵn)L(z − ϵn′)] |z=ωk

= − Γ
2

4βπ2

[
−2(z − ϵn)[

(z − ϵn)2 + (Γ/2)2
]2 L(z − ϵn′) + L(z − ϵn)

−2(z − ϵn′)[
(z − ϵn′) + (Γ/2)2

]2
]
|z=ωk

=
Γ2

2βπ2

[
ωk − ϵn

(ωk − z1)2(ωk − z2)2
1

(ωk − z′1)(ωk − z′2)

+
ωk − ϵn′

(ωk − z′1)2(ωk − z′2)2
1

(ωk − z1)(ωk − z2)

]
(2.125)

where the expansion (2.116) of η(z) around z = ωk and the equalities

(ωk − z1)(ωk − z2) = (ωk − ϵn)2 + (Γ/2)2 (2.126a)

(ωk − z′1)(ωk − z′2) = (ωk − ϵn′)2 + (Γ/2)2 (2.126b)

have been taken into account. Substituting ϵn = z1 − iΓ/2 and ϵn′ = z′1 − iΓ/2 one obtains

a−1(ωk) =
Γ2

2βπ2
1

(ωk − z1)(ωk − z2)(ωk − z′1)(ωk − z′2)

×
(

ωk − z1 + iΓ/2
(ωk − z1)(ωk − z2)

+
ωk − z′1 + iΓ/2
(ωk − z′1)(ωk − z′2)

)
=

Γ2

2βπ2
1

(ωk − z1)(ωk − z2)(ωk − z′1)(ωk − z′2)

×
(
1

ωk − z2
+

1
ωk − z′2

+
iΓ
2

[
1

(ωk − z1)(ωk − z2)
+

1
(ωk − z′1)(ωk − z′2)

])
. (2.127)

Introducing the notation Cik=ωk − zi, C ′ik=ωk − z′i and Ck = C1kC2kC ′1kC ′2k one can simplify

the expression (2.127) to

a−1(ωk) =
Γ2

2βπ2Ck

(
C2k + C ′2k
C2kC

′
2k
+

iΓ
2Ck
(C1kC2k + C ′1kC

′
2k)

)
. (2.128)

Having calculated the residues, the integral (2.113) can be evaluated as follows∮
F (z) dz = I(z1) + I(z′1) +

∞∑
k=1

I(ωk)

=
Γ/2π
ϵn − ϵn′

(
η(z1)

ϵn − ϵn′ + iΓ
+

η(z′1)
ϵn − ϵn′ − iΓ

)
+
∞∑
k=1

I(ωk)

=
Γ/2π
ϵn − ϵn′

(ϵn − ϵn′ − iΓ)η(z1) + (ϵn − ϵn′ + iΓ)η(z′1)
(ϵn − ϵn′)2 + Γ2

+
∞∑
k=1

I(ωk)

=
Γ
2π

η(z1) + η(z′1)
(ϵn − ϵn′)2 + Γ2

+
Γ/2π
ϵn − ϵn′

iΓ(η(z′1)− η(z1))
(ϵn − ϵn′)2 + Γ2

+
∞∑
k=1

I(ωk)
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=
Γ
2π

η(z1) + η(z′1)
(ϵn − ϵn′)2 + Γ2

+
Γ/2π
ϵn − ϵn′

iΓ(η(z′1)− η(z1))
(ϵn − ϵn′)2 + Γ2

+
∞∑
k=1

I(ωk)

=
Γ
2π

η(z1) + η(z′1)
(ϵn − ϵn′)2 + Γ2

− iΓ
2

2π
1

(ϵn − ϵn′)2 + Γ2
η(z′1)− η(z1)

z′1 − z1
+
∞∑
k=1

I(ωk) (2.129)

where I(z1) = 2πi a−1(z1), I(z′1) = 2πi a−1(z
′
1) and I(ωk) = 2πi a−1(ωk) are contributions to

the integral from the poles z1, z′1 and ωk, respectively. The relation ϵn − ϵn′ = z1 − z′1 has also

been used in the last step. Then, substituting the expression (2.128) obtained for a−1(ωk) one

is finally left with the following analytical formula

Fnn′(k) =
∮
F (z) dz = J1 + iJ2 (2.130)

where J1 and J2 are given by

J1 =
Γ
2π

η(z1) + η(z′1)
(ϵn − ϵn′)2 + Γ2

− Γ
3

2πβ

∞∑
k=0

C1kC2k + C ′1kC
′
2k

C2k
, (2.131a)

J2 = −
Γ2

2π
1

(ϵn − ϵn′)2 + Γ2
η(z′1)− η(z1)

z′1 − z1
+
Γ2

πβ

∞∑
k=0

C2k + C ′2k
CkC2kC

′
2k
. (2.131b)

Let us note that both J1 and J2 are complex numbers.

The ratio

R =
η(z′1)− η(z1)

z′1 − z1
(2.132)

present in Eq. (2.131b) becomes ill-defined numerically if the energies ϵn, ϵn′ are equal or very

close to each other, in particular, for n = n′. To avoid numerical problems in such cases one can

expand the function η(z′1) in the Taylor series around z = z1,

η(z′1) = η(z1) +
∞∑
m=1

1
m!

dmη(z)
dzm

|z=z1(z′1 − z1)m. (2.133)

This leads to the following expansion

R =
∞∑
m=1

1
m!

dmη(z)
dzm

|z=z1(z′1 − z1)m−1 =
∞∑
m=1

1
m!

dmη(z)
dzm

|z=z1(ϵ′n − ϵn)m−1 (2.134)

which converges quickly if β|ϵn′ − ϵn| ≪ 1. It is found that including its terms up to m = 6 (and

neglecting the ones with m ­ 7) is sufficient, if β|ϵn′ − ϵn| < 0.01, to get full convergence of

R in the numerical calculations, using the double-precision representation of the floating point

variables. For β|ϵn′− ϵn| ­ 0.01, accurate values of R are obtained from the formula (2.132) that

defines the ratio R.
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To evaluate the ratio R with the expansion (2.134) one needs to calculate its coefficients first.

They are given by the derivatives η(m)(z) = dmη(z)/dzm which can be found from the following

relation

η = βf(1− f). (2.135)

where f = fFD(z). Its application leads to a recursion expression for η(m) in terms of f, η, ..., η(m−1)

as follows

η(m) = −β
m∑
k=0

(
m

k

)
f (k)f (m−k) + βf (m)

= −β
m−1∑
k=1

(
m

k

)
η(k−1)η(m−k−1) − β(1− 2f) η(m−1) (2.136)

where f (k) has been replaced by −η(k−1) for k ­ 1. In particular, from the above recursive

formula one obtains

η′ = −β(1− 2f)η , (2.137a)

η′′ = −2βηη − β(1− 2f)η′, (2.137b)

η′′′ = −6βηη′ − β(1− 2f)η′′. (2.137c)

Other derivatives η(m), up to m = 10, calculated with the formula (2.136) can be found in

the appendix A. In this way, one can evaluate the integral defining the factor Fnn′(k) in Eq.

(2.102) analytically by employing the Matsubara frequency method and perform the numerical

calculation of the Gilbert damping constant α at finite temperature in an effective way. It has

been found that, for the applied temperature T = 300 K, the infinite series in Eqs. (2.131a) and

(2.131b) can be truncated to the finite sum of the first 40 terms (k = 1, 2, ..., 40) without losing

numerical accuracy of α.

2.7 Green function approach to Gilbert damping

Calculation of the Gilbert damping constant is usually done within the well-known Kamberský

formula which depends explicitly on electron states and their energies (Eqs. (2.101), (2.103)).

However, in the case of systems for which diagonalisation of Hamiltonian cannot be easily per-

formed or is not feasible at all (due to their largely reduced symmetry) an alternative expression

for the damping constant is of great interest. In this context, the use of Green functions, as a
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powerful mathematical technique, has often proved to be very efficient in theoretical determin-

ation of physical quantities. One of numerous examples of such approach is the calculation of

MCA originating from a monoatomic step on Co surface [136]. This section is devoted to finding

an explicit expression for the damping constant α in terms of the Green function.

Determination of the damping constant α for a magnetic system described with the Hamilto-

nian H involves the calculation of the trace

trD(ϵ) =
∑
a

⟨a|A− L(ϵ−H)A+ L(ϵ−H)|a⟩. (2.138)

This trace can be evaluated in any complete basis |a⟩ due to the property of trace invariance

under the choice of basis. Previously, in Sec. 2.6, the basis states |a⟩ have be chosen to be

the eigenstates |n⟩ of the Hamiltonian, namely |n⟩ = |nk⟩ for the investigated layered systems.

With this choice of basis the expression (2.101) for α is obtained. For a general magnetic system,

such direct method requires the diagonalisation of the Hamiltonian which in the TB model is

represented by a matrix whose dimension depends on the size of the system. For a layered system

with N atomic layers this matrix is reduced to an 18N × 18N array. However, for a system

without translational symmetry, like films on vicinal (i.e., stepped) surfaces or nanoclusters, the

dimension of the Hamiltonian matrix becomes very large, ultimately equal to (18Nat)× (18Nat),

where Nat is the total of atoms in the system. In such cases, the numerical diagonalisation

of the Hamiltonian is not possible. However, calculation of the investigated property, i.e., the

damping constant α can be still effectively performed if the formula for α is expressed in terms

of the Green function G(z) = G(z−H)−1 since the latter can be found without resorting to the

inversion of the very large matrix of (z − H). It can be done, e.g., with the recursion method

[137].

The expression for α in terms of the Green function can be formulated in any basis |a⟩, in

particular, in the TB basis of orbitals |jµ⟩ localised on different atoms j or the Bloch basis states

|klµσ⟩ in the case of layered systems. For any basis |a⟩ the trace in Eq. (2.138) can be rewritten

as

trD(ϵ) =
∑
a,a′

⟨a|A−L(ϵ−H)|a′⟩⟨a′|A+L(ϵ−H)|a⟩

=
∑
a,a′

⟨a|A−L(ϵ−H)|a′⟩⟨a|L(ϵ−H)A−|a′⟩∗ (2.139)

where the identity operator
∑
a′ |a′⟩⟨a′| = 1 has been introduced.

The Lorentz function L(ϵ − H) = Γ
2π

[
(ϵ−H)2 + (Γ/2)2

]−1 is the operator (in the Hilbert
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space of quantum states) defined as the function of Hamiltonian operator H. This operator

function can be transformed as follows

L(ϵ−H) = Γ
2π

[
(ϵ−H − iΓ

2
)(ϵ−H + iΓ

2
)
]−1

=
Γ
2π
[
(z∗ −H)(z −H)

]−1 = Γ
2π
(z −H)−1(z∗ −H)−1

=
Γ
2π
G(z)G(z∗). (2.140)

Thus, it is expressed in terms of the Green function operators

G(z) = (z −H)−1 (2.141a)

G(z∗) = (z∗ −H)−1 (2.141b)

where z = ϵ+ iΓ2 is the complex energy with the imaginary part equal to half of the scattering

rate Γ. The expression (2.140) for L(z −H) can be further simplified to

L(ϵ−H) = i

2π
[G(z)−G(z∗)] (2.142)

by noting but

G(z)−G(z∗) = (z −H)−1 − (z∗ −H)−1

= (z −H)−1(z∗ −H)−1 [(z∗ −H)− (z −H)]

= (−iΓ)G(z)G(z∗). (2.143)

The obtained relation between the operators L(z − H) and G(z), G(z∗) can also be derived

without resorting to the operator algebra presented above. Indeed, one can prove the relation

(2.140) and (2.142) by showing that they hold in the basis of the eigenstates |n⟩ of H. Indeed,

one finds readily that

⟨n′|L(ϵ−H)|n⟩ = Γ/2π
(ϵ− ϵn)2 + (Γ/2)2

δnn′ =
−1
π
Im
( 1
z − ϵn

)
δnn′

=
−1
π
ImGnn(z) δnn′ =

i

2π
(
Gnn(z)−Gnn(z∗)

)
δnn′

=
i

2π
(
Gnn′(z)−Gnn′(z∗)

)
(2.144)

where

Gnn′(z) = ⟨n′|G(z)|n⟩ =
1

z − ϵn
δnn′ = Gnn(z) δnn′ . (2.145)
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In this way using the relations (2.138) and (2.142) we finally arrive at the expression

trD(ϵ) =
1
4π2

∑
aa′

Paa′Q
∗
aa′ (2.146)

where

P = A− [G(z)−G(z∗)] , (2.147a)

Q = [G(z)−G(z∗)]A−. (2.147b)

An alternative formula for trD(ϵ) is found with the relations (2.138) and (2.140),

trD(ϵ) =
Γ2

4π2
∑
aa′

P̃aa′Q̃
∗
aa′ (2.148)

where

P̃ = A−G(z)G(z∗), (2.149a)

Q̃ = G(z)G(z∗)A−. (2.149b)

The matrix elements Paa′ and Qaa′ are directly expressed in terms of the elements of the Green

function and the matrix elements of the SO torque A−

Paa′ =
∑
b

A−ab [Gba′(z)−Gba′(z
∗)] , (2.150a)

Qaa′ =
∑
b

[Gab(z)−Gab(z∗)]A−ba′ (2.150b)

where

Gab = ⟨a|G(z)|b⟩, (2.151a)

A−ab = ⟨a|A
−|b⟩. (2.151b)

Similar expressions for P̃aa′ and Q̃aa′

P̃aa′ =
∑
b,b′

A−abGbb′(z)Gb′a′(z
∗), (2.152a)

Q̃aa′ =
∑
b,b′

Gab(z)Gbb′(z∗)A
−
b′a′ (2.152b)

involve additional summation over the chosen basis states b′, in comparison with Paa′ , Qaa′ , thus
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making the numerical calculation of the trace trD(ϵ) longer. On the other hand, the formula

(2.148) could be more favourable numerically for very small values of Γ since it avoids possible

inaccuracies in the matrix elements of the difference G(z)−G(z∗) = G(ϵ+ iΓ2 )−G(ϵ− i
Γ
2 ).

Therefore, having found the expressions (2.146) and (2.148) for the trace appearing in the

expression for the Gilbert damping constant finally, one can rewrite the general expression

(2.144) for Gilbert damping constant in terms of Green function in the following two alternative

forms

α =
π

µtot

∫ ∞
−∞

dϵ η(ϵ) trD(ϵ)

=
π

µtot

1
4π2

∑
a,c

∫ ∞
−∞

dϵ η(ϵ)Pac(z)Q∗ac(z)

=
π

µtot

Γ2

4π2
∑
a,c

∫ ∞
−∞

dϵ η(ϵ)P̃ac(z)Q̃∗ac(z) (2.153)

where µtot = 2⟨Sztot⟩ is the total spin magnetic moment (in units of µB). The expressions (2.153)

can be directly used for evaluation of the Gilbert damping constant α at finite temperature,

whilst at T = 0 the two integrals over energy present in Eq. (2.153) reduce to Pac(ϵF+iΓ2 )Q
∗
ac(ϵF+

iΓ2 ) and P̃ac(ϵF + i
Γ
2 )Q̃

∗
ac(ϵF + i

Γ
2 ), respectively, since η(ϵ) = δ(ϵ − ϵF) for T = 0. It has been

checked, for bulk ferromagnets, that the expression (2.153) leads to the same results as the

previously obtained expression for α in terms of the Hamiltonian eigenstates. The latter formula,

in the form of Eq. (2.101) is, however, more convenient for systems with translational symmetry

and, thus, it is used in the calculation of the damping constant α throughout the thesis.
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Chapter 3

Gilbert damping in magnetic

nanostructures

This chapter presents the results obtained for the Gilbert damping constant α in bulk ferromag-

nets and various magnetic nanostructures such as pure ferromagnetic films, FM/NM bilayers,

NM/Co/NM and Co/NM1/NM2 trilayers as well as binary superlattices. The calculations re-

ported in this thesis are performed within a realistic nine-band tight-binding formalism and

using the general formula (2.103) for the Gilbert damping constant obtained in Sec. 2.3, based

on Kamberský’s torque-correlation model. After discussion on the convergence and efficiency

of numerical calculations, the Gilbert damping in bulk ferromagnets is investigated and the

obtained results are compared with previously reported results of DFT calculations. Then, the

damping constant α in ultrathin ferromagnetic films is studied. New results for pure Fe, Co and

Ni films are presented and compared with experiment. The Gilbert damping is also investigated

in various magnetic layered structures (bilayers, trilayers and multilayers) composed of Co films

in contact with nonmagnetic metals. The effect of nonmagnetic metals on the Gilbert damping

and its enhancement due to change of the electronic structure and the SO coupling will be dis-

cussed. The FM/NM layered systems are of particular interest since the presence of nonmagnetic

layers leads to the GMR effect, the interlayer exchange coupling and the STT which are the key

phenomena in spintronics devices. Finally, in the last section, the calculation of α, previously

done for the (001) direction corresponding to out-of-plane magnetisation in the considered films,

is generalised to an arbitrary direction of magnetisation and thus the angular dependence of α

in bulk ferromagnets and ferromagnetic films is studied.
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3.1 Numerical efficiency and convergence

The expression for the Gilbert damping constant α [Eq. (2.103)] includes the factor Fnn′(k)

which depends on two energies, ϵn(k) and ϵn′(k). This factor can be calculated directly as an

integral over energy according to its definition given in Eq. (2.102). Such direct integration was

presumably used in the DFT calculations of α in bulk ferromagnetic metals in Ref. [88] where

the same formula for Fnn′(k) is used. This energy integral includes two Lorentzians, depending

on ϵ−ϵn(k) and ϵ−ϵn′(k), respectively, as well as the negative derivative η(ϵ) of the Fermi-Dirac

function which depends on temperature. Each of these factors varies rapidly with the energy

ϵ. Hence, the integration must be performed with suitable care to get accurate results. One

way to compute such integral more efficiently is taking the advantage of the residue theorem

instead of using numerical integration. The factor Fnn′(k) is then determined by replacing the

integral by the sum of the residues of the integrand function. Simultaneously, easy control of the

numerical accuracy is achieved by including in this sum a sufficient number of the Matsubara

frequencies (about 40 of them have been found to be sufficient for T = 300 K). Thus, the

efficiency of calculations is remarkably improved by the finite temperature ansatz as well as

subsequent summation over Matsubara frequencies. Other details of the evaluation of α at finite

temperature are similar to T = 0, regardless of the method used to compute the energy integral

that defines the factor Fnn′(k). The detailed analytical expression for Fnn′(k) is derived in Sec.

2.6.3.

Figures 3.1-3.3 present the convergence of α with the number of k-points in the BZ for bulk

bcc Fe, fcc Co and fcc Ni as well as for (001) bcc Fe, (001) fcc Co and (001) fcc Ni films of various

thicknesses with different values of the scattering rate Γ. One may notice the faster convergence

of α with number of k-points at T = 300 K than at T = 0 in both the bulk and film structures.

Indeed, for bulk ferromagnets (Fig. 3.1) the convergence of α calculated with T = 300 K is

reached with as few as (100)3 k-points for Γ ­ 0.001 eV whilst as many as (300)3 and (600)3

k-points are needed to attain convergence for Γ = 0.01 eV and Γ = 0.001 eV, respectively, at

T = 0. A similar number of k-points, (100)3 or slightly more, has been used in the previously

reported ab initio (DFT) calculations for bulk systems where the same general expression for α

given by Eqs. (2.101), (2.102) and including finite temperature, has been applied [88, 92].

As for the layered systems with Γ ­ 0.01 eV, the convergence is obtained with (80)2 k-

points for Fe, (100)2 k-points for Co and (60)2 k-points for Ni films at T = 300 K whilst

one may need more than (400)2 k-points for some film thicknesses at T = 0. A more intensive

calculation is required to achieve convergence for smaller Γ. For the smallest considered scattering
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Figure 3.1: Convergence of the Gilbert damping constant α with Nk at T = 0 and T = 300 K,
for different scattering rate Γ in left : bulk bcc Fe (red lines) and bulk fcc Co (blue lines), right :
bulk fcc Ni. The parameter Nk defines the number (2Nk + 1)3 of k-points in the 3D BZ.

rate Γ = 0.001 eV, about (1000)2 k-points are needed to give a satisfactory convergence of α

calculated with T = 300 K whilst even four times this value does not lead to a convergent result

for T = 0.

The temperature dependence of the Gilbert damping constant α has also been investigated.

Calculations were done for various temperatures 0 ¬ T ¬ 600 K. It is found that α is weakly

dependent on temperature. This confirms the previous findings of Gilmore et al. [88] in their ab

initio calculations for bulk ferromagnetic metals. Indeed, the damping constants α calculated

for ferromagnetic bulk metals and films at zero and finite T ultimately saturate to very similar

values as the number of k-points increases. In particular, in the case of Co(5 ML) and Co(10

ML) films (Fig. 3.4) α converges almost to the same value at T = 0 and T = 300 K for Γ ­ 0.01

eV. An intensive calculation for the two Co films at T = 0 has shown that a significant difference

between the values of α for zero and finite T is found only for Γ < 0.01 eV. Thus it is concluded

that using finite temperature, whilst improving efficiency of the calculations, almost does not

affect the actual results for the Gilbert damping except for very small scattering rates Γ. All

calculations of α presented below are performed with T = 300 K.

Apart from employing finite temperature, one can also improve efficiency of the calculations

by using the system’s symmetry. In the considered case of layered systems with the cubic sym-
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Figure 3.2: Convergence of the Gilbert damping constant α with the number (2Nk+1)2 k-points
in the 2D BZ for FM(5 ML) and FM(20 ML) films (FM=Fe, Co) at T = 0 (open symbols,
dashed lines) and T = 300 K (solid symbols and lines), for different scattering rates: Γ = 0.001
eV (diamonds), Γ = 0.01 eV (circles) and Γ = 0.1 eV (triangles).
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Figure 3.3: Convergence of the Gilbert damping constant α with the number (2Nk+1)2 k-points
in the 2D BZ for Ni(5 ML) and Ni(20 ML) films at T = 0 (open symbols, dashed lines) and
T = 300 K (solid symbols and lines), for different scattering rates: Γ = 0.001 eV (diamonds),
Γ = 0.01 eV (circles) and Γ = 0.1 eV (triangles).
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Figure 3.4: Gilbert damping constant α versus the scattering rate Γ in Co(5 ML) and Co(10
ML) films at T = 0 and T = 300 K. Open symbols show damping at T = 0 and the solid ones
stand for T = 300 K. The error bars shown for Γ = 0.002 eV at T = 0 reflect the not fully
converged summation over the BZ with Nk = 1000 for Co(5 ML) and Nk = 700 for Co(10 ML).

metry the numerical efficiency of the Gilbert damping calculations can be improved by limiting

the integration over k in Eq. (2.103) to the irreducible BZ, which is the 1/8 BZ. Numerical tests

for each investigated system have shown that the identical values of α are obtained with both of

the integrations, over the 1/8 BZ and the full BZ. This equality is attributed to the invariance

of the Hamiltonian including the SO interaction under the spatial and time reversal symmetry

operations.

3.2 Bulk ferromagnets

The (intrinsic) Gilbert damping constant α in bulk ferromagnetic transition metals bcc Fe, fcc

Co and fcc Ni is calculated within the TB model as a function of the electron scattering rate

Γ and it is shown in Fig. 3.5 for two different cases: with and without the SO interaction in

the calculation of electronic band structure. This figure also includes the plots of intraband

(diagonal) and interband (off-diagonal) contributions to the damping constant α for the case

of nonzero SO interaction. These contributions correspond to transitions within the one band

(n = n′) and between different bands (n ̸= n′), respectively. A few points concerning the results

presented in Fig. 3.5 should be clarified.

First, as shown, the inclusion of the SO coupling term in the Hamiltonian is found to be

essential for the intraband terms (n = n′) which gives no contribution if this term is absent.

Note that, this distinction (including or not the SO interaction) solely affects states |nk⟩ and

energies ϵn(k), i.e., the band structure, and in both cases (with and without the SO interaction)

the same full SO coupling is kept in the SO torque A−. Thus, it is emerging that including the
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Figure 3.5: Calculated Gilbert damping constant α vs scattering rate Γ for bulk Fe, Co and
Ni. Solid, dotted and dashed curves show the total damping constant as well as intraband and
interband contributions, respectively. Open squares mark results obtained with electronic states
found forHSO = 0. The corresponding interband term coincides with the total α as the intraband
term vanishes.

SO interaction HSO in the Hamiltonian gives a significant contribution to the damping constant

α and it is crucial for reproducing correct trends in the dependence of α on the scattering rate

Γ, especially in the range of small Γ ¬ 0.2 eV for which the intraband term dominates (see Fig.

3.5). A similar result has been previously reported for bulk Fe (cf. Ref. [138]). These results can

be accounted for as follows.

The intraband terms of the factor Ann′(k) in Eq. (2.103), with n = n′, vanish if the SO

coupling is neglected in the calculation electronic structure for cubic ferromagnets as well as for

layered systems with the inversion symmetry. Indeed, if the HSO is disregarded the states |nk⟩

convert to the eigenstates |n0σk⟩ of Sz so that the resultant matrix elements

Ann(k) =
∑
lj

ξl⟨n0σk|A−at(r −Rlj)|n0σk⟩

= −1
2
sσ
∑
lj

ξl⟨n0σk|L−(r −Rlj)|n0σk⟩

= −1
2
sσ⟨n0σk|O−(r)|n0σk⟩ (3.1)

(where s↑ = 1, s↓ = −1 and O− = Ox + iOy) found with A−at given by Eq. (2.109) vanish

for any non-degenerate state |n0σk⟩ due to quenching of the orbital angular momentum. This

can be shown by noting that the operator Oζ(r) =
∑
lj ξlLζ(r − Rlj) (ζ = x, y, z) becomes

[Oζ(−r)]∗ = −Oζ(r) under the combined action of the complex conjugation and the inversion

operator r → −r whilst the non-degenerate states |n0σk⟩ remain unchanged up to a constant

phase factor eiφ (see appendix A of Ref. [129]). The contribution of degenerate states is negligible

since they correspond to a set of k-points with zero measure.

