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In this paper author has presented innovative approach to diagnostics of mechanical struc-
ture. This approach is based on idea of model based diagnostics. In proposed diagnostic pro-
cedure the central role plays modal model identified during structure operation. The method
is analytically formulated and software tools for performing in-operation modal analysis is
shown. Based on in-operation modal analysis results, during the first step of diagnostics pro-
cedure the increasing vibration level due to structural resonances or forced vibrations are
recognized. If the first case is detected the modal model can be used for damage localiza-
tion but in the second one inverse identification problem should be formulated. Additional
experiment is required to identify loads vector which loads structure during operation. This
information is needed to localized damage in the structure. State of the arts of operating
loads identification is shown. The application of genetic algorithms for this task solution is
studied. Some case studies are presented for all presented procedures.

1. Introduction

The aim of diagnostic procedure of mechanical structures is to determine its techni-
cal state and if is not satisfactory to localise faults and assess its dimension. One of the
most commonly use diagnostics of rotating machinery is vibrodiagnostics that consist of
vibration measurements during operation and estimation of chosen state symptom. As
a state symptom some signal estimates like mean value of amplitude, spectrum, RMS,
p-p value can be used. The vibration can be measured in continuous way by monitoring
system or can be measured periodically with given state dependent period. When dur-
ing testing vibration level exceeds given standards or manufacturer recommendations
reasons should be identify. Proposed diagnostic procedure diagrammatically is shown
in Fig. 1.

There are two basic reasons of increasing vibration levels of operating machinery:

e too big excitation level caused by machinery faults,

e resonance of the structure.

Diagrammatically such problems can be shown as in Fig. 2.

The first steps of proposed procedure consist of vibration measurements at target
location and comparison of overall vibration level (RMS) filtered in the frequency range
from 10Hz to 1000 Hz with standards. To identify too big vibration level reasons, at
the first step of formulated procedure, the frequency decomposition of measured signals
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Ficure 1. Proposed diagnostic procedure for rotating machinery.

is directed. The frequency analysis of signals gives information of the frequency range
of problem occurred in structure. At this frequency range farther analysis should be
execute. This is very important to limit frequency range to such wide range, which
contains effects of dominating damages in the system because it decreases cost of modal
experiment. For operating machinery, such a case is in practical diagnostics problem
(there are a lot of difficulties to switch of machinery for special diagnostic experiment)
in-operation modal analysis (INOP) procedure has to be applied. The results of INOP
allow distinguishing structural modes and excited vibration (harmonics of excitation).
The main difference is in damping coefficient for structural modes the damping is non
zero but for excited vibration INOP gives estimation of damping very close to zero (if
excited vibrations are stationary). In the first case the reason of increased vibration level
has to be looking for at structural properties of the structure (or changes in structural
properties of the structure), but in second case in big excitation level.

To localise the damage in investigated structure for the case of recognised dominat-
ing influence of structural properties of the structure the mass, stiffens and damping
parameters have to be identified to find which structural elements are “responsible” for
increasing vibration level. In a case when main reason of decreasing vibration level is big
excitation level the source of this excitation should be identify by means of localisation
and assessment. This requires special procedures for identification of loading forces for
operating structures based on response measurements. If loads of the structure can be
known an usage monitoring can be implemented.
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The last step in diagnostic procedure is to find solution to decrease of influence of
detected damage on structure operation. This task can be solved with application of
structural modification for a case of structural vibration problem or by changing control
signal profiles (damage isolation) in a case of too big excitation level.

The main goal of this paper is to explain in-operation modal analysis and loads
identification methods ideas and to show benefits of application of these methods. Sev-
eral examples of practical diagnostic measurements of complex mechanical structures
are considered.

2. In-operation modal analysis and its application for damage
localisation

Classical experimental modal analysis procedure is based on experiment in which
structure under a test is excited using controlled input [4, 5, 15]. Both, input and
output in the form of force and acceleration are measured simultaneously in many
points of the structure. Based on these experimental results modal parameters are
estimated using time domain or frequency domain algorithms. During operation that is
very difficult or even impossible to measure forces exciting structural vibrations. This
indicates less applicability of classical modal analysis for condition monitoring. There
is a need to formulate modal analysis algorithms in which only output measurements
are necessary for modal parameter extraction. Such methodologies are described in
literature [1, 3, 6, 8, 9, 16].

Nowadays, modal analysis of mechanical structure can be done using many different
algorithms. These algorithms can be grouped in several main groups. From the point of
view of application of modal analysis in monitoring systems the most important are two
classes of methods: in operation modal analysis and methods based on regression models
(AR, ARMA, etc.). Many papers have been published in the field of in-operation modal
analysis [1, 3, 6, 8] and procedures are available in commercial software like CADA-X,
SVS and VIOMA. But still open is a problem of model order selection in automated
modal analysis. Two different approaches can be distinguish:

e modal model identification for fixed order model (model order selection before
identification procedure),

e modal model identification with automatic order selection.

The first approach requires experimental investigation of monitored structure before
starting monitoring process. This investigation is required to determine model order.
During monitoring of structure only modal parameters are estimated.

The second approach is based on dedicated algorithms for model order selection,
these algorithms are based on cluster analysis, ARMA model analysis, SVD analysis,
artificial intelligence. But this problem is currently under investigation at (University
of Mining and Metallurgy (UMM), LMS International, Catholic University of Leuven
(KUL) within FLITE EUREKA project.

In-operation modal model identification algorithms have been developed in the frame
of SINOPSYS EUREKA project which has been done from 1997-2000. The major part-
ner of this project were LMS, INRIA Paris, KUL and UMM.
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2.1. Identification of structural dynamics model based on in-operation mea-
surements

Two structural dynamic models of mechanical structures, which can be identified
during machinery operation, will be considered:

e modal model of structure,
e operational model of structure (ODS — Operational Deflection Shape).

These two models can be identified using in-operation measurements. The required
measurements are the same in considered methodology but data processing procedures
required for model parameter estimation are different.

2.1.1. Modal analysis identification method based on the operating excita-
tions. In the classical modal analysis the identified modal parameters are determined
using the measurements of frequency characteristics on the tested structure in an active
identification test, involving controlled excitation of vibrations and measurements of the
system response in the form of vibrations acceleration spectrum. Knowing the response
spectrum and the excitation signals, we are able to identify the frequency characteristics
of the structure. That procedure is applied in the frequency-domain methods [1, 8].

These methods allow to find the modal parameters in the neighbourhood of a single
natural frequency (SDOF methods) or throughout the selected frequency band cov-
ering more than one natural frequency (MDOF methods). Unlike those methods, the
time-domain methods require multiple channel measurements of time characteristics of
response and excitations signals. The first step in the procedure applied in most well
known methods is finding the system impulse response. Once it is known, the modal
parameters can be duly estimated [8].

A slightly different approach is required when the system is subjected to immea-
surable excitations due to processes taking place during machine operation [1, 2, 3, 4].
An obvious advantage of those identification methods is that the excitation conditions,
boundary conditions and the distributions of operating loads are maintained. It is dif-
ficult or sometimes even impossible to meet these requirements during the active tests
in laboratory conditions. Identification methods using in-operation measurements can
be divided into three basic categories:

e methods using auto-correlation and cross-correlation of signals [1, 3],
e methods using autoregression function for the response signals [2],
e methods realised in the stochastic sub-space [4].

In modal model identification of operating structure the method involving auto-
correlation function of the response signals and cross correlation of response and refer-
ence signals is preferred, because gives global estimates of modal parameters.

It can be proved that the correlation function can be expressed by means of damped
harmonic functions for the MIMO systems subjected to random excitations. To deter-
mine the modal parameters the LSCE [Least Square Complex Exponential] method was
applied [1, 8]. The correlation function is approximated with the sum of decaying expo-
nential harmonic functions. This method applied to measure the impulse response is a
well-known technique in classical experimental modal analysis, and it yields the global
poles estimators. It can be proved that the cross-correlation function may be used in
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modal parameters identification in the same way as the impulse response. Accordingly,
the equation of the system dynamic motion was considered:

Mi+ Ci + Kz = f(t), (1)

where: M, C, K - mass, damping and stiffness matrixes; &, &, ¢ — acceleration, velocity
and displacement vectors; f — vector of the excitation force.

