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Abstract.

In the paper transition of the wave pulses through bars with random properties
is investigated. It is assumed that the bar is built of several homogeneous
segments. It is permitted that the lengths of the segments as well as their
material parameters are random variables. The overall properties of such bars are
studied. The discussion of obtained results is illustrated with numerical
calculations.

1. Introduction.

Engineering structures performing their functions undergo external or internal
excitalions which generate vibrations or waves in their elements. Depending on the
desired behavior of the structures such phenomena are utilized for its proper work
or must be eliminated to avoid its damage. The problem of special interest is
propagation of wave pulses through elements of structures. Such a phenomenon takes
place in a number of working machines or mechanical tools like rammers and drilling
rods, where the wave pulse is applied for machine utilities. In some other
situations (dumpers, absorbers, fixing elements) the wave pulse plays a destructive
role. In both cases it is reasonable to design the elements of structure in the



optimal way, depending on its functioning.

As it is known, the wave pulse is an (elastic) disturbance of the medium,
travelling in space, of limited duration at time and transporting energy. The
transmission effect of the wave pulsc' depends not only of the properties of the
element of structure but also of the duration and shape of the pulse itself. In the
design procedure these two factors must be taken into account.

In this paper we analyse the particular problem of the longitudinally polarized
wave pulse propagation in bars - the elements of structure mathematically modeled
by the spatially one-dimensional partial differential equations. In the model we
neglect internal and external dumping (friction) as well as thermal effects. In
spite of the fact that such models extremely simplify the reality, they ( mostly in
deterministic case) have been widely analysed in literature, both analytically and
numerically, giving sufficient theoretical support for experiment design (cf. e.g.
[1], [2]). The purpose of our paper is to study such models of the elements where
their properties are regarded as random,

Starting from the randomized model of the bar we try to obtain its overall
properties as the element transporting wave pulses and, what it follows, the
energy. We use both the analytical and numerical tools in our investigation.

To describe the model of the bar let us assume that it occupies the part of real
number axis x starting from x=0 to x=d.

The environment is regarded as a couple of semi-infinite bars expanding from
minus infinity to x=0 and from x=d to infinity. Moreover, we assume that the

investigated bar has some internal structure; it consists of several (e.g. N)
N

segments of the lengths 4 Zhj=d, being themselves homogeneous bars. In our
=1

model it is permitted that both the length of the segment as well as its material

parameters can be random variables. In such a case also the length of the bar d is

a random variable.

The problem of the propagation of wave pulses is posed in such a structure. It
is assumed that the longitudinally polarized pulse flx,) is coming from the left
environment and reaching the front end of the bar x=0 at the instant of time r=0.
Then the pulse partially reflects from the interface and partially transmits to the
first segment of the bar. Going on, the transmitted pulse reflects and transmits at
all interfaces of the segments; moreover, we have also reverberation of all the
reflected waves on the panels already passed by the wave front. This multiply



reflections and transmission process makes that the global picture is very
complicated. Trying to simplify this situation we replace the originally continuous
model with some discrete-continuous one, what is the assumption which do not
disturb the global description of the pulse but neglects some local physical
effects in the near surrounding of the interfaces of the segments.

The mathematical analysis of the wave pulse ftransmission is significantly
simplified when one goes in the description of the problem from the space-time
domain to the space-spectrum one, dealing with the Fourier transform of the wave
field with respect to temporal variable . Then the exciting wave pulse is flx,w)
and the governing equations are the ordinary differential ones. Such an approach
was for example effectively utilized in papers of Lundberg and coauthors (e.g. [1],
[2]); it is also efficient in multi-dimensional problem, e.g. wave propagation in
layered media (e.g. Kennett [3]).

The following section is devoted to the formulation of the problem of the wave
pulse propagation through the segmented bar with the use of the spectral method.
Then we consider the periodic case where the bar is built of a series of the
identical couples of segments and the stochastic model. In both cases we obtain the
overall reflection properties of the bar, in stochastic case using the law of large
numbers for the product of random matrices. In the last section we illustrate the
analytical results with the numerical example.

