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In real solidification processes, convection in the melt is usually difficult to avoid.
This convection may often have a strong influence on the solidification rate and also
the mode of solidification. We have recently used 2D phase field simulations to study
the growth of a small nucleus to a dendrite in an undercooled melt, in the presence of
convection in the melt'?. The solution of the equations for viscous flow has been
added to a solution of the phase field equations according to Karma and Rappel’. An
adaptive finite element method is used which allows a large computational domain, so
that a single dendrite in an effectively unbounded region can be studied.

As a generic case for growth from solid boundaries, the nucleus is in one case
assumed to be attached to a solid wall, and a shear flow parallell to the wall is
assumed in the melt. The interaction between the melt flow and the growing dendrite
results in a changed growth rate and morphology.
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Figure 2

Figure 1 shows a dendrite that has grown into an undercooled high Prandtl number
melt. The flow in the melt is a shear flow from left to right, with zero melt velocity at
the solid lower wall. Streamlines of the flow are shown above the dendrite. The fluid
flow is displaced by the dendrite, and a small clockwise circulating eddy is visible at
the rear. The dendrite is seen to be tilting slightly from the direction of preferred
growth which is assumed to be perpendicular to the wall. It is very evident that
sidebranches are promoted on the upstream side, and suppressed more or less
completely on the downstream side. Figure 2 show the corresponding isotherms. It is
seen that the isotherms are compressed on the leading side, giving rise to enhanced
heat transfer there, i.e. cooling, which will then promote the growth of sidebranches
On the downstream side however, the isotherms reveal a wake with much lower
temperature gradients, and thus a reduced solidification rate. Only just below the
eddy, where fresh cold melt is convected towards the main stem, two small secondary
arms are present.

The simulation shown above shows some tilting of the main stem, but much less than
might be expected from experiments. The anisotropy of the crystal will act to
maintain the growth direction approximately in the preferred direction, despite the
difference in heat transfer at the up- and downstream sides. Another possible
mechanism for producing the tilting of dendrites is the selection of a nucleus with an
optimal initial crystal orientation, if we assume that there are many nuclei with
random orientations present initially.
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Figure 3

Figure 3 shows a set of simulated dendrites which have grown from nuclei that have
different preferred growth directions. The solid contours are simulated with
convection, while the dashed contours are obtained for the same conditions, but
without convection. It is seen that the dendrite in d) has reached the largest distance
from the wall. If we conjecture that this would eventually outgrow neighbouring
dendrites with other orientations, then the tilt angle we would observe in an
experiment would be around 30 degrees, as in figure 3d. Note that the dendrite in b)
which has a preferred direction which is perpendicular to the wall as in figs 1 and 2,
has only changed its growth direction slightly.

We have also studied natural convection around a nucleus held in an undercooled
melt. This will be discussed briefly in the presentation.
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INTRODUCTION

It is known that when a conductive wire frame is moving in a constant magnetic field, an electric
current and a variable magnetic field are generated in the frame.

Similar phenomena can be observed when a seismic wave propagates in the Earth’s constant mag-
netic field. The seismic wave, with its leading and trailing wave fronts, is analogous to a wire
frame. A conductive medium between the leading and trailing wave vibrates in the Earth’s con-
stant magnetic field, which brings about local geomagnetic variations. Local geomagnetic vari-
ations propagating simultaneously with the seismic wave diffusing into the medium are called
seismomagnetic waves. These waves contain information about both electromagnetic and elastic
parameters of a medium.

The electromagnetic wave rides the “back” of the seismic wave, that is, the induced electromag-
netic wave is “frozen” into the seismic wave and propagates either with P- or with S- seismic wave
velocity, depending on the type of waves. The dominant frequency and the velocity of the induced
seismomagnetic wave is equal to the frequency and velocity of the seismic wave.

The phenomenon of the seismomagnetic effect caused by an explosion in an elastic medium is
described as a simultaneous solution of the self-consistent system of elastic equations with the
Lorentz force and quasi-stationary Maxwell’s equations with displacement velocity components.

MATHEMATICAL MODEL

We assume that the model under consideration satisfies the basic hypotheses of continuum me-
chanics: continuity, Euclidity, and absoluteness of time. The first hypothesis means that an unin-
terrupted continuum is considered, the second one implies the possibility to introduce a Cartesian
frame of reference for all points, and according to the third hypothesis relativistic effects are not
taken into account. Moreover, the model is inapplicable in the casc of strong magnetic fields.
We also assume that electromagnetoelastic waves arise under the action of mechanical perturba-
tions, and that one can neglect the effect of electromagnetic waves on the process of propagation
of elastic oscillations and also neglect the displacement currents as compared with conduction
currents. Lastly, we will consider the fields of small perturbations.

Now we can write down our equations. The assumption that we consider the fields of small per-
turbations allows us to consider the linearized statement of the problem when the displacement
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vector U, the vector of the electric field intensity £, and the vector of the magnetic field intensity
‘H can be represented in the form

(U,€,#) = (0,0,H" + (u,E, H)

where (0,0, H?) is the value related to the unperturbed state of the medium (H° = (H?, HJ, H?)
is a constant vector); and the vectors u = (uy, up, u3) (displacement of the points of the medium
from the reference configuration), E = (E, E;, E3) (intensity of the electric field), and H =
(H,, H, H3) (intensity of the magnetic field) correspond to small perturbations of the elastic and
electromagnetic fields. Besides, in view of our assumptions one can consider that the process of
elastic waves propagation is governed by the usual system of differential equations of the theory
of elasticity:
Py,
= , i=1,23, 1
P o E Oz S i
where the stress tensor T;;(u) is defined in terms of the components u; of the displacement vector
and in the case of an isotropic magnetoelastic medium has the form
Ou; Ou ] I
T.,(u):rc(a:+51—j) + 8 dive, 4,j=1,2,3 2
Here p, A, & denote the density of the medium and the Lamé coefficients respectively, and 4,; is
the Kronecker symbol.
The propagation of electromagnetic waves through an elastic conductive medium is described in
our case by the following set of equations:

rotH=1J, % = —rotE, divB =0 3)

where, in virtue of our assumptions, the constitutive relations are written as
B = u(H° + H), Jza(E—u%tu-xHO). 4)

Here p is the magnetic permeability, and o is the conductivity of the medium. Such are, in gen-
eral outline, the differential equations describing the process of interaction of electromagnetic and
elastic waves in our case.

Now we proceed to the statement of the direct problem for differential equations (1)-(4). Consider
the rectangular Cartesian frame of reference (z,, 3, £3) = x. Let the plane z3 = 0 be the interface
of two media of the types “air” (z3 < 0) and “conductive ground” (z; > 0). Electromagnetic
and elastic characteristics of the ground are described by piecewise constant functions with break
planes parallel to the plane z3 = 0. Let us introduce the notation

[f]r :f|r+ "f!r—1

i.e., the symbol [f]. denotes the jump of the function f on the oriented surface I' in the direction
from the inner to the outer side of ['. We assume that elastic oscillations arise under the action of
a force source concentrated at the origin of coordinates

Tﬂ(u)Ira:O = 45)¢3_f(t) 5(11,1‘2), k= 23, (5)

where §(-) is the generalized Dirac delta.
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As concerns the force source and initial data, we assume that the function f(¢) and the electromag-
netoelastic field are absent before the moment¢ = 0, i.e.,

(f,u,E,H)|;co = 0. (6)

To single out the unique solution to the direct problem, one has to require the fulfilment of the
radiation condition at infinity:
lim (E,H) =0. 7
|x|—o00

Moreover, on the planes where the coefficients of the problem have breaks we require the fulfilment
of standard consistency conditions

uml = [Ex] =[Hel = [Tmalu)]l =0, k=1,2, m=1,23. 8)

Thus, the direct problem consists in finding the vector functions u, E, H satisfying equations
(1)—(8) providing that we know the elastic and electromagnetic characteristics of the medium and
the constant vector H® characterizing the magnetic field of the Earth,

Our main task will consist in showing the possibility of the simultaneous determination of elec-
tromagnetic and elastic characteristics of the medium from the system (1)~(8) basing on some
additional information on the components of the vector functions u, H.

To carry out numerical experiments a software package is written on the language Watcom C++
with enhanced graphical interface.

Results of numerical experiments will be given to illustrate the efficiency of the proposed methods.
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Summary In this article we present numerical results concerning the simulation of semiconductor
melts with free capillary surfaces, particularly silicon crystal growth by the floating zone method.
Considering the solid/liquid interface as fixed the simulation requires the computation of the moving
capillary surface of the melting zone. The mathematical model is a coupled system which consists
of a heat equation and the Navier-Stokes equations in the melt with a Marangoni boundary condition.
We describe an efficient numerical method for solving this problem and give some results for different
physical parameters.

INTRODUCTION

Fluctuations of the electrical resistivity due to inhomogeneous dopant distribution are still a serious
problem for the industrial processing of doped semiconductor crystals. In the case of silicon floating—
zone growth, the main source of these inhomogeneities are time-dependent flows in the liquid phase
during the growth process. Hence, for optimizing the growth process, it is of great importance to

study the influence of thermocapillary and buoyancy convection on macro— and microsegregation'”.

Due to the opaqueness of semiconductor melts, experimental fluid flow observation is extremely
difficult and expensive in general. Therefore the numerical simulation of the growth process is an
important tool in understanding and predicting the behavior of the system’.

MATHEMATICAL MODEL

Figure 1 gives a schematic diagram of a floating—zone configuration.

raw
material

Tg

Figure 1. Geometry of a floating zone

The heat and mass transfer in the liquid zone = Q(t) € IR* (d = 2, 3) is governed by a coupled
system of partial differential equations for the flow velocity u(-, ¢) : Q(t) — IRY, the pressure p(-, ) :
Q(t) = IR and the temperature T'(+, t) : Q(t) = IR, namely the Navier-Stokes equations and the heat
equation in Boussinesq approximation. The interfaces I's;, and "¢ are free boundaries, the first one
being subject to a Stefan condition, the latter one determined by a balance of capillary forces versus
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normal stresses of the flow. We simplify the problem by focusing on the free boundary conditions on
I'.c and prescribing a given solid-liquid interface I's; where we impose a homogeneous Dirichlet
boundary condition for v and T (T = 0 the dimensionless melting temperature). Furthermore on
the free liquid—gas interface [ the temperature is prescribed by a given parabolic profile 7. The
complete system in dimensionless form reads as follows:

i Ra ~ .
5[u+u-Vu—EAu+Vp — —WT% in 2(t), (0]
Vu =10 in Q(t), )
1 ;
T +u-VT - RePr AT = 0 in (%), 3)
T=N0) onTgyp, 4)
u = 0 onTsg, (5)
T = Tp onTza(t), (6)
1 Bo _
voov = mi—[+meg o onTpc(t), ()
Ma )
TOoOUV = —mvl—‘-’f on FLG(t), (8)
u-v = Vp on [ra(t), 9

with ¢ = (%D( )i; pcfu) _, the stress tensor, D(u) = (L),‘uJ + 8z, us )d _ the deformation
tensor, k£ the sum of the prmc;pal curvalurcs the unit outer normal vector v, an arbllrnry tangential
vector T and the normal velocity Vt of the free boundary ¢

The system has to be closed by initial conditions for «, T and £2. Note that in the continuous case we
have conservation of volume since the velocity u is divergence free.

The dimensionless numbers occurring in the above equations are the Reynolds number Re = ‘%-':

the Prandtl number Pr = —"E. the Rayleigh number Ra = Mﬁ the capillary number Ca = L
the Marangoni number Ma = _@L:_T;ﬁ and the Bond numbcr Bo = 222 with a characlens!ac
velocity U, a characteristic length L, a characteristic temperature difference .ST the density p, the
surface tension 7, the thermal coefficient 8/8T of surface tension, the thermal diffusivity k, the
dynamic viscosity 77 and the gravitational acceleration g.

Even if all data are rotationally symmetric or two dimensional according to the physical setup, the
solution may be expected to be 3D and also time-dependent due to symmetry breaking. Thus, it is
necessary to define a numerical scheme for the time-dependent case and which works also in 3 space
dimensions.

NUMERICAL APPROXIMATION

Discretizing equations (1)-(3), the free boundary conditions cause several problems, in particular the
treatment of the curvature terms and in finding a stable and efficient time discretization.

To resolve these problems we use a variational formulation, where the free boundary conditions are

transformed to a boundary integral part of the bilinear forms®. To this end we write the momentum part
of the Stokes equations (analogously for the Navier-Stokes equations) in the strong form, multiply
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by a solenoidal test function ¢ and integrate by parts. We get
1 1
[i-mtutVpt o = = [D@: D) - [pV-0= [ v0p.
Q Q hi Tic
Taking into account the boundary conditions on I' ¢ and making use of the identity
Aidr,, =V - Vidp ; = Ky, (10)

where A denotes the Laplace Beltrami operator on ¢ and V the tangential derivatives, yields

1 1 1 ,
‘[{—R—EAIWW)W = rm/D(U)-D(sﬂ)—fpV-w+ m[ﬂadrw'lv an

Ma d-1
Raprz f e R ca f‘dfm B

Time discretization

To discretize in time a semi-implicit coupling of the unknowns for temperature 7T, geometry (2 and

the flow variables u, p is used. More precisely, giving the values at the discrete time instant £,_; we

compute

Step 1: T* by solving (3) on Q5= with u*-!

Step 2: u*, p* by solving (1)~(2) with boundary conditions (7, 8) on 2*~! and using T* on the right
hand side

Step3: Tioby Dk i=Thc + (e —tey) u* v v

In Step 2 the boundary conditions (7, 8) are incorporated into the variational formulation according
to (11). The curvature terms are treated in a semi-implicit way:

[ Widy, Yo = [ Widuo Fo+ (- tar) [ Tt Ty,
I-l—l rk 1 rl 1
LG LG LG

thus decoupling the flow computation from the determination of the geometry. This leads to a stable
and efficient treatment of the free boundary conditions®,

The computation of u*, p* is based on the fractional step —scheme in a variant as an operator splitting,
which decouples two major numerical difficulties, the solenoidal condition and the non]ine:u-ity“’7

Spatial discretization

To discretize in space piecewise quadratic, globally continuous elements for v and T and piecewise
linear, globally continuous elements for p are used on a tetrahedral grid.

NUMERICAL RESULTS

The following example shows the influence of the hydrostatic pressure on the shape of a floating
zone with aspect ratio h/d = 1.5. Here gg = 9.81m s~? denotes the gravitational acceleration on
earth. We consider pure Marangoni convection without buoyancy convection, i.e. Ra = 0. The other
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dimensionless parameters are: Re = 50, Pr = 2, Ma = 150, Ca = 0.016, Bo = 0.18  |g| with
g € {0,1.0%gp, 2.0%gg}. Figure 2 shows the velocity field together with the temperature distribution
in the melt and Figure 3 the corresponding triangulation of the domain (2.

Figure 3. Triangulation for g € {0, 1.0 * gg, 2.0+ gg}
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FEM ANALYSIS OF ALLOY SOLIDIFICATION USING THE ANISOTROPIC POROUS
MEDIUM MODEL OF THE MUSHY ZONE

Jerzy Banaszek, Piotr Furmanski

Institute of Heat Engineering, Warsaw University of Technology, Poland

Semi-implicit FEM scheme is used for two dimensional computer simulation of binary alloy
solidification controlled by buoyancy forces and conduction. The computational algorithm is based
on the combination of: ;

(1) the projection method to uncouple velocity and pressure calculations for incompressible fluid,

(2) the backward Euler and explicit Adams-Bashforth schemes to effectively integrate diffusion
and advection in time, and

(3) an enthalpy-porosity approach to account for the latent heat effect on a fixed finite element
grid.

The focus of this paper is on the analysis of the impact that the anisotropy of both the permeability
and heat conductivity can have on the flow structure and temperature field in the mushy zone.
Example calculations are given for an aqueous ammonium chloride solution, which has well-
established thermophysical properties and solidifies in manner typical of many metallic alloys.
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THE PROBLEM OF AUTHENTICITY OF INITIAL AND THERMAL BOUNDARY
CONDITIONS IN THE CODE VALIDATION ANALYSIS

Jerzy Banaszek & Marek Rebow
Institute of Heat Engineering, Warsaw University of Technology, Poland

If a computer simulation is to have a major impact on the design of engineering hardware or to
be a desirable supplement to an experimental study of complex phenomena, we first have to be
convinced that this simulation has a satisfactory level of confidence. Such analysis consists of two
procedures: verification and validation. The former one is the process that demonstrates the ability
of a numerical model and its computer program to solve specific set of governing equations. It
establishes the level of accuracy and sensitivity of the results to parameters appearing in the
discrete formulation through purely numerical experiments. This procedure is based on both grid
refinement study and comparison of the results with other available solutions of some benchmark
problems. The verification procedure, although indispensable, is not sufficient to establish the
confidence of numerically obtained predictions. Indeed, for engineers and physicists the most
important issue is the degree to which the computer simulation is an accurate representation of
reality, i.e.: the degree to which inevitable simplifications of physical and mathematical models
reflect reality. This is established through the code validation procedure where calculations are
extensively compared with trustworthy detailed experimental measurcments.

In complex phenomena of coupled fluid flow/heat transfer with the solid-liquid isothermal/non-
isothermal phase transition an experimental study is very often difficult and prohibitively
expensive, particularly for materials with high fusion temperatures (e.g. metallic alloys). Therefore,
in such cases the computer code validation procedure is rather performed through comparing the
calculations with experimental data for some substitute media, which solidify or melt in the way
similar to the materials of interest but in much lower temperatures. For example, in the case of
isothermal phase change, melting of gallium [1] or freezing of pure water [2,3] in the differentially
heated cavity is studied experimentally, whereas an aqueous ammonium chloride solution [4] is
used to mimic the metallic alloy solidification occurring in the range of solidus-liquidus
temperatures.

The freezing process of pure water, driven by natural convection in fluid and conduction in both
phases, is often used as an experimental benchmark [2,3,5], which is a challenging test for a
computer simulation of the solid liquid phase transition. Indeed, water is a fluid that does not obey
the Boussinesq approximation of the linear buoyancy force-temperature relation because water
density at low temperatures is a non-linear function of temperature. Water density anomaly creates
a complex flow pattern that contains two different circulation regions - the hot clockwise vortex
and the cold counter-clockwise one. Moreover, experimental investigations of fluid flow and heat
transfer processes in the solidifying water are relatively easy to arrange in a small laboratory scale.
The up-to-date field acquisition technique, where Thermochromic Liquid Crystal suspended in
water as seeding along with the Digital Particle Image Velocimetry and Thermometry can be used
here to get detailed, transient, local two-dimensional velocity and temperature fields [2,3,5]. Such
experimental findings are commonly acknowledged as exact and reliable enough to be a reference
standard for comparison with numerical results [2,3].
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However, when water freezes in a small cavity (typically used in experiments), high sensitivity
of flow structure and, thus, of the temperature field, to thermal boundary conditions is observed.
Moreover, at early times of the process the effect of water super-cooling occurs in the cavity [3,5].
It significantly changes the early-time flow structure and temperature ficld, and retards the regular
ice formation. Therefore, it is reasonable to expect that the calculations can also be affected by
some ambiguity of the assumed heat transfer coefficients and by the accuracy of numerical
modeling of the real boundary conditions (those that occur during experimental investigations).

To elucidate the problem, the experimental findings reported in [2,3,5], are compared with the
results of computer simulation of natural convection of pure water in a square cavity at low but
positive temperatures and during the freezing process.

The computationally efficient numerical model has been developed [5] through the combination
of the projection method [6], semi-implicit time marching scheme [6,7] and the enthalpy-porosity
approach [8] along with equal-order or unequal-order finite element space discretization [9]. This
computer code has been used to calculate the natural convection and solidification of pure water
inside the cavity and heat conduction in the cavity walls as the conjugate circumstance for diverse
thermal boundary conditions imposed on external surfaces of the cavity.

Detailed comparison of the calculated local flow pattern, temperature field and the temporal
front shape and position shows significant impact of the initial and thermal boundary conditions on
the velocity and temperature distribution in the cavity. Thus, the problem of the authenticity of
these conditions is crucial when the above-discussed experimental benchmark is used in the
detailed code validation analysis. Special care is needed for precise modeling of realistic boundary
and initial conditions to avoid some ad hoc, but not necessary fully correct, conclusions concerning
the accuracy and the scope of validity of the computer simulation.
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TWO-PHASE FLOWS

Thomas Blesgen
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Summary A modified Allen-Cahn equation is combined with the compressible Navier-Stokes
system. After a physically motivated modification of the stress-tensor, for the resulting equa-
tions the second law of thermodynamics is valid. The model can be used to describe the forming
of gas phases in a flowing liquid.

INTRODUCTION

In the present text, a modified Allen-Cahn equation', is combined with the Navier-Stokes sys-
tem. The resulting model has some simplifications, but is a first step to describe the behaviour
of gas phases in a flowing liquid. The model allows phases to grow or shrink due to changes
of temperature and density in the fluid and incorporates their transport with the current. For
related works we refer to a combination of the Cahn-Hilliard model with the Navier-Stokes
equations?®, the general variational approach of the energy?, and to the models'?.

NOTATIONS AND THERMODYNAMIC RELATIONSHIPS

Let 2 ¢ R? 1 < d < 3 be a bounded domain with Lipschitz boundary. For 0 < D < oo let
Qp =0 x (0,D) and p: Qp — R*' denote the (averaged) density of the fluid, e : Qp — R*
the internal energy, v : Qp — IR? the velocity field of the fluid. Governed by a phase parameter
x : 2 — [0,1], two phases (e.g. a gas and a liquid phase) may exist in Q. Let v/ denote the
thickness of transition layers between two phases. Generally, we postulate the potential energy
density Eyq of the system to be the convex combination of the corresponding values of the two
phases, giving rise to the definition

Epol e XEpoL‘l + (l - X)Epohz’- (1)

Similar relationships will be assumed for the entropy density S and the Gibbs free energy
density GG. The internal energy density E is obtained after adding the kinetic energy:

i
E = Epm. Sr 5 Ivrz.

Capital letters genericly denote densities, values corresponding to small letters include a factor
p or p;. Indices refer to the phase, values without index to the whole system. Hence,

epot = €pot,1 T Epor,2 = 01Epor,1 + 0200t 2
= Q(XEPGIJ + (1 = X)Epot.Z) = QEpoh (2)
e
e = Guts v
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o and y are solutions of the system of partial differential equations (4) - (7) below and allow
us to calculate the specific densities gy, g, of the phases.

Consider the specific volume V' = L. Let V; be the specific volume of phase i and V; be the
volume phase i is actually occupying in V. Now we define

= —‘{} volume fraction of phase 7in V, 0 <, < 1,
o::=% =0 ¢ specific density of phase i, 0 < p, < p,
Xi = E; = kvf density quotient = mass of phase i in V,0 < x, < 1.

To guarantee the formation of phases, we subtract the mixing entropy density S,

§ = W+ vkl
W00 = xlnx+ (1= Il =) - 3 )
from S and set § := 5. This represents the entropy density as
§=xSi+(1-x)S2 - W(x) - g IVx[?

and consequently for the free energy density F and the Helmholtz free encrgy density G

F.——XF]+(1—X)F2+T.§, G:xGl+(l—x)G;+T5’.
MATHEMATICAL FORMULATION

Beside the definitions above, let € > 0 be a scaling constant for the substantial derivative
dy = 8x+v-Vxof x, T:Qp — R" be the temperature and p : Qp — IR" the pressure
of the fluid. For given velocity field v, let R; denote the inlet, Ro the outlet of the domain ,
where 7i is the unit outer normal vector to Q. R; and Q are assumed not to depend on time ¢.

We modify the stress tensor and set (§;; be the Kronecker delta)

Ty = 7 —pby; — 86eTOX0;x,
p(Biv; + 8;1;) + v(dive)d;

Tij

i

with viscosity coefficients v, p, where v > —%;t ford=3and v > —p ford = 2.

One can show that the new term —§pT'd; x0, x is a consequence of adding é.f [Vx/[? to the system
entropy.

The thermodynamic driving force of the Allen-Cahn type equation is defined by
. 1
J(o,T,x) i= W(x) + z[xGi(e, T) + (1 - x)Gale, T))-

With these definitions, we introduce the following system of equations corresponding to con-
servation of mass (4), momentum (3) and energy (6):
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For given (po, Vo, €0; X0), (vr. Ty, Xr) and g find the solution U = (o, ov, €, x)* of

Gio = —div(ev), (4)
G(ov) = —div(ev@v+60TVyx @ V) +div(r) — Vp, (5)
Oe = div(LVT - (e - Nv), (6)

§
edx = —OJ+ Ediv(ng) —ev-Vx (7)

in 0 with the wmatial values

(0. 0v,e,x)(-, 0) = (20 @ov0, €0, X0) in

and the boundary values
X=X V=0, T=T, ondQd
and
o=g¢r onRp.

As a consequence of a parabolic maximum principle for (7). the logarithmic form of W in (3)
guarantees 0 < x < 1 in Q. if the same is true for the initial data x,.

All extrema 3 of the phase parameter x satisfy

1
8,J(e.T,3) = In 0 T B+ =(Gi(a. T) — G2(e,T)) = 0.
1-4 i
This identity explains how p and T determine over T~Y(G, — G2)(p, T') the preferred phase (gas
or liquid).

The above approach has some simplifications, e.g. that both phases move with the same velocity
vector, that no chemical reactions take place, that the temperature of two neighbouring phases
is the same, that there is no buoyancy, and that no heat is generated by shearing of boundary
layers.

One can show that the entropy of the system obeys the formula

e vT|? T
r[a¢8+a!;5v-n = n/[L—T2—+T.VU+EQ(8¢x+v-Vx)2]

L
—/g(alx+u-Vx)z§Vx-ii+f——¥I-i ()
an

an

Now, for a thermodynamically closed system, there is no temperature and entropy flux at 9Q.
So, by choosing Neumann-boundary data for x or x = const on 91, all boundary integrals in
(8) vanish. L!%,,m is a production term due to heat diffusion, % : Vu is the dissipated motion
energy that is positive for v > —%u (d = 3) or for v > —pu (d = 2), as can be shown by
principal axis transformation. Hence the second law of thermodynamics is valid. Notice that

Jeo (Bix + v - Vx)? corresponds to the Lyapunov functional of the unmodified Allen-Cahn
n
equation.
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CONCLUSION

The model presented here is a first step to incorporate transport mechanisms in the description
of phase formation processes where the mass of the phases is no conserved order parameter. It
still needs generalizations to be applicable to practical problems. Numerical sample calculations
underline the physical meaningness of the approach.
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SPREADING WITH BASAL SOLIDIFICATION

Michael Bunk & Peter Ehrhard
Forschungszentrum Karlsruhe, IKE, P.0.Boz 3640, D-76021 Karlsruhe, Germany

Summary Based on an underlying lubrication theory we derive an approximation for the
velocity and temperature fields and, thus, for the solid/liquid-interface of a spreading melt with
poor thermal conductivity. The spreading flow is characterized in terms of Reynolds number
Re, Froude number Fr, Prandtl number Pr and an aspect ratio e. For the spreading volume we
allow for V oc 7¢. Solutions are found based on similarity transformations or numerical schemes
using the method of lines. The influence of solidification on the spreading flow is discussed in
terms of the spreading length history which depends on various parameters, as e.g. inflow rate
and solidification temperature.

INTRODUCTION

Spreading of melts under the influence of solidification has a wide range of applications in
geology and engincering. For example the spreading of a corium melt after a severe core melt
down accident can lead to critical conditions for the coolability and the subsequent long-term
removal of decay heat. We present an analytically based scheme to investigate the influence
of basal solidification onto a spreading flow for liquid melts with poor thermal conductivity.
We investigate the plane spreading problem over a horizontal isothermal plate in cartesian
coordinates. A sketch of the spreading problem is shown in figure 1.

melt (p, p, A, ¢)

I /, solidified crust s(x)
AN >
0 i 3 at) x
« : S

Figure 1. Sketch of the plane spreading problem
THEORY

The basic equations that describe the plane spreading process under the influence of gravity
are the conservation equations for mass, momentum and energy!.

