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The random (geometrical) structure is a suitable mathematical model for mate­
rial microstructures. Its quantitative characteristics (parameters and functions) 
describe microstructures. The general random structures are described quantita­
tively together with discussion of stereological questions. Special structures (the 
Poisson- and Matern point field, as well as the Boolean- and Stienen model) 
are discussed in detail. This is followed by examples of practical application: the 
Fe3C-dispersion in Fe-0.15%C and Fe-0.6%C steels were described by the Matern 
point field and Stienen model, respectively. 
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1. Introduction 

A metal material can be considered as a geometric object with internal 
structure, i.e., the microstructure [1, 2], Fig. 1. In metallography the mi­
crostructure is not accessible for direct observations, so its analysis is based 
on planar sections. The quantitative predictions about microstructure from 
sections are made by stereological methods [3]. Typical material microstruc­
ture is: irregular, extensive and isometric (i.e. homogeneous and isotropic). 
The irregularity is understood as opposite to ordered arrangement (e.g. the 
crystal structure) and indicates randomness of the microstructure. The ex­
tensiveness means that the size of spatial extension of the microstructure 
is much larger than its smallest typical part, so the microstructure can be 
considered as unbounded. The local properties of isometric microstructure 
are not dependent on position and direction in the space. 

In general case, microstructure is a complex geometrical object in frame of 
which one can distinguish systems of simple geometrical objects (points, lines, 
surfaces, bodies). Such systems form geometrical structures, which preserve 
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(a) 

(c) (d) 

FIGURE 1. Microstructures of typical metal materials: (a) polycrystalline tita­
nium, (b) bronze CuPb30, (c) disperse Fe3C-phase in Fe-0.6%C steel, (d) pearlite 
(a+ Fe3C) in Fe-0.8%C steel. 

the main properties of the microstructure (irregularity, extensiveness and 
isometry). From the stochastic geometry point of view a geometrical structure 
can be interpreted as realization of a random variable which is called: the 
random geometrical structure (abbreviated as random structure) [4 , 5). The 
random structure also can be considered as a random field (i.e. , a stationary 
stochastic process in the Euclidean space) [6, 7). 

The quantitative characteristics (parameters and functions) of a random 
structure also describe the geometric structures , which are their realizations. 
The stereology of a random structure is a simple and effective way for ob­
taining equations , which connect quantitative characteristics of the random 
structure and its planar sections [8). In the stochastic geometry there are 
proposed special models , which can be used for approximation of real geo­
metrical structures in order to make possible solving of more sofisticated 
statistical and stereological problems (see Chapter 4 of this article). 

The aim of this article is to present the basic problems, which are con­
nected to description of material microstructures by random geometrical 
structures. 
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2. Random structures and their stereology 

In the Euclidean space Rd (d = 2, 3) which is equipped with Cartesian 
coordinates system, the object x = (x1, ... , xd) is a point (or vector) with 
its coordinates x~, ... xd. In particular, 0 = (0, ... , 0) is the origin, R2 = 
{x : x = (x1, x2)}, R3 = {x : x = (x1, x2, x3)}. In addition: (i) for a given 
real number a, x +ay= (xi+ ay1 , ... , Xd + ayd); (ii) for a subset A of Rd, 
Ax = A+ x = {y + x : yE A} is the translation of A by vector x. 

A d-dimensional closed subset ~ of Rd (d = 2, 3) forms a geometrical 
structure. The d-dimensional structure ~ of R d is the so-called full dimen­
sional structure [9]. For a full dimensional structures ~ one can distinguish 
s-dimensional geometrical structures ( s = 0, 1, ... , d): the boundary 8( ~), 
edge~(~) (ford= 3), characteristic points <.p(~) (e.g., particle centers, grain 
vertices (ford= 3) and corners (ford= 2), etc.). 

The structure ~ will be considered as realization of a random structure 3 
in Rd (i.e. , a random closed set [4, 5]). The random structure 3 is characte­
rised by statistical parameters and functions. 

