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1. Governing equations 

In the theory of thick plates (differently called Reissner-Mindlin plates) is taken into account 
that transverse strengths and connected with them shear strains have influence on plate 
deformations. The thicker is the plate, the higher is the influence of transverse strengths - from here 
name of this theory. In the thick plate theory occurs three independent displacement parameters: 
deflection w and two rotations ϕα. Additional load of the plate composes moment fields mα. 

Thick plates are described by the following dynamic equilibrium equation system [1] 
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Where H and D mean shear and bending stiffness of the plate, and γ is the mass density. 

2. Free vibrations 

We transform equations (1) into a form of free harmonic vibrations assuming 
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The equation system (1), written in a convenient form to calculate the fundamental solution, can be 
written as 

(3) δδ=ij j k ikL u  

The fundamental solution of the harmonic vibration equation (3) can be found using the Hörmander 
method. This solution is a function of the parameter ω.  

Using the BEM an algebraic equation system with the parameter ω can be obtained. 
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Equation system (4), independent of the chosen boundary conditions, can be written in a compact 
form 
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(5) ( ) 0ω =A X  

This system has a nonzero solution providing that the determinant of the matrix A is equal zero: 

(6) ( )det 0 , 1,2,...ω ω= ⇒ =i iA  

3. Forced vibrations 

We presuppose the solution of the system (1) in a following form of eigenfunction series: 
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Equation system (1) separates then into three independent scalar equations of time. Let’s write one 
of them 
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The solution of this equation can be easy found in an analiti cal way. 
A numerical example of the solution of the plate using the upper described routine will  be 

presented during the conference. 
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