2. Wave pulses in the segmented elastic bar,

Wave propagating along the length of an elastic bar of a constant cross-section
is described by the system of two differential equations:

a0 av
o P
@.1)
av 1 8o
ax An ar

where

o denotes the stress,

v is the particle velocity -in the medium
and



A is the area of the perpendicular cross-section of the bar,
p is the density of the material,
1 is the Young modulus,
and x, t are respectively, the spatial variable along the length of the bar and
time.
Introducing the matrix notation we can rewrite equation (2.1) in the following
form:

0 A
2 ["] = |1 Op 2 ["] 2.2)
v —
ax An at |V
After substitution of the wave velocity in the equation (2.2):

c= J—D— (2.3)
p

we transform it to the following form:

SRR

T l— o ‘%
Alpn

Let us introduce, instead of the the spatial variable x, new independent variable
being the wave travel time from O to x, defined as:

1 x
g=f-ar== 2.5)
c c
0
If we moreover define the impedance Z as:
z=Alpm (2.6)

then the wave equation (2.4) takes the form:
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Introducing in eq. (2.7) the vectorial notation we have
C8=Q- @8)
-B-E = 5-: 8 .
where
0 Z
Q= % o | s=[g] 2.9)
Finally we apply in eq. (2.8) the Fourier transform with respect to time
@ 1 ©
A <l i A
SE,0) = j Vg d,  sEa) = = I ¥ $Ew) do, (2.10)
- -

and reach the following ordinary differential equation for the transformed wave
fields:

f 8=inQ (2.11)
dg
with some initial condition Q(O,m).
Its solution in an uniform bar can be represented in the following form:
A A
s(§.0) = P(§,0) s(0,0) (2.12)
where P(E,m) is the solution of the following matrix differential equation:
d .
E P=i0w QP, P(O,w) = Id. (2.13)



Such a solution has the following form:

p = SOQf (2.14)
or explicitly:

F 105 Z [_,"“15 > e-i&)&]

1
2 % [_e"mg + ,".‘05] c'm'2 + e'imE

P = (2.15)

Expressing the exponent in above formula in terms of sine and cosine functions we
obtain:

1| cos w§  -iZ sin ©f

P= 2 -é.rin o cos @ | (2.16)
This idealized situation complicates when the travelling wave pulse reaches a
surface of discontinuity where some material parameters of the bar change. Then the
wave is partially reflected and partially transmitted and at two sides of the
interface of two homogeneous panels of the bar the amplitude of the wave and its
phase jump. However, the values of these parameters at both sides of the interface
point & are connected by the continuity condition of the stress and velocity field:

SE o) = 5¢E*,0) 2.17)

Restricting our interest to the stress only we can eliminate the velocity field

v for the equation (2.11). The resulting equation for 8’ is:

iG»fm’S:o (2.18)
dg?

and it has the solution



B(E,©) = 6() e + Gy(w) £ 2.19)

where
8,(&)) is the amplitude of the right-going (incident) wave,
GR((D) is the amplitude of the left-going (reflected) wave.

Then, since

d

A 1A
& v(g.w) = io 7 o(§,w) (2.20)

A
we find the velocity field v(§,w):
1 . .
C(E,,m) =z [ - 3,@) e"m§ + en(m) euni ] (221)

The continuity condition (2.18) at point & for two media indexed with numbers 1 and
2 respectively, is:

Sl ' 4 §lw) % = Sw) 5 4+ Gia) £
(222)
T . , 1 L .
2—1 [ o;(m) e—xmﬁ + 3,;((:)) ¢m)£ ] = Z_z [- Si(m) c—m)& + 0:(0)) em:'é

Assume now that the bar is built of N homogeneous panels; in j-th panel the
impedance is Z;, the wave traveling time through it is h. The beginning of the bar
is located at the point 0; the following points of interface of the panels are in

i
the travel time domain & = J h,. Assume also that the wave pulse 8 1% comes

k=1
from the surrounding media (with the impedance indexed by 0) to the front end of

the bar. Then it generates the reflected pulse in media O and transmitted wave in
panel 1. Going on, due to the sequence of interfaces of the panels (discontinuity
points) we have the right and the left-going waves of the following form:

