Contents of issue 5 vol. XLV

507

527

537

563

575

595

615

K.L. PAN, Growth of circular cylindrical voids in shear bands
B.KAZMIERCZAK, Singular solutions to a Hamilton— Jacobi equation
Z. KOTULSKI, Random walk with finite speed as a model of pollution transport in turbulent atmosphere

1. ADLURI and A.M.S. EL KARAMANY, Hodograph method in steady plane MHD micropolar fluid
flows

R.BoGAcz, T.KrzyZYNsKI and K. PoPp, On dynamics of systems modelling continuous and periodic
guideways

W. SOSNOWSKI, Approximate jriction treatment in sheet metal forming simulation

V.A. CiMMELLI and F. DEL'ISOLA, 4 moving boundary problem describing the growth of adroplet in its
vapour



Polish Academy of Sciences

institute of Fundamental Technological Research

Archives
of
Mechanics

Archiwum Mechaniki Stosowanej

volume 45 issue b

Polish Scientific Publishers PWN
Warszawa 1993



ARCHIVES OF MECHANICS 1S DEVOTED TO
Theory of elasticity and plasticity « Theory of nonclassical
continua « Physics of continuous media « Mechanics of
discrete media « Nonlinear mechanics « Rheology « Fluid
gas-mechanics « Rarefied gases « Thermodynamics

FOUNDERS

M.T. Huser « W. Nowackr « W. OLszak
W. WIERZBICKI

EDITORIAL ADVISORY COMMITTEE

W. Szczepinskl —chairman « D.C. DRUCKER,
W. FiszpoN « P. GERMAIN « W. GUTKOWSKI
G. HeErrMANN « |T. Iwinski| « J. RYCHLEWSKI
I.N. Sneppon « G. Szerer « Cz. WoznNIAK
H. Zorski

EDITORIAL COMMITTEE

M. Sokorowski — editor « A. BORKOWSKI
W. Kosifskl « M. Nowak « W.K. Nowacki
P. PerzyNA « H. PETRYK « J. SOKOL-SUPEL
Z.A. WALENTA « B. WIERZBICKA — secretary
S. ZAHORSKI

Copyright 1994 by Polska Akademia Nauk, Warszawa, Poland
Printed in Poland, Editorial Office: Swigtokrzyska 21,
00-049 Warszawa (Poland)

Arkuszy wydawniczych 8,25. Arkuszy drukarskich 8,25
Papier offset. kl. III 70 g. Bl. Oddano do skiadania w grudniu 1993 r.
Druk ukonczonoe w kwietmiu 1994 r.
Sklad i lamanie: CENTRUM Warszawa, ul. Husarin 12
Druk i oprawa: Drukarnia Braci Grodzickich, Zabieniec ul. Przelotowa 7




Arch. Mech., 48, 5, pp. 507-525, Warszawa 1993

Growth of circular cylindrical voids in shear bands
K. L. PAN (SHANGHAI)

THE CIRCULAR cylindrical void growth in a finite representative volume element (RVE)
is analyzed for a nonlinear power law viscous material undergoing simple shearing combined
with triaxial tension (or pressure). To establish the macroscopic constitutive relation,
a constitutive potential theory is developed for the porous viscous material. A microscopic
velocity field is constructed by assuming incompressibility of the matrix and the uniform
velocity boundary conditions of RVE. Basing on the velocity field, the macroscopic
constitutive potential function and the corresponding constitutive relation are found.
From the constitutive relation obtained, the relative void growth rate is computed numerically,
which is a function of the stress triaxiality, the void volume fraction and the strain
rate sensitivity exponent of the matrix. When the matrix material becomes infinite, the
present result is reduced to that of MCCLINTOCK ef al. [1] or FLECK and HUTCHINSON [2].

1. Introduction. General theory of constitutive potential

IN FRACTURE EXPERIMENTS, a phenomenon of the nucleation, growth and
coalescence of the microvoids has been observed in ductile materials. However, the
fracture often occurs in shear bands as well. The void growth in such bands was
investigated early by MCCLINTOCK et al. [1] for an infinite viscous material
containing an elliptical cylindrical void. The same problem was discussed by
FLECK and HUTCHINSON [2] according to their proposed constitutive potential.
But these discussions have not considered the void interaction effects. The void is
isolated in an infinite block of the material. In order to consider such effects,
a widely applied physical model is a “unit cell” (or RVE) containing a single void.
A strict treatment of the interaction of neighbouring voids requires the
non-uniformity of the strain rate or stress on the boundary of the unit cell.
A comprehensive discussion was given by GILORMINI er al. [3]. However, for
possible computation, the uniform boundary conditions are still employed in many
papers including the present one. The early work dealing with this problem was
made by TRACEY [4] and NEEDLEMAN [5] who investigated the growth of a void in
a finite body. Later, a more detailed discussion on the growth of both cylindrical
and spherical voids in ductile materials was made by GURSON [6] who used the
concept of unit cell and an upper bound approach of the constitutive potential in
his analysis. Gurson’s result has been employed and extended by several authors,
for instance, by NEEDLEMAN and RICE [7], TVERGAARD [8], KOPLIK and
NEEDLEMAN [9] and MEAR [10]. The other studies on the void growth in a finite
body were given by DUVA [11], LICHT and SUQUET [12] and WORSWICK and PICK
[13]. Recently, a new method to investigate the dynamic void growth in viscoplastic
materials has been developed by PAN and HUANG [14].
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This paper concerns the cylindrical void growth in shear bands and is based on
a macroscopic constitutive potential theory and a unit cell model. The following
assumptions are also adopted: a. The void growth rate is negligibly small during the
initial elastic phase and the transitional elastic-plastic phase. Thus only the fully
plastic phase needs to be considered. b. The voids preserve the same shape during
their deformation (for small deformations). c. The evolution of the void volume
fraction is governed by the formula

df = (1 — f)dEy (f=V./V),
which leads to
(1.1) Ew =M1 - 1), and V=V.

Equation (1.1) indicates that the macroscopic volume dilatation is contributed only
by the volume change of voids in the material.

FiG. 1. Unit cell and its deformation with outer strain rate.

The geometry and the notation of the unit cell are displayed in Fig. 1. The volume
of the unit cell is V=V, + V,, where V,, and V, are, respectively, the volumes of the
matrix and the void. The macroscopic stress and strain rate (i.e., the overall stress and
strain rate) acting on the cell are denoted by upper-case letters X; and E,vj, while the
corresponding microscopic stress and strain rate (the ones appearing in the matrix)
are denoted by lower-case letters o; and &;. Thus the following boundary conditions
can be given:

(i) Traction-free condition on the inner surface of the cell.

(i) On the outer boundary of the unit cell, the velocity boundary conditions for
the simple shear with triaxial tension or pressure states (see Fig. 1.) are satisfied,
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(1.2) vy =Epx; +I'x, v = Epx,, vy = Eyx;,

where I' is the macroscopic shear strain rate. The corresponding tensorial components
of the strain rate are

(1.3) E]z - Ez] - r/z.

The matrix is assumed to be governed by a nonlinear power law viscous and
incompressible material:

(1.4) sy = (2p/3) (e)™" &, & =0,
where i is a viscous constant defined by

1= ou/es;
here o, and &, are constants for no strain-hardening materials, and n (0 > n > 1) is
a strain-rate sensitivity exponent, &, = (2 ¢, &;/3)"* is the equivalent strain rate, s; is the
deviatoric stress. It has been assumed that in Eq. (1.4) the elastic part of the strain rate

can be neglected. The overall response of the damaged material is measured in terms
of the macroscopic stress and strain rate which can, respectively, be expressed as

1 1
I;= Vjaﬁ dV= VI Oy My X;dS,

ov

E;= 21VJ (vin; + v;n;)dS,

o .
where v is the velocity field corresponding to € and n is the outwardly directed unit
normal to the boundary. The measures ¥ and E are work conjugate, and what is
sought is the constitutive relation which relates these macroscopic quantities. It can be
shown that the constitutive equation (1.4) can also be expressed in the form:

Sy = 09 Eu)/0 &, or &= 0Ylow)/day
where
1
— i “ (n+1)
¢ #[(n Py 1)(F.z) }
1 -1
(1.5) Y=p (n + 1) (a,) Vm+ D),

Note that, in Eq. (1.5), ¢ and  are convex functions of their variables and they satisfy
the condition dy/da; = 0. Hence for two arbitrarily specified stress-strain rate states

(cr,,‘-”, z—,j”) and (a,—}”, é,»}z)), the following relation can be obtained

(1.6) ll’(Uf,(-Z)) = aq(_z;éij(l) > (P(éij(l))'
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Let us choose o(? as the true stress field corresponding to macroscopic stress Z;, and
&" as any kinematically admissible strain rate field corresponding to the macroscopic
strain rate E{". Integrating inequality (1.6) we obtain

1 .
(17 v> j c@eMdV — @,
Vin

where
(18) p-! J Vof) v,

¥m

1 "q

(1.9) o =1 wGmar

Vin

Using the classical relation given by HILL [15]

1 . .
T/_[ oPefMdV=Z,E{"
Vin
the inequality (1.7) can be expressed as

(1.10) ¥>Z,EM-o,

It is obvious that for a given Z;;, the corresponding E,,» should be chosen to maximize
the right-hand side of the inequality (1.10). This can be accomplished through the
following procedure: a) for a given E{Y, seck the corresponding kinematically
admissible strain rate field £, which minimizes the value of @,; b) from the condition

¥ = 0, the relation between the macroscopic stress and strain rate can be obtained by

6451(15,-}”)
(L11) I=———1

ij - P

Equation (1.11) indicates that the macroscopic constitutive relation can be found from
a known potential function @, which is related to the microscopic potential function
@ by Eq. (1.9) through £" and v If v(") were an actual velocity field, Eq. (1.11) would
give an actual macroscopic stress field. When an approximate velocity field v is given,
Eq. (1.11) gives an approximate macroscopic stress field. The v field considered here
has the following function form:

Y= V(E: n, X’.f; Cy, €y "')1

where c; is chosen so as to minimize the potential @, and to make v reach the actual
velocity field.
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2. Macroscopic potential function and corresponding constitutive relation
It is convenient to decompose the velocity field v into three parts
V=V 4+ V4V,

where v’ and v’ correspond, respectively, to the deviatoric part and the dilatational
part of the field £, each satisfying the incompressibility and the boundary conditions.
v’ is so constructed that it satisfies the zero boundary condition and incompressibility
condition.

For a circular cylindrical void, the cylindrical coordinates (r, 0, z) with x; = z can
be chosen to compute the ¢ and v fields. Using the coordinates (r, 0, z), the boundary
conditions can be expressed as

v$=b(§E—%E3—E’cos 20+%f’sin 29), u‘i:bE,,,,
(2.1) vs = b(E'sin 20 — I'sin?0), vy =0,
v, = (E, — E,) zo, v = E, Zp,
where
E' =(En— Ey)2, E = Eu/2, E, = Eu/3, E, = Ey,

and z, is a given unit length in z direction. The components of the microscopic strain
rate written in (r, 0, z) can be expressed in terms of the velocity field v as follows:

¢, = dv,/or,
éga = TH‘] 609/69 + v,/r,
(2.2) &g = (1/2)(r ' dv,/80 + dvg/Or — dvg/T),
g,, = 00,/0z.
From the boundary condition (2.1) and the incompressibility condition
£, + & + £, = 0, a microscopic velocity field v" = v’ + v’ can be obtained:
1. . s . :
W=r —§E3 — E’cos 20 + i[’sm 20 ) + A/r,
) = r(E'sin 20 — I'sin2f),
US = E] Z.