Equation (1) can be transformed to the modal co-ordinates, using the transform
given by the formula:

z(t) = q/Q(t) = Z ,.q-(t), (2)

where: ¥ is the modal matrix; the columns being the modes of natural vibrations
corresponding to the given natural frequency, ¢, denotes the modal co-ordinate.

Assuming that damping is low or proportional, after substituting (2) into (1) and
multiplying by 7 we get an uncoupled system of equations of the form:

Gr(t) + 26rwnrgr(t) + w%rqr(t) = mirlp'ff(t), (3)

where: wy,, is the frequency of natural vibrations; £ is the modal damping ratio for r-th
mode of vibrations, m, is the modal mass.

Assuming the initial conditions are zero for any excitations, the solution to (3) may
be written in the form of the following convolution:

¢
w)= [ ¥TSr)gn(t - ryar, @
— 00
where: g-(t) = 0 for t < 0, g.-(t) = mrtrd exp(—&rwnrt) sinwp,t for t > 0, wpg =

wnr(1 — €2)1/2 is the frequency of damped natural vibrations.
Applying the solution (4) that is valid for the modal coordinates to find the solution
for generalised co-ordinates x(t), we get:

2 =3¢, / T £(r)gr(t — 7)dr, (5)

—00

where: n is the number of vibration modes considered here.
For the single output and for single excitation signal at the point k the Eq. (1) has
the form:

- t
Tik (t) = Z ‘I'ir‘Ilkr / fk(T)gr(t - T)dT’ (6)
r=1 —co

where ¥;, is the i-th component of the r-th vibrations mode.
Impulse response induced by Dirac impulse at the point k¥ measured as the response
at the point 7 has the form:

" \I’ir\I’kr :
Tik(t) = Z ———— exp(—&;wnrt) sin(wrqt). (7)
—1 MmrWdr
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The cross-correlation function determined for two response signals at the points i
and j induced by white noise excitations at the point & has the form:

Rijk(t) = E[zix(t + T)zjx(t)], (8)

where F is the expected value operator.

Substituting the solution given as (6) in the definition of the auto-correlation func-
tion (8) and assuming that the excitation comes in the form of white noise for which
the correlation function is the constant o multiplied by the Dirac delta §(t), we get:

n

n oo
Rii(t) =) ) oWy, ¥, 0y, / gr(A +T)gs (N, (9)
0

r=1s=1

where: A = t—7; the integration limits being changed because of the form of the function
g and the system causality.

Applying the definition of g given by (4) and distinguishing between the terms
dependent on T and A, we get:

) exp(&rwrnA) sin(wrgA)

T T)= rWrn T
9r(A+T) = [exp(&wrnT) cos(wraT —

)] exp(€rwrn) cos(wra) o

+ [exp(&wrnT) sin(wrgT —

10)
Substituting (10) and the cross-correlation function formula for g,()), analogous
to (9), we get:

n

Riji(t) = Z [Aijkr exp(—&wnrT') cos(wrgT) + Bijkr €xp(—&wn,T) sin(wrqT)], (11)

r=1

where: Aijkr, Biji, are independent of T and are the functions of modal parameters:

n
Aijer | _ Z (079 [\ J 0 AN
MrWrdMsWsd

Bijkr s=1
o
sin(wggA
: /exp(_grwnr — &swns) Asin(wsqA) {cos((w Z)\))} dx. (12)
0

Equation (11) represents the relationship between the auto-correlation function as
the sum of decaying exponential harmonic functions, and the impulse response function
applied in classical modal analysis to modal parameters identification. To make a direct
use of thus written correlation function, the formula (11) can be further transformed
and written as:

“\¥,,.G :
Ri;(t) = Z ';n—w—J; exp(—&rwn,T) sin(wraT + 9;), (13)
r=1 T™vr
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where the new phase shift angle 1, and the constant G, are derived from the formula:

Irs
Trs’

I, = 2wrd(£rwnr + Eswns),

Jrs = (wgd - w;%d) + (&rwnr + £Swns)2)

tan(9,) =

(14)
_ ak\I’kr‘I!js‘I[ks
ﬂjkrs - )
ms
\p. n n
o i ZZ (2 2y-1/2
G]r Mg L /BJICT‘S( rs T ‘]rs)

LSCE is one of the time-domain methods used in modal analysis. The method
provides a global estimate of modal parameters in the form of natural frequencies and
the damping ratios. This method was first published in the work [6]. It is a modification
to the earlier CE (Complex Exponential) method. The basis for determining the modal
models is the measured variability of the transfer function. In the identification methods
using the measurements of system response to unknown excitations the transfer function
is replaced with the cross correlation function. The cross-correlation function comes
as the sum of decaying exponential harmonic functions (13). To better present the
estimation methods, these functions were rewritten as:

2N
hjk(t) = ZArjkes"t, (15)
r=1
where s, = —wrp& + tWrg-
By way of sampling action with the constant sampling time At, the function h(t)
can be transformed into the sample series hg, hy, ho, ..., hy. The value of each sample

can be expressed by the formula:
2N
ho=)_ A,
r=1

2N
hy = Z ArVra
r=1

2N
he =Y AVE,
r=1

where: A,, V, are the desired quantities, V, = e*"At,

These values can be found using the Prony’s method [6]. According to that method
there always exists a polynomial in V;. with real coefficients 3 such that the following
relation is satisfied:

Bo+BiVe+ BV + -+ BLVE =0. (17)
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To determine the coefficients § it is necessary to solve the equation:

ho h1 h2N—l ﬂO h2N
hi hy -+ han B han+1
=-{ . . (18)
h?N—l hQN h4N_2 ,B2N—1 h4N—1

The coefficients obtained from (18) enable to find the roots V;. of the polynomial.
Using these values V,. and the corresponding complex conjugate value, we can obtain
the natural frequencies and the damping factors. The values of V, being known, we
can determine the coefficients A,, and consequently the modal constants and the phase
angles, using (13). The coefficients A, can be determined when the following equation
is solved:

1 Lo L] (A (M)

1% Vs o Van Ay hy

Vi 144 e Vi As V= ) ha | (19)
.’VlzN_1 V22N_1 e 1/22I£IV—1_ \A2N) \h2N J

Solving the Eq. (19) for A,, we can find the modes of natural vibrations. As it can
be easily seen, these relations are derived for SISO systems; which means that only
one transfer impulse function or one cross correlation function - in the case of response
measurements methods, should be analysed. LSCE is an extension of CE method for
SIMO; it allows for simultaneous analysis of all measured cross-correlation functions,
thus enabling us to determine global estimators of modal parameters of the tested
structure. The relevant relationships will have the form:

(Al {h}
(Al {h}, h 8 = h
|8=1 or (2Np[>1 2N) (2z$/ i 1) (2J£Ipc>z 1y - (20
(A, {h},
The solution to (19) for 8 can be found using pseudo-inverse:
{8} = (1" [(m) ™ (" {he}- (21)

The further procedures for finding the modal parameters are the same as in the CE
method.

This algorithm for modal parameters identification was implemented in the CADA-X
system, and VIOMA package as the part of the research project EUREKA “Sinopsys”,
in which author participate [9].