B8 = 8 1%, D(af) = 8} 5 (2.23)



at the panel with the travel time A, that i(s for § € (§,, E). In the
surrounding media behind the bar there is a right-going (transmitted wave) of the

form:

D) = B

(2.24)

This means that the continuity conditions at the interfaces of the strata

written down in the matrix form, for the particular point &, are:

l1 { B! e-t&)ﬁ“ ll } 8 e—m)ﬁﬂ
s 1 ImE: e 1
Zn 7| |88 | [z Z | |6k
Let us introduce new variables:
7 = 8} %5,

_?1 = &g e-fﬁﬁ}l’

Since &, = - hy (or & =&, + h) for j=1,2,...N ; § = 0, hy = 0,

we obtain :
§a = &1 - By, 8= & + by

and

6_{-1 e‘l‘ﬂg}_l - ei-] e-iﬁﬁ}: e-i(ﬂh}_l = ﬁ-l e-io)h}‘

g1 405 81" 055 ok, _ ?ljl-l £

and the continuity equation takes the form:

11 ik 11
11 ??“,m;' 1 A
Z zZ.| | A € Z 7| |/

Z, Z

or

10

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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Solving this equation with respect to (j-1)-th variable we obtain

l(t)h 1 1! 1 1
0 11 11 i ) (2.32)
?]l -"Dh)'] e = e j
Z5 L Z| | f
Let us denote:
l l . A
A=|11[ Eg-= ¢ ,?M ., P /i ! (2.33)
"z 7, 0 i T

Then the transition equation takes the following simple form:
A E A
F''=E, A, A F. (2.34)

Considering the bar consisting of N elements we have (ﬂ.n corresponds to the left

environment, F**! to the right environment):
(2.35)

= By A AL E A - Ay By A Ay, B

Since E; = Id, the equation can be written in the following form

N
= A [ A E A Ay, P (236)

j=1

We can write the transition matrix A; E; Aj’ explicitly. Since:
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i 12 2
A= z (2.37)
2 2
we obtain:
1 Z;
1 1] [ ik T 3
0 e 0 2 2
AE A= | 11 don,|| 7z |*= (2.38)
Z 2, 0 e H RE
‘ 2 2

cos mh, -iZ; sin (nh,
= 1
-i — sin mhj cos mhj
Z

The transition matrix A; E; Ail has also the real representation; it can be
obtained by multiplying the matrix by matrix R and its inverse defined as:

1 0 a_|1 0
] R _[0 g ] (2.39)

Then the transition matrix is:
cos Why  Z; sin @h
= Rr! p o 1
Mj-R AiEjA,R- 'fs'."mhl cos why (2.40)
i

and the equation for all the bar becomes:
N
F = A7 R[] My R Ay, £ (2.41)
i

Coming back to the original amplitudes e?, 3:. 6’:" (since in the right half-space

12



there is no reflected wave, we have 6‘:”-0). using 5115 definition we have:

N

Rt R-g  pmogw %N g Qolh L (242)
1
and the equation becomes:
1 N 11 i
81| 1[1 -izy i || g iaEh 245
o1 3|1 iz I ™ i :
R =l ZN+1 ZNH
or
8 11 -iz)] 3 I o
g |3 |1 iz 1M || & ewy oL b 249
R =1 ZN-H: 1

3. The model of the periodic bar.

Consider now a periodic case, that is such that the bar consists of two kinds of
elements , the couples of which are located periodically. Let N = 2K and the
transition matrices through the layers are:

i =M, fori=13, ..,2K- 1,

M
M =M, fori=24, .., 2K,

where

cos Wh;,  Z, sin ©h,

1
- — sin @h;  cos Why, | G
Z,

M, =R'A E A'R=

13



cos Why , Z, sin ok
M, =R' A E A R= _%sg,,(,,,,z cos why | (3.2)

The travel time periods A, and h, are related to the lengths of the panels /, and
I, according to formula (2.5) as:

| P AP; IZ p‘.‘ API
h1=—1_| 1 §= 21, h=—=|— 11=Zlz (3.3)

o N 11_1 Z (2] n,
Then we can introduce the transfer matrix through the couple of layers:
M=M M, = (3.4)
Z
cos Wh, cos wh, - Z sin Wh; sin Why Z, sin wh; cos ®h, + Z, cos Wh; sin Wh,

sin wh; cos why cos wh, sin h,
Z; z,

zZ,
cos wh; cos ©h, - A sin Wh; sin ©h,
1

and transform the equation for the amplitudes to the following form:

0 5 1 5
8, %[l ‘Z"] M* |0 ef“e"mx(h”h’). (3.5)

6z L iz zZ.