The corresponding strain rate field is
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; 1. .
Epr = —§E3 — E'cos 20 +§Fsm 20 — A/,

1. . 1.
£ = _EE:{ + E’cos 20 —El"sin 20 + A/,

2.3 5 1.
(23) &% = E’'sin 20+5Fcos 20,
é(;z =~ E-'Ba
where
A=EW.
Another part v" of the velocity field can be given by
(2'4) v: = - ’1,6 (rao)/r7 U; = - r’,r' (r,G) U; = 0)
where

nr 0)=E® -1 Y (fur)cos kO+ fy(r)sin kO),
, 2,

k=0, 2, 4, ..

Sfu(r) = Y A,r, Jau(r) = > Bur,

s=—1,0,1, .. s=—1,0,1, ..

whereas 7, and n,, are derivatives of n(r,0) with respect to coordinates 0 and r. For
axisymmetric loading, 1. e. E;; = Ep, we have 5(r, 0) = 0 and v = v* + v*. The strain
rate field £’ can be computed by substituting Eq. (2.4) into Eq. (2.2), which gives

&, = E (bfr — DY, Y g.(r, k, 5) (— Ay, sin kO + By, cos k0),
k s

&= (/2 E'Y. Y gyr, k, 5) (A, cos kO + By,sin k0),
2.9) £

Ee = — &,
&, =0,
where
g =(r k, s)=kr'[l+ s+ (1 —5)bjr],
g2(r, k, ) = r{k2(bjr — 1} — (bfr — D[sQ2 + $) + s (2 — 5)bfr — 2] + 2}.

Then the strain rate field € can be expressed as € = £° + £, from which the equivalent
strain rate can be expressed by
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2 3 o L} 1 3 5 S - * * * 12
= —[—E; + E*4-TI?—E*x* —2Eéx+ &2+ &5+ 2é¢, + 25'29.&,9] ,

Jil4 3

where

i 1. )
x = byrl, é§ = —E'cos 20 + iI"sin 20 — Ex.

The potential function @, can be computed from Egs. (1.9) and (1.5) as

2 1[f

2.7) &, = Abjfvy(éﬁ)déqu:gjj[(ni1)(8'8)(""”}:zdde,

Vm

where f'is void volume fraction which is a micromechanical quantity and is defined by
f= V,/V=d*/b It can be used to describe the isotropic damage of the material. In
this way, some account is taken of the interaction of the neighboring voids. When the
matrix becomes infinite, fis zero, which corresponds to an isolated void in an infinite
matrix. The parameters 4,, and By, in Eq. (2.7) are chosen to minimize @;. A numerical
scheme is shown in Appendix A. An upper bound solution of Eq. (2.7) can be obtained
by omitting &} and it will be denoted by @}. A comparison of @, with @ is given in
Table 1 for several ratios: Es/I', E'/f and E/f. The results show that the difference
between @) and &, is in general small. Namely, &} obtained in this manner gives
a small contribution to the value of @,. Therefore the upper bound solution @9 is
accurate enough in practical application. Thus in the following analyses the upper
bound potential function @} will be considered.

Table 1. Potential values with n = 0.2, I' = ¢, = 1.

void . )

volume o e, D [0, Ad,

fraction
E/I =0.5, f=0.05 1.8510 1.7493 0.0581
Er =01, f=0.1 1.5032 14138 0.0632
ET =02, f=02 1.1762 1.0980 0.0712
E/I =10, f=005 19.0692 18.1574 0.0502
E'[ =05, f=01 13.7011 13.0128 0.0529
EIl =20, f=02 9.0161 8.5233 0.0578

In the above table A®, = (&) — @ )/®.
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The upper bound of the constitutive relation corresponding to @] can be found
from Egs. (1.11) and (2.7) by taking &; = 0. This leads to

e 1)f

(2.8) = 00%0E, = - J J [(2"//3™ 1) H=92] H,, x~* dx df,
01
where
é,=2\/ﬁ/\/§,
3. . 1. . .. L.
H= ZE% + E” +‘—tI‘2 + E*x? + 2E’'E xcos 20 — I' Ex sin 20,
. . . . 1.
H,,=—E + Ex*+ (E'— E)xcos 20 —il’xsin 20,
29) G2 i o o e
Hpy=E + Ex*+ (E'+ E)xcos 20 —iI‘xsm 20,
; TP 1.
H 33 =5E3 + Ex*+ E'xcos ZO—EFxsm 20,
1. ..
H,12=§F—Ex81n 20.
Note

1 . .

Up to now, the macroscopic constitutive relation has been completed by Egs. (2.8)
and (2.9). Thus for any given macroscopic strain rates E; (i =j) and I, the
macroscopic stress Z; can be determined from Egs. (2.8) and (2.9) by the numerical
integration.

3. The void growth in a shear band

Consider a unit cell in a shear band which is inclined by 45° to the axis of the
tension Z. The unit cell is in a plane strain state with hydrostatic tension (or pressure),
as adopted by MCCLINTOCK et al.[1] and FLECK et al. [2], i.e., in the present case:
Ey =0, E,; = E,,. Then, Eq. (2.9) gives

http://rcin.org.pl
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1.
H= Zl"z(l + w?x* — 2wx sin 20),

1.
H, = 51’((0)&:2 — wx cos 20 — xsin 20),

(3.1) Hy= %f’(mxz + wxcos 20 — xsin 20),
1. ,
Ho— i]‘(cux2 — xsin 26),
[ _
Hy= 51"(1 — wxsin 26),
where (note Eq. (1.1))
(3.2) w=2E/I' = EyJT = (V/T'V)f =1,

whereas A= V,/I'V, is called the relative void growth rate.
Consider the substitution ¢ =wx and expressions (2.8) and (3.1); the stress
triaxiality can be defined by

2n wff
(3.3) Y=L 5= Sai By j [ [H(z, 0" V2] (1 — sin 20/t)dt dO
0 o
2 w/f
/jJ[H(t, 0)*~ V2] (1 — tsin 20)t* w dt d0,
0 o

where
H(t, O)=1 + > — 2tsin 20.

Note that | sin 20 | < 1 and, therefore, | 2tsin 20 | /(1 +t%) < 1. H(t, 0)"~ "2 can
be expanded into the series

, ) B ® 2k —1-—m{2t \
(n—1)/2 = (n—1)2 bl RN e ol [t h
(3.4) H(t,0) P [1 + k; @ ph)}
where
P=Pit)=1+ ¢, h=h(0) = sin 26.
The first order approximation of Eq. (3.4) gives
(3.5) H(t,0)-"2 = P‘"“”z[l +(1—n (% h):|

The following integral (see Eq. (B.2) in Appendix B) is necessary for the computation
of the triaxiality (3.3),

http://rcin.org.pl
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n

0, for k=2m — 1,
(3.6) jsin" 20 = 2(m — 11
(@m — I for k= 2m,

0 emn

where m = 1,2, 3, ... In terms of Egs. (3.4) and (3.6), formula (3.3) can be expressed as

i i
(3.7 1= J\[ZP‘"‘”/2 + F,] dt/J[ZP("“’”/z+ G, ]t 2 Afdt,
i if
where the substitution w=Jf from Eq. (3.2) has been made. The first order
approximation can be found by Eq. (3.5) and (3.6)

A

(3.8) x = j [P-2] dr / [Pr-12] 12 1 dt.
if

Af

The expressions of F,, and G, are given by Eq. (B.4) in Appendix B. Their integrals
are, in general, functions of . However, in the case of a large void growth rate and an
isolated void, these expressions are independent of A as proved in Appendix B. The
numerical analysis made with different m in F,, and G,, shows that their change is

determined with the accuracy better than 1%, when m = 5, as long as the 4 is larger

A
002

50
40
30
20

(310) n=0

(311) the first order
approximation

10 B X

F1G. 2. Relation of void growth rate A and triaxiality y with different void volume fraction f.
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80 +

60 -

L0+

20 F =001

1 1 |
0 5 10 IS 4

FiG. 3. Relation of void growth rate 4 and triaxiality y with different strain rate sensitivity exponen n.

than 10. Therefore, in the computation, m = 5 is always considered. The cylindrical
void growth in a shear band can be analyzed numerically from Eq. (3.7), which is
shown in Figs. 2 and 3 for different void volume fractions f'and strain rate sensitivity
exponents n. Figure 2 shows the effect of the void volume fraction. The results show
that the void growth rate is a decreasing function of the void volume fraction, which
means that theinteractions of the voids make the void growth difficult. Figure 3
demonstrates the effect of the strain rate sensitivity exponent, which indicates that the
largest void growth rate occurs for the perfectly plastic material (7 = 0), and the
smallest one — for the Newtonian material (n = 1). The most general form of the
triaxiality can be expressed as

(3.9) x = x4, f, n).

It is obvious that the relative void growth rate 1 is an implicit function of the
triaxiality, void volume fraction and strain rate sensitivity exponent. Some special
cases can be obtained from Eq. (3.9),

a. y=yx(4,f), forthe perfectly plastic material (when n = 0), or for Newtonian
material (when n = 1).

b. x = x(4, n), for the infinite matrix material.
They can be discussed in detail as follows:

a. n =20, the perfectly plastic material

In this case, the trlamallty in Eq. (3.7) can be expressed as

(3.10) X = J-[ZP( D 4 Fom] d:/[[zp‘ D+ Gy 172 A dt.

http://rcin.org.pl
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If the second term of the integrand in Eq. (3.10) is omitted, the first order
approximation of the triaxiality (see Eq. (3.8)) can be obtained, which gives an
analytical expression

G11)  x=n{A+ A+ DY/M+ V24 D V@ + D+ @+ 1))

When the matrix material is infinite, Eq. (3.11) becomes A = sinhy, which has the
same form as that given by McClintock for n = 0. The comparison of Eq. (3.11) with
Eq. (3.10) is made in Fig. 2, in which the dashed line curves come from Eq. (3.11).

b. n =1, the Newtonian material
In this case Eq. (B.4) in Appendix B gives F,, = G, = 0. Then Eq. (3.7) becomes

(3.12) xX=4
which is an exact expression.

c. f =0, the infinite matrix material
Note the following limitation, when the matrix material becomes infinite

A
(3.13) J'[:ZP("‘”/2 + G, |17 Afdt-2;

if
then, the triaxiality (3.7) can be expressed by

1
(3.14) ¥ = ‘[[P("—”f2 + iF"‘] dt.
0
The first order approximation is
(3.15) X = JP‘"‘”” dt.
0

For comparison, the formula given by MCCLINTOCK [1] and FLECK [2] are also given
as follows:

(3.16) x=In{(0 —mi+ /[0 -2+ 11}/1 — n),
(3.17) x=["= (1 —=n(+0.613Tn))n.

All results are drawn in Fig. 4 which shows a good agreement between the present
result and that of FLECK et al. [2]. Note here the strain-rate sensitivity exponent 7 is
a reciprocal of the hardening exponent used by McClintock and Fleck. Equations
(3.14) — (3.17) give the same exact expression for n = 1: y = A. For n = 0 and the
large void growth rate 1 Eq. (3.14) becomes (see Eq. (B.10))

http://rcin.org.pl
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A /
80
60
40
present result (314)
®  Fleck (317)
20 ——— McClintock (316)
—-— the first order
approximation (315)
I L 1
0 12 16 20 X

FiG. 4. Comparison of present results with those of McClintock and Fleck in an infinite medium (f = 0).

(3.18) ¥ =In(24) — 0.61/2 or A= 0.68exp ().

In this case, Eqgs. (3.16) and (3.17) can also be simply expressed as 4 = 0.50 exp(x) and
A = 0.68 exp(y), respectively. The latter has the same form as Eq. (3.18), though they
result from different approaches.

