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I INTRODUCTION 

The purpose of statistics, like that of geometry or phy-

sics, is to describe certain real phenomena. The objects of 

the real world can never be described in such a complete and 

exact way that they could form the basis of an exact theory. 

We have to replace them by some Idealized objects, defined ex-

plicitly or implicitly by a system of axibms. For instance, in 

geometry we define the basic notions "point," "straight line,"" 

and "plane" implicitly by a system of axioms. They take the 

place of empirical points, straight lines and planes which are 

not capable of exact definition. In order to apply the theory 

to real phenomena, we need some rules for establishing the cor-

respondence between the idealized objects of the theory and 

those of the real world. These rules will always be somewhat 

vague and can never form a part of the theory Itself. 

The purpose of statistics Is to describe certain aspects 

of mass phenomena and repetitive events. The fundamental 

notion used is that of "probability." In the theory it is de-

fined either explicitly or implicitly by a system of axioms. 

For instance, Mises1^ defines the probability of an event aa 

the limit of the relative frequency of this event in an infin-

ite sequence of trials satisfying certain conditions. This is 

an explicit definition of probability, Kolmogoroff2^ defines 

probability as a set function which satisfies a certain system 

1) See references 10 and 11 

2) See reference 9 
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of axioms. These idealized mathematical definitions are re-

lated to the applications of the theory by translating the 

statement "the event E has the probability p" into the state-

ment "the relative frequency of the event E in a long sequence 

of trials is approximately equal to p." This translation of a 

theoretical statement into an empirical statement is necessar-

ily somewhat vague, for we have said nothing about the meanings 

of the words "long" or "approximately." But such vagueness is 

always associated with the application of theory to real phen-

omena. 

It should be remarked that instead of the above translation 

of the word "probability" it is satisfactory to use the follow-

ing somewhat simpler one: "The event E has a probability near 

to one" is translated into " it is practically certain that the 

event E will occur in a single trial." In fact, if an event 

E has the probability p then, according to a theorem of Ber-

noulli, the probability that the relative frequency of E in a 

sequence of trials will be in a small neighborhood of p is 

arbitrarily near to 1 for a sufficiently long sequence of 

trials. I f we translate the expression "probability nearly 1" 

into "practical certainty," we obtain the statement " i t is 

practically certain that the relative frequency of E in a long 

sequence of trials will be in a small neighborhood of p . " 

In statistics we always construct some probability schemes 

which we believe to be adequate to describe certain real phen-

omena. For instance, we describe the situation concerning the 

possible outcomes in tossing a coin by saying that the probabi-

lity of obtaining a head in one toss is 1/2 , for in a long se-
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quence of trials we would expect to have about half as many 

heads as total tosses. Or, If we measure the length of a bar 

by some instrument, we sometimes assume that the result is a 

normally distributed random variable. The notions of a random 

variable and a distribution function are defined as follows: 

if F(x) is a function expressing the probability that a real 

variable X < x, we say that X is a random variable and that 

F(x) is the probability distribution of X. Then-, if F(x) is 

given by the formula 

we say that X is normally distributed. The quantities o and p. 

are real parameters. Thus, if in measuring the length of a bar 

by some instrument we assume that the outcome of the measure-

ment is a normally distributed random variable, we may express 

the probability that a measurement will be less than a given 

value x by ( 1 ) . 

I f X]_, X 2 , X 3 , X n represent n random variables and 

x l» * 2 » • • • » *n any s e t real numbers, we use the symbol 

F(xi, x 2 , . . . , x n ) to express the probability of the composite 

event that Xi < x l f X 2 < x 2 , X n < x n simultaneously. This 

function will be called the Joint probability distribution of 

the n random variables. We shall say that n random variables 

are Independently distributed if the function F(x 1 # x 2 f . . . , x n ) 

is the product of n functions such that only x 1 is involved in 

the first, only x 2 in the second, and so on. That is 
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For example, If n measurements Xlt X 2 , . . . , X n of a bar are in-

dependently and normally distributed with the same normal dis-

tribution, we would obtain 

I f we measure the length of a bar n times by seme instru-

ment, we sometimes find it appropriate to adopt the probability 

scheme that the results of the n measurements have a joint pro-

bability distribution given by ( 2 ) . 

One of the fundamental problems of statistical inference 

is that of testing statistical hypotheses. Thd most general 

form of a statistical hypothesis we have to deal with in 

statistical theory may be expressed as follows. Let X i , . . . , X n 

be a finite set of random variables and let F ^ , . . . ^ ) be its 

Joint probability distribution function. Then the statistical 

hypothesis Is the statement that the unknown distribution func-

tion F ( x 1 , . . . , x n ) is an element of a certain class u> of distri-

bution functions. For instance, if X ^ . . ^ are successive 

measurements on the length of a bar, we may consider the hypo-

thesis that X ^ . . . ^ are independently distributed with the 

same normal distribution. In this case co is a two parameter 

family given by (2 ) , o being any positive number and p. any real 

number. 
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I f we consider the hypothesis that X ^ , . . . , ^ are normally, 

independently distributed with zero means (n=0) and unit vari-

ances (a 2 =l ) , then w consists of a single element. When the 

class w consists of a single element, we shall say that the 

hypothesis we are considering is a simple hypothesis. Other-

wise, it will be called composite. 

The question of testing a given hypothesis may be formu-

lated in the following manner. We should like to know, on the 

basis of n observations x ^ , . . . , x n where x a is the observed vak» 

of the random variable X a ( a = l , . . . , n ) , whether to adcept or re-

ject the hypothesis H u that the unknown distribution function 

P ( x 1 , . . . , x n ) belongs to the class w. The set of n observations 

can be represented by a point E of n-dimensional Cartesian 

space, called the sample space. To test the hypothesis H u on 

the basis of n observations we must choose a subset R of the 

sample space and then reject the hypothesis Hw if the sample 

point E falls within R. Otherwise, we maintain the hypothesis. 

I t is evident that the fundamental problem here is the choice 

of the subset R, which we shall call the critical region. The 

solution of this problem depends, to sane extent, upon any 

a priori knowledge we may have about the unknown distribution 

function P ( x 1 # . . . , x n ) . One of tlje most important and most fre-

quent a priori assumptions Is that the random variables X j , . . . ^ 

are independently distributed, each having the same distribu-

tion. Thus, we have the assumption that P is of the form 

Such a priori knowledge about our unknown distribution 

function can always be expressed by saying that the function 
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F f x i , . . . , ^ ) Is an element of a certain class XL.of distribu-

tion functions. The class w which is being considered is then 

always a subclass o f _ C L . We shall see that the choice of the 

critical region R for testing the hypothesis Hw will depend 

upon the a priori knowledge 

It is now seen that the problem of testing hypotheses can 

be formulated as follows: Taking for granted that the unknown 

distribution function F is an element of a class -CI—, we wish 

to test the hypothesis that F belongs to a certain subclass to 

of-TL-. The problem to be solved Is the question of how the 

critical region in the sample space should be chosen. 

