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These notes contain the contents of four lectures delivered at the Random Mate­
rial Microstructures workshop held at the Centre of Excellence for Advanced Ma­
terials and Structures, Warsaw, Poland. The lectures cover the following topics: 
(1) statistical characterization of random heterogeneous microstructures, (2) pro­
babilistic models and sample generation for polycrystalline materials, (3) probabi­
listic models and sample generation for multi-phase materials, and ( 4) application 
of probabilistic material models to problems in small scale fracture. 

1. Data types and statistical characterization 

In attempting to develop probabilistic models for material microstruc­
tures, and implement them for application to problems in solid mechanics 
such as fracture, the modeler / analyst must at all times base the approach on 
physical reality. The physical reality to which the analyst of heterogeneous 
material microstructures must refer is the set of properties and features of 
the material microstructures which can be measured experimentally. 

These notes address two broad classes of materials, composites and poly­
crystals. These two encompass most of the materials commonly used in engi­
neering applications today. In this section we concentrate on the types of data 
which are available experimentally for each of these two classes of materials, 
and a discussion of the types of statistical quantities which can be derived 
from the experimental data. It is these statistical quantities which will be 
used to motivate and calibrate the probabilistic material models which will 
be presented in the second and third sections. This section is organized into 
two main parts: 

1. general statistical quantities, and 

2. material specific statistical quantities. 
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1.1. General statistical quantities 

The most general means of representing a material microstructure in a 
given domain S is as a function which describes some property of the material 
at all points in S. Since we concern ourselves primarily with random, hetero­
geneous materials here, this function must be considered random. Therefore, 
for the remainder of these notes, the random field will be adopted as the 
preferred representation for random material microstructures. In its most 
general form we denote this random field by Y(x) where Y E JRn is the, 
possibly vector valued, random field, and x E JRm is a point in S, which 
is m-dimensional. This random vector field representation can be made to 
describe the material microstructure in as great a degree of detail as desired. 

Example 1. The microstructure of concrete can be represented by the 
random vector field 

Y(x) = (D(x), E(x)]T (1.1) 

where x E 1R3 is a position vector, and D and E are the density and elastic 
modulus respectively of the material at x. The random field can take values 
in an interval of the real line to capture the highly detailed variation of the 
local material properties, or, alternatively, concrete can be considered a three 
phase composite, in which the phases are the aggregate, the cement paste, 
and voids. In this case the random field Y(x) can take only three distinct 
values depending on which phase includes x. 

Example 2. The crystallographic orientation of a crystalline solid can 
be described by the vector of three Euler angles [4>1 , <I>, </>2]. The orientation 
can in turn be used to derive the anisotropic constitutive law for the local 
microstructure. Thus, the random field representation 

Y(x) = [<I>I(x), <I>(x), </>2(x)]T (1.2) 

with x E 1R3 defines the microstructure of a three dimensional polycrystal 
with enough fidelity that grain geometry and material properties can be 
inferred. 

Example 3. Thin filamentous materials can sometimes be modelled as 
one dimensional. For the purposes of a model useful in linear elastic ana­
lysis, an appropriate random field representation for such a microstructure 
would be 

Y(x) = E(x) (1.3) 

where x E 1R represents the position along the length of the material. 
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1.1.1. Densities, distributions and moments. We now proceed from 
our understanding of material microstructures as an example of a random 
field to develop some statistical quantities which can be used to describe the 
microstructure. These will all correspond to probabilistic quantities describ­
ing the random field, the intention being that the statistics can be estimated 
from experimental data in order to calibrate the random field models. 

These notes are meant to be self contained, and therefore we begin with 
some elementary descriptors of the random field. The descriptors are defined 
in as much detail as necessary for conceptual understanding. For more de­
tailed definitions the reader should consult any of several appropriate texts 
on probability, statistics, and random processes/fields [10, 15, 18, 33). 

The joint marginal cumulative distribution function of the random field is 
denoted by F(y, x), a function which is monotonically non-decreasing in any 
of the Yi directions, and satisfies the limiting conditions limy-+oo F(y, x) = 
1 and limy-+-oo F(y, x) = 0. This function can be defined in terms of a 
probability statement by 

F(y,x) = P(Y1(x) ~ YI, ... , Yn(x) ~ Yn] (1.4) 

at point x. The same information is contained in the joint marginal probability 
density function f(y, x) which is always non-negative and satisfies 

00 00 

J · · · J f(y, x)dy1 ... dyn = 1. (1.5) 

-oo -oo 

Each of these functions is here given as depending upon position x to 
indicate that the local statistical properties of the microstructure can vary 
with position. When y E lRn, n > 1, the marginal cdf and pdf are joint dis­
tribution and density functions respectively. It can be prohibitive to obtain 
sufficient data to arrive at confident estimates of the joint density and distri­
bution functions if the microstructure is to be characterized by a multivariate 
random vector. It can also be difficult to efficiently generate realizations from 
such multivariate joint density functions. For those reasons a reduced descrip­
tion of the density and distribution functions is often utilized, the marginal 
distributions and densities. The marginal distribution and density give the 
probability law of the individual components of Y(x) independent of the 
other components. The marginal density functions are determined from the 
joint density function by 

00 

fi(y, x) = J f(y, x)dy1 ... dyi-1 dyi+! ... dYn· (1.6) 

-oo 
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In practice the marginal densities are directly estimated from experimental 
data rather than derived from the joint densities. 

Probability density and cumulative distribution functions give informa­
tion about the random character of a material microstructure at a particular 
point. In heterogeneous materials, however, spatial characteristics of the ran­
domness may be more important than the pointwise random characteristics. 
For example, when considering the problem of flow through a porous medium, 
the connectivity of the void phase is more important than the volume fraction 
of the void phase in determining permeability. 

In characterizing the spatial variability of microstructures we concentrate 
first on the correlation and covariance functions of the random field Y ( x). 
The correlation function is defined by 

r(x, z) = E[Y(x)Y(z)T] (1.7) 

where x, z are position vectors and E[·] is the expectation operator so that 
rij(x, z) = E[Yi(x)Yj(z)]. By removing the mean from the computation of 
the correlation function one obtains the covariance function 

c(x, z) = E[(Y(x) - JL(x))(Y(z) - JL(z))T] (1.8) 

where JL(x) = E[Y(x)] is the vector of mean values of Y(x). Lastly we define 
the normalized covariance function, also referred to as the scaled covariance 
function which has components 

Cij(x, z) 
Pij (x, z) = ( ) ( ) 

ai x aj z 
(1.9) 

where ai, aj are components of the vector of standard deviations of Y(x). 
The normalized covariance function takes values between -1 and 1. The com­
ponent Cij(x, z) gives the degree of linear dependence between the random 
variables Yi(x) and }j(z). It is important at all times to recognize that lack 
of correlation does not imply independence of the random variables. 

Example 4. The random variables X rv N(O, 1) and Y = X 2 are not 
independent since Y has a functional dependence upon X. The covariance of 
the two random variables, 

E[X(Y -1)] = E[XY]- E[X] = E[X3
]- E[X] = 0 (1.10) 

since the third moment of a standard normal variable is zero. These random 
variables are said to be uncorrelated, but are not independent. 

With the statistical descriptors defined thus far it is possible to describe 
several packages of quantities which can form partial probabilistic character­
izations of the material microstructure. 
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1. The second moment description consists of the means J.L(x) and the 
correlation function r(x, z). 

2. These can be augmented with the marginal distributions Fi(y, x) or 

3. when possible, with the joint marginal distribution F(y, x). 
The second of these descriptions, combining the second moment properties 
with the marginal distributions, provides a rich characterization of the mi­
crostructure through the use of quantities which can typically be easily es­
timated from experimental data. The drawback of these characterizations is 
that they provide only a partial description of the microstructure's proba­
bilistic character. A full description can be obtained only by determination 
of all of the finite dimensional distributions F(yb ... , Yl; x1, ... , xz) of the 
random field. Collection of this information is impractical, and so, in analysis 
and modelling, a reduced characterization must always be employed. 

In all of the preceding we have included a positional dependence in the 
notation, for example, F(y, x) for the cdf and r(x, z) for the correlation 
function. This notation implies the. assumption that the random field is 
non-stationary, that is, its probability law varies with position. In many mi­
crostructural modelling situations it is appropriate to assume the microstruc­
ture to be statistically stationary. A rigorous application of the concept of 
stationarity requires that all of the finite dimensional distributions of the 
random field are invariant under translations. This concept of stationarity 
need not be applied in its entirety in order to significantly simplify the sta­
tistical characterization of the microstructure. If we assume stationarity with 
respect to the marginal distributions and densities, and the covariance and 
correlation functions, the following simplifications can be made: 

f(y, x) = f(y), 

F(y, x) = F(y), 

J.L(x) = J.L, 

u(x) = u, 

r(x, z) = r(d), 

c(x, z) = c(d), 

p(x, z) = p(d), 

where d is a vector of separation. 

