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1. Introduction

There are several methods and techniques for assessing the working con-
dition of mechanical structure, such as wire ropes while in service; magnetic
testing techniques are in widespread use in these applications. Magnetic test-
ing is a branch of a wide research field called diagnostics. The main aim of
magnetic testing is to assess the rope condition basing on the analysis of
recorded signals and the interrelations between the physical quantities: rope
condition and signals obtained from the tested rope section. Monitoring of
time sequences of diagnostic signals makes it possible to prognosticate the
rope condition and to draw conclusions as to the causes of rope wearing.
However, the signals obtained in that way have nonstationary characteris-
tics, which is their immanent feature. Non-stationary and non-linear char-
acteristics of signals present major difficulties in theoretical considerations,
though the spectral analysis of non-stationary signals is not a new problem
and there are several techniques of overcoming the difficulties. Non-stationary
characteristics of the involved processes have forced researchers to develop
new measurement methods and signal processing algorithms.

2. Implementation of the diagnostic process utilising the pat-
tern recognition method

Fault detection methods available in the relevant literature are categorised
in three groups:

e estimation methods,
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e database methods,

e pattern recognition methods.

The estimation method requires that the mathematical model of fatigue
wearing processes be known beforehand. The relationships between model
parameters and rope condition parameters are often very complex. Changes
of physical parameters, such as material loss are revealed in the wearing pro-
cess parameters. The relationship between mathematical model parameters
and physical quantities ought to be precisely known, which is entirely impos-
sible in magnetic testing. That is why estimation methods cannot be applied
in magnetic testing of wire ropes. The pattern recognition is the only method
that proves useful in these applications. It is described in more detail in the
following Sections.

The measurements signal from the sensor head (for instance GM60Split)
may be further analysed in three ways (Fig.1). In classical fault detection
signals are recorded by digital recorders (for example MD 120) and then
subjected to qualitative and quantitative analysis, in accordance with the
approved standards. Alternatively, signals may be stored on memory cards
PCIMCIA and visualised on monitor display. Signals may be also recorded
by the A-D (analogue-to-digital) converter in computer memory and then
subjected to wavelet analysis, followed by qualitative and quantitative anal-
ysis utilising selected bits of information on various fault types. This proce-
dure can be done in an off-line mode. The third approach consists in imple-
mentation of wavelet analysis algorithm with the use of fast real-time DSP
processors. This solution offers a potential for the design of new-generation
recorders.

2.1. Application of wavelets to non-stationary signal analysis

Reliable operation of diagnostic systems requires fast, algorithmic detec-
tion of typical faults. As soon as an algorithm is implemented, the diagnostic
procedures ought to be activated to assess the degree of rope wearing. Mea-
suring instruments used to date in magnetic detection and utilising signals
from induction sensors have a narrowed measuring range, which is their in-
herent deficiency. The measurement range is limited and some portion of vital
information may get lost. Besides, the instruments allow only for a simple
analysis of fundamental signal parameters: amplitude, power, energy or the
impulse bandwith. One of the reasons lies in design of widely used measuring
instruments where the information about the contribution of various fault
types to overall rope wearing cannot be separated from the signal. These de-
fects (or their variable weight) may negatively impact on the rope condition
and hence the safety of its operation.
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FIGURE 1. Recording of diagnostic signals.

The magnetic detection method is therefore extended and new signal pro-
cessing algorithms utilising wavelet analyses have been added [2,3]. Imple-
mentation of these algorithms on signal processors should allow for real-time
solving of most complicated problems. Research has established that when
the STFT approach was applied and the signal bandwith was not limited,
several faults were detected that could not be identified by induction sensors
(so far the measurements signals were often compared with natural noise sig-
nals). As the signal component coming from the fault was separated from the
rope construction component, the diagnostic process was thus facilitated.

Unlike the pattern recognition method described before, in the present
case signals are subject to qualitative detection procedures and all distur-
bances, such as noise, can be eliminated (Fig.2). That can be achieved
through the application of wavelet analysis. As a result, one gets separate
information about various fault types. In the next block the rope wearing
due to particular defects is quantified.