4. Conclusions

This paper presents the analysis of the circular cylindrical void growth in a shear
band using a macroscopic potential function and the corresponding constitutive
relation. The analysis is based on a finite unit cell model. The effects of void volume
fraction and strain rate sensitivity exponent on the void growth rate were considered.
For the infinite matrix material, the present result can be reduced to the models of
McClintock et al. and Fleck and Hutchinson. Further modifications of the present
model may be needed to include the effects of strain hardening and of the shape of the
voids.

The author would like to thank Prof. Z.P. HUANG and Dr. J. FANG for their
support and help offered during his employment in the BeijingUniversity.

Appendix A. Numerical scheme for the potential function &, in Eq. (2.7)

The potential function @, in Eq. (2.7) can be expressed as a function of
macroscopic strain rate E; and parameters 4, and B,,, which should be chosen to

http://rcin.org.pl
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minimize the function @,. However, the expression of @, is so complicated that the
parameters have to be determined by means of the numerical method. The steepest
descent algorithm (which can be found in many books on numerical methods) is
available for determining the parameters and the corresponding function @,. @, can
be expressed in terms of ¢, which is defined in Eq. (2.6). Whenk = 0,2and s = —1,0, 1,
& and £, can be expressed by Eq. (2.5) in non-dimensional form:

& =2(E'D) ic,—q,—(x) cos 20 — )Ec, g,(x)sin 20)}
(A1) i

&y = %(E"’/I") FZ]:C g';(x)sin 20 + Zr q';(x)cos 20 + ZC qi (x)}

where, for convenient calculation, the following substitutions have been made,
x= e,
=B, /b, =B, =By b, ci=4, _[b, c5= A4, ,,
co=A; b, ¢;=Ay _fb, cg= Ay 0 o= Ay b,

A g=q=2x(/x—1), @=¢=x—1, g=¢=2(1-1/3/x),
g=v/x(x—1), g=2x, g=0-x/x,

q,= q4—4(1_\/; +3x—1, g¢)= ‘15~4(1—\/f) +2Vx
gy=q's = [3(1—/x)'—x+3)//x.

Under the above conditions, @, can be rewritten as

n 1)f

(A3) @ = cp;/cp():i”[(zr/\ﬁsp )<"+”( - 1<"+”/2} 2 dx db,

01
where
H=HE, x, 0, c) = H,(E, x, 0) + H,(E, x, 0, c)),
H,(E, x, 0) = (Es/TY+ (xE/TY +(E'|TY 4+ 2x (EE'[I?) cos (20)— x(E/T') sin (20),
Hy(E, x, 0, c) = 286, + 28% 60 + 624 63,

A i s w 1 “ e
by = g€, e=ism 20 — (E'/T')cos 20 — xEIT, s%zicos 20 + (E'/T")sin 20.

Thus @, = @, (E,/I', E/I', E'|I’, ¢)) for given f, n and ratio I'fé,.
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The program of the steepest descent algorithm requires the knowledge of &, and
its derivatives with respect to ¢, which are given by

n ljf

(A.4) 0®,/dc, = 1(21"/\5 £o)tD j I I:H("”/Z:I H, ,x *dxdo,
T
01

where
H, ;= 0H,[dc; = 2 (&% + &) (06,,/0c; + 2 (8% + £5) (9&,4/0c)).

The components of 3¢, /dc; and 9€.4/dc; can be determined by (A.1) and (A.2), which
gives,

0¢,,/0c; = 2(E'|T’) ¢;q,(x) cos 20 for i=1,2,3,
(A.5) = —2(E/I'ciq/(x)sin 20 for i=4,5,6;
and
. l 5 3 .
déte)dc; = 5 EIT) cqi(x)sin 20 for i=1,23,
1. .
= E(EIIF) ¢;q7(x)cos 20 for i=4,5,6,
| .
=5 (E/T) ciq,(x) for i=1,8,9.

The integrations in Eqgs. (A.3) and (A.4) are performed by means of the Simpson
double integration formulae. On substituting (A.3)—(A.5) into the program of the
steepest descent algorithm, the value of ®, can be computed numericallly. The results
and the values of the computation are given in Table 1.

Appendix B. Expressions of F,, and G, in Eq. (3.7)

In terms of the series (3.4), the triaxiality y in Eq. (3.3) can be expressed as

2r w/f
r O\
(B.1) X:jJ{P("’)’Z[l +Lk(3’h) j|}(l — h/t)dt do
0 w
2n wlf
. 20, \F :
pPe-D2l 1 L L, ;h (1 = k)t *wdtd,
0 o
where
@ Rk—1—n)!
P=1+¢ h = sin 20, O o e a1

L @
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The integral

n 2n

J’h" do or J K+ do

0 0

can be expressed in terms of the special functions f(x, y) and I'(m)

n

for k = 2m,

o 1 2m+ 1\ _ 2(2m— 1D
(B.2) Jsm 20d0 = §ISID udu = 2.3( 2 )— 2m)!!

—2n

where the following properties of f-function and I'-function are employed

I(m)=(m—1), I(m+ %) =13...2m — D/n /2",

B(x, y) = T'x) TG I'(x + ).
Then, (B.1) gives

A A
(B.3) j[zpw w2y } /J[ZP"' w4 G ]r—ufdz,
A Af
where
- —(4m—1—n)!!_(4m—3—n)!!_ 2(2m — 2 p (1=t 4m2,
F’"_El_ @m) @m—2)n 2 ] (2m)” Qe
(B.4)
- ‘(4m—l—n)!!_(4m—3—n)!!£ 2@m -1 (= ampz
Gr. = ,El, (@m) ! 4m — 21! 2} Gl e

F,,, and G, can be obtained by
FOm:Fm|n=0 aﬂd GGm:Gm|n=0'

In the numerical computation, let us take m = 5. For the infinite matrix material, the
following recurrence formulae are considered:

A 1
jth(l +IZ)_(' +4m)/[2 dt — 712»:“ (l _+_Az)(lv4m)/2 + 2m — ZJ‘ZM(1+IZ)(I 4m)/2dt
= 4m — 1
¢ 0
(B.5)
: 1
27 (1 4 20— gy — _T g (14 22)0-4mi2 4 2m — 1 22 (1 4 2)0 -9 gy,
—2 2m —2

0 0
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For large void growth rate A (corresponding to high triaxiality) and m > 1, (B.5)
becomes

3
J.tm (1 4 £)~C+ami gy — 2m

0

tz)(: —4m)l2 gy

(B.6)

2"’ S | P Ay

0

j 7 (1 + )42 g =

Using these results and performing some lengthy manipulations, the following result
can be obtained for n = 0:

A

_|(Yp-sn_3ps dm—1)!"2m—1 (4m —3)!
e JF['”dt_J(EP et ol ﬂ)"” 2 {[ @Gmll am — 1 2(4m—2)!!]

m=72

A
(2"(712”_1) :') 2?1n+l H (g: 5 + 2) J‘I:P(J—‘tm)/l _ IXI—M)IZ] dt}

0

Then, for large A,

A

frenamn,
0
1
(B.8) PO-4mf2 gy zmiz (—1)(2m-3)! 1

J e l'@m—I=-3)' I+ 1)
0
A
[ 2 (—=1)@2m-2)! 1

pa—mn gy — .
= Y Nom—I=D)1 I D

o
0

The computed results of (B.7) are listed below for m = 8

m=1  Eq. (B.7)= —0.50, m=5  Eq. (B.7)= —0.60,
2 —0.56, 6 —0.60,
3 —0.58, 7 —0.61,
4 —0.59, 8 —0.61.
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When n # 0, similar results can be obtained. Thus for the infinite matrix material, the
expression (3.14) can be derived from Eq. (B.3) with the limitation (3.13). For n = 0,
Eq. (3.14) gives

i

(B.9) X = J [P—‘“ + F(,m/z} dt.

0

For large A and using the above table, (B.9) becomes

x=In[1+ 4/ (A*+1)] —0.61/2 ~In(24) — 0.305.
Thus
(B.10) A =0.68exp (x).

which is identical with Eq. (3.18).
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Singular solutions to a Hamilton—Jacobi equation

B. KAZMIERCZAK (WARSZAWA)

SoLUTIONS of a certain Hamilton —Jacobi equation in two dimensions are analyzed locally. This
equation arises in asymptotic theory of laser-sustained plasma. The main tool of the analysis is
the implicit function theorem.

1. Introduction

REACTION-DIFFUSION equations (see e.g. [1, 2]) are widely used in biology, medicine,
chemistry, nuclear reactor theory, physics etc. For example, energy phenomena in
stationary plasma sustained by laser radiation may be well described by a single
reaction-diffusion equation of the following kind:

(1.1) &Au+f(x,u)=evVu, xeQcR.

Here T is plasma temperature, v its scaled convectional velocity, x — spatial variable,
fis a reaction term responsible for energy balance in plasma — its absorption from
the laser beam and its losses through radiation; &* is a dimensionless parameter being
a mean ratio of scaled heat conduction coefficient and the reaction term (see [3, 4]).

It is assumed that for every x the equation f(x, T') = 0 has two solutions: T;(x)
and T)(x) which are stable, i.e. /7(x, Ti(x)) < 0, f7(x, Tx(x)) < 0. These two solutions
obviously correspond to low temperature gas and (partially ionized) plasma of
relatively high temperature (1.5-10* K). In most experiments ¢ is small. Thus it is
interesting to see what happens when ¢ — 0. It is proved in [5] that, in this limit,
asymptotic solutions can be constructed by “gluing up”” local equilibrium states T (x)
and T),(x) with the help of transition layers. To be more precise, let x in f(x, 7) be
fixed for a moment, that means x = X. Then, let us assume the solution in the form

u = ¢(n(X)y),

where

y=¢'(x—X), (m(X))* = 1.

This leads to the following family of ordinary differential equations depending on the
parameter () Xt

(1.2) 9" +/(X, ) = ¢'(vm) (X),
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where ": = d/d¢ and ¢: = n'y. We demand that

$(—o0, X)= T,(X),  §(c0, X) = Ty(X),  $(0, X) = %(TL(X) + Ty(X)

and that
¢'(-o0, X) = ¢'(0, X) = 0.

It is known (see e.g. [1]) that due to the assumptions made for any X €®* there could
be only one value (v n) (X) such that the solution to Eq. (1.2) exists. Thus we obtain
a well defined relation

(1.3) v(X) -n(X) — F(X) =0,

where F is known. It is shown in [5] that, if we have a hypersurface (x) = 0, such
that n(X) being a properly defined normal to it satisfies Eq. (1.3), then by appropriate
sewing of the equilibrium states 7',(x), T,(x) and the transition layers ¢(*, X) (where
2(X) = 0), we can construct asymptotic solution to Eq. (1.1). (Moreover, by the
method of sub- and supersolutions these functions can be used to prove the existence
of real solution to Eq. (1.1) for £ > 0). Finally, let us note that in the x-units the
width of the transition layers is of the order 0(g), and so it vanishes as ¢ = 0. Thus
in the limit the asymptotic solution is completely characterized by the hypersurface

QX) = 0.

2. Setting of the problem and main assumptions

Thus tha main difficulty consists in finding adequate hypersurfaces satisfying the
relation (1.3) which, as a matter of fact, is a kind of Hamilton — Jacobi equation. In
a special axially symmetric case the problem becomes effectively two-dimensional.
Thus in this case we have to find closed curves x:[0, 1] — 3’ satisfying the relation

2.1) H(n(s), x(s)): = v(x(s)) - n(x(s)) — F(x(5)) = 0,

where n(s) is a unit vector normal to the curve y at a point x (cf. [5]). Now, suppose
that v0 at some point x = x,. Let us introduce a Cartesian system of coordinates
(x, y) with the point (0, 0) at x, and with its y-axis antiparallel to v(x,). Suppose that in
these coordinates a curve satisfying Eq. (2.1) and passing through x, can be described
by a smooth function y(x), 1. e. it is a set of points (x, y(x)). If z:y ;and n(x) = [z, —1]
(1 + 27", then from Eq. (2.1) we obtain the relation

2.2) Yu= = F)7 (0t} + F/v? — F?).