For instance,_Cl_may be defined by the statement that 

X i , . . . , ^ are Independently and normally distributed each of 

them having the same distribution, and u> may be the subclass of 

-TL_ defined by the additional restriction that the mean values 

of X 1 , . . . , X n are zero. In this case, according to certain 

standards we will discuss later, the adequate critical region 

is given by the inequality 

where 

and c is a certain constant. I f , however,XL Is a much broader 

class defined by the statement that X i , . . . , X n are independently 

distributed each having the same distribution, the above criti-

cal region for testing Hw is not adequate, and some other criti-

cal region has to be chosen. 
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Before we proceed farther it might be well for ue to liat 

a few of the mathematical terms used together with their 

meanings in statistics. We can do this in tabular form. 

MATHEMATICAL TERMINOLOGY STATISTICAL INTERPRETATION 

n space, E n (sample space) Possible outcome of n obser-
vations . 

_f\_, class of functions on E n Class of possible probability 
distributions. 

to, subclass of jQ~ The statistical hypothesis. 
The true distribution is a 
member of to. 

R, (critical region), a Criterion for rejecting the 
subset of E n hypothesis that the true dis-

tribution is a member of to. 

Association of R with_Q_ Choice of the critical region 

and <»>. , for testing the hypothesis. 

The problem of testing hypotheses is only one of the prob-

lems of statistical inference. Another is the problem of es-

timation* Given that the unknown distribution function P be-

longs to a certain class of distribution functions, how can 

we choose a function <jP(E) defined for all points E of E n such 

that the value of l s always an element of JC1_ and can be 

considered a "good" estimate of the unknown distribution func-

tion PT We may say that 9>(E) is a "good statistical estimate" 

of P if the probability is as large as possible that <J»(E) is 

in a small neighborhood of P. We will formulate this principle 

more precisely In chapter I I I . 

I f , for instance, _CL_is given by the statement that 

X ^ , . . * , ^ are independently and normally distributed with the 

same means and unit variances, then_£l_is a one parameter 

family of distribution functions and an element of-£L.is com-

pletely specified by specifying the value of the unknown mean i*. 
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Hence, to estimate the unknown distribution function P is the 

same as to estimate the unknown mean p,. In this case the pro-

blem of estimation is the problem of finding a real function 

9"{E) defined for all points E of the sample space such that 

9>{E) can be considered as a statistical estimate of the un-

known mean p,. The classical solution of this problem in this 

particular case is given by 

The two types of problems of statistical inference men-

3} 

tloned so far do not cover all possible problems.' The fol-

lowing problem, for example, is neither a problem of testing a 

hypothesis nor one of estimationt Consider three subolassea 

" 2 ' "3 o f t h e c lass_n_of distribution functions, and de-

note by H ^ the hypothesis that the unknown distribution P is 

an element of The problem considered is to decide on the 

basis of the n observations which of the three hypotheses 

should be accepted (assume that the sum of the three subclasses 

is equal to _TL_). Such a situation may arise, for 

instance, in the case of a manufacturer who has to keep the 

quality of his product between two limits, and wants to test, 

by sampling, whether the quality is actually between these 

limits, below the lower limit, or above the upper limit. (As-

sume that the quality is measurable and can be represented by a 

real number.) 

3) See in this connection 16, pp 299-300. 
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The reasons why sucl? a "trilemma" is a problem different 

from testing a hypothesis or estimation can only be indicated 

here. It will be seen that there are many approaches to each 

problem of inference, and that the theory provides means of 

choosing among them by deciding that certain approaches are 

"better" than certain others. Now, one might suggest the re-

duction of the above "trilemma" to a problem of, say, estima-

tion by estimating the unknown distribution function P and ac-

cepting that hypothesis which corresponds to the' subclass in 

which the estimate of F is contained. This would be one ans-

wer to the trilemma, but by no means the "best" answer accord-

ing to the standards developed. 

The most general formulation of the problem of statisti-

cal Inference Is this; Let S be a system of subclasses of the 

class-TX-of distribution functions. For each element s of S, 

consider the hypothesis Ha which states that the unknown dis-

trlbutlon F Is an element of s; denote by Hg the system of all 

stltfh hypotheses; the problem Is to decide, by means of a samplq 

which element of Ho should be accepted. 

The problems enumerated before are special cases of this 

general problem. I f S consists of two elements only, one being 

a subclass w of i L and the other its complement in -A. , the 

problem is the same as that of testing the hypothesis that the 

true distribution function F is an element of w. I f 8 is the 

system of all elements of_Q_, we have the problem of estima-

tion. I f S consists of three classes u^, u^, <oj With the rum 

_n _ , v«e have the trilemma. 
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I I THE NEYMAN-PEARSON THEORY OF TESTING 
A STATISTICAL HYPOTHESIS 

The principles of statistical inference as developed in the 

last two decades by R.A.Fisher, Neyman end Pearson deal with the 

problem of testing a hypothesis and with the problem of estima-

tion but not with the general problem of statistical inference 

as it has been formulated in the foregoing pages. A further re-

striction in these theories is that they deal only with the case 

thatuCL-is a k-parameter family of distribution functions, i . e . , 

that the true but unknown distribution function F Is known to be 

an element of a k-parameter family of functions 

where 9^,... ,©^- are parameters. In this case the specification 

of the values of the parameters specifies completely the distri-

bution function F. 

A set of parameter values can be represented by a point In 

a k-dimensional Euclidean space called a parameter space. Be-

cause of the one-to-one correspondence between elements of _£\_ 

and points of the parameter space we can identify. fl-wlth the 

parameter space. I f for example, X ^ . . . , ) ^ are normally and in-

dependently distributed, each having the same distribution 

(equation(2)), then the parameter space Is a half plane where 

©1 = n = mean value, and 0 * ©2 = a = standard deviation. 

A hypothesis concerning F is expressed by the statement 

that the true parameter point lies in a certain subset w of the 

parameter space-fi_. As we have done before, we shall call the 

hypothesis a simple one if w consists of a single point. 

4) See, in this connection, references 12,13 and 14 

10 
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Otherwise, it is called a composite hypothesis. In the above 

example the statement that ti = 0, a = 1 is a simple hypothesis, 

while merely stating that p. = 0 without specifying a is a com-

posite hypothesis. 

For the sake of simplicity we shall confine ourselves to 

the case of a single unknown parameter since this suffices to 

illustrate the basic ideas of the theories of Fisher, Neyman 

and Pearson. First, we shall deal with the Neyman-Pearson 

theory of testing a statistical hypothesis. 

We assume that the unknown distribution function is known 

to be an element of a one-parameter family 

and we wish to test the hypothesis 

A simple example for this case Is the following: Let it 

be known that X ^ . . . , ^ are Independently and normally distri-

buted with the same mean and unit variances, i . e . , _jC1_ is the 

one-parameter family of distributions 

and assume that we wish to test the hypothesis that © = 0 . 

According to the classical theory we reject this hypothesis if 

and only if 

where o denotes a certain constant. The value of c la chosen 

in such a way that the probability of|xj>c under the assumption 

that the hypothesis 9 = 0 is true, is so small that we are 

willing to reject the hypothesis. I f we want this probability 

to be 5 percent, then 
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I f , in the same example, we have made only two observa-

tions x- ,̂ Xg, so that the sample space is the Euclidian plane, 

the critical region consists of all points for which 

and all points for which I f the point 

representing the observations falls within the critical region 

( i . e . , i f the arithmetic mean of the two observations is larger 

than or smaller than we shall reject the hypothesis 

that the mean value is zero. 

