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Reliability-oriented optimization is an essential tool for maximizing the benefit of 
technical facilities or making efficient use of natural resources. The optimization 
problem is generally divided in two parts. The first level is the determination 
of certain design parameters, e.g. initial cost or weight of a structure under a 
reliability constraint. The calculation of failure probabilities in order to find the 
expected failure cost and the reliability of a structure requires solution of another 
optimization problem if modern FORM/SORM is used. Instead of solving two 
optimization tasks, both are combined in a one-level approach by adding the first 
order Kuhn-Tucker optimality conditions for the design point of the reliability 
problem as constraints to the cost optimization problem using first order reliabil
ity methods (FORM) in standard space. Solution techniques have been developed 
for component and series system problems in time-invariant and time-variant case 
using locally stationary load models. 

Key words: structural reliability, one level optimization, outcrossing approach 

1. Introduction 

The calculation of failure probabilities or reliability indices for given sets 
of basic variables, limit state functions and deterministic parameters are well
known within the context of FORM/SORM, essentially involving a task of 
optimization. The determination of a certain parameter set in order to max
imize benefits or to make efficient use of resources, is much more difficult 
and involves another optimization task. Both tasks can, however, be com
bined in finding optimal designs with or without reliability restrictions. In 
this one level approach the first-order Kuhn-Tucker optimality conditions 
are added as constraints to the cost optimization problem, based on an idea 
by Madsen and Friis Hansen [6]. Methods have been developed for time
invariant [9, 10] and time-variant [11] component problems including SORM 
improvements [13] and separable series system problems [12]. 
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Time-variant optimization concepts have been proposed as early as 1971 
by Rosenblueth/Mendoza [19] with special reference to earthquake resistant 
design. Two reconstruction policies are distinguished: no reconstruction after 
failure or systematic reconstruction. Moreover, capitalization and appropri
ate interest rates must be included. These ideas are used in this paper to 
optimize structural systems under reliability constraints in the time-variant 
case using first order reliability methods (FORM) in standard space. Two 
different locally stationary load models, rectangular wave renewal processes 
and differentiable Gaussian processes, are used. Examples demonstrate the 
proposed methodology. 

2. Structural Reliability 

2.1. Time-invariant and time-variant failure probabilities 

The methods to compute time-invariant probabilities are well known. Let 
the quantities connected with uncertainty be modelled as stochastic variables 
in an n-dimensional basic variable vector X = (X1 , ... , Xn)T with contin
uously differentiable distribution function Fx(x). The (differentiable) state 
function is denoted as G(X, p), which depends on the random variables X 
and a d-dimensional vector p of design parameters. G(X, p) < 0 correspends 
to failure states, G(X, p) = 0 to the limit state and G(X, p) > 0 to safe 
states. Time-invariant probability of failure is then given by 

Pt(P) = j fx(x) dx (2.1) 

G(x,p)~O 

where fx(x) is the probability density of X. Approximations for this in
tegral can be obtained by modern first order reliability methods (FORM). 
A FORM - analysis usually introduces a transformation X = T(U), which 
maps the random variables X = (X 1, ... , Xn) T from original space into a 
U-space of independent, standardized and normally distributed variables 
U = (U1, ... , Un)r, [8]. With G(x, p) = G(T(u), p) = g(u, p) the proba
bility of failure can be written as follows: 

Pt(P) = j <pu(u) du (2.2) 

g(u,p)~O 

where <pu ( u) is the standard normal density. u * (most likely failure, design 
or ·,a-point) is the solution of the following optimization problem: 

minimize: llull, 
subject to : g( u, p) ::; 0. 
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Then, the FORM approximation of the failure probability is 

(2.3) 

with (Jp = llu* 11· Once the FORM-solution is found it is possible to improve 
the result either by the second-order reliability method (SORM) or by im
portance sampling which, however requires additional numerical effort. 

Time-variant reliability is more difficult to compute than time-invariant 
component reliability. T is the random time of exit into the failure domain, 
e.g. the probability of first passage into the failure domain. If failure occurs 
at a random time (t > 0) the distribution function ofT has to be known. 
The probability of entering the failure domain for the first time given that 
the component was in the safe state at t = 0 in the time interval [0, t] is then 
given by 

Pt(p,t) = P(T :S tl p) = 1- P( {\IT E [0, t] : G(x, p,T) > 0}) 

where T is the so called first passage time. Unfortunately, exact solutions are 
only available for some few special cases of little interest in practice. Also 
simulation methods are by far too time-consuming. Therefore, in practical 
applications the outcrossing approach must be used. 

