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There are several methods and techniques for assessing the working con­
dition of mechanical structure, such as wire ropes while in service; magnetic 
testing techniques are in widespread use in these applications. Magnetic test­
ing is a branch of a wide research field called diagnostics. The main aim of 
magnetic testing is to assess the rope condition basing on the analysis of 
recorded signals and the interrelations between the physical quantities: rope 
condition and signals obtained from the tested rope section. Monitoring of 
time sequences of diagnostic signals makes it possible to prognosticate the 
rope condition and to draw conclusions as to the causes of rope wearing. 
However, the signals obtained in that way have nonstationary characteris­
tics, which is their immanent feature. Non-stationary and non-linear char­
acteristics of signals present major difficulties in theoretical considerations, 
though the spectrał analysis of non-stationary signals is not a new problem 
and there are several techniques of overcoming the difficulties. Non-stationary 
characteristics of the involved processes have forced researchers to develop 
new measurement methods and signal processing algorithms. 

2. Implementation of the diagnostic process utilising the pat­
tern recognition method 

Fault detection methods available in the relevant literature are categorised 
in three groups: 

• estimation methods, 
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• database methods, 

• pattern recognition methods. 

The estimation method requires that the mathematical model of fatigue 
wearing processes be known beforehand. The relationships between model 
parameters and rope condition parameters are often very complex. Changes 
of physical parameters, such as material loss are revealed in the wearing pro­
cess parameters. The relationship between mathematical model parameters 
and physical quantities ought to be precisely known, whicb is entirely impos­
sible in magnetic testing. That is why estimation methods cannot be applied 
in magnetic testing of wire ropes. The pattern recognition is the only method 
tbat proves useful in tbese applications. It is described in more detail in tbe 
following Sections. 

The measurements signal from the sensor head (for instance GM60Split) 
may be furtber analysed in three ways (Fig. l). In classical faul t detection 
signals are recorded by digital recorders (for example MD 120) and tben 
subjected to qualitative and quantitative analysis, in accordance with the 
approved standards. Alternatively, signals may be stored on mernory cards 
PCIMCIA and visualised on monitor display. Signals may be also recorded 
by tbe A-D (analogue-to-digital) converter in computer mernory and tben 
subjected to wavelet analysis, followed by qualitative and quantitative anal­
ysis utilising selected bits of information on various fault types. Tbis proce­
dure can be done in an off-line mode. Tbe tbird approacb consists in imple­
mentation of wavelet analysis algoritbm witb tbe use of fast real-time DSP 
processors. Tbis solution offers a potential for tbe design of new-generation 
recorders. 

2.1. Application of wavelets to non-stationary signal analysis 

Reliable operation of diagnostic systems requires fast, algoritbrnie detec­
tion of typical faults. As soon asan algoritbm is implemented, tbe diagnostic 
procedures ougbt to be activated to assess tbe degree of rope wearing. Mea­
suring instruments used to date in magnetic detection and utilising signals 
from induction sensors bave a narrowed measuring range, wbicb is tbeir in­
berent deficiency. The measurement range is limited and som e portion of vital 
information may get lost. Besides, tbe instruments allow only for a simple 
analysis of fundamental signal parameters: amplitude, power, energy or tbe 
impulse bandwitb. One of the reasons lies in design of widely used measuring 
instruments where tbe information about tbe contribution of various fault 
types to overall rope wearing cannot be separated from tbe signal. Tbese de­
fects ( or tbeir variable weight) may negatively impact on the rop e condition 
and bence tbe safety of its operation. 
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Qualitative and quantitative analysls 

FIGURE l. Recording of diagnostic signals. 

The magnetic detection method is therefore extended and new signal pro­
cessing algorithms utilising wavelet analyses have been added [2,3]. Imple­
mentation of these algorithms on signal processors should allow for real-time 
solving of most complicated problems. Research has established that when 
the STFT approach was applied and the signal bandwith was not limited, 
several faults were detected that could not be identified by induction sensors 
(so far the measurements signals were often compared with natural noise sig­
nals). As the signal component coming from the fault was separated from the 
rope construction component, the diagnostic process was thus facilitated. 

Unlike the pattern recognition method described before, in the present 
case signals are subject to qualitative detection procedures and all distur­
bances, such as noise, can be eliminated (Fig. 2). That can be achieved 
through the application of wavelet analysis. As a result, one gets separate 
information about various fault types. In the next block the rope wearing 
due to particular defects is quantified. 

