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Summary A phase-field method is presented for modeling of solidification microstructure
development with convection in the melt. The phase-field method relies on the introduction of a thin
but numerically resolvable diffuse interface region and solves a transport equation for the phase-field
variable that satisfies the Gibbs-Thomson interface condition implicitely. The method for convection
includes a distributed momentum sink term to model the no-slip condition for the ditfuse interface.
The method is validated for several limiting cascs involving flow through complex structures. Results
are presented for equiaxed dendritic growth of a pure substance. The effects of convection on the
dendrite tip operating state and the sidebranching are investigated in some detail.

INTRODUCTION AND DESCRIPTION OF METHOD

Convection usually accompanies solidification. Convection not only alters the microstructure of the
solid that is forming, but solidification can also cause new and unexpected flow patterns. An example
are the coupled morphological and convective instabilities investigated by Coriell et al. and Davis et
al. Solidification pattern formation in the limit of purely diffusive transport of heat and/or solute has
been studied extensively. The nonlinear interactions between solidification and convective transport,
on the other hand, have received comparably little research attention.

The phase-field method has recently emerged as a viable tool to numerically simulate solidification
microstructure development. In this method, a phase indicator function is introduced that varies
smoothly from a constant value in the liquid phase to another constant value in the solid phase across a
finite, but numerically resolvable diffuse interface region. A transport equation for the phase-field
variable can be derived from basic thermodynamic considerations, or directly from the Gibbs-
Thomson condition at a solid/liquid interface, including curvature and kinetic effects. This transport
equation is solved in conjunction with conservation equations for heat, mass, and momentum on a
fixed grid. The same equations apply in all regions of the domain and the interface is represented as
volumetric sources in the conservation equations (e.g., as a distributed latent heat source). The main
advantages of the phase-field method are that the explicit calculation of interface velocities, normals,
and curvatures is completely avoided, there is no need to track the interface, and there is no need for
iterations to satisfv interfacial boundary conditions.

We have recently extended the phase-ficld method to include convection in the melt'?, Based on
volume averaging, we have derived conservation equations that contain the phase-field variable and
are equally valid in the solid, the liquid, and the diffuse interface region. Here a key issue is how the
usual no-slip condition at a sharp solid/liquid interface is handled in the presence of the diffuse
interface introduced by the phase-field method. For this purpose we have derived a volumetric
momentum sink term in the Navier-Stokes equations that is proportional to the interfacial area and the
liquid velocity. Across the diffuse interface region, the velocity pre-factor in the sink term increases
from zero in the liquid to a large value in the solid, such that the velocity approaches zero in the fully
solid region. The magnitude and variation of the velocity pre-factor is chosen through an asymptotic
analysis, such that the velocity profile for plane flow past the diffuse interface matches the one for
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flow past a sharp interface regardless of the thickness of the diffuse interface region. The effectiveness
and accuracy of this approach is demonstrated for several test cases involving flows through regular
arrays of cylinders for which analytical solutions are available.

We solved the phase-field and conservation equations using a multigrid method for the flow.
Typically, six grid points are present in the diffuse interface, and the total number of grid points can
reach several million in two dimensions. Convergence of the solution and grid anisotropy effects were
investigated through detailed numerical tests. In particular, tests were conducted to ensure that the
numerical results are independent of the thickness of the diffuse interface, and that in the limit of
purely diffusive heat transport we recover available analytical solutions for dendrite tip growth.

RESULTS AND DISCUSSION

We present results for two-dimensional growth of a single equiaxed dendrite of a pure substance into
an initially uniformly supercooled melt. A small spherical seed is initially present in the centre of the
domain. The principal growth dircctions of the dendrite are aligned with the x-y coordinate axes. The
liquid melt enters from the top boundary with a uniform inlet velocity and leaves at the bottom
boundary. Symmetry conditions are applied at the sidewalls. The inlet and initial temperature are both
set to some dimensionless supercooling.

For a fixed dimensionless supercooling of 0.35. Figure | shows the computed evolution of the
dendrites for three different anisotropy strengths (=0.01, 0.03. and 0.05) without flow (top panels) and
with flow (bottom panels). The flow Peclet number based on the inlet velocity and the capillary length
is 0.07 and the Prandil number is 23.1. It can be seen that the shape of the dendrite is significantly
influenced by the flow. The growth velocities of the upstream tips are much higher than of the
downstream tips and the tips normal to the flow, because the impinging flow reduces the thermal
boundary layer thickness. The evolution of the downstream branch in the wake of the dendrite is
retarded relative to the diffusion case, because of advection of heat from the upstream portions of the
dendrite. An interesting observation is that the horizontal branches grow slightly upwards. This
dendrite “tilting” is due to the asymmetry of the heat fluxes on the sides of the horizontal branches.

The upstream tip eventually reaches a steady state where the tip velocity and curvature do not change
with time. Measuring the steady tip velocity, V, and radius, p, of the upper tip from the computed
phase-field allows for an examination of the dendrite tip operating state in the presence of convection.
It is well know from microscopic solvability theory that the product p?V is a constant that can be
nondimensionalized such that it depends only on the anisotropy strength. This dimensionless selection
constant is the same for all supercoolings, but it can depend on the flow velocity. Figure 2 shows the
ratio of p’V with flow to the corresponding value without flow as a function of a dimensionless
parameter y that contains the flow Reynolds number among other pammetersl, A total of 17
computational runs, where the flow velocity, anisotropy strength and supercooling were varied, were
performed to obtain this figure. It can be seen that the ratio of selection constants increases with
increasing flow strength. All results collapse along a single line. This line is obtained from the
microscopic solvability theory with flow of Bouissou and Pelce’.

http://rcin.org.pl



11

L -
O o i o o i i
i,

A

o ot A
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Figure 3. Example of simulated dendritic growth with convection in the presence of thermal noise

Finally, Figure 3 shows the results of a computational run where we introduced stochastic noise into the
energy equation according to a method developed by one of the co-authors (AK). The supercooling is
0.55, the anisotropy strength is 3%, the flow Peclet number is 0.135, and the dimensionless noise strength
is 0.001. The colours indicate temperature. The upstream tip has grown to a length sufficient for dendrite
sidearms to develop. We are presently studying the dependence of the sidearm frequency and amplitude
on the flow velocity.