(1.11) 

A further simplification can be made to the correlation and covariance 
functions if the field is assumed to be isotropic. In this case, the correlation 
function depends not on a vector of separation but only on a separation 
distance, so that r( d) ---+ r( d), and similarly for the covariance and scaled 
covariance functions. 
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As mentioned above, the second moment characterization of the mi­
crostructure random field may not provide sufficient characterization for a 
particular mechanics application. Since estimation of the finite dimensional 
distributions is prohibitively time consuming in many cases, higher order mo­
ments of the field may be used to further characterize the microstructure. For 
example, the third order correlation function is typically the next statistical 
quantity considered after the standard correlation and covariance functions. 
The third order correlation function of a random field is given by 

(ijk(u, v, w) = E[Yi(u)}j(v)Yk(w)] (1.12) 

where u, v, w are position vectors. The third order correlation function 
provides statistical information about the relationship between field values 
at three points in the microstructure. If the field is assumed to be sta­
tionary then (ijk(u, v, w) ~ (ijk(d12, d13, d23), and if it is isotropic then 
(ijk(u, v, w) ~ (ijk(dl2, d13, d23). While higher order correlation functions do 
contain additional statistical information about the microstructure, genera­
tion of material samples which match even a specified third order correlation 
function is an open topic of research [ 19]. 

1.1.2. N-point probability functions. To this point we have concen­
trated on statistical characterizations which are essentially standard in the 
random fields and processes community. We will now devote some attention 
to a set of statistical quantifiers which are commonly employed in the materi­
als characterization community, the n-point correlation functions also called 
the n-point probability functions. 

We will introduce the concept of then-point probability function through 
the example of a composite material consisting of two or more distinct phases. 
Once the n-point probability functions are defined for such materials, the 
concept is extended to polycrystalline materials. A more detailed description 
of the n-point probability functions is given in [35]. 

For a composite material with m phases the microstructure can be de­
scribed by a set of random fields which are the indicator functions Ii(x) 
which obey Ii(x) = 1 if x lies in phase i and Ii(x) = 0 otherwise, and satisfy 
I:~=l Ii(x) = 1, Vx E S. In general , n- 1 such random fields are necessary 
to completely define the composite microstructure if n phases are present. 

Example 5. For a two phase composite such as that shown in Fig. 1, the 
microstructure is completely defined by the indicator function h (x) since the 
indicator function for phase two can be determined by I 2 ( x) = 1 - I 1 ( x). 
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FIGURE 1. Two phase composite consisting of non overlapping disks. The mi­
crostructure can be described by the indicator function so that h ( x 1 ) = 1 and 
h ( X2) = 0 if the disks are considered phase 1. 

For a two phase composite such as that defined in the previous example, 
the 1-point probability function of phase i is 

(1.13) 

which gives the probability of finding phase i at location x. The 1-point 
probability function can also be thought of as giving the volume fraction 
cPi of phase i at location x provided we think of the volume fraction in an 
ensemble sense. 

Following on the simple example of the 1-point probability function, the 
n-point probability function is defined to be 

(1.14) 

which, since quantity in brackets is zero unless Ji (xj) = 1, 1 ~ j ~ n, also 
represents 

(1.15) 

the probability that all points Xi, i = 1, ... , n lie in phase i. The geometric 
interpretation of the 3-point probability function is given in Fig. 2 where the 
case is shown in which h (xi) = h (x2) = h (x3) = 1 if the inclusions are 
phase one. 

As the indicator random field for phase 1 provides information regarding 
the phase 2 indicator function, so the n-point probability functions of phase 
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FIGURE 2. The 3-point probability function gives the probability that all three 
vertices of a triangle will lie in a particular phase of the composite material. 

1 provide information about the corresponding phase 2 functions. Generally, 

n 

S~n)(x1, ... ,xn) = E[IJ h(xj)] 
j=l 

n 

= E[IJ (1- h(xj))] 
j=l 

n n 

= 1 - L sil) (xj) + L si2) (xjXk) 
j=l j<k 

n 

- L sP)(Xj,Xk,Xt) + ... + (-l)nsin)(xi, ... ,xn)· 
j<k<l 

(1.16) 

Similarly we might be interested in a two point function which combines 
information about the phases, 

(1.17) 

Just as for the density, distribution and correlation/ covariance functions, 
the n-point probability functions can be simplified by assumptions regard­
ing stationarity and isotropy. For a stationary, isotropic microstructure, the 

2-point probability function becomes 8~2) (d12) where d12 is a separation dis­
tance. In cases where stationarity and isotropy are valid assumptions, the 
n-point probability functions up to n = 3 can be estimated by examination 
of a planar section of a given material microstructure. This means that in 
practice these functions can be estimated from the types of micrographic 
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images which are commonly available. Estimation of higher order probabi­
lity functions requires high fidelity three dimensional images of the material 
microstructure which are only now becoming commonly available through 
techniques such as CT scanning and magnetic resonance imaging [22]. 

The 2- and 3- point probability functions have limiting properties which 
are of interest, and quantify important features of the microstructure. For 
the 2-point probability function, 

. 8 (2) ( ) 2 hm i d12 = cPi, 
d12-oo 

where cPi is the volume fraction of phase i. For the 3-point function, 

(1.18) 

(1.19) 

The above relations hold for the various permutations of the indices on the 
separation distances dij. 

One final property of the 2-point correlation function is its relation to 
the standard correlation function as introduced earlier. For a two phase mi­
crostructure which is represented by its phase 1 indicator function so that 
Y(x) = h(x), 

Si2)(x,z) = E[h(x)h(z)] = E[Y(x)Y(z)] = r(x,z). (1.20) 

That is, the 2-point probability function and the standard spatial correla­
tion function are equivalent. For materials with more than two phases re­
lationships exist between the n-point probability functions and the spatial 
correlation functions, but they quickly become complicated. 

We have so far based our definition of then-point probability functions on 
composite materials with distinct phases. This has simplified the introduction 
of the idea of these functions since the random field describing the composite 
takes discrete values. The remaining question then is how to define the n­
point probability functions for materials whose random field descriptions have 
continuous pdfs. 
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The example we concentrate on is that of a polycrystalline material [2]. 
A possible random field description of a polycrystalline material is 

(1.21) 

where the substitution cPl ~ wl, <I> ~ w2, cP2 ~ w3 has been made for the 
Euler angles to simplify the notation. Given this description of the polycrys­
talline microstructure, the 1-point probability function becomes 

s(l) (x) = f(y, x), (1.22) 

or, simply, the probability density function of the crystallographic orienta­
tion. This function is commonly referred to as the orientation distribution 
function, or 0 D F. The 2-point function then becomes 

(1.23) 

which is a 12 dimensional joint probability density function for the orienta­
tion at two points x, z. Even if stationarity and isotropy is assumed, so that 
S(2)(x,z) = f(YbY2;xl,x2) ~ S(2)(x,z) = j(y1,Y2;d12) we are left with 
a 7 dimensional pdf. Estimation of a pdf of such high dimension is experi­
mentally very difficult. While investigators have made such estimates for the 
2-point function, estimation of the 3-point function, which is 12 dimensional 
under the assumptions of stationarity and isotropy seems impractical given 
the current state of experimental observation of polycrystalline microstruc­
tures. For this reason we take recourse primarily to a characterization of 
polycrystals consisting of the second moment properties and marginal distri­
bution functions of the orientation. 

1.2. Polycrystal statistical quantities 

The statistical quantities introduced thus far are general in that they can 
be calculated for any microstructure which can be represented by a random 
field. When discussing polycrystalline microstructures, however, one further 
set of statistics can be quite important those that quantify the geometry of 
the random grain structure. Here we concentrate on quantifications of grain 
size, and neglect a discussion of grain shape. Shape, while important to the 
correct modelling of polycrystalline microstructures, proves very difficult to 
quantify in a meaningful statistical way. 

Grains are three dimensional volumes which are differentiated from neigh­
boring grains by a change in crystallographic orientation at the grain bound­
aries. The only true measure of grain size is therefore the grain volume. 
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Determination of grain volume is unfortunately highly difficult experimen­
tally. Some results have been obtained using serial sectioning methods [28] 
or by the chemical decomposition of a polycrystal into its constituent grains, 
which can then have their volumes measured. New three dimensional imag­
ing techniques hold the promise of more efficient direct measurement of grain 
volumes. 

The difficulty in obtaining measurements of grain volumes means that 
most often measurements of grain size are performed on two dimensional 
sections of three dimensional microstructures. Measurements of grain area 
can be obtained exactly by measuring the grain area directly, or approxi­
mately by determining the size of the largest possible inscribed circle for a 
given grain section. 

For one dimensional measurements, by far the most common, the typi­
cal approach is to use a line-intercept method. In this procedure a series of 
randomly oriented lines is superimposed on the two dimensional polycrys­
tal section. The lines are divided at intersections with grain boundaries, and 
statistics of the grain size are calculated from the lengths of the line segments 
so determined. The line-intercept method thus provides an estimate of the 
probability density of the one dimensional grain size. The remaining ques­
tion is how this statistic relates to the statistics of the actual grain volume. 
Experimental investigations [28] provide two significant results . 

1. The grain size distribution is well fit by a gamma distribution in 1, 2, 
or 3 dimensions. 

2. The average line intercept length L, the average grain area A and the 
average grain volume V are related by 

(1.24) 

where the constants cl and c2 are close to unity. 

