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Thesis

Despite the fact that the x-ray spectra of the self assembled cubic phases
have been known since 1968 there are no simple theoretical tools for their
analysis. The theoretical analysis have been hampered by the mathematical
and structural complexity of the unit cells of the cubic structures. For one,
a single cubic cell contains hundreds of thousands of complex molecules and
a basic mathematical motive in a unit cell is a periodic surface of complex
shape. _

We will prove that the scattering amplitudes of the self assembled cu-
bic phases in amphiphilic mixtures can be very well approximated by the

following relation:

M r,0) = F* 2 [ deote) costa ana )] exp |30 ana o

where q = (27 /a)[h, k, ] is the scattering wave vector, a is the cubic cell
parameter, £ is a coordinate along the normal to the base periodic surface,
p(€) is a density distribution in the direction normal to the surface and o is
a parameter proportional to the fluctuations amplitude of the structure. All
of the data (structure factors F(q) and correction parameters ayy;) needed
to evaluate this expression for any density distribution and fluctuations have
been determined numerically for the P, D, G, C(D), C(P), F-RD and I-WP
triply periodic surface based cubic phases.

For a preliminary analysis of the experimental scattering patterns we

propose a simplified model based on the assumption of an uniform density



distribution with constant density po inside the layer of width L and neglect-

ing the fluctuations:

2p0 L
A(q,L) = FS sin (a —)
(q ) et G hkt 4 2

This model have been applied to the analysis of several scattering patterns of
the following systems: DLPE, DEPE, DOPE, DDAB lipids in water; GMO
amphiphilic molecules with polaxamer P407 in water; Rf SEO, fluorinated
surfactants in aqueous solutions and polimerized system formed in the CTAC
with TEOS additives. The method presented in this dissertation provides a
valuable tool which yields information on the micro- and meso-scopic struc-
ture of the cubic phases, on the phase coexistence, phase structural relation-

ships and finally on the mechanisms of the phase transition kinetics.



Contents

1 Introduction 1
1.1 'Triply Periodic Surfaces . ... ... ... ........... 2
1.1.1 Types of periodicsurfaces .. ... ........... 4

1.1.2 Minimal and constant mean curvature surfaces . . . . . 7

1.1.3 Nodalsurfaces. . . ... ................. 12

1.2 Amphiphilic mixtures . . . . .. ... ... ... 0oL, 13
1.3 Scattering experiments on bicontinuous cubic phases ..... 18

1.4 Summary of the scientific background and the aim of the work 21

2 The model 22
2.1 The Structure Factor . . . .. ... ... ... ......... 27
2.2 The Molecular Factor . . . . . E e kA K K F A EEA R A E e 31

2.2.1 A vesicle and a rotational sinusoid . . . ... ...... 32
2.2.2 Theisotropicfit . . ... ... ... ... ......... 34
2.2.3 Results for triply periodic surfaces. . . . . . ... ... 37
2.2.4 The general form of the Molecular Factor . . . . . . .. 55
2.3 Debye-Waller factor . . . . . .. . ... ... ... ....... 58

3 Analysis of the experimental scattering spectra 62
31 Themethod . .. ... ... ... . ... ... ..., 64
3.2 Analysis of the experimental spectra . . . . . ... ...... 70

3.2.1 The DLPE, DEPE and DOPE systems . . . . ... .. 70

322 TheGMOsystems . ... ................ 79



3.2.3 The DDAB/cyclohexane/water system [6] . . .. ...
3.24 Polimerized G structure [68] . . . . ... ........
3.2.5 The RFSEO,/water system [9] . ... .........

4 Summary

5 Appendices
5.1 Appendix 1: Nodal approximations for the C(P), C(D), F-RD
and -'WPsurfaces . ... ...... ... ... . ......
5.2 Appendix 2: Derivation of the Debye-Waller factor . . . . . .



1 Introduction

The small-angle x-ray and neutron scattering experiments are widely used
to determine the symmetry and structure of self assembling systems. Still,
in the case of the structures formed by a surfactant surface in binary (with
water) and ternary (with oil and water) mixtures, it is often hard to exactly
determine the topology of the phase formed in the system. The pioneering
work in this field was done in 1968 by Vittorio Luzzati et al [1, 2, 3, 4].
They showed that the mesoscopic structure of surfactant aggregates could be
more complex than spheres (micelles in microemulsion), cylinders (hexagonal
phases) or planes (lamellar phases). In particular theyobserved a formation
of periodic bicontinuous phases in amphiphilic systems (see chapter 1.2).

Scriven [5] was the first one to propose triply periodic minimal sur-
faces (TPMS) as a possible realization of the bicontinuous structures in these
mixtures.

Since then the scattering techniques were often used to monitor the struc-
tural phase transitions, for example [6,10,7,8,9,10]. All these works indicate
that the SAXS and SANS are powerful tools which in principle provide infor-
mation on the symmetry and structure of the phases present in the system.
Yet, the x-ray diffraction data are not always conclusive: due to the gener-
ally small number of reflections, an accurate reconstruction of an electronic
map of the cubic cell is often impossible. Even once the space group is
rigorously established, there is still the question as to the identity

of the minimal surface and thus the topology of the structure. For



example, the first report on the observation of a periodic surface in block
copolymers was done in 1986 by Thomas et al [11]. They identified the sur-
face dividing A monomer rich and B monomer rich domains as the Schwartz
minimal surface D. It took nine years until Hajduk et al [12] in 1995 gave
the correct identification of this structure as the G gyroid minimal surface.
It proves, that even for structures of different space symmetry groups, exact
determination of them may be very difficult.

Inspite of quite a long history of the studies of the triply periodic cubic
phases in amphiphilic mixtures (see chapter 1.3) there is still an evident
lack of simple models for the scattering amplitudes. This is probably due to
the mathematical and geometrical complexity of the triply periodic surfaces
(TPS). Yet as the cubic phases based on these surfaces are discovered in wider
and wider span of systems and enter the realm of technology (see chapter
1.1) the theoretical analysis of these systems is more than needed.

In the introduction we will first introduce the concept of triply periodic
surfaces (chapter 1.1) then the system of our interest is described (1.2) and
finally a brief historical survey of the experimental scattering studies is pre-

sented (1.3).

1.1 Triply Periodic Surfaces

The periodic surface is the surface that moves onto itself under a unit trans-
lation in one, two or three coordinate directions similarly as in the periodic

arrangement of atoms in regular crystals. The most interesting are triply



periodic surfaces which are periodic in all three directions forming struc-
tures which have various crystallographic symmetries. In this work we will
concentrate on smooth surfaces with cubic symmetry.

The paradigm structures for all periodic surfaces are minimal periodic
surfaces. Such surfaces have zero mean curvature at every point of the surface
as was shown by Meusnier [13] and Laplace in XVIII century. The simple
patch of the minimal surface can be visualized in a simple experiment of
Plateau (Belgian physicist XIX century): use a soap solution and dip a metal
frame (not necessarily planar) in it. The film that forms on the frame will
adopt the shape such as to minimize the surface free energy i.e. as to minimize
the area of the surface (hence the name minimal surface).

The first periodic (in one direction only) minimal surface discovered in
1776 [14] was a helicoid: the surface swept out by the horizontal line rotating
at the constant rate as it moves at a constant speed up a vertical axis. The
next example (periodic in two directions) was discovered in 1830 by Herman
Scherk. The first triply periodic minimal surface was discovered by Herman
Schwarz in 1865. The revival of interest in periodic surfaces was due to the
observation (Luzzati et al[1, 2, 3, 4]) that bilayers of lipids in water solutions
form at suitable thermodynamic conditions triply periodic surfaces and the
discovery of new triply periodic minimal surfaces by mathematician Schoen
[15]. If we draw a surface through the middle of the triply periodic lipid
bilayer it follows from the geometrical constraints that it must be a triply
periodic minimal surface [16].

The self-assembled structures formed by lipids or surfactants in water



solutions are used nowadays as templates for the three dimensional polimer-
ization reaction leading to the mesoporous sieves [17], contact lenses [18] or
bulk catalysts and this adds a technological dimension to the study of peri-
odic surfaces. The formation of periodic surfaces in etioplast in plants and
the usage of periodic surfaces for the crystallization of high molecular weight
membrane proteins [19] shows that these surfaces are related to biological
problems. After the discovery of various structures formed by carbon, i.e.
wires, fullerens it has been also shown theoretically that the carbon atoms
can be arranged to form triply periodic surfaces [20, 21]). In ionic crystals
the points at which the electrostatic potential is constant, form the periodic
surface; its symmetry can be determined by the symmetry adapted distribu-
tion of charges [22]. It is also shown that there is a very strong connection

between chemical structures and periodic surfaces [23, 24].

1.1.1 Types of periodic surfaces

Triply periodic surfaces can be nodal ([25, 26, 27], [28]), equipotential sur-
faces ([29], [30]) and minimal surfaces. In this work we are interested only
in minimal and nodal surfaces. They are briefly described below in terms of
their geometrical properties and generating equations.

Surfaces are characterized locally by the mean H and Gaussian K cur-
vature. K and H can be calculated according to H = 1/2(1/R; + 1/Ry),
K =1/(R1R;), where R; and R, are principal radii of curvature (see Figure
1).

From the point of view of physics especially important are the ones of
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Figure 1: A piece of surface with non-positive Gaussian curvature. The
two principal radii of curvature are shown. A minimal surface satisfies the

condition R; = — R, at every point on the surface.

constant mean curvature since they are widespread in nature. A soap film
spanned on a wire frame is a surface with zero mean curvature and a soap
bubble is a surface of constant mean curvature. The curvature of the surface
is related to thermodynamic quantities by the Poisson-Laplace equation H =
AP/20, where H is the mean curvature at the interface of two homogeneous
media, AP is the pressure difference across the interface, and o is the surface
tension.

Every triply-periodic surface can be characterized by the genus, an integer

number which describes the number of holes or handles in the surface. The




Figure 2: The unit cell of the P triply periodic minimal surface.

genus of a surface is related to its local properties by the Gauss-Bonnet

theorem:
/dSK =2rx =4n(l - g) (1.1)

where K is the Gaussian curvature, x the Euler-Poincaré characteristic, and
g is the genus. It is possible that different surfaces have the same genus. The
genera for the best known triply-periodic surfaces, reported for a translational
unit cell are: 3 for Schwarz P, 5 for Schoen G, 9 for Schwarz D surface (2 for
a smaller unit cell preserving the surface symmetry only). The cubic cells of
these minimal surfaces are shown on Figures 2-4.

Periodic surfaces can also be characterized by a distribution of normal

vectors. In the case of polimerized surfactant membranes such distribution



Figure 3: The unit cell of the D - double diamond TPMS.

is accessible experimentally via 2H NMR technique ([31], [32]).

1.1.2 Minimal and constant mean curvature surfaces

Triply-periodic minimal surfaces (TPMS) are surfaces of constant mean cur-
vature equal zero. The name “minimal” comes from the fact that the surface
spanned on an sufficiently small frame has the lowest, “minimal” surface area
if it is the surface of zero mean curvature. TPMS are infinite and are not
bounded by a frame, but the mean curvature for these surfaces is zero at
every point on the surface. That is why they are called “minimal”. The
condition of zero mean curvature implies that the Gaussian curvature is non-

positive at every point. The points where the Gaussian curvature is zero are




Figure 4: The unit cell of the G - gyroid TPMS.

called the flat points. These points are isolated.

Most of the TPMS divide the volume into two equal subvolumes (bal-
anced surfaces - P,D,G are the most prominent examples). There are also
TPMS which divide volume into unequal subvolumes (unbalanced surfaces -
for example I-WP surface (Figure 5)).

TPMS are described locally by the Enneper-Weierstrass equations ([15],
[33]):

% =TRe /wl dwe® R(w)(1 — w?)

wo
wy
y=TRe | dwe®R(w)i(1+w?) (1.2)
wo -
z =TRe dwe®® R(w)2w
wo
8
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Figure 5: The unit cell of the -WP TPS.

where Re denotes the real part of the complex integral and integration is car-
ried on an arbitrary path from wy to w; in the complex plane. The Enneper-
Weierstrass equations guarantee that the surface is minimal but not neces-
sarily embedded i.e. free of self-intersections. R(w) is called the Weierstrass
function and is characteristic for a given minimal surface. The parameter 7
sets the length scale. The angle 6 is called the Bonnet angle. The transforma-
tion which results from the change of 6 is called the Bonnet transformation.
The surfaces related by Bonnet transformation are called associate. The Bon-
net transformation is isometric and conformal, all the lengths and angles are
preserved. The surface is only bent without stretching. The surfaces related

by Bonnet angle equal to 90° are called adjoint or conjugate surfaces, since



Figure 6: The unit cell of the F-RD TPS.

they are described by adjoined (conjugate) complex function. D, P, G are
associate surfaces with the Weierstrass function R(w) = (1 — 14w* + w®)~ /2.
The Bonnet angle is respectively 8 = 0°,90°,38.015° (15]. Thus P and D
are adjoint surfaces. The properties of the TPMS follow uniquely from the
Weierstrass function R(w) yet the R(w) function is known only for few TPMS
of simple topology.