CONCLUSIONS

A phase-field method is presented that allows for the numerical simulation of solidification microstructure
development in the presence of flow. Results are presented for two-dimensional equiaxed dendritic
growth of a pure substance into a uniformly supercooled melt with and without flow past the crystal. It is
found that the growth shape of the dendrite is significantly influenced by the flow. The operating state of
the upper (upstream) dendrite tip is investigated in detail and the predictions for the tip velocity and
curvature are found to be in good agreement with the microscopic solvability theory with flow of
Bouissou and Pelce. Results are also presented for the effect of flow on dendrite sidebranching.
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MELTING IN ENCLOSURES :
COUPLED HEAT TRANSFER AND NATURAL CONVECTION

A synthesis of a numerical comparison exercise.
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1. INTRODUCTION

The interest for the numerical simulation of the interaction between phase change and fluid flow is
motivated by the wide range of industrial or natural processes where the understanding and modelling
of such coupling are of importance. Our interest is to propose a numerical exercise to compare
different physical models and numerical procedures on a relatively simple problem, where melting is
driven by laminar thermal convection in the melt.

This project takes place after several attempts to compare different numerical procedures (Lacroix
and Voller, 1990 ; Viswanath and Jaluria, 1993). Existing experimental results are either too limited
in the range of parameters (Bénard ef al., 1986) or show significant differences between independent
studics (Gau and Viskanta, 1986 ; Campbell & Koster,1994). As a consequence, a purely numerical
comparison exercise is proposed. which is intended to provide a set of results in a common framework
in order to analyse in detail the characteristics of the numerical solutions in 2D natural convection
dominated melting processes, over a wide range of governing parameters. This presentation is a
second synthesis based on various contributions from different countries.

2. DESCRIPTION

2.1. Problem Definition
The problem under consideration deals with melting of a pure substance controlled by natural con-
vection in the melt. One considers a 2D square cavity (height H = width L) initially filled with a solid
material at a uniform temperature (T = Tg). At t* = 0, the temperature of one of the vertical walls
(the left wall in figure 1) is raised at a value 7 > T, while the other vertical wall is maintained
at the initial temperature. The horizontal walls are assumed to be adiabatic and no-slip. The fluid
flow is supposed to be in the laminar regime, and the thermophysical properties of the material to be
constant.

After a pure conduction stage, thermal convection develops in the liquid phase, causing a non-uniform
distribution of the heat flux at the interface and a non-uniform displacement of the melting front.
The problem is characterized a set of four main dimensionless parameters. The fluid phase is defined
by its Prandtl number : Pr = v/e and the intensity of natural convection is given by the thermal
_ 93(T — Tp)H?

Rayleigh number : Ra
av

. Given the temperature conditions, the Stefan number
Cpo(Ty — TF)

defines the relative importance of the latent heat in the overall energy balance : Ste = 2
F

Finally the global aspect ratio of the enclosure has to be specified: A = H/L .
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Figure 1. Schematic diagram of the problem.

2.2. Proposed test cases

Two groups of numerical tests heve been proposed, corresponding to distinct ranges of the liquid
phase Prandtl number : the /ow Prandtl number range (Pr ~ 1072, melting of metals) and the high
Prandtl number range (Pr ~ 10°, melting of paraffin waxes).

The governing parameters have been estimated using approximate values of the thermophysical prop-
erties of tin and octadecane. For a given geometry (A = 1), the values of the Rayleigh and Stefan
numbers correspond to a dimensional height of the enclosure H = 0.10 m and a reference temperature
difference T, - T = 3 °C for tin (Case 2) and 10 °C for octadecane (Case 4), leading to the values
displayed in Table 1. In each Prrange a 10 times smaller Rayleigh number (Cases 1 and 3) is also

considered.
Pr=0.02 1.Ra=2510? 2.Ra=2510°
Ste = 0.01 Case 1 Case 2
Pr=50 3. Ra=107 4. Ra=10%
Ste = 0.1 Case 3 Case 4

Table 1. Parameters of the test cases.

In order to limit the outputs, the following results are requested :

1. the time evolution of the melted volume and of the average Nusselt number at the hot wall,

2. the position of the melting front and the local Nusselt number distribution at four different times
(expressed in the dimensionless form 7 = Fo x Ste = at* x Ste/H? :
-atPr=0.02:1=4x10"%t,=10"%, 13 =4 x10"% and t; = 10"

-atPr=50:t =5 x107%,t,=2 x1073,t; =6 x10"* and t; = 1072
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3. HEAT TRANSFER CORRELATIONS

Early studies concerning the characteristic scales of the problem have been performed by Webb &
Viskanta (1985) and Beckermann & Viskanta (1989). A more complete description of the problem
and an analysis of the relevant parameters and of the scaling laws may be found in the paper by Jany
and Bejan (1988). The main features are described in this section.