In a dimensionless form using

z F4 u w
X== , Z=- , U==— , W=— |
Iy hq tp €Uy
By eI L LRI Do TR g

(nlouo)/(R3) ' bo/ug ' To-Tw ’
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we obtain for € < 1,eéRe < 1

Ux+Wz = 0 ,

0 = =Py+Uzz ,
eRe
R
eRePr(©. + UGy + WOz) = ©Ozz
The dimensionless groups are defined as
2
WL O TR OGN
ly v ghg K

For the spreading problem over a solidified crust at the horizontal bottom plate the boundary
conditions are

X=0,2: Si=

X.Z=0: 6=0 |,

X =B U=W=10 ,
9=95,

XoZ2 =Ha W =HeU:+ H,
P=0 ,
Uz=0" ;
©z=0

Effects due to capillarity are negligible for gup/e > €% Solidification occurs at a defined
temperature, no mushy regime is presumed. The liberation of latent heat is negligible for

7> O%4(eRePr)' AL/ (cp(Ts — To)).
BASIC IDEA OF THE MODEL

For melts with a high Prandtl number Pr > 1 we can expect thin thermal boundary layers
and, therefore, thin solidified regions. Thus, solidification should have only a weak influence
onto the spreading process. Given thin crusts, we attempt to solve for the flow and temperature
field successively to avoid a strong coupling between the velocity and the temperature field.
The influence of the bottom crust onto the spreading flow can be captured by successively
performing the following steps:

2

1. First we solve the isothermal spreading problem without solidification® on the bottom

plate. This gives for the velocities

eRe zZ? . €Re
e= _F'—I‘HA (?—HZ) 4 W =6—F—r22 (3H§+H\\’(3H—Z))

The position of the 1/g-interface H(X,7) results from the evolution equation

A7)
Hr—ﬂ(HSHX) =0 with V=/H(,Y,T)d.Y=CVT° , H(A,7)=0
3Fr X
0
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2. Based on the above flow field we solve for the temperature field. We restrict to the quasi-
steady problem ©, = 0, thus, we get a ’worst-case approximation’ for the influence of
nonisothermal effects on the spreading process. A weighted residual method shows that
the thermal boundary layer thickness will be overestimated less than = 20% for the used
parameter regime. Using a matched asymptotic representation together with a similarity
transformation gives for the temperature

S ¢V ((eRe)’Pr (-HHx)"Z" )”’

I EVE I, 3Fr X /"HHxdX*

3. Given the thermal field, we determine the position of the solid/liquid-interface S(X, 7).
Here we use the condition © = O4, where O is the dimensionless solidification temper-
ature, to find S(.X, 7). This gives a relationship between the 1/g-interface H(.X,7) and
the s/l-interface S(X, 1)

arr [ VCHEzdx\"
(eRe)?Pr  (—HHy)%?

S(X,r) = 'ps(l L9 ms.-Y/.-l(r)) (

4. At this point we start an iterative scheme to solve the spreading problem over a solidified
crust at the bottom plate. The position of the new |/g-interface H,(.X, 7) can be calculated

from
R A7)
o %-F-‘; ((Hi- S.PHix), =0 with V= / Hi(X,7)dX = Cyr®, Hi(A;,7) =0.
0

For the special case a = 7/4 solutions can be found using similarity transformations. For
arbitrary values of o we use the method of lines to get a numerical solution.

5. In a next step it is necessary to calculate the new temperature field, which includes both,
heat convection and conduction in the liquid melt and pure heat conduction within the
solidified crust. Furthermore, we assume both thermal conductivity and density to be
constant and equal in the liquid and solid phases. For this purpose we use a numerical
scheme based on the method of lines.

6. Based on this improved temperature field, we infer an improved crust S;;,(X,7) at the
solidification isotherm © = ©5. From
Sin (X, 1) - 8i(X, 1)

s S(X,7) :

we judge the quality of the model. For the investigated parameter regime we get after 4
Iterations over steps 4.-6. a converged solution with Ey < 4%.

RESULTS

Figure 2 shows the position of the contact line A(r) and the position of the 1/g-interface
H(X,7) for e =0.01, Re = 1, Fr = 0.01, Pr = 10000,Cy = 1, = 1. All height profiles show a
significant influence of the solidified bottom crust. With increasing solidification temperature
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O, we find an increasing crust thickness. Subsequently, the front propagation slows down due
to a reduction of the driving hydrostatic pressure head.

For o = 7/4 we get a significant change of the influence of the bottom crust onto the front
propagation. For & < 7/4 the crust S(X, ) is growing faster in time than the position of the
1/g-interface H(X,7), thus, for 7 — co we can expect a complete freezing of the spreading flow.
For @ > 7/4 we find that H(X,7) is growing faster than S(X,7). This leads to no limiting
conditions regarding the propagation of the front A(7).

Afx) 6,=0
85=0.25
[} ;=05
E 05=0.75
.
4
P
i
!
BRI R el AT »
H,(X.5)
25 H,

/85=05  ©=0.75
. /

/

05 1 15 \ 2 25 X

'6,=0 \9,=0,25

Figure 2. Position of the contact line A(r) and the free 1/g-interface H(X,5)
CONCLUSIONS

The influence of a solidifying crust on the cold bottom plate can be investigated by a mainly
analytical approximation. This saves a huge amount of computer power in order to avoid the
discretization of the very thin thermal boundary layers for melts with poor thermal conductivity.
Due to the quasi-steady approximation we get an upper bound for the influence of nonisothermal
effects onto the spreading flow. Thus, for numerical simulations we get a first check of the used
discretization, which will strongly influence the effects of the solidifying crust onto the spreading
flow.
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A NUMERICAL METHOD FOR THE RESOLUTION OF TWO-PHASE
FLOWS AND APPLICATION TO A VERTICAL HEATED PIPE

F. Coquel!, E. Godlewski', Arun In", B. Perthame? & P. Rascle?
t LAN, Université P. et M. Curie, 4, place Jussieu, 75252 Paris Cedex 05, France
! DMI, Ecole Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France
§ EDF/DER/RNE/PhR, 1, avenue du Général De Gaulle, 92141 Clamart Cedex, France.

Summary We consider an equal pressure two-fluid model for two-phase flows with phase change,
described by a system of six balance equations with source terms. We present a numerical
method to solve this system. Then we use this method to study a low pressure slow water
flow in a vertical heated pipe, this problem being the first stage to simulate a Loss Of Coolant
Accident (LOCA) in a Pressurized Water Reactor (PWR).

INTRODUCTION

Several codes, as CATHARE ' and RELAP-5 2, have provided so far efficient means for the
safety analysis and the definition of accident and post-accident operationnal procedures in
PWR, in particular during LOCA. But these advanced thermal-hydraulic codes are still quite
time-consuming. Moreover, unfortunately, the prediction of the reflooding stage after LOCA
apppeared not to be accurate at normal pressure conditions'. Thus, new methodologies are be-
ing explored in order to reduce computational time and to predict accurately such phenomena.

This presentation is devoted to the method introduced by Coquel et al.? to solve the two-fluid
two-phase flow system. Using a splitting of this system, it reduces significantly the computa-
tional time compared to other explicit methods. This method has been recently upgraded by
using the so-called relazed schemes*, which allow to deal with real fluid efficiently®. We present
briefly the upgraded method, after recalling the two-fluid model. Then we give an application,
say, a low pressure slow water flow in a vertical heated pipe.

THE SPLITTING METHOD FOR RESOLUTION OF TWO-PHASE FLOW
The Two-Fluid Two-phase flow model

We consider in this paper an equal pressure two-fluid model. For k = v, {, (v for vapor, { for
liquid), let denote in mean value, c, px, Uk, €, Ak, hik, Tks ik, MY, Myk, quk, the volume
fraction, the density, the velocity, the specific internal energy, the specific internal enthalpy,
the interfacial specific internal enthalpy, the interfacial mass transfer, the interfacial heat flux,
the interfacial drag force per unit volume, the wall friction, the wall heat flux for k-phase, p
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the common pressure for the two phases, p; the common interfacial pressure, u; the interface
velocity, and g the gravity. The two-fluid model, we consider in this work, is written

Orovypy + azav.av uy =y,

diaupuuy + O (pytl + p) — pdrcr, =

aypyg + Myy + Tyt + M2, (1a)
daypy(en + ul/2) + By pu(hy + ul/2)u, + pdier, =

(aupug ot 4\’fwv)uu + ru(hiv =+ uxz/z) an “'[.Eul + Giv + Gue,

daqpr + Ozoqpry = Ty,

Bauprw + Oz y(pruf + p) — pidecy =

+oymg + My + Tiu, + MP, (1b)
Oeqpr(er + uf/?) + Oreup(hy + uf /2)u; + pOiey =

(aupig + Myu + Tilhy + ul/2) + MPu; + qu + qua,

These systems represent the balance equations for mass, momentum and energy for each phase.
We also have the continuity condition

o, +a; =1 (2)

and the following interfacial transfer conditions

Zrﬁo.

k=vl
D
Edl(rku‘ +MP) =0, 3)
D (Tulhie + u}/2) + MQu; + gu) = 0.
k=ul

In order to close the problem, the equations of state of the two phase, and closure laws for the
transfer terms must be given. These systems are obtained by averaging local instantaneous
conservation equations and neglecting second order correlations®.

The splitting method

In order to solve the two-fluid system, we use the splitting technique 3-%. Let us recall the main
features of this technique. Being given the variables at t", we proceed as follows.

During a first step we solve the two following systems, one for each phase k,

Ay + Oxmyug = T,
Aymyieg + Oz (myul + Br) = pideay + myg + Myk + Cyry + M2, @)
OB + 0:(Ey + Pr)ux =

(mrg + Mye)ue + Te(hu + u2/2) + MPu, + que + qui,

where we have denoted my = axpy, and pr = axp. The second members are treated explicitely,
so the resolutions of the two systems are decoupled. Thus, we just solve two hydrodynamical
systems, one for each phase, and we add the values of the source terms at ¢t". At the end of this
step the pressures of the two phases are different, as the two-phases evolved independantly.
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During the second step, we restore the equality of pressure, by solving for k = v, 1

dtmk = 0,
dymiug =0, (5)
d,Ex = —pdiai pour k = v, L.

We refer the reader to the references® % for details. Until then this method has been discretized
using first-order finite-volume schemes. For the first step, if we consider two phases for which
the equations of state are tabulated as for the following numerical test, the relaxed schemes are
particularly interesting in terms of accuracy and efficiency. They enable to reduce the first step
to the resolution of two Euler systems for polytropic gases. This scheme is an alternative to
others methods for the resolution of the two-fluid model (see Toumi” or Stidke and Holtbecker®
for instance).

APPLICATION : A VERTICAL HEATED PIPE

We consider now a vertical boiling pipe that we study using the two-fluid model and the scheme
we introduced in the previous section. This test is a simplified modelization of the reflooding
process after a LOCA in a PWR. It illustrates the ability of the splitting method to treat rather
complex multiphase flows.

The heated pipe is 3 meter long, with a section of 1 m?, in a uniform gravity field. The spatial
mesh size is h = 0.1 meter. Liquid water enters at the bottom of the tube at constant mass flux
of 100kg.s~! and constant specific internal enthalpy equal to hy(1.08 bar). The pressure at
the outlet is 1 bar. The first 0.5 meter and the last 0.5 meter of the pipe are not heated. As the
liquid enters goes up the pipe, it boils. At the steady state, the vapor fraction increases along
the pipe, and the pressure is slightly convex where some liquid remains (at the bottom of the
pipe) and almost constant where there is few liquid. Fig. 1 show the volumic vapor fraction and
the pressure along the tube, at the steady state, obtained with the splitting method and a mesh
size of 0.1 cm. These results are in agreement with the physical expectation. For such a mesh
size, there are important errors on the mixture mass flow. Refinement allows to correct these
errors but increases the computational time. In the future some experiment data concerning
this test should be obtained at the PERICLES test facility'~® in CEA, Grenoble.

CONCLUSION
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Figure 1: volumic vapor fraction and pressure
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On this simplified reflooding problem, at low pressure condition and low speed, the results
obtained with the splitting method are quite satisfactory. In the future, these results should
be compared with the ones of other codes and with experimental data. The splitting method
and the relaxed scheme have been used for other two-phase flows as sedimentation problem,
Edward’s pipe blowdown and Ransom'’s water faucet'®"!! and it has been recently extended to
nozzle flows. Some developments concerning the treatment of the boundary conditions and the
source terms are under progress.
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NUMERICAL SIMULATION OF FRONTAL POLYMERIZATION

Thierry Dumont
CNRS & Université Lyon 1, F-69621 Villeurbanne Cedex, France.

Summary Frontal polymerization has been studied for many years experimentally and theoretically.
Mathematical analysis has been devoted to the study of the stability of the front which separates the
two phases, in the presence of thermal convection !. We present here an approach for a numerical
simulation of this problem.,

MATHEMATICAL MODEL

We consider an exothermic reaction between two reagents; C is the concentration of one of them
(0 < C < 1), T is the temperature. The reaction rate is given by W(C,T) = k(1 — C) e~ #/FT,
where E is the activation energy, R the ideal gas constant and k the pre-exponential factor. We make
the assumption that the density is constant, and we use Boussinesq approximation for the fluid. We
can write the following equations :

3;u+(mV)u—uAu+ﬁVp = ko g(T-Thy) 1
V. = 0. (
T +(uV)T - AT = kK W(C,T) @)

aC + (u.V) C = k W(C,T).

v is the kinematic viscosity of the fluid, g is the gravitational acceleration, « the coefficient of thermal
diffusivity. kg, k| and k; are positive constants.

Polymerization is taken into account in a very simplified way : when C > Cp, we have a phase change
from liquid to solid. Real domains for this reaction are typically cylindrical tubes, but we restrict our
simulations to a 2 dimensional quadrilateral domain .

Attimet = 0, we have u = 0, T = Tj, C = 0 everywhere in Q. For boundary conditions, we take
(see Figure 1) u = 0 on 9, 8T /dn = 0 on the “large” walls (2,4), T = T; on the wall (3), and
T = T, on the wall (1), with Ty > T. The reaction and, with a good choice of parameters and of the
orientation of €2 a front of polymerization, propagate from wall (1) to the right.

4

2
Fig. 1: Q.

NUMERICAL METHODS

Our simulations are based on two techniques associated with a spatial discretisation by the finite
element method : .

1. splitting of the system of equations with 2nd order characteristics ;

2. afictitious domain method.
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Splitting by the characteristics method : (based on the method of Boukir, Maday & Métivet) 2. This
method is based on an approximated 2nd order backward differentiation formula. Denote U, 7" and
C™ the approximations of U, T and C attime t, = n At. Define UM = 2 U™ — U"~! ; we compute
a first order approximation X2*!(¢) of the curves :

d\fn+1
ket 3

— pn+l( yntl
p Uz (XE+(®),

X:+l(tn—]) =z L€ (tn—l:tn+l)-
For the temperature, with :

f:(z) = 2 KW (C™(2), T"(z)) — L W(C"" Y (), T" }(z)),
we compute :

(il

Tlz)i=  TYINE)) +/; F (X2 (s))ds, 3)

n

2 . (i =

Tla)= TSt + [ LR )ds, @
and C‘(r) C(I) by the same method. (the integrals are approximated by a quadrature formula like
trapeze rule).
Then we calculate 7"*! satisfying boundary conditions and solution of :

agri_ a4t
= AT"-H =0 et

2 i : &

and C™*! solution of :

3C 4G+ €6
S ®

(note that we treat the 2nd member with the convective term).

When we compute T.C (and T, C)in (3) (and (4)), we obtain independent nonlinear algebraic
systems of 2 equations for every quadrature point of the finite element discretisation. The same
method can be applied to Navier-Stokes equations.

One step of our algorithm, from ¢, to £,y 1s :

1. compute T, ’f' C then T"*! and C™*! as in (5), (6);

2. compute U and U asin (3), (4), (but with f, = 0) and U™*!, verifying boundary conditions and
solution of the generalized Stokes problem :

UM - 40+ 0
_ =

= AU = g (T =T, U =, (7)

We obtain a fully decoupled scheme.
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Fictitious domain method : we impose to the velocity of the fluid to be approximately zero in the
polymerized zone Q, = {z; C(z) > Gy} (2 = QU Q). To obtain this, we use the method of N.S.
Bakhvalov ? :

Consider the generalized Stokes problem :

au—V.(nDu)+Vp=f, V.u=0, upa=0. (8)

Set = << 1 a penalization parameter and choose :
a(r) = ag,n(z) =m, Yz € Qo

a(r) = ao/z,n(z) = m/c Yz €.
Let S, be the Stokes operator defined in (8) and S, (u, p) the constant coefficient Stokes operator (i.e.
with = = 1).
On the subspace :
V={ve Hy(Q); Vau=0; [y aV(—u)Vo+nlv-ud=0
Yo e H' (), V.o =0, dag, =0.}
S. and 5| are spectraly equivalent. Choosing as departure point for conjugate gradient iterations a

solution of S;{xg. po) = f and S, as preconditioner, the iterates remain in 1" and we obtain a rate of
convergence which depends only of the domain €2,.

The modification of our splitting method is obvious : once we have computed 7! and C™*!, we
obtain the set €, and solve (7), imposing U™ *! =~ 0 on 2, by the fictitious domain method.
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Summary The moving solid/liquid interface of a melting solid in one dimensional case is iden-
tified from temperature and flux measurements performed on the solid part only. An algorithm
is used, based on the least square approach using conjugate gradient method and sensitivity
equation. A comparison with the numerical results obtained in [4] is given.

INTRODUCTION AND STATEMENT OF THE PROBLEM

Introduction

Identification problem of the solid/liquid interface in a phase change process,such as casting,
crystal growth and welding is a subject of great interest to industry.The interface is often un-
known and its determination by direct measurements is impracticable. An alternative method
to determine the interface consists of using the model which connects the parameters and the
sizes governing the transfers of heat and mass in the phases to the position of the interface.
But the coupled physical phenomena occurring in the liquid (natural convection, thermal con-
duction, surface effects,...) are often partially unknown and cannot be easily modeled. To
overcome this problem only the model in the solid part which is accessible to measurements, is
used.

Among phase change problems, two inverses cases can arise: the control problem or the identi-
fication one. Several studies have been devoted to the control problem ([9], [2], (3], [1] ). But,
fewer results are available for the identification problem, considered especially in ([10], [4], [5],
[6], [7], [8]). The latter studies have used a sequential algorithm to solve the identification
problem from discrete measurements, collected at the fixed part.

In this study, we propose a new algorithm to solve the identification problem in one phase
one-dimensional Stefan problem. In the last sectionh, we present a brief comparison with the
results obtained in [4].

Statement of the problem

Let us consider the one phase Stefan problem, in one space dimensional which is a particular
moving boundary problem: the isothermal interface between the solid phase and the liquid
phase is driven by the diffusive heat two connected phases. The only modeled part is the solid
one. The interface solid/liquid is characterized by a positive function & of class C', defined in
[0, T) with values in ]0, 1.
The solid part :

L(t) = {z/o(t) <z < 1}
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is governed by the heat equation:

gl_ez:ZO in IG’(f),l[X(O,T), (l)
satisfying the initial condition
6(z,0) =0 in ]o(0),1], (2)
the boundary condition
6(1,t) =u(t) in (0,7), (3)
and the interface condition
6(o(t),t) =T; in (0,T), (4)

where the function u and the constant T}, respectively the temperature and the melting point,
are assumed to be known. Without loss of generality, we will suppose that Ty = 0.

If the interface o is given, one can calculate the flow 8;(1,t) and thus to define the observation

operator,
C(o) = 0:(1,1).

That is the direct problem. The inverse problem we are concerned with, is as follows :

Inverse problem
Given the observation ¢, can we find a function ¢ such that:

Cla)=¢7 (5)
RESOLUTION METHOD

Criterion
The identification of the parameter ¢ is a nonlinear problem that is solved by the minimization
of a penalized least square criterion J cf.(6). The minimization is performed with conjugate

gradient method, which requires the calculation of the gradient -a—g- of J with respect to o.

The calculation of the latter, is done by the equation of sensitivity state, compared to ¢ and
its adjoint state. The regularization parameter e is chosen according to required precision and
stability.

J(o) = %/:(C(a)(t) — ¢(t))%dt + % [oro‘dt (6)

Equation of sensitivity
This section aims to calculate the directional derivative of the operator C at the point ¢ in the
direction h, defined by :

C(o + Ah) - C(o)

: )

C'(o).h = }‘1_1':‘1)

that is given in the following theorem

http://rcin.org.pl



67

Theorem 1 Let @ be the solution of the problem (1) — (4).
Let ¢ be the solution of the problem:

Ve = Vs = 12_—hUBH+ (&) (88 + (1 —2)8,] in Jo(6), 1[x]0,T], (8)

P (z,0) = 0in Jo(0),1[, 9)

U(a(t),t) = 0in 10,T], (10)

Bull )+ (1= Aa(LY) = y=—ult) i ]0,T(, )
then

C'(a).h = (1= B)e(L,t) + Byz(1,1) (12)

where 3 is a constant such that

B= 1 for the Dirichlet condition
A =0 for the Neumann condition

Adjoint State

The aim of this section is to express the directional derivative J'(a).h of the criterion .J at point
o in the direction h, by means of the state associated to the system ((8) — (11)).

By direct calculation, one obtains:

J'(o).h = fT(c )= 6(0) C'(e)hdt + ¢ [ ohdt (13)
(z:r.—0 (G4 ) C'(0). cj;a
and in a classical way, one defines the state associated, p by the equation
—pi— Pz =0, in Jo(t),1[x(0,T), (14)
satisfying the final condition
p(z,T) =0, in ]o(0),1[, (15)
the boundary condition
p(1,t) = C(o)(t) - ¢(t), in (0,T), (16)
and the interface condition
p(o(t),t) =0, in (0,T). (17)

Let f be the function defined by

l1-0o l1-¢

Faho i 20 (L) B8+ (1-2)8] in Jo(®),1x]0,T[,  (18)

Then the expression of the directional derivative J'(¢).h is given by the following proposal
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Property 1

J(o).h = [1 t”ﬂtMHanMt/H/fhm p(z, ) dzdt.

Similarly, when the Neumann boundary condition is considered in the problem ((1)-(4)), the
expression of gradient becomes:

; SRS T T 1
J(o),h_[o 1_au(t)p(1,t)dt+€/o ahdt+/° me(z.,h,a,g)p(z,t) dz dt,
where /
2h h
f(r,h,0,8) = :9,, -(1-1) (E) 6, and C(o) =#6(1,t).

It follows that,
: e 5 —20,.p)dt
J (U) L / ,/,,(1) 1= ( l I) {0‘ p!z z:xp) dr

- [ - 20

T
u(t)p(l.c) dt+e/ o hdt.
a(0) o(0) o

5 0:(2.0) pl.0) =

APPLICATION

Test case: Neumann solution for Stefan problem[13]

We Consider a 1D slab (0 € z < 1). The one-dimensional slab is initially at zero dimensionless
temperature and the analytical Neumann solution (19 ) for the heat equation is considered.
O(x,t) =

fe(=—=), t>0, (19)

erfc(A\/_) f

. e e\ N
: erfc() \/K_erfc(x\\/_) Ste

where ) is solution to

The corresponding phase interface position is given by
a(t) = 22Vx"t,
and the time-dependent boundary condition, temperature and flow, at z = 1 are given by:
MR ST b S S T
er fe(AV®) 2Vt
i 1
o(t) =—0:(1,t) = _ﬁme~&,

http://rcin.org.pl



69

where
DIl R 2
erfe(z) = —/ et dt,
miz
. kllq 5 Aol
k = —, relative conductivity,
k:at
K % u 31k
K* = -ﬂ, relative diffusivity,
Ksot
9dim b edxru
Ste = C,Dz—!———L—‘—, Stefan number,
Csa = solid heat-storage capacity,
64™ = dimensionless final temperature,
where
g4 = dimensionless initial temperature,
L = latent heat of fusion.

The temperature 8 and the flow ¢ are calculated for ice/water with

Ste = .00316,
k=272,
k' =.125,
A =.158.

Algorithm of minimization

The minimization of J is done by the Matlab finite dimensional optimization subroutinc ’con
str ”. This subroutine uses a sequential quadratic programming method. In this method, a
quadratic method programming subproblem is solved at each iteration. An estimate of the
Hessian of the Lagrangian is updated at each iteration using the BFGS formula [11]-/12]

The subroutine " constr” requires :

1. an initial function (¢;.i) for our problem
2. the discretized function J
3. the discretized gradient VJ of J

For the determination of J (at each step of the optimization algorithm) we have to sol: = onc
parabolic problem (1)-(4). This will be done by a finite differences methode. Similary, one has
to solve parabolic problem (14)-(17) to obtain VJ.

http://rcin.org.pl



70

References

[1] R. Reemtsen and A. Kirsch (1984). A method for the numerical solution of the one-
dimensional inverse Stefan problem, Numer. Math., 45, 253-273.

[2] P. Jochum (1980). The inverse Stefan problem as a problem of nonlinear approximation
theory, J. Approx., 30, 81-98.

[3] P. Jochum (1982) The numerical solution of the inverse Stefan problem, Numer. Math.,
34, 411-429.

[4] Afshine Afshari (1990). Identification de I'évolution d’un front de fusion/solidification par
la résolution de 'équation inverse de la chaleur dans le domaine solide. Thése, Univercité
de Paris-Sud centre d'Orsay.

[5] A. Afshari and C. Bénard and C. Duhamel and B. Guerrier (1989). On-line identification of
the state of the surface of a material undergoing thermal processing, 5th IFAC symposium
on control of distributed systems, Perpignan (France), 209-213.

[6] A. Afshari and C. Bénard and C. Duhamel and B. Guerrier (1991). Probléme inverse :
suivi de I'évolution de la position d'un front de fusion a l'aide de mesure sur la phase
solide. Journée S.F.T. Modélisation en thermique industrielle.

[7] C.Bénard and A. Afshari (1991). Front tracking for the control of solid-liquid phase change
process, Tth Int conf. on numerical methods in thermal problem, Stanford 7, 1, 186-198.

Inverse method in phase change problems, Eurotherm, seminar 6, Delft (the Netherlands).

[8] X. Wang and M.M. Rosset-Louérat and C. Bénard (1992). Inverse problem : identification
of a melting front in the 2D case, Int. Series of Num. Math., 107, 99-110.

[9] D. Colton and R.Reemtsen (1984). The solution of inverse Stefan problem in two space
variables, SIAM J. Appl. Math., 5, 996-1013.

[10] M.A. Katz and R.Reemtsen(1984). An inverse finite elememt technique to determine the
change of phase interface location in one dimensional melting problem, Num. Heat transfer,
vol.7, pp.269-283

[11] C.G. Broyden(1970). The convegence of a class of Ddouble-rank Minimization Algorithm,
J. Int. Math. app. Vol 6, pp 76-90

[12] D.F. Shanno (1970). Conditioning of Quasi-Newton Methods for function minimization,
Maths. of Comp., Vol 24, pp 647-656

[13] H.S. Carslaw and J.C. Jaeger (1959). Conduction of heat in solids, Oxford University Press.

http://rcin.org.pl



2D NUMERICAL SIMULATION OF GAS - LIQUID TYPE PHASE TRANSITION FOR
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Summary Based on microscopic kinetic equations, a mathematical model is considered for the
time-dependent diffusion process of self-interacting metal vapour in a fireproof material
in a strongly inhomogeneos temperature field. Due to the self-interaction of metal vapour phase
transition (condensation) appears. The developed conservative, monotonous and absolutely
stable difference scheme isbased on aspecial exponential substitution for the concentration
of molecules. The results of non-steady state 2D numerical experiments are presented.