It is worth mentioning that the perturbation theory for non-degenerate states seemingly fails
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to reproduce the correct ξ3 dependence of the intraband term αintra on the SO coupling constant

ξ in bulk ferromagnets (see Ref. [139]). Indeed, the first-order expansion |nk⟩ = |n0σk⟩+ |nk⟩(1)

with |nk⟩(1) ∼ ξ leads to the relation Ann(k) ∼ ξ2 and consequently to αintra ∼ ξ4 (since αintra

depends on |Ann(k)|2). However, the perturbation theory for nearly degenerate states guarantees

the ξ3 dependence of αintra, i.e., a non-vanishing ξ3 term in its expansion, as it has already been

shown for bulk metals in the original work by Kamberský [44]. Therein, the contribution to

αintra proportional to ξ3 is shown to come from a finite area of the Fermi surface (or rather, for

T > 0, a finite slice of the BZ including this part of the Fermi surface). The k-points in this

area form a strip-like region on the Fermi surface around the line where two different energy

bands cross each other at the Fermi surface in the absence of HSO. The states from the two

bands can be considered as nearly degenerate as long as their energy separation is of the order

of ξ, so that the strip width is proportional to ξ. Then, one can approximate the perturbed

states by combinations of the two unperturbed states only, so that the corresponding matrix

elements Ann(k) do not vanish for the perturbed states. Since Ann(k) are proportional to ξ the

contribution to αintra coming from the strip-like region in the BZ is proportional to ξ2 · ξ = ξ3.

Note also that the interband term of the damping constant depends quadratically on the SO

coupling constant. Such quadratical dependence of the interband term of the damping constant

α on the SO coupling constant ξ has already been addressed in Ref. [139].

The second point one can notice in Fig. 3.5 is that for small Γ the dominant contribution to

α comes from the intraband transitions since it is inversely related to Γ, i.e., related to lifetime

τ = ~/Γ of electron states. For large Γ, the interband contribution, proportional to Γ ∼ 1/τ ,

is dominant [139]. The combination of these two contributions results in a minimum in the

total damping on the scattering rate although it is hardly visible in the case of bulk Ni in Fig.

3.5. Similar minima of the damping constant as a function of temperature have been found

experimentally for bulk Fe, Co and Ni [140]. Thus, inclusion of interband transitions in the

torque-correlation model, in addition to intraband transitions accounted for by the breathing

Fermi surface model, is important for correct theoretical description of the Gilbert damping.

The presently reported dependence of α on the scattering rate Γ is very similar to that

obtained for the three bulk ferromagnets in the ab initio calculations by Gilmore et al. [88]. In

particular, the characteristic minimum of α occurs at Γ close to 0.1 eV due to the dominance

of intraband and interband contributions to α at small and large Γ, respectively. In Fig. 3.6 the

calculated damping constant α against the scattering rate Γ for bulk Fe, Co and Ni is shown,

for comparison, in one panel. As shown, the largest damping constant α is obtained for bulk

Ni, which can be partly attributed to the large SO coupling in Ni (although this is not the only
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Figure 3.6: Calculated Gilbert damping constant α vs scattering rate Γ for bulk Fe, Co and Ni.

factor) whereas the damping constants of bulk Fe and Co are close to each other, although α

for Fe is slightly larger (∼ 30 − 40%) than for Co within the range of Γ < 0.1 eV. They both

have the same value at Γ = 0.2 eV and α of Co exceeds that of Fe for Γ > 0.5 eV. The results

obtained for both metals show that α depends strongly on the scattering rate Γ, but as it will

be discussed in the following (cf. Sec. 3.4) the Gilbert damping can also be strongly affected by

two other main factors: the SO coupling and the density of states (DOS) close to the Fermi level

ϵF.

3.3 Ferromagnetic films

Extrinsic magnetic damping can occur when the system’s symmetry is reduced like in ultrathin

films. As mentioned in previous sections, there have been many experimental works on damping

in magnetic structures [37, 39, 55, 57, 58, 74, 78, 81, 141]. However, there have been hardly any

theoretical calculations of the Gilbert damping in layered structures [85, 91]. Hence, providing a

quantum-mechanical description of the Gilbert damping in layered magnetic structures is highly

desirable. It is the main objective of this thesis whilst part of the obtained results is also reported

in the papers co-authored by the present author [62, 94, 142]. In this section the Gilbert damping

in free-standing films of metallic ferromagnets, which has not been addressed theoretically before,

is investigated. In particular, the film thickness dependence of the Gilbert damping as well as

its dependence on the electron scattering rate in Fe, Co and Ni films with the (001) surface

are discussed in detail. The direction of magnetisation is assumed to be perpendicular to the

film surface, in the z direction. In this context, it is worth noting that the threshold current in

current-induced DW systems with out-of-plane magnetisation is predicted to be smaller than in

those with the in-plane orientation of magnetisation [143].
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Figure 3.7: Gilbert damping constant α left : vs scattering rate Γ in bulk ferromagnets (bcc Fe,
fcc Co, fcc Ni) and (001) ferromagnetic films with different thicknesses N , right : vs film thickness
in (001) bcc Fe, fcc Co and fcc Ni films, calculated with scattering rates Γ = 0.01 eV and Γ = 0.1
eV; The horizontal lines mark the bulk values of α for Γ = 0.1 eV (dashed line) and Γ = 0.01
eV (solid line).

It has turned out that the Gilbert damping constant α calculated for (001) bcc Fe, fcc Co

and fcc Ni ferromagnetic films is considerably modified (enhanced or reduced) in comparison

with the corresponding bulk ferromagnets [62]. An enhanced Gilbert damping in ultrathin films

in comparison with their bulk counterparts is also usually reported in experimental papers

[58, 73, 79, 80]. Such enhancement originates from the presence of the substrate on which the

film deposited on and/or the cap that covers it. Thus, the results presented for free-standing

ferromagnetic films in this section cannot be compared directly with the experimental data. As

it will be shown here the damping enhancement is not theoretically predicted for all ranges of

scattering rate and film thicknesses. The modifications of α are strongly affected by the scattering

rate and the film thickness. Figure 3.7 (left panel) presents α versus scattering rate Γ for both

bulk and ferromagnetic films in one graph. The most remarkable changes of the Gilbert damping

occur for films of a few monolayer thickness and a range of the scattering rates Γ that depends

on the system (this range changes with the thickness of Fe films, includes Γ ̸= 0.01 eV for Co

films, corresponds to Γ ¬ 0.01 eV for Ni films). The reduction of α at Γ = 0.001 eV is over

tenfold for 5 ML films of Fe, Co, and over 50-fold for 5 ML films of Ni.

The Gilbert damping in Fe films of a few monolayer thickness with even and odd number
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of atomic layers behaves differently, particularly for smaller Γ at which the reduction occurs,

causing the Gilbert damping to be more reduced for films with odd numbers of layers. The

Gilbert damping α is enhanced for Fe films thicker than 9 ML in the entire investigated range

of Γ, especially, for Γ ¬ 0.5 eV. For ultrathin Fe films of a few ML thickness, the enhancement

of α is limited to some intermediate ranges of investigated scattering rate, e.g., 0.02 eV ¬ Γ ¬ 1

eV for N = 5 whilst the aforementioned reduction of α is found for smaller Γ (the thicker Fe,

the smaller Γ at which the reduction starts).

The Gilbert damping constant α in Co films is enhanced for 0.01 eV ¬ Γ ¬ 1 eV and it is

reduced for Γ ¬ 0.01 eV. For Co films with Γ = 0.01 eV (except for those of 1, 2 and 3 ML

thicknesses) the damping constant α, surprisingly, has nearly the same value as in bulk Co.

In the case of Ni films the calculated α with Γ ¬ 0.02 eV is largely reduced in comparison with

bulk Ni. The damping constant of the considered (001) fcc Ni films is slightly larger than that

of bulk Ni only for the scattering rates Γ close to 0.1 eV.

For large scattering rates (Γ ­ 1 eV for Fe and Co, and Γ > 0.1 eV for Ni) the damping

constant α for thin films is close to the bulk value. As a general trend, it is found that the values

of α calculated for ferromagnetic films tend to the corresponding bulk values with increasing

film thickness for the majority of the assumed scattering rates 0.001 eV ¬ Γ ¬ 2 eV. However,

the convergence to the bulk value is slow in most cases, e.g., for Γ = 0.01 eV in the case of Ni

films, as seen in Fig. 3.7 (right panel).

The damping constant α is plotted as a function of the film thickness for ferromagnetic bcc

Fe, fcc Co and fcc Ni films with two different scattering rates in Fig. 3.7 (right panel). The

characteristic oscillations of the magnetic damping with the film thickness are obtained for all

three metals and they are attributed to quantum well (QW) states with energies close to the

Fermi level ϵF (e.g., the clear oscillation period of 2 ML is found for Fe films). This interpretation

is supported by the fact that the obtained oscillations have a smaller amplitude if Γ increases

since it results in larger smearing of the electronic energy levels (and the energies of QW states,

in particular) described by the Lorentz function. The occurrence of QW states in metallic films

is a well-known phenomenon which also leads to oscillations of interlayer exchange coupling and

magnetic anisotropy with varying thicknesses of ferromagnetic films and/or nonmagnetic layers

[144, 145, 146, 147]. Further discussion on the oscillations of the Gilbert damping is given below

in this section.

For bcc Fe films, the damping constant α has a broad maximum at a thickness of several ML.

This maximum occurs at lower film thicknesses for larger scattering rates (at 16 ML for Γ = 0.01

eV, and at 7 ML for Γ = 0.1 eV). Then, α begins to decline showing a slow monotonic decay
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as the film thickness increases towards the Fe bulk value for larger thicknesses. However, the

damping constant α for both considered scattering rates is still far from the corresponding bulk

values even for the thickest investigated film thickness of N = 48 ML, especially for Γ = 0.01

eV.

For fcc Co films, the damping constant α decreases, steeply from 1 ML to 5ML, upon

increasing the film thickness; small oscillations coming from QW states are superimposed on

this monotonic dependence. If these small oscillations are neglected, α declines gradually with

increasing film thickness and saturates eventually at the bulk value of 0.0023 for Γ = 0.01 eV,

already at N = 10, and approaches closely the bulk value of 0.0012 for Γ = 0.1 eV at Co

thicknesses of N ≈ 40.

In the case of fcc Ni films, the damping constant α increases steeply when the film thickness

changes from a monolayer up to 3 ML at which thickness it reaches its first peak, as it is clear

from Fig. 3.7 (right panel). This is followed by a sharp fall of α at the Ni film thickness of 4

ML and a subsequent increase to its second peak at 6 ML and third peak at 10 ML (the latter

peak is only weakly pronounced for Γ = 0.1 eV). Although α oscillates with Ni film thickness,

in general, it shows an overall upward trend upon increasing the film thickness. The obtained

large oscillations of α owing to QW states in Ni films disturb this trend more strongly, especially

for N ¬ 12 ML, than oscillations due to QW states in Fe and Co films. The Gilbert damping

constant for Ni films with Γ = 0.1 eV saturates at the bulk value for N ≈ 20 ML. For smaller

scattering rate of Γ = 0.01 eV, α seemingly starts to saturate at N ≈ 17 ML. However, this

trend is deceptive since α is only a third of its calculated bulk value (0.026) at N = 17 ML and

for the Ni thickness larger than 30 ML the damping constant increases monotonically up to the

largest investigated thickness of N = 48 ML. Thus, it is expected that for Γ = 0.01 eV the actual

convergence of α to the bulk Ni value will take place at much larger film thicknesses, presumably

around 300 ML as it can be roughly estimated by extrapolating the monotonic dependence seen

for N & 30 ML in Fig. 3.7 (right panel).

It is inferred from the results obtained for ferromagnetic films that the Gilbert damping

can be enhanced several times in comparison to bulk metals. The maximum enhancement for

Γ = 0.01 eV is found for the 16 ML Fe film (5.5 times) and the Co monolayer (over threefold).

In the case of Ni films a significant enhancement (nearly 67% for Ni(3 ML) with Γ = 0.05

eV) occurs merely for larger scattering rates (0.02 eV ¬ Γ ¬ 0.2 eV). Simultaneously, a large

reduction of α (over tenfold) is obtained for Fe and Ni films of a few ML thickness, in particular

for N = 1, 3 ML for Fe with Γ ¬ 0.02 eV and N = 1, 2, 4 ML for Ni in the whole range of

considered Γ. The obtained enhancement of α oscillates with the film thicknesses and it decays
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for thicker films as the damping constant approaches the bulk limit. The enhancement of the

Gilbert damping (or, more generally, its modification) in free-standing ultrathin ferromagnetic

films, in comparison to bulk metals, is related to change of the electronic structure due to the

loss of 3D translational symmetry. In particular, this change gives rise to quantisation of the

wave vector in the direction perpendicular to the film surface and the subsequent occurrence of

the QW states which in turn leads to oscillations of the damping constant with increasing film

thickness.

The oscillations appearing in the film thickness dependence of the damping constant have

a different character for different metals. A clear period of 2 ML is present for Fe films whilst

the identification of similar periods for Co and Ni films is not straightforward, with two dif-

ferent periods being possible (e.g., ∼ 3.5 ML and ∼ 7 ML for Ni); cf. Fig. 3.7 (right panel).

The oscillation periods associated with QW states are related to the extremal radii of Fermi

surface sheets of the corresponding bulk metals. However, further investigations are required to

determine which points or regions in the 2D BZ are responsible for the occurrence of the QW

states contributing to the Gilbert damping oscillations. Such identification of relevant k-points

has been successfully done for the MCA part of the magnetic anisotropy energy (also related to

the SO coupling) of (001) fcc Co films which oscillates with one clear period close to 2 ML, as

predicted theoretically [148, 149] and recently confirmed experimentally [150, 151]. It has been

found that these oscillations come from the centre of the 2D BZ where there are pairs of QW

states degenerate at the Γ point [149].

The oscillations of the Gilbert damping constant with film thicknesses are found to have

origin mainly in the interband term, so that the obtained oscillations stem from pairs of QW

states with energies close to each other as well as to the Fermi level ϵF. Thus, it is deduced that

the oscillations of the Gilbert damping arise due to a similar mechanism as oscillations of the

MCA energy which have been shown to come from pairs of QW states, one state lying below

ϵF and the other above ϵF [146, 149, 152]. However, the important difference is that the states

significantly contributing to the Gilbert damping lie within a few Γ off the Fermi level ϵF, due

to the presence of the product L(ϵ− ϵn(k))L(ϵ− ϵn′(k)) in Eq. (2.102). In the case of MCA the

energy range of the contributing states is much wider as the suppressing factor 1/(ϵn(k)−ϵn′(k))

present in the second-order perturbation theory expression for the MCA energy does not decay

so rapidly when the energies, ϵn(k) and/or ϵn′(k), move away from ϵF. Accordingly, the regions

in the k-space that give dominating contributions to the magnetic damping are much more

restricted than for the MCA. This conclusion should also hold for the contributions to α from

QW states.
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Figure 3.8: Gilbert damping constant α vs film thickness at T = 0 and T = 300 K in (001) fcc
Co films; Γ = 0.01 eV.

The calculations of the Gilbert damping constant α and the MCA energy also differ sig-

nificantly since operators applied in the expressions for the two quantities are different. These

operators are the SO torque A− in the former case, and the SO interaction HSO (for two sep-

arate orientations of magnetisation) in the latter. Therefore, a particular pair of QW states can

contribute to the Gilbert damping and the MCA energy in a significantly different way, or even

not contribute at all for one of them, due to specific spin and spatial symmetry of the corres-

ponding operators. A further investigation is required to explain the actual role of QW states

in the Gilbert damping oscillations to clarify the associated oscillation periods.

Temperature dependence of the Gilbert damping is also investigated. Figure 3.8 presents the

damping constant α versus film thickness at two different temperatures (T = 0 and T = 300 K)

in Co films. As shown, α changes only slightly upon the change of temperature and for most

thicknesses it is almost the same at both T = 0 and T = 300 K, although the oscillations of

α with changing Co film thickness have a larger amplitude at T = 0 due to the lack of the

direct thermal contribution (via fFD(ϵ)) to smearing of energy levels. A similar conclusion was

previously found to hold for the MCA energy and its oscillations in Co films [129].

3.4 Ferromagnet/nonmagnet bilayers

In magnetic layered systems nonzero magnetisation is confined almost entirely within its fer-

romagnetic parts. However, the presence of nonmagnetic metal in contact with ferromagnetic

metals can alter profoundly the magnetic properties of the latter. A well-known example is mag-

netic anisotropy of ultrathin ferromagnetic films. The anisotropy energy can change sign due

to the presence of a nonmagnetic cap (which affects the MCA energy term), thus leading to

reorientation of the film magnetisation [32, 33, 34, 35, 36]. The presence of a nonmagnetic layer
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can also strongly affect magnetisation dynamics of ferromagnetic films. The Gilbert damping has

been investigated experimentally in various magnetic metallic structures which include FM/NM

bilayers [39, 55, 79, 80, 82] and the damping constant is found to be enhanced if compared to the

bulk ferromagnets. Such bilayers occur, in particular, as building blocks in [FM/NM]N multilay-

ers which are of great interest in spintronics. In particular, in Ref. [78] the Gilbert damping in

Fe/Au bilayers has been investigated by FMR and an additional FMR linewidth, corresponding

to an extra Gilbert damping, due to the Au capping layer has been found. The peak-to-peak

FMR linewidth for FM/NM bilayers with different FM and NM layers has been analysed in

Ref. [37]. Therein, the corresponding Gilbert damping for magnetic field applied in different

directions has been found.

Magnetisation dynamics in ferromagnetic films in contact with NM layers has been first

theoretically investigated, separately, by Berger [45] and Slonczewski in 1996 [153]. Several years

later the theory based on spin pumping has been proposed [6, 7] to account for the enhanced

magnetic damping in systems including FM and NM layers. The latter theory is recalled in

several parts of this thesis to compare the obtained results with its predictions.

The spin pumping theory is currently the common approach to semi-phenomenological de-

scription of spin relaxation in magnetic layered systems. Based on this theory the Gilbert damp-

ing is enhanced in a ferromagnetic metal in contact with a nonmagnetic metal due to the transfer

of angular momentum from the ferromagnet to the nonmagnet through their interface. The phys-

ical parameter that represents the effect of interface in this theory is the spin mixing conductance

G↑↓. Another key factor in transfer of angular momentum in magnetic layered systems is the

spin-flip rate τ−1sf which is related to the SO coupling in metals and thus to the atomic number

Z; the heavier atom, the larger τ−1sf . It is noteworthy mentioning that, the expression for the

enhancement due to the spin pumping is valid merely for precession frequency smaller than τ−1sf

[39]. This condition also holds in the SO torque correlation model applied in the present calcu-

lations of the Gilbert damping since arbitrarily small magnetic field corresponding to very small

precession frequency ω0 is considered to extract the expression (2.103) for the damping constant

α. The enhanced magnetic damping in FM/NM layered systems can be explained within the

spin pumping theory as follows.

The enhanced damping in FM/NM layered systems observed in experiment is usually ac-

counted for by relating it to the atomic number of the NM [39]. According to the spin pumping

theory, in the case of light nonmagnetic metals like Cu the small spin-flip rate (τ−1sf,Cu ≈ 1011 s−1

[39]) leads to a nonzero backflow of the transferred angular momentum, from the NM back to

the FM, which results in no appreciable enhancement in the Gilbert damping of ferromagnetic
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metals. For heavier nonmagnetic metals (NM=Pd, Pt and Au herein, all with similar G↑↓ [59])

the spin pumping theory predicts that the large spin-flip rate causes a negligible backflow of

transferred angular momentum. This leads to a significant enhancement in the Gilbert damping

of the FM. However, according to the results of the present calculations reported in this section

it is rather the DOS at the Fermi level in the adjacent nonmagnetic metal, combined with the

large spin-flip rate in the NM due to its SO coupling, that is responsible for the enhanced Gilbert

damping.

Furthermore, within the spin pumping theory the enhancement of the damping constant α

is related to the spin-diffusion length λsd of the NM and it is inversely proportional to the FM

thickness. For NNM ≪ λsd the net transmitted spin angular momentum through the FM/NM

interface is zero (flow=backflow) and no enhancement is predicted. This has particularly been

found in Ni/V(5 nm) bilayers where no extra damping has been observed due to adding the ad-

jacent V layer next to Ni [81]. For the NM layer thicknesses NNM comparable to λsd a nonzero

enhancement of the magnetic damping is obtained due to the reduced backflow. This enhance-

ment reaches its maximum in the regime of NNM ≫ λsd that is referred to as perfect spin sink

limit (see Ref. [39] for details). In this case the transmitted spin moment is totally absorbed

within the nonmagnetic metal.

In this section the Gilbert damping constant α in perpendicularly magnetised ultrathin (¬ 10

nm) (001) fcc FM/NM bilayers with Co as a ferromagnetic substrate and various nonmagnetic

caps NM=Cu, Pd, Ag, Pt and Au will be discussed. The dependence of α on both the Co and

NM thicknesses, NFM = NCo ¬ 28 ML and NNM ¬ 22 ML, as well as on the electron scattering

rate Γ is investigated. The results obtained for bilayers are compared with those obtained for

pure ferromagnetic films, presented in the previous section, and with experimental observations.

Particularly, the effect of NM caps on the magnetic damping enhancement in Co/NM bilayers will

be discussed, by investigating its relation to the strength of the SO coupling in the nonmagnetic

metals and the systems’ electronic structure near the Fermi level.

The Gilbert damping in FM/NM bilayers is calculated using the formula (2.103) derived

for layered systems within the TB model. This formula depends on the eigenstates (both their

energies and probability amplitudes) of the TB Hamiltonian which includes the SO interaction

and is constructed in the way described in Sec. 2.4. The dimension (18N × 18N) of the TB

Hamiltonian matrix for layered systems grows quickly as the numberN of atomic layers increases,

which makes the calculations difficult numerically when the bilayer thickness becomes large. It

should also be noted that the SO coupling is not uniform throughout the system since it is

different in the Co and NM parts.
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The Gilbert damping is found to be remarkably enhanced in the investigated Co/NM(6 ML)

bilayers, particularly strongly for very small Co thickness (cf. Fig. 3.9). This result also holds for

Co/NM bilayers with the NM cap of other thicknesses, even as thin as 2 ML (Fig. 3.11). In the

presence of the NM caps the damping constant α is about an order of magnitude larger than in

pure Co films, and even a few times more in the case of the Pt cap. The dependence of α on the

Co thickness NCo shows a monotonic decrease with increasing NCo so that the enhancement of

α in Co/NM bilayers becomes weaker for thicker Co films. The damping constant of Co/NM(6

ML) bilayers decreases by more than an order of magnitude (about 27 times for Cu, 22 times

for Ag, 42 times for Pd, 45 times for Pt and 47 times for Au caps) as the Co thickness increases

from 1 ML to 28 ML.

The results obtained for Co/NM bilayers satisfy the following approximate linear dependence

on 1/NFM (= 1/NCo herein)

α ≈ αb + αs/NFM (3.2)

which is demonstrated in Fig. 3.9 where the additional damping (enhancement) α − αb due to

adding the NM caps is shown. It can be inferred from Eq. (3.2) that the total damping constant

α in Co/NM bilayers, redefined as the extensive quantity α̃ = NFMα, consists of two terms: the

bulk-like contribution NFMαb from the ferromagnet and the additional term αs responsible for

the enhancement. The latter term is the combined contributions coming from the FM/vacuum

and FM/NM interfaces present in the system. In the case of NM=Pd and Pt, as will be shown

in chapter 4, the term αs originates mainly from several atomic layers inside the NM cap close to

the FM/NM interface (see Sec. 4.1). It turns out that the approximate relation (3.2) also holds

for pure ferromagnetic films. This equation, therefore, presents a direct connection between the

film and bulk regime.

This result agrees with the general prediction of the spin pumping theory [6, 7, 58, 59]

which assumes that the damping enhancement α − αb is inversely proportional to the FM

thickness, whilst the proportionality coefficient (αs herein) depends on the type of FM/NM

interface (through its mixed spin conductance), and properties of the NM cap (in particular, on

whether it is a good or poor spin sink). However, it has to be emphasised again that the spin

pumping theory predicts a significant enhancement of damping only for NNM & λsd, contrary

to the presently obtained substantial enhancement due to modification of electronic structure

in the Co/NM bilayers. This can be clearly seen in Fig. 3.10 in which α is enhanced regardless

of the thickness of the NM cap even for poor spin sinks, i.e. Cu and Ag with λsd of the order of

103 ML.
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Figure 3.9: Left : Gilbert damping constant vs Co thickness in (001) fcc Co/NM(6 ML) bilayers,
right : Inverse Co thickness dependence of the additional damping, with respect to the bulk value
of Co, in Co/NM(6 ML) bilayers; Γ = 0.01 eV.

A monotonic dependence on 1/NFM, similar to the relation (3.2) though following a sublinear

power law, is also found in Ref. [86] for the ratio ∆ω/ω0 of the linewidth ∆ω and the frequency

ω0 of a long-wavelength spin wave in an (001) Co/Pd bilayer. Assuming the usual definition

of ∆ω as the full width at half maximum (though not stated explicitly in Refs. [85, 86]) the

linewidth ∆ω is twice the imaginary part ω1 of the complex spin-wave frequency ω = ω0 − iω1.

Then, the damping constant α obtained for Co/Pd bilayer (Fig. 3.9) is about 2 or 3 times

larger than the values of α = ω1/ω0 = 0.5∆ω/ω0 reported in Ref. [86]. However, it should

be emphasised that the two methods of calculating α are significantly different since the cited

calculations of the spin-wave spectrum do not account for the lifetime τ = 1/Γ of electron states

due to electron-phonon scattering.

The 1/NFM proportionality of the enhancement of the Gilbert damping has also been ob-

served in experiment by determining the FMR linewidth and its term proportional to α. A linear

dependence of α on 1/NCo has recently been found experimentally in Pt/Co/Pt trilayers [57]. A

similar linear dependence of the magnetic damping constant on the inverse of the ferromagnetic

film thickness in Eq. (3.2) has also been observed in experiments on ultrathin bcc Fe(001) films

grown on Ag(001) [73], Fe/Au films [78], Ni-based bilayers [81] as well as CoFeB [82].