These results show that an experimental quantification of the grain size dis­
tribution in one dimension provides a complete description of the actual grain 
size distribution of the microstructure. 

2. Probabilistic models for polycrystals 

In the first section statistical characterizations of random microstruc­
tures were discussed. In this section and the next we address procedures for 
modelling random heterogeneous polycrystals and composite materials. This 
section addresses polycrystals and the next composites. In the final section 
such materials will be used in an application to the analysis of the fracture 
of random microstructures. 
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We begin with some definitions of terms and features relevant to the 
modelling of polycrystalline microstructures, and then present, in turn, 
probabilistic models for the grain geometry and crystallographic orienta­
tion of polycrystals. We will close with a section addressing the genera­
tion of samples from the probabilistic models which match target statis­
tics determined from experimental measurements. Other approaches to the 
probabilistic modelling of polycrystals have been developed by other re­
searchers [36, 37, 3, 38, 13, 20, 8, 12, 39, 27). 

2.1. Definitions and features 

In seeking to develop models for random microstructures which are useful 
in the analysis of small scale fracture phenomena, the first question which 
must be answered is which features to include in any such model. Uncertainty 
in fracture phenomena in polycrystalline materials becomes particularly im­
portant when the length scale of the fracture is on the order of the grain 
size of the material microstructure. There are important material features at 
smaller scales which may dramatically effect the fracture behavior, such as 
dislocations and systems of dislocations, but here our attention is restricted 
to what might be called the grain scale. The most obvious feature of the grain 
scale microstructure is the grain geometry itself, which can be described by 
the network of grain boundaries which divides the material domain into in­
dividual grains. Also important will be the locally heterogeneous material 
properties of the microstructure. These material properties can be derived 
from the local crystallographic orientation, to be defined shortly. A descrip­
tion of the grain geometry and the crystallographic orientation therefore 
provides suitably detailed, if not complete, information about the grain scale 
microstructure for application to small scale fracture analysis. 

FIGURE 3. Definition of crystal coordinate system. 
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The atoms in a crystalline solid are arranged on a regular grid, or lat­
tice. There are a variety of different lattice configurations possible in real 
materials, such as body centered cubic, face centered cubic, and hexagonal 
close packed, but in each case the regular arrangement of atoms can be used 
to establish an orthogonal coordinate system (x~, x~, x~), called the crystal 
coordinate system (Fig. 3). The crystallographic orientation gives the trans­
formation from some reference coordinate system (x1, x2, x3) to the crystal 
coordinate system. 

There are numerous representations of the orientation, many of which are 
defined in detail in the book by Randle (32]. We will make use of three of 
these representations; 

1. The rotation tensor representation, in which the transformation from 
reference to crystal coordinates is given by a second order tensor R so 
that a vector x is transformed to crystal coordinates by x' = Rx. 

2. The Euler angle representation describes the transformation by a series 
of three rotations given by the angles c/>1, <I>, cP2. 

3. The axis/angle representation gives the transformation by a single ro­
tation () about a specified axis [UVW]. 

The Euler angle representation has the advantage that it is easily adapt­
able to the random field description of n1icrostructure which we have previ­
ously introduced. We will, as before, alter the notation slightly so that the 
orientation field is denoted by Y = [\ll1, W2, W3)T where W1 = cPt, W2 = 
<I>, w 3 = c/>2, and the capital letters are used to denote that the Euler angles 
are random. 

The axis/angle representation has the advantage that the angle() can be 
thought of as a low order, scalar descriptor of the amount of rotation needed 
to get from the reference to crystal coordinate systems. This feature of the 
axis / angle representation makes it particularly useful when referring to the 
m is orientation. 

Whereas the orientation gives the transformation from a reference to a 
crystal coordinate system, the misorientation gives the transformation from 
one crystal coordinate system to another. With respect to the microstruc­
ture, therefore, the misorientation quantifies the difference in orientation be­
tween two points in the polycrystal. Reference to misorientation is most 
commonly made with respect to the orientation discontinuity which arises 
at grain boundaries. Orientation typically undergoes only very small fluctua­
tions within grains, and larger, discontinuous variation at grain boundaries. 
Each grain boundary therefore has associated with it a specific misorienta-
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;:t 
Misorientation 

FIGURE 4. Schematic illustration of misorientation at grain boundary. 

tion (Fig. 4) which is calculated by 

M= R2R}1 (2.1) 

where R1, R2 are the rotation tensor representations of the orientation of 
grains 1 and 2 and the misorientation gives the rotation from R 1 to R2. From 
the rotation tensor representation M of the misorientation, the Euler angle or 
axis/angle representations can be derived. When the axis / angle form is used 
to represent a misorientation, the angle () is called the angle of rnisorientation 
and can be thought of as a scalar representation of the misorientation between 
two grains. That is, two grains which have a misorientation with large () are 
said to be highly misoriented. 

2.2. Grain geometry 

The probabilistic model selected for the grain geometry is the Poisson­
Voronoi tessellation. The model is described here in two dimensions, and the 
examples are also given in two dimensions, but are easily extended to model 
three dimensional microstructures. More detailed discussion of the properties 
of random tessellations can be found in the book by Stoyan (34]. 

Begin by defining a set of nuclei for the grains, denoted by { ni}, with 
ni E S where S is the microstructure domain. The grains, modelled by the 
Voronoi tessellation constructed on these nuclei, are defined by 

pi= {x E S :11 X- lli 11<11 X- llj 11, j # i} (2.2) 

where Pi is the polygon, or grain, associated with nucleus ni. The geomet­
ric meaning of this definition is that each polygon contains all the points 
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in S which are closer to its associated nucleus than any other. The physical 
assumption associated with using this tessellation to model polycrystalline 
materials is that the grains nucleate simultaneously and grow homogeneously 
and isotropically. 

The randomness in the grain geometry is introduced by modelling the 
nuclei as a Poisson point field N(S') where S' C S. A Poisson point field is 
governed by the intensity function A(x) which describes the average number 
of points per unit area at location x E S. Certain properties of the point 
field are defined by the intensity function, for example, the average number 
of points in realizations of the field on the domain S. This value is given by 

N = j >.(x)dx 

s 

(2.3) 

and is the mean value of the random variable N(S), the number of points 
in S, which is Poisson distributed with probability mass function 

(2.4) 

which gives the probability of having n points in S. 
The intensity function has so far been defined as a function of position, 

corresponding to the general assumption that the Poisson point field is non­
stationary, or inhomogeneous, and that the average grain size varies spatially. 
Assuming homogeneity of the intensity function renders the intensity a con­
stant so that A(x) = A. 

Example 6. Figure 5 shows two independent realizations of a homo­
geneous Poisson point field on the unit square with A = 100. In the left 
realization the total number of nuclei is n = 101, and in the right the total 
number is n = 83. 

Example 7. Figure 6 shows two independent realizations of the inho­
mogeneous Poisson point field with intensity function A(x) = 1000 11 x 11

3 on 
the unit square. The expected number of points in the realizations is 629, 
and the samples shown have 631 and 600 points respectively. 

Given this model for the grain geometry we are left to determine how 
to calibrate the intensity function to achieve a grain structure with the de­
sired average grain sizes. Intuition and dimensional arguments suggest that 
A ex A -l for the case of a homogeneous microstructure, but it is left to be 
determined what the constant of proportionality is, and whether a similar 
relationship holds for polycrystals with inhomogeneous average grain size. 
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FIGURE 5. Independent samples of a homogeneous Poisson point process . 
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FIGURE 6. Independent samples of an inhomogeneous Poisson point process. 

Before addressing these questions, we state the simplest case of calibration 
of the Poisson point field for the grain nuclei. Suppose that there is a sam­
ple two dimensional microstructure, occupying a domain S which has been 
found experimentally to consist of n grains. Provided that the assumption of 
stationarity is reasonable, the intensity can be calibrated as 

n 
,\ (X) = ,\ = J dA . (2.5) 

s 
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This calibration assures that, on average, sample realizations of the Poisson 
point field will have N = n nuclei. 

For polycrystalline microstructures with inhomogeneous average grain 
size, calibration by Eq. (2.5) cannot provide adequate information since the 
calibrated intensity function must be a function of position. A moving win­
dow technique can be applied, and is often the only practical method of esti­
mating the local average grain size. Such a technique has the disadvantage, 
however, of providing an estimate of the average grain size which depends 
upon the chosen window size. 

For this reason, we here introduce some results regarding the relationship 
between the intensity function .A(x) and the ensemble average grain size at x, 
denoted by (A(x)). The ensemble average grain size is determined by taking a 
fixed point x and, for a collection of q microstructure realizations, computing 

1 q 

(A(x)) = - L A(Pi(x)) 
q i=l 

(2.6) 

where A(Pq(x)) is the area of the grain containing x in realization q. 

We begin with the exact solution to a one dimensional , homogeneous 
average grain size, version of the calibration problem. Figure 7 shows the 
one dimensional version of the random grain geometry with nuclei and grain 
boundaries indicated. The problem is to determine E[L(x)] given the spec­
ified intensity A. This is in fact the inverse of the calibration problem, but 
solution provides the same information. 

