SIZE EFFECT OF AN ELLIPTIC INCLUSION IN ANTI-PLANE STRAIN COUPLE STRESS ELASTICITY

H.M. Shodja^{1,2} and H. Haftbaradaran¹

¹Department of Civil Engineering, Sharif University of Technology, Tehran, Iran ² Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran

1. Introduction

The application of higher order continuum theories, with size effect considerations, have recently been spread in the micro and nano-scale studies. One famous version of these theories, proposed by Mindlin[1], is the couple stress theory. This paper utilizes this theory to study the anti-plane problems of elliptic inclusions.

2. Solution of the governing equations

The governing field equation for the anti-plane problems of couple stress elasticity within a centrosymmetric isotropic material is given by

(1)
$$\nabla^2 u_3 - \ell^2 \nabla^4 u_3 = 0,$$

where ℓ is the characteristic length and u_3 is the out of plane displacement, [2]. Concerned with the problems of elliptic cylindrical inclusions, the solution of Eq.(1) is sought in elliptic coordinates, (ξ, η) with $(x_1, x_2) = c_0(\cosh \xi \cos \eta, \sinh \xi \sin \eta)$, Fig.1. Where c_0 is a positive constant.

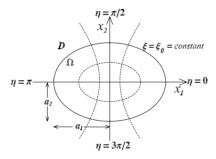


Figure 1. An elliptic domain within an infinite medium.

The general solution of this equation is taken as $\overline{u}_3 + \overline{\overline{u}}_3$, provided that

$$(2) \quad \frac{\partial^{2}}{\partial \xi^{2}} \overline{u}_{3} + \frac{\partial^{2}}{\partial \eta^{2}} \overline{u}_{3} = 0, \quad \frac{\partial^{2}}{\partial \xi^{2}} \overline{\overline{u}}_{3} + \frac{\partial^{2}}{\partial \eta^{2}} \overline{\overline{u}}_{3} - \frac{c_{0}^{2}}{2\ell^{2}} (\cosh 2\xi - \cos 2\eta) \overline{\overline{u}}_{3} = 0.$$

Consider an elliptic domain, Ω within an infinite medium, D, as shown in Fig.1. In the elliptic coordinate system the interface between Ω and D is described by $\xi=\xi_0$. The long and short semi-axes of Ω are denoted by a_1 and a_2 , respectively. The general solution of Eq.(1), periodic in η , associated with the exterior and interior points of Ω are respectively given by $u_3^{(1)}$ and $u_3^{(2)}$ as:

(3)
$$u_3^{(1)}(\xi,\eta) = \sum_{k=1}^{\infty} \left(\overline{a}_{k1} \cos k\eta + \overline{b}_{k1} \sin k\eta \right) \left(\cosh k\xi - \sinh k\xi \right) +$$

$$+ \overline{\overline{a}}_{01} ce_0(q,\eta) Ke_0(q,\xi) + \sum_{k=1}^{\infty} \overline{\overline{a}}_{k1} ce_k(q,\eta) Ke_k(q,\xi) + \overline{\overline{b}}_{k1} se_k(q,\eta) Ko_k(q,\xi),$$

and

(4)
$$u_3^{(2)}(\xi,\eta) = \sum_{k=1}^{\infty} \left(\overline{a}_{k2} \cos k\eta \cosh k\xi + \overline{b}_{k2} \sin k\eta \sinh k\xi \right) +$$

$$+ \overline{\overline{a}}_{02} ce_0(q,\eta) Ie_0(q,\xi) + \sum_{k=1}^{\infty} \overline{\overline{a}}_{k2} ce_k(q,\eta) Ie_k(q,\xi) + \overline{\overline{b}}_{k2} se_k(q,\eta) Io_k(q,\xi),$$

where $q=-c_0^2/4\ell^2$. Here ce_k and se_k are the angular Mathieu functions and Ke_k , Ie_k , Ko_k and Io_k are the radial Bessel type Mathieu functions. Assume that the displacement field $u_3^*=2e_{3i}^*x_i+e_{3ij}^*x_ix_j+\dots$ is given inside Ω , where the summation is performed on $i,\ j=1,\ 2$ and e_{3i}^*,e_{3ij}^*,\dots stand for the eigenstrains [3]. The unknown coefficients in Eqs.(3-4) are determined through satisfaction of the following conditions on $\xi=\xi_0$,

$$(5) \quad \overline{T}_{3}^{(1)} = \overline{T}_{3}^{(2)}, \quad \overline{M}_{\eta}^{(1)} = \overline{M}_{\eta}^{(2)}, \quad u_{3}^{(1)} = u_{3}^{(2)} + u_{3}^{*}, \quad \sigma_{z\xi}^{(1)} = \sigma_{z\xi}^{(2)},$$

where \overline{T}_3 and \overline{M}_{η} are the reduced traction components and σ_{ij} is the component of the stress tensor. The superscripts (1) and (2) over a field quantity implies that it is derived from the displacements, $u_3^{(1)}$ and $u_3^{(2)}$, respectively.

3. Numerical results and conclusion

Suppose Ω is an inclusion with uniform eigenstrain, $e_{13}^*=1$. Ω and D are made of same material, and so they have the same shear modulus, μ and characteristic length, ℓ . To examine the size effect, various ratios for $\frac{\ell}{a_2}$ are considered. In a special case with $a_1=a_2$, the results via the present formulation reduce to the results derived from the work of Lubarda [2]. For a case where $a_1=1.5a_2$, the shear stresses $\sigma_{\eta z}$ and $\sigma_{\xi z}$ just outside of the inclusion along the inclusion-matrix interface are shown in Fig.2. This figure verifies that the results of the present study approach the classical solutions as the inclusion dimensions grow. It is observed that $\sigma_{\xi z}$ attains its maximum at the end points of the long axis of the inclusion, while σ_{nz} vanishes at these points.

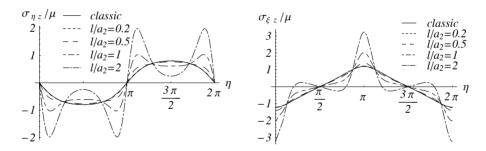


Figure 2. The stress distribution along the inclusion-matrix interface, approached from the matrix.

4. References

- [1] R.D. Mindlin and H.F. Tiersten (1962). Effects of couple-stresses in linear elasticity, *Arch. Ration. Mech. Anal.*, **11**, 415-448.
- [2] V.A. Lubarda (2003). Circular inclusions in anti-plane strain couple stress elasticity, *Int. J. Solids Struct.*, **40**, 3827-51.
- [3] T. Mura (1991). *Micromechanics of Defects in Solids*, 2nd ed. Kluwer Academic Publishers, Netherlands.