In the first stage of the melting process, pure conduction is the dominating heat transfer mechanism.
The interface moves parallel to the hot wall, and the time evolution of the front position is given by
the classical solution of the Stefan problem (s(t) ~ Vi) Accordingly the Nusselt number decreases
like 1/+/%. Then, as the thickness of the liquid layer grows with time, the influence of convection on
heat transfer is felt in the top part of the enclosure and progressively along the whole interface. In this
transition regime, the competition between pure conduction and natural convection limits the Nusselt
number decrease, which goes through a minimum, and then increases when the heat transfer regime
is dominated by convection. Finally the boundary layers in the liquid separate and the average heat
transfer reaches a constant value.

This analysis was carried out in the high Pr number range, and Jany & Bejan (1989) show that the dif-
ferent time scales and heat transfer rates are readily expressed in terms of power laws of the Rayleigh
number. The same approach may be extended to the range of low Pr numbers, where the relevant
governing parameter is shown to be the dimensionless group Ra x Pr.

The scaling laws lcad to correlations for the evolution of the average Nusselt number as a function of
time (7 = Fo Ste), the value of the coefficients are identified from the results of numerical simulations.
1. In the range Pr > | :

= N = 7
‘\'u(r) = i- X u 1/lr (l)
27 Lo i
J (0-0175 Ra3/" T-'i;z),

2. Intherange Pr<< 1:

1 1
+ — 1- e (2)
Var [ 1

\/1 17

Pr)ﬂ.]ﬁ T0.75)2

Where Nu, is given by the expressions Nuy, = 0.33 Ra®? in the Pr >> 1 range according to
Bénard er al. (1985) and Nu,, = 0.29 Ra®?*" Pr®!® in the Pr << 1 range (Gobin and Bénard, 1992),
or by the more general correlation proposed by Lim and Bejan (1992) for any value of Pr:

Nu(r) = Nug

v 0.35 Ra'/*
[1 + (0.143/Pr)>]*°

Nugy (€)]

4. PRESENTATION OF THE RESULTS

Contributions to the benchmark have been initially requested in the frame of a network of french
research laboratories concerned with the simulation of heat and mass transfer processes (AMETH).
The call for contribution to the comparison exercise has then been announced in different international
journals concerned with heat and mass transfer (International Journal of Heat and Mass Transfer,
Numerical Heat Transfer, International Journal of Thermal Sciences). The present edition of the
exercise has concerned the contributions listed in Table 2.
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Author Laboratory Cas2
B. BASU TRDDC-Pune (India) 2-3
A K. SINGH
0. BERTRAND MASTER-Bordeaux (France) 2
E. ARQUIS
B. BINET THERMAUS-Sherbrooke (Quebec) 1-2-3-4
H. COMBEAU LSGMM-Nancy (France) 1-2
S.COUTURIER LET-Poitiers (France) 1-2-3
H. SADAT
Y. DELANNOY | EPM/MADYLAM-Grenoble (France) 34
D. GOBIN FAST-Orsay (France) 2-3-4
G. VIEIRA
J. GOSCIK Bialystok University (Poland) 2-3
M. LACROIX THERMAUS-Sherbrooke (Quebec) 1-2-3-4
P.Le QUERE LIMSI-Orsay (France) 1-2-3-4
M. MEDALE TUSTI-Marseille (France) 1-2-3
J. MENCINGER LFDT-Ljubljana (Slovenia) 1-2
B. SARLER
1. WINTRUFF IKE-Leopoldshafen (Germany) 1-2-3-4

Table 2. Contributions to the present benchmark.

In the final synthesis, the results will be in terms of three main outputs :

1. the time evolution of the average Nusselt number at the hot wall obtained by the contributors,
compared to the Neumann solution and to the existing correlation recalled in section 3,

2. the time evolution of the liquid fraction (the dimensionless melted volume),

3. the position of the melting front at four different times of the process.

To allow for the reception of last minute results, the contributions will be compiled at the last moment,
s0 no results are presented in this text.
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Among the 13 sets of results received, most contributions have used fixed grid or “enthalpy” methods
(FG) and two have used a front-tracking of transformed grid procedure (TG). Contributions have been
requested from groups using commercial softwares, and only one participation has been recorded
(FLUENT™ : Delannoy). Twelve contributions have presented results for Case #2, ten for Case #3
and six for Case #4. Only four contributors have solved the four problems.

It will be seen in the presentation that the simulations at high Prandtl numbers globally indicate the
same trends, although they may significantly differ due to grid refinement or solution procedure. In
the low Prandtl number range however, it will be seen that this exercise has been an opportunity to
analyze in more details the melting process for metals and that possible instabilities may take place
during the process. This will be presented in a separate paper.!

NOMENCLATURE

A aspect ratio of the enclosure, H/L

q acceleration of gravity

Gr Grashof number, g 3r AT H*/?

H height of the enclosure

k unit vector in the vertical direction

k thermal conductivity of the liquid

L . width of the enclosure

Nu . average Nusselt number

/5 : dimensionless pressure

iP5 : Prandu number, v/«

Ru : Rayleigh number, Pr Gr

Ste : Stefan number,

i . dimensional temperature

Vv . dimensionless fluid velocity (V> H/v)
w (u) @ vertical (horizontal) component of 1’
z(z) : dimensionless coordinates, z*/H (z*/H)

Greek symbols

o thermal diffusivity

pBr ¢ coefficient of volumetric thermal expansion
AT : temperature difference between walls

v : kinematic viscosity

P fluid density

0 dimensionless temperature, 8 = (T — Ty) /AT

REFERENCES

® BECKERMANN C., VISKANTA R. (1989) : Effect of solid subcooling on natural convection melting
of a pure metal. J. Heat Transfer, 111, 416-424.

