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Preface

The content of this book presents a comprehensive review of my recent
work on optical beams at dielectric interfaces. Some indication of results
published on this topic by other authors the reader may find in the lists of
references enclosed. The same concerns experimental verifications and
possible applications of reflection and transmission of narrow beams at
dielectric interfaces.

I have tried to be as rigorous as possible. However, when rigor might
disturb clarity of the presentation, clarity has won out. The book is aimed at
the level of the graduate or Ph.D. students in physics and electronics. It
should also appeal to the wider audience of researches and engineers working
within the range of optics. | hope that the material presented in this book will
appear helpful for anyone who works on the theory or applications of various
phenomena of optical beam interactions with planar dielectric interfaces and
multilayers.

WOICIECH NASALSKI

Warszawa, May 2007



CHAPTER 1

Introduction

Optical beam interactions with a planar dielectric interface, understood as
the plane boundary between two semi-infinite dielectric media of different
values of a refractive index, have been under continuing interests of many
researches even since Newton’s time. For incidence of narrow beams the
reflected and refracted beams suffer from several distortions of their spatial
shape. These beam distortions are commonly understood as geometrical
modifications - the shifts or displacements - of the beams and these beam
shifts have been primarily under intense studies in early research on the
beam-interface interactions. Later on, it has been gradually recognised that
the geometrical effects of beam reflection and transmission were accom-
panied by other effects, those related to amplitude, polarization and spatial
distribution of intensity and phase of the incident beam.

The existence of a spatial shift at total internal reflection of an optical
beam incident on a plane interface was suggested by Newton [1] in XVIII
century on the grounds of his corpuscular theory. Two centuries later Pitch
(1929) [2] reported results of his theoretical studies on energy flux inside
evanescent waves caused by total internal reflection. He also predicted a
lateral spatial shift of the reflected beam and related this shift with a finite
transverse cross-section of the beam. The lateral shift was next experi-
mentally observed in 1947 by Goos and Hinchen [3] and called after their
names as the Goos-Hénchen shift. Analytical expressions for this shift were
derived by Artmann in 1948 [4], on the grounds of a stationary-phase
approach, and by Fragstein in 1949 [5], who used energy-flux conservation
principles. These reports were followed by further publications on this topic
of Schilling (1961) [6], Renard (1964) [7] and many others. Detailed
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2 CHAPTER 1

overview of early studies on this problem was published by Lotsch in a series
of his papers in 1970 [8].

Reflected and refracted or transmitted beams are usually described by
spatial changes of their field amplitude and polarization. The changes in the
beam spatial structure and polarization are evaluated with respect to
predictions of geometrical optics governed by the well-known Fresnel and
Snell laws of plane wave reflection and refraction. They are known as effects
of nonspecular reflection and refraction or as nonspecular effects of reflection
and refraction. Essentially two basic approximate approaches have been
primarily used in their evaluation - the first approach based on the stationary-
phase arguments and the second one based on the energy-flux conservation
arguments. More recently other, more accurate methods have been devised,
based mainly on analytical beam field evaluation and mode expansion
techniques.

The spatial changes in the beam field spatial distribution can be described
up to the second-order approximation by real displacements of a beam
internal coordinate frame and scaling of the beam coordinates dependent on a
beam width. All of these spatial effects can be defined in two mutually
orthogonal planes: the incidence plane that contains a beam axis and a normal
to the interface, and the transverse plane, understood as the plane that
contains a beam axis and is transverse to the incidence plane. In each of these
two planes there are one lateral (transverse to the beam axis), one
longitudinal (along the beam axis) and one angular (a change of the beam
axis direction) displacements of the beam frame. In addition, there are also
changes of a beam width in each of the two orthogonal planes. Moreover,
each displacement is specific to one of two orthogonal states of beam polari-
zation, say of the TM and TE type. Therefore one has sixteen parameters of
beam geometrical reconfiguration, four for each of two orthogonal planes and
for each of two orthogonal polarizations.

From all the nonspecular phenomena the longitudinal shifts of beams, that
is the shifts observed in the incidence plane, are known the most. They were
mainly analysed in the two-dimensional configuration, as they are common to
two-dimensional and three-dimensional models of beams. Besides the Goos-
Hénchen shift of a beam waist position along the axis orthogonal to the beam
axis [1-9], the angular shift equal to the angle of rotation of the beam axis has
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been found to exist by Ra, Bertoni, and Felsen in 1973 [10]. The beam focal
shift, understood as the shift of a beam waist position along the beam axis,
has been predicted by McGuirk, Carniglia and Brownstein in 1977 [11,12].
Studies on the nonspecular phenomena continued further [13-20] and, finally,
the fourth effect, called the beam waist modification or the increment of a
beam cross-section radius, has been reported by Tamir in 1986 [21]. It was
also shown that the first three composite geometric longitudinal effects: the
lateral, focal and angular beam shifts, contribute together to the net longi-
tudinal shift of the beam in the interface plane [22-24].

The lateral shifts have been commonly considered in two-dimensional
configurations, where the beam field and the reflecting/transmitting structure
were assumed to be independent of the coordinate transverse to the incidence
plane of the beam. However, the transverse shifts, that is the shifts observed
in the plane transverse to the incidence plane, disappear in two-dimensional
approximate models of beams. These shifts are specific only to real three-
dimensional beams and as such they have been analysed in the three-
dimensional configurations. Among these effects the transverse lateral shift
has been predicted first by Fedorov in 1955 [25] and experimentally
confirmed by Imbert in 1972 [26], who also derived pertinent analytical
expressions and compared them with previous theoretical predictions of
Costa de Beauregard (1965) [27], Schilling (1965) [28] and Ricard (1970)
[29]. Next studies treated the three-dimensional beams in detail, with their
profiles displaced by both, transverse and longitudinal, shifts at the same time
[30-34]. In general, besides some special cases like that of the beam TM or
TE polarization, both types, longitudinal and transverse, geometrical non-
specular effects exist together for three-dimensional narrow beam reflection
and transmission.

In spite of the geometrical parameters of the longitudinal and transverse
beam spatial deformations, other four additional parameters on the beam
reflection and transmission problem also exist for arbitrary beam polarization
(Nasalski (1989) [35]). Two of them are attributed to changes of beam
complex on-axis amplitude and the next two are attributed to changes of
beam polarization. It was shown that the amplitude modifications could be
quite strong, especially at layered structures [36]. The longitudinal and
transverse nonspecular effects of the geometrical, amplitude and polarization
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type exist in general altogether during reflection and transmission of narrow
beams. Therefore, for interactions of three-dimensional beams with the inter-
face, one has to consider at least twenty independent parameters of the non-
specular beam deformations for arbitrary beam shape and polarization, and
for arbitrary type of the interface, including interfaces composed of nonlinear
or inhomogeneous media (Nasalski (1996) [37]).

All these parameters depend on the spatial structure of the beam incident
upon the interface, mainly on the beam width and direction of an incident
beam axis with respect to the normal to the interface. In addition, they depend
on the polarization state of the incident beam. They depend also on parame-
ters characteristic of the two media of which the interface is composed; for
instance, on dielectric contrast in the simplest case of the two lossless,
isotropic, linear media [37-39] and, in addition, on the strength of a nonlinear
coefficient in nonlinear media of Kerr type [40-43]. Theoretical predictions
of the nonspecular effects and beam deformations have been subsequently
followed by advanced experimental measurements [26], [31] and [44-54].

Still, the story on enumerating the parameters of the beam-interface
interactions does not seem to be finished yet. The above list of the parameters
may be regarded as complete only under the fundamental assumption,
common for paraxial beams propagating in free space, according to which
their amplitude spatial distribution can be treated independently of their
(transversely uniform) polarization. However, the polarization of beams of
finite cross-section can be considered as transversely uniform only approxi-
mately and even this approximation does not seem to be always justified in
vicinity of singular points of the beam field.

The separation of the beam amplitude distribution from the beam
polarization is not valid at medium discontinuities like the interface is in the
first place. Therefore, for singular points of the beam field, the amplitude-
polarization coupling may become dominant over other effects of non-
specular reflection and transmission, especially for very narrow (nonparaxial)
beams of diameter comparable with a beam field wavelength or less. Recent-
ly, however, the beams with singularities present in their field-amplitude
spatial distribution, for example in a form of optical vortices, are now in
frontiers of optical research [55,56]. Considering temporal variations of
optical wave packets and, in addition, their partial coherence, instead of
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relatively simpler cases of monochromatic or quasi-monochromatic beams,
complicates the problem under consideration even further.

The author does not intend to go too far with relaxing approximations
convenient for analysis presented in this book. Thus, the beams are consid-
ered monochromatic or completely coherent with their polarization being
spatially uniform in any transverse plane of the beam. Moreover, numerical
simulations presented will not go below the one-wavelength limit in the
incident-beam cross-section diameter. Still the beams of this limiting width
are very close to the range of nonparaxial beams. That makes problems con-
cerning convergence and accuracy of numerical procedures rather demand-
ing.

In the beam field evaluation, the results of which are presented in this
book, the field is expressed first in spectral domain as a composition of plane
waves. Two complex quantities called the complex lateral and focal shifts
[11,12,18,21] are defined, real and imaginary parts of which correspond to
the geometrical effects of nonspecular reflection and refraction. Next, the
results are converted analytically into configuration domain, where a beam
coordinate frame, together with their on-axis complex amplitude and
polarization parameter, are redefined [24,37]. Note that the beam shifts
obtained in the configuration domain are of finite values for all angles of
incidence. A number of beam field representations, leading to this otherwise
rather obvious feature of beam reflection and refraction, have been devised
and discussed in the past [9,20,23,24].

The theoretical approach to the beam-interface interactions presented in
the book basically employs the plane wave (spectral) decomposition of the
beam field and in this respect corresponds to the earlier approach proposed
by Schilling (1965) [28]. Other approaches based on application of con-
servation principles [5,26,29,57], entropy of optical systems [58] or methods
of moments [59], geometrical optics [60] and quantum mechanics [61] are
outside the scope of this book. Most numerical procedures applied here have
rather a semi-analytical character and have been devised by the author espe-
cially for treatment of narrow, three-dimensional beams at linear and non-
linear interfaces. The methods start with parameterisation of beam field dis-
tribution and next, with beam parameters evaluated, mimic dynamics of beam
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field rearrangements during beam propagation and interactions with planar
interfaces.

One method, known as the method of Monotonic Iteration of Gaussians
(MIG) [40-41], iterates the beam field distribution at the interface using the
nonspecular effects evaluated in subsequent steps of the iteration. The MIG
method has been devised primarily to treat three-dimensional reflection and
refraction nonlinear problems [40-43] and generalises previous author’s work
on the two-dimensional linear problems of the same type [24]. The second
semi-analytical method, called the scaled complex ray tracing (SCRT) [62],
has been devised especially for treatment of the beam propagation in non-
linear media. The SCRT method converts a nonlinear propagation problem
into a problem of linear propagation, augmented by specified evolution of
beam parameters.

Effects of beam field rearrangements, similar to the effects of nonspecular
reflection or transmission, are observed during beam propagation in nonlinear
media of Kerr type [62-64]. These effects, called as aberrationless effects of
nonlinear propagation [63], have been derived analytically within parabolic
approximation to the nonlinear Schrodinger equation (NLSE). They can be
described in terms of beam parameters like: a beam waist position, beam
radius and phase front curvature, a beam on-axis complex amplitude and a
nonlinearly modified wave number of a beam field. All of them evolve along
the propagation distance of the beam.

Within the SCRT method the problem of beam propagation in nonlinear or
inhomogeneous media is reformulated into the problem of linear propagation,
with the help of an appropriate parabolic approximation to the wave equation
and analytical scaling of the beam parameters. The aberrationless effects of
the beam-field-distribution rearrangements in nonlinear media result in
inhomogeneous distribution of the medium dielectric permittivity. There-
fore, in general, the SCRT method [62-64], together with the MIG method
[40-43], can be directly applied as well in analysing the problems of beam
propagation in inhomogeneous media.

It is pertinent to note that, recently, a method of collective variables (CVs)
has been developed to treat pulse nonlinear propagation in dispersion-man-
aged fibres (cf. Refs. [65-67] and references therein). It appears that there is a
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close analogy between the pulse parameters considered within the CVs
method in temporal domain and the beam parameters analysed within the
SCRT method in spatial domain. In fact, the SCRT method has been devised
in a form suitable for treatment of monochromatic, one- two- or three-
dimensional beams, as well as polychromatic, two-, three- or four-
dimensional wave packets in one unified manner.

Note also that the MIG and SCRT methods have been devised primarily to
treat beams within the range of paraxial optics. Their results coincide in this
range with results of a separate numerical method based on direct integration
of the Maxwell equations [68] and with other available numerical data
[39,69]. However, the MIG and SCRT methods provide also quite accurate
results even for really narrow beams of their transverse radii of the order of
one wavelength.

The intention of writing this book is to put the results concerning the
beam-interface interactions, recently reported by the author elsewhere [70-
74], in one comprehensive publication, and to discuss main features of these
interactions in some appropriate order. After a brief introduction into basic
definitions of first-order optics given in Chapter 2, next five chapters of this
book treat, in some convenient to the reader sequence, several aspects of the
problem of three-dimensional beams reflected or refracted at dielectric
interfaces. The beam geometrical displacements, the beam amplitude distrib-
ution and polarization changes, the cross-polarization coupling between beam
components of opposite polarization, as well as effects of vector beam mode
switching at linear and nonlinear interfaces and multilayers, will be described
and discussed in detail.

Chapters 3-7 follow almost chronologically, somewhere with substantial
extensions, author’s latest main publications [71], [70] and [72-74] in this
field. All chapters are written in a self-contained manner, with the content,
notation and references of the respective publications preserved. The beams
are considered as three-dimensional with arbitrary polarization and the prob-
lem under consideration is inherently of vector nature. This implies that the
beam characteristics presented differ substantially from those specific for
two-dimensional beams of linear (TM or TE) polarization. The beam-inter-
face characteristics of the two-dimensional scalar case have been already
summarised by the author in the past [42].
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Introduction into the formalism of first-order optics is given in Chapter 2.
Basic definitions, necessary to interpret optical phenomena involving coher-
ent paraxial beams are presented. A link between concepts of optical rays and
ray-transfer matrices on the one hand and canonical integral transforms and
Lorentz transformations on the other hand is shown. The formalism presented
is limited to homogeneous optical transformations because, to the best of the
author’s knowledge, the formalism of inhomogeneous transformations still is
not available in a finite, self-contained and concise form. Although the beam-
interface interactions belong to the range of the inhomogeneous first-order
optics, the inhomogeneous phenomena that occur at dielectric interfaces are
usually, although probably not always, small enough to interpret them as
small corrections to the formalism of homogeneous first-order optics. Some
other technical issues, which also may provide connections with next chap-
ters of this book, are discussed in comments and conclusions of this chapter.

In Chapter 3, three-dimensional beams reflected at the interface are con-
sidered in their general form, with arbitrary transverse distribution of their
intensity, phase and polarization [71]. The interface is assumed to be planar
and composed of two linear media although some basic results that pertain to
nonlinear interfaces are also given. Complex amplitude distribution of the
beam field is assumed as being factorised into two spatially orthogonal
factors. Roles of paraxial approximation, cross-dimensional coupling and
cross-polarization coupling in the beam description are discussed. Analytical
expressions for all the first-order and the second-order, longitudinal and
transverse, nonspecular effects are derived. Results of their numerical evalua-
tion are given for beam incidence close to the critical incidence of total in-
ternal reflection.

It is shown that the transverse effects exist even for linear-diagonal
polarization. Expressions showing the symmetry that occurs between linear
and circular polarization of beams and transverse lateral and angular
displacements of beams are analytically derived. A possibility to achieve a
bistable switch of beams at a nonlinear interface is discussed and numerically
confirmed, the fact that was unclear or even disputed previously. The in-
teresting problem of the cross-polarization coupling between the beam com-
ponents of opposite polarization risen in Section 5 has been further under in-
vestigation in [49,68,74]. It will be also explicitly shown in Chapter 7 how
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this coupling interrelates the beam field distribution in its magnitude and
phase and the beam polarization state.

In Chapter 4, a detailed description of the method of treatments beam
fields at nonlinear interfaces is presented [70]. A special case of the
nonlinear-linear interface with medium nonlinearity of the Kerr local type is
analysed. The reduced variational technique is applied that converts a system
of nonlinear Schrodinger equations into a system of ordinary differential
equations. The beam deformations are described by aberrationless effects of
nonlinear propagation and nonspecular effects of reflection. Analytical
expressions of these effects are derived and numerical simulations of their
rearrangements during the beam-interface interactions are given. It is shown
that, for certain sets of incident beam and interface parameters, a bistable
switch of the reflected beam is possible to achieve. Characteristic features of
this switch appear different from those of plane wave reflection. In the
Appendix, a concise summary of the complex ray tracing the nonlinear
propagation of a single Gaussian beam is also given. Results of the analysis
presented in this chapter confirms, contrary to common opinions on this
problem, that the bistable switching of the nonlinear interface could, at least
in principle, be obtained by incidence of a single beam.

Definitions of beam amplitude and beam polarization are discussed in
Chapter 5 [72]. In this context new definitions of the nonspecular effects of
beam reflection and transmission are also introduced. The problem is
formulated and solved in such a manner that the beams are obtained with
uniquely defined uniform spatial displacements of their axes in a spatial
domain and angular displacements of their spectral components in a spectral
domain. It is shown that additional modifications of the beam polarization
state remain non-uniform throughout the entire beam spectrum, although they
are generally rather small. A special role of beam polarization states of linear-
diagonal and circular-diagonal types is indicated. The results of this chapter
are confronted with results of different approaches presented in this context
in the past. The role of beam on-axis phase in the beam field evaluation in
this context is indicated.

In Chapter 6, the problem of beam interactions with a single planar
discontinuity of the medium is generalised to the case of a planar layered
medium [73]. The problem is formulated and solved analytically. Transmis-
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sion and reflection matrices are rederived in beam reference frames depen-
dent on a polarization state of the incident beam. Spinor representations of
two-by-two polarization matrices, Jones two-vectors and Stokes four-vectors
are defined. Scattering and transfer matrices of the layered structure are given
with the help of Stokes reciprocity relations for incidence of beams of
arbitrary polarization. Factorisation of these matrices results in scalar
complex transformations separately for beam polarization and for beam
amplitudes. While the transformations of beam polarization describe
multilayer action in terms of Lorentz transformations, the amplitude trans-
formations yield spatial beam shaping. Therefore scattering vector problems
of three-dimensional beams at multilayers, as well as at a single interface,
resolve into two independent transformations of two scalar parameters.

In Chapter 7, an exact description of spatial versus polarization character-
istic interrelations of optical beam fields at a planar isotropic interface is
given [74]. Three-dimensional monochromatic beams of uniform polarization
interacting with a planar boundary between two homogeneous, isotropic and
lossless media are analysed in the most general, exact manner. Generalised
Fresnel transmission and reflection coefficients for beam spectra are derived.
Interrelations induced by cross-polarization coupling between beam profile
and phase and beam polarization, or between spin and orbital angular mo-
mentum of beams, are derived for normal incidence of the beams. In this case
the analysis directly indicates that these interelations exist independently of
the beam nonspecular shifts.

It is shown that Hermite-Gaussian beams of linear polarization and
Laguerre-Gaussian beams of circular polarization, all projected at the inter-
face and in their complex-valued or elegant version, may be considered as
normal modes at this interface. Their creation and annihilation are shown,
with total angular momentum being conserved on the total beam field and
single photon levels. That results in the beam amplitude-sensitive rearrange-
ments of beam polarization and in the polarization-sensitive rearrangements
of beam amplitude spatial distribution even at the plain isotropic interface
[74]. In the final appendix of this book, basic relations for the beam shifts at
the dielectric interface are collected together and commented.

Let me finally mention on some possible applications of the theory pre-
sented in this book. The dielectric interface, or, in general, any planar multi-
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layered structure, can be used, for example, as a mean of control the interplay
between the beam field distribution, in its magnitude and phase, and the beam
field polarization. The control process is based on the cross-polarizarion
coupling (XPC) effect acting at the interface [71] and depends on the incident
beam parameters like the beam polarization, shape and angle of incidence
[49,68,74]. The ability to control the beam shape and polarization may appear
useful in many applications in contemporary optics.

In three-dimensional optical imaging the polarimetric passive imaging
systems are used to extract three-dimensional information from an object
scene. The three-dimensional imaging can be achieved by computing orien-
tation angles of normal vectors of the light-reflecting surface. Values of these
angles can be retrieved from Stokes vector parameters of the reflected optical
field with the help of the well-known Fresnel equations and Snell’s law [75].
The imaging process depends considerably on shape and polarization of the
illuminating beam, especially when the elements of the object scene are of a
nanometric scale.

In nanoscopic space-time-resolved spectroscopy polarization pulse shap-
ing can be used to control spatial and temporal evolution of optical near field.
By appropriate control of two polarization components of an incident femto-
second laser wave-packet, pump and probe excitation occur at different posi-
tions and at different times, with nanometer spatial and femtosecond temporal
resolution [76]. Narrow or focussed beams are commonly used to trap dielec-
tric or metallic particles in optical tweezers [77,78]. The corresponding field
distribution generates a trapping potential, strongly influenced by, for
example, a metal nanostructure located in the vicinity of a focus of the beam
[79]. In such a trapping configuration the superposition of a non-resonant
beam field with a resonant beam or plane wave illumination provides the
possibility to modify the trapping potential. The processes of this sort
strongly depend on distribution of the optical field intensity, phase and
polarization [80,81].

It is well-known that light beams carry, besides the spin angular
momentum (SAM) associated with beam polarization, the well-defined
orbital angular momentum (OAM) associated with their spiral wave fronts
[55]. Both parts of the beam angular momentum can be used to cause trapped
particles to rotate [82]. Moreover, as it has been shown here for beam



12 CHAPTER 1

reflection and transmission, exact relations induced by the XPC effect exist
between these two parts of the beam angular momentum at the interface.
Both of them can be used in the planar configuration for beam sorting on the
basis of SAM and OAM, per analogy to the known methods of encoding and
processing optical information that is carried by individual photons [83-85].

It seems that coexistence of the XPC effect with the beam shifts of
nonspecular reflection can be also observed for beam fields in optical
resonators. Meanwhile the XPC effect determines a transverse pattern of the
beam field in an optical cavity the beam shifts should enter into the resonance
condition for beam eigenmodes of this cavity. This type of interplay between
polarization and shape of nonspecularly reflected beam fields in an optical
resonator has been recently reported for the case of a dome cavity [86].

Having in mind the applications mentioned above, as well as many others
reported elsewhere, interactions of optical beams with dielectric interfaces
are analysed in this book.
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CHAPTER 2

Basic framework of first-order optics

This chapter provides a brief overview of basic definitions of
first-order optics concerning propagation of three-dimensional
paraxial beams in centred optical systems. Parallel descriptions of
beam propagation in terms of ray-transfer matrices and canonical
transforms of optical systems are outlined. Relations between
transformations of amplitude and polarization of beam fields and
homogeneous Lorentz transformations are shown. The formalism
presented yields basic framework within which the beam-
interface interactions will be analysed in next chapters.

2.1 Introduction

Any optical system acts on amplitude and polarization of beams
propagating through this system. When the system is of first-order type and
the beams are treated approximately as paraxial of uniform polarization in
their transverse planes, then the transformations of beam amplitude and beam
polarization can be treated independently. The analysis of beam propagation
phenomena usually employs expansions of the beam amplitude distribution
in terms of Hermite-Gaussian or Laguerre-Gaussian functions on the one
hand and Jones vectors, polarization matrices and Stokes parameters of the
beam polarization on the other hand. Transformations of the beam amplitude
can be expressed by ray-transfer symplectic matrices or, equivalently, in
terms of linear canonical transformations and integral transforms associated
with them. Similarly, unimodular Jones matrices represent linear transforma-
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tions of polarization states of beams. Basic content of this formalism will be
outlined in this chapter.

There are a number of textbooks devoted to certain aspects of, linear and
nonlinear, first-order optics. A few examples of them [1-12] can be found in
the reference list enclosed to this chapter. However, the sequence of
definitions given below follows rather the approach that has been gradually
developed in several separate publications [13-28] over a few last decades
and has not been commonly regarded as a unified formalism of first-order
optics yet. The formalism translates the conventional description of optical
transformations in terms of rays and matrices [13-15] into the language of
canonical operator transforms and homogeneous Lorentz transformations
[16-28]. The set of definitions given in this introductory chapter should be
regarded only as a short guide through fundamentals of first-order optics.
Most equations will be given without proofs and mathematical details. The
material presented may serve as a convenient self-contained theoretical tool
for interpretation of several aspects of beam propagation in first-order optical
systems.

2.2 Paraxial wave equation

First-order optical systems are understood as optical systems composed of
medium or media with quadratic variation of their, generally complex,
refractive indices. This quadratic variation occurs in planes x—y transverse

to an optical axis of the system, assumed here along the z-axis of a Cartesian
coordinate frame Oxyz. The optical systems will be considered as an iso-
tropic, lossless, dispersion-free bulk nonmagnetic medium or as a stratified
structure that consists of several layers of media of this type. Therefore, the
magnetic permeability is equal to that of free space and in each layer the
medium is specified by the, uniform (constant) in space, scalar electric
permittivity €.

Let us assume first that the medium is linear and homogeneous. The

optical field will be analysed in a source-free range of this structure. In each
layer of the structure, transverse E , E, and longitudinal £, components of

the propagating beam field E=(E ,E ,E,) satisfy the homogeneous wave

equation
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v? 292 |E(r.n) =0, @.1)

where ¢=c, /n is the phase speed of light in the medium, related to the phase
speed ¢, in a vacuum by a relative refractive index n. We will use inter-
changeably the notation Oxyz and (x,y,z) to indicate coordinate frames, as
wellas r=(r,,z)=(x,y,z) and V=(V,,d.)=(d,,d,,d.) to indicate, where
necessary, the planes x—y transverse to the optical axis z .

Any solution to the wave equation in a homogeneous medium of the
uniform permittivity € should also fulfil the Gauss law

V-[E(r)]=0, (22)

which interrelates, through their derivatives, the longitudinal component E.
with the transverse components E, and E, of the optical beam field.

However, for the case of dielectric inhomogenous or nonlinear media, each

layer of the structure is specified by the nonuniform electric permittivity
e =¢£(r). Therefore, in this case, c=c(r) and n=n(r) are also nonuniform

and the Gauss law reads:
V-[e(r)E(r)]=0. (2.3)

Moreover, it can be proved that the wave equation (2.1) still approximately
holds even in each inhomogeneous layer if the increment A¢e of & does not
vary significantly within a range of one wavelength A in this layer, that is
when (27€)"'Ae <<1 in this range [2,7]. Only the cases of such weakly

inhomogeneous media, together with homogeneous media, will be considered
in this book.

The beam field will be considered as monochromatic,

E(r,1) = E(r)exp(-ikct), (2.4)
with the wave number k=k(r) and the wave vector k=k(r),
k=(k,,k.,)=(k,k,,k,), in the medium related, through the refractive index
n, to the wave number in the vacuum £, that is with k(r) =k n(r). In this

chapter, we will be interested only in the transverse electric field components
E, E, and E., E}, in the configuration x—y and spectral k —k,

transverse planes, respectively. They form two two-dimensional vectors
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. | [Eesn) @5)
e Efrsz)|® '
. | Eky,2)

E (k,,2)= { £ ﬁsz, (2.6)

in these transverse planes, interrelated by the two-dimensional Fourier
transform in the transverse coordinates r, and k| :

E (r;,2)=Qn)" ([dk E, (k ,2)explitk, -r)]. (2.7)

The transverse field vectors £, (r,,z) and E . (k,,z) obey the homogeneous

Helmholtz (reduced wave) equation in the configuration space and its
counterpart in the spectral or momentum space:

02+ V2 +#7) B, (r,,2) =0, 2.8)

02 -2 +K*|E, (k,,2) =0, (2.9)

respectively.

Let us assume that the optical system is centred, where the beam axis
coincides with the axis of the system and the refractive index takes its
extreme values at this axis:

(On® [Ox)(2) |,0,-0=0,

On*[y)(2)|,6,0=0. (2.10)

Then, the quadratic approximation of the refractive index in any transverse
plane of this system results in the parabolic form of the transverse increment
An® =1-n"[n} of the refractive index squared:

noAn’ = ngAn* (x,y,2) = ~(A .n*)2)x* = (A ,n*)(2) y?, (2.11)

A .n* =A L0 (2) =101 [0X°)(2) | eg, oo

x

A .0’ =A ,n’(2) =507 [y’ )(2)],mp, ym0> (2.12)

N
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where on the beam axis x=0=y and at the beam waist centre x=y=z=

we have, respectively:

n, =n,(z)=n(0,0,z),
k, = k,(z) = k(0,0,2), (2.13)
n, =n,(0)=n(0,0,0),

ku- = kﬂ(o) = k(0,0,0) * (2. 14)
The above quantities still may be dependent on z:

n’ =n’(x,y,2) = ng (2)[1-An’ (x,y,2)], (2.15)

k* =k*(x,y,2) =kl (2)[1-An*(x,y,2)]. (2.16)

Equations (2.11)-(2.16) describe the fundamental parabolic approximation
usually taken for centred optical first-order systems. For example, in cases of
the square-law in lens-like media [3] An’> >0 (An’<0) correspond to a
focusing (defocusing) medium.

Let us define the slowly varying amplitude (SVA) of the beam:
E\(r.,2)—> gi(m,z)exp{f Idz'kn(z')} ; (2.17)
0

by factoring out the beam on-axis phase accumulated along the beam axis.
Note in Equation (2.17) the convention taken in this chapter that preserves
notation of quantities redefined by their factoring or scaling. Under the
paraxial approximation of the wave equation (2.8), the second derivatives
with respect to z can be neglected with respect to the terms proportional to
the first derivatives:

JZE,

<< |ky9.E,

3

02E,|<<[k9.E,|, (2.18)

and the wave equation (2.8) converts into the equation of the parabolic type
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Lik,d. +0% +0% —k2An*|E (r)=0. (2.19)

The form of Equation (2.19) is identical to the Schrodinger equation of a
particle with z replacing time, the wave number k, playing the role of m/h

and the term k;An’ corresponding to the particle potential.
Next, the reduction of the z-dependent refractive index n,(z) at the beam
axis with respect to the refractive index n, at the centre (x,y,z)=(0,0,0) of

the beam waist:
n, :l.dz'/.i"f0 (z')—>z, (2.20)
0

yields the paraxial wave equation,
ik, +0% +3% —k2(n? /n2)An*|E, (r) =0, 2.21)

in the form dependent on the wave number k,_, at the beam waist centre

regarded as the beam parameter. This is the paraxial wave equation in the
non-normalised form. As k, does not depend on z, the reduction (2.20)

considerably simplifies further definitions.

The coordinates in Equation (2.21) are not dimensionless and some

appropriate scaling of them seems necessary. To this end, let us introduce the
beam parameter w_, as the radius of the beam cross-section at the beam waist

placed here at z =0, with its value common in both transverse dimensions.
For a fundamental Gaussian beam of cylindrical symmetry, for example, this
parameter has such clear geometrical meaning. Introduction of two other
beam parameters: the diffraction length z, and the scaled wave number x:

zy =k wt, K=k,w,, (2.22)
leads to the scaled parabolic equation for the SVA of the beam:
2ia,, +3%, +3, —x*(n}/n2)An? |E (r)=0. (2.23)

Note that the presence of the transverse field £, in (2.8), (2.21) and (2.23) is

not accidental. Rigorous derivation of the paraxial equation (2.23) from the
Maxwell equations yields the electric field expansion in powers of k™' [29]:
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E=E, +E,=EP+k"'EX+xEP +xEQ +x*EP +..., (2.24)

valid for k¥ >>1. The subsequent even and odd terms in (2.24) approximate
the transverse £, and longitudinal E, field components, respectively. The

first, zero-order, field term is purely transverse indeed, E=E =E T’, and
exactly this term appears in the paraxial equation (2.23).

Further, in this chapter, we will use the coordinates scaled in the
configuration domain and the spectral domain, respectively:

x/w, = x, y/w, >y,
z/zD -2z, (2.25)
kw, >k, , kw, >k,
kw,—>k, =x. (2.26)

Then, after the additional replacement:

KX (ng [nl)A 0P > A L0,
K’ ("02 /nf,)AyJ n’ — A}‘z n’,

K*(nd [nl)An* — An?, (2.27)
the scaled parabolic equation (2.23) is obtained in the in dimensionless form:

2ia, +0? +8% ~An® |E, (r)=0. (2.28)
In the transversely homogeneous ( An” =0) media this equation resolves into
the well-known Fock equation [3]:

i, +02+92 |E, (r..2) =0, (2.29)
in its scaled version with constant coefficients. Note that in the scaled

coordinates Egs. (2.28) and (2.29) do not depend now on the field wave
number k, and the beam half-width w, . Therefore, they describe a general

case of paraxial beam propagation with arbitrary values of the spatial
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frequency and the beam half-width, provided that the scaled wave number
k w, is small enough to fulfil the conditions (2.18).

In isotropic and homogeneous medium both field components E, and E,

of the three-dimensional beam satisfy separately the same scalar Helmhotz
equation (2.8). The same happens if the homogeneous medium is replaced by
weakly inhomogeneous medium of cylindrical symmetry with respect to the
z-axis. Therefore, when the structure is axially symmetric and stratified with
respect to the z-axis, the field components E, and E, in each weakly

inhomogeneous layer may be treated as independent scalar quantities for TM
polarization (E,=E, E,=0) and for TE polarization (E,=E, E =0).
The decomposition of the electromagnetic field in each layer into its TM and
TE components can be rigorously derived with the help of two scalar Hertz
potentials. The derivation follows that for the case of isotropic and
homogeneous medium and can be found, for example, in [30] or in [31]. Note
also that, in spite of the TM-TE decomposition of the beam field within each
layer, the TM and TE beam field components are coupled at plane boundaries
(interfaces) of the layers.

Still, however, one should be aware that for three-dimensional beams the
TM and TE beam field components still depend on the longitudinal (z-)
coordinate and on the two transverse (x-) and (y-) coordinates, that is on
E =E (x,y,z) and E =E (x,y,z), respectively. However, in each layer of

the optical system filled by the weakly inhomogeneos medium, the three-
dimensional scalar problems (in x, y and z), governed in the paraxial

approximation by (2.28) or (2.29), reduce into two independent two-
dimensional scalar problems (in x and z orin y and z) [3]. Then, the beam

field amplitude E =E(x,y,z) is factorised into two-dimensional field
amplitudes E(x,z) and E(y,z) in two planes x—z and y—z and these

amplitudes are governed by two independent two-dimensional parabolic
equations, respectively [3]:

E(x,y,2)= E(x,2)E(y,2), (2.30)

lid, +02 - A .n*x? | E(x,2) =0, (2.31)
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R, +02-A .n*y* | E(y.2)=0. (2.32)

Once the two-dimensional solutions (2.31) and (2.32) are obtained within the
paraxial approximation, the three-dimensional paraxial solution is given by
Equation (2.30).

The scaling procedure can be also applied in the transverse coordinates x
and y independently, with different scale parameters w,, and w,,. Such a

scaling is conventionally applied in the case of, for example, a fundamental
Gaussian beam with elliptic cross-section. However, and only to avoid
unnecessary complication of the notation, we will use below in this chapter
the paraxial wave equation in its scaled version (2.28) with w,, =w, =w,,

like for beams of cylindrical symmetry in their fundamental order.

2.3 Beam amplitude and polarization

Any spectral constituent of the electric field of the paraxial beam takes the

—~—

form of a plane wave E (k,,z)exp(ik  r,) defined by two components E

x

and Ej, of the transverse electric field E , . Polarization of the plane wave is
parameterised by a complex polarization parameter ¥, given by the ratio of
the transverse field components:

Fk,,2)=E (k,,2)/E,(k,,2). (2.33)

The field of the plane wave can be also alternatively described as a product
two complex, in general, quantities: a scalar complex amplitude £ and a
polarization complex vector ¢ of the plane wave:

E (k,,z2)=E(k,,2)e(k,,2). (2.34)

One additional restriction should be imposed on the definitions of the field
polarization and amplitude to make this factorisation unique. To this end, let
us assume that the polarization vector in the transverse plane € = ['é;,'éy]r
(the superscript T means transpose) satisfies the condition € €, =1 instead of

the conventional condition to have this vector normalised to unity [32]. That
uniquely defines the complex amplitude of the plane wave,
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1/2

E(k,,2)= (Ex(&pZ)Ey(&uZ)) ; (2.35)

and the polarization vector of the beam:

- _ e (k,,2) » (k& 2)
g("“’z)‘{’e’,-(&bz)}‘[z-‘f’z(&l,z)}' i

Both entities are symmetric with respect to the replacement ffx <—)fy of

transverse field components and to the change ¥ <> 7' of beam polar-

ization, as it should be. It appears that such definition of the base polarization
vectors makes the reflection and transmission matrices at the interface
unimodular [32].

The same factorisation procedure can be applied as well to the beam field
in the configuration domain [32]:

E, (r)=E(r)e(r), (2.37)

E(r)=|E.(nE,1»)]", (2.38)
_|e®]_[ ")

X(r)=E (r)/E,(r). (2.40)

Dependence of the quantities Ex, Ey and ¥ on k, and z, as well as the
dependence of E,, E, and ¥ on r, and z, will be further understood as

implicit. In this way the beam polarization and the beam complex amplitude

has been uniquely defined in the configuration and spectral domains. For
example, ¥ =y =% for beams of right-handed (-) and left-handed (+)

uniform (constant) circular polarization, respectively. Note that the assump-
tion that the parameters ¥ and ¥ are equal to each other (i.e. e, /e, =€, /e, )
for all points of the transverse planes, direct and spectral, implies that these
parameters are constant in these planes.

The beam amplitude-polarization factorisation is unique but remains
singular in two distinctive cases in the spectral and configuration domains. In
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the spectral domain, when one of the transverse field components E_r or E
is zero at one specific spatial transverse frequency k& , the field is of the TM
(E}, =0, ¥ =0)orTE (E‘r =0,7=0) type at k, respectively. Similarly,
in the spatial domain, when one of the transverse field components £ or E,
is zero at one specific point r, in the transverse plane, the field is of the TM
(E,=0 , ¥ =0)or TE (E,=0,7=0) type at r,, respectively. Then, at

this point:
1
EJ_{TM)=EIf_?x=Ex ,
_0-
E™=Ee =Er0_ (2.41)
i y=y ¥ l » .

for the beam polarization of the TM or TE type, respectively.
Moreover, if in one transverse plane the field TM or TE polarization does
not vary from point to point in the spatial and spectral domains, then the field

is totally of the TM or TE polarization in any transvese plane. In general, for
paraxial beams in free space, when the polarization parameters ¥ and y are

constant and equal ¥ = y in the transverse planes, then the beam polarization
is independent of the beam field distribution in these planes. Then the
complex amplitude (2.38) of the beam field is described by the scalar
paraxial wave equation:

2i9, +0? +92 —An* |E(x,y,2) =0, (2.42)

and the problem under consideration becomes a scalar one.

In the next sections of this chapter the beams will be analysed as paraxial,
that is for their rays being close to the beam axis and with their angular
deviations from the beam axis direction being small. Beam polarization will
be assumed constant at any transverse plane. Within this range the beam
polarization and the beam complex amplitude are independent of each other
and will be treated separately.
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2.4 Hamilton’s canonical equations

Action of any first-order optical system can be described within the
formulation of Hamiltonian optics [1,2]. As a part of this formalism, linear
canonical transformations are well suited for the treatment of parabolic
differential equations. The transformations of this kind are present in classical
and quantum theoretical formulations in optics and are common in many
aspects with those one can meet in mechanics. The Hamilton’s equations for
optical ray data will be given in this section. The issue of canonical operator
transforms will be discussed in the next sections.

The paraxial scalar wave equation (2.28) can be recast in the form of the
nonrelativistic Schrodinger equation with the Hamiltonian H [21]:

i0 .E(x,y,z)=HE(x,y,z),

H=H(x,,p,,p,,2)=5[p; + p; +An*(x,y,2)] (2.43)
and with the generalized momenta p_and p, defined by:
p.E(x,y,z)=-id E(x,y,2),

p,E(x,y,2)=-id E(x,y,z). (2.44)

At this level of analysis the eigenvalues p, and p, in the differential
equations (2.44) depend on the solution E(x,y,z) to the Schrddinger
equation, which is not known yet. Therefore p, and p, are also not known.
They can be found in the paraxial approximation to E(x,y,z) by use of a
point-spread function of the optical system and this issue will be discussed
below.

For the time being, however, let us assume that E(x, y,z) is known. Then,
at arbitrary point (x,y) in any transverse plane z=const. of the optical
system, a solution E(x,y,z) to the Schrodinger equation defines a vector
normal to a phase front of this solution at this point. Direction of this vector
or its tilt with respect to the axis of the optical system is given by the
momentum components p, and p, . Note that for a plane wave, which may

be regarded as an approximate model of a sufficiently wide beam, the
momentum vector is equal to the transverse (normalised here) wave vector
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k , of this plane wave, that is (p,,p,)=(k,,k,) in this case. For beams of
finite width, a set of the data (x,y) and (p,,p,) in subsequent transverse
planes defines optical rays passing from some point (x',»') in an input
(transverse) plane to some point (x,y) in an output (transverse) plane.
Therefore the data (x,y) and (p,,p,) are dependent on z. This pair

constitutes, for any ray progressing through the first-order system, the two
two-dimensional ray data vectors:

3 [ x(2) |
2
=" |, (2.45)
' | p,(2)

defined in phase space of three-dimensional, paraxial first-order optics.
Vectors 71 (2) and n (2) belong to the phase space of ray data for rays

advancing through the optical system. They represent points of intersections
(x(z),y(z)) of the rays with any transverse plane of this system and

directions of these rays, through their generalised momenta ( p,(z), p,(z)) at

the intersection points.

To put the definitions (2.45) in a more formal perspective, note that action
of any first-order system can be defined by its impulse response function,
g(x,y|x",y'"sz) e explil (x,y | x",y';z)] with quadratic dependence of its point
characteristic /(x,y|x',y";z)=1(z) on the transverse coordinates x', y' and
x, y in the input and output planes, respectively. Note that linear terms are
absent in /(x,y|x',y';z) because misaligned first-order systems are not
considered in this chapter. The point characteristic is determined by elements
of the ray-transfer ABCD matrix specific to this system (see Equation (5.57)
in Section 5, as well as Equations (6.91)-(6.92) in Section 6 in the case of the
system of cylindrical symmetry). The solution E(x,y,z) to the Schrodinger
equation (2.42) can be obtained by use of this function when the initial beam
field distribution E(x',»',0) in the input plane are known. The momenta
p.(z) and p (z) are then given by partial derivatives p (z)=09 /(z) and

p}.(z)=8},1 (z) of the point characteristic, and the ray vectors Qr(z) and
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Qy(’z) are obtained, for any value of z, from the solution of the Hamilton-

Jacobi partial differential equation and Jacobi’s theorem [21]. That results in
the Hamilton’s canonical equations for the ray data (2.45):

doH/dp, =dx/oz,
oH/ox=-dp, oz, (2.46)
oH/dp, =dy/oz,

oH/dy=-dp, [0z, (2.47)

valid at any transverse plane z = const. of the optical system, provided that
the initial conditions at the input plane z=0 are known. Therefore, the
solution n(z),n (2) of Equations (2.46)-(2.47) in the output plane depends

on the initial condition 77 _(0), QJ_(O) for the optical ray in the input plane.

For paraxial beams in the first-order optical system, the refractive index

contribution An®> to the Hamiltonian is approximated by its quadratic
variation in the transverse coordinates x and y,

H=1[pl+ pi +A n’x? +Ayn2y2] (2.48)

and the canonical equations reduce to the set of the four first-order equations:

dx/oz=p,,
dp,/dz=—A n’x, (2.49)
dyfoz=p,,
dp, [0z =—A_;,n2y, (2.50)

or, only for the optical ray data x(z) and y(z), to the two second-order
differential equations:

0’x/3’ +A n’x=0,
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9’y/d? +A,n’y=0. (2.51)

Note that in the homogeneous medium A n’ = OzA_l,n2 and the solution of
(2.51) consists only of straight rays. In general, however, A n’ #0#A n’
and the ray data are determined by the ray-transfer matrix. This issue will be
discussed in the next section.

Now let us return to the notion of a canonical transformation. Consider
two pairs of the ray data QL”(Z), Q(‘f)(z) and Qf’(z), Q{f’(z) representing
two optical rays advancing through the optical system from one transverse

plane to another plane according to the Hamilton’s equations. Then the
Poisson (Lagrange) brackets for the optical rays:

="V en?, (2.52)

a=Xx,y, remain invariant during beam propagation in any first-order system
[21]:

(d/dz){n".n'"}=0, (2.53)
where the four-by-four antisymmetric matrix
0 L 2.54
g_ —i Q L] ( . )
£= —g'l = —gT , gz =-1 is composed of the two-dimensional identity / and

null 0 matrices [21]. For two pairs of the ray data x(z), p.(z) and y(z),
p,(z) this invariance explicitly reads:

(d/dz)x"p? —xPp =0, (2.55)

(d/dz)[y(l)pf) (2) 1]] 0 (256)

and means that these data are canonically conjugate variables in the first-
order system. Then the optical transformation described by them is
understood as canonical.
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2.5 Ray-transfer matrices

The transformation performed by optical system transfers the amplitude
distribution of the input beam given in the input transverse plane, say at
z=0, to the amplitude distribution of the output beam in the output plane
taken at some value of z. If the optical system is of the first-order type, its
action can be described by a linear transformation represented by four-by-
four ray-transfer ABCD matrix:

4 =
Ms=\c bl’ (2.57)

where the elements of the matrix M  are viewed with explicit dependence

)
on z not displayed for brevity. The matrix M is composed of the four
two-by-two matrices 4, B, C and D and relates the position r, and
momentum p of the incoming ray in the input plane to the position ', and

momentum p', of the outcoming ray in the output plane:

2 ol

The ray-transfer matrices represent linear canonical transformations of the
first-order optical systems, that is the transformations that preserve Poisson
brackets and commutation relations during mapping of the canonically
conjugate variables given in the input plane into their counterparts in the
output plane. To fulfil this condition, the ray-transfer matrices have to be
symplectic, that is they have to satisfy the symplecticity condition [21]:

M eM =g, (2.59)

where € is the four-dimensional antisymmetric matrix (2.54) and M "W

means the matrix transposed of M e If the matrix M (1, 1s symplectic, then
its inverse M {_J'L) exists and is symplectic as well. Unit matrix 1 is symplectic

too. The product of two symplectic matrices is also symplectic and
associativity holds for this product. Therefore, symplectic matrices form a
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group. If the optical system is lossless and without gain, the ray matrix is
unitary, i.e. M i M iy 1, where the superscript “™ denotes the combined

action of transposition and conjugation. However, the symplecticity condition
(2.59) remains also valid for any ray-transfer matrix representing
transformations of paraxial beams in a first-order system with arbitrary
quadratic distribution of the, complex in general, refraction index.

In order to simplify further derivations let us consider now the separable
symmetric optical system. Then the field amplitude of a beam can be
factorised into two independent factors in two orthogonal transverse
coordinates, say in x and y. The beam propagation in such a system is

described by two independent two-dimensional vectors 77 =[x, px]:r and
n,= [y p},]’" in two independent two-dimensional phase spaces of the beam

field. Next, alternatively to the four-dimensional position-momentum ray
vector [{ s ELJT’ (cf. (2.45) and (2.58)), define a new four-dimensional

vector, composed of the two two-dimensional position-momentum vectors:

n.(z)
n,(z) =[§ (Z)} . (2.60)

The four-vector ray-data 77 (z) describes also adequately the positions and

directions of the optical ray in each transverse plane of the optical system. Its

optical transformation is also described by the four-by-four ray-transfer

matrix m , of the first-order system, with arrangements of its elements

different, however, than that of matrix M i (2.57). Because the system is

assumed now as separable, m is composed of two-by-two abcd matrices

(1)

placed on its diagonal. Further, if this system is also circularly symmetric in
any transverse plane x—y, then these two two-by-two abcd matrices are

equal to each other.
In the paraxial approximation the relation between the vector n, defined
in the input plane and the vector 7' , defined in the output plane, is linear

and given in terms of the ray-transfer matrix m
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n'.