Two things are obvious. First, in the region, where v* < F?, there are no real solutions
for any of these equations, whereas in the region, where v* < F? through every point
passes (locally) exactly one C'-solution curve for Eq. (2.2), and exactly one for Eq.
(2.2),. The question arises, what happens to these trajectories when we are
approaching a point where v* = F . If it fulfils certain additional assumption, then it is
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called critical. It is suggested in [5], that the construction of the curves should be
started at such a point.

DEFINITION (cf. [5]). Let # be an open connected component of the set
of points at which | v| <F. Let % denote its boundary. A point x,€% is called
critical, if 4 is C’at x, and v(x,) # 0 is perpendicular to 4.1

Let & denote the line through X, perpendicular to the vector field v.

The objective of this paper is to analyze the trajectories of (2.2) starting from
a critical point x,. Near this point Egs. (2.2) may be written as

23), ¥'=(}=F) "'y + Fy/1 - F),
2.3), Y=} —F) ' (nr— F/1-F),
where
=) VX =V v | and  F0: = Fx) | vx) |

Thus v is normed to | near x, and F is normed to 1 at x,.

ASSUMPTION. Let us assume:

1. Near x, the line & lies outside the region %.

2. v and F are smooth, F has nonvanishing gradient and F .. (x,)#0.H
Below, for the sake of simplicity, we will omit the bars in v and F.

3. Main result

The main result of the paper is comprised in the following

THEOREM. Suppose that Assumption is true. Then there exists exactly one
C'-trajectory passing through (0, 0) satisfying Eq. (2.3),, and exactly one satisfying
Eq.(2.3),. For | x | — 0 these trajectories form two parabolas, one of them lying
above and the other lying below. R

x, -crtical point

FiG. 1.

This theorem is visualized in Fig. 1.
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4. Proof of the Theorem

The plan of the proof is the following. First, we will find solutions to appropriate
equations with constant coefficients. Then, by means of the implicit function
theorem, we will prove local existence of solutions to the “full’’ equations. Finally we
will show uniqueness for the constant coefficient case.

4.1. Constant coefficient case

First, we will find solutions to constant coefficient equations. Then, by using the
implicit function theorem in appropriate Banach spaces, we will obtain all smooth
solutions of Egs. (2.3),,. So, we start from the equations:

V' =0 (X0) x+ o/ —2F [(Xo)y —2F . (Xq) X%, ¥(0) = 0.

By the linear change of variables: ¥ = ay, X = sx, these equations may be replaced by
the following ones:

P’ = {Ca%s *++/PaDs~* + a’s EX* },

with the obvious meaning of the constants C, D and E. Let us demand s 2 aD = 1.
Then the coefficient of X is equal to u = CD ' and the coefficient of X? (under the
square root) is equal to & = ED?. Thus b and u do not depend on the above scaling.
As a consequence we arrive at the problem:

P o= uxX+ /P + b3,  ¥(0)=0.

F=V -2y

Let

Then, if
B:=D-(ED"' + (),

we obtain the problem:

¥ =¥+ Bx, ¥(0) =0,
¥y =—Jy+ Bz, ¥(0)=0.

Near x, the points on & fulfil the equation y = 2 ~'C/(x) x* with C{x) — —C and

x—0

% is given by the equation y = —ED ' C4(x)x* with C4(x) —> 1. Thus, from the

“4.1)

x—0

Assumption we infer that B > 0.
Below in this proof, for simplicity, we will write x and y instead of x and y.
Let us make the ansatz: y = kx?. Then, k has to fulfil the equation 4k* = k + B, i.e.

k, =8""{1 +4/1+ 16B}. Equations (4.1) have, respectively, the following solutions:
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k., x?, x >0,
y+(x):{k-x2, x <0,
and
k_ x*, x>0,
y_(x)={k+xz, x <0,

4.2. Use of the implicit function theorem

Now, Egs. (2.3) may be written in the following equivalent form:

¥ = Pi(x, ¥) + (1 + Pyfx, y)/y + Bx? + dxy + ey’ + cwr (x%, y%, xy) =0,
(4.2)

where
Pix, y)=fy +ewr(x,y), Pyx, y)=gx + hy + cwr(x, y), d, e f g, heR

P, and P, are smooth and cwr(x, y) (cwr(x? y?, xy)) denotes expressions of the order
less than x or y (x?, y? or xy, respectively). Let us remind that the term px has been just
taken into account while writing Egs. (4.1), ».

LEMMA. If yeC' (0, a), | a| >0, is a solution to the problem (2.3), then
y(x) = O(x?) for x = 0.

P r o o f. Assume by contradiction that the lemma is false. Then, for | x | >0
sufficiently small, the function y has a constant sign; to be precise it is not equal to 0.
For, if it were not so, then considering the equation in the sequence {x,} of extremum

points, we would conclude that y(x,) = O(x2). Dividing Eq. (2.3) by A(x): = +/ | y(x) |
and integrating over (0, x)( | x | sufficiently small) we obtain the relation

Bx) = | x| BEOS+ o)+ | x| (1 +0M)y/1+0(1), &LeOx).

Consequently, it would be y(x) = O(x?) in contradiction with the supposition. This
proves the lemma. W

According to Lemma for each of the intervals (0, m) and (—m, 0)( | m | sufficiently
small) it makes sense to substitute y(x, m) = x? @(x, m). First, let us consider the case of
positive x and perturbations of y = k, x%. For fixed m >0 Eq. (2.3) is equivalent to
the equation

(2 D(x)) = mxS, (x, y) + x(1 + mS, (x, )3/ B(x) + B + mSy(x, y),
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where C°([ 0, m ]?) norm of S, remains finite as m — 0. This equation can be considered
as an equation of the type K(4, @) = 0, where

43) K@ ®)—>d—x? [{ASl(di) + /@ + B+ ASy(®) (1 + ASy(®)} s ds.

Let K:(R', @) — @, where @ = C°([0, m]). Then, in some open neighbourhood of
(0, @ = k) this mapping is continuously Frechet differentiable with respect to
@. We have

DoK(0, k,):0® — 6 — x> J(4(k+ + B) 2 6@(s)sds.

For B > 0 (even for B > -16 '), using the contraction principle we conclude that the
equation D4(0, k,)d@=je@ has a unique solution @€ @. We just analyze the
following mapping

X

5@ — x‘2ﬁ4(k + B)2 60(s) sds + .

Then, by means of the implicit function theorem we infer that for | 4 | sufficiently
small, the equation K(4, @) = 0 has a unique C° solution. Identifying A with m we
conclude that for sufficiently small m > 0 Eq. (2.3), has a unique C' solution, which
is near to k, x* in C°([0, m]).

REMARK. It is interesting that | @'(x) | is also bounded. Getting rid of m we can
write square root in Eq. (4.3) as

s (/@ + B+ mSy(s, y)) = s/ + B + sPy(s, y),

where P, is bounded in C°. Differentiating the equation K& =0 we infer that
| #'(x) | < C < oo forall xe[0,m],due to the fact that singular terms of the order
x~! cancel.
Now, we consider the perturbations of y = k_x? (still for x > 0). Thus, let

G(m):= {yeC' ([0, m];: sup (| yxx2| + | y(x)x~'|)< oo},

x€(0, m)

P(m):={ye C*([0, m]): sup (|f(x)x"'|) < co}.

xe(0, m)
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G and P become Banach spaces, if

Iy llam= sup {1 yx)x? [ + | y(x)x" 1|}

x€e(0, m)
and

”f”p(m): sup { |f(x)x_1 l }.

xe(0, m)

This time let

K, y)y' + 2xSy(x, y) + (1 + ASy(x, y)) /¥ + Bx* + ASy(x, y).

K is continously Frechet differentiable mapping from G(m) to P in a certain open
neighbourhood of y = k_x. If D, K denotes its Frechet derivative at this point, then
the equation (D, K') y = f, feP, is of the following form:

(4.4) y +ayx~' =1,

1
where o = (4(k_ + B))"2> 0. For f=0 Eq. (4.4) has no solutions in G(m), as it is
fulfilled only by the family of functions y = tx~% teR! For feP, Eq. (44) has
a uniquely determined solution given by the expression

yx) = (x~%) J‘(S“) f(s)ds.

Thus, according to the implicit function theorm, for all sufficiently small | 4 | there
exists precisely one y(d, x)e G(A) satisfying the equation Ky =0 such that
w0, x) = k_x2.

Identifying 1 with m we conclude that for all sufficiently small m > 0 Eq. (2.3),
has precisely one solution in G(m), which is near to k_x% In the same way we analyze
the case x < 0. The solution of Eq. (4.4) reads then

X

y(x) =(—x7% j(—f)f(s) ds.

0

The last assertion of the Theorem is obtained by returning to the initial coordinates.

4.3. Uniqueness

To complete the proof of the Theorem we will prove that for B > 0 the functions
k,x* and k_x* are the unique solutions of Egs. (4.1); and (4.1),.
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For ye C' satisfying Eq. (4.1), or Eq. (4.1), let us denote

4.5) ) = + x(/70) + B) .

In both cases we obtain the equation
(4.6) h=x"'"h(—Bh*—2"'h + 1).

It is easy to note that the roots of the equation (— Bh* — 27'h + 1 = 0) and the roots
of the equation (4k*> — k— B = 0) are connected by the following relation: h; = (2k;)~!,
i=1, 2. On the other hand, if we put y = x*®(x) (cf Lemma), then for | x |
sufficiently small the relation

Xd(x) = + J.s\/d)(s) + B)ds

implies that &(x) = + 27'/(®(&) + B), for a certain ¢ e(min(x, 0), max(x, 0)). Hence
for x = 0, #(0) + B = 4¢*(0) and consequently for Be(— 16~', o) we have

4.7) 0< | hO) | < oo.

For B = 0 the equations may be solved explicitly, so it is easy to verify the assertion.

So, let B > 0. Due to the obvious change of variables we may assume, according to
Egs. (4.5) and (4.6) that x > 0. Then h’' = x~'(E(h)), where

>0 for he(—oco, h)u(0, hy),

E(h) = {
<0 for he(h,, 0)u (h,;, o0).

Suppose that for certain # > 0: h(y) > h,. Now, if we move from # toward 0, then h(x)
increases to oo (at least logarithmically). Similarly, let h(£) < h; for certain & > 0. If we
move from ¢ toward 0, then h(x) decreases to -co (at least logarithmically).
Analogously, if h(¢) €(0, h,), then h(x) would decrease for x — 0. But then we would
have h(0) = 0, which is impossible due to Eq. (4.7). Similarly h(x) = 0 for x — 0, if
h(¢) € (h,, 0), which is impossible. Thus the only solutions from C'((0, X)), X > 0, are
k, x*, and k_ x’. Thus, the proof of the Theorem is completed.
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Random walk with finite speed as a model
of pollution transport in turbulent atmosphere

Z. KOTULSKI (WARSZAWA)

IN THE PAPER we apply the model of random walk with finite speed to the description
of the pollution transport in the atmosphere. We consider one, two and three-dimensional
models. We obtain the systems of equations for the conditional probability distribution
functions of particle’s locations in space and time. They are convenient to describe
the evolution of the probability distribution of the range of the polluiant emitted from
the source, its distribution over the earth surface and its spatial distribution. The
sgdimentation (absorption of the particles on earth’s surface) is taken into account in
the models.