Another method of obtaining the TPMS have been shown by GézdZ and
Holyst (34, 35]). The minimization of the Landau-Ginzburg potential in real
space led to the discovery of many new TPS of the mean curvature close to
zZero.

TPMS belong to the broader class of periodic surfaces of non-zero con-

10



Figure 7: The unit cell of the C(P) TPS.

stant mean curvature (CMC). The existence of periodic CMC was proven in
1970 [36] for two doubly-periodic surfaces of hexagonal and square symme-
try. First triply-periodic CMC surfaces were calculated numerically for P, D,
I-WP, F-RD (Figure 6), C(P) (Figure 7), and S’-S” surfaces [37]. It is com-
monly assumed [38, 39] that the surfaces inclosing the lipid bilayers in cubic
phases are a compromise between the CMC surfaces and so called parallel
surfaces. This last class contains surfaces laying at a constant distance away

from the minimal surface.

11
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Figure 8: The unit cell of the C(D) TPS.

1.1.3 Nodal surfaces

The nodal surfaces are defined by ¥(r) = 0, for ¥(r) given by the following
Fourier series ([25], [23])

U(r) = Y F(k)cos[2rk - T — a(k)] (1.3)

k
where k describes the reciprocal lattice vectors for a given lattice, a(k) is a
phase shift , and F'(k) is an amplitude associated with a given k-vector.
Periodic surfaces can be approximated in terms of nodal surfaces. The
quality of approximation depends on the number of terms in the Fourier
series. The topology of a surface is in some simple cases already well repro-

duced by a series containing only the first terms in the expansion. Several

12
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such surfaces have been tabulated ([28] or [40]). For example the simplest

approximations for P, D,and G surfaces based on Eq(1.3) are, respectively:

cos(X) + cos(Y) + cos(Z) =0 (1.4)
cos(X) cos(Y') cos(Z) + sin(X) sin(Y) sin(Z) =0 (1.5)
sin(X) cos(Y) + sin(Y) cos(Z) + cos(X) sin(Z) = 0 (1.6)

where X = 27z, Y = 27wy, Z = 2nz. The nodal approximations for other
four surfaces explored in this work are given in appendix 1.

Although the nodal surfaces are neither minimal nor constant mean cur-
vature they can be used as an ansatz for such surfaces [41]. The huge advan-
tage of the nodal surfaces is that they are described by simple mathematical
equations. Equations generating the C(P), C(D) (Figure 8), F-RD and I-WP

surfaces are given in Appendix 1.

1.2 Amphiphilic mixtures

The systems of our interest are the mixtures of water and surfactants - surface
active agents. These are called binary mixtures. The models presented in
this work apply also to ternary mixtures which consist of water, surfactant
and additional hydrocarbons.

The mechanisms governing the self assembly of surfactant molecules and
thus resulting in the fascinating wealth of phase behavior originate from two
phenomena. One is the behavior of water itself the second being the complex

construction of a surfactant molecule.
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The unusual properties of water are well explained by the existence of
the so called hydrogen bonds. The nature of a hydrogen bond is mainly
electrostatic [42]. The bond is directional and forms along the covalent bond
between the electro negative atom (the oxygen or nitrogen) and hydrogen. In
a solid state the water molecules adopt a lattice where each oxygen is tetra-
hedrally coordinated to four other oxygens, with each hydrogen atom lying in
the line joining two oxygen atoms forming linear sequence of a covalent and
hydrogen bond (O—H---O). Even though the structure of the liquid water is
disordered the tendency to retain the ice-like tetrahedral network remains.
When a molecule which cannot form the hydrogen bonds is inserted water
molecules try to rearrange themselves around this foreign molecule in such a
way as to preserve as many hydrogen bonds between water molecules as pos-
sible. If the nonpolar solute molecule is not too large, it is even possible for
water molecules to pack around it without giving up any of their hydrogen
bonds. Yet this reorientation is entropically very unfavourable because it im-
poses a new, more ordered structure on the surrounding water molecules. As
a result the nonpolar hydrocarbon chains are very weakly solvable in water
and hence their name - hydrophobic (water hating). On the other hand the
polar compounds easily take part in creating the hydrogen bonds and water
is a good solvant for them. That is why they are frequently referred to as
hydrophilic (water loving) molecules.

The amphiphilic (loving both) molecule is composed of two covalently
bound parts - a hydrophilic polar head and a hydrophobic hydrocarbon tail

(see Figure 9). This complex construction of surfactant molecule induces a
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CH,

Figure 9: The amphiphilic molecule of a popular soap - sodium dodecyl
sulfate (SDS).

rich phase behavior in mixtures with water. Namely the surfactant molecules
will self arrange themselves into various structures preventing the contact be-
tween water and hydrocarbon chains. When also oil is added to the mixture,
the amphiphilic molecules will create a surface boundary between water and
oil rich regions. The simplest structure is a sack-like aggregate commonly
called a micelle in which the polar heads cover the surface shielding hydro-
carbon tails and molecules from contact with water. Another possibility is a
surfactant bilayer. In this case the amphiphilic molecules form two palisades
with the heads pointed outside towards water and the tails hidden behind
them.

Depending on the thermodynamic and structural parameters of the sys-
tem, such as temperature, composition, or length of an aliphatic chain in
a surfactant molecule many different structures can be formed. The basic
structures forming at low concentrations of surfactants are the spherical mi-

celles, cylinders and plane surfaces. At higher concentrations these structures
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Figure 10: The phase diagram of a C;3EOg/water mixture. Adopted from

reference [45).

can order: micelles on the cubic lattice, cylinders on the 2D hexagonal lattice
and plane membranes in lamellar phases. In a thin range of parameters the
amphiphilic molecules arrange in the cubic liquid crystal phases.

The first phase diagram of a surfactant-water mixture was published by
McBain in 1922 [43] (after [44]). Since then countless works on various surfac-
tant and lipid systems were reported. A typical phase diagram of a binary
mixture is shown on Figure 10. (C;2EOq/water system [45]). Apart from
the fluid isotropic phases the ordered ones appear. A lamellar phase ex-
hibits a one dimensional order. It consists of plane sheets of water separated
by surfactant bilayers (Figure 11a). At smaller surfactant concentrations a

hexagonal phase is formed. It is made up of elongated cylinders with the

16



Figure 11: The lamellar (a), hexagonal (b) and cubic phases (P TPMS based
(c) and D TPMS based (d)).

polar heads covering their surface. The cylinders are arranged in two di-
mensional hexagonal lattice (Figure 11b). It is quite common phenomenon
that between the regions of hexagonal and lamellar phases a cubic phase do-
main is placed. The cubic bicontinuous phases (Figures 11c and d) consist of
the surfactant bilayers which divide the volume into two mutually interwo-
ven continuous but separate channels. Until now the existence of only three
different continuous cubic phases have been confirmed. They are based on
the P, D and G triply periodic surfaces. The nature and mechanisms of the
phase transitions between the hexagonal and cubic and between the cubic

and lamellar phases are still not well understood. Furthermore the world of

17



triply periodic surfaces - potential templates for bicontinuous cubic phases in
amphiphilic mixtures - is almost infinitely rich. These facts call for a detailed
analysis of the structure of the cubic phases. Such analysis is needed also for
determining the details of the cubic structures.

Another interesting subject is the cross sectional density distribution of a
surfactant bilayer. There have been many extensive works conducted in this
area. They deal with the hydrocarbon chain distribution within the layer
(for example [46]) and the overall density distribution [47]. As was shown
by Harper et al [39] the density profile of the bilayer can be determined also
by an analysis of the x-ray spectra. A simple tool for such an analysis is

presented in this work.

1.3 Scattering experiments on bicontinuous cubic phases

The first observation of a bicontinuous cubic phase in- an amphiphilic mixture
was reported by Luzzati and Spegt in 1967 [1]. The study concerned several
water mixtures of various strontium soaps. Based on the x-ray diffraction
data the structure of these phases have been assumed to compose of polar
heads located on straight rods of finite length belonging to two interwoven
infinite three dimensional networks. The hydrocarbon chains constituted a
paraffin matrix in which the networks resided. The authors used this simple
model of an Ia3d cubic phase to calculate the scattering intensities. This
procedure led to a good qualitative agreement with the experimental pattern.

In 1968 another works concerning this subject were published (for example

18



[2]). Again the rod model has been applied to fit the scattering spectra of
Ia3d and R3m cubic phases.

In 1970 Scriven [5] pointed out that the energy minimization for the
interface between components in amphiphilic mixtures may resemble one of
the triply periodic surfaces. In 1980 Larsson [48] suggested that the x-ray
diagrams of Lindblom [49] could be explained by a P TPS based phase.
In 1983 Longley and McIntosh [50] explored a glycerol monooleate (GMO)
water dispersion and basing on the x-ray data, suggested the D and G TPMS
based phases.

The first calculation of the structure factors for a bicontinuous cubic
phase based on a D - double diamond - TPS was conducted by Alan Mackay
in 1985 [51). Five years later Anderson et al [37] published an extensive
work on triply periodic surfaces of prescribed mean curvature. One can find
structure factors for the P, D and I-WP surfaces there. Since then, even
though the atomic scattering curves had not been evaluated at that time,
numerous works with a detailed analysis of the amphiphilic systems have
been reported. The analysis of the scattering patterns was only qualitative
and only the symmetry group was recognized. The analysis was based on the
composition of the system and geometrical calculations leading to the surface
areas per surfactant head. Good examples of such works are [52] (a study of
a di-dodecyl alkyl-8-D-glucopyranosyl-rac-glycerol lipid water system), [53]
(monoglyceride-Poloxamer 407-water system) or a technologically breaking
through work on the polymerized mesoporous materials [54]. As it will be

shown in the third chapter of this work (analysis of the x-ray patterns of
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the system presented in [53]) even a careful and detailed analysis conducted
in this manner can lead to presumably wrong conclusions. The influence of
the width of the layer decorating the base minimal surface on the scattering
pattern is strong and thus the molecular factor should be included in studies
concerning these systems.

An example of a comparison between theory and experiment involving
the molecular factor (MF) associated with the width of the water or surfac-
tant layer, is a very elegant work of M. Clerc and E. Dubois-Violette [55].
The authors presented an isotropic model of the MF and fitted the experi-
mental data for several G - gyroid TPMS based systems. Although the fits
were very promising, they were done only for the decorated G surface and
its applicability for other structures has not been confirmed. Finally, only
recently a beautiful work in this field has been done by P. E. Harper and
S. M. Gruner [38, 39]. They have presented a detailed calculation of the
scattering amplitudes for real lipid bilayers. From the data the authors have
been able to reconstruct the bilayer’s cross sectional density from the scat-
tering intensities, assuming the reduction of the density for the terminal CH,
methyl groups. Unfortunately their analysis is rather complex. Evaluation
of the scattering amplitudes for a different system would include the whole
procedure with Fourier transforms of the parallel surfaces. This is a mathe-
matically and computationally demanding task and thus the method is not

applicable as a common simple analysis tool for the x-ray data.
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1.4 Summary of the scientific background and the aim

of the work

As it has been shown in the introduction the binary and ternary mixtures of
water and amphiphilic molecules have aroused a big theoretical and experi-
mental interest over the last decades. The area becomes even more important
as nano science enters the realm of technology.

In this work we will use the commonly accepted assumption that the cubic
phases in amphiphilic mixtures are based on triply periodic surfaces. The
science of these surfaces has been extensively reviewed in the first section of
the introduction.

Looking at the theoretical works concerning the scattering patterns of
these phases one sees a clear lack of simple models for the scattering ampli-
tudes which would include the influence of the cross sectional density profile
and fluctuations.

The purpose of this work is to fill this apparent gap in the
theoretical studies and provide a simple tool for the theoretical
analysis of the experimental data for the cubic periodic structures
formed in the water mixtures of surfactants with hydrocarbons.