2.1.2. Measurements of the operating deflection of the structure. In practice
of engineering structures testing it is often enough to measure the operating deflection
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of the structure; the method is called ODS (Operating Deflection Shape) or Running
Mode. ODS is defined as the structure deflection for the selected vibration frequency or
at the given time instant due to external excitation force; while the motion of at least
two points must be analysed. In this way the structure deflection during its forced mo-
tion, understood as the relative motion of one reference point, may be determined. Since
motion is a vector quantity (acceleration, velocity or deflection vectors), it has a point of
origin, orientation and value, which determine the deflection shape during the structure
motion. ODS in time domain may be determined basing on various types of time re-
sponses to random, impulse or harmonic excitations. Another techniques are applied to
determine the frequency-domain ODS [7]. These involve mainly the measurements of the
response spectrum, power spectral density and frequency characteristics or the transfer
frequency characteristics for any reference point, specially defined to determine ODS.
ODS differs from the modal parameters [modal vectors] discussed in earlier paragraphs
in that it depends on the type of excitation signals. ODS will change with the change of
the structure loading. On the other hand the modal vector is independent of the exci-
tation mode. It characterises the dynamic properties of the tested structure; including
the boundary conditions, its geometry and materials. The modes of vibrations [modal
vectors| are dimensionless while ODS is expressed in the units of deflection, velocity or
acceleration; depending on which units were adopted in the course of measurements.
ODS may be determined analytically or experimentally. The first method involves solv-
ing the Eq. (1) for the accepted time characteristic of the excitations. That yields the
time characteristics of the response signal in the form of the vector z(t). Calculating
the value of z(tg) for any time instant and for all the co-ordinates of the vector z we
get the time-domain ODS(¢). ODS can be also determined experimentally, by simul-
taneous measurements of vibrations parameters at several points. The vector obtained
through selecting the amplitude for the given time instant is the time-domain ODS. A
similar procedure is applied to determine ODS in frequency domain. System dynamics
in frequency domain can be described with the formula:

X(jw) = H(jw)F(jw), (22)

where X (jw) is the vector of system response spectra, F'(jw) is the vector of excitation
force spectra, H(jw) is the frequency characteristics matrix. In the case of linear sys-
tems, the Eq. (22) is satisfied for all frequencies throughout the considered range. ODS
in frequency domain is defined as the system response to the excitations F(jw) for any
frequency wp:

ODS(jwo) = H(jwo) F (jwo). (23)

It follows from (23) that ODS depends on the type of excitation forces. ODS(t) can be
also determined through applying the inverse Fourier transform to (23):

ODS(t) = FFT Y {H (jw)F(jw)}. (24)

In this way ODS can be determined for those time instants for which the value of
the inverse Fourier transform is calculated. ODS in frequency domain is determined
experimentally using multiple channel measurements of response spectra and the cross
spectra between the measurements and reference points. Because of high costs of mea-
surements, the number of channels for simultaneous response measurements is limited.
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That is why some reference points on the structure are chosen, which do not change
their position during measurements. The other measurement points may be moved dur-
ing the tests. Such procedure is necessary as it is essential to know the phase shift
angle between the system responses at the points for which ODS is determined. When
the forced vibrations of the systems are dominated by the natural vibrations, the ODS
vector will be similar to the modal vector. The degree of similarity depends on how
strongly do natural vibrations dominate the measured responses.

ODS might be formulated for any frequency value and it describes form of vibration
in this frequency for existing, unmeasured excitations. If assumption of little coupling
of modes, no close modes and near white noise excitation forces properties might be
justified then maximum of amplitude of measured response auto- and cross-spectra
correspond to running (harmonics of excitation force) modes or structural modes.

When number of measurement channels exceeds number of signals to be measured
transmissibility functions (response over reference response) might be used [4] if exci-
tation is sufficiently stationary. ODS calculated for maximums of amplitude of mea-
sured spectral functions allow to approximate modal parameters of considered system.
Such identification method is called Basic Frequency Decomposition (BFD) or Peak
Picking [3]. The biggest advantage of ODS method application is its simplicity. ODS
analysis results might be calculated only for one reference signal at a time in the result
local estimate, corresponding to the selected reference direction, of natural frequency,
modal damping values and mode shapes are evaluated.

2.2. Case study

The monitoring systems were used in many industrial structures. Bellow two exam-
ples of application are shown.

Ficure 3. Amplitude of vibration acceleration spectrum measured on radial bearing housing in axial
direction.
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The first example deals with a fan used in a boiler part of a turboset. Vibration
testing procedure performed according to ISO 10816 standard indicated unacceptably
high amplitude of axial vibration of radial sliding bearing housing. Spectral analysis of
the measured acceleration signals showed that the dominating effect on amplitude RMS
value has the 2°¢ harmonic component of rotational speed (50 Hz). Additionally in the
vicinity of value of 50 Hz the increase of amplitude spectrum might be also observed

- (see Fig. 3). To explain this phenomenon application of OMA technique was suggested,
as it provided no need of the tested fan shutdown.

The analysis results showed that in the vicinity of 50 Hz there was identified a set of
5 similar structural modes. Relatively high modal density in the considered frequency
sub-range causes that low values of dynamic stiffness are obtained in this frequency
sub-range. Low dynamic stiffness is a reason for high vibration amplitude level at the
frequency of considered harmonic component. Moreover amplitude of structural vibra-
tion of frequency 47.70 Hz, the closest to the 2"¢ harmonic component, proved to be
also substantially high. Both the identified structural mode shape and running mode
shape are presented (respectively) in Fig.4 and 5. These mode shapes are dominated
by bending vibration of radial bearing’s pedestal concrete support. Correspondence of
the considered mode shapes pair according to Modal Assurance Criterion (MAC) [15] is
found to be very high (99%). Qualitative survey of the identified mode shapes explains
why in the vicinity of the attachment of pedestal to the foundation base crack occurred
for some fans of considered design. The presented application of OMA enabled to ex-
plain the increase of vibration amplitude level and indicated its structural cause. High
amplitude bending of the support is caused by improper structural design of the fan
foundation resulting in to low axial stiffness of the support.

Contrary to Structural Health Monitoring systems, symptom based diagnostic sys-
tems are usually focused on harmonic components of response arising due to polyhar-
monic excitation. The last example of application of OMA method deals with its use for
modal decomposition of polyharmonic forced response. During performed experiment
on high power gearbox, relative displacements of shaft journals with respect to their
bushings were measured in 4 bearing cross-sections at 2 perpendicular directions for
each bearing. Figure 6 shows location diagram of measuring cross-sections and measur-
ing directions.

Application of OMA method to the measurement results allowed to identify all har-
monic components of response caused by polyharmonic excitation. In Fig.7, 8 and 9
results obtained for 2"¢ harmonic component of slow shaft rotational speed are pre-
sented.

Figure 7 shows trajectory of shafts journals on spatial plot (lines connecting pairs
of points where measurement took place have only geometrical meaning and do not
present shafts’ motion). Figures 8 and 9 present 2"¢ harmonic component of shaft
journal trajectories in measurement cross-section plane for input (faster) shaft and
output (slower) shaft respectively.

Identified harmonic components might be used directly for diagnostic purpose. On
the other hand the filtered trajectory of shaft journals might be composed of identi-
fied harmonic components for stationary conditions provided that dynamic stiffness of
bearings is known for considered frequency range and rotational speed.
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47.70 Hz

Ficure 4. Example of structural mode shape.

49.87 Hz

FiGure 5. Example of running mode shape.
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FiGure 6. Diagram of relative vibration displacement measurement on the high power garbox.
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Ficure 7. Example of estimated displacement trajectories of shafts in 4 bearing cross-sectons for
214 harmonic component of slower shaft rotation.
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FiGURE 8. Example of 2"d harmonic component of orbit of output shaft for input shaft bearings
cross-sections.
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Ficure 9. Example of 2" harmonic component of orbit of output shaft for output shaft bearings
cross-sections.
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2.3. Conclusions

In operation modal analysis is a new and very effective tool for diagnosis of rotating
and not rotating components of machinery. This method can be implemented in con-
tinuous monitoring system and can provide experts more deep knowledge about actual
dynamic properties of a structure. As it was shown on genuine machinery element ex-
amples these information’s give new possibilities in state assessment, fault localisation
and detection.