Parameters 

Ad-dimensional compact setT E Rd of a Md(T) = Md measure (which 
include the origin 0) will be assumed as a test set for analysis of structures 
in Rd. Special T-sets are: d-dimensional cube and sphere. The set ~ n T is 
a structure in T and the number Ms(~ n T), s ~ d, is the value of its s­
dimensional parameter (i.e., parameter of a s-dimensional subset of a full d­
dimensional set). For the random structure 3 the number M s is realization of 
a random variable, whose mean (Ms), is obtained for a sequence of realization 
of 3. If there exists such a number MJvtd that for every T 

(Ms) = Md MJvtd for d = 2, 3; s = 0, 1, ... , d ; (2.1) 

then MJvtd is the Ms-parameter density of 3 in Rd [1, 4]. The MJvtd is a sta­
tistical (and also stereological) parameter of 3 . 

By using of the following stereological notation [3, 4]: 

• M 0 = P (P- number of points), 

• M 0 = N (N - particle number, which exists when ~ is a particle 
system), 

• M 1 = L (L - length of a line), 

• M 2 = S (S - surface area ford= 3), 

• M 2 =A and M 3 =V (A - surface area ford= 2 and V - volume) 

the particular parameters MJvtd, i.e., the point density PMd, the particle 
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TABLE 1. Parameters !vl:vr<~ of random structure 3 c Rd. 

s 0 1 2 3 
d 
2 PA,NA LA AA -

3 Pv,Nv Lv Sv Vv 

density N !vfd, the length density L !vfd, the surface area density AA or Sv and 
the volume density Vv are given in Table 1. 

In stereology, a two-dimensional ( d = 2) structure is considered as a pla­
nar section of a three-dimensional ( d = 3) structure. The fundamental stere­
ological equations with the parameters presented in Table 1 are given below 
[3, 4, 10]: 

and 

Functions 

4 
Sv =-LA, 

7r 

(2.2) 

(2.3) 

(2.4) 

The specification of statistical functions (and some additional parameters) 
is given below, firstly for random point field, 2 = <1>, and then for the full 
dimensional structure in R d, for which different particle system models are 
taken also into consideration. 

2.1. Random point field [4) 

A structure cp, (~ = cp), in form of a system of isolated points XI, x2, ... 
. Rd. 1n , 1.e., 

(2.5) 

is a point field. It will be considered as realization of a random point field 
<l> c Rd of point density P!vfd = .X, Fig. 2. 

Probability function 

For a fixed T, k is the number of points in cp n T (k = 0, 1, ... ). For the 
random set <l> n T the number k is realization of a discrete random variable 
X with the probability function (PF) 

(2.6) 
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FIGURE 2. Two-dimensional (d = 2) point field. 

Distance distribution 
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Let l be the distance between a given point Xi E <p and a point which is 
its nearest neighbour (NN) in <p, i.e., 

l = ~(xi, <p\xi) , 

where ~ denotes the distance between two sets. 

(2.7) 

For a random structure <p, the number l is realization of a continuous 
random variable X with probability distribution function (PDF) 

Z(l) = Pr(X < l). (2.8) 

It can be shown [4] that the NN distance Z(l) - function is determined by 
the PF given by Eq. (2.6). 
Let T(xi, l) be a sphere of radius l centred at Xi E <p. The sphere volume is, 
Md = Wd zd where 

Wd= 
{

7f ford= 2, 
4
; ford= 3. 

(2.9) 

For a fixed l and random set <I> n T(xi, l), Z(l) obeys 

Z(l) = 1- p (k = 1;wdzd), (2.10) 

where p(·) gives the PF-function value at l for fixed k = 1 (i.e. the origin 0) 
in the sphere. 

Pair correlation function 

A possible form of the so-called pair correlation function (PCF) g(r) for 
a point field <I> of point density A is of the form 

( ) 
_ A(r) 

g r - A ' (2.11) 
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2.5 --------------, 

pair correlation functions g(r) 
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FIGURE 3. Typical PCF g(r) functions . 

where .A(r) is the point density of <I> at the distance r from a point of <I>. The 
PCF g(r) describes a statistical relation between points in <I>. If .A(r) = .-\ , 
then g( r) = 1, which indicates a statistical independence and a lack of inter­
action between points in <I>. However, g( r) #- 1 indicates points interaction 
in 2, i.e. , points attraction (g(r) > 1) or points repulsion (g(r) < 1). Figure 
3 shows the plots of typical PCF's. 