® BENARD C., GOBIN D. & MARTINEZ F. (1985) : Melting in rectangular enclosures : experiments
and numerical simulations. J. Heat Transfer, 107, 794-803.

e CAMPBELL T.A. & KOSTER J.N. (1994) : Visualization of solid-liquid interface morphologies in
gallium subject to natural convection. J. Crystal Growrh, 140, 414425,

e GaU C. & VISKANTA R. (1986) : Melting and solidification of a pure metal from a vertical wall.
J. Heat Transfer, 108, 174-181.

e GOBIN D. & BENARD C. (1992) : Melting of metals driven by natural convection in the melt :
influence of the Prandtl and Rayleigh numbers. J. Heat Transfer, 114, 521-524.

e JANY P. & BEJAN A. (1988) : Scaling theory of melting with natural convection in an enclosure.

LA note on possible flow instabilities in melting from the side (Session #8).

http://rcin.org.pl



18

Int. J. Heat Mass Transfer, 31, 1221-1235.

e LACROIX M. & VOLLER V.R. (1990) : Finite difference solutions of solidification phase change
problems : transformed vs. fixed grids. Num. Heat Transfer, B-17, 25-41.

e LIM J.S. & BEJAN A. (1992) : The Prandt number effect on melting dominated by natural con-
vection. J. Heat Transfer, 114, 784-787.

e VISWANATH R. & JALURIA Y. (1993) : A comparison of different solution methodologies for
melting and solidification problems in enclosures. Num. Hear Transfer, B-24, 77-105.

e WEBB B.W. & VISKANTA R. (1985) : On the characteristic length scale for correlating melting
heat transfer data. Inr. Comm. Hear Mass Transfer, 12, 637-646.

http://rcin.org.pl



SOLIDIFICATION AND MELTING IN MICROGRAVITY

E. Leonardi

School of Mechanical and Manufacturing Engineering
The University of New South Wales
Sydney, Australia 2052

Summary Recent modelling work of the solidification and melting of a weak binary alloy in a
horizontal Bridgman furnace is presented. The work has been undertaken in connection with the
MEPHISTO-4 program, which is a study of the solidification and melting of an alloy of bismuth
with | at% tin in a microgravity environment. The effects of coupling with the phase diagram (a
concentration-dependent melting temperature) and of thermal and solutal convection on segregation
of solute, shape and position of the solid/liquid interface are investigated. The results presented
include calculations at 1 and 10 pg. both neglecting and including the dependence of melting
temperature on concentration.

INTRODUCTION

The investigation of solidification processes has great practical importance for crystal growth
techniques.  The quality of single crystals grown from the melt depends strongly on growth
morphology and macro-segregation caused by convection effects in solidified ingots. A low gravity
environment is often used for fundamental studies of crystal growth because it produces conditions
in which convection is eliminated or at least decreased to a level at which crystal growth is largely
controlled by diffusion. Residual accelerations in orbiting space vehicles are of the order of one to
several hundred pg (where 1 pug =9.81x10% ms™). For this reason, much effort has been expended
in recent years in performing crystal growth experiments in the microgravity environment of a
spacecraft in earth orbit. Such effects as compositional and kinetic supercooling, and the influence
of convection on compositional distribution in the melt, have been investigated under microgravity.

The MEPHISTO-4 Program is a joint US-French-Australian research effort directed towards
gaining a detailed understanding of the role of buoyancy-driven convection during the directional
solidification of faceted materials in a Bridgman apparatus, specifically an alloy of bismuth with
1 at% tin. It combines ground-based experiments and a series of experiments conducted in a
microgravity environment. Part of this program is the numerical modelling of the solidification and
melting processes.

The MEPHISTO apparatus, shown schematically in Figure 1, consists of three parallel tubes or
ampoules (only one is shown in the figure), each containing the Bi-Sn alloy, around which are
placed two “furnaces”, each comprising a pair of heating and cooling jackets. Between each heating
and cooling jacket is a nominally adiabatic or insulated zone. One furnace is fixed, and acts to
generate a reference state; the other can be moved over the tubes. If it moves in the direction from
the cooling to the heating jacket (i.e., to the right in Figure 1), and if the heating and cooling rates
are chosen appropriately, the material will be progressively solidified from left to right.

In the Bridgman configuration with low growth speeds and high thermal gradients in the adiabatic
zone, the interface stays sharp and phase change is isothermal; i.e, there is no mushy zone or
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Figure 1. Schematic diagram of the MEPHISTO apparatus. H and C denote
the hot and cold sections of the furnaces; A denotes the adiabatic zone.

transition region between the solid and the liquid. Implementation of a fixed grid single domain
approach (commonly called the enthalpy method) for modelling the isothermal phase change of
alloys becomes quite a challenging problem because of the additional difficulties associated with the
discontinuity of solute concentration at the interface and the sharp gradients of concentration at the
interface, induced by the low value of partition cocfficient. These are the conditions, which apply in
MEPHISTO.

MATHEMATICAL MODEL

We consider a Bridgman furnace in which a moving temperature profile consisting of a cold zone
(Tc). a nominally adiabatic zone and a hot zone (T}) is imposed on the boundary of the ampoule.
This boundary temperature profile is translated with a constant pulling velocity, as a result of the
furnace movement, causing the solid/liquid interface to move along the ampoule. The material in
the ampoule is thus divided into two sub-regions: solid and liguid.

The velocity, temperature and solute distributions in the solid and liquid regions are obtained by
solving the equations of motion, energy and concentration.