3. Applications of neural networks for identifications of loads in
mechanical structures

3.1. Introduction

We are facing important shift in a machinery management trough different types of
mechanical structures. The majority of industrial and transport facilities know about
condition-based maintenance (CBM) and many of those are using or planning to im-
plement in the near future [24]. This subject is especially important in power plants,
aviation systems, high-speed trains, etc were mechanical components are considered
critical. In case of failure whole system is forced outage, which causes in very high eco-
nomical losses and even danger for users. Up to now most of such systems operate with
strictly followed overhauls program. This attitude helped to decrease number of failures
but generated higher maintenance costs and did not guarantee failures avoidance. These
goals can be better achieved with CBM. CBM requires that operator should know ac-
tual technical state of machinery and has possibility to predict its safe operation live.
One of the most important factor that influences safe operation is fatigue usage.

To determine fatigue usage of mechanical components at given stage of their opera-
tions is one of main task of currently use monitoring and diagnostic system. The scheme
of usage monitoring procedure is shown in Fig. 10.

Measured data Material testing
(Monitoring system)

v !

Identification Material data
of loads (Actual)

v v

Assessment of
component
usage

Ficure 10. Scheme of usage monitoring system.
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The process of predicting of safe retirement times for critical machinery components
essentially involves three steps, which include:

e generation of operation conditions profile,
e acquisition of fatigue load from measurements for given operation conditions,

e establishment of S-N curve at statistically reduced endurance limit on full scale
specimens in the laboratory test.

All of these steps are very important for correct usage determination. First two steps
are related to machinery operation but the last one is related to materials data. Due to
these facts a new identification problem in diagnostics of mechanical structure can be
formulated. In the literature there are described two typical approaches to identification
of loads of mechanical systems:

e based on measurements of process data (movement data),
e based on structure responses measurements due to loads under identification.

These two approaches can be applied in different operation conditions. The first can
be applied if the process data for machinery (driving data for vehicle, flight data for air-
planes) are measured, and have influence on load of operating structures. But the second
in a case if response on a loads under identification can be measured directly. Relations
between process data and load cycles' of structures are commonly nonlinear and very
difficult to analytical modeling. These reasons are main in choosing neural networks as
a basic tool for identification of loads based on process parameters measurements.

The second problem of load identification, based on direct measurements of system
responses is a classical inverse identification problem. Some deterministic and intelligent
algorithms can be applied in this case. The overview of these methods is shown in a
next section of this work.

In this section methodology of load identification based on process data measure-
ments and neural networks is considered.

3.2. Formulation of load identification problem

The main idea of the method of load identification [17] is shown diagrammatically
in the Fig.11.

Process data ‘ > Loads of system
components

FiGure 11. Scheme of presented load identification method.

The relation between process data and load vector is approximated using regression
model or neural network. The regression model parameters are estimated based on
measurement results [22]. In a case of application of neural network to approximate this
relation, neural network is learned based on experimental data [22]. It will be shown
bellow that for many real structures such approach gives not enough accurate results. In
such a case new approach based on neural network algorithms is proposed. This method
includes the following steps:
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F1GURE 13. Scheme of proposed neural network based realisation of load identification task.
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e identification of process state,
e identification of loads for particular state.

The approach is diagrammatically shown in Fig. 12.

Both steps of identification can be perform using neural networks. The first step
is a classification task, but the second approximation. The task for neural network
in the first step is to recognize process state based on measured process data. This
classification problem can be solved using deterministic algorithms also. The second
step of the approach is an approximation of relation between process data, state of the
process and loads of the structure. This approximation has not so complex structures
than has procedure shown in Fig.10. Modified identification procedure implemented
using neural networks is shown in Fig. 13.

Two applied neural networks have commonly different structures, sometimes for
classification of process state simple ADALINE type of neural network can be applied.
Type of networks depends on form of surface, which is a boundary between particular
process states. For load identification task, which can be formulated as approximation
task backpropagation neural networks is commonly use.

Realisation of loads identification procedure based on neural networks algorithms is
beneficial for on line usage monitoring of complex structures that operate in various con-
ditions. Identified loads can be an input data for procedures of fatigue life calculations
and usage assessment.

Application of presented approach for identification of load of helicopter structures
during flight is a subject of a next section.

3.3. Identification of helicopter loads during flight

A helicopter structure is subjected to severe loads due to the time varying flight
conditions and mission profiles. These loads can result in fatigue damage of flight criti-
cal components that can accumulate and cause failure. If component loads can not be
carefully monitored the classical maintenance procedures based on assumed operation
time limitation has to be applied. But in many helicopter cases this time limit is over-
estimated due to safety reasons that cause of exploitation cost dramatically increase.
Economical and safety reasons are motivations of usage monitoring in helicopter struc-
tures. The most critical helicopter components that are subjected to fatigue loads is
rotor system.

Rotor system’s component loads are not routinely measured during flight due to
complexity of instrumenting in a rotating system. Several attempts have been made to
predict rotor system loads from measurements in the fixed system using statistical ap-
proaches and intelligent algorithms. The approach based on regression model of relation
between loads and flight data (data recorded using standard flight recorder) is presented
in [22] and summarized in the section 5 of this text. Different approach, based on neural
network algorithms is shown in [23]. There is shown a case study for SH-60B helicopter
and three helicopter components have been under a test: the rotor blade pushroad,
blade bending, main-rotor damper. Correlation coefficient between neural network ap-
proximation of loads of these component and measured loads has values from 84% to
95%. These values have been accepted by fatigue analyst. To improve quality of load
prediction based on measured flight data the innovated approach is proposed and tested
on SW-3 PZL Swidnik helicopter. The main rotor damper and bending of main rotor
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have been predicted using neural network algorithm. The measured loads in a form
of strains time histories are shown in Fig. 14. The results of load measurements have
been obtained with special helicopter instrumentation that is not installed as standard
helicopter equipment. This data has been used to learn neural networks to predict heli-
copter load. As flight, data five parameters have been recorded using BUR-1-2 recorder:
altitude, horizontal speed, yaw angle, pitch angle, slip angle. All measurement results
are synchronised with main rotor rotation. Due to fact that recorder data set is not
continuous and has different sampling frequency for different flight parameters to apply
its for neural networks learning data processing has to be done.

Measured main rotor loa
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Ficure 14. Example of measured load data after data processing and normalization.

Discontinuities of recorded signals have been cancelled by gluing plots at the point
of discontinuity, author tried to omit samples in that period of shaft rotation in which
discontinuities occurred, also. ut this approach gave bad results and was not recom-
mended.

The biggest amplitudes of loads are in frequency domain up to 20 Hz that recorded
signals (recorded with many different frequencies 400 Hz, 100 Hz) have been resample
using sampling frequency of 50 Hz. To resample recorded signal averaging procedures
are used.

To compress data for neural networks learning only a mean value and maximum
amplitude of signal in one rotation of main rotor have been used.

Two main tasks are solved using neural networks:

e classification of flight state,
e determination of stress amplitude for particular flight states.

The concept of neural network that solves such formulated tasks is shown diagram-
matically in Fig. 15. For a state classification based on flight data backpropagation neu-
ral networks is applied. Input layer has five neurones but hidden layer has 6 neurones
(it is the best configuration with minimal dimension to solve formulated classification
task). The neural network has 44 outputs each for particular flight state. The architec-
ture of this network has been chosen based on numerical experiment. Learning process
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Ficure 15. Scheme of applied load identification procedure using neural networks.

of such neural network is based on backpropagation mechanism. Particular output of
the classification neural network is activated for particular flight state, Based on this
decision the appropriate neural network for given flight state is chosen. This network is
dedicated for load identification. Each neural network for load determination has five
neurones in input layer and different number of neurones in hidden layer. This number
depends on recognised flight state. As an output the main rotor damper load and bend-
ing loads of main rotor are obtained. The mean value and amplitude of these loads are
given. These two load characteristics are necessary to determine fatigue of helicopter
critical components.