1. Introduction

THE PROBLEM of the pollution transport and its modeling is, at present, one
of the most important tasks of the physics of atmosphere. This phenomenon
is a very complicated physical process, depending on a number of factors,
not always comletely identified [8]. These factors can be of very different
nature. First of all, the final distribution of the pollutant depends of the kind
of its source (temporal or permanent, concentrated or distributed, more or
less intensive). Secondly, the properties of the motion of air transporting the
pollutant particles (both large-scale, laminar and local, turbulent) have a strong
effect on their concentration in space and time. Also physical and chemical
properties of the pollutant particles, such as their possible coagulation, absorption
by vapors or rains, sedimentation facility or chemical reactions, can affect the
transport process. Finally, the properties of the earth surface have an influence
on the sedimentation of the particles and should be taken into accaunt. Studying
the transport process in turbulent atmosphere we must realize all these facts,
in spite of our limited abilities of including them into the mathematical models.

Considering the process of the pollution transport in the atmosphere, we are
interested in obtaining some equations describing the mass transfer on a large scale.
However, to obtain such global equations we must start the considerations from the
small-scale behavior of the particles. Unfortunately, we are not able to take into
account all really existing physical phenomena that take place in interparticle
influences. Therefore we must treat the problem in a statistical way, assuming certain
reactions of particles with some probability and, eventually, identifying particular
probabilities in the model and comparing the resulting equations of the mass transfer
with experimental results.
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The description of the neutral particle flowing through and interacting with some
environmental materials needs, at any time ¢, the knowledge of sixvariables: three
position variables and three momentum variables. In the statistical model we should
know the probability distributions of these variables (see [7]). Sometimes it is more
convenient to replace the momentum variable with three equivalent variables: kinetic
energy of the particle and two angular variables specifying the velocity direction
vector. Such a description implicitly permits the particles to have different masses and
velocities and freely change the travel direction.

One of the possible small-scale methods of description of particle motion is
a random-walk concept (see [9]). In the literature many different random-walk
models have been proposed to describe the dispersion of particles in inhomogeneous
or unsteady turbulence. In most of them it is assumed that the flowing particles have
equal masses. Moreover, some restrictive conditions on their possible velocities and
the movement directions are assumed. For such simplified models the position
variables are sufficient to describe the transport process.

Among the proposed random walk models there are more or less suitable ones io
describe the process of transport of the pollutant particles. Selecting one of them we
need some a priori criteria to distinguish good models from the bad ones.

Several authors apply such criteria to verify their models of random walk. These
quality measures are often very intuitive and sound quite different, but in
mathematical formulation they give the same results (cf. [10]). Choosing the random
walk model we postulate its good large-scale and small-scale behavior. In the large
scale we require the well-mixing condition; that is, if the particles are initially well
mixed, they will remain well-mixed during the diffusion process. In small scale, we
postulate that random walk should reduce to a diffusion-equation model as the
Lagrangian time scale tends to zero.

In many problems the diffusion equation is sufficient to describe the polution
transport process (e.g. the global mass transport or large-scale changes of the
pollutant concentration — see e.g. [5, 6]). However, in some problems we must know
the instant of time at which the pollutant reaches a certain area; in such a case the
widely used diffusion equation is not sufficient — one needs models where the velocity
of particles is taken into account. The random walk processes make it possible to
consider also this parameter in the global transport equation.

Let us remark that, in modeling of the real physical phenomena, the final
correctness criterion is the compliance of the results deduced from the mathematical
model with experimental observations.

Modeling the process of pollution transport we know that it takes place in
a three-dimensional physical space. Nevertheless, we often use one- or two-dimensional
models to describe such a phenomenon. Applied to real transport process, such
simplified models need some interpretation: the one-dimensional model can describe
a distance of the pollutant particle from the source, and the two-dimensional model
— the distribution of the particles around the source. Only three-dimensional models
can give real traces of the particles and their actual location in space.
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In this paper we consider all these models: one, two and three-dimensional. All of
thern are based on the model of random walk process proposed by G. I. Taylor and S.
Goldstein where the possibility of sedimentation of the particle (its death) has been
included. Identifying the probabilities of jumps in any direction or imprisoning the
particle at a given point, we can describe the transport process by means of the models
proposed.

2. The model of one-dimensional random walk with finite speed

Our considerations are a generalization of the one-dimensional model of random
walk proposed by G. I. Taylor and S. Goldstein and presented in a transparent way in
KAC's lecture notes [2]. In this section we introduce the problem following their
reasoning.

Assume that we have one particle moving to the left and to the right along
a straight line. It starts at time t = 0 and goes from point x = 0 in a fixed direction. In
time At it covers the distance Ax,

(2.1) Ax = vAt,

where parameter v plays the role of finite velocity of the particle. After the jump,
the particle changes its direction to the opposite one with probability adt or
continues its motion in the same direction with probability 1 — a4t The location
on the line, of the particle starting from 0, after n steps (that is after the time n4t), is
S
To describe this model mathematically we must introduce a specific notation. Let
@(x) be an arbitrary function. We are interested in the evolution of the function
<@(x + §,)> in time (symbol <-> denotes the mathematical expectation of
a random variable).
Define the random variable ¢ in the following way:
{ 1 with probability 1 — adt,
(2.2) &= : ”
—1 with probability adt.

Consider the following sequence of independent random variables with identical
distributions, defined above:

(2.3) £, &3, E3y ooy Ep_1-

Assume that the particle starts from point x in the positive direction. Then the change
of location of the particle after n steps is

(2.4) S: = VAt(I + El + 5281 + P + 8,,_,8,,_2, arey 828]).
If the particle starts in negative direction, the analogous variable is
(25) S; = —VAt(l + &) + &8 + . Tt En_18n_2s oy E;E]) = —S:

We investigate two following functions:
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(2.6) Fix)= <op(x+ St >

and

(2.7 Fo(x)=<¢p(x—S})>.

Writing explicitly, F}(x) is

(2.8) Fi(x)= <@(x + vAt(1 + & + €28y + ... + En_18n_2, -y E261))>
or

(2.9) Fi(x)= <@p(x+vAt + vAt(1 + & + .. + &,_180_2 - E2) &>

We calculate the conditional expectation of the formula (2.9) with respect to &;:
(2.10) Fl(x)=adt <@(x + vAt — vAt(1 + &3+ ... + &, 18n_25 ooy €2))>

+ (1 —adt) <@ (x + vAt + vAt(L + &, + .. + Ey_18n_25 s €2)) >,
or, in a recurrent way,
(2.11) Fi(x) =adtF,_\(x + v4t) + (1 — adt) F,_,(x + vAt).

Making the analogous operation for the particle starting in the negative direction we
obtain:

(2.12) F;(x) = adt F*,_(x — v4t) + (1 — adt) F,_,(x — v4b),

what, together with the relationship (2.11), gives the system of difference equations for
F*(x) and F 7(x).
From Eq. (2.11) we obtain
Fi(x) = Fj 4(x) _ v(F_1(x + v4t) — F,_4(x))
At B vAL

(2.13)

+ aF,_i(x + vA4t) — aF*,_(x + v4t)

and, going to the limit for n — co, At = 0, t = n4t = const, the following differential
equation:
oF* oF*

=V

ot O0x

Analogously, for F~ we have from Eq. (2.12)
Frx) = F7®)  —v(F 7 (x + vat) — F_(x))

(2.14) +aF~ —aF™.

2.15
@139) At —vdt
+ aF?*_(x — vdt) — aF 5,_(x — vA4t)
and
(2.16) i = —v—— +aF* —aF".

ot ox
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We introduce new functions F and G, defined by

1 1
(2.17) in(F++F‘), G=§(F+—F‘).
Function F can represent the probability density function that particle at time ¢ is
located at point x provided that it started from point x = 0 in the positive or the
negative directions with the same probability equal to 1/2.
Adding Egs. (2.14) and (2.16) results in the following equation:

oF 3G,

(2.18) T

analogously, subtraction of Eq. (2.14) from Eq. (2.16) gives a supplementary partial
differential equation

(2.19) — =v— — 2aG.

By eliminating G from Egs. (2.18) and (2.19) we obtain

10*F &#F 2adF

320 P R

— the telegrapher’s equation (or, the string equation with damping); this is the equation
for the probability density function which describes the distribution of the particles
starting from point x = 0 at time t = 0 in a symmetric way and travelling along the line
with the finite speed v changing the direction in the manner defined in Eq. (2.2).

To solve the problem of particles diffusion on the line, we must complete equation
(2.20) with the initial conditions

oF
(2.21) F(x, 0) = ¢(x), [8t:| . =0,

describing the initial location of diffusing particles.
To consider the limiting case in Eq. (2.20), we assume: a — 00, v — 0, but 2a/v?
remains constant (the particle makes more and more small, quick jumps):

2a 1
(2.22) =D
In the limit we obtain the well-known parabolic diffusion equation:
(2.23) L5.03 = ng
Dar ox

This means that the random walk with finite speed defined in this section satisfies one
of the required correctness conditions, and the present random walk process can be
regarded as a good model of the transport process of pollutant particles.
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3. The one-dimensional model of the transport with sedimentation

To make the description of the particles diffusion more realistic, let us assume that
after some travel time the particle is absorbed by the environment and stops the
diffusion. In the model of random walk this fact can also be taken into account. Let us
assume that the particle starts from point x = 0, as in the previous section, goes in
a fixed direction (to the right or to the left) or remains at that point never leaving it. At
time At it has covered the distance Ax, where

3.1) Ax = vAt.

After the jump the particle changes its direction to the opposite one with probability
a At, sediments at its new location with probability b At or continues the motion in the
previous direction with probability 1 — (@ + b) 4t.

Similarly to the previous section, to describe this model mathematically we
introduce the following notation. Let S, be the location of the particle after n steps
(that is after the time n4t). Let ¢(x) be an arbitrary function. We are interested in the
evolution of the averaged function ¢, <@(x + S,)>. If ¢(x) is the Dirac delta function,
then <@(x + §,)> represents the probability density function of location of the
diffusing particle.

Define the random variable ¢ in the following way:

1  with probability 1 — (a + b)4t,
(3.2) g=< —1 with probability adt,
0 with probability b4t

To describe the walk of the particle let us consider the sequence of independent,
identically distributed random variables with the distribution defined in Eq. (3.2),

(33) &y 3y €3, o €y 4.

Assume that the particle starts from point x in the positive direction. Then the
change of location of the particle after n steps is

(3.4) S: = VAt(l + & + &6+ .. + & 189 - ,318[).
When the particle starts into the negative direction, the analogous variable is
(3.5) S: . _VAt(I + €1 + E2€4 + ...+ En_18n_2y - ,6251) = _Sﬁ.

The last possible solution, the particle remains in the starting point, gives the variable
describing its location in the following form:

(3.6) Si=0.

Substituting the three expressions for the location of the particle, we obtain the
following versions of <g¢(x + §,)>:
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(3.7 Fi(x)= <o(x + §})>,
(3.8) F,x)=<o@(x+ 8;)> = <o(x — S})>,
(3.9) Fi(x) = <@(x + S)> = <p(x)>.

Explicitly, F}(x) is

(3.10) Fi(x)= <@(x + vAt(1 + & + &8 + .. + &,_1En_25 - E281))>>,
or

(3.11) Fix)= <@(x +vAt + vAt(1 + & + ... + &,_18,_2, - E2) &) >

Calculating the conditional expectation of the formula (3.11) for F*(x) with respect to
&, we obtain

(3.12) Fix)=adt<o(x +vdt —vAt(1 + & + ... + &5 1€n_2, -y €2))>
+ (1 — (a+b) A1) <p(x+vAt + vAt (1 + &+ ... +&_ 1803 - £2))>

+ bAt < @(x + vAt)>,
or, in a recurrent way,

(3.13)  Fli(x)=adtF, (x +vdt)+ (1 —(a + b)4dt) F*_(x + v4i)

+ bAt F(x + vAt).
Performing this operation for the particle starting in the negative direction we obtain
the recurrent equation for F ,(x),
(3.14)  F ,(x)=adtF*_(x —vAt) + (1 — (@ + b)At) F ,_4(x —vdt)

+ bAt F{(x — vAt).