A vorticity/stream function formulation is used. in which the continuity equation is automatically
satisfied and the pressure is omitted as a solution variable. Applying a modified Boussinesq
approximation, the governing equations of motion become,

eg

p(E+V.(V§))=Vpxg;g}+yV3§ (1

Vxy=-¢ )

where p 4 ¢ wand ¥ are respectively the density, viscosity, vorticity, stream function and
velocity vector; g is the magnitude of the gravitational acceleration, and g is the unit vector in the
direction of gravity. The density in the buoyancy term of equation (1) is assumed to be a linear
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function of temperature and solute concentration:

p=p[-8(T-T,)+B.(C-C)] 3)

where S, and g, are the (assumed constant) thermal and solutal expansion coefficients, defined by
1 8p 1 dp

p=——— and B .=—-2 4), (5

B o oT B B, 3C . ()

pr T, and C, are reference values of density, temperature and concentration.

The energy equation can be written as':

p{c“(r;%upv,(ﬁ)} =AV'T, (6)

in which ¢, 4 and T are respectively the specific heat, thermal conductivity and temperature. To
account for the latent heat evolution during phase change we introduce an effective specific heat’,
C°(T). given by:

5 h g,
C(T}EE=CF+LE (7)

where L is the latent heat and /, is a local liquid volume fraction.

As the temperature distribution on the boundary and hence the solid/liquid interface moves, the
solid sub-region of the computational domain increases in length. In the solid. the vorticity, stream
function and velocities are set to zero. In the liquid, they are calculated from the stream function
defined as:

7V=Vxi. ®)

The most difficult problem in modelling solute transport during solidification is associated with the
discontinuity of solute concentration at the interface. Additional difficulties occur due to the
presence of a thin solute boundary layer in the liquid in which large solute gradients develop,
induced by the low partition coefficient.

The basic assumptions in the analysis are:
* Thermodynamic equilibrium exists at the solid-liquid interface: 7,, = T, = T, and C, = k,C,

where Ty, is the melting temperature, the subscripts 5 and ¢ denote solid and liquid, and ky is the
partition coefficient;

e Solute diffusion in the solid phase is negligible;
e The solid phase is stationary and a distinct separation of the phases exists at the interface;
o The densities and thermal conductivities' of the liquid and solid phases are constant and equal.

The solute transport equation can be written as':

Bl e 10 2 X,
-a—+v-("cl):DV G +l:%(l_kp)cl L a j' ®)

' In more recent work we have included unequal thermal conductivities.
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where C, and D are respectively the liquid concentration and diffusivity of the solute. The term in
the square brackets is a source term introduced to account for the release of solute into the liquid
during solidification'; f; = 1 - 7, is the local solid volume fraction. Equation (9) applies to the liquid
concentration only and hence bypass the concentration discontinuity at the interface.

During the initial transients of solidification, the melting temperature varies with time due to
changes in the concentration of the solute. With the assumption that phase change takes place under
local thermodynamic equilibrium, the temperature at the interface — the melting temperature 7,,(C)
— can be expressed as:

T,(C)=T,q + mCy (10)

where T, is the melting temperature of pure solvent, C; is the interface solute concentration and m
is slope of the liquidus, assumed to be constant and obtained from the phase diagram.

During melting, it is assumed that the interface solute concentration on the liquid side is equal to

that on the solid side’. The equilibrium condition C, = ,C, is supposed to be satisfied by the
creation of a thin layer of molecular scale in the solid which we have not attempted to model.

SOLUTION METHOD

An algorithm entitled SOLCON?, which incorporates the closely coupled solution of the transport
equations in a vorticity-stream function formulation, was developed. In this algorithm, a modified
alternating direction implicit (ADI) Samarskii-Andreyev scheme® is used to solve iteratively the
vorticity, stream function, energy and solutal equations at each time step. The modification
achieves accurate coupling between the transient equations and the boundary conditions and hence a
true transient “simultancous™ solution of the equations. Since the temperature boundary profile is
moving in discrete time steps, obtaining an accurate true transient solution is impossible without
having all equations converged at each time step. Apart from that, the use of iterations becomes
necessary because of the strong non-linearity of all governing equations. To ensure stability of the
computational process, all source terms and non-linear coefficients depending on liquid fraction are
linearised based on the value of liquid fraction obtained from the previous iteration.

The vorticity, stream function and energy equations were discretised using central differences and
solved by the modified ADI scheme with internal iterations. Interface boundary conditions for
vorticity and stream function were applied at those mesh points in the solid sub-region which are
adjacent to the liquid. For the calculation of vorticity boundary conditions, the definition of

vorticity was used: & =V x¥ . The boundary condition = 0 was used for the stream function.

The concentration equation (9) required special treatment. It was discretised and solved using a
control volume approach. This ensures mass balance during phase change in the partially solidified
control volume.

To resolve the sharp gradients of concentration in the vicinity of interface, a second order upwind
scheme® was used to discretise the convection fluxes. This was chosen because it is more stable
than central differences, particularly for problems with low diffusion coefficients. Central
differences were used for the diffusion terms.

t sOLidification and CONvection
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To account for the interface movement through the partially solidified control volume, the diffusion
flux in the direction of solidification, g;,,,,,, integrated over the control volume face Ay, was

written as
; , Cia,j=Cij
9i+1/2,j = Dirj2,j—— 48y (1
Ax

where Ax* = 0.5 (f, + 1) Ax is the distance between the centre of the liquid portion of a partially
solidified control volume and the centre of the next control volume. Convection and diffusion
fluxes in the direction normal to solidification have been integrated over liquid fractions of the
control volume faces f, Ax.