After the model will be derived (chapter 2) we will check its applicability
by comparing the model intensities with experimental scattering patterns

(chapter 3).
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2 The model

The cubic phases made from the self assembled surfactant molecules with
hydrocarbon chains in water solutions can be physically realized in two pos-
sible ways. One is a direct phase in which a water film is centered on the
Triply Periodic Minimal Surface (in case of the C(P), C(D), F-RD and I-WP
the TPMS is modeled here as a nodal surface[40]), while the two disjoint
subspaces are filled with surfactant molecules (Figure 12b). The second pos-
§ibility is an inverse pl;ase where the TPMS is decorated by a surfactant
bilayer and the two channels are filled with water (Figure 12c). In each case,
knowing the microscopic details of the molecules present in the system, one
can postulate the form of the cross sectional electron density profile p(¢) in
the direction normal to the surface. A schematic drawing of these profiles
for a normal and a direct phase is illustrated in Figure 12d and 12e. It is
a good question whether a one dimensional density profile contains all of
the information on the density distribution within a three dimensional cubic
cell. It does when two assumptions are fulfilled. One is that the regions
of a given species (surfactant heads, tails or water molecules) are contained
within so called parallel surfaces (surfaces of a constant distance to the base
minimal surface). Another possibility is that the bounding surfaces are the
constant curvature ones. It is a subject of an ongoing dispute which of these
two postulates is true. Still, as it was argued in [38] these two solutions are
quite close to each other and assuming parallel surfaces should not introduce

significant differences. The second assumption is that the one dimensional

22



P — direct phase

d) Tp e) Tp
—® HO &— HO @— —® Hp

XN

_L o L
50 3

Figure 12: a) The zero width - mathematical surface in the unit cell of the P
structure. The TPMS can be decorated by a water film b) - direct phase or by
a lipid bilayer c) - inverse phase. These phases lead to different cross sectional
density profiles d) and e) respectively. Still, in the first step approximation
of the Small Angle X-Ray Scattering intensity these profiles can be modeled

by f) a uniform density distribution. See text for explanation.
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density profile does not change within the cubic cell. This is generally true
due to the nature of the lipid or surfactant bilayers which are two dimen-
sional fluids. Since the molecules can freely move along the membrane, any
density fluctuations should be leveled on a very short time-scale. There still
remains the dependence of the density profile on the local curvature which is
not constant. Reference [39] contains a detailed study of this problem. Yet
reconstructing the detailed density profiles requires an analysis that starts
with fitting the spectra with amplitudes for a constant density distribution.
Furthermore as it will be argued below and shown in our consecutive pa-
per these matters will not affect the procedure leading to the determination
of the most crucial parameters of a cubic phase. The last effect having an
impact on the scattering amplitudes are the fluctuations of the membrane.
They will be discussed in detail in chapter 2.3. For now it is enough to point
out that characteristic relaxation times of both the molecular and collective
fluctuations of the membrane are by many orders of magnitude shorter than
typical exposition times in the scattering experiments. We will neglect all
the correlations between fluctuations. It is thus enough to account for the
fluctuations by introducing another parameter o into the expression for the
average density distribution. In general both the influence of the molecular
and Debye-Waller term is dependant on the local curvature and orientation
of the surface. Still as it will be shown in the following sections, inspite of the
geometrical complexity of the TPMS based cubic phases, all of these effects
factorize from the integral over the base surface and the scattering amplitude

can be expressed as a product of a structure factor 'S, molecular factor F'™
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and the Debye-Waller factor FP%:

A(g,p(£),0) = F*(q) F¥(q, p(¢)) F°" (q,0) (2.1)

The main result of our work is summarized by the following formula:

Aa#0,p(6),) = F* [2 [ deple)costa ona )| exp [~ (¢ amm ]

(2.2)
where £ is the distance away from the base minimal surface, q = (27 /a)[h, k, ]
is the scattering wave vector (¢ = (27/a)V/hZ + k2 + 12 ), h, k,l are the Miller
indices and o is a standard deviation related to the fluctuations amplitude
(see chapter 2.3). The normalized structure factors and the a parameters are
explicitly given in tables 2-8 for the P, D, G, C(P), C(D), F-RD and I-WP
TPMS based cubic phases. Thus this formula allows an evaluation of the
scattering amplitudes for any density profile p(¢) and fluctuations parame-
terized by the standard deviation o. The model scattering intensity for the

powder samples is:

I(q, p(€), 0) = MhulA(a, p(€), 0) (2.3)

where the multiplicity factor My, is also included in the tables. This method
provides an easy to use tool which facilitates a very detailed determination of
the actual cross sectional density profiles in the amphiphilic cubic systems.
It is important to point out that expression (2.2) sets the normalization
of the amplitudes in which the amplitude of the 000 reflection is equal to the

total contrast electron density within the unit cell:
o]
Ala=0) = [ de p(¢) 2550 + 4mx €°] (2.4)
0
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where a is the cubic cell parameter, sj = so/a® is the dimensionless surface
area of the base minimal surface per unit cell and is given by the structure
factor for the 000 reflection (sp = Fp,). The term in rectangular brackets
gives the surface area of the parallel surfaces inclosing the subvolume of the
layer decorating the base TPMS (see Eqn(2.8)). Both the surface areas of the
base TPMS and their Euler characteristics x per unit cell are summarized in
Table 1 (chapter 2.1).

In many cases an even simpler analysis is needed. The cubic phases
formed in self assembling systems have a growing potential for nanomaterial
investigations and possible industrial applications. There, the key features
of these phases like their type (direct-inverse) and the layer width L are of
crucial importance. For example in catalytic applications the size of the pores
have a dramatic influence on the efficiency and molecular selectiveness of the
material. Since the main contrast is associated with the density difference
between water and hydrocarbons, it is legitimate to assume a flat density
profile for both cases (Figure 12f). In the scattering experiments only the
intensity is measured, therefore the sign of the density difference can also
be neglected and only the width L of the layer decorating the TPMS is
important. Furthermore, as it will be shown in chapter 2.3, the fluctuations
of the membranes have a minor influence on the relative intensity of the hkl
peaks when compared with the influence of the layer width. Thus inserting

a flat density profile p(¢§) Eqn(2.11) and o = 0 into Eqn(2.2) we obtain:

A(q # 0, L) = FS 2P0 sin (ahk, q é) (25)
Qhit 4 2
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where py is the electron density within the layer and
A(q=0,L) = p $(L*) a* (2.6)

where ¢ is the volume fraction of the layer (see Eqn(2.7)). We will show in
the third chapter that this simplified modeling leads to a good approximation
for the intensity of the Bragg reflections and provides a very valuable insight
into the details of the cubic phase structure.

Fitting of the model intensities given by substituting amplitude (2.5) into
Eqn(2.3) to the experimental intensities provides the layer width L. In order
to compute area per surfactant head for the direct and inverse structure of
a given layer width L one can use the following formulas which relate the
dimensionless layer width L* = L/a with the volume fraction of thé layer
¢ and the surface area of the interface between surfactant and water rich

s A 2.
regions sji = s /a*:

¢ = shL* + ZxL*® 2.7)
s = 2 s5 +mxL*? (2.8)

In most cases comparison of the areas per surfactant head for the di-
rect and inverse phase enables determination of which of the types has been

formed. An example of such analysis is presented in the third chapter.

2.1 The Structure Factor

The structure factor (SF) arises from the base TPMS. It is given by:
FS = /dzrexp [iqr] (2.9)
s
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where the integral is taken over the base minimal surface within the unit cell.
In order to calculate the SF the surfaces have been triangulated. Then the
integral over the surface has been substituted by a sum over the centers of

the triangles:

N
FS = Zs,- exp [iqr;] (2.10)
i=1

where s; is the j-th triangle’s surface area and r; is the location of its center
of mass. The structure factors for the 000 reflection give the surface area sp
of the base TPMS. Thus the SFs have the dimension of surface area.

Table 1 summarizes the computed areas for the seven explored structures.

The list of all of the SF's for the strongest Bragg reflections are included
in the Tables 2-8. As it was shown in [56] they are in a very good agreement
both with the space symmetry group of the explored structures and with
analytical evaluations for the P, D and G surfaces conducted by Mackay|[51],
Anderson [37] and Clerc and Dubois-Violette [55].

Values of the surface area of the base TPS for the C(P), C(D), F-RD
and I-WP structures are slightly different then those given in literature. For
example for the C(P) TPS we obtain a value of s§ = 3.7519 while Anderson
[37] provides s§ = 3.510. Still our value is close to the one established by
Schwartz [40] (s§ = 3.809). These differences might be caused by the fact
that Anderson has worked with minimal surfaces, while Schwartz (like in this

work) has used its nodal approximation.
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Major characteristics of

the Triply Periodic Surfaces

TPS X EH
P -4 2.3458
D -2 1.9192
G -8 3.0966

C(D) | -30* | 4.4921
C(P) | -16 | 3.7519
F-RD | -40 | 4.8580
IWP | -12 | 35543

Table 1: Data from numerical evaluations. x is the Euler characteristic per
unit cell and s§ = sp/a? is the dimensionless surface area of the TPS per unit
cell with the cell parameter a.

* The value obtained by the the Euler relation for a triangulated surface.
Please note that the best reconstruction of the volume fraction ¢ (Eqn(2.7))
and surface area of the parallel surfaces s (Eqn(2.8)) is obtained for x = —36.

It is the same value as reported by Landh [53].
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Figure 13: The visualization of the models used to evaluate the scattering
intensities, a) shows schematically the base surface decorated either by water
- film (direct phase) or lipid bilayer (inverse phase) and the flat density profile,

b) the isotropic model, c) the lattice model. See text for explanation.
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2.2 The Molecular Factor

In order to evaluate the formula for a molecular factor (MF) we have first
performed calculations for a flat cross sectional density profile (see Figure
12f):

o) =m0 (£ - 1) (211)
where pg is the density within the layer, © is the Heaviside step function
(©(z) =0 for z < 0 and ©(z) =1 for z > 0) , £ is a coordinate along the
direction normal to the base minimal surface - namely, it is the distance away
from the minimal surface and finally, L is the width of the layer. Apart from
the layer, the density is set to zero, thus the integral over the whole volume
of the unit cell can be substituted by an integral over the subvolume inclosed
between the parallel surfaces:

A L) = [ a®sple(e) expliar] = drexpliar]  (2.12)
\4 V:|é(r)|<L/2

In order to perform this last integral numerically, the unit cell of each TPMS
has been projected on a cubic grid N x N x N of size N = 96 for the D
surface, N = 128 for G and C(D) and N =192 (P, C(P), I-WP and F-RD).
For each point j on the grid, the smallest distance d; to the surface has been
calculated. Then the integral (2.12) has been evaluated as a sum over points
laying in a distance d smaller then L/2 from the TPMS:

" A(q,L) = %a; Z exp [iqr;] (2.13)

jidj<Lf2

A schematic visualization of this procedure is shown on Figure 13c. In order

to check the accuracy of this method we have performed calculations for two
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log intensity [arb. units]

Figure 14: The scattering intensity as a function of the scattering vector
length for a single layer of vesicles arranged on a 2D square lattice. The

insert presents the vesicle.

analytically accessible structures - a vesicle and a rotational sinusoid. The

results of this tests are presented in the following subsection.

2.2.1 A vesicle and a rotational sinusoid

Lets imagine a single layer of vesicles arranged on a 2D square lattice in the
zy plane. It is important to remember here that it serves only as an abstract
test structure for our model. Still this kind of thin layers of vesicles made
from amphiphilic molecules have been obtained experimentally [57). The

vesicle is constructed by decorating a sphere of radius 7y = a/4 by a layer of
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Figure 15: A cut through a unit cell of a rotational sinusoid. The structure
is periodic in the z direction and is arranged on a 2D square lattice in the

zy plane.

uniform density and width ranging from L = 0 to L = a/2. The analytical

expression for the scattering amplitude reads:

1 2% +L/2
A" (q,L) = + / d¢ ‘/-' dfsin @ ‘/'u dr r?exp [i2nlr cosf]  (2.14)
L 0 0 ro~L/2

where for simplicity the lattice cell parameter has been set to unity (a = 1)
and the scattering vector q = (27 /a)[h, k, l] is parallel to the z axis (h =0
and k£ = 0). Figure 14 presents the scattering intensity as a function of the
scattering wave vector. The lattice model reproduces the intensity evaluated
analytically very well.

The sphere is a structure of positive Gaussian curvature (both principal
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radii of curvature have the same sign). The TPMS have negative Gaussian
curvature meaning that at every point on the surface, the principal radii of
curvature have opposite signs. Thus we have used another test structure that
has both positive and negative Gaussian curvature regions. It is a rotational
sinusoid (Figure 15). It’s base surface is a cylinder of radius a/4 modulated
by a sinus function. In the cylindrical coordinates the base surface is given

by the following equation:

¢ a.
r=q+ gsm_(27rz) (2.15)

Again the base surface is decorated by a layer of uniform density and width
L € (0,a/4). These kind of structures have been proposed for the interme-
diate stage in the kinetics of phase transitions between hexagonal and cubic

structures (see for example [58]). The scattering amplitude:

. 1 1 2% 8
A"™(q,L) = —/ dz/ d¢/ dr 7 exp [iqr] (2.16)
L 0 0 e
where r4 are functions of z setting the boundaries of the layer in such
a way that the layer width L is constant in the direction normal to the
surface of the sinusoid. Figure 16 presents the comparison of the scatter-
ing intensity obtained analytically and numerically for the scattering vector
q = q(27/a)[1,1,1] and L = a/4. Again the lattice model reproduces it very

well.

2.2.2 The isotropic fit

Our goal is to find a form of the expression for the scattering amplitude

(Eqn(2.12)) that would factorize into a product of a structure factor and a
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Figure 16: A comparison of the scattering intensity calculated analytically
and numerically using the lattice model for a rotational sinusoid for the

scattering vector equal to q = ¢(27/a)(1, 1, 1].

molecular factor:

A(q,L) = F(q)F™(q, L) (2.17)

Dividing the left hand side of this equation (obtained numerically (Eqn(2.13))
by the appropriate structure factor we can extract an effective MF which was
then fitted by a simple formula.