Analogously, the recurrent equation for the function FY(x) describing the behavior of
the sedimented particle is

(3.15) Fi(x) = F3_(x).

These three formulae constitute the system of difference equations and give a complete
characteristics of the diffusion process (random walk).

Analogously to the considerations of the previous section, we can consider the
continuous version of the equations for F*(x), F;(x) and FYx) (the conditional
probability density functions). From Eq. (3.13) we obtain

Fax) — Fy_s(x) _ v(Fh_ix + v4t) — F;_y(x))
At N vAt

(3.16) + aF;_y(x + vAt)

—(a+ b)F?%_ (x + v4t) + bFi(x + vAt).

Going to the limit for n— oo, 4t -0, t = ndt = const, we obtain the following
differential equation:

http://rcin.org.pl
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oF* oF*
=v

(3.17) 3 I

+aF~ —(a+ b)F* + bF".

Repeating the procedure for F ~ we obtain from Eq. (3.14)
Foa()—Fa(x) _ —v(F, (x—vdt)— F,_(x)

At -vAt
—(a+ b)F, _\(x — v4t) + bFYx — vAt)

(3.18)

+ aF* _(x — vAt)

and, in the limit,

dF ~ JF ~
(3.19) ——=—v——+aF* —(a+ b)F~ + bF°.
ot 0x
The supplementary equation for F° obtained from the difference equation (3.15) takes
the following form:

oF°
3.20 ——=0
(3.20) o
To obtain the equation for probability density function F of the location of the
particle (under the condition that it left the point x = 0 equiprobably in both

directions), we introduce new variables:

(3.21) F=%(F+ + F7), Gr%(F*‘——F‘)_
Adding Eqgs. (3.17) and (3.19) we obtain

(3.22) %? = v%f: — bF + bFY;
subtraction of Eq. (3.19) from Eq. (3.17) gives

(3.23) %g = vg—f —(2a + b)G.

Eliminating G from Egs. (3.22) and (3.23) we obtain the equation for the probability
density function F,

(2a + b)b _,
v@tz_vax" v ot v oy F

2F 2 b
(3.24) 10°F F  2a+ )517+(2a+b)bF

where Eq. (3.20) has been also taken into account.
To consider the limit (diffusion) case let us transform Eq. (3.24) to a more
convenient form:

http://rcin.org.pl
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(3.25)

1 6*F O0°F 2a  2b |0F 2ab  2b?
Zr KA

i el - I A
Vor = ox ot w*w][F i

Similarly to Sec. 2, consider such a limiting case of Eq. (3.25), where a — co, v — oo but
2a/v? remains constant:

(3.26) - =

moreover, the constant b is assumed to be a finite number. Then Eq. (3.25) takes the form

10F _&F b

327 EE O . 2
(B-27) Dot a2 ' D

[F — F°).

It is seen that the resulting equation is the diffusion equation with annihilation terms.
Also in this case the limiting equation is of a diffusive character, so the preliminary
condition of correctness of the random walk model as a description of the transport
process is satisfied.

4. The case of two-dimensional models

The one-dimensional model makes it possible to describe the pollution transport
phenomenon only in a limited way. To take into account the spatial distribution of
the particles around the source, we should consider a two-dimensional model. For this
purpose we can apply the models of random walk being a certain generalization of the
random walk defined in Sec. 2 and the random walk with absorption defined in Sec.3.

4.1. The random walk without sedimentation

Consider the motion of a particle in the plane, analogous to the one presented in
Sec.2. The particle staying at an instant of time t, at point x = (x,, x,) covers during the
time period At the distance Ax = vAt, possibly changing its direction. The trajectories
of the particle lie piecewise on the straight lines parallel to the axes of the coordinate
system Xx,;, x,. Moving, the particle can choose one of the four possible directions
(follow the previous one, turn to the left or right or go back). This process can be
written mathematically similarly to the previous case with application of the
matrix-vector notation.

Assume that the particle goes to the left with probability aAt, goes back with
probability bAt, goes to the right with probability c4t and continues its way in the
previous direction with probability 1 — (a + b + ¢) 4t. This means that the particle
moves from the initial point along one of the vectors:

R S R e
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with some probability, dependent on the previous direction of particle’s motion.

We can introduce the matrix of rotation of the particle’s velocity vector, which is
random and takes the values according to our assumptions concerning the model.
The matrix of rotation E(w) takes the following values:

0 —17 . )
4.2) Ew) =A= 0 with probability adt,
[—1 0] : .
(4.3) E(w)=B = . with probability bAt,
[ @ o : o
(4.4) Ew)=C= s with probability c4t,
1 0 . .
(4.5) E =D = poit with probability 1 — (a + b + c) 4t.

The rotation matrices act on the direction vectors on the following way:

4.6) Ad = a, Bd = b, Cd=c, Dd =d,
4.7 Aa=b, Ba =c, Ca =d, Da = a,
(4.8) Ab = ¢, Bb =d, Cb = a, Db = b,
4.9) Ac =d, Bec = a, Cc =b, De=c.

The change of location of the particle in n steps is
(410) S; - VAt(ld + E] + E'J.El + ans ‘+‘ En—lEn—Z’ wes ,EzE]) l',

where r is the initial direction of particle’s motion and takes one of four values: r = a,
r=br=corr=d

Consider an arbitrary real-valued function on R, ¢(x), and the function being its
average value:

@.11) Fix) = <o(x + S5)>.
Written down in an explicit form, function F}(x) is
4.12) Fix)= <@(x+vdt r+vA(E,+EE + .. +E,_E,_,, .. EE)r)>.

Like in the one-dimensional model, we can calculate the conditional mean value of
this expression with respect to the random transition matrix E,. We obtain

(4.13) FI(x)=adtFA _(x + vdtr)+ bAtF%_,(x + vd4tr)
+ cAtFS (x +vAtn) + (1 —(@+ b+ c)A) F% _y(x + v4tr),

or, since Dr =,
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(4.14)  FI(x)=adtFA _(x + vdtr) + bAt F % _ (x + vAtr)
+cAtFS_(x +vatr)+ (1 —(a+ b+ c)4t)F}_(x + vdtr).

The difference equations (4.14) for r = a, b, ¢, d can be written in the following form:

iy FHO L) VLt a0~ Fle)

+aFA_(x +vdtr)+ bF¥_,(x + vdtr)
+ cFS (x+vatr)+(@+b+c)Fi_(x +vdtr).

Passing to the limit (4t — 0) we obtain the system of partial differential equations for
the conditional probability density functions F', r =a, b, ¢, d:

r

OF VeV F () + aF %) + bF™(x) + cF () — (@ + b + ) F'x).

4.16
(4.16) Py
Taking successively r = a, b, ¢, d, we obtain the system of equations in an explicit form:
i}
. 0 0 0
F* X2 " F*
F? 0 — = 0 0 || Fe®
X
(417) 6{ Fe el 1 a Fe
d
0 0
0 axl
—(a+b+co) a b c
F a
c —(@a+b+o) a b F*®
= F¢
b c —(@a+b+0) a Fié
a b c —(a+b+0¢)

Introducing new unknown functions P, R, Q, T, defined by
(4.18) P=F*+ F°, Q=F*"—FF"
(4.19) R=F"+F¥4 T=F"—F¢
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we obtain the new system of equations

(4.20) ] 0
"P—y 0= —
o vasz @+cP+(a+ R,
4.21) BQ 0 - @+ 2b T
—() — yv— —_ —_
o o, a+2b+c)Q+@—o0oT,
(4.22) 0 0
b hall, S
6tR+v6xI (@+c)R+(a+ P,
4.23 0 0
G ~T+v_ R=—@a@+2b+¢)T—(a—0)0Q.

ot ax,

To obtain the equation for the unconditional probability density function, let us
introduce two new functions:

(4.24) U=P+R=F*+F<+F"+F}4
(4.25) S=P-R=F*+F*—F"—F"
Now, the function F, defined as
(4.26) F='uU,

4

represents the probability density function of the event that the pollutant particle
reaches a certain area, independently of its initial direction. The above substitution
and differentiation with respect to spatial variables transforms the equations to the
following form:

d 0
(4.27) 6£P_v6x2Q= —(a+ ¢S,
d 0 a 0 d 0
4.28 —V— = — — - -
had) 0x, 6tQ ”axl 6x2P 8k 26 0x, Q+@ C)axI L

d d
~R+v_ —T=(a+c)S,

(4.29) 3 o,

(4.30) LTI

8 2
R — L S,
8x,0t " 8%, 0%, R il Gl g

2

Addition and subtraction of the pairs of the equations gives the following system of
partial differential equations for four functions U, S, T, Q:

?
‘v -vZo+vlT=0,

4.31
( ) ot aX2 BX|
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0? o &>
43D 556 aEn, T axionC
=—(a+ 2b+c)[aix,Q+6ix; T}+(a—c)|:a—i—] T— Bisz]’
(4.33) {%S—vaisz—vb%Tz —2(a+ ¢S,
(4.34) at?;x] Q- 653;2 T 6x?;x2 S

] 0 0 d
=—(a+2b+ C)[ax, Q+6x2 T:|+(a c)[ax, T+ o, Q}
The system of equations obtained can be used for the calculation of the probability
density U describing the unconditional location of the particle. Elimination of the
functions S, T, Q from Eqgs. (4.31) — (4.34) is too complicated and, moreover, it would
change the class of the function sought; therefore, we leave this system of equations in
its present form.

4.2. Random walk with sedimentation

Modeling the two-dimensional diffusion process we can also take into account the
possibility of the sedimentation of the particles in the environment. Then, analogously
to Sec. 3, the particle can either move in one of the four possible directions:

oo oL} L ALl

with probability dependent on the previous direction of the particle’s motion, or
remain at the point of its present location, what can be represented by a zero vector of
motion

4.36 —0
(4.36) e=|,|

We can also introduce the matrix of rotation (or annihilation) of the particle’s
velocity vector, which is random and takes the values according to our assumptions
concerning the model. The matrix of rotation E(w) takes the following values:

0 —1
4.37) Ew)=A= |: { 0:| with probability a4t,
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Fa o
(4.38) Ew)=B = 0 —1 with probability bAt,
o 1] N
4.39) E(w)=C = with probability cA4t,
-1 0 ]

|

[ o o] n
(4.40) E) =G = o o with probability g4t,

1 o] i
(4.41) Ew)=D = 3 1 with probability 1 — (a + b + ¢ + g)4t.