In Fig. 3.10 the damping constant α is presented as a function of the NM cap thickness in

Co(6 ML)/NM bilayers. For comparison, the value of α for the Co(6 ML) film (α = 0.0026 for

Γ = 0.01 eV) is also marked in the plot. As already mentioned the enhancement of the Gilbert

damping is obtained even for the thinnest NM overlayers, 1 ML or 2 ML thick. For NM=Pd and

Pt caps a large initial increase makes an upward trend of α for the cap thicknesses extending

up to 4 ML where the damping constant reaches its maximum value, whilst for thicker caps
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Figure 3.10: Gilbert damping constant vs NM cap thickness in (001) fcc Co(6 ML)/NM bilayers;
Γ = 0.01 eV.

it oscillates with the cap thicknesses. The enlarged view of plots reveals that such oscillatory

dependence on the NM cap thickness is present for all investigated bilayers though the oscillations

depend on the type of NM metals; they are not well visible for NM=Cu, Ag and Au in Fig. 3.10

due to the figure’s scale.

The damping constant oscillations, whose amplitude decreases with the increase of the cap

thickness, are attributed to the QW states present in the NM metal. The oscillation periods

can be related to extremal radii of the FS of the bulk nonmagnets. For bulk Pd and Pt, the

sheet of the FS coming from the bulk d band of the ∆5 symmetry yields the same period of

5.7 ML [154]. This oscillation period has previously been found for the MCA energy in Co/Pd

systems [146, 152]. Similar, though slightly shorter, period of about 5 ML is presently found

in the dependence of the Gilbert damping constant on the Pd and Pt cap thicknesses (see Fig.

3.10).

In Fig. 3.11 the additional damping α−αCo due to adding the NM caps only, accompanying

the damping αCo of the free-standing Co film, is presented as a function of Co thickness (in

this discussion α is compared with αCo rather than with the bulk damping αb as in Fig. 3.9

above). The additional damping obeys the same trend (decreasing with increasing Co thickness)

as the total damping constant α in NM-capped Co films since the NM contribution to the

total damping is dominant. The additional damping is positive (which corresponds to damping

enhancement) for Co films with all considered NM caps. For Co films with NM=Cu, Ag and Au

caps and thicker than 13 ML the additional damping is smaller than the damping αCo of pure

Co films but for the Pt cap the additional damping is still far above αCo for Co thicknesses up

to 17 ML.

The obtained additional damping in Co/NM(2 ML) bilayers due to adding the NM caps
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Figure 3.11: Left : Additional Gilbert damping due to the presence of NM caps in (001) fcc
Co/NM(2 ML) bilayers vs Co thickness; the damping of the Co films has also been shown for
comparison, right : Inverse Co thickness dependence of the additional damping in Co/NM(2 ML)
bilayers; Γ = 0.01 eV.

follows a linear dependence on the inverse Co thickness (as it is shown in Fig. 3.11). Again,

this can be explained by nonlocal spin relaxation processes which take place in the NM layer

and dominate damping in the bilayer so that α calculated with the formula (2.103) will be

proportional to 1/NFM with a good approximation.

Within the applied SO torque correlation model the obtained enhancement of the Gilbert

damping in Co/NM bilayers results from two main factors:

(i) strong SO coupling in nonmagnetic elements heavier than Co,

(ii) change of electronic structure due to hybridisation at the Co/NM interface.

The former explicitly appears in the expression for α, namely in Eq. (2.108) for the SO torque

elements Ann′(k), whilst both factors affect damping through the modification of the electronic

states and their energies which enter Eqs. (2.108) and (2.102), respectively. To clarify the role

of the two factors and their possible interplay the damping constant is calculated for Co/NM

bilayers with zero and full SO coupling strength ξNM in the NM cap (see Fig. 3.12). To do this,

the calculations are repeated with the SO coupling switched off in the nonmagnetic caps. It

is found that, the Gilbert damping in Co/NM bilayers falls dramatically for NM=Pd and Pt

whereas the change is not significant for NM=Cu, Ag and Au. Although the two nonmagnetic

metals, Pt and Au, have very similar SO coupling constants, around 8.5 times larger than Co,

switching off this coupling has a diametrically different effect on α in the two bilayer systems.

The results for the Co/Au bilayer obtained with ξAu = 0 and ξAu = 0.66 eV differ by less than

15%, whereas the damping constant for the Co/NM bilayers falls by over twofold and fivefold

for NM=Pd and Pt, respectively, if the SO coupling of the NM is switched off. In the case of

the Co/Cu and Co/Ag bilayers α increases slightly, about 7%, if ξCu = ξAu = 0 is used instead
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Figure 3.12: Gilbert damping constant vs NM thickness in (001) fcc Co(6 ML)/NM bilayer
(NM=Cu, Pd, Pt and Au), in the presence (solid circles) and the absence (open circles) of the
SO coupling in NM; Γ = 0.01 eV.

of ξCu = 0.12 eV and ξAg = 0.24 eV. This is caused presumably by the change of the electronic

structure after switching off the SO coupling constants of Cu and Ag.

Thus, it is found that the Gilbert damping depends strongly on the SO coupling of the

NM=Pd and Pt caps but only slightly on the SO coupling of the NM=Cu, Ag and Au caps.

This remarkably different dependence of α on ξNM is due to the presence of d states at the Fermi

level ϵF in NM=Pd and Pt, and the lack of such states in NM=Cu, Ag and Au. This conclusion

can particularly well justified by the case of Au. Although Au has the SO coupling much larger

than Pd and similar to Pt, its d-band is well below the Fermi level which makes its magnetic

damping smaller than that of Co/Pd or Co/Pt bilayers. This can be illustrated by analysis of

the band structure in the constituent metals of the bilayers presented below in this section. To

explain this relationship one has to take a closer look at the underlying physics of the magnetic

damping and the parameters entering the expression (2.103) for the Gilbert damping constant

α. The expression for α is strongly affected by quantum states with energies in the immediate

vicinity of ϵF (due to the form of the integrand in Eq. (2.102)). Different positions of the narrow

d band in Pt and Au on the energy scale cause the DOS at ϵF to be high in Pt and low in Au.

As a result a relatively small number of states (with the dominant sp symmetry) present at ϵF

in Au contribute only weakly to α, despite large ξAu, whilst d states present at ϵF in Pt give a

large contribution. For the same reason the SO coupling of the NM metal has a strong effect on

the magnetic damping also for the Pd cap, whilst this effect is very weak for NM=Cu and Ag
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Figure 3.13: Layer-projected DOS in different atomic layers L in left : Co(5 ML)/Cu(5 ML),
right : Co(5 ML)/Ag(5 ML) bilayers.

(Fig. 3.12). A strong dependence of the damping constant on the SO coupling strength (with α

proportional to ξ2SO) has been shown recently, theoretically and experimentally [77].

Another probable scenario accounting for the large enhancement of the Gilbert damping

could be d(Co)-s, p(NM) hybridisation at Co/NM interface which has been turned out to play

a minor role in increasing magnetic damping in Co/Pd and Co/Pt systems. Although it is

commonly assumed that the SO coupling plays the major role in magnetic damping in Co/Pd

and Co/Pt bilayers, the performed test calculations with ξNM = 0 show that there is still a

significant contribution to the enhancement of α due to the change of electronic structure in Co,

invoked by the hybridisation of quantum states at the Co/NM interface (see Fig. 3.12). This

enhancement factor dominates for Co/NM bilayers with NM=Cu, Ag and Au in which the d

band lies below ϵF; for such bilayers α shows a very similar dependence on the NM cap thickness

(Fig. 3.10). Similar assumption has previously been considered in the experimental report [57].

To illustrate the effect of the DOS at the Fermi level on the Gilbert damping, the DOS for

ferromagnetic films and the considered Co/NM bilayers is calculated in the following. The DOS

is defined with the energies ϵn(k) of electronic states as

ρ(ϵ) =
1

N2D

∑
nk

δ(ϵ− ϵn(k)). (3.3)

and the prefactor 1
N2D
(where the parameter N2D denotes the number of k-points in the BZ, cf.
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Figure 3.14: Layer-projected DOS in different atomic layers L in left : Co(5 ML)/Pd(5 ML),
right : Co(5 ML)/Pt(5 ML) bilayers.

Sec. 4.2) is introduced to obtain the value of DOS per surface atom. The function ρ(ϵ) can also

be found as the derivative ∂Nocc∂ϵ where Nocc = N
−1
2D
∑
nk θ(ϵ− ϵn(k)) is the number of electrons

(per surface atom) with energies up to ϵ at zero temperature. To speed up the convergence of

the numerical integration in the BZ (the sum over k), it is convenient to replace, in Nocc(ϵ),

the step function θ(x) with the Fermi-Dirac distribution function fFD(x) = 1/(1 + eβx) where

x = ϵ− ϵn(k) and β = 1/kBT corresponds to finite temperature T (note that ϵ replaces here the

usual ϵF in this generalisation of fFD). Thus the following formula

ρ(ϵ) =
1

N2D

∑
nk

∂fFD(ϵ− ϵn(k))
∂ϵ

(3.4)

is used for the total DOS (per surface atom). To get better insight into the system’s electronic

structure the layer-projected DOS (per atom in atomic layer) is defined in the usual way as

ρl(ϵ) =
1

N2D

∑
nk

P lnk
∂fFD(ϵ− ϵn(k))

∂ϵ
. (3.5)

The factor P lnk =
∑
µσ |aσnlµ(k)|2 is obtained by the projection of a quantum state |nk⟩ onto the

spin-orbital Bloch basis states |klµσ⟩ in layer l and it represents the probability of finding an

electron occupying state |nk⟩ in layer l.

The calculated layer-projected DOS for an Co(5 ML)/NM(5 ML) bilayer is shown in Figs.
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3.13-3.15. As it is obvious from the plots, in the Co part (substrate) there are d states close to

the Fermi energy ϵF (where DOS has high values) that give contributions to the damping from

ferromagnetic Co. The extra damping due to the NM caps is related to the number of states

close to the Fermi energy. For NM=Pd and Pt caps, the DOS in the NM layers is large in the

vicinity of ϵF in the NM caps. This means that there are d states in the nonmagnetic part which

give contributions to the Gilbert damping from this part (Fig. 3.14). In the Cu, Ag and Au

caps, large values (peaks) of the DOS occur at energies well below the Fermi level ϵF so that the

top of the d band is well below ϵF in the NM. Thus, there are few states in the vicinity of ϵF in

the nonmagnetic part and their contributions to the damping are marginal (see Figs. 3.13 and

3.15). Similar argument can be found in Ref. [38] where the DOS is used to explain low magnetic

damping constant in manganese alloys films with large perpendicular magnetic anisotropy.

As the last point in this section, the dependence of the damping constant α on the scattering

rate Γ in Co(6 ML)/NM(2 ML) bilayers is obtained. It can be seen in Fig. 3.16 that for all

considered NM metals α decreases to its minimum value at Γ close to 0.1 eV, similar to the

bulk ferromagnets (Fig. 3.5), as Γ increases from its lowest considered value (Γ = 0.001 eV). For

Γ ­ 0.1 eV, the damping constant α slightly increases with increasing Γ. One may also notice

the pronounced shift of α for Pt, in the whole considered range of Γ, in comparison with other
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Figure 3.16: Gilbert damping constant α vs electron scattering rate Γ in Co(6 ML)/NM(2 ML)
bilayers.

considered NM caps. Similar Γ dependence of α is also found in the calculations for [Co/NM]N

multilayers (see Sec. 3.6).

3.5 Magnetic trilayers

In previous sections the Gilbert damping in bulk ferromagnets, ferromagnetic films and FM/NM

bilayers was addressed. This section is devoted to the discussion of Gilbert damping in trilayer

systems and presentation of the results obtained for the investigated magnetic trilayers. Much

attention in this section will be paid to nonlocal magnetic damping in Co/NM1/NM2 trilayers.

Magnetic metallic trilayers are commonly used to investigate the magnetisation dynamics in

view of potential spintronic applications. Magnetic damping has also been investigated exper-

imentally in similar layered systems [10, 55, 57, 155, 156]. In particular, the Gilbert damping

in Cu/Co/Cu trilayers and the effect of adjacent Pt layers has been investigated in Ref. [51]

(see also [141]). Therein, it has been shown that the Gilbert damping is significantly enhanced

by adding Pt caps to one or both sides of the Cu/Co/Cu system, particularly for very thin (¬

4 nm) Co films. Such an experimental evidence clearly shows that there is a highly nonlocal

mechanism of the Gilbert damping enhancement in magnetic layered systems. Additionally, it

has been shown, experimentally, for a system of Cu/Co/Cu sandwiched between Pt layers, in

Refs. [51], that the two-magnon scattering cannot explain the thickness dependence of the FMR

linewidth so that it is governed mainly by the Gilbert damping (see Eq. (1.1)).

The enhanced Gilbert damping in NM/FM/NM trilayers is explained in a general way in

Ref. [6] by spin pumping from ferromagnet into the adjacent nonmagnetic (normal metal) layer.

The spin pumping theory also predicts enhancement of the damping in FM/NM1/NM2 struc-
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Figure 3.17: Gilbert damping constant α, (a): in Cu/Co(6 ML)/Cu trilayers vs Cu thickness,
(b): in Pt/Co(6 ML)/Pt trilayers vs Pt thickness, with scattering rates Γ = 0.1, 0.01 eV.

tures due to highly nonlocal extrinsic damping in the second nonmagnetic cap (NM2) which is

considered to be a good spin sink. Simultaneously, the damping enhancement is predicted to

depend on the thickness of the first nonmagnetic layer (the spacer NM1) and its spin-diffusion

length. Although spin pumping theory gives a plausible general explanation of spin relaxation in

magnetic mutilayer systems, it does not provide a fully quantum-mechanical description of this

phenomenon. Such a description is given by Kamberský’s torque-correlation model on which the

present calculations are based.

The applied TB model can be immediately implemented for calculation of the Gilbert damp-

ing constant, with the formula (2.103), in all investigated trilayer structures. In this section, the

obtained results of such quantum-mechanical calculations are presented and they are shown to be

in agreement with previous experimental observations in magnetic trilayers [10, 55, 57, 155, 156].

In particular, the applied quantum mechanical model predicts nonlocal enhanced damping in

magnetic trilayer systems, in accordance with the spin pumping theory. Within the present

model one is able to investigate the film thickness dependence of magnetic damping, the weak

point of the two-magnon scattering approach. The dependence of α on Co and nonmagnetic caps

thicknesses, for various scattering rates, is investigated and compared with recent experiments.

Calculations are reported for NM/Co/NM with NM=Cu, Pt as well as for Co/NM/Pt trilayers

with NM=Cu, Ag as spacer. It has been checked that, also for considered trilayer configurations

one can take the advantage of integration over the 1/8 2D BZ to speed up the calculations.

Thanks to this simplification, the calculation of α has been efficiently done for trilayers up to

48 ML thick with the available computer facilities (a Linux workstation).

Figure 3.17 shows α for NM/Co(6 ML)/NM trilayers (NM=Cu and Pt) as a function of the

NM thickness. The obtained value of α in the Cu/Co(6 ML)/Cu system is almost independent
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of the Cu thickness and it is close to the Co bulk value. This is in accord with the experimental

results for Cu/Py/Cu [141]. For the Pt/Co(6 ML)/Pt system the Gilbert damping increases

significantly due to adding a few monolayers of Pt to the both sides of the Co film. With further

increase of the Pt substrate and cap thickness NPt the damping constant α oscillates with quickly

decaying amplitude (larger for smaller Γ), in a similar way as for the Co/Pt bilayers (see Fig.

3.10). The damping saturates at NPt ≈ 15 ML for Γ = 0.01 eV whilst α is found to steadily

grow at least up to the largest considered Pt thickness (21 ML) for Γ = 0.1 eV. It is expected

that α eventually saturates also in this case as the Pt substrate and capping layers get thicker.

Such significantly different dependence of α on the Pt thickness for different Γ does not have an

immediate explanation and requires further investigation. The obtained value of α = 0.23 for

Pt/Co/Pt with NCo = 3 ML and Γ = 0.005 eV is very close to the experimental value α ≃ 0.3

for the same system reported in Ref. [157].

Similar investigation has been recently performed experimentally for multilayers of Ta(3

nm)/NM/Co90Fe10(2 nm)/NM/Ta(3 nm) with NM=Cu, Pd and the results have been fitted to

the general formula found with the spin pumping theory [58]. There are two main differences

between systems investigated in the experiment and the one in the present calculations. Firstly,

the experimental NM/Co90Fe10/NM trilayer was sandwiched between Ta capping layers (with

large SO coupling constant ξTa ≃ 0.57 eV) and secondly, the ferromagnetic film (Co90Fe10)

is different from the one considered here (Co). Although both these factors affect the Gilbert

damping and can make it differ significantly from the present results, the obtained theoretical

damping constants are of the same order of magnitude (α ∼ 0.01 − 0.04) as the ones found

in experiment. Furthermore, the obtained dependence of α on Cu thickness NCu is in qualit-

ative agreement with experiment, particularly for very thin Cu films (NCu < 5 ML) where the

theoretical fit given in Ref. [58] breaks down.

The damping constant α has also been calculated for systems of Co film sandwiched between

NM layers (NM=Cu or Pt) of the same fixed thicknesses [i.e., NM(6 ML)/Co/NM(6 ML) trilay-

ers] with and various Co film thicknesses. The results obtained for such trilayer systems are also

in accordance with the predictions of the spin pumping theory [6, 7] and previous experimental

reports [79]. As it is seen in Fig. 3.18, the change of α due to adding the Cu(6 ML) layer to the

both sides of the Co film is not significant whereas it is quite large (more than 25-fold for 1-ML

Co) for the Pt layers and it declines as the Co thickness increases.

A possible reason for no extra damping in the trilayer systems with the Cu cap and underlayer

is the relatively small SO coupling of Cu (in comparison with Pt) and low of density of quantum

states with energies at ϵF in Cu which contribute to the Gilbert damping constant according
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Figure 3.18: Gilbert damping constant α, (a): in Co films and Cu(6 ML)/Co/Cu(6 ML) trilayers,
(b): in Co films and NM(6 ML)/Co/NM(6 ML) trilayers (NM=Cu, Pt) vs Co thickness, with
scattering rate Γ = 0.01 eV.

to the formula (2.103). The lack of magnetic damping enhancement might also be attributed to

the fact that the induced spin moment in the Cu part, parallel to the Co moment, is negligible

(about 100 times smaller than that in Co) [158]. The latter property is related to Cu d-bands

lying below the Fermi level ϵF and the resulting low DOS at ϵF. However, establishing a direct

connection between very small induced spin magnetic moment in Cu and no significant magnetic

damping enhancement in Cu/Co/Cu trilayers needs further investigation whilst, at present, the

two properties seem to be different consequences of the low DOS at ϵF in Cu. Finally, it is

evident that the change of electronic structure in such trilayers in comparison to Co/Cu bilayers

does not lead to enhanced damping unlike in Co/Cu bilayers (Sec. 3.4).

On the other hand, based on the spin pumping theory Cu is a poor spin sink so that adding

ultrathin Cu layers next to a ferromagnetic film leads to no significant change in its Gilbert

damping. It has been previously observed, in the case of Py/Cu bilayers [39] and Cu/FM/Cu

trilayers [58], that one requires a Cu layer as thick as its spin-diffusion length λCusd (200 ± 50

nm [10, 58]) to obtain an enhanced damping. Similar results have been found in experiment

on an Cu/Py/Cu trilayer [79] and confirmed within a semiclassical theory based on the LLG

equation in the ferromagnetic part and the spin diffusion equation in the nonmagnetic parts

[159]. These reports are in accord with the present theoretical results for Cu/Co(6 ML)/Cu

since the ultrathin Cu films (NCu ¬ 11 ML) considered here are much thinner than λCusd and

thus no enhancement in Cu/Co/Cu trilayers is obtained. Similar trend, almost no change for

NM=Cu and a decrease with increasing Co thickness for NM=Pd and Pt, has been observed in

experiment for α in NM/Py/NM (NM=Cu, Ta, Pd, Pt) trilayers [160]. The calculated values of

α are also of the same order as previously reported in experiment [141].

Figure 3.19 (left panel) presents α for an Pt(4 ML)/Co/Pt(8 ML) trilayer as a function of
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Figure 3.19: Inverse thickness 1/NCo dependence of Gilbert damping constant α in
Pt/Co(NCo)/Pt trilayers; left : calculated α, right : experiment (Ref. [57]), reproduced with per-
mission from [S. Mizukami, E. P. Sajitha, D. Watanabe, F. Wu, T. Miyazaki, H. Naganuma, M.
Oogane, and Y. Ando, Appl. Phys. Lett. 96, 152502 (2010)]. Copyright [2010], AIP Publishing
LLC.

the inverse Co thickness 1/NCo for different scattering rates Γ. As seen, the damping constant

α increases linearly with 1/NCo as the Co thickness NCo decreases. It is revealed that α in Pt(4

ML)/Co/Pt(8 ML) trilayers has a minimum at Γ ≃ 0.03 eV, but further investigations have

shown that the position of this minimum moves or no minimum is present for other thicknesses

of Co and Pt layers. For example, it is found that in symmetric Pt/Co/Pt trilayers, i.e., with

Pt layers of the same thicknesses, α grows monotonically upon increasing Γ for odd NCo whilst

for even NCo a shallow minimum of α occurs at Γ close to 0.01 eV. The linear dependence of α

on 1/NCo in Pt/Co/Pt trilayers has been observed in experiment with TRMOKE by Mizukami

et al. [57] (right panel in Fig. 3.19). In this plot the linear dependence of α on 1/dCo can clearly

be seen for Co thicknesses dCo down to 1.4 nm (0.25 nm−1 ¬ 1/dCo ¬ 0.7 nm−1). One can see

the excellent agreement between α calculated with Γ = 0.005 eV and the experimental values,

taking into account the relation 1/dCo = 5.6/NCo [nm−1]. A similar inverse proportionality to

the FM thickness NFM was previously observed in Fe/Au films for the additional FMR linewidth

△HGil = αωγ which is governed by α [78]. A linear trend in the dependence of α on 1/NFM has

also been reported for CoFeB films [82].

The obtained dependence of α on the Co thickness is similar to that found for the invest-

igated Co/Pt bilayers discussed in the previous section (cf. Fig. 3.9). For a Pt/Co/Pt trilayer

as compared to the corresponding Co/Pt bilayer (with the same Co thickness) one can expect

an extra damping due to additional Pt layer. This extra damping actually occurs, but only at

sufficiently large Co layer thicknesses depending on scattering rate Γ: for Co layer thicker than

30 ML with Γ = 0.01 eV and for any Co thickness with Γ > 0.1 eV. The smaller Γ, the thicker
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Figure 3.20: (a): Gilbert damping constant α in Co(6 ML)/NM/Pt(4 ML) trilayers, (b): Com-
parison of α in an Co(6 ML) film, Co(6 ML)/NM bilayers and Co(6 ML)/NM/Pt(4 ML) trilayers
vs NM=Cu, Ag thickness; Γ = 0.01 eV.

Co thickness at which the damping constant α in Pt/Co/Pt trilayers starts to exceed α in Co/Pt

bilayers. Similar conclusions can be drawn for Cu/Co/Cu trilayers in which the damping con-

stant is much smaller than Co/Cu bilayers. This relation is presumably reversed if the Co film

thickness becomes larger than 100 or 200 ML as it can be roughly estimated by an extrapolation

of the plots in Fig. 3.12 and 3.18 to so large Co thicknesses.

Calculations have also been performed for Co/NM1/NM2 trilayers. The considered NM1

spacers of Cu and Ag are poor spin sinks possessing relatively long spin-diffusion lengths λNMsd

(λCusd = 200 ± 50 nm [10, 58] and λ
Ag
sd = 132 − 195 nm [161]) and NM2 is Pt with short

λsd (λPtsd = 0.5 ± 0.3 nm [58]) acting as perfect (ideal) spin sink, in the language of the spin

pumping theory. Figure 3.20 depicts the damping constant α against the spacer thickness in

Co(6 ML)/NM1/Pt(4 ML) trilayers (NM1=Cu and Ag) for the scattering rate Γ = 0.01 eV.

One can clearly see that α declines monotonically, although it also oscillates, as the thickness

of the NM1 spacer layer increases. The oscillation periods are 5 ML for Cu and 5-7 ML for

Ag, although the value of the period is much more clear in the case of Cu. Comparison with

the Gilbert damping in Co/NM1 bilayers shows that the total damping α in Co/NM1/NM2

trilayers, which refers to the relaxation of the precessing magnetisation in the Co part, has a

large contribution from the NM2 part (which is also clearly visualised by the spatial distribution

of α discussed in chapter 4). The obtained decline of α with the NM1 thickness implies that the

thicker spacer becomes, the smaller contribution from the Pt cap is. This result of quantum-

mechanical calculation supports the prediction of the spin pumping theory according to which

as the thickness of the NM1 spacer increases, less spin angular momentum can be transferred

to the Pt part and such spin transfer becomes ineffective if the spacer thickness is much larger

than its λsd.

88

http://rcin.org.pl



3.5. MAGNETIC TRILAYERS

As seen in Fig. 3.20, the damping constant α obtained for the Co/Cu/Pt trilayer is 2-

3 times larger than that of Co/Cu bilayer. The reported experimental enhancement for the

same system is about two times and dies out as Cu thickness approaches its spin-diffusion

length [141]. Such damping enhancement, due to adding the second nonmagnetic layer, has

also been experimentally observed by Ghosh and co-workers in FM/Cu/Pt/Al hererostructures

[155, 156] (see also [10]) where the added Pt layer leads to the enhancement, which they call

nonlocal Gilbert relaxation. Therein, it is also demonstrated that △α, which is the additional

damping introduced by the Pt cap alone, is inversely proportional to the FM thickness. This is

in agreement with the 1/NCo dependence presented here. It has been experimentally shown in

Py/Cu/Ta trilayers [39] and an Cu/Py/Cu/Pt system [10] that the contribution from the second

nonmagnetic layer (i.e., NM2=Ta and Pt, respectively) diminishes for the spacer layer thicker

than its spin-diffusion length. Thus, one expects the contribution from Pt in the investigated

Co/NM1/Pt trilayers to vanish for Cu or Ag spacer layers as thick as their spin-diffusion lengths

(λCusd = 200±50 nm [10, 58] and λ
Ag
sd = 132−195 nm [161]). However, such spacers are too thick

to be considered in the calculation of the damping constant within the present model.