The limit state function G(x, p,t) in time-variant reliability analysis con
tains a vector of deterministic parameter p and time-dependent and time
independent random variables X(t). 

The rate of outcrossings into the failure domain F = { G(X(t, p, t) ::; 0} 
is defined by 

+(F ) _ 
1
. P({G(X(T),p,T) > o} n {G(X(T+6),p,T+6)::; o}) 

V , T - lm 1\ • 
6-o u 

The point process of crossings has to be a regular process. The mean number 
of outcrossings from time t1 to t2 is then determined by 

(2.4) 

where N+(tl, t2) is the number of outcrossings in [t1, t2] (t2 > t1). 
In practical applications upper and lower bounds as solution for the failure 

probability Pt(P,tl, t2) are in most cases sufficient. An upper bound solution 
is proposed in [2]. Thus failure occurs at t 1 or if there is at least one out
crossing into the failure domain in [t1, t2]. The upper bound derived can be 
written as follows: 

(2.5) 
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where PJ(P, t 1 ) is calculated as in time-invariant case with a fixed time pa
rameter t1, usually a very small number. It is further assumed that for all 
calculations a probability distribution transformation into standard space is 
performed and the random processes starts with random initial conditions. 

In the following the outcrossing rates of rectangular wave renewal and 
Gaussian processes will be developed in order to compute the time-variant 
failure probability. Then this is used in the reliability oriented optimization of 
structural components and separable series systems in a one-level approach. 

2.2. Outcrossing rates for rectangular wave renewal processes 

It is assumed that the rectangular wave renewal vector processes are reg
ular, i.e. the probability of more than one renewals in a small time interval is 
negligible. Furthermore, renewals of each component of the vector are inde
pendent and the amplitudes are independent . In this paper only the station
ary case is dealt with. Therefore the process is characterized by its amplitude 
distributions and time-independent jump rates A= (A1 , A2, ... , An), where n 
is the number of components of the vector process. Breitung and Rackwitz 
[3] have shown that the outcrossing rate can be evaluated as a summation of 
the products of the jump rate A and the probability of having jumps from the 
safe domain into the failure domain in each component of a vector process. 
According to first order reliability methodology the outcrossing rate can be 
determined explicitly for linear failure surfaces fJF = al u + {Jp = 0 with 
a= \lg(u, p)/ IIVg(u, P)ll: 

n n 

i=l i=l 

where ~2(., . ; . ) is the two-dimensional normal integral. 
The asymptotic result is derived neglecting the probability of having 

jumps from the failure domain into the failure domain, which is often neg
ligibly small. Improvements of this result is possible by using second order 
reliability methods. Further results including solutions for the non-stationary 
case can be found in (16]. 

2.3. Outcrossing rates for differentiable Gaussian processes 

A differentiable Gaussian vector process is completely defined by its mean 
values m(t) and the positive definite, symmetric matrix of covariance func
tions 
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where n is the number of components of the vector process. Alternatively it 
is characterized by its variance function a}(t), i = 1, ... , n 5 , and the auto
correlation coefficient function: 

(]ij(tl,t2) 
Pij(tl, t2) = (]i(tl)(]j(t2) · 

The process is stationary, if the corresponding density is time indepen
dent , i.e. m= m(t), (]I= (]}(t), Pij(T) = Pij(tl, t2) with T = lt1- t2i· 

The outcrossing rate of a stationary, standardized Gaussian process can 
be written according to [23) by using first order methodology: 

with (2.7) 

where /3p is the reliability index defined in Sec. 2, w0 the cycle rate and R 
the matrix of second derivatives of the matrix of correlation functions: 

i, j = 1, ... , n}. 
Further results including second order improvements can be found in [4) or 
for the more complicated non-stationary case in [17) . The outcrossing rate 
due to rectangular wave processes and differentiable Gaussian processes can 
simply be added due to regularity of the outcrossing process. For a series 
system it is frequently sufficient to take just the sum of all componental 
ou tcrosssing rates. 