[
IS

(2.61)

{L}QJ_'

When the optical system is separable, the four-by four ray matrix m

decomposes into two identical two-by-two ray transfer matrices m . and

g(_1'] )
g{.\') g
m, = 0 m (2.62)
and acts independently on the two-dimensional ray vectors:
=m0,
n' =mmn. . (2.63)

=

In addition, for the system of cylindrical symmetry, these ray matrices are
mutually equal:

_ _|a b
By =8y, ~ET & d (2.64)

and instead of two ray vectors n. and 77 we may consider only one of
them, say 1 _=n7.

The matrix m is unimodular, a feature common to all two-dimensional

symplectic transformations:

detm=ad -ch=1. (2.65)
Note that the scaling (2.25)-(2.26) of Cartesian coordinates implies also the
scaling

a-a, b/z, > b,

c—c, dz, —>d, (2.66)

already accounted for in the defintion (2.64) of the abcd matrix. The ray-
transfer matrix m describes directly transformations of ray data 7 under

action of elements of the circularly symmetric optical system [27-28].
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For example, refraction of the beam at the dielectric interface at z = z"",

that is at the boundary between two semi-infinite dielectric media, is

governed just by the identity matrix g‘” :

n=m"n=n,

. 1 0
ﬁngm(z(mn):[o 1]‘ (2.67)

due to the reduction (2.20) of the axial coordinate z by the refractive index
of the medium. The ray vector 77" in two-dimensional phase space of ray data

at the output plane, just behind the interface, equals the ray vector 7 in the
input plane — just before the interface.

Beam propagation in free space between the input and output planes is
described by the matrix m'":

)

(F) (F) Iz )
m =m Z)= .

)

with the upper off-diagonal term of Q(F equal to the scaled propagation

distance z, positive z>0 for propagation from the waist plane z=0. The

position of a ray intersection with the output plane is displaced from its
counterpart in the input plane by a product of z and p.

Action of the thin lens of a focal length f=-p™', positive f >0 for a

convex lens and negative f <0 for a concave lens, is described by the matrix
m":

el

EU_,\ EEm(p)=[l (1):|, (2.69)
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with the lower off-diagonal term p=—f"" equal to the minus reciprocal of
the scaled focal length f of the lens. The generalised momentum or the
direction of the optical ray is then angularly displaced or tilted by px. Note

that, for f=-2/R and p=R/2, the matrix transformation g(“ describes

also action of a spherical mirror with radius of curvature R .
Other optical transformations commonly encountered in optics are the

phase-shift, the magnification and the rotation. The optical phase-shifter
introduces relative phase difference u between the phase-space coordinates

and is given by the matrix g”’)'

X _ x xexp(-ip/2)
L'} e (ﬂ){p] L exp(+ist/ 2)] ’
m® =m® (1) = [CXP(_fﬂ/z) 0 } '

=Z 0 exp(+iu/2) &10)

Action of the magnifier that scales x by the factor w=exp(+£/2) and p,

1 (M)

=exp(=¢&/2), is given by the matrix m" ™",

X' =m™ )| ¥ | = xexp(+&/2)

L?']_= (‘f)[p] [PGXP(—f/Z)],

exp(+£/2) 0 }
0 exp(-£/2) ]

and the rotation in the phase space about the z-axis by an angle ¢/2 is given

by the matrix m":

[x'} _ [x cos(¢/2) - psin(.;p;"'Z)}

by w

m'™ Eg‘”’(§)=[ 2.71)

xsin(@/2)+ pcos(¢/2)

'

p

m® = m® (@)= cos(¢/2) —sin(p/2)
ks sin(@/2)  cos(p/2) |’

The angle ¢ is taken positive when a right-handed screw associated with this

(2.72)

rotation (in the x-y plane) is advancing in the positive direction of the z-axis.
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An arbitrary first-order optical system may be regarded as composed of
several optical elements, represented by such the ray-transfer matrices. A
cascade of these elements whose ray-transfer matrices are m", m?,...,

g(’") is then equivalent to a single first-order optical element with the ray-

transfer matrix m given by the matrix multiplication in reverse order,

=m™ .. mPm". (2.73)

IS
IS

Consider now the reverse problem — having postulated the total ray-transfer
matrix m known, find an optical system composed of optical elements

represented by ﬁ(” , J=1,2,..., which yield the total matrix m according to
(2.73). The problem is not unique - there are several equivalent decompo-
sitions of an arbitrary unimodular matrix m . For instance, any non-singular
matrix can be decomposed into a product of two matrices, one Hermitian and
one unitary, what implies that any two-by-two unimodular matrix m
decomposes into the product of one Hermitian matrix and one rotation
matrix.

However, the decomposition of other type appeared especially suitable in
considerations of the behaviour of optical beams in optical systems. It is the
lens-magnifier-rotation decomposition, known also as the Iwasawa three-
parameter decomposition [27,33]:

m=m"(p)m™(E)m™® (-p). (2.74)

According to the decomposition (2.74), action of first-order optical systems
can be interpreted in terms of successive actions of the basic optical elements
- the rotator, the magnifier and the lens - performed in the phase space of
positions and tilts of rays of the optical beam fields propagating in these
systems.

2.6 Optical canonical transforms

Consider the Hilbert space of square-integrable complex-valued functions
E(x,y,z), in any transverse plane z = constant and define the position x, p

and momentum p_ , p, canonically conjugate operators in the input plane

z =0 of the optical system:
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RE(x,.0)=xE(x,,0),
p,E(x,,0)=~id, E(x,y,0)= p, E(x,,0), (2.75)
VE(x,y,0)=yE(x,5,0),
p, E(x,y,0)=—id, E(x,,0)= p, E(x,,0), (2.76)

where Hdtdy|£(x, y,z)|’<eo. The upper hat denotes an operator. These
Hermitian operators correspond to the position x, y and momentum p_, p,

phase-space coordinates of optical rays introduced in Section 4. They satisfy
the commutation relations [27]:

.5, )=i=]3.5,]. 2.77)

l&.5,1=0=[7.5.]. (2.78)
where, for arbitrary operators ¢ and p,

9.5]= 4~ pq (2.79)
stands for a commutator of these operators.

The canonically conjugate position and momentum operators X, y, p,
and p, (2.75)-(2.76) have been defined in the input plane at z=0. In
another transverse plane, say in the output plane, they may take, in general,
another form, as it will be explicitly postulated in Equation (2.86). Therefore
a form of these operators is changing from one transverse plane to another

and thus it depends on z. These changes are induced by a transfer operator of
the system m defined in Equation (2.82) below. The operators x, y, 2

and p, can be arranged in two two-dimensional column vectors

. [
Q,‘.(Z) = _f}_r(z):| b

i (=] 7@ (2.80)
z)=| . ; .
2, 1 2,(2)
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or in one four-dimensional column vector

i (9= 2 2.81)
15954 )| |

now written in an arbitrary transverse plane at z = const.
Define a linear transfer operator m =m (z) of the first-order separable
optical system, that relates the input beam-field-amplitude E(x,y,0) given in

the input transverse plane taken at z =0, to the output beam-field-amplitude
E(x,y,z) obtained in the output transverse plane at arbitrary z = const.:

E(x,3,2)=m (2) E(x,y.0),

. |m. 0

21 o ﬁAv : (2.82)
Next, postulate the integral form of m (z),

i (2)E(x,3,0)= [[ax'dy'g(x,y| %', 2)E(x',1',0), (2.83)

involving an impulse-transfer (impulse-response) function g(x,y|x',y";z) of
the optical system [2]. Then, the condition E(x,y,z)=E(x,»,0) at z=0
implies:

gx,y|x',y0)=(x-x")o(y—y"). (2.84)

The definitions of the canonically conjugate operators (2.75)-(2.76) describe
the action of these operators 77 (0) on the field function E(x,y,0) in the

input plane at z=0.

Define this action in the output plane at z =const. by the ray-transfer
operator m (z)[20],

A, (VE®,»,2) =i () (0E(x,,0), (285)
or equivalently by the self-similar relation:

N, ()= (20 (0@ (2). (2.86)
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The definition (2.86) states that the operators ﬁl, one defined in the input

plane z=0 and one in the output plane z=const., are equivalent or self-
similar.

What we expect now is that the self-similar transformation (2.86) of the
vector i (2.81) of the conjugated pairs of operators %, p, and y, p,,
induced by the operator transformation m  of the beam-field-ampli-
tude E(x,y,z) (2.82) or, equivalently, by the matrix transformation m
(2.61) of the ray-data vector 77 ~(2.60), is canonical. This means that the
operators X, p, and y, p, given in any transverse plane are (i) linear

superposition of these operators given in the input plane and (ii) satisfy the
commutation relations (2.77)-(2.78) in any transverse plane of the optical
system. The condition (ii) implies that the linear ray-transfer transformation
m should be symplectic (2.59) or, in separable optical systems, unimodular

(2.65) (detm , =1). Moreover, in addition to the action of the ray-transfer

matrix m on the ray-data vectors 77 :

n (z)=m (z)n (0), (2.87)

the equivalent transformation of the vector r_}L exists [20,27]:
n,(z)=m ()7 (0). (2.88)

The definitions (2.85)-(2.88) display the explicit correspondence between the
symplectic matrices m  (2.62) and the canonical transfer operators 1,
(2.83) [20]. It is a homomorphism; an algebraic structure of the group of
symplectic matrices is preserved under this correspondence. However
globally it is not an isomorphism; this correspondence is not one to one - the
two operators m and —m represent the same matrix m . In spite of that,
the definitions (2.85)-(2.88) state that the transfer operator m , that
transforms the beam field amplitude E(x,y,0) from the input plane to the
beam field amplitude E(x,y,z) in the output plane of a first-order optical

system, is canonical.
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For separable optical systems with cylindrical symmetry, the
transformation (2.88) is explicitly given by only one two-dimensional abcd

ray-transfer matrix of the system [20]:

: (@) (%) [d -=b] %0) | WD) (0)
— — z )
L= b7 |=e  a || pooy] ™= ¥
[ [a -p[3O] . .
n,(z)= 5@ )50 =m '(2)7 (0), (2.89)

where the equality of the ray-transfer matrices m =m = m entails the same
relation for the transfer operators: m_=m =m. It can directly be shown [20]

that, for the nonsingular case (b # 0 ), the outcome of the action (2.82)—(2.83)
of the transfer operator 7, (z) on the beam field distribution E(x,,0) at the

transverse input plane at z=0 can be described by the beam field
distribution E(x,y,z) at the transverse output plane at z =const. This leads

to the integral form [20]:

E(x,y,2)= [[dx'dy'g(x,y | x',y';2)E(x',',0). (2.90)

An impulse-response function of the system is given by the kernel
g(x,y|x',y";z) of this integral,

g(x,y|x',y'sz) =(i2zb) " explil (x,y| x',";2)], (2.91)
with the phase term determined by the abcd matrix:
I(x,y|x',y';2) =3[d(x* + y*) = 2(xx'+)p") + a(x"+)")]/b. (2.92)

This phase term is known as a point characteristic of a first-order system
[21]. For z=0 m=1, a=c=1, b—0, as it should be, and the response

function converts into the two-dimensional Dirac function, according to the
stipulation (2.84),

O(x—x")o(y—=y")

: gy o 2 > (2.93)
=lim,_,, (272b)™ exp{~3(ib)" [(x—x")" +(y=»")"]}.
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The beam field representation (2.90)-(2.92) is known as the generalised
Huygens integral [20]. For the singular case, that is in the case, when the
upper-right non-diagonal element of the abcd matrix equals zero (b =0), the
integral representation (2.90)-(2.92) is replaced by a simple algebraic relation
[27]:

E(x,,0)=( al|/a*)exp[4(c/a)(x* + y*)E(x/a,y]a,0). (2.94)

Any transfer operator m can be decomposed in several ways into basic

optical operators, per analogy to decompositions of the ray-transfer matrices
m mentioned in Section 5. For example, the Iwasawa decomposition (2.74)

of the transfer matrix m, entails the same decomposition of the transfer

operator m and m  :

=i (p) ™ (w)i'® (-p),

I3

L= () Wi (). (295)

3>

Therefore, action of any first-order optical system can be described by

successive actions of three basic transfer operators on the beam field

distribution at the input plane, that is the action of the lens 1",

i\ (P)E(x,y,0) =expl4 p' (x* + y")] E(x,,0), (2.96)

)

b

i A (M
the magnifier m'

w' " (WE(x,p,0)=w E(xw™,yw™ 0), (2.97)
where we have changed the argument of this operator from & to
w=exp(&/2), and the rotator 7z R

~ (R)

i (~p)E(x, y.0) = (i/ 2zsin(9)2)) [[dx'dy' E(x', y',0)

expl—4[(x* + y*) cos(9/2) = 20xx+ yy') + cos(@/2)(x" >+ )] sin(p/2)}.
(2.98)

For ¢=-m one gets E(R’(E)=£ and the rotator induces the Fourier

transformation,
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' (m)E(x,,0) = (i/27) E(x,,0),

(2.99)
where E means the conventional two-dimensional Fourier transform of E A
E(x,y,0)= [[ax'dy' E(x', y' 0)expliCxx+yy")].

(2.100)
Otherwise, for arbitrary values of ¢, the rotator is equivalent to the fractional

Fourier transform in two dimensions, of the order —¢/z . For example, if

@/7 =1/2, then the rotator is a square root of the Fourier transformation.
The operators g’_f)(p) ; ﬁ‘l‘”"(é) and

ﬁ‘f’(—q)) can be explicitly related
to the position X, y and momentum p , p, operators by three Hermitian
operators [27]:

==+ + P+ p)),

(2.101)
k=—1(&+3* - p2-pl), (2.102)
k]. =%(£¢5t +}’>ﬁl +f)x£+ﬁlj>)’

(2.103)
which, through their exponentials, generate three unitary transformations
applied in the Iwasawa decomposition (2.95):

i (p)=exp(=ip™ (j_+k)),

(2.104)
'™ (m) = exp(—ik,),

(2.105)
" (~¢) = exp(=ip] ).

(2.106)
On the ground of the relations (2.86) and (2.88), the action of the transfer
operators m s related to the action of the ray-transfer matrices m by the
identity [20,27]:

i (2, (0™ (z)=m ()7} (0).

(2.107)
Hence the canonical transformations

of beam amplitudes distributed
across transverse planes of any first-order symmetric optical system
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correspond to members of a three-parameter symplectic group represented by
unimodular matrices m . We will return to this group representation in the

discussion on transformations of beam polarization.

2.7 Hermite-Gaussian beams

There are several families of beams, for instance: Hermite-Gaussian and
Laguerre-Gaussian beams [3,6], generalized Gaussian beams [34], Bessel-
Gaussian beams [35], [36], spiral Laguerre-Gaussian beams [37] or Hermite-
Laguerre-Gaussian beams [38], which propagate through first-order optical
systems according to the paraxial wave equation. Their propagation is shape-
invariant, that is they do not change their transverse shape in spite of scaling
their beam-field parameters and changes of their on-axis amplitude and
phase. In this chapter two basic families of such beams will be considered,
one of rectangular symmetry and one of cylindrical symmetry in their field
amplitude distribution in the transverse planes, namely the standard Hermite-
Gaussian (SHG) and the standard Laguerre-Gaussian (SLG) beams,
respectively [6]. As they can be generated in standard laser cavities, their
features are commonly well known and have been extensively discussed in
many textbooks, for example in [3-6]. Here we will show how their field
amplitude is determined by the ray-transfer matrix of the paraxial
propagation in a dielectric infinite medium.

The ray-transfer matrix of beam propagation in free space:

(F)
gf](z)=[g @ 9 ] (2.108)

0 m®(z)

g‘”(z)=[:) T] ; (2.109)

leads, through the Huygens integral (2.90)-(2.92) to Fresnel integral formula
for the field of a optical beam:

E(x,y,z)=m"(z) E(x,y,0)

(2.110)
=(-i/272) de'aj/‘E(x', ¥ 0)exp{4[(x—x')? +(y-»'))/z}.



48 CHAPTER 2

Assume that in the input plane the beam field has a form of the two-
dimensional fundamental Gaussian-beam-function modulated by Hermite
polynomials H (x) and H, (y):

E(x,3,0)= G (x,y,0)=c, , H,(x)H,(y)exp[-L(x* + y*)], (2.111)

where the Hermite polynomials are defined as:
H (x)=(=1)"exp(+x>)(d"/dx")exp(-x?). (2.112)

The function G©7(x,»,0) is exactly the two-dimensional standard Hermite-

Gaussian (SHG) function of the order N=m+n [3-6]. It describes the SHG
beam at its waist plane, taken here at z=0. The SHG beam (2.111), through
the amplitude normalisation factor [23]

Con=Q2™" Tmin)™"?, (2.113)
can be normed in intensity to one:
[[axay| G x,y, 2 =1. 2.114)

This implies that the amplitude of the normed fundamental SHG beam, that is
for n=0=m, is equal 7" at the centre of its waistat x=y=2z=0.

The SHG function G™’(x,,0) in two dimensions factorises into two

one-dimensional SHG functions,

G, (%,3.0)= G, (x.0)G,*(y,0), t2113)
GLSH)(X,O) = K-l/‘i(m!)"lﬁ Hm (x)exp(_%xz) . (2 11 6)
G, (r.0) =" (n) P H, () exp(-1 ), Sl1)

of the orders m and n, respectively. Note that the left-hand side of Eq. (2.115)
is separated in the coordinates x and y and thus the 2D problem can be

solved by solving separately two identical 1D problems. Therefore, let us
temporarily restrict our considerations only to one 1D problem with one
coordinate x . The one-dimensional SHG function G'*’(x,0) is a solution of

the differential equation:
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1(x* =92 -GS (x,00=m G (x,0), (2.118)
or, equivalently, an eigenfunction of the number operator E‘;’I, with the

eigenvalue m equal to the order m of this function,

N. G5 (x,0)=mGS" (x,0). (2.119)
The operator N, can be expressed by the ladder differential operators a*:
N =a’a;, (2.120)

a*=2"(x¥9,), (2.121)

X

where a! is Hermitian transpose of a_ [23]. As the ladder operators obey the

standard commutation rules:
la;,a;]1=1,
[4;,a;]1=0=[a;,a;], (2.122)

they lower and rise the order of the SHG functions:
a.GP"(x,0)=m"*G'*(x,0), (2.123)

a'GP" (x,0)=(m+1)* G (x,0). (2.124)

m+l

Hence, the higher-order SHG beams G'*’(x,0) can be obtained from the
fundamental (of zero order) beam G(x,0) by applying consecutively the
raising operator a; ,

G, (x,0)=(n)"*(a;)" G (x,0) (2.125)
to the fundamental Gaussian beam function:
GéSH}(x,O) - JI_WG()C,O) — ”—1}"4 exp(_%xz) A (2 1 26)

The higher-order beams G'*"’(x,0), m=1,2,..., together with the fundamental
beam Gém’ (x,0), constitute a complete set of solutions of the one-dimen-

sional paraxial wave equation [23].
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With the differential equation (2.118) in its two-dimensional version in
mind we may consider the two-dimensional SGH function Gf,ff’(x,y,O) as

an eigenstate of the operator }'2:

};. G (x,y,0) ==L (m+n+1)G (x,,0), (2.127)
where
jz =—1(x*+y?-92-32). (2.128)

In fact, the operator j, corresponds to the Hamiltonian operator ﬂ of a two-
dimensional isotropic oscillator with eigenvalues equal m+n+1:
g=—222=§(_x2+y2-ai-a§). (2.129)

-~

Moreover, the operator j  generates, through its exponential

g‘f”((p) =exp(—i¢}'2), rotation in the phase-space by an angle ¢/2. There-

fore, the SHG functions are also eigenstates of the operator @‘j’(—q}) with

eigenvalues exp(—i@,, ,(2)):
i\ ()G (x,y,0) = exp(~5 9, (2) Gy (x,,0),

@ n(2)=(m+n+1)e(z). (2.130)

The phase 1¢, ,(z) is the well-known Gouy on-axis phase of the SHG beam
of the order m+n, [2-7]. The phase function ¢(z) is still to be found under
the condition that ¢(0)=0 at the input plane z=0, as the beams
G (x,»,0), m, n=1,2,..., have been defined above only in one plane - the
input plane at z=0.

Now we are prepared to consider the propagation of the beam field,
defined by the distribution (2.111) of the SHG beam in the input plane.
Characteristics of this propagation are completely determined by the ray-
transfer matrix of this system. To show this let us apply the Iwasawa
decomposition (2.74) defined as:
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(M)

m'”(z2)=m" (p)m " (w)m'" (~¢), 2.131)

to the free-space ray-transfer matrix [27], that is solve the algebraic equation
1 z _ l_| 0Of w 0_ | co’s (9/2) sin(@/2) 2.132)
0 1 p 1|0 w' | —sin(@/2) cos(¢/2)

in terms of the beam parameters p, w and ¢. Note that all these parameters

are dependent on the propagation distance z . The solution is:

p=Ep(2)=z+z7", (2.133)
w=w(z)=(1+2")"?, (2.134)
T@=5¢(z)=arctan(z), (2.135)

with the beam waist at z =0 and with the relation
p(z)sing(z) =2 (2.136)
equivalent to the unimodularity of the ray-transfer matrix (2.132);

detg‘f’(z) =1. The Gouy on-axis phase of the fundamental Gaussian beam

increases its value by 7 between z=—oc0 and z =+oo.
As it will be evident later, p denotes the radius of phase front curvature

of the beam, w stands for the radius of the beam cross-section (beam half-
width) and the phase ¢(z)/2 is the well-known Gouy on-axis phase of the

fundamental SHG beam [2-7]. For further purposes we define also the
complex radius of the beam:

vew(z)=(1+iz)"?, (2.137)
which also yields the radii w and p, and the phase ¢,

v(z)v(z) =w(z), (2.138)

¥(2)/(z) = exp(-i p(2)/2), (2.139)

vZi(2)=w?(2)=ip ' (z2)=w ' (2)exp[-i(2)/2]. (2.140)
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Now, with the beam parameters (2.133) - (2.140) known, let us apply the
operator of the beam propagation in free space ﬁm(z) in its Iwasawa

decomposition (2.131) to the beam field G (x,»,0) given in the input

plane:

~(F) (SH)
" (2)GE (x, y,0)
=L - (2.141)

= cm‘n exp(_% (am,n )whl exp[_% p_l(xz + y2 )]Gm.n (X/W,y/W,O)
We then finally get the SHG beam field with its three parameters p, w and
®,.,» all dependent implicitly on z:

GBS x,y.z)=c. exp(—+ it
mn (% Ys2) =Cp  €XP(—1 0, ) . (2.142)

xexp[Lp™ (x> + y*)H,, (x/w)H, (y/w)exp[-L(x* + y*)/w’]

The SHG functions G:H (x,y,z) are eigensolutions of the Hamiltonian g

WM

(2.129) with the eigenvalue m+n+1:

i0,,G (x,,2) =HG (x,,2) = (m+n+ )G (x,,2),

G (x,y,2) =(mint) (8} )" (&))" GS3 (%, 3,2), (2.143)
and with their lowering a; and rising a; operators:

a;(z)=2"[x+v*. ],

al’(z)=2"[x-v%9,], (2.144)

still obeying their relations (2.123)-(2.125) given before in the beam waist
plane z =0 [23]. Outside the beam waist plane these operators are dependent
on the propagation distance z. The functions G'*"’

m.n

(x,y,z) form a complete

set of solutions of the Schrédinger equation (2.143) equivalent to the paraxial
wave equation (2.29) in free space.
Finally, the definition (2.137) of the complex radius of the beam v(z)

yields a more compact form of the SHG beam field:

G (x,y,2)=c,,, H,(x/WH,(y/WF/V)™" G(x/v,y/[v,z),
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G(x/v,y/v,z) =c§_LG((,§]H)(x, y,z)=v2 exp[—%(x2 +y*w?], (2.145)

where G(x/v,y/v,z); G(0,0,0)=1, is the well-known two-dimensional fun-
damental Gaussian beam defined for arbitrary value of z. In this way the
Equation (2.145) defines the SHG beam at any transverse plane of the first-
order optical system. The SHG beam-field-function is scaled in the transverse
coordinates x and y and possesses the additional on-axis phase factor
(v/v)™" . Note that the scaling parameters w and v are dependent on z and
both resolve into the (real) beam half-width at the beam waist for z=0
(equal one in the convention assumed in this chapter). The scaling parameters
are different for the fundamental Gaussian beam and the Hermite
polynomials. Meanwhile these coordinates in the Gaussian function
G(x/v,y/v,z) are scaled by the complex beam half-width v, they are scaled
by the real beam width w in the Hermite functions H, (x/w) and H,(y/w).

The ladder rising operators a; and a; have been defined in the Cartesian
coordinates x and y. Per analogy, however, a new complete set of solutions

of the paraxial equation can be also obtained with the aid of the ladder rising
operators a; defined in the circular polarization basis [23]:

Gy (x,y,2)=(n,!n_y(a})" (a2)™ Gop (x,3,2),

a; =27"7(a} tia}), (2.146)

where p=min(n,,n_) and /=n, —n_. The functions fo’ (x,y,z) represent

the SLG beams and these beams will be described in the next section.

2.8 Laguerre-Gaussian beams

The SHG beams form a complete, orthogonal, infinite-dimensional base
for any scalar paraxial beam field, with its transverse distribution represented
by a square integrated function. That is, any light beam of linear polarization
and finite power can be described as a superposition of the (scalar) SHG
beams. The characteristic feature of the SHG beams is their rectangular
symmetry in any plane transverse to the propagation direction. Now we
present another infinite-dimensional, complete and orthogonal family of
beams of circular rather than rectangular symmetry in the transverse planes —
a family of the standard Laguerre-Gaussian (SLG) beams [39-40].
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Let us introduce the cylindrical coordinates r, and y; x=r cosy,
y =r, siny , and rewrite the paraxial wave equation in these coordinates:

[2id, +r[0; +0,]E(x,y,z)=0. (2.147)
Then it can be shown by inspection that the SLG beams of the order N=2p+I
[3,6]:
Gy (r,v,2)
P (/2P gl g2 )2 : (2.148)
=(=1’c,, (/)" (r/w) L (1] [w)exp(=ily) G(x/v, y/v,z),
obey Equation (2.147), where L’p is the generalized Laguerre polynomial,

P'L,(x) =[x exp(+x)][(d/dx)x]"[x" exp(-x)]. (2.149)

By introduction of the normalisation factor [40],
¢, = P pt/(p+D)Y"7, (2.150)

the SLG function can be normed in its intensity to one:
[[dr, r,dw|GSP(r, . 2) =1. (2.151)

Note that we use interchangeably the Cartesian or cylindrical coordinates as
arguments of the beam functions what, for example, may be seen in the
expression G (r,,W,2) =G\ (x,p,2). The definition (2.148) is given here

for positive values of 1 and p. For negative values of |
Gi‘ﬁf"(x,y,z) G‘Sﬂ(x -y,z2).

There is no need to derive the definition of the SLG beam along the lines
shown already for the SHG beams. As both families of these beams form
complete sets of solutions of the paraxial wave equation, any SLG beam can
be expressed by a linear combination of the SHG beams and vice versa. To
compound the SLG beam in this way let us start with the SHG beam, whose
principal axes make an angle 7/4 with x and y axes of the Cartesian

coordinate frame (x,y,z). Such the “diagonal” SHG beam can be decom-
posed into the set of “non-diagonal”, that is in not rotated in the (x,y) frame,

SHG beams of the same order N=n+m according to the rule [40]:
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m+n

G (27 (x+ p), 2 (x = p),2) = D bm,n, k)G (x,3,2)
k=0
b(m,n, k)

= @ty {4 n = YRR fa - om0 E

Note that the expansion coefficients b(m,n,k)are real and therefore all of
them are in phase in the “diagonal” expansion (2.152).

It can be shown that the SLG beam of the order N=2p+l also decomposes
into the set of SHG beams of the same order N=m+n in a similar way [40]:

G xy2)= Zﬁb(m nk)GS™, (x,,2), (2.153)

with exactly the same coefficients b(m,n,k) augmented by the factor i,

where m=p, n=l+p for m<n and m=I+p, n=p for m=n. That corresponds to
an additional /2 relative phase difference between successive expansion
coefficients. For example, the diagonal SHG beam of m=0 and n=2 and the
SLG beam of p=0, 1=2, both of the order N=m+n=2p+|=2, can be represented
by the following decompositions in terms of the non-diagonal SHG beams of
the same order:

G (x+ )2 (x—-y),2)
=232+ 2 VG 5,0 #2765 (2 s

Gy (2 v:2)

_ -l (SH) ¢ (SH) o (SH] (2154)
_2 GZ,(} (x,y,Z)'l'lz GII (x y,Z) 2 G (xsysz)-

The “diagonal” decompositions (2.154) are visualised in beam intensity in
Fig. 2.1 and Fig. 2.2 (see also figures in [40,41]).

The decomposition (2.154) is not only a pure theoretical result. Any HG
beam can be transformed into a corresponding LG beam, and any LG beam
can be transformed into a corresponding HG beam, by passing them through
an astigmatic beam-mode converter, composed of a specific set of cylindrical
lenses [40]. Direct comparison of the two expansions (2.152) and (2.153), for
the diagonal SHG beams and the SLG beams, respectively, indicates that
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such conversion should change phase in the coefficients b(m,n,k) of these

decompositions. It has been shown that this operation can be accomplished
by manipulation of the Gouy on-axis phase of the beam [40].

Figure 2.1. Intensity distribution of the components in the

decomposition (2.154) of the diagonal SHG beam G| (left) into the

. SH SH SH
non-diagonal SHG beams G,,"’, G;\"’ and G5’ of the same order

(right). All components of the decomposition are in phase.

= . + e + -
.e

Figure 2.2. Intensity distribution of the components in the
decomposition (2.154) of the SLG beam G[‘,f“ (left) into the non-
diagonal SHG beams G, G\}") and G{" of the same order
(right). The second and the third components of the decomposition
differ in phase by 7/2 and 7, respectively, with respect to the

decomposition components in Fig. 2.1.

There is a distinct asymmetry in arguments of the standard HG beams

(2.145) and the standard LG beams (2.148) — the arguments of their Hermite
and Laguerre polynomials are scaled by the real beam radius w(z),

meanwhile the argument of the fundamental Gaussian function (2.145) is
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scaled by the complex beam radius v(z). However, there are also two other

parallel families of three-dimensional paraxial beams, with all their
arguments scaled by the complex beam parameter v(z) only. They have been
named as the complex-valued or “elegant” HG beams and LG beams [6].
Their definitions (up to the normalisation factors) will be given in Section 4,
Chapter 7.

The elegant HG and LG beams also form two separate, complete and
infinite-dimensional bases for any solution of the paraxial wave equation of
finite power. Contrary to the SHG and SLG beams, these sets of the elegant
(EHG or ELG) beams are biorthogonal rather than orthogonal [6]. Still, the
diagonal relation (2.153) remains valid for the elegant EHG and ELG beams
with the same expansion coefficients as for the standard SHG and SLG
beams [41]:

N
GEP (x,y,2) =) i*bm,n, k)G (%, 9,2) . (2.155)
k=0

They play a special role in beam interaction with a planar dielectric interface,
or, in general, with any planar dielectric multilayer. Their definitions will be
given and their interaction with the interface will be analysed in the last
chapter of this book.

2.9 Spinors of beam polarization

The formalism, outlined in previous sections, treats the beam field
amplitudes as scalar quantities, independent of beam polarization.
Transformations of the beam polarization, assumed to be approximately
uniform (constant) at any beam cross-section, will be briefly discussed
below.

The amplitude distribution of the beam field has been analysed by use of
the beam field expansions in the Hilbert space of square-integrable functions,
spanned by the complete and orthogonal (or bi-orthogonal) sets of HG or LG
beam fields. Similarly, beam polarization can be analysed in a two-
dimensional vector space spanned by one particular pair of orthogonal
polarization states. These states are usually taken as of the linear, TM and
TE, or the circular, right-handed (CR) and left-handed (CL), polarization
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states. Our choice here is the TM polarization state with the base vector ¢,
directed along the x-axis, and TE polarization state with the base vector ¢,

directed along the y-axis:

o | (2.156)
‘_"x_oo QJ.—I . .

An arbitrary state of the beam polarization will be expressed by the
complementary and equivalent - for coherent beams - entities: Jones spinors,
Stokes vectors and polarization matrices. The analysis will be restricted only
to paraxial beams of their polarization states uniform in any transverse plane
of the optical system.

Recall that the vector beam field £, = Eeexp(ik , r,) has been defined in
Section 3 as the product of the scalar complex amplitude £ and the
polarization vector g:[ex,ey]r, known as the Jones vector. For beams of

arbitrary polarization this vector has been defined in Section 3 in terms of the
polarization parameter y = E, /E, . An inner product of two such vectors ¢,

and e, is defined by:
(ene)=ere;. (2.157)

Thus two Jones vectors

‘ex' ZH,.’Z
g_ e e -2 |
¥ V4

_ér T 4 —=-1/2
é=| {_;m}, (2.158)

are mutually orthogonal:
(e,¢)=¢"¢,=0 (2.159)

and possess a common norm | e|:

le=e'e=é"ée=x|? +| 27, (2.160)

ETEe

where the overbar “* stands for complex conjugate.
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The Jones vectors e and ¢ span a two-dimensional vector space of beam
polarization states. For two abitrary polarization vectors u and v:

u= u.\'e_r gr s u.\-e.\' g_r 3

v=vee +tvee, (2.161)

of arbitrary polarization parameters yu, /u, and yv, /v , respectively, their

inner product (u,v)=u"v reads:
(E“_))=ﬁ_rvr |Zl+il—|v1 |X|_I 5 (2'162)

For the polarization base composed of the linear or diagonal polarization
states of beams, that is for the linear TM ( y =#c0, ¢, =0) and TE (x =0),
linear diagonal (¥ =%1, e =0) or circular diagonal ( y =+i) states, the
magnitude of the polarization parameter equals one (| ¥ |=1). In the space

spanned by one these pairs, the inner product (2.162) of the polarization
vectors simplifies to the form independent of y :

(U,v) =Ty, +v, . (2.163)

Therefore, the TM/TE or diagonal polarization states (linear and circular)
should be regarded as special types of beam polarization. The role of these
states in the beam polarization representation is similar to the role of the HG
beams and LH beams in the beam-field-amplitude representations. Further
the analysis in this chapter will be continued in the TM/TE polarization basis.
In optics most of the lossless elements of first-order systems act on a Jones
vector e according to the linear, unimodular and Jones transformation L :

R 2.164
el.-' = Vv - L_n- L.\'\' C’I\. ’ ( & )

where detL=1. For rotations, being the special case of these
transformations, the complex Jones matrix L is unitary in addition to be

unimodular. Two-component entities that transform linearly according to

unimodular transformations are regarded as two-component spinors.
Therefore the vectors e are polarization or Jones spinors. In a more general
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case, when the polarization transformations are not necessarily unimodular,
the vectors e are regarded plainly as Jones vectors. Note that the matrix L,
representing optical transformations in the two-dimensional space of beam
polarization states, possesses the same dimension and the same unimodular
property as the ray-transfer matrix m, acting, however, in the different
infinite-dimensional phase-space of transverse-field-amplitude distribution of
the beams.

With the definitions of the polarization spinors given above all constructs
necessary for the description of beam polarization can be conveniently

introduced. For completely coherent beams - only such beams are considered
here - the polarization spinors define a two-by-two polarization matrix C

[42]:

[
(@)

"=ee’ (2.165)

3

{CH Cly] |:exéx exé'yi| T
Ce Q4| a6 22| '

Note that, for any spectral constituent of a partially coherent beam, the
counterpart of C is known as a coherency matrix [8].

The polarization matrix is Hermitian and as such can be expressed as a
linear combination of the four basic two-by-two matrices 0, u=1,2,3,4:

[z3+z4 Z,—i}lz}

(2.167)
AT ~EatE;

c=y3,0,=

H=l
with the coefficients £, of this expansion known as the Stokes parameters.
The first three matrices o, , k=1,2,3, are the well-known Pauli matrices [43],
the fourth one is the unit matrix:

0'--01 [0 -i
=11 o 27l 0]

1Q

(2.168)

1S
L
|
O
=
=
[l
F-.
|
o ot
—_—0
| I |
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All of them are Hermitian ¢, =o, and unitary ¢, 0 =1. The three Pauli
matrices are traceless g, =0 and obey the anticommutation and

commutation relations:

lo.01=0,0 +0,0 =291, (2.169)

==

&, ]=cr,0'_—gj_g_x_=2£€ o (2.170)

=i’ =17 =i=j k="’
where 1,,k=1,2,3 and ¢, is the Levi-Civita skew tensor, &, =—¢€;,, =—¢€,,
£, =1.
The Stokes parameters form the Stokes four-vector
g=[%, %, %, E]. (2.171) .

With a metric

-1 0 0 O
|0 -1 0 0 2.172)
€510 0 -1 0 '
0 0 0 1
a scalar product of two Stokes vectors '’ and =® is given by:
", 2")=(g2)' 2"
oo . \ (2.173)
=-ZIF0 _SND _FAFO L FEFE
The norm of the Stokes vector squared
T HIl=(gD) L=-1/ -5 - I +1, (2.174)

is called a Stokes scalar.

From the expansion (2.167) the components X ,6 are determined by

o
elements of the polarization matrix C':

El :_f(cxy +Cy_r)z‘]‘(e e +ee.),

2\ x"y yox
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23 = %(C{x - Clj') = %(e.\‘éx - e__'é') »

2, =3(C,+C,)=3(ee +ee), (2.175)

with the fourth Stokes parameter X, being always positive (X, >0). Note
that the matrix C can be directly expressed by Stokes parameters and

+1/2

depends explicitly on the magnitude (y7)""* and phase (y/7)""* of the

polarization parameter y :

C_[Ea"'za Z, —iX, ]_{(l’f)h (Z/’?)H-], (2.176)

L+iZ, -I+I ] /o™ ™

The Stokes scalar is equal to the determinant of the polarization matrix
which, for completely coherent beams, is zero,

2*=C,C,-CC, =detC=0. (2.177)

x ™ yy

Therefore, for coherent beams, the condition X’ =0 remains valid in any
transverse plane of all optical systems, which leave coherency of optical
beams invariant.

The definition of the polarization matrix given above differs to some
extent from its conventional definition (2.178). The magnitude of the beam
complex amplitude |E E| | is extracted from this definition. This choice

seems to be natural as the beam polarization depends on the polarization
parameter y, thatis C=C(y), rather than on the complex amplitude of the

beam. However, for singular cases of polarization, where the beam amplitude
extraction does not make sense, that is for the linear TM ( y =%e<) and TE

(' =*o0) polarization, the polarization matrix is conventionally defined as:

EE |C(y)= EE, EE, (2.178
| =y |:(/¥ ) il E_\,E:_r E}_ E‘_ . )

and reads:

+1 0
g(im)x[o 0},
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C(£0) o< [0 g :| (2.179)
= 0 *1

where +0 means +1/e. For other, non-singular cases, both versions (2.176)
and (2.178) of the definitions of C yield the same results up to the unrelevant

factor. For example, for the diagonal linear (y==1) and the diagonal
circular ( ¥ =¥i) polarization, one gets:

1 il]
C(£l) < ,

(+1 1
1 Fi
CEye<| | (2.180)

Jones vectors are useful in analysis of completely coherent beams. Their
introduction is not, however, sufficient to deal with partially coherent beams.
To see the above sequence of definitions in more complete perspective, let us
mention only that, for beams of arbitrary coherency, the polarization matrix
should be time-averaged [8],

20> <ny>]

20,5 €0, 5 el

<£>=[

where < > represents averaging. Such a matrix is commonly known as the
coherency matrix. The same time-averaging pertains also to the Stokes vector

«In=ilel s T «f s xEaf, (2.182)

now with <X >*=det<C >, in general, different from zero. The degree of
beam coherence is then defined by:

P=(<Z,>*+<Z, > +<Z, > /<32, >. (2.183)

For completely coherent beams P =1, for completely incoherent beams the
coherency matrix is diagonal and unimodular, that yields P=0, cf. Eq.
(2.174). For other, intermediate cases of partially coherent beams 0 < P <1.
Further, only completely coherent beams (P =1) will be considered, with
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singular polarization matrices of their determinant nil (detC = 0) and Stokes

vectors orthogonal to themselves ( ¥?=0).
2.10 Lorentz transformations

Let us now look into the transformation of beam polarization, preserving
coherency of a paraxial beam propagating down the optical system. Such
transformations imply that the Stokes scalar £ in the output plane equals its
counterpart £* in the input plane of the optical system:

ZI42 “z!|2_2'22_2'32 = Z‘42 = E|2 = 222 = 232 : (2 184)

As the Stokes scalar is expressed by components of the polarization matrix
C, the above equality reads

T =detC =detC=3". (2.185)

At this point recall that the the polarization matrix C=ee” is composed of

the product of the polarization spinor and its Hermitian transpose. Therefore,
any complex trasformation L of the polarization spinor e induces the

transformation of the polarization matrix C:

e=Le,

0

' =LECL", (2.186)

which, under condition that the matrix L is unimodular, detL =1, satisfies

the invariance condition (2.184) for coherent beams, as well as for partially
coherent beams in a more general case. Note that the transformation L leaves
a value of the fourth component Z, of the Stokes vector positive (£, >0 and
2',>0) and that the transformations L and —L induce the same

transformation of the polarization matrix C.

There is a direct correspondence between the Stokes four-vector X
(2.171), the Stokes scalar X’ (2.174) and its invariance condition
T =3*(2.184), valid under the optical transformations on the one hand, and
the space-time vector X , X' =[r,ct]”, its space-time interval ¢’r* -’ and

its invariance condition
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C?;rl_xll_’vvz _212 o Cztz __x2 _yz i 22 s (2.18?)

on the other hand [24]. The condition (2.187) is valid under the action of
homogeneous Lorentz transformations in the Minkowski space, well known
from the special theory of relativity [43]. In the language of spinors, the
polarization matrix C corresponds to a Hermitian second-rank space-time

spinor

[k

_ z+ct x-—iy (2.188)
@) | x+iy —z+4ct| .

with its matrix elements determined by the components of the space-time
vector

X=[x, y, z, ct]. (2.189)

The vector X corresponds to the Stokes vector Z (cf. (2.167) and (2.171)).
For any two-by-two unimodular matrix transformation L of a space-time

spinor x, the matrix C " is transformed according to the law identical to
that of Equation (2.186) specific to the polarization transformations,

x'=Lx,

R o (2.190)

Therefore, optical transformations of beam polarization, represented by the
matrix L in the space of Jones spinors, are equivalent to the transformations

operating, without coordinate inversions, in the space-time vectors in the
Minkowski space. In both cases the matrices L are two-dimensional

representations of the homogeneous Lorentz transformations. The condition
detL =1 implies that the corresponding Lorentz transformations belong to

the six-parameter group of the restricted (proper and orthochronous) Lorentz
transformations [43]. Therefore, the group of optical transformations of beam
polarization corresponds to the six-parameter group of the restricted Lorentz
transformations [25-26]. The correspondence is two-valued, that is for every

Lorentz (or optical) transformation there are two corresponding matrix
transformation + L and — L.
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Optical transformations of beam field amplitudes introduced in previous
sections are also represented by the unimodular two-by-two, this time abcd,
ray-transfer matrices m. Therefore they also correspond, like the trans-
formations of beam polarization, to the same group of Lorentz trans-
formations. Both types of transformations, those of beam amplitude and these
of beam polarization, are defined in planes transverse to the beam
propagation direction, under the assumption that the beam axis coincides with
the axis of the first-order system. In order to look closer into the family of
these transformations let us relate them to the three Pauli matrices o,
i=1,2,3.

The Pauli matrices form three generators 1,- of the rotation trans-

formations

J. =

=1
L7

IIQ

(2.191)

together with three other generators K shifted in phase by 7/2 with respect
to J ,

K=ig. (2.192)

=

Their commutation relations

[, 1=+ig, ). (2.193)
[/,.K 1=+ie; K,, (2.194)
[K.K ]=-i€,J,, (2.195)

i=1,2,3, constitute the most general closed set of commutation relations of the
restricted Lorentz group [43]. Thus, the six traceless matrices J, and K,

generate, through the exponential representation:
3
J=

the six-parameter group of Lorentz transformations, represented by the
complex, symplectic or unimodular two-by-two matrices L. They consist of



Basic framework of first-order optics 67

the pure rotations gm and the boosts Qs), acting in the two-dimensional

space of Jones spinors. The boosts are the pure Lorentz transformations
between two reference frames moving with different velocities [43]. The pure
rotations are generated by Hermitian matrices J ; represented by the unitary

(R)

matrices L . Their set of the commutation relations (2.193) is also closed.

Thus, the rotations form a three-parameter subgroup of the group of the
restricted Lorentz transformations [25]. As, for the unit vector n in the

direction of the rotation axis, the Pauli matrices obey the identity:
(gn +o.n, +g}w:)2 =1, (2.197)
the rotation matrices can be separately written in a more explicit form [44]:

L™ (¢,)=exp(-ip, J )=lcos(p, /2)—ig sin(p,/2). (2.198)

Let us now show some examples of beam polarization transformations [25-
26].

The rotation of the beam polarization state are now represented by the
matrix gﬁ):

¢ _ e e cos(¢/2)—e,sin(@/2)
e = e e sin(@/2)+e, cos(p/2) |’

cos(¢/2) —sin(g/2)
sin(@/2) cos(¢/2) |’

which rotates the polarization spinor components by ¢@/2. This

£RJ Eétky(q,):exp(_quiz):{ (2.199)

transformation describes the action of the optical rotator on the beam
polarization state.

Similarly, the transformation QH induced by the generator J_, leads to
the creation of a relative phase shift 4 between two orthogonal components
e, and e, of the polarization spinor:

e’x =L{P] €, - €, exp(—lﬂ/Z)
e, | = le | |eexp(+ip/2)|
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—iu/2 0
L Egm(ﬂ)=exp(—idi3)= exp(—ip/2)

: 2.20
= 0 exp(+iﬂ/2)] (2-200)

This transformation describes the action of the optical phase shifter on the
beam polarization state.

Similar examples can be also given using the generators of the Lorentz
transformations of the other type - the boosts. For instance, the generator K |

induces the transformation L, which increases the magnitude of the x-

component of the polarization spinor by w’ =exp& with respect to the y-

component and describes the action of the optical compensator on the beam
polarization state:

1 +1
e, _ 700 e | |ew
' T - =]
e_v €_‘_ e",w

é“’” sg'm(W)zexp(—ifis):{w(; 0 ] (2.201)

b

w—l
For w>>1 (w<<1) the compensator acts as the projection operator, which
eliminates the y component (x component) of beam polarization.

The matrix representation (2.199)-(2.201) of the beam polarization
transformations L', L” and L™ is exactly of the same form as the

matrix  representation  (2.70)-(2.72) of the beam-field-amplitude

. R P M .
transformations _n_f ', m'"” and m""". Both representations may be regarded

as optical analogies of the homogeneous Lorentz transformations. However,
they are defined in different spaces — in the beam polarization space of Jones
spinors and in the phase space of ray-transfer data, respectively. Certainly, in
spite of their formal equivalence, they have quite different physical meaning.

2.11 Comments and conclusions

Polarization properties of coherent beams in first-order optical separable
systems can be described by two-component Jones spinors or two-by-two
polarization matrices, interrelated by four Stokes parameters of the beam.
Evolution of beam polarization along the optical system is then given with
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the aid of two-by-two Jones matrices, or operators corresponding to them,
acting on Jones spinors, polarization matrices and Stokes parameters.