The dependence of Gilbert damping on the spacer layer thickness is addressed in the spin

pumping theory by relating it to the electron mean free path, spin-flip relaxation rate and spin-

diffusion length in the nonmagnetic parts of trilayers as well as the spin mixing conductance

of FM/NM1 interface [53, 57, 58, 7]. This theory predicts the damping enhancement due to

spin relaxation in the second nonmagnetic layer (NM2) decays with increasing NM1 spacer

thickness. This enhancement vanishes completely for infinite spacer thickness. For the spacer

thickness NNM1 much smaller than the spin-diffusion length λsd the dependence of α on NNM1

has the general form

α = A+
B

1 + CNNM1
(3.6)

where A, B and C are some functions of the nonmagnetic materials’ properties such as spin-flip

rate τ−1sf and λsd which are constants for each metal. The relation (3.6) can be obtained by

replacing tanh(NNM1/λsd) with NNM1/λsd in the formula for α derived within the spin pumping

theory in Refs. [7, 58]. The present results for Co(6 ML)/NM1/Pt(4 ML) trilayers, plotted in

Fig. 3.20, can be easily fitted (if the small oscillations of α are neglected) to the above general

formula but the range of the NM spacer thickness (up to 25 ML, i.e, 4.5 nm) is too small in

comparison with λsd to verify such thickness dependence, predicted by the spin pumping theory,

within the present quantum-mechanical model.

In the spin pumping theory there are two contributions to the Gilbert damping in such
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trilayer structures. One coming from the spin current transmitting to the second NM through

the spacer and the other from the spin current reflected back into the FM through the FM/NM1

interface. Thus, both the FM/NM1 and NM1/NM2 interfaces affect the damping process through

their spin mixing conductances. In the present model, however, the obtained results can be

justified as follows. The NM1=Cu and Ag spacer layers have small SO coupling and the d band

below the Fermi level ϵF, which results in their small contributions to the total Gilbert damping

of the system. On the other hand, the Pt cap with the strong SO coupling and d states at the ϵF

leads to a remarkable enhancement in the damping constant as it couples to the Co layer through

the NM spacer layer. Such coupling can be explained on the grounds of quantum mechanics as

follows. The d states at the ϵF in Co hybridise with s,p states in the NM1, which, in turn,

hybridise with d states in Pt. The resulting quantum states with large probability amplitude

in Co have tails in the NM1 and Pt parts and their amplitude in Pt decreases when the NM1

spacer thickness increases. Thus as the spacer gets thicker, contribution from the Pt cap to the

total damping becomes weaker since it depends on the probability amplitude of these states in

Pt, according to the general formula (2.103).

3.6 Binary superlattices

A periodic configuration of alternating layers of two or more different materials is called a super-

lattice. Superlattices are utilised in nanodevice structures since they possess new properties that

the constituents do not (e.g., high resistivity against shearing, shear strength or large perpen-

dicular magnetic anisotropy). The two important parameters in binary superlattices, or rather

multilayers with superlattice structure, are the thicknesses of the two constituent layers and

the stacking number (the number of repetitions). Such magnetic multilayers have been widely

investigated in experiments since they allow for engineering magnetic damping in spintronic

devices [52, 76, 162, 163, 164]. The presence of FM/NM interfaces in binary superlattices results

in larger damping in such systems in comparison with pure FM films and FM/NM bilayers. This

makes them promising for application in those spintronic devices where large magnetic damping

is desirable (e.g., in magnetic sensors rather than in STT-MRAM devices with the demand for

low damping).

In this section, Co-based superlattices with fcc structure made of repeated bilayers of Co

and NM where NM=Cu, Ag, Pd, Pt and Au are considered. The Gilbert damping constant α

is calculated for two different cases:

(i) the so-called L10 superlattices that are composed of alternating Co and NM monolayers:
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Figure 3.21: Gilbert damping constant in [Co(1 ML)/NM(1 ML)]N L10 superlattices with scat-
tering rate Γ = 0.01 eV.

[Co(1 ML)/NM(1 ML)]N and are considered to be a type of ordered alloys,

(ii) binary superlattices with arbitrary Co and NM thicknesses that include N ·NCo monolayers

of Co and N ·NNM monolayers of NM: [Co(NCo ML)/NM(NNM ML)]N .

Figure 3.21 shows the damping constant α against the stacking numberN in [Co(1 ML)/NM(1

ML)]N L10 superlattices with scattering rate Γ = 0.01 eV. The damping constant α declines in

all investigated L10 superlattices as the thicknesses of films (2N ML) increase and it saturates

for N > 10 ML. The decrease of α in the considered L10 superlattices upon increasing N from

1 to 10 is about 10 times for Cu, 6 times for Pd, 7 times for Pt, and 9 times for Ag and Au.

Such dependence seems to be in agreement with the results obtained for the Gilbert damping

in Co/NM bilayers (Sec. 3.4), where α found to be a decreasing function of the Co thickness

(whilst it is not very sensitive to the change of NM thickness after first two NM monolayers are

added). However, the correspondence between the bilayers and the L10 superlattices cannot be

exact because although increasing the stacking number N leads to increasing the total thickness

of Co layers, it also results in occurrence of more Co/NM interfaces. The Gilbert damping is also

found to increase with the decreasing scattering rate Γ for all investigated L10 superlattices. As

seen, there is a noticeable difference between the dependences of the Gilbert damping constant

α on the stacking number N obtained for the binary superlattices with NM=Cu, Ag and Au

and those with NM=Pd and Pt. In particular, a sharp fall of damping occurs on going from

N = 1 to N = 2 in systems with NM=Cu, Ag and Au, whilst the decline of α is smoother for

91

http://rcin.org.pl



CHAPTER 3. GILBERT DAMPING IN MAGNETIC NANOSTRUCTURES

[Co(2 ML)/Pt(4 ML)]
N

stacking No. N

0 2 4 6 8 10 12

α

0.0

0.2

0.4

0.6

0.8

1.0

Γ=0.1 eV

Γ=0.02 eV

Γ=0.01 eV

Γ=0.005 eV

[Co(2 ML)/Pd(4 ML)]
N

stacking No. N

0 1 2 3 4 5

α

0.00

0.05

0.10

0.15

0.20

0.25

Γ=0.1 eV

Γ=0.02 eV

Γ=0.01 eV

Γ=0.005 eV

[Co(2 ML)/Cu(4 ML)]
N

stacking No. N
0 1 2 3 4 5

α

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Γ=0.1 eV

Γ=0.02 eV

Γ=0.01 eV

Γ=0.005 eV

[Co(2 ML)/Ag(4 ML)]
N

stacking No. N

0 2 4 6 8 10 12

α

0.00

0.01

0.02

0.03

0.04

0.05

Γ=0.1 eV

Γ=0.02 eV

Γ=0.01 eV

Γ=0.005 eV

Figure 3.22: Gilbert damping constant in [Co(2 ML)/NM(4 ML)]N multilayers as a function of
stacking number N , obtained with different scattering rates Γ.

NM=Pd and Pt. A possible way to account for this difference is to attribute it to the different

DOS of NM metals at Fermi level (see the related discussion in Sec. 3.4).

As previously found in the case of magnetic bilayers and trilayers, also for the L10 super-

lattices one can see the strong effect of the large SO coupling of Pt, in comparison with the

other NM metals, in raising the Gilbert damping. Comparing the damping constant of Co(N

ML)/NM(N ML) bilayers with their [Co(1 ML)/NM(1 ML)]N superlattice counterparts (Fig.

3.21), at the same Co and NM total thicknesses, leads us to the conclusion that α is enhanced (up

to two times for Pt(6 ML)) in the L10 superlattices. One probable reason for this enhancement is

the number of Co/NM interfaces which is larger in a [Co(1 ML)/NM(1 ML)]N superlattice than

a Co/NM bilayer (2N − 1 interfaces in superlattices compared to only one in Co/NM bilayers).

This is a valuable result for engineering spintronic devices in which a large damping is desirable.

The calculations of the damping constant α are also extended to binary superlattices with

constituent metals thicker than a monolayer (magnetic multilayers). In Fig. 3.22, α is plotted

against the stacking number N for [Co(2 ML)/Pd(4 ML)]N multilayers with different scattering

rates Γ. The Gilbert damping appreciably declines, especially for Γ ¬ 0.01 eV, with increasing

the stacking number N for a fixed Γ. The obtained approximate 1/N dependence of α is in

agreement with experimental results for similar system. For instance, such 1/N dependence of α
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Figure 3.23: Gilbert damping constant in [Co(2 ML)/NM(4 ML)]N multilayers with different
stacking numbers N and scattering rates Γ versus inverse of the Co total thickness N totCo = 2N .

has been reported for [Ni/Co]N multilayers with N ¬ 10 in Ref. [165], although α is found to be

almost independent of the stacking number for N ­ 10. In Ref. [164] a system of perpendicularly

magnetised [Ni/Co]N , sandwiched between Pt layers, has also been investigated and the mono-

tonically decreasing dependence of α on the stacking number N has been observed. However,

the present results obtained for [Co(2 ML)/Pt(4 ML)]N do not fully agree with experimental

data reported for the same system [76] since experimentally observed α increases slowly with

increasing N . Nevertheless, it has to be noted that the calculated and measured values of α are

close to each other. Although the thickness of Co individual layers is fixed (at 2 ML), varying

the stacking number N leads to different total Co thicknesses N totCo = 2N ML in the considered

system which can explain the N dependence of α.

Figure 3.23 presents the dependence of α for [Co(2 ML)/NM(4 ML)]N multilayers, with

different Γ, against the inverse of the total Co thickness N totCo = 2N . The stacking numbers

N = 1, 2, ..., 12 for Cu and Ag, N = 1, 2, 3, 4 for Pd and N = 1, 2, ..., 5, 8, 12 for Pt have been

considered. As seen, the damping constant α decreases in all these superlattice structures as

the total Co thickness (or equivalently the total film thickness 6N ML) increases. The slope of

the α versus 1/N totCo dependence for [Co(2 ML)/NM(4 ML)]N multilayers is larger than that for

Co/NM bilayers, implying that the obtained enhancement of α in the multilayers has origin in
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Figure 3.24: Inverse thickness 1/NCo dependence of Gilbert damping constant α in [Co/Pd(4
ML)]N multilayers; left : calculated α for N = 4, right : experiment for N = 8 (Ref. [163]),
reproduced with permission from [S. Pal, B. Rana, O. Hellwig, T. Thomson, and A. Barman,
Appl. Phys. Lett. 98, 082501 (2011)]. Copyright [2011], AIP Publishing LLC. Note that, 1/ML
corresponds to 5.6 nm−1.

the Co/NM interfaces.

Figure 3.24 compares the calculated damping constant α for [Co(NCo ML)/Pd(4 ML)]4

multilayers with various Co layer thicknesses to the results of a recent experiment on

[Co(tCo nm)/Pd(0.9 nm)]8 multilayers [163]. As shown, α increases linearly with 1/NCo, whilst

increasing with decreasing the scattering rate Γ. In the case of considered [Co/Pd]N multilayers

assuming the scattering rate Γ ≃ 0.002 eV leads to an excellent agreement of the calculated

α with experiment. Choosing the stacking number N = 4 here was due to the fact that α

in [Co(NCo)/Pd(4ML)]4 multilayers with Γ ¬ 0.01 eV almost saturates at N = 4 (cf. Fig.

3.22) and then one can compare these results (obtained with less numerical effort than for

N = 8) with those investigated for N = 8 in the mentioned experiment. In this experiment, the

damping constant α = 0.011 has also been found for bulk Co which corresponds to the value of

α obtained with Γ ≃ 0.002 eV in the present calculations for bulk Co (cf. Fig. 3.6 or Ref. [62]).

Thus, the agreement of the theoretical and experimental values of α is achieved for the same

value of Γ. The presently obtained linear dependence of α on 1/NCo also agrees with the results

of recent experiments on Co/Pd multilayers [166] where the damping constant α measured

in [Co(tCo nm)/Pd(tPd nm)]6 multilayers with various Co thickness tCo and three different Pd

thicknesses tPd (0.8, 1.0, 1.5 nm) was found to depend linearly on the ratio x = tCo/tPd (in the

range 0.9 ¬ x ¬ 2.2). Furthermore, the calculated value of α = 0.037 for NCo = NPd = 4 ML

with Γ = 0.002 eV (Fig. 3.24) is close to the experimental value α = 0.045 reported for x = 1.0

in Ref. [166].

In Fig. 3.25 the damping constant α is plotted for [Co(2 ML)/NM(4 ML)]N multilayers with

different nonmagnetic metals and stacking numbers N against the scattering rate Γ. One may

94

http://rcin.org.pl



3.7. ANGULAR DEPENDENCE OF GILBERT DAMPING

[Co(2 ML)/Pt(4 ML)]N

Γ (eV)

0.001 0.01 0.1 1

α

0

1

2

3

4 N=1

N=2

N=3

N=4

N=1

N=2

N=3

N=4

N=1

N=2
N=3
N=4

N=1

N=2
N=3
N=4

[Co(2 ML)/Cu(4 ML)]N

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N=1

N=2
N=3
N=4

[Co(2 ML)/Pd(4 ML)]N

Γ (eV)

0.001 0.01 0.1 1

α

0.0

0.2

0.4

0.6

0.8

1.0 N=1

N=2

N=3

N=4

[Co(2 ML)/Ag(4 ML)]N

α

0.00

0.05

0.10

0.15

0.20

0.25

N=1

N=2
N=3
N=4

Figure 3.25: Gilbert damping constant vs scattering rate Γ in [Co(2 ML)/NM(4 ML)]N mul-
tilayers for different stacking numbers N .

notice that the Γ dependence of α resembles the one for the bulk Co (Fig. 3.6 in Sec. 3.2) as

the thickness of the multilayer increases, regardless of the fact that the damping is enhanced in

multilayers due to the presence of the NM. In particular, the shallow minima of damping with

respect to the scattering rate occur at Γ close to 0.1 eV (at Γ = 0.2 eV for Cu, at Γ = 0.1 eV for

Ag and at Γ = 0.05 eV for Pd and Pt). Furthermore, the increasing trend Ag→Cu→Pd→Pt

in the Gilbert damping constants of [Co/NM]N multilayers is also clearly noticeable.

3.7 Angular dependence of Gilbert damping

What have been strived to calculate so far was the Gilbert damping constant α for bulk cubic

ferromagnets with magnetisation along [001] axis (or an equivalent direction) as well as for

ferromagnetic films and fcc Co-based magnetic layered systems with (001) surface and out-

of-plane magnetisation, i.e., oriented along the (001) axis which is perpendicular to the film

surface and chosen to be the z direction [62]. As mentioned before, in Sec. 3.2, the damping

constants α obtained for bulk ferromagnets in the present TB calculations agree with previous

findings obtained with the ab initio DFT method [62, 88]. The damping constant has also been

found to be considerably enhanced in purely ferromagnetic films of a few ML thickness. Further

remarkable enhancement has been obtained as a result of covering Co films with a nonmagnetic

cap in Co/NM bilayers.

The energy of a magnetic system depends on the orientation of the magnetisation. This
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dependence, known as the magnetic anisotropy, arises due to the long-range dipole-dipole in-

teraction leading to the shape anisotropy as well as the local SO coupling which is the source

of the MCA. Since the Gilbert damping also originates from the SO interaction it is expec-

ted to depend on the magnetisation orientation. Such dependence has indeed been observed

experimentally [37].

The angular dependence of the Gilbert damping constant is of importance in magnetic

layered structures. Changing the magnetisation orientation affects the magnetic damping, and

consequently, it affects the process of spin transport in the system. The purpose of this section is

to explore the Gilbert damping for an arbitrary magnetisation direction in ferromagnetic metallic

systems. The dependence of the Gilbert damping on magnetisation orientation is investigated

for bulk Fe, Co and Ni as well as (001) bcc Fe, (001) fcc Co and (001) fcc Ni films.

The Kamberský’s torque correlation formula (2.103) [44] for the Gilbert damping constant

has been derived with the usual assumption that the z axis is along the direction of the (equi-

librium) magnetisationM , which has been chosen to be along the [001] axis in the calculations

presented in other sections of this thesis. Then, the damping constant is expressed in terms of

the electronic states |nk⟩ obtained with the Hamiltonian including the SO interaction HSO and

the matrix elements Ann′(k) of the SO torque operator A− = [S−,HSO] (Eq. (2.108)). The SO

interaction HSO is the sum (2.89) of atomic SO couplings which can be represented as

L · S = LzSz +
1
2
(L+S− + L−S+) (3.7)

with the orbital and spin angular momenta operators (Lz, L± = Lx±iLy and Sz, S± = Sx±iSy).

These operators are defined with the fixed x, y, z axes chosen along the [100], [010] and [001]

crystallographic axes, respectively. The matrix elements of the atomic SO interaction L ·S in the

spin basis | ↑⟩, | ↓⟩, corresponding to the spin quantisation along the z axis, are then given by Eq.

(2.93). However, the expression (2.103) for the damping constant α is valid for any direction of

magnetisationM provided that the SO torque A− = [S−,HSO] is replaced by A−r = [S
−
r ,HSO]

where the spin operator S−r = Sx′ − iSy′ is defined in the rotated frame of reference with the z′

axis parallel toM . In calculation of A−r the SO interaction operator HSO can be represented as

in Eq. (3.7) or using a similar expression for L · S = L′ · S′ with Lz′ , L±r = Lx′ ± iLy′ , Sz′ , S−r
and S+r = Sx′ + iSy′ , whichever method is more convenient.

The dependence of the damping constant on the magnetisation direction also arises through

electronic states and, in particular, through their spin parts. For arbitrary direction of magnet-

isation M = M(θ, ϕ), described with the polar and azimuthal angles θ, ϕ, the exchange part
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of the Hamiltonian is diagonal in the spin basis | ↑r⟩, | ↓r⟩ which are eigenstates of the spin

operator Sz′ corresponding to spin quantisation axis z′ aligned along M . Thus, in the absence

of the SO interaction HSO the total Hamiltonian is also diagonal in this rotated spin basis so

that its eigenstates |n0k σr⟩ have definite spin σr (↑r or ↓r) along the z′ axis and they are

labeled with the energy band index n0 separately for each spin σr. Upon the inclusion of HSO,

the electronic states |nk⟩ become superpositions of components with spin ↑r and spin ↓r in a

similar way as it is discussed in Sec. 2.5 within the spin basis | ↑⟩, | ↓⟩. The construction of the

TB Hamiltonian and its eigenstates |nk⟩ is then performed using the rotated spin basis which

is simply achieved by replacing the spin indices σ , σ′ with σr , σ′r in all relevant formulas in Sec.

2.4.1-2.4.3. It should be noted here that the TB on-site energies and the hopping integrals or

two-centre Slator-Koster parameters do not change under the rotation of the spin basis since the

atomic orbitals ϕµ(r) are chosen to be still defined with respect to the fixed frame Oxyz. The

only difference is that these TB parameters, which in ferromagnets are different for majority

spin and minority spin, now refer to spin states | ↑r⟩ and | ↓r⟩, respectively, quantised along the

z′ axis. On the other hand, although the operator HSO of the SO interaction does not depend

on the direction of M , defined with the angles θ and ϕ, the matrix elements of HSO in the

rotated spin basis clearly depend on θ and ϕ. Thus, to determine the Gilbert damping constant

for arbitrary θ, ϕ the matrices of all the spin dependent operators, i.e., the SO interaction HSO

and the SO torque A−r = [S
−
r ,HSO], need to be found in the rotated spin basis.

The rotated spin basis states are expressed as follows

|↑⟩r =
(
e−iϕ/2 cos(θ/2)

)
|↑⟩+

(
eiϕ/2 sin(θ/2)

)
|↓⟩ , (3.8a)

|↓⟩r =
(
−e−iϕ/2 sin(θ/2)

)
|↑⟩+

(
eiϕ/2 cos(θ/2)

)
|↓⟩ (3.8b)

with |↑⟩ and |↓⟩ which are the eigenstates of the component Sz of the spin angular momentum

along the fixed z axis. In this way, one can find the matrix elements of the unit atomic SO

operator L · S in the rotated spin basis straightforwardly as

⟨µ↑r|L · S|ν↑r⟩ =
1
2
cos θ Lzµν +

1
4
sin θ

(
eiϕ L−µν + e

−iϕ L+µν

)
, (3.9a)

⟨µ↑r|L · S|ν↓r⟩ =
−1
2
sin θ Lzµν +

1
2

(
eiϕ cos2(θ/2)L−µν − e−iϕ sin2(θ/2)L+µν

)
, (3.9b)

⟨µ↓r|L · S|ν↑r⟩ = (⟨ν↑r|L · S|µ↓r⟩)∗ , (3.9c)

⟨µ↓r|L · S|ν↓r⟩ = −⟨µ↑r|L · S|ν↑r⟩ (3.9d)

where the matrix elements Lzµν = ⟨µ|Lz|ν⟩ and L±µν = ⟨µ|L±|ν⟩ are found with orbital angular
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momentum operators Lz and L± and orbitals ϕµ(r), ϕν(r) all defined in the fixed frame of

reference Oxyz. Similar derivation of the angular dependence of the HSO matrix can be found

in [134].

The SO torque A−r = [S
−
r ,HSO] is the sum of the atomic SO torques A

−
at,r = [S

−
r ,L · S]

multiplied by the SO coupling constant ξat on different atoms. The matrix elements of A−at,r in

the rotated spin basis have the same form (Eq. (2.110)) as the elements of the atomic SO torque

A−at = [S
−,L · S] in the unrotated (fixed) spin basis,

⟨µ↑r|A−at,r|ν↑r⟩ = −⟨µ↑r|L · S|ν↓r⟩, (3.10a)

⟨µ↑r|A−at,r|ν↓r⟩ = 0, (3.10b)

⟨µ↓r|A−at,r|ν↑r⟩ = 2⟨µ↑r|L · S|ν↑r⟩, (3.10c)

⟨µ↓r|A−at,r|ν↓r⟩ = ⟨µ↑r|L · S|ν↓r⟩ (3.10d)

so they are expressed with the elements of the atomic SO interaction. Both types of the matrix

elements depend on the angles θ and ϕ. Thus having found the angle-dependent matrix elements

of these two relevant operators (L ·S and A−r ) in the rotated spin basis, one can readily calculate

the Gilbert damping constant for arbitrary direction of magnetisationM(θ, ϕ).

The calculated damping constant α for bulk cubic ferromagnets is the same for M lying

along different principal axes. Figure 3.26 shows α as a function of the polar angle θ, in the xz

plane (ϕ = 0), for bulk bcc Fe, fcc Co and fcc Ni. The plot of α(θ) is symmetric with respect to

θ = 45◦, as expected. At θ = 45◦ a maximum damping for Fe and minimum damping for Co are

found. For bulk Ni such minimum is present for scattering rates Γ ¬ 0.05 eV and it is replaced

by a weakly pronounced maximum for larger Γ. In general, the change of α with changing the

magnetisation direction is relatively small, not exceeding 13% , 3% and 18% for Fe, Co and

Ni, respectively, with Γ = 0.01 eV. The Gilbert damping is found to be less sensitive to the

magnetisation direction for larger Γ whilst it depends strongly on this direction for smaller Γ.

The dependence of the Gilbert damping on the direction of magnetisation is much stronger

in thin films than in bulk metals. Figure 3.27 presents the damping constant α of (001) bcc Fe(10

ML), fcc Co(10 ML) and fcc Ni(10 ML) films as a function of polar angle θ for the scattering

rate Γ = 0.01 eV.

For 10 ML Fe film, α has its maximum at around θ = 30◦ where its value increases, by nearly

30% and 56%, in comparison with out-of-plane (θ = 0) and in-plane (θ = 90◦) orientations,

respectively. The location of the maximum oscillates, around θ = 40◦, with the Fe thickness for

Γ = 0.01 eV. Such maximum disappears for Γ ­ 0.05 eV, moving to one of the ends of the polar
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Figure 3.26: Gilbert damping constant for bulk bcc Fe, fcc Co, fcc Ni vs the magnetisation
direction defined by polar angle θ within the xz plane (ϕ = 0), obtained with the scattering rate
Γ = 0.01 eV.
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Figure 3.27: Angular dependent Gilbert damping constant: α versus θ (ϕ = 0) for ferromagnetic
Fe, Co and Ni films; Γ = 0.01 eV.

angle interval, θ = 0 or θ = 90◦, depending on the value of Γ.

For 10 ML Co film with Γ = 0.01 eV, the damping constant has its maximum at around

θ = 40◦ where its value increases, by nearly 60%, in comparison with in-plane and out-of-plane

orientations. The position of the maximum oscillates, around θ = 45◦, with the Co thickness for

Γ = 0.01 eV whilst no such maximum is present for Γ ­ 0.1 eV.

For 10 ML Ni film, the damping constant for Γ = 0.01 eV has its maximum at around θ = 40◦

where its value increases, by nearly 34% and 84%, in comparison with out-of-plane and in-plane

orientations, respectively. The position of the maximum oscillates, around θ = 40◦, with the Ni

thickness for Γ = 0.01 eV whilst the maximum disappears for Γ ­ 0.05 eV.

In Fig. 3.28 (right panel) the Gilbert damping constant α is plotted for (001) bcc Fe, fcc

Co and fcc Ni films as a function of film thickness for two different directions of magnetisation

(in-plane and out-of-plane) and the scattering rate Γ = 0.01 eV. The change of α upon changing

magnetisation direction from out-of-plane to in-plane varies with film thickness in all three

considered metals. The dependence of α on the FM film thickness, has the same general trend

[increasing for Fe (up to about 12-16 ML, depending on the value of Γ) and Ni but decreasing for

Co] for in-plane and out-of-plane magnetisations. Similar oscillations (though not identical) of α

versus film thickness are obtained for both magnetisation orientations in Fe and Ni films, whilst

oscillations of α are much less pronounced in Co films with in-plane orientation of magnetisation.
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Figure 3.28: Gilbert damping constant α in left : bulk and FM(10 ML) films (FM=Fe, Co and
Ni) with in-plane and out-of-plane magnetisation M vs scattering rate Γ, right : Fe, Co and
Ni films with in-plane and out-of-plane magnetisation vs film thickness for Γ = 0.01 eV; The
horizontal lines mark the bulk values for Γ = 0.01 eV.