3. One-Level Approach 

In practical applications structural optimization with respect to various 
design parameters, such as cost, weight or volume under additional relia
bility restrictions is frequently of interest. The problem is to combine these 
conflicting aims. Here only cost optimization, possibly including initial cost 
and expected cost of failure, subject to a given minimum reliability and 
other structural performance requirements will be discussed. In order to com
bine both levels the first-order Kuhn-Tucker optimality conditions for design 
points of the reliability optimization problem will be added as constraints to 
the cost optimization problem. This means, that at the ,6-point the following 
conditions have to be fulfilled: 

g(u*,p)=O, 

~+ Vug(u*,p) =O. 
llu*ll IIVug(u*,p)ll 
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The second condition consists of n- 1 separate equations, where n is the di
mension of the vector U = (U1, ... , Un)T of stochastic variables. The Kuhn
Tucker optimality conditions mean geometrically that the vector u* is per
pendicular to the limit state surface of the constraint g( u*, p) = 0. 

3.1. Objective functions 

The general objective function Z(p) will be maximized in the structural 
optimization: 

Z(p) = B(p)- C(p)- D(p) (3.1) 

where B(p) is the benefit derived from the structure, C(p) the construction 
cost and D(p) the damage cost. All monetary units of the structure, which 
will eventually fail after some time, are expected values and need to be cap
italized down to the decision point t = 0. A continuous discount function 
J(t) = exp( -')'t) with interest rate 1 is chosen which is sufficient in practical 
applications. It will be assumed that the benefit is independent of the pa
rameter vector p and constant in time. With ts -t oo as the expected time 
of use the benefit is determined as B(p) = ~. 

In addition, several replacement strategies have been defined: ( 1) the fa
cility is given up after completion of mission or after failure or (2) the facility 
is systematically rebuilt after failure. Further, it is possible to distinguish 
between structures that fail upon completion or never and structures that 
fail at a random point in time. The appropriate objective functions are given 
in Table 1. 

TABLE 1. Objective functions for replacement strategies and failure models. 

Replacement strategy Objective function Z(p) 

Failure due to: 

- time invariant loads ~-C(p)- (C(p) +H) 1 ~~;~lp) 

- Structure is given up after failure [18] 
b C(p)- H .X(p) 

'Y + .X(p) -y+.X(p) 

Systematic reconstruction: 

- General asymptotic result [18] 
b 1 
--C(p)- (C(p) +H)--
-y -yE [T] 

- Poissonian failures [20, 18] 
b .X(p) 
--C(p)- (C(p) +H)-
'Y 'Y 

- Poissonian disturbances [7] ~-C(p)- (C(p) +H) >-Pt(P) 
'Y 'Y + >-Pt(P) 
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It is assumed that Poissonian failures occcur with exponential failure 
times with parameter >.(p) which can be controlled by p. Furthermore re
newal theory requires that the random times between failures are independent 
and identically distributed (except possibly the first failure) and the same 
design rules are used to reconstruct the structure, where as the construction 
time is negligibly short compared to the interarrival times of failure . 

3.2. Numerical optimization 

The complete reliability-oriented cost optimization problem of structural 
systems in time-invariant case with systematic rebuilding and FORM-appro
ximation of the probability of failure can be written as follows: 

minimize: 

- Z(p) = -~ + C(p) + (C(p) +H) 
1 
~~;;ip), 

subject to: 

g(u, p) = 0, 

Ui llyrug(u,p)ll + yrug(u,p)i llull = 0, i = 1, · · · ,n- 1, 

PJ(P)- Pjax:::; 0, 

(3.2) 

where the Kuhn-Tucker conditions are added as constraints to the optimiza
tion problem. Moreover, a maximum admissible failure probability is added, 
which can be absent. The advantage of the one level approach is that only 
one optimization algorithm is needed and convergence can be proven easily. 
It is important to reduce the set of the gradient conditions in the Kuhn
Tucker conditions by one. Otherwise the system of Kuhn-Tucker conditions 
is overdetermined. It is also important that the remaining K uhn-Tucker con
ditions are retained under all circumstances, for example, if one or more 
become eo-linear with one or more of the other restrictions. 

Additionally the mathematical and physical admissibility of the design 
parameter vector and simple lower and upper bounds for the the tr~nsformed 
basic variable vector and the design vector must be observed: 

subject to: 

hj(P) = 0, 

hi(P) ::S 0, 

Umin,i ::S U~ :S Umax,i , 

Pmin,k :S Pk ::S Pmax,k , 

j = 1, ... ,m', 

f = m' + 1, ... , m, 

i = 1, ... ,n, 
k = 1, ... , np, 
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where hi(P), i = 1, ... , m contains m' equality and m- m' inequality con
straints on design parameters. Umin , Umax and Pmin, Pmax represent simple 
lower and upper bounds on stochastic variables resp. design parameters. 