The magnetic detection being in widespread use utilises the pattern recog­
nition approach and combines the qualitative and quantitative detection al­
gorithms in one detection block. In classical magnetic detection measurement 
signals, revealing the condition of the tested structure, cannot give us infor­
mation on types of wearing and defects, which makes the interpretation of 
thus obtained defectograms rather difficult and consequently wrong decisions 
may be taken. Application of wavelet analysis mayhel p to overcome this dif­
ficulty. 
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FIGURE 2. Pattern recognition method in testing of wire ropes. 

The backgrounds oj wavelet analysis. 

The classical scalogram can be defined as [4, 9, 10, 11]: 

(2.1) 

where CWT stands for continuous wavelet transform for the scale factor a 
and shift b, given by: 

+oo 

CWT x(b, a) = a-1
/

2 j x(t) IJJ* C: b) dt. (2.2) 

-oo 

T his relationshi p expresses t he fil tering o f t he analysed signal x (t) through 
the analysing signal (wavelet) w(t) scaled in the time domain with the scale 
factor a. 

While calculating the values of the functional (2.2) for the scale factors 
being integer numbers and subsequent powers of two, the dyadic or non­
decimated wavelet transform can be applied. 

The values in decimated algorithms are: a= 2i and b= k2J. Accordingly, 
the equation defining the continuous transform (2.2) can be rewritten in a 
discrete form: 

DWTs(j, k) =L s(n) * wj(n- 2jk) (2.3) 
nEZ 
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where Wj(n-2k) is a discrete counterpart of a continuous analysing function, 
"*" stands for the discrete convolution, 

The above relationship defines the famiły of analysing functions for the dyadic 
case. The inverse transform required for signal synthesis is given by the for­
mula: 

s(n) =L L DWT8 (j, k)wj,k(n). (2.5) 
jEN kEZ 

The paper compiles the results of model tests performed on twisted and 
or·dinary lay ropes using the discrete transform. 

Signs of abrasive wear were modelledona twisted rope 40 mm in diameter. 
The signals were comparable with noise caused by the rope. In traditional 
magnetic testing such defects remain undetected. Abrasions were also made 
on the specified rope section. Visualisation of signals from modelled ropes 
and calculations of the degree of rope wear basing on the classical approach 
proved inadequate. Figure 3 presents a signal obtained from a new rope and 
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FIGURE 3. Comparing the signals from a new rope and a rope with defects. 
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from the rope with modelleci abrasions. Even experienced practitioners would 
find it difficult to interpret the fatigue wear symptoms correctly. 

This problem was solved with the help of the package MATLAB [5]. The 
wavelet analysis allowed for signal decomposition. Signals from twisted ropes 
were analysed using the specially created "mads" wavelet [l, 8] and eight 
scaling levels (j = 8). Figure 4 presents the details (levels of decomposition) 
of analysed signals. On the 6th level there is an image where the signal from 
the modelled, step-like fault can be easily pinpointed. The 3rd level represents 
t he abrasi ve wear. 
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FIG URE 4. Signal decomposition. 

Selected details are enlarged and shown in Fig. 5, to illustrate how various 
types of defects impacts on signal shapes (waveforms). The locations of wire 
breaks are easily seen on the level 6d, abrasions - on the level d3. 

While investigating the influence of the degree of abrasive wear on power 
spectrum patterns in FFT distributions [7, 8] of selected signal decomposi­
tions, it can be assessed in quantitative terms. 

A close scrutiny reveals that abrasions give rise to a rapid increase in the 
amplitucie of frequencies responsible for this process of wearing. Selection of 
the detail representing this process helps in monitoring the changes in the 
tested ropes. 
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FIGURE 5. Selected details of signal decomposition. 
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3. Application of artificial intelligence {Al) to fault detection 

A major step in magnetic testing of ferromagnetic elements is the appli­
cation of Al algorithms [4]. The main aim in this approach is to determine 
the scope of applications of intelligent diagnostic systems in magnetic test­
ing of ferromagnetic elements and to create a neural network which might 
help to assess the working condition of the tested object (structure). A block 
diagram of the traditional testing method (see Fig. 6) indudes the block for 
signal recording on a paper chart or on the mernory card (PCMCIA) so that 
t he registered data can be transferred to a computer. 

The program Browser 120 created for the purpose of the tests allows for 
signal visualisation and for selection of vital fragments. Calibration char­
acteristics obtained prior to the experiments make it possible to calculate 
t he degree o f rop e wear. Thanks to t he application of neural networks, t he 
diagnostic processes is mad e faster. 