The values of α = α∥ for in-plane M are larger or smaller than α = α⊥ for out-of-plane M ,

depending on the film thickness and the type of metal. The difference α⊥ − α∥ of the damping

constants obtained for the two orientations can be particularly large in some cases [e.g., for

Fe(16 ML), Co(1 ML) and Ni(3 ML)] but it is expected to diminish for larger film thicknesses

(approaching bulk limit) as α has the same value for θ = 0 and θ = 90◦ in bulk cubic metals

(cf. Fig. 3.26).

In the case of a Fe monolayer, the damping constant α is almost the same for the two

magnetisation orientations. Except for the thickness 2 ML Fe, at which the α⊥ is slightly above

α∥, the damping constant α∥ of Fe films with the in-plane magnetisation is larger than α⊥ for

thicknesses up to 9 ML; from 10 ML the out-of-plane damping constant α⊥ starts to exceed α∥

and the biggest difference α⊥−α∥ (about 56%) is achieved at 16 ML (the thickest film considered

for both orientations).

For the Co monolayer, the change of α upon the change of the magnetisation orientation from

out-of-plane to in-plane is more than threefold. As already mentioned, the obtained oscillatory

dependence of α on film thickness for Co films with out-of-plane magnetisation almost disappears

in the case of Co films with in-plane magnetisation. In general, for the investigated Co films (with

thicknesses up to 16 ML) the Gilbert damping is enhanced when the magnetisation turns from
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out-of-plane to in-plane.

In the case of Ni films, clearly the most distinctive feature of the calculated Gilbert damping

constant α∥ for the in-plane magnetisation in comparison with the constant α⊥ obtained for the

out-of-plane orientation is the disappearance of the maximum at film thickness 3 ML, whilst the

maximum at 10 ML becomes much less pronounced and its position is shifted to 11 ML. The

change of α upon the change of the magnetisation orientation from in-plane to out-of-plane is

more than fivefold for the 3 ML Ni films and 44% for 10 ML Ni films. For Ni films thicker than

12 ML the in-plane damping α∥ starts to exceed the α⊥.

Figure 3.28 (left panel) shows the Gilbert damping constants for Fe, Co and Ni films, all of

thickness 10 ML, as functions of the scattering rate Γ for in-plane and out-of-plane magnetisation

as well as the damping constants of their bulk cubic counterparts. For the Fe film the damping

constant decreases with increasing scattering rate Γ for both in-plane and out-of-plane orienta-

tions of magnetisation. The damping constant is larger for the out-of-plane direction of magnet-

isation than for its in-plane orientation for the range of the scattering rates 0.005 eV ¬ Γ ¬ 0.2

eV. For both directions, the damping constants of the Fe films lie above that of bulk Fe.

For the Co films with very large scattering rate Γ ­ 1 eV, the damping constants obtained for

in-plane and out-of-plane magnetisation match each other whilst they both have their minima

at Γ = 0.05 eV, similar to the bulk Co. The in-plane damping constant α∥ is slightly lower than

α⊥ for 0.01 eV ¬ Γ ¬ 1 eV. At Γ = 0.01 eV the two constants reach almost the same value again

(this can also be seen in the right panel of Fig. 3.28). For Γ < 0.01 eV the in-plane damping

constant exceeds the out-of-plane one and approaches the bulk value.

In the Ni films the Gilbert damping decreases with increasing Γ and in a similar way as in

the Co films. The in-plane and out-of-plane damping constants are nearly equal for Γ ­ 0.2 eV.

The in-plane damping constant α∥ coincides with the bulk Ni value for Γ ­ 0.05 eV, whilst α⊥
matches this value for Γ ­ 0.5 eV.

Thus, one can see that the in-plane damping constants of all three considered ferromagnetic

films have similar combined dependence on the scattering rate and the magnetisation orientation;

α∥ is much larger than α⊥ in a range of small Γ (smaller than 0.01 eV or less, depending on

metal) whilst α∥ is slightly lower than α⊥ for the remaining range of larger Γ.

To conclude this section, the Gilbert damping constant is found to depend on the magnet-

isation orientation, weakly for bulk ferromagnets but much strongly for ultrathin ferromagnetic

films. The damping is particularly strongly enhanced, depending on the electron scattering rate,

in ferromgnetic films with magnetisation orientation intermediate between in-plane and out-

of-plane directions. For all ferromagnetic films as well as, to lesser extent, for bulk Fe and Ni
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significant variation of α with the polar angle θ is obtained. The Gilbert damping constant is

found to have maxima at an angle θ in the interval 30◦ ¬ θ ¬ 45◦ almost for all considered films

which does not correspond to any symmetry axis. A brief report on the above results for Gilbert

damping with arbitrary direction ofM can be found in [142].

According to the present model based on Kamberský’s approach, spin relaxation processes in

magnetic materials are governed by the electron transitions between quantum states close to the

Fermi level. The dependence of the Gilbert damping constant on the magnetisation orientation

is related to the fact that the changes of electronic states and their energies due to the SO

interaction depend on the direction of M . In particular, they result in the slight changes of

the Fermi surface which are dependent on the orientation of magnetisation. This leads to the

orientation dependence of the intraband contributions to intrinsic Gilbert damping which are

associated with the “breathing” of Fermi surface [83], i.e., the periodic distortion of this surface

when the magnetisation precesses around its equilibrium direction.
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Chapter 4

Analysis of Gilbert damping in real

space and momentum space

4.1 Layer contributions to damping constant

In the previous sections, the Gilbert damping constant α was found for various magnetic nano-

structures including ferromagnetic and nonmagnetic layers. The film thickness dependence of

α in free-standing ferromagnetic films, Co/NM bilayers, trilayers and multilayers was analysed.

However, it is worth understanding where magnetic damping actually takes place and, in par-

ticular, realising which part of the system plays a dominant role in the damping process. Such

analysis is helpful for understanding the fundamental physics behind the damping phenomenon

in a theoretical way and provides a deeper insight into the mechanism of magnetic damping in

layered systems. It is the purpose of this section to explore this issue in the considered layered

systems in detail.

In the spin pumping theory, the effective magnetic damping in magnetic multilayers can be

considered as sum of the intrinsic damping (of a ferromagnetic metal in bulk) plus damping

due to the spin pumping into nonmagnetic layers (α = αb + αpump) [6, 7, 55]. This assumption

is similar to the formula (3.2) in which the second term has been considered to be due to

the nonmagnetic layers and interfaces present in the layered system. The spin pumping theory

includes the sample parameters connected to the geometry of the system. Apart from thicknesses

of constituent metallic layers, one of the main quantities entering the formalism of this theory and

strongly affecting the spin pumping process is the spin-diffusion length λsd, as discussed earlier.

For example the pumped spin current in a FM/NM bilayer system is inversely proportional to the

spin-diffusion length of the NM spacer layer if dNM ≫ λsd [54]. Moreover, to achieve an efficient
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spin pumping in FM/NM bilayers the thickness of the NM layer dNM needs to be comparable to

or larger than its spin-diffusion length [39]. However, to gain a remarkable additional damping

from the second nonmagnetic cap (NM2) in FM/NM1/NM2 trilayers the thickness of spacer

layer (NM1) with low spin-flip rate has to be less than its λsd (see Sec. 3.5) to avoid backflow of

spin current into the FM. In other words, λsd is one of the key factors in transfer of spin angular

momentum into adjacent nonmagnetic layers.

Despite such knowledge about the magnetic damping due to the spin pumping process there

are no theoretical studies, except for a very recent report on (001) fcc Co semi-infinite crystal

[91], on spatial distribution of the magnetic damping in layered systems. In this section a novel

strategy is introduced in order to explore and analyse the magnetic damping in real space. As a

result, it is found from which layers significant portions of the Gilbert damping come from. For

this purpose, the Gilbert damping constant α is broken down into contributions to α coming

from individual atomic layers. These atomic layer contributions are found as follows.

According to the general formulas (2.43) and (2.44), the Gilbert damping constant α is

proportional to the trace of the operator D(ϵ) = A−L(ϵ −H)A+L(ϵ −H) at ϵ = ϵF for T = 0

or rather to the integral
∫∞
−∞ η(ϵ) trD(ϵ) dϵ if the calculations are done at finite temperature T .

By introducing into trD(ϵ) two unit operators
∑
nk |nk⟩⟨nk| = 1 built of the eigenstates |nk⟩ of

the Hamiltonian, one finds, for any basis |i⟩, that

trD(ϵ) =
∑
i

∑
k

∑
n,n′

A−i,n′k L(ϵ− ϵn′(k))A
+
n′k,nk L(ϵ− ϵn(k))⟨nk|i⟩ (4.1)

where A−i,n′k = ⟨i|A−|n′k⟩ and A
+
n′k,nk = ⟨nk|A−|n′k⟩∗ = (Ann′(k))∗. The expression (2.103) for

the total damping constant α has been obtained with the basis |i⟩ = |nk⟩. However, taking the

advantage of the trace invariance under the choice of basis, the trace trD(ϵ) can also be calculated

by choosing the TB basis states |i⟩ = |klµσ⟩, each of which is obtained by a combination of

orbitals located on different atoms in the same layer l. In this way one obtains

trD(ϵ) =
∑
k lµσ

∑
n,n′

A−klµσ,n′k(Ann′(k))
∗ (aσnlµ(k))

∗ L(ϵ− ϵn(k))L(ϵ− ϵn′(k)) (4.2)

where aσnlµ(k) = ⟨klµσ|nk⟩.

Apart from the product of the two Lorentz functions, the same as in the calculation of the

Gilbert damping constant with Eq. (2.103), and the matrix elements Ann′(k), given by Eq.
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(2.108), the right-hand side of Eq. (4.2) also includes

A−klµσ,n′k =
∑
l′µ′σ′

aσ
′
n′l′µ′(k)⟨klµσ|A−|kl′µ′σ′⟩ = ξl

∑
µ′σ′

aσ
′
n′lµ′(k)⟨µσ|A−at|µ′σ′⟩. (4.3)

Substituting Eq. (4.3) into Eq. (4.2) one can write down the expression for the damping constant

α ∼
∫
η(ϵ)trD(ϵ)dϵ as a sum of layer contributions αl. Thus, the following breakdown of the

Gilbert damping constant is achieved

α =
1

NFM

∑
l

αl (4.4)

where each layer contribution αl is given explicitly as

αl =
πξl
µFM

1
N2D

∑
k

∑
n,n′

Qnn′l(k)(Ann′(k))
∗Fnn′(k) (4.5)

where

Qnn′l(k) =
∑
µσ

∑
µ′σ′

(aσnlµ(k))
∗ aσ

′
n′lµ′(k)⟨µσ|A−at|µ′σ′⟩. (4.6)

and Fnn′(k) is defined in Eq. (2.102). The factor Ann′(k), defined in Eq. (2.108), can also be

calculated as

Ann′(k) =
∑
l′

ξl′Qnn′l′(k). (4.7)

This relation immediately proves that the sum (4.4) of the layer contributions (4.5) yields the

total damping constant α given by Eq. (2.103). All terms appearing in (4.4) have already been

evaluated during calculation of the total α. Thus, having found the expressions (4.4)-(4.7) for

αl one can readily calculate contributions from different atomic layers to the Gilbert damping

constant in a wide variety of layered systems (though a modification of NFM and µFM in Eqs.

(4.4) and (4.5) is needed if more than one ferromagnet is present).

The time-consuming evaluation of (4.5) and the mirror symmetries in the calculated con-

tributions to αl in the k-space, prompt one to speed up the numerical calculations of αl. This

is done by limiting the region of the integration over k in Eq. (4.5) to the 1/8 BZ instead of

the whole BZ, which has been found not to alter the results for the investigated layered struc-

tures (monometallic films, bilayers and trilayers) and can be justified in a similar way as in the

calculation of the total α (see Sec. 3.1).

The layer contributions to the Gilbert damping in (001) bcc Fe, fcc Co and fcc Ni films with
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Figure 4.1: Layer contributions to the Gilbert damping constant in Fe(N ML) films (N =
6, 12, 18, 24); Γ = 0.01 eV.
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Figure 4.2: Layer contributions to the Gilbert damping constant in Co(N ML) films (N =
6, 12, 18, 24); Γ = 0.01 eV.
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Ni(6 ML), Γ=0.01 eV
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Figure 4.3: Layer contributions to the Gilbert damping constant in Ni(N ML) films (N =
6, 12, 18, 24); Γ = 0.01 eV.

different thicknesses are shown in Figs. 4.1, 4.2 and 4.3, respectively. For purely ferromagnetic

Fe, Co and Ni films the distribution of the layer contributions is symmetric with respect to the

central symmetry plane of the film.

For Fe and Co films the largest contributions come from the surface layers and for Co films

they decline steadily to a minimum value when approaching the central layer(s). A similar

increase of the layer contribution αl is found at the (001) surface of the fcc Co semi-infinite

crystal in Ref. [91] using a generalised formula for the Gilbert damping tensor and a different

TB parametrisation. In the case of Ni films the surface layers have the smallest contributions

to the damping and the largest contributions come from the first subsurface layers (l = 2 and

N − 1).

The layer contributions to the Gilbert damping in Co/NM bilayers (NM=Cu, Pd, Ag, Pt

and Au) are shown in Figs. 4.4 and 4.5 respectively. As seen in these figures, adding a NM cap

to the Co film not only alters the symmetric distribution of the damping in the pure Co film

but it also increases the overall contribution stemming from the Co part of the film. This is

caused by change of the electronic structure in Co due to adding the NM cap. The asymmetric

distribution of the layer damping contributions in the Co film is very similar in all investigated

Co/NM bilayers (with the exception of the interface Co layer) and it is very weakly affected by

the thickness of the NM cap. Let us also note that small negative contributions αl are obtained
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Figure 4.4: Layer contributions to the Gilbert damping constant α left : in Co(3 ML)/Ag(6 ML)
and Co(6 ML)/Ag(6 ML) bilayers, right : in Co(6 ML)/NM(12 ML) bilayers (NM=Cu, Au);
Γ = 0.01 eV.

for some l in the bilayer systems since the applied method of the layer-resolved breakdown of the

damping constant α does not guarantee the positive sign of all αl though the total α is positive

according to Eq. (2.103).

The layer contributions αl inside the NM caps of metals with the top of the d band below ϵF

are much smaller than in the Pd or Pt caps. They are marginal in the Cu and Ag caps so that

the Gilbert damping in the Co/Cu and Co/Ag bilayers comes almost entirely from the Co film.

This result holds with changing the thickness of Co (for fixed Cu or Ag thickness cap) although

the asymmetric distribution in the Co film is modified when the Co thickness increases, as can

be noticed in Fig. 4.4. In the case of the Au cap the very interface Au atomic layer contributes

to the damping significantly, as strongly as the surface Co layer (see Fig 4.4). This is a result of

the large SO coupling of Au and, presumably, an increase of the local DOS in the Au interface

layer due to the hybridisation of s, p states in Au with d states in Co across the Co/Au interface.

For Co/NM bilayers with nonmagnetic metals like Pd and Pt, whose d band crosses the

ϵF, the dominant contributions to the damping come from the NM caps. In such bilayers the

majority of damping originates from a few atomic layers of the NM cap that are closest to

the Co/NM interface (the first three layers of NM=Pd or Pt). This can explain a remarkable

increase of the damping after covering a Co film with 3 ML of NM=Pd or Pt, whilst further

increasing the NM thickness does not affect α strongly because the contributions from interior
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Figure 4.5: Layer contributions to the Gilbert damping constant α left : in Co(6 ML) film and
Co(6 ML)/NM(12 ML) bilayers (NM=Pd, Pt), right : in Co(6 ML)/NM(42 ML) bilayers; Γ =
0.01 eV.

NM layers are much smaller than the ones near the Co/NM interface. Surprisingly, significant

contributions also come from few most external layers of the NM cap. One may also notice that

the Co/NM bilayers with nonmagnetic metals which belong to the same group of periodic table

like NM=Pd, Pt or NM=Cu, Ag, Au have quite similar distribution of layer contributions to

the damping, although with different amplitudes, depending on the strength of the SO coupling

in the NM.

The damping contribution in the Pd and Pt caps is largest at the Co/NM interface (NM=Pd

or Pt) atomic layer l = lNM1 and it decays with the increasing distance z = (l − lNM1 )a/2 from

the interface (Fig. 4.5, right panel). The obtained decay of α, though not strictly monotonic,

can be roughly approximated with an exponential function α = α(z = 0)e−z/λ. This can be

related to a similar dependence obtained in the spin pumping theory for the magnetisation

density µ(z) induced in the NM cap by the precessing magnetisation in the ferromagnet in the

presence of a spin-flip mechanism in the NM. In the spin pumping approach, the exponential

decay of µ(z) ∼ e−z/λsd holds if the spin-diffusion length λsd in the NM is much smaller than

the NM cap thickness dNM = NNMa/2. Although the direct identification of λ with λsd is not

certain at present, the obtained approximate value of λ = 0.45 nm for both Pd and Pt is in

quite good agreement with the recently measured values of λPtsd = 0.5± 0.3 nm for Pt [58] but it
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Figure 4.6: Layer contributions to the Gilbert damping constant in Co(6 ML)/Cu(N ML)/Pt(4
ML) trilayers (N = 6, 9, 12, 25); Γ = 0.01 eV.

is significantly smaller than the values λPdsd = 2.0± 0.09 nm [167] and λPdsd = 2.6± 0.12 nm [58]

found experimentally for Pd.

The layer contributions to the Gilbert damping are also obtained for Co/NM/Pt (NM=Cu,

Ag) and Pt/Co/Pt trilayers; see Figs. 4.6, 4.7 and 4.8, respectively. Figures 4.6 and 4.7 present

layer contributions for Co(6 ML)/Cu/Pt(4 ML) and Co(6 ML)/Ag/Pt(4 ML) trilayers with

different thicknesses of Cu and Ag spacers. It is seen that the layer contributions in the Co

part are similar for different Cu or Ag spacer thicknesses and there are almost no contributions

from the Cu or Ag spacer whilst large contributions from the Pt part are found. Thus, it is

visualised that the magnetisation that precesses in the Co part is damped mainly in the distant

Pt layer which implies that the magnetic damping is highly nonlocal. As the Cu spacer get

thicker the contributions from Pt get smaller although the decay is very slow. The results of

present quantum-mechanical calculations confirm the prediction of the spin pumping theory

(partly based on phenomenological approach) that there is a nonlocal damping in the second

nonmagnetic layer which is a good spin sink (Pt here) due to transferring spin angular momentum

from the Co part, through a nonmagnetic spacer which has low spin-flip rate. This effect can be

interpreted in the presently applied SO torque-correlation model as arising from d states which

form nonzero magnetisation in the Co part but can penetrate to the Pt part through, almost

ineffective, the Cu or Ag spacer.

Another system that the layer contributions have been calculated for is symmetric Pt/Co/Pt

110

http://rcin.org.pl



4.1. LAYER CONTRIBUTIONS TO DAMPING CONSTANT

Co(6 ML)/Ag(12 ML)/Pt(4 ML)

Layer index

5 10 15 20

L
a
y
e
r 
c
o
n
tr
ib
u
ti
o
n
 t
o
 α

0.00

0.02

0.04

0.06

Co(6 ML)/Ag(25 ML)/Pt(4 ML)

Layer index

5 10 15 20 25 30 35

Co(6 ML)/Ag(9 ML)/Pt(4 ML)

Layer index
5 10 15

Co(6 ML)/Ag(6 ML)/Pt(4 ML)

Layer index
2 4 6 8 10 12 14 16

L
a
y
e
r 
c
o
n
tr
ib
u
ti
o
n
 t
o
 α

0.00

0.02

0.04

0.06

PtCo AgPtAgCo

Pt
Co Ag PtCo Ag

Figure 4.7: Layer contributions to the Gilbert damping constant in Co(6 ML)/Ag(N ML)/Pt(4
ML) trilayers (N = 6, 9, 12, 25); Γ = 0.01 eV.

trilayers. The results of such calculations for Pt/Co(6 ML)/Pt with different thicknesses of Pt

are shown in Fig. 4.8. The obtained contributions in both the Pt parts are the same, due to

the mirror symmetry with respect to the central plane of the trilayer. They are predominant in

atomic layers of the Pt parts closest to both Co/Pt interfaces, whereas the contributions from

Co atomic layers are marginal. As seen, some layer contributions αl to the Gilbert damping have

significantly large negative values. This is possible because the obtained formula (4.5) for the

layer contributions does not guarantee their positivity, as already mentioned above. On the other

hand, as it has been checked for the considered layered systems, the sum (4.4) of contributions

αl from all atomic layers, with negative values at some layers, gives the correct value of the total

damping constant α which is a positive quantity.

The shape of the spatial distribution of the Gilbert damping in the Pt layer near the Co/Pt

interfaces of Pt/Co/Pt trilayers is similar as in Co/Pt bilayers (Fig. 4.5). However, the contribu-

tions from Pt atomic layers near the Co/Pt interfaces are smaller, more than twice, in Pt/Co(6

ML)/Pt trilayers than in Co(6 ML)/Pt bilayers. Thus, it is predicted that adding a Pt under-

layer to the Co/Pt bilayer dramatically changes the damping in Pt caps that governs the spin

relaxation in Co/Pt bilayers. This can be argued to be a consequence of very small thickness

of the considered Co film (6 ML, i.e., about 1 nm) so that the presence of the second Pt layer

strongly affects amplitude of quantum states throughout the system, including the first Pt layer.

It is expected that this effect becomes weak for sufficiently thick Co films so that the spatial
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Figure 4.8: Layer contributions to the Gilbert damping constant in Pt(N ML)/Co(6 ML)/Pt(N
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distribution of the Gilbert damping in the Pt layers becomes ultimately the same in Pt/Co/Pt

trilayers and Co/Pt bilayers. In such a case, the additional damping, i.e., its enhancement α−αb
due to Pt layers in the trilayers should be twice as in the bilayers. Such is the prediction of the

spin pumping theory [6, 7]. Thus, the present results imply that spin pumping theory can break

down in layered metallic structures with ultrathin ferromagnetic layers which are several ML

thick.

4.2 k-point contributions to Gilbert damping

This section seeks to probe more deeply the nature of the Gilbert damping by analysing its

distribution in the momentum space. It is shown that it is feasible to find k-points in the BZ

that give the main contributions to the Gilbert damping constant α. To determine how different

k-points in the BZ contribute to the Gilbert damping, it is sufficient to note that the obtained

expression (2.103) for α has the form of the integral over the BZ

α =
1

N2D

∑
k∈BZ

g(k) =
1
ΩBZ

∫
k∈BZ

dk g(k) (4.8)
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Figure 4.9: k-point contributions to the Gilbert damping constant in Fe(N ML) films
(N=1,...,10) with scattering rate Γ = 0.01 eV.

where ΩBZ is the volume of the BZ. The damping contribution g(k) from each k-point is then

given by

g(k) =
π

NFM µFM

∑
n,n′

|Ann′(k)|2 Fnn′(k) (4.9)

which is a double sum over band indexes n, n′ and includes all the coefficients appearing in Eq.

(2.103) apart from the normalising factor 1/N2D. The terms Ann′(k) and Fnn′(k) are given in

Eqs. (2.108) and (2.102), respectively.

Figures 4.9, 4.10 and 4.11 present k-point contributions to the damping constant α for (001)

bcc Fe, fcc Co and fcc Ni films, respectively. These plots for various film thicknesses show how

the Gilbert damping in pure ferromagnetic films is affected by electronic quantum states with

different k-points in the 2D BZ. As it is clear from the figures there are some small regions in

the 2D BZ that give dominant contributions in the k-space distribution of the damping constant

α. These hot spots, corresponding to peaks of the Gilbert damping distribution g(k), move with

the thickness of films but are located mostly near the corners of the 2D BZ although they also

appear around its centre in some cases [e.g., in Co(1 ML), Ni(3 ML) and Ni(6 ML)]. The same

conclusion is true for k-point contributions in Co/NM bilayers, in which the corners of the 2D

BZ contain k-points most effectively contributing to α (see Fig. 4.12). One may also notice the

large magnitude of peaks in the damping distribution g(k) and the increase of their number at

some film thicknesses, in particular for Fe films with even numbers of layers, at N = 1 ML, 2
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Figure 4.10: k-point contribut ions to the Gilbert damping constant in Co(N ML) films 
(N=1, ... ,10) with scattering rate r = 0.01 eV. Here and in Figs. 4.11-4.14 below, the two com­
ponents of the wave vector k = (kx , ky) correspond, respectively, to [110] and [1,-1 ,0] directions 
of the (001) fee surface square lattice with the lattice constant a2d = aj V'2, . 

Figure 4.11: k-point contributions to the Gilbert damping constant m Ni(N ML) films 
(N=1, ... ,10) with scattering rate r = 0.01 eV. 
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ML, 6 ML, 8 ML, 10 ML for Co films, and at N = 3 ML, 6 ML, 10 ML for Ni films. These

peaks lead to the occurrence of corresponding maxima in film thickness dependence of the total

damping α for Fe, Co and Ni films (cf. Fig. 3.7, the right panel). On the other hand, the peaks

of g(k) for Fe films of 1 ML and 3 ML thicknesses as well as for Ni monolayer (N = 1) are not

visible due to the scale of the respective figures; they are small in comparison with the maximum

value of g(k) at some other film thicknesses.

The k-point contributions to the Gilbert damping in Co/NM bilayers, shown in Fig. 4.12,

reflect the pronounced enhancement of the overall damping constant with respect to pure Co

films, which is particularly strong for the Pt cap. To show this enhancement in the k-space,

the difference ∆g(k) of the damping contributions g(k) in the Co(6 ML)/NM bilayers and the

Co(6 ML) films are plotted in Fig. 4.13. In this figure one can see that much more k-points, as

compared to pure Co films, contribute to the Gilbert damping thus leading to larger damping in

Co/NM bilyers. The distribution of the magnetic damping in the k-space is much smoother for

the Co(6 ML)/NM bilayers than the Co(6 ML) film in which there are only few sharp peaks of

g(k) at some k-points near the corners of the 2D BZ (Fig. 4.10). Still, like in the Co(6 ML) film,

it is the corner regions (close the M points) of the 2D BZ that contain k-points most effectively

contributing to α in the Co(6 ML)/NM bilayers (see Figs. 4.12, 4.13).