But the classical theory does not suggest why this critical 

region should be used. I t merely proves that the probability 

for the observation point to fall within the critical region 

is five percent when the Initial hypothesis Is fulfilled. But 

there are infinitely many regions which enjoy the same property, 

and the classical theory does not give any reasons why Just the 

one region mentioned should be chosen. 

In order to arrive at a distinction between various criti-

cal regions, Neyman and Pearson advance the following considera-

tions. In making a statement of acceptance or rejection of a 
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hypothesis, we may commit two types of errors; rejecting the 

hypothesis although It Is true (error of type , or failing 

to reject it although it is false (error of type I I ) . I f the 

hypothesis consists in saying that the unknown parameter 0 has 

a given value 0 O , the situation may be summarized as follows: 

Truth or Falsehood of Statement 
Concerning the Hypothesis 9 - e o 

By size of the critical region we mean the probability that the 

point representing the observations will fall within the criti-

cal region, where the probability in question is calculated 

under the assumption that the hypothesis Is true. (Thus, In 

the example used before, the size of the critical region was 

five percent.) This may be expressed by saying that the size 

of the critical region is equal to the probability of commit-

ting a type I error. 

The general idea underlying the theory of Neyman and Pear-

son is to minimize the probability of type I I errors while keep-

ing the probability of type I errors constant. 

I f R is any region in the sample space, and E la the point 

of the sample space which represents the observations, we shall 

denote by PfRle^^) the probability of E lying in R calculated 
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under the assumption that 9^ is the true value of the unknown 

parameter 9, that is to say, P(Rjex) is equal to the Stieltjes 

integral / R d F U ^ . . . , x n , 9 ^ over the region R. Thus, i f w e 

make the hypothesis 9 = 9 0 and choose R as a critical region 

for this hypothesis, the size of the critical region will be 

given by the expression P (R|9 q ) . I f the hypothesis is wrong 

and the true value of 9 is then the probability of avoiding 

an error of type I I is P f R ^ ) . 

The expression P(R|9i) , i . e . , one minus the probability of 

an error of type I I , Is called the power of the crltloal region 

R wlth respect to the alternative hypothesis 9 = Q 3 . 

The expression P(Rf9) is a function of 9. I t may be plot-

ted as a curve, the ordinate of which is equal to the size of R 

i f the abscissa is 9 0 , and equal to the power of R with respect 

to the alternative 9 * 9^ if the abscissa is any value 9^ / 9 0 . 

This curve is called the power curve of the region R. 

In the former example, in which the distribution was nor-

mal with unknown mean and unit variance, and the critioal re-

gion chosen was |x| > (where x Is the arithmetic mean of 
sir 

the observations x-J, , x 2 , . . •^XJJ) , the power curve can easily be 

calculated and has the form shown below: 
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In order to compare the test with other possible 

tests, we have to compare the above power curve with the power 

curves of other critical regions which have the same size, five 

percent. 

In general, if we have two critical regions R and R ' , both 

of-which have the desired size, and if the power curve of R' is 

above that of R for the value 9 = 9-j_, then the critical region 

R' 18 better than R for testing the hypothesis if the true value 

of © happens to be 9 ^ For the probability of committing a type 

I error Is the same whether R or R' is used, while the probabi-

lity of committing a type II error when using R' is smaller thai 

when using R. If the power curve of R' Is above that of R for 

each 9 (except 9 0 for which the two curves coincide by assump-

tion), then R1 will be called uniformly more powerful than R. 

The test using the critical region R is called non-admlsslble 

because its use is, under all circumstances, less favorable than 

the use of R ' . 

In order to make this clear, let us assume that a large 

number of samples is drawn, each of which consists of N indivi-

dual observations. Let M be the number of such samples and let 

two statisticians, whom we will call S and S ' , test the same 

hypothesis, using each of the M samples. Assume that S uses the 

critical region R for testing while S' bases his tests on the 

region R ' . S and 3 ' will each obtain M answers to the question 

as to whether the null hypothesis (the hypothesis to be tested) 

should be rejected. Some of these answers will be right, others 

will be wrong. Let us cbmpare the records of S and S ' . We have 

to distinguish between the case that the null hypothesis Is true 

and the case that it is false. a)ln the first case, the answers 
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obtained by each statistician may either be that the hypothesis 

is to be accepted - these answers are right; or that it should 

be rejected - these answers are errors of type I . The probabi-

lity of committing a type I error by testing the null hypothesis 

from a sample drawn at random is equal to the size of the criti-

cal region used in testing. I f M is large, It is practically 

certain that the relative frequency of type I errors will be ap-

proximately equal to their probability, i . e . , to the size of the 

critical region. Since R and R' have, by assumption, equal siss, 

each of the two statisticians will commit approximately the 

same number of errors. b)lf the null hypothesis is false, some 

of the M answers obtained by each statistician will correctly 

reject It, while others will accept it , thus committing errors 

of type I I . I f K Is large, the relative frequency of correct 

answers will be approximately equal to the power of the test 

used which we have pointed out is the probability of avoiding a 

type I I error. By assumption, the power of R' is greater than 

that of R, regardless of what the true value of 0 Is , provided 

only that 9 is different from 0 O . Therefore, the relative fre-

quency of wrong answers obtained by S will tend to be greater 

than the relative frequency of wrong answers obtained by S 1 . 

Thus, i f the null hypothesis is false (no matter what the true 

value of 9 Is ) , it is practically certain that S will make more 

false statements; while If the null hypothesis is true, S and 

S1 will commit an approximately equal number of false statements. 

The method used by S ' , i . e . , the application of the critical re-

gion R 1 , is therefore superior ,±c the method used by S, i s . , the 

application of the critical region R. 
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These considerations decide the choice between two criti-

cal regions of equal size I f one of them is uniformly more 

powerful than the other, i . e . , if the power curve of the former 

» is above that of the latter for all values of 0 except 0 O (for 

which the power curves coincide). On the other hand, If the 

power curve of R' is above that of R for some values of 0, but 

below It for other values of 0, then we cannot choose one of 

the two regions without introducing further principles on which 

to base the choice. 

I f , for all values of 0, the power curve of a region R la 

never below that of any other region R' of equal size, then R 

« 

Is called a uniformly most powerful region, and the test cor-

responding to R a uniformly most powerful test. 

The first principle for selecting a test is this ? whenever 

we can find _a uniformly most powerful test, we shall prefer It 

to all other tests using regions of the same size. Unfortun-

ately, uniformly most powerful tests do not exist in most cases. 

In the example which we have used on page 11 let us consid-

er the region R» determined by the inequality x > . It rn~ 

can easily be shown that R' (like the region R considered be-

fore) has the size .05 . The power curves of R and Rf are shown 

belows 
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We can see that for all © > 0, R' Is more powerful than R, 

and vice versa for © <0. In such cases further principles have 

to be formulated on which the choice should be based. It Is 

clear that the choice we make will depend on our a priori de-

gree of belief in the truth of the different possible values of 

©. For instance, i f we know a priori that © cannot be negative, 

then we shall prefer R! 