Mathematical model and differential equations

We have studied metal vapour penetration in ceramics. [t is considered that this process can be
described as the motion of molecules in a porous medium . By using approuch' from the
microscopic model, a diffusion equation is proposed. One-dimensional caleulations® show the
stochastic nature of phase transition. The actual problem is presented by calculations in a more
realistic two - dimensional geometry.

The expression for a microscopic flow of particles, taking into account the nearest neighboring
sites, is obtained in work® . The next simplification is possible if we assume that the size of pores
is much smaller than the mean free path of ideal gas at the same concentration of particles and the
length of particle jumping is greater than the distance of the interacting particles.

Then, expressions for flow f, (x+a/ Z,yj) in a positive direction, and flow f_(x +al2,y;) ina

negative direction at a fixed point y; may be written” :
fi(x+a/2,yj)=QQC(x+a/Z-Ta/Z,yj)(l-C(x+a/21a/2,yj)x

€ C(x+a/2ia/2,yj) C(x+a/2¥a/2,yj)
x ex ' (1

K\T(x+a/2tal2,y;) T(x+al2¥Fal2,y))
where: € -the collision frequency, C(x.y)- the concentration of molecules , normalized so that it
can reach its values within the range [O,l] , T(x,y)- temperature , €- the energy of the bond

between two neighboring molecules, K - the Boltzmann constant .
Then the flow J,(x+a/2,y;) of the particles in direction x can be expressed as :

Jex+al2y) = fy(x+al2y)) -f,(.r+a/2,yj) ;
After linearization ( 1) for J, we have obtained:

eC g e C(x+a,y) C(x,y)]
Jy =-Qpa 'Ch(7x+a,y) ox +2Q4C(1 - C)-‘h(fx+u,y),7x+a.y = E(T(x+a,y) & T(x,»)
The expression for J,, can be written in a similar way by appropriate substitution.
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For a full flow we have obtained : J = J,7 + Jyf :

With the known macroscopic expression for a full flow the diffusion ( flow continuity) equation
is written :

8C -
== 4. )

In the proposed model the macroscopic flow is created by temperature gradients which play the
role of an external force. As the first approximation in this work, we consider that the temperature
of molecules is the same as the frame temperature. The temperature conduction equation can be
written in the traditional form:

or
5 =Dv-vD+Q 3)

where D - the diffusion coefficient , O - the thermal source. It is considered that the source of the
metal vapour is located at the boundary points Qg =(x=0 0<y<y;), and the cooler is

disposed at the end of structure Qc=(x=x; 0Sy<y;). Atthese boundary lines the
temperature is kept constant and equal 7; =7. =300K. On the other boundary lines the

temperature derivatives are equal to zero. Equation (3) is solved in a traditional way by using the
central difference scheme. The steady- state of temperature distribution is shown in Fig. 1.
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Fig. 1. Steady-state temperature distribution
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As it shown in Fig. 1, a strongly nonhomogeneous temperature distribution arises only in the region
near the cooler. This means that the flows of molecules in the main part of the examined structure
are near to zero and the thermal equilibrium conditions are approximately fulfilled.

Difference scheme for diffusion equation

In the one dimensional case conservative, monotonous and absolutely stable exponential

difference scheme? is elaborated. In this work the method? is extended to a two-dimensional
case.

Let us introduce the nonuniform space grid with steps B (i=12,..,M;) and
r (J =12,..., M>) and substitute the concentration C(x,y) by W(x,y) in such away:

21~

X
C(x,y) = W(x,y)exp Idx

Xo
where x; is an arbitrary real number which, in the final form, does not affect the coefficients of
the difference scheme. Substitution (4) is intended for flow J, approximation. A similar
substitution is used for J, approximation, only if integration is provided a direction y and

fh('fx{-a,y) , )

function v, , is changed to vy ,.,. Using the balance method and the previous substitutions

for C(x,y). the difference scheme for equation (2) is written:

G -¢; (Jx)m,'z,j —(J")i—ll’_“/ (J~").',j+|l'2 _(Jy)i,/‘—l/l )
i - + ~ 5

T hl rj

where : 1~ the time-s-tcp.,_l- the time step index , & = (h + k1) /2 , r; =(rj+r) /2.
Forthe grid flows (), ,,, | and (J,)EJW2 we have:

) _ Qqa d{ﬁ [CIH-I,m Ck,m) a } Bi+t2,mexp(-Brsizm)
B L B it L Bl © : Cilloe
Fedicon hk+l K T;u-l,m Tk,m hk+1 (l—exp(—BkH,;',,,)) A

Br+1i2,
i e Cenl | (6)
1= BXP(‘E'I;H/Z.M))
2e Crslim Gk ”'J
EE T
Bk +1/2,m K ( C)h”z’m[ I}Hl,m n.m

On the boundary lines Qg and Qc the concentration C is changed in the time moment ¢ =0 to

a constant value from segment [ 0,1 ] . On other boundary lines the derivatives of the molecule
concentrations are kept at zero. The initial distribution of C in the whole structure is constant, and
equal to zero. As it is proved in the one-dimensional case and shown by numerical calculations,
difference scheme (5) is also conservative, monotonous and absolutely stable.

Results of calculations

For numerical calculations equation (5) was written in a half-implicit way without a linearization

http://rcin.org.pl



74

. - BL A :
procedure . The linear system of equations was solved by the /LUCGS ~ method. Calculations are
provided for the case when the concentrations on the boundary lines Q; and Q. are smaller than
the critical one, when C distribution reaches homogeneous concentrations which are equal to the

- 10 . -
boundary concentration, and for the case when they exceed the critical concentration C =02.In
Fig.2 steady-state distribution of the molecule concentration is presented where Cg = C- = 0.3.

Fig. 2 . Steady-state distribution of concentration

As can be seen from numerical calculations, in the kinetics process the molecules are separated into
two regions, and in a steady-state ( Fig. 2 ) the gas - liquid type system is developed.
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MATHEMATICAL MODELING OF TRANSPORT PHENOMENA
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Solidification problems play an important role in material processing (like casting of steel,
non-ferrous alloys, metal-matrix composites),the ground freezing technique, in phase change
materials used in thermal energy storage systems, etc. In most of these processes multicomponent
solutions are present. These multicomponent solutions undergo solidification over a range of
temperatures which causes a solid-liquid mixture to be formed. The solid-liquid zone, where
solidification takes place and known as a mushy region, consists of solid and liquid phases of
varying proportions and often makes a substantial part of the whole system. Within the mushy
region proportions of solid and liquid vary in time and space. Moreover, the phase-change
phenomenon is assisted by transport phenomena occurring in the individual phases and the mutual
interactions between solid and liquid are present.

Complex microstructure of the mushy region is the main reason for carrying out the analysis
on the macroscopic scale, the scale much greater than dimensions of dendrites or equiaxed crystals
formed during the solidification. Thus, before any numerical implementation, a problem of
macroscopic modeling of heat and mass transfer phenomena in the mushy region should be
addressed. The macroscopic equations describing the process of solidification are usually
introduced via a volume averaging approach. It is however known, from theory of heterogeneous
materials, that the volume averaging has many limitations. Its drawbacks lie in problems of finding
proper representative elementary volume for averaging, accounting for the macroscopic variation of
the microstructure and its statistical character, proper formulation of the constitutive relations
describing macroscopic transport phenomena, accounting for thermodynamic relations existing at
the solid-liquid interface, etc.

A different approach to describe solidification process in the mushy region, based on an
ensemble averaging, is proposed in the paper. The ensemble averaging approach is taken from
theory of random fields and stochastic processes where it proved to be useful in finding solution of
many problems that appear both in description and understanding of the transport phenomena. This
approach was followed to derive conservation equations and the basic constitutive relations
appearing in the macroscopic description of the solidification phenomena occurring in the mushy
region.
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HIGH-AZIMUTHAL NUMBER AXISYMMETRY-BREAKING CONVECTIVE
INSTABILITIES IN AXISYMMETRIC FREEZING OF ICE
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Summary The experimentally observed non-axisymmetric structure of ice frozen under
axisymmetric thermal boundary conditions is assumed to be a result of the three-dimensional
instability of an axisymmetric natural convection flow. The latter is investigated numerically using
a global spectral Galerkin method. The linear stability problem scparates for different azimuthal
modes such that the problem reduces to a sequence of 2D-like problems. The numerical results are
successfully compared with an experiment on natural convection of water in a vertical cylinder,
which shows an axisymmetry-breaking instability with a high azimuthal wavenumber.

INTRODUCTION

This work is devoted to a theoretical explanation of an effect observed during the study of freezing
of ice in an axisymmetric container [1]. The solidification front observed on the ice had an
asymmetric, circumferentially periodic surface shape. Likewise, measurements of the temperature
field also showed a periodic structure.

It was assumed that the effect is due to an axisymmetry-breaking instability of the convective flow
of water. Detailed numerical analysis of the stability of the basic axisymmetric flow with respect to
all possible three-dimensional perturbations showed that the instability sets in with a relatively high
azimuthal wavenumber k, which varies between 7 and 10. The corresponding pattern of the most
unstable three-dimensional perturbation of the temperature is similar to the experimentally observed
temperature distribution. It is shown that the calculated instability is caused by the Rayleigh-Bénard
mechanism which leads to the appearance of a system of convective rolls distributed along the
azimuthal direction inside a relatively thin convective layer.

http://rcin.org.pl



18

EXPERIMENTAL SETUP AND RESULTS

A sketch of the experimental setup is shown in Fig.l1a. A cylinder (37.1 mm inner diameter by 41
mm inner height) filled with water was immersed in a thermostatic water bath held at a hot
temperature and was closed on its top by a metal plate held at a cold temperature. The walls of the
cylinder (side and bottom) were made of 2.1mm thick glass., Experiments were carried out at bath

temperatures in the range 6, = 10°C - 250C and top plate temperature cold, ranging from slightly

below the bath temperature, viz., QCDM: 20°C, down to below the freezing point, viz., 8 -100C.
The temperature distributions at various cross-sections were measured optically by a suspension of
liquid crystals. In all situations the thermal stratification resulted in a free convective flow, and for
below-freezing lid temperature an ice front formed and grew downward from the top (Fig.1b). Ata
certain characteristic temperature difference the growing ice forms a star-like structure shown in
Fig.1b. This shape of the growing ice is most likely a reflection of the azimuthal distribution of the
temperature below the cold cover.

metal plate at 8-8,,,

‘water at
0=0

het

®)

/ /)

cc" “" f‘"" “‘-»)
(@ \
C/UUX\)

()
Fig.2. (a) Photograph of temperature field taken at the horizontal cross -section z=0.95H,
Gr=2.5x10" (from [1]); (b) Isolines of perturbation of temperature at the cross-section
z=0.954 (from[2]).
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The azimuthally-periodic shape of the ice surface can be a reflection of the temperature below the
cold lid. In fact, a photograph of the temperature field in the liquid water, taken slightly below the
cover shows a similar azimuthal distribution of the temperature (Fig.2a). Since the system is
completely axisymmetric, such a non-axisymmetric temperature distribution can result as an
instability of the axisymmetric convective flow. Therefore, the main purpose of the study was to
find out under which conditions such instability can set in.

FORMULATION OF THE PROBLEM

We consider a three-dimensional system of Boussinesq equations

%+(V~V)v =-Vp+Av+Groe,, V-v=0, %Jr(v.v)e:%ae (123)
with no-slip boundary conditions for velocity and prescribed axisymmetric temperature profiles at
the boundaries. To find the distribution of the temperature at the container walls we perform a
preliminary calculation, which takes into account the finite thickness of the walls [2]. The basic
steady flow is axisymmetric. The stability of this flow with respect to all possible three-dimensional
perturbations is studied.

Since any possible perturbation is 2x-periodic, it can be expressed in the Fourier series
kam

{v.p.6}= z o (r.z.0) p(r.2.0).0,(r,z.0) exp(iko) “4)

k=-m

The liner stability problem separates for each Fourier mode such that the 3D stability problem
reduces to a set of 2D-like problems (see [2] for details). These problems are treated using the
global Galerkin method, formulated in [3] for axisymmetric flows. As a result we obtain the critical
Grashof number Gr, (k) for each azimuthal wavenumber k. The minimum of Gr,, over the whole
spectrum of & gives the critical Grashof number for the onset of three-dimensional flow with k-fold
azimuthal symmetry.

The calculated values of the critical Grashof number Gr,, for different azimuthal wavenumbers k
are reported in [2]. It is shown that, independently of the boundary condition at the wall, the
minimal values of the critical Grashof numbers correspond to k = 7, 8 and 9 and are located close to
Gr=10". An example of isolines of the perturbation of the temperature at the horizontal cross-
section z=0.954 (corresponding to the location where the photograph shown in Fig.2a was taken)
is shown in Fig.2b. The pattern of the perturbation in this cross-section contains 8 maxima and 8
minima and looks similar to the experimental pattern of isotherms (Fig.2a). However, there is no
complete agreement with the experiment, because the dark areas in Fig.2a correspond to the minima
of the temperature. Therefore one should expect the existence of 16+18 maxima and minima in the
perturbation of the temperature.

The disagreement of the experimental and numerical results can be explained if one compares the
Grashof number corresponding to Fig.2a (Gr = 2.5x10%) with the calculated critical Grashof number
(Gre = 10%). The experimental study was carried out at more than 100% supercriticality, where non-
linear interaction of the dominant modes of the perturbation cannon be neglected. Thus, the 17
minima of the temperature, seen in Fig.2a, can be a result of non-linear interaction of modes with
k=8 and 9, or k=7 and 10, whose critical Grashof numbers have close values. On the other hand,
modes with k = 16+18 also become unstable at Gr = 2,5x10%, and can become dominant at certain
conditions.

A comparison of the dominant perturbation with the distribution of the temperature in the mean
axisymmetric flow (Figs.3a and b) allows us to make some conclusions about the nature of the

http://rcin.org.pl



80

instability. It is seen that an unstably stratified fluid layer is always located near the upper cold
plate. The depth of the layer depends on the thermal conditions at the upper edge of the cylinder.
The maximal absolute values of the perturbation of the temperature also are located near the upper
plate inside the unstably stratified layer. This allows us to suppose that the observed instability is
caused by a Rayleigh-Benard mechanism in the unstably stratified fluid layer.

y a0
aoc
ae

o=l
(a) (b)
Fig.3.(a) Streamlines and isotherms of the axisymmetric flow at Bi = 20, Pr =8, Gr=6770;
(b) The corresponding three-dimensional perturbation of the temperature corresponding to
k=9.

CONCLUDING REMARKS

Similarly to other problems with combined convection and solidification, the described study
provides an example of the decisive influence of convective flow on the resulting shape of the
solidification front. The numerical approach used here allowed us to obtain the correct pattern of
the three-dimensional perturbation without solution of the full 3D problem. We intend to apply this
approach to other practically important problems of crystal growth.
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NUMERICAL AND PHYSICAL MODELLING OF THE EFFECT OF DIFFERENT
CONFIGURATIONS OF ROTATING MAGNETIC FIELDS ON HYDRODYNAMICS AND
CRYSTALLIZATION FRONT IN A CYLINDRICAL VOLUME

Yu. M. Gelfgat

Institute of Physics, University of Latvia, 32 Miera Str., Salaspils-1, LV-2169, Latvia

Summary. The work presents the results of the numerical and experimental study of the influence of
various configurations and combinations of rotating magnetic fields on the melt flows and the shape
of the crystallization front in a cylindrical volume filled with an electrically conducting melt. The
obtained data give evidence that the above mentioned versions of electromagnetic influence on the
solidifying melt is an effective tool allowing active controlling of the characteristics of motion, heat
and mass transfer.

The report presents the results of numerical and experimental investigations of hydrodynamic flows
and their influence of on the shape of the crystallization front in cases, when an electrically
conducting vessel is exposed to the impact of different rotating magnetic fields (RMF). This
problem is of a considerable interest with regard to the development of active methods for
controlling the characteristics of heat and mass transfer in solidifying melts in order to implement
optimal conditions for crystallization in the technologies for the production of metals, alloys,
semiconductor single crystals, composites, etc.

The paper considers different versions of the axially symmetric system “RMF inductor — melt-filled

vessel” application, including some combinations of several RMF, which allow to significantly

enhance their efficiency and make wider the range of RMF possible application. In particular, we

investigated the situations, when:

- the length of the RMF inductor or that of the cylinder was unlimited;

- the length of the RMF inductor and that of the cylinder were limited;

- the inductor was arranged asymmetrically about the central plane of the cylinder over its height;

- the cylinder was enveloped by two short inductors inducting counter-rotating magnetic fields
(the arrangement of these inductors along the cylinder’s axis was arbitrary);

- the cylinder was enveloped by a system of inductors, one of which generates a quasi-uniform
RMF, another one — an opposite non-uniform RMF (its distribution along the cylinder’s radius
was arbitrary).

“The calculation procedure is the following: first the distribution of electric and magnetic fields in
the working volume is defined, then — the distribution of electromagnetic forces. The found
distribution of electromagnetic forces as an outside force is substituted into the set of hydrodynamic
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equations, then the characteristics of azimuthal and meridional flows in the liquid volume are found
out. Additionally, to solve the non-isothermal problem and to define the influence of RMF on the
shape of the crystallization front, the equation of convective heat transfer is solved together with the
crystallization heat of a solidifying melt.

An original method, which allows calculations with account for:

- finite dimensions of the inductor and the cylinder;

- the influence of frontal parts of the RMF inductor coils;

- the non-uniform distribution of magnetic induction over the cylinder’s radius,

is used to calculate complicated enough distributions of electromagnetic fields and forces for the
above said unusual situations. The calculations are performed following the standard procedure by
the method of finite differences. A calculation grid with a non-uniform pitch is applied, if

necessary.

The numerical results obtained for the distribution of electromagnetic forces, azimuthal velocities

and meridional flow evidence that:

- A definite flow velocity pattern - primary azimuthal rotation and secondary meridional flows as
two toroidal vortices — is driven in the melt at symmetrical arrangement of RMF inductors about
the axis and the edges of the cylindrical volume with a melt and at any ratios of the diameters
and lengths of the inductor and the cylinder. Herewith, the flow of the liquid in the meridional
vortices at the cylinder’s edges is directed from its walls to the vessel’s axis, but in the central
plane — from the center to the periphery.

- If the symmetry in the system “RMF inductor - melt-filled cylinder” is kept, any change of their
diameter/length ratio is equivalent to increasing or decreasing of the current in the inductor’s
coils.

- It is possible to alter the pattern of meridional flows (not changing the flow direction) by
breaking the symmetry in the system “RMF inductor - melt-filled cylinder”, e.g., asymmetrical
arrangement of the inductor about the cylinder’s height.

- Ifinfluence the cylindrical melt-filled volume by two counter-rotating magnetic fields arranged
one above another along the cylinder’s height, one can alter as the velocity pattern of driven
meridional flows as the direction of liquid in these flows near the cylinder’s edges as well.

- A combination of two RMF having an extremely non-uniform distribution of electromagnetic
forces along the radius of the cylindrical volume provides an opportunity to obtain zones with
different values of azimuthal and meridional velocities in the melt. In particular, it is possible to
drive a strong motion of liquid in the central zone of the vessel and to brake the flow near its
solid walls or to obtain an opposite result: a strong flow near the solid walls and its absence in
the central zone of the cylinder.

The results of similar calculations for non-isothermal versions of the discussed problems and the

obtained distributions of isotherms in the cylindrical volume reveal the influence of different

uniform, non-uniform and combined RMF on the shape of the crystallization front. These results

give evidence that:

- the rotating magnetic fields can be an effective tool to control the shape of the crystallization
front varying it from concave into the melt to flat and then to convex into the melt;

- when analyzing the influence of RMF on the heat transfer in the melt and on the interface shape,
the presence of thermogravity flows in the melt should be considered even if these flows are not
S0 strong;
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- the variation range of heat characteristics in the melt and, relatively, the influence of the shape
of the crystallization front becomes much wider, when asymmetric and combined RMF are
imposed;

- the influence of different RMF on the interface shape in the solidifying melt should be analyzed
considering the temperature distribution in the already solidified part of the cylindrical volume.

Special experiments have been carried out to verify the numerical methods and the obtained
theoretical results. The distributions of azimuthal velocities were studied on the models with
eutectic alloy InGaSn (melting temperature 10.6 °C). A conductive anemometer with its own
magnetic field induced by a small steady magnet (& 2-3 mm) measured the velocities. In the course
of measurements the conductive anemometer shifted along the axis and the radius of the cylindrical
vessel filled with a liquid metal and enveloped by different systems of RMF inductors.

The experimental results obtained illustrating the distribution of azimuthal velocities were
compared to the corresponding calculations performed for similar versions of RMF influence. The
comparison of the numerical and experimental data has revealed their satisfactory qualitative and
quantitative correlation.

The influence of different RMF on the interface shape was studied experimentally on molten tin. To
mark the shape of the crystallization front, small amounts of Antimony were added the molten tin.
After the sample solidified, it was cut along its longitudinal axis, and the shape of the interface at
the moment of crystallization could be seen clearly indicated.

The analysis of the obtained experimental and corresponding numerical data show that the shape of
the crystallization front changes under the influence of different RMF. At the optimal for definite
situation parameters of electromagnetic impact the primary curved phase interface can be
transformed to flat. Yet, the optimal values of the RMF characteristics vary in a rather narrow range
and must be defined together with the heat characteristics in the melt and in the solidified part of the
sample.

The conducted investigations allow to state that the RMF and especially their combinations can be
an effective tool to control the heat and mass transfer characteristics in the solidifying melt. This
also provides a possibility to intensify the convective transfer of motion, heat and mass for two
regimes: for increased level of pulsations of velocity and, relatively, temperature and concentration
and for sharply attenuated pulsating velocities with the increased integrated values of stirring flow
velocities.
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NUMERICAL SIMULATION OF THE SINGLE CRYSTAL GROWTH
PROCESS

V.P. Ginkin
SSC IPPE, Bondarenko sq.1, Obninsk, Kaluga region, 249020, Russia.

There are many papers on the numerical simulation of the single crystal growth
process (see, for example, [1] and all the references presented there). At the same time, there
is no established notion to single out the most efficient approach or algorithm for solving this
problem now. An approach developed at the Institute of Physics and Power Engineering in
Obninsk is described in the paper. The approach was originally proposed within the
framework of a 2D conductive-radiative heat transfer problem in [2] and was further
developed in [3]-[5].

The essential features of the process simulated are its nonstationary character and the
presence of phase changes. Therefore, considering the heat transfer problem, one has to solve
the Stefan problem. Different approaches for solving the problem are known presently [6],
each of them having its advantages and disadvantages. We develop the enthalpy approach
under which the nonstationary heat transfer equation is formulated and solved in variables of
enthalpy. This approach provides a stable and efficient numerical algorithm for solving the
Stefan problem.

To describe the radiation heat transfer, the method of angular coefficients is used. The
main difficulties here are caused by calculation of the angular coefficient matrix for irregular
forms of the radiation surfaces including heat shiclds situated inside of cavities. The
conductive heat and mass transfer is described by the Navier-Stockes equations under the
Boussinesq approximation. Our approach presupposes that the Boussinesq equations are
solved in the natural variables by the control volume method according to the Patankar
scheme. The equations are previously transformed to exclude the convective terms and to
bring them into the divergence form by a method proposed in [7].

The system of equations in enthalpy for calculational meshes in each connected
combination of zones with the boundary conditions prescribed is linearized by the Newton
method. The system of linear equations is solved by the conjugate direction method with
preconditioning by the incomplete factorization method. The algorithm described was realized
in 2D (r,z)-geometry for calculating the process of crystallization of germanium conducted by
the noncrucible melting method on a device “Zona-1" under the null gravity conditions. A
demonstration calculation of the process was performed. Previously, a similar calculation was
performed without taking into account the influence of convection [5]. The described
technique for calculating heat transfer in crystals growing from the melt has the following
distinctive features:

1) heterogeneity of the domain;

2) the presence of radiation;

3) the presence of convective heat-mass transfer;

4) nonlinearity of properties, i.e. dependence of the thermophysical parameters on enthalpy;

5) nonstationarity stipulated by the time dependence of the heat generation source and the
domain geometry configuration;

6) taking into account the heat of phase change;

7) validity of the model for 3D calculations;

8) possibility to increase the complexity of the model (e.g. by introduction of control
magnetic field and vibration impact).
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The calculational stability of the technique proposed is provided by the use of enthalpy

variables in solving the heat transfer equation, by the use of natural variables and the Patankar
scheme in calculation of velocities and pressures, by the use of the Newton iteration process to
solve the nonlinear system, and by the use of balanced monotonic neutral finite-difference
schemes to discretize the space variable and the implicit scheme to discretize the time
variable.

A high efficiency of the technique is basically provided through the use of a special

organization of calculations and through performing the inner iterations by the conjugate
direction method with preconditioning of initial operators by the incomplete factorization
method.

[ ¥}
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SOLIDIFICATION OF A PARAFFIN WITHIN A TALL ENCLOSURE

Jozef Goscik
Bialystok University of Technology, Wiejska 45C, PL 15-351 Bialystok, Poland

Summary Experimental results are presented for solidification of a paraffin (cytoparaffin 52-54)
within a vertical perpendicular container made of aluminium. The container is cooled at the all around
sidewalls as well as from the bottom and is open at the top so the upper surface of the phase change
material is bounded by thermally insulating air gap. The focus in the paper is on influence of the
volume contraction on shape and geometry of the shrinkage cavity being formed during solidification.
Especially, for Stefan number 0.068 < Ste < 0.745 and superheating parameter Sy = 0.178, results of
the series experimental runs confirmed that the shrinkage cavity is creating around axis of symmetry
and is strongly dependent on cooling intensity.

INTRODUCTION

Apart from of significant achievements in the mathematical modelling of the solidification process
there is still a lot of different aspects to be studied and explained. No doubt that one of them is effect
of the convective flow on the solidification process intensity. More in details speaking, we still needed
to explain broadly different mechanisms of the solidification kinetics referring to different levels — the
microscopic as well as macroscopic. This is very important even for single component systems where
the convective transfer affects solidification in many ways especially at the vicinity of the liquid -
solid interface. The particular phenomena - whiskerlike (dendritic) growth into the flowing liquid
phase or liquid region at the rest, influences of the convective flow induced by external forcing or
internal thermal gradients (buoyancy). The flow is associated also for most of the substances with
reduction in volume because of density differences. In engineering approaches the volume
contraction upon solidification has been rarely included into the modelling and analysis because of
two reasons. By the first of them — the flow induced by the suction at the phase change interface
does not be too much intensive (being compared for example to intensity of the natural convective
flow) to consider for practical purposes. The second reason seems to be connected with complexity
of the phenomena. However, there are situations that show that during solidification processes the
volume contraction or in another words the shrinkage formation is so important that should be taken
into account.

In the presented paper it is shown that the volume contraction can play significant role upon
solidification from point of view of design and analysis latent heat (solide>liquid) thermal energy
storage devices. This is very important particularly when the shrinkage cavities arising close to the
heating walls can increase drastically the resistance for heat transfer. The series experimental runs
are presented that confirm important influence of the difference. The most spectacular is to present a
shape and geometry of the shrinkage cavity forming during solidification of a cytoparaffin 52-54 as
a phase change material within a tall rectangular container.

EXPERIMENTS

It should be mentioned that the demonstrated samples were not prepared especially for phenomena
considered. They were registered when experimentally tried to obtain homogenous solid core of
material in form of the perpendicular block.

A paraffin of technical quality, (less than 0.7% oil impurities) has been chosen as the phase change
material, because of its very promising properties for heat storing in the latent storage equipment.
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Due to limited access to the material properties series of measurements determining temperature and
energy effect of the phase change preceded
principal  experimental works.  The
measurements were carried out using
differential scanning calorimeter (the
measurements were independently
performed on two different DSC’s). It has
been found from the measurements that the
cytoparaffin does have phase change
temperature A® ranged within 52+54 °C
and phase change energy effect AR’ =155
kl/kg. Based on the results the material
analysed can be qualified as a raftinated
paraffin, which remain thermophysical
properties can be taken from commonly
available literature. Consequently, thermal
properties given by Bardon etal.' have
been used in further considerations, e.g.:
thermal conductivity [W/m-deg] of solid &,
= 0.270 and liquid A, = 0.163; specific
heat [kl/kg-deg] of solid ¢; = 3.5 and
liquid c; = 2.3; density [kg/m®] of solid p;
=956.0 and liquid p> = 818.0.