It appeared that the simple formula can be extracted from the model
shown in (Fig. 13b). In its original form it was first proposed by M. Clerc
and E. Dubois-Violette [55] and was successfully used to fit several scattering
patterns of the simple gyroid, G, structure based phases. The idea is to
decorate the TPMS with spheres of radius L/2 of a uniform density on the

surface. This leads to an isotropic MF' independent of the local curvature
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and orientation of the surface:
M_ 2 .
F'iso = EE Sln(qL/2) (218)

This model reconstructs the Heaviside function form of the scattering density
in the direction normal to the surface only for plane surfaces. In the case
of the curved surfaces it is only an approximation which fails when the local
radius of curvature is comparable with the layer width L.

We have found that for the uniform density distribution within the layer,
the effective MFs of the explored TPMS based cubic phases can be very well

approximated by a slightly corrected isotropic factor:

2 ) L
FM(q,L) = ah:)q sin (ahkl q5) (2.19)

where the correction parameters apy are characteristic for every Bragg re-
flection and are explicitly given for the most prominent reflections for the P,
D, G, C(P), C(D), F-RD and I-WP structures in Tables 2-8. In this notation
the MF has a dimension of electron charge per surface area. When multiplied
by the SF of dimension of the area gives the final dimension of the scattering
amplitude in arbitrary scale of electron charge. Please note here that it is
exactly this form of the MF that has been inserted into the expression for
the amplitude within the simplified model Eqn(2.5).

The details of fitting the isotropic MF to numerically obtained amplitudes

are summarized in the following subsection.
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2.2.3 Results for triply periodic surfaces

A typical powder diffraction pattern of a cubic phase in a binary or ternary
mixture consists of few peaks. The number of the visible Bragg reflections
rarely exceeds ten. To present the MF’s for each structure we have chosen
a certain number of the most pronounced reflections. To enter the list each
peak had to be among the ten strongest ones for any layer volume fraction
® € (0, Primit), where @imix was chosen to be equal to 0.8 for the P, D, G
and I-WP structures, 0.65 for F-RD and C(D) and 0.5 for C(P). The layer’s
volume fraction ¢ is related to the layer width L by E(i(2.7).

In the case of the P, D and G structures the isotropic model works very
well. The intensity dependence on the layer width L evaluated using this
model is (except for a few peaks) the same as given by the numerical inte-
gril Eqn(2.13). However for the C(P), C(D), I-WP and F-RD surfaces, the
numerical results differ significantly from the isotropic approximation and
significant corrections (in terms of apy) are needed in this case. A possible
physical interpretation of the oy parameters is the effective layer width seen

in the cross section in the given hkl direction.

The Schoen P surface

The P surface has the Im3m symmetry group, its surface area per cubic
cel is sj = 2.3458 and Euler characteristic x = —4. The P minimal surface
is thown on Figure 2. Table 2 contains the structure factors for the minimal
swface for the 20 most prominent Bragg reflections. Almost all of the exam-

ined reflections are very well described by the uncorrected isotropic model.
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An example is shown in Figure 17. Even for large layer widths, the isotropic
MF reproduces the numerically evaluated amplitude very accurately. Still
two of the chosen peaks have to be slightly corrected. As an example we
have plotted the amplitude of the 110 reflection as a function of the layer
width L. In order to fit this dependence the isotropic MF required the alpha
parameter a9 = 1.14 (see Figure 18). The same figure contains the values
of the 110 amplitude for three specific layer widths L computed by Harper
[38]. As in the case of all the other eleven peaks presented there [38] the
values are in excellent agreement with our computations.

Figure 19 shows how drastically the MF changes the relative intensities.
One could imagine a binary water/surfactant system of a fixed volume com-
position 0.3/0.7. If the P phase have been formed, the direct phase would
have the layer volume fraction ¢ =~ 0.3 (upper diffraction pattern) while for
the invert phase ¢ =~ 0.7 (lower diffraction pattern). Thus comparing the
numerical spectra with the experimental data one can unambiguously deter-
mine which structure has been formed. This result in turn can lead to the
determination of many microscopic (such as the area per surfactant head)

and macroscopic (such as the phase stability) characteristics of the system.

The Schwartz D - double diamond surface

The D surface (Figure 3) has the Pn3m symmetry. It is worth noting
here that this is a unit cell for the surface only, while the symmetry of the
two subspaces (Fd3m) require an eighth times bigger unit cell (two times

bigger linear size of the unit cell). Since we consider the scattering with the
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The scattering data for the P based phases

hkl | Muu | F3 | anu hkl | Muu | FS% | an
000| 1 2.3458 332| 24 [02795 | 1
110| 12 |-0.4496 (1.14| {422 | 24 | 0.2536 | 1
200 6 |-05444| 1 521| 48 | 0.0861 | 1
211| 24 | 04565 [1.03| [433]| 24 |-0.2680| 1
310| 24 | 0.098 | 1 530( 24 |-0.1693| 1
222 8 |-04056| 1 532| 48 [-0.1356| 1
321 48 |-0.2177| 1 611 24 | 01577 | 1
400| 6 0.2454 | 1 541| 48 | 01449 | 1
411 24 [-0.2425] 1 543 48 | 01795 | 1
330| 12 | 02155 | 1 554 24 |-02070| 1
420 24 0.1580 1

Table 2: The scattering data for the P structure. The first column contains
the hkl indices, the second the appropriate multiplicity factors for a powder
spectrum, the third the dimensionless structure factors F¥* = FS/a? for

the zero-width base mathematical surface, the fourth the oy correction

parameters for the isotropic MF.
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Figure 17: The P surface. The scattering amplitude of the 554 reflection
plotted as a function of the dimensionless layer width L* = L/a, where a is
the cubic cell par;cxmeter. The amplitude computed via the lattice (numerical)
model is drawn with open circles and the amplitude given by the isotropic
fit with ass4 = 1.0 with a solid line. The dashed line gives the layer volume
fraction ¢ as a function of L* (Eqn 3.12). The amplitude has been divided
by L* in order to compare it with the structure factor (A(q, L)/L* — FS*

when L* — 0).
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Figure 18: The P surface. The amplitude of the 110 reflection. The am-
plitude computed with the uncorrected isotropic MF is shown with the thin
solid line while the corrected (a;;0 = 1.14) fit is drawn with a thick solid
line. The filled squares represent the amplitudes computed by Harper [38]
for three volume fractions ¢ = 0.0766, 0.5791 and 0.6998. As in the case of all
the other 12 reflections presented in [38] the data is in very good agreement
with the amplitudes computed via the lattice model (open circles). The layer

volume fraction ¢ is given by the thick dashed line.
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Figure 19: The scattering patterns for the P surface based cubic phases. The
upper plot corresponds to the layer volume fraction ¢ = 0.3 and the lower
one to ¢ = 0.7. The insets show the parallel surfaces within which the layer

is confined.

surface contrast it is enough to take smaller unit cell, for which s = 1.9192,
X = —2. Again as in the case of the P structure the effective MF’s are very
well described by the isotropic approximation. Only two reflections (110 and
200) display significant deviations from the isotropic model (a;;9 = 1.08 and
az00 = 1.09). In case of all the other chosen reflections, within the numerical
accuracy are equal to unity (see Table 3). Figure 20 shows the amplitude

dependence on the layer width L for the 110 and 221 Bragg reflections.
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The scattering data for the D based phases

hkl thl F ,5:; Ohkl hkl M hkl F, ,3:*[ Qhkl
000 1 1.9192 322 24 0.1862 1

110 12 | 0.4794 | 1.08 411| 24 |-01309]| 1
111 8 0.4851 | 1 331| 24 (01812 | 1
200 6 |-0.2616 | 1.09 420 24 |-01436| 1
211 24 {02120 | 1 421| 48 |-0.1084 | 1
220 12 | 02579 | 1 332 24 |0.2094 | 1
221 24 | 02799 | 1 333 8 02203 | 1
310| 24 |-0.1885| 1 432| 48 | 0.1058 | 1
311 | 24 |-0.0987| 1 433 24 | 0.1600 | 1
222 8 0.2911 | 1 442| 24 | 0.1481 1
321 | 48 | 0.0957 | 1 443| 24 (01722 | 1

Table 3: The scattering data for the D structure. The legend is the same as
for Table 2.
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Figure 20: The D surface. The amplitudes of the 110 and 221 reflections.
The lattice data is plotted with open circles. The filled squares present the
amplitudes computed by Harper [38]. The amplitudes given by the isotropic
model are drawn with solid lines. The thick lines correspond to the corrected
MF (0410 = 1.08 and azy; = 1.0). In case of the 110 reflection also the
uncorrected isotropic solution is shown (thin solid line). The layer volume

fraction ¢ is given by thick dashed line.

44



The G - gyroid surface

The G surface (Figure 4) is of the Ia3d symmetry, s = 3.0966, x = —8.
In the Table 4 we present the results of our fits. For most of the 21 Bragg
reflections the isotropic model works excellently. Only four of the corrections
parameters differed more then one percent from unity (ag;; = 1.07, s =
0.97, a3y = 1.04 and o499 = 1.04). Figure 21 presents the numerical data
together with the isotropic fits for the 211 and 611 reflections.

The C(D) - complementary to D surface

As in the case of the D structure for the surface contrast scattering com-
putations it is enough to take one eight of the cubic cell. The surface space
symmetry group is Pn3m. For the smaller cubic cell (Figure 8) the normal-
ized surface area s = 4.4921 and the Euler characteristic x = —30 (x = —36
should be used to reconstruct the volume fraction ¢ of the layer and the
surface area s of the parallel surfaces). Most of the 19 chosen reflections
require corrections to the isotropic factor. Still the parameters a4y, are suffi-
cient to reconstruct the effective MF. The results for the C(D) structure are
contained in Table 5. Figure 22 presents the results of fitting the isotropic
form of the MF to the numerical data for the 111, 332 and 887 reflections.

The Neovius C(P) - complementary to P surface
The C(P) surface (Figure 7) is of the same symmetry as the P structure
(I'm3m). In our calculations we have obtained the surface area per cubic cell

s = 3.734. The C(P)’s Euler characteristic is x = —16.
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The scattering data for the G based phases

hkl | Muu | FSy | oama | | bkl {Muu | FS | awm
000 1 3.0966 541| 48 |-0.1652| 1
211 24 0.6544 | 1.07 631 48 (-0.1992 | 1
220 12 0.4306 | 0.97 444 8 0.4112 1
321 48 |-0.0971 | 1.04 543 48 0.3012 1
400 6 -0.3375 | 1.04 640 24 |-0.1722 1
420 24 | -0.3309 1 752 48 | -0.1915 1

332| 24 | 04751 | 1 655 24 03112 | 1
422 24 |02770 | 1 664 24 | 0.2403 | 1
431 48 | 0.1898 | 1 754| 48 | 0.1700 | 1
611 24 |-02287| 1 776 24 |02712 | 1
532 | 48 |-0.1114| 1 875| 48 | 01715 | 1

Table 4: The scattering data for the G structure. The legend is the same as
for Table 2.
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Figure 21: The G surface. A plot of the amplitudes of the 211 and 611
reflections. The legend is analogous to Figure 20.
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The scattering data for the C(D) based phases

Rkl | Muw | F32 | onm hkl | Muu | Fi | onm
000 1 4.4921 333 8 0.5463 | 1.05
110 12 0.2228 | 1.89 432| 48 0.1846 | 0.97
111 8 -0.6;189 1.7 522 | 24 |-0.2825]1.15
200 6 -0.1303 | 0.84 441 24 |-02547| 1
211 24 |-0.3337|1.13 433 | 24 0.2765 1
221 24 |-0.5483(1.14 633 24 0.3577 | 1.04
321| 48 |-0.1474| 0.92 544 24 [-03589| 1
400 6 0.2878 | 0.79 554 24 |-0.3599| 1
330 12 0.3785 | 1.09 666 8 0.6251 1
332 24 0.3726 1 887 | 24 |-03430| 1

Table 5: The scattering data for the C(D) structure. The legend is the same
as for Table 2.
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Figure 22: The C(D) surface. A plot of the amplitudes of the 111, 332 and
887 reflections.
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Most of the C(P)’s 20 chosen peaks require corrections to the isotropic
MF. The data for all of the peaks is included in Table 6.

The F-RD surface

The F-RD structure (Figure 6) of the Fm3m symmetry has the surface
area s = 4.887 and x = —40. Most of the 20 chosen peaks require significant
corrections to the isotropic model. The reconstructed MF’s fit the lattice

model data very well. The data is presented in Table 7.

The I-WP surface

The I-WP surface (Figure 5) has the Im3m symmetry. In our calculations
we have obtained a value of s = S/a? = 3.554 for the surface area per side
of the cubic cell. It’s Euler characteristic is equal to x = —12. All of the
21 selected peaks have been successfully fitted with the modified isotropic
MF. The data is presented in Table 8. Figure 23 presents the fits for the 200
(0200 = 1.23) and 400 (400 = 0.98) reflections.