Similarly, spatial structure of field amplitudes of the paraxial beams in
first-order optical systems can be expressed by their expansion in terms of the
Hermite-Gaussian or Laguerre-Gaussian beams. Evolution of beam field
structure is then described by tracing optical rays with the help of the
symplectic ray-transfer matrix or, alternatively, by the integral canonical
transformations, involving the impulse response of the optical system. The
impulse response function provides a link between these two modes of
viewing the beam-field-amplitude evolution in optical systems.

On the other hand, in the special theory of relativity, one deals with the
space-time four-component vectors, linear combinations of the two-by-two
Pauli matrices and two-component spinors, of the form identical,
respectively, to the Stokes vectors, polarization matrices and Jones spinors,
used in the treatment of beam polarization. Although these entities are of
different origin, transformations of all of them belong to the same group of
the homogeneous, restricted Lorentz transformations. Moreover, the ray-
transfer symplectic matrices, yielding evolution of beam amplitude
distribution in the optical system, are also the representations of the same
Lorentz group. Therefore, evolution of field amplitudes and polarization of
optical beams in first-order systems can be described in self-contained and
unified manner in the language of Lorentz transformations.

In spite of its usefulness and formal clarity, the framework of first-order
optics outlined in this chapter is not sufficiently general to cover all possible
configurations of optical systems. For example, it pertains only to centred
optical systems, where the optical axis of the overall optical system coincides
with optical axes of its individual elements. In general, however, axes of
individual optical elements may be displaced or tilted with respect to the
nominal axis of the overall system. Treatment of dispersive optical elements,
such as prism and gratings, should also account for effects equivalent to the
shifts in position and direction of optical axes of the system or of the beam.
Moreover, considering temporal variations of optical signals complicates the
analysis even further. The formalism that accounts for such phenomena needs
extension of the presented approach into the range of three-by-three or even
four-by-four ray-transfer matrices, inhomogeneous canonical transforms and,
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perhaps, inhomogeneous Lorentz transformations. These direct extensions of
the homogeneous version of first-order optics remain, however, outside the
scope of this chapter. Examples of such treatment of the inhomogeneous
problems of first-order optics can be found, for instance, in publications [45-
48].

The inhomogeneous contributions to centred first-order optical systems
are usually small. Therefore, they can be directly treated as well as additional
corrections to predictions obtained within the framework pertinent to the
homogeneous first-order systems. These corrections are then understood as
geometrical modifications of three-dimensional beam field structure,
augmented by additional modifications of beam polarization and on-axis
amplitude in its magnitude and phase [49-50]. Similar rearrangements of
beam spatial structure can be also observed in nonlinear optics, during beam
propagation in nonlinear media [51-53], including beam interactions with
nonlinear interfaces [53-55]. They can be also regarded as inhomogeneous
contributions, nonlinear this time, to homogeneous centred first-order optics.

Effects of this inhomogeneous type exist, among others, in cases of beam
interactions with layered optical structures and beam propagation in, linear
and/or nonlinear, inhomogeneous media. They are known as nonspecular
(NSP) effects of beam reflection and transmission [49-50] and have their
analogy in nonlinear propagation described by aberationless effects of beam
propagation [51-52]. The effects of NSP reflection and transmission have
been measured in sophisticated experimental setups [56-66] and simulated by
advanced numerical methods [67-72]. Some numerical procedures directly
mimic dynamics of beam field linear and nonlinear rearrangements by
monotonic iteration of the analytical solution obtained [67-68]. Some other
procedures have been also used in evaluation of final effects of the beam field
rearrangements by use of beam-mode-expansion techniques [68-69], by
direct integration of Maxwell equations [69-70], by evaluation of a beam
centre of gravity [73-74] or by other methods specific to the problem
considered [75-76]. It appeared that, in the beam-mode-expansion analyses,
beam modes of the “elegant” type, especially the elegant HG and LG beam
modes [6], appear preferable in treatment of such inhomogeneous problems
[70,72].
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In the inhomogeneous problems like, for example, these of the beam
interactions with dielectric interfaces, field structure of the elegant HG and
LG modes is strictly correlated with their polarization states. Spin-orbit
interaction or exchange between spin and orbital parts of total angular
momentum of beams takes place in such cases and is governed by
conservation laws of optical angular momentum [70] and [76-78]. That
results in field-amplitude distribution-sensitive rearrangements of beam
polarization on the one hand and in polarization-sensitive rearrangements of
beam-field-amplitude distribution on the other hand [70,72]. The beam field
rearrangements exist in parallel to other, already well-known phenomena,
like the longitudinal and transverse displacements of beams [49,72]. The
first-order transverse displacements have been also recently rederived on the
grounds of approximate methods of geometrical optics and related to the
Berry geometrical phase [76-77]. All of that confirms that, in opposition to
the homogeneous first-order optics, the beam-field amplitude-polarization
separation does not occur within the inhomogeneous first-order optics.

The beam amplitude-polarization interactions are discussed separately in
the last chapter of this book, in the context of the cross-polarization coupling
of opposite beam components at the interface. Other effects of beam
interactions with dielectric interfaces may be regarded exactly as the
inhomogeneous corrections introduced into the standard, three-dimensional
and homogeneous, framework of the homogeneous first-order optics. Some
of these phenomena are discussed in detail in next chapters of this book, with
implicit understanding that the results obtained can be interpreted as
additional corrections to the formal framework of the centred first-order
optics presented in this chapter.

Appendix 1: Note on the scaling

Let us now return back to the unscaled spatial (x,y) and spectral (k k)

coordinates transverse to the beam propagation direction (along the z-axis of
the beam) and show how the scaling convention (2.25)-(2.26) works in the
case of the fundamental Gaussian beam at its waist plane z=0. For simplicity
of notation we limit the discussion below to only one transverse dimension
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and write a one-dimensional Fourier transform pair of a beam field in the
convention determined by the scaling transformations (2.25)-(2.26):

¥(x/w,)= [P(k,w,)exp(+ik x)d(k,w,/27),

Pk,w,)= [W(x/w,)exp(—ik x)d(x/w,). (A2.1)

The integration is performed from —eo to +oo with w, being the scaling
parameter of the transverse coordinates x and k_. Note that x/w, and
k,w, /27 are the scaled (dimensionless) spatial coordinate and spatial fre-

quency of the beam field ¥, respectively. Then the Fourier transform pair of
the fundamental Gaussian beam G reads:

G(x/w,)=exp[-L+(x/w,)],

G(k,w,)=(2m)" exp[-L(k,w,)*]. (A.2.2)

X L

It is stipulated in Eq. (A.2.2) that the beam has a unit amplitude of the beam
at a centre (x =0) of its waist plane.

Similarly, for the fundamental Gaussian beam g taken as the beam

normalised in intensity:

[l gGx/w) P d(x/w,) =1,

[lgkwl dkw, [2m) =1, (A.2.3)
its Fourier transform pair reads:

g(x/w,) =" exp[-+(x/w,)],

glk,w,)=2" 7" exp[-1(k,w,)’]. (A.2.4)

Note that |exp(—x*)dx = V7 . The parameter w, is equal to the half-width at

1/e power-maximum of the fundamental Gaussian beam (A.2.2) or (A.2.4) of
the beam transverse cross-section at the beam waist and known as the radius
or half-width of the beam. It also equals to the root-mean-square (rms) spatial
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half-width of the beam and its inverse w_' equals the rms spectral half-width

of the Gaussian beam [7], what entails:

[(x/w, ) g(x/w,)d(x/w,) ] [g(x/w,)d(x/w,) =1,

[tkow,)? gk, w,)d(k,w,)/ [&(k,w,)d(k,w,)=1. (A.2.5)

Note that |exp(—+x*)dx=+27 and |x’exp(-Lx’)dx=+27. The beam
half-width w,_, together with the wave number &, determines the diffraction
length z, = kw of the Gaussian beam, being the scaling parameter of the z-

coordinate along the beam axis (cf. the derivation of the beam propagation
given in Section 7). Certainly, the same relations (A.2.5) hold for the
functions G(x/w, ) and G(k,w,) defined by (A.2.2).

x w

There are also other definitions of the mean beam widths based on beam
power. The spatial o, and spectral o, power-rms half-widths [7]

(c./w,) = j(x w,) | g(x/w,) [P d(x/w,) / j| gx/w) P d(x/w,)=1/2,

(O, w,) = J(k_‘w_‘,)z |8(kw,) [P d(k,w,)/ j| gkw ) Pdkw)=12,

(A.2.6)
are expressed by w, :
o,=w,2",
o, =w, 27", (A.2.7)

and yield the well-known width-bandwidth reciprocity relations for the
fundamental Gaussian beam [7]:

o0, =1/2. (A.2.8)

Note that |exp(—x’ ydx=+7 and [x* exp(—x?)dx =%\/; . The fundamental

Gaussian beam (A.2.2), together with the definition (A.2.1), reads in terms of
o, and O, :
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G(x/w,)=exp[-L(x/c,)’],

G(k,w,)=(2r)" exp[-L+(k, /0, )*]. (A.2.9)

x w

Note that quite frequently the equivalent, slightly different definition of
the beam half-width w_, =w,_ 2" is used (see [49], [50] and [53]). In such a

case the fundamental Gaussian beam (A.2.2), together with the definition
(A.2.1), reads:

G(x/w, ) =exp[—(x/w,)*],

Glk,w,)=(2m)" exp[-L (k,w,)*], (A2.10)

with the diffraction length z, =-;—kﬁ/: =kw’ . The parameter w, is equal to
the half-width at 1/’ power-maximum of the fundamental Gaussian beam.

Note that in (A.2.9) and (A.2.10) the Fourier transform pair (A.2.1), still
normalised by the parameter w, , are used.

Appendix 2: Note on the notation

Next chapters of this book treat some aspects of beam-interface
interactions as published previously by the author in separate articles. Certain
elements of the notation used in those chapters will be taken differently than
these taken in this chapter, in order to make them more suitable to the
specific issues discussed in these chapters and to fit them closely to the
notation taken previously in the respective author’s publications. The reader
may find below some comments concerning these differences in the notation.

Through all chapters of this book, the scale parameter w, of beams will

be specified according to the definitions (A.2.2) of the Gaussian beam. It will
be assumed as the scaling parameter not only for the fundamental Gaussian
but also for any higher-order Hermite-Gaussian or Laguerre-Gaussian beam.
In some figures of Chapters 3, 4, and 5, however, magnitudes of the
normalised spatial frequency will be given for kw, =kw,2"* instead of kw,

(cf. Egs. (A.2.2) and (A.2.9)), in order to relate them to the numerical data
published on the same topic previously. Each such case will be explicitly
indicated in the text.
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Note that in all figures in this book, the common convention is assumed to
view the longitudinal and transverse shifts as normalised to the beam widths
and the focal shifts as normalised to the diffraction lengths. Dimensionless
coordinates (x,y,z) and (k_l.,k_‘_,k:), scaled according to the scale prescrip-

tion (2.25)-(2.26), are used in Chapter 2 and in the treatment of nonlinear
problems in Chapter 4. In other cases the unscaled coordinates are used.

In all linear problems treated in the next chapters of this book the on-axis
amplitude of the Gaussian beam will be normalised to one at the centre of its
waist, according to the definition (A.2.2). Only in the nonlinear problems (at
the end of Chapter 3 and in Chapter 4) this unit amplitude will be multiplied,
as it should be, by a square root of the beam total intensity.

In Chapter 2 the spectral ¥ (2.33) and direct ¥ (2.40) polarization para-

meters of beams are considered, in general, to be nonuniform in transverse
cross-sections of the beam and as such, they are in general unequal ¥ # y. In

other chapters the polarization parameters will be stipulated as uniform, that
is constant in any transverse cross-section of beams, what implies 7 = y in
these planes. That justifies in this case their common notation y =%, and
also e, =¢, and e =e, . Therefore, from Chapter 3 to Chapter 7, the symbol

¥ will be reserved for the definition of the polarization parameter defined in
the coordinate frame (X,Y,Z) tied to the interface plane and the symbol ¥
still will be defined in the coordinate frame (x, y,z) tied to the beam.

The uniform notation is used through the book for vectors, matrices and
(differential and integral) operators: vectors are indicated by symbols
underlined once, matrices are indicated by symbols underlined twice, and the
operators are indicated by symbols with an upper hat.

Finally, the orientation of the beam (x, y,z) and interface reference frames
(X,Y,Z) with respect to the interface will be taken in Chapters 3-5 different

from that in Chapters 6-7, as it will be indicated in Figures 6.1 and 7.1
assigned separately to these chapters. These changes result from different
frame orientations used in parallel in literature in this field and correspond to
author’s previous publications, which the subsequent chapters of this book
will follow.
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CHAPTER 3

Beam reflection at dielectric interfaces

Polarization, amplitude and phase aspects of the three-
dimensional beam reflection at dielectric interfaces are analysed
in this chapter within a framework of the aberrationless approach.
Expressions for all geometrical effects of nonspecular reflection
are derived. Roles of the paraxial approximation, the cross-
dimensional coupling and the nonparaxial cross-polarization
coupling in the beam description are indicated and discussed. Its
is shown that the substantial first-order transverse beam modi-
fications exist for both - linear and circular - beam polarization
states. Modifications of beam amplitude at a nonlinear interface
of Kerr type are shown through numerical simulations of beam
reflection. Characteristic features of the single beam bistable
switch at such a nonlinear interface are discussed and numerical
examples of the reflected beam reshaping are presented.

3.1 Introduction

In this chapter several aspects of three-dimensional (3D) beam reflection at
a planar boundary between two dielectric media [1-5] are discussed. The
problem is not new and many contributions, mainly devoted to the two-
dimensional (2D) beam reflection and transmission in the case of total
internal reflection (TIR), have been published since the first reports on this
problem [6]. It is impossible to cite all of them; a certain list of references can
be found in Refs. [1,2]. Recently, surface plasmon excitation at the dielectric-
metal interface was analysed to interpret images of the photon scanning

82
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tunnelling microscope [7]. Beam reflection at plane boundaries between
anisotropic [8] or nonlinear [9] media has been discussed. Reports on the 2D
pulse reflection/transmission [10-12] indicate the possibility of
multidimensional analysis of such transient problems as well.

This chapter contains discussion on characteristics of the 3D-beam
reflection within the framework of the aberrationles analysis [2]. The main
points of this approach not commonly recognised yet are described in detail.
Distinctions between the total field and its paraxial part forming the beamlike
field structure in a vicinity of the interface are indicated. Qualitative
differences between the 2D reflection and the 3D reflection, displayed in
polarization characteristics of the transverse deformations of the reflected
beam, are addressed. Results of Ref. [2] remain valid, however, some
extensions of this approach, like the cross-dimensional coupling or the
reflection at nonlinear interfaces, are also presented.

The paraxial approximation, applied to the exact solution to the problem,
leads to a decomposition of a rigorous solution to the 3D problem into a
product of two 2D solutions, given in two mutually orthogonal planes: the
incidence plane and the plane transverse to the incidence and interface planes.
This decomposition results in the straightforward interpretation of the
reflected beam field distribution and provides deep insight into the process of
beam or pulse shaping in linear [1-8,10-13] and nonlinear [9,14-21] media. In
what follows, the optical beam geometrical modifications observed during its
reflection at the interface are described by a few beam parameters introduced
previously for 2D beams as effects of nonspecular (nsp) reflection [13]. They
modify the beam spectrum within a frame of first-order optics and are
interpreted in the space domain as beam shape modifications. Sometimes,
they are called the beam shifts. Effects of the similar sort occur also in the 3D
configurations. All of them, together with changes in the beam amplitude and
polarization [2], are inherently originated in finite cross-sections of beams.

The geometrical nsp effects common to the 2D and 3D beam reflection
exist in the incidence plane. The other geometrical nsp effects are specific
only to the 3D beam reflection and can be observed in planes transverse to the
of the states of their polarization, they are characterised by their spatial shape
in planes transverse to their beam axes. In the following we limit our
incidence plane. What qualitatively distinguishes the 3D beam reflection
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from the 2D beam reflection is that these effects are essentially dependent on
relative - between the TE and TM polarization - characteristics of the beams,
as defined in the beam-interface configuration.

Each section of this chapter is devoted mainly to one aspect of the
reflection problem. Basics of the exact electromagnetic formulation of the
problem are presented in Section 2. The beam-like paraxial contribution to
the exact field is described in Section 3. Extension of the analysis onto the
cross-dimensional contribution to the beam field is analysed in Section 4. The
nonparaxial part of the reflected field is defined in Section 5. Main features of
nsp longitudinal and transverse beam geometrical deformations are shown in
Sections 6 and 7, respectively. Nonlinear interfaces and the beam amplitude
modifications are discussed in Sections 8 and 9. Section 10 contains
conclusions and final comments. In Appendix, definitions of the geometrical
effects of nsp reflection are derived and commented.

3.2 Exact analysis

Consider two isotropic, lossless dielectric semi-infinite linear media
separated by a plane boundary X =0. The Y -axis is chosen perpendicular to
the incidence plane (X,Z), the incident (reflected) beam axis is placed in the
incidence plane and is directed at polar angles 23\ () with respect to the
normal e, (along X -axis) to the interface plane(Y,Z). The incidence and
reflection angles are assumed to be equal at the linear interface, that is
H=9"=1,, where 0<d), <m/2. In general, however, &'#d’ in
inhomogeneous or nonlinear media, as discussed in Sections & and 9.
Moreover, the incidence far from the Brewster angle and close to the critical
angle of reflection is assumed.

The right-handed systems of the interface (X,Y,Z) coordinates, as well as
the incident (x,,x,,x;), g-o reflected (x,,x,,x;), ie. predicted by
geometrical optics (g-o), and the actual reflected (x,,x,,,x,;) beam
coordinate frames are sketched in Fig. 3.1. Note common notation for the
incident and g-o reflected beams and that Y =x, for both these beams.
Besides the orientation of the coordinate frames of the beams and in spite of
the states of their polarization, they are characterised by their spatial shape in
planes transverse to their beam axes. In the following we limit our conside-
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Figure 3.1. The dielectric interface with the beam and interface
coordinate frames projected on the incidence plane; the orientation of
the beam frames concomitant with internal reflection for the incidence
angle 23,/ larger than the Brewster angle. The lateral (Goos-Hénchen)
., the focal &, and the angular &, longitudinal nonspecular shifts

modify the geometry of the g-o reflected beam and contribute to the net
beam shifts d, and J,,, at the interface.

rations only to two parameters in the description of the beam shape de-
formations - the radii w, and w, of waist cross-sections of the incident beam
in the principal incidence and transverse planes, respectively. They determine
completely, together with location of the beam waist planes, a shape of any
fundamental Gaussian beam of the elliptical cross-section. Moreover, they are
also decisive in the description of beam shape deformations for higher-order
Gaussian beams, for example Hermite-Gaussian or Laguerre-Gaussian
beams, at least in their second-order-approximated evaluation within a frame
of the paraxial limit. Within this convention the radii 4w, and u,w, of the
reflected beam are described by the beam width modification factors x4, and
M, in the two orthogonal principal planes of the beam, respectively.
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The incident (a=i) and reflected (a=r) time-harmonic (< exp(—iwt) ) beam
fields are represented by two-element vectors £'“’, composed of independent
electric field  components  parallel to the interface, ie.,

{ 9
Y =(FEY,EY) =(E(” cosd,,, E\”)", where “T” means transpose and

“||” and “1” denote TM and TE field polarizations, respectively. Henceforth,
the upper and lower signs are assigned to the incident and reflected beams,
respectively. Note also that, for arbitrary plane-wave component of the
incident beam, the definition of the TM field components
E” =FEY [cos®, depend on the incidence azimuthal angle#)) [2] and

complies with the common definition of the TM field component only in the

principal incidence plane defined by ) =0.

The beam fields above the interface are expressed by the superposition of
plane waves:

ENX.Y.Z)=(21)>

. (3.1)
X ”g‘ (e, y)explik(ta X +yY + BZ)|kidady,

ETTRE

where tilde indicates spectral field quantities. Each plane wave is defined
in the local incidence plane with its azimuth incidence angle ):
tan?¥; = y/B =const., and the local frame formed by the triplet:
Jﬂ—k e xk', & =k"'k'"xe, and k'k', with direction cosines
tay.f; B’=1-a’-y’, a wave number k and a wave vectors
fﬂ!

=k(*a,y.B) of the beam fields. The (p) and (s) spectral components:
g:’gp and w'_];:i.” are parallel and perpendicular to the local incidence
plane y/fB =const., respectively. The plane wave polarization ratios
Tioon= E‘;”/E}“ and 7,,.,=E" /E" of the reflected and incident beams,
respectively, are interrelated by the ratio r=r,/r, of the reflection
coefficients r, =E" /E" and r,=E"” /E®. The (p) and (s) reflection
coefficients r, and r, represent all characteristics of the, in general, stratified

or inhomogeneous dielectric medium placed in the half-space (X > 0) below
the interface. In Appendix, Eqs. (A.3.1) specify these coefficients for the case
of plane wave reflection at a single planar interface.
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Similar definitions hold for the beam spectral amplitudes EM , given in
the principal incidence plane y =0 by projection onto this plane the beam
spectral components determined previously at the local incidence plane. The
spectral amplitudes E “=F m(a y) are composed of the Jones vectors

~(a) ~lﬂ]

(a,y), belonging to the orthonormal basis of beam polarization

states, and the spectral beam field envelopes Q = E (0:, ), both specified
by the polarization parameter ¥, :

~(a)

E " (o,y)=(s"E, )e.y),
h..(a] _ (l § ‘x ‘ )—[ '} l]T .
E,=(+ZYE?,

Z.=FEP[ES. (3.2)
Note that, in the paraxial approximation, ¥, is expressed by the ratio y, of

the TM and TE beam components:
7, =(E” [E®)cost, = y,cosdh, . (3.3)

That also yields the spectral reflection matrix r =r(a,¥), relating the spectral
beam constituents in the interface coordinate frames (X,Y,Z) and (.,y.f)
(cf. Eq. (61) of Ref. [S]):

E"(@y)=rE" @y,

K=" +5)" ﬁ;’;”r—f:‘) _ﬂ{(i’;:‘) , (3.4)

A detailed derivation of this reflection matrix can be found in the last chapter

of this book.

Subsequently, application of the definitions (3.2)-(3.3) in Egs. (3.4) makes
R equivalent to the diagonal matrix r =r(e,y) with the following non-zero
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TM (7, =n,) and TE (r, =r,, ) components [2]:

GE, Na,y) =rG"E )e,y),
Y =R, +ERZYZ_I = rp(J’z + Bz)—l [ﬁ(ﬁ_ ;VZ'_I)_ y(y+ IBZA )r! L

r =R+ Ry =1+ B BB+rZ - rr-BE") . 35)
Note that, contrary to the form of R, the matrix r is diagonal (1, =0=r,,).

Its elements depend through %, on the incident beam polarization and through

r on the polarization characteristics if the interface. Since the divergence of
the electric field equals zero, Eqs. (3.2) and (3.3) provide further
interrelations between the polarization parameters %, , ¥, and X, %,

of the incident and reflected fields, respectively:

~ e -1~
Z(p,.r)r - rp"f\' Zi'{p..\'] ’
~ _ -1~

Z =5l %

T =GEY+72,..80)BFZ,..007" (3.6)

The entities 5'“’ and 7, in Egs. (3.2), (3.3) and (3.6) depend on ¢ and y

and determine, in general, local characteristics of beam polarization. However
if, in the global description of the beam, ¥, is replaced by the approximation

Ko = Xa(ps) COSTy, evaluated at y =0, then the last one of Egs. (3.6) becomes

redundant in further considerations. Note also that Eq. (18) in Ref. [2] corre-
sponds to the definition of — ¥, applied in (3.6).

The reflection matrix r is defined in the coordinate system (X,Y,Z) tied

to the interface plane. However, sometimes it is convenient to know the
reflection matrix r =r (,,a,) that relates the transverse beam field com-

=la) .
ponents £  in the beam frames (x,,x,,x;) and (¢,,@,,;):

"‘"(f} —~lr) o=
E (a,2,)=E"E ), ;) 37)

=r,E" (&, 0)=r,G"E ), ).
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Henceforth, the beam quantities are distinguished from those related to the
interface frame just by arguments related to these beam frames. Moreover, in
the new beam frames, 7, is replaced by y, in the definitions (3.2) of 5

~la) - o
and E :(El{”',E;(”)T.
To obtain the beam field representation in the incident and reflected beam

frames, the rotation of the (X,Y,Z) and (a,y,B) frames by angles
+(n/2—-19,,) around the Y and y axes, respectively, is applied. In these

~(a)

coordinate frames the spectral representation of the transverse parts £ = of

the beam fields £, = (E\”,E\” E\”) is given by:

B (x0)=2n)"
) 3 : {2:8)
X ”(3_ E, e, 0, ) explik(xayx, + a,x, + ax) | K deyda, |

and that yields the reflection matrix r

r8=[%/a (}’/a)sin%.][m 0}["/0’3 (7/“-‘)““’9‘”] (3.9)

0 1 0 r 0 1

1

Up to this point, no approximation in Egs. (3.1)-(3.9) is used. The beam
field spectral representation (3.8) fulfils a full set of Maxwell’s equations in
homogeneous linear media and the continuity conditions of the tangential
electromagnetic field components at the interface. That implies that the beam
field possesses also the nonzero longitudinal component:

E =—(+0,E” +o,E\")axr;", (3.10)

and the beam reflection matrix r differs from r by the nonparaxial part

r,—r=A4yr,

0 1
Ar=(r,+r)a ' sind, [0 0}, (3.11)

that couples the TM component E,‘” of the reflected beam to the TE

component E!” of the incident beam. Note also that analogical TM-TE
coupling appears for the H-field formulation of the beam reflection.
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Figure 3.2. Normalised magnitudes of the incident and reflected beam
amplitude distributions at the interface for the critical TE incidence and
decreasing dielectric interface contrast: ¥, =45°(a), ¢, =80° (b),

C

Y. =87 (c). Variations of the net shift J,,, and the beam amplitude
modification |7, /r, | evaluated at =1} are clearly visible. The

distance along the interface is scaled by the projection of the beam
half-width; the beam axis crosses the interface at the point (0.0).

The incident and reflected field amplitude distributions at the cross-section
of the incidence and interface planes is depicted in Fig. 3.2 for different
values of the dielectric contrast n measured by the angle of critical reflection
Y. =arcsin(n™') and for &%, = .. The procedure of the field incidence plane

to the diffraction length z,,, the transverse x, -coordinates are normalised to

the numerical evaluation described in [9] is applied (see the next chapter).
The incident beam has a fundamental Gaussian shape and is focused at the
interface, the x;-coordinate is normalised in the incident beam radii

W, =(225},k_')"’2 at the waist. It is assumed, as in the most numerical
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examples in this chapter, that the normalised wave number (24z,,)"* equals
50, where w, , j=1,2, mean waist half-widths at 1/e’-maxima of the beam

intensity in the incidence and transverse principal planes of the incident
beam. Note that, in the numerical examples shown in this chapter, the
definition (A.2.9) from Chapter 2 of the Gaussian beam is assumed, that

-

means that E o< exp[—(x{ /W, +x3 /ﬁ:;_z )] at the beam waist and w, in fact

wl
equals w,, according to the convention taken in numerical examples in [2,
9,17].

The net displacement ¢, , of the field amplitude maximum from the g-o

beam position is clearly vivid. It increases as the dielectric contrast decreases
and approaches values of the order of w,,, as the incidence angle approaches

the grazing angle ;' =90°. How this displacement is related to the beam

geometrical deformations will be explained in the next section.

3.3 Paraxial approximation
In the paraxial approximation @, =1-2"'ef —2"'a; and the longitudinal
field components E\“ are neglected, i.e. £, =(E“,E,0)". Moreover,

the 3D beam field spectral envelopes E,(a,,c,,x,) are factored out into the
product of two appropriately normalised 2D beam envelopes
E‘,l(a’],x3)x E (.0,x,) and E,,(a,,x;)< E,(0,a,,x,), defined in the
planes &, =0 and @, = 0 in the spectral domain, respectively:

~l(a)

E " (0,00,x,)=5"" explikx,)E , (@,.x,)E,, (0, X3)

al

Ew (x_; X5

= 27)" exp(-iky,) [E, (1) @,.x;)explik(a,x, ra, x,)|kda,

al

= m)" [E, (1) a,.x)explik(ex, -2 a’x))|kdar, .

$"E, (@, %,)E,,(@,,x,) = 23_'-{”5;; (02 B (%) s (3.12)

Within the paraxial regions of the beam axes o, =1-2"a; and the field

representations (3.8) and (3.12) remain equivalent. Hereinafter the spectral
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envelopes Eﬂ and E@. , J=1,2, are assumed to be dependent not only on «,
but also on x;, to account approximately for possible inhomogeneouities or

nonlinearities of the medium [9].
The nonparaxial component yAr disappears in the paraxial

approximation. The reflection matrix retains only diagonal elements, i.e.
r, =r and, in the parabolic approximation, is factored out into the product of

the g-o (or zero-order) reflection matrix L=, equal to E(0,0) and the

matrix of the nsp contribution r :

_|ry 0 ||exp(dr) 0
022 7| o 2 0 exp(dr,)|

2

n
I~

5r=—ik|La, + Lo, 27 (Fo? + F,a2)|,
L,=0,+iz,u;0,,

F =6, +iz,1;0 (3.13)

Jwf3

j=1,2. In Egs. (3.13) r is expressed by the complex shifts L, and F of the

!

reflected beam [13] and z,, denote diffraction lengths of the incident beam in

the incidence plane (j=1) and transverse plane (j=2).

For brevity of notation, the suffixes “||” and “.L” will be henceforth omitted
in expressions valid for both polarization’s. The matrix r and the shifts L,

and F, are defined by the TM (7 =r,,) and TE (r =r,, ) reflection coefficients

J
and their first two (logarithmic) derivatives, i.e. by: r, =d, Inr, and

Vo = am Inr,, b=||, L, evaluated at the beam spectrum centre «, =0=a,

(cf. also definitions of these expressions given in Appendix). The real and
imaginary parts of the complex shifts are commonly expressed by the lateral
J,,, angular 8, , focal 8., and waist radius squared &, =1-;" shifts, the

last one determined by the beam waist size modification factor g . All these

effects describe the reflected beam deformations with respect to the g-o
predictions determined by the approximation r, =r, =r,, .
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The definitions of &, and x, in (3.13) are approximate; in the plane wave

representations (3.8) and (3.12) their values are given by [2]:
tg6y =Im(L, /z ) [[1+Im(F; /z,,)],

K =[Im(L, /z,)F +[1+Im(F, /z,,))* . (3.14)

The lateral, angular and focal shifts contribute to the net shifts d, , down the

interface, being the projection of the composite shifts d, of the beam axis on
the interface (cf. Fig. 3.1):

8., =05 cos” &, =[J,, +(x;—6_)tand, ] cos™ ¥, . (3.15)

Exactly this shift is shown, in the plane of incidence (j=1), by the beam
amplitude peak displacements in Fig. 3.2.

It will be further assumed that the polarization parameters y, = v, (¢,,,)
loose their local character in favour of the global beam polarization ratios y,

evaluated at @, = 0= c,. New Jones vectors s'’ and new beam envelopes

E, are then expressed in terms of these parameters but still the local

character of the beam polarization can be retained in this formalism, if
necessary.

The final expressions for polarization, amplitude and shape of the reflected
beam E'’ =s"E, are given, in the reflected beam coordinates, in terms of
the first-order L, and the second-order F, complex modifications of the g-o

reflected beam E'®’ = gig’Eg :

gm (%), X5,%3) = £0§m exp(ikx;, VE (X, X%3)E 5 (X,,X5)

(r)
B (x  x0:,)

;_ (3.16)
=r,s" exp(ike,)E, (x, — L, x; — F)E,,(x, — Ly, x; - F),

where E, (x,,x;) = E,(-x,x;) and E,,(x,,x;)=E,(x,,x;) are the 2D
envelopes of the g-o reflected beam, and g“”Eg = £0§(”E,.. The signs of the
arguments of E,, account for possible incident beam asymmetry in the

transverse to x,-axis planes. In spite of the common amplitude and Jones



94 Chapter 3

vector, the 3D beam envelope E, is expressed directly, in the paraxial
approximation, by the product of two 2D g-o beam envelopes £, modified

by the complex shifts L, and F,.

Relations between the beam field representations (3.8) and (3.12), as well
as their counterparts (3.19) given in the next section, reflect major features of
the beam field description in the paraxial region. They are: the parabolic
approximation to the beam spectrum and spatial shape changes in beam
amplitude and phase, the transversality of the beam polarization and the
decomposition of the 3D beam field into the product of the two 2D factors.
The reference frame, in which this decomposition is accomplished, specifies
r, and r, used in Egs. (3.4)-(3.5) as the Fresnel reflection coefficients. Note
that r, and r, are the p and s are coefficients of plane wave reflection at the

interface as well as at any planar reflecting and/or transmitting structure.

It should be also stressed that within the paraxial approximation the
definitions given in Sections 2-3 are approximately independent of the
incident beam shape. They are valid for arbitrary beam shapes, provided that
the accuracy of the expansions (3.13) and (A.3.3)-(A.3.4) in Appendix are
justified by numerical simulations. Therefore, the results can be applied to
more general cases of beams than that of the fundamental Gaussian shape.
Moreover, in the next step of this analysis, the incident beam shape can be
accounted for by integration of the beam field representations (3.8) and (3.16)
(cf. Section 6 and the next chapter).

For a beam with arbitrary shape, i.e. when the field factorisation (3.12)
does not directly apply, the presented analysis ought to be applied
independently to each component of the pertinent beam field expansion.
Upon reflection, the components of such expansion suffer from the nsp
deformations determined by the complex shifts L and E. The reflection, for

example, of the Laguerre-Gaussian beams, represented by expansions in
terms of Hermite-Gaussian beams in two transverse dimensions, can be
analysed in this manner (see, for example, Egs. (A.3.26) in Appendix).

The analysis is mainly devoted to the beam reflection although it yields
also the transmission matrix ¢ and the transmitted or total beam field £ at
the interface,.e.g. 1, =1+r, and E\” = E\” + E\” for the TE polarization.
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Figure 3.3. Variation of the second-order transverse nps effects for
the TE and TM components of the reflected beam: the focal shifts &,

and the beam waist radius relative modifications 4, versus incidence
angle changes ¥) — ¢}, (in degrees) around the critical incidence
J) =1, =45° for the linear polarization ¥, =1 of the incident
beam. Dotted curves show the nsp effects modified by the cross-
dimensional coupling; kw, =kw, =50. The shifts J,, are scaled by
the diffraction lenght z,, of the incident beam.

Moreover, for the homogeneous medium filled the semi-infinite space below
the interface, deformations of the transmitted beam field in the partial
transmission case can be also derived. It can be accoplished step by step
along the lines of Sections 2 and 3, provided that in the quantities », o and
for the reflected beam E'” are replaced by their counterparts ¢, —a'” and

B for the transmitted beam E“ (see Chapter 7 for more details). For the

stratified medium the backward field constituents can be also evaluated in the
similar manner (see Chapter 6 for more details). Other extensions of the
formalism will be also sketched in the next sections.
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3.4 Paraxial cross-dimensional coupling

The strict beam field decomposition (3.16) into the two 2D beam
envelopes leaves next terms in the reflection coefficient expansion (3.13)
outside the formalism described above. However, the first cross-dimensional
second-order term (1, +1,, ), &, can be included in the reflection coefficient

expansion without changing solution structure. To this end, the second-order

complex shifts F, should be modified by the complex, in general, angle &,

defined by the second-order derivatives of » (cf. Eq. (A.3.9)):

F, =F,cos’ €+ F,sin’ e—ik'r,, sin2¢,

F, =F,cos’ €+ F,sin’ € +ik'r, sin2¢, (3.17)

where
tan2€ = (r;, +15,)/(r, — 1) - (3.18)

The cross-dimensional coefficient r, +r,, induces rotation of the transverse

coordinates in the spatial and spectral domains through the angle & and that
leads to the formal redefinition (3.17) of the second-order complex shifts in
the new principal planes &, =0=x, and &, =0=1x,.

However, £ appears, in general, a complex quantity, different for TE and
TM polarization. Therefore, the direct geometrical interpretation of beam
deformations seems to be blurred in these planes. This difficulty proves to be
only a formal one, at least in the range of paraxial approximation near the
reflected beam axis. The plane wave (3.8) and the paraxial (3.12)
representations are equivalent in this range. Therefore, in the primary
principal planes @, =0=x, and &, =0=x, the reflected beam can be then

reexpressed by analogy to Egs. (3.16):

(r)
E_ ; (‘rlaxj'lx_';)

0 ‘ . _ (3.19)
=r,s exp(‘kxs)Egl(xl - L, x, 'Fl)Egz(x: =L,,x,-F,).

The beam field retains its factored form in the paraxial approximation. In
spite of theintroduced extension, the first-order complex shifts L, , as well as

the real shifts 6, and &,,, continue being unchanged even for £ # 0. In other
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words, the second-order terms in the expansion of Inr (A.3.4) result only in
the second-order effects (3.17) of beam deformations. Moreover, the
expansion coefficient r,+r, is proportional to y, (g '), the cross-

dimensional beam deformation effects disappear altogether for the pure TE
(TM) incident beam polarization.

The cross-dimensional modifications of the longitudinal shifts are usually
negligibly small because the transverse effects are commonly approximately
one order of magnitude smaller than their longitudinal counterparts. The
second order transverse nsp effects 6., and g, and their modifications by the
cross-dimensional coupling are shown in Fig. 3.3. They still are not
substantial although they may become larger close to the grazing incidence.
Note that in all figures in this book the common convention is assumed to
view the longitudinal and transverse shifts as normalised to the beam widths
and the focal shifts as normalised to the diffraction lengths.

3.5 Nonparaxial cross-polarization coupling

The effect of cross-polarization at the interface stems from the presence of
the non-zero off-diagonal elements in the reflection matrix (3.4). They are
proportional - through ¥ - to the transverse component k of the wave vector
k . Thus, these elements are responsible for excitation of higher-order modes
at the interface, as will be shown in detail in Chapter 7. However, the cross-
polarization effect arises also from the nonparaxial nature of the beam fields,
being solutions of the full set of Maxwell equations. This aspect of the cross-
polarization coupling is discussed in this section.

The field representations (3.16) and (3.19) were evaluated within the
paraxial approximation and that permits the beam description in terms of
effects of nsp reflection. The nonparaxial TE-TM part yAr (3.11) of the
reflection matrix r  indicates deviations of the total reflected field

distribution and polarization from its presumed beamlike structure. Still,
however, this part of the reflected beam can be evaluated per analogy to the
evaluation of the paraxial part of the beam given in Section 3. The evaluation
of the representations (3.16) and (3.19) yields:
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AE" (x,,%,,%,) = (27)”

X “.az (Ar,5. S (-0, ) explik(ar.x, + ax, + x| kdayda, ,

AE" (x,,x,,x,) = —ik ™ Ar,sy” exp(ikox,)

. " (3.20)
XE (%, = AL, x; — AFy) (O, [0x,)(x, — AL, x, = AF,) ,

with AL, and Aﬁ; obtained by substitution of r by Az, from [11] in the

expressions for, L, and F ; and for
Ary =(r, +r,)tand, . (3.21)

For the fundamental Gaussian incidence with transverse envelope £, Eq.

(3.21) yields the first-order Hermite-Gaussian in the transverse planes
Xx;=constant:

(OE,, /ox,) (x, — AL,, x, — AF,)
=—(x, _ALz)vgz(xs)Egz(xz —AL,), x, _AFz) )

v (x;) =k (zp, +i(x, - AF,)), (3.22)

where v, means the complex transverse half-width of the beam. The

nonparaxial contribution (3.20) to the reflected beam field has pure linear TM
polarization shifted in its phase by 7/2 with respect to the paraxial beam and

its amplitude is proportional to the sum of the p and s reflection coefficients.

The nonparaxial coupling is rather a weak contribution to the beam field,
at least not too close to the grazing incidence. In normalised units (cf. Ref. [9]
and the next chapter) its amplitude is of the order of the normalised wave
number kw,, = (kzp,)"* less than the amplitude of the paraxial part of the

field. On the other hand, it is inherent to the finite beam cross-section; for
wide beams, that is in the plane wave limit, (kz,,,)"> becomes large and the
coupling vanishes. The nonparaxial TE-TM coupling appears one more effect
of nsp reflection, related this time to the beam polarization and its
amplitudedistribution in the transverse cross-section of the beam (see also
Chapter 7). The TE-TM coupling effect becomes stronger near the grazing
incidence. Its nature suggests possible excitation of surface waves by finite-
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width beams at, or instance, metallic interfaces. Note in this context that
surface plasmon excitation at the dielectric-metal interface by a narrow 3D
Gaussian beam of the TE polarization was recently discussed and numerically
confirmed in [7].

3.6 Longitudinal nonspecular effects

The analysis presented seems attractive because it is simple and
straightforward. However, numerical evaluation of beam fields that bases
directly on the expansions (A.3.3)-(A.3.4) and (A.3.9) of Inr may be
inaccurate, especially in the most interesting cases, such as proximity of the
critical incidence, i.e. for %, = % , where ¢} is the angle of critical reflection.

Besides the divergence of the reflection matrix expansion (3.13) at the branch
point at %, =, this expansion accounts for the reflection coefficient
behaviour only from one side of the spectrum singularities, meanwhile the
(wide) beam spectrum is also substantially modified by other side of these
singularities, usually with different behaviour characteristics.

To obtain accurate numerical results, more refined numerical techniques
should be applied. In numerical calculations applied in this chapter the two-
point expansion around the branch point of Inr is used in evaluation of the
beam fields, instead of the one-point expansions of Inr (A.3.3)-(A.3.4) and
(A.3.9). Moreover, the shape of the incident beam should be accounted for by
exact integration of subsequent terms in the reflected beam expansion (see
Section 4 of the next chapter for details of this approach). Such evaluation of
the beam field reveals that, for instance, the longitudinal shifts § , and é,, do
not disappear, in general, for ¢}, <% , as well as magnitudes of J,, and J,,
are even larger for ¢}, >¢., contrary to what may appear from straight-

forward application of Egs. (3.13) and (3.14), or (3.17) and (3.19). Moreover,
the beam reflection complex coefficient » also appears different from r, by a

factor r/r, [9,17].
The longitudinal complex shifts Z,, and F,,, and beam deformations & ,,
Oy, 0., and 4, depend on r, and r, and their derivatives through Egs.

(A.3.3), in a manner known from the 2D beam reflection. The shifts of the
TM polarization are larger than those of the TE polarization. All of them



100 Chapter 3

increase as the dielectric contrast n=sin"' % at the interface decreases (cf.

Fig. 3.2). In Figs. 3.4 and 3.5 the first-order and second-order geometrical
effects are shown versus variation of the incidence angle around the critical
angle (in degrees). The plots are given for kw,, = 50, 100, the parameter

regarded as the measure of the propagating beam diffraction. Evidently,
magnitudes of the nsp effects and positions of their extremal values depend
on the beam diffraction. Their magnitudes are larger and their extreme
positions are placed further apart from the critical incidence for smaller
values of kw,, .

3.7 Transverse nonspecular effects
For the TE and TM polarization the longitudinal beam shifts depend only
separately on the Fresnel coefficients », and r,. On the other hand, the

transverse effects depend, through the simple algebraic expressions (A.3.7)
and (A.3.8), on the beam ( 7, ) and the relative polarization parameters r, /r,

of the reflecting structure. The first-order complex shifts L,, are proportional
to the polarization ratio y, ( ;') for the pure TE (TM) polarization and thus
the first-order beam deformations &, and J,, disappear for the pure TE
(TM) beam polarization, for which y, =0 (;t'[I =0) holds. However it is a
very exceptional case of the beam polarization. Moreover, the (non-zero)
transverse deformations 6 ,,, d,,, 0., and J,, are not inherently related to
the elliptic polarization (Im(y,) #0) of the beam. They exist also for the
mixture of TE and TM beam field components of the incident beam, with the
linear polarization direction inclined with respect to the incidence plane, i.e.
for Im(y,)=0 and g, #0# 7' [2].

The asymmetry of r with respect to the transverse direction cosines
y=a, in Egs. (3.5) implies that the first derivatives dr/dy are nonzero
quantities at the reflected beam axis and leads, in general, to nonzero values
of the transverse first-order nsp effects 6., and J,, (cf. Egs. (A.3.7)).

Moreover, the second-order transverse effects of nsp reflection exist even
for pure TE and TM polarizations - the second-order complex shits F,,, &,

and &,, still possess finite nonzero values in these cases (cf. Egs. (A.3.8)).
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Figure 3.4. First-order longitudinal nsp effects: the lateral shift § ,
and the angular &, shift (in degrees), versus incidence angle changes

I\ — ¥, around the critical incidence @) = ¥ =45". Cases of the

different incident beam polarization (TE and TM) and width
(kw=kw,,) of the incident beam are shown. The lateral shift is

normalised to the incident beam half-width.

Any evaluation of the transverse effects should properly account from the
be-ginning for this asymmetric feature of r, being a consequence of the

vectorial nature of the problem. For example, for equal contributions of the
TM and TE field components, i.e. for |1,‘=l, both first-order transverse

shifts attain nonzero values. Equations (A.3.7) imply that, in the TIR state
|rp/r_“:1 and for the incidence angle @, larger that the critical angle ¢} , the

first-order transverse shifts of the TE beam field are for the (diagonal) linear
polarization of the incident beam ( y, = £1):

8 =Fk! lm(rp/rj Yetg v,
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Figure 3.5. Second-order longitudinal nsp effects for the TE and TM
components of the reflected beam: the focal shift 6, and the beam

waist radius relative modification g, versus incidence angle changes
J\) — ¥, (in degrees) around the critical incidence ) = %, =45°.

Cases of the different beam polarization (TE and TM) and widths
(kw=kw,,) of the incident beam are shown. The focal shift is scaled

to the diffraction length of the incident beam.

8o =1k ™'z, (14 Re(r, /1,))ctgd,, (3.23)
and for the (diagonal) circular polarization ( y, =i ):

O =Fk'(1+ Re(rp/r_“ )ctgd,,,

8 =Fk~'z;, Im(r, /r, )ctg®,,, (3.24)

all of them being evaluated at the beam axis, that is for &, =0=¢,. The
TM transverse shifts &, =+6,,,/cos’ &, and &, =—08,,,/cos’ &), are

larger than the transverse TE shifts by a factor cos™ ¢, for both types of



Beam reflection at dielectric interfaces 103

lateral angular
oo b o 01 | P
oot [
0.016 — o[ — .
pota [ T g | vosmemen ™

/
0.012 /
0010 04

0008 |

0.006 02 =
0004 [
oooz [
0000 [ 0.3
.
3 2 " 0 1 2 3 -3 2 1 0 1 2 3
incidence incidence

Figure 3.6. First-order transverse nsp effects for the TE and TM
components of the reflected beam: the lateral shift  , and the angular

J,, shift (in degrees), versus incidence angle changes ) —

around the critical incidence o), =1, =45". The case of the
diagonal linear polarization ¥, =1 of the incident beam;
kw, = kw, =50. The lateral shift is scaled to the incident beam half-

width.

beam polarization. Note that, meanwhile all first-order transverse effects
depend on the incidence angle, only the angular shifts become larger for
narrow beams, i.e. for small values of kz,, . Moreover, in the contrary tothe

lateral shifts, the angular shifts are of opposite signs in the TE and TM
field components.

As it is seen from Egs. (3.23), for each lateral (angular) shift for the
circular polarization ') (80})) there exists angular (lateral) shift &%)
(6'%)) of the linear polarization, with magnitudes interrelated by the beam
diffraction length z,, or, in the dimensionless units [9], by the normalised

wave number (kz,,)"":

() _ -1 g(+i)
5m2 ="Zp209i2>
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Figure 3.7. First-order transverse nsp effects for the TE and TM
components of the reflected beam: the lateral shift & , and the angular

Oy, shift (in degrees), versus incidence angle changes o) — 23,
around the critical incidence @) = ¥, = 45° for the diagonal circular
polarization y, =i of the incident beam; kw, = kw, =50 . The lateral

shift is normalised to the incident beam half-width.