Consider now a limit case where the number of panels in the bar tends to
infinity but their lengths tend to zero in such a way that the length of the bar as
well as the ratio of the lengths of its components remain constant:

Ll
Ea>w, =z, I =—. (3.6)

and, what it follows:
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h = —, h = —. 3.7
where
H = lL H = i (38)
V=7 L g :

are the travel time periods through all the segments within the bar made,
respectively, of material 1 and 2.

It can be shown that in the limit the reflection properties of the bar are
equivalent to the properties of some uniform homogenized bar with the effective
parameters (impedance and travel time from the beginning of the bar to its end).
Their numerical values can be calculated analogously to the effective properties of

the stratified slab obtained in [4,5]. To calculate them let us substitute the
H H, :

assumed values of h, = ?1 and h, = ra to the formula (3.3) for the transition

matrix M. Expanding the matrix M into the power series we have:

1 0 ZoH, + Z,0 H, )
|1 0 0wH oH
M—[O 1]+;( i L 2 0 +o;( 3.9)
Z Z
or
1 1
M=A+-B+o|-| (3.10)
K
where
A=1Id (3.11)
and
0 ZwH +ZwH,
B= o H oH, 5 (3.12)

z, 'z
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Calculating the limit

1 1
lim MX=  lim Id+RB+o[-] =, (3.13)

K— o K—® K
we obtain the effective transition matrix for the homogenized bar:

1 eiva, Jua g [e"'“‘a - eima}
5 . - ) (3.14)
2|1 [e'i"” ) e,-ma] oo ioa

where the effective travel time through the bar g and the effective impedance b are
equal to:

(#2+ 2y ) (M2 + HiZ, )

- , 3.15
a Z 7 (3.15)
HZ + HZ,
b=J : ,#__’Z_’. (3.16)
H\Z, + HyZ,

The transition matrix can be also written down in the real numbers form:

cos wa b sin wa

B_1|1 _
Ch -l-,sinma cos Wa | G.17)

The effective parameters a and b can be also expressed in terms of the lengths
L, and L, instead of the travel time moments. Substituting expressions (3.8) into
(3.15) and (3.16) we obtain:

16



Lipy ¢ Ly,

a=A [L,pl+lqp,J ik (3.18)
z; 3
b= Lip, + Lyp, (3.19)
Lp, . Lap, ’

Z g

Moreover, substituting in (3.18) and (3.19) the definition of impedance (2.6) we
obtain @ and b expressed in terms of material parameters and lengths:

(3.20)

(3.21)

The above formulae prove that the effective parameters of the material in the
considered dynamical (time-dependent) model are the same as in static or harmonic
one (see [5]).

Substituting the effective transfer matrix into the equation for the amplitudes
of the waves (3.5) we obtain following final equation:

a° 1 [ -z cos wa b sin wal |1 ioXH +H.
=2l 2 |1 gim O 3.22)

i
63 1 iZ, -Esinma cos 0a Z

Multiplying the matrices in (3.22) we obtain the expressions for the amplitudes:

1

0 = -
8l(w) = 5

z r
1+ _°] cos wa + i[—b— + é] sin wa|Bf(@) ¢ CHHD (303
2 Zm b

17



Z zZ -io(H,+H
1.2 cosman_f"_-f sin walbf(@) XD 404

1
60 = -
R(@) =3 - 7 Zm

Posing the problem we have assumed that ﬁe(m) is the known quantity in our model.
Therefore we can express the unknown amplitudes of the reflected and transmitted

wave with the use of 8%(w) in the following form:

Zy |b Z, . 0
l-z_f., coswa+tz—h-F sin ®a 61((0)

&yw) = (3.25)

Z, 16 Z| .
1+ —| cos wa + i|— + —| sin wa
Zg Ze b

io(H,+H,)
2 80 &2
8(w) = ! (3.26)
[ Zo] iR Zo] .
1+ —| cos wa + i|— + —| sin ®Wa

Calculating the inverse Fourier transform of the expressions (3.25) and (3.26)
we obtain the behavior (the shape) of the reflected and the transmitted pulses in
time.