The architecture of classification neural networks is shown in Fig. 16. This neural
network has complex structure, contains two types of networks: two state decision ele-
ment which classify provisionally flight state for four groups and backpropagation type
of neural network for classification of state within these groups. At a first step speed is a
feature which has different value for different state, generally we can distinguish states
with velocity 0 and velocity different then zero. Helicopter manufacturer as possible
flight states finds this number applied neural network distinguishes 44 different flight
states, for tested helicopter.

The output signal form state classification neural networks is used in proposed proce-
dure to select neural network for loads identification. These neural networks are chosen
as typical backpropagation neural networks with sigmoid type of activation function
mean value and amplitude of damper load and bending load of main rotor are deter-
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mined as an output of neural network. These data can be used for fatigue rest life
calculation. The learning process is performed using backpropagation algorithm and
SSE error as a quality criterion. The value of the error to stop learning procedure is set
as 0.001. Very important step in neural networks learning is a choice of training data
base. The training data set is the set of known input/output pairs that is used to train
neural network. The training data set should be chose that captures all of the infor-
mation required but not is biased to any given condition. If certain conditions are over
emphasised in the training data set, they will dominate the solution process and bias
the model to perform well for that condition but poorly for others. A testing data set is
also extracted from the flight measurements data base. This data set is not used during
training of the network but rather data from different flight test should be chosen. It
is possible for poorly trained network to predict training set well but will be probably
unable to generalise results for a new data set. A history of learning of neural network
for state classification is shown in Fig.17. In this case, 2338 epoch was necessary to
achieve limit value of SSE error.

3 Performance is 0.0399815, Goal is 0.04

Tra
inin

g
Bu10
e

" s L L
] 500 1000 1500 2000
2338 Epochs

Ficure 17. History of learning process for state classification.

Performance of neural network not only depends on the training data set but also
on its physical design. Currently, the methodology to determine the optimum network
design for given problem does not exist. A design sensitivity study was conducted in
order to ascertain the appropriate number of hidden-layer nodes necessary for accurate
performance. A single hidden layer design was chosen and the number of neurones
in the hidden layer was varied from 5 to 20 in increment of 1. The neural network
for load identification has been learned based on measurements load during flight for
different flight conditions. The experiment was done for all 44 flight conditions and
in data base used for learning all flight conditions have been represented. During the
experiment, a strains at chosen points of helicopter structure have been measured. The
backpropagation algorithm was applied for learning. The measured and predicted load
are shown in Fig. 19 and in form of mean value of amplitude and maximum of amplitude
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FIGURE 19. Measured and predicted mean value of amplitude (normalized) of bending load of
helicopter rotor.
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in Fig. 20.To show convergence between predicted and measured load the correlation has
been tested. Correlation test results are shown in Fig.21. As we can notice from above
plots designed neural networks gives a good approximation of helicopter component
loads.

3.4. Conclusions and final remarks-

Neural networks seem to be a very effective tool in flight state classification and
load identification of helicopter structures, but learning process is very time consuming
process which strongly depends on used training data set. But load prediction process
using neural networks approach is very effective and can be done on-line. Further re-
search that is continuation of this study should go in direction of hardware realisation
of trained neural network and direct application on helicopter board.

4. Deterministic methods of load identification — state of the art

Deterministic methods of load identification can be grouped in two categories:

e frequency domain methods [26, 28, 29],

e time domain methods [25, 30, 31, 32].

This classification is based on signal processing methodology applied for experimen-
tal data which are necessary to perform estimation of loads parameters process.

Basic methods of identification of excitation forces has been formulated for linear
systems in which assumption about small damping and stationarity of parameters are
valid. Methods in frequency domain require information about FRF (Frequency Re-
sponse Functions) for investigated structures (inverse of FRF matrix) and spectrum of
system responses measured during operation. Based on these information spectrum of
excitation forces can be estimated.

Similar methods are formulated in time domain, using relation between excitation
and system responses in a form of convolution. An iterative formula for calculation
of excitation forces in mechanical structures is proofed based on properties of Toeplitz
matrix. Nowadays identification of excitation forces can be perform using mutual energy
theorem formulated by Heaviside at 1892. This method allows to identify spectrum of
loads based on response (in a form of vibration velocity) measurements.

Given above identification methods can be used for systems which have linear prop-
erties. But for linear and nonlinear systems methods based on minimization of given
objective function. Mainly a least square error between simulated and measured sys-
tem response is used as objective function in this identification method. The dynamic
programming optimization method formulated by Bellman [27] is commonly use for
minimization of objective function to estimate excitation forces. Some examples of ap-
plication of these methods are shown in [27].

4.1. Frequency domain method for load identification

In many practical problems knowledge of loads spectrum is required for diagnostics
purpose. In such a case different method for load identification should be applied. This
method requires measurements of spectrum of system responses at several points of a
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structure during operation, but frequency response function (FRF) as a characteristics
of a system are also necessary to apply this method. FRF function can be identify
experimentally or can be predicted using finite element model of a structure. Using
finite element model of the system for predicting of the FRF the method can be apply
to modify structure dynamics to achieve better performance e.g. lower level of loading
forces.

4.1.1. Formulation of the method. The method is essentially based on inversion
of FRF matrix and is commonly used in energy transfer path analysis in mechanical
systems [25]. This method can be used under following assumption:

e system is linear,

e Maxwell theorem is preserved,

e system is stationary.

Relation between system excitation (loading force in discrete points) and system
responses at discrete points of a structure under consideration can be written in the
following form:

m
=) Hij(w)fjw), (25)
j=1
where:
Xi(w) — spectrum of system response at location ¢,
H;j(w) — the frequency transfer function between response at location ¢ and loading
force at location j (n x m),
fj(w) — the operational loading forces at point j.

FRF function can be identified using impulse (hammer) or sine (shaker) excitation
or can be computed from modal model of a structure. Usually only several first modes
can be identified and used for computation of FRF functions. Matrix H;;(w) can be also
obtained from finite element model simulation results. The last option is very helpful if
there is no possibilities to make appropriate experiment.

The first method to identify operational forces is application of FRF matrix pseudo
inversion. If the number of inputs and outputs is the same, results in square FRF matrix,
direct inversion of FRF matrix can be applied. The formula to compute these forces has
the following form (in a case of n # m) [26]:

Fw) = Hw) " X (), (26)

where:
F(w) - loading operational force vector,
H(w)~* - pseudoinverse of matrix H(w) given by equation:

H(w)™ = (Hw)H () ™" HT (), (27)

X (w) - is response vector measured during the structure operation.

If the number of responses m is bigger then number of loading forces n (m > n)
allows to overdetermined the set of equations. By this, more then just the necessary
information is used for the calculations of the operational forces. This allows you to
obtain better and more accurate least square estimates results for the operational forces.
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As response accelerations at n — points can be used, but for flexible structure with
very low natural frequency and big displacement, displacement can be used as a system
response. In these cases accelerance matrix should be used as the FRF for a first case
and compliance matrix in the second one. To avoid numerical problems with in the
matrix inversion singular value decomposition methods are commonly used.

The FRF matrix should be identify when the load source is disconnected from the
structure. It means that laboratory experiment with not operated system is required,
sometimes such system state is different from FRF function point of view, e.g. sliding
bearings.

For the system in which loading force sources are connected to the structure via
flexible mounts, the operational forces can be determined based on knowledge of complex
dynamic stiffness of the mounts K (w) and the difference of operational displacement
over the mount during operation condition are applied. This difference can be measured
using accelerometers and integration amplifiers.

The formula for operational loading force in j-th mount has the following form:

filw) = K(w) - (Xj1(w) = Xj2(w)), (28)

where:

fj(w) — is operational force in month j-th,

K (w) — is the complex dynamic stiffness,

X1 (w) - is the operational displacement on mount at the location of structure side,

Xj2(w) - is the operational displacement on mount at the location of loading force side.
Described above method has been verified on experimental setup. During and ex-

periment loading forces are measured and identify.