PLEXIGLASS
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solidification process has been performed i RLET

in a special designed device’, which is

schematically shown in the Figure 1. In

particulars, the device is a kind of small shell-and-tube heat exchanger forming on the tube side of a
perpendicular container (1) for paraffin which is 240 mm height, width 45 mm and depth 45 mm
(aspect ratio defined as height/width A = 6.0). The container is immersed in cylinder (2) of 80 mm
inner diameter. On the shell side of the exchanger there is some space (3) between container and
external cylinder. It forms the water channel, which through the nozzle (4) and (5) is connected to
water circulating system supplied by two thermostatic baths. In this way the initially temperature was
carefully controlled and adjusted at the desired level of temperature above the fusion temperature of

paraffin.

Experimental procedure

Before starting the experiment, the constant temperature bath was stabilised to a particular
temperature slightly above the fusion point. Then the container was filled with liquid paraffin taking
care to insure minimum air traps inside. Then, the paraffin filling the heat exchanger was allowed to
remain at a desired temperature (here mostly at 8, = 6y = 65°C) for five hours before the
solidification started. At the same time, the temperature of the cooling water was stabilised in the
second constant temperature bath. Then as a start for each solidification experiments was the
switching between circulation loops — heated at the temperature 8y > 8° and cooled at the
temperature 8¢ < 8°. For each experimental run the same time period for solidification lasted five
hours.
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The experimental device has been designed with special emphasis on convenient disassembling,
particularly on easy acces to withdraw the container filled up by the solidified core of the paraffin.
Owing to such design the container could be easily withdraw after each experimental run from the heat
exchanger and then by temporarily heated in the bath at temperature above the fusion point to draw the
solidified core out of the container. Afterwards, the solidified core by cutting layer-by-layer of the
material and removing it out to disclose plane of symmetry of the perpendicular block was prepared to
shoot photographs. Outlined shape of the shrinkage cavity was recorded after preparatory stage
which consists of: firstly - covering all of the exposed surface by matt paint, secondly - removing
dried, thin layer of the paint only from the surface all over of the plane of symmetry. In this way at
the region where volume contracts and which is concave with respect to the cutting plane, the paint
still left clearly demonstrating shape the shrinkage cavity.

RESULTS AND CONCLUDING REMARKS

In general, assuming that the thermophysical properties are constant but may be different for liquid
and solid phases, the problem under consideration is governed by following dimensionless
parameters: the Rayleigh number Ra, Prandt! number Pr, Stefan number Ste (=¢;-(8"-8¢)/Ah’,
where 8" stands for average of the phase change temperature), superhcatmb parameter Sy; (=c2(0;;-
8°)/8h"), the container aspect ratio A as well as property ratios & = a/as, A = Ai/Aa, p =pi/pa.
where subsequently subscript 1 refers to solid and subscript 2 refers to liquid. A number of
solidification experiments has been performed. but all of the reported experimental runs were made
for the same level of superheating Sy = 0.178, which corresponds initial temperature
0,=8,.=65°C.

The results are presented in Figure 2 - with the emphasis on the final state. The solid core and
shrinkage cavity are represented as a distinct shadowed regions. Original pictures were grabbed as
colour ones (in a format of 24 bit RGB) and than without any manipulation transformed to the
monochromatic picture (in a format 8 bit unsigned). The first trials of solidification were carried out
keeping the cooling temperature at 20 °C. Further results, obtained according the same procedure
with increasing temperature of the cooling water O¢ from 20°C to 45°C by 5°C showed insignificant
effect on shape and form of the shrinkage cavity which was similar to that at Fig. 2a. As far as 45°C
of the cooling temperature the samples were prepared increasing the 8¢ by 1°C. At 8¢ = 48°C the
shrinkage cavity changed its shape to be in form as in Fig. 2b. Further increasing of the cooling
temperature and thus decreasing of the cooling rate resulted in also decreasing in the depth of the
shrinkage cavity (see in Fig. 2¢). Fig. 2d corresponds to 8¢ = 50°C than very close to lower limit of
the temperature phase change region.

The results collected showed that the density difference essentially affects geometry of the solid core
especially at regions around axis of symmetry. The conclusion based on the study is self-evident.
When the problem of mathematical modelling as well as materials are as considered in the study the
volume contraction should be taken into account, It is also clear that engineering design of a real heat
storing unit should asserts such the working conditions in practice to carry out the destoring cycle with
reasonable low cooling intensity. Finally, it is also worth to emphasise that the results presented refer
to fully 3D conditions very close corresponding to solidification process occurring in practice. Such
the feature undoubtedly distinguish the work presented when compared to the others published which
were concerned with the solidification in somewhat analogous configurations, for example
experiments performed by Ho and Viskanta® and numerical simulations by Kim and Ro*, where the
results for open rectangular containers with aspect ratios A = 0.5 and 1.0 are presented. However, the
objects investigated were specially adjusted to the experimental technique requirements, i.e.
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visualisation of the process evolution bearing the main assumption that the third dimension (depth) has
no influence on the process considered.
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Fig. 2a) 8.=45°C, Fig. 2b) 8=48°C, Fig. 2¢) 8c=49°C, Fig. 2d) Bc=50°C,
Ste =0.181, Ste=0.113, Ste =0.090, Ste = 0.0678,
Sy =0.178; Sy =0.178; Sy =10.178; Sy =0.178.
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STRESS PROBLEMS IN LIQUID BRIDGE THERMOCAPILLARY CONVECTION: A
NUMERICAL APPROACH.

Guillaume Kasperski & Gérard Labrosse
LIMSI-CNRS, UPR 3251, Université Paris-Sud XI, BP 133, 91402 Orsay Cedex France

Axisymmetric thermocapillary convection is computed in a liquid bridge, held between two
cylindrical isothermal rods and laterally heated. Geometrical simplifications lead to a rectangular
computational domain. Flow ficlds and spatial derivatives are estimated by a Chebyshev
collocation method and the conservation equations are solved by a projection-diffusion algorithm.
To avoid mathematical singularities on the axial velocity boundary conditions, the thermocapillary
stress is weighted by a regularising function, which cancels at the junctions of the free surface and
the solid rods. The shape of this function, particularly the characteristic length scale of the filtering.
can be controlled by the experimentalist and may depend on the temperature profile at the free
surface.

The role of the Prandtl number, characteristic of the considered fluid, on the flow regimes has
been studied for a particular, smooth, filtering of the thermocapillary stress. Increasing the control
parameter of the convection, the Marangoni number, high-Pr flows keep a diffusive nature. as low-
Pr flows become rapidly convective. They respectively undergo hydrothermal and hydrodynamical
transitions to unsteadiness. The discussion will be lead on the role of the filter shape, on which
thermally convective flows seem to be very dependent, leading to expensive computationnal
investigations. The results could be partly relevant for fluid phenomena occurring in floating zone
crystal growth processes.
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CONTRIBUTION TO OPTIMIZATION OF CONTINUOUS CASTING OF STEEL
SEMIPRODUCTS

Frantisek Kavicka', Karel Stransky *, Josef Stétina”, Pavel Ramik”, Bohumil Sekanina’,
Véra Dobrovska™, Jana Dobrovska™
* Technical University, FME, Technickd 2, 616 69 Brno, Czech Republic
** Technical University-VSB, Tf. 17. Listopadu, 708 33 Ostrava, Czech Republic

Summary This process can be described by the Fourier or the Fourier-Kirchhoff equations, which
can not be solved exactly. An original three-dimensional (3D) numerical model (the first of the two)
of a CCM temperature field had been assembled. This model is able to simulate the temperature
field of a CCM as a whole, or any of its parts. Simultancously, together with the numerical
computation, the experimental research and measuring have to take place not only to be confronted
with the numerical model, but also to make it more accurate in the course of the process.

The second original numerical model for dendritic segregation of elements assesses critical points of
blanks from the viewpoint of their increased susceptibility to crack and fissure. In order to apply this
model, it is necessary to analyze the heterogeneity of samples of the constituent elements (Mn, Si
and others) and impurities (P, S and others) in characteristic places of the solidifying blank. The
numerical model, based on measurement results obtained by an electron micro-probe, generates
distribution curves showing the dendritic segregation of the analyzed element, together with the
distribution coefficients of the elements between the liquid and solid states. Both models will be
used for optimization of concasting technology.

A NUMERICAL MODEL OF THE TEMPERATURE FIELD

We are presenting the first results of a numerical solution. Final program will have the following
properties: it will solve non-stationary temperature field of continuously casted blanks and of a
crystallizer as a non-linear task, it will simulate CCM as a whole or any of its parts, it will solve
current thermo-kinetic problems in general and in details.

The tree-dimensional unsteady temperature field of a blank passing through a device for continuous
casting (through the zones of primary, secondary, and tertiary cooling) in a direction of a z axis by a
rate is described by the Fourier-Kirchhoff equation (1). The equation must be adapted in such a way
so that it would describe the temperature field of the blank in its all three phases: in a melt, in a
cooling interval, and in a solid phase Therefore the specific volume enthalpy dependent on
temperature is introduced, iy,= ¢, T [J.m" 3]. The specific volume heat capacity ¢, and conductivity k
are the function of temperature, too. Figure gives an example of a cross-section through the
crystallizer - the zone of primary cooling.

(5T+ 5TJ=L(kﬂ]+_ﬁ_(,,ﬁ_T]+ﬁT[kﬁ_T) a3
at éz dx ax 2y dx dz dz

The functional relationship i, = f{7) must be determined for the given material of the blank. If the
calculation node is on the boundary of the system and the environs or on the interface of the
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individual system bodies, then the respective unitary

heat conductivity must characterise the limit

condition. The limit condition on the interface of the

blank - the crystallizer depends on the colo o
thermophysical properties and on the state of parting
powder and on the space form too, and on the
interface of the crystallizer - the steel frame it
depends on the both surface treatment quality. In the
limit condition on the upper and the lower base of the A ¢
crystallizer, on the frame wall, and on the blank oo o

surfaces after its exit from the crystallizer the
influence of the convection (natural or forced under
the nozzles) and the influence of radiation are

included. The effect of the cooling tubes passing Figure 1. The cross-section through the
through the crystallizer wall is simulated in the model crystallizer for radial pouring of

by the so called heat drop. But the analysis of the continuous casting of 200x200 mm
limit conditions definition is not a matter of this

article. After running on the steady state the derivative of the temperature or enthalpy according to
time in the equations and is zero. The thermophysical properties of the steel blank, of the copper
crystallizer, and of the steel frame were available.

il
[

5T

S o160
100 °
o o] opo

The choice of the solution limit conditions was adapted to this experimental information, and
namely in several precisionings. Figure shows e.g. the temperature field of the blank, of the
crystallizer, and of the frame in a cross section led in a half of the crystallizer height. To this
temperature field corresponds the mean value of heat transfer from the blank to the working wall of
the crystallizer.

The calculated temperature field of the basic variant is real and it served to the analysis of the
influence of the blank shift rate as a comparative variant. It was found out that the temperature
fields of another variants of the rate choice are convenient for technical practice if the coefficient of
heat transfer are proportionate to the change of the rates. In addition the same condition were
analysed by calculation with the difference that

in the first and in the second section the =i
spraying is not applied so that hy (natural) will '
characterise the natural heat transfer from the
blank surface (including convection and
radiation, too) in accord with the limit
condition in the tertiary cooling zone after exit
from the zone of secondary cooling for each
variant. The spraying on the opposite walls of
the blank is the same, therefore the temperature :
field is symmetrical by a diagonal of the cross ]
section and it is sufficient to solve the one
quadrant of the system only.

Comparison of the calculated temperature

fields of individual variants of the limit i
conditions choice mutually and with the basic

variant can be demonstrated by the isotherms  Figure 2. The calculated temperature field in the
course in the cross and longitudinal sections blank, the crystallizer and in the frame in a
through the blank and by the source of cross-section led

http://rcin.org.pl



95

temperature curves of the characteristic corner points A, B, C, and D of the cross section in
dependence on the depth under the melt level in the crystallizer.

DENDRITIC SEGREGATION OF ELEMENTS

In the course of continuously cast steel solidification in a crystalizer, some chemical heterogeneities
originate, i.e. the chemical heterogeneity of individual elements, as these elements both constitutive
and attendant as well as additions, segregate [1]. This liquation, or also segregation, is realized in
microvolumes, so we speak about a microsegregation, which is a term identical to that of a dendrite
segregation of steel, as the steels solidify always in a dendrite way. But under specific conditions of
crystallization, the differences in chemical composition in macrovolumes also take place, so we can
speak by analogy about a macrosegregation. The study of a microsegregation, i.e. of a dendritic
segregation in the main, and a chemical heterogeneity of elements connected with it, is a base
needed for the knowledge and explanation of differences in the chemical composition of steel both
microscopic and macroscopic size.

At the same work an original method of the quantitative
evaluation of chemical heterogeneity through their +Axis in slab width half
distribution curves of a dendritic segregation as well as an
original determination method of effective distribution

{ Small slab radius
coefficients of these elements has been applied. To |
|

N

determine a chemical heterogeneity of continuously cast
carbon stecl slab, a slab of 1530x250 mm size was poured
in VITKOVICE Metallurgical Works. The chemical

[

composition in wt.% of the slab steel from which the A3 [23 [33]
samples for the measurement of a chemical heterogeneity ' Large slab radius

has been taken off, is following: 0,11 C, 0,49 Mn, 0,27 Si, ’ A

0,019 P, 0,009 S, 0,07 Cr, 0,04 Ni, 0,01 Mo, 0,01 V and  Figure 3. Scheme of taking slab
0,01 Ti. The samples for the determination of a chemical samples off’ and their marking
heterogeneity and structure were taken from the slab off

based on the scheme in the figure.

From the samples figure the special metallographic samples have been prepared and the line
segment of 1 mm length has been selected for the measurement in every metallographic sample
then. To determine a concentration distribution of elements, an microanalytical complex JEOL JXA
8600/KEVEX Delta V Sesame has been applied by means of energy-dispersed point X-ray
microanalysis method. The concentration of Al, Si, P, S, Ti, Cr, Mn and Fe was measured in the
selected line segment in 101 points. The distance among measured points was 10 pm.

From the measured concentrations data of elements the basic statistical parameters (¢, - arithmetic
mean, s,.; - standard deviation and others) have been estimated and using the process described in
the works, the values of effective distribution coefficients k; have been calculated. Furthermore the
indexes of heterogeneity Iy=s,./c, for each element and each sample have been estimated. This
results are completely described in the work.

It was estimated, that the main values of chemical heterogeneity indexes I;; of elements in slab are
decreasing in the range: Al (0,858), P (0,492), S (0,421), Ti (0,329), Cr (0,269), Si (0,251), Mn
(0,167) and Fe (0,00139). The maximal microheterogeneity index has aluminium, and the minimal
microheterogeneity indexes have manganium and iron. The differences of the microheterogeneity
indexes of individual elements among samples in slab (see fig.3) are statistically insignificant.
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The main values of the effective distribution coefficients k, of elements in slab are increasing in the
range: Al (0,470), P (0,651), S (0,709), Ti (0,750), Cr (0,791), Si (0,806), Mn (0,866) and Fe
(1,00125). We can see, the minimal values of &, has aluminium and the maximal one has iron. The
differences of the effective distribution coefficients of individual elements among samples in slab
are also statistically insignificant. The dependence between microheterogeneity index and
distribution coefficient of individual elements can bé expressed analytically through the equation

11r=0,005534 - 1,134.In(k,) @

in which the correlation coefficient r = 1,00, is very statistically significant.

CONCLUSION

The numerical model must also be applicable to solving other individual thermokinetical problems
like: oscillations of the crystallizer and their amplitude or frequency, different ways of cooling the
crystallizer, non-traditional methods included, choosing and considering the influence of the bevel
of crystallizer working surface (a very modern problem nowadays), optimization of the choice of
casting powders and their influence on the surface quality of a blank, problems with the contact
sow- casting powder-crystallizer including the prediction of the effect of casting powders on the
formation of gap at this interface, prediction of the position of the apex of solidification cone in
cross and lengthwise sections, the optimization of the feed speed of a blank according to a given
intensity of cooling in individual ECC zones or the optimization of both the method and intensity of
cooling at a given feed speed, etc. It is assumed, that the model of dendritic segregation will enable
to evaluate in advance the critical points of slabs from the viewpoint of their increased
predisposition to form cracks.

This publication is based on work sponsored by the GA CR Project No.106/98/0296, by the EUREKA Project No.1867
CONMOD, by the COST-Action P3 Project No.P3.20 and by the KONTAKT No. ME 380
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LIQUID-VAPOUR TRAVELLING WAVES BY A KINETIC MODEL
OF VAN DER WAALS FLUIDS

Bogdan Kazmierczak', Kazimierz Piechor'
" Polish Academy of Sciences, IPPT PAN, Swigtokrzyska 21, PL 00-049 Warszawa, Poland,
“Pedagogical University of Bvdgoszez, Dept. of Environmental Mechanics Chodkiewicza 30, PL 85-064 Bydgoszcz,
Poland, also Polish Academy of Sciences, IPPT PAN, Swigtokrzyska 21, PL 00-049 Warszawa, Poland,

1 INTRODUCTION

The transition zone separating the liquid and vapour phases is very narrow and the gradients of the
flow parameters are very large. Hence, the flow is very non-uniform with a strong heat and mass
transfer. Therefore a kinetic theory approach to such types of flows seems to be the most suitable

one As the medium can be very dense, every kinetic equation has to take into account the following
fundamental phenomena

1. the finite size of the molecules;

2. the strong correlation between interacting molecules;

3. the attractive forces with which the molecules interact and which “keep the molecules together”
when in the liquid state

These three conditions are satisfied by a model proposed by Grmela'? and called by him the Enskog-
Vlasov equation. In his model, the intermolecular potential is split into a hard-core and an attractive
tail. The hard-core is treated as in the standard or revised Enskog equation, whereas the tail enters
the equation only linearly in a mean-field term.

Unfortunately, the Enskog-Vlasov equation is too complicated for a study of any flow. That is why
we constructed such a mathematical model of this equation in which the molecular velocity space is
not all R, but a set of four, fixed in advance, two-dimensional vectors.

Although, from the physical point of view this model is very simple, mathematically it is quite
complicated We look for travelling wave solutions to these simplified versions. We introduce a
simplified model and present some numerical results concerning the hydrodynamic and kinetic shock
wave structures paying special attention to the impending shock splitting. We show numerically that
kinetic effects alone are unable to kill the artificial phenomenon of impending shock splitting.

2 THE MODEL

We consider the plane 4-velocity model of the Enskog-Vlasov equation as a system of evolution
equations for the probability density functions N, = N,(r.1), i = 1234, f€ [0,) r=(xy)er?
of the particles of the , gas” travelling with the velocities c,: ¢, = (10) = -¢,, ¢, = (0) = -¢,

A
(iw. ﬁ}v =LE(V,6)+F, @1
it a £

7, r

where E, (N,e), i=1234, model the Enskog collision operator, and & is the Knudsen number.

We omit the rather complicated expressions for E, since they can be found in the paper by Piechor’
F;’s represent terms containing the attractive tail.
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The problem we want to consider consists in a study of propagation of plane non-linear waves, what

admits the introduction of a few simplifying assumptions. They are:

e the flow is in the direction of the molecular velocity ¢, = (1,0),

e all densities N, depend on time ¢ and one position variable x measured in the direction of ¢;, and
do not depend on the other position variable y measured in the direction perpendicular to this
vector

e the flow is symmetric with respect to the x-axis, what results in N4(:. x)i= NZ(:. x).

Under these simplifying assumptions, the equations of our model cease to be so complicated and
take the following form®. To simplify further the equations we expand the integrals in power series in
¢ . In this way we obtain a system of three purely differential equations which, when written in the
Lagrangian co-ordinates, read

i w— iu =0 (22)
i :
G 1 Blw sl a \, AN
ZurZ | dw AZ 23
a" at{p("'")*—zq} x(w 7:(] ax W ex") waxr' | i
and
J ’ l=us 2 4p(w)
ey e T e B SR 24
"a St e 5\," =Sy (2.4)

where X is the Lagrange mass co-ordinate, and n = N, + 2V, + ¥, is the number density,
nu = N, - N, defines the mean velocity, and ng = NN, —N:_ In the above equations. p(w,u) is
the pressure, 5>0 is a constant characterizing the close packing density, 4>0 is a constant
characterizing the capillarity-to-viscosity effects, w = I'n is the specific volume, finally p = p(w)
represents the pair correlation function.

The pressure in our model is given by the following formula

=p(w.u)= (H —p (»))A% L2

e
If we take p = Lb and denote T :'—2L then (2.5) takes the form of the van der Waals equation
e

of state, if T is interpreted as the temperature. From now on we assume that p(w) is given by this
formula.

Hydrodynamic approximation

From Eq.(2.4) we obtain easily the following approximate formula

1-u® éu
—p——r——,
awpl(w) 8x

http://rcin.org.pl



29

Using it in Eq.(2.3) we obtain a system of two equations for two physical quantities the specific
volume w and the flow velocity u. These equations read

—w——u=0 (2.6)

@7

+4e? £ hol wz-l—L2 w
d Xiwl\d X wha X [

i 25
p = plw, ,,) i_(]_"_)_'L 238)

Bwp

where

is the coefficient of viscosity

3 THE TRAVELLING WAVE PROBLEM

Travelling waves in the kinetic model

A travelling wave solution to the kinetic equations (2.2)-(2.4) is a solution of the form

X -5t

(w,u,qXe, X) = (w,u,qXE), &= eR', (3.1)

where s = const is the wave-speed, such that
‘lim (w,u,q)= (w, u,.,0), ;lir?ﬁ(w,u,q) =(w,,u,,0), (3.2
Jim (,1,)= (0,00} fim (%)= (0.0). ¢3)

where the dot above a character means differentiation with respect to &

Now, we act in a very standard way. Namely, we substitute (3.1) into Eqs.(2.2)-(2.4), perform one
integration with respect to & and use the limit conditions (3.2)-(3.3). As the result we find the
velocity u is given by

u=u —slw-w) (EX))

whereas w is coupled to ¢ through the following system of ordinary differential equations

a{ﬁ— sw? ] , sb*p(w) p(w)
4w

Wt f(wwio,5)+ © 540, (3.5

w oWt
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!L—i*ﬂw il =5, (3.6)

[26e, +sw,)-swki+s

where

Sowiwiuy,5)= 52w =w, )+ plw,u, — s(w—w,) - plw,.u,) (€X)
The limit conditions for the solutions of this system are
Travelling waves in the hydrodynamic approximation
The travelling wave solutions to the capillarity equations (2.6), (2.7) are defined similarly to the
travelling wave solution of the kinetic equations, only the third component in (3.1)-(3.3) referring to

q is missing. Also, a procedure like that described in the first part of the present section yields
equation (3.4) and the equation for w(<):

. s
a{i’—‘: - % + sp(w : w,‘u,,.s')w+_f(w;w“u,,s) =0, (38)

where fiw,w,u,s) is the same as previously, and g (w,wy,u,5) = g(w,u=-s(w-w)), with y{w,u) given
by (2.8) The limit conditions for Eq.(3.8) are

‘m w=w, ;I_i’n:‘ w=w,, Cxin:ﬂ (w,w) = (0,0) (3.9)

States of rest

The state (w,, g, )is called state of rest if it nullifies the right hand side of Eqs.(3.5), (3.6). We check
easily that g, =0, and wy is a solution of

S(woswy,u,,5)=0, (3.10)
The fundamental question which now arises concerns the number of solutions of Eq.(3.10). In
general it can have either two or four different solutions. In the first case they are wo = w;, and wp =

W, , in the second case of four solutions we have two other states of rest in addition to the asymptotic
ones w; and w, . In this paper we consider the case when Eq.(3.10) has two solutions only.

4 A SIMPLIFIED MODEL"

The model kinetic equations (2.2)-(2.4) as well as their hydrodynamic limit equations (2.6),(2.7)
contain dissipation and dispersion terms which can be viewed as unnecessarily complicated for
qualitative considerations. That is why we present a simplified version of the model, and believe that

it correctly reflects the qualitative features of the original one.

We leave the mass conservation equation (2.2) unchanged
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%w—%u:O. 4.1

Also we do not change the left-hand side of Eq. (2.3), but we simplify the right hand side of it and,
instead of (2.3), we take

é él|1-u? b a 1 2182 B
Eux»a[ (I+Ap]4;’—1+fq:|: £b a—zu-az -aFw, 4.2)

where @, € and p are the same as previously, and > 0 is a constant. Finally we replace Eq.(2.4) by
the following one

s ey g ¥
BRGNS TR 43
FATRN T D

where y ,y are constants of the same sign. Assuming y = O{l). ¥y = O(l)as &€ — Owe obtain from
the last equation

q:-e—;%w}-()(gl)

Using this in (4.2) we obtain an approximate system of two equations called the simplified capillarity
equations. They read

—a—w——ﬁ—uzo (44)
a ax
and
& 8 |1-u? b a a? S0
—U— 1+—p |-— |mep—u-ae’ — 45
Bru GX[ ZW( wp] w{l ”ax’" e EX’W’ i
where z is the coefficient of viscosity now given by
p=L+p b =const.>0. (4.6)
2x

The travelling wave solutions to (4.1)-(4.3) are defined by (3.1)-(3.5). Consequently, Eq.(3.6) is also
satisfied in the present case, and w is coupled to g through the following system of ordinary
differential equation

a w+f sbzw+f(w;wl,u,,s)+%q:0,

(4.6)

s,
IR
up + 5w, Uy + 5w,

g q=0,

where f(w;w,,u,,s) is given by (3.7). Of course, we are interested in those solutions to Egs.(4.6)
which satisfy the limit conditions (3.2), (3.3).
We define
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Fig.1 Capillarity shock waves for e =1.
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Fig 2 Kinetic shock waves foro = 1
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Fig 3 Capillarity shock waves for a = 5.
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Fig. 4 Kinetic shock wave for a =5,
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Fig.5 Capillanty shock waves for a =15. Fig.6 Kinetic shock waves fora =15.
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Fig.7 Capillarity shock waves for o =50. Fig.8 Kinetic shock waves for a =50.
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SO
o, =u, +s(w, ~b)=const. and T = ol

=const.

In Figs. 1-8 the normalised specific volume v defined by

S

w, —w,

is shown for @ = 1, 5, 15, and 50.The other parameters are 7, =0.295, a = 1.004, b = 1,
w,=21and w, = 7.89,8.03, 8.17, 831, and 8.45. We took also f=00625, y=-2, y=-1. When
preparing these graphs we kept w, and 7, fixed and changed 5. Consequently we changed u;, i. e. we
took u, = u,(s)

The states of equilibrium are so chosen that the function f(w:w,,u,,s) takes for a certain
W W < W, <W, a positive value, but very close to zero. This results in the fact that the shock

profiles for small values of the capillarity parameter a consist as if of two shocks, This phenomenon

was discovered by Cramer and Crickenberger’, who called it ,impending shock splitting” The

following features of this phenomenon are noticeable

e the shock wave thickness is very sensitive to the choice, for fixed value of the capillarity
parameter a, of the values of the states of equilibrium; quite small differences between them can
result in very great differences of the thickness, We see from Figures 1, 2, 4 that the thickness of
the wave corresponding to w, = 7.89is much greater than that for w, =8.03 ;

s the increase of the capillarity parameter « kills the effect of the impending shock splitting, the
shock thickness ceases to be so sensitive to the values of the states of equilibrium. For sufficiently
large values of the capillarity parameter a the shocks become oscillatory, both in the
hydrodynamic and kinetic descriptions;

s the kinetic approach to the shock wave structure is not able to kill the effect of the shock splitting.
Our results seem to suggest that the leading mechanism of the damping of this effect is sufficiently
intensive capillarity.
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GENERALIZED INTEGRAL FORMS OF WALL FRICTION, HEAT AND MASS
TRANSFER FACTORS FOR DRIFT FLUX MODEL OF TWO-PHASE FLOW
IN AXISYMMETRICAL CHANNELS

Yuri N. Kornienko & Elena V. Kornienko
Institute of Physics and Power Engineering . Bondarenko Sq.1, Obninsk, Kaluga Region, Russia, 249020
Fax: 7-095-230-2326, E-mail: kornienk@jppe.rssi.ru

Summary. This paper describes the problem. of the generalized representations of constitutive
equations required in the lumped parameter code. The paper has the following objectives: 1) to
draw attention to an improved approach of constructing analytical local and integral relationships
for wall friction, heat and mass transfer factors based on boundary layer model, drift flux model of
two-phase flow, Reynolds flux concept and generalized substance transfer coefficient; 2) to show
the way in which the suggested integral equation is used to derive relations for wall friction, heat
and mass transfer coefficients.