Comment to the results

The isotropic MF works very well for all three most commonly encoun-
tered structures P, D and G. Significant deviations from the isotropic model
are seen when exploring the MF’s of the more complex structures C(P), C(D),
F-RD and I-WP. This is caused by the fact that the normal vector distribu-
tion of the simple surfaces, P,D,G is very similar to that of the sphere. Thus
the real MF, which should in general be a function of the local curvature

and orientation of the vectors normal to the base surfaces, when averaged
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The scattering data for the C(P) based phases

hkl | Muu | Fi4 | ok hkl | Muu | Fifi | anu
000 1 3.7519 521 48 |-0.1448 | 1.0
110] 12 |-0.5076 | 1.5 600 6 0.4179 | 0.97
200 6 -0.3424 | 1.2 611 24 | 0.4737 | 0.97
310| 24 0.5250 | 1.02 710 24 |-0.4532| 1.0
222 8 -0.6448 | 1.09 552 24 | 0.2769 | 1.05
321 48 0.1445 | 0.97 741 48 0.1796 | 1.0
400 6 -0.4870 | 1.13 831 48 |-0.1889 | 1.0
411 | 24 |-0.4699|1.04 910 24 | 0.3281 | 0.97
330 12 |-0.4840 | 1.07 1000 6 -0.6677 | 0.98
422 24 0.2527 | 0.97 1310 24 |-0.3705| 1.0

Table 6: The scattering data for the C(P) structure. The legend is the same
as for Table 2.
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The scattering data for the FR-D based phases

hkl | Mpa | FS5 | anm hkl | Mpa | F5% | onu
000 1 4.8580 531 48 | -0.1255 | 0.92
111 8 -0.4033 | 1.53 600 6 -0.3637 | 1.03
200 6 -0.8599 | 1.44 620 24 0.2526 | 1.0
220 12 |-0.5387 | 1.08 622 24 |-0.3813 | 1.0
311 24 0.3002 | 1.25 444 8 0.3859 | 1.0
331 24 0.2995 | 0.91 711 24 0.5348 | 1.0
420 24 0.5770 | 1.03 911 24 |-0.3790 | 1.0
422 24 |-0.1075 | 0.96 753 48 1-0.2653 | 1.0
333 8 -0.8719 | 1.05 1022 24 0.2699 | 1.0
511 24 | -0.4983 | 1.06 1220 24 |-0.5034 | 0.99
440 12 |-0.4920(1.13

Table 7: The scattering data for the FR-D structure. The legend is the same
as for Table 2.
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The scattering data for the I-WP based phases

hkl .thz F, ’;9,:; Qhkl hkl M hkl F; ;3; Qhkl
000] 1 | 35543 440| 12 | 02773 | 1.0
110| 12 |-02561]161| |530| 24 |-0.3026] 1.0

200 6 [-0.5123|1.23 600| 6 0.5253 | 1.04
211 | 24 |-0.0986 | 0.74 442| 24 |-0.2423 | 0.97
220| 12 |[-0.5006 | 1.0 532 | 48 [ 0.2219 | 1.0
310| 24 | 0.6608 | 1.05 611 24 | 0.2208 | 1.07
222 8 0.3980 | 1.16 622| 24 |-0.2594 | 0.96
321| 48 |[-0.0919 | 1.03 721| 48 | 0.1406 | 0.98
400| 6 |-0.3285|0.98 730 24 | 0.2657 | 1.0
420| 24 | 0.2070 | 0.92 752 | 48 |-0.2333 | 1.0
510| 24 |[-03994| 1.0 932 48 [-0.2128 | 1.0

Table 8: The scattering data for the IW-P structure. The legend is the same
as for Table 2.
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Figure 37: Schematic illustration of the lamellar to P TPMS based cubic
phase transition and coexistence. The ratio between the cubic lattice con-

stant a and the lamellar repeat distance d is indicated by the x-ray spectra
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Figure 24: A model density profile for two thin layers of width A laying in

a constant distance £ from the minimal surface. See text for explanation.

over the whole surface gives similar results as the isotropic model without
corrections. This is not true in the case of more complex structures, where
the parameter oy has to be used for almost all of the Bragg reflections.
Please note here that the biggest corrections apply always to the peaks of
the smallest hk! indices.

2.2.4 The general form of the Molecular Factor

Having the MF for an uniform density within the layer one can compute
the MF for a more complicated density profile. Lets imagine a structure
composed of two thin layers of uniform density of scatterers py of width A€
laying in a constant distance £ from the minimal surface (see Figure 24).

The cross sectional density distribution p(¢') of this structure can be written

as a combination of two Heaviside functions:

(&) = po [0(§ + AL — I€]) — 0(§ — €'])] (2.20)
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110 P,«i 0.8

Figure 25: The numerically evaluated amplitudes for scattering on zero width
parallel surfaces laying in distance L/2 away from the minimal surface are
plotted with open circles. The solid lines are given by the relation Eqn(2.22)
fo.r p(§) = 1 with the same a parameters as the ones fitted through the
integral relation Eqn(2.19).
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Now using Eqn(2.5) with £ = L/2 we can write the expression for the am-

plitude:

AA(@,8) = P52 [sin (o g (€ +A0)) — sin (o g 6] (2.21)
hkt 4

And for A¢ = 0:

psdFM

dA(q,§) = & d€ = F® 2 pycos(anm q &) d€ (2.22)

This last expression when integrated with a Kronecker delta distribution cen-
tered at distance £ from the minimal surface can be compared with numerical
evaluations of the scattering amplitudes for zero width parallel surfaces. This
has been done by triangulating the parallel surfaces and evaluating expres-
sion similar to the one for the SF (Eqn(2.10)). This provides an alternative
way of establishing the a parameters. In the case of all of the seven explored
structures the this test provided excellent agreement of the o correction pa-
rameters. However, as can be seen on Figure 25, the fits have a smaller range
of applicability. The fits for the integral relation Eqn(2.19) works very well
for the volume fractions up to ¢ = 0.8 in case of the P,D,G structures and
up to ¢ = 0.7 in case of the others. The differential relation is fitted well in
the range of ¢ € (0,0.6).

Having the expression Eqn(2.22) for the scattering amplitudes on parallel
surfaces we can reconstruct the scattering amplitude for any cross sectional

density distribution p(£) of the layer decorating the base minimal surface:

A(q,p(€)) = FS 2 /0 " dl p(€) cos(onk ¢ €) (2.23)
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2.3 Debye-Waller factor

The last effect that have to be accounted for are the fluctuations of the
membrane. We will assume only fluctuations in the direction normal to the
surface of the layer and no correlations between the fluctuation amplitudes.
First kind of the fluctuations are those of a single molecule. Due to the
amphiphilic forces that are responsible for separation of water and hydro-
carbon rich regions, the amplitude of the fluctuations of a single molecule
is much smaller than the amplitude of the collective movements of the bi-
layer. We will parameterize both amplitudes by standard deviations oinge

and Ocorective- Since the total amplitude is

o= \/Ufingle + agouectiue (2'24)

in the first approximation we can neglect the fluctuations of a single molecule.

To evaluate the impact of the fluctuations we have assumed that they
cause a broadening of the density profile described by a convolution of the
original density profile p(¢) with a Gaussian distribution function with a

standard deviation o:
N T (£ -¢)?
o)== [ orem [ZSEE] oo

An example of such a broadening is presented in Figure 26. Since we already
have a formula for the scattering on any density profile (Eqn(2.23)) we can

insert this broadened density distribution p;(¢, o) into Eqn(2.23) and obtain:

Aapl€).0) = F == [t [~ oty enn [~ ~EE] costena )
(2.26)
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Figure 26: The cross sectional density profile used in the computations of
P. E. Harper and S. M. Gruner [38] for a phospholipid molecule is shown
with a solid line. The density distribution for fluctuations with amplitude
parameterized by standard deviation o = 0.05L is shown with a dashed line,

and o = 0.1L with a dotted line.

and after some analytical transformations (see Appendix 2) it can be ex-

pressed as

A(ao12) = F° [2 [t p(©) cosg ana )] exp | -5 ¢ ann o
(2.27)
We find that the influence of the fluctuations is independent of the original
density profile p(§). The Debye-Waller term is expressed in a very simple

form:

FP%(q,0) = exp [—%(q Chkl 0')2] (2.28)
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Figure 27: The impact of the fluctuations on the scattering amplitudes of the
D TPMS based phase with a cross sectional density profile shown on Figure
26.

Thus equation (2.27) is the final expression for the scattering amplitudes
and it is exactly this formula which was presented as the general model
(Eqn(2.2)).

In order to inspect the influence of the Debye-Waller term we have per-
formed calculations for a detailed cross sectional density profile presented in
the work of P.E. Harper et al[38]. The authors used the Fourier transform of

the volume enclosed between parallel surfaces (to the base minimal surface)
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to compute the scattering amplitudes for a bilayer made of typical phospho-
lipid molecules. The width of the head group layer was set to 2/10 of the
monolayer width (L/2). The hydrocarbon tail length was 7/10 of L/2 and
finally the terminal methyl groups were said to occupy a layer of width equal
to 1/10 of L/2. The electron densities were 0.54e/A3, 0.3¢/A3 and 0.16e/A3
respectively. After subtracting the electron density of water (0.33e/A3) the
relative densities were 21/-3/-17 for head/tail/methyl groups (see Figure 26).
Figure 27 shows the influence of the fluctuations on the scattering amplitudes
for a D TPMS based cubic phase. It is in agreement with our previous work
[56] that the decrease of the intensity of the Bragg reflections associated with
the fluctuations is small. Even for large fluctuations amplitude o = 0.1L (see
Figure 26) the decrease of the intensity is of the order of 10-20%. At the same
time the dependence on the layer width is much stronger. For example the
intensity ratio of the 211 peak to the 110 peak of the P TPMS based phase
is In11/Iy0 = 1.6 for the volume fraction ¢ = 0.3 and Iy;;/I1;0 = 0.2 for
@ = 0.7 (see Figure 19).
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3 Analysis of the experimental scattering
spectra

In the preceding chapter we have presented the data for the scattering in-
tensities of the strongest reflections for seven (P, D, G, I-WP, C(P), C(D)
and F-RD) Triply Periodic Minimal Surface (TPMS) based cubic phases. In
this chapter we want to show applications of the theoretical model for the
scattering intensities to the analysis of the experimental spectra.

We have applied our method to several systems out of which nine are
presented in this work. We have classified the systems into five groups.
The first one includes the DLPE, DEPE and DOPE lipid aqueous disper-
sions. These lipid molecules are a part of a large class of lipids containing
the -phosphatocholine part. They are commonly used to explore the phase
diagrams of amphiphilic mixtures. Another example of a very popular am-
phiphilic molecule is the monoglyceride (GMO). We present a study of two
systems with GMO. The third compound that has attracted a lot of experi-
mental attention is the DDAB lipid (analysis of one such system is presented
here). We decided to include also a fit for the scattering pattern of a polimer-
ized structure formed in CTAS with TEOS additives. This study is motivated
by a growing scientific and technological interest in microporous and meso-
porous materials formed on surfactant templates by the polimerization of
silicates (like TEOS). Finally we study a scattering pattern for a cubic phase
of the RFTZEQ, fluorinated surfactant in water.

As it will be discussed in detail in section 3.2, the analysis yielded interest-
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ing insight into the explored structures. In two cases we have discovered the
phase coexistence between cubic-lamellar and cubic-hexagonal phases and
established the epitaxial relations between them. The method has also been
applied to a system of a known phase coexistence of a P and D structures
observed in a fast cooling (0.5 degree per minute) temperature scan exper-
iment. In this example we extract from the full x-ray spectrum the part
of it which corresponds to the third unknown phase (probably metastable)
forming during the phase transition. In principle such analysis shed light on
the kinetics of phase transitions between ordered phases.

Fitting the scattering pattern provides not only the TPMS on which
the cubic phase is based but also its macro- and mesoscale characteristics
such as: layer width (decorating TPMS), volume fractions of the coexisting
phases, area per head of a surfactant molecule, and composition of the cubic
phases in the presence of the excess water in the system. Scattering patterns
give also, in many cases, a clear distinction between a direct or an inverse
structure. This in turn, together with the layer width L can be used to
study the elasticity constants of a surfactant layer, preferred curvatures and
conformations of the hydrocarbon chains inside the layers.