Moreover, it can be shown that R» is uniformly most power-

ful if the parameter space is restricted to non-negative values 

of @. I f negative and positive values of © are considered a 

priori as equally possible we will most likely prefer R to R ' . 

This example shows also that the choice of the critical 

region depends essentially on_n_. If«fi- consists of all non-

negative values of © then the region R' is a uniformly most 

powerful test. If_a_consists of all non-positive values ©, then 

the region R ' ' given by x ^ " 1 ' 6 4 . is a uniformly best region. 
/"n" 

Finally, lf_Q_consists of all real values ©, then the use of the 

region R seems to be more reasonable than that of R' or R f » . 

Since uniformly most powerful regions rarely exist, Neyman 

and Pearson introduced a further principle on which the choice 

of the critical region should be based, namely, the principle 

of unbiasedness. A test is called unbiased if the power funo-

tion of the test has a relative minimvon at the value © = ©0 

where ©Q is the hypothesis to be tested. 

Some rationalization of this principle can be given: Sup-

pose a test Is biased, then for some value in the neighbor-

hood of ©Q, the power of the test is less than the size of the 

region. But this means that the probability of rejecting the 

hypothesis © = ©0 is larger if ©Q is true than if ©i is true, 
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which Is not a desirable situation. 

In general, an infinity of unbiased tests exist, hence we 

need a further principle in order to select a proper test from 

among them. We define as a uniformly most powerful unbiased 

test one which is at least as powerful or more powerful, with 

respect to all alternate hypotheses, than any other unbiased 

region of equal size. I f a uniformly most powerful unbiased 

test exists, and if we accept the principle of unbiasedness, 

then it is obvious that it is the most advantageous test to 

use. Neyman and Pearson called a critical region corresponding 

to a uniformly most powerful unbiased test a crltloal region of 

type Ai. 

Referring to the example previously considered, the criti-

cal region given by |x| > c is a region of type A^ for testing 

the hypothesis in question. Another example of a region of 

type A1 is the following: Let X i , . . . , X n be independently and 

normally distributed with zero means and a common variance. 

Then, for testing the hypothesis that the common variance is 

equal to o Q
2 , the critical region consisting of all points of 

the sample space which satisfy at least one of the inequalities 

is a critical region of type ^ if the constants and Cg are 

properly chosen. 

The region of type A^ exists in an important, but very re-

stricted, class of cases; there are many instances in which It 

does not exist. Therefore, Neyman and Pearson have introduced 

a third type of region, known as a region of type A. The re-

gion R is said to be of type A IX its power function P(w/e) is 
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such that 

and 

for all regions R' which satisfy 1) and have the same size as R. 

The first condition restricts the region to be unbiased. The 

second requires the power function of a region of type A to have 

a greater curvature than that of any other unbiased region of 

the same size. To put it crudely, it means that the region is 

most powerful in the neighborhood of 9 Q . 

A critical region of type A exists under very weak condi-

tions which are fulfilled in most of the practical cases. How-

ever, the objection can be raised against a region of type A 

that we are much more concerned with the behavior of the power 

function for alternatives 9 which are far from 9 0 than for th<»e 

in the neighborhood of 9 0 . In spite of this, as we will see, a 

good Justification of the use of a type A region can be given 

in the light of some recent results. 
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I l l R. A. FISHER'S THEORY OF ESTIMATION5' 

The problem of estimation of the unknown parameter 0 is 

the problem of finding a function t(xj_ , . . . ,7^) of the observa-

tions such that t can be considered in a certain sense as a 

"good" or "best" estimate of 0 . Since the estimate t f x ^ . . . , ^ ) 

is a random variable, we cannot expect that its value should 

coincide with that of the unknown parameter, but we will try to 

choose t ( x 1 , . . . , x n ) in such a way as to make as great as pos-

sible the probability of the value of t lying as near as pos-

sible to the value of the unknown parameter 0. 

This is a somewhat vague formulation of the requirement 

for a "good" or "best" statistical estimate. I t can be made 

precise in different ways, ttarkoff6', for instance, defines 

the notion of a "best" estimate as follows: A statistic t (we 

shall call any function of the observations a statistic) is a 

best estimate of 0 i f 

(1) t is an unbiased estimate of 0 , l . e . , E 0 ( t ) = 0 iden-

tically in 0 where E 0 ( t ) denotes the expected value of 

t under the assumption that 0 is the true value of the 

parameter. 

(2) E Q ( t - e ) 2 * E G ( t ' - e ) 2 identically in 0 for all t» which 

satisfy ( 1 ) . 

This definition of a "best estimate" seems to be a reasonable 

and acceptable one since, in general, the smaller the variance 

of t the greater is the probability that t will lie in a small 

5) See references 3 - 6 

6) See reference 15, p.344 
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neighborhood of 9 . It should be remarked that although (by 

virtue of Tshebisheff>s inequality) smallness of the variance 

Implies that the probability of t lying in a small neighbor-

hood of 9 is small, the converse is not necessarily true. I t 

may happen that a statistic t has a large variance and, never-

theless, the probability of t lying In a small neighborhood of 

9 is high. This circumstance constitutes some argument against 

Markoff's definition. A more serious difficulty is , however, 

the fact that a best estimate In Markoff's sense seldom exists. 

R. A. Fisher's theory of estimation is tjased on the prin-

ciple of the maximum likelihood. It Is assigned that a probabi-

lity density 

exists in the sample space, i . e . , for any measurable subset W of 

the sample space 

In particular, the emulative distribution function is 

given by 

The maximum likelihood estimate O ^ x ^ , . . . , x n ) is defined as 

that value of 9 for which p ( x ^ , . . . ^ , 9 ) becomes a maximum. 

Now assume that X ^ , . . . , ^ are n Independently distributed ran-

dom variables each having the same distribution. This can al-

so be expressed by saying that x 1 , . . . , x n are n independent ob-

servations on the same random variable X. The main result of 

Fisher's theory of estimation can be stated as followss I f 

x^, . . ^ X n are n Independent observations (n - 1 , . . . , ad In f . ) 

on the same random variable X and if the distribution of X 
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satisfies certain conditions (which are not too restrictive and 

in practical application are frequently fulfilled) , then l s  

an efficient estimate. The definition of an efficient estimate 

is given as follows: 

A sequence f t ^ (n = 1 , . . . , ad inf . ) of statistics is 

called an efficient estimate of 9 (the subscript n Indicates 

the number of observations of which tn is a function) if 

(1)the limit distribution of/rT (t - 9) is a 
n 

normal distribution with zero mean and finite 

variance, and 

(2)for any sequence of statistics which satis-

fies (1) 

Vaguely speaking, In large samples the maximum likelihood 

estimate has the smallest variance compared with any other 

statistic which is in the limit normally distributed. The re-

striction of the comparison to statistics which are in the 

limit normally distributed seems to be a serious one. However, 

as recent results show, the maximum likelihood estimate has a 

much stronger property than efficiency, and it can be con-

sidered as a "best" large sample estimate of 9 compared even 

7) 
with statistics which are not normally distributed in the limit. 

7) See reference 20 
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The question of consistency and limit distribution of the 

maximum likelihood estimate has been treated by H. Hotelling,7. 