It is now assumed that failure occurs at a random time. Structural fail
ures should be rare and independent events. Therefore, if the events follow 
a stationary Poisson process, the intensity .A(p) can be replaced by the out
crossing rate v+(F, p), which has been evaluated in Secs. 2.2 and 2.3 in case 
of stationary rectangular wave renewal and differentiable Gaussian processes. 
Then it is possible to impose a maximum admissible failure rate and replace 
the reliability constraint in the reliability oriented structural optimization: 

lJ + ( F, P) :S lJ admissible · 

The time-variant optimization problem in a one-level approach can be 
formulated similarly. The ,8-point may be identified as the point of a maxi
mum outcrossing rate implying that the distance of the failure surface to the 
origin also dominates the local outcrossing rate. The complete optimization 
problem for systematic reconstruction can be written as follows (11]: 

minimize: 
b v+(F p) 

- Z(p) = -- + C(p) + (C(p) +H) ' , 
I I 

subject to: 

g(u, p) = 0, 

Ui IIY1ug(u,p)ll + Y1ug(u,p) i llull = 0, i = 1, ... ,n- 1, 

v+(F,p) -lladmissible :S 0. 

Other cases are given in Table 1. 

(3 .3) 

Another application of the proposed approach is the extension to time
invariant and time-variant separable series systems. Separability of the sys
tem implies independence of the components. Let U k be an independent 
vector of stochastic variables for each mode k. Separability of the series sys
tem makes it possible to fulfill the componental Kuhn- Tucker optimality 
conditions in each failure mode simultaneously. Furthermore, it is assumed 
that the total expected failure cost of the system is bounded from above by 
the summation of the expected cost in every individual failure mode: 

D(p) = t [(C(p) +Hk)l ~~~Pik) ]. ' 
k=l f p k 

where s is the number of separate failure modes which simplifies if the 
same failure cost H = Hk, k = 1, .. . , s, are chosen for each mode. Thus, 
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the complete reliability-oriented cost optimization problem in time-invariant 
case for separable series systems with systematic rebuilding and a FORM
approximation of the probability of failure can be written as follows [12]: 

minimize: 

- Z( ) < -~ + C( ) + (C( ) +H) 2:~=1 Pt(P)k 
P - r P P 1 - 2:~=1 Pt (p )k' 

subject to: 

9k(uk,P) = 0, (3.4) 

(uk)i ll\7uk9k(uk,P)II + \7uk9k(Uk1P)i llukll = 0, 

i = 1, ... , n- 1, k = 1, ... , s, 

Optimization of time-variant separable series systems can be done as follows 
for stationary Poissonian failures with systematic reconstruction if the same 
failure cost Hk, k = 1, ... , s, are chosen: 

minimize: 

- Z(p) = -~ + C(p) + (C(p) +H) l:~=1v+(F, Ph' 
r r 

subject to: 

9k(uk,P) = 0, (3.5) 

(uk)i ll\7uk9k(uk,P)II + \7uk9k(Uk1P)i llukll = 0, 

i = 1, ... , n- 1, k = 1, ... , s, 

v: (F, P) - (vadmissible)k :::; 0. 

Alternatively, one can specify a maximum admissible failure rate for the 
whole system. It is seen that the optimization problem for stationary time
variant problems differs from the time-invariant equivalent only by the way 
in which reliability measures are calculated. It should be clear, however, that 
the number of uncertain variables grows linearly with the size of the system 
and, therefore, increased numerical effort must be expected. 

The proposed optimization tasks can conveniently be solved by a con
strained sequential quadratic programming procedure. Therefore, in the next 
section some details of the new optimization algorithm JOINT 5 are pre
sented [22] based on an earlier algorithm proposed by Enevoldsen/Sorensen [5]. 
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4. The special algorithm JOINT 5 for reliability-oriented op
timization 

We want to solve the general optimization problem: 

minimize : f (p), 

subject to: hi(u,p) = 0, i = 1, ... ,m', 

hj(u,p)~O, j=m'+1, ... ,m. 