The change of damping distribution due to the NM cap, ∆g(k), does not come strictly from

the region of the NM layer (especially for NM=Cu, Ag and Au) as it has been previously shown

by discussing the atomic layer contributions to the Gilbert damping constant in Sec. 4.1. The

obtained negative values of ∆g(k) at some k-points imply that there is not only no contribution

to enhancement of α from some k-points but the change of the electronic structure, due to

adding the NM cap, results in smaller damping contributions in a Co/NM bilayer than in pure

Co film for these k-points.

The hot spots, which are the regions where the contribution g(k) has largest values (peaks),

are located at the points where there are pairs of electron states with energies close to the

Fermi level as it is clear from Eq. (2.102) which contains the factor Fnn′(k) dependent on the

states energies ϵn(k), ϵn′(k). Such pairs of states from different energy bands indexed with n

and n′ ̸= n in the expression (4.9) for g(k), give off-diagonal (interband) terms of the Gilbert

damping. The expression for g(k) also includes diagonal (intraband) terms, which come from

individual quantum states (n = n′) and thus can be expected to become largest along hot lines

formed by k-points where energy bands cross the Fermi level (a further discussion on diagonal

and off-diagonal terms of the Gilbert damping can be found in Sec. 3.2). It should be noted

that the hot spots can be regarded as the crossing points of hot lines corresponding to different
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Figure 4.12: k-point contributions to the Gilbert damping constant in Co(6 ML)/NM(6 ML)
bilayers, with scattering rate Γ = 0.01 eV.
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Figure 4.13: Change △g(k) of k-point contributions to the Gilbert damping constant due to the
presence of NM caps in Co(6 ML)/NM(6 ML) bilayers, with scattering rate Γ = 0.01 eV. The
plots are shown in the 1/4 2D BZ only and they are symmetrical in other three quarters of the
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energy bands. The locations of the hot spots vary with the film thickness since the number of

energy bands increases and they move as the thickness increases; this concerns QW states in

particular. The importance of hot spots in spin flip processes, which contribute to the Gilbert

damping, has been recognised in Refs. [131, 132].

It has been revealed that for all considered ferromagnetic films (Fe, Co and Ni) the k-point

contributions g(k), and consequently the damping constant α, stem almost entirely from the

off-diagonal (interband) terms. This can be clearly seen in Fig. 4.14, where diagonal (intraband)

terms, off-diagonal terms and the total (diagonal + off-diagonal) are plotted for an (001) fcc

Co(10 ML) film. Note that, due to the symmetry g(kx, ky) = g(±kx,±ky) upon (x, y)→ (x,±y)

only one quarter of the BZ is shown in Fig. 4.14. For ferromagnetic films with even number of

layers, like Co(10 ML), the obtained diagonal terms are finite only at the borders of the 2D BZ,

whilst they turn out to completely vanish for the films with odd number of layers (N = 1, 3, 5, ...

ML). However, as shown later in this section, with an appropriate choice of eigenstates at

k-points where they are degenerate states (especially on the high-symmetry lines, including

the borders of the BZ) the diagonal terms vanish throughout the whole BZ for (001) cubic

monometallic films with any number (odd or even) of atomic layers. Thus, no contribution of

the diagonal terms to the Gilbert damping makes such films different from bulk ferromagnetic

metals in which both diagonal and off-diagonal terms are present and they are dominant for

small and large scattering rates Γ, respectively (see Fig. 3.5). However, as explained below,

this difference is rather apparent since the diagonal damping terms can also be made to vanish

for bulk cubic metals if non-Bloch 3D eigenstates of the Hamiltonian are chosen owing to the

z → −z symmetry. It is interesting to note that, due the absence of the aforementioned mirror

symmetry in Co/NM bilayers, the diagonal terms do not vanish and in fact they are dominant

in the case of Co/NM bilayers. The latter result requires further investigations.

In the following it will be proved that contributions from the diagonal terms to the Gilbert

damping in ferromagnetic films vanish because the eigenstates of the Hamiltonian H (i) have (for

a general k-point) or (ii) can be chosen to have (for k-points at the BZ edges or high-symmetry

lines in the BZ) a definite symmetry under the reflection operation R : z → −z. In fact, this

proof is valid for any layered system with z → −z spatial mirror symmetry, like symmetric

NM/FM/NM trilayers, but does not hold for FM/NM bilayers which lack such symmetry.

The actual symmetry operator Q = 2SzR = σzR has to include, besides the spatial part R,

also the corresponding spin part σz (one of the Pauli matrices) to make the total Hamiltonian H,

including the SO interaction HSO, invariant if acted upon by Q. It means that H commutes with

the so-defined operator, [H,Q] = 0, i.e., the relation QHQ−1 = H holds. Indeed, the kinetic
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Figure 4.14: Diagonal (intraband), off-diagonal (interband) and the total k-point contributions
to the Gilbert damping constant in Co(10 ML) film, with scattering rate Γ = 0.01 eV. The plot
are shown in 1/4 2D BZ are shown only and they are symmetrical in quarters of the 2D BZ.

(p2/2m) and potential (V↑(r), V↓(r)) parts of the Hamiltonian do not change if z is replaced

with −z, whilst HSO = ξ
∑
lj S ·L(r−Rlj) remains unchanged under the action of the operator

Q since orbital and spin angular momenta are both pseudovectors which transform in the same

way. In particular, the orbital momentum L = r×p = (Lx, Ly, Lz) transforms to (−Lx,−Ly, Lz)

under the mirror symmetry z → −z and the spin operator S = (Sx, Sy, Sz) becomes

σzSσ
−1
z = (σzSxσ

−1
z , σzSyσ

−1
z , σzSzσ

−1
z ) = (−Sx,−Sy, Sz) (4.10)

if the operator σz is applied in the spin subspace. The transformation of the spin operator S is

the result of the commutation rules satisfied by the Pauli matrices σx, σy, σz, i.e.,

{σz, σx} = σzσx + σxσz = 0 , (4.11a)

{σz, σy} = σzσy + σyσz = 0 , (4.11b)[
σz , σz

]
= 0 . (4.11c)

It can also be proved that the choice of the spin operator (σz) corresponding to the reflection

z → −z is unique (up to a constant phase factor); see appendix D where the mirror symmetry

in spin space is briefly discussed.

The operation Q, which does not change the electron coordinates x, y and commutes with

the Hamiltonian H, transforms an eigenstate |nk⟩ of H to a state |n′k⟩ = Q|nk⟩ with the same

k and also with the same eigenenergy ϵn(k) since HQ|nk⟩ = QH|nk⟩ = ϵn(k)Q|nk⟩. Thus

for a general k-point, where the state |nk⟩ is usually non-degenerate, the transformed state

|n′k⟩ = Q|nk⟩ is equal to the original state |nk⟩. The only difference between Q|nk⟩ and |nk⟩
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4.2. K-POINT CONTRIBUTIONS TO GILBERT DAMPING

can be a constant factor cn(k) i.e.,

Q|nk⟩ = cn(k)|nk⟩. (4.12)

Due to the relation Q2 = 1 (as R2 = 1 , σ2z = 1), which gives |nk⟩ = Q2|nk⟩ = cn(k)2|nk⟩, one

readily finds cn(k) = 1 or cn(k) = −1 so that non-degenerate states in ferromagnetic films have

definite parity (even or odd) with respect to the symmetry operation Q = σzR.

Using this property of states |nk⟩ and Q|nk⟩ and the fact that

Q†HSOQ = HSO , (4.13a)

Q†S−Q = −S− (4.13b)

one can easily prove that

⟨n′k|A−|nk⟩ = ⟨n′k|(−Q†A−Q)|nk⟩ = −c∗n′(k)cn(k)⟨n′k|A−|nk⟩ (4.14)

since the SO torque operator A− = [HSO, S−] anticommutes with Q,

QA−Q−1 =
[
QHSOQ

−1, QS−Q−1
]
=
[
HSO,−S−

]
= −A−, (4.15)

and the symmetry operator Q is unitary: Q−1 = Q†. From the relation (4.14) one finds with

n′ = n that

⟨nk|A−|nk⟩ = −|cn(k)|2⟨nk|A−|nk⟩ = −⟨nk|A−|nk⟩ (4.16)

so that

⟨nk|A−|nk⟩ = 0 . (4.17)

This proof also holds for k = (kx, ky) on high-symmetry lines in the 2D BZ even if there are

two (or more) degenerate states |nk⟩, |n+ 1,k⟩ provided that the |nk⟩, |n+ 1,k⟩ are chosen to

have a definite parity under the symmetry operation Q corresponding to the z → −z symmetry

of the film, e.g.,

Q|nk⟩ = −|nk⟩ , (4.18a)

Q|n+ 1,k⟩ = +|n+ 1,k⟩ . (4.18b)

The states |nk⟩, |n+1,k⟩ determined in numerical calculations do not have this property auto-

matically, and this is the reason why nonzero diagonal contributions are found at the edges of
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the 2D BZ for some film thicknesses. However, one can appropriately choose such two combin-

ations of the numerically obtained degenerate states |nk⟩, |n + 1,k⟩ (by diagonalising Q in the

subspace spanned by these two states) that these combinations have a definite parity under the

operation Q.

Bulk cubic metals also have the z → −z symmetry. However, if the symmetry operation

Q = σzR is applied to an eigenstate |nk⟩ with k = (kx, ky, kz) then the state Q|nk⟩ has the

same energy as |nk⟩ (because [H,Q] = 0), but it corresponds to a different k-point, namely

Rk = (kx, ky,−kz) since the prefactor eik·r in a Bloch function becomes equal to eik·Rr = eiRk·r

after the transformation R : z → −z. Thus, for a general k-point the non-degenerate state |nk⟩

is transformed to a state |n,Rk⟩ up to a constant factor cn(k). This phase factor can be included

into a redefined states |n,Rk⟩ so that we have

Q|nk⟩ = |n,Rk⟩. (4.19)

Note, however, that this does not mean that the state |nk⟩ has a definite parity under the

operation Q. In consequence, the relations (4.14) and (4.16) do not hold for a bulk system.

Instead, in a similar way as for films, the following relations can be derived for bulk cubic metals

⟨n′k|A−|nk⟩ = −⟨n′, Rk|A−|n,Rk⟩ , (4.20a)

⟨nk|A−|nk⟩ = −⟨n,Rk|A−|n,Rk⟩ (4.20b)

but the latter does not imply that the relation (4.17) holds. Accordingly, the element ⟨nk|A−|nk⟩

and, consequently, the diagonal (intraband) contributions to the Gilbert damping do not vanish

for bulk. However, even in this case the diagonal damping terms can be made to vanish by

suitable redefinition of the Hamiltonian eigenstates.

The eigenstates of |nk⟩ and |n,Rk⟩ have the same energy. As mentioned above, by choosing

an appropriate phase factor in the states |n,Rk⟩ [with Rk = (kx, ky,−kz)] one obtains Q|nk⟩ =

|n,Rk⟩ for any k. Thus, one can construct a pair of new states which are also eigenstates of H

[with the same energy ϵn(k) = ϵn(Rk)]

|nk,+⟩ = 1√
2
(|nk⟩+ |n,Rk⟩) , (4.21a)

|nk,−⟩ = 1√
2
(|nk⟩ − |n,Rk⟩) (4.21b)
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which have a definite parity under the operation Q

Q|nk,+⟩ = |nk,+⟩ , Q|nk,−⟩ = −|nk,−⟩ (4.22)

if the relations (4.19) and Q2 = 1 are applied. Then using such states, i.e., taking k from one half

of the 3D BZ only and for each k taking the states |nk,+⟩, |nk,−⟩ one can use the argument

applied for films and find the relation similar to Eq. (4.16) to hold for these states. As a result,

the diagonal elements of the SO torque A− vanish

⟨nk,+|A−|nk,+⟩ = 0 , ⟨nk,−|A−|nk,−⟩ = 0. (4.23)

However, such procedure is at some cost: the new eigenstates |nk,+⟩ and |nk,−⟩ are no longer

the Bloch states ! These states have the form of standing waves in the z direction whilst still

being Bloch states in the x and y directions. They are labelled with k from one half of the 3D BZ

but also with the additional label w = + or − . This is a non-standard description of electronic

structure. If we keep Bloch states |nk⟩ as the Hamiltonian eigenstates in bulk metals we will

get nonzero diagonal terms in the Gilbert damping from the whole 3D BZ except for the kz = 0

plane where Eq. (4.20b) reduces to (4.16). This discussion shows that distinguishing between the

diagonal (intraband) and off-diagonal (interband) contributions to the Gilbert damping largely

depends on the way the eigenstates are defined and calculated.
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Chapter 5

Nonadiabatic spin-transfer torque in

magnetic nanostructures

Displacement of DWs in magnetic nanowires by means of spin-polarised current is a fascinating

topic in recent years due to their promising applications. DWs are at the heart of the idea of

race track memories where each domain represents a bit of information and is moved by flowing

current. The velocity of magnetic DWs in current-carrying ferromagnetic structures is affected

by the value of nonadiabatic STT coefficient β, alongside the Gilbert damping α discussed in the

previous chapters. Moreover, the coefficient β is one of the main factors affecting the threshold

current required for depinning DWs. The existence of the nonadiabatic STT is also important

in other magnetic phenomena at micro- and nanoscales. In Ref. [169], for instance, it has been

shown that considering nonadiabaticity of the current driven STT affects the DW resonance

frequency and the DW mass in a Permalloy (Py) nanowire sample. Also, a very recent research

on STT based nanomagnonic devices suggests that the parameter β is of significant importance

[170]. Thus, nonadiabatic STT represented by the coefficient β is vital for application of magnetic

structures in spintronic devices such as magnetic racetrack memories [171].

The nonadiabatic STT enters the LLG equation [61, 62] which describes the dynamics of

magnetisation in the presence of an external magnetic field and electric current flowing through

the system. On the fundamental level, the nonadiabatic STT originates from the SO interaction

which couples the spin and configurational degrees of freedom of electrons in a physical system.

An extended phenomenological LLG equation including the nonadiabatic STT term has been

proposed by Zhang and Li [106, 107]. The new term added to the LLG equation, known as the

β term, is perpendicular to the adiabatic STT term present in the extended LLG equation [Eq.

(2.13)] and accompanies other terms due to the magnetic filed, exchange interaction and the
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Gilbert damping. Therefore, the magnetisation dynamics in current-carrying magnetic structures

is governed by the coefficients α and β. Though the two quantities refer to different aspects of the

magnetisation dynamics, the same physical interaction, namely the SO coupling, is the source of

the Gilbert damping constant α and the coefficient β. However, the Gilbert damping constant α

essentially arises from d electrons, whilst its counterpart β stems mainly from conduction (s, p)

electrons.

The value of β is usually compared to the Gilbert damping constant α, since the ratio β/α

governs the DW velocity. Thus, the inclusion of the STT coefficient β, accompanying the Gilbert

damping constant α, strongly affects the DW dynamics not only through the DW velocity, but

also via the threshold current for the DW motion. Experimentally, β has been mostly reported

for ferromagnetic semiconductors and magnetic multilayer nanowires [168], rather than magnetic

films of transition metals, by investigation of the DW motion in such systems (see Ref. [172]

for a comprehensive discussion). Ohno and Dietl have reported a value of the order of 0.01 in

(Ga,Mn)As strips [173], whilst in Ref. [174] a range of 0.17 < β < 0.36 has been obtained for an

(Ga,Mn)As thin film.

The coefficient β is strongly affected by spin polarisation, material composition and geo-

metrical structure. Thus, uncertainty about the spin polarisation in the system, the presence or

absence of symmetry in the system also give rise to different values of β [172, 175]. That is the

reason why different values of β are reported for the same system, as in Refs. [173, 174], due to

unavoidable estimations during measurements.

Another factor affecting β is temperature. The values β = 1.45 ± 0.25 and β = 0.35 ± 0.08

have been estimated for [Co/Pt] multilayers at T = 250 K and T = 300 K, respectively [176].

Other reports on β in Co/Pt and Co/Ni spin valves result in β ≈ α [177]. Different values of β

has been reported for Py nanowires with different, transverse or vortex, DW structures [178].

Various ranges of values have also been reported in experiment for the ratio β/α [179, 180].

In particular, the value β = 0.15 ± 0.07 has been found during measurement of vortex DWs’

displacement in Py disk which is over an order of magnitude larger than α in similar systems

[181].

The coefficient β has previously been calculated by several groups via different methods such

as Green function method [182] and the Keldysh formalism [183] (see also [184]). As an extension

of Kamberský’s formula for α, a quantum-mechanical model for calculation of both α and β has

been proposed by Gilmore et al. [67, 68]. However, there is no report, neither theoretical nor

experimental, on β in magnetic layered systems. Despite various reports on the relation between

α and β (β = α or β ̸= α), such a relation is still under debate and remains an open question.
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CHAPTER 5. NONADIABATIC SPIN-TRANSFER TORQUE IN MAGNETIC NANOSTRUCTURES

Thus, the evaluation of β in magnetic structures is desirable.

In this chapter, the coefficient β is calculated for several magnetic systems utilising the ex-

pression proposed by Gilmore and co-workers in Ref. [67]. The attention is directed to bulk

ferromagnetic metals (bcc Fe, fcc Co and fcc Ni) as well as ultrathin ferromagnetic metallic

films, though the method presented here is general and can be used for various magnetic nano-

structures. The calculations are performed within a realistic nine-band TB model [95] with the

SO coupling included. The Hellmann-Feynman (HF) theorem is employed for the calculation of

electron velocities defined as the derivatives of band energies with respect to the wave vector

which appear in the expression for β. The dependence of β on the electron scattering rate Γ as

well as on thicknesses of ferromagnetic films is investigated. The relation between the coefficients

α and β is also investigated and the alleged equality (α = β) is questioned.

5.1 Calculation method

According to the formalism in Refs. [67, 68] the coefficient β is given by the following ratio

β =

π
ΩBZ

∑
n,n′

∫ dk
(2π)D

αnn′ (k, q)
(
τn′,k+q vn′,k+q − τnk vnk

)
·E

q · vs
(5.1)

in the limit of the vanishing wave vector q of a spin wave (q → 0). Here ΩBZ is the volume

of the BZ, D is the system’s dimensionality and E is the electric field that leads to the oc-

currence of electric and spin currents. The parameters vnk = ∇kϵnk and τnk are the velocity

and the lifetime of an electron, respectively, in the state |nk⟩ with the energy ϵnk = ϵn(k)

(this modified notation for energies is used in this chapter for the sake of simplicity) and

αnn′(k, q) = |Ann′(k, q)|2Fnn′(k, q). The matrix element of the SO torque A− = [S−,HSO]

(Eq. (2.105)) is given by
A−nn′(k, q) = ⟨nk|A

−|n′,k + q⟩. (5.2)

which for q = 0 reduces to Ann′(k) in Eq. (2.108). The factor Fnn′(k, q) is defined as

Fnn′(k, q) =
∫
dϵ η(ϵ)L(ϵ− ϵnk)L(ϵ− ϵn′,k+q). (5.3)

which extends the definition (2.102) of the Fnn′(k) = Fnn′(k, q = 0) to finite q (see Refs. [62, 83]).

The quantity vs is the drift velocity of the conduction electron spins which corresponds to the

parameter v0 in the LLG equation (2.13). By replacing vs in Eq. (5.1) with the expression given
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by Eq. (7) of Ref. [67] one obtains

β =

∑
n,n′

∫ dk
(2π)D

αnn′ (k, q)
(
τn′,k+q

∂ϵn′,k+q

∂k − τn,k ∂ϵnk∂k
)
·E

∑
n

∫ dk
(2π)D

⟨
nznk

⟩ (
q · ∂ϵnk∂k

) (
∂ϵnk
∂k ·E

)
Fnn (k, q)

. (5.4)

where nznk = ⟨nk|Sz|nk⟩ is the z component of spin in the state |nk⟩. It is dimensionless since

the S operator is assumed to represent the physical electron spin in units of the Planck constant

~. It has to be noted that, the factor ns (the dimensionless spin density) is missing in Eqs. (1)

and (2) of Ref. [67] though it presumably has been considered in the numerical calculations

therein. Inclusion of this factor in necessary to get agreement with the earlier work [68] by the

same authors (cited as the reference [48] in Ref. [67]), in which expressions for α and β have been

proposed. The former corresponds to Kamberský’s formula for the Gilbert damping constant

[44](see Eq. (2.43)). Accordingly, this correction is taken into account in Eq. (5.4) in the present

calculations.

To evaluate the coefficient β the two following cases can be considered

E = Exi , q = qxi ; (5.5a)

E = Eyj , q = qxi (5.5b)

that define the orientation of the electric field E and the spin wave vector q with vectors

i = (1, 0, 0) and j = (0, 1, 0) along the x and y axes, respectively. In the former case (E =

Exi , q = qxi), one obtains

β = βx =

Ex
∑
k

∑
n,n′

αnn′ (k, q)
(
τn′,k+q

∂ϵn′,k+q

∂kx
− τn,k ∂ϵnk∂kx

)
qxEx

∑
k

∑
n

⟨
nznk

⟩
(∂ϵnk∂kx )

2
Fnn (k, q)

=
(
1
Γqx

) ∑
k

∑
n,n′

αnn′ (k, q)
(
∂ϵn′,k+q

∂kx
− ∂ϵnk∂kx

)
∑
k

∑
n

⟨
nznk

⟩
(∂ϵnk∂kx )

2
Fnn (k, q)

(5.6)

where lifetimes of all electron states τn,k = τn′,k+q = 1/Γ are approximated with the average

electron scattering rate Γ. Note that, the integration over k in Eq. (5.4) has been replaced by

summation over k-points (used in numerical implementation).

For the latter case (E = Eyj , q = qxi), one obtains

β = βy =

∑
k

∑
n,n′

αnn′ (k, q)
(
τn′,k+q

∂ϵn′,k+q

∂ky
− τn,k ∂ϵnk∂ky

)
Ey∑

k

∑
n

⟨
nznk

⟩ (
qx
∂ϵnk
∂kx

) (
∂ϵnk
∂ky

Ey
)
Fnn (k, q)
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=
(
1
Γqx

) ∑
k

∑
n,n′

αnn′ (k, q)
(
∂ϵn′,k+q

∂ky
− ∂ϵnk∂ky

)
∑
k

∑
n
⟨nznk⟩(

∂ϵnk
∂kx
)(∂ϵnk∂ky )Fnn (k, q)

. (5.7)

However, β is infinite for this configuration of the E and q directions since the denominator

in Eq. (5.7) vanishes as a consequence of the product (∂ϵnk∂kx )(
∂ϵnk
∂ky
) present in the sum over the

BZ. The divergence of βy has been confirmed in the numerical calculations based on Eq. (5.7).

However, this problem has not been discussed in Ref. [68] and one should assume that the

values of β reported therein correspond to the case of convergent β = βx. Thus, in the present

thesis β = βx, given by the Eq. (5.6) and corresponding to both E and q oriented along the x

direction, is calculated. Electron velocities, defined as the derivatives of band energies, and the

spin expectation values ⟨nznk⟩ present in the (5.6) are calculated as follows.

Hellmann-Feynman theorem

In the following, the Hellmann-Feynman (HF) theorem is employed to find an analytical

expression for the derivatives of eigenenergies ∂ϵnk∂kx ,
∂ϵnk
∂ky
appearing in the expression (5.6) for

β. Although originally the HF theorem is proved for a Hamiltonian operator that depends on a

scalar parameter λ, it also applies to any M ×M Hermitian matrix H = H(λ) dependent on a

scalar parameter λ (e.g., λ = kx or λ = ky in the present case) and its eigenstate xn = xn(λ) =

(xn1, ...,xnM ) with an eigenvalue ϵn = ϵn(λ). Indeed, one readily obtains

∂ϵn
∂λ

=
∂

∂λ
(xn|Hxn)

= (
∂

∂λ
xn|Hxn) + (xn|

∂H
∂λ
|xn) + (xn|H|

∂

∂λ
xn)

= ϵn(
∂

∂λ
xn|xn) + (xn|

∂H
∂λ
|xn) + ϵn(xn|

∂

∂λ
xn)

= ϵn
∂

∂λ
(xn|xn) + (xn|

∂H
∂λ
|xn)

=
∑
ij

x∗ni (
∂H
∂λ
)ij xnj =

∑
ij

x∗ni
∂Hij
∂λ

xnj (5.8)

since the vector xn is normalised (for any λ) with the scalar product (xn|xn) = 1. The last

step in the above derivation is valid because here the indexes i, j refer to the basis states ei =

(0, ..., 1, ..., 0), ej = (0, ..., 1, ..., 0) in RM , which do not depend on λ , so that

(
∂H
∂λ
)ij = (ei|

∂H
∂λ
|ej) =

∂

∂λ
(ei|Hej) =

∂Hij
∂λ

. (5.9)

This issue and the whole proof shown in Eq. (5.8) become even more clear if, at all its steps, the
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M -dimensional vector xn is represented by its coordinates and the matrix H by its elements.