A complete proof has been given by J. L . Doob, 1. 

As an example, let be n independent observations 

on a normally distributed variate X with unknown mean and unit 

variance. It can easily be verified that the maximum likeli-

hood estimate of © is given by 

Let t^x-L,. . . , Xn ) be the median of the observations x ^ . . . ^ . 

It can be shown that the limit (Jistribution of/rT (t^ - ©) is 

normal with zero mean and varlcuioe £ . Hence, the efficiency 

of the median for estimating © is equal to - = 0 . 6 3 6 6 . . . 
it 
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IV THE THEORY OP CONFIDENCE INTERVALS 

The procedure of estimation, as I formulated it here, is 

also called estimation fry a point. For practical applications 

the estimation by Intervals seems to be much more important. 

That is to say, v*e have to construct two functions of the ob-

servations © (E) and 0 (E), where E denotes a point of the sam-

ple space, and we estimate the parameter to be within the in-

terval J ( E ) = (E) , ( E • In connection with the theory 

of Interval estimation, R. A. Fisher introduced the notion of 

fiducial probability and fiducial limits, while Neyman8) dev-

eloped the theory of interval estimation based on the classical 

theory of probability. I shall give here a brief outline of 

Neyman's theory. 

Before the sample has been drawn the point E Is a random 

variable and, therefore, the values of © (E) and © (E) are also 

random variables. Hence, before the sample has been drawn we 

can speak of the probability that 

even if © Is considered merely as an unknown constant. After 

the sample has been drawn and we have obtained a particular 

sample point, say E 0 , it does not make sense to speak of the 

probability that 

if © is merely an unknown constant. Each tern In the Inequal-

ity (4) is a fixed constant, and the inequality (4) is either 

8) See reference 15 
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right or wrong for those particular constants. It would be pro-

per to talk about the probability of (4) if © itself could be 

considered as a random variable having a certain probability 

distribution, called an a priori probability distribution. In 

this case we understand by the probability that (4) holds the 

conditional probability, called also a posteriori probability, 

under the assumption that E = E 0 occurred. I f an a priori dis-

tribution of © exists and if it is known then, using Bayes'form-

ula, we can easily calculate the a posteriori probability dis-

tribution of ©. However, in practical applications we seldom 

meet cases where the assumption of the existence of an a priori 

probability distribution seems to be Justified; and even in 

those rare cases in which the latter assumption can be made, we 

usually do not know the shape of the a priori probability dis-

tribution and this makes the application of Bayes' theorem Im-

possible. For these reasons the theory of interval estimation 

has to be developed In such a way that its validity should not 

depend on the existence of an a priori probability distribution. 

Hence, in this theory we shall speak only of the probability of 

(3) but never of the probability of (4 ) . 

For any relationship R we will denote by PJR|©J the proba-

bility of R calculated under the assumption that 0 Is the true 

value of the parameter. 

A pair of functions © (E) and © ( E ) is called-a confidence 

Interval of © if 

where a is a fixed constant called the confidence coefficient. 
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The practical meaning and importance of the notion of the 

confidence interval is this: If a large number of samples are 

drawn and If in each case we make the statement that 9 is in-

cluded In the intervalQ9 (E) , 6 (E)^j , then the relative fre-

quency of correct statements will approximately be equal to a. 

In general, there exist infinitely many confidence inter-

vals corresponding to a fixed confidence coefficient a, and we 

have to set up some principle for choosing from among them. It 

is obvious that we want the confidence interval corresponding 

to a fixed confidence coefficient to be as "short" aa possible. 

We have to give a preci8e definition of the notion "shortest" 

confidence interval. 

A confidence interval is called a 

shortest confidence interval corresponding to the confidence 

coefficient a if 

I f a shorteat confidence interval exists, it seems to be the 

most advantageous. Unfortunately, shortest confidence inter-

vala exlat only in quite exceptional caeca. Therefore, we have 

to introduce aome further principlea on which the choice ahould 

be based. Such a principle is the principle of unblasednesa. 

A confidence interval <f(E) 18 called an unbiaaed confidence 

Interval corresponding to the confidence coefficient a if 

and for all values 9land(J*. 
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A confidence interval / ( E ) ia called a shortest unbiased 

confidence Interval corresponding to the confidence coefficient 

a if <f(E) Is an unbiased confidence interval with the confidence 

coefficient a and if for any unbiased confidence interval d"'(E) 

with the same confidence coefficient, we have 

for all values 9' and 9 " . 

I f we accept the principle of unbiasedness, the shortest 

unbiased confidence interval seems to be the most favorable one. 

Even shortest unbiased confidence intervals exist only In a 

restricted, but Important, class of cases. If a shortest un-

biased confidence interval does not exist, Neyman proposes the 

use of a third type of confidence interval, which he calls 

"short unbiased" confidence Interval. An unbiased confidence 

interval cf(E) with the confidence coefficient a is called a 

short unbiased confidence interval if 

for all 9 ' and for all unbiased confidence intervals cf'(E) with 

the confidence coefficient a* 

I have discussed only the case of a single unknown para-

meter. In the case of several unknown parameters some new prob-

lems arise, which do not occur In the case of a single para-

meter. However, I shall not discuss them, since the case of a 

single parameter already provides a good illustration of the 

basic ideas of the theories of Fisher, Neyman and Pearson. 
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V ASYMPTOTICALLY MOST POWERFUL TESTS AND ASYMPTO-
TICALLY SHORTEST CONFIDENCE INTERVALS9) 

As we have seen, If a uniformly most powerful (unbiased) 

test and a shortest (unbiased) confidence interval exist, they 

provide a satisfactory solution of the problem of testing a 

hypothesis end the problem of interval estimation. Unfortuna-

tely, they exist only in a restricted class of cases. As sub-

stitutes for them the use of a critical region of type A and a 

short confidence interval, respectively, have been proposed. 

The appropriateness of the region of type A seems somewhat 

doubtful, since we fere more Interested in the behavior of the 

power function at values of © far from the value ©0 to be tested 

than at 'values of © near to ©G. Similar objections can be 

raised to the use of a short confidence Interval. Recent In-

vestigations show, however, that the situation Is much more 

favorable than appears at first glance. It is shown that the 

difficulties arising because of the non-existence of unifonnly 

most powerful unbiased tests and shortest unbiased confidence 

intervals gradually disappear with increasing size of the 

sample, since so-called asymptotically most powerful unbiased 

tests and asymptotically shortest unbiased confidence intervals 

practically always exist. 

We shall aisume that the observations x i , . . . , x n are n in-

dependent observations on the seme random variable X whose dis-

tribution function involves a single unknown parameter ©. We 

shall also assume that X has a probability density function, 

9) See references 17-20 
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say f ( x , 9 ) . Since in our discussions the number of observa-

tions n will not be kept constant, we shall indicate the dimen-

sion of the sanple space by proper subscripts. For instance, 

a critical region in the n-dimensional sample space will be 

denoted by a capital letter with the subscript n. A point of 

the n-dimensional sample space will be denoted by E n , and a 

confidence interval based on n observations by^ " n (E n ) . 