( 4.1) 

Forming the Lagrangian, using the Kuhn-Tucker conditions and performing 
one Newton-Raphson step leads to the following quadratic subproblem [14, 1): 

where dk is the search direction in the k-th iteration, ,\~;1 the Lagrangian 

multipliers, 'V~,pL( uk, pk, A k) the Hessian of the Lagragian function, 
'V u.ph( uk, pk) the gradient of the active constraints and 'V u,pf (pk) the gra
dient of the twice differentiable objective function. 

The computation of the Hessian of the Lagrangian function may cause 
considerable effort, is generally too expensive and may not remain positive 
definite during iteration. Therefore, an approximation is used. The JOINT 5 
algorithm is based on a linearization method developed by Pshenichnyj, 
which substitutes the second derivative of the Lagrangian function 
'V~,pL(uk, pk, ,\k) by the identity matrix all the time, cf. [15]) . Equation (4.2) 
can then be written as follows: 

Nevertheless it is possible that the quadratic subalgorithm fails or produces 
solutions in an infeasible domain. In particular, the linearized constraints can 
become linearly dependent although a solution of the optimization problem 
exists. In that case an 'extended' equation system (cf. [21]) will be solved. The 
optimization problem is therefore one dimension higher and can be written as 
follows: 

minimize: 

subject to: 
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where only active constraints are considered and c > 0 (c < 10-3 recom
mended). rk is estimated by 

(4.5) 

with r* 2: 1 if k > 0. The solution is (d~,P' A~~l, qk). The point (du,p,q) = 
(0, 1) obviously satisfies the constraints of ( 4.4) and can be used as a feasible 
starting point. The quadratic subproblem is then solvable almost always with 
solution: 

( 
1 )-l A~~l = -\7u.ph(uk,pk)T\7u.ph(uk,pk)- rkh(uk,pk)h(uk,pk)T 

x (vu.ph(uk,pk)T\7u,pf(pk)- h(uk,pk) +c), (4.6) 

d~,p = -\7 u.ph(uk' pk)A~~l - \7 u,pf(pk)' 

qk = !_h(uk pk)T Ak+I 
rk ' u,p . 

(4.7) 

(4.8) 

In a second step, when the search direction dk is known, the step length 
has to be found. The new iteration point is determined by xk+l = xk +akd~,p 
with the step length parameter ak (0 :::; ak :::; 1). ak can be determined by 
a suitable line search method. Pure sequential quadratic optimization al
gorithms use either an exact or an approximate (quadratic interpolation) 
one-dimensional line search, cf. [21] . In the JOINT 5 algorithm a more ro
bust strategy is used. With a descent function by Pshenichnyj ([15], [1]) and 
bisection of ak the algorithm slows down. Starting from ak = 1 the following 
inequality is calculated: 

f(xk + akd~,p) + tk j~ft. { llg(xk + akd~,p) 11} 

::; f(xk) + tk ~Xf. { llg(xk) 11} -Oak llct~,p~~2 ( 4.9) 

where MA denotes the number of active constraints, c5 a parameter with 
0 < c5 < 1 (c5 ~ 0.25 recommended) and tk a penalty parameter. If the 
inequality is not fulfilled, ak will be half of the former value and the evaluation 
is repeated. This continues until a given finite number of bisections is done. 
The penalty parameter tk will be set greater than or equal to the sum of all the 

Lagragian multipliers: tk 2: r L:jEMA IAJ+1
j with 1 < r :::; 2. Additionally, 

the algorithm requires a careful strategy to avoid locally eo-linear constraint 
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where the Kuhn-Tucker conditions of the reliability problem must always 
be retained. Also, an efficient active set strategy must be implemented. It 
is important to note that all those devices are necessary for the problem at 
hand. Off-the-shelf algorithms will most likely fail. 

As it can be seen, the algorithm needs first derivatives of the objective and 
all active constraints. In case of cost optimization under reliability constraints 
first order Kuhn-Tucker optimality conditions for a design point are restric
tions to the optimization problem. In these equations first derivatives of the 
limit state function are already required. Thus, the solution of the quadratic 
subproblem needs second derivatives, i.e. the complete Hessian of g( u, p). 
The determination of the Hessian in each iteration step is laborious and can 
be numerically inexact. In order to avoid this, an approximation by iteration 
is proposed. One of. the possibilities of replacing the Hessian is to preset it 
with zeros all the time. Note that linear limit state functions always have 
a zero Hessian. This implies some loss of efficiency, but the overall numer
ical effort needs not to rise, because calculation of the Hessian is no more 
necessary. In order to improve the results in case of nonlinear limit state 
functions, it is possible to evaluate the Hessian after the first optimization 
run and restart the algorithm. The solution is the new starting point and the 
Hessian matrix is fixed for the run and keep it fixed for the second run, and 
so on. This iterative improvement with subsequent restarts continues until 
the results differ only with respect to a given precision which is usually after 
very few steps. 