2.2. Full dimensional random structure [4) 

2 is a d-dimensional random structure in Rd. 

Size distribution 

Let u C R d be a fixed unit vector. The local size of a d-dimensional 
structure ~ at the point x in direction u is the chord length D(x, u) = D , 
Fig. 4, (usually x = 0) . For 2, the chord length is a random variable with 
PDF F(D) and mean (D) . 

In stereology the size PDF F(D) is independent of the structure dimen­
sion d. As a consequence, the following stereological equation exists [3) 

where 

Mttd 
(D) = Wd -----cl=1 ' 

MMd 

ford= 2, 

ford= 3. 

(2.12) 

(2.13) 
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FIG URE 4. Local sizeD (chord length) of the ~-structure (in points: x and y , for 
the u-direction). 

Covariance 
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Let h E R d be a point at the distance r from the origin 0 (or a vector of 
r-length). The points x and x + h are at the distance r. 

The covariance C ( r) of a random structure 2 is equal to the probability, 
that the points x, x + h belong to 2, i.e. , 

C(r) = Pr(x E 2 and x +hE 2). (2.14) 

The covariance C(r) describes the spatial distribution of 2 in Rd. The basic 
properties of the C ( r )-function are as follows 

(2.15) 

and 
C'(O) = - Wd-1 Md-1 

dwd Md 
(2.16) 

where wd is given in Eq. (2.9) and w1 = 2. 
It should be noticed that from the independence of the covariance of the 

space dimension d and from Eqs. (2.15) and (2.16) result the stereological 
equations (2.2) and (2.3). 

Let C1(r) and C2(r) denote the probability that the points x , x + h 
belong to the same part of the structure and to different parts, respectively. 
It follows that: (i) for r = 0, C1 (0) = C(O) and C2(0) = 0; (ii) for r = oo, 
C2(oo) = C(oo) and C1(oo) = 0. The covariance C(r) can be written [11] as: 

(2.17) 
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The C1-function characterizes the local properties of the :=:-structure; how­
ever, the C2-function characterizes the spatial distribution of 3. The C1 is of 
the form 

00 

C1(r) = C'(O) j(D- r)dF(D). (2.18) 

r 

Equation (2.18) connects the covariance C(r) with the PDF F(D). 

2.2.1. Particle system. Let ~(xi) c Rd be a particle centred at the point 
Xi (e.g. center of the mass) . The structure 

(2.19) 

is a particle system, Fig. la, c. The structure~ is realization of a random set 
3; however, the particle centers of~ are realization of a point field cl> of point 
density A. The particle density N Md of 3 is given by 

(2.20) 

The particle size distribution function 

Let D be the size of a particle. For the structure~ ' D E(O,Dm), Dm is the 
maximal size. For a fixed D , N Md(D) is the density of particles of the size 
smaller than D. The cumulative particle size distribution function N Md (D) 
forD E(O,Dm) is non-decreasing and 

forD= 0, 

forD= Dm. 

The PDF F(D) can be written as follows 

Convex particle system in R3 

(2.21) 

(2.22) 

Let 3 c R3 be a random set of convex particles with particle density Nv 
and mean size (D). 

Let h be a unit vector and E , Er be a pair of parallel planes at a distance 
r and perpendicular to h. 

For a fixed r , N A ( r) is the particle sections density in R 2 = E for the 
particles, which also form a section with Er. For variable r , the monotonically 
decreasing function N A ( r) is specified by 
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( ) { 
N A for r = 0, 

NA r = 
0 for r = Dm, 

where Dm is the maximal particle thickness in the h-direction. 