For any region Un denote by G(Un) the greatest lower 

bound of P{Unl9) . For any pair of regions Un and T n denote by 

L (U n , T n ) the least upper bound of 

A sequence of regions is said to be 

an asymptotically most powerful test of the hypothesis 9 » 9 0 

on the level of significance a if P(W|90) = a and if for any 

sequence { z ^ of regions for which 

A sequence of regions is said to be 

an asymptotically most powerful unbiased test of the hypothesis 

on the level of significance 

and if for any sequence of regions for which 

the inequality holds. 

Let be defined by 

with respect to all regions for which We will 

call the envelope function corresponding to the level 

of significance a. Similarly let Pn (9 ,a) be the least upper 

bound of P(Znl9) with respect to all unbiased critical regions 

Z n which have the size a. We will call P * (9 ,a ) the unbiased 

envelope function corresponding to the level of significance a. 
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The two previously given definitions are equivalent to the 

following twos 

A sequence {wnJ of regions is said to be an asymptotically 

most powerful test of the hypothesis 9 = 9 0 on the level of 

significance a if and 

uniformly in 9. 

A sequence of regions is said to be an asymptotically 

most powerful unbiased test of the hypothesis 9 = 9 0 .on the 

level of significance and 

uniformly In 

Let be the maximum likelihood estimate of 9 

in the n-dimenslonal sample space. That Is to say, denotes 

the value of 9 for which the product becomes a maxi-

mum. Let be the region defined by the inequality 

defined by the inequality 

and let be defined by the Inequality The 

constants are chosen in such a way that 

It has been shown that under certain restrictions on the proba-

bility density f (x , 9 ) the sequence is an asymptotically 

most powerful test of the hypothesis If 9 takes only 

values Similarly is an asymptotically most powerful 

test if 9 takes only values; Finally is an asympto-

tically most powerful unbiased test if 9 can take any real value. 
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There are also other asymptotically most powerful tests. 

Let W^ be the region defined by the inequality 

defined by the inequality 

and defined by the inequality 

where the constants and ' are chosen in such a way that 

Then Is an asymptotically most powerful test of the hypo-

thesis © = eQ i f 6 takes only values a © 0 . Slmllarly ,{W^ls an 

asymptotically most powerful test If 9 takes only values i . 0 o . 

Finally {w n} is an asymptotically most powerful unbiased test 

i f G can take any real value. 

The sequence ^ A n ( 9 0 ) | is an asymptotically most powerful 

unbiased test of the hypothesis 9 - 90, where A N ( 6 Q ) denotes 

the critical region of type A for testing the hypothesis 9 = 

Since there are many asymptotically most powerful tests, 

the question arises whether they are all equally good or 

whether one can be preferred to another. I t is clear that i f 

{wn} and^W^j are two asymptotically most powerful unbiased tests, 

then for sufficiently large n they are equally good. In fact, 

for sufficiently large n both power functions P(Wn|e) and 
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are in a small neighborhood of 

However, they may behave differently in the sense that with in-

creasing n one power function, say P(Wnl©) approaches the en-

velope function faster than P(W£|©) does. In such a case it 

seems preferable to use Wn, especially if the sample is only 

moderately large. I f the sample is so large that both power 

functions are In a small neighborhood of the envelope function, 

then It Is Immaterial whether we use Wn or W^. 

These considerations lead to the Idea that It is preferable 

to use that asymptotically most powerful (unbiased) test 

for which the approach of P(Wnl©) to the envelope function Is, 

in a certain sense, fastest. 

A region Wn is called a most stringent test of size a for 

testing the hypothesis and 

for all Zn for which P ^ l © , , ) = a. The abbreviation l . u . b . 
© 

means "least upper bound with respect to ©." 

I f Wn is for each n a most stringent test, its power func-

tion will approach the envelope function, in a certain sense, 

faster than, any other power function. It seems, therefore, 

desirable to use a most stringent test. A region of type A ia 

not exactly a most atrlngent teat, but probably It ia quite 

near to it (thia queation haa yet to be lnveatlgated), and 

this would provide a very good Justification for the use of a 

type A region. The mathematical difficulties in finding ex-

plicitly a most 3tringent teat are con8iderable. 
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be an interval function and 

denote by the probability that will 

cover under the assumption that ©" is the true value of the 

parameter. 

A sequence of interval functions 

is called an asymptotically shortest confidence interval of 0 

if the following two conditions are fulfilled: 

for all values of 

For any sequence of Interval functions 

i which satisfies 

the least upper bound of 

with respect to ©• and 0" converges to zero 

with 

A sequence of interval functions 

is called an asymptotically shortest unbiased confidence in-

terval of 0 if the following three conditions are fulfilled: 

for all values of 

The least upper bound of with 

respect to 0' and 0n converges to a with 

For any sequence of interval functions 

which satisfies the conditions (a) and (b) , the 

least upper bound of 

with respect to ©'and 0 " , converges to zero with 

Let be a positive function of © such that the proba-

bility that is equal to a 
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constant a under the assumption that 9 Is the true value of the 

parameter. Denote by 9(E n ) the root in 0 of the equation 

and by 9(E n ) the root of 

It has been shown that under 

some restrictions on f (x , 9 ) the interval 

is an asymptotically shortest unbiased confidence interval of 

9 corresponding to the confidence coefficient a. This con-

fidence interval is identical with that given by Wilks 1 0 ) . 

The definition of a shortest confidence interval underlying 

Wilks' investigations is somewhat different from that of Ney-

man's, which has been used here. According to Wilks, a con-

fidence interval * (E ) is called shortest In the average If the 

expectation of the length of <£(E) is a minimum. The main re-

sult obtained by Wilks can be formulated as follows: The con-

fidence interval in question is asymptotically shortest in the 

average compared with all confidence intervals the endpoints of 

which are roots of an equation of the following type: 

In the present investigation such a restriction is not made. 

The confidence interval in consideration is shown to be asymp-

totically shortest compared with any unbiased confidence in-

terval. 

Now let be a positive function of 9 such that the 

probability that Is equal to a constant a tinder 

10) See reference 22 
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the assumption that 6 Is the true value of the parameter. De-

note by 9(E n ) the root in 9 of the equation - 0 = C n (9 ) and 

by 9 (E r ) the root of - 9 = -Cn(9). Consider the Interval 

J*(En) =[j0 (E n ) , 9 ( E n Q . Under some restrictions on the den-

sity f ( x , 9 ) , it can be shown that <^(En) is an asymptotically 

shortest unbiased confidence interval. 

This Is a much stronger property of the maximum likeli-

hood estimate than Its efficiency and gives a justification of 

the use of the maximum likelihood estimate also in the light of 

Neyman's theory of estimation. 
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VI OUTLINE OP A GENERAL THEORY OP STATISTICAL INFERENCE 

The theories of Fisher, Neyman and Pearson are restricted 

in two respects. First, they consider only the problem of 

testing a hypothesis and that of estimation by point or in-

terval. The second restriction is that only the case in which 

_H_is a k-parameter family of distribution functions is in-

vestigated. Both restrictions are serious from the point of 

view of applications. 

There are many Important statistical problems which are 

neither problems of testing a hypothesis, nor problems of es-

timation. We have already given such an example in Section 1. 