85 =+z5;00,). (3.25)

Therefore, the first-order transverse shifts exist simultaneously for both -
circular and linear — diagonal polarizations. Their magnitudes are interrelated
by the diffraction length of the beam; the lateral shifts prevail for the circular
polarization, meanwhile the angular shifts are more vivid for the linear can be
polarization and for narrow ((kz,,)"” <100) beams. Similar considerations

can be given for the second-order transverse shifts, on the grounds of Egs.
(3.13) and (A.3.8).

The first-order transverse nsp effects are depicted in Fig. 3.6 for the
diagonal linear polarization and in Fig. 3.7 for the diagonal circular
polarization. Note large values of the lateral shifts for the circular polarization
and of the angular shifts for the linear polarization - they are approximately
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only five times less that their longitudinal counterparts. In [1] extensive
independent numerical simulations were presented for the 3D beam reflection
and transmission at the dielectric interface. The numerical method was based
on equations equivalent to the exact analysis of Section 2 and the results
obtained there seem to comply with predictions of [2] and results of this
section.

3.8 Nonlinear interfaces

In Egs. (3.12) the dependence of the beam spectral envelopes Eﬂ on the
propagation coordinate x, was introduced in order to extend the formalism

into the cases of inhomogeneous and/or nonlinear media. Let by »n° and

An? =n’ —n] denote the refractive index squared of the inhomogeneous
medium and its deviation from some background value n;, respectively.

Then, in the paraxial approximation and for the linear polarization, the beam
propagation is governed by the parabolic approximation to the Helmhotz
equation for the slowly varying beam envelopes V, = E, exp(—ik,z,):

{2‘."‘:,‘9.:: +(9_3, +‘9_3: +k; A"j/"f }Va(xl"xl"XJ) =0, (3.26)

where £, is a background value of the wave number k for the beam field and
An’ = An’(x,).
In the homogeneous medium Anj =0, k, =k, and Eq. (3.26) reduces to

the Fock equation. Otherwise, the analysis of Sections 2 and 3 still remains
valid provided that the solution is sought in a self-similar form specific to the
Fock equation, e.g. in a form of Gaussian beams. This approach is widely
used in nonlinear optics, where the medium inhomogenuities are induced by
beam fields of high intensity [14-20]. The beam amplitude changes the
reflection due to the nonlinear effects of self-focusing and cross-focusing and
lead to the positive feedback between these changes and the incident beam
power. It is the nonlinear medium where the nsp changes of the beam
amplitude are vivid the most.

The 3D beam of the TE polarization reflected at the boundary between the

nonlinear Kerr type medium and a linear medium was analysed in [9] and this
case will be discussed in the next chapter. Cylindrical symmetry for the
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incident beam approaching the interface from the nonlinear medium was
assumed, i.e. z,, =z,, =z, . Averaging integration of the Lagrangian density

specific to Eq. (3.26) in planes parallel to the interface at X =0 was
2 & 2
in An;, where n, and n,

performed. The cross-focusing terms 2n,n, |V,

stand for the nonlinear and linear indices of refraction, were incorporated in
the self-focusing terms by the cross-focusing factors g, = g, (X):

an? =mm, (7 + 2, )= nm,g, [

2
A

An} =nyn, ﬁVr‘z +2|Vx‘2)5 mn. g,

g, =1+2 [[W[Wdvaz /(.| dvaz. (3.27)

That leads to two standard nonlinear Schrodinger equations (NLSE’s) (3.26),
given separately for the incident (a=i) and reflected (a=r) beams, with the
nonlinear self-focusing terms modified by the factors g, dependent on X.
The incoherent interaction between the beams was assumed to secure
comparison of the results obtained with the reported plane wave predictions
[16], although the coherent interaction can be also treated in the similar
manner.

The beams are modelled as fundamental Gaussians with parameters (waist
centre position, propagation direction and the waist radius) dependent on the
propagation distance x,. In this way, the solution to the reflection problem at

the nonlinear-linear interface is obtained in a form typical of the reflection at
the linear interface. However, nonlinear changes An, of the refractive index

are transferred to the appropriate changes of beam parameters [9,15]. These
changes, known as aberrationless effects of nonlinear propagation, can be
derived and interpreted in the same form of the complex shifts (3.13). They
are induced by nonlinear propagation this time. Let us denote them as L’

and F*. At the focusing (n, >0) nonlinear-linear interface the effects of

nonlinear propagation and nsp reflection may contribute constructively to the
total complex shifts L =L + L and F/"=F,+F and enhance the

process of the reflected beam reshaping [9].
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For the incidence from a linear side of the linear-nonlinear interface only
one, transmitted beam exists in the nonlinear medium. The cross-focusing
terms in the NLSE (3.26) disappear, g, =1, but the nonlinear enhancement
of the nsp effects still can be achieved. Nonlocal approximation [18] (with an
infinite radius of the nonlocality of »,) to such a case was discussed in [17]
in the context of a defocusing (#, < 0) linear-nonlinear interface.

The presence of the nsp effects is not restricted to interface configurations
based on TIR - any angularly dispersive interface, like that of the phase-
conjugate reflection [19], will do as well. The beam shifts have also been
observed in soliton dragging configurations [20-21]. Two cross-polarised
beams enter the nonlinear medium, mutually interact and experience shifts in
their axes positions and directions. The asymmetry produced by the interface
makes these shifts essentially different from those produced by the beam
collision in the unbouded nonlinear medium.

3.9 Beam amplitude nonspecular modifications

The method of treatment of the nonlinear interface is similar to that of the
linear interface, but the results are not [9]. Let us restrict this discussion to the
beams of the TE polarization and to the plane of incidence (Y =0). Let
simplify also the notation by: & =4 and ¥, =4 or ¥, =0, where the
suffix replacement a=r by a=g indicates the g-o approximation in the first step
of the numerical iteration of the solution (cf. [17] and the next chapter). The
nonlinearly scaled propagation distances z,, the beam wave numbers £, , the
critical angle ). and the g-o reflection angle ¥,, a=i, g, depend on the
normalised beam powers p, (normalised to one at the self-trapping power

level), where, for instance, close to the beam waists [9]:

Z: E(I _pa)?'x;’,
k,=k, +p,27'z; . (3.28)

On the grounds of the law of reflection:

¥, = arcsin(k, 'k, sin?3,) ,
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Figure 3.8. Angles of reflection #¥’ and %} (in degrees) (a) and
relative waist radii squared 4\’ and 4"’ (b) of the g-o reflected and

the actual reflected beams, respectively, versus the normalised power
p, of the beam incident of TE polarization at the focusing nonlinear-

linear interface. Changes of the angle of critical reflection 2J, are also
shown by the dotted curve; the small circle indicates the point of the
3, =86.4"; kw, =kw, =50. The

critical incidence ¥ =13, ;

c?

waist radii are scaled by the incident beam half-width.

o, =arcsin(k, 'kn'), (3.29)

the g-o reflection angle &, differs from the incident angle # and, for the
focusing nonlinear medium, #, <&, in the partial reflection range to r.

With the higher-order terms included in the expansion of Inr (3.13) the
actual reflection angle ¢} is modified by the angular shift J,, i.e.

¥, =10, +06,. This modification appears so large that the sign of the
inequality between ## and ¢ may become even the opposite of that one

between ), and . That indicates distinct differences between the finite-
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Figure 3.9. Magnitudes R and R, of the reflection coefficients r
and r, of the nonspecularly reflected and the g-o reflected beams,
respectively, versus the normalised power p, of the beam of TE

polarization incident at the focusing nonlinear-linear interface;
kw, = kw, =50 . The ratio r/r, of these coefficients yields the nsp

modification of the beam amplitude. In the case (a): x; =0.13, q=2.0,

the effects of the nonlinear self-focusing prevail over the effects of the
angular detuning more than in the case (b): x; =0.10 and q=2.1.

width beam reflection [9] and the plane wave reflection [16]. It is pertinent to
note here that ¢ depends on the type of the incident beam excitation in the

nonlinear medium and may, in general, also vary with changes of the beam
power.

Plots in Fig. 3.8 confirm these predictions, where the angular and beam
radius variations are shown versus variations of the incident normalised beam
power p,. The beam and the reflecting structure parameters are taken such to
achieve a bistable reflection, for instance the angle of the low-power critical
incidence amounts here 88.2 degrees (cf. [9] and the next chapter). Although,
in the power range below the point of critical incidence, the g-o reflection
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angle ¢, is less than the critical angle &, the actual reflection angle o, is
much larger and stays close to ¢ within a whole range of the bistable
reflection. In this way, &, is less than the incidence angle ¥ and increases at
the higher switching threshold (switch-on), meanwhile @ is larger than
and, together with ¢ , decreases much at the same time. These angular
changes reverse their signs at the lower switching threshold (switch-off), as
expected.
Plots of the normalised beam radii squared

27z kwi(2,) = 1 (2, )1 + (2, - 0,)) z)) = 2,p,(2,) (3.30)

indicate substantial impact of this focussing effect on the reflected beam
radius w,, the phase front curvature p,, the critical and reflection angles, and
thus on the beam switch [9]. In effect, the average beam spatial spectrum is
moved towards the range of TIR. In turn, this induces the increase in
magnitude of the reflection coefficient from », to a new value of r.

Moreover, the positive feedback between r and the nonlinear angular shift
0, is so strong that the bistable switch can be achieved for some sets of the

beam and nonlinear medium parameters [9].

Figure 3.9 depicts this situation for the two cases of the angular detuning
q=(m/2-0)/(r/2-1.) and the cumulative effect of nonlinear focusing,
measured by the positions x, of the incident beam waist with respect to the

interface. The last parameter indicates the strength of the nonlinear focusing.
Large magnitudes of the beam amplitude nsp modification r/rg are clearly

vivid. Distant positions of the switching thresholds from the critical incidence
indicate that the narrow beam switching at the nonlinear-linear interface may
become qualitatively different from predictions based on the plane wave
considerations.

10 Comments and conclusions

The analysis presented treats the 3D beam reflection on the grounds of the
exact electromagnetic solution to the problem. The paraxial approximation
extracts from this rigorous solution the beamlike part of the total field and
yields the description of the reflection within the frame of first-order optics.
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In this context, the effects of nsp reflection are parameters, which provide
clear qualitative interpretation and precise quantitative evaluation of
characteristic features of the beam reflection. The remaining nonparaxial part
of the exact solution can be also recognised as the first-order modes - here,
for the Gaussian incidence, the first-order Hermite-Gaussian beams excited
by the cross-polarization nonparaxial coupling at the reflecting structure.

It is demonstrated that the transverse beam deformations are determined by
the relative - between the TE and TM polarization - characteristics of the
incident beam. The formalism reveals, in the first place, direct relation
between the first-order transverse nsp beam angular deformations for the
diagonal linear and circular beam polarization. It is shown that the transverse
lateral shifts of the beam of circular polarization are replicas of the transverse
shifts for the linear polarization and that these effects are interrelated by the
diffraction length of the beams. Several other characteristic features of the
longitudinal and transverse effects of nsp reflection are also discussed.

In relation to the previous report on this approach [2] some extensions are
outlined. It is shown that the next term in the expansion of the reflection
coefficient - the cross-dimensional coupling term - can be directly included in
the formalism. This term influences only quantitatively the second-order,
mainly transverse, effects of nsp reflection. It is also shown that the method,
augmented by the numerical iteration of the nonlinear feedback in the final
solution [9], works also well in cases of nonlinear interfaces. The bistable
switch of the single finite-cross-section beam at the NLI of small dielectric
contrast is confirmed, with characteristics distinct from those of the plane-
wave reflection.

Some important aspects or extensions of the approach still need further
investigation. It is now well known that the beam polarization changes with
propagation and, even for beams initially uniformly polarised, becomes
nonuniform across the beam cross-section [22,23]. The process depends on
the coherence and vector nature of the beam field, and appears enhanced by
the anisotropy locally self-induced in nonlinear media [24]. It seems that
analogical behaviour of the coherent field at dielectric interfaces may be
investigated by the beam polarization spectral parameters determined by Eqgs.
(3.3) and (3.6). Impact of the nondiffractive features of beams [25,26], the
photon angular momentum [27,28], the azimuthal and radial polarization of
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higher-order beam modes [29,30] and the beam rotation [31,32] on the
reflection process deserves further specifications as well.

It is pertinent to note that the 3D character of the beam reflection was
imposed in this work by the finite transverse cross-section of the incident
beam. That results in the coupling of the TE and TM components of the beam
field at the interface and in the nonzero cross-coefficients of the reflection
matrix (3.4). However, the third dimension of the reflection problem may be
introduced instead by anisotropy or periodicity of the media separated by the
interface [33,36]. In both cases the finite cross-section of the incident beam
leads in addition to the longitudinal and transverse nsp distortions of the
beam in the zeroth-order (anisotropic interfaces) or arbitrary-order (periodic
interfaces) reflection.

Finally, it should be also noted that the 3D beam reflection is closely
related to the (3+1)D wave packet reflection. The paraxial factorisation of the
3D beam field into the product of 2D solutions can be directly extended by
adding one more dimension in the presented analysis. In the 2D case the
spatio-temporal analogy is complete and straightforward - the spatial beam
nsp deformations are just translated into their temporal counterparts, that is
besides the pulse delay, also in the pulse velocity, temporal waist location and
pulse duration changes [36]. In the multidimensional 4D case the described
above the field factorisation into the 2D field factors should be made first,
with the cross-dimensional, and this time also the spatio-temporal, coupling
coming into play as well. Still, the approach presented in this chapter may
serve as the convenient tool in treatment of various aspects of optical beam or
pulse shaping, superluminal propagation and photonic tunnelling [37-41].

Appendix: Geometrical effects of nonspecular reflection

Let us start from the definitions of the p and s Fresnel coefficients r, and

r. of plane wave reflection at the interface:

r, :(Zu') _nzm)/(zm _+_.nzm] ,

r =(Y‘*”—n}"”}/(}’m+n}’“’). (A.3.1)

and the p and s Fresnel coefficients 7, and 7, of plane wave transmission:
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_ ( (i) (r)
t, =220 (2" +92),

£, =27 (" En7 ), (A3.2)

where 7=n"%"/n" k" or m=cos®"”/cos®”. The interface is
understood as the flat boundary between two homogeneous, isotropic and
linear media. The coefficients (A.3.1)-(A.3.2) are assumed in their general

form, where Z® =\u®/e® and Y® =1/Z'" are the characteristic

impedance and admittance of the the “upper” (b=i or b=r) and “lower” (b=t)
media, respectively. The permittivity €” and permeability p'”, together

with the refractive index n'” =&’ u” , are considered uniform (constant)

in both media. The beam phase in the definitions (A.3.1)-(A.3.2) is taken
such that the reflection coefficients r, and r, equal one at the critical

incidence of total internal reflection.

Note that the Fresnel coefficients (A.3.1)-(A.3.2) are defined in the local
incidence plane x—z of the plane wave and thus they do not depend on the
azimuthal orientation of this plane; that is they do not depend on «,. For 3D-
beam reflection and transmission at the interface, however, all plane waves
contributing into the beam field should be described in one plane - the
principal plane-of-incidence of the beam. Therefore, to account the third
dimension of the problem, the Fresnel coefficients need generalisation of
their standard form (A.3.1)-(A.3.2). That was accomplished in this chapter by
the replacement of the Fresnel coefficients (A.3.1) by the reflection matrix
(3.4), or, adequately, by the generalised Fresnel coefficients of reflection
(3.5). Per analogy, the same can be done for beam transmission, as will be
explicitly shown in Chapters 5-7.

Therefore, in this appendix, the definitions of the first-order and the
second-order beam shifts will be derived from these generalised coefficients
along the lines reported in Ref. [2]. We will restrict the analysis only to beam
reflection at the interface. The case of beam transmission can be treated in the
same manner. The same concerns the beam reflection and transmission at any
planar multilayer, provided that the Fresnel coefficients (A.3.1)-(A.3.2) of
plane wave reflection and refraction are replaced by their respective
counterparts specified to the multilayer.
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Let us decompose the p and s Fresnel reflection coefficients », and r, into
their magnitudes and phases r. = p_exp(iv,), ¢ =s, p and denote their ratio
by r=(p,/p,)expli(v, —v,)]. They represent the coefficients of plane wave

reflection at the interface or at any planar multilayered structure and are
evaluated at the reflected beam axis or at the beam spectrum centre at
a,=0=a,. The form of the representation (3.13) of the reflection

coefficients 7, :

n =1, exp{=ik[L,0, + L0, — 27 (Fof + Fpas)l},

r, =1, exp{—ik[L, o +L ,a, =27 (F, o +F,,0)]}, (A.3.3)

b=|| for TM polarization and b=_1 for TE polarization, has been postulated as
equivalent to the four-term expansion of these coefficients, separately for the
TM and TE components of the incident beam:

r,=expilnr}= Pop expin, o, +n,a, + 2! (Fn@y +rpa5)},

r, =exp{lnr } =r, exp{r, o +r,a, +27 (r, o8 +ra5)}, (A3.4)
where all derivatives are evaluated at @, =0=¢, and the notation is used:
ke =k, ko, =k,, r,=9, Inr,=kd, Inr,, 1, =0d,, Inr,=k'd,, Inr,
with b=||, L. The subscripts i,j=1 and i,j =2 indi-cate the longitudinal
effects (along the x,-axis) and the transverse effects (along the x,-axis),

respectively. Note that in the next chapters the notation x, =x, x,=y,
x;=zand k, =k, k, =k, k, =k_ is also alternatively used.

Comparison of the two equations in (A.3.3) with the two equations in
(A.3.4) yields the first-order longitudinal complex shifts L, ,

L, =+ik™'r, ==k (v, —ip,./p.),
Ly, =+ikry ==k (0, =ip;,/p,.) (A.3.5)
the second-order longitudinal complex shifts F,,,

Ey =—fkw]rp|1 =+k_llv;;1| _E(P;m/Pp _(P;,”/PP)E)J,
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F,, =-ik _Ir\u =+k~' lv.:u -j(p.:ll/p.«- —(P.;.|/,0, )2 )J’ (A.3.6)

the first-order transverse complex shifts L,,,

L, =+ik"'r,==ik"'(1+r") 7 (sind,)",

Ly, =+ik'r, =+ik (1+r") 7 (sind,) ™", (A.3.7)
and the second-order transverse complex shifts F,,,

Fy ==k 'ry, =+ik 2047+ A+ r7) 72 |sin s, )2,

Fo,=—ik 'rp, =+ik 204 7"+ (147" 77 |sing,) 7. (A38)

In the equations above the primes indicate derivatives with respect to &, or
a, evaluated at the reflected beam axis. Thus p; =9, p,, p,,; =9,9, p, at
o, =0=a,, and so on.

In more accurate calculations, by applying the rotation through the angle
€, (3.18) around the Y -axis to the second-order terms in the fifth-order

expansion of r:
bl ) 4§ ot ol — ')
@ +hnh + (1, 15 ), =ik(F, o + Fa5), (A.3.9)

one obtains new, more accurate definitions F‘,,j (3.17) of the second-order

complex shifts. Note that signs in the expressions of effects of nsp
deformations depend on the vector and angular change senses of the
coordinate frame chosen in the calculations. The coordinate orientations
depend also on ¢}, ; cf. Fig. 3.1 in this chapter and Fig. 4.45b of Ref. [42]
with e.g. Fig. 4.45a of Ref. [42] or Fig. 6 of Ref. [5].

Basic characteristics of the beam shifts derived above have been analysed
in this chapter. All of them are rotted in the form of definitions (A.3.5)-
(A.3.8). Let us only mention about general features of the first-order shifts
(A.3.5) and (A.3.7). The longitudinal first-order beam shifts (A.3.5), contrary
to the transverse beam shifts (A.3.7), do not depend on the state of the
incident beam polarization. For the linear, TM or TE, polarization (7, =0

or y,=0) of the incident beam, the transverse shifts disappear. For the
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circular, right-handed or left-handed, polarization ( y, =+i) of the incident

beam, the transverse shifts are of finite magnitudes and opposite directions
for the opposite circular polarization states y, =+i of the incident beam.

With the complex nsp shifts known, one can describe the reflected beam
field as the field E’(x,,x,,x,) obtained from the g-o estimation (3.16)

E® (x,%,%,)=r,5" exp(ikx,)E,, (x,,%,)E,, (%;,%,) ,

E(n =(1+{l;|2 )V2 L.(” 1]?", (A.3.10)

and next, nonspecularly modified by the complex shifts independently for the
TM and TE beam components (3.16):

Ellfr}(xlaxz‘xa) =ro X:(1+ %, )™ exp(ikx,)
XEo (= Ly, x; = B Egy (% = L, X3 = Fp)

EJ_“’(xl,xz,x3)= P (] X |2)_U2 exp(ikx,)

(A.3.11)
XEgl(xl _Lll’xS_FJ.I)Eg2(x2 =Ly Xy = F 5 ).

In Eq. (A.3.10) §“’ is the Jones vector of the incident beam polarization (cf.
Egs. (3.2)) written in the coordinate frame (x,,x,,x;) of the g-o reflected

beam and r is the g-o reflection matrix r —evaluated for the plane wave

incidence along the incident beam axis.

Let us now return to the spectral representation of the reflected beam field
(3.12), given here in the incidence (x,,x,) and transverse (x,,x;) principal

planes, respectively, for both, TM (b=]|) and TE (b=L), field components:
E,, (x,x)=2n)"'r,,
X [, Eyn (=00, x;) explik(@,x, - 27 aix,) | kda,
E,,(x),x)=2m) "1y,

N ‘ (A.3.12)
X [1,Eya (+0, x,) explik(ayx, — 27 adxy) | kdar, .

Note that the paraxial beams, like the HG or LG beams of arbitrary order,
show, at least approximately, Gaussian damping of their field amplitudes in
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planes transverse to their propagation direction. It was indicated by
Deschamps [43] that such beam fields can be obtained from exact solutions
of the Helmhotz equation through their displacements by the imaginary shifts
along the beam axis. Their magnitudes are equal to the diffraction lengths of
the beams. In the case considered here these shifts are equal to iz, in the

main incidence plane and iz, in the main transverse plane, respectively.
Therefore, the spectral amplitudes of the reflected beam in Egs. (A.3.11)
are proportional to the exponential terms expressed by z,, and z,,:

Eml =8, exp(—2"' kalzzm) >

Em'z =€y exp(-2~" kazzzoz) ) (A.3.13)

After taking into account Egs. (A.3.3)-(A.3.4) and (A.3.13), the beam field
representations (A.3.12) can now be put into the following form:

.. Gax)=02r)"

X ‘[Ehrl (_al » X3 )exp{ik [al (xi - Lbl P 2 al2 (x3 - Fhl - izm )]}kdal ’

Ebr:(xz’xl) =(2ﬂ')—l
'[Ie"h,.z(+o:2 A )exp{ik [, (x,—L,,)-2"a; (x;,— F,, — z‘zm)]}kafct2 .
(A.3.14)

It has been proved in Refs. [44] and [45] that the Gaussian beams
(A.3.14), displaced by the complex shifts (A.3.5)-(A.3.8), can be interpreted
also in terms of real shifts. These real shifts are the lateral &, and

longitudinal &, shifts of the beam coordinate frame centre, augmented by
this frame rotation through the angles equal to angular shifts J,,,. Real

displacements and rotations are given here separately for the TM (b=||) and
TE (b=1) components of the reflected beam, and also separately in the
principal incidence (j=1) and transverse (j=2) planes (cf. Refs. [2], [44] and
[45]):

Xpy =(%; =04y, ) €08 05, — (X3 — 6,;)5IN G},
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X3y = (X; = 04,,)8IN 0,5, +(X; —5;,,)C08 0, - (A.3.15)

They should be accompanied by the same rotation of the coordinate frame in

the spectral domain [2]:

@, =, cos 5,,,,_,. —a, sin 5,”9} "

Ay, =a_;sin 5&:5,: +a; 0055,”,_}.. (A.3.16)
Besides the beam frame shifts and rotations, the reflected beams suffer also

from changes of the beam waist radii, expressed by the factors 4, and in

addition, by changes of their on-axis complex amplitude, as described in
Refs. [2], [44] and [45].

By applying the transformations (A.3.13)-(A.3.14) to the beam field
representation (A.3.10), its beam field factors, defined in the incidence and
transverse planes, respectively, take the form equivalent to the expressions
(A.3.14):

B (xo ) =(22)

X J.E,,,,(—a,,xl)cxp{fk [@,,, (X, —0.,) =2 ap (X3, — fyf:m)]}kdtx, ;

B (%,%)= 2r)”!

X I'é'm(+a2,x3)exp{fk [),2(Xy,0 = B.ps) = 27 05 (X0 — itz )| dr, .
(A.3.17)

Direct comparison of the beam field representations (A.3.14) and (A.3.17)
yields the definitions of the real geometrical effects of nsp reflection [2]. One
obtais, for the TM (b=||) and TE (b=.) polarization of the reflected beam, in
the incidence (j=1) and transverse (j=2) planes, the longitudinal and
transverse lateral first-order shifts ,,, and o, ,,

0,

bxj

=Re(L,)), (A.3.18)
the longitudinal and transverse second-order focal shifts 6,., and J,_,,
8,, =Re(F,), (A3.19)

the longitudinal and transverse first-order angular shiftsé,,, and 9, ,,,
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O,y =(zp 47) " Im(Ly), (A.3.20)

and the longitudinal and transverse waist radius squared second-order
modifications J,,, and J,,,,

5?!11'}' E(Z“Iﬂ; )_] Im(FhJ) ] (A3.21)
The waist modification factors 4, are given by:

ﬂ,';_;l =1-4,

bwy *

(A.3.22)

These real shifts are directly expressed by real and imaginary parts of the
complex shifts (3.13) or (A.3.5)-(A.3.8). The definitions (A.3.20)-(A.3.21)
are approximate. More accurate definitions of 50}! and 5“,f may be given with

the help of Egs. (3.14). On the other hand, as usually z, =1, the definitions
(A.3.20)-(A.3.21) can be further approximated by:

Oyp; = 2p, Im(Ly), (A.3.23)
Oy = Zp; I(F},). (A.3.24)

The definitions of the beam nsp shifts have been given for beams of
arbitrary incidence angle, polarization and amplitude spatial distribution,
provided that the transverse amplitudes of them can be factorised in the two
transverse coordinates x, and x,, according to Eq. (A.3.10). These
definitions are valid, for example, for the three-dimensional Hermite-
Gaussian (HG) paraxial beams of arbitrary order m + n, defined as a product
of the two-dimensional HG beams in these coordinates x,, x, and x,, x,,

and of the orders m and »n, respectively. They are valid for both cases of the
internal and external reflection. Per analogy, their derivation can be also
directly repeated for beam transmission.

For a beam which does not obey the factorisation condition (A.3.10) one
has first to decompose it into series of the beam fields, which obey this
condition and belong to the set of functions complete in the space of beam
functions of finite power (cf. footnote 1 in Opt. Commun. 197, 217 (2001)).
Such functions are still the HG beam fields. They comply with with the
mirror symmetry condition (A.3.10), with respect to planes x, —x, and
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x, —x; (cf. Fig. 3.1). For incidence, for example, of the standard higher-order
Laguerre-Gaussian (LG) beams Gﬁj, this decomposition, given in terms of
the standard HG beams G, of the same order N =m+n=2p+1/, leads to

the following expressions for the incident beam (see Ref. [46] and Section 8
of Chapter 2):

Em(xpxz,xa): i exp(ikx; )G;ﬁ (x;,%,,%3)
(i) : N -k SH SH (A.3.25)
=5 exp(ikx, )z: bln,m, k)G, (%, %:)G; (X::,%;)
k=0
with the coefficients explicitly given from the diagonal relations between LG
and HG beams [46]. Then, in each term of this expansion, the complex nsp
shits can be applied separately for the TM and TE component of the reflected

beam:

E” (x,,%,,3) =1 ¥, (1+] 1, )7 expikx,)

i
XY i*b(n,m, k) Gy (x, — Ly, X3 — B )Gy (%, — Ly, X, — Fy)
k=0

B (53005 =1y (2, )™ explie,)

i
x> i*b(n,m, k) Gy (%, — Ly, %y = FL )G (xy = Ly, %, — Fly) .
k=0

(A.3.26)

In this way, for any incident paraxial beam of arbitrary shape, polarization
and incidence angle, the beam reflected at the interface or, in general, at any
multilayered dieletric structure, can be rigorously described up to the second-
order approximation. The beam is considered as the replica of the incident
beam with its amplitude, polarization and spatial position of its waist being
modified by the Fresnel reflection coefficients and the nsp effects defined
above.

The same procedure can be applied in description of beams transmitted at
any planar multilayered dielectric structure, including this composed of
weakly nonlinear or inhomogeneous stratified media. In the next chapter, the
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problem of beam reflection at a plane boundary of a weekly nonlinear me-
dium of Kerr type will be analysed in detail in the manner following the
analysis given above.

Main content of this chapter has been published in Optics Communications 197,
217-233 (2001).
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CHAPTER 4

Beam reflection at a nonlinear-linear interfaces

An analytic model of beam reflection at a nonlinear-linear
interface is presented. An incident field approaches a nonlinear
side of the interface at an angle close to a critical angle of total
internal reflection. A nonlinearity of the plain Kerr focusing type
is considered. A beam field at the interface is described by
changes of the beam parameters during propagation and
reflection, that is, by aberrationless effects of nonlinear propa-
gation and longtudinal nonspecular effects of reflection.
Numerical iterations of the analytical solution indicate that, for
certain sets of incident beam and interface parameters, a bistable
switch of the reflected beam can be obtained. Characteristic
features of this switch appear different from those of a plane wave
reflection.

4.1 Introduction

Plane wave reflection of light at the interface between two dielectrics, at
least one of which is nonlinear, has been intensively investigated for more
than two decades [1-10]. The main interest in the light-beam reflection at the
interface stems from its potential application in all-optical switching and
com-puting. In contrast to electro-optic devices in which the external
feedback is necessary for bistable operation, the switching devices based on
nonlinear in-terfaces relay on an intrinsic nonlinear feedback mechanism.
Since nonlinear interfaces are not resonant structures, they offer the
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possibility of ultrafast switching and can operate with light of a broad
spectrum.

The beam or pulse reflection at linear interfaces has also recently attracted
great attention [11-16] and potential applications in optical switching, optical
imaging and beam or pulse shaping were indicated [17-19]. However, the
fundamental question of a possible bistable beam and/or pulse switch at the
linear-nonlinear interface has still not received conclusive explanation [8-9].
Recently, however, a problem of plane wave reflection at a nonlinear-linear
dielectric interface was discussed [20]. It was indicated that this type of
structure exhibits strong nonlinear behaviour due to cross-phase modulation
(XPM) between the incident and reflected waves. Optical bistability was
shown by numerical iterations of the analytic solution derived.

A motivation of the work is to extend the plane wave analysis to a finite-
width-beam reflection at the nonlinear-linear interface and to find suitable
description of a beam field near interfaces of this type. The case of narrow
beam incident upon a nonlinear-linear interface at an angle close to the
critical angle of total internal reflection (TIR) is considered. Formulation of
the problem is based on the analytic techniques previously developed by the
author in treatment of the nonlinear propagation and nonspecular (nsp) reflec-
tion phenomena [21-23]. This leads to a solution which, although to some
extent approximate, is of analytic form and enables direct interpretation of the
results obtained. Numerical iterations of this solution aim mainly at the
possibility of achieving a bistable switch of the reflected beam.

The content of this chapter is organised as follows. In Section 2 the
reflection problem is formulated. The reduced variational technique, well
known from analyses of a single beam nonlinear propagation [24-25] and
optical soliton collisions [26-28], is adapted to the beam reflection at the non-
linear interface. The incident and reflected beam envelopes are modelled by
envelopes of the Gaussian shape, with beam parameters defined by aber-
rationless effects of nonlinear propagation [21]. In Section 3 the spectral rep-
resentation of the beam field at the interface, that also yields the integral
equation for the beam reflection coefficient, is derived. Section 4 is devoted
to the solution of this equation with increasing level of accuracy, i.e., from
the geometric optics (g-0) approximation to the exact beam field evaluation at
the interface [22-23]. The reflected beam deformations are described by the
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lon-gitudinal effects of nsp reflection [11-12] and the nonlinear feedback
between beam powers is simulated by the numerical monotonic iteration of
the solution [23]. The transverse effects of nsp reflection will be neglected as
small in relation to the longitudinal effects. In Section 5 results of numerical
simulations are discussed. The optical bistable switch in all the beam parame-
ters is obtained and it is shown that the origin of this phenomenon is different
from that of the plane wave reflection. In Appendix the parabolic approxima-
tion to the nonlinear Schrodinger equation (NLSE) for a single beam is
discussed and definitions of the aberrationless effects of nonlinear propaga-
tion are given.

Note that all equations in this chapter are written in scaled coordinates, as
described in Appendix and by Egs. (2.24)-(2.29) in Chapter 2. Therefore, the
relations given here do not depend on magnitudes of the field wave number
and radius of a beam transverse cross-section.

4.2 Formulation of the problem

The problem of interest involves the reflection of a narrow beam of light at
the boundary between the nonlinear and linear media. The nonlinear medium
is of a Kerr focusing type, i.e., with the linear dependence of its refractive
index n=n, +1n,|E ” on the total field intensity [E]*, where n,>0. The low-

power refractive index ng and the nonlinear index of refraction n, are given in
relation to the index of refraction of the linear medium. It is assumed that
n >1 and that dielectric contrast of the interface is small, i.e. n;=1. In
numerical simulations the case of incidence close to the critical angle of total
internal reflection (TIR) is analysed.

The basic geometry of the problem is shown in Fig. 4.4.1, in which
coordinate frames of the nonlinear-linear interface (X,Y,Z), the incident beam
Ei(xi,yi,zi), the g-o reflected beam Eg(X,g,Y,,2,) and the actual reflected beam
E«(Xr,¥r,Z;) are sketched in the incidence plane Y=y;=y=y,=0. The transverse
electric (TE) case is considered with the electric field perpendicular to the
incidence plane. All the beams, their parameters and frames are denoted by
subscripts ‘i’, ‘r’ and ‘g’, respectively. The g-o reflected beam E, serves as
the reference beam in analysis of the actual reflected beam field distribution
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eam axis
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n=n, +n,[E['/2

n=1 INTERFACE

incident
beam axis

Figure 4.1. Schematic of the beam-coordinate system at the nonlinear-
linear interface.

E;, that is E; is interpreted as the beam E, deformed during the nsp reflection.

The four effects of these deformations: the lateral or Goos-Héinchen (G-H)
shift &y, the focal shift 8, and the composite shift 8 of the g-o beam waist
position, and the angular shift 3¢ of the g-o beam axis direction, are indicated
in Fig. 4.1. Note that, in general, the angles of reflection 8, and 6,=6, +Jq are
different from the incidence angle ;.

The total field E near the interface is decomposed into a sum of the
incident E, and reflected £, beam fields and expressed by their slowly

varying beam envelopes U, and U, :

E(X.Y,Z)=E(x;, v;:2)+ EAxi yis2,)

. ‘ (4.1)
= Ui'(x:" y:' » Zi' )exp(lklzﬂzi )+ Ur(xr’ yr L] zr ) exp(lklzDzr ) 3

where ki is the linear (low-power) wave number of both beams and the beam
field is written in the scaled coordinate system (see Appendix for the
definitions of the scaling). The evolution of the beam envelopes is governed
by two NLSEs. Far from the interface, the incident and reflected beams
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propagate independently according to the standard uncoupled NLSEs with the
self-phase-modulation (SPM) terms equal |U,|’U, and |U,|'U,,
respectively — see Appendix for details of analysis in this case. Near the
interface, these equations are coupled through the incoherent XPM
interaction and the uncoupled NLSEs are augmented by the XPM terms
|U, | U, and |U, |" U, for the incident and reflected beam, respectively.

The beam reflection is determined by the reflection coefficient r to be
found. Therefore, in normalised units (see Appendix) the NLSEs are written
as:

§0. + 102402 )+U [ +2U,] U, (3,312 =0,

{iazr +1(02 402 )+uf +2uf }U (x,.v,.,2)=0. 4.2)

With the appropriate Lagrangian density L:

2
u,|l,

LW,.T,,U,,U,)= Lys U, 0)+ Ly U,,0,)-2U |

L, (U,0) :%(fufa: @/u)+o.ul’ + “9.‘-U|2 ~uf* ) (4.3)

the system of equations (4.2) can be recast as a variational problem and
derived from standard Euler-Lagrange equations [24].

The purpose of this work is to derive an analytic solution to this problem,
suitable for numerical simulations and for the description of basic
characteristics of the beam reflection. It is well known that the set of the
NLSEs (4.2) is not analytically tractable. Therefore, like in the reduced
variational analysis, some averaging procedure should be applied first to
reduce the number of independent spatial coordinates and to convert the
system of partial differential equations (4.2) into a simpler system of ordinary
differential equations (ODEs). A key point in this approach is to determine
the form of the beam envelopes U,, a=i,r, adequate for the problem analysed.

To this end, let us introduce the new Lagrangian density <L> averaged in
planes parallel to the interface (X=const):

<L>= [[LU,,0,,U,,0,)dzdy , (4.4)
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and observe that exactly the same reduced Lagrangian <L> is attributed to the

system of the standard NLSEs with their (SPM) terms |U,[*U, appropriately
modified by the averaged XPM factors V,:

fi0. +(2(2, + )+7.,

Uﬂ E}Uﬂ(xa"-uu’za ) = 0'!

v, =rv. =142 [u[|v,[ avdz/ [fu,[ avdz. (4.5)

a=1,r, Therefore, the systems (4.2) and (4.5) are equivalent on the level of the
reduced variational equations, as both systems lead to the same Euler-
Lagrange equations based on the same reduced Lagrangian density (4.4). The
system (4.5), however, has solutions in the form of beam envelopes ‘Y,
specific to the standard uncoupled NSLEs, i.e. to the system (4.5) with the
substitution y,=1. In this case, the reduced Lagrangians of these NLSEs

<L om (L (0T Ve dy, (4.6)

provide the variational solutions ¥, with the beam power density averaged in
space and time:

p. = (1/2)”\‘{{,|2dxudy“, (4.7)

and this quantity will be used below as the solution parameter.
The averaged perturbation y, to these solutions modifies, through the

XPM factors 7,, the parameters of the (single) beam envelopes W,; meanwhile
the beam amplitudes should remain unchanged. This leads to the following
form of the beam fields:

Eu (xa H] -vu * zu ) = Uu (xu H] )}u * ZH )exp(!’ku‘. zDza )’

Uu (xrd 2 yﬁ ? Zu ) = Ba }/{:1".2 LP‘{J (Xn‘ i yu L z:l ’ ﬁa ) ’ (4’8)
with the new beam power parameters
ﬁa = yupa (4‘9)

defined as the beam power densities p, modified by the factors y,. Equations
(4.8)-(4.9) state that, in the mutual beam interaction, the averaged incoherent
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XPM coupling modifies only the shapes, not the amplitudes, of the beam
envelopes U,. Note that in Eq. (4.8) the parameter p, is explicitly indicated

in the notation of the beam envelopes V,.

The reduced variational analysis of a single NLSE is well known [24-25].
Its solution:

l}’c.l (xai‘ya’za;léa)z (Da(xa ’ya’fa;laa ?ﬂn'a )exp(iaa T 'iAkaz.’Jzu )"

D, (%, V0520 Paskla)= (2P,)" 1,97 expl=1 (2 + y2;?) (4.10)

is exactly governed by the parabolic approximation to the NSLE (see
Appendix and Refs. [21,32]). Apart from the last, nonlinear phase-correction
factor in Eq. (4.10), ¥, is given by the fundamental Gaussian envelopes @,
known from the beam linear propagation, but with new definitions of the
propagation distance zZ, and new beam wave numbers k,=k;+Ak,. Note that
the wave numbers k, determine also the angle of reflection 6, through the
Snell law:

k,sin@, =k, siné,. (4.11)

In Eq. (4.10) the parameter y,, stands for the beam waist radius y, at the
new waist position z, =0. The relations between the beam complex width v,,
the beam (real) radius w,, the beam phase-front curvature p, and the distance
z, remain exactly the same as in the case of linear propagation:

vi=w?-ip, (4.12)

a

Z,=pW,p, - (4.13)

All the beam parameters, including the waist radius 4, are defined in a
new scaled space (X,, Z, ). They depend on the propagation distance Z, and on

the distance X between the observation point and the interface. Due to the
self-similar shape of the beam envelopes they were previously introduced as
the aberrationless effects of nonlinear propagation [21]. It is pertinent to
observe that these definitions are valid for arbitrary beam power densities p,,
including those much above the self-trapping level p,=1. They are even valid
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at beam collapse points. This makes it possible to apply them in numerical
simulations carried out in this work.

Changes of the waist radius and on-axis phase of the beam propagation in
the bulk nonlinear Kerr medium, for the propagation range up to one
diffraction length z,=zp, including also a collapse point (1,=0), are shown in
Fig. 4.2. Plots are given for three representative power levels: p,=0 (linear
propagation), p,=2 (nonlinear propagation with a moderate beam power) and
p.=8 (nonlinear propagation with a high beam power). The last power level is
really high, however, values of p, in Fig. 4.2 correspond to the effective
parameters p, that modify only the envelope shapes of the solution (4.8)-
(4.10); the beam amplitudes are proportional to a much smaller quantity
PalY. -

Moreover, the propagation ranges z, considered here are short enough to
obey limitations characteristic to a thin nonlinear refractor [29]. Therefore,
the self-similar Gaussian shape of the reduced variational solution (4.8)-
(4.10) still remains accurate in numerical simulations presented here. In spite
of this, the changes of the beam parameters, even within these short
propagation ranges, will appear large enough to influence substantially the
beam reflection. The waist radius changes modify the beam on-axis phase,
the slope of which equals the nonlinear increment Ak, of the beam wave
numbers (cf. Egs. (A.4.13)-(A.4.18) in Appendix).

The definitions of the beam envelopes (4.8)-(4.10) entail also, through the
beam amplitudes Ba(2p.,,)”2, the definition of the reflection coefficient r:

r=(B,/B)p,/p)". (4.14)

The coefficient r describes the beam reflection but, unlike the plane wave
analysis, depends decisively on the beam representation. Moreover, the
incidence 0; and reflection 8, angles are in general not equal and the ratio of
the beam power densities

p./p =|r|2 cos8, /cos6, (4.15)

differs from the beam reflectance | |*, as can be directly derived from the

reduced variational equations. Therefore, in the nonlinear medium, a normal
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Figure 4.2. Waist radius [, and on-axis phase A@, versus
propagation distance z, for different effective power parameters
pa- The propagation distance is scaled by the diffraction length.

to the interface component of the total field power flux remains constant
during the beam reflection, in contrast to its tangential component. This is
consistent with the beam penetration of the linear medium at the TIR
incidence and results in the G-H shift of the reflected beam. Outside the beam
interaction region, the tangential component of the power flux remains also
conserved in the TIR case, what leads to other nsp deformations of the waist
radius, waist position, propagation direction and complex amplitude of the
reflected beam.

Certainly, the fundamental Gaussian beam envelope ansatz (4.8)-(4.10)
does not describe all possible phenomena resulting from the nonlinear
propagation of the beam, such as, for example, the beam splitting or beam



Beam reflection at a nonlinear-linear interface 135

shadowing [28]. Such phenomena, however, do not seem representative in
the description of basic properties of the beam reflection. Within this
limitations the beam representation defined above is quite general and allows
all the beam parameters: central position, width, spatial chirp, amplitude,
phase and spatial frequency, to vary down the propagation direction z, and
with the distance X from the interface. Their dependence on z, is explicitly
given in Appendix, their relation to X can be obtained by substitution of the
ansatz (4.8)-(4.10) in the system (4.5) of NSLEs.

In this chapter, the beam reflection problem will be solved, that is, the
reflection coefficient r and the beam-field distribution at the interface will be
found. The solution to the full propagation-reflection-propagation problem,
that is, to the sequence of the incident beam propagation from some input
plane to the interface, the beam reflection at the interface and the reflected
beam propagation to some output plane, is also possible to obtain within the
presented formalism. However, it is outside the scope of this chapter. Note
only that to solve this general problem, the beam reflection coefficient r
should be known first. Inclusion of all possible propagation phenomena in the
presented solution implies a relation, through the beam power parameters p,,
between the incidence angle 6; at the interface and the incidence angle 6, at
some input plane z;=z;p. Here 6; is included in the final solution as a certain
constant quantity, but it can be treated as an independent parameter in a more
general case as well, to account fully for the nonlinear beam propagation
between the input/output planes and the interface.

In order to find r, it is sufficient to know only the beam fields and their
first derivatives at the interface. Moreover, for 6,=6,, the XPM factors are
given by

Y.(X)=1+2r" exp(-2X *sin 6, /w?), (4.16)

for a=i, r, respectively, the beam interaction depth decays exponentially with
the distance X from the interface and the first derivatives of y, with respect to
X are nil for X=0. Therefore the reflection coefficient r depends only on

¥, =7,(0)= l+2‘r]ﬁ evaluated at the interface (X=0). Thus, at the interface,

all the beam parameters are explicitly specified by the effective power
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parameter p, (4.8) with the XPM factors y, and the only parameter in the
field representation (4.7)-(4.10) to be found is just the reflection coefficient r.

4.3 Derivation of the reflection coefficient

Let us concentrate on the field distribution in the incidence plane Y=0 and
express the incident and reflected beam fields in terms of their spectral
representations in this plane:

Eu(xa’o"za) o B p:jzﬂ- Juu a

5 5% 4.17)
xexplio, +ik,z,z,) Jexp(—(]/ 2)s°v, +isx, )ds 3 :

From the field continuity relations at the interface X=0 and the dispersion
relations

=k,zp ik, —Ls (4.18)

a a

each spectral component of the incident and reflected beams related by the
spectral reflection coefficient », and the spectral representation of the
reflected beam can be restated as

Er(xr" )_ B pr r_lx_l _(ur ¥

4.19
X r(u_s')exp(—gs'(,u; —iAZ ) +isx, +ic.(Z, + Az, }is : : )

The shifts Az, of the beam waist positions down the nonlinear propagation

directions are defined by Egs. (A.4.9) in Appendix.
By definition, » differs from the standard Fresnel reflection coefficient 7, .

The Fresnel reflection coefficient relates the incident and reflected plane
waves with the same amplitudes

E o explisx, +ic,(Z, + Az))+r,.(=s)explisx, +ic,(Z, +Az,)) (4.20)

meanwhile the beam reflection coefficient r relates the plane waves with
different amplitudes determined by the spectral representations (4.17). That
leads to the explicit expression for r:

r(s)=r.(uv, u,v,) " explio, —io, Jexp(is’F,, /2), (4.21)
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F, =0z, Az, +i(u’ - pi?) (4.22)

with its amplitude and phase nonlinearly modified by all the parameters of the
incident and reflected beams. Note that Fresnel reflection coefficient . also

differs from its linear counterpart owing to the nonlinear modifications of the
beam wave numbers Ak, .

4.4 Evaluation of the beam field at the interface

Evaluation of the integral (4.19) describes the reflected field distribution at
the interface and yields values of the reflection coefficient ». Note that,
because the incident beam distribution is known, the solution of the reflected
field (4.19) at the interface yields not only the distribution of the total beam
field above the interface but the transmitted beam field distribution below the
interface as well. In the following section, subsequent approaches to
evaluation of the integral (4.19) with increasing accuracy will be outlined.

4.4.1 G-o approximation to the reflected field
In the g-o approximation, the spectral reflection coefficient r(s) is
replaced by its value at the centre of the beam spectrum:

r, = r(0). (4.23)

That value of r is used in evaluation of all the reflected beam parameters.