4.1.2. Experimental investigation. Experimental setup used for testing of pre-
sented approach is shown in Fig. 22.

During an experiment the frame under investigation has been hang on elastic sus-
pension to avoid interaction with environment. The measuring points net (80 points on
a structure) is shown diagrammatically in the Fig.23. At measuring points during an
experiment acceleration in three perpendicular directions have been measured.

As an excitations two electrodynamics shakers have been attached to the frame. The
scheme of applied measuring setup is shown in Fig. 24.

Elements of matrix H(w) have been estimated using classical procedure based on
power spectral density measurements of outputs and inputs. In this case as input,
forces generated by shakers and as outputs, accelerations at all points and directions
are employed. Examples of measured H;;(w) are shown in Fig.25. The main results of
modal analysis of investigated frame are summarized in Table 1.

These modal parameters are used as the structure characteristics for operational
loading force identification. To verify formulated identification method operational load-
ing force has been measured. These measured forces have been compared with identified
one. The comparison is shown in Fig. 26.

Comparison results shown in Fig. 26 indicate for a good agreement between measured
and identified forces spectrum except frequency range about structural resonance’s. At
this frequency range the FRF inversion is not accurate and system nonlinearities which
disturb FRF much more then out of resonance’s.
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TaBLE 1. Results of modal test of frame.
. PDW [ Frequency [Hz] | Modal dumping [%]
1 47,98 0,37
2 53,05 0,10
3 101,15 0,21
1 119,73 0,08
5 130,31 0,27
6 187,69 0,18
7 198,74 0,20

Anplitude

120 VHTT 2y 19V 127 1333 179 1333 124 1963 125 1933 126 1983 127 1973 128 1983 129 129.87¢
Ficure 26. Comparison of measured and identified excitation force spectrum.

4.2. Time domain methods for loads identification

The methods in time domain can be grouped into three categories [30]:

e Methods based on minimization of the quality function defined on differences
between model output and measured system response,

e Method based on inverse of convolution,
e Method based on mutual energy theorem.

The method based on minimization of the quality function is based on idea of inverse
identification problem. This method is based on assumption that model simulation
results and measurements on real existing structure for given excitation are the same.
This requires model identification as a separate task to get high quality model, which
gives simulation results that are convergent with measurements.

The main idea of this method involves minimization of the difference between mea-
sured response of the simulation results. The measure of this difference can be a sum of
squared differences for given time samples of measured and simulated system responses.
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This difference is consequence of differences between actual excitation and simulated
one, only. Since not all coordinates used as model variables can be measured, used
set of model variables which are under comparison has to be reduced to that can be
measured. During the minimization of quality function, dynamic programming can be
used. The decision variables for this minimization are time samples of excitation forces
under estimation. According to dynamic programming methodology of minimization
and Bellman optimality principle, the minimum value of quality function can be sought
by minimization of this function in each step of computation (at each time sample).
The basic algorithm of the method is shown in Fig.27. The method is more detail de-
scribed in [29, 30]. Author implemented this procedure in software and applied for real
structures [28].

The second groups of methods are based on classical convolution theorem, which
permits to predict dynamic system response based on knowledge of impulse response
function for the structure and time history of excitation. To explain the idea a system
with one input and one output will be considered.

This theorem formulated for response in a form of vibration velocity can be written
as:

o(t) = / P(r)g(t — 7)dt, (29)
0

where:
v(t) — vibration velocity (response of the system),
P(T) - excitation (input) force (to be identify),
g(t — 7) — impulse response of structure.
Formula (29) can be rewritten in the matrix form:

v=AT[g)P, (30)
where:
v = [v(1),v(2), -+ ,v(N)]T - is a velocity vector (vector coordinates are time samples
of velocity),
= [P(1), P(2),---,P(N)]T - is a force vector (vector coordinates are time samples
of force),
g(l) 0 o 0
92 9(1) - 0| , _
lg] = . . . . | —is a Toeplitz matrix,
g(N) g(N-1) --- g(1)

AT - sampling period.
Time samples of force (coordinates of force vector) can be computed from iterative
formula:

P(i)=§zlﬁ AFU+1) - Zg(]P(z— : (31)

Formula (31) can be used for estimation of excitation forces based on velocity of
response measurements and impulse response functions characteristics of the system.
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The method can be extended for multi input and multi output system. Author for prac-
tical identification has applied the method and formulated a software tool for method
realization [30].

The last group of methods involves methods based on mutual energy theorem for-
mulated by Heaviside [33]. This method has been applied to identification of spectrum
of excitation forces in mechanical systems in multi input and multi output case [31, 32].
The basic formula for estimation of excitation forces has a form:

F4 =V5;'VaFs, (32)

where:

Va,

VB —is a (nN x nN) matrix of measurements at points located on a structure due to
force at point B and C,

Va —is a (nN x nN) matrix of measurements at points located on a structure due to
force at point A,

N — number of samples in time series,

n — number of excitation forces,

Va, — Toeplitz matrix formulated from measurements at point 7 due to force at point A,

[ Fp, (1) ] [ Fa, (1) ]
Fa,(N) Fa, (V)
Fp = 1 Fy = !
B= | Fe,(1) | A7 | Fa (1)
_FBz (N).J (nNx1) -FA2 (N)- (nNx1)

From the results of verification of shown that methods is enough accurate for practi-
cal application and the most error generating process is inversion of Toeplitz matrix [31].

4.3. Conclusions and final remarks

Presented frequency and time domain methods can be applied for multi-input sys-
tems if sufficient data are available. These methods required very efficient computer
system due to complex algorithms. The best results are achieved if excitations are de-
terministic functions but not stochastic process. These methods require measurements
of system response in the form of velocity, displacement of acceleration (time waveform
or spectrum) but strains also can be applied.
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5. Statistical methods — application of regression analysis for
identification of loads based on process parameter measure-
ments

The approach based on regression model of relation between loads and flight data
(data recorded using standard flight recorder) is presented for helicopter in [40]. The
quantitative measure of quality of regression model is coefficient of determination R?
that is, for many components of investigated helicopter type H-53, relatively low 78% [40].
It was a motivation to find better methodology of loads prediction and shows that linear
model is not sufficient to find loads of particular helicopter components based on flight
data. Proposal of application of neural networks for such data is shown in section 3 of
this text. But, conducting regression analysis during the evolution of flight loads survey
can be a valuable tool in providing the fatigue analyst with understanding of the process
parameters that influence loads. Such information is not available from neural networks
based approach.

5.1. Formulation of the method

Regression analysis is a widely use mathematical tool for modeling of many different
physical phenomena because of well known theory and parameters estimation proce-
dures. Mainly linear multiple regression models are in use for modeling of mechanical
system properties [37] in the form:

y=Po+ Biz1 + faza + - + Brxi + €, (33)

where: 8; (i =0,1,2,...,k) are regression coefficients, z; are independent variables, y
is dependent variable.

The model given by (33) is linear because output is a linear function of parameters £;.

There are two main problems in identification of regression model for mechanical
systems:

1. Choice of model order.

2. Estimation of model parameters based on experimental results.

Regression analysis has one big advantage, models that are more complex (which
contain terms z;x; or z}') may often still be analyzed by multiple linear regression
technique. The method of least squares is typically used to estimate the regression
coeflicients in multiple linear regression model. Suppose that n > k observations on the
response variables are measured (y1, %2, - -.,Yn) the regression parameters can be found
from the formula:

b=(XTX)'XTy, (34)
where:

b= [Bo,B1,---,Bk|T is a regression vector contains estimators of regression parameters,
Y =[y1,¥2,---,Yn]7 is a vector of observations (n x 1),
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FiGure 28. Algorithm of loads identification using regression analysis.
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X is a (n x k) matrix of measurements (independent variables):

1z - Ty

1 z9y -+ o
X =

1 1 o Tk

The estimator of regression parameters given by formula (2) is an unbiased estimator
and residual sum of squares (estimation error) can be found from the formula:

SSeg =yTy—bXxTy (35)

The error given by formula (35) is a measure of quality of identified model. To find
the best model structure certain tests of hypothesis about model significance and model
parameters significance are very helpful. The most useful are:

o test for significance of regression,

e test on individual regression coefficient significance.