The results can be simultaneously improved by including second-order 
corrections during reiteration, see [13]. Any other more exact improvement 
can be taken into account. The results for separable systems are slightly 
conservative. However, the same reiteration can adjust for this conservatism, 
if necessary. 

5. Examples 

5.1. Short column with rectangular cross section 

In the first example a short column with rectangular cross section is 
considered. The dimensions, width b and depth h, determine as design pa
rameters the total cost function Ctot (p). It shall not contain any expected 
cost of failure and can then be written as Ctot(P) = 1.0 [~] bh. No further 
constraints on the design parameters are imposed. They only had to satisfy 
the following upper and lower bounds: b E [5m; 15m], h E [15m; 25m]. The 
limit state function of the proposed problem in terms of the parameter vector 
p = (b, h) and the vector of stochastic variables x = (P, M, Y) is given by 
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( ) 4M P 2 
· ( ) G x, p = 1- bh2Y - (bhY) 2 where the random vanables x = P, M, Y are 

determined by stochastic variables presented in Table 2. The allowable fail
ure probability is 1.0 · 10-3 and the corresponding reliability index j3 equal 
to 3.090. 

TABLE 2. 

Stochastic variable Distribution Mean/St.deriv. Unit 

Axial force P Normal 500/100 N 
mm2 

Bending moment M Normal 2000/400 MNm 

Yield stress Y Lognormal 5/0.5 N 
mm2 

Optimization of total cost Ctot (p) will be performed with two different 
strategies. In the first strategy the complete Hessian of the second derivatives 
of the constraints is calculated numerically. In the second strategy the Hessian 
is approximated by a zero matrix. The results of the optimization problem 

TABLE 3. 

Evaluation of the Hessian matrix: Numerical Zero matrix 

Results at the optimal point: 

Total cost [ CU) 238.5 238.5 

Final failure probability 1.0. w-3 1.0 . w-3 

Final reliability index 3.090 3.090 

Vector of stochastic variables (731; 2705; 4.1) (731; 2705; 4.1) 

Vector of cost variables (9.54; 25.0) (9.54; 25.0) 

TABLE 4. 

Numerical effort: Numerical Zero matrix 

Number of iterations 5 5 

Number of state function calls 152 50 

Number of state function gradient calls: 

in basic variables x 8 8 

in design variables p 8 8 

Radii of curvature in U-space: 26.426; 138.934 
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and the numerical effort for the two calculation alternatives are shown in 
Tables 3 and 4. 

It can be seen that the results at the optimal point are the same in each 
case. But the numerical effort is substantially different. The number of state 
function calls using the zero matrix is distinctively smaller than the one where 
the Hessian is evaluated numerically in every iteration step. This is readily 
explained by the relatively large radii of curvature of the limit state surface 
in the solution point. The numerical computation of the second derivatives 
requires state function calls. 

The algorithm works efficiently in this case. It should be mentioned that 
the problem is rather sensitive to the given design parameters and a good 
starting solution and suitable bounds have to be found in order to reduce 
the numerical effort. 

5.2. Ten Bar Truss 

In a second example structural optimization of a steel truss consisting of 
ten pin-jointed bars will be performed. The statical system is shown in Fig. 1. 

FIGURE 1. Statically system of the ten bar truss . 

The cost function is connected with the weight of the structure and there
fore with the cross section area of the bars. The design parameters Pi and a 
constant factor Ao = 19.6 mm2 determine the mean values of the ten cross 
section areas Ai = PiAo, i = 1, .. , 10. The interval of the upper and lower 
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bounds of the design parameter is defined as Pi E [0.1; 100), i = 1, ... , 10. The 
objective function is the total weight of the structure and will be minimized: 

C(p) =pAo ( vh2 + l: (PJ+P4+P6+P7) 

+~(PI+ P2 + pg + Pw) + h(p5 + Ps)) · 

The stochastic characteristics of the cross section areas, the stochastic nodal 
point loads F1, F2 and the limit of the displacement at node 2 WJimit are 
given in Table 5. The constant factors are Ao = 19.6mm2

, h = 1000.0mm, 
l = 2000.0 mm, E = 210000.0~, p = 8.0·10-3 db- with Youngs modulus E mm . mm 
and density p. The limit state function consists of the displacement w2(x, p) 
at node 2 and the uncertain limit Wiimit which may not be exceeded: 

G(x, p) = Wiimit- w2(x, p) 

where w2 (x, p) is evaluated analytically in a statically indeterminate com
putation. 