This will be indicated by replacing of the subscript r by g in all field
expressions. Among other parameters, the XPM factors y, and the beam

wave numbers k, =k, +Ak, are found from Egs. (4.16) and (A.4.18),
respectively. The direction angle 6, =arcsin(k, 'k, sin,) of the reflected

beam axis was specified by the Snell law (4.11). Therefore, the expression of
the g-o reflected beam

E (x,0,2,)=1,pp @ (x,.0,2,: b, b, Jexplic, +ik,z,z2,) (4.24)

can be derived without any integration of the representation (4.19).
The g-o beam serves as the reference frame in interpretation of the

deformations of the actual reflected beam [11-12]. The g-o reflection
coefficient r, follows, in spite of its modifications given by Eq. (4.21),
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characteristic features of the Fresnel coefficient r.. It depends, instead of the
actual reflection angle 6,, on the g-o reflection angle 6,. Amplitude and

phase of the g-o beam represent, loosely speaking, predictions of the plane
wave analysis adapted to the description of the beam reflection.
4.4.2 Parabolic approximation to the reflected field

The accuracy of the reflected beam evaluation can be much improved by
using the parabolic approximation of the spectral reflection coefficient r(s)

evaluated at the centre of the beam spectrum s =0:
Inr(s) = In(r,)—isL +(i/2)s’F . (4.25)

Note that, because the transverse modifications of » (in a plane Z =0) are

much smaller than its longitudinal modifications (in the incidence plane
Y =0), only the latter ones will be accounted for in this analysis. The two
longitudinal complex beam shifts:

L=ir"or/ds |, (4.26)

F=—fr’z(razr/as:—(ar/as)z)h:o (4.27)

are immediately incorporated in the paraxial description of the reflected beam
(4.19) and describe the beam field distribution quite accurately far from the
singularities of the beam spectrum:

Er (Xr ’O’ zr) = rgp:fzp-g”:
XD, (xg ~L0,Z, —~F;D, i H,, )exp(fcrﬂ +ik,z,z, )
(4.28)
The field is evaluated only in the principal incidence plane, that is for y, =0,
and the transverse modifications of the beam, being small in relation to the
modifications in the incidence plane, are neglected what yields also y, =0.

The complex shifts L and F give rise to the deformation of the g-o
reflected beam [11-12]. Note that the aberrationless effects, defined in
Appendix, that is the waist radius modifications, the waist displacements and
the self-shortening of the propagation distance, contribute to the beam
deformation during reflection through the shift £, defined in Eq. (4.22). Due
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to this let us coin F, as the aberrationless complex focal shift of the beam

reflection.
4.4.3 Effects of nonspecular reflection

The reflected beam parameters, for example the actual angle 6, of the

beam propagation, are still unknown because the beam shifts L and F are
defined as complex quantities. Therefore, the next step of this analysis
provides direct interpretation of the complex shifts in terms of the g-o beam
modifications given as real quantities. According to the well known
definitions of the longitudinal effects of the nsp reflection [11-12]:

. =Re(L),
J. =Re(F),
8y =Im(L)/(z,43,),

W =1+Im(F), (4.29)

here given in their normalised version (see Appendix), the g-o reflected beam
is modified by the transverse &, and focal J. shifts of its waist centre, its

waist radius expansion or reduction by the factor x4, , and rotation of its

ns ?

scaled axis z, by an angular shift J,:

X, /1, =(x,—06,)c0sb, —(z,/w,)(z, —6.)sind,,

zZ /,u,f =(w,/z,)(x, =6,)sind, +(z, —6.)cosJ,. (4.30)

Therefore, the actual reflected beam axis direction is given by the (actual)
reflection angle:

6,=6,+9, (4.31)

and the total composite beam shift J; of the beam axis is given by 6, 6.,
8, (cf. Ref. [22] and [23]):

0, =0,+(z,-0.)(z,/w,)tand, . (4.32)
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Note that values of J,, §., J, are usually large enough to make the
composite shift d; substantially different from the G-H shift 6 _. A factor
z,/w, appears in Egs. (4.30) and (4.32) due to different normalisation
scales, w, and z,, in the transverse and longitudinal beam axes directions.

Eqgs. (4.30) correspond to Egs. (A.3.12) in Chapter 3 written in the
unnormalised spatial coordinates Xyry) in the linear medium.

It can be proved [12] that the geometrical beam deformations defined
above should be augmented by the modification of the reflected coefficient

!'g:

r=r ) explik,é,), (4.33)
in order to obtain the reflected beam distribution:

Er (xr ’0'! zr ) =TI p:'lﬁp;uz

4.34
X (Dr (xr "0’ Zr‘; ﬁr ’Juu'rlum )exp(lar + lf.",(J"ZJ'_)ZJ'—) ( )

equivalent to that given by the complex longitudinal shifts L and F by Eq.
(4.28).

4.4.4 Exact evaluation of the reflected field

The beam representations (4.28) and (4.34) seem very appealing due to the
straightforward interpretation of the solution derived. However, great care
must be taken in using this representations in cases where the beam spectrum
possesses some singularity in the vicinity of the g-o reflection angle 6, .

Exactly such a case is considered in this chapter. The spectral coefficient r
exhibits a branch point singularity at the critical incidence 6, =6, :

6.= arcsin[kﬁ/(k,nt )] (4.35)

and the incident beam excites a lateral wave guided by the interface. The
interaction between the lateral wave and the beam field is the main source of
the reflected beam deformations. That results, however, in divergence of the
expansion (4.25) of r near its branch point singularity. Therefore, in
numerical simulations presented here, a different, exact this time, analysis is
used [22].
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The expansion (4.25) is replaced by the double and infinite Taylor
expansion of r at angles 8, =6_= ¢ placed on both sides of 8, :

r(s)=" (m) " (d"r/du” Yu, ) —u,)" (4.36)

where the new variable with the same branch point singularity as in 7 is
used:

112
b

u=1u6,.0,)=(ksin(6, —6.)—ksin(6, - 6.)) (4.37)

u, =u(6,,0,). In opposition to the representation (4.25), the expansion

(4.36) provides an exact representation of the spectral reflection coefficient
. Moreover, after substitution (4.36) into the beam representation (4.19), the
integral can be evaluated exactly, term by term [22], by using the definition of
the parabolic cylinder functions [30, 31]:

D, (i)=T(m/2+1)exp(B’ /4)]exp(—fﬂv -V 2" dv.  (4.38)

Finally, the reflected field distribution can be given in terms of appropriate
modification of the g-o reflected field £, :

E (x,,0,z,)=
[l + Z::n (C:::. :D—]—m,.-'l (fﬂ) + cir_l D—I—m,."2 (—Iﬁ))]Eg (xg ’0’ Zg ) 1

)

(4.39)

with the expansion coefficients ¢’ and the arguments S dependent on the

spatial coordinates (x,,z,) [22]. Note that the complex shifts (4.26)-(4.27)

and the effects of nsp reflection (4.29)-(4.32) are only implicit in the exact
field representation (4.39).

The field representation (4.39) yields the exact solution to the reflection
problem for the assumed form of the beam envelopes (4.8)-(4.10). Four terms
in the expansion (4.39) appear sufficient to evaluate the field near the branch
point singularity with a high accuracy [22]. The representation (4.39) yields
also the complex shifts L and F, as well as all the nsp effects 8, 6., J3,, U,

and .v/rg , evaluated exactly this time. However, the approximate (up to the

second-order) representations (4.28) and (4.34) still remain valid. Details of
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this analysis, specified to the linear case, can be found in Ref. [22]. In the
nonlinear case the linear analysis has to be augmented by monotonic iteration
of the nonlinear feedback between the reflection coefficient r and the ratio of
the beam power densities p,/p,, what was explicitly given in Egs. (4.8),
(4.14)-(4.16). A description of such an iteration, specified to the case of the
electro-optic or nonlocal linear-nonlinear interfaces, can be found in Ref.
[23].

The incident and reflected field amplitude distribution at the nonlinear
interface is shown in Fig. 4.3 for the incidence at the critical angle of TIR and
the small dielectric contrast n;=1.0005. The reflected beam is assumed to be
narrow, i.e. the ratio between the longitudinal and transverse scales z, and
w, is small: z, /w, =50. The reflected beam is represented alternatively by

the g-o reflected beam according to Eq. (4.24), the g-o beam modified by nsp
effects according to Eq. (4.34), and the actual nonspecularly reflected beam
described by the exact representation (4.39). Evidently, the g-o approximation
overestimates the beam amplitude in this case and does not provide adequate
description of the reflected beam. On the other hand, the parabolic
approximation to the reflection coefficient (4.25) and the “nsp” representation
(4.34) appear quite accurate.

There are a few reasons for the apparent difference between the amplitudes
of the g-o reflected beam and the actual reflected beam at the interface. For a
wide spectrum of the narrow incident beam - here of the order of
(z,/w,)" =0.02 - a substantial part of the reflected beam spectrum is

placed in the partial reflection range, i.e., below the critical angle of TIR
(4.35). That should lower the effective amplitude of the reflected beam. The
opposite effect - the spectral shift of the beam spectrum towards larger angles
of reflection, i.e., into the TIR range - results from relative changes of the
critical angle 6, and the angle 6, of g-o reflection with the incident beam

power.

These two effects approximately compensate each other in the case shown
in Fig. 4.3. However, the other effect pertinent here is the nsp focal shift J.
of the waist plane along the g-o beam axis. This effect finally reduces the
reflected beam amplitude as shown in Fig. 4.3. In general, all these three
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Figure 4.3. Amplitudes of the incident, g-o reflected, nonspecularly
reflected and exactly reflected beam field distributions at the nonlinear
focusing interface. Amplitudes are given with respect to the maximum
value of the amplitude of the incident beam; the distance along the
interface is scaled by the incident beam half-width.

effects may contribute substantially to the net change of the reflected field
amplitude at the interface.

4.5 Bistability of nonspecular reflection

The effects of nsp reflection: the G-H shift &, the composite shift J;, the
waist modification 4, , and the focal shift &, are depicted in Fig. 4.4 for

consecutive increasing and decreasing of the incident beam power parameter
pi. All these effects are large, much larger than their counterparts in the beam
reflection at a linear interface [22], and noticeably modify the reflected beam
according to the beam representation (34). For example, the lateral composite
shift is of the order of the beam -waist radius w,, the waist modification

w?

factor varies from 1.4 to 0.8 and the angular shift &, approaches even 1.5
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Effects of nonspecular reflection
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Figure 4.4. Nsp effects of reflection: the composite shift J;, the
Goos-Hanchen (G-H) &, shift, the waist modification squared 4. and

the focal shift &, versus the incident power parameter p,. The shifts
O and O, are scaled by the beam half-width, the focal shift is scaled

the diffraction length of the incident beam.

degrees. Note also large difference between the G-H shift §, and the
composite shift d; (32) at low power levels, that is in the partial reflection

state of the interface. Due to large values of the focal and angular shifts, the
lateral composite shift is substantial in both cases of beam reflection: partial
transmission and TIR. However, the most interesting feature of the nsp
effects is their apparent bistable change, as indicated in Fig. 4.4 by their clear
hysteresis loops. A similar effect is expected in the reflected beam amplitude
and, consequently, in the reflection coefficient as well.

Magnitudes of the reflection coefficients of the g-o beam r, and the actual

(nonspecularly reflected) beam » are shown in Fig. 4.5 in relation to the
increasing and decreasing incident power parameter p;. The two cases: (a)
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g=19, z, =0.13 and (b) ¢=2.2, z,=0.10 are distinguished by the

different angular detuning q and the (normalised by zp) propagation distance
zi between the incident beam waist and the interface. The angular detuning
q=(m/2-6)/(n/2—6,,) is introduced as a measure of the difference

between the incidence angle 6, and the low-power critical angle 6, . Large

differences between r and ry, represented by the nsp modification of the beam
complex amplitude r/r,, indicate that the behaviour of the beam reflection
clearly deviates from the plane wave predictions. Bistability loops are
obtained in both reflection coefficients: » and r,. Their range and switching

contrast (height) increase with the increase of angular detuning, at the
expense of the increase of the incident beam power. Note that basic
characteristics of r, follow closely those of the Fresnel coefficient 7.

Some pecularities in the bistability loops, not encountered in, for example,
bistable switching of the electro-optic or nonlocal interfaces [23], can be
observed. The shape of the g-o reflection coefficient r, appears irregular in

case (b) and the bistability loop of the beam reflection coefficient » is shifted
towards higher values than those of r, in case (a). Moreover, it is clearly seen

in case (a) that the switching thresholds are displaced from the branch point
singularity of 7, towards lower power values. It seems that these pecularities

are caused by the displacement of the beam spectrum into the TIR range, as
given by changes of the angles 6, and 6, of reflection with respect to the

critical angle .. This conjecture is confirmed by Fig. 4.6, where changes of
the critical 6. angle, angle of g-o reflection €, and the actual reflection angle
6, =6, + 0, are drawn versus the incident beam power. The actual angle 6; of
reflection appears larger than its g-o counterpart 6, and remains close to 6,

in the whole bistability range. Both switching thresholds (switch-up and
switch-down) coincide with the common points of the curves 8 and 6. in

both cases (a) and (b).
On the contrary, the g-o reflection angle 6, is smaller than 6, in the

bistability range and crosses the branch point of R, (crossing point of the
curves 6, and 6,) outside this range. Moreover, it happens that this branch
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Figure 4.5. Magnitudes of the nsp beam reflection coefficient r and the
g-o reflection coefficient r, vs. the incident power parameter p,: (a) -

q=19, 2 =0.13,(b)-g=2.2, 2 =0.10.

Point singularity does not even coincide with the higher threshold of the
beam switching. This is precisely the case of Fig. 4.6 (a). Note that the
difference 6, — 6, is just the nsp angular shift &, of the g-o beam. Therefore

this nsp shift displaces the spectrum of reflected beam into its higher values
and determines the beam switch.

The examples discussed above indicate that the role of the nsp effects is
decisive in the bistable beam reflection. Large nsp distortions of the reflected
beam spectrum and shape modify the wave numbers of both beams according
to Eq. (A.4.18) and the reflection angle according to the Snell law (4.11).
This, in turn, modifies the beam reflection coefficient and the beam
amplitude to such the extent that the bistable switch can be achieved for some
values of the angular detuning. Evidently, characteristic features of this
switch appear different from those predicted by the plane wave analysis.
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Figure 4.6. Critical angle 6., g-o reflection angle 6, and nsp

reflection angle @, (in degrees) vs. the incident power parameter p, :

(a)-¢=19,z,=0.13,(b)- ¢g=2.2, z,=0.10.

4.6 Comments and conclusions

The beam reflection at the nonlinear-linear interface is analysed for
incidence near the critical angle of TIR. The solution obtained is derived in
terms of aberrationless effects of nonlinear propagation and nsp effects of
reflection. Results of the analysis indicate that the nonlinear-linear interface
may exhibit bistable switching behaviour of the beam reflection/transmission,
for some particular sets of beam and interface parameters. All nsp effects of
reflection show similar bistable behaviour with the large contrast of
switching.

The nature of the bistable switch of reflection at the nonlinear-linear
interface appears different from that predicted by the plane-wave analysis.
For example, the shift of the bistability loop from a branch point singularity
of TIR can be observed for certain sets of the beam and interface parameters.
Contrary to the plane wave predictions, where the switching is exclusively
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related to the singularity of the Fresnel reflection coefficient at the critical
angle of TIR, the switching of narrow beams is also determined by large nsp
deformations of the reflected beam. In addition, these effects of nsp reflection
are substantially enhanced by self-focusing and by mutual interaction of the
incident and reflected beams.

The presented treatment of the beam reflection problem bases on the
iterated exact evaluation of the beam field at the interface. However, the
incident and reflected beam envelopes can be also modelled on the grounds
of the reduced variational formulation of the auxiliary nonlinear propagation
problem. The accuracy of this approximation is of the same order as that
encountered in the variational analysis of coupled solitons dynamics.
Therefore, the solution indicates rather qualitative characteristics of
reflection, useful in the author’s opinion, however, in possible further
numerical and experimental studies of this problem. This work is, to the best
of the author’s knowledge and together with his other recent communication
[32], the first report on the bistable switch of the finite-width beam at the
nonlinear-linear interface. The analysis presented confirms, contrary to
common opinions on this problem, that bistable switching of the nonlinear
interface could, at least in principle, be obtained by a single beam incidence.

The analysis is not restricted only to beams and to nonlinear media with
the plain refractive Kerr-type nonlinearity. Finite-width pulse and/or beam
reflection/transmission at interfaces between nonlinear media of other types
of nonlinearity may be treated in a similar manner. In the context of possible
direct applications it must be stressed that the parameters of the beam-
interface system necessary to obtain the bistable switch are rather demanding
—first of all, the beam power should be very high. However, this analysis
concerning the refractive nonlinearity of the local Kerr type may serve as the
first step in modelling interfaces consisting of other nonlinear media, like
these of nonlocal saturated nonlinearities [9, 33-34], semiconductors
operating near the exciton-polariton resonance [35] or electro-optic structures
guiding surface plasmon resonance modes [36]. In these cases it is expected
that significant improvement of the switching conditions may be obtained.
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Appendix: Aberrationless effects of nolinear propagation

Let us consider a single fundamental Gaussian beam of TE polarization
(E =E|) propagating in a nonlinear Kerr medium with the refractive index

2 . .
n=n, ++n,| E|", where n, and n, are the linear (low-power) and nonlinear

(high-power) indices of refraction, respectively. In the parabolic
approximation, that is up to second-order terms in transverse coordinates x
and y, the propagation of the Gaussian beam in this nonlinear medium can
be described in a way reminiscent of the well-known formulae describing the
Gaussian beam propagation in a linear medium. Within this approach the
beam remains Gaussian in each transverse cross-section. However, the
longitudinal coordinate (propagation distance) along the beam axis, as well as
the beam parameters, like the beam radius or phase-front curvature, should be
appropriately rescaled or normalised. The rescaling depends on the power of
the beam and on the (propagation) distance of the cross-section plane from an
actual beam waist plane. The method, known as the scaled complex ray
tracing (SCRT) [21], allows to trace the nonlinear propagation of beams with
the help of well-known results of tracing the linear propagation of beams.

Define the envelope or SVA W¥(x,y,z) of the beam by extraction of the
plane wave phase factor exp(ik,z,z) from the beam field E(x, y,z):

E(x,y,z)=Y¥(x,y,z)explik,z,z). (A4.1)

In Eq. (A4.1) k, and z, are the low-power (linear) wave number and

diffraction length of the beam field, respectively. It is postulated that
>, where w, stands for a low-power radius (half-width) of a beam

w?

zp, =k,w
transverse cross-section at its waist. The beam propagates in direction of the
z-axis and its field distribution E(x,y,z,) is assumed to be known in the
input plane at z =z, .

The high-power (nonlinear) longitudinal coordinate Z and the low-power

(linear) longitudinal coordinate z are assumed to be in general different from
each other besides the input plane z=z,, where z=2 =z =z. It is

stipulated that the transverse coordinates x and y of the beam are scaled to
w, , the longitudinal coordinates z and z are scaled to z,, and the field
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amplitude E(x,y,z), together with its SVA W¥(x,y,z), are normalised or
scaled to [(1/ 2)k,w, ) (n,/n, )]_”2 ;

x/wu“’y/ww*—}x‘!ys

z[z,,2[z, > 2,2,

P

%(kf,ww)z(nz/n,t )l ‘P(xsyoz) |2 *H’(x,}’,z)|2:| E(xayez) |’ i (A42)

For more details of the beam scaling procedure see also the discussion in
Section 1 of Chapter 2.

Evolution of the SVA ¥(x,y,z) of the beam is then governed by the
standard normalised NLSE:

{ié’z +1( D2+ +[¥(x,y,2) }‘P(x, y,2)=0. (A.4.3)
A solution of (A.4.4) is postulated here in the form of fundamental Gaussian
beam [21]:

¥(x,5,2)= AG)expl-1(x* + y1)V*(6)),

A(¢) = a(g)explip(s)] = 4, expliap($)lu(s)v > (5), (A.4.4)

known from the case of its linear propagation, in which case z=¢, g =1 and
A@=0. Contrary to the linear case, however, the spatial chirp parameter ¢ is

not equal to the propagation distance z, but is equal to z scaled by the factor
1 (¢) that is also dependent on ¢ :

s=zu7(5). (A4.5)
The real a(g), ¢(¢), u(s) and complex v(g) beam parameters are to be
found by solution to the NLSE (A.4.3).

The beam complex amplitude A is related, through the factor 4, =./2p,
to the power parameter p, which stands, up to the admittance factor, the
averaged (in space and time) power density of the beam:

P=3 Iﬂ‘l‘(x,y,z)[zdxdy : (A.4.6)
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The power parameter p is normalised in the way that makes it equal to one
at the self-trapping power level, where beam intensity | E(x,y,z)|* does not
change from one transverse plane to another one. It is stipulated that
§=6,=2,, Ap=A@,=0 and u =y, =1 in the input plane z =2z, =z, and
that the beam waist plane is placed at Z =0. The ansatz (A.4.4) becomes an
exact solution to the NLSE (A.4.3) in the low-power limit p =0, where
z=z, u=1 and Ap=0 for all values of z. In the high-power limit, that is
for finite values of p, the Gaussian beam, in the form (A.4.4) known from
linear propagation, is nonlinearly modified by the nonlinear SPM effect. This

means that the beam Gaussian shape propagating in the nonlinear medium
depends on z (or ¢) instead of z and is nonlinearly modified through the

quantities ¢ and Ag. Definitions of these quantities follow directly from the
solution to the NLSE (A.4.3) in its parabolic approximation and this will be
outlined by Egs. (A.4.19)-(A.4.27) below. Let us describe the solution
obtained by this method first [32].

The nonlinear modifications of the beam can be described by two factors:
the self-shortening factor x(¢) of the linear propagation distance z and the

nonlinear on-axis phase modification A@(¢), both expressed, besides the
power parameter p, by the spatial chirp parameter ¢ [21]:

The self-shortening factor
K(g)=+(1- p+¢)(1+¢?)" (A4.7)
scales the distance z to its nonlinear counterpart z ,
Z=k(g)z—Az, (A.4.8)

and displaces, by the nonlinear focal shift Az, the beam waist from its
position at the low-power waist plane z=0 to its new position at the high-
power waist plane z =0:

Az =z, k()1 F k7' (5,)). (A4.9)

The signs ¥ in Egs. (A.4.7) and (A.4.9) are chosen such that the condition
w1’ (g,)=1 is fulfilled in the input plane z=2z,=¢=¢,. Now the beam
complex V(¢) and real w(¢) radii (half-widths) of the beam and the beam
phase front curvature p:
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vi3e)=p)1+ig) =w? () -ip™(5), (A4.10)

are given in a form known from linear propagation of the Gaussian beam,
with the parameter ¢ expressed by the self-shortening factor (A.4.7):

K1) = K(5)/K(S,)- (A4.11)

Therefore, the parameter x represents the beam waist radius w(0) at the new

waist position ¢ =0 and the relation between w’, p and ¢ is:

wi(g) = 2 ()1+6%)= p(c)s (A4.12)

Eq. (A.4.12) follows the relation w* = pz known from the linear propagation
of the Gaussian beam. However, the new propagation distance z=u’¢

(A.4.5) equals the chirp parameter ¢ scaled by ™, meanwhile both these
quantities equal each other in the linear case, where z=¢ and x4 =1. Note

also that the normalised power parameter p =1a;w; is expressed by the real
amplitude a =a, and the real beam radius w=w, known in the input plane
[21].

Besides the nonlinear effect of self-shortening decribed by the factor
k(5), SPM of the beam induces also the nonlinear increment A@(¢) of the

beam on-axis phase ¢(g) [21],
P(S)=9.(5)+Ap(5),

Ap(s) = 69(5) - 09(s,), (A.4.13)
Sp(g)=(1-3p)1-p) "0, (c(1-p)"*)-0,(5),

@, (¢) =—arctan(g), (A4.14)

where these phase quantities are assumed to be known in the input plane
¢=¢,, that is @(g,)=9,(g,). Note that in the low-power limit the phase

term ¢(g) resolves into the low-power on-axis phase ¢, (z) of the beam, that
is @(¢)=¢,(z) for p=0.
The nonlinear phase increment A@(g) depends on ¢ and changes during

the beam nonlinear propagation. Therefore it modifies also the wave number
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k = k(c) of the beam field. As the derivatives of A@(s) and ¢(g) are known
from (A.4.13)-(A.4.14) [21], [32]:

(d/dz)p(g)=-(1-2 p)w(g),

(d/dz)Ap(s) =1L pw? ()1 +3¢H)(1+¢%) ™, (A.4.15)

then, to evaluate & explicitly, it is sufficient to approximate the on-axis beam
phase ¢(¢) by the first two terms in its Taylor expansion. At some transverse

interface defined here, say, at ¢ =¢', this approximation yields:
A(S) =0(s") +2(d(Ap)/dz)s ).

o(¢") =Ap(s") - 2'(d(Ap)/dz)g"), (A4.16)

and the reformulation of the exponent terms in the definition (A.4.1) of SVA
of the beam:

expliA(¢)lexplik, z,,z) = explio(¢)|explik(¢)z 2], (A.4.17)

leads to the expression for the (nonlinear) effective wave number of the beam
field:

k(S) =k, B(S) =k, [1+1 p(k,w,) 2w (e)1+3¢)(1+¢7) . (A4.18)

Therefore, the linear wave number k, is increased or decreased to its
nonlinear value k by the wave number modification factor S. Note that f is
not linear in p ; both quantities w and ¢ depend on p as well.

It can be shown by inspection that the ansatz (A.4.4), together with the
definitions (A.4.5)-(A.4.18), satisfies the NLSE (A.4.3) in the parabolic
approximation of the beam intensity [21]:

E(x,y,2) =1 pw (93— +y)w (5)] (A4.19)

for arbitrary values of beam powers, that is below or above the self-trapping
level p=1, provided that the propagation distance z is small enough to
ensure that the assumed Gaussian beam shape approximation still remains
valid. The form of approximation (A.4.19) has not been postulated a priori —
it can be rigorously derived, together with other beam parameters, by the
SCRT method [21] in parabolic approximation to the NLSE:
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| E(x,,2) |*= c(¢)—b(¢)(x* + y*) [21]. Note that the parabolic form of the
nonlinear term in the NLSE (A.4.19) has been obtained first within the
reduced variational approach to the problem [24], [25]. It differs substantially
from the first order approximation to the ansatz (A.4.4) conventionally
assumed in the past, that is from:

|EGe,p,2)" #a*(©) 1= +y* 2 (6)|. (A.4.20)

The form (A.4.19) of the nonlinear term in the NLSE is a fundamental result
of the method. Only then the analysis presented accounts in the self-
consistent manner for the nonlinear modifications of the Gaussian beam
transverse and longitudinal spatial distribution in its amplitude and phase,
within the solution (A.4.4)-(A.4.19) of the parabolic approximation (A.4.19)
to the NLSE (A.4.3).

Let us summarise the derivation of the solution obtained above for
parabolic approximation of the NLSE:

{fc?z +%({9f +c?f )+%pw’2 (’.’s—(x2 +y° )w‘2 )}‘P(x,y,z) =0, (A4.2])

as given in Refs. [21] and [32]. The (exact) solution to the NLSE (A.4.21)
can be found in the form W= Aexp[-1(x*+y*)v?] of the SVA of the

Gaussian beam (A.4.4) with its complex radius v and its complex amplitude

A . Indeed, inserting ¥ in the NLSE (A.4.21) and grouping terms of the zero
and second order in x and y, we obtain the nonlinear complex ray and

amplitude ordinary differential equations [21], [32]:
av?[dz =il - pviw™), (A.4.22)
dd|dz =—idv>(1-2 pv*w?), (A.4.23)
with the solution postulated in the form:
A= A,uv>expli(p-9,], (A.4.24)
vVi=(wi-ip™™!, (A.4.25)

formally equivalent to that of linear propagation but with beam parameters
dependent now on ¢ (A.4.5) instead of z (cf. Eqgs. (A.4.4), (A.4.10),



Beam reflection at a nonlinear-linear interface 155

(A.4.13) and (A.4.14)). The SCRT method [21] yields explicitly this relation

for all the beam parameters in (A.4.24) and (A.4.25), that is for the real beam
radius w (A.4.12) (at arbitrary Z ), the beam radius # (A.4.11) at the beam

waist (at z=0), the beam phase front curvature p (A.4.12) and the
nonlinear phase-correction Ap=¢—¢, (A.4.13)-(A.4.14). These parameters
are dependent on the spatial chirp parameter ¢ (A.4.5) interrelated with the
nonlinearly modified propagation distance Z (A.4.8) by the waist radius u .

The solution implies that the new distance z of the Gaussian beam
propagation is shortened with respect to its linear couterpart z by the factor
K (A.4.7) and the beam waist position is displaced along the beam axis by
Az (A4.9). Moreover, as Az depends of Z, the waist position z=0 is
changing during propagation with respect to its linear counterpart at z=0. In
addition, the nonlinear correction of the on-axis phase A¢ (A.4.13)-(A.4.14)
yields the additional on-axis phase ¢ (A.4.16) of the beam and the new
nonlinearly modified wave number k& (A.4.18) of the beam field. Finally, the
beam field representation is given by:

E(x,y,z)="¥(x,y,z)exp(ik,z,z)
S JTp v cxp[—%(f +yi ]exp(fc +ikz,pz),

where the beam parameters x#, v, 0 and k vary, through the nonlinear chirp

(A.4.26)

parameter ¢, with the new propagation distance z. Details of the above

analysis, based on the complex ray tracing of beam propagation in nonlinear
media of the Kerr type (SCRT method), can be found in [21] and [32]. In
these articles, complete results of numerical simulation of all aberrationless
effects of nonlinear propagation, especially in the context of the Z-scan
measurements, and derivation of the nonlinear ABCD matrix for the Gaussian
beam nonlinear propagation, have been presented.

Note that exactly the same ODEs (A.4.22)-(A.4.23) can be derived directly
within the reduced variational analysis of the NLSE (A.4.3) [24], [25]. After
performing, in any plane (x,y) - transverse to the beam propagation
direction, the integration of the Lagrangian density L, (x,y,z;'¥,¥)

specific to the NLSE (A.4.3):
Lys (W, 9) = [ [Lys(x,y,2,%, P)dxdy , (A.4.27)
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Ly (63,229, 9) (1) 20920, (F/%) +|0, %[ +o, ¥ - ¥’ },(A.4.28)

the reduced variational principle implies the Euler-Lagrange equations for the
beam real parameters u=w, u=p, u=a and u=¢ :

(9/92)(0L 5 /0(0i1/0z))- AL, /3 = 0. (A.4.29)

In this way, the infinite-dimensional variational problem, defined by the
Lagrangian density L, (x,y,z;¥,¥), is projected onto the finite-
dimensional problem defined by the averaged (reduced) Lagrangian
L,,s(z;'¥,¥) . The Euler-Lagrange equations (A.4.29) yield four real ODEs
for w, p, a and ¢ equivalent to the two complex ODEs (A.4.22)-(A.4.23)
with the solution given in Eqs. (A.4.4)-(A.4.14). Details of the reduced
variational analysis can be found in [24] and [25] and their relation with the
SCRT method in [21] and [32].

Summing up, it was shown how propagation of the Gaussian beam in the
nonlinear medium of the Kerr type could be described within the parabolic
approximation (A.4.19) to the NLSE (A.4.3) by the beam parameters (or

variables). The beam parameters under consideration are: the beam waist
position Az and radius u, the beam radius w and the phase front curvature

p , together with the beam chirp ¢, the beam on-axis field magnitude a and
phase ¢, and the nonlinearly modified wave number k£ of the beam field. All

these parameters are dependent on the propagation distance z nonlinearly
modified with respect to its counterpart z in the linear case.

The analysis described above remains valid not only for the one-, two- or
three-dimensional monochromatic beams but also for (four-dimensional)
polychromatic wave packets [21]. Moreover, in the two-dimensional case,
with the longitudinal variable ( z ) and one transverse variable (x ), the beam
propagation in free space corresponds to the case of nonlinear pulse
propagation in fibres, provided that the spatial transverse variable (x) is
replaced by time (¢) and the diffraction term in the NLSE is replaced by the
group-velocity dispersion term. This case has been recently investigated by
the method called the collective variable approach [37]. In this case, the
collective variables correspond to the beam parameters, evolution of which
has been described here and in [21], and the parabolic approximation to the
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NLSE (A.4.21) corresponds to the bare approximation applied to the NLSE in
the collective variable treatment.

Main content of this chapter has been published in Journal of Optics A: Pure
and Applied Optics 2, 433-441 (2000).
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CHAPTER 5

Amplitude-polarization representation of
beams at a dielectric interface

Three-dimensional optical beams incident on a dielectric interface
undergo deformations upon reflection and refraction. Within first-
order optics, and as far as only first-order beam deformations are
considered, these deformations may be interpreted as longitudinal
and transverse displacements and deflections of beam axes. In
general, they are different for TE and TM components of the
beam field. The problem of beam reflection and refraction at the
interface is reformulated and solved in such a manner that the
beams are obtained with new, uniquely defined uniform displace-
ments of their axes in a spatial domain and their spectrum centres
in a spectral domain. Additional modifications of the beam po-
larization state remain generally small and non-uniform through-
out the entire beam spectrum. In this context, a special role of
diagonal, linear and circular, polarization states in the interface
plane is indicated.

5.1 Introduction

The prediction of an optical beam spatial displacement upon reflection
from a dielectric interface was first reported by Picht (1929) [1], although the
notion of such a displacement has been known even in Newton’s time. While
a number of papers have been published on this problem in two-dimensional
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y -o reflected
eam axis

\ Z
W Z

-0 transmitted
eam axis

incident
beam axis

Figure 5.1. The interface reference frame (X,Y,Z) and the reference
frames (x, y,z) for the incident, reflected and transmitted beams in the

case of internal reflection and partial transmission at a dielectric
interface.

(2D) configurations, less attention has been paid to the problem of three-
dimensional (3D) beams at the interface [2-7]. This chapter concerns main
aspects of 3D beam reflection and transmission at the dielectric interface,
especially these exclusively inherent in 3D geometries. Discussions related to
2D problems can be found, for instatnce, in reports referred to in [5].

From differences between characteristics of these two configurations,
those pertaining to the beam polarization and their interrelations with the
beam amplitude spatial distribution are among the most important. Selection
of the two, mutually independent, linear TM and TE polarization states of the

beams seem to be proper in analysing 2D configurations, as they distinguish
two separate, orthogonal planes, the incidence plane (x,z) and the transverse

plane (y,z), respectively, in which the 2D distribution of beam-field ampli-

tudes can be independently defined. Arbitrary elliptic beam polarization
should be considered instead in the general 3D case, as it corresponds, in
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general, to the 3D beam-field-amplitude distribution in the 3D space (x,y,z).

Even for a special case of circular polarization of an incident beam, different
approximate methods, based on analysis of internal spin effect [8], stationary-
phase method [9] or energy-flux conservation treatment [10-11], have been
developed. However, results of one method applied to this problem have
appeared at variance with the findings of another method, with complete
explanation of these facts apparently still not available [8-12].

The reports [2-7] treat beams, in principle, in a similar rigorous manner,
essentially related to the stationary-phase method, although other techniques
of the methods of moments [2] or nonlinear self-focusing [7] were also ap-
plied. Beams with two mutually perpendicular meridional planes of symmetry
are considered. The electric field vectors of the incident, reflected and/or
refracted beams are decomposed into orthogonal, linearly or circularly
polarised states. The solution is obtained in a form of angular spectral
decomposition into plane waves and further interpreted in terms of effects of
nonspecular (nsp) reflection and refraction of the first and, as in Refs. [5] and
[7], second order.

In general, however, beam modifications upon reflection/transmission are
of astigmatic nature; they are different for TM and TE beam field com-
ponents. The questions hence arise: what actually are the total beam defor-
mations, that is for example spatial shifts of the beam axis or spectral shifts of
the beam spectrum, and, certainly, what are actual polarization states of 3D
beams reflected and transmitted at the interface? Answers to these are essen-
tial not only for beams but also for pulses and wave packets upon reflection
or transmission [13].

This chapter presents an attempt to answer these questions. The idea of
this novel approach is to replace TM and TE polarization vectors in beam
field decomposition by another basis formed directly by the Jones vectors
specific to the incident, reflected and transmitted beams. An exact solution to
the problem is given, that follows the results obtained previously for the 3D
beam reflection [5, 7], and further interpreted in terms of first-order optics
[14-15] of 3D beams. This solution obtained in the TM-TE representation can
be then reformulated in the interface plane in a form independent of the beam
field redistribution between its TM and TE components.
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The conventional solution to beam reflection and transmission is presented
in Section 2 and the first order beam deformations are discussed in Section 3.
That provides all details necessary to introduce the amplitude-polarization
representation of 3D beams. Results are given in Section 4 and summarised
in Section 5, where quantitative discrepancies between earlier predictions of
transverse spatial shifts of beams are also briefly commented on.

5.2 Beam fields at a dielectric interface - an exact solution

The solution presented in this chapter for the problem of 3D beam reflec-
tion was devised in Ref. [5] and discussed in Ref. [7], where examples of
numerical simulations were also given. That was presented in Chapter 3. In
this section those results are summarised to establish the notation, point out
their main characteristics and explicitly show that the solution obtained
previously for beam reflection [5,7] yields also the entire solution for beam
refraction. Both solutions are interrelated through the beam field continuity
relations in the interface plane, in which all the derivations of this work will
be made.

Let us consider monochromatic optical 3D beam fields near the plane
boundary X =0, i.e. the interface between two dielectric homogeneous and
isotropic media with different refractive indices n; and n,, respectively (cf.
Fig. 5.1). The 2D vectors E” = E”(X,Y,2), composed of the incident

(b=1), reflected (b=r) or transmitted (b=t) electric field parallel to the interface
E"” =[+E" E"] (see their definitions in Eqs. (5.3)), are expressed in terms

of the angular plane-wave (spatial) spectra:
E”(X,Y,2)

—(2::)—2H'E””(k k,)exp[i(xk G-h
= E " (k,,k,)expli(xk® X + k,Y +k,Z)] dk ,dk, ,

with exp(—iwr) time-dependence assumed and suppressed. In Eq. (5.1) the
upper (lower) sign in the exponent is attributed to the reflected (incident and
refracted) beam. The integration is performed along the wave-vector
components k, and k, parallel to the interface. By the dispersion relation
K? 4k} +k2 =k, the representation (5.1) is equivalent to that used in
Ref. [7], with the integration given in the (k\"’,k, ) plane. The representation
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(5.1) seems more suitable for treatment of the details of the beam
transmission close to the normal incidence, whereas its counterpart in Ref. [7]
1s more appropriate in analysing the beam deflection and refraction near the
grazing incidence. Nevertheless, the reflection and transmission coefficients
should take the same form in both cases.

The wave vector components:

k:m = k{hJC(h:
X X o
ky =ksysy,
k, =ks,c,, (5.2)

2 2y\l/2 . .
¢ =(1-s%/s?)"*, are further expressed by sines s, and s, and cosines c,

and ¢, of the polar ¥, =9\’ and azimuthal ¥, =2%\" incidence angles of the

incident beam axis direction, measured in the incidence (X, Z) and interface
(Y, Z) planes, respectively. The direction of the incident beam axis is
specified in the incidence plane &, =0 by ¢, =4, or s, =s,, and

¢y =Cy,. The upper (incidence or ambient) medium is presumed to be
homogeneous and linear, what ensures equality of wave numbers
k" =k =k. Hence 8 =0,, 9" =0, and ¢’ =c\’=c,. For the
critical incidence of total internal reflection (TIR) ¢, =¢ and

PRI i |
Spisi 2 A

=(b) =(b) F
Let us decompose the field vectors £ =E (k,,k,) into orthogonal

linearly polarised parts,
Em_ E(r! EH} )
L =—Ly e, tEy ey,

==

r) —(r —r
E "= +Eé }Qz * E:' lgr »

~(1)

E '=-E¢,+E)e,, (5.3)

E®P=E"(k, k,) and E® =E" (k,,k,), where e, =[1,0] and e, =[0,]]
are polarization vectors in the direction of the Z -axis and the X -axis in the
interface plane, respectively. Then, through rotation of the local coordinate
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frame between the planes s, = constant and s, = 0 [5], we are able to relate

the reflected and incident beam field components by the following matrix of
3D beam reflection [5, 7]:

EP\_(n Of-EF| (5.4)
£ 0 r | EY
In Eq. (5.4) the TM and TE beam reflection coefficients r, and r, are the

common (p) and (s) Fresnel coefficients », and r, augmented by the

additional transverse, i.e. proportional to s, and/or s;, components [5,7]:

j"II :rp +Ar||’

r,o=r.+Ar, (5.5)
Ar ==sy(r, +r,)(sy +C:‘/fm)s
Arp ==s,(r, +r)(sy =, 7). (5.6)

The coupling between £ and E\” is introduced in Equation (5.6) by the

spectral polarization parameters:

=) _ )
X' =—E; /Er >
=) ) e
X" =+E; /E}. >

2;(.-} — _E;]/’E"}l'fl . (5.7)

defined in the interface plane X =0, contrary to the conventional definition
of the complex polarization parameters given in planes z =0 transverse to
the beam axes [16]. The detailed derivation of Egs. (5.4)-(5.7) is given in
Chapter 7.

Since the incident beam is considered as given, Egs. (5.1)-(5.7) determine
completely and exactly not only the reflected field but also the total field and
hence the transmitted beam field at the interface as well. Indeed, the
continuity relations of the electric field components E” and E* at the
inter-face together with Eqgs. (5.1)-(5.7), readily lead to the following
transmission matrix:
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_ E".” ts 0l = .E'—(‘il
[ E”” }:[0 rL}[ E"Z‘ j|, (5.8)
¥ ¥

— 5 ) ()
L —I—f!_-r”cX /CX ,

t, =1l+r. (5.9)

The transmission coefficients 7, and ¢, are evaluated for field components
parallel to the interface plane and the coefficient 7, is determined by the field

scaling [5,7], as shown below by Equations (5.12) and (5.13).

The reflection and transmission matrices (5.4) and (5.8) are given in the
diagonal form. The coupling between field components is introduced into the
reflection and transmission coefficients #, r,, t, and 7, by the polarization

5 (b)

parameters ¥ . In the incidence plane (here at Y =0) these coefficients

resolve into r,, r,, t,y=1-r,=t,c{’/c and 1, =1+r,, the field coupling
disappears and the reflection/transmission 3D problem can be then treated as
a pair of 2D scalar problems for two independent TM and TE polarization
states. However, for the incidence oblique to the incidence plane, both
problems of plane wave reflection and refraction are inherently of 3D nature.
In effect, for beams of finite spatial spectrum upon reflection and trans-
mission, the first-order and the second-order, transverse and longitudinal
effects of beam deformations, in general exist even in the incidence plane (cf.
the next Section).

The normal mode solutions, that is solutions to the equation
:r”E :rJ_E y (5.]0)

for which the state of polarization of the incident beam is unchanged on re-

flection, have especially interesting characteristics. They exist at the critical
incidence of TIR, ie. for r,=r,, and for the beam polarization states
370

X
states 7" /c\’ =Fi, commonly defined in the plane transverse to the beam

=7Fi circular in the interface plane - not for the circular polarization

propagation direction. Per analogy to Eq. (5.10) written for reflection, we can
also write for transmission:
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t,E” =0. (5.11)

Since the a Z -component of the total field equals zero at the critical inciden-
ce, a normal mode solution for transmission still exists but trivially, only in
the TE polarization state. We will refer to special features of these polariza-
tion states in the next sections of this chapter.

The exact solution to the beam reflection/transmission problem is
described by Egs. (5.1)-(5.9). Some link, however, to notions of paraxial
optics would be useful. To this end we scale the beam field vectors:

E(i! E(r)/c(i)
E(f) +E{f)/c(r)
EQ=—gR ) , (5.12)

and polarization parameters:
P _Z{bl/c(b) (5.13)

where £’ = E\” = E”. The relation between the coefficients 7, and 7, was

already given in Eqgs. (5.9). Next, let us substitute Egs. (5.12)-(5.13) to Eqgs.
(5.4) and (5.8). The scaling (5.12)-(5.13) does not change the reflection
coefficients in the scaled reflection matrix equation [5,7]:

B0 [ o] 1o
Eir) 0 r Ef] s .

whereas, in the scaled transmission matrix equation

E” | _|4 O E” (5.15)
Ef) 0 ﬂ Ei'-} s 3

the coefficient 7, is rescaled to ¢ according to the relations (5.9).
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Equations (5.14)-(5.15) still remain exact. The electric field in these equa-
tions, as well as in Eqgs. (5.4) and (5.8), complies with a complete set of the
source-free Maxwell’s equations, where the Gauss’s law yields the remaining
field components Eiﬁ’”. The field continuity relations (5.9), together with the
spectral representation (5.1) of the beam fields, make the beam refraction, as
given by Egs. (5.8) or (5.15), consistent with the beam reflection, determined
by Egs. (5.4) or (5.14). In other words, the relations (5.9) are fulfilled
simultaneously and exactly by all the spectral components of the beam fields
in the interface plane. Note that in our notation E* is still only the E"

)

component of a single plane wave scaled by ¢!’ in its local incidence plane

(cf. [5]). The TM field component of the total beam is obtained by scaling the
Z -component of the total beam by ¢}, that is by ¢| evaluated at the
principal incidence plane at the beam axis.

Certainly, in planes (x,y) transverse to the beam axes directions (cf. Fig.
5.1), Egs. (5.14)-(5.15) also preserve their form in the paraxial approxima-
tion, with the transverse field decomposition into TM and TE components
E®" and E?, respectively:

E"=E®e +EWe,, (5.16)

where ¢ =[1,0] and e, =[0,1] are polarization vectors defined in planes

z =const. of transverse cross-sections of the beams. Now, in the beam
frames (x, y,z), the beam spectral representation takes the form [5,7]:

EP (x,y,2) = exp(ik'z)

L f®) o (5.17)
x(27)” [[Ey (k .k, expli((k!” —k®)z +k,y +k x)] dk dk, ,

adequate for both, exact and approximate (paraxial), modes of the analysis. In
Eq. (5.17), as well as in Fig. 5.1, x-axes and y -axes point in the directions
of the respective TM and TE beam field components for the incidence angles
within the range between the Brewster angle and the critical angle. Note
different meanings of the scaled ||, L and transversal TM, TE indicators in the
notation assumed in this chapter; |ETM and L=TE only in the paraxial
approximation. Still, for simplicity, we shall use these names interchangeably
even for exact beam fields.
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The factor exp(ik'”'z) in Eq. (5.17) and its projection exp(iks,,Z) on the

interface plane represent a contribution of a central ray of the beam to an on-
axis phase of this beam. These factors will be irrelevant in further analysis,
that is, each beam profile will be evaluated in the plane Z =0 transverse to
the Z-axis. Therefore, the beam fields £ ® and the wave vector component
k, =ks,c, in the representation (5.1)-(5.2) will be hereinafter replaced by

E"” exp(~iks ,,Z) and k, = ks ¢, — ks, , respectively.

The analysis of the 3D beam reflection and transmission problem was
recently reported in the interesting contribution [6]. For the beam reflection,
those results (Egs. (13) in [6]) agree with the results given previously by Egs.
(17) in [5] or more recently by Egs. (3)-(5) in [7] and Egs. (5.4)-(5.7) in this
chapter. For beam transmission, however, Egs. (12) in [6] differ from Egs.
(5.8)-(5.9), together with (5.5)-(5.7) in this chapter. The method of analysis
applied in this work is different from the method presented in Ref. [6].

5.3 First-order optics of beam reflection and refraction

The transformations (5.14) and (5.15) provide a convenient basis for direct
interpretation of the beam distortions in terms of the effects of nsp
reflection/transmission [5,7]. The reflection 7, r, and transmission ¢, #,

coefficients depend on the polar ¥\ and azimuthal #%" incidence angles. An

antisymmetric part of this dependence contributes to the first-order effects of
nsp reflection/transmission, whereas a symmetric part, besides the geometric
optic (g-o) predictions for beams, results in the second-order effects of nsp
reflection/transmission. Both types of these effects exist in the incidence
plane Y =0 (longitudinal effects) and in the transverse plane Z =0
(transverse effects) for beams of a finite spatial spectrum [5, 7]. Whereas the
longitudinal effects are well known in 2D problems (see e.g. a list of
references in [5]), the transverse effects are not. They are inherent only in 3D
beams and disappear in 2D geometries.