4. The model of the bar with random properties.

In the model of the bar considered in the previous section it is assumed that
both the material parameters and the geometrical dimensions of the bar are
deterministic. In reality, since the element of the structure is built in factory
conditions (some tolerances in dimensions, the pieces of the material selected from
some bigger sample, etc.), such quantities should be regarded as random variables.

18



Then, the waves generated by the incident deterministic wave pulse prove to have
stochastic properties and must be regarded as stochastic processes.

In practice we are mostly interested in some averaged properties of such
transition phenomena - average wave amplitudes, average transmitted (reflected)
energy and - in some limit case - the overall properties of the bar. In this
section we apply the law of large numbers for the product of random matrices
(cf.[6]) to obtain the effective transmission properties of the bar built of large
number of segments with random properties.

The equations (2.44) satisfied by the reflected and transmitted waves are valid
also in the case when the material parameters and the lengths of the segments are
random variables. Therefore, for every finite number of elements in the bar the
obtained equations (with an appropriate stochastic interpretation) can describe the
wave field. The situation complicates a bit in the limit case when the number of
segments tends to infinity. However, the law of large numbers makes that the
problem can be successfully solved.

Assume that the bar is built of 2K segments with the lengths [,(Y), /(Y), ...
Jk(y), where [(y), i=1,2, .. 2K are random variables. In the above yel” is an
elementary event and ( I',# &) is the complete probabilistic space (cf.[7]). Assume
additionally that the material parameters of the segments and the areas of their

cross-sections  (py;4(Y), Ma(Ms Ay (), P My(Y), Ay(Y)) are, as  the
vector random variables, independent and identically distributed for j=1,2,...,2K.
Moreover, we assume that the lengths of the segments have the following particular
property:

(4.1)

L, L,
[llj—l(’Y)v 121(7) ] = [ 2)-1(7) ’ 2'(7) ]v

2K

for j=12,..,K are independent, identically distributed two-dimensional random
variables with

E{ Ly } = L, E{ Ly(y) } =L, “42)

for j=1,2,..,K. In this particular case the equation (2.44) for the Fourier
transform of the amplitudes takes the following form:
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2K
[[M,(m,y) 87 @) expi-io T 4D, .3)

6%w.y) [
) 1 zn(u =1

@)

where hj(y) are the randomized counterparts of the travel time defined in (2.5),
Mj(w,y) are the randomized transfer matrices through the couple of layers defined
in (3.4):

M(wy) = (4.9)
Zy, ()
cos hy (1) 08 Why(f) - o sin Wy () s
sin @hy ((Y) cos @hy(Y)  cos @hy (Y) sin hy(Y)
Zy,(Y) Zy(v)

Zy;.1(Y) sin ©hy ((Y) cos @hy(Y) + Zy(Y) cos @hy,(Y) sin ©hy(Y)

Z
cos @y, cos W) - 5= s @hy(y) sin Wy, sin ol

for j=1,2,...K, with

Z() = A L p 1, i=12,..2K. 4.5)

To study the asymptotic behavior of the randomized equation for the amplitudes
of the waves we apply the law of large numbers for the products of random matrices
obtained in [5]. This theorem can be written in the following form.

Consider the sequence of the products of real random matrices

K
Py = [[Mx(y)- (4.6)

=1

It is assumed that for K tending to infinity the matrices M,y can be represented
as

20



1
Mx(y) = 1d + e Bix(Y) + R{(K.), 4.7

where Bjx(y) for j=12,..K are independent, identically distributed random
matrices, integrable with respect to probability measure Zand [IR(K)Y)| = o(K 1y
for large K. Under these conditions the law of large numbers takes place and

i lim | Py = exp [E{ B } ] (48)

in the sense of convergence in distribution of all the vectors obtained from
multiplication of the random matrix by an arbitrary deterministic vector.