As a further illustration, let us consider the following case: 

Let X^, . . . , X p be p independently and normally distributed ran-

dom variables with unit variances and unknown means 9 ^ , . . . 9 p . 

Furthermore, let x n , . . * x j _ n be n independent observations on 

Xj_( 1 = l , 2 , . . . , p ) . Suppose we test the hypothesis that 

Qx = . . . = 0p = 0, and decide to reject this hypothesis on the 

basis of the pn observations x l a ( a = l , 2 , . . . , n ; I = l , 2 , . . . , p ) . 

In such cases we are usually Interested in knowing which mean 

values are not zero, I . e . , we wish to subdivide the set of p 

mean values 9 1 , . . . , 9 p Into two subsets, such that one of them 

contains the mean values which are zero and the other the mean 

values which are not zero. This subdivision has to be done, of 

course, on the basis of the pn observations x^ Q . More pre-

cisely, we have to deal with the following statistical problem: 

There exist 2 p different subsets of the set ( 9 ^ , . . . , 9 p ) . De-

note these subsets by < ^ , . . . , 0 ) ^ , respectively. Let H^ 

37 
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(k = 1 , . . . , 2 P ) be the hypothesis that the mean values contained 

in the set are equal to zero and all other mean values are 

unequal to zero. On the basis of the pn observations we have 

to decide which hypothesis Hk from the set of the 2 P possible 

hypotheses should be accepted. This problem cannot be con-

sidered as a problem of testing a hypothesis nor a problem of 

estimation. 

A similar problem arises if we wish to classify a set of 

regression coefficients into the class of non-zero and the 

class of zero regression coefficients. In problems of regres-

sion we often take it for granted that the regression in ques-

tion is a polynomial and we have to determine on the basis of 

the observations the degree of the polynomial to be fitted. 

That is to say, we have to decide on the basis of the observa-

tions which hypothesis of the sequence of hypotheses 

H 1 ( H 2 , H 3 , . . . , H n , . . . should be accepted. The symbol Hn 

(n = 1 , 2 , . . . ) denotes the hypothesis that the regression Is a 

polynomial of n-th degree. These examples illustrate suffici-

ently the necessity of the extension of the theory of statis-

tical inference to the general case as formulated in Section 1 . 

The case In whlchilcannot be represented as a k-parameter 

family of distribution functions is quite important. As an 

illustration, consider the following problem: Let ( x 1 , y 1 ) , . . . 

( x n , y n ) be n independent pairs of observations on a pair (X,Y) 

of random variables. Suppose we wish to test the hypothesis 

that X and Y are independently distributed and we do not have 

any a priori knowledge about the joint distribution of X and Y. 

In this case.fl. consists of all distribution functions 
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P ( x 1 , y 1 , • • • » x
n » y n ) which can be written in the fonn 

F ( x 1 , y 1 , . . . ) = I (xi ,yi) . . . f < y n ) 

where 3" may be an arbitrary function. The subclass a> consists 

of all distribution functions F ^ , y ^ , . . . , x n , y n ) which can be 

written in the f o m 

F < x 1 , y 1 , . . . , x n , y n > = ^ ( x 1 ) y ( y 1 ) ^ ( x 2 ) t ( y 2 ) . . . (y n ) . 

Hence, SL. cannot be represented as a k-parameter family of 

functions. 

The problem given above as an illustration has been treat-

ed by H. Hotelllng and Margaret Pabst (see reference 8 ) . An-

other problem, where I X is the class of all continuous distri-

butions, has been considered In paper (see reference 21) . We 

shall give here an outline of a theory of statistical inference 

dealing with the following general problem11^: 

Let X ^ , . * . , ^ be a set of n random variables. It is kno"«i 

that the joint probability distribution function F ( x 1 , . . . , x n ) 

of X ^ . - . j X n is an element of a certain class XI- of distribu-

tion functions. Let S be a system of subclasses of JT\_. For 

each element w of S denote by Hw the hypothesis that the true 

distribution F (x ;L , . . . , x n ) of X i , . . . , X n is an element of w. 

Denote by Hg the system of all hypotheses corresponding to all 

elements of S. Let x^ be the observed value of X^ ( I = l , . . . , n ) . 

We have to decide by means of the observed sample point 

E n = (x] > , * . . , x n ) which hypothesis of the system Hg of hypo-

theses should be accepted. That is to sey, for each hypothesis 

Hu we have to determine a region of 

acceptance M^ In the n-

dimensional sample space. The hypothesis H u will be accepted 

11) This theory has been developed in reference 16 
for the case that-fL-Is a k-parameter family 
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If and only if the sample point falls in the region M u . The 

regions M u and Mw» are, of course, disjoint for u / u ' . Fur-

thermore, Z M is equal to the whole sample space. The statls-
0) 

tlcal problem is that of the proper choice of the system Mg of 

the regions of acceptance. 

The choice of the system Mg of regions of acceptance is 

equivalent to the choice of a function w(En) defined over all 

points E n of the sample space. The value of the function 

w(E ) is an element of S determined as follows: Since the ele-
n 

ments of Mo are disjoint and since 2 Mu is equal to the whole 
13 to 

sample space, for each point En"there exists exactly one ele-

ment to of S such that E n is contained in Mw . The value of the 

function to(En) is that element to of S for which E n is an ele-

ment of Mw . Hence, we can replace Ms by the function u(En) 

and for each sample point E n we decide to accept the hypothesis 

HUJ(En). We will call w(En) the statistical decision function. 

Hence, the statistical problem is that of choosing the statis-

tical decision function to(En). 

The choice of w(En) will essentially be affected by the 

relative importance of the different possible errors we may 

commit. We commit an error whenever we accept a hypothesis H^ 

and the true distribution is not an element of to. We introduce 

a weight function for the possible errors. The weight function 

w[*F,to] is a real valued non-negative function defined for all 

elements F of-TL. and all elements to of S, expressing the re-

lative importance of the error committed by accepting Hw when 

F Is true. I f F is an element of to then w[F,to^ = 0, otherwise 

w[>, to] > 0. The question as to how the fom of the weight func-

tion w[F,to] should be chosen is not a mathematical nor statistical 
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one. The statistician who wants to test certain hypotheses 

must first determine the relative importance of all possible 

errors and this will depend on the special purposes of his in-

vestigation. If this is done, we shall In general be able to 

give a more satisfactory answer to the question as to how the 

statistical decision function should be chosen. In many cases, 

especially in statistical questions concerning Industrial pro-

duction, we are able to express the importance of an error in 

monetary terms, that Is, we can express the loss caused by the 

error considered In terms of money. We shall also say that 

w[p,oT| Is the loss caused by accepting H^ when F is true. 

Suppose that we make our decisions according to a statis-

tical decision function w(En) , and that the true distribution 

is the element F ( x i , . . . , x n ) ofjn_. Then the expected value of 

the loss Is obviously given by the StlSltJes integral 

wh^re the integration is to be taken over the whole sample space 

Mn« w® shall call the expression (5) the risk of accepting a 

false hypothesis when P is the true distribution function. 