Grain boundary X 

~ 
~- i- L(x) 

)( I )( )( - -~ )C 

n nN(x) n n 
N(x)-1 N(x)+1 N(x)+2 

FIGURE 7. Arrangement of nuclei and grains in a one dimensional Voronoi tes­
sellation. 

The result is obtained by conditioning on the number of nuclei to the 
right and left of x [5, 4], and is 

3 
(L(x)) = (L) = 

2
.A (2.7) 

provided x is far away from the boundaries. There is a boundary effect alter­
ing the proportionality constant within about five average grain sizes of the 
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microstructure boundaries. From this result we conclude that the ensemble 
average grain size is larger by one half than the inverse of the intensity. 

For inhomogeneous intensity the result is found, by Monte Carlo simula­
tion, to be 

3 
(L(x)) = 2.\(x). (2.8) 

Figure 8 demonstrates this result by showing the results of a Monte Carlo 
simulation in which sample microstructures were realized after calibrating 
the intensity function according to Eq. (2.8). The relationship is confirmed, 
again with a boun~ary effect evident. 

6.5 

6 

5.5 
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4 

3.5 

3 

2.5 

2~------~--------~------~------~~----~ 

0 20 40 60 80 100 

FIGURE 8. Results of Monte Carlo simulation showing relationship between av­
erage grain size and nucleus intensity for one dimensional microstructure. 

Monte Carlo simulations indicate that the inverse proportionality holds 
in two and three dimensions so that 

(A(x)) = 1.28.\(x) (2.9) 

and 

(V(x)) = 1.40-\(x). (2.10) 
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2.3. Crystallographic orientation 

In developing a random field model for the crystallographic orientation 
the first decision is what degree of detail is required in the model. Recall that 
we define the random field to be 

(2.11) 

and that we have a choice in developing a method for characterizing this 
field. One option would be to estimate as many of the finite dimensional 
distributions as possible. Here we will instead adopt the second moment 
characterization augmented by the marginal distributions of the random field 
components. The calibration functions are therefore Fi('l/J, x) and p(x, z), the 
marginal distributions and scaled covariance function respectively. 

The orientation random field has samples which are highly non-Gaussian 
and, in a polycrystalline material, discontinuous at the grain boundaries. 
Fields which have discontinuities with random geometry are very difficult 
to simulate. A simplifying assumption is therefore made by which Y(x) is 
assumed to be constant within each grain. The orientation field can be rep­
resented completely by a combination of the grain geometry and a set of 
random vectors Yi, i = 1, ... , n where n is the number of grains in the re­
alization and Y i gives the orientation in grain Pi. As will be seen in the 
discussion of sample generation, this simplification results in straightforward 
realization of the orientation field. 

The above assumption, which implies that the orientation field exists 
conditional upon the grain geometry, results in a direct connection between 
the statistics of the orientation field and the grain geometry, particularly 
between the scaled covariance function p(x, z) and the nucleus intensity .A(x). 

Suppose that there is an underlying scaled covariance function which is 
stationary and isotropic and which depends upon separation distance nor­
malized by the average grain diameter. We illustrate the concept using a 
scalar random field rather than the actual orientation field for simplicity, but 
the approach is equally applicable to vector random fields. Let the underly­
ing stationary, isotropic scaled covariance function be denoted by p( d) where 
d = d/VA is the non-dimensional separation distance and it is assumed 
that A = 1, that is, the underlying homogeneous microstructure has grains 
with average area equal to unity. The effective distance for two points in the 
sample microstructure with inhomogeneous average grain size is given by 

~'ich ~ro~ 
~~ v~ 

d(x, z) = J.A(u)/Cds ~2.12) ~ J 
~ ~ 

0 -1 

lxz a.. BteuoTEKA g 
~ 

~-

55S4ca ~~b 
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where lxz is the line segment connecting points x and z and C is a constant 
which is unity if A is intended as spatially averaged quantity and 1.28 the 
averaging is made in the ensemble sense. The non-stationary and anisotropic 
scaled covariance function of Y(x) is then given by 

p(x, z) = p(d(x, z)). (2.13) 

Example 8. Let S be a polycrystal with grain intensity given by 

.X( ) 1.3 
x = (3.5lxll + 900) p,m2 

(2.14) 

with S = [-2000, 2000]2. Assume C = 1 for the constant of Eq. (2.12). 
Figure 9 shows a realization of the grain geometry. Grains are smaller near 
x1 = 0 p,m. All dimensions are given in microns unless otherwise noted. 

FIGURE 9. Grain geometry realization for intensity function of Eq. (2.14) . 

In this example a scalar correlation function is used. Extension to mul­
tivariate fields, as required by the orientation, is straightforward. The un­
derlying spatially invariant correlation function is p( d) = exp( -d) so that 
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p(x, z) = exp( -d(x, z)) with d(x, z) defined by Eq. (2.12) . The normaliza­
tion of d by the average grain size is not denoted explicitly here since the 
average grain size is assumed to be unity. 

X= (0,0) X= (1 000,1500) 
.. 

0.5 0.5 

0 0 
200 200 

200 200 

z2-x2 -200 -200 z2-x2 -200 -200 
z1-x1 z1-x1 

FIGURE 10. Correlation function p(x, z) at x = (0, 0) and x = (1000, 1500) . 
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FIGURE 11. Anisotropy of correlation function p(x, z) at x = (1000, 1500). 
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The correlation function p(x, z) of the inhomogeneous microstructure is 
shown in Fig. 10 at the points x = (0, 0) and x = (1000, 1500). The corre­
lation decays more gradually at x = (1000, 1500) , where the average grain 
size is larger. Anisotropy of the correlation function is illustrated in Fig. 11 , 
which shows more persistent correlation in the direction of increasing x 1 . 

This corresponds to the direction in which the grain intensity decreases. 

Example 9. We now present some calibration statistics taken from an 
actual experimental observation of an aluminum 2024 polycrystal. The Eu­
ler angles , obtained by electron backscatter diffraction [26 , 1], are shown 
in Fig. 12. The total experimental sample consists of 14 000 data points on 
a sample which is 540 JLm x 540 JLm and contains 120 grains. Assuming ho­
mogeneity of the grain geometry the average grain size is 2430 JLm 2 and the 
corresponding intensity is 4 x 10-4 . The grain geometry indicates that the 
stationary and isotropic assumptions may apply, and, due to the lack of con­
tradictory evidence, these assumptions are made. The marginal histograms 

: 

6 6 : 6 

4 4 .. : 4 
:r :r :r 

2 2 2 

0 0 0 0 0 0 

FIGURE 12. Sample Euler angle measurements. 
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FIGURE 13. Sample Euler angle measurements. 
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are estimated for the three Euler angles (Fig. 13) , and illustrate the highly 
non-Gaussian nature of the data. 

The scaled auto- and cross-covariance functions have been estimated and 
are shown in Fig. 14. They exhibit an exponential decay a exp( -bd) which is 
best fit by the functions given in Table 1. 
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FIGURE 14. Scaled covariance function of experimentally obtained Euler angles. 



http://rcin.org.pl

72 S.R. ARWADE 

TABLE 1. Parameters of the orientation scaled covariance functions as estimated 
from data. 

aij bij 

Pu (d) 1.0 0.036 

P22(d) 1.0 0.035 

P33(d) 1.0 0.030 

p12(d) -0.57 0.030 

PI3(d) 0.14 0.021 

P23(d) 0.13 0.012 

2.4. Sample generation 

The generation of sample microstructures takes place in two stages: 

1. the generation of a sample grain geometry and 

2. the generation of a sample of the orientation field conditional upon the 
grain geometry realization. 

If a sample microstructure is to be generated in a domain S with a speci­
fied nucleus intensity function .X(x), the first step is to generate a realization 
of the nuclei ni. This is accomplished by the following procedure: 

1. Calculate N = fs .X(x)dx, the expected number of grains in the mi-
crostructure. 

2. Generate a realization n of the Poisson random variable N "'poiss(N). 

3. Determine Amax = max{.X(x) : x E S}. 

4. Generate a point n* which has coordinates uniformly distributed on S. 

5. Retain n* as one of the sample nuclei with probability .X(n*)/ Amax· 

6. Repeat steps 4 and 5 until n points have been retained as nuclei. 

Once the set of nuclei has been generated, it is straightforward to calculate 
the geometry of the grains {Pi} using one of several readily algorithms, for 
example the qhull algorithm implemented in MATLAB [31]. 

By assuming that the orientation is constant within each grain, the ori­
entation field can be specified by the set of random vectors {Y i}. Define the 
vectors to give the orientation at the centroid Ci of each grain Pi . 