The original KS Hamiltonian operator H (given by Eq. (2.47)) does not depend on the

wave vector k. However, when the eigenstates |x) = |nk⟩ are represented in the Bloch basis the

resultant matrix elements Hij = ⟨i|H|j⟩ of the operator H, with |i⟩ = |klµσ⟩ and |j⟩ = |kl′νσ′⟩,

are k-dependent. This makes us able to use the HF theorem in the form of Eq. (5.8) to find
∂ϵnk
∂λ , where λ = kx or ky. Within the TB model (see Sec. 2.4.3), the eigenstates of Hamiltonian

are written in terms of the Bloch basis as

|nk⟩ =
∑
lµσ

aσnlµ(k)|klµσ⟩ (5.10)

with the eigenvalues ϵn(k) obtained from the matrix equations

∑
l′νσ

Hσσ
′

lµ,l′ν(k) a
σ′
nl′ν(k) = ϵn(k) a

σ
nlµ(k). (5.11)

Matrix elements of Hamiltonian are given by

Hij = Hσσ
′

lµ,l′ν(k) =
n.n.∑
j′

⟨l0µσ|H
∣∣l′j′νσ′⟩ eik·(Rl′j′−Rl0)δσσ′ + ϵσµδµνδσσ′δll′ +Hσσ′SO; lµ,l′ν (5.12)

where ϵσµ is the on-site energy of orbital µ with spin σ, H
σσ′
SO; lµ,l′ν are the matrix elements of the

SO interaction and j′ numbers nearest neighbours of atom at the positionRl0. The TB eigenvalue

matrix (5.11) can then be written as Hx = ϵnxn where xni = aσnlµ(k) and i correspond to the

composite index (lµσ). Thus, invoking the HF theorem in the form (5.8) and using the expression

(5.12) one obtains

∂ϵnk
∂kx

=
∑

ll′,µν,σσ′

(aσnlµ(k))
∗ aσ

′
nl′ν(k)

∂

∂kx
Hσσ

′
lµ,l′ν(k)

=
∑
ll′,µν,σ

(aσnlµ(k))
∗ aσnl′ν(k)

∑
j′

⟨l0µσ|H
∣∣l′j′νσ⟩ i(xl′j′ − xl0) eik·(Rl′j′−Rl0) (5.13)

since
∂ϵσµ
∂kx
= 0,

∂Hσσ
′

SO; lµ,l′ν
∂kx

= 0. Here the x coordinates of the atomic position vectors Rl0 =

(xl0, yl0, zl0), Rl′j′ = (xl′j′ , yl′j′ , zl′j′) appear as the result of the differentiation over kx. A similar

expression is obtained for ∂ϵnk∂ky with xl′j′ −xl0 replaced by yl′j′ − yl0. It should be noted that the

derivatives of electronic energies ϵnk can be easily evaluated since all necessary ingredients are

obtained during calculation of the Hamiltonian and its diagonalisation.

In this way, by taking the advantage of the HF theorem, explicit expressions for the de-

rivatives of eigenenergies (Eq. (5.13)) are found. Thus, the calculation of the band velocities,

which is required in evaluation of β, is performed analytically in the present thesis. In the pre-
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viously reported ab initio calculations in Ref. [67] the band velocities were found by numerical

differentiation of band energies within the centred finite difference approximation.

The other parameter needed in the calculation of β is the dimensionless z component of spin

in the state |nk⟩, i.e., ⟨nznk⟩. In the Bloch representation (Eqs. (2.49), (2.50)) the factor ⟨nznk⟩

is calculated as

⟨nznk⟩ = ⟨nk|Sz|nk⟩

=
∑

ljµσ, l′j′νσ′

(aσnlµ(k))
∗ aσ

′
nl′ν(k) e

ik·(Rl′j′−Rlj)⟨ljµσ|Sz|l′j′νσ′⟩

=
∑
lµσ

(aσnlµ(k))
∗ aσnlµ(k) ⟨σ|Sz|σ⟩

=
1
2

∑
l,µ

(a↑nlµ(k))
∗ a↑nlµ(k)−

∑
l,µ

(a↓nlµ(k))
∗ a↓nlµ(k)

 (5.14)

since ⟨ljµσ|Sz|l′j′νσ′⟩ = ⟨σ|Sz|σ⟩δll′δjj′δµνδσσ′ .

It is found that in the case of β, unlike for the Gilbert damping constant α, the integration

over k-points in Eq. (5.6) cannot be limited to the irreducible BZ. Thus, the summation over k

in Eq. (5.6) or Eq. (5.7) must be evaluated by integration over the full 3D BZ for bulk and the

full 2D BZ for ferromagnetic films. The factor Fnn′(k, q) given by an integral over energy ϵ (Eq.

(5.3)) can be calculated efficiently with an analytical expression obtained with the aid of the

residue theorem and subsequent summation over the Matsubara frequencies (see Appendix A).

Thus, having determined all parameters appearing in Eq. (5.4) one can evaluate β for various

magnetic structures.

To find a reliable value of the nonadiabatic STT coefficient β, the length of the spin wave

vector q must be sufficiently small. It is found that the value |q| = qx ≃ 10−4 π/a leads to

converged results for the whole range of the considered values of the electron scattering rate

Γ. Therefore, the value qx = 10−4 π/a has been used in Eq. (5.5) in evaluation of β for bulk

ferromagnets and ferromagnetic films.

To challenge the alleged equality α = β the dependence of the nonadiabatic STT β on the

electron scattering rate in bulk ferromagnets and ferromagnetic films is investigated, as it was

previously performed in the case of the Gilbert damping constant α.

5.2 Bulk ferromagnets

In this section the nonadiabatic STT coefficient β is calculated for bcc Fe, fcc Co and fcc Ni

bulk ferromagnets using the expression (5.6). In particular, the coefficient β for bulk Co, which
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Figure 5.1: Convergence of the nonadiabatic STT coefficient β with the number (2Nk + 1)3 of
k-points in BZ for bulk Fe, Co and Ni.

has not been reported by Gilmore et al. [67], is addressed.

Calculation of the nonadiabatic STT coefficient β is more intensive than the Gilbert damping

constant α, especially for very small scattering rate Γ, due to the presence of energy derivative

in the expression (5.6) for β. The results obtained with different numbers of k-points in the

full 3D BZ for bulk Fe, Co and Ni with various scattering rates Γ are shown in Fig. 5.1. A

satisfactory convergence of β is obtained with as many as (360)3 k-points for bulk Fe, Co and

Ni with Γ ­ 0.01 eV, compared to (100)3 k-points for α in the same bulk metals (see Fig. 3.1).

These numbers are similar to the previously reported for bulk Fe and Ni [(370)3 k-points] in the

ab initio calculations in Ref. [67] using the same expression for β (Eq. (5.4)). The convergence

for bulk Fe and Ni with Γ ­ 0.1 eV is obtained with (200)3, whilst slightly larger number of

k-points, about (240)3, is needed to obtain convergence in bulk Co with Γ ­ 0.1 eV. For all

these bulk ferromagnets, one may need more than (400)3 k-points to obtain satisfactory results

for Γ < 0.01 eV.

Figure 5.2 depicts the nonadiabatic STT coefficient β, accompanied by the damping constant

α, versus the scattering rate Γ for bulk Fe, Co and Ni. The value obtained for β in bulk Fe is

positive in the whole range of considered scattering rates (0.001 eV ¬ Γ ¬ 2 eV), whilst some

negative values of β are found in bulk Co and Ni. This is possible because the applied expression

(5.6) allows, in principle, for any sign of β (unlike the formula (2.103) giving positive α) since

it includes electron velocities (derivatives of band energies) which can be either positive or

negative depending on k. The obtained values of β for bulk Fe and Ni partly agree (are of the

same order) with the results of ab initio calculations [67], especially at small scattering rates for

bulk Fe and at large scattering rates for bulk Ni. The disagreement in some range of scattering

rates is explained in the following. Note that, the dependence of the damping constant α on

the scattering rate Γ [62, 67] is similar to its dependence on the electrical resistivity ρ [88]. In

particular, the minima of α in bulk ferromagnets occur at Γ ≃ 0.1 eV [62] which corresponds
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Figure 5.2: Nonadiabatic STT coefficient β and the Gilbert damping constant α vs scattering
rate Γ for bulk Fe, Co and Ni. Solid, dotted and dashed curves show the total β as well as
intraband and interband contributions to it, respectively.

to ρ ≃ 1.5 × 10−8Ωm [67]. Thus, one can estimate the correspondence between Γ and ρ which

allows us to compare the results for β obtained here with those reported in Ref. [67].

In the case of bulk Fe, the coefficient β follows roughly similar trend as α when plotted as

a function of Γ. In particular, the characteristic minimum occurs for both α and β in bulk Fe,

though the minimum of β at Γ = 0.05 eV is much deeper than the minimum of α at Γ close

to 0.1 eV. The coefficient β is larger than α in the whole considered range of scattering rate Γ,

except for Γ very close to 0.05 eV at which the minimum of β occurs.

In the case of bulk Ni, the only negative value occurs at Γ = 1 eV (among several considered

values of scattering rate) at which β ≃ −1.4α. As a general trend, β in bulk Ni decreases with

increasing the scattering rate Γ, though this decrease is not strictly monotonic, with two minima:

at Γ = 0.1 eV and Γ = 1 eV. As Γ increases, the difference between α and β declines so that the

two curves representing α and β cross each other at Γ ≃ 0.07, 0.2, 0.7 eV giving rise to β ≃ α.

In particular, one obtains β ≃ 6α, 0.5α, −1.4α for Γ = 0.01, 0.1, 1 eV, respectively. Thus, for

bulk Ni one finds |β/α| < 1 in the range of 0.07 eV . Γ . 0.2 eV only. At the largest considered

value of Γ = 2 eV the positive value of β ≃ α is obtained, though such a large Γ seems quite

unphysical.

Except the point at Γ close to 1 eV in bulk Ni, β is positive in bulk Fe and Ni in the whole

considered range of scattering rate (0.001 eV ¬ Γ ¬ 2 eV). The coefficient β reported in Ref.

[67] is positive at high electrical resistivity ρ ­ 5 × 10−8Ωm, corresponding to Γ > 0.1 eV, in

bulk Fe and at low resistivity ρ < 0.7× 10−8Ωm, corresponding to Γ < 0.02 eV, in bulk Ni.

In the case of bulk Co the strong dependence of β on the scattering rate leads to a complicated

behaviour for β in comparison with α. The relation β ≃ α in bulk Co holds for Γ very close to

(slightly larger than) 0.1 eV. A large peak occurs for β with Γ = 0.2 eV at which β ≃ 3660α.

One may notice that some negative values of β are also found in the range Γ ¬ 0.1 eV where
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−830α . β . −1150α. For small scattering rates Γ ¬ 0.1 eV, the β curve falls below the α

curve and subsequently β obtains negative values reaching its minimum at Γ = 0.01 eV.

To summarise the obtained results, it is found that 0.8 . β/α . 5.9 for bulk bcc Fe,

−1150 < β/α < 3660 for bulk fcc Co and −1.4 . β/α . 6 for bulk bcc Ni with the scattering

rate within the range 0.01 eV ¬ Γ ¬ 1 eV. In particular, the following values of β have been

obtained in the three bulk metals with Γ = 0.01, 0.1 and 1 eV: β ≃ 2.6α, 2.5α and 5.6α for Fe;

β ≃ −830α, −1150α and 26α for Co; and β ≃ 6α, 0.5α and −1.4α for Ni, respectively.

Unlike the Gilbert damping constant α in bulk ferromagnets for which a compromise between

the intraband and interband contributions results in a minimum in the dependence of α on Γ (cf.

Fig. 3.5), in the case of STT coefficient β its minima arise due to different distributions of the

terms coming from intraband and interband transitions (see Fig. 5.2). In bulk Fe the obtained

minimum in β is only due to the interband contribution. In other words, similar minimum

occurs in the interband term which plays the dominant role at large Γ. At large scattering rates,

Γ ­ 0.1 eV, the intraband contribution plays a minor role and β comes almost entirely from the

interband terms, whilst at Γ ¬ 0.05 eV both the interband and intraband terms share almost the

same contributions to β. In bulk Co, apart from the point at Γ ­ 0.2 eV at which a maximum

occurs, the intraband and interband transitions give similar contributions to β whilst β comes

almost entirely from the interband contributions at Γ = 0.2 eV. In bulk Ni with Γ < 0.2 eV and

Γ ­ 0.2 eV, however, β comes almost entirely from the intraband and interband contributions,

respectively, giving rise to a maximum in β at Γ = 0.5 eV and a minimum at Γ = 1 eV.

It is found that the presently calculated β in bulk Ni behaves similarly to that obtained in the

ab initio calculations [67] as a function of electrical resistivity ρ (with the same trend and in the

same range (−0.1 < β < 0.2)), though it takes negative values for ρ > 0.7× 10−8Ωm. However,

in the case of bulk Fe the present results for β are in contradiction with those reported in Ref.

[67] where β possesses negative value at low resistivities (at ρ . 5× 10−8Ωm corresponding to

Γ < 0.1 eV). The discrepancy between the present results and those of ab initio calculations

(Ref. [67]) is accounted for as follows.

As mentioned above, the convergence of β for bulk ferromagnets is problematic at small

scattering rates Γ. That prompted us to investigate convergence of β with much more care. As

shown in Figs. 5.1 and 5.2 for bulk metals, β takes very small values for some ranges of Γ. In

such a case, β oscillates, with the number of k-points, between positive and negative values

which result in totally different behaviour of β as a function of Γ depending on the number of

k-points before a full convergence is reached. Moreover, the coefficient β reported in Ref. [67]

is affected by spin current polarisation and it is diverges as the current polarisation approaches
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Figure 5.3: Ratio of the nonadiabatic STT coefficient and the Gilbert damping constant, β/α,
vs scattering rate Γ for bulk Fe, Co and Ni.

zero.

All in all, the present author has serious doubts about the convergence of β with ρ <

5 × 10−8Ωm (corresponding to Γ . 0.4 eV), which covers almost the whole region in which

β is physically defined and calculated for the electron’s lifetime ratio r = 1, reported for bulk

Fe in Ref. [67], since its convergence gets worse with decreasing resistivity (see Fig. 1 therein).

Note that, the electron lifetime is considered to be the same for spin up and spin down electrons

in the present calculations (i.e., spin-independent scattering rates are assumed) and, thus, the

results obtained here have to be compared with plots for r = τ↓/τ↑ = 1 in Ref. [67]). They have

reported the values of β within ±0.2 for small resistivities (small Γ), corresponding to negative

values for β in Ref. [67]. This is called “worse convergence” therein. Similar, but a few times

smaller, uncertainty, namely ±0.005, occurs in the present calculations for bulk Fe with Γ < 0.1

eV. The small resistivities (small Γ) is the range that there is a doubt about because β oscillates

between positive and positive values and, with the considered number of k-points, it is hard to

decide which value β ultimately converges to. That is the reason why the present author believes

that β eventually converges to positive values at most scattering rates, as presented here.

Figure 5.3 presents the ratio β/α as a function of scattering rate Γ for bulk Fe, Co and Ni.

This ratio is of particular importance because it determines the DW velocity in current-carrying

ferromagnetic systems. In the case of bulk Fe, the ratio β/α changes as 0.8 . β/α < 6 and

attains its extrema at Γ = 0.05 eV and Γ = 0.5 eV corresponding to β/α ≃ 0.8 and β/α ≃ 5.9,

respectively.

In the case of bulk Ni, the ratio β/α stays within the range 0.5 . |β/α| . 6 with two minima at

Γ = 0.1, 1 eV corresponding to β/α ≃ 0.5 and β/α ≃ −1.4 and with two maxima at Γ = 0.01, 0.5

eV corresponding to β/α ≃ 6 and β/α ≃ 3, respectively. The obtained ranges of the ratio β/α

in bulk Fe and Ni are similar to those reported in Ref. [67].

The most surprising behaviour occurs for the ratio β/α in bulk Co in which this ratio changes

within the range −1150 . β/α . 3660. The ratio β/α in bulk Co is negative for Γ ¬ 0.1
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eV and positive for Γ > 1 eV. The smallest value of |β/α| is obtained for Γ = 1, 2 eV with

values β/α ≃ 26, 6.8, respectively. This ratio increases with decreasing the scattering rate Γ

down to Γ = 0.2 eV at which it reaches its giant peak presenting β/α ≃ 3660. It changes as

−830 . β/α . −1150 within the range 0.01 eV ¬ Γ ¬ 0.1 eV. However, one should not be

worried about very large values of the obtained ratio |β/α| in bulk Co since the DW velocity is,

in fact, affected not only by this ratio, but by the combination of (β/α)P where P = σP/σ is

defined with the spin conductivity σP and the electric conductivity σ. This fact is pointed out

by the authors of Ref. [67] who note that β is inversely proportional to σP so that it diverges

for σP ≈ 0, whilst at the same time the product σPβ remains finite. The latter result requires

further investigations.

The coefficient β takes negative values in some ranges of Γ resulting in negative ratio β/α.

The negative β/α imply that DWs move in the opposite direction than the spin current for that

range of Γ. This rather unexpected result is discussed in Ref. [67] and it is claimed to be just a

particular case of β ̸= α that leads to the DW velocity different from the spin drift velocity v0.

5.3 Ferromagnetic films

Evaluation of the nonadiabatic STT coefficient β invokes much more computational effort than

the Gilbert damping constant α also in ferromagnetic films. As it was discussed in 3.1, in the

case of the damping constant α in ferromagnetic films, the convergence requires a large number

of k-points as the scattering rate decreases regardless of film thickness. In the case of β in

ferromagnetic films the convergence varies with film thickness and it gets worse for the small

range of the considered scattering rate, namely for Γ < 0.01 eV. Due to numerically demanding

calculations, the results for β in Fe, Co and Ni films only of a few ML thick are presented.

Convergence of β with the number of k-points in 2D BZ for various thicknesses of Fe, Co and

Ni films of 1-4 ML thicknesses is shown in Figs. 5.4 and 5.5.

For Fe and Co monolayers (N = 1) (Fig. 5.4) it is found that the convergence of β is reached

with (200)2 k-points for 0.01 eV ¬ Γ ¬ 1 eV, whilst for Ni monolayers the convergence is obtained

with this number of k-points for the whole range of considered scattering rate (0.001 eV ¬ Γ ¬ 2

eV). As for the Gilbert damping constant α, in the case of β one also needs a larger number

of k-points to obtain convergence for smaller Γ. In particular, more than (400)2 k-points are

needed for 0.002 eV ¬ Γ < 0.01 eV in the case of Fe(1 ML) and for Γ = 0.005 eV in the case of

Co(1 ML). For thicker films with 0.01 eV ¬ Γ < 1 eV the number of k-points which is required

for convergence varies [(300)2-(600)2] with film thicknesses and the metal that the film is made
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Figure 5.4: Convergence of the nonadiabatic STT coefficient β with the number (2Nk + 1)2 of
k-points in the 2D BZ for FM(N ML) films [FM=Fe, Co] with different scattering rates Γ.

of. The exception is the Co(3 ML) film for which even summing over (1800)2 k-points hardly

results in a satisfactory convergence for Γ ¬ 0.02 eV. As mentioned above, the convergence of β

in ferromagnetic films with small scattering rate, namely Γ < 0.01 eV, is not satisfactory. Thus,

only the reliable results of the calculated nonadiabatic STT coefficient β (in the range of the

scattering rates 0.01 eV ¬ Γ ¬ 1 eV) are presented here.

Figures 5.9-5.8 present the calculated nonadiabatic STT coefficient β in ferromagnetic films

for various thicknesses of Fe, Co and Ni films with different values of the scattering rate Γ.

Although the films considered here are too thin to allow one to find a general trend for the
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Figure 5.5: Convergence of the nonadiabatic STT coefficient β with the number (2Nk + 1)2 of
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Figure 5.6: Nonadiabatic STT coefficient β vs the scattering rate Γ in bcc Fe(N ML) films.

film thickness dependence of β, they lead one to the conclusion that β strongly depends on the

film thickness and scattering rate Γ. The coefficient β is even found to change the sign upon

increasing the film thickness, especially in Co films, or value of Γ. As seen, β in Fe and Co films

oscillates with the film thicknesses (with maxima at odd thicknesses N and minima at even N)

whilst it is a monotonic decreasing function of the film thickness in the case of Ni films.

In the considered films of Fe and Ni, except for their mololayers in which β is positive, β

takes negative values almost in the whole range of considered scattering rates, in contrary to β

in their bulk counterparts. In the case of films, the sign of β may change with the scattering

rate Γ. In general, one finds larger absolute value of β in Fe films than Co films.

The coefficient β is also plotted as a function of scattering rate Γ (see Figs. 5.6-5.8) for

different ferromagnetic film thicknesses. As seen, Γ dependence of β strongly depends on film

thickness. For the Fe(2 ML) and Fe(4 ML) films β is an increasing function of Γ whilst it has

extrema for Fe(1 ML) and Fe(3 ML); see Fig. 5.6. One may also notice the negative sign of β

[except in Fe(1 ML)].

This pattern changes for the Co films in which β decreases in Co(1 ML) and increases in Co(2

ML) with increasing Γ; the aforementioned extrema appears for Co(3 ML) and Co(4 ML); see

Fig. 5.7. The error bar in the case of Co shown at Γ = 0.02, 0.01 eV reflects the not fully

converged summation over the BZ with Nk = 900 for Co(3 ML).

In the case of the Ni films (Fig. 5.8) decreasing and increasing trend of β with increasing Γ
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Figure 5.7: Nonadiabatic STT coefficient β vs the scattering rate Γ in fcc Co(N ML) films.
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Figure 5.8: Nonadiabatic STT coefficient β vs the scattering rate Γ in fcc Ni(N ML) films.
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Figure 5.9: Nonadiabatic STT coefficient β vs film thicknesses in Fe, Co and Ni films with various
scattering rates Γ.
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Figure 5.10: Ratio of the nonadiabatic STT coefficient and the Gilbert damping constant, β/α,
vs film thickness for Fe, Co and Ni films.

occurs in Ni(1 ML) and Ni(4 ML), respectively, whilst two minima appear in Ni(2 ML) and Ni(3

ML) at Γ close to 0.2 eV. As seen β is negative over the whole range of considered Γ and Ni

thicknesses.

In Fig. 5.10 the ratio β/α as a function of film thickness for Fe, Co and Ni films with two

values of Γ = 0.05, 0.1 eV is shown. This ratio is of particular important because it determines

the DW velocity in current-carrying ferromagnetic systems. Since the Gilbert damping α is a

positive quantity, the sign of the ratio β/α is the same as that of β which is found to change

with the scattering rate and and film thickness in some films. The ratio β/α changes within the

range −0.9 . β/α < 0.2 for Co up to 4 ML thickness whereas it drops drastically in Fe and Ni

films, attaining large negative values, with the thicknesses increasing from 1 ML to 4 ML.

As already discussed for bulk ferromagnets the negative values of β obtained in most of the

considered ultrathin Fe, Co and Ni films are fully allowable by the expression (5.6) applied in the

present calculations. However, the negative sign of β, corresponding to the DW motion in the

direction opposite to the spin current (though observed in few specific systems [186, 187, 188]),

is not usually found in experiment for layered nanostructures. In particular, the positive values

β = 0.022 ± 0.002 and β = 0.06 ± 0.03 (leading to β/α ≈ 0.6, 0.7) have been found for Fe/Pt
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alloy films and Co/Ni multilayers, respectively [189] whilst β = 0.35 ± 0.08 has been reported

for Co/Pt multilayers at room temperature. Also, the values of β = 0.040 ± 0.005 [190] and

β = 0.016 (with α = 0.008, leading to β/α = 2) [171] have been reported for Py nanowires.

The obtained values of (β) in Fe and Ni films are very large, at least an order of magnitude

larger in some cases, than reported experimentally. However, the present prediction can still be

plausible to be definite since, in fact, it is the product of the spin conductivity σP and β/α

(with β ∼ 1/σP) that determines the DW velocity observed experimentally as a response to an

external electric field (due to applied voltage).

The discrepancy in sign and magnitude of β between theory and experiment needs serious

consideration. It might be attributed to inaccuracies in the description of the electronic structure

in films composed of just a few atomic layers with the TB parameters (particularly on-site

energies) obtained by fitting ab initio energy bands of bulk metals. Another possible reason could

be associated with the form of the nonadiabatic STT, which was proposed in Refs. [106, 107]

and is commonly accepted, but has recently been questioned by the results of the first-principle

calculations [191] of the out-of-plane and in-plane torques in Fe, Co and Ni DWs. Finally, the

sign and magnitude of β can be significantly changed if the presence of substrate and overlayer is

accounted for in the calculations. Such systems better correspond to experimental sample than

the free-standing films considered in this chapter. Moreover, the enhancement of the Gilbert

damping in FM/NM layered systems can lead to a substantial reduction of the ratio β/α. Thus,

the present results for a few ML films cannot be directly compared with experiment and further

theoretical investigations are required.
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Chapter 6

Summary

The applied theoretical models and the methods developed in this thesis have provided effect-

ive tools for investigating spin relaxation in bulk ferromagnetic metals and magnetic layered

nanostructures built of transition metals with overall thickness of up to 50 ML (about 10 nm).

The main calculations are done for the Gilbert damping constant α given by Kamberský’s SO

torque correlation formula. Following Ref. [113], it is shown how this formula can be rederived by

comparing long-wave spin-wave frequency obtained from the phenomenological LLG equation,

describing the dynamics of magnetisation, with that determined from the quantum-mechanical

expression for the transverse magnetic susceptibility. In addition, the nonadiabatic STT coef-

ficient β has been calculated, though for a much smaller range of systems than α, using the

expression proposed by Gilmore et al. [68, 67].

To carry out the calculations for systems of such considerable thickness at moderate com-

putational effort, their electronic structure is described using the TB model with the basis of

nine (s, p, d) orbitals of each spin per atom and including the SO interaction with site-specific

coupling strength. Consequently, explicit expressions for α and β in terms of the energies of

electron states and their amplitudes (defined as projections on orbitals at different atoms, or

Bloch basis states composed of such orbitals) have been obtained within the TB model for both

bulk and layered systems. It has turned out that, employing finite temperature as well as re-

placing the involved energy integral by the derived equivalent analytical expression including a

summation over Matsubara frequencies lead to a faster convergence of the numerical integration

over the BZ required in the calculation of the Gilbert damping constant and the nonadiabatic

STT coefficient.

Additionally, an equivalent, but novel, expression for α in terms of the Green function is

derived in two alternative forms, which are not limited to the TB model. Such expression can
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be particularly useful in systems with reduced symmetry for which the Green function can be

efficiently determined with specific techniques like the recursion method. However, for presently

considered layered systems, with 2D or 3D translational symmetry, the Hamiltonian was diag-

onalised and the resulting eigenstates and their energies were used directly in calculation of α

and β.

The Gilbert damping constant has been calculated for bulk ferromagnets (bcc Fe, fcc Co

and fcc Ni), purely ferromagnetic (FM=Fe, Co and Ni) films, Co/NM bilayers, NM/Co/NM and

Co/NM1/NM2 trilayers as well as L10 Co/NM superlattices and [Co/NM]N binary multilayers.