A complete discussion of the first-order and the second-order effects of the
3D beam nsp reflection was given in Ref. [7], as well as in Chapter 3 of this
book. For the purpose of further analysis, we will give below only basic
relations of the first-order nsp effects, including also the case of refraction.
These effects are derived in this chapter in the interface plane X =0 (cf.
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[16]), instead of the usual procedures applied in planes z =0 transverse to the
beam axis direction [1-5].

The beam distortions upon reflection can be found by approximation of
the reflection r, (a=|, 1) and transmission coefficients 7, and ¢, , around a

beam axis direction. Their values r,, 7,, and ¢, are predicted by

geometrical optics at the beam axis, that is they resolve into the Fresnel

coefficients evaluated for o)’ =y, and ¢” =0. Introduction of the
complex displacements L) /c\), L'?/c4) . L) and L!); a=|, L, along the

ax

interface as eigenvalues of the differential equations

i(0/9k, )Inr, =L /)

i(0/ok, (-1, = L9 /ey

i(0/0k, )Int, =L /') (5.18)

specific to the beam longitudinal deformations (in the plane Y =0), and the
equations

i9/3k, )inr, = L

ay ?

i(0/0k, )In(=t,)=L""

|y *
i(9/0k, )Int, =L, (5.19)
specific to the beam transverse deformations (in the plane Z =0), yields the
first-order approximation of the beam reflection coefficients:

v Eraoexpl ik, LD [c) + k L“’)J,

Y ~ay
t, =t ,Oexp[ i(k, L'”/c“’-i-k}L{"’)J

i Bl expl—i k, IO [ + 1, LD )J (5.20)

X

From the definition all derivatives, and thus the complex shifts, are
evaluated at the beam axes. The subscripts (small) x and y in Egs. (5.18)-

(5.20) indicate that the beam shifts are directed along x- and y -axes of the
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beams (cf. Fig. 5.1). For beam transmission, the shifts are determined entirely
by their counterparts for reflection and the continuity relations (5.9) in the
interface plane. The generators of the beam complex displacements in Egs.
(5.18) and (5.19), as well as the coefficients r,, 7, and ¢, , depend explicitly
on the wave vector components k, and k, parallel to the interface plane.
Hence, besides their evaluation at the beam axes, no further approximation is
needed in evaluating these displacements from Egs. (5.18)-(5.19); cf. also the
Appendix in [7] and in Chapter 3.

The definitions (5.18)-(5.20) lead to the interpretation of the beam
distortions in terms of the beam axis and spectrum displacements from their
g-o predictions. The beams are displaced: by real spatial ., & and

spectral ke, ke shifts in the phase space (x,k,), that is by longitudinal
d,) and

spectral ke, kel shifts in the phase space (y,k,), that is by transverse

shifts in the plane of incidence y=0, and by real spatial &’

ay ?

shifts in the plane x =0 transverse to the incidence plane. That means, for
example, for the TM component of the reflected beam:
(x,k,) = (x-6 k, —ke|)) for the longitudinal shifts and, by analogy,

[l 2 llx

(v,k,) = (=0, ,k, —ke|})) for the transverse shifts. The shifts are in the

Ly 2 Iy
position and direction (momentum) coordinate frame (x, y,k,,k,).

For fundamental Gaussian beams, i.e. for beams with minimal quality

factors [15], and for a propagation distance z normalised to diffraction
lengths z, and z, in planes y=0 and x=0, respectively, real and

imaginary parts of the complex shifts define real, spatial and spectral, shifts
of the 3D beams for reflection [5,7] and refraction. They read in the incidence
plane y=0:

LD =80 ¢ iz;e7),
[ =82 +iz, e, (5.21)

and in the transverse plane x=0:

(r)y —_ si(r) . (r)
L) = §ay i, 2,
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L) =8y iz, € (5.22)

ay

where €, € and &

ax * ay ax ?

g, are referred to as the angular shifts of beam

axes and a=|, L.

Explicit expressions for all complex shifts, in the incidence and transverse
planes, are given for the beam reflection in the Appendix of Ref. [7] and of
Chapter 3. A form of those expressions, by substitution of the reflection
coefficients by their counterparts for transmission, is valid for beam
transmission as well. These expressions remain valid for beams with arbitrary
quality factors in their paraxial approximation. One can also directly observe
from Egs. (5.5)-(5.6) that, in contrast to the first-order transverse TE and TM
shifts of the reflected/transmitted beam, the second-order transverse TE and
TM shifts and all the longitudinal TE and TM shifts do not depend on the
incident beam polarization parameter 7' . In the dimensionless version of the
phase space, the shifts are normalised [7] to characteristic beam diameters
w, andw,, e.g. in the phase space (x/w_, , k,w,,) the spatial and spectral
shifts take the form &) /w,, and kw &), kw, €\, respectively, where
kw,, =z, /w,, . The same applies to the transverse shifts with the subscript
x replaced by y . For the 2D Gaussian beam exp(—%xz/ w?,) at its waist, the
beam half-width w,, means the beam half-width at 1/e-maximum of beam
power.

Let us briefly refer to the case of the normal mode solutions (5.10) to the
beam reflection of the in-plane-of-interface circular polarization states
7" =Fi. Such modes suffer from spatial and spectral shifts of equal
magnitude in both the left-handed and right-handed circular polarization
states, in contrast to the linear in-plane-of-interface diagonal polarization
states 7'’ =+1, for which these first-order shifts are of opposite signs.
Certainly, no such symmetry is observed for the common diagonal, linear
79/ =+1 or circular 7 /c\) =Fi, polarization states, defined in

transverse planes of the beams.
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5.4 Amplitude-polarization decomposition of beam fields

The solution of the reflection/transmission problem presented in Sections
2 and 3 is unique. Its form, however, depends on a polarization basis chosen
for the beam field decomposition. The field decompositions (5.3) and (5.16)
in a 2D vector (complex) space spanned by base vectors of TM and TE
polarization, follow the intuition borrowed from the 2D analysis and in the
3D case is by no means unique. What we actually need in the 3D case,
besides geometrical characteristics of the 3D beam like a beam waist position
and its axis direction, is to know the (complex) amplitude and polarization of
the beam, the latter being described by the (complex) polarization parameters

Z% or 7V [cks -
It seems suitable to describe the incident (b=i), reflected (b=r) and
transmitted (b=t) beams in vector spaces spanned by two base orthonornal

vectors, in which one of them is directly the Jones polarization vector $

specific to the respective beam [5,7], that is:

-E~thl E® e (b) s o (5.23)
£rh: = Em(fw): gth!/| g,”” , (5.24)
~ ("“[h])+l.-'2

(b)

where ¢” is an unnormalised Jones vector and E" stands for the

unnormalised amplitude of the beam:
E® =(EPE®)". (5.26)

@ |71)*2 does not contain

The normalisation factor |e” |=(1 7" |+| %
more information about the beam polarization than the vector ¢'”. Thus, in

what follows we use, instead of Eq. (5.23), the more suitable beam
representation

E:h:: E[h: () (Erh:E{h:) {(z{:')w:] (5.27)
(F2y
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with unnormalised polarization vector e " defined in the interface plane. In

the presented formalism the beam field is determined exactly but its
factorisation into the amplitude and polarization factors depends on our
choice. Note that the reflection and transmission matrices [7] are also
dependent on this factorisation. Here, from all possible beam field represen-
tations, the representation (5.27) implies the following diagonal and uni-
modular form of two matrices of beam reflection and transmission:

(an)ﬂ /27 'r+1;2 (;\‘.’m)ﬂf
L(X{”)_l 12 = 0 _|p ]|:( "““))—lf’ s (528)
(wm)n;z' ‘r+1_..-'3 (~m)+1f2
(~m)-|,.-3 = 0 WIH]L;{“’)_”Z}, (5.29)

respectively, where r= ”/rl , t=t,/t, and, in addition, the matrix of

reflection becomes unitary for TIR. The same matrices are given, by
substituting 7 by 7" /c\) and t, by t, in Egs. (5.30)-(5.31), for the
conventional definitions of the beam polarization (5.13) and the definition of
the beam complex amplitude E* =(E”E")", adequate to this case. The

matrices in Egs. (5.28)-(5.29) seem particularly suitable for description of the
reflection/transmission problem in terms of the scattering matrix of the
interface.

The relations (5.25)-(5.29) reduce the beam reflection/transmission
problem to the following scalar relations for beam amplitude and polarization
parameters of the beams:

E" = (rr )" EY,
EO =(t,t,)?E"Y, (5.30)
Z(” s (r‘”/f‘l)f“’ :

T =Lt 2 T (5.31)

The beam amplitude modifications (5.30) are now determined by a geometri-
cal mean of the TM and TE reflection/transmission coefficients, while the
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beam polarization changes are specified by the quotient of these coefficients.
This changes the common meaning of the effects of nsp reflection and
transmission of the 3D beams. They are now directly specified by the beam
field factorisation (5.25)-(5.27), instead of the conventional beam field de-
composition (5.16). The derivation of definitions of these effects, as given in
the next section, is a main result of this chapter.

5.5 New definitions of the nonspecular effects

The first-order effects of the beam complex amplitude modifications, that

is the shifts of the beam axis and the spectrum centre upon reflection (b=r)

and transmission (b=t), are now given by new complex shifts L‘(”’, c=X,y,

expressed by the sum of the conventional TM and TE complex shifts (5.21)
and (5.22):

LD =4(LP + LDy =6 +iz, . (5.32)

c

The shifts (5.32) modify the beam complex amplitudes £ with respect to
their g-o values E”:

E® = E® expl-ith, L /) +k, L)), (5.33)

() _ 112 7=(i)
E)y’ = (" or.\-u) E

P

EO =(t,,t V2 E". (5.34)

Therefore, in the phase space (x, y,k_,,k_‘,), the beam axis upon reflection or
transmission is displaced by the spatial shifts §'” and the spectrum centre of
the beam is shifted by the spectral shifts k&'”. We obtain analogous

expressions for the first-order effects of the beam polarization modifications:

7P = 72 expl-2itk, K [c®) +k, K®)), (5.35)

K® = L b _ j®)y = K‘m+iz,) o, (5.36)
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Figure 5.2. First-order longitudinal L‘;’ and transverse L(y” spatial
shifts of the beam axis (a) and the longitudinal Ki'} and transverse
K;” spatial shifts of the beam polarization (b) for reflection versus
incidence angles ¥, —%. around the critical angle ¢J. =75°. The
case of circular polarization of the incident beam y"’ =f“}/c% =i,
X =(r,/r,) X" and the normalised wave number kw, 27 =80.

The shifts are normalised to the beam half-width.

177
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0 =7, (5.37)

with the new polarization complex shifts K", expressed by the difference

between the conventional TM and TE complex shifts (5.21)-(5.22). Both the
spatial ‘" and spectral k" shifts contribute to the final polarization states

and make them, in general, non- uniform through the beam spectrum. Note
that both, the complex amplitudes and the complex polarization parameters of
the reflected and transmitted beams, were evaluated in Egs. (5.32)-(5.37)
through the reflection and transmission coefficients evaluated at the beam
axes, as indicated by the subscript “0” in Egs. (5.34) and (5.37).

The definitions (5.18)-(5.19) of the effects of nsp reflection and
transmission imply that magnitudes of these effects are independent of the
shape and phase profile of beams. Note however that the approximations
(5.20) remain accurate for paraxial beams, provided that the beams with
profiles separable in x and y are considered and that the beam incidence is far
from any discontinuity of the reflection/transmission coefficients [7].
Otherwise the beam field expansion should be used instead (see footnote 1 in
[7] and the Appendix in Chapter 3) or, in the singular case of reflection at the
critical incidence, the rigorous integration procedure that still yields
convergent results should be applied (see [17] or Chapter 4). Moreover, the
definitions (5.18)-(5.19) are only valid for non-vanishing values of the
reflection/transmission coefficients. In the opposite case, like this of the beam
of the TM polarization state impinging onto the interface at the Brewster
angle, the beams attain profiles of higher-order modes and the analysis
outlined in Section 5 of Ref. [7] or Chapter 3 becomes more appropriate.

An example of spatial shifts of the reflected beam axis position and the
beam polarization state is given in Fig. 5.2, for the case of at and around the
critical incidence of the fundamental Gaussian beam. A method of analytical
and numerical evaluation of the shifted beam field from its integral
representations (5.1) or (5.17), as described in Ref. [17] or Chapter 4, is used.
That yields finite shifts of the reflected beam, even close to the critical angle
of incidence. The beam shifts for the (conventional) circular polarization
(x? =7"/c) =i) of the incident fundamental Gaussian beam of cylindri-

cal symmetry, incidence, the polarization effects are about one by order of
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magnitude smaller than the amplitude effects and the transverse effects are
about one order of magnitude less than longitudinal effects. All these effects

are nonzero and finite both below and above the critical angle of incidence.
A polarization state of the beam can be also described, instead of the
complex polarization parameter ¥y = 7 /c'i) | by the inclination ¢'* and

elipticity 6 angles of the polarization ellipse with the ellipticity
e” =tan 8" [16]:

tan 29 = 2Re[x*}/ (¥ [ - 1), (5.38)

sin26® = 2Im[z®1/ ([ +1). (5.39)

Modifications of the beam polarization are then expressed by changes of
these angles with respect to their g-o predictions defined by Eq. (5.37), that is
by real and imaginary parts of the complex polarization shifts K’ or by the

(o
real shifts x”

") and ko'!”; c=x, y, b=r, t. Both angles of a beam polarization
ellipse projected onto the incidence plane are shown in Fig. 5.3 for the
(conventional) circular ¥’ =i and diagonal-linear ¥ =1 polarization
states of the incident beam.

For moderate values of the incidence angle, the modifications of a beam
polarization state are not substantial. Influence of transverse shifts on the
beam polarization state is even much smaller and it seems that besides,
perhaps, in some extreme cases, they can be considered as negligible. Note
also that, for incidence angles less than the critical angle, the real parts of the
polarization parameters are always zero. The azimuth angle of beam polariza-
tion equals /4 and a phase shift difference between the TE and TM field
components equals /2 for the circular polarization of the incident beam.
Only at the critical incidence the reflected beams remain exactly in the
diagonal-circular or linear - polarization states.

It is gratifying to refer once more to the polarization states of the incident
beam that are diagonal in the interface plane X =0. In Eqgs. (5.5)-(5.6) the
first-order terms in k, are of opposite signs for TM and TE components of

the incident beam field. Therefore, from the definitions (5.19), (5.32) and
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Figure 5.3. Inclination @' and ellipticity 8" angles (in degrees) of
the reflected beam elliptic polarization state for the circular
29 =7"/c) =i (a) and the diagonal-linear ¥ = 7 /cl) =1
(b) polarization states of the incident beam, versus incidence angles

¥, — 9. around the critical angle . = 75”; other beam and interface

parameters are the same as in Fig. 5.2.
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(5.36), it is evident that while the first-order transverse shifts 5&” and ke‘_",”

of the beam axis and the beam spectrum disappear for the incident diagonal-

linear polarization states 7'’ =+1, meanwhile the first-order transverse shifts

Ki_” and kO'ﬂ.” of the beam polarization disappear for the incident diagonal-

circular polarization states '’ =Fi. Therefore, there are only transverse
changes of the beam polarization in the linear diagonal polarization states
7' ==1 of the incident beams, as well as there are only transverse shifts of’

the beam axis and the beam spectrum in the circular diagonal polarization
states.

Note that the above statements are valid for the definitions of beam
amplitude and beam polarization specified by the beam field factorisation
(5.27), with the polarization vector defined in the interface plane. Within
these definitions, the deformations of amplitudes of the reflected and
transmitted beams can be measured for the incident beams of diagonal-
circular polarization 7'’ =Fi independently of the beam polarization defor-
mations, which are nil in these cases. Similarly, the deformations of polariza-
tion of the reflected and transmitted beams can be measured for the incident
beams of diagonal-linear polarization }'’ =+1 independently of the beam
shape deformations, which are nil in these cases.

The diagonal, circular, 7'’ =Fi and linear, 7'’ =%1, polarization states
defined in the interface plane seem to be fundamental polarization states for
the reflection/transmission problem of 3D beams at the interface. In analysing
this problem, these diagonal polarization states are more suitable than the
linear TM, 7"’ =1 and TE, (7)™ =t polarization states. Certainly,
they are also more suitable than the TM, y'’ =te and TE, (y")" =
linear polarization states, conventionally defined in planes transverse to the
beam propagation direction and commonly employed in the cases of 2D
beams.

5.6 Comments and conclusions

Let us comment on a single but important case of TIR of circularly
polarised beam at critical incidence. This case has been extensively investi-
gated in the past. Different expressions for the transverse shifts of a beam
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have been derived by several authors [8-12], using essentially two
approaches: the first approach based on the energy-flux conservation
arguments, the second one based on the stationary-phase or phase-shift
arguments. Different results presented have been the subjects of many
discussions and even a source of persistent controversies (see, for example,
[3,11,18,19] and references herein). It seems nothing appears entirely
definitive within the problems of this sort. As one of the authors: ‘Despite the
considerable volume of theoretical work on transverse shifts, and the
considerations of this paper, the situation remains confused and the
experimental background remains meagre’ [18].

Observe that, for the case of the conventional circular polarization state
2?=7"/c) =Fi and at the critical incidence, Egs. (5.19) and (5.22) of
this section yield the following spatial displacements for TM and TE beam
field components (cf. also Eq. (A.3a) in Ref. [7] or Egs. (A.3.4) in Chapter
3);

8" =22k ¢, oS x0 s (5.40)

Iy
8 =+2k™cyo/sx0- (5.41)

It appears that the expressions suggested by Ricard [10] and Imbert [11] by
the energy-flux conservation considerations agree with Eq. (5.40), whereas
the formulae obtained by Schilling [9] by the stationary-phase analysis agrees
with Eq. (5.41). The result given by Schilling seems consistent with our
outcome since, at the interface, for the critical incidence of TIR and for wide
beams, the Z -component of the total electric field essentially equals zero.

It is not the purpose of these considerations to dwell on the problem of
differences between these two methods. This issue has been addressed e.g. in
[18, 19]. It should be noted, however, that the energy-flux conservation
method was devised, as many other methods, under a number of
simplifications and approximations that may substantially deform a modelled
physical picture of the reflection/transmission problem. In contrast to the
above, the method presented here is exact, complete and self-contained.
Besides the full set of Maxwell’s equations and continuity relations at the
interface, the method is determined only by the definition (5.27) of the beam
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amplitude and polarization. The description of beams in terms of first-order
shifts is also uniquely defined by generators of the spatial beam
displacements (5.18) and (5.19). The method does not need to resort to the
paraxial approximation and hence allows non-zero longitudinal beam field
components as well. Therefore it is also suitable in treatments of very
narrow/short (of the order of wavelength or/and period) beams, pulses and
wave packets.

Moreover, results presented in this chapter yield only one transverse dis-
placement 8" of the beam axis, independent of the TM-TE field redistribu-

tion. For the conventional circular polarization, that is for "’ =Fi, of the

beam incident at TIR, the transverse shift has a form of the average of
displacements of TM and TE field components:

5:-” =tk /ey + an)/s,m . (5.42)

At the same time, the beam polarization suffers from the additional real
spatial modification k', expressed by the difference of these displacements:

v

K.t.;-J - —tk—l(l_ﬁ:(,“\.ﬂ _ C,m )/S,t;u . (543)

¥

Eq. (5.42) determines the shift of the reflected beam axis and Eq. (5.43)
determines the additional correction to the ellipticity of the beam polarization,
both of them specified with respect to the predictions of g-o optics. Note that
these displacements, as well as all other first-order nsp effects, can be
evaluated directly from their definitions (5.18)-(5.19) or from those given in
[5,7], without any approximation, simultaneously for reflection and trans-
mission.

It is also interesting to observe that all versions of the transverse shifts of
the beam axis, as presented in (5.40)-(5.42) for the beam of conventional
circular polarization ¥’ =Fi incident at the critical angle of TIR, are exactly
equal to each other for the circular polarization 7'’ =Fi. However, they are

defined here in the interface plane. For this type of incidence and incident
beam (circular) polarization

=g =8 =k 2k 5 (5.44)

[y
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and all different approaches mentioned above yield exactly the same result.
Evidently, defining the beam polarization at the interface plane instead of the
transverse plane of the beam, greatly simplifies the analysis of the problem
and shows some more physics hidden behind just only formal definitions. We
shall return to this observation in the last chapter of this book.

The above mentioned features of the presented solution distinguish this
treatment from other, approximate approaches applied to such problems in
the past (cf. [20] for refraction). It should be also emphasised here that the
nonzero magnitudes of the transverse shifts in reflection and transmission,
result directly from the asymmetry of the reflection (5.5) and transmission
(5.9) coefficients with respect to their azimuthal variation (5.6) of the beam
incidence [5,7]. It seems that this fact has been finally appreciated in the
recent, still very approximate however, analysis of 3D beams at periodic
structures (cf. [21] for reflection).

It is worthwhile to observe as well that an attempt to consider only a beam
field magnitude, instead of its magnitude and phase or its Poynting vector,
would make a quite fair range of the calculated first-order transverse shifts

simply equal zero. In this case, the first-order shifts calculated for the critical
incidence (|rp|=| r.|) and arbitrary polarization or for the elliptic polarization

(Re(7")=0) and arbitrary incidence disappear. That follows directly from

the explicit form of the first-order transverse (proportional to s,) terms in

Egs. (5.6), accounted for in the evaluation of the reflected beam field

magnitude. For example, Eqs. (5.41)-(5.43) would yield in this case
(r)

9, =0=46]) and 8" =0=x,", respectively. In real physical situations

most of these shifts are not zero and the considerations based only on the
field magnitude are of limited use.

Several aspects of the solution presented were not discussed, mainly
because of lack of space. The simplicity of the problem of the 3D beam
interaction with the dielectric planar structures seems to be rather apparent.
Relations to foundations of first-order optics [14,15,22,23] and analogies
with elements of special relativity and quantum mechanics [23-25] can be
found. Exactness and completeness of the solution presented may appear
helpful in searching these relations.
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Several aspects of the solution presented have not been discussed in this
chapter. Relations to foundations of first-order optics [14,15,22,23] and
analogies with elements of special relativity and quantum mechanics [23-25]
can be found. To be more definite, the transformations (5.28)-(5.37), of the
beam amplitude and polarization, are enumerated below in relation to the
two-by-two spinor representation of the six-parameter Lorentz group
described, for example, in [24].

The transformations (5.28) and (5.29) are the two-by-two unimodular
matrix transformations of the (unnormalised) Jones polarization vectors
(5.25). In general, for arbitrary complex values of the matrix elements » and
t, these transformations are the 2D representations of the six-parameter
Lorentz group. If » and ¢ are real, partial transmission occurs and the
transformations (5.28) and (5.29) become, in the terminology used in [24],
the attenuator or squeeze transformations. For » being a complex quantity of
unit amplitude, that is in the TIR case, the transformation (5.28) is analogous
to the phase-shift transformation [24]. Furthermore, the transformations
(5.28) and (5.29) are equivalent to the bilinear transformations also
mentioned in [24], in the same manner as they are equivalent to the scalar

transformations (5.31) and (5.37) of the polarization parameters 7'

introduced here. All these transformations yield the first-order shifts (5.36)
for the polarization states (5.35) of the reflected/transmitted beams.

The remaining elements of the beam representation given in Section 4, that
is the beam complex amplitudes (5.27), are referred to in [24] as the overall
multiplication factors of the beam transformation matrices. These factors, or
simply the beam complex amplitudes, are transformed according to Egs.
(5.30) and (5.34). That yields the first-order shifts (5.32) for the complex
amplitudes (5.33) of the reflected/transmitted beams. Note that the same
relations between the beam amplitude-polarization transformations (5.28)-
(5.37) and the Lorentz group can be also obtained for the beam polarization
(5.13) conventionally defined in planes transverse to beam axes. Still, there
are other benefits of the presented formalism left to be indicated.

A similar list of transformations of beam profile parameters, like a beam
width and its phase-front curvature [15] and on-axis complex amplitude
parameters, like beam on-axis intensity and on-axis Gouy phase, can be
spelled further in the context of the second-order beam shifts [5,7]. In analy-
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sis of these second-order shifts, the lens-magnifier-rotation Iwasawa decom-
position [14] of a ray-transfer matrix specified to the dielectric interface may
appear particularly suitable.

Let us finally conclude that we have presented the new amplitude-
polarization frame suitable for analysis of the 3D beam reflection and
transmission. The solution to the reflection and transmission problem is given
for beams at a dielectric interface, although the formalism can be extended to
accommodate the cases of wavepackets [25], beams at dielectric stratified
[23] and/or nonlinear [17] planar structures. Similar beams of other problems,
like reflection/transmission of vortex, Laguerre-Gaussian or Bessel beams or,
in general, beams with non-meridional symmetry [26], are also possible.

Explicit expressions for the first-order beam deformations are given in a
form valid for the total beam field, not separately for the beam TM and TE
field components. The amplitude effects, that is the beam axis and spectrum
centre displacements, appear substantial and, in paraxial approximation,
uniform in the beam spatial and spectral cross-sections. On the contrary, the
polarization effects are much smaller, although generally non-uniform
through the entire beam spectrum. In the latter context, a special role of the
beam modes of diagonal polarization in the interface plane was indicated.

Main content of this chapter has been published in Journal of Optics A: Pure and
Applied Optics 5, 128-136 (2003).
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CHAPTER 6

Beams at multilayers
- formulation of the problem

A problem of three-dimensional optical beam scattering at a
dielectric multilayer is analysed. Scattering and transfer matrices
of the layered structure are derived for incidence of beams of
arbitrary polarization. Transmission and reflection matrices are
given in a diagonal form dependent on polarization of an incident
beam. Factorisation of these matrices results in scalar complex
transformations separately for beam polarization and for beam
amplitudes. While the polarization transformations describe the
multilayer action in terms of Lorentz transformations, the am-
plitude transformations yield spatial beam shaping. The scattering
vector problem resolves into two independent scalar transforma-
tions.

6.1 Introduction

The problem of scattering of two-dimensional (2D or 1+1 dimensional)
beams at a 2D planar, isotropic and lossless structure can be described by a
scattering matrix defined in a spectral domain of these beams [1]. Owing to
the well-known symmetry of the Maxwell’s equations, such a scattering
problem can be decomposed into two independent 2D scattering problems for
TM and TE polarizations. Each one of these problems possesses a solution in
a form of two independent second-order scattering matrices, one for the TM
polarization and other for the TE polarization. The form of these scattering
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reflected
beam axis

IMULTILAYER

X

transmitted
beam axis

: Incident
Z: beam axis

Figure 6.1. Multilayer and beam reference frames for transmission
and reflection viewed in the main plane-of-incidence; n,, Y; ,J=1,2 are

refractive indices and characteristic admittances of the superstrate (j=1)
and substrate (j=2) media.

matrices is restricted by the principle of reciprocity and the Stokes relations,
which hold for any isotropic structure.

However, for three-dimensional (3D or 2+I-dimesional) beams the TM
and TE field components are coupled at planar discontinuities of the
multilayer. The scattering problem is then understood as the collection of the
partial plane-wave scattering-problems, defined first in different (local)
incident planes and specified by their separate azimuthal angles-of-incidence.
Then the global scattering problem becomes inherently of the vectorial nature
[2-4], with a solution in a form of a four-by-four scattering and transfer
matrices for the scattering structure.

In this chapter, the scattering and transfer matrices of the optical
multilayer, composed of isotropic, homogeneous and dispersionless layers of
different medium parameters, are derived for a general case of incidence of a
3D beam of arbitrary polarization. The layered structure may be periodic or
aperiodic. The analysis differs from the common approaches to such
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problems in several aspects. For all spectral constituents of beam fields, the
reflection and transmission coefficients are derived in the one reference frame
assigned to the main plane-of-incidence [2], [4]. The reflection and
transmission matrices are made diagonal by relating their elements to a
polarization parameter of the incident beam. A spectral representation of the
beam fields is defined in new polarization frames composed of two mutually
orthogonal Jones vectors, where different frames are assigned separately to
the incident, transmitted and reflected beams [2]. The Stokes time-reversal
relations are given in the most general 3D form. Then the four-by-four
scattering and transfer matrices can be readily defined as double-dimensional
counterparts of the respective two-by-two matrices, known from the 2D
problem for the TM and TE polarizations.

Layered media play an important role in many applications in modern
optics. Several features of the multilayer action on a plane wave impinging
upon the structure have been recently reported in the formulation equivalent
to the case of 2D beams [5-8]. It is the intention of this chapter to provide a
convenient framework to discuss such problems in the more general case of
3D beams. To this end the transverse field of beams is factorised into its
amplitude and polarization components [2]. The solution resolves into two
sets of scalar relations independently for polarization and amplitude of
beams. Then, in the spectral (momentum) domain, the transmission and
reflection matrices for beam polarization appear to be unimodular and, as
such, can be interpreted in terms of transformations of the six-parameter
restricted Lorentz group [3]. The solution can be further restated in a spatial
(configuration) domain of beams, as it has been shown in Ref. [4]. Then, the
remaining amplitude transformations yield description of beam shaping in the
course of beam interaction with the multilayered structure.

Our presentation will be somewhat pedantic to make the analysis as clear
and self-contained as possible. In Section 2 a formulation of the problem is
given and derivation of the transmission and reflection matrices for oblique
incidence of a single beam is outlined. Equivalence of these matrices with
scalar relations for beam amplitude and polarization parameters is shown in
Section 3 in a form already known for the case of a single interface [2]. In
Section 4 polarization spinors of two types are defined and used to express a
general form of a spectral representation of beam fields. The formalism is
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referred to polarization matrices and Stokes vectors in Section 5. The
scattering and transfer matrices of the multilayer are derived and their
characteristics are briefly discussed in Section 6. In Section 7, the method is
applied, as an example, to the problem of scattering at an anti-reflection
multilayer. Conclusions close this chapter in Section 8. The author hopes that
the presented formulation of the scattering problem provides a proper
framework to treat optical 3D beams - of arbitrary shape, polarization and
incidence direction - scattered at multilayered optical or photonic structures.

6.2 Transmission and reflection matrices

Consider 3D monochromatic optical (incident, reflected and transmitted)
beams with their reference coordinate frames (x,y,z) different, in general,

from a coordinate frame (X,Y,Z) of an optical system, which is assumed to
be a planar dielectric structure in (X,Y) planes (cf. Fig. 6.1). Beam axes
coincide with z -axes of beam frames, a Z -axis of the optical system frame
is normal to the planar structure. The coordinates Y and y of all frames

coincide as being transverse to the main (principal) incidence plane
Y=0=y, also referred to as the incidence plane. Note that the Z -axis is
assumed normal to the optical structure, meanwhile in Ref. [2] and Ref. [4]
the Z -axis indicates the grazing incidence along a surface of the structure.
The present choice reflects the main interest of this analysis in beam
transmission through the planar structure rather than generation of waves
progressed in planes parallel to this structure.

The structure is two-dimensional and consists of a stack of planar

homogeneous layers. A third dimension is introduced to the problem by a 2D
spatial distribution of the beam field in the transverse planes (X,Y). The

polar and azimuthal rotation angles of the beam frames (x, y,z) with respect
to the system frame (X,Y,Z) are denoted by ©”’ and ¢, respectively, where

b=i means incidence and b=t (or b=r) means transmission (or reflection).

The incident beam is partially transmitted and partially reflected at the
multilayer (Fig. 6.1). The action of the multilayer is described by a set of
linear relations between amplitudes of these beams for the 2D problem and,
in addition, between beam amplitude and beam polarization parameters for
the 3D problem analysed here. Only the beam fields outside the structure, in a
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superstrate (or ambient; for n=n, and Y =Y)) and in a substrate (for n=n,
and Y =Y,), are considered. The symbols n,, Y,, Z, =1/Y,, a=1,2, denote

refractive indices, characteristic admittances and characteristic impedances of
both media, respectively [1]. In this section, the transmission and reflection of
a single beam incidence is discussed, assuming that, say, the Fresnel
coefficients for a single plane wave incidence at the multilayer are known.
These coefficients can be easily evaluated by a simple composition law [5],
from the Fresnel coefficients for a single interface.

The beam has, by definition, narrow angular spectrum concentrated about
the beam axis and propagates through an optical system from some input
plane at z=z" (or at Z=2Z"") to the output planes at z=z"" (or at
Z=7")and z=z" (orat Z=Z"). In the angular spectrum representation

E”(x,y)=@m)* [[E” k k,)expl+i(k\"x+k,y)|dkPdk, , (6.1)

the beam electric field g"” = g"”(x, y) is composed of the superposition of
plane waves with vector amplitudes £ “ < E m(k_(,“,k_,.) , defined here at the

input and output planes of the system. A wave number in the substrate (b=t)
or superstrate (b=i or b=r) is denoted by k”’, the transverse to the Z -axis
components k, and k, of the wave vector k" remain constant through the

3 3 . . 2
structure and are interrelated by the dispersion relation k2 + k2 + k° = k®* |
Exponential dependence exp(—i@wt) on time is assumed and suppressed
henceforth.

We consider only transverse (to the propagation direction) spatial £ and
E" and spectral E” and E” components of the electric beam fields
E® =[E_fb),Ei,”)]T and E" =[E;“,Ej,“”]r. The superscript “™ denotes the
transpose of a column vector. Remaining field components £ and E are
determined by the Gauss law:

ENED 4k BV ERPEP =0, (6.2)

The propagation direction of the central plane wave (3'” =8”, ¢=0) is

placed in the main plane-of-incidence. Other spectral components propagate
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either in the main plane-of-incidence for #'” # #” or in the local planes-of-
incidence, that is in the planes inclined, by the azimuthal angle ¢ # 0, to the

main plane-of-incidence. Still, however, polarization characteristics of all

beam spectral components, as well as characteristics of the total beam, will be
described in relation to the main plane-of-incidence ¢ =0.

The components £” and E” are not, in general, independent quantities;

they are interrelated through a spatial structure of the beam, medium
inhomogeneities and anisotropic properties of the optical system. In the 2D
planar isotropic configuration, however, the separate p (E" = E o, E® =0)
and s (E” =0, E®” = E") spectral components of a plane wave propagate

independently through the optical system. Their transmission through the
multilayered structure is described by the Fresnel or plane wave diagonal

transmission matrix 7 :
[al0) it t 0
Fp]ﬂ [,EJ’} t =[” ] (6.3)
g | =¥ Er =F 10 1«
The diagonal matrix elements 7, and 7, of p type and s type, respectively,

denote the p and s transmission coefficients of the planar, in general

multilayered, structure. We shall call them the Fresnel (geometric-optical (g-
o) or plane wave) coefficients even for the structure built from several layers
and interfaces.

In the system frame ( X,Y,Z ), the transfer matrix possesses the diagonal

form (6.3) only for the field spectral components Em with propagation

directions in the main plane-of-incidence. The transfer matrix for other field
components is obtained by the azimuthal rotation by ¢ of the projection

~p ~ ~ ~(b)
(EYE) =FE"c” ,E\”)" of the transverse field vectors £ onto the

interface planes Z=constant of the planar structure:

E}b} i'E”J(tb)cib) C_,. 5_‘. iELb)Ci.M
E:'b] - E;b) B _Sy cy E_ih} s (64)
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where ¢ =cosp, s, =sing, c” =cos?” and s” =sind”, with the

subscripts y and z indicating y-axes and z-axes being rotated in planes
(X,Y) and (X,Z) by the rotation angles ¢ and ', respectively. In the

expression +E¢” the upper sign (+) is assigned to b=i, t and the lower

sign (-) to b=r, respectively; cf. Fig. 6.1. The vectors (E”,E®)" rotate
around the Z axis, through the angle ¢, from the local incidence plane ¢ # 0
to the main incidence plane ¢ =0, and that, in turn, yields for the transverse

vectors Em [2]:

R" {_ P =/ CE’T- (6.5)
+

The convention of a positive sign of ¢ for the clockwise rotation is used. For
different superstrate (b=i) and substrate (b=t) media c!" is different from c!".
Then, the rotation matrices £“’) = gb’(ﬁ”’,@) differs for the beam incidence
(b=i) and transmission (b=t).

By the rotation 5”” the (Fresnel) transmission matrix ¢, =#(8", @) yields

. . . - - .
the generic transmission matrix ¢= {("",9)=R"t R" ", evaluated in the

main incidence plane Y =0:

,  (6.6)

£ to | c_ftp+s_it_§cf_”/c‘:” —S_vc}.(lp/ci”—ts/ci”)
. i =s,c,(t,c —1,c) sk, [ +clt,

»x ¥ z yip bz

with nonzero off-diagonal elements for ¢ # 0. Still, however, even for ¢ #0,
the matrix ¢ can also be made diagonal by imposing on its components

explicit dependence on the incident beam polarization [2]:
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t0 !
z=[“ }= ik LA 6.7)
= 10 ¢ 0 L9+,

h=t,—s,@t,=tn e, -2, -1n™),
1, =t,—s,@n-1)e, 20 +s@tn-1), (6.8)

2 =EP[EP, (6.9)

where 77=c{” /c” and the TM (¢,) and TE (¢, ) transmission coefficients are

evaluated in the main incidence plane. They depend, besides the Fresnel
coefficients 7, and 7, on two parameters: a polarization parameter ¥, b=i,

being the quotient between transverse components of the incident beam, and
on a scaling parameter 77 being the quotient between the transmission c'”

and reflection ¢! cosines.

®) is evident from its definition

The role of the polarization parameter y
(6.9); e.g. it resolves into the helicity of the beam for y* =+i and indicates
the diagonal linear polarization for y” =+1. The parameter 7 relates the

coefficient #, for the p field components £ with the coefficient 7, for the

field components £ parallel to the planar structure:
E’;{r) =t, E)‘;" , ty=t0 (6.10)

and, in fact, precisely yields the relations between these field components
which determine the beam transmission and reflection [2].
The expressions for 7, and ¢, are exact. Nevertheless, in the right-hand-

sides of (6.8), they contain consecutively the zero-order, first-order and
second-order terms with respect to the azimuthal angle ¢ (or its sine s,).

Ap-proximations to these orders at the beam axis can be applied to describe
the total beam in a spatial domain in terms of zero-order, first-order and
second-order changes of parameters describing a spatial structure of the beam
field [4]. The polarization parameter ' affects # and 7, only through the

first-order terms in such a manner that these terms become substantial for
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highly elliptic beams in the opposite polarization field components, that is in
the TM transmitted field component for the TE incident field component, and
vice versa [4]. Moreover, these terms are asymmetric with respect to the main
plane-of-incidence and as such they induce finite first-order effects of trans-
verse deformations - first-order complex shifts - of the transmitted (and
reflec-ted) beam. That happens even for the incident beam being symmetric
with respect to the main plane-of-incidence [2], [4].

In the following, 7, and 7, will be understood as polarization-dependent

when s, #0 and y" #0,%00. Otherwise 7, =7, and ¢, =0 for the pure TM
and #, =0 for the pure TE (s)
polarization ((¥")™' =#e). Note also that, in order to determine the field

amplitudes £'” and E”, besides " the second parameter x*’ = EVE"

(p) polarization (') =te) or t, =t

5

coined further as the amplitude parameter, should also be introduced. Both
parameters ¥” and x'” depend, in general, on the wave vector components
k" and k.

Similar considerations hold also for the beam reflection with pertinent
replacements of the transmission matrices 7 _, ¢ by the reflection matrices

Ty L and the transmission coefficients Lo s & and ¢, by the reflection

coefficients S and r, , respectively:

'Em' EW K 0
Efr) =£F|:E?i)}’ Q.&'_|:0 r » (6.11)
Bl [E -
E_f-r) =L E-:.i} 2 LM 0 r, : (6. 12)

The transmitted and reflected wave amplitudes are not independent. They are
interrelated by the field continuity relations at interfaces of the planar
structure. The transmission and reflection coefficients of the overall system
can be built in a standard manner from coefficients specific to separate
interfaces of medium discontinuities and the matrices of propagation in the
homogeneous dielectric slabs. As the propagation matrices are trivial and
obviously known, only the coefficients at interfaces need to be specified.
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Then, the action of the whole optical system can be determined by
modification of these coefficients and this can be carried out, e.g., by a
straightforward composition law [5].

For a single interface, the field continuity relations yield:

I-r, =11, 1+r,=t,,

l=n=1tn, l+r =t (6.13)

where 7 and r, are the actual TM and TE reflection coefficients of the

spectral component of the beam, specified by ' and ¢ [2]:

= s (i) ()31 2
n=ratr X =r,=s,(r,+1)e, ()" —s,(r, +1,),

=3 AN - )00 _ 2
ro=r X0 +r, =r+s,(r,+r)e X’ —s5,(r,+7,). (6.14)

The signs of the Fresnel coefficients are imposed such that », =1=r, in the

case of critical incidence of total internal reflection (TIR), that is for
" <9 =m/2. The expressions (6.14) of the coefficients  and r,_for

reflection are of similar characteristics as those (6.8) for transmission. They
can be also directly derived by the rotation (6.5) of the matrices (6.11)-(6.12)

for beam reflection. That yields r=r (¥9”,¢)=R"'r, 5‘”_' evaluated in the

main plane-of incidence Y =0. In this way the continuity relations (6.13)
make the analysis for beam reflection consistent with the analysis for beam
transmission, as that certainly should be expected.

To summarise this section, the action of the optical system on the incident

beam is generally described in the spectral domain by the diagonal
transmission t and reflection r matrix transformations. Both matrices are

polarization-dependent, that is they are dependent not only on the p and s
Fresnel coefficients #,, ¢,, r,, r, but also on the polarization parameter y'’

p? 's»
of the incident (input) beam. The system action is described by changes in the
beam polarization parameters " and by changes in the beam amplitude
parameters x'”’. Both these parameters are scalars. Therefore, it seems that
the action of the optical system can be described in pure algebraic scalar
manner.
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6.3 Amplitude-polarization spectral decomposition

~(b) . : .
The transverse field vector £ = contains the information not only on the

polarization but also on the amplitude of each spectral component of the
beam. The beam polarization depends, by definition, only on the polarization
parameter y'”. Therefore, we have to decompose the transverse field vector

~(b

® . . : B — Fb) (1. (b) <
E  into its amplitude E™' =E™(k,”,k, ), which is expressed by the

product K"’}=x“")(kib’,ky) of these field components and its (unnormalised)
®)

X

Jones polarization base vector =k ,k,) . The Jones vectors depend

only on the quotienty® =y (k" ,k,) between the transverse field

X

components [2]:

E” =E®e®, (6.15)

EO=(EPED) =k, G185

E0/E0)"] [(po)"
g(b)_[(g{b)/g}(b))_uz = (é(b)%iuz . (6.17)

The function £ (k”,k,) evidently plays the role of the complex amplitude

of each beam spectral component. Its phase is an arithmetic mean of phases
of the TM and TE transverse field components:

InE® =%[1n E® +ln§_f,“]=%ln x®, (6.18)

and its magnitude |E”’)l, multiplied by a norm N” of the Jones vector,

yields the intensity 7 of the spectral component E of the beam:

I® =J§ib}r +|EJ(,M|2 =|§(fs)|2(N(b))2’

(N“’))Z " (g(b))*g(b} =llm‘+|ﬂf(b]‘-] , (6.19)

"

where the dagger stands for the complex conjugate transpose. The

extraction of the norm N® from the beam amplitude E£® is not accidental
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i e . . ; b .
and results in invariance of the polarisation vectors e'” under the action of

the six-parameter restricted Lorentz group transformations [3]. Note that this
feature has been recently assigned to a transfer matrix of systems of first-
order optics [5-8].

The factorisation (6.15)-(6.17) of the transverse field vector implies that
the transmission and reflection matrices of the optical system should also be
factorised:

E"=tE", (6.20)

=rE ", (6.21)

where r=r,r , into the complex, in general, scalar transmission coefficients

t, and r, of beam amplitudes:

EP=i, EN={lEO, (6.22)
where 1, =11,

E W =y B0 = plRED, (6.23)

where 1, =r 1,

and the diagonal transmission ¢ . and reflection r  matrices of beam

polarization:
+1/2
0 (@) t, 0 }
e’ =t e 1 = (6.24)
-2 =pS =P -2 |
{ 0 1,
where ¢, =1/t ,
+1/2
(r) _ 0} ry 0
e e P = e | 6.25
- =P =P { 0 rz IJQ] ( )

where r, = rﬂ/rl :

Note that, due to the appropriate definitions of the transmission and
reflection coefficients, the matrices ¢ 5 and r , are diagonal and, due to the

appropriate definitions of the beam amplitudes, they are also unimodular [2].
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The amplitude coefficients ¢, and r, are expressed by a product of the TM
and TE transmission coefficients 7, s 1)s and r, . At the same time the

polarization coefficients 7, and 7, are expressed by the ratio of the
coefficients 7., r,, ¢,, and r, . Thus the polarisation and the amplitudes of

beams are described by simple scalar transformations of the beam
polarization ¥’ and amplitude £ parameters:

() (1) (r)

Z :'tl;{ * Z :rzx‘:”’

Sl 5 gt (6.26)

and the coupling between the TM and TE field components yields the
dependence of the scalar transformation coefficients L Bos b and r,. on the
polarization parameter y'” of the incident beam.

In Ref. [2] it has been explicitly shown how to translate the scalar
transformations (6.26) in the spectral domain into the polarization and shape
changes of the total beam in the spatial domain. It appears that different
changes are induced by different coefficients dependent on ¢, and ¢, . While

the polarization coefficients 7, and r, lead to the beam polarization

modifications, the amplitude coefficients ¢, and r. entail changes in the
beam complex amplitude, in the position of the beam waist and in the
direction of the beam axis. The analysis has pertained so far to the case of
only one incident beam. To account for incidence of two beams, in
independent (in general) polarization states, a second type of Jones vector is
necessary to introduce. The whole construction of the field representation
relies on the symmetry of Maxwell’s equations with respect to time reversal,
what leads to Stokes relations at the multilayer and, in turn, to its scattering
matrix. It is assumed, in the following, that the optical system under
consideration is sourceless, lossless and reciprocal.

6.4 Spinor representation of beam polarization

The polarization space for the beam fields is spanned by two independent
solutions of Maxwell’s equations, known as undotted and dotted spinors [3],
or in the optical terminology, as mutually orthogonal Jones vectors. Suppose
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that the spinors are to be obtained from the spinors by replacement of the
electric and magnetic spectral field components with their counterparts also
being solutions of complex conjugates of Maxwell’s equations:

= /Y EY (6.27)

|t
[

2

where Y is a (a real) characteristic admittance of a lossless medium and the
, implies also the reversal of

(150

complex conjugate, indicated by the overbar
the beam propagation direction. The replacement (6.27) is equivalent to the
exchange of the (undotted by dotted) transverse field components, beam
amplitudes and Jones’ polarization spinors:

- E{b} ~(b) E(m
E” =[ EL,J = E ={+ :;‘M} (6.28)
; -F

F® - (K‘”’] )'f’z _— E® = (E“” )t;: , (6.29)

5 \H/2 iyl
e = [g:hj ;_MJ 3 L [(é”,: }l;‘:} ; (6.30)

in the spectral representation of the new (dotted) field. Note that the time-
reversal invariance of Maxwell’s equations leads also to another replacement

[1]:

3

[t
[

(6.31)

3ot
[

—

-

that yields just the complex conjugate of the dotted and undotted field
quantities defined in Eqgs. (6.28)-(6.30), together with the additional propaga-
tion direction reversal. In a general case of a lossy structure a conjugate
medium is specified by 7 and Y in both replacements above.