The computed solute concentration can oscillate when the phase change front moves from one cell
into the next. The reason is that in a fixed grid finite volume formulation, the computed values of C
are cell averaged values. As the interface moves from one cell to the next, C suddenly drops from
one value to a lower value. The concentration in the new cell then increases due to progressive
solute rejection at the interface, which occurs at a rate faster than diffusion out of the control
volume. The problem becomes even more difficult when variations of melting temperature with
solute concentration are taken into account. The concentration-dependent melting temperature
obtained from equation (10) will have an unrealistic zigzag shape and hence will not be suitable for
the calculation of the liquid fraction and the estimation of interface position. To overcome this
problem and to account for the fact that the computed concentration is a cell average value, an
exponential extrapolation procedure based on the liquid fraction has been introduced to determine
the value of the concentration at the solid/liquid interface®.

RESULTS AND DISCUSSION

Calculations were made for an ampoule 42 mm long and 6 mm across. The gravity vector was
taken to be acting in a direction normal to the x-axis of the ampoule. Solutions have been obtained
for both 1 pg and 10 pg. The property values of pure liquid bismuth at a reference temperature of
271.3 °C (the equilibrium melting temperature) were used'.

The computational domain initially contained only liquid Bi with a uniform solute concentration Cp
of 1 at% Sn and a uniform temperature of 700 °C. The cold end of the ampoule (the left end) had
an initial temperature of 272 °C. Along the top and bottom boundaries, the temperature increased
from the left at 20 K/mm and continued over a length of 21.4 mm until 700 °C was reached. From
that position onward, the temperature remained constant. The right end of the computational
domain had a constant temperature of 700 °C. Numerical experimentation showed that the presence
of a wall at 42 mm had no effect on the solidification or the flow near the interface for the few mm
of solid that were formed.

The pulling velocity — the rate of translation of the boundary temperature distribution — was
3.34 um/s (one of the values used in the MEPHISTO experiment), and was also imposed from > 0.
Solidification occurred from left to right as time progressed. The cold end temperature decreased
with time in accordance with the imposed temperature gradient until a minimum value of 50 °C was
reached; thereafier it was kept at 50 °C. This temperature distribution was imposed at the liquid
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Figure 2. Distribution of solute concentration across the interface (a and b), and
position of the interface (¢ and d) at 1500, 2000, 2500 and 3000 sec for 1 pg and 10 pg.
Dotted lines indicate instability of the plane front.

boundary, i.e., conduction in the ampoule was not considered®. A uniform square mesh of 210x30
cells (0.2x0.2 mm) was used. The computations were performed for 3000 seconds of solidification.

Figure 2 shows the effect of the magnitude of g on the distribution of solute concentration along the
interface (a and b) and position of the interface (¢ and d) at 1500, 2000, 2500 and 3000 sec.

After about 2800 seconds of solidification, the results showed oscillations in the interface solute
concentration, C;, which can be explained by considering the condition necessary for stable plane
front solidification. According to the theory of constitutional supercooling (e.g. Flemings’),
instability of the plane front (leading to a cellular interface) can occur when the liquid immediately
in front of the interface has a temperature which is below its equilibrium liquidus temperature (i.e,
below its melting temperature). In this condition, the liquid is said to be supercooled.
Constitutional supercooling will not occur when the actual temperature gradient in the liquid in

% In more recent work we have included conduction in the quartz ampoule as part of the calculation
procedure, and have imposed a temperature gradient of 27 K/mm on the outside of the ampoule.
This leads to an internal gradient of approximately 20 K/mm, as used herc. The isotherms in the
sample remain virtually orthogonal to the ampoule axis, although not in the ampoule itself, which
has a much lower thermal conductivity.
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Figure 3. Distribution of solute concentration along the interface (a and b), and position of
the interface (¢ and d) after 2000 sec of solidification for constant (dashed lines) and
concentration-dependent (solid lines) melting temperature for 1 pg and 10 pg.

front of the interface is equal to or greater than the melting temperature gradient corresponding to
the local solute concentration gradient.

Dashed lines in Figure 2 (a) and (b) correspond to the parts of the interface at which instability of
the plane front appeared and in front of which supercooled liquid existed. These regions are shown
by dots in Figure 2 (c) and (d), which identify the adjacent control volumes in both of which
solidification is occurring. Instability appears earlier at 10 pg due to the higher solute segregation
which builds up at the interface. By 2500 seconds, the segregation of solute at the interface at 10 pg
was 20.6 % whereas for 1 pg it was 2.65%. The segregation at 10 pg is such that the concentration
near the bottom of the cavity exceeds 9.4 at% (Figure 2(b)) while at 1 pg the concentration remains
less than 8.7% as shown in Figure 2(a).

The numerical solutions show instability occurring when the solute concentration exceeds 9.4 at%,
whilst it can be shown® that the estimated critical concentration is (C)., = 9.2 at%.

Values of solute concentration at the interface and the position and shape of the interface after 2000

seconds of solidification are shown in Figure 3 for two values of g and for constant (dashed lines)
and concentration-dependent (solid lines) melting temperature. Although the inclusion of a
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concentration-dependent melting temperature in the computations has a large effect on the shape
and position of the interface, it has only a small effect on the segregation at the interface, changing it
from 17.05% for constant 7}, to 16.05% for variable T, at 10 pg, and from 1.99% to 1.97% at 1 pg
respectively. Segregation is more strongly affected by the gravity level. Values of concentration at
the interface are smaller in the case of 7,,(C) due to the shorter distance of solidification as indicated
in Fig. 3 (c), (d).

If 7', is constant, the interface is represented by an isotherm and remains virtually flat (i.e. parallel to
the y axis). However, when T, is concentration-dependent, segregation (especially at 10 pg) causes
the interface to be curved, and it is no longer an isotherm. Differences in the shape of the
solid/liquid interface determined by differences in the segregation at 1 and 10 pg can be seen in
Figure 3 (c) and (d).