Thermo-hydraulic analysis of nuclear reactor cores depends on an availability of realistic and
accurate descriptiors of both field and constitutive equations. Therewith such analyses are usually
carried out using Lumped Parameter Analysis (LPA) codes. One of the difficulties is associated
with the establishment of the constitutive relationships between flows in one-dimensional annular
channels and those in subchannels in rod bundles. In the use of the one-dimensional model in such
an LPA code as the subchannel analysis code, a number of serious shortcomings of the conventional
modeling are pointed out and new formulations to eliminate them are presented in this paper.

SUBSTANCE FLUX DISTRIBUTION

This initial mathematical formulation is relying on three-dimension (r-8-z) description in the frame
of the boundary layer conception. To have a possibility to extend the method being developed to
two-phase flows, it is convenient to use the conservation laws in a form equally acceptable both for
single-phase and two-phase flows. For this purpose it appears expedient to describe the two-phase
flow on the basis of the drift flux model of Ishii'. Table 1*) shows appropriate designations,
definitions and the drift flux model modified in accordance with the purposes of the present paper.
The law of the light phase propagation is described by the convective diffusion equation. The terms
with the subscript d taking into account the light phase drift are added to the corresponding
turbulent substance fluxes with the subscript £.

For fully stabilized longitudinal flows through concentric annulus and unbaffled assemblies of fuel
rods with constant cross-sections, a variation of local value changes of the S-variable (by which we
mean axial velocity, enthalpy or concentration) proves to be identical at every position normal to
the wall. The main assumption is the validity of gradient formulation of substance transfer along the
normal direction to the wetted perimeter. Shown in Table 1, the conservation equations can write in
a generalized and unified form by means of the single equation:

%% rJrg)= pu‘% “PV%?*.D% :_g_;__ ;%—"vﬂ ] (€))
where r=r;+y (r;- rod radius), w, v and vy are axial radial and azimuthal velocities, 8-azimuthal
angle; and Jy is the azimuthal substance flux. In this paper the source term 1,4 unites the pressure
gradient and hydrostatic component in the motion equation, whereas in the energy and mass transfer
equation it is the heat and mass source (sink).

*) This and others Tables also explain of the notations and symbols used.

http://rcin.org.pl



106

Table 1 Non-conservative (transportable) forms of conservation law equations,
two-phase flow description is based on drift flux model by Ishii (1975).
Field equations of: Definitions of parameters
Mixture continuity: p=lap)g +Hap) . pi=(api) g +api) 7
%.,.VA(F;):Q where ag=l-a . fflud, g-gas, vapor.
Convective diffusion: e=(ap)g/p, X/r ='\7,+?‘7, .
28 s i e=—V (W T v = = = =
p(ﬂ*‘ﬂ" c= (! + o Ndzc(ap)gugf: Hgr=ilg—lip.
Mixture energy: h={(aph), Haph)rlip; Ejnr =q,+q,;

éh _ =
pE+pu~Vh--V-¢qr Mg,

q‘=cplud(h. —h/).

Mixture momentum:

di - - = -
pztau‘Vu:V‘(z = )=VP+pg .

Al

E:{(apﬂ)gﬂapﬁ)f]/p; ?r =?'+ o

p%pr}vs:— V<.’jj+l, 5

g Thp M
f,"ljgp,",“,- PE,=p(8 p",—-
General form: Variable S = (e, h(T), w),

Substance flux J — (V.4.7);
Source (sink) 1, »(T'.q,.p27r)

After scaling the variables in Eq. 1 and having integrated it first with the variable upper limit ¥=y/5,
and then up to the boundary layer (¥=1) and having combined the integrals obtained we can derive

the equation for the local substance flux (see also Table

2, with designation T, =1+25,Y ):

j)'ﬂ={|'ﬁh[l+7va"5zf} Sula= (%/ﬂ*Jaf.:H}/ : @
Table 2 Definitions of local substance profile (LSP) components and coefficients f
and weizhted functions G.
G+l G+AY G+Al~
= [ [LY,dYde 3) | £, =1- [ [LY,dvde / | [1,y,dvde /c-" (C))
-] g0 60
8+A1 6+AY a+al
Som | [ Zt,ara0 G | £ =1- 1 Jo Zovarao | | Jpwr Z-v,avi0 /cn ©
80 & 8 0 & e 0 &
+a1 + 8+4A &
S, = | [ —Y,dyde D f=1-] " YdetJ/ j j“* Z_ydrde [G" (8)
a0 a L]
0+Al~ +$’ G+aY ¢$+ /a+51~ +$+
= _dYd 9 =1- _— —dYdd [G" 10
Syggam 4 ©)| s ££Wa o ALda ££P"9a9 (10)
5,1 e an 113 ay /a}“}‘iwm/o (12)
Ja= —dYdé fra=l- = qvde =0 N
X 60 22 . 80 & g 0 1
f+AY 6+A 1 - 14
9 . G"= [ [pw'raY r] d
G =Y(1+8,1)/0+3,), for pwzfiY) (13) ,{ {pw il £ £”w Tty (14)

As seen from Eq. (2), the contribution of each LSP components under consideration (convective
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axial, radial and azimuthal direction transfer, sources (sinks), etc.) to the substance flux can be
considered as a correction to the linear distribution. It is obvious that, when the boundary layer is
very thin, &, <<1. Then, we see just a small correction to the linear flux distribution 3” accounting
for the influence of above-mentioned transversal profile terms. It is worthwhile here to note that the

local substance flux profile in the pin wall region is a function of the weighted functions and of LSP
components and cocfficients, boundary conditions and geometry.

To unify the designations used and to reduce transpositions in deriving relationships for parameter
profiles as well as iriction, heat and mass transfer coefﬁcxents it is helpful to use the concepts of
generalized substance transfer coefficients (see Reynolds?) and the gradient transfer model. A
detailed description of the substance fluxes is presented in the next paragraph and the key to decode
the designations are quite obvious from the first six lines of Table 3.

WALL FRICTION FACTOR, HEAT AND MASS TRANSFER COEFFICIENTS

Assuming that the axial pressure gradient does not change in the annular, we obtain the following
relationship for the wall friction factor from Eq. (2) and {g from Table 3:

-E—vRt.g j IT{ {1 Go {n”fuw;w f,,+zoﬁ Ja=Tafs ]] =5 ])’:ﬂdﬂ (15)
]

where Fruy=t,q /(p,98r.), ¥, =1+25,Y and integrals of LSP components (i.e., ¥, , ¥, . Von Ty)

and coefficients are given by Eqs. (5)-(12) with the velocity w for the variable S. The local void
profile’ component and coefficient for annular sector are
f+A1

o+l
o= [ [pY.dYdo (16) 1, =1- j jp,y,nn'da/ 1] Jpv.'r’,rﬂ"dﬁ/(?,';‘ (17)
80 8 0 g0

Assuming as above that the axial enthalpy (and concentration) gradients are not a function of radial
position, we obtain the following relationship for the Stanton number:
f+a1

———Pew I I—*—J {[bG“(hH,fn—'q"quuzc?qw,fa—Qam)] %} Y,dYde, (18)
T'q

where Yy=1+25,¥ and the integrals of LSP components #,, Hg, 0, and coefficients are identical
to Egs. (7)- (12) when S=h. The internal heat sources (sinks) profile component and coefficient
are.

f#+451 8+AY 8+4a1
a,= [ [a.¥,dYdo (19) fo=1- [ [qX.avde / | [a¥drde / o (20)
g 0 ]

80

Equanons 15 and 18 generalize the known mtegral obtained by Petukhov* for the friction factor and
Lyon® for heat transfer and also Kornienko® (for circular tube) with respect to the functional way of
taking into account the LSP components and coefficients. With this approach, one can formulate the
integral analytical expressions for the wall friction, heat and mass transfer factors accounting for the
contribution of various above mentioned complementary effects.
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EXPERIMENTAL VALIDATION OF TEMPERATURE AND VELOCITY
FIELDS FOR THE FREEZING WATER

T.A. Kowalewski'!, A. Cybulski' & M. Rebow?
1polish Academy of Sciences, IPPT PAN, PL 00-049 Warszawa
2\Varsaw University of Technology, ITC PW, PL 00-665 Warszawa

Summory A new experimental technique based on a computational analysis of the colour
and displacement of thermochromic liquid crystal tracers (TLCs) was applied to determine
both the temperature and velocity fields of freezing water. The method was used to verify
and validate numerical solutions for water freezing in the cube shaped cavity.

INTRODUCTION

Application of numerical methods for freezing problem necessitate to solve non-linear partial
differential equations of variable properties fluid coupled with moving solid/liquid interface.
Due to the problem complexity, it is not a trivial task to determine precisely an error of
the numerical results impeded by inevitable model simplifications. Errors appearing due
to limited accuracy of different numerical methodologies, and due to inevitable simplifica-
tions introduced in the models, are usually difficult to predict a priori [1]. Hence, full field
measurements of velocity and temperature gained great importance for the flow problems
accompanied by the phase change. With this objective in view new experimental technique
based on a computational analysis of the colour and displacement of Thermochromic Liquid
Crystal tracers (TLCs) was applied to determine both the temperature and velocity fields
of the flow. It combines Digital Particle Image Thermometry (DPIT) and Digital Particle
Image Velocimetry (DPIV). Full 2-D temperature and velocity fields are determined from a
pair or a longer sequence of colour images taken for the selected cross-sections of the flow.

We consider convective flow of freezing water in a simple geometry, a cube shaped cavity
of 38mm internal size. Two configurations are investigated. In the first one flow develops
in the cavity with a horizontal temperature gradient set between two opposite isothermal
walls. The other four walls, made of 6mm thick Plexiglas, are nominally insulators of finite
thermal diffusivity. In the second configuration, the top wall of the cavity is isothermal and
kept at low temperature T,. The other five walls are non-adiabatic, allowing a heat flux
from an external water bath kept at the temperature Ty. Due to forced convection in the
bath it can be assumed that the temperature at the external surfaces of the box is close to
the bath temperature. The temperature field at the inner surfaces of the walls adjusts itself
depending on both the flow inside the box and the heat flux through and along the walls.

*E-mail: tkowale@ippt.gov.pl
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Figure 1: Temperature vs. Hue for TLCs used. Calibration curve is obtained by 8th order
polynomial fitted to the experimental points

EXPERIMENTAL METHOD

Thermochromic liquid crystals are used as temperature indicators. They modify incident
white light and display colour whose wavelength is proportional to temperature. The dis-
plaved colour is red at the low temperature margin of the colour-play interval and blue at
the high end. Application of TLCs as tracers opens new possibility of instantaneous full
field measurements of temperature and velocity in thermally driven flow. Dispersed liquid
crystals into the liquid become small thermometers monitoring local fluid temperature (3, 2.
For flow visualization classical light sheet technique is used. The collimated source of white
light illuminates selected cross-section of the flow and colour images are acquired at the
perpendicular direction. Illuminated TLCs tracers appear on images as cloud of colour spots
conveyed by the fluid. Digital acquisition of the images allows quantitative measurement of
both temperature as well as displacement of the tracers. The temperature measurements are
based on a digital colour analysis of RGB images. For evaluating the temperature the HSI'
representation of the RGB colour space is used. The incoming RGB signals are transformed
pixel by pixel into Hue Saturation, and Intensity. Temperature is determined by relating
the hue to a temperature calibration function. QOur 8-bit representation of the hue value
ensures resolution better than 1%. However, the colour-temperature relationship is strongly
non-linear (Fig. 1). Hence, the accuracy of the measured temperature depends on the colour
(hue) value. The relative error, based on the temperature range defined by the TLCs colour-
play limits, varies from 3% to 10%. For the TLCs used (TM from Merck) there results an
absolute accuracy of 0.15°C for lower temperatures (red-green colour range) and 0.5°C for
higher temperatures (blue colour range).

The 2-D velocity vector field has been measured by digital particle image velocimetry
(DPIV). By this method, the motion of the TLC tracers observed in the plane of the illumi-
nating light sheet, is analysed. In the classical DPIV FFT-based cross-correlation analysis
the spatial resolution of the method is limited by the interogation window size. Further
improvement of the evaluation accuracy allows the recently developed ODP-PIV method

'Hue, Saturation, Intensity

http://rcin.org.pl



111

Figure 2: Flow structure observed for the centre plane (z=0.5) in the differentially heated
cavity at 60s (left) and 2600s (right) after cooling started

of image analysis [4]. Due to an iterative search algorithm used, a dense velocity field is
obtained, with displacement value calculated at each image pixel. The accuracy of the FFT-
based DPIV and that of the ODP-PIV method is 0.6 pixels and 0.15 pixels, respectively.
This means that for a typical displacement vector of 10 pixels the relative accuracy of the
velocity measurement (for a single point) is better than 6%.

SELECTED RESULTS
Differentially heated cavity

The two opposite metal walls of the cube are assumed to be isothermal. Due to temperature
gradients existing between the walls the recirculating flow is generated in the cavity. This
flow configuration resembles a popular “bench mark” case, natural convection in a cubical
cavity with differentially heated end walls. However, the behaviour of natural convection
of water in the vicinity of the freezing point creates interesting and also difficult features
for numerical modelling of flow structures. It is mainly due to the strongly non-linear
temperature dependence of the density function with the extremum at 4°C. The competing
effects of positive and negative buoyancy force result in a flow with two distinct circulations
(Figs. 2,3). There is “normal” clockwise circulation, where the water density decreases
with temperature (upper-left cavity region) and “abnormal” convection with the opposite
density variation and counter-clockwise rotation (lower-right region). At the upper part of
the cold wall the two circulations collide with each other, intensifying the heat transfer and
effectively decreasing the interface growth. Below, the convective heat transfer from the hot
wall is limited by the abnormal circulation, separating it from the freezing front. Hence, the
phase front is only initially flat. As time passes it deforms strongly, getting a characteristic
“belly” at its lower part.

This type of flow structure appeared to be very sensitive to thermal boundary conditions at
the side walls. Despite improvements in the numerical model we used, the computational
results differ in detail from their experimental counterparts [5]. An eventual source of ob-
served discrepancies could be the supercooling of water, which delays creation of the first
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Figure 3: Velocity (left) and temperature isotherins (right) field evaluated for water freezing
in the differentially heated cube at 500s, T,=10°C, T,.=-10°C

ice layer and deforms the flow pattern at the top of the cavity (comp. Fig. 2a). It is well
known that pure water may supercool as far as -40°C, before freezing occurs. Seeding of
the flow with thermochromic liquid erystals allowed us to visualize that in fact initial water
temperature reaches about -7°C before freczing starts.

Lid cooled cavity

The problem of melt-flow in a lid-cooled cavity has a practical application in a number of
manufacturing processes and physical situations. A large scale example is the freezing of
water reservoirs, where at night, cooling from above initiates freezing and generates con-
vective flow beneath the ice. On a smaller scale, it has been recognized in crystal growth
problems that the flow pattern beneath the solidifying surface is of critical importance to
crystal quality. The occurrence of convective flow in the presence of vertical temperature
gradients is known to be stable only within a relatively narrow range of Rayleigh number.
In our experiments on a lid-cooled cavity there was heat flux into the liquid through the
sides and bottom walls. It has been found that these boundary conditions have a stabilising
effect on the overall flow, and stable flow structures are possible at Ra > 10°, well above
the second critical number for the Rayleigh-Bénard instability. However, various modes of
instabilities are observed during the onset of convection. Before a stable final flow structure
is achieved, several oscillatory changes in its pattern are observed [6]. The initial flow in-
stabilities, clearly visible in the TLCs visualized temperature field, are also reproduced in
the numerical simulations [7]. When a phase change takes place, in our case freezing on
a lid surface, strongly non-linear coupling of the flow and interface is responsible for the
interface geometry. Despite the fact that freezing starts at a planar surface, the ice surface
does not remain planar. Its distortion in turn affects the convection in the whole cavity. A
complex interaction between the flow, the moving boundary and the latent heat removed at
the solid/liquid interface determines the flow pattern which is established. Fig. 4 shows the
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0.5 mm/s

Figure 4: Velocity (left) and non-dimensional temperature (right) field evaluated for water
freezing in the lid cooled cavity after 5 hours, T,=20°C. Tc=-10°C

temperature and velocity field evaluated for the quasi-steady state, i.e. 5 hours after the
experiment was started.

The flow visualisation performed in the lid cooled cavity shows the existence of a complex
spiralling structure transporting fluid up along the side walls and down in a central cold jet
along the cavity axis. A colour play of TLCs seeded flow images taken directly under the
lid shows this flow structure in the temperature pattern. Both the particle tracks and tem-
perature distribution measured underneath the lid indicate the existence of eight symmetric
cells created by the flow (comp. Fig. 5). This is also manifested in the complex structure of
the ice surface. In both the computed and observed ice surface, a star-like grooving reflects
eight-fold symmetry of the flow [7]. It was found that heat flux through, as well as along
the walls has to be incorporated in the numerical model to obtain observed flow pattern. It
was only as a result of the use of both the experimental and numerical methods that the fine
structures of the thermal flow were fully understood.

CONCLUSIONS

The present study has demonstrated the applicability of cholesteric liquid crystals to the
quantitative measurements of full field instantaneous temperature distribution in freezing
water. The simultaneous measurement of the velocity and temperature fields using TLC
tracers, allows a detailed experimental description of the complex flow structures appearing
in the convective flow associated with phase change, and their direct comparison with the
numerical counterparts. Several discrepancies found between predicted and observed flow
indicates the necessity of careful experimental verification of the numerical codes used for
simulating phase change problems. It seems that the presented experimental technique offers
a valuable tool for the code validation procedure.
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particle tracks (left) and non-dimensional temperature isotherms evaluated from the colour
of TLC tracers {right)
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ANALYSIS OF FREE SURFACE FLOWS WITH SOLIDIFICATION

A.V. Kuznetsov
North Carolina State University, Dept. of Mechanical and Aerospace Engineering,
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Summary. The objective of this paper is to present a theory of free surface flows with continuous
solidification. This type of open-channel flows is relevant to a number of important technological
processes, such as the horizontal continuous casting of carbon steel. Since carbon steel is a binary
alloy, in formulating a mathematical model in addition to accounting for fluid flow and heat transfer
it is also necessary to account for the solute transport and for the two-phase region (the mushy zone)
effects. Extensive numerical simulations provide valuable insight into this process.

Classical free surface flows received considerable attention in the literature. A good overview on
open-channel flows is given in Chow'. Both analytical and numuical investigations of open-
channel flows is presemed in Garcia-Navarro et al.”, Thomas et al.’, Rahman et al.'. However.
open channel flows with solidification have not n.u..wed so far suff'uunt attention. This gap needs
to be filled, because these flows are relevant to a number of important mdustnal applications, such
as the strip casting of carbon steel.

In recent years, there has been a number of papers devoted to modelnng of the heat transfer and fluid
flow for different schemes of both vertical®® and horizontal'™"* strip casting processes. These
papers present extensive investigations of both fluid flow and heat transfer in the solidifying strip.
However, further insight into this process is needed, such as investigation of coupling flow and heat
transfer with solute transport and accounting for the free surface behavior.

In recent publications a number of models for describing fluid flow of binary alloys during
solidification have been proposed, mainly for the case when the flow is caused by natural
convection. Unlike pure substances, binary alloys solidify over extended temperature ranges and
solid formation usually occurs within a two-phase region (the mushy zone), where solid and liquid
phases coexist. Sound theories for transport processes in the mushy zone have been developed only
recently.

Derivation of the set of governing equations for the mushy zone based on the mixture theory
approach was originally reported in refs."'® and recently extended to account for microscopic
phenomena in refs.'”"® The derivation of the set of governing equations based on a volume-
averaging procedure is presented in refs.'*?'. An e‘(cellent review of different models with basic
features of each model summarized is given in ref.”>. Very recently. a three-phase model (solid,
liquid and gas phases) of the mushy zone has been proposc:d23 * and comparisons against the two-
phase model have been carried out. Since the appearance of these models, the solidification of
alloys has been extensively investigated. Numertcal results of these studles along with the main
features of the numerical procedures are reported in®*%, Reference®” is one of the first research
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works on modeling flow, heat and solute transport in a multicomponent steel. Different from the
investigations reported in refs.25%% where fluid flow is mainly caused by a relatively weak natural
convection, in this research we consider the case of a strong forced convection, caused by the

change of the height of the free surface.
STATEMENT OF THE PROBLEM

The schematic of the problem is displayed in Figure 1. We consider free surface flow of a binary
alloy, for example, carbon steel, on a horizontal surface (casting table) which moves with a constant
velocity, U, We assume that the binary alloy enters the moving surface with the fully developed
relative velocity profile, where relative means relative to the surface. In the beginning of the
computational domain the binary alloy is completely in the liquid state, that is its temperature is
above the liquidus temperature. A constant heat flux is withdrawn from the surface, and this causes
solidification of the alloy as it flows downstream. At the end of the computational domain the alloy
is completely sclidified, and the solid strip leaves the moving surface with the same constant
velocity, U. This process is an example of a free surface flow with solidification. It also should be
noted that in the beginning of the casting table, when 0 <x < X", alloy at the free surface is in the
liquid state while farther downstream, when x > X", alloy at the free surface is in the mushy state.

free surface

A
Y ‘ liquid
. h,
liquid
alloy solid v
£
x VVY P b
constant heat casting y ™
« flux table
< - =
L
= =

Figure 1. Definition sketch

In establishing the mathematical model for this process, the following assumptions and
simplifications are utilized:

e The transport process is steady, two-dimensional and laminar;

e The properties of the solid and liquid phases are homogeneous and isotropic, the solid phase is
stationary and rigid, no microporosity forms in the strip;

e The solid and liquid in the mushy zone are in local thermal and phase equilibrium, the
thermophysical properties are constant, but may be different for liquid and solid phases;

s No species diffusion in the solid phase between the averaging volumes and complete diffusion
in the solid phase within the averaging volume (lever rule) is assumed;

e Heat transfer by radiation and convection from the free surface is negligible;
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e The thin layer approximation can be invoked:

e The surface tension effects are negligible;

e The flow resistance due to the growing dendrites is accounted for only in the direction
perpendicular to the primary dendrite arms (in the x-direction), resistance in the y-direction is
neglected because of the small thickness of the strip;

e The density difference between the fluid and solid phases is accounted for only in the continuity
and the species transport equations, but it is neglected in the energy equation. It other words,
the term accounting for the density change is incorporated into the latent heat term and the
temperature dependence of the "effective latent heat" is then n::%]ected. Thus the energy
equation then takes the form suggested in Beckermann and Viskanta®'.

MAJOR RESULSTS AND CONCLUSIONS

This paper suggests a model of free surface flow with solidification. This model is applied to
numerically investigate coupled fluid flow, heat transfer and solute transport in horizontal
continuous casting process. It is shown that the solute diffusion in the liquid phase causes a
formation near the casting table a thin diffusion boundary layer. This boundary layer is essentially
depleted of the solute. The formation of this boundary layer can be explained by considering the
effect of diffusion near an intensively cooled impermeable wall. It is established that increasing of
heat transfer rate from the casting table results in considerable decrease of macrosegregation level
in the strip.  This is because larger heat transfer rate results in smaller width of the mushy zone,
which in turn results in smaller macrosegregation. It is also established that increasing of casting
velocity results in slight increase of macrosegregation level in the strip. This is because larger
casting velocity results in larger width of the mushy zone, which in turn results in larger
macrosegregation.
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FINITE ELEMENT ANALYSIS OF MELTING DRIVEN BY BUOYANCY AND SURFACE
TENSION FORCES

Mare MEDALE, Marc JAEGER & Ahmed KAISS

Institut Universitaire des Systéemes Thermiques Industriels, CNRS U.M.R. 6595
Technopdle de Chateau-Gombert, 5 rue Enrico Fermi, 13454 Marseille Cedex 13, France.

Summary A finite element model has been developed for the computation of melting/solidifying
process under the action of both buoyancy and surface tension forces. Validated on the square
cavity benchmark of Gobin & Le Quéré * it is further extended to the free surface case where
surface tension can drive the flow (capillary flow). A comparison of the results obtained for three
boundary conditions applied at the top of the melting pool is performed. It shows that the flow is
dominated by buoyancy effect when the pool is deep enough as in the square cavity case of the
benchmark.

MODEL DESCRIPTION

The aim of our presentation concerns the numerical model we have developed for the computation
of industrial solid-liquid phase change problems. It is based on the macroscopic Voller and Prakash
physical description of the phenomenon ', recast in the finite element framework. It solves on a
fixed mesh the coupled incompressible Navier-Stokes and energy equations the later being solved
also in the solid phase. According to the original model, the energy equation is written in an
enthalpy formulation in order to take into account the latent heat release during phase change. This
model is especially well suited to handle the phase change of mixture like metallurgical alloys. In
that case the phase change which occurs over a temperature range, leads to a stretched
solidifying/melting front (mushy region) instead of a steeple one (pure materials). Thus the
momentum equations have been slightly modified by a Darcy like modeling to simulate the fluid
flow in this region. The natural convection flow in the liquid phase can originate from two types of
forces depending whether there is a free surface or not. In the first case buoyancy alone induces the
flow whereas in the second case surface tension forces act too. It is noteworthy that both can depend
on temperature and/or species concentration gradients, whenever in the present study only the
thermal effect is considered. In our model, buoyancy is taken into account through the Boussinesq’s
approximation and the surface tension depends linearly on temperature.

The numerical model is formulated in primary variables (V, p, T). The fluid flow and heat transfer
problems are solved using a non-stationary uncoupled approach. It consists in sequentially solving
at each time step the energy equation with the latest available velocities and then the fluid flow
problem with the updated temperature field. The time discretization is performed with the first order
backward finite difference scheme (implicit Euler) for both problems. The space discretization is
achieved with standard Q2/P1 quadrilateral elements for the fluid flow problem together with linear
C? elements for the temperature.

The finite element model has been programmed with the PETSc toolkit * in order to achieve parallel
computations and it has been implemented on a CRAY T3E computer (IDRIS, France). The fluid
flow and heat transfer algebraic systems are solved in a segregated manner, using the faster iterative
solver available in PETSc for each of them.
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APPLICATIONS
Validation on the melting driven by natural convection benchmark

As validation, we have contributed to the comparison exercise proposed by Gobin and Le Quéré *
(synthesis given at PCC99). Whenever our model is especially devoted to non-isothermal phase
change problems, this benchmark focuses on the melting of two pure materials (Tin and
Octadecane) in a square cavity (heated on the left vertical wall and maintained at the melting
temperature on the opposite one). Thus this benchmark represents a challenging validation for our
model, since one has to simulate this isothermal phase change as a non-isothermal one with a
mushy region width tending to zero. However the results of our computations for the four test cases
proposed in the benchmark are in good agreement with others contributor’s ones.