The allowable failure probability is 0.5 · 10-2 and the corresponding re
liability index f3 equal to 2.576. The failure cost H have been set at the 
relatively large value of 50000 [CU]. For smaller H the reliability constraint 
would become active. 

Structural optimization under reliability constraints will be performed 
with the complete numerical evaluation of the Hessian and the approximation 
by the zero-matrix. The results at the optimal point and the numerical effort 
are shown in Tables 6 and 7. 

As it can be seen the optimization program works well for a zero Hessian 
matrix. The results at the optimal point coincide. The number of iterations 
for a zero Hessian matrix is slightly larger than for the numerical Hessian 
but the number of state function calls is significantly reduced. The difference 
in the number of state function gradient calls results from a higher number 
of steps in the bisection line search strategy (see 4. 9). 

A certain difficulty in computing this example originates from the very 
low value of the bounds for the design parameters. The structure is statically 
indeterminate. This means that not all bars are necessary to transfer the load 
to the support. Design parameters which are set at the lower bound in the 
optimization process show that the corresponding bars are not necessary and 
could be omitted. Practically, different load combinations have to be taken 
into account which then may justify their existence. The optimized structure 
is shown in Fig. 2. 
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TABLE 5. 

Stochastic variable Symbol [Unit) Distribution Mean/St.deviat. 

Cross section area 1-10 xi [mm2
] Lognormal PiAo/0.1 

Nodal Load F1 [N) Normal 10000/1000 

Nodal Load F2 [N) Normal 10000/1000 

Limit on displacement W!imi t [mm) Normal 3.5/0.35 

TABLE 6. 

Evaluation of the Hessian matrix: Numerical Zero matrix 

Results at the optimal point: 

Total cost [ CU) 1428 1428 

Final failure probability 1.2 . 10-3 1.2. 10-3 

Final reliability index 3.024 3.024 

Vector of stochastic variables (25 .8;17.8;26.3;8.4; (25 .8;17.8;26.3;8.4; 

1.8;1.3;25 .1;1.4;37; 1.8;1.3;25.1 ;1.4;37; 

1.4;26;11380;10326) 1.4;26;11380;10326) 

Vector of cost variables (1.3;0 .9;1.4;0 .5;0.1 ; (1.3;0.9;1.4;0 .5;0.1; 

0.1;1.3;0.1;1 .9;0.1) 0.1; 1.3;0.1; 1.9;0.1) 

TABLE 7. 

Numerical effort: Numerical Zero Matrix 

Number of iterations 18 22 

Number of state function calls 5156 812 

Number of state function gradient calls: 

in basic variables x 22 40 

in design variables p 21 25 
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FIGURE 2. Optirnized ten bar bar truss (dashed bars are zero bars) . 

5.3. Two-bay frame 

In the last example a two-bay frame as shown in Fig. 3 using rigid-plastic 
theory with random horizontal and vertical loading and random plastic mo
ments at nodes 1, ... , 10 will be optimized under reliability constraints. 

4 6 7 

5 8 

h 

1 10 9 

h/2 .I h/2 h/2 h/2 .I 

FIGURE 3. Loads and statical system of the frame. 
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Plastic hinges may form at nodes 1 to 10. Therefore, the structure can 
fail in eight different failure modes as shown in Fig. 4. The first three failure 
events are elementary mechanisms, the others combined mechanisms. 

<D 

FIGURE 4. Failure modes of the frame. 