We then arrange the orientation variables into a single large random vec­
tor Y which, combined with the already realized grain geometry, provides 
a complete description of the microstructure random field. The vector Y is 
defined by 

(2.15) 
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where Y k is the n- dimensional vector containing the kth Euler angle of the 
n grains in the microstructure. This random vector is characterized in second 
moment by the vectors it = [JL1, JL2, JL3]T and iT = [u1, u2, u3]T representing 
the mean and standard deviation of the orientation in each of the grains, as 
well as the 3n x 3n scaled covariance matrix 

[

Pn P12 P13] 
P = P21 P22 P23 

P31 P32 P33 

(2.16) 

where 

(2.17) 

The problem of generation of the sample orientation field is now reduced 
to the problem of generating a sample of the non-Gaussian random vector Y 
which matches the second moment properties of the orientation field and the 
marginal distributions. This is accomplished by use of translation models, in 
which the non-Gaussian random vector is created as a transformation of a 
Gaussian random vector, which is straightforward to simulate (18, 17, 19]. 
The only complication is that in transforming from the Gaussian to non­
Gaussian state, the covariance function of the random vector is distorted. 
The scaled covariance p

9 
of the underlying Gaussian random vector must 

therefore be determined before simulation can proceed. This calibration is 
carried out using 

00 00 

Jl-ii'J + a ;a J [i>;J ]kl = j j 9i ( u )gj ( v )</>( u, v; [i> g,iJ ]kl) du dv (2.18) 

-oo -oo 

where cj)(·, ·; p) is the bivariate Gaussian density function with correlation 
coefficient p, and 9i ( ·) is defined by 

(2.19) 

where Fi-l is the inverse cdf of Euler angle 'l1 i, and <P ( ·) is the standard 
Gaussian cdf. Equation (2.18) gives the non-Gaussian scaled covariance in 
terms of the Gaussian scaled covariance. Since the modeler usually has as a 
target the non-Gaussian covariance, the equation must be solved inversely to 
calibrate the Gaussian scaled covariance. 

Once the entries of p
9 

have been calculated, the sample generation pro­
cedure is as follows. First, a standard normal Gaussian random vector, of 
dimension 3n x 3n is generated with independent components, 

Z"' N(O, I) (2.20) 
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where I is the identity matrix. Next, Z has the appropriate correlation struc­
ture introduced by the operation 

V ={3Z (2.21) 

where {3 is the Cholesky decomposition of p
9

. Finally, the realization of Y is 
created by 

{ 

9I(Vi), l~i~n, 

'fi = 92(Vi), n < i ~ 2n, 

93(\li), 2n ~ i ~ 3n. 

3. Probabilistic models for composites 

(2.22) 

The previous section contained a description of a two part probabilistic 
model for polycrystalline microstructures which included the grain geometry 
and crystallographic orientation. In this section the topic of discussion will 
be composite materials, and appropriate probabilistic models for them. 

3.1. Scope and definitions 

The term "composite materials" encompasses a set of materials with a 
broad range of material microstructures, some random and some determin­
istic. Examples include traditional materials like concrete and even wood, as 
well as more modern materials such as fiber reinforced polymers, and carbon 
fiber composites. The microstructures of these materials differ significantly 
from one another. A concrete microstructure, for example, consists of arbi­
trarily shaped aggregate particles suspended in a cement paste matrix. In a 
fiber reinforced polymer on the other hand straight or curved fibers are em­
bedded in a polymer matrix. The fibers can be deterministically or randomly 
oriented. 

There is an abundance of models available for representing composite 
microstructures which consist of fibers embedded in a matrix, most of which 
are described in [35]. Many of these models seek to represent two dimensional 
cross sections. One feature of such materials is that the geometry of the 
reinforcement phase is generally deterministic, for example, a cross section 
of a fiber reinforced composite can be modelled by a Poisson point process 
giving the location of disks representing the fibers in the matrix. 

In this section we do not focus on this type of material, for which models 
are already well developed, but rather on a type of composite in which the 
geometry of the phases is entirely random. The material consists of multiple 
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phases, and the local volume fraction of each is denoted by r/>i for phase i, 
which we recall is the 1-point probability function of the phase. The mi­
crostructure of the n-phase material can be specified by the set of n - 1 
indicator functions Ji(x) , i = 1, . .. , n - 1. Examples of such multi-phase 
materials include concrete, which can be modelled as a two phase material 
consisting of the aggregate and the cement paste, or as a three phase mate­
rial with the inclusion of a transition zone between the aggregate and matrix, 
porous materials such as sandstone which consists of two phases, the solid 
phase and the void phase, and functionally graded composites, which have 
the additional complication of having non-stationary statistics. 

In this presentation two methods of generating realizations of such multi­
phase materials are presented and examples given. In both approaches, the 
sample generation technique relies upon discretization of the microstructure 
domain into pixels. The sample generation procedure then consists of as­
signing the appropriate phase to each of the pixels in order to recreate a 
realization of the microstructure. The first method presented here has been 
developed by Deodatis and Koutsourelakis (14]. It utilizes level crossings of 
a Gaussian random process to determine the location of the phases of a two 
phase material, and is given in outline form here. For details, reference should 
be made to the original papers of the originators. The second approach uses 
translation models to realize the non-Gaussian random field of the indicator 
functions representing the microstructure. 

3.2. Multiphase materials I 

As described previously, a random two-phase material can be described by 
the indicator function for phase one, It (x) which is unity if x is in phase one 
and zero otherwise. Since only one indicator function is necessary to describe 
the two phase material, the subscript will be dropped from this point on. 
This indicator function forms a binary random field which has samples with 
the discrete probability mass function 

p(u,x) = r/>1(x)6(u) + (1- c/J1(x))6(u -1) (3.1) 

where r/>1 (x) = E[I(x)] is the local volume fraction of the first phase and 
6( ·) is the Dirac delta function. The method described here will produce 
microstructure realizations which are stationary and which can match a tar­
get volume fraction and second order correlation function, equivalent to the 
2-point probability function defined by 

r(d) = E[I(x)I(x +de)] = P[both points x and x +de are in phase 1] 
(3.2) 
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where e is a unit vector with arbitrary direction and d is a scalar separation 
distance. 

The simulation scheme is first described for a one dimensional microstruc­
ture, and then the extension to two dimensions is presented. The one dimen­
sional microstructure domain S is divided into n pixels with centers located 
at the points {Xi} and length ~x. The first step in realization of the mi­
crostructure is the generation of a stationary series of Gaussian random vari­
ables { Zi} which have zero mean and unit variance and a correlation function 
denoted by p(ll i- j 11) = E[ZiZj]· This series of random variables can also 
be thought of as denoting the values { Z(xi)} of a Gaussian random process 
Z ( x) with correlation function p( d). A sequence of stationary binary random 
variables is generated from this sequence of Gaussian variables by 

{ 
1, zi-lzi < o 

Yi= 
0, otherwise. 

(3.3) 

which has correlation function r(ll i - j 11) = E[Yi}j]. From this series the 
random process describing the random microstructure is reconstructed by 

Y(x) = Yi, x E [xi- ~x, Xi+ ~x) (3.4) 

and has correlation function r(d). The microstructure random field takes a 
value of 1 in intervals where there is an odd number of zero crossing of the 
Gaussian random process Z ( x). 

The key procedure in generating realizations using this method which 
match a specified target correlation function r (d) is to identify the appro­
priate correlation function p( d) for the underlying Gaussian process. Deodatis 
and Koutsourelakis (14] have derived expressions for determining r(O), r(~x) 
in terms of p(O), p(~x), p(2~x). These expressions are 

1 
r(O) = </>1 = -arccos(p(~x)), 

7r 

r(~x) = ~ + 2~ (arcsin(p(2~x)- 2arcsin(p(~x)))). (3.5) 

The volume fraction is determined by the correlation coefficient of sequential 
elements of the Gaussian series { Zi} and the correlation of sequential ele­
ments of the microstructure series {Yi}, r(~x) is determined by the Gaussian 
correlations p(~x) and p(2~x). In general, exact expressions have not been 
developed for calculating the values r( m~x) for m > 1 from the correlations 
of the Gaussian series, though these values can be obtained by numerical 
calculation of fourth order integrals. 
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Example 10. Figure 15 shows three pairs of Gaussian and mi­
crostructure correlation functions. The corresponding microstructural sam­
ples (Fig. 16) show the ability of the method to reproduce materials with 
varying degrees of clustering. 
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FIGURE 15. Gaussian and binary correlation functions for two phase medium. 
(Figure courtesy Deodatis and Koutsourelakis [14]). 

Since exact expressions are not available for the relationship of the com­
plete Gaussian and microstructure correlation functions, a numerical opti­
mization scheme is adopted to determine the appropriate Gaussian correla­
tion function for matching a desired microstructure correlation function . In 
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FIGURE 16. Sample microstructures generated from the correlations of Fig. 15. 
(Figure courtesy Deodatis and Koutsourelakis [141). 

describing this procedure in outline form we will make use of the random pro­
cess notation for the underlying Gaussian Z ( x) and its correlation function 
p(d), and the microstructure Y(x) and its correlation function r(d). 

The optimization method makes use of the spectral density functions 
s(w), and s9 (w), which are the Fourier pairs of r(d) and p(d) respectively. 
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The procedure used to determine the appropriate Gaussian spectral density 
to match the target microstructure correlation is : 

1. Postulate a Gaussian spectral density function s9 (w) as an initial con­
dition on the optimization procedure. 

2. Compute the Gaussian correlation function p( d) using 

(3.6) 

where Nf is the number of frequencies at which the spectral density is 
evaluated, and sk is the value of the spectral density at these locations. 