If given regression parameter is not significant for set of experimental data, this
parameter should be canceled from the model and estimation process has to be repeated.

The idea of application of linear multiple regression for identification of loads in
mechanical systems is based on approximation using regression model relation between
process parameters and load vector. This method allows defining which process states
have influence on load vector. For many different applications described above technique
gave a promising results [35, 36, 37, 46].

To apply described above method for load identification the special MATLAB based
procedure in a form of m.file has been formulated. The procedure executes the algorithm
shown diagrammatically in Fig. 28.

The algorithm has been applied for identification of load of helicopter components
during flight. The choice of model order has been done employing stepwise regression.

Stepwise regression is a technique for choosing the variables to include in a multiple
regression mode [36, 43]. Forward stepwise regression starts with no model terms. At
each step it adds the most statistically significant term (the one with the highest F
statistic or lowest p-value) until there are none left. Backward stepwise regression starts
with all the terms in the model and removes the least significant terms until all the
remaining terms are statistically significant. It is also possible to start with a subset of
all the terms and then add significant terms or remove insignificant terms. An important
assumption behind the method is that some input variables in a multiple regression
model do not have an important explanatory effect on the response. If this assumption
is true, then it is a convenient simplification to keep only the statistically significant
terms in the model.

5.2. Applications of the regression analysis method for loads identification
of helicopter structures

The experiment has been done on SW-3 helicopter at PZL Swidnik. Collected data
includes 46 different flight states. The general location and method of sensor placement
has been outlined above. Table 2 lists the measurements that will be used in the process
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TaBLE 2. Recorded standard flight data.

No. | Symbol Parameter Sampling [Hz]
1 LoadY Loading in the vertical direction 8
2. RollTs Bank 4
3. PitchTs Pitch 4
4. Psi Geometric Heading 2
5. OutTemp Ambient temperature 2
6. Px Loading in the horizontal direction 2
7 Hg Geometric Altitude 2
8. Hmr Swashplate input 4
9. Slip Angle Slip 2
10. Htr Deflection in tail section 4
11. Kappa Swashplate displacement vertical 4
12. Eta Swashplate displacement horizontal 4
13 MRrpm Main rotor Rpm 1
14. BFlapAng Collective position 2
15. BPitchAng | Longitudinal displacement of steering mech. 2
16. | LEmom Torque on drive shaft of left engine 2
17. REmom Torque on drive shaft of right engine 2
18. RollHel Horizontal displacement of collective control 2
19. | Velocity Indicated Air Speed 1
20. PresAlt Barometric Altitude 1
21. | RpmLeng Left engine turbine RPM 1
22. RpmReng Right engine turbine RPM 1
23. PitchHel Pitch of Helicopter
24. | AngVelX Angular Velocity X axis
25. | AngVelY Angular Velocity Y axis

modeling procedure. These measurements are registered during the flight by the flight
recorder (BURI1-2). They are considered the “preferred” inputs, because they do not
involve any extra instrumentation of the helicopter. Consequently these inputs will be
used when a correlation with the loads is sought after.

In addition of flight parameters many different structural parameters listed in Table 3
have been measured using thirty-two-channel ESAM measurement unit.

The stepwise regression done for measured data shows that the model of helicopter
load by means of damper moment and bending moment of a hube could be fit with
a fairly high accuracy using only five explanatory variables namely, “Load Y, Pitch-
Hel, Slip Ang, MR rpm and BFlapAng”. After choosing these variables accordingly the
regression has been performed which yielded the statistics and plots that follow.

To perform described above regression analysis the MATLAB m.file is prepared
which includes the following steps:

e Read data set and load it into the MATLAB workspace environment.
¢ Eliminate erroneous and faulty readings.

o Identify and eliminate discontinuities.

e Resample portions of the data.

e Compress the data into usable form.

During the measurement process, because of faulty measuring instruments and tech-
niques, imperfection of the observer and the influence of outside factors, the value ob-
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TaBLE 3. Recorded additional data during test flight.

PCM | CHAN | POINT | DESCRIPTION Sampling [Hz]
1 1 400.0 Vibration under pilots seat X 400
2 2 401.0 Vibration under pilots seat Y 400
3 3 402.0 Vibration under pilots seat Z 400
4 4 420.7 Vibrations main transmission X 400
5 5 421.7 Vibrations main transmission Y 400
6 6 422.7 Vibrations main transmission Z 400
7 7 205.4 Damper moment MR around vertical 400
joint 5-5’/1

8 8 2154 Damper moment MR around vertical 400
joint 5-5’/11

9 9 225.4 Damper moment MR around vertical 400
joint 5-5°/111

10 10 235.4 Damper moment MR around vertical 400
joint 5-5’/IV

11 11 207.4 Moment on the hub of the MR 7-7°/1 400

12 12 208.4 Bending moment on the hub of MR 400
8-8/1

13 13 209.4 Bending moment on the hub of MR 400
9-9/11

14 14 291.4 Bending moment of the link hub of 400
damper 5-6-7-8/1

15 15 2.4 Blade bending moment of the MR 400
LM (2-2%)/1

16 16 102.4 Blade bending moment of the MR LD 400
(2-2)/1

17 17 504.4 Blade oscillation angle MR around 400
horizontal hub pos. beta/I

18 18 505.4 Blade oscillation angle MR around 400
vertical hub pos. xi/I

19 19 515.4 Blade oscillation angle MR around 400
vertical hub pos. xi/II

20 20 525.4 Blade oscillation angle MR around 400
vertical hub pos. xi/III

21 21 535.4 Blade oscillation angle MR around 400
vertical hub pos. xi/IV

22 22 1.3 Longitudinal Control 51-51’ 400

23 23 10.3 Lateral Control 50-50’ 400

24 24 2.3 Force on collective 52-52’ 400

28 28 821.0 Gravity Loading Y axis 400

29 29 501.3 Pitch Ts 400

30 30 500.3 Bank Ts 400

31 31 502.3 Collective angle MR 400

32 32 503.3 Cyclic Control Angle 400

33 33 802.0 Slip Angle 400

34 91 981.0 ON/OFF Channel 100

35 34 600.0 Ambient Temperature 100

36 35 800.1 Barometric Altitude 100

37 36 800.8 Velocity of flight 100

38 37 852.8 Left Engine moment 100

39 38 851.8 Right engine moment 100

40 39 801.0 Pitch helicopter 100

41 40 800.0 Bank of helicopter 100
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TaBLE 3[cont.]. Recorded additional data during test flight.

PCM | CHAN | POINT | DESCRIPTION Sampling [Hz]
82 81 810.0 Angular velocity X 100
83 82 811.0 Angular velocity Y 100
95 984 984.0 Fuel consumption RE 100
96 985 985.0 Fuel consumption LE 100
97 986 986.0 Right engine rpm 50
98 987 987.0 Left engine rpm 50
99 988 988.0 Main Rotor rpm 50
100 989 989.0 Marker 50
101 990 990.0 frame counter — unused 50
102 991 991.0 frame counter — average 50
103 992 992.0 frame counter — fast 50
104 993 993.0 PCM format number 50
105 994 994.0 Operational number 50
106 995 995.0 IRIG Time 50
107 996 996.0 IRIG Time 50
108 997 997.0 Synchro A|B11101101 50
109 998 998.0 Synchro 1011010010 50
110 999 999.0 Synchro 0001010000 50

served often differs from the actual value. The difference between the value measured
and the actual value is termed absolute error. Because one does not know the actual
value nor the absolute error the task of anyone performing measurements is to deter-
mine the interval z + Az in which their is a large probability of finding the actual value.
This is addressed in literature [41] along with three major types of errors that may be
encountered either simultaneously or separately during the measurement process:

e systematic error,

e random or stochastic error,

® gross error.