A limit state function for each failure mode is available using the energy 
theorem: 

G1(x,p) = X2+2X3+X4-X12·~, 

G2(x,p) = X5+2X1+Xs-X13·~, 
G3(x,p) = X1+X2+Xs+Xs+Xg+X10-Xn·h, 

G4(x,p) = X2+2X3+X4+X6+2X7+Xs-X 12·~-X 13·~, 

Gs(x,p) = X1 +X2+Xs+X6+2X7+2Xs+Xg+X 10-X n·h- X 13·~, 

G5(x ,p) = X1+X2+X4+2X7+2Xs+Xg+X10-Xn·h- X13·~, 

G7(x ,p) = XI+2X3+X4+Xs+Xs+Xg+XIO-Xn·h- x12·~, 

Gs(x,p) = XI+2X3+2X4+2X7+2Xs+Xg+XIO-Xn·h- x12 · ~-X13·~, 

where Xi, i = 1, ... , 10, are the plastic moments of the frame at node i. Xn, 
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X 12 and X 13 are stochastic loads at node 2, 3 and 7. The stochastic properties 
of the random variables Xi are given in the following table. The random 
plastic moments at node Xi, i = 1, ... , 10, are assumed to be lognormally 
distributed, the stochastic loads X11, X12 and X13 are normally distributed 
(see Table 8). 

TABLE 8. 

Stochastic variable [Unit) Mean/St.deviat. 

Plastic moment at node 1, 2, 5, 8, 9, 10 Xi [kNm) p1/0.1 . p1 

Plastic moment at node 3, 4, 6, 7 Xi [kNm) p2/0.1. p2 

Load at node 2 X11 [kN) 2/0.6 

Load at node 3 X12 [kN) 4/1.2 

Load at node 7 X13 [kN) 6/1.8 

The loads at node 3 and 7 are modeled as stationary rectangular wave re
newal processes with jump rates A12 = A13 = 0.5 [1/year). The load at node 2 
is modelled as stationary differentiable Gaussian process with autocorrela
tion function Pij(T) = exp( -T2). The design parameters p1 and p2 are the 
mean values of the appropriate stochastic variables. The bounds for p1 and 
p2 are as follows: p1 E [5.0; 80.0) kNm, p2 E [5.0; 80.0) kNm. The objective 
function, which will be minimized in the optimization program, is defined 
as construction cost depending on the mean values of the plastic moments 
at nodes 1, ... , 10 as C(p) = p1 + 2.0 · p2 . The failure cost are H = 1000 
and the interest rate is 1 = 0.02. The optimization problem contains of 106 
optimization variables. The optimal cost parameter for time- variant cost 
optimization under reliability constraints of this separable series system with 
h = 20 m and a time interval of one year are 

p1 * = 16.95, p2* = 38.45, 

and the optimal cost are Ctot (p) = 93.85 [ CU]. The time-variant upper bound 
failure probability in each mode is computed as: (PJ,l(p*), PJ,2(P*), Pj,3(p*), 
PJ,4(p*), Pt,s(p*), Pt,6(p*), Pt,7 (p*), P1,8 (p*)) = (9.76 ·10-11 , 2.21·10-4 , 

2.53 · 10-6, 2.37. 10-11 , 4.13. 10-8 , 1.82 -lo-6, 9.66. 10-10 , 1.38. 10-9). 

The equivalent reliability indices can be derived as: (,Bi, ,82, ,Bj, ,84, ,85, 
,86, ,87, ,88) = (6.37, 3.51, 4.56, 6.58, 5.36, 4.63, 6.00, 5.95). The system 
failure probability is 2.25 · 10-4 with the corresponding equivalent reliability 
index 3.51. 
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6. Conclusion 

A method for reliability-oriented time-invariant and time-variant struc
tural optimization of components and separable (independent) series systems 
in a special one level approach using first order reliability methods (FORM) 
in standard space has been derived. Approximations for time-variant failure 
probabilities are computed via the outcrossing method for locally stationary 
rectangular wave renewal and differentiable Gaussian processes. 

The optimization problem is solved by the newly developed gradient based 
algorithm JOINT 5. It includes a reliable and robust slow down strategy to 
improve stability of the algorithm instead of an exact line search. Further
more, it is possible to solve an 'extended' equation system in case of failure 
in the quadratic subalgorithm, e.g. linear dependency of the linearized con
straints. It requires second derivatives of the limit state functions. This can 
be avoided by iteration. In the first iteration the Hessian is approximated 
by a zero matrix corresponding to linear limit state functions. In the sec
ond iteration the Hessian is determined once and kept fixed. The results can 
thus be improved by reiteration of the complete optimization task. General
ization to intermittent random vector processes in the one-level approach is 
theoretically possible as well as including maintenance considerations and 
a non-constant benefit into the objective function. If random loads with 
non-stationary or non-Poissonian failure models are considered only bi-level 
methods are applicable at the moment. Further research is required. 
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