To analyse the limit case of the propagation of wave pulses through the bar
built of the segments we decompose the transition matrix defined in (4.4) under the
assumption (4.1) (hj(y) are connected with /(y) by the formula analogous to (3.8))
with respect to the powers of 1/K:

M) = [ . (1’] + 49
1 0 Zy (M Hyp (1) + Zy(m Hyly)
+ & (O] Hi}-l(y) [ Hz,‘('Y) 0
Za  ZyW
[ 1
+ 0| -
K

The matrices B; required in formula (4.8) are defined as:

0 Zy (N Hy (V) + Zy(v)w Hy(y)
B =| ©Hy() ©H® (4.10)

- 0
Zy(Y) Zy(Y)

21



and their common average value is

0 E{ Z,(DH,(Y) } + E{ Z(VH,(Y) }
& { ) } o H(y) HY) @14
B —— Y P — 0
Z,(y) Z)
The matrix eE(Bil is of the form analogous to (3.14):
1 eioa y Joa g [e-ima . ei(na]
L) y (4.12)

2|1 i . -iwa ia
4 [e:ma_ excua] siwa | i

where at present the effective travel time through the bar @ and the effective
impedance b are equal to:

H@) [Hm
a= [E{Zl(‘Y)Hx('Y)}‘*E{Zz(‘Y)Hz(Y)}] E{z:Tw}'E{ﬁ} . (4.13)

e{ Z,(DH,(Y) } + E{ ZNH) } ‘

(4.14)
H(Y) Hy(Y)
E{ — } + E{ —
Z,() Z
Analogously to (3.17) the transition matrix can be written in the real form:
(4.15)

cos Wa b sin wa
-l—,sin(ﬂa cos Wa

1B [ ;
We can also find the randomized counterparts of formulae (3.18-3.21) where the

22



effective parameters a and b are expressed in terms of the lengths L, and L, and
the material parameters of the segments. We have;

a= J [E {p,(v)A.w)L,cv)} +E {Pz(Y)A'z(Y)Lz(Y)}] x

P1(NA(NL,(Y) P2(MA(MLA(Y)
x E + E (4.16)
t Zio Zo

E {p.(v)n.(v)Lm} +E {Pz(‘l)Aa(T)lq(Y)}
b= 4.17)

PVAL(Y) P2AMNAL (YL (Y)
E +E
] Zi Z

or

= j [E {PuDADLDY + E {paisnL0} ] x

Ly Lyy)
x | E + E (4.18)
Mm(NA(Y) M2(NAL(Y)
E {pl(v)A.(y)L.(v)} +E (PI(T)Az(Y)Lz(T)}
b= (4.19)

Ly Lyy)
E +E
mMA,Y) M(NALY)
The above formulae can be easily generalized on the case where the bar is built

of more than two kinds of material - the period of the segments (in our stochastic
sense) is e.g. k. Then the transfer matrix for the homogenized bar is also of the

23



form (4.12) or (4.15) but the effective travel time a and the effective impedance b
are defined as

k E .
a - | [E{penaaLm} | LE e (4.20)
=1 =1
k
LE{pipALM}
b= "'k 421
e L(y)
=7 oA

The expressions for the amplitudes are analogous to (3.25)-(3.26) with the obtained
above parameters a and b.
5. Illustrative example and discussion.

In the considerations of this section let us concentrate on the reflected pulses

characterized for the homogenized (uniform) bar by formula (3.25) and for the
segmented bar by an analogous formula obtained directly from equation (3.5):

Z, 1
[Mll(x'M'z(zZ—m] +i[M'1‘IZ_b+M’2(IZO] 6(1)("))

B83(w) = (5.1

Z
[Mllcl + My, 7
fin

K 1 K
+‘[M|zz:'M1szo]

where M'i‘j is the ij-th element of the matrix M®. Calculating the inverse Fourier
transform of the above expression we obtain the shape of the reflected pulse in the
temporal domain and taking its absolute value - the changes in time of the
amplitude of the reflected wave.