The magnetic detection being in widespread use utilises the pattern recog-
nition approach and combines the qualitative and quantitative detection al-
gorithms in one detection block. In classical magnetic detection measurement
signals, revealing the condition of the tested structure, cannot give us infor-
mation on types of wearing and defects, which makes the interpretation of
thus obtained defectograms rather difficult and consequently wrong decisions
may be taken. Application of wavelet analysis may help to overcome this dif-
ficulty.
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FIGURE 2. Pattern recognition method in testing of wire ropes.
The backgrounds of wavelet analysis.
The classical scalogram can be defined as [4, 9, 10, 11]:
2
SSCAL = (CWT,(b,a)) (2.1)

where CWT stands for continuous wavelet transform for the scale factor a
and shift b, given by:

CWT, (b, a) —a—1/2/ (1) U* ( - b) dt. (2.2)

This relationship expresses the filtering of the analysed signal z(t) through
the analysing signal (wavelet) W(t) scaled in the time domain with the scale
factor a.

While calculating the values of the functional (2.2) for the scale factors
being integer numbers and subsequent powers of two, the dyadic or non-
decimated wavelet transform can be applied.

The values in decimated algorithms are: a = 2 and b = k27. Accordingly,
the equation defining the continuous transform (2.2) can be rewritten in a
discrete form:

DWT,(j,k) = 3 s(n) * U}(n — 27k) (2.3)
nez
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where \I/;(n—Qk) is a discrete counterpart of a continuous analysing function,
“x” stands for the discrete convolution,

Uop(t) = a Y20 (ﬂ) = U, k(n) = 27920270 — k). (2.4)

a

The above relationship defines the family of analysing functions for the dyadic

case. The inverse transform required for signal synthesis is given by the for-
mula:

s(n) =) DWT(j, k) ¥;k(n). (2.5)

JENkeZ

The paper compiles the results of model tests performed on twisted and
ordinary lay ropes using the discrete transform.

Signs of abrasive wear were modelled on a twisted rope 40 mm in diameter.
The signals were comparable with noise caused by the rope. In traditional
magnetic testing such defects remain undetected. Abrasions were also made
on the specified rope section. Visualisation of signals from modelled ropes
and calculations of the degree of rope wear basing on the classical approach
proved inadequate. Figure 3 presents a signal obtained from a new rope and
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FIGURE 3. Comparing the signals from a new rope and a rope with defects.
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from the rope with modelled abrasions. Even experienced practitioners would
find it difficult to interpret the fatigue wear symptoms correctly.

This problem was solved with the help of the package MATLAB [5]. The
wavelet analysis allowed for signal decomposition. Signals from twisted ropes
were analysed using the specially created “mads” wavelet [1, 8] and eight
scaling levels (j = 8). Figure 4 presents the details (levels of decomposition)
of analysed signals. On the 6" level there is an image where the signal from
the modelled, step-like fault can be easily pinpointed. The 39 level represents
the abrasive wear.
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FIGURE 4. Signal decomposition.

Selected details are enlarged and shown in Fig. 5, to illustrate how various
types of defects impacts on signal shapes (waveforms). The locations of wire
breaks are easily seen on the level 6d, abrasions — on the level d3.

While investigating the influence of the degree of abrasive wear on power
spectrum patterns in FFT distributions [7, 8] of selected signal decomposi-
tions, it can be assessed in quantitative terms.

A close scrutiny reveals that abrasions give rise to a rapid increase in the
amplitude of frequencies responsible for this process of wearing. Selection of
the detail representing this process helps in monitoring the changes in the
tested ropes.
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FIGURE 5. Selected details of signal decomposition.

3. Application of artificial intelligence (AI) to fault detection

A major step in magnetic testing of ferromagnetic elements is the appli-
cation of Al algorithms [4]. The main aim in this approach is to determine
the scope of applications of intelligent diagnostic systems in magnetic test-
ing of ferromagnetic elements and to create a neural network which might
help to assess the working condition of the tested object (structure). A block
diagram of the traditional testing method (see Fig.6) includes the block for
signal recording on a paper chart or on the memory card (PCMCIA) so that
the registered data can be transferred to a computer.