3. Calculate numerically the corresponding microstructure correlation 
function r (d). 

4. Compare r(d) to the target microstructure correlation function 
Ttarget(d) using an error measure max{lr(d)- Ttarget(d)l} 

5. If the error is greater than the desired accuracy, make small perturba­
tions to s9 (w). There are many possible approaches to making these 
perturbations. At present, the authors of this method use random per­
turbations which, while not the most efficient approach, are very easy 
to implement. 

6. Repeat steps 2-4. 

7. If the new error is smaller than the previous error, accept the changes 
to s9 (w). If not , reject the changes. 

8. Repeat 6-8 until the desired accuracy is attained in the microstructure 
correlation function r( d). 

Once the spectral density/ correlation function of the underlying Gaussian 
has been determined, the sample generation procedure consists simply of 

1. Generate a sample z(x) of Z(x) using any of several available methods 
for sampling Gaussian processes (sampling theorem, spectral represen­
tation, etc.). 

2. Calculate { z ( m~x)} for all pixels of the microstructure. 

3. Calculate {y(m~x)} and y(x) using Eqs. (3.3) and (3.4). 

The simulation method presented above for one dimensional microstruc­
tures has been extended to two dimensions by Deodatis and Koutsoure­
lakis [14]. Figure 17 shows an example of the output of the two dimensional 
simulation method in which the volume fraction and correlation function of 
the Fontainebleau sandstone are matched. The appearance of the sample is 
quite realistic, though it is equally apparent that some further statistical in­
formation is required in order to better match the details of the shapes of the 
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(a) Fontainebleau sandstone (b) Simulated Fontainebleau sandstone 

FIGURE 17. Fontainebleau sandstone and simulated microstructure. (Figure cour­
tesy Deodatis and Koutsourelakis [14]). 

voids in the materials. It is possible that this may be accomplished through 
ongoing efforts to produce samples which match higher order moments of the 
microstructure random field. 

3.3. Multiphase materials 11 

A method for generating realizations of n-phase composite material mi­
crostructures with prescribed correlation functions is described. The method 
relies on division of the material domain into pixels. The material microstruc­
ture is described by a discrete valued random variable in each pixel. In order 
to generate this discrete valued random field , a Gaussian random field is first 
generated , and then converted to discrete valued form by a memoryless non­
linear transformation. The values of the Gaussian random field are generated 
in each pixel sequentially by conditioning on previously realized values. 

3.4. Procedure 

The domain on which a sample microstructure is to be generated is di­
vided into hexagonal pixels as shown in Fig. 18. Pixelation of the domain 
allows the representation of the random field by the series of random vari­
ables Yi , i = 1, ... , n where n is the number of pixels in the domain. For the 
time being we allow the random field to be Gaussian with mean zero and unit 
variance, and allow it to have a covariance function given by p(nnei), where 
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FIGURE 18. Hexagonal pixel geometry. 

nnei is the neighbor number of the pixels in question. For the covariance of 
a pixel with itself, nnei = 0, with one of its neighbors nnei = 1 for one of its 
neighbor's neighbors nnei = 2 and so on. 

The Gaussian random variables describing the random field are generated 
to match the target covariance function by generating the variables sequen­
tially and conditioning on the variables which have already been realized. 
This procedure is best illustrated by an example. 

Consider the pixel geometry given in Fig. 18, with the pixels labelled as 
shown. Let the random field to be generated , Y(x) , be Gaussian with mean 
zero and unit variance, and with covariance function p(nnei) = pnnei . We 
begin by generating a realization Yl of Y1 , the value of the random field in 
D1, making use of the fact that Y1 rv N (0, 1). 

We now define some quantities useful in describing the conditional distri­
butions of the subsequent variables. The goal at each stage of 'the simulation 
is to generate a realization of the conditional Gaussian variable [Yi IY e = y e]T, 
where ye represents the values already generated, and is ne x 1 where ne is 
the number of entries in the conditioning vector. The covariance matrix of 
[Yi, YJ']T can be partitioned into 

[
Pii Pie] 
Pei Pee 

(3.7) 

where Pie = p~, and Pee is ne x ne. The conditional random variable Yi is 
then Gaussian with mean J.L = PieP~c/Y e and variance Pii - PieP~/ Pei. 

Returning to the example, for Y2IY1 = Yl , Pn = 1, p 12 = p, and P22 = 1. 
These values, when substituted into the equations given above, yield the 
familiar result that Y2 is normally distributed with mean py1 and variance 
1- p2. 
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The sample generation proceeds sequentially until the entire domain has 
been filled. One issue with this procedure is that the vector of conditioning 
values Ye grows as the sample generation proceeds. In order to improve the 
efficiency of the process, the vector is truncated so that only those pixels 
which are neighbors with Di are included. The truncated conditioning vec­
tor is denoted ye For example, for the generation of Y10, the vector ye is 
[y2, Ys, yg]T. The truncation can in principle be applied at longer distances. 
For example, one could condition on values in all second nearest neighbors, 
in which case Ye for Y10 would be [Yb Y2, y3, y4, y7, ys, yg]T. The tradeoff in 
the truncation decision is that between more accurate rnatching of the target 
covariance function and increased computational efficiency. 

3.5. Non-Gaussian fields 

The goal of this method is to generate realizations of discrete valued 
random fields representing n-phase composites. The marginal distributions 
of such fields are highly non-Gaussian, but can be matched by a translation 
mapping. Here, two- and three phase materials are modelled. The marginal 
density for a two phase composite, scaled so that it will have zero mean and 
unit variance, is 

f(z) = q,,8 ( z + p ~14> 1 ) + (1 - c/!!)8 ( z- J 1 ~'q,,) (3.8) 

where c/>1 is the volume fraction of phase 1 and <5( ·) is the Dirac delta function. 
The corresponding distribution is 

F(z) = tjJ1H ( -J1 ~14>1 ) + (1- tjJ1)H ( J 1 ~'q,,) (3.9) 

where H(·) is the Heaviside function. 
For a three phase material the density is 

f(z) = q,,8 ( z + q,, t/J:~ <Pi) + (1 - q,, - t/>2)8( z) + t/>28 ( z - J q,, ! t/JJ 

(3.10) 

where c/>1 and c/>2 are volume fractions. The distribution is given by 

F(z) = tjJ,H ( q,,q,:~ <Pi) + (1- q,,- t/J2)H(O) + t/J2H ( J q,,! t/JJ . 

(3.11) 
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Using the above density and distribution functions it is possible to trans­
form a sample of a Gaussian field generated using conditional distributions 
into a non-Gaussian field representing a two- or three-phase composite. Care 
must be taken, however , to ensure that the covariance function is matched 
correctly. If the target non-Gaussian covariance function is p( nnei), then the 
covariance function p9 (nnei) of the Gaussian image can be found by itera­
tively solving the inverse equation 

00 00 

p(nnei) = j j g(u)g(v)</>(u, v; p9 (nnei)) dudv (3.12) 

-oo -oo 

where g(·) = p-l o <I>(·), <I>(·) is the normal distribution, and 4>(·, ·; p) is the 
bivariate Gaussian density with correlation coefficient p. 

For the two phase material with 4>1 = 0.25 , the covariance transformation 
is shown in Fig. 19. Strongly negative covariances cannot be replicated using 
this method. 
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FIGURE 19. Covariance mapping for two phase material. 
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3.6. Two phase material 

Realizations of a two phase material with volume fraction 4>1 = 0.5 and 
covariance function pnnei have been generated using the above procedures. 
Examples are shown below (Fig. 20) to demonstrate the flexibility of the 
method to generate microstructures with very different microstructures. 

$1=0.5,p=0 

20 20 $~0= o.g,op = eg 100 

60 

40 

20 

20 100 20 $~0= O.g,op = e~ 100 

60 60 

40 40 

20 20 

20 40 60 80 100 20 40 60 80 100 

FIGURE 20. Example two phase materials. 

Samples on a larger domain, with p = 0.955 and varying volume fractions 
are shown in Fig. 21 

3. 7. Three phase material 

The procedure can also be used to generate realizations of three phase 
materials. The example shown in Fig. 22 has p = 0. 75 and c/>1 = 0.5 , 
4>2 = 0.23. 
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FIG URE 21. Example two phase materials. 
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FIGURE 22. Example 3 phase materials. 
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4. Applications 

We now give two example applications in which realizations of random 
heterogeneous materials are used to investigate the initiation and growth of 
microscale damage. In the first, a novel technique based on classification trees 
is used to identify the locations of likely crack initiation in a fiber reinforced 
composite. In the second, the statistical properties of random intergranular 
crack paths are determined using heuristic mechanical models and realiza­
tions of random polycrystalline grain structures. 

4.1. Composite fracture 

Fiber and particle reinforced composites have been one of the most stud­
ied forms of microstructured material. Attention has been paid both because 
of the range of application of the materials and because the microstructure 
of the materials lend themselves to analysis. The analysis is simplified by 
the deterministic nature of the reinforcement phase, which makes useful es­
tablished methods such as the unit cell method. Statistical approaches are 
also often used for microstructure analysis [9, 16, 30]. While statistical ap­
proaches provide excellent results in such problems as the determination of 
effective material properties, the analysis of highly localized phenomena re­
quires a different approach. The common approach is the use of high fidelity 
finite element analyses. This section describes a new method for efficiently 
characterizing random microstructures and provides a method for linking 
the characterization to material response. Details of the method are given 
in [24, 25] 

4.1.1. Feature based microstructure characterization. Statistical 
characterizations of microstructures are typically unsupervised, that is, they 
are made without reference to the material response. Here we define a su­
pervised characterization of the microstructure which makes use of features 
which are supervised in that they are geometric components of the mi­
crostructure which are associated with particular mechanical response. In this 
case the example microstructure is a cross section through a fiber reinforced 
composite and the response of interest is the location of crack initiation. 