As it is seen from the formula (3.25) or (5.1), the reflected pulse is the
function of two components: the initial pulse, characterized by Gg(m) and the
material properties of the dynamical system, characterized by the remaining part of
the formulae. The purpose of this section is the numerical studying of the
convergence of the segmented bar to the homogenized one when the number of segments
tends to infinity. This fact determines the material (geometrical) part of the
equation for the reflected pulse. Up to our decision is the determination of the
shape of the initial pulse 8?(0)), which in this particular problem plays the role
of a testing tool. Therefore we can select such a form of the initial pulse which
gives us the possibility to inspect with the best accuracy what happens inside the
reflecting bar. The rectangular pulse seems to have such a property - it starts
rapidly and has finite duration. This makes that we know when the pulse reflected
at a given interface starts and how long it continues.

Writing this in terms of the formulae, we assume that the initial rectangular
pulse has the following form:

0, otherwise’

fin = {B‘ te(0.0) (5.2)

where B is the value of the amplitude of the pulse (the displacement of the
material) and o is the duration of the pulse (starting at time r=0). Then the
Fourier transform of the pulse required in the formula (5.1) is the following
function of the spectral parameter ® € (-w,):

. 0o
sm—-—-~2 00
F(w) = of T] cxp{-iT}, (5.3)
2

that is in equation (5.1) we substitute

8(w) = F(w) (5.4)

The fact that the rectangular initial pulse gives very distinct shape of the
reflected pulse is very important since even in the case of homogeneous reflecting
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bar its shape can be quite complicated. For example, for some fixed parameters of
the system we have the amplitude of the reflected pulse as it is shown at Figures
la-d. We assumed in calculations that the impedance of the surrounding medium is
Zy=Zg,=1.0, impedance of the reflecting bar is 5=2.828427, the amplitude of the
incident pulse is B=1.0 and its time of duration o is also equal to 1. The
parameter which moderates the picture is the travel time of the wave through the
reflecting bar. It is seen that the ratio of the duration of the pulse and the
travel time through the bar has the strong effect on the shape of the reflected
pulse. We see how, in the case of the bar short comparing to the duration of the
exciting pulse, the multiple reflection on the interfaces of the materials
summarize giving the final amplitude of the pulse. The much more complicated
situation is when the reflecting bar consists of several segments. In this example
we wish to present how the homogenization procedure, theoretically analysed in the
previous sections, works in the case of the concrete bar.

Assume that our periodic bar analysed in Section 3 is built of two kinds of
material with impedances, respectively, Z,;=4.0 and Z,=2.0. We assume that the
surrounding medium has the impedance equal to 1 (that is in our formula
Z2y=Z4,=1.0). Moreover, we assume that thickness of the bar is finite and both
malerials participate in it in such a way, that the travel time through both of
them is the same, equal to 1. (in (3.1-3.8) H;=H,=1.0). For such parameters in our
periodic model analysed in Section 3, we can calculate the numerical values of the
effective travel time and the effective impedance of the homogenized medium
according to the formulae (3.15)-(3.16). The result is

a = 2.12132, (5.5)
b = 2.828427. (5.6)

It is seen that the effective travel time is higher than the sum of the travel
times through its components,

To know something about the reflection process in the case when the number of
segments in the bar is finite we must perform the numerical calculations. In
particular, to find the amplitude of the reflected pulse, we must calculate the
inverse Fourier transform of the expression defined in (5.1), which in the
numerical case is the discrete Fourier transform (see [8]). The algorithm of the
numerical calculation of the amplitude of the reflected pulse is the following.
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As it was assumed in Section 2, we consider the Fourier transform defined for
the function f{t) as:

Flw) = j f) €1 g (5.7

Then the continuous inverse transform is defined as

) = % IF(«D) &% do (5.8)
or in the discrete form:
= ;E[ (TD,) & Aw (5.9)
where
D, = F(w), @, =nAo, A®= 2?" (5.10)

and T is a constant regarded as a period of the temporal function f{7).