The rotation matrices defined above act on the velocity direction vectors in the
following way:

(4.42) Ad=a, Bd=b, Cd=d Dd=d, Gd=g,
(4.43) Aa=bh, Ba = ¢, Ca=a, Da = a, Ga=g,
(4.44) Ab=c, Bb=d, Cb=a Db=b, Gb=g,
(4.45) Ac=d, Bc=a, Cc=b Dc=c¢ Ge=g
(4.46) Ag=g  Bg=g Cg=pg Dg=pg Gg=¢

The change of location of the particle in n steps (under the condition that the particle
has really left the starting point) is

(4.47) St = vAt(ld + E, + EE, + .. + E, E, 5, .. EE)r,

where r is the initial direction of particle’s motion, thatisr =a,r =b,r =c,orr =d;
in the case of not leaving the point, the motion vector can be written as

(4.48) St=g

Consider an arbitrary real-valued function ¢(x) defined on [R? and its conditional
average values (under the conditions of all possible initial directions of the walking
particle) <@(x + S})>,r = a, b, ¢, d, g. Performing the reasoning analogous to the one
made in the non-sedimentation case, we obtain the system of equations for the
conditional probability density functions F',r=a, b, ¢, d, g:

r

0
P; =vr- VF*(x) + aF *(x) + bF ®(x) 4+ cF “(x)

(4.49)

—(a+b+c+g)F'(x)+ gF ¥x),
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forr=a,b, ¢, d and
JF ¢

4.5 — =

(4.50) ar 0

The system of equations (4.49) can be written in the vector form

0
. 5_x2 0 0 00 .
o 0 - ‘2 0 00 F*
Ft 0x, F*
0
451) —|F¢|l—-v] O 0 — —a~ 0O O||F¢
ot ; 0x,
F F F‘
3 0 0 0 0 0_

[ b
—(@+b+c+g) a b ¢ g

c —(a+b+c+g) a b g l|lF*

Fb

= b c —(a+b+c+g) a g .
a b c —(@a+b+c+g) g ||F*

F¢t

0 0 0 0 0~ -~

Similarly to the model without sedimentation, assuming that the probabilities of
the initial directions of the pollutant particles are equal, we can obtain the system of
equations where the probability density function of the actual location of the particle
is one of the functions sought for. Repeating the calculations in the way analogous to
the previous case of non-sedimenting particles, we can obtain the system of equations
for the following sets of functions

(4.52) P=F*+ F°, Q=F*—F°,
(4.53) R=F" 4+ F9$, T=F®—F¢ and F&,
or alternatively,

(4.54) U=F*+F*+F*+F" Q=F"-F¢
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(4.55) S=F*+F“—F"—F¢, T=F"—F* and F&

In the first case the system of equations is

4.56
(4.36) b—tP—v——-Q— (@+c+gP+(@+c)R+2gF¢8
457 0 ]
a1 —Q—v—P=—(@a@+2b+c+9)0+@—0)T,
ot 0x,
458 d ad
(4.38) -R+v—T=—-(a+c+gR+(a+c)P+29F¢
ot 0x,
459 d 6
1
JOF ¢
: —— =0
(4.60) ar ,

while in the second case we obtain

5, d G,
61 U— T= —qgU + 4gF*
(4.61) 5 vaszJrva gU + 4g F¥,

Xy
4D @ T e
—(a+2b+c+yg) [ailQ +a/ ]Jr(a—c) [;ﬁ — aizQ],
(4.63) :ES — vaizQ - vail T=—2a+c)S —g§s,
(o) ﬁtgle Q- 6:25;2 = vax?;_x.zs
=—(@a+2b+c+g) [ailQ - ai T] +(a—o [ail T+ aiz'Q}
(4.65) il =0

ot
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5. The model of pollution transport with sedimentation in three-dimensional space

Modeling the pollution transport in three-dimensional space, we can also
use the random walk process. In such a case we can describe the flow of particles
in a much more realistic way than in the one- or two-dimensional cases. At
present the phenomenon of sedimentation of the particles doesn’t require to
introduce the probability of annihilation of the particle. In order to describe
it, we can simply assume that the particle reaches a certain surface (ground
surface) which is an absorbing boundary, characterized by an appropriate boundary
condition for the probability density function (see [11]). We can alternatively
assume that the boundary reflects the particle, what is expressed mathematically
by vanishing of the particles flux on the surface (expressed in terms of the
probability density function), see [11]. Obviously, the boundary can also partially
reflect and partially absorb the particles. In such a situation the boundary condition
is a certain combination of the conditions for the reflecting and absorbing boundary.

Let us consider a random walk in a three-dimensional space. We define the source
point x, and the sedimentation plane 2 (x — y), described in the three-dimensional
Euclidean space coordinates in such a way that

(5.1) Xo=1|0 and Fx—y)=|x= xeR, yeR |

Zy

S = %

The particle starting from the source point can walk in one of the six possible
directions, parallel to the coordinate axes of the space; staying at any point at a given
instant of time, it also can continue its walk in one of six possible directions with
probability dependent on the direction of its previous step. The direction vectors of
possible particle’s steps in a three-dimensional space are:

0 —i 0 1 0 0
5.2) a=|[1|, b=| 1| e=|-1| d=|0| e=|0]| f=| o}
0 0 0 0 1 —1

where a, b, ¢, d, represent the possible directions of transport, e — the direction of
convection and f — the direction of sedimentation. Reaching the sedimentation plane
{x =(x,,0)7, x, yel®} the particle stops and is excluded from the balance of mass
of the travelling particles.

Change of direction is governed by some rotation matrix A, depending on the
initial direction (direction of the previous step). To define the random walk we assume
the probabilities of changes of the direction of particle’s motion and, consequently, the
probability that the rotation matrix A takes a given value.
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To model the transport process we assume that the rotation matrix takes its value
depending not only on the rotation angle but also on the initial and final direction of
particle’s velocity.

In the transport plane x — y transformations of the velocity vector are the
rotations around the axis e, and they are described by the following matrices:

@® turning to the left (a=b, b=¢, c=d, d=a)

0-1 0
(5.3) A={1 0 0 with probability o, 4t;
0 0 1

® reflecting (a=>c,b=d,c=a,d=b)

-1 0 O
(5.4 A= 1 -1 0 with probability f4t;
0 0 1

@® turning to the right (a=>d, b=a,c=b, d=¢)

0O 1 0
(5.5) A=(—-1 0 0 with probability a,At.
0o 0 1

The matrices describing changes from the transport process in plane x — y to the
convection (that is the walk with the velocity vector e) have the following form:

for the transformation a=>e

1 0 0
(5.6) A=|0 0 -1}
0 1 0

for the transformation b=e

0 0 1
(5.7 A= 0 1 0
-1 0 0

for the transformation ¢=e
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1 0 0]
(5.8) A=|0 0 1}
0-1 0
for the transformation d=>¢
0 0 —1]
(5.9) A=|0 1 0}
1 0 0
all with the probability x4t, and
for the transformation f=e
0 O
(5.10) A=(0 1 0 with probability s At.
0 0 —1

Similarly, the change from the transport to sedimentation (the walk with velocity f)
is described by the following matrices:

for the transformation a=f

0 0
(5.11) A=|0 0 1§
0 -1 0
for the transformation b=f
1 0 -1
(5.12) A=|0 1 O0f
1 0 O
for the transformation ¢=f
1 0 0
(5.13) A=|0 1 —1¢§
0O 1 0

for the transformation d=f

http://rcin.org.pl



556 7. KOTULSKI

0 0 1
(5.14) A=| 0 ~1. 0k
-1 0 0
all with probability y4t, and
for the transformation e=>f
1 0 0
(5.15) A=(0 1 0 with probability eAt.
0 0 —1

The last possible changes of the direction of the particle velocity are the changes
from convection to transport:

for the transformation e=>a

1 0 0
(5.16) A= 0 0 1§
- 0 - 0 .
for the transformation e=>b
B e 3
(5.17) A= 0 1 0|
i 0 0
for the transformation e=>¢ )
= el =
(5.18) A=|0 0 -1 §
i 0 1 0 ]
for the transformation e=d
[0 o0 1]
(5.19) A=| 0 1 0}
=1 ¥ 0_

all with probability d4t, and from sedimentation to transport:

for the transformation f=>a

1 0 0
(5.20) A=(0 0 -1 4§
0 1 0
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for the transformation f==b

0 0 1
(5.21) A= 0 1 O0f
= 1 0 0
for the transformation f=c¢
_ - -
(5.22) A=|0 0 ;
-1 0
for the transformation f=d
~ o1 -
(5.23) A=|0 0 |
0 0

with probability @At.

To derive the equations for the probability of the location of the walking particle
we repeat the procedure applied in the two-dimensional model. Let us assume that
w is the initial velocity vector of the particle (taking the value a, b, ¢, d, e or f), while
X = (X, X5, X3) is the starting point (at initial time ¢t = 0). Then the change of location of
the particle after n time steps is

(524) S: = vAt[W + A1w ‘f‘ A2A1w + asid + AnﬁlAn~21 ey A]W].
We consider the function of the actual location of the particle defined as
(5.25) Frx)= <®[x + ST7]>.

Writing S 7, explicitly we obtain
(5.26) Fix)=< d’[x +vAt[w+AW+AAW+ .+ A, A, .., Alw]]>.

The conditional expectation of the function F j(x)with respect to matrix A, (under the
condition that w is equal, respectively, to a, b, ¢, d, e, and ) is the following:
(527) F31(x)=oAtF:_(x + vAta) + w,4tF%_,(x + vAta)

+ BAtF:_ (x + vAta) + kAtF ¢_,(x + vAta) + yAtF!_,(x + vAta)

+ (1= (@ + o+ B+ +7) ADF 3, (x + vdra),
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(5.28) F:(x)=oAtF:_\(x + vAtb) + 0, AtF5_,(x + v4th)
+ BAtF 3 (x + vAtb) + kAtFE_,(x + vAtb) + yAtF!_ (x + vAtb)
+ (1 —(a;+a,+ B+ x+y)A)DF2_,(x + v4th),

(529) F&(x)=oAtF8_ (x + vAte) + AtF 2, (x + vdtc)
+ BAtF3_(x + vAte) + kAtF &_, (x + vAtc) + y4tF [ _,(x + vdtc)
+(1 =@+ + f+x+7y)4t)F;_i(x + vdtc),

(5.30)  F4(x) = AtF* ,(x + vAtd) + 0, AtF ¢ (x + vAtd)
+ BAtFY_ (x + vAtd) + kAtF$_;(x + vAtd) + y4tFf_ (x + vAtd)
+(L—( +0+ B+ x+9)A)F i (x + v4id),

(5.31) Fg(x)=04t[F} ((x + vAte) + F)_(x + vdte)

+ F&  (x +vdte)+ Fi_,(x + vdte)]

+ edtFf_ (x + vAte) + (1 — (45 + &) A) F;_, (x + vAte),

(532) Fl(x)=odt[Fi ,(x +vdtf) + F)_,(x + vdtf)
+ FS_ (x + vAtD+ Fi_,(x + vdrf)]
+YALFS_ (X + vAtD) + (1 — (49 + ) A F L, (x + vAtf).

Passing to the limit in the difference equations (5.27)—(5.32), as in the previous cases,
we obtain the following system of partial differential equations for the conditional
probability density functions:

(5.33) L ;(:’x) = o, F'(t.X) + o, F 4t,x) + BF (tx) + xF %(t,x) + yF {(t,x)

— (o + o, + B+ Kk + ) F*t,x) + va: V F*(t,x),
39 F ;(:”‘) = a0, F¥(t,x) + a,F "t,x) + BF 4t.x) + xF (¢,x) + yF (t.X)

— (2 + o + B+ k + P)F(t.x) + vb VF(1,x),
(5.35) aF;(;’x) = o, F4(t,x) + o,F *(t,x) + BF *(t,x) + xF (t,x) + yF (£,x)

— (@ + o+ B+ K+ ) F(x) + ve VE(x),
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(5.36) BF;(tt,x) = o, F *(t,X) + o, F (t,x) + BF *(t,x) + kF %(t,x) + yF (tx)
— (@ + o+ B+ x + ) FUtx) + vdV F ¥t ,x),
(5.37) aF;(:’x) = 8[F*(tx) + F*(tx) + F (tx) + F %(t,x)] + F (t,x)
— (46 + ) F %) + ve- VF(t,x),
oF (t.x) X
(5.38) T = WX + P + Fx) + FAex)] + WF (x)

— (40 + W) F {(tx) + v+ VF (t,x),

where symbol ““” denotes the inner product of vectors and V is the symbol of
gradient.
In the matrix form the system of equations takes the form

[Fe] -—Q @ B o K 'y.rF'-
! @ — o B K y|| F®
a|F¢ o, —§£ e Fe
(5.39) [ _ B 2 oy K Y
ot|F* o B oa —Q K y|| F¢
Fe¢ d & o6 o6 —(@o+¢9 e||F*©
F'l Lo o o o ¥ — (4o + )| F"
d
il 0
ox, 0 0 0
0 ——af 0 0 0 0 s
6X1 E®
7 Fb
0 0 —-—— 0 0 0
5x2 Fc
+v 5
0 0 — 0 F'|:
0x,
d o
0 0 0 05 0 | Fe]
d
0 © 0 0 0 ——
0x4

where @ = (¢, + o, + f + 1 + 7).
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To complete the mathematical description of the transport phenomenon we must
assume the initial and boundary conditions for the probability density (or in another
interpretation: the pollutant concentration density) functions sought for. As we have
assumed, the plane {x = (x, y, 0)", x, ye &} is the absorbing boundary. This causes the
vanishing of all the conditional probability density functions (see [11]):

(540) F*tx,y,0)= Ftx,,0) = F“(t,x,p,0) = Ft,x,y,0)
= F t,x,y,0) = F {(t,x,y,0) = 0.