Combined action of bueyancy and thermocapillary forces

In many actual situations, the upper boundary of the melting pool is a free surface. Therefore it
becomes relevant to analyze the influence of the free surface modeling on the melting problem. For
this aim we have reconsidered the test case number two (Pr=0.02, Ste=0.01, Ra=2.5x105) of the
above benchmark problem with two other boundary conditions at the upper liquid boundary
(assumed to remain flat): perfect slipping or surface tension gradient (Ma=1250). The Nusselt
number along the heated wall and the liquid fraction (melt volume / total volume) are plotted
respectively on Figures 1 and 2 versus non-dimensional time (Stefan number times Fourier
number). On both figures we have plotted the results for the three kinds of boundary condition on
the upper liquid boundary: 1) no slipping; 2) perfect slipping; 3) surface tension gradient. The solid
line curves correspond to the Jany & Bejan's correlation (used in the aforementioned benchmark)
on Figure 1 and to the pure conductive case on Figure 2, respectively. For the considered case the
free surface modeling influences very slightly these results. Actually the value of the ratio
Ra/Ma=200 (ratio of the magnitude of the two driving forces) demonstrates that buoyancy is by far
dominant. As a result, the free surface modeling only influences a thin layer in the upper part of the
cavity. This can be observed on Figure 3, which presents isotherms and streamlines at four instants
for the three models.

CONCLUSION

Our study demonstrates that the results obtained in the benchmark framework (closed cavity) can be
reasonably extended to melting squared open in the limit of high Ra/Ma ratios. However, since this
ratio varies as the square of the melting pool depth, it’s obvious that capillary effect will become
dominant for thin fluid layers as can be found for example in welding processes or surface
processing. Thus it’s useful to develop and validate models able to deal with such situations.

REFERENCES

1. V. R. Voller and C. Prakash: A fixed grid numerical modeling methodology for convection-diffusion mushy region
phase-change problems, /nt. J. Heat Mass Transfer, 30, N°8, pp 1709-1719. 1987.

2. S. Balay. W. Gropp. L. C. Mcinnes and B. Smith: PETSc 2.0.2] Users Manual, Mathematics and Computer Science
Division, Argone National Laboratory, 1998.

3. D. Gobin and P. Le Quéré: Melting Driven by Natural Convection. A Comparison Exercise: First results, /nr. J.
Thermal Sciences, 38, pp 5-26, 1999.

http://rcin.org.pl



121

T P T e T (e
16 -
Jany & Bejan 1

......... No_slip E

14 ——Sli . ]
———— Marangoni ]

Nusselt number
>

O [ (LR ) S [N U

8

3 ]

4 W i s TR SteFo
0 0.02 0.04 0.06 0.08 0.1

Figure 1. Time evolution of the average Nusselt number along the heated wall for the three kinds of
boundary conditions together with Jany and Bejan’s correlation

0.6 - T T | — /(f

L Purely conductive -2 ]
s No_slip 1

DA e Siif . - S

t | —=—— Marangoni 3

g 04l J
D sl ;
«= - 4
- 4

2 03[ ]
= [ 1
5 L ]
02 [ i
o1 | ]

0 ey e e s et e e o SteRa
0 0.02 0.04 0.06 0.08 0.1

Figure 2. Time evolution of the liquid fraction for the three kinds of boundary conditions together
with pure conductive case

Figure 3. Next page: Isotherms (three upper rows) and streamlines (three lower rows) at four
instants for the three kinds of boundary conditions
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COMPARISON OF UPWIND AND CHARACTERISTIC SCHEMES FOR
SOLVING MULTIPHASE DIFFUSION-CONVECTION EQUATION

Jali Pieskd, Erkki Laitinen

Department of Mathematical Science, University of Oulu, Infotech
PL 3000, 90401 Oulu, FINLAND

Summary In this paper the multiphase diffusion-convection problem is solved numerically by
using upwind and characteristic schemes. Discretization for the schemes is performed by finite
difference method. For solving the algebraic equations at every time level the modified S.O.R.
method is used. In the numerical results computing time, number of iterations and accuracy
of the schemes are analysed.

INTRODUCTION

In this paper two different numerical schemes for solving multiphase diffusion-convection equa-
tion are presented. The equation considered is involved in many physical problems of practi-
cal interest for example in melting, solidification', multi-component fluid flows, flows through
porous media, meteorology. pollution problems ete. Usually these problems are discretized by
using finite difference, finite element or boundary element method on a fixed or on a moving
grid®3.

The physical situation considered here is involved in steel continuous casting problem®®. In this
problem a one-directional time dependent flow of liquid steel is cooled down in a rectangular
geometry.

Let Q be a regtangular domain in R* with the boundary I' = Ty UT'p. Let T > 0, and
Qr = 0x]0, T[. We denote by H(u(x;t);t) the enthalpy and by u(z;t) the temperature of steel
at the point (z;t) € Qf.

Using enthalpy method we can formulate the continuous casting problem as a following multi-
phase diffusion-convection equation which we solve numerically on a fixed grid.

%—7—Au+u(t)g‘—",=f(z;t) on
u(z;t) = s on I
P) af. _) Q'D( ) D
5= gn(z;t) on [y
H(z;0) = Hy(z) on Q.

The graph of H(u) is a non-decreasing function R — R involving near vertical segments
corresponding to the phase transition state. The speed of the fluid flow to direction z; is v(t).
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DISCRETIZATION OF PROBLEM (P)

Let us consider the case where the problem (P) is solved in rectangle domain Q =]0,,[x]0, 2],
with the boundary [" divided into two parts: Tp = { (z,,22) | 2. = I, .z, € [0,4,]} and
I'y =L\ TLp:

Let the number of the grid points in both ;- and z,-directions be N'. Hence the grid parameters
are respectively hy and hy. The grid parameter in time is denoted by 7.

Denote o
Blu(r) = hfl(u(.ﬂl.l'z) — U(Ii = hl.Ig))
Byu(z) = A7 (u(ry + k. 22) — u(x), 72))

and similary for d» and 9, By using normal 5-point difference formula the Laplacian A can be
discretized

Ap =310 + 32
Upwind scheme

The semi-discrete upwind scheme approximation for the problem (P) is

W _ Ayu+vdH = f on 2
u=gp on FD
2 =gy on Iy
H(z:0) = Hy(r) on £,
where
A ifry =10, zepl
du 5 .
-_— = a]u lfI|=llv zel
on =

Bzu if Iy = U, zel.

For time discretization we denote
Hk&] sl Hk
0, H = ——.
T
Using the implicit Euler method in time and normal difference quotients in space we can write

the fully discrete form of equation (P) as follows. For all k = 0,1..nt — 1 find the pair uf*!
H.H—l

8. H = Apuft! 4 p8y HE ! = il on

uk+1 = on I
(Ph) Duk+! il = 3
on 9N on [y

Hy = H(z;0) on {2,

Taking into account boundary conditions and discretizing them by using normal difference
quotients we can write the problem (P:) in the matrix form

MHEM 4 AU = FRHL (1)
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In the equation (1) the vector H**! contains the nodal values of the enthalpy and the vector
U**! nodal values of the temperature at the time level k+ 1. The matrix A is the usual 3-point
difference approximation for the Laplacian operator, and M is the matrix form for the operator
9, + vd,. The right-hand side vector F¥+! = F*+1 4 r=1Hk contains all known nodal values of
the problem (P).

Characteristic scheme

For the characteristic scheme the discretization of the convection term differs from the upwind
scheme. To approximate the term (% + u(t}%) H we use the characteristics of this first order

differential operator. Namely if (z,z;,t) is the grid point on the time level ¢ we choose the
point (. %5, t — 1) = (z,,%2 — fttﬁ, v(£)dé, t — 7) on time level £ — 7 and approximate the term

(6 a)H H(J'L,Jf-z.t)—H{ﬁl«i"bt_T)

b—t ()312 T

Generally the point (), #,) is not the grid point so we use linear interpolation for the function
H. If
(z1, %) = oz, zj—1) + (1 = a)(zi, ;). a e (0,1),

where (z,.1,-1) and (r,, J} are grid points, then we put

H{ry, Byt = 7) = H(z 22,8 — 1) = aH(zi, 1o, t = 7) + (1 — a)H(z,, 75, — 7).

Near the boundary {z; € [0,/,]. zo = 0} it can happen that (z;.7,) ¢ Q. In that case we write

H(zy, 7ot — 7) = a(2hy H(g.) + H(zi, Ty41,8 — 7)) + (1 — ) H (2, 7, — 7).

Thus we can write the approximation as

H(In,szf)“ (21, 22,1 — 1)

&G b
8,0 = (§+v(t)a—rz)1{~ =

The problem (P) for the characteristic scheme can be written

8. H — Ajukt! = i1 on Q
ukH
: =gp on I'p
P,
i a"m =4y on Iy
Ho = H(z:0) on Q,

Taking account boundary conditions and discretizing them by using normal difference quotients
we can write the above equation also in the matrix form

I{[Hlﬂ»] 4 Aer+l - F’H-l‘ (2)

In the equation (2) the vectors H**!, U**! and the matrix A are the same as in the equation
(1). In this case M is a diagonal matrix of the form M = 7'/, where the [ is the identity
matrix.
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SOLVING ALGORITHM

For solving the problem (P,) respectively (}-’,.) at time level k& + 1 by using upwind or charac-
teristic scheme we must solve the corresponding algebraic equation (1) or (2). The following
calculation algorithm is used at every time step t5*! k =0, ..., nt — 1. For each time level t&+!,

set the initial guess u® = u(r;t**! — 7) moreover we assume that
a4 Y, U<y —€
H{u) = { aqu+ 7, u € [uy — <, upr +¢]
azu + 73, U > Uup +£

where uy, is the phase change temperature. For theoretical backround of the algorithm see
Elliot et Ockendon”.

1 j:=0 (number of iterations)

2 j=j+1 i:=10 (number of node)

3 ti=i+1

4 o (Z.—t,,u{ - m,,H,’) — (Z.—l,lu,"l - m,,Ht"')

<1 izt
5
) —m,, <
-;f;—fﬁ, if 27 < (uyr — €)(myoy +ay,) + myy,
i z-m, e g g,
Ul, = ﬁ%u if Z", = (u,‘lf + :)(muﬂs +au) + mu7ys
H-muma
My a2+ay, ] else
' S ] 2
6 = wl -ulT)
7 if i < N (N=total number of nodes) goto 3

8 if |u? — w7 > € goto 2, else STOP
NUMERICAL EXAMPLE

To illustrate the calculation speed and accuracy of the described above numerical schemes the
following numerical example is considered.

Let © =]0, 1{x]0, 1[, with the boundary I divided in two parts T'p = {z, € [0,1],z; = 1} and
'y =T\ ['p, moreover let T = 1. Let us consider the case where the phase change temperature
uypr = 1 and the latent heat L = 1. Let the phase change interval be [uy — &, up +¢], € = 0.01,
and the velocity is v(t) = L.
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Our numerical example is

a3 ! : y
Gt —AK +u(t) 38 = f(z:t) on Q
u(zy, Lit) = (r1 — §)> + 2 — e on Ip
% =1 on Ty
u(ry, r:0) = (1, - 3P+ (22 - §)* + § on (2,
where
2u w U =€
H(u) = %)(ufl)‘!’sv—;f UE[H:‘!—E‘U_‘I+:‘}
6u —3 u>upy+<
and
u u<uy—¢
K(u)= %ll’ l? u € fuy — &, uy + 2
2u—1 U > Uy + £,

Furthermore
U [ e T S
126" + L1220, — 6) =8 u > uy.

The exact solution of our problem is

awe 1., 1
u(ry. rq,t) = (7, - 5)' + (z2 — 5)" — 55‘_“ +1

The numerical test was run in the Sun Ultra Enterprise 4000 for different grid parameters h
and 7. In table 1 the maximum iteration number, maximum cpu-time and maximum L,—error
of time levels k = 1, ..., nt is presented as a function of parameter values.

Upwind scheme Characteristic scheme
h| r |ite| cpuls Ly—error | ite cpu [s] L;—error
T & [ 23]261-107[4.285-10"7[ 21 [1.156-10-2| 9.077-1077
= | 43 0115 [2.178-1077] 40 [6.919- 102 | 3.34 102
MG 0.346 [ 1.122-107* | 74 0.246 1.498-10°
LT L1127 0647 9199 1073127 0427 |7.033-107°
a | 0s | 205 0794 |9.056-107°]205| 0623 [4.915-10~°

Table 1. The comparison of upwind and characteristic methods. The parameters ite, cpu and
Lo—error are the maximum number of iterations, calculation time and Ls—error of the time
levels, respectively.

In this case it turned out that the both schemes need approximately the same amount of
iterations to achieve the required accuracy of stopping criterion in the calculation algorithm.

However, the characteristic scheme was at least 30% faster than the upwind scheme. The main
reason for that is the difference of the numerical approximation of the convection term. In the
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characteristic method the convection term is included in time derivative and, hence, updated
only once at every time level. In the upwind scheme the convection term is updated at every
iteration step.

The both schemes seems to converge properly with respect to the change of grid parameters.
The slower convergence of the upwind method, when the grid parameters are small, is probably
due to the round off errors in the computer program.

CONCLUSIONS

The problem considered here is closely involved in continuous casting of metal alloys (steel, cop-
per, aluminium). The study of fast calculation methods has practical interest because of the
development of large and realistic simulation models which can be used in process simulation,
control and optimization. Our future work is related to the study of the domain decompo-
sition method (DDM) for solving the continuous casting problem®. The DDM is suitable for
calculating the solution in multiprocessor computer.
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A NOTE ON POSSIBLE FLOW INSTABILITIES IN MELTING FROM THE SIDE
Patrick Le Quéré' & Dominique Gobin®

'LIMSI-CNRS, BP 133, F-91403 Orsay Cedex France
*Laboratoire FAST Bat. 502, Campus Universitaire F-914035 Orsay Cedex France

We present a scale analysis of the parameters for which flow instabilities can be expected in
coupled phase change-natural convection in cavities heated from the side. The results are in
agreement with what was observed numerically for very low Prandtl number fluids. where multiple
cells were found to appear at early time as a result of the instability of the conduction regime. For
very large Prandtl number flow instabilities, if any, would only occur at very large nominal
Rayleigh number.
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CONVERGENCE OF PHASE-FIELD EQUATIONS TO THE STEFAN MODEL

Giulio Schimperna*

*Dipartimento di Matematica. Universita di Pavia, via Ferrata 1, 27100 Pavia, Italy

Summary We discuss the convergence of the Caginalp Fix phase-field model to the weak
formulation of the Stefan problem. In particular, we address two related situations: first, we
study the case of a single substance subject to this change of the solidification model; then, we
trv and repeat the convergence analysis to the case of two different adjoining fluids obeying to
transmission conditions at the common boundary both for the temperature and for the phase
field. In particular. we assume that the solidification law nndergoes a variation only on one side:
in this case, the convergence problem is solvable only under additional compatibility conditions,
which we try and justify from both the mathematical and the thermodynamical viewpoints.

The phase-field problem

We consider a bounded smooth domain @ C R® and fix T > 0: we also set Q := Qx[0.T[. We
begin by presenting the initial -boundary value problem for the standard (parabolic) phase-field
model’: suppose that Q is filled with an homogeneous and incompressible fluid and denote its
temperature by 6 and its phase field by X: then. the heat and phase diffusion inside Q can be
described by means of the system

3,08 + AX) —div(kVO) = f in Q. (1)
1B X — div(VX) + 8(X) —c. X = A0 inQ, (2)

where the subscript ¢ is related to the subsequent limit procedure (for the present, do not
consider it). Here, we have indicated by A the latent heat, by k the thermal conductivity,
by f a heat source term, by u. the phase-relaxation parameter, by v, the interfacial energy
coefficient. and by 3, —c, the derivative of a Ginzburg-Landau double-well free energy potential.
In particular, 3,(X) stays for its monotone part and —c¢, X for the rest; in most physical cases,
we have that 3.(r) = kr?; anyway, also 3.(r) = «|r|Pr, for any p > 0, is a thermodynamically
consistent choice, and other possibilities have also been considered in literature. For this reason,
under a mathematical point of view, we assume 3. to be a general mazimal monotone graph in
R x R, while, at present, on account of the homogeneity of the fluid, A, k, ., v,, c. are supposed
to be strictly positive constant values.

If the above system is complemented through the initial and homogeneous Neumann conditions,
it is not difficult to prove, by means of standard variational techniques, a related existence and
uniqueness result’ (which we do not report for brevity).

Convergence to the Stefan model

We now present, in the simple framework introduced above, the question of the convergence of
the system (1-2) to a Stefan-like problem (in the weak formulation?) as the coefficients u,, V¢, €.
tend simultaneously to 0 and the monotone graphs 3, converge in a suitable sense to the inverse
H of the Heaviside graph, which is given by H(r) =] —oc,0] forr =0, H(r) =0for0 <r <1
and H(r) = [0, +oc[ for r = 1. In particular, we have the following result
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Theorem 1. Suppose that, as ¢ — 0, p.,v.,c. and the ratio c./p. tend to 0; assume also that
the operators 3, G-converge to H in R. Then, we have that the solutions (6, X) of the system
(1-2) (which naturally depend on =) tend in the suitable spaces to the solution (8,X) of the
Stefan-like problem given by the equations

80+ A\Y) = div(kV8) = f Q. (3)
HYX)3M inQ. (4)

together with homogeneous Neumann conditions (only for 8) at the boundary and with the initial
condition for the variable (6 + AX). which has the physical meaning of enthalpy. u

The proof® of the above result relies on the derivation of some a priori estimates, independent
of =, for the solution of the svstem (1-2), together with a classical variational argument for
general monotone operators. which is used to pass to the limit in the term 3.(X); note the
inclusion symbol in (4), whose presence is due to H being a multivalued operator.

A transmission problem for the phase-field system

We now try and extend the preceding analysis to the more complicated case of a transmission
3 p 8 h |
problem; we begin by giving a related reinrterpretation of the system (1 2) in this new situation.
So. suppose that the set Q is now split by a fixed smooth interface T into two subdomains Q.
€, of Lipschitz regularity: assume that €2,.€¢), are filled with two fuids. still homogeneous
2 I g ) 5
and incompressible, but of possibly different thermodynamical characteristics: set also £ :=

I'x]0, T, @ := 2, x]0.T[, @» := Q:x]0. T

As a first step, we suppose that both the substances in Q;, @, obey to diffusion equations
similar to (1-2) and we make the constitutive assumption that transmission conditions hold at
the interface I’ not only for the temperature. but also for the phase-field (later we shall discuss
this point in some detail). To write the corresponding mathematical system in its precise
form, anyway, it is not necessary to distinguish between the contributions of Q, and of ;
the expression (1-2) is still correct, provided that we interpret it as a differential system with
discontinuous coefficients; so, we now suppose the A\ k, ., v, ¢, be piecewise constant strictly
positive functions assuming the constant values Ay, ky, iy, v, ¢; on Q) and Ay, kg, pea, Ve o, Con
on {2, (again, for the present, do not consider the dependence on &). More generally, in the
following, for any function g defined on Q, we shall write g, to denote its restriction to €, the
index 7 taking the values 1,2. Furthermore, we also provide a reinterpretation of the graph 3.,
which is now supposed to be a nonlocal operator depending also on space, in the form

B:p(n(x))  ifxeqy, )
Bialva(z))  ifz ey, &

where 8., and 3 are still general maximal monotone graphs in R x R.

Be(z,v(z)) := {

In this setting, system (1-2) contains also (in an implicit form) the required compatibility and

transmission conditions at the interface I'; anyway, for clarity, we prefer to report them in
detail:

6i=0 and X;=X, onZI, (6)

Onty =0nf> and 13X, = 1,8,X, on . (7)

Again, initial and Neumann boundary conditions on # and X have to be assumed in order that

the above system (1-2)-(6-7) be solvable. In this case. it is worthwhile to state the related
existence and uniqueness theorem in its precise formulation.
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Theorem 2. Suppose that f € L*(Q), that homogeneous Neumann conditions are assumed on
the unknowns 8 and X (more general choices are allowed) and that the initial conditions are
required, in the form

6(-.0) =6y, X(-.0)=X, inQ, (8)

for some 8y € L*() and Xy € H'(S), also verifying 3.(Xy) € L*(52). Then, the system (1-2)
admits a unique solution of suitable regularity properties, provided that the graphs f3.,, B:.
verify either of the following:

(CC)' B.alr) = Bea(r) + o.(r) for any r € R and for some Lipschitz-continuous function
¢ (compatibility condition);

(GC)® 3., and 3., have at most a linear growth at infinity (growth condition; we point out
that it could be slightly relaxed. particularly in a lower space dimension). u

Why does the phase-field system seem not to be solvable in the general case? We can identify
both a mathematical reason and a physical one and we start discussing the first: suppose to
multiply equation (2) by the test function 3,(X) and to integrate over Q. In the case of a single
substance. we can use the Gauss Green formula to derive

T i
-f /(li\'(qu\).J’i(\)drd.w:/ [U;J_'j\)iV\fd.td?ZO 9)
0 Q ] Q

(also on account of the monotonicity of J;);: this allows to construct an L?-a priori bound for
3.(%). However, this procedure is not alwayvs applicable in the transmission case, since the
discontinuity of 3. gives rise to nontrivial boundary terms on I, which can be controlled only
under hypothesis (CC), i.e., when §. ) and 3., “are not too different” (in the case of (GC) this
problem does not appear, since the above estimate is no longer needed®). Indeed, this suggests
also the physical reason: we believe that, for very different fluids, it is not thermodynamically
plausible that transmission conditions for the phase-field are verified at the common bound-
ary; maybe, it would be more suitable to consider a model with no diffusion across I for the
unknown X.

Convergence to the Stefan model: transmission case

We finally want to discuss in some detail the convergence of the above model to a mixed heat
transmission problem between two fluids, one of which (£2;) obeys to the phase-field system,
and the other (§2;) to the Stefan model; this corresponds to keeping fixed the contribution of
£, to the system (1-2) and to perform the limit similarly as before, but now enly in the domain
2,. We first state the convergence theorem and then give a number of related remarks.

Theorem 3. Suppose that, for any ¢ > 0, (6, X) are solutions to system (1-2) in the trans-
mission case and that 3., B, are Lipschitz-continuous approzimations (for instance Yosida-
approzimations) of the graphs 8)(r) = kr® and 3, = H, converging to them in the sense of
G -convergence in R. Indicate by L, the Lipschitz norm of 3,,. Assume also that Be 2y Ve 2y Ce 2,
the ratio c.2/p. > and the product L vf, tend to 0 as € — 0, for some ezponent p €]0,1/4[.
Then, we have that, as ¢ — 0, the solutions to the systems (1-2) converge in the appropriate
spaces to a couple of functions (8, X), verifying

8,8+ AX) —div(kVE) = f inQ, (10)
X, —div(n VX)) + 8i(X) —a X, = M8, inQ,, (11)
’3'2(—\-2] 3 /\152 n Q-z_ (12)
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Moreover, initial value conditions hold now for (8 + AX) and for X,, the Neumann boundary
conditions are verified for 8 on 8Qx]0.T( and for X, on 90, x10.T|, while the transmission
conditions (6-7) hold now only for the unknown 6. u

Concerning the above statement. we first remark that the limit operators 3; and J; do not
satisfv any of assumption (CC), (GC) (at the =-step. instead. the Lipschitz continuity of 3, ;,
3, » guarantees both (CC) and (GC)). Anyway. the boundary conditions on I are now different:
the fluid in Q; is insulated as far as the phase transmission is concerned and the only diffusion
which occurs across [ is that of heat, as one would expect on behalf of physical considerations.
Correspondently. the resolution of the limit system does not present the troubles described
in (9).

Finally, we want to give an idea of the nontrivial mathematical procedure which we used to
perform the passage to the limit: indeed, we notice that, as = tends to 0. the Lipschitz norm of
the ¢. in (CC) blows up to infinity. Also, there is no hope of uniformity with respect to = in
condition (GC), since it is evident that L. tends to infinity too. We bypassed this difficulty by
means of a different interpretation of system (1-2). essentially due to Damlamian. Kenmochi
and Sato?, in terms of the following monotone operators in the space L*(Q)

A () = =div(e. V) + d:(v). A(r) = =div(n V) + 3(e). (13)

which also account for the space diffusion of phase and include. in their effective domains,
the correct boundary conditions. In this way. the terms — div(#.¥\) and 3.(X) are estimated
together and the integration by parts of (9) is no more required; however. we are now forced
to prove a G-convergence for A. to A in the space L?(Q). This requires a careful use of
singular perturbation techniques together with a fine interpolation inequality®; furthermore,
the hypothesis L., — 0 (p < 1/4) seems essential in order to control some boundary terms
still appearing on T

The problem of the numerical study of the phase-field transmission problem and of its conver-
gence to the above mixed statement is still open: in particular, it could be interesting to verify if
the assumptions (CC) or (GC), required for the theoretical resolution of (1-2), result necessary
also at the numerical exam; another problem could be that of investigating the optimality of
the critical exponent 1/4 in the hypothesis L.v, — 0, which we have assumed in the last limit
procedure.
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ERROR CONTROL OF FREMOND MODELS
OF SHAPE MEMORY ALLOYS

Ulisse Stefanelli

Dipartimento di Matematica, Universita di Pavia,
via Ferrata 1, 27100 Pavia, Italy

Summary. Existence results for the Frémond model of shape memory alloys have been often
investigated by using a time discretization approach. Here, we present some error estimates for
such approximations with respect to the full one-dimensional model and some three-dimensional
models. These estimates show optimal rates of convergence, depend solely on data, and impose
no costraints between consecutive time steps.

This communication is concerned with the following system of partial differential equations in
terms of the unknown functions Y. u, x;. and Y,

al(rul) - Lx\) + 8 ((a(9) — 9a'(V)) x2 div u) - hAd = F + afd)x20 divu (1)
div (=vA(divu)J + Adivu] + 2p:(u) + 2(d)x.J) + G = 0, (2)

all) s (7] Caum > () o

fulfilled a.e. in @ := Q x (0,T), where Q is a bounded open subset of R¢, 1 < d < 3, with
smooth boundary 8Q and T > 0 stands for some final time. In addition, ¢, L, h, A, p, k&, €,
and J° are positive parameters, J is the identity matrix in R?, and v is a nonnegative
constant. Here, £ denotes the tensor

1 (Bu, 8&

€;(u) = 3 a—IJ‘l’ oz,

) ford, 4 =1.....d, (4)
while dlx stands for the subdifferential of the indicator function of K, which is a nonempty,
bounded. convex, and closed subset of R?, F: Q —» IR, and G : Q — IR? are source terms,
and o : R — R is a smooth function.

The nonlinear system (1)-(3) is concerned with the behaviour of shape memory alloys subject to
thermo-mechanical treatments. These materials are metallic alloys which could be permanently
deformed (avoiding fractures) and consequently be forced to recover the original shape just by
thermal means.

At the microscopic scale, this phenomenon is interpreted as the effect of a structural phase
transition between different configurations of the metallic lattices, namely the austenite and
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its shared counterparts termed martensites'. Various models have been proposed to describe
this behaviour from the macroscopic point of view. If we assume the different phases to coexist
at each point of the shape memory sample and suppose that just two martensitic variants
are present besides one austenite (in the three-dimensional space, 24 martensitic variants are
actually present), indeed we deal with the approach proposed by Frémond?. In this context, ¢
has to be regarded as the absolute temperature of the shape memory body, while u accounts for
its actual displacement and =z stands for the (linearized) strain tensor. Besides, a(?) represents
the thermal expansion of the system, and thus it vanishes at high temperatures'. In our analysis
a is also required to fulfil some compatibility conditions and properties complying with its
actual physical behaviour®. Moreover, y; and x» are related to the volumetric proportions of
the phases.

Existence of solutions to various problems concerning the system (1)-(3), supplied with suit-
able initial and boundary conditions. are well known®. These results often rely on a time-
discretization, a priori estimates, pussage to the limit procedure. Moreover, the uniqueness of
the solution to these problems has also been proved either in one' or in three® space dimension.