This third error was encountered with the data sets obtained from PZL. Gross error
most often occurs due to the experimenter’s negligence. This negligence can manifest
itself in the form of improper measurement readout or miscalculation. The gross error in
the case of the datasets from PZL however, was caused by external noise and momentary
lapses (periods of inactivity) of the measuring devices. Such lapses appear as “NaN” (not
a number), in the output vector for a given time instant. The normal procedure would
be to perform the measurements once again using more diligence in the acquisition
process. This is not economically feasible with this particular data. Missing values are
calculated as a weighted sum of linear interpolations from nearest available points.
Altogether 5 estimates from column-wise and 5 for row-wise 1-d linear interpolation
are calculated. Weights are such that for the best case (isolated missing points away
from the boundary) the interpolation is equivalent to average of 4-point Lagrangian
polynomial interpolations from nearest points in a row and a column.

This sampling problem had to be resolved before further analysis of the data could
be considered. The reason for this is that for a specific output at certain time instants
data that is sampled at lower frequencies will simply not exist. For example if one were
to try to determine the ambient temperature (sampled at 100 Hz) and moment acting
on the damper (sampled at 400 Hz) at time interval (0 + 2T"), where T is the highest
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sampling rate, 00 Hz in this case, the result would yield an eight hundred long vector
for the damper noment but only a two hundred long vector for the temperature would
be returned. Ths essentially means that there would not be a value for temperature at
certain values of the moment. Consequently the approach to solve this synchronization
problem was to interpolate the intermediate values.

The loading characteristic is one of a periodic nature, where the period is related
to one revolution of the rotor. During this cycle the loading achieves its maximum and
minimum value As a consequence of this, compression was performed by taking the
average value of the loading for every revolution of the main rotor.

This procedure derived from reference [38] normalizes the values of each vector into
the interval [—1 < 0 < 1]. It is a procedure that often greatly increases the speed of
calculation. It isnecessary when the compared data differ in orders of magnitude. When
a matrix is forned and one column vector is of the magnitude 10% while the value of
another vector iwre of 10™3 the smaller values would be listed by MATLAB as zeroes
(insignificant dizits). The normalization procedure helps to eliminate this problem. An
important point of notice is that sometimes the data was not normalized. This was done
so that one coud “get a feel” for the orders of magnitude of the parameters that were
worked with. Such an approach was specifically adopted for the purposes of graphing
the predicted against the measured moments.

The paramesers that were identified of central importance pertaining to loads in a
helicopter were the blade bending moment as well as the moment acting on the damper

TaBLE 4. Regression model for helicopter data in flight no. 6245.

Regression Analysis: Blade Bending Mom versus LoadY; PitchHel;...
Weighted analysis

The regression equation is
Blade Bending Mom = 0,0633 + 13,4 LoadY - 0,832 PitchHel
+ 0,277 Slip Angle + 2,44 MRrpm + 30,1 BFlapAng

Predictor Coef SE Coef T P VIF
Constant 0,06326 0,01047 6,04 0,000

LoadY 13,4318 0,2903 46,27 0,000 1,2
PitchHel -0,83224 0,09280 -8,97 0,000 1,8
Slip Ang 0,27679 0,02010 13,77 0,000 1,1
MRrpm 2,4395 0,1282 19,03 0,000 1,2
BFlapAng 30,0983 0,1492 201,71 0,000 2,1
S = 0,01451 R-Sq = 96,2} R-Sq(adj) = 96,2}

Analysis of Variance

Source DF SS MS F P
Regression 5 22,3089 4,4618 21188,85 0,000
Residual Zrror 4194 0,8831 0,0002

Total 4199 23,1921
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of the main rotor. Such is the case presented in this particular load identification prob-
lem. Simply stated the problem lies in the fact that the loads occur in the rotating
frame. This causes direct measurement to be an expensive and challenging procedure.
In fact it is a procedure that is not applied in general aviation unless for experimen-
tal purposes such as the ones brought forth in this thesis. An alternative exists, which
eliminates direct instrumentation measurement, to obtain the loading spectrum. It has
been found that some of the parameters measured within the fixed frame are highly
correlated with those of the rotating one. There are certain statistical analysis tech-
niques, which identify these parameters as well as enable the formulation of the correct
mathematical equation of this relationship. This type of approach to the problem is
termed “process modeling”.

The use of these specific analysis techniques enables the engineer to construct a
statistical model that describes a particular scientific or engineering process. These
types of models can be used for:

e prediction of process outputs,
e calibration,
e process optimization.

The prediction of process outputs serves as a basis for the work that follows. The
goal of prediction is to determine either the value of a new observation of the loading or

TaBLE 5. Regression model for helicopter data in flight no. 6421

Regression Analysis: Blade Bending Mom versus LoadY; PitchHel;. ..
Weighted analysis

The regression equation is
Blade Bending Mom = 0,506 + 19,7 LoadY + 2,25 PitchHel
+ 2,09 Slip Angle + 0,701 MRrpm + 19,5 BFlapAng

Predictor Coef SE Coef T P VIF
Constant 0,505851 0,005135 98,51 0,000

LoadY 19,7306 0,4176 47,25 0,000 1,1
PitchHel 2,2483 0,1100 20,44 0,000 1,2
Slip Ang 2,09178 0,03981 52,55 0,000 1,4
MRrpm 0,70146 0,05883 11,92 0,000 1,1
BFlapAng 19,4777 0,2088 93,29 0,000 1,8

S = 0,02140 R-Sq = 89,7% R-Sq(adj) = 89,7%

Analysis of Variance

Source DF SS MS F P
Regression 5 14,7905 2,9581 6461,22 0,000
Residual Error 3722 1,7040 0,0005

Total 3727 16,4945
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FiGure 29. Regression model quality for data collected during flight no. 6245.
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Measured and Fitted Blade Bending Moment vs. Time

09
7 ) —
E _ \
go, _— o — ’?’% A T—’H"*’c&mﬁ AN o
™ < o I A .l ™~ | il
g os -—W———r g Y o —1 . w0 P
D ERAY N
g | I W‘
{
3 04 '
E 0s {8
02
01
)
"B R B BREIEREEEEEEGIIBREEEEREGIEREOE

Ficure 31. Comparison between measured and predicted with regression model blade bending
moment for flight no. 6245
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Ficure 32. Comparison between measured and predicted with regression model blade bending
moment for flight no. 6421.

the values of a specified proportion of all future observations of the loading. By loading
the parameter blade bending moment or damper moment is meant.

The results for different flight states are presented bellow. For flight no. 6245, that
was vertical take off and for flight 6421 that was level flight with speed v = 180 km/h.
For the first case the regression equation has the form shown in Table 4.

The quality of regression function has been tested and obtained results show rela-
tively good fits of experimental data by used regression model. The results of statistical
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testing of regression model are summarized in table. The regression function is shown
in Fig. 29.

The regression model and its statistical quality for light no.6421 are shown in Ta-
ble 5.

The regression model and fits for different samples of data are shown in Fig. 30.

The comparison of predicted and measured blade bending moment for both flights
is shown in Fig. 31 and 32.

The comparison shows different quality of prediction of bending moment for different
flights using regression models which limits application of proposed approach to loads
identification using regression model for a case of data acquired from flying helicopter.
The main reason is very complex mapping and nonlinear of flight parameters into loads
vector. Due to these reason author propose to use artificial intelligence to identify the
form of this mapping.

5.3. Conclusions and final remarks

Presented application of regression analysis for load identification of mechanical
structures shows a good accuracy of identified model and applicability of the method-
ology for load identification in this case. The procedure of identification is relatively
simple but model order should be selected correctly, this is a big disadvantage of the
method. Author applied model order selection based on statistical analysis of quality
of regression model. This method gave a good results for the case of helicopter, but in
a case of pipeline loda identification that was investigated by author results have been
worse.
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