Section 3.1 contains a step by step description of the method. The results

of its application are inclosed in section 3.2.
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3.1 The method

In this section we want to present a detailed step by step approach towards
analysis of the experimental scattering spectrum. In order to compare mea-
sured intensities with the modeled ones, we have to take into account the
corrections due to the experimental setup. The first one is the Lorentz-
polarization (LP) factor. It’s form depends on the type of detector used to
measure the scattering intensities. For a powder sample and a one dimen-

sional detector, the LP reads [59]:

1/1+ COS2 20hkl
LPPOhu) = = | ——= x
( hkl) 2 ( sin 20;,“ ’ (3 1)
were Ok is the scattering angle, related to the scattering vector
q = (27 /a)[h, k, 1] by the formula:
. Aq
sin (),,H = :1; (32)

Here ) is the wavelength of the radiation and a is the lattice parameter of the
unit cell (linear size). For a two dimensional detector the LP has a slightly

different form:

1 1+ COS2 20}*[ )
LP (@) = = 3.3
(Bh) 4 (sin"' 0hx1 cos Oppe (3:3)

In most of the cases analyzed in this work we have assumed that the data
presented in the experimental reports have been Lorentz-polarization cor-
rected. In some cases we have not used the LP factor, because of the private
communication of the authors or the quality of the fits. We have also chosen

to neglect other corrections such as an absorption coefficient, the multiple
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scattering effect etc. Thus, the experimental intensities which will be com-
pared with the modeled ones are obtained by dividing the raw experimental

data by a correct LP factor and subtracting the background intensity:

I(raw)
7P — _“hkl __ _ r(bg) ]
B = TP(6m) (ghk1) (3.4)

When the experimental resolution is small, the background scattering can
be easily extracted. In most of the cases presented in this paper, we have
established the background intensity on the basis of experimental data, where
the Bragg peaks usually sit on a well defined broad scattering pattern. In
two cases the background intensity resembled the scattering pattern from the
microemulsion with a characteristic broad maximum. In these cases it was

fitted with the scattering intensity for a microemulsion system given by [60]:

749) () = Io .
(@) (1—rﬁ?;) (;fm%—l)z"'zfﬁ: (3.5)

where I is the intensity for ¢ = 0 and gpq, is the scattering vector length
for which the intensity attains maximum Ipe,.

When the raw experimental intensities are corrected accordingly to the
details of the experimental setup and the background intensity is subtracted
one can proceed with fitting the modeled intensities. The first step is to
determine the peak spacing and the cubic cell parameter a. If more than
one ascription of the hkl Miller indices was reasonable all of the possibilities
have been checked via the following fitting procedure and the best fit has

been chosen.
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The model amplitudes for the TPS based cubic phases have been de-
scribed in detail in the preceding chapter. Here, to fit the data we will use
the simplified model which assumes a flat contrast density profile p(¢) = po
for [€] < L/2 and p(£) = 0 for |§| > L/2, where L is the width of the layer
decorating the base minimal surface and £ is a coordinate along the direction
normal to the surface. Also the fluctuations of the layer will be neglected.

Within this approximation the model scatering amplitude is:

2p0 . L
A(q,L) = FS R sin (qahk,E) (3.6)
and since in comparison with experiment only the relative amplitudes matter,
in order to simplify this expression, we can devide it by the factor 2a®p, which
is constant for all hk! reflections. Finally the model scattering intensities are

given by the following equation:

Q 12

where L* = L/a is the dimensionless layer width expressed in terms of the
lattice constant a and all of the constants - the dimensionless structure factor
FS* = FS [a?, multiplicity factor My and the correction parameters oy
are explicitly given in Tables 2-8 for the P, D, G, C(D), C(P), F-RD and
I-WP based cubic phases.

Since the scattering intensity is measured in an arbitrary scale only the
relative intensities of subsequent peaks can be determined. Thus in order to
fit the experimental data, the model intensities have to be multiplied by a

normalization constant Z which is chosen in such a way as to set the model
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intensity of one reference HK L peak to be exactly equal the experimental

)
Z = | Jred (3.8)
HKL

In all of the examples presented below we have chosen the first nonzero

intensity.

reflection as the reference peak. Then we checked whether any of the modeled

structures satisfies the following relation:
15~z (1%) V hkl (3.9)

for any layer width L. The object to find the actual width of the layer dec-
orating the minimal surface can be achieved by simply comparing the set of
experimental intensities I\*") with the modeled I\"*"(L*) ones for various
layer widths. In practice it is numerically easier to look for the model scat-
tering patterns best resembling the experimental ones when they are both
expressed as continuous curves rather then a set of distinct values. The exper-
imental and numerical intensity curves I(®*P/md)(q) have been reconstructed
by a convolution of the set of I{<%/™4) yalues with the Gaussian resolu-
tion function R(q) = exp(—g?/202)/(0,v/27). The o, parameter is directly
related to the half-widths 61, of the experimental peaks o, =~ (1/2.3)41;.

Itezp/ mod)

[ thcl - q) ] I}(J;p/mod) (3.10)
hkl

Thus instead of comparing the h, k,l peak intensities we have performed

a minimization of the following integral:
* 2
A(L*) = / dq (I(“P)(q) —_ ZI(WIod)(q’ L*)) = min (311)
0
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with the variation parameter being the dimensionless layer width L*. Then
the optimal layer width L = aL* (for which A(L*) is minimal) has been
assumed to be the real width of the layer decorating the base minimal surface.

Having established the width of the layer one can proceed with further

analysis of the structure of the cubic phase. The following relation:
* T * n * 3
¢ =sgL* + EXL (3.12)

yields the volume fraction ¢ of the layer (s§ = so/a? is the dimensionless
surface area of the base TPMS and x is its Euler characteristic - both values
are given in Table 1).

In order to tell whether a direct or inverse structure has been formed
one can compare ¢ with the volume fractions of water (¢), surfactant (¢,)
and hydrocarbons (¢) in the system. A layer volume fraction ¢ compa-
rable with the water volume fraction ¢ ~ ¢, stands in favor of the direct
phase - when the minimal surface is decorated with a water film. When ¢
is comparable with the joint volume fraction of surfactant and hydrocarbon
¢ =~ ¢s + ¢ more likely the inverse phase has been formed with the minimal
surface draped with the surfactant bilayer. Still this method has a serious
weakness. In many systems the cubic phases coexist with an excess water
phase. Thus the system’s composition does not reflect the composition of
the cubic phase itself. Therefore a more reliable analysis is needed. It is
based on the estimation of the surface area per surfactant head a, as follows.
The layer decorating the minimal surface is confined between two parallel

surfaces laying at a distance L/2 away from the base minimal surface. The
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surface area per unit cell of these two interfaces is given by:
sy(L) = 2sy a® + mxL? (3.13)

The parallel surfaces divide the volume into three regions: the layer and two
disjoint continuous channels. In the case of the direct phase the hydrocarbon
and surfactant molecules occupy the two channels. It’s volume per unit cell
is equal to Vi, = (1 — @) a®>. When an inverse structure is formed the am-
phiphilic and hydrophobic molecules reside within the layer which’s volume
per unit cell is Vipy = ¢ a3. Knowing the molecular weight of the surfac-
tant M[g/mol], the densities of surfactant and hydrocarbon (p,[g/cm3] and
pnlg/cm®] respectively) and the weight fractions of surfactant and hydrocar-
bon in the system (z, and z,) one can establish the number of surfactant

molecules per cubic cell:

Ny Ps —24
Nuirfine(L) = Vairfino = ( = ‘) x 10 (3.14)
M \1+ 2o

where N4 = 6.023 x 102 is the Avogadro constant and the factor 10-2* comes
from the ratio of the cubic centimeter to cubic Angstrom (1cm® = 10%4A3).

Finally the area per surfactant head:

oy - su(E)
% o (L) - Ndir/inv(L)

In this approach we assume that all of the hydrocarbons present in the system

(3.15)

are confined within the surfactant bilayer or channel. In the case of a binary
mixture the term in brackets in Eq.(3.14) simplifies to the surfactant density.

The density of surfactant is in principle an unknown feature as it can vary
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from one ordered phase to another. Still, as it will be shown in the examples
below, the dependence of the surface area per surfactant head on the layer
width is strong enough to settle with an approximated density. In most
cases, the plot of a, 4, and a, s, against the layer volume fraction enables

unambiguous determination of the type of the structure.

3.2 Analysis of the experimental spectra
3.2.1 The DLPE, DEPE and DOPE systems

The DEPE /water system [61]

The system is composed of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamise

(DEPE) dispersion in an excess water phase. The diffraction pattern consists
of 9 Bragg reflections. Their spacing (v/2, V3, V4, V6, V8, V9, V10, V12,
V/14) indicate a Pn3m symmetry (No. 224 in the International Crystallog-
raphy Tables). The most commonly encountered structure of this symme-
try is the double diamond D surface based phase. This assumption proved
to be correct. Minimizing the integral Eq.(3.11) yielded the layer width
L = 0.162a. This value correspond to the layer volume fraction ¢ = 0.3. The
experimental scattering pattern together with the model fit is shown on Fig-
ure 28. In addition we have been able to identify the background scattering
intensity as the scattering from the microemulsion (Eq.(3.5) with parame-
ters Iy = 0.1741110, I ez = 0.714I119 and gmez = 0.15A71). This suggests
that the cubic mono-crystalline regions are separated by volumes filled with

disordered bicontinuous phase or microemulsion formed in the excess water
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phase.

The inset of Figure 28 shows the area per surfactant head as a function
of the layer volume fraction ¢. The molecular weight of DOPE is Mpopg =
744[g/mol]. In our calculations we have assumed its density to be equal
to unity (ppope = 1). For ¢ ~ 0.3 the area per head is a, 4 =~ 50A2 or
@siny =~ 120A2. The comparison of these two values strongly supports the
direct phase (dir) with a water film decorating the minimal surface.

Since the system is prepared with excess water, it is important to note
here, that determining the layer width L and the structure type is a direct

way of establishing the composition of the cubic phase.

The DLPE/a-tocopherol/water system [62]

The system under investigation contained a fully hydrated 1,2-dilauoryl-
sn-glycero-3-phosphoethanolamine (DLPE) with an addition of 10mol% a-
tocopherol. The experimental scattering spectrum consisted of 9 reflections
V2, V3, V4, V6, V8, V9, V10, V12, /14 (Pn3m symmetry No. 224).
The authors of [62] concluded that it is the double diamond D structure.
It is partially right - Figure 29 shows the fit for the D structure (¢ =
0.2, asair ~ 45A2 and a, i, =~ 180A? indicating a direct phase). Still the
sole analysis of the peak positions overlooks the phase coexistence with the
hexagonal phase. All of the peaks are fitted very well besides the 111, 221
and 222 reflections spaced 1, v/3 and v/4 respectively. The inset in the upper
left corner of Figure 29 shows the modeled intensity subtracted from the

experimental data. The remaining peaks are characteristic of a hexagonal
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Figure 28: The fit of the experimental scattering pattern reported in [61].
The solid line shows the experimental intensity curve reproduced using
Eq.(3.10). The thin dashed line gives the background intensity fitted through
Eq.(3.5). The thick solid line presents the theoretical fit for the D based cu-
bic phase of the layers volume fraction ¢ = 0.3. The areas per lipid head for
a direct and an inverse type of the D structure are drawn in the inset (dashed
and solid lines respectively). For ¢ = 0.3 the area per lipid is a, 4, = 50A2
for the direct phase and a; jny, = 120A2 for an inverse type. This indicates a

D based direct cubic phase of the water film volume fraction ¢ = 0.3.
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Figure 29: The fit of the experimental scattering pattern reported in [62].
The solid line shows the experimental scattering curve Eq.(3.10), while the
thick dashed line gives the theoretical fit for a D based phase of the layer
volume fraction ¢ = 0.2. The very high intensity (in comparison with a fitted
value) of the experimental 111, 221 and 222 peaks imply a coexistence with
a hexagonal phase of a lattice parameter a(***) = (2/3)a(P). The intensity
difference between the experimental and fitted curve is shown in the top left
inset. The top right inset presents the areas per lipid head as a function of

the layer volume fraction.
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Figure 30: Visualization of the two disjoint channels forming the double-
diamond periodic network. Part a) shows the cubic cell of a lattice pa-
rameter a{P) used for the scattering spectrum evaluation. It is given by
black lines with the vertices marked with white-black circles. b) the same
network of channels seen along the diagonal of the cubic cell. The edges

of the cubic cell form a two dimensional hexagonal lattice of a parameter

a(hez) = (/2/+/3)alP).

phase. A very similar phenomenon has been discovered in a 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPE) dispersion in water [63]. The reflections
10, 11 and 20 from the hexagonal phase were superimposed on the 111,
221 and 222 peaks originating from the double-diamond structure. What
is particularly interesting is the ratio between the hexagonal and cubic cell

parameters. The scattering vector length is related to the hexagonal lattice
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parameter by ¢ = (2r/a®®))(2/v/3)Vh*+ k2 — hk and for the cubic
lattice g{b) = (2/a{®))V/hZ + K2 + I2. Since g™ = ¢{D):
h 2r 2 2w D
qgon) = qhen) 3 m\/g = qgu) (3.16)

then a(#*®) = (2/3)a(P). The double-diamond structure consist of two sepa-
rate continuous networks of rods connected four by four. If one looks at a
projection of the node positions on a [111] plane perpendicular to the diagonal
of the cubic cell he would see a 2D hexagonal lattice with the lattice param-
eter a**?) = (v/2/v/3)a?) (Figure 30). It is significantly different from the
one established from the scattering data. Thus the ratio a**® = (2/3)a(P)
seen in two different systems can not be explained by a simple geometrical
- epitaxial relationship. The relation between the lattice parameters could
yield in principle interesting information on the elasticity constants of DLPE

and DOPE meonolayers.