On the basis of above cited results, this work™ is addressed to the analysis of some estimates
of the discretization error of (a variable step version of) such an approximation. For instance,
letting P be a partition of the time interval [0. T}, namely

=f0=il <t <o ¥ < ¥ =T ()

with variable step 7' := t' — ¢~} and diameter 7 := max; i<y 7', and denoting by F*' and
G' suitable appoximations of the functions F and G. respectively, we deal with (a variational
version of) the following scheme?,

' -1 Xl—l
co - O le"(@ YA divU! u—— hAS' = F'+L——~—-L—-
Tl
+ (et (@) —a(e'" l))dwU' L e T.’Y
5 ex—lal(en—l)’vzi-l divU "T'leU ! (5)
div (= vA(divU*)J + AdivU'J + 26(U") + o(8)XJ) + G* = 0, G

(i) * (eaom) omata 2 o) ®

for i =1,..., N, along with proper initial and boundary conditions.

The main novelty of this work consists in dealing with three models derived from (1)-(3) and
the corresponding discrete schemes obtained from (6)-(8), and deducing error estimates for such
discretizations. Namely, we investigate the following models:
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e 3-D MoDEL. Consider (2)-(3) and replace (1) with
B (co? = Lxi) + 3 ({a(¥)) = da'(D)yadivu) - hA) = F
o 3-D vivearizep MopgL', Consider (2)-(3) and replace (1) with

Bi(cod =Lxi) —hAD = F

e 1-D ruLL MODEL'. Conzider (1}-(3) in one dimension of space,
Moreover. let v = 0. thus avoiding the regularizing fourth-order term in (2).

Coneerning the 3-D model. we prove existence and ‘uniqueness of the solution to an initial-
boundary value problem. Consider that existence and unigneness of solutions to both the 3-D
linearized model and the 1-D full model have already been proved® !,

Next, we staie the main resules of this werk by using a convenient noration. Given {7},
in rhe lincar space W, set

- W - it
Wptl=We i) =i ==

(=t (9)

for = (#7000 0 = 1., N, Moreover, let « denore the standard convolution product on
(0. 8). namnely {a=h)(t) := fﬂf a(t —s)bishds. Letting (U, w. xy, x2) and {©°, U', X[, X}}i¥, be
solutions to the continnous 3-D model stated above and the related discrete scheme, respectively.
and ©r. Op, X, p. Xop. Up. Up. be defined as in (9). we have the existence of a positive
constant € such that

10 = ©pll2orcaiay + I = (0 = Or)lengo iy

3-D

+ lu = Upllirornimypy + lldive = divUp||pyormay (10)
MODEL 2

=+ Z I, = Xy pllesoeany € G VT
j=1

Indeed, the same analysis applied fo the 3-D linearized model allows the choice of a positive
constant Ch such that the order of convergence o(r) is achieved. Namely, we cstablish the
estimates

12 = OpllLorzny + 11+ (9 - 6?)“('”(;0 T)H'\ ()

+ llu = Upllzorump) + ldive = divUpllpzra gy
2

3-D
LINEARIZED +Z|j\—J - Xrllevqoricen € Car, (11)
MODEL =1

and

12 — Opllcogoric2aynLzoraty € CaV/T.
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Finally. with regard to the 1-D full model, hence retaining all the nonlinearities of equation (1),
we achieve that the following estimate

) = Orilezorean + 1L (0 = Op)lleogormiay,
1-D FrLL ¢)
MODEL + i!“ = U?;%L’{O.T.H‘U‘.U -+ Z H\J - 'k:r.F';!t,'r‘({U.T‘;lL:’.QH < CJT
j=1

(12)

holds for some positive constant .

We point out that the constants C;.Ca. and Cy depend solely on data and, in particular.
exponentially on T. since (10)-(12} are proved by using Gronwall’s lemma. Moreover, let
us stress that the first estimate in (11) and (12) are optimal with respect to the order of
convergence, as we used the backward Enler’s merhod to approximate time derivatives in (6)
and (8). Since no a prior: coustraints between consccutive time steps are imposed in the
present analysis, (10j-(12) ensure the possibility of implementing a step-by-step choice of time
step sizes®,
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THE ENTRAINMENT OF FLUX INTO THE LUBRICATION GAP IN
CONTINUQUS CASTING OF STEEL

Herbert Steinriick
Christian Doppler Laboratory for Continuous Solidification Processes
University of Technology Vienna. Wiedner Hauptstr. 7, 1040 Vienna. Austria

Summary In continuous casting flux powder is ddded on top of the melt. Due to the large
temperatires the flux melts and Hows into a small gap between the soldified strand shell and
the mould. Due to the vertical oscillation of the mould depressions on the strand surface, so
called oscillation marks. are formed. In this paperra model describing the interaction of the
liquid flux with the solidifving strand shell is presented.

In continuous casting liquid metal is fed into a mould through a submerged nozzle. Intense
coolig causes the metal to solidify. The solid shell is withdrawn downwards with casting speed
it,. Casting powder (‘Hux’) is added on top of the mould. The fux melts and flows into a
narrow gap between the mould and the solid strand. The mould oscillates vertically, causing
depressions. so-called oscillation marks. on the strand surface. The forming of the oscillation
marks and the early stages of solidification cannor be observed directly due to the large tem-
peratures. Only indirect information is availible. The depth of the oscillation marks and the
net consumption of flux can be easily measured. More detailed information can be gained
from hreak onr shells. Metallurgists can deduee from the dendritie structure the cooling condi-
tions. Thus rwo mechanisms of the formation of oscillation marks are proposed: overflow and
menisens bending. In the first case the steel shell solidifies at the meniscus and is overflown by
liquid steel. In the second case due to the periodic motion of the mould the pressure in the
flux varies periodically deforming the weak steel shell. Due to the withdrawl of the shell these
deformations are frozen in as oscillation marks. Since these marks are the location of possible
shell ruptures or breakouts an understanding of the early stages of solidification is needed.

In this investigation an attempt is made to model the interaction between the flow of flux,
the molten steel and the solidified steel shell. The scope of the model is limited to the case of
meniscus bending. Estimating the size of the meniscus region, where the oscillation marks are
formed, gives a meniscus radius of about 5 mm. A typical gap width is below 1 mm. Compared
with the dimensions of the mould, which has a cross section of about 0.2mx1.5m this i$ very
small. Therefore a coupling of a computation of the strand shell dynamics and the global flow
field in the melt does not seem appropriate. Hence a local model describing the interaction of
the steel shell and the fluid flow of flux is developed.

The basic idea of the model is to use a thin layer approximation for the fiuid flow of flux in
the gap and the deformation of the steel shell. According to the three different states of steel
(liquid, mushy. solid). the interface flux/steel can be devided into three different regions. At
the top of the meniscus region the flux is in contact with the liquid steel. There the form of the
interface is primarily determined by the pressure difference in both liquids and the interfacial
tension. Near the meniscus the Revnolds lubrication approximation used for the flow of flux
in the gap is not valid. There the velocity profiles differ significantly from parabolic profiles.
However an asymptotic analysis with respect to a small Capillary number shows that the form
of the interface obtained by the lubrication theory is in first order correct. As long as the apex
of the steel shell is in the range where the lubrication theory holds we can expect reasonable
results.
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The mushy zone is modelled as a thin layer of a Newtonian fluid with a large effective
viscosity depending on the fraction of solid. Using an asymptotic analysis with respect to a
large aspect ratio of the mushy zone the flow field turns out to be extensional. However the
pressure is transmitted perpendicular through the mushy zone. Thus the form of the interface
is again determined primarily by the interfacial tension.

ARG

Fig. la: Continuous casting process Fig. 1b: Detail A: Meniscus region

If the fraction of solid is above a certain value the steel shell is considered as solid. It is
modelled as an elastic beam. ‘However, it turns out, that even in the high temperature range
the Young’s modulus is so large, that the shell is almost rigid. Thus the deformations created
at the meniscus remain almost unchanged.

The thichkness of the solid steel shell and the mushy zone are determined by the solution
of the energy equation. The most primitve version of the model assumes a constant heat flux
density across the mould and the flux gap. For the steel shell an integral method is employed
using a parabolic temperature profile. Then the energy balance for a cross section of the steel
shell is solved. Finally the thickness of the steel shell is determined, so that the boundary
conditions at the interfaces to melt and the flux are satisfied.

At the interface to the melt the heat flux density has to be prescribed. It can be obtained
from a flow and heat transfer simulation of the melt. Here we persue a different approach. The
heat transfer coefficient between the shell and the melt is estimated on the basis of a turbulent
flow in a channel.

The resulting equations are solved numerically. Starting from an arbitrary initial condition
for the shape of the steel shell and the temperature distribution the equation are integrated.
The numerical solution shows the expected behaviour: During the downstroke of the mould
the gap opens at the meniscus and flux is sucked into the lubrication gap. During the upstroke
the gap closes again and the deformation of the shell is frozen in as an oszillation mark.

As reference quantities the average flux consumption and the depth of the oscillation marks
are computed and compared with plant observations.

It has been expected that after some initial transient behaviour a peridioc solution will
develop. However, the numerical results show, that in genereral this is not the case. Moreover
the solution, in particular the average gap width, seem to depend on the gap width of the
prescribed initial condition. In conclusion although the local model of the meniscus behaviour
gives some insight into the interaction od the strand shell with the flux further research is
necessary.
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NATURAL CONVECTION DURING ICE FORMATION: NUMERICAL
SIMULATION VS. EXPERIMENTAL RESULTS

F. Stella', M. Giangi' & T.A. Kowalewski’
'Univ. Di Roma “La Sapienza”, Via Eudossiana 18, [ - 00184 Rome
2[PPT PAN, Polish Academy of Science, PL - 00049 Warsaw

Summary A numerical and experimental study of unsteady natural convection during freezing of
water is presented. Mathematical model for the numerical simulation is based on the enthalpy-
porosity method in vorticity-velocity formulation, equations are discretised on a fixed grid by
means of a finite volume technique. Experiments are performed for water in a small differentially
heated cube surrounded by air. In order to improve the capability of the numerical method to
predict experimental results, a conjugate heat transfer problem was solved, with finite thickness
and internal heat conductivity of the non-isothermal walls. These results have been compared
with the simulations obtained for the idealised case of perfectly adiabatic side walls, and with our
experimental findings. Results obtained for the improved numerical model show a very good
agreement with the experimental data only for pure convection and initial time of freezing
process. As time passes the discrepancies between numerical predictions and the experiment
become evident, suggesting necessity for further improvements of the physical model used for
freezing water.

MATHEMATICAL MODEL AND NUMERICAL TECHNIQUE

We consider convective flow in a cubic box filled with a viscous heat conducting liquid, which in
this case is distilled water. Two opposite vertical walls of the box are assumed isothermal. One of
them is held at temperature Tc= -10°C. It is below the freezing temperature of the liquid T,= 0°C,
hence the solid forms there. The opposite vertical wall is held at temperature Ty, = 10°C. The other
four walls of low thermal conductivity allow the entry of heat from the environment (air at
temperature Teq=25°C).

To improve our definition of the initial condition, so called ,,warm start” is performed. The
freezing starts after the steady convection pattern is established in the cavity. This initial flow state
corresponds to natural convection without phase change in the differentially heated cavity, with the
temperature of the cold wall set to T;=0°C. The freezing experiment starts, when at time t=0, the
cold wall temperature suddenly drops to T.= -10°C. In the numerical runs, the solution obtained for
steady state natural convection was used as the initial flow and temperature fields to start the
freezing calculations.

The numerical study of freezing water has been conducted on a fixed-grid by using a mathematical
formulation based on the enthalpy porosity method [1]. One of the advantages of the fixed grid
method is that an unique set of equations and boundary conditions is used for the whole domain,
including both solid and liquid phase. It allows to avoid the problem of tracking the solid/liquid
interface. The governing equations are obtained using averaged quantities [2] so the continuum
velocity, density, and thermal conductivity are defined respectively as:
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Vo= fiVi+ fivi (1a)
P = g:ps + gpr (1b)
ka= grk:+grk: (1¢)

where v/, V. are the velocity of the liquid and solid phase, f,, f, are the liquid and solid mass
fraction, g,,g are the liquid and solid volume fraction, p,, o, are the density of the liquid and
solid phase. The volume fraction g is related to the mass fraction f, and f, via:

pf=pg

o= pag

According to the saturated mixture conditions the mass and volume fractions must add to unity:
fi+ fi=1
g+g=1
Under the assumptions that the liquid is Newtonian and incompressible, that the densities ( o)
and the specific heat (¢) in the liquid (), and solid (), phases are equal and constant, the
dimensionless governing equations in vorticity-velocity formulation result:

™ /
a;): +Vx(w, xv,)=PrVe, +Ra Pr{- 0- i %AT“'"@‘ }\.i'gﬁ'} +VxS (2
Do :
28 v.(ive)s B 3
Dt ( )+ )
Vv=-Vxo, )

Where a, (i =1, N) are the coeflicients in the polynomial density expression and AT= T}, - T, is

the temperature difference of the hot wall Ty, and the phase interface T,
The dimensionless conductivity is defined as

= k
k=(-/)—+ flv
1)k

in such a way in the liquid zone (f; =1) k =1 and in the solid zone ( f, =0) k =k, /k,.

In the momentum equation the Boussinesq approximation has been assumed, so the non linear
density variation has been considered only into the buoyancy term.

The source term of Darcy type [2] has been adopted in the momentum equation to gradually
reduces velocity in the solidifying zone:

S —_CU“ ﬁ)

(f +q)

Where C is a large constant value and ¢gis a computational small quantity used to avoid

singularity in solid zone (= 107).
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In the energy equation (3) the last term at the right-side:

14
Ste

takes into account the latent heat due to the phase change.

The governing equation eq. (2-4) are discretized using a finite volume method technique on a
staggered grid. A fully implicit method has been adopted for the mass and momentum equations,
while the temperature field is solved separately in order to evaluate the variation in the local
liquid phase. The two linearised algebraic systems are solved using a preconditioner BI-CGStab
method [3].

At each time step the liquid fraction f, and the temperature field @ in eq. (3) are solved by using

{
an iterative procedure. At the time step n + 1 the initial iterative fields are initialized to previous
time step 7 then the following iterative system (5)-(7) is solved:

S!e{ o ;!9" }+ SreVA(v" g ): SleV-(kV@' )* /i -AF_I (5)

/

fl=f"+5we(0-8) (6)

Subject to the following constraint:

1= max[O,min(f,’,l)] (7
where 1is the index of iteration level, At the time step discretization and &, the phase change
temperature.
The steps (5)-(7) are repeated until "f,' - f,"'“ < ¢ and ||6" - 0"’" <€
with £ = 107,

SELECTED RESULTS

Experimental validation of the numerical model is the main aim of our project. For this purpose
quantitative information about the phase front position as well as about velocity and temperature
fields within a domain of a mid-height vertical plane of the cavity are collected in the experiments.
For this purpose the flow images of liquid crystal tracer have been collected periodically using
3CCD colour camera and frame grabber. Digital evaluation of images allows us to evaluate both
velocity (PIV) and temperature fields (PIT) for the selected 2-D flow cross-section [4,5].

Natural Convection

At the beginning, our interest was directed to verify numerical solutions obtained for natural
convection of water in the vicinity of the freezing point. In the experiments the cold wall
temperature was set to 0°C, and the hot wall to +10°C. The effects of density inversion and of the
thermal boundary conditions at non-isothermal walls on the flow structures are studied to compare
and eventually improve the numerical code.
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Figure 1. Velocity field in the centre vertical plane, comparison of the experimental and numerical results
for natural convection of water; Th=10°C, T¢=0°C.

A typical flow structure (comp. Figure 1) exhibits two recirculation regions, upper one, where the
water density decreases with temperature, and the lower region with an abnormal density variation.
Similar flow pattern exhibits numerical solution, however several discrepancies are present.
Numerical experimentation with the thermal boundary conditions posed at non-isothermal walls
has shown that the calculated flow pattern strongly depends on the modelling used. Small changes
of the heat flux through these “passive” walls evidently shifts the saddle point present at the cold
wall, modifying dimension of both counter-rotating flow structures.
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It was concluded, that neither isothermal or constant heat flux models are sufficiently accurate to
obtain observed flow structures. Observed flow configuration, with two interacting cold and warm
counter-rotating circulation, appears to be very sensitive to changes of the heat flux through side
walls. Hence, direct comparison of the numerical and experimental results is necessary to verify
assumptions made for heat transfer coefficients at the external surfaces. Solving the coupled solid-
fluid heat conduction problem together with the Navier-Stokes equations evidently improved
modelling of the flow pattern, but still empirical values for the air-wall heat flux coefficients have
to be used.

B e 1200

Measured (PIV) velocity field at t=120s

o

Calculated temperature field at t=120s

P— T

Calculated velocity field at t=120s

Figure 2. Freezing of water: measured and calculated flow field at 120s and 500s after freezing starts
from the steady convective flow; Th= 10°C, Tc=-10°C.
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Freezing of water

When freezing starts from developed flow, the thermal boundary conditions at the cold side remain
the same, i.e. 0°C isothermal surface. However. interaction of the convective flow with the freezing
front causes deformation of initially flat freezing plane. The ,hot” circulation melts upper parts of
the ice front, diminishing ice growth rate in this region. The ,,abnormal”™ flow circulation, located in
the lower part of the cavity, transports the cold liquid up along the adjacent ice surface and back to
the bottom along the isotherm of the density extreme. This cold water circulation only moderately
modifies the heat balance at the interface. The convective heat transfer between both upper and
lower regions seems to be limited mainly to the upper right corner of the cavity. There, along the
colliding cold and warm fluid layers, the heat is transferred from the hot wall to the lower parts of
the cavity. The shape of the freezing front reproduces this interaction, almost doubling the ice
growth rate at the bottom.

Comparison of the measured and calculated (comp. Figure 2) ice fronts indicates qualitative
agreement. For short time (first 500s), there is also quite good quantitative agreement between
simulated and experimental results. However. with progressing development of the solidus
differences of the front shape appear to grow. Especially lower parts of the ice front suffer
evident errors in modelling. Numerical counter-clockwise circulation at the lower parts seems to
be more effective in decreasing ice growth. In the experiments the ice surface remains almost
perpendicular to the bottom wall, whereas in the numerical results for large time its shape
declines strongly back into the cold wall.

FINAL REMARKS

The results obtained show a very good agreement between numerical and experimental results
for initial time of this transient process. The agreement progressively decreases for longer
experimental time. One of our future aims is to improve the capacity of the prediction of the
numerical model for long time simulation. Since at longer time the ice layer is quite thick, it
seems important to correct our model of thermal conductivity inside solidus. Non-uniformity of
the ice structure, dendrites, and impurities due to the solved gases may force us to verify the
assumption used about isotropy of the thermal properties of the ice. Another important point is
the analysis of the effects of by supercooling. Our experiments with freezing water indicate that
in most of the cases distilled water cools to about -7°C before phase change begins. The observed
effect of supercooling qualitatively changes the onset of freezing.
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Y DISTRIBUTION IN Ba-Cu-O MELT DURING GROWTH OF
SUPERCONDUCTING MATERIAL Y123 BY CZOCHRALSKI METHOD
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Summary Numerical computations of the yttrium distribution in the BaO-CuQ melt were
performed for the yttrium barium copper oxide superconductor (YBa;Cu;07.) single crystal growth
by the Czochralski method. The finite volume method with staggered numerical grid was used to
calculate the fluid flow, heat transfer and yttrium distribution in the melt. The flow in the melt was
assumed to be axisymmetric and was modelled as an incompressible Newtonian, Boussinesque
fluid. Heat transfer was due to both convection and diftusion. Calculations were presented for a
combination of buoyancy - driven flow and crystal - rotation driven flow.

INTRODUCTION

Since discovery in 1987 of superconductivity at ~90 K in a new mixed-phase compound system,
an enormous amount of attention has been given to the improvement of its quality. One of the most
seriously studied compounds is the yttrium barium copper oxide superconductor YBa;Cu;0s.¢
(Y123). In 1993 continuous growth of YBa:Cu;0;.. (Y123) large single crystals was achieved by
applying a modified Czochralski method.! The quality of the crystal of yttrium barium copper oxide
superconductor YBa;Cu;05. (Y123) grown from a melt by this method is significantly affected by
heat and mass transfer in the melt during growth. In an Y123 single crystal growth system the Y123
single crystal grows directly from the liquid phase as a primary phase by the migration of Y atoms
from the solute Y;BaCuOs (Y211) on the bottom of the melt to the free surface. The Y123 crystal
grows continuously as long as the nutrient Y211 exists. In this method, convection in the melt is an
important factor in controlling the distribution of Y atoms in the melt, due to the high Schmidt
number of the melt (Sc = 7000). It is well known that the quality of substrates depends on the
conditions for crystal growth such as the crystal pulling rate and temperature distribution on the wall
of the crucible. Therefore it is very important to understand melt motion, and fluctuation of
temperature in the melt to obtain bigger and higher quality single crystal. Studies on the dynamic
patterns, of convection in a Czochralski melt are numerous. However, a detailed convective flow
pattern in the melt for the Y123 smgle crystal growth process has not yet been clearly presented. A
recent publication of Namikawa et al.? shows some numerical calculation results for steady state melt
convection. However, the numerical results obtained by Szmyd et al> * for similar boundary
conditions show periodically oscillating convection, it was found that thermal boundary condmon
seriously affect the instability of the melt flow.¥® A recent publication of Yamauchi e al.” shows
necessity of unsteady three-dimensional computation for the melt flow of the Y123 production
process by Czochralski method. In this study, numerical computation of the flow, thermal and Y
atoms concentration fields in the melt were performed for the yttrium barium copper oxide
superconductor (YBa;Cu307.) single crystal growth by the Czochralski method assuming the
steadiness of the melt flow. Calculations are presented for a combination of buoyancy-driven flow
and flow driven by crystal rotation.

FORMULATION AND NUMERICAL SCHEME

A crystal with radius R, grew from the cylindrical melt in a crucible with radius R. and depth H,.
The melt is bounded at the top center by a coaxially mounted crystal rotating with angular velocity
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Q,. The melt free surface around the crystal is assumed to be flat and free from surface tension
effect. The crystal interface is assumed to be kept at temperature T,, and Y concentration is assumed
to be constant there at C=Cy(T,)*° . Temperature and Y concentration at the bottom of the melt are
assumed respectively to be T,, and C=C.(T.) %9 Melt flow is assumed to be axisymmetric. The
fluid is considered to be incompressible, Newtonian, Boussinesque and its properties are taken to be
constant. The flow, thermal and yttrium concentration fields in the melt were calculated numerically
by the control - volume - based finite difference method'® (numerically solving the finite-difference
equivalents of the momentum, energy and concentrauon equations). Staggered grids were used for
the velocity components. The SIMPLER algomhm was used to solve the pressure. The central
finite difference approximation was applied for the diffusion terms while for the convection terms
the QUICK scheme'' was used. The present scheme was based on fully implicit discretization
schemes taking into account the unsteady terms of governing equations. The ADI (Alternative -
Direction - Implicit Method)'? was combined in the iterative procedure at each time step to solve
the algebraic equations. The grid points were uniformly allocated in r - z plane and total number
of gricl1 points was 96 x 104. The time step was Ar* = 10°® (where r* is non-dimensional time (* =
tvlR:).

Numerical computation was carried out for H; / R, = 1.1, 1.0, 0.95, 0.8 and for Grashof number
Gr = 10000, for seven different Reynolds numbers, Re, = 0, 10, 20, 30, 40, 50, 60 (for Rey = 0 the
problem is one of natural convection). The Reynolds and Grashof numbers are defined as Re, =
(REQ) /v, Gr= [gAT.-T.) RV The temperature of the vertical wall of the crucible varies
linearly (from z=0 to z=H.) from T to T.-AT (where AT is temperature difference between the
bottom and the top of the crucible vertical wall) and AT = 3 [K]. Radiative heat loss from the melt
free surface to the surrounding environment was calculated applying following equation: -A 67/¢n
=g E(TKT,,J), where n is normal to the interface, o is Stefan Boltzmann constant (o= 5.6667 x 10°®
[W/(m?K"), & is the emissivity from the surface (¢ = 0.7) and temperature T, =1243 [K]. The
concentration buoyancy effect is negligible due to a low ytlnum concentration in the BaO- CuO
melt. Y concentration in the melt is of the order of 3.65 kg/m at the melt surface and 3.76 kg/m at
the melt bottom (density of the melt p=5500 kg/m®). Therefore the term gf.(C—C,) can be

assumed to be negligibly small.

NUMERICAL RESULTS

The calculations were performed for the CPU time 10° [s] = 27.77 hours (In practices, it takes
about two weeks to obtain a Y123 single crystal by applying Czochralski method if A; and R are
assumed to be 25mm and 23mm respectively). First is discussed the case where H; / R = 1.1.
Figure 1 illustrates some examples of the numerical results for Gr = 10000 and Re,= 0, 10, 20, 30,
40, 50, respectively. Each figure shows half of the vertical section of the melt, and the vertical lines
at the left-hand side of the figures indicate the centre line of the crucible. These figures consist of
the Y concentration field (upper part), isotherms of the melt (central part) and the velocity vectors
(lower part). Examples of the calculated Y distribution in BaO-CuO melt at z* = z / H; = 0.99 for
H; / R.=1.1,1.0,0.95, 0.8 are shown in Figure 2. The following conclusion may be drawn from
these results. Yttrium concentration field in Ba-Cu-O melt is strongly connected with velocity field,
due to a high Schmidt number in the melt, and is strongly connected with temperature field, due to
the temperature dependence of Y solubility in the BaO-CuO solution.

A comparison of figures demonstrates that thermally driven convection is dominant as crystal
rotation ), is low, there is almost no difference between the case Re,=0 and the case Re,=10.
When the crystal rotation €, is increased flow near the melt bottom becomes less significant. Near
the top free surface outward forced convection exists and below the crystal a reticulating flow is
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incurred. On the other hand, natural convection is generated near the crucible vertical wall by the
buoyancy force. As the crystal rotation Q is increased the forced convection becomes stronger and
yttrium distribution in the melt BaO-CuO becomes more uniform (see Fig. 1). Figures 2 and 3
present other interesting results. As the melt depth H; decreases, Y distribution in BaO-CuO melt
becomes non-uniform below the crystal (z* = z/ H, = 0.99) for Re,=60. This is a consequence of
the flow structure below the crystal where up - flow appears close to the axis of the crucible.
When the melt depth is decreased from H, /R.=1.11to H; / R. = 0.8, a strong up—flow becomes to
prevail below the whole crystal and produces a steep temperature gradient. The interface
temperature is increased and yttrium distribution becomes non-uniform in the BaO-CuQO melt below
the crystal. As evidently seen in Fig.2, the crystal rotation should be reduced with decreasing melt
depth in order to keep a nearly uniform yttrium distribution below the crystal.

CONCLUSIONS

Numerical computations of the yttrium distribution in the BaO-CuO melt were performed for the
vitrium barium copper oxide superconductor (YBa:Cu;0s.,) single crystal growth by the
Czochralski method. The flow in the melt was assumed to be axisymmetric and was modelled as
an incompressible Newtonian Boussinesque fluid. Calculations were presented for different melt
depth. for a combination of buoyancy - driven flow and crystal-rotation driven flow. An appropriate
crystal rotation rate appears to keep the temperature constant at the crystal — melt interface and the
crystal rotation should be reduced with decreasing melt depth in order to keep a nearly uniform
yttrium distribution in BaO-CuO solution below the crystal.
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Summary The effects of unequal thermal conductivities in the liquid and solid phase during
directional solidification in Bridgman configurations are investigated. Numerical solutions are
obtained based on a fixed grid single domain (enthalpy) method using two different approaches -
finite volume with primitive variables and finite difference vorticity-stream function formulation.
The cases of transient phase change problems during directional solidification for a pure substance
with oscillatory and steady convection in the liquid region in the inverted Bridgman configuration
(heated from below) and for a binary alloy in the horizontal Bridgman configuration are presented.
The significant effects of the vanation of thermal conductivity on the interface shape and flow
structures are discussed.