The Al was used to support the pattern recognition method which con­
sists in mapping of the measuring space into the decision-making space and 
involves measurements, fault detection and decision-making. At the stage of 
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FIGURE 6. Comparison of the traditional approach and the Al methods. 

fault detection the signals from standard faults should be introduced to the 
neural network structure. Comparison of the measurement and standard sig­
nals affords a diagnosis , where a fault is localised and its size assessed. At 
the finał stage faults are classified and the required actions are generated, as 
shown in Fig. 7. 
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FIGURE 7. Application of pattern recognition method to fault detection (using neural 
networks) . 
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Preliminary tests reveal that a potential exists for creating a diagnostic 
system utilising neural networks which would provide reliable information on 
the condition of the tested object after netwark pre-adjustment consisting in 
netwark learning through introducing several faul t standards (patterns). 

Modeliing the patterns representing all fault types to be found in ropes 
requires a vast amount o f data (i. e. signals from modelled defects). The mo re 
signals, the more precise the diagnosis based on neural networks. 

In order that the diagnostic system should function properly, the data 
must be representative for all types of faul ts, i.e. they should cover the broad­
est range of variabili ty of in p ut quantities (faul t types). In the first part of 
the study on applications of neural networks in wire rope testing systems, 
only step-like faults were modelled. 

Standard signals were recorded using a computer-integrated wavebook 
unit. A recorded signals from standard faults is shown in Fig. 8. The sig­
nal was registered at the frequency l kHz, which corresponds to 2000 data 
samples. 
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FIGURE 8. A filtered diagnostic signal from standard faults. 

As signals from step-like faults are symmetrical, the analysis of half­
impulse only was performed. Thus the netwark learning process is facilitated 
and the time of netwark adjustment gets shorter. The standardisation pro­
cedure can be fully automatic (Fig. 9). A simple standardising algorithm was 
applied in segmentation of single impulses [4]. 
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FIGURE 9. Standardisation of diagnostic signals. 

This standardisation procedure wouid yieid standard sampies with the 
(signai) waveforms as presented in Fig. 10. 
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FIGURE 10. Standard signal waveforms after standardisation (1-9 standard signals from 
modelled faul ts) . 

The neurai network eonsiciered in this study had an input Iayer, two 
hidden Iayers and an output Iayer (Fig.ll). The number of neurones in the 
input Iayer is equai to the number of in p ut signais fed in simuitaneousiy (a 
number of sampies per one standard). 

The seiection of the optimai number of hidden Iayers and the number 
of neurones in Iayers invoives the testing of network behaviour in terms of 
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FIGURE 11. Neural network structure. 

learning rate and the number of errors for the different values of relevant 
parameters (t he number o f hi d den layers and neuron es). 

The function trainbpa [4] (reverse propagation method) proved to be the 
best learning function for solving the eonsiciered problem. It provides for the 
optimal learning rate, and at the same time correctly relates the real faults 
to modelleci standards. 

When the netwark had been found to be ready, the fault detection pro­
cedure was begun (Fig. 12). It was don e on the basis of input signals, not 
correlated with the learning signals. 
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FIGURE 12. Results of fault classification. 
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T he statistical parameters calculated using t he program N eural N et­
wark [4] relating to the whole sequence of data included the mean error and 
t he matrix o f classification resul ts providing the information on correctly 
and incorrectly classified faults for various fault types. These statistical pa­
rameters were obtained independently for the learning, validating and testing 
sequences. The weighing factors and outputs from the netwark may be repre­
sented as bar graphs (Fig. 12). When an unknown signal resembles the signals 
introduced as the learning matrix, the output value is close to l; w hen no 
similarity exists the value will be O. 

The results were obtained for one group of step-like faul ts only. Were other 
fault types taken into account, the netwark would have to be extended, which 
is shown in Fig. 13. Each group of faults have their own netwark structure 
and the output values represented as bar graphs are analysed in the classi­
fication b l o ck. The high es t degree of correspondence ( the best fi t) between 
the modelled fault and the standard one is the desired result of diagnostic 
procedure. 
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FIGURE 13. Scheme of extended neural network structure. 
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In extreme, though possible cases, i.e. when the generated signals are 
not similar to those from modelled faults (the fit level less than 0.5), the 
faul ts are immediately categorised for the "discard" gro up. However, mod­
elling continuous faults still presents a major problem and requires further 
research. 
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