The spectral amplitudes E® and E® are of equal magnitudes and

(b) -(b)

opposite phases. The polarization spinors ¢ and ¢ are mutually ortho-

gonal,

(ém)’gun =0, (6.322)
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possess the same norm N,

(") e = vy (6.32b)

and are mutually interrelated by a metric spinor ¢ (¢, =0=c,, and
e, =—1=¢, ) [3]:

«(b) =1 —(b) b) —(b)
e =Cc € , gr=gé (6.32¢)

ey
|

For any dotted beam field the amplitude-polarization decomposition (6.15)
can be also directly applied. In general, the beam amplitude and the beam
polarization are expressed in the input (b=i) and output (b=t or b=r) planes by

a superposition of independent spinor fields of two types ¢” and ¢, with

different amplitudes £ and E, respectively. For some preferred, say
forward, propagation direction (along the z -axis) the beam field is expressed
by:

EV(x,y)= /Y)Y @n)? [[E) k" k) dk Pk,

E‘f’(ki’”,k )=EP kD, k,)e" exp[+i(k"x +k p)]

x ¥y

(6.33)
+ ED (KD, k)¢ exp[+i(k®x +k )],

where, in general, the spinors ¢'” and ¢'”’ may also depend on £ and , .
In the opposite, backward direction, the beam field £ is expressed by the
complex conjugate of E .

The normalisation of the beam amplitudes E”(uew) = E” iy (L Y?)*"?,

the polarization parameters ¥ (ew) = ¥ (o1 / cf.“” , " =cos?”, and the
amplitude parameters &'” uew) = K010y (L Y”), is applied in Egs. (6.33) to
make the time-averaged power flow density 1Re[ExH]. in the direction

normal to the (planar) optical structure, independent of the characteristic
medium admittances Y =(£”/u”)"* and impedances Z* =1/Y* of
both media [1]. Note that, in our notation, ¥ =¥, for b=i,r and Y’ =, for

b=t. The components E_ and E}, of the Jones vectors (6.28) are normalised
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in (6.33) by the wave admittances ¥ =Y®/c” and Y” =Y®c?,

= ()12
Ey(a:’a’)(Jle ) .

(new) =

respectively. Thus E,,, =E, ) (3Y")" and E,

It is already taken into account in Egs. (6.33) that the vectors E"” and E
are complex conjugate of each other. For the undotted part of the beam field,
the complex conjugation E(f’) =E" replaces the forward waves in E'”, that
is that part of E” with the spectral amplitudes £ propagating in the z -
direction, by the backward waves in E®, that is by that part of E” with the
spectral amplitudes E® propagating in the reverse z -direction. The dotted

parts of the beam field, with the spectral amplitudes £® and £, propagate
in reverse directions with respect to the undotted parts.

In an inhomogeneous medium both types (undotted and dotted) of the field
are coupled by the wave impedance of the medium [9]. On the other hand, in
a homogeneous isotropic medium these parts of the field are decoupled and
the polarization and spatial structure of the propagating beam are mutually
independent. The beam propagation does not influence the beam polarization
and the state of beam polarization does not change the beam spatial structure
during the propagation. Therefore only one type of the polarization spinors is
necessary to describe the polarization of the beam propagating inside the
layers of such media.

On the other hand, the beam transmission and refraction at dielectric
interfaces obviously are polarization-dependent, because the transmission and
reflection coefficients are such. However, this dependence has been already
accounted for by the definitions of the different reference frames (6.15)-
(6.17) and (6.28)-(6.30) of the beam polarization, assigned to the incident,
trans-mitted and reflected beams by the scalar equations (6.26) for the beam
polar-ization and amplitude parameters. Therefore, for the multilayered
structure composed of isotropic and homogeneous dielectric layers, the
incidence with one type of (undotted or dotted) polarization vectors does not
excite the beams with the second type of polarization. For this reason, in the
following, only the undotted spinors (6.17), together with the associated with
them amplitudes (6.16) and their transformations (6.20)-(6.25), will be used.
Still, however, the beam reference polarization frames can be built only by
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use of both types of these spinors. That will be shown in the example given in
Section 7.

6.5 Polarization matrices and Stokes vectors

Some reference to the polarization matrices, Stokes vectors, as well as to
their transformations, should also be made. Their definitions are well known
[10-12]. However, for the amplitude-polarization field decomposition (6.15)-
(6.26) they attain a form specific only for the approach presented in this book.

.. . A + .
We refer to Hermitian matrices C” =¢”e”" =" , defined by their
= - - = y

. b . (b . 2 5
eigenvectors ¢” and ¢ and eigenvalues N and 0, respectively:

C“’? ~ Cif) Cgf] ~ (Z{b;f(m)nfz (Z(b)/f(b))ﬂ;z
= C(_b) C“’.] (Z(b;/f(m)-uz (Z(b]f(b})—lf'z

gmg(m _ Nngcm’ g“”é"” =0, (6.34)

as to the spectral polarization matrices, rather than to the spectral coherence
matrices [10-11], because only completely polarized beams are considered in
(-‘Jllz

this book. These matrices are normalised here by |E , in order to make
y

them dependent only on the polarization parameters y'”’.

As usual, gh’ can be written as linear combinations of the Pauli and
identity matrices [3]:

4

b
c”=2xP0o,,
j=1
- o1 = _[o =i
:I_-l 0 ? :2__5 0 ]
gzl B o (639)
=710 -1)’ =% g 1] '

where g, =—¢ for direct correspondence with notions of special relativity

[3], a convention different from the usual available in optical textbooks [10-
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11] is given. Coefficients ):2.”’ of these expansions yield the Stokes four-

(b)
component real vectors £ for coherent beams:

yx ? w2

2 =3 [r0 420, iz® 20, 20 20, 30+ 70, (6.36)

The first two components of £’ depend on the phase (¥’ /7" )""* and the
last two components depend on the amplitude (" 7'”)""* of the
polarization parameter y'”’. The determinant of g“” is equal to the Stokes

interval AX"” squared:
detC® =T 4 T L3O’ _ 5P’ AT’ = (6.37)

and both of them equal zero for completely polarized beams.

Any complex two-by-two matrix A4, representing action of the non-image-
forming optical element [12] on the beam polarization, transforms the
polarization spinors and polarization matrices according to the relations:

alh} A e(*”l

CR= gt 4, (6.38)

where the matrix 4 induces also transformations of the Stokes vectors 3

corresponding to the polarization matrices C”’. In the general case of

polarized, partially polarized or unpolarized beams, if 4 is unimodular, then
A leaves a norm of the Stokes interval AC'" invariant, per analogy to
Lorentz transformations of a Minkowskian space-time four-vector

[x,y, z,cr]r.
The transformations 4 constitute the group SL(2,C) of the complex

unimodular two-by-two transformations and as such, they form a two-
dimensional representation (by a two-to-one homomorphism) of the restricted
Lorentz group [3], which is usually denoted by SO(3,1). It is well known
[12] that the action of the non-image-forming polarization devices on optical
field is represented by elements of this Lorentz group. Therefore the
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transformations 4 represent also the action of multilayers on the polarization

of optical beams.

6.6 Scattering and transfer matrices

With the definitions of the polarization reference frames (6.17) the
derivation of the scattering matrix of the multilayered structure is
straightforward. For the 2D case the time reversibility [1] yields the Stokes
relations which specify the complex reflection and transmission TM/TE
coefficients for incidence from the substrate. These coefficients are indicated
here by primes, contrary to the “unprimed” coefficients for the incidence from
the superstrate (cf. Fig. 6.2). For the incidence from the superstrate (substrate)
the beam fields are represented by Ef’) (gf“) in the field representation
(6.33).

For the 2D case the most general Stokes relations can be derived from the
time-reversal and power conservation requirements applied to the
multilayered structure [1]. Details of this issue are well understood. They can
be found e.g. in Ref. [14] and in references therein. Here, let us only state that
for the 2D case, the Stokes and power conservation relations read in the
region outside the multilayer:

ra'=_'_‘ata/r_a’ tal=(l_raa)/Fa’
t,'=t,, |7, [P+t =1, (6.39)

a=|, 1, and the “primed’ coefficients are completely determined by the
“unprimed” coefficients. Note that in the four equations (6.39) only three of
them are independent.

Next, let us return to the 3D case of beam scattering. In the language of the
amplitude-polarization field decomposition, the above relations yield
analogous conditions for the beam amplitude and polarization coefficients:

r.=r.t /L., r,=r,t,[t,,

t=t, t=t.. (6.40)

K K x X
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Figure 6.2. Schematic diagram with notation for reflection, transmis-

sion, scattering and transfer matrices. Incidence need not be normal.

Moreover, as a result of the diagonal form of the matrices for reflection
(6.7) and transmission (6.12), and thanks to the normalisation of the field
amplitudes applied in (6.33), the 3D version of the Stokes and power
conservation relations (6.39) read:

'=(1-rP)i’,

e

11
1=

t

I~
Il

I~

==

(6.41)

e~
1"~
==
=1

+

11"
T

3 3

where | stands for the two-by-two identity matrix. In spite of their two-by-

two matrix form, the Stokes relations (6.41) for 3D case are identical to those
(6.39) of the 2D case. The third equation in (6.41) directly displays the
reciprocity feature of the optical system under consideration. Thanks to the
diagonal form of all the reflection and transmission matrices, the last equation
in (6.41) (for power conservation) can be derived from the first three
equations, similarly to the 2D case. The ‘unprimed’ and ‘primed’ scattering
matrices are equal for transmission and their matrix elements are of equal
magnitudes for reflection. For a symmetric structure r'=r, thatis r g =-r t
and a phase of the field for transmission is shifted by +7/2 from a phase for

reflection.
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The transmission (6.7) and reflection (6.12) matrices are diagonal, with
their elements (6.8) and (6.14) known and the Stokes relations (6.41)
explicitly given. Therefore the scattering matrix for the 3D problem is also
completely determined. Denote the field vectors of the beam field incident
from the superstrate by EV=E"¢!", that one incident from the substrate by

EV=EY" and the outgoing beam fields by E”=E”¢” and EV=EY¢?,

respectlvely (cf. Fig. 6.2). The relation between the outgoing (output) beams
and the incident (input) beams is then given by the four-by-four scattering

matrix i:
o

~(0) ~(i)
E’|_s|E
~l(o) = | =i} |?
E'] °|E

where the lower bar indicates matrices and vectors in four-dimensional vector
space. The matrix § is symmetric, i.e. f'=¢ and its two-by-two matrix

elements r, ¢, r' and ¢ are given by Egs. (6.7), (6.8), (6.12), (6.14) and

e~ |~

} i (6.42)

= n=~

(6.41). The scattering matrix (6.42) for the 3D problem follows directly the
relations known from the 2D problems. For the isotropic lossless structure,
the scattering matrix satisfies the reciprocity and time reversibility relations:

S=S", §=5. (6.43)

Therefore the scattering matrix is unitary; § § =1, according to the power

conservation requirements. Moreover, in the partial transmission case, i.e.
when r=7 and r=¢, the matrix S is unimodular; detS=-1, and in

addition, the fundamental invariance of multilayers [5]:

,,
"'-'{l} "-lul" ey

EO B B Y, (6.44)

or equivalently £T23£=g3, also holds in this case. A definition of the
four-by-four transfer matrix 7 is given below. The four-by-four matrix o is
obtained from the two-by-two matrix g, (6.35) by replacing in the matrix

components the unit scalars 1 by the two-by-two unit matrices *1.
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~(i) ~(i) =lo)

Let us define the "upper" : =[E; ,Em] and "lower" E =[E, ,E, ]
field-vectors above and below the multilayer, respectively, (cf. Fig. 6.2) in a
., S 5
E, =E;0.E;;j=1,2. In

j

four-dimensional vector space with a field norm

this space, the scattering matrix S and its inverse ;S_' are equivalent to the
four-by-four matrices 7 and T' of the 3D beam transfer through the

multilayer. Action of these matrices reads, for incidence from the top of the
structure:

= (o) =(i) =-1 - -1

t —rt
ElE] o H] e
E, CLE - =L i

and for incidence from the bottom of the structure:

~lo) ~(i)
%m =L %203 I'=
E, | |E, I

For the multilayer taken in reverse order the transfer matrix reads 7'= Z_'

I~ 1™
(R
I~

Both matrices 7 and T' are unimodular; det7 =1=det7", with the property

£+g3£ =g,. This means that the norm E .| and the field power density are

J

preserved by action of T on the field-vector E, :

~l(o)

~lo) ~(i)
|EY P -IE; P=—(E P-1E" ). (6.46)

For the symmetric case T'=T and the off-diagonal elements of T and 7" are

s

purely imaginary, that is 7 ¢ =—£{"’. The matrices 7 and T' are given in

Egs. (6.45) in the most general form, valid for multilayers in which total
internal reflection (TIR) or frustrated total internal reflection (FTIR) may
occur.

The scattering matrices S (6.42) and the transfer matrices 7 (6.45) are

semi-diagonal, i.e. their matrix elements are diagonal. Therefore, all features
of the geometrical interpretation of the plane wave or 2D beam propagation in
multilayers, that have been described for example in Refs. [5-8] and [12-13],
can be directly translated into the 3D beam case. Only for this reason, the
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formalism presented should be regarded as a convenient tool for treatment of
the propagation and scattering problems of 3D beams of arbitrary polarization
at multilayered structures composed, in general, of linear [2], [4] as well as
nonlinear [4], [15] interfaces and isotropic layers.

In addition, however, the transmission . (6.24) and reflection r, (6.25)

polarization matrices, from which the scattering and transfer matrices have
been built, are also unimodular; det;‘p =1= detgp. Thus, the transformations

¢t and r,oare also examples of the unimodular two-by-two complex matrix

transformations 4 (6.36) of the beam polarization spinors g“’) (6.17) and

polarization matrices g“’] (6.38). These transformations also correspond to

the six-parameter restricted Lorentz transformations of the Stokes vectors
> and provide one more explicit connection with the relativistic-like

treatment of multilayer optics elements.

6.7 Anti-reflection multilayer

Still, the amplitude-polarization decomposition (6.15)-(6.17) and the
definitions of the polarization frames (6.32)-(6.33) have not been explicitly
applied yet. To demonstrate the strength of the approach let us consider, as an
example, the anti-reflection multilayer.

In this case [r|=[r,|=0 and |7|=|t,|=1. The transmission coefficients

(6.8) are defined by:
= exp(i';brﬂ )s t, =exp(ig, ), (6.47)

and polarization '’ and amplitude x'"" parameters for transmitted beam are
related to those of the incident beam »'” and x'”, respectively, by the
polarization 7, and amplitude 7, coefficients for transmission (6.26):

Itr] — tIZ(:'] ; tl = CXP(ZIIQ,_ ), (6.48)

KO =1 k9, t. =exp(2ig,, ), (6.49)

where
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¢-= %(¢i‘|l 0.,
6. =39 +9.) (6.50)

are phase increments attributed to the transmitted beam polarization and
complex amplitude, respectively.

Using of the unitary (up to a norm) transformation:

L@ @Oy
g(b) =(N(b)) 2|:(Z{-’>) )_1;2 _(Z{b})ﬂ,fz »

(N"”)lg(b’+ =g(br” (6.51)

the old polarization reference frame (e,,e,) is replaced by the new

polarization reference frames (e, &), attributed separately to the incident
(b=1) and transmitted (b=t) beams. That yields the base spinors,

e® S U®® = 1 ’
= 0
¢ -UuPe? = —?_ ' (6.52)
polarization matrices -
gm _)g(a)gb}g(brf =[(1} g] (6.53)

and Stokes vectors in a form common, this time, for both beams:
2 - [0,0,%.%4], (6.54)

where new notation in new reference frames has been replaced by arrows.

Now, the transmission matrix resolves into a product tr]’{ 21 of the

amplitude coefficient and the identity matrix, that is:

t->U U =1exp(ig,,), (6.55)
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and constitutes anti-diagonal and diagonal elements of the scattering and
transfer matrices, respectively:

0 lexp(ig,.)
27 |1expig) 0 } (6:56)
_l exp(i@,,) 0
T— o lexp(=ig, )] 3 (6.57)

determined by only one parameter ¢, , that is by changes of the complex

amplitude of the transmitted beam. Therefore, the anti-reflection multilayer is
equivalent to the free-propagation with the phase increment equal to ¢,, .

In fact, the matrices (6.55)-(6.57) are dependent on both the scalar
coefficients (6.48)-(6.49) for the beam transmission: the polarization
coefficient 7, and the amplitude coefficient 7, . In the amplitude-polarization

field decomposition (6.15), the coefficient 7, determines the beam Jones

(1)

vector ¢ together with the polarization reference frame (e¢"’,é") (6.50)

and thus the transmitted beam polarization. On the other hand, the coefficient
t_ yields the beam field spectral amplitude E” (6.22), and thus the

K

transmitted beam field E = =1 "E: “ (6.20) in this frame, that is ¢, describes

the transmitted beam amplitude, phase and shape changes. In this way, the
vector problem of scattering of 3D beams with arbitrary polarization is
reduced to two scalar problems: the first for the beam polarization and the
second one for the beam complex amplitude or the beam shape.

The diagonal form of the transfer matrix (6.57) clearly demonstrates how
the field amplitude-polarization decomposition may simplify the 3D problem
of beam scattering. Further, numerical analysis of the problem can be
accomplished on the way already presented for the Gaussian incidence at a
single dielectric interface: for the beam polarization - in Ref. [2] and for the
beam amplitude, phase and shape - in Ref. [4].

6.8 Comments and conclusions

Explicit expressions for the transmission, reflection, scattering and transfer
matrices are given for 3D beams of arbitrary polarization, incident upon the
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dielectric multilayered structure. Some of these expressions concerning a
single interface have been presented by the author in Ref. [2]. They are
collected together here for the sake of clarity and attempts to make the whole
text more transparent to the reader. The very idea to generalise the scattering
matrix for 2D beams into the 3D beam case should not be new. However, as
far as it is known to the author, the explicit expressions for this matrix
elements presented here are new, at least their diagonal, attractive for further
analysis, form. This diagonal form of the matrices derived results from the
polarization dependence imposed on the spectral transmission and reflection
coefficients of beams. That, in turn, leads to the so direct correspondence
between 2D and 3D problems of the beam scattering at multilayers. In short,
if the Fresnel transmission 7,, 7. and reflection r,, r, coefficients for the

multilayered structure in the 2D problem are known, then the solution to the
3D problem can readily be explicitly given.

The expressions presented are valid in the general case, including TIR and
FTIR, that is now the most interesting cases of beam scattering with presence
of evanescent waves. The approach bases on the replacement of the TM and
TE reference frames by the beam polarization frames, separately specified for
each beam under consideration, as well as on the amplitude-polarization
decomposition of the 3D beam fields. Such a formulation of the beam
scattering problem is, to the best of the author’s knowledge, also new.

The approach leads, in essence, to simpler, although still rigorous,
scattering problem of seeking for the scalar field amplitudes in the spectral
decomposition of the beam, with the polarization reference frames
determined also by scalar relations. The solution of the 3D beam scattering
problem in the spatial domain can be readily obtained by next steps of this
analysis and that has been presented and numerically verified in Ref. [4].
Then the difference between the 2D and 3D cases becomes vivid, the most in
the presence of transverse changes of the beam polarization, amplitude and
spatial structure [2], as it was shown for a single interface some time ago
[16].

Transverse effects of beam deformations have been also discussed in the
case of anisotropic uniaxial interfaces, e.g., in Refs. [17-19]. A method
applied in these analyses followed closely the aberrationless approach devised



Beams at multilayers - formulation of the problem 215

previously for 3D beams at an isotropic interface [16]. In a recent paper [19]
some comments have been also given pertaining to the rather old issue (cf.
Ref. [16]) of non-existence/existence of transverse deformations of beams
which possess linear TM or TE polarization. To make this issue clear let us
recall that, even in the case of an isotropic planar scattering structure, linear
TM or TE polarization of the incident beam and symmetry of this beam field
intensity distribution with respect to the main plane-of-incidence, the beam-
structure configuration generally remains asymmetric with respect to this
incidence plane. That is due to the specified direction of the incident beam-
field polarization [16].

As a result of this asymmetry, the transverse deformations of the reflected
and/or transmitted beam generally exist, although only in the opposite
orthogonal polarization beam component, that is in the TE reflected or
transmitted field component for the incident TM polarization or vice versa
[16]. They contribute to the overall beam complex amplitude and polarization
[2]. Note that, even for the pure TM or TE linear polarization of the 3D
incident beam at 2D isotropic planar structures, the other, orthogonal beam
field components still are, in general, excited during beam transmission and
beam reflection [16].

Certainly, the TM or TE transmitted/reflected field components also exist
and may be stronger for the elliptic polarization (including a circular one) of
the incident beam, as in this case the incident beam field consists of both the
linear TM and TE polarization components of finite magnitudes. The
problem becomes even more involved for beams of complex spatial structure,
like, for example, the Bessel-Gauss beams of zero order [20] or higher order
[21]. In general, the transverse effects - in a form of beam deformations,
shifts or orthogonal field component excitations - are always present for 3D
beam scattering at isotropic structures [2], [4], [16].

The characteristic feature of the transverse electromagnetic waves or 2D
beams propagating in an isotropic layered medium is the possible split of
their two, TM and TE, independent normal modes. That is not so for the case
of 3D beams. Therefore, the formalism presented in this chapter may appear
suitable in solving problems concerning polarization of 3D beams and wave
packets at isotropic and anisotropic, periodic and aperiodic, linear and
nonlinear multilayers, as encountered, for example, in ellipsometry [22],
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near-field microscopy [23], or in microwave [24] and optical [25] tunnelling.
A similar treatment can be also applied to scattering problems in acoustics,
mechanics and quantum electronics [26-28]. In general, the method seems to
be useful in any analysis of 3D beams and wave packets of arbitrary
polarization and complex shape, under their interaction with multilayers.

Main content of this chapter has been published in Journal of Technical Physics
45, 121-139 (2004).
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CHAPTER 7

Spatial distribution versus polarization of
beam fields at a planar isotropic interface

Three-dimensional monochromatic optical beams of uniform
polarization interacting with a planar boundary between two
homogeneous, isotropic and lossless media are analyzed.
Generalized Fresnel transmission and reflection coefficients for
beam spectra are given. Interrelations induced by cross-
polarization coupling between the beam profile and phase and
beam polarization, or between spin and orbital angular momen-
tum of beams are derived. Beam transmission for normal inci-
dence is discussed in detail. It is shown that elegant Hermite-
Gaussian beams of linear polarization and Laguerre-Gaussian
beams of circular polarization, all projected on the interface, are
normal modes at this interface. Creation and annihilation of these
modes at the interface are shown with total angular momentum
being conserved on a single photon level. In addition, basic
relations concerning effects of nonspecular refraction and reflec-
tion are collected.

7.1 Introduction

There are two basic families of three-dimensional (3D) solutions of the
paraxial wave equation - Hermite-Gaussian (HG) beams of rectangular sym-
metry and Laguerre-Gaussian (LG) beams of cylindrical symmetry. Both of
them form two separate, complete, orthogonal, infinite-dimensional bases for
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any paraxial beam field with its transverse distribution represented by a
square integrated function. In particular, any HG beam can be expressed by a
linear combination of LG beams and vice versa [1]. There are also two basic
two-dimensional (2D) bases for beam polarization - linear, with transverse
magnetic (TM) and transverse electric (TE) states, and circular, with right-
handed (CR) and left-handed (CL) states. Any linear state of beam polariza-
tion can be represented by a linear combination of circular states and vice
versa [2].

Transformations of beam spatial structure and beam polarization are
usually implemented optically by astigmatic mode converters and
birefringent plates, respectively [3]. Equivalence of their action is similar to
the same extent as analogies between orbital angular momentum (OAM),
associated with helical phase fronts of beams, and spin angular momentum
(SAM), associated with circular polarization of beams [4]. This chapter deals
with such transformations produced by interaction of 3D beams with planar
discontinuity (interface) between two optically transparent semi-infinite
media, and with interrelations between OAM and SAM that appear as a
result of this process.

Spatial profile of the beam intensity and phase of a 3D paraxial beam is
independent of beam polarization during propagation in homogeneous,
isotropic and lossless medium. However, when the beam is incident on a
planar discontinuity of medium parameters, its spatial structure and
polarization become interrelated. These interrelations result from the action
of cross-polarization coupling (XPC) that occurs for incidence of beams of
finite cross-sections [5]. They cannot be explained only with the help of the
standard Fresnel transmission and reflection coefficients, well known for 2D
plane wave incidence. Their generalization to the 3D case appears necessary
to deal properly with the beam-interface interactions.

Behavior of beams at medium planar interfaces has been under intense
studies for many decades [2,6], recently also in the context of several aspects
of singular optics [7]. Spatial shifts and deformations of a 3D beam spatial
structure have attracted attention as well [8-10]. This issue, however,
remains outside the scope of this contribution. The analysis, although being
valid for general incidence of arbitrary beams, will be concentrated mainly
on the case of normal incidence of the symmetric HG and LG beams. Such a
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case can be treated exactly, without the need of invoking the approximate
notions of beam shifts and deformations.

The beams will be considered narrow, with a beam radius of the order of
one wavelength at a beam waist. Beam polarization and shape coupling will
be defined in a spectral or momentum domain, for arbitrary distribution of
beam field magnitude, phase and polarization. In a spatial or direct domain,
specific cases of the higher-order HG beams of linear TM/TE uniform polar-
ization and LG beams of circular CR/CL uniform polarization will be
analyzed in detail. These sets of HG and LG beams will be considered in
their biorthogonal versions of complex arguments, known as complex—
valued or “elegant” (EHG) and (ELG) beams, respectively [11-13].
Moreover, their commonly known definitions will be further modified by
their projection at the interface plane. It appears that such an elegant form of
the projected HG and LG transmitted and reflected beam modes is naturally
enforced by the interface being illuminated by an arbitrary incident 3D beam.
The same process specifies uniquely the coupling between SAM and OAM
of circularly polarized ELG beams. These phenomena will be traced here
step by step by exact derivation of analytical expressions for the beam field
spectral com-ponents.

Characteristic features of OAM of LG beams are well known [14]. Let
me only mention that, due to the beam symmetry, an average of their
transverse momentum is zero and their (mean) OAM, averaged over the total
beam field, is intrinsic with respect to their beam axes [15]. On the other
hand, the projected ELG beams introduced in this chapter are defined with
respect to a normal to the interface, not with respect to their beam axes.
Therefore OAM of the projected ELG beams is extrinsic for oblique
incidence of beams and intrinsic for their normal incidence. Mainly the latter,
intrinsic case of beam incidence is discussed in this chapter. Note however
that, contrary to the averaged OAM of LG beams, densities of their OAM
depend on position of the axis about which they are measured. This means
that OAM density of a LG beam reveals a quasi-intrinsic character of
averaged OAM of this beam [16] and that the "intrinsic" and "extrinsic"
cases of the beam incidence are interrelated.

Both the spin and orbital parts of beam total angular momentum (TAM)
attract considerable attention recently due to their possible applications as
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carriers of information on classical and quantum levels [17-20]. The spin or
polarization part can be described in the 2D basis of circular polarization and
provides a physical realization of a qubit. The orbital part, usually associated
with beam helical wavefronts, has an infinite number of eigenstates and thus
may serve as a suitable mean for encoding information in qunits in an N-
dimensional space, with N restricted only by a finite aperture of an optical
system. Both HG and LG beams may be used in these processes as they are
interrelated uniquely by HG-LG mode converters [1,3].

Optical coding of information needs sorting beam modes or single
photons on the basis on SAM, OAM and/or TAM. It can be accomplished by
interferometric methods capable of measuring angular momentum by
rotating devices build from prisms, cylindrical lenses, half-wave plates or
other types of phase shifters [21]. It would be interesting to see also
application of layered optical structures, composed only of several layers and
interfaces, in these processes. This contribution may be regarded as a
preliminary step towards such applications. A solution to the problem at
hand may appear also useful in analyzing phenomena of transfer of the
angular and linear momentum of light beams to a dielectric material [22,23].
Nevertheless, discussion on other, more direct applications, for example
within the range of optical visualization or near-field optics, is out of the
scope of this work.

In Section 7.2 theoretical analysis of 3D beams in a spectral domain leads
to generalization of the standard, p and s, Fresnel coefficients. That sum-
marizes the results derived by the author in the past in another context
[5,9,24,25], still given for arbitrary beam profile, phase and polarization. In
Section 7.3 decomposition of beam transmission and reflection into parts
characteristic to normal and critical incidence of total internal reflection
(TIR) will be presented, together with distinct properties of their
transmission and reflection partial coefficients. Beam field redistribution
between opposite orthogonal polarization TM and TE or CR and CL
components will be exactly derived in a spectral domain.

Transmission of the projected elegant higher-order HG and LG beams of
uniform polarization, incident at normal incidence upon the interface, will be
analyzed in a spatial domain in Section 7.4. Theoretical results will be
illumi-nated by numerical simulations. The beam mode conversion through
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the XPC effect at the interface will be described in detail. Definitions of
beam normal modes at the interface will be given. Coupling between OAM
and SAM of beams at the interface will be explained in Section 7.5 in terms
of a conser-vation principle of their TAM. It will be shown that the analysis
accounts this principle on both - macroscopic and single photon - levels.
Conclusions close this chapter in Section 7.6.

7.2 Action of the interface in a spectral domain

Spectral components of 3D beams at the interface are defined in three
local reference frames Ox,y z, ,each one for the incident (b=i), reflected
(b=r) and transmitted (b=t) beams [S]. These three frames are defined for
separate spectral (plane wave) components of the beams. The total field of
the beams is defined in frames Oxyz, one frame for each beam. There is also

an interface frame OXYZ, for the total field of all three beams at the
interface, here placed at the plane Z = 0. The z, -axes indicate propagation
directions of the plane waves, the z-axes coincide with the propagation
directions of the beams, and the Z —axis is normal to the interface. Geometry
of the problem is outlined in Figure 1.

The plane x, -z, is the local incidence plane and the planes x—z or

X —Z define the beam or main incidence plane [5]. There are also three
transverse planes: the local transverse plane x, — y, - for one spectral beam
field component, the beam transverse plane x — y - for the total beam field,
and the interface plane X —Y - transverse to the normal e, to the interface.
For normal incidence the beam transverse plane x —y coincides with the

interface plane X —Y . For oblique incidence the z-axis makes with the Z-
axis an incidence angle 8" of the beam.
In the local reference frames Ox,y,z,, one transverse spectral

~(b) L T
component. £~ of the beam field is given by the scalar multiplication

~(b)

€,E of beam polarization e =[e,,e;] and field amplitude

~(6) =y = ; .
E ., =[E",E”]" vectors; “T” means transpose. The amplitude vector is

(b)

composed of p and s field components E , » and Ef“ in the local transverse

plane x, — y, . A pair of the unit vectors - e, placed in this plane and e, or-



224 CHAPTER 7

reflected
beam axis

INTERFACE

X

transmitted
beam axis

incident
Z beam axis

Figure 7.1. Interface OXYZ and beam Oxyz reference frames for

transmission and reflection viewed in a beam plane of incidence
X —Z; local frames Ox,y.z, are given by rotation of the plane

X — Z by an azimuthal angle @ around the axis Z . Beam waists are

placed in centres of beam frames, incidence of internal reflection is
assumed.

thogonal to this plane - spans the local 2D polarization space transverse to
the wave vector k" =[k k] of one spectral field component [5].

The Fresnel transmission and reflection coefficients, generalised to the

case of beams with finite cross-sections, have been exactly derived in the
beam frames Oxyz [25]. However, the beam-interface interactions are more

conveniently described in the interface reference frame OXYZ [24]. In this
frame, the transverse k,; k’ =k, +k;, and longitudinal k”;
(k) =(k)* k>, components of k'”  determine, through
k, =k®sind?, kP =k®cos?”, k, =k, cos@ and k, =k, sing, the
polar #” and azimuthal ¢ incidence angles in the local cylindrical

coordinate frame Ok @k.”.
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In the direct reference frame Or,wZ the polar 8" and azimuthal y
angles are defined in the same manner. Orientations of both frames
Ok, @k} and Or,yZ are taken also the same, with the same incidence
polar angles " =6\" in the same main incidence plane ¢ =0=1y . In this

plane the local plane x, —z, coincides with the beam incidence plane x —z.

For brevity, the dependence of field vectors _E":m and E::’,)\, on k,, k, and

Z are taken through this chapter as implicit.

7.2.1 Beam transmission

—

(b) i % r
For each spectral transverse components £  of the incident (b=1) and
transmitted (b=t) beam fields,

E"=E®e +EVe,, (7.1)

~(1) ~ (i)

E

=(p.s) = =(p.s) —(ps)?

(7.2)

. ~(b)
the field vector amplitudes E ,  are composed of the transverse field

)

components EL"” and E”. The elements of the diagonal transmission
matrix ¢ - are the well-known Fresnel coefficients t,=t,(%") and

t. =t (9") that already account for the Snell law. The total field of the

beam is composed of continuum of plane waves defined in different local
incidence planes x, —z,. However, all spectral components of the beam
field need to be presented in one reference frame, usually taken as the beam
frame Oxyz [26]. Here the interface frame OXYZ is chosen instead. In this

frame the definitions (7.1) and (7.2) should read

~i(h) —_— —~

E " =EYey+E) e, (7.3)

~(1) ~(i)

Eyy= i( X.¥) E x> (7.4)
with new polarization e, =[e,,e,] and amplitude E ,,, =[EY,E"T

vectors, and transmission matrix Ly
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Further analysis aims to find field amplitudes and transmission
coefficients for each spectral field component in the frame OXYZ by

conversion of the expressions (7.1) and (7.2), given in any local incidence
plane ¢ # 0 to their counterparts (7.3) and (7.4) in the global incidence plane

@ =0. It can be accomplished by two 3D rotations: R about the Y -axis by

#'” and R, about the Z -axis by ¢ or by projection of E"”  on the plane

=(p.35)

X-Z [5, 24] However, after taking into account the divergence equation

EPk(P = M:i v, @k | , only the 2D rotation matrices,
K 0 cos?” 0
By — (p®\-| Z B
R (7)=(k™) [ - k””}_{ ) l} (7.5)
k, —k cos@ —sin@
R = k_l o ' = E) ?'6
@)=k L(,. k, } Lin(p cosq)} )

may be used instead in evaluation of the field components and transmission
matrix elements,

=(b)

E(X}]_R ((P)R (ﬂlb))E{p‘): (?7)
L = ROR (D) RIDIR,)(9). (7.8)
That yields
E(b) =(k k% ) kxk‘(zﬁ) _k}'km E;h} (7.9)
ED . i B E® | BO[ '

ik Ei k> t. -t )k, k,
{(Xy)zk_2|: nky+tky (nt,—1)ky 1:| (7.10)

(nrp _f.s)kxkr ’?tpks +ts‘k‘i

where 1= cos®'”/cos®'” . Still, by introduction of the linear polarization

parameter in the spectral domain of the incident beam

Xy =ES [P, (7.11)
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b=i, the transmission matrix !y, CAN be rewritten in the diagonal form
[24]:
¢ = Ny 0 . m, +An 0 ’ (7.12)
=(X.Y) 0 rT.f-,‘ 0 fl‘. +ATE
A, =8,07.0)=@t, ~t Kk [(Z3 ) " ky Fhy)L, (7.13)

where a=TM (a=TE) for the upper (lower) signs in (7.13). In the
following, the parameter xf';” will be assumed as independent of k, and
k, . It remains common for all points of the interface plane. That means that
the incident beam is considered in an arbitrary uniform polarization state.

The coefficients t;,, =t;,, (3", 0; 7% y,) and ty =t (3", 0;7y,) of
transmission should be understood as the Fresnel coefficients nz, and 7,
modified, due to the 3D character of the beams, by the modification terms
A;, and A, respectively. They are caused by the XPC effect, are
proportional to the difference 77, —¢ of these coefficients and consist of the
first-order and second order ingredients with respect to k,. They disappear at

the beam incidence plane, i.e. for k, =0. For pure TM and TE incident

polarization (7, )" =0 and X/, = 0, respectively, and then 1z, and 7,

are modified only by the second-order terms + (17, —¢, Ykik? [24].

7.2.2 Beam reflection

Similar considerations to those given in Section 7.2 can be repeated for
the reflected beam (cf. Figure 7.1). The transverse field spectral components

E"=E]¢,+E] e, (7.14)
are defined in the local frame Ox,yz, by the field amplitude

U”, [E"’ E™T and polarization €., vectors. The new amplitude

~(r) " . o :
E_xn=[- EV,E""] and polarization exy, vectors, defined in the

interface frame OXYZ, can be obtained by the rotation (7.5)-(7.6) and
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inversion R ; —R  =1=R , transformations applied in the appropriate

order, or equivalently, by projection of Q ( p‘,) on the plane X —Z [5,24],

“-r{r}

E_xyn=R,R,(P)R, (ﬂ‘”)R E“ﬂ}, (7.15)
E(r) (r) [ g
{ E('?‘) } ( (” J‘)_I{ kaz(rl k k(r)i”:E(rlil (716)
E; kok;,’  kyk
The reflection matrix r can be then evaluated from the local or Fresnel

=(-X.¥)

(diagonal) reflection matrix T say

and r, =r ("), by the application of the inversion and rotation matrices in

with its diagonal elements r, =r,(¥")

appropriate order. This transformation yields the definition of the reflection
matrix in the frame e, [5],

£(_X.” - £ £7(¢)£}J(ﬁ(r])£; £(p‘”§;1(ﬁ”])£;l((p), (?1?)
k2 —rk? +r )k k

gz TRk keky (7.18)

=(-X.Y) _(rp -|-r_’_)kxk}, —f’pk}, +?’\J€X

~(1)

~(r)
where £y, =71 Exy-

=({-X.Y)

Next, introduction of the polarization parameter %y ,, makes the matrix

diagonal [24]

{-’“}

I L I T L (7.19)
= 0 ry 0 ro+ A ,

- (i) i) (i) (i)
where r,,, =1, (9,0, 7}y, and ry =r, (8,0, 7)) mean the coeffi-

cients r, and r, modified by the terms A, and A, (7.12)~(7.13). Eqgs.

(7.12) for transmission and (7.19) for reflection, together with definition

(7.13) of the beam spectra modifications, explicitly show differences
between 3D beam and 2D beam cases. The terms A, and A, disappear

for plane waves and 2D beams. Such effects as XPC, interrelations between
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beam spin and orbital angular momenta, transverse modifications of the
beam profile, phase and polarization are specific only to the 3D case.

Note that the transmission (7.11) and reflection (7.19) matrices are exact
for any plane wave of which the incident beam is composed. They are
dependent on each other and interrelated through the continuity of the field
components tangent to the interface [24]:

1-r, =nt,, l+r, =1, (7.20)

1=ry, =Mty L+ry =ty. (7.21)

Eq. (7.21) is given in the main plane of incidence, for =0, and Eq. (7.21) is
given in the local plane of incidence, in general for @ #0.

7.3 Normal versus critical incidence of beams

The Fresnel coefficients defined for plane-waves are interrelated through
the field continuity relations (7.20) at the interface or equivalently by

s, +1)=1-3(r,-r,), (7.22)
Lo, —1,)=-1(r, +1,). (723)
For normal incidence Egs. (7.22) and (7.23) read n¢, =1, =1-r, =1+,
and 0= 0, respectively. Moreover, they read 1=1 for critical incidence of

TIR. That suggests that Eq. (7.22) can be associated with normal incidence
and Eq. (7.23) with critical incidence of one separate spectral component of
the beams. This form of the field continuity relations leads to a special type
of beam field decomposition, particularly suitable in treatment of beams at
the interface.

7.3.1 Field decomposition in the linear polarization basis

The transmission (7.12) and reflection (7.19) matrices can be decomposed
in such a way that the separate terms of the relations (7.22) and (7.23) stand
for the amplitudes of separate parts of the decomposition of these matrices.
In the TM/TE polarization basis e, , this decomposition takes the

following form:
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kX -kl 2k.k,
2k, k, —ki+k2|
(7.24)
-1 0 L kL =kl 2k .k,
£{—X.Y] =_%(rp_r.€)|i0 1:|+%(rp+r\-)kj_ [—kak}. ki,—kﬁ ]

(7.25)
now explicitly dependent on the azimuthal angle ¢ through the relations

1 0
£(X.]") :+%(Htp+ts)[0 1:|+%(ntp_t\)k;_2|:

ki —k; =k} cos2¢ and 2k,k, =k}sin2¢. The matrix decomposition
(7.24) and (7.25), together with a Z -component of the field

EY =—(EQky + E\ky) K] (7.26)

describe explicitly characteristic properties of beam transmission and
reflection. They depend on the beam incidence angle, polarization and
transverse field structure, and on the type of media of which the interface is
composed.

The diagonal part of the transmission (7.24) matrix is proportional to the
identity matrix. Therefore it does not change the polarization state of the
beam and remains common for any polarization base used in the beam field
representation. The same concerns, up to the sign changes, the reflection
matrix (7.25). For critical incidence of TIR the amplitudes of the diagonal
ingredients amount 3(nz, +¢,)=1 and §(r, —r,)= 0, respectively. They
correspond to the total transmission of the beams. On the contrary, the

amplitudes of the second, XPC parts of the matrices (7.24) and (7.25) yield
s(nt, —t,)=-1 and 3(r, +r,)=1 for critical incidence of TIR. For normal

incidence both of them equal zero. Therefore, the first part in Egs. (7.24) and
(7.25) can be associated with normal incidence and the second - with critical
incidence of TIR. For incidence other than normal and critical, all amplitudes
in the decompositions in (7.24) and (7.25) take non-zero values.

7.3.2 Field decomposition in the circular polarization basis

In the circular polarization frame ¢, =[¢e,,e,], composed of CR and

CL polarization vectors e, and e,, respectively, defined here in the
interface plane X —Y, not in the transverse planes x—y of the beams. The
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basis e, and the field amplitudes E(R“ =[E®, E®] in this basis are
obtained from the linear basis ¢, ,, and the field amplitudes Eﬁf’x y, by the

unitary transformation U : U, =2 =U,, and -U, =i2"?=U,;

=) (1) (b) g
eri) = ‘X“U Eqgy=UEy and §m_“=g§(_x.” (the superscripted

plus sign means Hermitian conjugate). This yields (b=t,r):
E”=EPey+EPe, (7.27)
€ri = zlmlfx +iey, ey _ig}’]s (7.28)

with transverse and longitudinal field components expressed by:

~ —~ —~ ~ —~ T

Ep,=2"[EQ-iE» EQ+iEP], (7.29)
=) -2 [_goy s pin zn s po]

Egy=2" [-EQ -1 EP -EQ+iEP], (7.30)
EY® = ¢2‘”2[§fq’” exp(xig)+ E exp(%‘q))] tan 9" (7.31)

The upper (lower) signs in (7.31) pertain the transmitted (b=t) (reflected;
b=r) beam. Note that exp(+i@)= (k, tik,)k]' and tand” =k (k). The
winding number of the Z -components of all beams - incident, transmitted
and reflected - is larger (lower) by one than that of the transverse field
component of the CR (CL) polarization.

The transmission ¢, =U ¢ U" and reflection Fan =Y T un U
matrices
10 0 exp(—2i¢)
t =int, +t +i(nt, —t
Ly =700, ‘)[0 1] 2 (1, ’)[exp(+2i<p) o |
(7.32)
1 +2i 0
r., =i, r) sl )| R D) i
Bic 0 ! 0 exp(-2ig)
(7.33)

can be then decomposed into two parts - diagonal and antidiagonal, with
distinct polarization properties.
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The diagonal part of the transmission matrix Loy does not change the

beam polarization. It modifies only the amplitudes of beam spectral com-

ponents by the factor (¢, +1,). The antidiagonal part of  — with its

amplitude 3(7¢, —1,), represents the pure XPC effect of the beam-interface

interaction; the CR polarization of the incident beam is replaced by the CL
polarization under beam transmission and vice versa. Moreover, this part of
the transmission matrix changes, in the beam centre, a topological charge of
the beam by two. For the incident CR (CL) polarization, the topological
charge is increased (decreased) by two in the CL (CR) polarization of the
transmitted beam.

For the beam reflection, due to the inversion R .5 the diagonal and

antidiagonal components of the reflection matrix are replaced with respect to

their roles in the beam transmission. The first part of P this with the

amplitude 5(r, —r,), changes the beam polarization state to the opposite

one, but without changes in the beam topological charge. On the contrary,

the second part of Lisiiy? this with the amplitude 3(r, +r,), does not change

the beam polarization. Instead, due to the XPC effect at the interface, it
increases (decreases) the topological charge of the reflected beam by two for
the CR (CL) polarization of the incident beam.

The transmission L (7.32) and reflection s

(7.33) matrices in the
circular CR/CL basis are equivalent to their counterparts Eors (7.24) and

(7.25) in the linear TM/TE basis. All of them describe completely, in

£f—X,}')
the spectral domain, the transmission and reflection phenomena of 3D beams
of arbitrary shape and polarization, incident upon the interface at an arbitrary
incidence angle.

7.4 Action of the interface in a spatial domain

Consider now characteristic features of the beam-interface interactions in
the spatial domain. With where harmonic dependence on time exp(—iwr)
assumed and suppressed, 3D beams of finite cross-sections are usually
expressed by their spectral representation, what in the reference frame
OXYZ vyields
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E"(X,Y,Z)=(w,/27)" exp(xik"z)

e ' (7.34)
x [dky [die, E™ (ky ky, Z)explilhy X +k,Y)),

Note that, although the representation (7.34) is exact, for clarity of further
considerations the beam vector amplitudes E " are now defined as depen-

dent on Z, the convention typical for paraxial beams [27]. In this way the
rep-resentation (7.34) is valid for paraxial and non-paraxial beams, provided
that in the second choice the paraxial beam profile and phase distribution are

im-posed only in one transverse plane, for instance, as taken below, in the
inter-face plane Z =0.

The representation (7.34) translates characteristic features of beams from
the spectral domain to the spatial domain. In general, the integration can be
accomplished only numerically. Sometimes however, for some specific
incident beam distributions, it can be obtained also directly by analytical
evaluation of the beam fields in some specific polarization basis. For HG or
LG beams of arbitrary order, this evaluation is possible under fulfilment of
some additional conditions, as it will be evident from further considerations.

The analysis will be restricted only to a single interface. However, due to
the diagonal form of matrices (7.12) and (7.19), the results can be directly
generalised to the case of beams at isotropic layered structures [25]. The
derivations are exact in the spectral domain and approximate in the spatial
domain, with really high accuracy obtained for paraxial beams. Direct
integration of Maxwell equations [28] serves as a numerical illustration of
the analytical expressions derived. In numerical simulations, a dielectric
constant equal two is assumed at the interface for the case of internal
reflection. Only beam transmission of normal incidence will be analysed (cf.
also [29]); beam reflection and arbitrary incidence can be treated on the same
footing [28].

7.4.1 The fundamental Gaussian beam

Let us start from the incident beam with its transverse field distribution
i ~(i) ~ .
EE;‘” =e,,G and E,  =e. G atthe plane z = const. in a form of the

fundamental Gaussian function:
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G(x,y,z)= (‘rvu_/'u*)z(z)f:xpn[—(l/Z)(x2 + y2 )v_z(z)] s (7.35)

Gk, k,,z) =27 exp|-(1/2)(k + k2 (2), (7.36)

with the complex beam half-width (radius)
vi(2)= wi(l + fzz;)i) . (7.37)

The beam is specified by a position of the waist centre, here at (x, y) = (0,0),

a beam complex half-width (radius) v and a diffraction length of the beam
2, w, being a beam (real) half-width at the waist. The complex

Z, = kOw?,
half-width v, v =w? —iR™", defines two real quantities: the beam half-
width (radius) squared w® = w’(1+2z%z;’) and the radius of the phase-front
curvature R=w.(z7'z, +zz,'). Unit amplitude of the beam field at the
beam centre is assumed as a normalisation condition for the fundamental, as
well as for all higher-order, HG and LG beams. Note also that in all field

expressions in (7.35)-(7.37), the longitudinal z-coordinate can be
normalised to z, and the two, x and y, transverse coordinates can be

normalised to w, , respectively.