291 

(2.23) 

If F3(D) denotes the PDF of particle thickness Din the h-direction, then 
the functions NA(r) and F3(D) satisfy the equation 

Drn 

NA(r) = Nv J (D- r) dF3(D). (2.24) 

r 

From Eq. (2.24) result further properties of the NA(r)-function. For r = 0, 
NA(r) = NA and 

Drn 

NA = Nv J D dF3(D). 
0 

(2.25) 

Because for isometric 2 the integral in Eq. (2.25) is independent of the h­
vector direction, it gives the mean particle breadth (D). Then, the first 
derivatire of N A ( r) may be expressed as follows 

N~(r) = Nv [F3(D = r)- 1]. 

Because for r = 0, F3(0) = 0, from Eq. (2.26) it results 

Nv = -N~(O). 

Taking into account Eq. (2.27), Eq. (2.26) can be written in the form 

N~(r) 
F3(D = r) = 1- N~(O)" 

(2.26) 

(2.27) 

(2.28) 

Equations (2.27) and (2.28) are of importance in the stereology of convex 
particles, because they determine the measurement method of the parameter 
Nv and the F3(D)-function as well [10). Additionally, Eq. (2.27) can be used 
as a basis for Nv -measurement in a system of convex particles by means 
of the so-called disector method [4, 12]. 

System of spheres 

For a random system of spheres and its planar section, with diameter 
distribution functions F3 (D) and F2 (D), respectively, the function C 1 ( r) in 
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Eq. (2.17) is of the form [4, 10]: 

00 

~ j D2 
arccos (;)- ~J1- (;fdF2 (D) ford= 2, 

r 
00 

~ J(D- r)2 (2D + r) dF3(D) ford= 3. 

r 

(2.29) 
From the C 1 ( r) - independence on d and from Eq. ( 2. 29) a possible form of 
the Wicksell equation results [1, 10]: 

Drn 

Fz(D) = 1- ~~ j Vx2 - D 2 dFa(x). 
0 

(2.30) 

It is possible to transform Eq. (2.30) to an Abel type integral equation, which 
has analytical solution with respect to the unknown F3(D) , [1]. 

PCF's , g3(r) and 92(r) for sphere- and circle centers , respectively, satisfy 
a stereological equation, which in a general case is of complex form [4]. In 
the simplest case with random non-overlapping spheres of equal diameters 
there exists the following equation [ 1]: 

D 

glz(r) = 2D-2 j (D- x)ga (V x2 - D 2) dx for r;;, 0. (2.31) 

0 

3. Models 

The following models will be taken into account: 1. the Poisson point field, 
2. the Matern cluster point field, 3. the Boolean model , and 4. the Stienen 
model. 

3.1. Poisson point field [4) 

A random point field <I> c Rd of point density -\ is a Poisson point field 
(P-field), Fig. 2, when: 

(i) for a given test set T c Rd of measure Md the PF is of a form 
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(ii) for every pair of disjoint test fields T1, T2 C Rd, the numbers of points 
of the random sets <I>nT1 and <I>nT2 are independent random variables. 

From Eqs. (2.10) and (3.1) follows the NN distance PDF Z(l) in the form: 

Z(l) = 1- exp ( -Awdzd) , (3.2) 

where wd is given in Eq. (2.9). According to Eq. (3.2) for a P-field the PDF 
Z ( l) is of the Weibull type. 

From (ii) it follows that A(r) = A and consequently g(r) = 1, which 
indicates a lack of interaction between points in a P-field. 

3.2. Matern cluster point field (4] 

The Matern cluster point field is formed on the basis of a homogeneous 
P-field of point density Ao, in Rd. 