CONCLUSION

The results show clearly that it is important to include the effect of solute concentration on the
melting temperature in the solidification simulation. The velocity of the interface is determined not
Just by the pulling speed but also by the rate at which the interface concentration is increasing.
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EXISTENCE OF SOLUTIONS TO A PHASE-FIELD MODEL FOR THE
ISOTHERMAL SOLIDIFICATION PROCESS OF A BINARY ALLOY *

J. Rappaz !, J.F. Scheid ?

Swiss Federal Institute of Technology, EPFL
Department of Mathematics
CH-1015 Lausanne, Switzerland

In this note, we investigate the well-posedness of a solutal phase-field model for the isothermal
solidification of a binary alloy [4]. This model due to Warren-Boettinger [5], involves the relative
concentration ¢ and an order parameter ¢ which accounts for the solidification state of the alloy
by being equal to 0 if the system is in a solid phase and equal to 1 if it is in a liquid phase.
The time evolution of ¢ and ¢ is governed by the following equations :

a

=26+ Fi(B) +eR)  in 0 x (0, 4o0),
) % = div (Dy(6)Ve + Dy(c,4) V) in Q x (0, +c¢),

9  Oc

relalee on d x (0, +oc),

#(0) = ¢o, ¢(0) =co in Q,

where € is an open bounded domain in R? with 1 < d < 3 and with a smooth boundary 89,
n is the unit normal to 892 and € > 0 is a given positive constant.

The functions Fy, F; appearing in (P) are given and satisfy F;(0).= F;(1) = 0 for i = 1,2,
function D, is bounded from below by a positive constant and function D, is such that
D;(0,4) = D(1,4) = 0 for ¢ € [0,1]. Moreover, initial physical data ¢, and ¢ are given
with values between 0 and 1. The solutions ¢ and ¢ of Problem (P) must be found with the
same property.

Phase-field models have been principally used to describe phase transitions of pure materials
due to thermal effects and they lead to nonlinear parabolic systems for the phase-field and the

temperature (see e.g. [1], [2], [3]). However, the nonlinearities are then different from those of
Problem (P).
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WEAK SOLUTIONS

We first prove the existence of weak solutions to Problem (P) under Lipschitz and boundeness
assumptions on the nonlinear functions F; and D;, ¢ = 1,2. More precisely, we assume that
(H1) - F, F; € C(R) are Lipschitz and bounded functions.

(H2) - D, € C(R) is a Lipschitz positive function, bounded above and below by
two positive constants.

(H3) - D, e C(R xR) is a Lipschitz and bounded function.
We note V = H'(Q) and V" is the dual space (H'(Q2))" of H'(2). We denote by <., . >y
the duality product between V' and V. Then the following result holds
Theorem 1 Let assumptions (H1)-(H3) be fulfilled.
1) For any (¢o,co) € L2() x L?() and T > 0, there exists a couple of functions (¢, ¢) satisfying
¢, c€ L*(0,T; H () n H' (0. T; V"),
such that ¢(0) = ¢g. ¢(0) = ¢y and

< %% US>y +52/ Vo -Vedz = / (Fi(9) + cFy(0)) vdr,
L o

ac
at
forallv, we H'(Q2) and a.e. in (0,T).

2) For any (¢o,c0) € H'(Q) x L} () and T > 0, there ezists a couple of functions (@,c)
satisfying

(1)

e +f (Dy(6)Ve + Dafc, )Ve) - Vwdz = 0,
1]

¢ € L*(0,T; H* ()N H'(0,T; L*(R)),
ce L0, T; H'(Q)) n H'(0,T; V"),

such that $(0) = ¢y, ¢(0) = ¢y and
% —e*A¢ = F\(¢) + cFa(¢) a.e. inQx (0,7T),

—g—i =0 a.e. on 80 x (0,7T), -

< %,v o [ (Di(#)Ve + Dalc, $)Ve) - Vodz = 0,
n
for allv e H'(Q) and a.e. in (0,7T).
REMARK : Since ¢, ¢ € L*(0,T; H'(Q)) N H'(0,T; V") it follows that ¢, ¢ € C([0, T}; L*(9)).
Moreover, as soon as ¢ € L2(0,T; H*(Q))NH' (0, T; L*(R)), we infer that ¢ € C([0, T}; H'(Q)).

The proof of Theorem 1 is based on a Faedo-Galerkin method with the use of a finite vector space
spanned by the eigenfunctions of the operator (—A) with homogeneous Neumann boundary
conditions (see [4]).
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REGULARITY AND UNIQUENESS

Under the additional assumption that the initial data are smooth enough, we have the following
regularity and uniqueness result

Theorem 2 Let assumptions (H1)-(H3) be fulfilled.

Let ¢g € H*(Q2) such that ‘%OE =0 on 0Q and ¢y € H'(Q). Then for any T > 0, there ezists a
n

unique couple of functions (@,c) satisfying

¢ € L*0,T; H3(Q)) N H'(0,T; H'(Q)),

c e L¥0,T; H¥(Q))n H'(0,T; L*(Q)), g
such that ¢(0) = @q, ¢(0) = ¢y and
%‘t’ —Ap = Fi(6) +cF(8)  ae inQx(0,T),
% — hie(D(O)Ve+ Dofe.9)Ve)  ae mQx(0.7), (4)
g'% = % =0 ae ondQx(0.T)

Remark : We infer from the regularity of the solution that ¢ € C([0,T]; H*()) and
ce C([0.T]; H'Y()).