Assume that we have given the continuous Fourier transform F(w). We are sampling
it on the interval (-R,R) transforming the continuous function to the equivalent
discrete form. The number of the sample points on the interval (O,R) is assumed as
N; the total number of the points is NN=2N. Under the above assumption, the
sampling interval Aw is equal:

(5.11)

Sk

Aw =
and, what it follows, the sample points are defined as:
R
0, =nAw =n s for n=0,£1,+2, N. (5.12)

By definition,
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D, =D

o (5.13)
where the overbar denotes the complex conjugate of the number.

For the numerical calculations, the sample points of F(w) are located in the
complex vector F of the length NN=2W in a specific way. We substitute:

F, = Dy, Fy = Dyyoey Fyyy = Dy Fryyz = Dyags oo Foy = D, (5.14)

where it was assumed the periodicity of the Fourier transform; the values of the
transform at the ends of the interval of sampling are considered as equal - they
are located at the element Fy,, of the discrete transform vector.

To restore the function f{f) we must calculate the discrete inverse Fourier
transform defined as:

2N-1 2N-1

1 {{ON 1 i2nnmf2N

fiw) =fa=7 L Dae ""=z [ Die , (5.15)
n=0 n=0

where the following definitions of t, and @, have been used:

2mn_ 2nmn
tn = m AT, =——=—, 5.16
m=m O = NAT- T (5.16)
To connect the required quantity T describing time (the period of the function
being transformed) with the dimension of the spectral domain of the transform we
use the expressions for @,. Comparing @, from (5.12) and (5.16) we obtain:

nR _ 2nn 5.17)
N NAT’ ‘
Then the time step in temporal discretization is:
n
AT = -, 5.18
R (5.18)

and the period T is defined as:
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2nN

For the numerical calculations of the discrete Fourier transform defined above
we applied the procedure of the Fast Fourier Transform taken from the book [9],

where we assumed that the number of points N = 2'8 = 65536.

As we mentioned, in our numerical example we consider the convergence of the
segmented bar to the homogenized one when the number of segments K tends to
infinity. In contradiction to the harmonic waves where the reflection coefficient
plays the role of a measure of the convergence (see [10]), in the case of pulses
defining the adequate measure is very difficult. Therefore to show the convergence
we present the shape of the reflected pulses for a given number of segments in the
bar (under the constrain that the total share of the materials within the bar
remains constant). At Figures 2-10 there are shown the amplitudes of the reflected
pulse for, respectively, 1, 2, 4, 10, 20, 30, 40, 50, 100 periodic couples of
segments (figures marked with the letter a are for Z,=4.0, Z,=2.0, figures with b -
for Z,=2.0, Z,=4.0). Figure 11 shows the reflected pulse when the bar is built of
500 periodic couples of segments (for such large number of segments the picture
does not depend on the order of the materials). Finally, at Figure 12 the reflected
pulse for the homogenized bar is presented (calculated according to the formula
(3.25)).

The first conclusion we can draw from this sequence of plots is that the
homogenization (the procedure regarded in theoretical considerations as an
asymptotic phenomenon) really takes place. It is seen, that even for very small
number of layers (e.g. 10) some concentration of pulses, similar to the case of the
homogenized bar, takes place. In this case we can predict the location of the
pulses at time but their amplitude still remains unknown, Increasing the density of
stratification in the bar we reach to the result closed to the asymptotic limit.
One can follow the speed of the convergence studying the presented set of pictures.

Another conclusion observed from our calculations is that the reflected pulse
for small number of segments in the bar is strongly dependent on the fact, which
material is the first in the periodic couple of segments. This dependence is
stronger for the later reflected pulses. It practically disappears for the high
number of segments in the bar.

The presented calculations are performed for the case of periodic non-random
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bar. Randomness of the properties of the bar makes the picture much more
complicated. The convergence of the reflected pulse to the picture given in the
homogenized case (which is, as it was shown in Section 4, very similar to the
periodic one) is much slower with respect to the growing number of segments in the
bar. The preparation of the adequate illustrative pictures needs a lot of time-
consuming computations and therefore in this paper we restrict ourselves to the
periodic problem.
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