To generate these features, a set of n training microstructures is gen­
erated. The site of crack initiation for each of these microstructures under 
uniaxial tension is determined by analysis using a spring network model [29]. 
The microstructural geometry and boundary conditions are periodic. In order 
determine supervised features corresponding to fracture initiation, the geom­
etry is shifted so that the crack initiation site as determined by the spring 
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network model is at the center of the microstructural sample. Every sample 
is discretized by an m x m mesh, so a vector with m 2 entries can be used 
to represent the microstructure with each entry being the average Young's 
modulus of the corresponding cell , ti = [t1, t2, ... , tm2 ]T , where 1 :::; i :::; n. 
Let t be the average of all t 's, the training data set is expressed by the m 2 x n 
matrix T = [t1 - t , t2- t , ... , tn- t). The covariance matrix is then defined 
as C = TTT. According to the method of Principal Component Analysis 
(PCA) , C can be decomposed as: 

C = FDFT ( 4.1) 

where D is a diagonal matrix whose diagonal entires are the eigenvalues of C 
and du 2: d22 2: · · · 2: dm2m2 > 0; F = [f1, f2 , ... , fm2) contains the corres­
ponding eigenvectors and is orthonormal. The first r eigenvectors form a new 
base, U = [f1, f2, ... , fr), and is used to describe the microstructure instead 
of the original m 2-dimensional space. The transformed vector is obtained by 

( 4.2) 

The above transform is called Karhunen-Loeve transform (KLT) and the new 
base vectors , f1, ... , fr , are the features used in our method. 

On the contrary to the features obtained from above, another set of fea­
tures are considered to account for the inclusion arrangement far away from 
the cracks. To find these features, the periodic boundaries are moved so that 
the crack initialization positions are on the four corners and the KLT proce­
dure is repeated. In Fig. 23, two features are visualized which correspond to 
likely fracture initiation at the center of the microstructure for uniaxial ten-

FIGURE 23. Visualization of features. 
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sion in the horizontal direction. In the plot, darker color represents a higher 
likelihood of finding an inclusion at that location. 

4.1.2. Damage prediction using classification trees. The two types of 
features form a new space, feature space. A microstructure of the same size 
as the ones in the training data set can be described by projecting it to the 
feature space using Eq. ( 4.2) , resulting in a vector, named feature vector, with 
a much lower dimensionality 2r. The elements of this vector correspond to 
the strength of the various features in the example microstructure. 

Bayesian classification trees [11] are constructed to determine, based on 
the elements of the feature vector, the likelihood of crack initiation in a 
specific microstructure. A Bayesian classification tree is a non-cyclic graph 
with nodes and edges. The nodes on the lowest level are called leaves and 
the highest level node is the root. Each node, except the root, has one and 
only one parent which is connected to it by an edge. Every non-leaf node 
is a feature criteria and every edge from the node indicates whether the 
feature criteria is satisfied or not. The leaves store probability values. Every 
path from the root to a leave is in fact a probability equation, designating 
the probability of a microstructure with all the feature criteria on the path 
having certain response. The feature criteria on a path thus constitute a 
pattern. We attempt to predict response of the microstructure by identifying 
these patterns in random microstructures. 

Using Bayesian classification trees , three probability functions are estab­
lished: 

!I ( t) = Prob ( center cracklg( t)) , (4.3) 

!2(t) = Prob (center cracklg(t)), (4.4) 

j3(ti, tj) - Prob(Pcr(ti) < Pcr(tj)lg(ti),g(tj)), (4.5) 

in which g( t) is the feature values of microstructure t; Per ( t) returns the 
fracture load. The classifier j3(ti, tj) compares the fracture load of two mi­
crostructures with center cracks. 

With Eqs. (4.3), (4.4) and (4.5), the crack initialization position of ami­
crostructural sample much larger than the training data is predicted using 
the following steps: 

1. Use a moving window of the same size as the training microstructures 
and scan the window over the cross-section of the material; 

2. For each position of the window, compute the feature vector of the 
microstructure covered by the window and determine the values of !I ( t) 
and !2(t). If !I(t) >PI and !2(t) < P2, store the window position as 
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a site of possible crack initiation, where p 1 and P2 are the thresholds 
defined by the user; 

3. Evaluate each pair of stored windows using function j3(ti, tj) · The 
probability that the center of the ith window having the first crack of 
the whole material can be calculated by IIj=l, ... ,i-l,i+l, ... ,kf3(ti, tj)· 

4.1.3. Example. In the example, the Young's modulus ratio between the 
inclusions and the matrix is Ein/ Emat = 3; the fracture stress ratio is 
fin/ !mat = 2. Both the materials are ideal elastic brittle material. 600 mi­
crostructures with 20 x 20 mesh under uniaxial transverse tractions applied 
on the left and right boundaries are sampled for the training purpose. The 
training samples are used to calculate the features and set up the classifi­
cation trees. These are then used to make predictions for the site of likely 
crack initiation in a larger sample with a 40 x 40 mesh. Figure 24 illustrates 
the example result. The shaded regions in Fig. 24(a) are the possible posi­
tions of the initial crack after (1) identification of sites of likely initiation, 
and (2) elimination of the subset of these sites which are at the center of 
windows with features corresponding to unlikely initiation; the three most 
likely position are then determined by the comparison functionj3 ( ·) and are 
plotted in Fig. 24. Mechanics analysis is conduCted for the whole material 
fracture initiates at the location which the classification site determined to 
be the most likely. Further Monte Carlo simulation indicates that the clas­
sification trees correctly predict the site of crack initiation with probability 
of approximately 0.50, and rank the site of crack initiation among the four 
most likely with probability approximately 0.80. 

(a) 

• 
• • • •• • 

3 •• 

(b) 

FIGURE 24. Example result . 
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4.2. Intergranular fracture 

The probabilistic model developed for the microstructure and material 
properties of polycrystalline materials is not useful in an engineering context 
if it cannot be used to aid in the solution of important problems in pro­
babilistic micromechanics. One such problem is the determination of the 
propagation paths and rates of microstructurally small cracks subject to 
possibly uncertain external actions, an issue which has received extensive 
study (36, 37, 3, 38, 13, 20, 8, 12, 39, 27). The immense complexity of this 
problem places its detailed solution beyond the scope of this presentation, 
however, a simplified version of the problem is addressed to indicate the pos­
sible application of the probabilistic polycrystal model. It is recognized that 
the assumptions made detract from the physical realism of the analysis , yet , 
the solution does demonstrate the types of results which can be obtained 
using simulation based on the probabilistic poly crystal model (6). 

Realizations of the random polycrystalline microstructure, generated us­
ing the procedure described above, are now used in an investigation of uncer­
tainty in the trajectory of intergranular microcracks. The problem analyzed 
is shown in Fig. 25, namely a polycrystal subject to uniaxial tension with an 
initial edge crack along one of the grain boundaries. 

L 

FIGURE 25. Schematic illustration of example crack propagation problem. A poly­
crystal subject to uniaxial tension. 
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By limiting the crack to an intergranular trajectory the number of possible 
crack trajectories is reduced from infinite to some finite, tractable number. 
A key result of the limitation to intergranular cracks is that only the relative 
resistance to fracture of the grain boundaries must be known, and not the 
resistance to fracture of the grain boundaries relative to the intragranular 
material. Several general assumptions are made regarding the behavior of 
the crack, namely: 

• The crack propagates only along the grain boundaries-remains inter-
granular. 

• The crack tip always proceeds in the direction of positive x1. 

• The crack does not branch. 

• Propagation continues until the polycrystal is severed. 

4.2.1. Crack path determination. Since the crack is restricted to the 
grain boundaries, the problem of determining the trajectory is reduced to that 
shown in Fig. 26; determination of which of two grain boundaries to proceed 
along when the crack tip encounters a grain boundary junction, or triple 
point. In the figure, the crack tip is at the junction of the grain boundaries 
separating grains Pl, p2, and P3· These grains have orientations Yi, i = 1, 2, 3, 
where the underscore in the figure indicates a vector quantity. The grain 
boundary between grains Pi and Pj is denoted by bij and has associated 
with it a misorientation angle Bij which is the angle part of the axis / angle 
representation of the misorientation between 1/Ji and 1/Jj· The dashed line, 
labelled homogeneous trajectory, indicates the trajectory along which the 
crack would propagate were it in a homogeneous continuum subject to the 

b13 

crack 

L 

b12,812 

~---t!Q~g. 
P y traject. 