Theorem 2 is proved by establishing further a priori estimates in the Faedo-Galerkin procedure
(see [4]). Thesc estimates are obtained thanks to Gagliardo-Nirenberg inequalities.

A MAXIMUM PRINCIPLE AND CONCLUSION

In order to conclude to the existence of solution to Problem (P) with physical assumptions, we
need a maximum principle which is obtained under extra assumptions on the nonlinear terms.
More precisely, in addition to (H1) (H2) and (H3), we suppose that the nonlinear terms F),
F;, and D, satisfy the following extra assumptions :

(H) - FR=F,=0in]-oc,0]U([l,+oo[.
(H8) - Dy(,72) =0in]—o00,0]U[l,+oc[ and for all r; € R.
Then we have the following result

Theorem 3 Let assumptions (H1)-(H5) be fulfilled.
Suppose that the initial data (¢g,co) € L3(R) x L*(Q) is such that

0 < ¢o(z), co(z) <1 for a.e. z €.

Then for any T > 0, every weak solution (8, c) € (L*(0,T; H'()))> N (H'(0,T; V"))? satisfies
for allt € [0,T)
0 < ¢(z,t), c(z,t) <1 for a.e. z€ Q.
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We are now able to conclude to the well-posedness of Problem (P) with physical assumptions
for the nonlinear functions F;, D;, ¢+ = 1,2. In particular, the physical modelling leads to
functions F; and F; depending on ¢ which are polynomial functions of degree 4 with ¢ € [0, 1]
and vanishing for ¢ = 0 and ¢ = 1. Function D; depending on ¢ and ¢ satisfies the relation
Dy(0,4) = Da(1,4) = 0, for all € [0,1]. When ¢ and ¢ do not belong to interval [0, 1],
functions Fy, F> and D, are not defined. It follows that we consider a vanishing extension
of F, F; beyond the set {0 < ¢ < 1} and an extension of D; to all the values of ¢ and
¢, satisfying assumption (H3) and vanishing beyond the set {0 < ¢ < 1}. In that way, we
obtain nonlinear functions £y, F; and D, satisfying the Lipschitz and boundeness assumptions
(H1),(H2),(H3) and then we can_apply existence and regularity results of Theorem 1 and
Theorem 2. Moreover, since Fl, F2 and Do also satisfy the vanishing assumptions (H4) and
(H5), the maximum principle given by Theorem 3 holds and since the initial physical data ¢
and @, are values belonging to the interval [0, 1], we are sure that the solution (c, @) remains
included between 0 and 1 when the time ¢ goes up. It follows that ¢ and ¢ don't depend on the
choice of the extension of functions F,, F3, D, outside the interval [0, 1] and consequently the
physical problem (P) is well-posed.
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Heat transfer between two media involving liquid-solid phase transitions is important in both
nature and industry. Natural situations include ice formation in rivers, melting of icebergs
and lava flows from volcanoes. Industrial areas of interest include casting, welding, hot
liquid jets for drilling and the design of heat sinks in power generating systems and in the
nuclear power industry. In this last example, the operators are required to demonstrate that
adequate safety margins exist even under severe accident conditions. This means that the
physical processes involved in extreme conditions are sufficiently understood that corrective
actions can be implemented effectively.

The problem motivating the current work is an extreme hypothetical situation in a gas-cooled
reactor, where it is supposed that the shutdown systems have failed to arrest some event that
has led to the fuel in a particular channel to overheat, causing the entire fuel inventory of
that channel to melt and pour onto the steel floor below. In a matter of seconds this molten
fuel material would spread over the floor and freeze into a solidified mass. On a much longer
time-scale, the solidified fuel would release its nuclear decay heat, partly to the gaseous
environment (by radiative heat transfer) and partly to the steel floor (by conduction). In
considering the possibility of melting of the floor due to the release of this decay heat, the
extent of spreading of the molten material is a key factor since this determines the effective
strength of the source of heat to the base. In practice the strongest inhibitor to spreading
is crust formation on the top of the melt. In this talk, results from two sets of simulant

experiments will be presented, distinct flow regimes will be identified and analysed.
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The first set of experiments involves the radial flow of a low-Prandtl number metal (cer-
robend) over an aluminium substrate. Here the source of the cerrobend is a jet in free-fall
from a heated source above the substrate. Over the parameter regime considered the flow
is inertia dominated and always features a hydraulic jump. The solidification in this case
is effected mainly by basal conduction and there is a little convective cooling of the top
surface.
The second set of experiments involves a low-Prandt] number wax (polyethylene glycol)
which is extruded under pressure into a bath of coolant containing ethylene glycol such that
the dominant cooling is at the melt/coolant interface rather than between the melt and the
substrate. This leads to an extensive crusting of the surface and o consequential reduction
in the size of the footprint of the spread. This flow regime is viscous-dominated and the
crust has a visco-elastic nature.
Motivated by these experimental studies, simple mathematical models, reflecting some of the
features, have been developed and analysed. In the inertia-dominated case, shallow-water
equations incorporating surface tension effects have been considered,

du du 16h 8 (18 /(. 6k

E“‘E*ﬁa“’a(r@(’ E)) i

%+§(uh)+nl‘-r—h =0

where n = 0 and 1 in the plane and axisymmetric cases, respectively, u is the velocity

component parallel to the substrate, z = h(r,t) denotes the free surface, Fr is the Froude

number and o is a dimensionless surface tension coefficient. While in the viscous case, a

lubrication model for a fluid with temperature-dependent viscosity has been investigated,
g (& a_h)
ot  3rmor \u(T)or

3

where the viscosity p is a given function of the temperature T'(r,¢) and the rest of the

notation is as above. Results will be presented for both of these models.
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