The program Browser 120 created for the purpose of the tests allows for
signal visualisation and for selection of vital fragments. Calibration char-
acteristics obtained prior to the experiments make it possible to calculate
the degree of rope wear. Thanks to the application of neural networks, the
diagnostic processes is made faster.

The AI was used to support the pattern recognition method which con-
sists in mapping of the measuring space into the decision-making space and
involves measurements, fault detection and decision-making. At the stage of



166

J. KWASNIEWSKI

Tested
ohject

Defect
diagram

|—p»Processing

results

A

N PCMCIA

Computer
visualisation

Calibration
characteristics

h

Measurement
results

fault detection the signals from standard faults should be introduced to the
neural network structure. Comparison of the measurement and standard sig-
nals affords a diagnosis, where a fault is localised and its size assessed. At
the final stage faults are classified and the required actions are generated, as

shown in Fig. 7.
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Preliminary tests reveal that a potential exists for creating a diagnostic
system utilising neural networks which would provide reliable information on
the condition of the tested object after network pre-adjustment consisting in
network learning through introducing several fault standards (patterns).

Modelling the patterns representing all fault types to be found in ropes
requires a vast amount of data (i.e. signals from modelled defects). The more
signals, the more precise the diagnosis based on neural networks.

In order that the diagnostic system should function properly, the data
must be representative for all types of faults, i.e. they should cover the broad-
est range of variability of input quantities (fault types). In the first part of
the study on applications of neural networks in wire rope testing systems,
only step-like faults were modelled.

Standard signals were recorded using a computer-integrated wavebook
unit. A recorded signals from standard faults is shown in Fig.8. The sig-

nal was registered at the frequency 1kHz, which corresponds to 2000 data
samples.
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FIGURE 8. A filtered diagnostic signal from standard faults.

As signals from step-like faults are symmetrical, the analysis of half-
impulse only was performed. Thus the network learning process is facilitated
and the time of network adjustment gets shorter. The standardisation pro-
cedure can be fully automatic (Fig. 9). A simple standardising algorithm was
applied in segmentation of single impulses [4].
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FIGURE 9. Standardisation of diagnostic signals.

This standardisation procedure would yield standard samples with the
(signal) waveforms as presented in Fig. 10.
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FiGure 10. Standard signal waveforms after standardisation (1-9 standard signals from
modelled faults).

The neural network considered in this study had an input layer, two
hidden layers and an output layer (Fig.11). The number of neurones in the
input layer is equal to the number of input signals fed in simultaneously (a
number of samples per one standard).

The selection of the optimal number of hidden layers and the number
of neurones in layers involves the testing of network behaviour in terms of
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F1GURE 11. Neural network structure.

learning rate and the number of errors for the different values of relevant
parameters (the number of hidden layers and neurones).

The function trainbpa [4] (reverse propagation method) proved to be the
best learning function for solving the considered problem. It provides for the
optimal learning rate, and at the same time correctly relates the real faults
to modelled standards.

When the network had been found to be ready, the fault detection pro-
cedure was begun (Fig.12). It was done on the basis of input signals, not
correlated with the learning signals.
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FIGURE 12. Results of fault classification.
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The statistical parameters calculated using the program Neural Net-
work [4] relating to the whole sequence of data included the mean error and
the matrix of classification results providing the information on correctly
and incorrectly classified faults for various fault types. These statistical pa-
rameters were obtained independently for the learning, validating and testing
sequences. The weighing factors and outputs from the network may be repre-
sented as bar graphs (Fig. 12). When an unknown signal resembles the signals
introduced as the learning matrix, the output value is close to 1; when no
similarity exists the value will be 0.

The results were obtained for one group of step-like faults only. Were other
fault types taken into account, the network would have to be extended, which
is shown in Fig. 13. Each group of faults have their own network structure
and the output values represented as bar graphs are analysed in the classi-
fication block. The highest degree of correspondence (the best fit) between
the modelled fault and the standard one is the desired result of diagnostic
procedure.
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FIGURE 13. Scheme of extended neural network structure.

In extreme, though possible cases, i.e. when the generated signals are
not similar to those from modelled faults (the fit level less than 0.5), the
faults are immediately categorised for the “discard” group. However, mod-
elling continuous faults still presents a major problem and requires further
research.
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