Every point of the P-field is assumed to be the center of spheres s(xi, R) 
of radius R. <p(xi, R) is cluster of points in sphere s(xi, R) . The number of 
cluster points is a random variable of Poisson distribution with mean m(R). 
The <p(xi, R)-cluster points are independently and uniformly distributed in 
the sphere s(xi, R). The union of clusters <p(xi, R)(i = 1, 2, ... ) 

00 

<p = u <p(Xi , R) (3.3) 
i=l 

is realization of a random point field <I> C R d, i.e., the M a tern cluster point 
field, Fig. 5. Its point density A may be expressed as follows 

A= Aom(R). (3.4) 

The PCF g( r) is of the form 

{ 
1 + f(r;RL f 0 -"" -"" 2R 

\ d a 1 or ::::::: r ::::::: ' g(r)= O "0 wdr-
otherwise, 

(3.5) 

where 

{ 

~2 (arccos 2~- 2~ V1- ( 2~) 2) 
f(r; R) = 1r 

~ ( R - ~) 2 
( 2R + ~) 

ford= 2, 
(3.6) 

ford= 3, 

for 0 < r < 2R; otherwise f(r; R) = 0. The f(r; R) function is the probability 
density for the distance between two independent random cluster points. 
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FIGURE 5. Two-dimensional (d = 2) Matern cluster point field. 

A graph of the PCF g(r) is given in Fig. 3 for g(r) > 1. From Eq. (3.5) and 
Fig. 3 a point attraction results, which is limited to the distance of r = 2R. 
The Matern cluster field is characterized by three parameters: Ao, R and 
m(R). 

3.3. Boolean model (4] 

The Boolean model is formed on the basis of a homogeneous P-field of 
point density A, in Rd. 

Let a compact d-dimensional set, i.e., the figure ~o C Rd, characterized by 
a parameter M 8

, be realization of a random figure 3 0 of definite distribution 
and the mean (M8 (3o)) (s = d, d-1). The 3i C Rd, i = 1, 2, ... is a sequence 
of independent identical distributed random figures of the same distribution 
as 3o. The d-dimensional figure ~(xi), i.e., a realization of 3i, has the center 
at Xi E <p. The structure 

00 

(3.7) 

is a realization of a random structure 3 C R d , the so-called Boo lean model, 
Fig. 6. 

The fundamental stereological parameters are as follows 

M~d = 1- exp [-A ( Md (3o))] , (3.8) 
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FIGURE 6. Two-dimensional (d = 2) Boolean model for identic circles. 

and 

(3.9) 

The covariance C ( r) is of the form 

(3.10) 

where 

(3.11) 

We observe that a planar section of spatial Boolean model is a two­
dimensional Boolean model. 

3.4. Stienen model [13] 

The Stienen model is formed on the basis of a homogeneous P-field of 
point density A, in Rd. 

For the P-field the NN distance PDF Z(l) is given by Eq. (3.2). Let 
~ (Xi, D (Xi)) be a sphere centred at the point Xi E c.p and of the diameter 

d 
D(xi) = al(xi) m for a, m > 0; (3.12) 

where l(xi) is given by Eq. (2.7). The structure 

00 

~ = U ~(xi , D(xi)) (3.13) 
i=l 
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FIGURE 7. Two-dimensional (d = 2) Stienen model (m= 2, a= 1). 

is realization of a random structure 3 C R d, the so-called Stienen model of 
particle density N Md = A. Figure 7 shows realization of a two-dimensional 
Stienen model (d = 2, m= 2, a= 1). 

From Eq. (3.12) it results that for given a and m the diameter D is 
a monotone function of l , i.e., D(l) . If l(D) is the reciprocal function of 
D(l), then the properties of the PDF determine the following identity for the 
diameter and NN distance PDF's: 

F(D) = Z [l(D)] . (3.14) 

Taking into account Eqs. (3.2) and (3.12) in (3.14) results in 

(3.15) 

The obtained PDF F(D) is of a Weibull type. The k-th moment (Dk) for 
the Weibull distribution is of the form 

For k = 1, Eq. (3.16) gives the mean diameter (D). Taking into account (D) 
in Eq. (3.15) results in 
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FIGURE 8. Covariance C(r) of the Stienen model (d = 3, m= 3, a= 1). 

The Stienen model involves three parameters, i.e., N Md, m and a. A par­
ticular case (d = 3, m = 3, a = 1) is the classical model [14]. A model 
(d = 3, m= 3, a~ 1) was analysed in [15]. 