The DOPE/water system [65]

A 50 weight % DOPE-water dispersion was studied in a wide temperature
range (4°C< T < 80°C). At high temperatures the hexagonal phase dominate
the scattering pattern. However for temperatures below T' = 30°C several
peaks of two coexisting cubic phases appear. The experimental scattering
curve for T = 5°C is presented in Figure 31a with open triangles. The pattern
consists of the v/2, /3, V6 and /9 reflections originating from the Pn3m
symmetry with a 132A unit cell and \/§, V4 and V6 peaks (Im3m, 168A).

We begin the analysis with a fit of the background intensity. Figure
31a shows I®9) (Eq.(3.5) with parameters Iy = 0.81, Inez = 4.71; and
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Figure 31: The experimental [65] intensity curve is shown with open triangles
in the a) part of the figure. The fits for the background intensity (dashed
line) and for the D phase (¢ = 0.1) (solid line) is shown. The arrows marked
1,2 and 3 point to the 110 (1), 211 (2) and a group of the 220, 221 and 310
peaks (3) which are reconstructed very accurately. Then the intensity of the
D based phase is subtracted from the experimental curve. The remaining
intensity curve is shown with open triangles in b). The solid line presents
a theoretical intensity for a P based phase (¢ = 0.1). After subtracting the
P intensity only three peaks remain at spacing frequency v/4, v/5 and /6

marked with the 10, 11 and 12 respectively.
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Gmaz = 0.145A~1, where I, corresponds to the intensity of the first peak
located at 0.0529A). Next we assume that the Pn3m cubic phase is based on
a double-diamond D TPMS. Minimization of the integral Eq.(3.11) yields a
small volume fraction of the layer ¢ € (0.1,0.2). The fit is shown on Figure
3la with a solid line. The intensities of the 211 reflection (marked with an
index 2 on the figure) and the group of the 220, 221 and 310 peaks (marked
with 3) are reconstructed very accurately which supports the assumption on
the structure type. The molecular weight of DOPE is Mpopg = 744[g/mol].
Evaluating Eq.(3.15) we have obtained the following areas per surfactant
head: a, & € (40.3,44.4) A? and a,n, € (362.8,177.7)A2. The values for
the direct phase are similar to the ones computed for the systems described
above. This fact, together with a good fit of the intensities confirm a D
direct structure. In the next step we subtract the modeled intensity for the
D structure from the original experimental data. The remaining intensity
contains 4 well resolved peaks of the spacing v/2:v/4:v/5:v/6 (on Figure 31b
marked with the indices 4,5,6 and 7 respectively). If we assume that the
v/2:/4:1/6 reflections originate from an Im3m cubic lattice, only the P based
phase could be fitted to this data. It means that the sequence should be 110,
200 and 211 reflections. Minimizing Eq.(3.11) gives a small volume fraction
of the layer. This is also supported by relatively large intensity of the 222,
321 reflections fitting the experimental peak marked by the index 8 on the
figure and 400, 411 (mark 9). Moreover in the ¢ € (0.1, 0.2) range of volume
fractions the area per surfactant head for the direct phase assume reasonable

values a, gir € (38.1,42.2)A%. Thus if the assumption that the P structure
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has been formed is correct, most probably it would be a direct phase with
a small volume fraction of the water film, the same as for the coexisting D
structure.

After subtracting the intensity for the P structure the remaining intensity
curve consists of three peaks v/4:/5:1/6 (Figure 31c, marks 10, 11 and 12
respectively). A very similar pattern has been reported for a sodium dodecy!
sulfate (SDS)/ hydrocarbon / water system [66] where it has been assigned
to a Pm3n micellar cubic phase. The peaks could also be interpreted as
an evidence of some unidentified third phase separating the monocrystalline
regions of D and P phases. As we have the data for only one temperature it
is impossible to risk any final judgment. A similar analysis of the scattering
patterns during the whole temperature scan would probably give reliable
answers. For example one could track the kinetics of the phase transition.
Assuming that the D and P structure assignment is correct, one can extract
approximate volume fractions of these phases. Namely, amplitude of the 000
reflection is proportional to the volume occupied by the layer decorating the

minimal surface (see Eqn(2.6) in chapter 2):
Tooo(L) o [$(L)V]? (3.17)

where V is the volume of the given cubic phase. When the experimental
scattering pattern has been fitted with modeled intensities for a given layer

width L, the intensity of the 000 reflection can be extracted from the following

relation:
oo = 15790) 319)
000 = Igg0 3.18
I (L)
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thus the volume ratio of the D and P phase is:

o | () "
= D »
VP = 4| 78 \ 50

Substituting the values of ¢(® = ¢ = 0.15, I{5°) = 84 [arb. units],
1P e = 17 [arb. units], IB™9(L(¢ = 0.15)) = 2.638, IE™N(L(¢ =
0.15)) = 2.364, I{5 ™% = 3.690 and I$5™ = 5.502 we obtain:

V(D)

a value that would be very difficult to determine without the analysis of the
peak intensities. Furthermore having this kind of data for a whole range
of the temperature scan one could determine the phase transition speed.
Which together with information on the third metastable phase could lead

to a better understanding of the phase transition mechanisms.

3.2.2 The GMO systems

The GMO /Polaxamer 407/water system [67]

In ref. [67] a study of a glycerolmonooleate (GMQ) with an addition of a
PEOgPPOg;PEOgs (Polaxamer 407) polymer mixture in an excess water is
presented. We have been able to extract data of two scattering patterns - one
for a 4 weight % polymer to GMO ratio (Figure 32a) and the second for a 7.4
wt % ratio (Figure 32b). The first system has been successfully fitted with a
D based structure of the layer volume fraction ¢ = 0.45. Too small value of

the 200 fitted intensity in comparison to the measured one could be explained
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Figure 32: The scattering patterns reported in [67 (solid lines) together with
the theoretical fits (dashed lines) a) a D based phase (¢ = 0.45), b) a P based
phase (¢ = 0.5).

by a small addition of the hexagonal phase which in fact has been reported
in this system [67]. The superposition of the 10 peak originating from the
hexagonal phase on the 200 Bragg reflection of the double-diamond D based
phase is yet another confirmation of the epitaxial relationship described above
for the DLPE [62] and DOPE [63] systems. The areas per surfactant head
for ¢ = 0.45 are a, 4 = 39A2 for a direct phase and a, i, = 48A2 for an
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inverse structure. The value of 39A2, as compared to the existing literature,
seems more reasonable and thus we propose a D direct phase for this system.

The second scattering pattern has been fitted with the intensities of the
P based structure: ¢ = 0.5, @, gir = s iny = 36.7A2. In this case we cannot

distinguish the direct from the inverse structures.

The GMO/Polaxamer 407/water system [53]

As in the last example, the system under investigation is the GMO/Polaxamer
407/water mixture. Reference [53] presents a thorough examination of its
phase behavior. Besides the hexagonal and lamellar structures, Landh shows
[63] several scattering patterns from the cubic phase region in the phase
diagram.

Four of the experimental patterns together with our fits are shown in
Figure 33(a-d). In the case of all of the presented patterns the modeled
intensities fitted the experimental scattering curves quite well. The data
for all these fits is included in Table 9. To enhance the analysis of the
structure type we made an attempt to compare the fitted volume fraction ¢
of the layer decorating the TPMS with the joined volume fraction ¢garo+paor

of surfactant and polymer in the system. For the mixture of composition

(camo/cpaor/Cuwater) Wg % we have:

IGMO 4 TP407
¢ — PGMO PP40T (3 21)
GMO+P407 — TGMO Zpaot ZTwat .

PGMO PP4a07 Pwater
where z; = ¢;/100 are the weight fractions.

For the first three systems both the fitted volume fractions ¢ of the layer
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Figure 33: Successful fits of four scattering patterns reported in [53]. The
experimental patterns are drawn with open triangles and theoretical fits with
solid lines. a) a G gyroid cubic phase, b) a D double diamond cubic phase,
c) and d) two P based cubic phases.
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Analysis of the GMO/P407/water systems [53]

comp. wg % | fitted fitted | den = | demo+paor | as[A?] | a,[A?] | prop. | prop.
camo/craor/cw | TPS | a[A] | ¢ |1-¢|(Eq.(3.21))| DIR | INV | type | type [53]

68.6/2/29.4 G 136.6 | 0.25 | 0.75 0.718 38 114 | DIR INV

63.1/1/35.9 D 99.7 | 0.3 0.7 0.654 34 79.3 | DIR INV
60.1/5.1/34.8 P 1243 | 04 0.6 0.664 39 58.4 | DIR INV
38.7/14.1/47.2 P 195.6 | 0.55 | 0.45 0.538 37.3 30.5 ? INV

Table 9: First column - weight fractions of the explored mixtures. Second
column - the base TPMS. The fits are presented graphically on Figure 33.
The following columns contain the lattice parameter a, the volume fraction
of the layer (¢) and thé volume fraction of the two disjoint channels (¢, =
1—¢@). This two values should be compared with the joined volume fractions
of the surfactant and polymer (sixth column). In the first three cases the
demo+pPao7 Values are similar to the volume fractions of the channels which
indicate a direct type of the cubic phase. Small differences (up to ~ 10%)
may be caused by the fact that the fits determine the width of the layer of
an effective contrast which might be slightly different then the actual layer
width including the surfactant heads. Another possible explanation is that
the system is a multi phase one with additional regions of microemulsion,
sponge phase or excess water. The seventh and eight column present the
computed surface areas per surfactant head for a direct and inverse structures
for the layer volume fraction given in column four. The last two columns show
our determination of the structure type compared with the one presented in
ref. [53].
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Figure 34: Experimental scattering curve from ref.[53] is shown with open
triangles. Its ascription to a C(P) based phase was wrong as it is seen from
comparison with three theoretical patterns for this structure for ¢ = 0.3,

¢ = 0.5 and ¢ = 0.7 (b, c, d respectively).
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compared with the joined volume fraction ¢garo+p4o7 Of surfactant and poly-
mer and the surface areas pe.r surfactant head point out to the direct struc-
tures. The data is convincing enough to risk a statement that ascribing these
patterns to inverse phases in ref. [53] was wrong. In the case of the fourth sys-
tem it is impossible to decide which type of the P structure has formed. The
fitted volume fraction ¢ suggests an inverse phase, but the area per surfac-
tant head is more reasonable for the direct structure. As was noted in [53] on
increasing the water weight fraction the system underwent a phase transition.
Thus a transition from a direct to an inverse phase could be possible. For
even higher water weight fraction (cyater > 50) Landh has recorded a diffrac-
tion pattern, interpreted as an evidence of the appearance of the C(P) based
cubic phase. A typical pattern from this region (34.18/14.77/51.05) is shown
in Figure 34a. In [53] it was suggested that the 1:v/2:4/3:v/4:v/5:/7:V/8 re-
flections originate from a C(P) structure with a lattice parameter a = 315.3A.
However we could not fit the experimental pattern with the C(P)’s spectrum
for any layer width @¢. To illustrate how different the C(P)’s patterns are,
we have showed the I(C(P)med) (Eqn. 3.10) for ¢ = 0.3, 0.5 and 0.7 (Figure
94b-d). Thus we suggest that it is not a C(P) based phase being rather a P

based phase coexisting with some unknown phase.

3.2.3 The DDAB/cyclohexane/water system [6]

The system composed of Didodecyl Dimethyl Ammonium Bromide (DDAB),
cyclohexane and water. We have been able to extract the scattering intensity

from two scattering patterns. The first one of a composition (52.9/13.2/33.9)
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wg % of DDAB/CgH;2/H20. The experimental scattering pattern together
with the model fit for a double-diamond D based phase is shown in Figure
35. The best fit was obtained for ¢ = 0.4. For this ¢ value the areas per
surfactant head (for pppap = 1(g/cm®), pcya,, = 0.78[g/cm?] and a = 120A)
are a, & = 43A2 for a direct phase and a, i, = 64.6A2 for an inverse one.
The second value is similar to that proposed by Barois a, = 68A2 [6]. It is
also in good agreement with an expected chain length of the DDAB molecule.
The molecular weight of DDAB is Mpp4p = 462[g/mol), thus, for a, ~ 6542,
it’s length is: I, = Vppas/as = Mppap/(0.6023pppas) ~ 12A. Furthermore
for the lattice parameter a = 120A and for the layers volume fraction ¢ = 0.4
the corresponding layer width L = 0.22a = 26.4A. Thus the layer width is
approximately twice as large as the length of the surfactant molecule (L ~
2l,). All this evidence stands in favor of an inverse structure.