Higher-order HG and LG beams are considered here in their elegant
version [11] and thus are hereafter referred to as the EHG and ELG beams.
The beams are defined in the spatial domain by appropriate differentiation of
the fundamental Gaussian field distribution (7.35)-(7.37). For the discussion
of such definitions of the EHG and ELG beams the reader is referred to a
recent report [30], where definitions of the, standard and elegant, HG and LG
beams were rederived and compared. However, meanwhile the fundamental
mode may be here conventionally defined in its transverse plane (x — y), the
higher order modes, together with the fundamental, are defined here in the
interface plane X —Y. In other words, the projected definitions of the
elegant beams will be used. For this reason we also hereafter use the
replacements  G(x,y,z) = G(X,Y,Z) and G(k,.k,,z)— G(k,,k,,Z) in

the notation in (7.34). All expressions for these beam modes are explicitly
derived below.
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7.4.2 Elegant Hermite-Gaussian modes at the interface

Define the EHG mode G'") of the order m+n by the partial X and Y

derivatives of the order m and n, respectively, applied to the fundamental
Gaussian [30]:

G (ky ky,Z) = (iw, )™ " k™K G (k ¢ ky, Z) (7.38)

m.n

GE(X,Y,Z)=(w,)"" I3, G(X,Y,Z). (7.39)

m.n

The definitions (7.38) and (7.39) are given here up to arbitrary normalization
constant factor and imply a unit amplitude of the fundamental Gaussian
beam at its waist centre (cf. Egs. (7.35)-(7.37)). Hence, the partial derivatives
d, and 9, increase the EHG mode indices m and »n along the X and Y

directions, respectively,

w,0,GYN(X,Y,Z)=G\E)(X,Y,Z), (7.40)
w,0yG, (X,Y,Z)=G)(X,Y,2), (7.41)

and the transmission matrix (7.24) can be directly applied.
For the incident EHG beam of the TM polarization E“' = E(¢ ., with its
spectral amplitude £\’ = G'*")_ or for the incident EHG beam of the TE

mn *

polarization E =E{"e,, with its spectral amplitude E{” =G, the

mn ?

transmitted beams become:

“E}u_ . (G ] S0 5

o =Lt +t) " |-, —t)k,w,)7| ~ + X,

-E;’,”_TM’ 2(”;} .i‘)_ 0 ) (’?p _g)( i B ) GLE:;’:H 5}/ »
(7.42)

,E{;}- C 0 ] 6{5.&'! 3‘

o :—( 4 +t? i i r, _{‘ k W“. -2 m+1.n+l 4 ,-._.A ;

B A g R { o |'[5],
(7.43)

respectively. In Egs. (7.42) and (7.43) the labels 7M and TE indicate the
type of polarization of the incident beam and the last, correction terms read:
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_3: ) _1"6:5}:: _ GUEH)
< | =m0, =) kow, ) 2} , (7.44)
LY drm : 0
5 r 0
_33: | =+30m, =1,)(k,w,) 2_@5};; ) 5,‘:':1’2} . (7.45)

As for the normal, or close to normal, incidence the term Vi, —¢, is much

less than mz, +1,, the contributions Em and En- in Eqgs. (7.42) and (7.43),

will be further neglected. This approximation is quite reasonable under
paraxial approximation assumption, that is roughly for £'’w,_>2mn. Egs.
(7.44) and (7.45) indicate that the transmitted beams attain finite values also
in the polarization components opposite to those of the incident beam. They
are approximately EHG beams with their indices being increased, with
respect to the incident beam, by one along both, X and Y, transverse
directions.

On the grounds of the divergence Eq. (7.26), one index (in X or Y
direction) is further increased by one in the longitudinal field component

EQ |y zi@w k) e, +0)GED =2, —1, )k, w, ) 2G|

m+l.n

(7.46)
EQ |z i@w kD) e, +1,)GE =200, -1, )k, w,) 2G|
(7.47)

For normal or close to normal incidence in the paraxial range, the

longitudinal field components in Eqgs. (7.46) and (7.47) are approximately
proportional to the term m7, +7 . Therefore, the spatial shape of the Z -

component of the transmitted beam follows the spatial shape of the Z -
component of the incident beam. Moreover E\|,, =t E{|, and
EY = ty"E |, where 1 =L(mt, +1,)k}" [k’ may be regarded as
the transmission coefficient of the Z component of the EHG beam.

Beam field distribution in the spatial domain can be now obtained by
analytical evaluation, after substitution of Egs. (7.42) and (7.43) to the repre-
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Figure 7.2. Beam intensity transverse distribution of the EHG beam
at the interface; the incident beam of the EHG,, pattern and of TM

polarization (a), the transmitted beam TE component of the EHG,,
pattern (b); X andY coordinates normalized to w, , normal incidence.
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Figure 7.3. Beam intensity transverse distribution of the EHG beam
at the interface; the Z -component of the transmitted beam of the
EHG,, pattern for the incident EHG;,; beam of TM polarization (a)
and the Z -component of the transmitted beam of the EHG, , pattern
for the incident EHG, ; beam of TE polarization (b); normal incidence.
The central position of the beam is shown by the grid.
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sentation (7.34), or simply by direct numerical integration of Maxwell e-
quations. The numerical approach was described and demonstrated in [28]
for critical incidence of TIR. In analytic evaluation of (7.34), for normal
incidence of paraxial beams, the Fresnel coefficients can be evaluated at
9" = 0. Field intensity plots are presented in Figs. 7.2 and 7.3 for two
wavelengths in the beam diameter at its waist, that is for k'”w,_ =2m. The
case of normal incidence of the EHG, | beam, with the indices in the X and
Y directions equal one, is considered.

The incident beam of the EHG; ; spatial pattern and of TM polarization is
shown in Fig. 7.2(a), the pattern of the transmitted beam component of the
opposite, TE polatization is shown in Fig. 7.2(b). The plots clearly confirm
predictions of Eq. (7.42); the pattern of the TE transmitted field component
is of the EHG,, spatial shape. For normal incidence of the beam the problem
is symmetric in X and Y coordinates. For the TE polarization of the
incident beam, the TM component of the transmitted beam possesses the
same EHG, > pattern as that of the TE component of the transmitted beam for
the TM polarization of the incident beam.

The interface, however, still differentiates these two cases in the
longitudinal, Z -components of the transmitted beams as it is shown in Fig.
7.3. The Z -component of the transmitted beam exhibits the EHG,; pattern
for incident TM polarization, as shown in Fig. 7.3(a), and the EHG;
pattern for incident TE polarization, as shown in Fig. 7.3(b). Figure 3
entirely confirms theoretical predictions of Eqs. (7.46) and (7.47).

7.4.3 Elegant Laguerre-Gaussian modes at the interface

Let us turn now to the case of beams of a cylindrical symmetry and
describe them in the cylindrical reference frames Or, yZ and Ok @k in
the spatial and spectral domains, respectively, where X =r cosy,
Y=r siny, k, =k, cos¢ and k, =k, sin@. Action of the interface on the
incident beams can be then described more compactly in new frames OccZ
and OxKZ of complex coordinates and their complex conjugates (denoted
by the overbear). These coordinates are defined in the spatial domain:

c=2""2(X +iY),
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0, =27"%(d, —idy), (7.48)
where ¢g =27 and 0.9, =27'(3% +97), and in the spectral domain:

k=2"(k, +ik,),

9, =270, ~id,), (7.49)

where ®K=2"k] and J,d,=2"(d; +d;). Note that in cylindrical
coordinates ¢=2""2r exp(iy), k=2""k exp(i9). The fundamental
Gaussian (7.35) and (7.36) now reads G(¢,Z,Z)=(w, /v)’ exp(-¢Zv~*) and
G(k,K,Z)=2mexp(-kkv’) and the beam representation (7.34), with new

dependence on the new complex coordinates, yields
E(5.5,Z)=(w,/27)" exp(ik®z)

e o (7.50)
xjdklj‘d(aklg (x, Kk, Z)expli(¢k +GK)],

where ¢cK+Ck =k, r, cos(y —@).

Next, define, at the interface plane X — Y and in the spectral domain, the
ELG beam of the order 2p+/ in the similar manner as it has been done for

the EHG beams of the order m+n:

G (x, K, Z) = (iw, )" k" K G(K, K, Z), (7.51)

where integers p and | are the radial and azimuthal nonnegative indices of the
ELG beam [30]. In the spatial domain, the definition (7.51) yields

G Mg, Zi=w, T Ot Gle B ). (7.52)

For negative values of / Eqgs. (7.51) and (7.52) can be obtained by
appropriate change of the coordinate system; G'"" (k,&,2)=G'") (k,x,Z)

and  G\(¢.5,2)=G")(G.6,Z). Note also that, because
k"' =27k, )" exp(ilp), the definition (7.51) directly implies

changes in the indices of the ELG beams under transmission:

‘E“(nc K, Z)exp(+2i¢) = G;i’l_}ﬂ(lc,f,Z), (7.53)
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GEP(x,K, Z)exp(2ip) = G\, . (,K,2Z), (7.54)

including also fractional values admitted in the radial indices of the ELG
beams. Eqgs. (7.53) and (7.54) are central results of this section. They lead to
exact description of the LG beams of circular polarization interacting with
the interface, as will be shown below.

Let the incident beam be of the ELG shape with its spectral
amplitude E{) = G'"" for the CR polarization, i.e. for E = E{"¢,, or with
its spectral amplitude Ef ) = 6;3“ for the CL polarization, i.e. for
E" =E"¢,, respectively. Then the rules (7.53) and (7.54), together with
the definition of the transmission matrix (7.32), lead in the spectral domain

to exact evaluation of the transmitted ELG beams at the interface, with the
following outcome:

EP] [Ge] [0 ]

~ =i(nt, +t Py e, —t)| = , 7.55
£0], Lo [T g, 752
(EO] [0 ] [ G(EL)

pzr) = = t +t — +l l — t p+l..‘-2 " 7_56
_EIE”_CL >(M P 3)_GL§“_ >(M P s)- 0 | ( )

for the CR and CL polarization of the incident beam, respectively.
Similarly, the longitudinal components of the incident beams are of the
form E=-2"G"), , tand” for the CR polarization and

EQ=-2"G' ) tany" for the CL polarization and this yields for the

transmitted beam, respectively:

E;r”'ce =27 W, tan ﬁ“}ééﬁé'-‘ﬂ 2 ()

Bl =2 e, an 0G0, @59

Therefore, the Z -components of the transmitted beams, i.e., E’ =tV ES

with the transmission coefficient ;") =7 ¢, tand¥”/tan?"”, possesses the

same topological charge /*1 as the incident beam (cf. also Eq. (7.31)). Note
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Figure 7.4. Beam intensity transverse distribution of the ELG beam at
the interface; the incident beam of the ELG,; pattern and of CR
polarization (a) and the transmitted beam CL component of the ELGy s
pattern (b); normal incidence.



Spatial distribution versus polarization of beam fields

W,
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Figure 7.5. Beam intensity transverse distribution of the ELG beam at
the interface; the incident beam of the ELG,; pattern and of CL
polarization (a) and the transmitted beam CR component of the ELG, ,
pattern (b); normal incidence.
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that, contrary to the EHG beam case, all expressions derived above in the
spectral domain for ELG beams are exact and the longitudinal field compo-
nent resolves into one ELG beam function with fractional value p=1/2 of
the radial index.

The interface changes indices of the incident ELG beam in the opposite
transverse field component. For the incident CR (CL) polarization the radial
index of the beam mode decreases (increases) by one and the azimuthal
index increases (decreases) by two in the CL (CR) polarization component of
the transmitted beam. In (7.55)-(7.56) the radial index of the longitudinal
field component decreases (increases) by half and the azimuthal index
increases (decreases) by one with respect to the indices of the transverse
component of the incident ELG beam of the CR (CL) polarization. Examples
of the ELG beam transverse field distribution at the interface is presented in
Figs. 7.4-7.8 for narrow beams of k’w, =2m. Incidence always is normal

and the incident beam always has a pattern of the ELG, 3 function.

Figures 7.4 and 7.5 display intensity profiles of the ELG beams. The
profile of the incident beam of the ELG, ; pattern and of CR polarization is
displayed in Fig. 7.4(a) and that of the CL component of the ELGy s pattern
of the transmitted beam is shown in Fig. 7.4(b). The profile of the incident
beam of the ELG, 3 pattern and of CL polarization is displayed in Fig. 7.5(a)
and that of the CR component of the ELG, ; pattern of the transmitted beam
is shown in Fig. 7.5(b). Dependence of a number and radii of the beam
annular rings on the incident beam polarization and azimuthal index / is
clearly vivid. However a value of the radial index remains uncertain due to a
limited accuracy of the numerical integration for points of diminishing
intensity of the beams. Also, nothing specific can be inferred from Figs. 7.4
and 7.5 about the azimuthal indices of the beams. The intensity profiles are
not sufficient to describe beams of complex structure, especially the beams
with singularities in their phase fronts.

In order to complete these figures, phase patterns of the incident and
transmitted beams are drawn in Figs. 7.6, 7.7 and 7.8. Values of the
azimuthal index are counted as the number of 2x cycles in phase around the
beam axis. This number distinguishes the ELG phase patterns of the beams
shown in these figures. The phase transverse distribution of the incident
ELG, 3 beam of CR polarization is shown in Fig. 7.6(a), the phase of the
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transmitted beam component of the opposite, CL polatization is shown in
Fig. 6(b) - its pattern is of the ELGgs function. On the other hand, even for
normal incidence this case is not symmetric with respect to the replacement
of CR polarization by CL polarization in the incident beam - values of the
SAM about the Z -axis have opposite signs in these two cases. Therefore, the
beam incidence of CL polarization is also described in Fig. 7.7. The phase of
the incident ELG, 3 beam is shown in Fig. 7.7(a) and the phase of the CR
component of the transmitted beam of the ELG, shape is shown in Fig.
7.7(b).

Figures 7.6 and 7.7 confirm predictions of Eqgs. (7.55) and (7.56)
concerning the phase distribution of the beams. However, Figs. 7.6(b) and
7.7(b) display additional ring of zero field amplitude far away from the beam
axes. This discrepancy between numerical results and theoretical predictions
might be originated by the approximation assumed in evaluation of the
Fresnel coefficients (at the beam mean direction) in the field representation
(7.34). This may also be caused by limited accuracy of the numerical
evaluation of this equation for points of diminishing intensity of the beams.

However, the beam phase or the azimuthal index /, not the beam magnitude
or radial index p, is used in sorting the beam modes [21].

Figure 7.8 shows the phase distribution of the longitudinal field
components predicted by Eqs. (7.57) and (7.58). For the CR polarization of
the incident beam of the ELG,3; shape, Fig. 7.8(a) displays the phase
distribution for the longitudinal field component of the transmitted beam -
this of the pattern of the ELG,»4 function. For CL polarization of the
incident beam of the same shape ELG, 3 the phase of the transmitted beam
changes to the ELG;, function as shown in Fig. 7.8(b). For both these
polarization states of the incident ELG beam the phase structure of the Z -
components of the transmitted, and the reflected as well, beams appears the
same as that of the incident beams.

The numerical simulations applied in this section are based on direct
integration of Maxwell equations [28]. The examples of beam intensity and
phase distribution at the interface shown in Figs. 7.2-7.8 evidently confirm
theoretical predictions given by analytical expressions (7.42)-(7.47) for EHG
beams and (7.55)-(7.58) for ELG beams, evaluated in the interface plane.
The XPC effect is fundamental in generation of higher-order modes at the
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Figure 7.6. Phase transverse distribution of the ELG beam at the
interface; the incident ELG,; beam of CR polarization (a) and the
transmitted beam CL component of the ELGs pattern (b); normal

incidence.
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Figure 7.7. Phase transverse distribution of the ELG beam at the
interface; the incident ELG,; beam of CL polarization (a) and the
transmitted beam CR component of the ELG,; pattern (b); normal
incidence.
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Figure 7.8. Phase transverse distribution of the ELG beam at the interface;
the transmitted beam Z -component of the ELG, 4 pattern for the incidence
of the ELG,; beam of CR polarization (a), the transmitted beam Z -
component of the ELG;,, pattern for the incidence of the ELG, ; beam of CL

polarization (b); normal incidence.
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dielectric interface. Its efficiency can be estimated from the expressions
(7.24)-(7.25) and (7.32)-(7.33) for the beam field and its amplitudes (7.22)-
(7.23) in the spectral domain. In these expressions, the standard (2D) Fresnel
coefficients are replaced by their 3D counterparts:

tos =3, +1,), (7.59)

T = 305 =K (7.60)
for the case of the direct polarization (DP), the same as of the incident beam,
and

tom =501, ~1,), (7.61)

Tow =20 +1), (7.62)

for the case of the opposite (cross) polarization (XP), produced by the XPC
effect. The DP and XP coefficients do not depend on the incident beam
polarization. They are interrelated by the continuity relations at the interface:

(DP)y _ (DP)

by =1=T s (7.63)
(XP) _ (XP)

Iipay = Tipayd (7.64)

separately for the beam components of opposite polarization of the
transmitted beams - TM or TE for EHG beams and CR or CL for ELG

beams.

The efficiency of the XPC effect is determined by the ratio 1" /+(*") |

here given for beam transmission. For normal incidence this ratio is small -
of the order 107%. On the other hand, for beam reflection at critical incidence,

magnitude of the ratio #(") /t("") is about two orders greater, as expected.

However, the case of critical incidence does not seem satisfactory for the
ELG beam incidence, as the cylindrical symmetry of the beam-interface
configuration becomes then broken and the beams become deformed.
Therefore the problem of efficiency of the XPC effect for beam normal
incidence still remains to be solved. It seems that a planar boundary between
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artificial materials of some sort [31-33] might appear to be a proper solution
to this problem.

7.4.4 Beam normal modes at the interface

Within the paraxial approximation the scalar HG and LG functions
are solutions of the scalar wave equation. The vector HG and LG beams are
paraxial solutions of the Maxwell equations and build two orthogonal basis
sets for any paraxial beam mode of free propagation. In the analysis
presented in this section these sets comply with four additional conditions.
The vector (HG and LG) Gaussian beam should be

(1) considered in their elegant version
and defined:

(i) in the linear (TE/TM) basis for the EHG beams,

(111)  in the circular (CR/CL) basis for the ELG beams,

(iv)  with respect to the interface plane.

The condition (iv) means that, at least for beams other than the fundamental
Gaussian, the beam field spatial and polarization structures should be defined
in the interface plane X —Y and not, as usual, in the beam transverse plane
x=y.

The HG and LG beams which obey the conditions (i)-(iv) are named here
as the projected EHG and ELG beams. They may be regarded as normal
modes of vector beams at the interface. For any member of one from these
two sets incident upon the interface, the reflected and transmitted beams also
belong to this set. The beams are defined by one pair of their spatial indices -
m and n for the EHG beam or p and / for the ELG beam, in each of the
two opposite beam polarizations - TM and TE or CR and CL for the EHG or
ELG beam, respectively. The interface acts almost exactly in this manner.
For ELG beams only oneapproximation necessary in the derivations above
was assumed in the spatial domain, concerning mean values of the Fresnel
coefficients. Still even this assumption can be neglected if nonuniform
polarization of the beams is admitted.

The interface redistributes the incident energy, momentum and angular
momentum into a pair of beams of two orthogonal polarization states, one
pair for each of the transmitted and reflected beams. One element of this pair
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possesses the same polarization and spatial structure as those of the incident
beam. The spatial structure of the second element, that of the opposite
polarization, appears alsospatially biorthogonal to the first element. This
process may be understood as creation and annihilation of beam modes at the
planar interface. For ELG beams it also means creation and annihilation of
optical vortices placed on axes of these beams.

Having defined the biorthogonal sets of normal modes defined above, any
field with arbitrary complex amplitude and polarization distribution can be
readily expanded in a standard manner in terms of these modes. Till now
EHG and ELG beams have been used mainly in the context of propagation in
the free-space, infinite bulk material or non-self-adjoint optical systems
[34,35]. This contribution provides, to the best of my knowledge, the first
analytical and exact derivation of the decomposition of an arbitrary 3D beam
field at the planar interface in terms of the (projected) elegant HG and LG
normal beam modes.

7.5 Angular momentum of beams at the interface

Let us now look into the beam transmission from a slightly different point
of view. It is well known that beams carry the TAM composed, in general, of
SAM and OAM components [1]. The spin component is associated with
beam polarization and the orbital component results from azimuthal
transverse distribution of the beam phase. For the circularly polarized beams
the SAM component is equal to 6/ per photon, where 6 =+1 for the CR
and CL polarization, respectively. Since the LG beams are angular
momentum eigenstates, their OAM component, associated with the beam
phase dependence of the form exp(i/y) is equal to /i per photon. Both the

SAM and OAM contribute to the Z -component of TAM per photon:
J¢ =(©+hh, (7.65)

separately for the incident (b=i), transmitted (b=t) and reflected (b=r) beam,
where for any beam the angular momentum is measured with respect to the
normal to the interface (the Z -axis). Egs. (7.55)-(7.56) show that TAM per
photon is conserved for ELG beam transmission at the interface, and
similarly also for ELG beam reflection. For any photon, transmitted or
reflected at the interface, its TAM is conserved:
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s N ES 1.66)

respectively. Therefore the SAM and OAM components of TAM per photon
depend of the polarization of the transmitted beam.

- — ~()  ~(pL) A
For example, for a single photon of the incident beam £, =G, "¢, of

the topological charge / and of the CR polarization (¢ =1), its TAM
amounts to ;i =/+1 (cf. eq. (7.55)). The transmitted (or the reflected)
photon possess the same TAM j =/+1 independently of its polarization.
For the transmitted photon of the CR polarization its spin and orbital
components are the same as those of the incident photon. However, for the
opposite, CL polarization of the transmitted beam, the OAM of the photon is
increased by two (from / to /+2) as its SAM is decreased at the same time
by two (from o=1to 6=-1).

Similar rules are also valid for the incident ELG beams E, = 5};‘-}@ of
the CL polarization (6 =—1). The TAM ;" =1—1 per photon, as well the
SAM o6 =-1 and OAM / per photon, of the transmitted beam of the same,
CL polarization appears the same as the TAM, SAM and OAM of the
incident photon. For the transmitted photon of the opposite, CR polarization
its OAM is decreased by two (from / to /—2) as its SAM is increased at the
same time also by two (from oc=-1 to o =1). Therefore its TAM per
photon ;i =/—1 remains equal to that of the photon of the incident ELG
beam.

Equations (7.55)-(7.56), together with their counterparts for beam
reflection, may be regarded as equivalent to the conservation principle of
TAM for a single photon at the flat interface. With the continuity relations
(7.22)-(7.23) they correspond also to the conservation of integrated TAM
JP = jN® of any set of the (incident, refracted and reflected) projected

ELG beams at the interface:
Jz =J +J7, (7.67)

where N’ =U" /hw stands for a number of photons in a monochromatic

beam of time averaged energy U per unit length of the beam [14].
Moreover, for the ELG beam incidence, the conservation of TAM of these
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beams follows directly from the conservation of TAM of each photon of
which these beams are composed.

The above considerations pertain to the LG beams in their projected
elegant version and of the circular polarization. In this case the interface is
acting, through the transmission matrices (7.32) within the complete set of
such beams and produces pure eigenmodes with specified indices ( p and /)
of the beam spatial structure in each one of the two (CR and CL) states of
circular polarization. For beams of other spatial distribution of its complex
amplitude and/or polarization - like the standard LG beams of arbitrary
polarization - the action of the interface may be understood as creating an
appropriate superposition of pure projected ELG beams of circular
polarization. In such cases one has to consider mean values of TAM and
OAM of these beams [19]. Still the conservation principles of TAM for a
single photon (7.66) and for the total beam (7.67) remain valid.

The derivation of the conservation principle (7.55)-(7.56) for TAM of
beams at the interface was possible due to the exact form of the transmission
and reflection coefficients (7.32)-(7.33) or (7.12), (7.13) and (7.19). Both,
the first-order and the second-order transverse corrections (in k,; see Eq.

(13)) to the standard Fresnel coefficients nt,, t,, r, and r, are necessary to

obtain this result. The first-order corrections to the Fresnel coefficients, as
well as these coefficients by themselves, are not sufficient to guarantee
exactly the TAM conservation. Still, the TAM conservation (7.66) for a
single photon was also approximately applied, instead of the field continuity
relations, in the treatment of beams at a dielectric interface within a
geometrical optics approach [36].

Note also that the ELG beams considered here possess cylindrical
symmetry in the interface frame OXYZ. For incidence angles 8" different
from zero, such beams are elliptic and astigmatic in their intensity and phase
distribution in their beam frames Oxyz. Moreover, the polarization

parameters of the beams A}, =+i in the frame OXYZ read
A}y, cos8'” =+icos®'” for the same beams in their beam frames Oxyz

[5]. However, when the orientation of the beam astigmatism and ellipticity
are the same, the OAM of the beams is originated only in the helical
singularities of beam phase [37].
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This is not so for beams of different orientation of their intensity and
phase astigmatism. More general astigmatic beam modes may carry OAM
not originated exclusively in the beam phase singularities [37]. Such beams
also form complete sets of Gaussian solutions of the paraxial wave equation
and may serve as another basis for treatment the problem of 3D beams
impinging at the interface.

7.6 Comments and conclusions

Beam-interface interactions have been described within a frame of the
complete, biorthogonal sets of the projected EHG beams of linear TM/TE
uniform polarization and the projected ELG beams of circular CR/CL
uniform polarization. It was shown that such beams are normal modes at the
interface and thus, in general, at any planar layered structure. The beam
transverse spatial profile, phase and polarization are interrelated through the
XPC effect present at the interface. These relations differentiate normal and
critical incidence of the beams and can be described by generalized Fresnel
coefficients of transmission and reflection, specific to the incidence of beams
of 3D structure and arbitrary polarization.

Rigorous analytical description of beam fields at the isotropic interface in
terms of the projected EHG and ELG vector beam modes has been given.
The interface redistributes incident beam energy between beam components
of opposite polarization and modifies spatial distribution of their intensity
and phase. This process is quantitatively described through changes of indi-
ces of transverse spatial distribution of complex beam fields or, for ELG
beams of circular polarization, in terms of conservation of their TAM. In the
latter case changes of SAM are compensated by changes of OAM, or vice
versa. For incidence of beams of general phase and intensity distribution and
general polarization, the interface discriminates the beam field in favor of
EHG beam modes of linear polarization and of ELG beam modes of circular
polarization. The process has been described by derivation of exact analytical
expressions for spectral components of the beam field at the interface plane.

Results of this chapter indicate that the dielectric interface, or, in general,
any planar multilayered structure, can be used as a mean of control the
interplay between the beam field distribution, in its magnitude and phase,
and the beam field polarization. The control process is based on the XPC
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effect acting at the interface and depends on the incident beam parameters
like the beam polarization, shape and angle of incidence [5,28,29]. The
ability to control the beam shape and polarization may appear useful in many
applications in contemporary optics, provided that the efficiency of the XPC
effect can be sufficiently strong. It seems that application of the presented
approach to the cases of beams at layered structures, composed of aniso-
tropic, photonic or meta-materials, may reveal such a possibility.

Note that for normal incidence the first-order shifts of the beams
disappear and due to this fact they have not been discussed in this chapter.
However, the expressions of the transmission and reflection matrices derived
in this chapter are also valid in the case of arbitrary beam incidence and the
whole formalism presented above can be directly extended into this case.
Then, for the oblique incidence of beams, these transmission and reflection
matrices can serve as a starting point in the discussion of the beam shifts
[28]. Although these shifts have been already defined in Chapter 3, their
main characteristics will be discussed, from a slightly different point of view,
in Appendix being a final part of this chapter and this book.

Appendix: One more note on the beam shifts

In this appendix, basic relations describing the shifts of the transmitted
and reflected beams will be put together, with a few additional comments
and final conclusions enclosed. These relations will be given, contrary to the
analysis of Chapter 3, with respect to the interface coordinate frame OXYZ .
It should be noted that the case of oblique beam incidence has been
examined in Ref. [28] by the method described in this chapter. This method
employs the XPC effect in evaluation of the two opposite, TM and TE or CR
and CL, components of the reflected and transmitted fields. As both these
field components are evaluated at the same time, they suffer only from the
longitudinal shift independent of the incident beam polarization. The
transverse shifts are replaced by a superposition of the beam field,
represented by the two transverse beam components (see Figure 9). In spite
of the presence of the longitudinal shift, the beam field reshaping relations
(42)-(43) and (55)-(56) remain valid.

Still, these shifts remain different for each one of the two beam com-
ponents and, in addition, these components show different transverse field
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Figure 7.9. Reflection of the EHG beam at the critical incidence of
TIR with the incidence angle 8, = 45" . Incidence of a G|;""’ beam is

presented in (a)-(c), incidence of a G|’ beam is presented in (d)-(f).

Intensity distributions of the incident beam of TE polarization (a) and
(d), reflected beam TE component (b) and (e) and reflected beam TM
component (c) and (f) are shown in the interface plane. The first-order

longitudinal beam shifts (along X -direction) are clearly visible in (b)-

(¢) and (e)-(f) (after [28]).

distributions. However, one might expect to have in the analysis of the beam-
interface interactions a more convenient, although less accurate, approach,
within which the beam components are assumed to be at least of the same
field distribution. The approach of this sort was proposed in Chapter 3. In
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order to specify more closely this approach, its main relations will be also
collected in this Appendix.

The relations describing beam transmission and reflection given in this
chapter remain valid for oblique incidence as well, after taking into account
the nonzero beam incidence by an angle 6.”. In this case the principal beam

frame Oxyz does not coincide with the interface frame OXYZ (cf. Fig. 1).
Both frames are related by the rotation R },(9{‘,”) through the incidence angle
6" of the incidence plane X —Z about the Y -axis, given here in the 3D

version in the direct domain:

X cosf,” 0 sing)” |[£x
Y |= 0 1 0 y | (A.7.1)
Z| |-sin8” 0 cos8" ||z

and in the spectral domain:
k. cosdy” 0 sindy” [tk
k, = 0 1 0 E. | (A.7.2)
k —-sind” 0 cosd ||+

&N

respectively, with upper (lower) signs corresponding to the frames of the
incident and transmitted (reflected) beams. In (A.7.2), the same value
" =6." of the incidence angle is taken in both the direct and spectral

domains, thus R (5%")=R (6;"). Then, the spectral representation of the
beam field can be expressed alternatively in the two frames, in the frame

Oxyz:

E:r w(x,py,z)=(w, /27&:)2 exp[iik‘“z] S
x [dk, [dk, E. (k.,k,, 2)explitk,x +k,y)], o

or, alternatively, in the frame OXYZ :
ES\ 1 (X,Y,Z)=(w,/2m) (cos8) " exp[+ik™® Z/cos6."]

X [dky [dky By yy Ky ky, Z)explilh, X +k, V)],
(A.7.4)
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where the upprer (lower) signs correspond to the incident (b=i) or
transmitted
(b=t) (reflected; t=r) beams. As both field representations are related by the
rotation R (6;"):

EQ (XY, Z)=E? (x,9,2), (A.7.5)

=(x,5)

the initial condition for the incident beam evolution (with respect to z ) can
be postulated in any beam transverse plane x— y, alternatively in one of the

two frames OXYZ or Oxyz. It can be accomplished, for example, by
postulating the beam field distribution E{.y ,,(X,Y,Z) at Z=-xsin8" or,

(&)

E., (x,y,0) at z=0, that is in the beam waist plane. Note

alterna-tively, by E

that for oblique incidence, any circular cross-section of the beam in the plane
x—y corresponds to an elliptic cross-section of the beam in the interface

plane X =Y.
The beam fields E 3‘,,, s E E ; y) and E' E,. x ) have been defined in Section
2 in the linear polarization basis e, y, =[ey,e,] with respect to the interface

plane X —Y and interrelated:

=(1) ~(i)
Exry=tynExn (A.7.6)

=(X,Y)

~(r) ~(i)
g(—X.Y} =£(_x'y)£()(,]’]s (A??)

by the transmission and reflection diagonal matrices:

[t O]
Lxy) _|: 0 ¢, . (A.7.8)
Yy O]
P =|: o | ? (A.7.9)

with their elements in the form of the transmission and reflection
coefficients:

-1

Mipg =N, +An, =nt,+(t, I)k-zk [/1’({})1/) ky—kyl,
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e =1, +Agp =1, + (0, 1 Kk [ZD ) ey +hy 1, (A.7.10)

e =1, —Apy =1, +(r, —r)k; *k [f((;(}}) ky—kyl,

- 2

Fg =1, +Agg =1, =, 1 kg (70, ky + Ky ], (A7.11)

where k, =[k,.k,]" and n=n"k’ [n k). Note that nt, —t, =—(r, - r,)
at the interface.
The coefficients are given in (A.7.10)-(A.7.11) by means of the linear

2 5 i i =
polarization ~parameter 7', =EV/E", where 7%, =0 and

f&’ v, =0,—i,i for TM, TE, CR and CL polarization states of the incident

beam, respectively. The subsequent components in the definitions (A.7.10)-
(A.7.11) correspond to the zero-order (Fresnel), first-order and second-order
(with respect to k, ) effects of nsp transmission and reflection. Only the first-
order effects are created by the XPC effect at the interface and only these
effects are dependent on the po]arization state of the incident beam field
through the polarization parameter %y, , as shown in Egs. (A.7.10)-

(A.7.11). Note that minus sign in the subscript (—X,Y) indicates that the

sense of the TM polarization of the beam field, defined in the interface frame
OXYZ , corresponds to the sense of the actual beam polarization defined in
the beam frame Oxyz (cf. Fig. 7.1).

The expressions (A.7.6)-(A.7.11) for the transmission 7 7 and reflection

r._yy mMatrices are given in the spectral domain. Their elements are

changing, in  general, from one local incidence  plane
@ = arctan(k, /k, ) = const. to another local incidence plane. However, the
geometrical first- and second-order effects of the nonspecular (nsp) beam
transmission and reflection are expected to be known in the direct domain.
To define these effects in this domain, the matrices (A.7.8)-(A.7.9) are first
approximately evaluated in one plane — the incidence plane k, =k, =0 for

¥=6,, thatis for k, =k, =[k, 01", where k, =ksin6;". After that they

can be treated approximately as the shifts of the beams in the direct domain
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or can be transferred to this domain by more accurate methods as, for
example, the MIG method described in Chapter 4.

Let us first concentrate first on the first-order effects. In this case, the
complex in general TM and TE elements of the diagonal matrices for beam
transmission (b=t) and reflection (b=r) are expressed by a scalar product of
the complex shift vectors L;T, g L_%} and transverse wave vectors k, [28].

They can be alternatively defined in the interface plane X —Y or in the plane
transverse to the beam axis x— y plane, respectively:

; {m exp(—u',(T;f o(k, —k.,) 0 i|

=(X.Y) 0 l, exp(—fé(;é °(I_‘7¢ m))
(A.7.12)

_ _ |:rp exp(—f’é%} o(k, —k,,)) 0

=(-X.Y) 0 2 exp(—:L;E} o(k, m))
(A.7.13)

where

L;"i; ok, —k,y)= L(;;Jx (ky '_kxu)+L[7?,¢]4rkr = L(?f.):kax + Lfrf.}ﬁjf.-ky (A.7.14)

Ly ok, —ko) =Ly (ky —ky )+ Lk, =Lk + LYk, . (A.7.15)

Next, the complex first-order shifts can be evaluated approximately in the
spectral domain by first two (zero-order and fist-order) terms in Taylor
expansions of Innt,,, Int,, Inr,, and Inz,. For beam transmission, the

longitudinal first-order complex shifts (along the X -axis) of the TM and TE
components of the transmitted beam are:

(1)

= iakx In(nt,,) |k,:.t,o.k,.=0: iak_,. In('?fp) |;c,=;¢,,,.k..:0 >

Lg:g‘x = iak, Inty, |k,=km.k.=u= iakx Inz, |k‘=k,0.k‘.=ﬁ ’ (A.7.16)

and the transverse first-order complex shifts (along the Y -axis) of the TM
and TE components of the transmitted beam are:

() — - -1
Ly = fak,. In(nt7,,) |krzk,o.k.:0" f(f?fp) ak}-ATM |kx=kw,k_,_=0 ’
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0 _; - i1
Lygy _fak,. Intp, |k\=k‘n.kl=(}‘_”x ak}-ATE |k,:kw,k‘:0’ (A.7.17)
where k,, = ksin6,. Similarly, for beam reflection one gets:

(r) _ : —_
Loy = Iak_\. Nty |k k0= ‘ak_,. Inr, |k,=k,.,.k,.=0 ’

Ly = jak_\- Inrg | o4 4 -0= iak_, Inr |, o k0o (A.7.18)

and the transverse first-order complex shifts of the TM and TE components
of the reflected beam are:

rn _; g
Ly _’ak,. Inry,, e, oty b, 0= 0 ak,-ATM lg, <k k=05

[f'] —_ s . -—I
Ligy _’ak‘ Inry, |k,:kw‘k_‘:0_+lrf ak}-ATE |k‘:k_\u_k_l=l}' (A.7.19)

Until now all the entities discussed were complex. However, on the
grounds on simple geometrical considerations (see Chapter 3), all these
complex entities can be interpreted in terms of real geometrical shifts S, ,

Oy > Oy Opy and angular deviations &8y), , Oply s Orey > Oppy Of the
TM components,
B _ gy () — S 4 (b)
Ly =— Loy, / c0s6,” = Oy + lzoxamm.
_ ) 4 iz SO (i)
=—(Opy +iz),, 0 ™D, )/0059

) _ b ~ S(b) ) _ Sb) i S0
Lryy = Ly, = Oy +iz;, Oy = Oy, +iz Qﬁmﬁ‘ , (A.7.20)
and TE components,

by _ _ {b}/ (i) ~ S(b) (b)
Ly ==Ly}, [cos )" = Oy +‘Zor§r£a

(b (b) (i)
=— (O + szxﬁrmx )/cos 6,
(b) ) ~ sb) (b) (b) (b)
Ligy =L, = Orey +iz), 5rm 51"5.\ +iz 5;-*5:5 > (A.7.21)

of beams, respectively. where z, and z, are diffraction lengths of the
incident beam in the y =0 and x =0 planes, respectively. The subscripts X

and x indicate the longitudinal nsp shifts present in the incidence plane
X —Z or x—z in the directions of the X -axis and x -axis, respectively (cf.
Fig. 7. 1). The subscripts Y and y indicate the transverse nsp shifts present in
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the plane transverse to the incidence plane x—z in the (same) directions of
the Y- and y- axes (cf. Fig. 7.1). The subscripts TM and TE indicate the

TM or TE component of the transmitted (b=t) or reflected (b=r) beam
suffered from the shifts in the directions specified by the X, x, Y or y
subscripts.

Now the complex and real first-order beam shifts are specified by
(A.7.16)-(A.7.21) and can be applied to the beam field description. For the
incident beam expressed in its plane-wave decomposition (A.7.3), the beams
acquires, on the grounds of the relations (A.7.6)-(A.7.15), the complex
shifted representation in the following form for the transmitted beam:

EV(X,Y,Z)

=(w,/27)’ (cos8") ' nt, explik (—L,, sin 6" + Z/cos )]

x [dky [dky ES (ky ey, Z)exp (il (X = L) +ky (Y = L)1}
(A.7.22)

EO(X,Y,Z)

=(w, /27)* (cos8") 't explik (=LY, sin 8" + Z/cos 6")]

x [dky [dley EY (ke ky, Z)exp il (X — Lty )+ hy (Y = L)1}
(A.7.23)

and for the reflected beam:

EV(X,Y,Z)

=—(w,/27)* (cos6)")'r, exp[ik " (~Lyy sin 65" + Z/cos 6")]

x [dky [dky Bk, ky, Z)exp il (X = Lo ) +ky (Y = L)1,
(A.7.24)

EQ(X,Y,Z)

=(w, [27)* (cos8") ' r, explik” (=LY, sin 8" + Z/cos 6")]

X [dky [dy B (k. ky, Z)exp il (X — L) +ky (Y = L)1}
(A.7.25)
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The definitions (A.7.16)-(A.7.21) of the first-order shifts applied in the
beam representations (A.7.22)-(A.7.25) are completely equivalent to the
definitions (A.7.5), (A.7.7) and (3.13) given in Chapter 3 and in previous
publications [9] and [5]. Moreover, by complete analogy to the definitions
(A.7.6), (A.7.8), (A.7.19), (A.7.21) and (3.13) in Chapter 3, one can also
define in this way the entire set of the second-order complex and real beam

shifts. The second-order complex shift vectors F'» and F ‘;’E’ and their real

counterparts — longitudinal and transverse focal shifts &7, , & , Oy

() - - P OO () ()
07, and waist radius modifications & OrEw. > Orat, » O7es, - are then

Twz, *
evaluated in the beam frame Oxyz from the second-order terms in Taylor
expansions of Innt, , Int,, Inr,, and Int, (cf. Egs. (A.3.3), (A.3.4),
(A.3.6) and (A.3.8) in Chapter 3). In effect, the second-order complex shifts
Frws Fry o Frp and Fi2, b=tr, appear in the form of the second order
derivatives with respect to x and y of Innz,,, Int,, Inr,, and Inz,, in
addition multiplied by a factor —ik'”. That was explicitly given for the
reflected beam in (A.3.6) and (A.3.8) in Chapter 3.

The beam-field representation (A.7.22)-(A.7.25) seems rather accurate, as
it has been derived under only a few clearly defined approximations. One of
them concerns the beam polarization, two other concern the beam field
distribution. The beam polarization is assumed to be uniform in each
transverse cross-section of the beam. That corresponds to most experimental
data, as the uniform polarization is enforced by polarizator elements usually
included into an optical system. Still this assumption can, if necessary, be
removed from the presented formalism.

The second assumption concerns evaluation of the transmissions and
reflection coefficients. They are evaluated up to the first-order in (A.7.22)-
(A.7.25) or even up to the second-order, if the second-order shifts are
included in the analysis [5, 9]. The third assumption is inhibited in the choice
of only one plane, where this evaluation is applied. Usually the incidence
plane is preferred. It is assumed that the incident 3D beam field can be
factorised in this plane into two 2D factors. They are defined in the two
mutually orthogonal planes - the incidence plane X —Z and the transverse
plane Y—-Z [5, 9]. Such cases were considered in Chapter 3 and in this
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chapter, by considering incidence of the fundamental and higher-order HG
beams.

In the general case, however, the incident beam-field distribution
EY(X,Y,Z) cannot be represented by such a factorised form and should be

expanded first into the 2D beam modes E,(X,Z) and E;"(Y,Z), usually in
a form of 2D HG beams [5] (cf. (A.3.10) from Chapter 3):

E'X.,Y.Z)

= 5" explik"(Z/cos 0" )Y E) (X, 2)EL) (Y, 2). (A.7:20)
S

Then the transmitted (b=t) and reflected (b=r) beams can be also
expressed by the beam mode expansion, shifted this time by the (here)
first-order complex shifts (cf. (A.3.11) from Chapter 3):

EV(X,Y,Z) =5 explik (L), sin 8" + Z/cos6.")]

A.7.27
XY EO(X - L8y ) EO(Y - L8y, Z), 72D
J

EP(X,Y,Z)=5\" explik”(-L}), sin 6" + Z/cos6.")]

A.7.28
xY EO(X - 18, ) ER(¥ -12,,2), (AT28)
J

TEY >

with the polarization vectors s’ determined by predictions of

geometrical optics:

[« [nt 01 ¢@
Sﬁ; | } Sﬂ, (A.7.29)
s | L 0 ¢ |55
[0 [=» 01[¢®
x| {Sﬁ}]_ (A.7.30)
| Sy " 0 o |2

Certainly, for beams factorised in X —Z and Y —Z planes, the expansion
(A.7.27)-(A.7.28) reduces into only one term with j=1.

The second-order complex shifts Fyy,, Fyy), Fy and Fy.), b=tr, can

also be directly included in (A.7.27)-(A.7.28), as well as in (A.7.22)-
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(A.7.25). For example, for transmitted beams, it can be accomplished by the
substitution in (A.7.27), as well as in (A.7.22)-(A.7.23) (cf. (A.7.1)):

X =xcos8)’ +(z-F) )sin6)”,

Z =—xsin6" +(z-F};) )cos 6", (A.7.31)
in the factors E\')(X —L7),,Z), and

X =xcos8,” +(z- Fy},)sin6;”,

Z =-xsin8,’ +(z - F}}), )cos6,”, (A.7.32)

in the factors Ej" (Y —-L7,,,Z). Per analogy, similar substitutions can be

accomplished in (A.7.28), as well as in (A.7.24)-(A.7.25), with the subscripts
TM replaced by TE in (A.7.31)-(A.7.32). The same sequence of substitutions
can be also repeated for reflected beams, provided that x and z are replaced
by —x and —z in (A.7.31)-(A.7.32) (cf. (A.7.1)).

Note that the first-order and the second-order shifts are expressed by the
logarithmic derivatives of the transmission and reflection coefficients and as
such, their definitions can be divergent at same points corresponding, for
example, to the critical or Brewster angles of incidence. Therefore, in
accomplishment of the integration in (A.7.22)-(A.7.25), more refined
methods of integration, like those described in Chapter 4 or just direct
numerical procedures of integration, should be applied. In this way the
method described appears quite accurate up to the lower limit of the paraxial
approximation and covers general cases of incident beams of arbitrary
polarization and with arbitrary field distribution.

Basic characteristics of the first-order shifts defined by (A.7.16)-(A.7.28)
have been discussed in Chapter 3. Contrary to the transverse first-order
complex beam shifts, the longitudinal first-order complex beam shifts L")
and L7}, , as well as their real counterparts &7y, Sy » Op and 8y, , do

not depend on the state of the incident beam polarization. This means that

they do not depend on the polarization parameter Z((j(’_,.] in both, TM and TE,

components of the beam fields. Their magnitudes are proportional to the
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logarithmic derivatives of the Fresnel transmission and reflection coefficients
evaluated in the incidence plane at the incidence angles of the beam axes.
Usually, magnitudes of the TM shifts are larger than their TE counterparts.

Magnitudes of the transverse shifts are proportional to the difference
between Fresnel coefficients of transmission or, equivalently, to the sum of
the Fresnel coefficients of reflection. Therefore, they are the strongest at the
critical incidence of TIR. Contrary to the longitudinal first-order shifts, the
transverse shifts depend on beam polarization. For the circular, right-handed
or left-handed, polarization of the incident beam, the transverse shifts L),

and L)), are of finite magnitude. Their real counterparts &, 5}"’._},%_ and
i 5}?&}_ are of different directions for the opposite circular polarization

states of the incident beam.

The beam shifts for TM and TE beam components are different, in
general. Therefore the beams, as composed of the TM and TE components,
are not uniformly shifted. That means that, in addition to the geometrical
shifts, the beams are, in general, also deformed. Moreover, for the linear, TM
or TE, polarization of the incident beam, the transverse shifts (A.7.16)-
(A.7.19) of the reflected and transmitted beams - with the same polarization
as that for the incident beam and of a finite field magnitude - disappear
altogether. In addition, the transverse shifts of the components of the
opposite polarization and with zero amplitude are divergent. This is the
consequence of the implicit assumption, translated into the diagonal form of
(A.7.8)-(A.7.9), that for the pure TM or TE polarization of the incident
beam, the transmitted (reflected) beam possesses the same, pure TM or TE,
polariza-tion.

All of that confirms the fact that the transmitted and reflected beams do
not exactly follow the polarization and shape of the incident beam. This also
indicates that the method of the beam description in terms of the
(longitudinal and transverse) beams shifts is approximate. However, the
alternative analyti-cal method described in this chapter, in Sections 2-5, does
not need any assumption on the polarization state of the transmitted and
reflected beams, with respect to the polarization state of the incident beam.
In other words, the method is independent of the polarization state of the
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incident beam as both polarization components of the beam field are treated
simultaneously. Therefore, the method remains exact in the spectral domain.

On the other hand, in the direct domain and for oblique incidence of
beams, the method needs in addition only the definitions of the longitudinal
beam shifts. Introduction of the approximate definitions of the transverse
shifts is necessary in this approach. This opens a new path of further research
on the beam interactions with the interface or, more generally, with
multilayers, supported by more accurate analytical considerations and more
precise theoretical predictions.

Main content of this chapter has been published in the Physical Review E 74, 056613 1-
16, 2006.
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