2.-2 

FIGURE 26. As an intergranular crack approaches a grain boundary junction 
(triple point), the crack must propagate along one of the candidate grain bound­
aries. 
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remote uniaxial stress a. The angle between the homogeneous trajectory and 
b12 is rl and r2 is the angle between the homogeneous trajectory and b23. 

While the grain boundary along which propagation occurs can be deter­
mined by energy considerations coupled with the principles of linear elastic 
fracture mechanics [7), the application of such a method requires extremely 
time consuming finite element analysis and Monte Carlo simulation. As yet , 
an insufficient number of simulations have been executed to allow any con­
clusions to be drawn regarding the propagation of uncertainty through the 
system. 

Here, two mechanically simplified criteria are used to determine the crack 
direction at grain boundary junctions. In the first, which will be called the 
maximum misorientation criterion, the crack is assumed to propagate along 
the grain boundary which has the larger angle of misorientation, for example, 
along b23 in Fig. 26 if 823 > 812· In the second, called the minimum deviation 
criterion, the crack propagates along the grain boundary which lies closest 
to the homogeneous trajectory. That is, the grain boundary for which the 
angler is minimized, which, in Fig. 26 is b12 since rl < r2· These two crite­
ria correspond, respectively, to the cases in which randomness in the crack 
trajectory is determined by randomness in the material properties or the 
grain geometry. The maximum misorientation criterion is motivated by the 
observation that grain boundaries with a high misorientation tend to have 
lower fracture toughness [21, 23). The minimum deviation criterion is based 
on the intuition that, for an edge crack under uniaxial tension, the energy 
release per unit crack extension is greater the closer to perpendicular to the 
applied stress is the angle of propagation. 

These two criteria are chosen in the belief that they represent extremes 
of the possible fracture behavior; the propagation depending either entirely 
upon the local material properties (maximum misorientation), or the local 
grain boundary geometry (minimum deviation). In both cases deviations in 
the local stress field are ignored. The physical reality likely is a combination 
of these two effects. As a preliminary attempt to address these intermediate 
cases, a mixed criterion is introduced. Define the quantity 

{3 = W-()- + (1 - W) r - 'Ymax 
Bmax 'Ymax 

(4.6) 

where Bmax ::::::: 62° as given by the Mackenzie distribution [32), rmax = 90° 
since the crack must always propagate forward, and W is a weight factor . 
When W = 1 the maximum misorientation criterion is obtained, and when 
W = 0 the minimum deviation criterion is obtained if the crack is assumed 
to propagate in the direction of greater {3. 
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4.2.2. Monte Carlo simulation. To investigate the propagation of uncer­
tainty in the material microstructure to uncertainty in intergranular crack 
trajectories Monte Carlo simulation was performed on the problem described 
above (see Fig. 25). Independent microstructural realizations were generated 
with the domain of the polycrystal being S = [0, £] 2 . The crack is assumed 
to initiate at the grain boundary which intersects XI = 0 with x2 coordinate 
closest to x2 = L /2, and the crack tip is advanced using either the minimum 
deviation or maximum misorientation criterion until the crack tip encounters 
XI = L. The Monte Carlo simulation provides independent realizations of the 
random crack paths, denoted by C ( x). Figure 27 shows the crack paths de-

FIGURE 27. Single realization of intergranular crack growth using both the max­
imum misorientation and minimum deviation criteria. The solid line represents 
the minimum deviation criterion, and the dashed the maximum misorientation. 

Minimum deviation 

normalized position x/<A> 112 normalized position x/<A> 112 

FIGURE 28. Monte Carlo simulation of intergranular crack growth using both the 
maximum misorientation and minimum deviation criteria. 
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termined for a sample microstructure using the two criteria, illustrating the 
significantly different crack paths obtained by the two methods. 

Figure 28 shows 25 crack path realizations for each criterion. The domain 
of the samples, with L = 500 J-Lm, is S = [0, 500]2 J-Lm with an average of 100 
grains. Two adjustments are made to the crack paths as presented in Fig. 27: 
the crack paths are normalized using x = x/VA and C(x) = C(x)/VA, 
where A is the average grain area, and the initial crack path is shifted so 
that C(O)/VA = 5. The normalization is applied so that statistics of the 
crack paths can be computed non-dimensionally and to neglect uncertainty 
in the initiation site of the crack. The side by side comparison of crack paths 
obtained by the two different criteria indicate that the minimum deviation 
criterion results in crack paths much closer to the homogeneous trajectory 
than those obtained by use of the maximum misorientation criterion. 

This observation is confirmed by the statistics shown in Fig. 29. The vari­
ance of C(x) is linear in x. The growth rates of the variance are 0.50 and 0.15 
with respect to x for the maximum misorientation and minimum deviation 
criteria respectively. 

15~----~----~----~----~-----, 

10 max. misorientation 

~ 
5 

5 10 15 20 25 

FIGURE 29. Growth of variance of the crack trajectories. 

Example calculations with the mixed criterion yield some interesting pre­
liminary results. When W = 0.25, the crack path has a variance growth rate 
of 0.35, when W = 0.5 the variance growth rate is 0.21, and when W = 0.75 
the variance growth rate is 0.17. These variance growth rates, corresponding 
to intermediate values of the criterion weight, demonstrate the nonlinear 
sensitivity of the variance growth to the weight, and also that the minimum 
deviation criterion appears to dominate for weights close to 1. It is in this 
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regime of intermediate weights that the true behavior of intergranular cracks 
is expected to be found. Through the use of higher fidelity, but more time 
consuming mechanical models, future investigation will attempt to further 
understanding of the behavior of intergranular cracks in this intermediate 
regime. 

4.2.3. Probabilistic model. The random nature of the crack paths gener­
ated by Monte Carlo simulation, coupled with the observed linear variation 
of the crack path variance suggests that a scaled Brownian motion may be 
an appropriate model for intergranular crack trajectories. Let the normalized 
crack be a random process defined by 

C(x) = aB(x) (4.7) 

where B(x) is a standard normal Brownian motion process, that is, a Gaus­
sian process with stationary independent increments such that B(u +h) -
B(u), h > 0 is N(O, h). The process C(x) has zero mean and variance 
var(C(i)) = a 2x if var(C(O)) = 0. The parameter a is determined to be 
y'[50 and J[15 for the cases of cracks whose trajectory is determined by 
the maximum misorientation and minimum deviation criteria respectively. 

To generate realizations of intergranular crack paths a step size .6-x is 
selected which is equal to 1. An initial condition C(O) is chosen and the 
crack trajectory is generated by the forward difference equation 

(4.8) 

where the Ai's are independent standard normal Gaussian random variables. 
Samples of this process are shown in Fig. 30 for both values of the calibration 
parameter. The sample trajectories bear a qualitative resemblance to the 
simulated trajectories of Fig. 28 and match the linear growth of variance. 
The process can then be rescaled to actual units by C(x) = C(x/VA)VA. 
This simulation method can as well be applied to generate crack trajectories 
corresponding to the mixed propagation criterion introduced earlier. It entails 
simply finding the value of the variance growth rate for the desired value 
of W, and inserting this value into Eq. (4.8). 

This example illustrates the possibility of using Monte Carlo simulation of 
microstructural evolution as a means of generating statistics on microstruc­
tural features such as crack trajectories. If sufficient confidence can be placed 
in the mechanics of the models used in the Monte Carlo simulation then di­
rect probabilistic modelling of the evolved microstructures may be possible, 
allowing generation of sample microstructures at the desired stage of evolu­
tion. While the mechanics of the crack propagation models presented here 
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FIGURE 30. Realizations of crack trajectories generated from scaled Brownian 
motion model for intergranular cracks. 

are too simplified to offer such a claim to physical reality, the example serves 
to illustrate the method, and the potential usefulness of the described pro­
babilistic model of polycrystalline microstructures. 

5. Summary 

These presentations have had three main goals: 

1. to introduce the types of statistical quantities which can be obtained 
from data to characterize random microstructures; 

2. to demonstrate the possibility of developing probabilistic models for 
random heterogeneous materials which can efficiently generate samples 
which match the target statistics of real materials; 

3. to show, by examples, the possible application of realizations from such 
probabilistic models for analysis of small scale fracture in random mi­
crostructures. 

In each of these areas, there has necessarily been a great deal left out. 
In characterization and statistics there remains much to be said and discov­
ered about higher order statistics of random microstructures and methods of 
characterizing features such as phase connectivity. Also, the issue of quanti­
fying grain shape is a non-trivial one which deserves further attention. With 
respect to modelling of polycrystalline microstructures, the two part model 
is perhaps less preferable than one which directly generates the discontinu­
ous samples of the orientation field. This represents a significant challenge 
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both in calibration of the field and sample generation. Much work remains in 
modelling of multi-phase materials, particularly with regard to efficiency of 
algorithms and methods of matching higher order statistics of the measured 
material. While the application example demonstrates the type of analyses 
possible with access to probabilistic material models, increased computa­
tional power should allow the incorporation of higher fidelity mechanics to 
the analysis, resulting in the possibility of analyses which are predictive of 
real material behavior. The material presented is intended as an indication of 
ongoing research in several of the areas of random microstructure simulation 
and analysis. The importance of random behavior at the microscale is one 
of the large challenges awaiting the engineering community with respect to 
structures and systems of all scales. 
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