The fundamental stereological parameters Mfvtd for s = d- 1, d, are as 
follows 

(3.18) 

and 

M1vtd = ;; (nd)NMd· (3.19) 

The expression of the moments (Dd-l) and (Dd) in Eqs. (3.18) and (3.19), 
respectively, by Eq. (3.16) gives the relation between stereological and model 
parameters. 

The analytical form of the covariance C ( r) for the Stienen model is not 
known. Figure 8 shows the function C(r) for a model (d = 3, m= 3 and a= 
1) obtained by simulation [11]. 

Other properties of Stienen model are: 

(i) the sphere centers PCF 93(r) = 1; 

(ii) a planar section of spatial model does not form a two-dimensional 
Stienen model. 

Planar section 

From simulation it results that the PF for point field of circle centers in 
a planar section of the Stienen model is of the form: 

(3.20) 
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FIGURE 9. Pair correlation function g2 (r) for circle centers on planar section of 
the Stienen model (S) (d = 3, m= 3, a= 1). 

where p E [0; 0.5] and N(A) denote the greatest number of the points in 
T [16). From Eq. (3.20) it results, that circle centers form a binomial point 
field in bounded T. 

Fig. 9 shows the circle centers PCF g2 ( r) for a planar section of the Stienen 
model (d = 3, m = 3, a = 1), [17). For a small distance r, 92(r) < 1, 
repulsion of points occurs. 

4. Applications in metallography 

4.1. Arrangement of particles in planar section of Fe3 C-dispersion 
in steel [18] 

The aim of the investigations was the model description of particles ar­
rangement of a non-uniform Fe3C-dispersion in Fe-0.15%C carbon steel. 

The qualitative metallography shows that the Fe3 C-dispersion structure 
is isometric, but when compared to a uniform spheroidite (Fig. le) it is non­
uniform with areas having quite different fractions of particles, Fig. lOa. 

In order to perform the quantitative description of particles distribution, 
the Fe3 C-dispersion was represented by a two-dimensional point field in the 
plane R 2 , which is formed by the particle center points, Fig. 1 Ob. Its funda­
mental quantitative characteristics are: the point density ,\ (it is equal to the 
particle density NA) and the PCF g(r). The co-ordinates of the points were 
measured (at x 1340 microstructure magnification) by an image analyser for 
N = 6431 particles in 8, 150x215 mm test rectangles T. The empirical point 
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FIGURE 10. Disperse Fe3 C-phase in Fe-0.15%C steel : (a) microstructure; (b) point 
field of particle section centers. 

density is, A = 4.5 x 104 mm - 2 . The PCF g( r) was determined by an edge 
corrected kernel estimator [4]. 

Let Xi ( i = 1, 2, ... , n) denote points of the analysed point field in T. The 
kernel estimator is of the form 

1 n n kh ( r - r ij) 

g(r) = 271'..\2 L L r .. A(T n T )' 
i=l (j#i)=l t) X y 

( 4.1) 

The summation runs over all points Xi, i = 1, ... , n , in the window of obser­
vation T ; r ij is the distance between points Xi, x j; Tx is the set of all points 
of the plane having the form z = w + x for w E T; A(·) is the area and kh ( ·) 
is the kernel function. A possible kernel function is of the form 

for ltl < h, 
(4.2) 

otherwise, 

where h is a band-width parameter (h ~ CA -l/3 for 0.1 < c < 0.2 [1]) . 
Figure 11 shows the empirical PCF g( r) , which was determined by using 

Eqs. (4.1) and (4.2) . 
Its form is different from that of the Poisson point field, i.e., for r < 

0.016 mm, g(r) > 1, and is similar to a PCF of cluster point fields (Fig. 5). 
Therefore, the empirical point field was described by the Matern cluster 
point field. For the measured characteristics of the empirical point field, i.e., 
the parameter ,\ and the PCF g( r), the model parameters R and Ao were 
determined. From Eqs. (3.5) and (3.6) ford = 2 it results that Rand Ao may 
be expressed as follows 

R = ~g(O)- 1' 
71' g' (0) 

(4.3) 
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FIGURE 11. Pair correlation function g(r) for the point field of FeaC-particle 
section centers of Fe-0.15%C steel compared to PCF of the Matern cluster point 
field. 
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FIGURE 12. Images: (a), (b) Matern cluster point field, (c) FeaC-particle centers. 
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( 4.4) 

where g'(O) denotes the first derivative of the PCF g(r) with respect to the 
r-variable at r = 0. 