The second scattering pattern has been recorded for a mixture of com-
position (41.7/9.3/49) wg % of DDAB/C¢H;2/H,0 respectively. The exper-
imental scattering curve is shown on Figure 36. The authors of [6] suggested
that this pattern originates from a P based structure. Indeed, we obtained
the best fit for the P structure with ¢ = 0.45. The 110, 211, 321 peaks are
reconstructed very accurately. The 222 and 411 reflections have acceptable
values. The area per surfactant for a direct phase a, 4;r = 62.3A2 confirms
the choice of a P direct structure. However the intensities of the 200 and
400 experimental peaks are by far greater then the modeled ones. After sub-
traction of the modeled intensities from the experimental pattern we have

obtained a pattern typical for a lamellar structure (see inset in the right top
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Figure 35: A fit for a DDAB/cyclohexane/water system described in [6]. The
experimental intensity is shown with a dashed line while solid line presents
theoretical pattern for a D TPMS based cubic phase with the layer volume
fraction ¢ = 0.4. Although the fit is not perfect, the value of the area per
surfactant head for an inverse phase (a, in(¢ = 0.4) = 64.6A% confirms the
choice of the structure and layer width. The areas per DDAB per molecule
for a direct (solid line) and inverse (dashed line) structures are shown in the

inset.
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Figure 36: The experimental scattering intensity reported in [6] is shown
with a dashed line in the main figure and the lower right inset. The best fit
with theoretical spectra was obtained for a P based structure for ¢ = 0.45
(solid line). The 110, 211, 222, 321 and 411 reflections are reconstructed
quite well. The areas per surfactant head for a direct (solid line) and inverse
type (dashed line) of the P structure are drawn in the top left inset. The
top right one show the difference between the experimental intensity and the
fitted pattern for a P structure. The remaining peaks spaced at the ratio
1:2 are characteristic of a lamellar phase indicating a phase coexistence. The

+/5/2 peak might originate at some transition state.
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corner of Figure 36). From the peak positions one can deduce the lamel-
lar repeat distance d to cubic lattice parameter a ratio: d/a = 1/2. Thus
we conclude that the investigated mixture was in fact a two phase region.
Furthermore the epitaxial relationship between the lattice parameters of the
cubic and lamellar phase suggests a phase transition mechanism illustrated
on Figure 37.

Namely, when crossing the phase boundary from the lamellar region to
the P region the number of passages drastically increase. At some point the
passages order in the 2D lamellar planes in a square lattice to form a P based

cubic structure.

3.2.4 Polimerized G structure [68]

We would also like to present a fit to the experimental pattern of a polimer-
ized G structure. The system described in [68] was an aqueous solution of
a cetyltrimethylammonium chloride (CTAC) with an addition of tetraethy-
lorthosilicate (TEOS). After reaching equilibrium the system was left for
several hours in order to let the hydrolysis of TEOS takes place. Next the
mesoporous solids obtained in the polimerization reaction were analyzed.
Figure 38 shows the experimental scattering pattern of the mesoporous ma-
terial of the Ta3d symmetry. This spectrum was successfully fitted with the
scattering intensities for a G based structure of the layer volume fraction
¢ = 0.45. The corresponding layer width is L = 0.149a = 14.6A. Thus fit-
ting the scattering pattern can also be a method for an efficient layer width

measurement. The visualization of this mesoporous structure is presented in
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Figure 37: Schematic illustration of the lamellar to P TPMS based cubic
phase transition and coexistence. The ratio between the cubic lattice con-

stant a and the lamellar repeat distance d is indicated by the x-ray spectra

[6]-
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Figure 38: Comparison of the experimental [68] scattering pattern of a
polimerized mesoporous material of an Ia3d symmetry (dashed line) with
a theoretical spectrum for a gyroid G TPMS based phase of a layer volume
fraction ¢ = 0.45 (solid line).

Figure 39.

3.2.5 The RFZEO,/water system [9]

This last example is meant to show that the analysis of the intensity of the
Bragg reflections can be done without performing the fitting procedure given

by Eq.(3.11). It can be done when the intensities of several allowed peaks
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Figure 39: A computer visualization of the G gyroid TPS based cubic
phase determined by fitting the experimental SAXS pattern (Figure 38).
The darker areas correspond to the subvolume (¢ = 0.45) occupied by the

polimerized bilayer.

are very small. In the preliminary analysis it is enough to draw the relative
intensity of the strongest reflections in respect to one reference peak as a

function of the layer width L:

I(mad)( L)
Inei(L)Tnki) = 2B (3.22)
Iier (L)

The reference peak should have a large intensity and possibly the smallest
HKL indices. In the case of all three simple structures P, D and G the
first reflection is a good candidate. Figure 40 shows the intensities of the
strongest reflections of the D based phase in terms of the reference peak

HKL = 110. These in turn can be compared with analogously expressed
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Figure 40: The theoretical intensities for the D TPMS based phase of the 111
(solid line), 220 (circles), 221 (squares), 310 (triangles) and 222 (diamonds)
reflections expressed in terms of the intensity of the 110 peak. the arrows
mark the layer volume fraction ¢ = 0.6 for which the theoretical intensities
are in accordance with experimental measurements [9]. The 111 intensity has
been measured to be I;;; = 0.51;;9 while the 220, 221, 310 and 222 peaks
were very weak (< 0.01I110). The inset show the theoretical intensities of
the 200 and 211 reflection, experimentally measured to be Iyp = 0.01 and

1211 = 0.03.
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spacing | hkl assignment, | I(¢*P)
V2 110 1
V3 111 ~0.5
vz 200 ~ 0.01
V6 211 ~ 0.03
V8 220 <0.01
e 221 <0.01
V10 310 0
V12 222 0

Table 10: The experimental intensities reported in [9]. The first column
contains the spacing of the observed peaks, the second the hkl assignment
and the last column contains the intensities expressed in terms of the intensity

of the first (110) reflection.

intensities of the experimental scattering pattern of the fluorinated surfac-
tant CgF;3C,H4SCoH4(OC,H,),0H (RFZEQ;)/ water system reported in
[9]. The experimental intensities are presented in Table 10. The intensity
of 111 peak I\ ~ 0.5, the small values of the 200, 211, 220, 221 reflec-
tions and absence of the 310 and 222 reflection are in good agreement with
the theoretical values for the layer volume fraction ¢ ~ 0.6. Furthermore at
this value of ¢ the 200 and 211 reflections are significantly greater then zero,
which is in accordance with the experimental measurement. It is important

to note here that the intensity of the 200 reflection might be in fact bigger
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than the intensity of the 211 peak as expected by the theory. Due to rather ‘
small resolution of the scattering patterns presented in [9] the 200 peak lays
within the vicinity of the broad 111 reflection. Thus it’s intensity is probably

underestimated.
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4 Summary

The results of this work are summarized in chapter 2 by Eqs(2.2, 2.5) and
Tables 2-8. The first equation enables reconstruction of the scattering am-
plitudes for any electron density profile and fluctuations. A detailed cross
sectional density profile can be constructed from the knowledge of the micro-
scopic details of the molecules present in the system. Then it can be tested
by comparing the amplitudes evaluated through Eqn(2.2) with high quality
experimental diffraction data.

For a simpler and faster analysis we propose modeling described by
Eqn(2.5). It takes into account only the crude (Eqn(2.11)) electron density
contrast and neglects the fluctuations. The last point has been justified in
chapter 2.3. The Heaviside distribution form of the density function is related
to the fact that the main contrast in most amphiphilic systems results from
the electron density difference of water and hydrocarbons.

In the third chapter this simple method for a quantitative analysis of
the scattering patterns of self assembled cubic phases has been applied to
several experimental amphiphilic systems. Presented examples prove the
utility of our method. Even such a crude model provides crucial information
on the type of the structure, its microscopic details and on the stability of the
sy;stem. Namely in phase coexisting systems one can determine the phases
present, their structural relationships, volume ratios, etc. In time resolved
techniques this could lead into an interesting insight on the kinetics and

mechanisms of phase transitions.
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Furthermore this approach could be used to study how the amplitude
signs change with the parameters for more detailed density profiles. In this
respect our approach could be used together with the method presented in
[38] in order to find simple formulas for the intensity and density distribution
in surfactant systems leading to reconstruction of the actual density map of
the cubic phases in amphiphilic systems. We believe that our method will

deepen the knowledge of these fascinating systems.
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5 Appendices

5.1 Appendix 1: Nodal approximations for the C(P),
C(D), F-RD and I-WP surfaces

The nodal approximations for the unit cells (z,y,z € (0,1)) of the latter

minimal surfaces are given by the equations below [40]:

C(P): cos(X)+ cos(Y) + cos(Z) + 3cos(X)cos(Y)cos(Z) =0 (5.1)

C(D): cos(3X)cos(Y) cos(Z) + cos(3Y) cos(Z) cos(X)

+c0s(3Z) cos(X) cos(Y") + cos(3X) sin(Y’) sin(Z)

+ cos(3Y') sin(Z) sin(X) + cos(3Z) sin(X) sin(Y")

— sin(3X) cos(Y) sin(Z) — sin(3Y) cos(Z) sin(X)

—sin(3Z) cos(X) sin(Y) — sin(3X) sin(Y’) cos(Z)
—8in(3Y") sin(Z) cos(X) — sin(32) sin(X) cos(Y) = 0 (5.2)

F—-RD: 12cos(X)cos(Y)cos(Z) — 3cos(2X) cos(2Y)
—3cos(2Y) cos(2Z) — 3cos(2Z) cos(2X) =0 (5.3)

I-WP: 2cos(X)cos(Y)+ 2cos(Y)cos(Z) + 2 cos(Z) cos(X)
—cos(2X) — cos(2Y) —cos(2Z) =0 (5.4)
where X = 2nz, Y = 2wy and Z = 2wz for the C(P), F-RD and I-WP

surfaces and X = nz, Y = my and Z = 7z for the C(D) surface.
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5.2 Appendix 2: Derivation of the Debye-Waller factor
The right side of the equation (2.26):

2 1\2
A(q, p(€),0 Fs / d¢ / d¢' p(€') exp [ €~ 5) } cos(omt g £)

(5.5)

can be rewritten in the following form:

2FS/ d¢'p(¢ 0\/_/ d¢ exp [_( _E,)2] cos(apugf) (5.6)

after substituting z = £ — €' we obtain:

S 00 00 _
252_”[- d¢'p(¢") .[_g dz exp [—20122] cos(anug(z + €)) (5.7)

then, from the relation cos(a + b) = cos(a) cos(b) — sin(a) sin(b), we have:

2FS

oo 00 e,
/ d€'p(¢’) cos(anugt) / dz exp [5%] cos(augr) —
2FS

/ d¢' p(¢') sin(aprgt’) / dz exp [ 52 ] sin(apugz) (5.8)

and after breaking up each of the integrals over z into a sum of two integrals
( ffz, dr = ff&’ dz + [;° dx) we obtain four integrals, that is:

A(a,p(£),0) =Ci+C2 - C3— Cy (5.9)
where
s
C = 2 / d€'p(€&') cos(anrigt’) / dz exp [ ] cos(ankgz) (5.10)
s o2
Cy = 2F / d¢'p(€") cos(anngé') / dz exp [ ] cos(anrgz) (5.11)
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sin(aprgz) (5.12)

s
Cs = 2 / d¢'p(&') sin(apkigt’) / dxexp[

S
2\% f " (€ sin(omuge ) [o dxexp[

We will now rewrite the C) in the following form:

Cs=

sin(apugz) (5.13)

2 o
o)

ZFS
C = d€ p(€') cos(anugt’) f1(€) (5.14)
where
_z?
£ = /0 dz exp [2 ] cos(apr9z) (5.15)
is an asymmetrical function of &' because after a substitution ¥y = —z and

since cos(—y) = cos(y) we have:

0
7E) == [ dvexn [ 7] costoman) =-5i(~€) (510

thus, since p(£') and cos(apkg’) are symmetrical in &’ the integral C; is equal

to zero. Similar argument applies to Cj:

S 00
Cs = 2527 | deple)sin(amat) u(e) (5.17)
where
0 r_ .2

f(€) = . dz exp W] sin(aprgz) (5.18)

is symmetrical because (y = —z; sin(—y) = —sin(y)):

0 —y?]

f3(&) = /s' dy exp ['2'0—2 sin(anuqy) = f3(—¢') (5.19)

Again two of the functions under the integral over ¢’ are symmetrical (p(&'
g gr

and f3(£')) and one is asymmetrical (sin(ankgé’)) and C3 = 0. The integral
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over z in Cy is independent of & and since sin(opkgf’) is asymmetrical,
C, is also equal to zero. Thus the only possibly nonzero component is C,.
Since both cos(anrgr) and exp[—z2/20?] are symmetrical in z the integral

Jo dz = (1/2) [ dz and:

2 FS 2

Co= 2 [ aeole) costonuat)} [ dwenp |55 costonuan)

(5.20)
where
1 00 2
3 /_m dz exp [2 2] cos(ankigr) = (5.21)
—g? g

/ dz exp [ 5 2] explianrgz] + d:z: exp [ 557 ] exp[—iankgz]

(5.22)

the latter two integrals are identical and:

2
/ dz exp [ ] cos(appgz) = ; / dzx exp [ 2:6 ] exp[iaprqr]
—00
(5.23)

which is a Fourier transform of the Gaussian distribution

o2 1
/ dz exp [ ] expliaprgz] = 5 eXP [—Eazaiuqz] (5.24)

which after insertion into (5.20) gives:

A(q,p(£),0) = C; = F° [ /_ : d€ p(§) cos(q o 6)] exp [—%(q Ohkg 0)2]
(5.25)

and since [% dzcos(z) = 2 [} dz cos(z),

A(a, p(§),0) = F® [2 fo d¢ p(£) cos(q ok E)] exp [—%(q Qnkt 0)2]
(5.26)
which exactly of the same form as Eqn(2.27).
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