Since we do not know the true distribution P we shall have to 

study the risk rQp^] as a function of P. We shall call this 

function the risk function. Hence, the risk function is defined 

over all elements F of_n_. The form of the risk function de-

pends on the 

statistical decision function o(E^) and on the 

weight function w Q p , . In order to express this fact, we 

shall denote the risk function associated with the statistical 

decision function w(En) wid the weight function w[p,wjalao by 
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We Introduce the following definitions: 

Definition 1. Denote by « (E n ) end w' (En) two statistical 

decision functions for the same system Hg of hypotheses. We 

shall say that u(En) and u»(En) are equivalent relative to the 

weight w|p,u1 if the risk function 

is Identically equal to the risk function 

i . e . , f o r any element P of XI we have 

Definition 2. Denote by w(En) and w ' (E n ) two statistical 

decision functions for the same system Hg of hypotheses. We 

shall say that w(En) is uniformly better than (En) relative 

to the weight function w{p,w]if w(En) and w ' (E n ) are not equiva-

lent and for each element F of SI we have 

Definition 3. A statistical decision function w(En) is 

said to be admissible relative to the weight function w[f,<d] 

if no uniformly better statistical decision function exists re-

lative to the weight function considered. 

First principle for the choice of the statistical decision 

function. We choose a statistical decision function which is 

admissible relative to the weight function considered. 

There can scarcely be given any argument against the ac-

ceptance of the above principle for the selection of « ( E n ) . 

However, this principle does not lead in general to a unique 

solution. There exist in general many admissible statistical 

decision functions. We need a second principle for the choice 

of a best admissible decision function. 
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the choice between two adnissible decision functions w(En) 

and w ' (E n ) may be affected by the degree of our a priori con-

fidence in the truth of the different elements of _f\ . Suppose, 

for instance, that for a certain element F^ of A we have 

for another element we have 

and for any other element we have 

I f we have much greater a priori confidence In the truth of F^ 

than In that of F 2 , we will probably prefer u(En) to w ' (E n ) . 

On the other hand, if we think a priori that F 2 is more likely 

to be true than F 1 # we may prefer w ' (E n ) to w(En) . 

Suppose we can express our a priori degree of confidence 

by a non-negative additive set function p(ri) defined over a cer-

tain system of subsets T] of Jl , where p(_T\J = 1 . That is to say 

the value of p( 11) expresses the degree of our a priori belief 

that the true distribution is an element of the subset T). In 

such a case it seems very reasonable to consider a decision 

function co*(En) as "best" if the value of the integral 

Jkh — * 

becomes a minimum for co(En) = <o*(En). That is, we consider a 

decision function w^En ) as "best" if it minimizes a certain 

weighted average of the risk function. 

However, it is doubtful that a set function expressing our 

a priori degree of belief can meaningfully be constructed. 

Therefore, we prefer to formulate the notion of a "best" dec-

ision function independently of such considerations. 
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Denote by the least upper bound of 

with respect to F, where F may be any ele-

ment of 

Definition 4. A decision function Is said to be a 

"best" decision function if becomes a mini-

mum for (The weight function is con-

sidered fixed.) 

This definition of a "best" decision function seems to be 

a very reasonable one, although it is not the only possible one. 

One could reasonably define a decision function as "best" if It 

minimizes a certain weighted average of the risk function. 

However, there are certain properties of the "best" decision 

function according to definition 4, which seem to justify the 

use of that definition. One of the most important properties 

of a "best" decision function in the sense of definition 4 is 

that the risk function Is a constant, i . e . , It has the same 

value for all elements F of_£L • This has been shown In the 

case that_n_ is a k-parameter family of distributions, and the 

weight function W£f,c^ and the distribution functions F satisfy 

eertain restrictive conditions. The constancy of the risk func-

tion seems to be very desirable from the point of view of appli-

cations since this property makes it possible to evaluate the 

exact magnitude of the risk associated with the statistical de-

cision. In the theory of confidence intervals the confidence 

coefficient, a, I . e . , the probability that the confidence in-

terval will cover the unknown parameter, is independent of the 

value of the unknown parameter. This fact, which Is considered 

to be of basic importance in the theory of Interval-estimation, 
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is analogous to the constancy of the risk function in our gen-

eral theory since 1-a can be considered in a certain sense as 

the risk associated with the interval estimation. (The quantity 

1-a is exactly equal to the risk In the sense of our definition, 

If the weight function takes only the values 0 and 1 . ) 

Finally, I should like to make some remarks about the re-

lationship of the general theory as outlined here, to the parti-

cular theory of uniformly most powerful and asymptotically most 

powerful tests which were discussed before. In the case of 

testing the simple hypothesis that the unknown distribution 

F ( x 1 , . . . f X ^ is equal to a particular distribution F 0 ( x 1 , . . .Xjj), 

the system S of subsets of./Tu consists only of two elements 

and ug where u>x contains the single element F c and cog is the 

complement of u^ lnj"L . Hence, the decision function w(En) can 

assume merely the values and cog. Let M ^ be the sub*et of 

the sample space consisting of the points B^ for which «(En)=wi 

and let tt^ be the set of points E n for which <i>(En)=U2. The 

set PI^ is the complement of M ^ in the sample space. Obviously 

the set ftfcv, the critical region, in the sense of the Neyman-

Pearson theory. I t is easy to see that if for any a(0<a<l) a 

uniformly best critical region of size a for testing F = F 0 

exists, then for any arbitrary weight function and for any 

adnlsslble (see definition 3) decision function w(E n ) , the set 

M (og ""ill be a uniformly best critical region. In particular, the 

set corresponding to the "best" decision function (see def-

inition 4) w4.ll be a uniformly best critical region. Hence, the 

form of the weight function affects merely the size of the re-

gion Mojg associated with the "best" decision function u(E n ) , 
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but it will always be a uniformly best critical region in the 

sense of the Neyman-Pearson theory. Similar considerations 

hold concerning asymptotically most powerful tests. Let the 

sequence {wn} ( n = l , 2 , . . . , a d i n f . ) of critical regions be an as-

ymptotically most powerful test for testing the simple hypothe-

sis P = F 0 . Then for sufficiently large n the region Wn is 

practically a uniformly best critical region and, therefore, it 

will be an excellent approximation to the region which is "best" 

in the sense of definition 4 irrespective of the shape of the 

weight function of errors. 

As we have seen, for building up a general theory of 

statistical inference, the following three steps have to be 

made: 

1 . Formulation of the general problem of statistical 

Inference. 

2 . Definition of the "best" procedure for making sta-

tistical decisions, i . e . , definition of the "best" 

statistical decision function. 

3 . Solution of the mathematical problem of calculating 

the "best" statistical decision function. 

The problem of statistical inference, as we have formulated 

it here,seems to be sufficiently broad to cover the problems in 

practical applications. The second step will always be, to a 

certain extent, arbitrary. The definition of "best" decision 

function given here seems to be a satisfactory one. Moreover, 

under certain restrictive conditions it has the important prop-

erty that the risk function associated with the "best" decision 

function is constant, i . e . , it has the same value for all ele-

ments of_0_. However, there may be other definitions of a 
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"best" decision function worth investigating. Decision func-

tions which minimize a certain average of the risk function may 

be of special interest. Concerning step 3, there are many 

mathematical problems as yet unsolved. 
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