The model parameters are as follows: R = 7.6 x 10-3 mm and Ao = 
8.9 x 103 mm-2 . Then m(R) was calculated with Eq. (3.4), m(R) = 5. For 
the obtained parameters Rand Ao, the model PCF g(r) was calculated with 
Eqs. (3.5) and (3.6) ford= 2. Figure 11 shows the g(r) -graph compared to 
the empirical function, giving an acceptable agreement. 

As an example, Fig. 12a,b presents two simulated images of the model 
which approximates the empirical point field. It indicates that, in principle, 
the structure of the. model approximation is similar to the empirical point 
field (Fig. 12c) in the meaning that there exist some features of a distinct non­
uniformity. However, in the approximation image the recognition of separate 
clusters is not feasible. It means that the relatively simple model, i.e., the 
Matern cluster point field, is flexible and enables the description of point 
systems of quite different structures. 

4.2. Description of a disperse Fe3C-phase in steel by Stienen model 
(13] 

A hardened specimen of Fe-0.6%C carbon steel was annealed in vacuum 
at 700°C for 600h, [13, 19-20). Figure 13 presents a typical microstructure. 

Quantitative analysis of the microstructure was performed in 80 x 80 mm 
squares on images at x 2000 magnification. For 1540 particle sections the 

. 0 
C> 
o• 

FIGURE 13. Fe-0.6%C steel microstructure with Fe3C-dispersion. 
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FIGURE 14. Fe3C-particle section diameters PDF F2 {D) in logarithmic co­
ordinates. 

diameter D was measured a~d the particle center was marked by the TG Z-3 
( Opton) particle size analyser. 

Figure 14 shows the PDF F2(D) for Fe3C-particle sections (in logarithmic 
co-ordinates) in comparison with the Rayleigh PDF given by Eq. (3.17) for 
m = 2 in the form 

(4.5) 

It can be assumed that the empirical function coincides approximately with 
the Rayleigh one. Because the Rayleigh PDF is invariant due to the Wicksell 
transformation Eq. (2.30), it follows that 

F3(D) = F2(D). (4.6) 

The parameters of the Fe3C phase are: Nv = 9.5 x 106 mm- 3 and (D) = 
2.3 x 10-3 mm. 

The circle centers in a planar section of the Fe3 C-dispersion form the 
empirical point field of the point density).= NA = 2.2x 104 mm-2 . Figure 15 
shows the empirical PCF 92(r) (determined by using Eqs. (4.1) and (4.2)) 
compared to the PCF of Stienen model for m = 2, giving an acceptable 
agreement. 

We conclude that: (i) the empirical PDF F3(D) for sphere diameters 
follows the Rayleigh PDF; (ii) the particle sections PCF 92(r) is similar to 
the circle section PCF of the Stienen model for m = 2; (iii) the point fields 
of Fe3C-particle section centers are of a binomial type [21]. 
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FIGURE 15. Pair correlation function g2(r) for the point field of Fe3C-particle 
section centers of Fe-0.6% C steel in comparison with PCF for planar section of 
the Stienen model (S) . 

As a result, one can assume that the Fe3C-dispersion follows the Stienen 
model for m = 2, i.e., the particle centers form a Poisson field (they are 
arranged at random in space, the PCF 93 ( r) = 1), while the particle sizes are 
statistically dependent and determined by the nearest neighbour distances. 

As an example, Fig. 16 shows simulated planar section of the Stienen 
model compared to the Fe3C-sections in a circle approximation. 

(a) (b) 
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FIGURE 16. Planar section of the: (a) Fe3C-dispersion in circle approximation; 
(b) Stienen model for m = 2. 
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