The dependence of α on the FM and NM cap thicknesses and the effect of the nonmagnetic

caps, for various electron scattering rate Γ, has been investigated and compared with recent

experiments. It has been found that, the Gilbert damping in Fe, Co and Ni films behaves

differently with changing film thickness, often in a non-monotonic way. The calculated damping

constant in ferromagnetic films converges to the bulk value αb for large enough film thicknesses,

depending on metal and the electron scattering rate Γ. In some cases the convergence is so slow

that α does not saturate to αb for the thickest considered films. In the case of Ni films with

Γ ¬ 0.01 eV, for instance, such convergence to αb does not occur within the investigated range

of thicknesses and one may need as many as a few hundred ML to reach αb. The damping

constant α is found to oscillate in FM films, Co/NM bilayers and Co/NM1/NM2 trilayers with

the thicknesses NFM and NNM of FM films and NM caps, respectively. These characteristic

oscillations, attributed to the QW states with energies close to the Fermi level, die away at NFM

and NNM larger than 20 ML.

The Gilbert damping appears to be largely modified in pure ferromagnetic films, in compar-

ison with their bulk counterparts, so that α is reduced or enhanced depending on the value of Γ.

However, the Gilbert damping is found to be really remarkably enhanced in Co/NM bilayers due

to adding the nonmagnetic caps, even 1 ML thick, to Co films, particularly strongly for Pd and

Pt caps. Similar results are also obtained for the investigated Co-based trilayers and multilay-

ers. The obtained large enhancement is successfully explained by attributing it to the combined

effect of the large SO coupling and simultaneous presence of d states at the Fermi level ϵF in the

NM. This effect is in agreement with numerous experiments on magnetic damping in FM/NM

structures and predictions of the semiphenomenological theory based on spin pumping [6, 7].

The Gilbert damping in Co/NM bilayers is found to decrease as the Co thickness increases, also

in accord with experiment. However, it is not very sensitive to change of the nonmagnetic cap

thickness. In the latter case, the Gilbert damping saturates at a final value after adding just a

few ML of nonmagnetic cap if small QW oscillations are disregarded. Furthermore, an extra and
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highly nonlocal contribution to the Gilbert damping in Co/NM1/NM2 trilayers, due to adding

the second nonmagnetic cap (NM2), is obtained which is also consistent with the spin pump-

ing theory and recent experiments. The present calculations predict correctly that the Gilbert

damping constant in Co/NM/Pt trilayers declines as the thickness of the nonmagnetic spacer

increases. Thus, the applied quantum-mechanical model is capable of well describing the Gilbert

damping and its thickness dependence in a wide variety of magnetic layered systems.

The calculations have been generalised to the case of arbitrary direction of magnetisation

which allows one to investigate the angular dependence of the Gilbert damping in bulk ferromag-

nets and ferromagnetic films. For this purpose the angle-dependent expression for the Gilbert

damping constant has been derived. Thus, in particular, one is able to make a comparison of

the damping constants in magnetic layered systems with out-of-plane and in-plane directions of

magnetisation. The Gilbert damping constant has been found to depend on the magnetisation

orientation, weakly for bulk ferromagnets (with the same α for the magnetisation along different

principal axes) but much stronger for ultrathin FM films. In bulk Fe, Co and Ni, the change

of α with changing the magnetisation direction is relatively small, but increases for small Γ,

though not exceed 13% , 3% and 18%, respectively, for Γ = 0.01 eV. The Gilbert damping is

particularly strongly enhanced (by even more than 50%) in ferromagnetic films with magnetisa-

tion orientation intermediate between in-plane and out-of-plane directions, corresponding to no

symmetry axis.

To shed light on the obtained results, analysis of the Gilbert damping in the real space (atomic

layer contributions) and momentum space (k-point contributions) has also been performed. In

the former case, thanks to the obtained novel analytical expression, layer contributions from

various atomic layers to the Gilbert damping are obtained. It has been found that, for layered

systems including Co/NM bilayers with NMs possessing d bands at ϵF (i.e., Pd and Pt) the

major contributions stem from a few atomic layers in the NM close to the Co/NM interfaces,

whilst for NMs with no such d bands at ϵF the main contributions originate from the Co part

of the system. The nonlocal nature of the Gilbert damping in Co/NM1/NM2 trilayers, with

NM2=Pd and Pt caps considered to be perfect spin sinks, is clearly visualised by the dominating

contributions from atomic layers in the nonmagnetic capping layer. The k-point contributions,

on the other hand, reveal that there are several hot spots in the BZ, mostly near its corners,

which give the most significant contributions to the Gilbert damping. These analyses provide a

better understanding of the Gilbert damping mechanism in magnetic layered structures.

Finally, the nonadiabatic STT coefficient β has been calculated for bulk ferromagnets as

well as ferromagnetic films and the ratio β/α, related to the DW velocity, has been discussed.
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Calculations of β are based on the quantum-mechanical expression given in Ref. [67], implemen-

ted in the TB model and slightly modified by employing the Hellmann-Feynman theorem for

calculation of electron velocities which appear in the expression for β. It has been found that,

in the case of bulk Fe and Co the coefficient β is larger than α for the whole considered range

of the scattering rate Γ. For bulk Ni, this result holds merely for small scattering rate Γ and

β takes negative values in a wide range of Γ. The calculations for ferromagnetic films of a few

ML thickness have shown a strong dependence of β on the film thickness and the scattering

rate, including oscillations and even leading to the change of its sign. The discrepancy between

experimental values of β/α and the obtained large negative values of this ratio is discussed and

possible explanations are given.

In each part of the present thesis, the obtained results are compared with predictions of

other theoretical models, such as ab initio calculations and the spin pumping theory, as well as

experimental reports.

In summary, the applied quantum-mechanical model and presented theoretical methods have

proved to be efficient in investigating the relaxation of magnetisation in bulk and magnetic ma-

terials with layered structure. The theoretical description of the Gilbert damping, its distribution

in real space and the nonadiabatic STT has been formulated within the TB model. Methods

for faster and more accurate calculation of α and β, including the analytical expression for the

involved integrals over energy, have been proposed and successfully applied. The results obtained

for a variety of magnetic nanostructures have given a new insight into the mechanism of spin

relaxation, and the Gilbert damping, in particular.
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Appendix A

Derivatives of Fermi-Dirac function

The function η(z) = −∂fFD∂z and its derivatives enter the calculation of the Gilbert damping

constant α through their appearance in the analytical expression for the factor Fnn′(k) defined

as the integral over energy in Eq. (2.102). Equation (2.136) presents a recursion relation for the

derivatives of η(z) of arbitrary order m.

The derivatives of the first, second and third order are given in Eq. (2.137). The (m+ 1)-th

order derivative of η(z) is expressed in terms of its derivatives of lower orders or the corresponding

derivatives, of the Fermi-Dirac distribution function fFD,

η′ =
dη(z)
dz
= −∂

2fFD
∂z2

, . . . , η(m) =
dmη(z)
dzm

= −∂
m+1fFD
∂zm+1

. (A.1)

The obtained expressions for all the derivatives η(m) up to the order m = 10 are listed below.

η = −f ′FD = βfFD (1− fFD) = −βη (1− fFD) ,

η′ = −f ′′FD = −βη (1− 2fFD) ,

η′′ = −f (3)FD = β
(
−2η2 + (1− 2fFD)f ′′FD

)
= −β

(
−2η2 + (1− 2fFD)η′

)
,

η(3) = −f (4)FD = β
(
6ηf ′′FD + (1− 2fFD)f

(3)
FD

)
= −β

(
6ηη′ + (1− 2fFD)η′′

)
,

η(4) = −f (5)FD = β
(
−6(f ′′FD)2 + 8ηf

(3)
FD + (1− 2fFD)f

(4)
FD

)
= −β

(
6η′2 + 8ηη′′ + (1− 2fFD)η(3)

)
,

η(5) = −f (6)FD = β
(
−20f ′′FDf

(3)
FD + 10ηf

(4)
FD + (1− 2fFD)f

(5)
FD

)
= −β

(
20ηη′′ + 10ηη(3) + (1− 2fFD)η(4)

)
,

η(6) = −f (7)FD = β
(
−20(f (3)FD)

2 − 30f ′′FDf
(4)
FD + 12η

′f
(5)
FD + f

(6)
FD + (1− 2fFD)f

(6)
FD

)
= −β

(
20η′η′′ + 30η′η(3) + 12ηη(4) + (1− 2fFD)η(5)

)
,

η(7) = −f (8)FD = −β
(
70η(2)η(3) + 42η′η(4) + 14ηη(5) + (1− 2fFD)η(6)

)
,
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η(8) = −f (9)FD = −β
(
70(η(3))2 + 12η′′η(4) + 56η′η(5) + 16ηη(6) + (1− 2fFD)η(7)

)
,

η(9) = −f (10)FD = −β
(
252η(3)η(4) + 168η′′η(5) + 72η′η(6) + 18ηη(7) + (1− 2fFD)η(8)

)
,

η(10) = −f (11)FD = −β
(
252(η(4))2 + 420η(3)η(5) + 420η′′η(6) + 90η′η(7) + 20ηη(8) + (1− 2fFD)η(9)

)
.

(A.2)
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Appendix B

Dynamical magnetic susceptibility:

relation with spin-orbit torque

correlation function

In section 2.3, the Gilbert damping constant α = ω2(q=0)ω1(q=0)
is expressed with the real and ima-

ginary parts of the spin-wave energy ω(q) = ω1 − iω2 determined as the pole of the transverse

dynamical magnetic susceptibility χ⊥(q, ω) at q = 0 (corresponding to uniform precession of

magnetisation). This is done by starting from the relation (2.19) for χ⊥(ω) = χ⊥(q = 0, ω)

which includes the correlation function χA(ω) of the SO torque A− = [S−,HSO]. This relation,

given for arbitrary q in Ref. [61], can be derived following the general method introduced by

Edwards and Fisher [114] and based on the equation of motion for the spin operator S−(t) in

the Heisenberg representation.

Making use of the definition of the susceptibility, Eqs. (2.17), (2.18), one obtains

χ(q, ω) =
i

~

∫ ∞
0

dt ⟨[S−q (t) , S+−q(0)]⟩ e−iω−t

=
i

~

∫ ∞
0

dt ⟨[S−q (t) , S+−q(0)]⟩ (
−1
iω−
)
d

dt
e−iω−t

=
−1
~ω−

∫ ∞
0

dt ⟨[S−q (t) , S+−q(0)]⟩
d

dt
e−iω−t. (B.1)

where ω− = ω − iη with η → 0+. The latter integral in Eq. (B.1) can be calculated, with
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integration by parts, as follows

χ(q, ω) =
−1
~ω−

(
⟨[S−q (t) , S+−q]⟩ e−i(ω−iη)t|∞0 −

∫ ∞
0

dt ⟨[
dS−q (t)

dt
, S+−q]⟩ e−iω−t

)

=
−1
~ω−

(
0− ⟨[S−q , S+−q]⟩ −

∫ ∞
0

dt ⟨[
dS−q (t)

dt
, S+−q]⟩ e−iω−t

)
. (B.2)

Note that, the argument (0) is skipped in S+−q(0) (and similar operators in this section) since at

t = 0 the operator S+−q(t) is equal to the original, time-independent, operator S
+
−q used in the

Schrödinger representation. In the next step one can take advantage of the Heisenberg equation

of motion

i~
dS−q (t)

dt
=
[
S−q (t) ,H

]
(B.3)

for the spin operator S−q (t) = e
iHt/~S−q e

−iHt/~. This leads us to

χ(q, ω) =
1

~ω−

(
⟨[S−q , S+−q]⟩ +

1
i~

∫ ∞
0

dt ⟨
[
[S−q (t) ,H], S

+
−q
]
⟩ e−iω−t

)
=

1
~ω−

(
−2~⟨Sz⟩ +

1
i~

∫ ∞
0

dt
⟨
[C−q (t) , S

+
−q] +

[
[S−q (t) , HZ] , S

+
−q
]⟩
e−iω−t

)
(B.4)

where C−q = [S
−
q ,Hkin + HSO]. The first term in the right-hand side (RHS), the commutator

[S−q , S
+
−q], has been evaluated as follows

[
S−q , S

+
−q
]
=

[∑
n

eiq·rnS−n ,
∑
n

ei(−q)·rnS+n
]

=
∑
n,n′

eiq·(rn−rn′ )
[
S−n , S

+
n′
]
δn,n′

=
∑
n

[
S−n , S

+
n

]
= −2~

∑
n

Szn = −2~Sz . (B.5)

The integral in the RHS of Eq. (B.4) can be split into two parts, called χ2 and χ3, respectively.

Thus, one is left with

χ(q, ω) =
−1
~ω−
(2⟨Sz⟩ + χ2 + χ3) (B.6)

where

χ2(q, ω) =
i

~

∫ ∞
0

dt ⟨[C−q (t) , S+−q]⟩ e−iω−t, (B.7)
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χ3(q, ω) =
i

~

∫ ∞
0

dt ⟨
[
[S−q (t) ,HZ], S

+
−q
]
⟩ e−iω−t. (B.8)

Using the equation of motion for the operator C−q (t), in a similar way as it is done for S
−
q (t) in

Eq. (B.2), one obtains

χ2(q, ω) =
1

~ω−

(
⟨[C−q , S+−q]⟩+

1
i~

∫ ∞
0

dt ⟨
[
[C−q ,H] , S

+
−q
]
⟩ e−iω−t

)
=

1
~ω−

(
⟨[C−q , S+−q]⟩+

1
i~

∫ ∞
0

dt ⟨
[
C−q , [H,S

+
−q]
]
⟩ e−iω−t

)
(B.9)

where the relation
[
[C−q (t) ,H] , S

+
−q
]
=
[
C−q (t) , [H,S

+
−q]
]
−
[
[C−q (t) , S

+
−q] ,H

]
has been used and

it is taken into account that ⟨[X,H]⟩ vanishes for any operator X (in particular, it is equal to

⟨0|XH −HX|0⟩ = (E0 − E0)⟨0|X|0⟩ = 0 at T = 0).

The second term in the RHS of Eq. (B.9) can be split into two parts, where the second part is

nothing but χ2 (up to a constant factor) since [H,S+−q] = C
+
q − 2µBBextS+−q. Thus, one obtains

χ2=
1

~ω−

(
⟨[C−q , S+−q]⟩+

1
i~

{∫ ∞
0

dt ⟨[C−q (t) , C+q ] e−iω−t − 2µBBext
∫ ∞
0

dt ⟨[C−q (t) , S+q ]⟩ e−iω−t
})

(B.10)

which finally yields

χ2 =
1

~ω−

(
⟨C−q (t) , S+−q⟩ − χC + 2µBBextχ2

)
, (B.11)

if the definition of χ2 and

χC =
i

~

∫ ∞
0

dt ⟨[C−q (t) , C+q ]⟩ e−iω−t (B.12)

are used. The latter is the correlation function for C−q = [S
−
q ,Hkin] +A

−
q where A

−
q = [S

−
q ,HSO]

is the SO torque operator generalised to arbitrary q. The relation (B.11) is a linear equation in

terms of χ2. Solving this linear equation for χ2 leads to

χ2 =
⟨[A−q , S+−q]⟩ − χC(q, ω)

~(ω− − bext)
(B.13)

where bext =
2µBBext

~ .

The next task is evaluation of χ3 defined by Eq. (B.8). Solving this integral gives rise to

χ3 = −~ bext χ(q, ω). (B.14)
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Substituting this relation into Eq. (B.6) results in the following equation linear in χ(q, ω)

χ(q, ω) =
−2⟨Sz⟩
~ω−

− χ2
~ω−
+
bext
ω−

χ(q, ω) (B.15)

where χ2 is given by Eq. (B.13). After solving Eq. (B.15) for χ(q, ω) one ends up with the

formula

χ(q, ω) =
−2⟨Sz⟩
ω− − bext

+
χ2

~(ω− − bext)

=
−2⟨Sz⟩
ω − bext

+
1

~2(ω − bext)2
{
χC(q, ω)− ⟨[C−q , S+−q]⟩

}
(B.16)

that is exactly Eq. (A.6) in Ref. [61]. In Eq. (B.16) the infinitesimally small η is dropped in ω−

which is correct for complex spin-wave frequencies ω = ω1 − iω2 with a finite imaginary part

ω2. In this way, one finds the expression (B.16) for the dynamical susceptibility whose poles,

equal to the spin wave energies ω = ω1 − iω2 (complex if damping is present), can then be

determined as shown for q = 0 in Sec. 2.3. In the latter case, the formula (B.16) reduces to

Eq. (2.19) where χA(ω) replaces χC(q, ω) since the relation [S−q ,Hkin] = 0, and consequently,

C−q = A
−
q = A

− = [S−,HSO] hold for q = 0.
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Appendix C

Slater-Koster formulas for hopping

integrals

As discussed in section 2.4.5 the expressions for the hopping integrals (interatomic matrix ele-

ments of the Hamiltonian) in terms of the two-centre SK parameters were formulated by Slater

and Koster for s, p, d orbitals back in 1954 [122]. A method to obtain such expressions for arbit-

rary orbital numbers L,L′ is reported in Ref. [124]. The general formula (2.79) for the hopping

integral, for orbitals µ and ν centred at two atoms connected by the vector R, includes the

products of the two-centre SK parameters T σLL′m′ and the function F
LL′m′
µν (θR, ϕR) dependent

on the direction of R. In the following, it is shown, in a few examples, how the angular depend-

ence of the functions F (LL
′m′)

µν (θR, ϕR) can be derived using the definition of the cubic harmonics

and the explicit form of the coordinate transformation ri = Q r′′i .

In particular, one immediately finds from Eq. (2.65) [with (x, y, z) and (x′′, y′′, z′′) superseded

by (xi, yi, zi) and (x′′i , y
′′
i , z
′′
i ), respectively], multiplied by Np/ri = Np/r

′′
i (see Eq. (2.60)), that

pxi = px′′i cos θR cosϕR − py′′i sinϕR + pz′′i sin θR cosϕR , (C.1a)

pyi = px′′i cos θR sinϕR − py′′i cosϕR + pz′′i sin θR sinϕR . (C.1b)

Thus, one obtains

⟨l0px1σ|Hσ2c|l′j′px2σ⟩ = cos2 θR cos2 ϕR ⟨l0px′′1σ|H
σ
2c|l′j′px′′2σ⟩

+ sin2 ϕR ⟨l0py′′1 σ|H
σ
2c|l′j′py′′2 σ⟩

+ sin2 θR cos2 ϕR ⟨l0pz′′1 σ|H
σ
2c|l′j′pz′′2 σ⟩ (C.2)

since other terms, involving pairs of orbitals like px′′1 , py′′2 or py′′1 , pz′′2 , vanish due to symmetry. For
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instance for the first of these orbital pairs the integrand function is proportional to x′′1y
′′
2 = x

′′
1y
′′
1

(as y′′2 = y
′′
1) so that it is antisymmetrical in x

′′
1 (and also in y

′′
1) which implies the integral over

x′′1 vanishes. Note that H
σ
2c = H

σ
2c(ρ

′′
1, z
′′
1 ) remains unchanged if x

′′
1 is replaced with −x′′1. Further,

it can be easily shown that the matrix elements ⟨l0px′′1σ|H2c|l
′j′px′′2σ⟩ and ⟨l0py′′1 σ|H2c|l

′j′py′′2 σ⟩

are equal to each other, each of them is equal to

|C1µ|2 T σ111 + |C−1µ |2 T σ11,−1 =
(
|C1µ|2 + |C−1µ |2

)
T σ111 = 1 · T σppπ = T σppπ (C.3)

if the orbitals px′′i and py′′i (i = 1, 2) are represented in spherical harmonics and the relation

T σ11,−1 = T
σ
111 = T

σ
ppπ (C.4)

is taken into account. The relation ⟨l0pz′′1 σ|H
σ
2c|l′j′pz′′2 σ⟩ = T σppσ also holds. Finally, within the

applied two-centre approximation for the one-electron Hamiltonian (its non-relativistic part,

without HSO) Hσ0 ≈ Hσ2c, one finds

⟨l0px1σ|Hσ0 |l′j′px2σ⟩ =
(
cos2 θR cos2 ϕR + sin2 ϕR

)
Tppπ + sin2 θR cos2 ϕRTppσ

=
(
cos2 ϕR − sin2 θR cos2 ϕR + sin2 ϕR

)
Tppπ + (sin θR cosϕR)

2 Tppσ

= α2x Tppσ +
(
1− α2x

)
Tppπ (C.5)

where the definitions of the directional cosines αx = sin θR cosϕR, αy = sin θR sinϕR, αz =

cos θR of the interatomic vector R are used. In a similar way, one can show that

⟨l0px1σ|Hσ2c|l′j′py2σ⟩ = cos2 θR cosϕR sinϕR ⟨l0px′′1σ|H
σ
2c|l′j′px′′2σ⟩

− cosϕR sinϕR ⟨l0py′′1 σ|H
σ
2c|l′j′py′′2 σ⟩

+ sin2 θR cosϕR sinϕR ⟨l0pz′′1 σ|H
σ
2c|l′j′pz′′2 σ⟩

=
(
1− sin2 θR

)
cosϕR sinϕR T σppπ

− cosϕR sinϕR T σppπ

+ sin2 θR cosϕR sinϕR T σppσ

= αxαy
(
T σppσ − T σppπ

)
. (C.6)

It is also possible to use this method for matrix elements between d orbitals though the
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derivation is more cumbersome. For instance, one can show that

dyz =
Nd
r2
yz =

Nd
r′′2
[
(z′′2 − x′′2) cos θR sin θR sinϕR − x′′y′′ sin θR cosϕR

+ z′′x′′(cos2 θR − sin2 θR) sinϕR + y′′z′′ cos θR cosϕR
]

=
√
3 d′′3z2−r2 αyαz − d

′′
x2−y2 αyαz − d

′′
xyαx

− d′′zx
(
cos2 θR − sin2 θR

)
sinϕR + d′′yz cos θR cosϕR (C.7)

where the definition of cubic harmonics in the rotated frames x′′i y
′′
i z
′′
i is used. These harmonics

are denoted as d′′µ for short (with index i = 1, 2 skipped and
′′ shifted to superscript). With such

representation of dyz and using the symmetry properties of the orbitals d′′µ under the translations:

x′′1 → −x′′1 and y′′1 → −y′′1 , one can find the following expression

⟨l0dyzσ|Hσ0 |l′j′dyzσ⟩ = 3α2yα2z T σddσ +
(
α2yα

2
z + αx

)
T σddδ

+
[ (
cos2 θR − sin2 θR

)2
sin2 ϕR + cos2 θR cos2 ϕR

]
T σddπ

= 3α2yα
2
z T
σ
ddσ +

(
α2y + α

2
z − 4α2yα2z

)
T σddπ +

(
α2x + α

2
yα
2
z

)
T σddδ. (C.8)

These three derived exemplary formulas for the matrix elements of Hamiltonian coincide with

the ones given in Ref. [122]. Thus, here it has been shown how the well-known hopping integrals

can be derived in a direct way based on the transformation of coordinates and the explicit forms

of orbitals given by cubic harmonics.
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Appendix D

Mirror symmetry in spin space

In the following it is shown how to find the operator Rs which acts, in the spin space, on

spin operators Sx, Sy, Sz of an electron spin states in the same way as the reflection operator

R : (x, y, z) → (x, y,−z) acts in the configurational space. Spin S = (Sx, Sy, Sz) is an angular

momentum which has to transform as a pseudovector under symmetry operations. Therefore,

the quantum operator S = (Sx, Sy, Sz) should be transformed to (−Sx, −Sy, Sz) under the

unitary operator Rs (in the spin space) corresponding to the operator R of the mirror symmetry

(in the configurational space). Thus, in particular one obtains

RsSxR
−1
s = −Sx , (D.1a)

RsSyR
−1
s = −Sy , (D.1b)

RsSzR
−1
s = Sz . (D.1c)

By acting with Rs on the following two equations

Sz| ↑⟩ =
1
2
| ↑⟩ , (D.2a)

Sz| ↓⟩ = −
1
2
| ↓⟩ , (D.2b)

which define the spin-up and spin-down basis states, and subsequently using Eq. (D.1b), i.e.

RsSz = SzRs, one finds

Sz(Rs| ↑⟩) =
1
2
(Rs| ↑⟩) , (D.3a)

Sz(Rs| ↓⟩) = −
1
2
(Rs| ↓⟩) . (D.3b)
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Thus the states Rs| ↑⟩ and Rs| ↓⟩ are also eigenstates of Sz which implies that

Rs| ↑⟩ = C↑| ↑⟩ , (D.4a)

Rs| ↓⟩ = C↓| ↓⟩ (D.4b)

where C↑ and C↓ are two constants. With Sx = 12σx defined with the Pauli matrix σx one finds

Sx| ↓⟩ =
1
2
| ↑⟩ . (D.5)

Acting on Eq. (D.4b) with Sx and using, consecutively, Eqs. (D.1), (D.4b) and (D.5) one readily

finds C↑ + C↓ = 0. This gives rise to

Rs| ↑⟩ = C| ↑⟩ , (D.6a)

Rs| ↓⟩ = −C| ↓⟩ . (D.6b)

From Eq. (D.6a) one obtains

⟨↑ |R†sRs| ↑⟩ = CC∗⟨↑ | ↑⟩ (D.7)

which leads to |C| = 1 because Rs is an unitary operator (R−1R† = 1). Thus, relations (D.6a)

and (D.6b) with |C| = 1 define Rs up to an phase factor C = eiφ. Its phase cannot be determined

uniquely since for any ϕ the operator Rs defined in Eq. (D.6a) and (D.6b) satisfies the trans-

formation rules of the spin operators, Eqs. (D.1a) and (D.1b), which were the starting point,

as the only condition imposed on Rs. In fact we can choose C = eiφ arbitrarily, e.g., C = 1 so

that Rs| ↑⟩ = | ↑⟩ and Rs| ↓⟩ = −| ↓⟩. This defines the action of Rs on the spin basis states and

means that Rs = 2Sz = σz as it was assumed in Sec 4.2. Accordingly, the total mirror symmetry

operator, acting in both configurational and spin spaces has the form Q = RsR = σzR.
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G. Faini, Phys. Rev. B 80, 193204 (2009).

[175] I. M. Miron, P.-J. Zermatten, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, Phys. Rev.

Lett. 102, 137202 (2009).

[176] O. Boulle, J. Kimling, P. Warnicke, M. Kläui, U. Rüdiger, G. Malinowski, H.J.M. Swagten,
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