INTRODUCTION

Directional solidification of alloys is used to grow single crystals and to obtain controlled
distribution of the composition within the material grown. The most important industrial
applications of this type of solidification are for growth of crystals for semiconductors. Bridgman
crystal growth is one of the techniques used to produce single crystals from the melt. Bridgman
type moving furnaces with an isothermal hot zone, a temperature-gradient zone and an isothermal
cold zone are used for directional solidification of the materials and have become popular in ground
and space experiments of fundamental studies of crystal growth.

For semiconductors, the resulting crystal structure is strongly affected by heat transfer, diffusion of
species and convection occurring in the melt during the directional solidification. To study this
problem numerically a fixed grid single domain approach (the enthalpy method) can be used. The
main advantage of this method is its ability to solve solidification problems of both pure and alloy
materials without the necessity to follow the movements and deformation of the melt-crystal
interface. It permits the solution of the conservation equations in the entire domain including the
solid, liquid and the mushy zone (it exists for some materials which solidify over a temperature-
range). The boundary conditions which applied at the solid-liquid interface in a multi domain
method are replaced by source terms in the mass, energy and momentum conservation equations'.

In this paper we present numerical simulations of directional solidification in both vertical and
horizontal Bridgman configurations. The effects of unequal thermal conductivities of material in
the solid and liquid phase, on the heat and mass transfer and predicted shape of the solid-liquid
interface during solidification are investigated.
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MATHEMATICAL FORMULATION

We consider a Bridgman furnace in which a moving temperature profile, consisting of a cold zone
(T.), an adiabatic zone and a hot zone (73), is imposed on the boundary of the ampoule. This
boundary temperature profile is translated with a constant pulling velocity as a result of the furnace
movement, causing the solid/liquid interface to move along the ampoule.

To model the process of directional solidification we have chosen the fixed grid single domain
approach, which avoids explicit tracking of the solid/liquid interface. Incorporation of the interface
thermal and solutal boundary conditions can be achieved using appropriate source terms in the
energy and solute transport equations'.

Using, L the height of the cavity as the scale factor for length; and L/a, /L and pa’/ [} (where a
is the liquid thermal diffusivity) as the scaling factors for time, velocity and pressure; and the
non-dimensional temperature defined as @ =(T ~T.)/(T, -T,); the time dependent primitive
variable equations can be written in dimensionless form as:

&‘i(v,):o (1)
§(‘v)*§1("%):-§’-+” g—l—(z)—kctl’rgfﬁ B, )—-[\ @)
§+.¢%(v,9) aij(k %)—S‘w%‘ 3)
%\»d%(u,c,) Ll‘;f s @)
where S, =d’(l—k JC, +f—— (5

in which v, is the velocity vector components, C is the solute concentration in the liquid, p is the
pressure, and g is the unit gravitational acceleration vector. The Rayleigh number,

Ra=gf(T, -T.)['/av, the Prandtl number, Pr=v/a, the Lewis number, «/D;, buoyancy
ratio, B,=(f.AC,)/(8,AT,), the Stefan number, Ste =c, (T, ~T.)/h, and h, is the latent heat of
fusion. f, is the local liquid volume fraction, f- and fr are the thermal and solutal expansion

coefficients, &, is the partition coefficient and D is the diffusivity of the solute. Solute diffusion in
the solid phase is negligible. The density, p. and specific heat, ¢, are assumed to be equal in the
liquid and solid phases. An average conductivity is defined as k = fik, +(1- £, )k, and non-
dimensionalized using a reference value at the reference temperature in the liquid, viz., k"= k /&, .

The permeability K which appears in the momentum equation is defined as a function of the local
liquid volume fraction (Carman-Kozeny relation),

£
f)z]

where K, is a constant which depends on the solidification microstructures’.

K= K[ (6)
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NUMERICAL METHODS

Numerical solutions were obtained using two different approaches — 1) finite volume (FV) with
primitive variables and 2) finite differences (FD) with a vorticity - stream function formulation.

In the first approach the set of transport equations (1-3) is discretized using a finite volume method.
The approximation of the convective and diffusive flux at the interface between two control
volumes is performed using respectively an ULTRA-QUICK and a centred scheme. The pressure-
velocity coupling is ensured using a PISO algorithm.

In the second approach the momentum equation (2) was converted into a vorticity-stream function
formulation. Latent heat evolution is accounted for by defining an effective heat coefficient
(apparent heat capacity method). The release of solute into the liquid during solidification of the
binary alloy is incorporated in equations (4) and (5). The governing two dimensional equations are
then discretized using finite differences and solved using the Samarskii & Andreyev ADI scheme.
Internal iterations on each variable at each time step are performed to ensure satisfaction of
boundary conditions and to achicve true simultaneous solution of the non-linear strongly coupled
equations,

RESULTS

Two cases are presented. The first one is that of a phase change problem of a pure substance in an
inverted Bridgman configuration obtained using the FV approach. The second case is a phase
change problem during transient directional solidification of a binary alloy in a horizontal Bridgman
configuration solved using the FD method.

Figure 1 shows the interface shape and stream function contours in the case of solidification of
gallium in the vertical inverted Bridgman configuration for k, /k, =%, 1 and 2 for Ra=10’. The
interface is flat in the case of equal solid and liquid conductivities. It becomes concave when
thermal conductivity in the melt is greater than the solid thermal conductivity and convex for the
reverse case. A flow in the melt for all these cases remains steady and symmetrical.

Figure 2 shows the interface shape and stream function for solidification in the vertical Bridgman
configuration for k, /k, =%, 1 and 2 for Ra=10°. In this case flow in the melt becomes periodic
and asymmetric. The largest effect on the interface from the interaction with the flow is obtained in
the case k, /k, =1. For k, /k, =" the interface is concave and for k, /k, =2 it is mainly convex.

® (©
Figure 1. Interface shape for Ra = 10%;
(@) k, 7k, =1/2,(b) k,/k, =1 and (c)k, /&, =2.
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(a) (c
Figure 2. Interface shape for Ra = 10%;
@)k, /k=2,(b) k,/k, =1 and (c)k, /k, =1/2.
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Figure 3. Interface shape and velocity vectors for different conductivity ratio

Figure 3 shows the interface shape and velocity vectors in the case of solidification of Bi-1at%Sn
alloy in a horizontal Bridgman ampoule for a gravity level of 9.81x10° ms” for k, /k, =%, 1 and 2.
As in the vertical case, the interface becomes concave when the solid thermal conductivity is less
than the liquid conductivity and convex otherwise. The variation in the thermal conductivity
strongly affects the temperature gradients in the vicinity of the interface leading to the change of its
shape and as a consequence to the redistribution of solute at the interface. Our numerical results
showed strong dependence of the radial segregation on the interface curvature. Segregation defined
as (C,. -C..)/C,. x100% is 1.99% for k,/k =1, 21.3% for k,/k, =2 and 36% for

k,/k ="%.
CONCLUSION

The variation of liquid and solid thermal conductivities has significant effect on the heat transfer,
the interface shape and convection in the melt during directional solidification. In the case of a
binary alloy it also affects redistribution of solute and hence the resulting structure of the crystal.
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Summary Dissolution of stoichiometric multi-component particles is an important process
occurring during the heat treatment of as-cast aluminium alloys. A mathematical model is
proposed to describe such a process. In this model equations are given to determine the
position of the particle-matrix interface in time, using a number of diffusion equations which
are conpled by non-linear boundary conditions at the interface. This problem is known as
a vector valued Stefan problem. Characteristic for this work is approximation of a vector
valued Stefan problem by a scalar Stefan problem. which is solved analytically.

1 Introduction

Heat treatment of metals is often necessary to optimize their mechanical properties. During
the heat treatment the metallurgical state of the alloy changes. One of the most important
change is the dissolution of second phase (multi-component) particles.

In this paper, we distinguish the alloy into a primary and secondary phase. The primary
phase is the metallic phase in which diffusion takes place. The secondary phase (or briefly
particle) dissolves in the primary phase. Due to the complex structure and presence of
numerous alloying elements in commercial alloys, the secondary phase may consist of several
components.

Particle dissolution is assumed to proceed via the following subsequent steps: decomposition
of the chemical compound in the particle, crossing the interface between the particle and
primary phase (briefly the interface) by the atoms and long-range diffusion in the primary
phase. In the present paper it is assumed that the first two steps proceed much faster than
the third step, i.e. diffusion determines the rate of dissolution.

Mathematically, we have to solve Fick's second Law in the primary phase around each
particle. The total number of atoms stays constant in the alloy, hence the interface moves
due to conservation of mass. This is known as a Stefan problem. Some examples of articles
and books on this subject are respectively: [1] and [2]. In these studies the technologically
important dissolution of multi-component particles is not considered.

Particle dissolution in ternary alloys (alloys with two alloying elements) is treated by Hubert
[3] and Vermolen and Vuik [7]. The present work covers an asymptotic solution applicable
to multi-component alloys. For more details, we refer to [6].
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The mathematical model is given in Section 2. Some remarks about existence are given in
Section 3. Section 4 covers an asymptotic solution. Some conclusions are given in Section
5.

2 A MODEL OF DISSOLUTION IN MULTI-COMPONENT ALLOYS

Various particle geometries (planar, cylindrical or spherical) are observed in practice. In
this section we consider a one-dimensional problem (in R!'), i.e. the dissolution of a multi-
component planar particle in an infinite primary phase. Different geometries are treated in
[6]. The initial particle thickness is given by Sg. The particle thickness at time ¢ is given
by S(t). The particle consists of n components that diffuse through the primary phase. We
assume that the composition of the particle is constant in time.

For dissolution, we assume that there is a t = T < oc such that S(T") = 0. Diffusion is
modelled by Fick’s second Law:
de; D e,
at o tEr?
Here ¢; and D; denote the concentration and diffusion coefficient of alloying element i re-
spectively. As initial condition and as 'boundary condition’ for z — oc we use:

z.> S 20, <t < T ie {1,...n}) (1)

ci(r,0)=c, = > 8 1€ (l,...n),
(IB) :

ci(z,t) =¢?, asz o0, 0<t<T, i €{l,..,n}

For convenience we define at the interface:
At i=ci(S@)st); 0<t<T, i€ {0,..,n}
From thermodynamics [4] follows:
M2 (e 0t < T, (2)

Here m; are exponents from the stoichiometry of the particle. We denote the particle con-
centration of each alloying element by ¢”*. The balance of atoms and constant composition
of the particle then leads to:

dS _ p dai(S(t).)

art _ sol\ 7 =1
( § )dt ST

: y Ut T itedllooonl (3)
Condition 3 implies:

9c;(5(t), 1)
i oz

Dj ac.l (g(t)! t)

= o Uizt T, el b n) (4)

The parameters known in the set of equations are the particle concentrations &*™, diffusion
coefficients I, initial concentrations ¢ and solubility product K. Unknown are here the
concentration profiles ¢;, the position of the interface S, and the interface concentrations
.

The moving boundary problem given by equations 1, (IB), 2, 3 and 4 is known as a Stefan-
problem. Note that the non-linear conditions in equation 2 are not standard.
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3 PROPERTIES OF THE PLANAR STEFAN PROBLEM

In this section we summarize some properties of this Stefan problem. We do not present
them in full rigour. For more details we refer to [6]. For convenience we define Q as:
Q = {(x,t) : = > S(t),0 < t < T}. We are only interested in smooth solutions, i.e.
S € CY0,T] and ¢; € C*'(Q)NC(Q). A solution that satisfies these requirements is unique
and satisfies a maximum principle, i.e. (local) extremes can only occur at the boundaries or
at t = 0. This has been proven for a general parabolic operator by Protter and Weinberger
[5] and by Vuik for an unbounded domain [9].

3.1 A necessary condition for existence of a solution

We analyze the existence of a solution for a class of Stefan problems. First we enter the
following definition of a conserving solution.

Definition 3.1 A solution to the Stefan problem presented here is called conserving if and
only if:

[ o= iz = - s - 500 )
S(t)

From physical point of view it is required that equations 3 and 5 are equivalent. We reject
non-conserving solutions. A sufficient condition for non-existence of a solution of this Stefan
is formulared in the following proposition:

Proposition 3.1 The Stefan problem has no conserving solution if for some i
(7 = ) (& — ¢!} < 0, and ™ # ¢! with ™, ¢}, € RT U {0}.

Above proposition is proven in [6] for a bounded domain and in [8] for an unbounded domain.
In the next section we approximate the solution of a vector valued Stefan problem. Due to
non-linear boundary conditions the approximate solution is not unique. Therefore we use
Proposition 3.1 as a means of selecting an acceptable solution.

4 AN ASYMPTOTIC SOLUTION FOR THE VECTOR-VALUED STEFAN
PROBLEM

In this section we approximate the solution of the vector valued Stefan problem. Assuming
that ¢ is constant, it can be proven that the solution is:

erfc(

o [ e - ()

S(t) = So+ kvE

Note that the concentration profiles ¢; and interface concentrations have to satisfy equations
2 and 4. (S1) and equations 4 and 2 imply:

PR ﬂ"” Vie{1,..,n}
(52)

O ()™ =K
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Using above solution we will present an approximate solution. We take the special case that
o s el 9= 0, Vi€ {1, ..0m)
The above case is common in metallurgical applications. Note that for this case a conserving

exists in the sense of definition 3.1 (see proposition 3.1). For this case it can be proven using
the first equation of system (S2) that the velocity of the interface %2 dt can be approximated

by:
dS(t) k ¢t Dy
Tdt QJ' g ‘/7 ®)

From the above equation follows a recurrence relationship for the ¢! After substitution

of this recurrence relationship into equation 2 and defining u : V‘,:lm,, one obtains the
following non-linear equation for ¢i°:

The solution to equation 7 is:

m

Cparl ; =
= KT (ﬁ) (8)
/B 7
Substitution of the real, positive solution of equation 8 into equation 6, yields:
das(t) <y [Dyy ©)
dt are xt '

eff

In which ¢ff} = K, P =TI (c{""")"hnTL and D,y := I, (D)% are referred to as the
effective solid solubility, eﬂ'ectwe particle concentration and effective diffusion coefficient.
The solution of the above equation is:

"5:; Dt

“sol
c:f'! ™

5(t) = Sp - (10)

Here we approximate the vector valued Stefan problem by a scalar Stefan problem. This
approach can be used easily for an estimate of the dissolution kinetics. Moreover, it can be
used to test results from numerical calculations. We gave the above derivation in a more
mathematically rigorous way in [6].

5 CONCLUSIONS

A self-similar solutions which is found for the dissolution of a particle in an unbounded one-
dimensional geometry is extended to the dissolution of a multi-component particle. For the
case of initial concentrations equal to zero, a simple expression is derived for the dissolution
in terms of an effective diffusion coefficient. This effective diffusion coefficient is equal to a
geometric diffusion coefficient of all components involved. The weight factors come from the
stoichiometry of the compound of which the particle is constituted.
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MODELLING AND RESULTS IN FLUIDYNAMICS OF
CRYSTAL GROWTH FROM THE VAPOUR PHASE

A. Viviani, C. Golia
Seconda Universita di Napoli, Dipartimento di Ingegneria Aerospaziale
via Roma 29, I-81031 Aversa, Italy. e-mail: viviani@unina.it

The fluid-dynamics of crystal growth from vapour has been recognized as playing
an important role in technological processes employed to grow bulk crystals or
epitaxial films by physical and chemical vapour transport; indeed the final
properties of the crystal are strongly influenced by the thermodynamic
conditions at the vapour-crystal interface and these, in turn, are the result of the
complex physico-chemical mechanisms involved in the vapour transport.

In recent years a new impetus for studying vapour crystal growth fluid-dynamics
has come from the utilization of space microgravity environment, where low-
gravity conditions are expected to reduce gravity-driven disturbances and,
therefore, to enhance the final properties of the crystals, resulting from the
complex physico-chemical phenomena occurring in the vapour phase.

A large number of works, both numerical and experimental, have been performed
on the subject, and different models have been proposed to investigate the role of
natural convection and the interface kinetics in various geometrical
configurations, for different gravity levels. In particular, double-diffusive
vapour transport in idealized geometrical configurations (plane or cylindrical
enclosures with differentially heated end walls) has been extensively investigated
considering Navier-Stokes fluid-dynamics along with no-slip boundary conditions
on the passive boundaries.

However, some "gas-kinetic" effects, usually masked by gravity on Earth, such as
thermal and concentration stresses (volume-driving actions), thermal and
concentration creep (surface-driving actions) may represent important sources
of convection (described by Burnett equations and slip-boundary conditions)
under the conditions encountered in low-gravity crystal growth but also,
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depending on the size of the system and temperature/concentration differences,
on earth.

The existence of new types of convective flows, induced in gases by stresses and
creep, has been considered in the Soviet literature by Galkin et Al.,, who
demonstrated that, in the absence of external forces, Burnett equations and slip-
boundary conditions have to be considered, even in the first approximation, to
describe a broad class of continuum flows.

The new transport mechanisms have been investigated by theoretical and
numerical methods, demonstrating that these effects have an important role in
processes of vapour crystal growth in space. In this lecture we deal with new
possible sources of convection arising from non-linear irreversible
thermodynamic effects (non-Navier-Stokes fluid-dynamics) and slip boundary
conditions during typical processes of crystal growth from vapour phase.
Attention is focused on the role played by Burnett stresses and side-wall creep in
single component gases, as well as in the case of binary mixtures.

A rigourous non-dimensional order of magnitude analysis has been performed to
compare these effects to the vapour transport mechanisms usually considered in
vapour crystal growth fluid-dynamics, i.e. buoyancy and the so-called Stefan-
Nusselt flow due to the evaporation at the source and condensation at the crystal;
new characteristic velocities, lengths and corresponding new characteristic non-
dimensional numbers are introduced and discussed for the characterization of the
new phenomenologies, by identifying 15 classes of convection, and a priori
conditions for the existence and characterization of all possible classes of
convection and flow regimes, in terms of the problem's data, are formulated, by
drawing the appropriate regime planes.

Then, we present numerical results obtained with the new set of field equations
(Burnett equations with slip conditions) for geometrical configurations of
interest in crystal growth by physical vapour transport. The results are presented
for several combinations of the non-dimensional characteristic parameters,
ranging from microgravity to earth environment conditionsand compared with
the results of the corresponding solution of the Navier-Stokes approximation.
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UNSTEADY THREE-DIMENSIONAL MELT FLOW COMPUTATION OF
CZOCHRALSKI SINGLE CRYSTAL GROWTH OF SUPER-CONDUCTING MATERIAL

T. Yamauchi, G. Mika, J. Szmyd* and K. Suzuki

Department of Mechanical Engineering
Kyoto University, Kyoto 606-8501, Japan
*St. Staszic University of Mining and Metallurgy
30 Mickievicz Ave., Krakow 30059, Poland

Summary Three-dimensional unsteady computation was made for the melt flow in the production
process of super-conducting material Y123 with a modified Czochralski method. Results of the
studied cases reveal the importance of three-dimensional computation in the determination of
stability conditions and the unsteady behavior of the melt flow. How to suppress the melt flow
instability and the patterns of melt flow in some typical unsteady conditions were also discussed.

INTRODUCTION

Czochralski method (hereafter called Cz method) is most popularly used in the single crystal growth
of various materials. The present study pays attention to the production of a super-conducting
material, YBa,Cu304., (hereafter Y123 for convenience). In place of popular flux method which is
not suitable for the production of large size single crystal of Y123'? | Yamada and Shiohara® made
an effort to produce Y123 single crystal with a modified Cz method. In their method, Y123 single
crystal was grown at the interface between the seed crystal and the 3BaO-5CuQO melt produced in the
crucible by electric heating. Yttrium (shortly just U in the following) was supplied from the bottom
bed made of Y211. Its supply to the interface is controlled by the melt convection. Therefore, study
of melt convection is very important as was actually studied by the same group ‘. These
references assumed steadiness of the melt flow. However, this assumption cannot be validated
because the rotation speed of the seed was rather high. Actually, Szmyd et al. "® reported that melt
flow can be unsteady in the conditions experimentally studied by Yamada and Shiohara. Since the
previous studies were made under the two-dimensionality assumption, results of three-dimensional
unsteady computation are reported in the present study.

This paper concentrates its attention to the unsteady behavior of the melt flow and related heat
transfer in the crucible. This is because the melt flow governs the mass transfer of Y to the interface.
Thermal field in the crucible varies in a complicated manner with the value of Prandtl number™. In
this study, it is kept constant. In the previous studies™® it was found that thermal boundary
condition seriously affects the instability of the melt flow, The same issue will be discussed again in
terms of the results obtained with the present three-dimensional computation.

NOMENCLATURES

0OGr  Grashof number based on the temperature difference (Ty, - T;)

ORes  crystal rotation Reynolds number Q Re,/v

Ot time, s

oI temperature, K

0OU;  velocity component in x; direction, m/s

Or,e, z radial, azimuthal and axial coordinates in the cylindrical coordinate system
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Ov kinematic viscosity, m2/s
Op density, kg/m3

b 4 stream function

oQ angular velocity, rad/s

Suffices

Os crystal

of fluid

o* non-dimension

PROCEDURES AND CONDITIONS

Schematic diagram of the Cz furnace is illustrated in Fig.1 together with the used coordinate system
and geometrical parameters. Melt flow and related heat transfer in the crucible are calculated by
numerically solving the finite-difference equivalents of the momentum and energy equations. All
the fluid properties were treated to be constant. Prandtl number of the melt was assumed to be 10.5.
Pressure in the momentum equation was calculated by SIMPLER algorithm® in which pressure was
adjusted so as to satisfy the continuity equation. For finite-differencing, the control volume method
has been employed, and central finite-difference was used for the diffusion terms and QUICK"™
scheme for the convection terms. Staggered grid system was used and total number of grids points
was 48x25x52. In relaxation of the elliptic type finite-differenced equatoins, iterative procedure
was adopted combining ADI (Alternative - Direction - Implicit) method 19 at each time step. Time
step increment was set to be an order of 10 in the non-dimensional time scale t* O vt/ R’
Rotating speed of crystal was changed in seven steps and corresponding values of the Reynolds
number were Re.=0,10,20,30,40,50 and 60. In every studied case, no rotation was given to the
crucible. Free surface was treated to be completely flat and Marangoni effect was ignored. No slip
condition was applied at wall surfaces and free boundary condition was adopted at the melt free
surface. Melt-crystal interface and melt-Y211 solid-bed interface were assumed to be constant in
temperature equal to Ty and Ty, respectively. Temperature difference (Th-Ts) was changed in three
steps and the corresponding values of Grashof number were 0, 5,000 and 10,000. Radiative heat loss
from the melt free surface to the-surrounding of temperature T was calculated applying Stefan-
Boltzmann equation. Side wall of the crucible was assumed to have a linear temperature

distribution Ty=Ty-(zZH)A@. A& was changed in two steps; namely A6 =0 and 12K.

crystal

(Y123) Z*Rc=23 mm
radiative free, ¢, &7 MM Crucible
(5. ;05

vy
4

/
/  (computational domain)
solid

(21
Fig.1 Schematic diagram
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RESULTS AND DISCUSSIONS

First is discussed the case where A@=0, namely where side wall temperature is uniform. A little
different from the previous papers, melt flow obtained with the two-dimensional computation
remained steady at any Reynolds number when Gr=0, 5,000 and 10,000. In the present three-
dimensional computation, on the other hand, melt flow becomes unstable at Re=50 and 60 when
Gr=0, and in the Reynolds number range Re=40-60 either when Gr is equal to 5,000 or 10,000.
Therefore, melt flow is predicted to be more unstable in the three-dimensional computation than in
two-dimensional computation. The melt flow is axi-symmetric as far as it remains steady. Figure 2
illustrates some examples of instantaneous isotherm contours calculated on the melt free surface for
some cases where flow showed unsteadiness. It indicates that the melt flow and therefore the
resulting thermal field are not axi-symmetric in the unsteady cases.

Melt temperature takes a minimum in the middle of free surface. Figure 3(a) shows an example of
the melt flow isotherm contours and the contours of stream function in a vertical plane calculated in
one case where flow remains steady. Two recirculating flow regions are observed to exist in the
figure, one driven by the centrifugal force due to the crystal rotation and another resulting from the
buoyant flow along the vertical side wall of the crucible. The low melt temperature region on the
free surface is observed in the figure to coincide with the region where the two oppositely directed
flows meet each other.

Appearance of the low melt temperature region deteriorates the quality of crystal but its effect is
smaller if the region appears at a radial location of larger distance from the crystal. Figure 3(b)
shows the radial position of the lowest melt temperature on the free surface obtained in all the
studied conditions of A@=0. The plotted position for unsteady melt flow conditions is its time mean
value. As observed in the figure, larger Grashof number is not preferable in a sense that the lowest
temperature position appears closer to the crystal but its location can be moved to a position more

(a) Gr=0 (c) Gr=10,000
I I 1292[K ]
Res=50 Res=60 ¢
{b) Gr=5,000 g
Fig 2 Instantaneous isotherms at the free surface
e e e
N iz ol Ai=ageor
b s 1mc¢hlg point 06 | 72:(5)000}
| : K g b | e Genloooo,
= s 04- = A
' n—8 — ;:‘x—/;’h‘
0.2 .
1261[K]) 0 0
0 10 20 30 40 S0 60
Res
(a)Streamlines and isotherms (b)Radial position of the lowest temperature
(Gr=0.0, Res=40) on the free surface

Fig.3 Meeting point of forced and natural convection at the free surface
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likely to occur. Unsteadiness of the melt flow can also produce the striation of the single crystal and
is not desirable either. In this sense, three-dimensional computation is preferable with which the
stability limit of melt flow can be assessed more accurately as discussed above.

As in the previous studies, computation was made for the cases of non-uniform side wall
temperature, i.e. where A@=12K. Calculated melt flow was found to become unsteady for all the
cases of different values of Grashof number and of crystal rotation Reynolds number except for one
trivial case where Gr=0 and Re,;=0. In addition to this, fluctuation pattern was found to be more
complex in the cases A@=12K than in the cases A@=0. This is because the vertical distribution

of side wall temperature may produce unstable fluid temperature stratification if the flow remains
steady. Distribution pattern of the melt temperature on the free surface is illustrated in Figure 4 in
the form of instantaneous isothermal contours for three cases of different Reynolds number at the
Grashof number equal to 10,000. Thermal field in the crucible is far from axi-symmetry in the
illustrated conditions. More pronounced, however, is the complicated pattern of temperature
distribution than the results shown in Figure 2. One more noticeable feature of the temperature
distribution on the free surface is that the peripheral non-uniformity is less pronounced in the case
where Re,=60 than in other cases of Re,=0 and 10. Although not shown here to save space, the
amplitude of temperature fluctuation sampled at a position close to the crystal surface indicates that
temperature fluctuation is also weak in the case where Re,=60. Thus, this is the most preferable case
where good quality crystal can be produced.

CONCLUDING REMARKS

Necessity of unsteady three-dimensional computation has been confirmed for the melt flow of the
Czochralski production process of super-conducting material. Three-dimensional computation gives
narrower range of for melt flow stability. Unsteady behavior of melt flow is predicted more
complicated with the three-dimensional computation than with the two-dimensional one. Low
temperature region of the melt on the free surface comes to be located closer to the crystal surface
with an increase of the Grashof number. However, this can be suppressed by the increase of crystal
rotation Reynolds number and a condition for the production of better quality crystal can be
established. At higher rotation speed of the crystal, melt flow becomes more unstable. However, at
a certain level of the Grashof number, fluctuation of melt flow temperature near the crystal can be
reduced in amplitude and production of better quality crystal can then be expected.

e @ e

(a)Res=0 (B)Res=10  (c)Res=60
Fig.4 Instantaneous isotherms at the free surface
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