In our interpretation of the functions F*, w = a, b, ¢, d, e, f, the initial condition
represents the initial location of the fractions of the pollutant particles initiating their
walk in a given direction. Since we have assumed the point source of the particles, the

initial functions are three-dimensional Dirac delta-functions concentrated at point
(0, 0, Zo)T,

(5.41) F*0,x,y,2) = apd(x) 8(y) 8(z — zo),
(5.42) FY0.,x,y,2) = bod(x) 6(y) (z - zy),
(5.43) F“(0,x,y,z) = ¢od(x) 8(y) 8z — zy),
(5.44) F40,x,y,2) = dod(x) 8(y) (z — z,),
(5.45) F(0,x,9,2) = eod(x) () 8(z — zy),
(5.46) F0,x,y,2) = £o3(x) 8(y) 8(z — z),

where the sum of all intensities equals one,
(5.47) ag+ by + co+dy+ ey + fo= 1.

Certainly, one can consider some more general problem in which the boundary
absorbing condition is given on a more complicated surface, or the initial condition is
distributed over the space in a different manner.

6. Concluding remarks

In this paper we have proposed several models of the random walk process
occurring with a finite speed, useful for the description of transport of the particles.
The models are not very restrictive. They can be easily adopted to describe the
transport process in many physical environments: turbulent atmosphere, soil or
water, depending on the selection of the parameters.

In our considerations, starting from the law of motion of the particle, we have
derived the global transport equations for the probability density functions of particle
location (or the equations for the pollutant concentration). The obtained equations
constitute the system of linear partial differential equations with constant coefficients.
The problem of existence and uniqueness of the solutions to such equations has been
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already solved. Since we assume that the solutions of the equations are probability
density functions, we are looking for the solutions in the class of functions integrable
with some polynomial weights (functions with finite moments). It is proved (see [1])
that if the initial conditions and possible excitations (sources) have this property, then
the solution will exist, will be unique and also (locally) integrable with a polynomial
weight.

The equations obtained can be used for a quantitative analysis of the modeled
transport processes. The simplest way of doing this is based on their numerical
solution. This is quite natural since they are obtained as the limit of the difference
equations, directly applicable for computational analysis. Some conclusions
concerning the transport process can be also drawn analytically. Since the transport
equations are hyperbolic, we can estimate the effective velocity of the pollutant front
from the source.

The proposed random walk process can be studied not only globally, by the
analysis of the transport equation. Another possible approach is the investigation of
the trajectory equation (2.4) and its multi-dimensional generalizations. It necessitates
the application of the random matrix methods (see [4]); in such a manner we can
obtain another kind of information concerning the diffusion particles — the areas of
concentration, eventual attraction curves, etc.

Application of the proposed models for the description of real transport problems
requires identification of the parameters characterizing the probability intensities of
the velocity direction jumps, as well as the absolute values of the velocity.

Studying the pollutant particles structure we can try to estimate the probability
intensities (e.g. large particle rather sediments than convects, etc.), but complete
identification of the model needs some well-prepared experimental data to estimate
the parameters of the model. The measurements in the experiment must be performed
in a specific way to make them useful for the identification of our model (see [3]).
Design of such an experiment and estimation of the parameters is a very important
task to solve in modeling of the pollution transport in turbulent atmosphere with the
use of random walk process.
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Hodograph method in steady plane MHD
micropolar fluid flows

I. ADLURI (WHEELING) and A M.S. EL KARAMANY (TRIPOLI)

EquaTions of motion of a steady plane MHD micropolar fluid flow are transformed to the
hodograph plane by means of the Legendre transform function of the stream-function. Results
are summarized in the form a theorem, some flow problems of physical importance are
investigated as applications of this theorem and exact solutions and geometry of the flow are
obtained in each case.

1. Introduction

IN RECENT YEARS, the flow of micropolar fluids has been studied by many investigators
using the theory and constitutive equations first given and developed by ERINGEN
[1, 2]. He presented the theory which is the generalization of the theory of viscous
fluids by taking into account the local microrotations and microinertia. The
mathematical model underlying micropolar fluid may represent liquid crystals,
suspensions, animal blood and fluids consisting of dumb-bell molecules. The problem
of finding exact solutions of governing equations of micropolar fluid flows presents
insurmountable mathematical difficulties due to the fact that these equations are
nonlinear. However, exact solutions have been obtained by many researchers in certain
particular cases, mostly when the nonlinear convective terms vanish in a natural way.

The present study deals with the application of hodograph transformation to
obtain exact solutions of the governing equations of a steady plane flow of an
electrically conducting micropolar fluid in the presence of a transverse magnetic field.
CHANDNA et al. [3—9] have used hodograph and Legendre transformations to
investigate steady plane viscous flows, non-Newtonian flows, and constantly aligned,
transverse and orthogonal MHD non-Newtonian flows. Recently, ADLURI [10, 11]
has applied hodograph method to obtain some exact solutions of the flow equations
of steady plane micropolar fluid and orthogonal MHD non-Newtonian fluid.

First, the equations of the flow are transformed to the hodograph plane
interchanging the role of independent variables x, y and the velocity components u, v;
then, introducing a Legendre transform function of the stream-function, all equations
in the hodograph plane are expressed in terms of this transform function. These results
are put together as a theorem and some interesting flow problems of both physical
and geometrical importance are discussed as applications of this theorem. It is
observed that radial and spiral flows cannot exist in a micropolar fluid whether fluid is
conducting or nonconducting.
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2. Equations of motion

The equations governing the steady plane MHD polar fluid flow in the presence
of a transverse magnetic field, in the absence of body forces and body couples, are
given by

Bu dv
2.1
(2.1) 6y e
oh av Jw
(2.2) a=pvw+ka—y—(/x+k)a—y,
dh av dw
2.3 e N Neld o=
(2.3) i ko etk
udv  vov v o
2.4) ( b‘x 6_y> = —2kv+kw+)’(a 3+ oy ),
uéH voH 1 (¢°H &H
2.5 il Waisiesn Sl Pt Wi
@) ax * dy ua( x2+6y2)’
(2.6) = 2
dx dy
1 2 2 1 2
(2.7) h = sp@+v)+p+5uH",

where (u(x, y), v(x, y), 0) represents the velocity vector field, (0, 0, H(x, y)) is the
magnetic field, (0, 0, v(x, y)) is the micropolar field, w is the vorticity, p is the pressure,
p is the density, p, is the constant magnetic permeability, ¢ is electrical conductivity,
j is the microinertia and p, k, y are the material constans.

Eliminating h between Eqgs. (2.2) and (2.3), we get

ubw véw v %y P Fo
28 il RN {18 8%, N el §
@8) ”(ax N ay) k(ax1+ay2)+(”+k)(ax2+ay2)
3. Equations in the hodograph plane

Let the flow variables u(x, y), v(x, y) be such that, in the region of flow, the

Jacobian
d(u, v)

a(x, y)

Considering x, y as functions of u and v, we can derive the following relations:

J()C, y) =
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31 u 0y du  O0x dv _ dy v 0Ox
- ax T T e ow Taw ow T w
o(u, o(x, -1 _
(3.2 I )= o 3{5((" y))] —T(w 1),
of oty af.y —af,y
e x  a(x, y)_J u, v) =7 au, v)’
of  Afx) Ak ]) - ax])
G4 = ) awe) dw )’

where f(x, y) = f(x(u, v), y(u, v) = f(u, v) is any continuously differentiable function.
Using the above relations, we can transform Egs. (2.1), (2.8), (2.4) and (2.5),
respectively, into the following equations:

ox 0
(3.5) £+a—i= :
— _ d(x, le) a(jQZ’ y) a(x, jP1) B(jPz, y)
(3.6) p(l)Pl-f-uP;_)———k{—a(u’—-ﬁ--F“aE‘, ) }+(y+k){ ) + o, 9) }
- (é(x, JQ, a(JQ,
B.7)  piJ(v0,+uQ,) = —2kv + ki + 7T { Szu v? 3 (a(l? U)Y)},
1 {a(x, JR) 3(J R,, y)
(3.8) (R, +uR;) = uga{ au, v) o, v) }’
where
wx, y) = olx(u, v), yu, v) = ©(@u, v),
(3.9) vix, y) = v(x(u, v), yu, v)) = v(u, v),
H(x, y) = H(x(u, v), y(u, v)) = H(u, v);
dx, @ @,
P, =P,u, v)= ;(xu, (Z)), P,=P,(u, v)= a((cz 1;‘;),
ox, v o,
3.10) 0= 0 =30, 0= 0fu =22,
ox, H o(H ,
R, = Ru, v) = é;‘u v)), R, = Ryu, 1v) = é(u vy)).

Equations (3.5) — (3.8) constitute a system of four equations for four unknown

functions x(u, v), y(u, v), V(u, v) and H (u, v). Once this

system is solved for these

functions, we can determine u(x, y), v(x, y), v(x, ), ex, y), H(x, y) and p(x, y) for the
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system of equations (2.1) — (2.6) governing the steady plane flow of a MHD
micropolar fluid under the influence of a transverse magnetic field.

4. Equations in Legendre transform function — ¥ (u, v) and H (u, v)

Equation of continuity (2.1) implies the existence of a stream-function

Y(x, y) such that

0 ]
4.1) dfy = —vdx+udy or —w=—v, Jﬁ:u

dx dy
and Eq. (3.5) implies the existence of a function L(u, v) called a Legendre transform
function of the stream-function Y(x, y), so that

oL aL

4.2) dL = —ydu+xdv or — =-y,

3 Y 59 =%

Functions /(x, y) and I(u, v) are related by

4.3) L(u,y) = vx—uy+y(x, ).

Using Eq. (4.2), Egs. (3.5)—(3.10) can be transformed into the following
equations:

@4) pOP +uP) =k {6(6L/6v, 7Q)  ¥aL/ou le)}

o(u, v) d(u, v)

ddLjdv, TP,) d(@L[ou, JP,)
*“‘*’”{ o, ) aza:ﬁ‘“}’

4.5) piJ (vQ,+uQ,) = —2kv + k> +yJ

_(a@L/ov, JQ,) (@Ljou, TQ,)
o, v) o(u, v) ’

1 fa(@L/ov, JR) 0(3L/du, JR,)
(4.6) (VR,+uR,) = —{ M, ) + V) },

o

_d@Ljy, @), _ doLjou, @)

= o, v) 27 Ou, v)
_8(dL/av, V) _ (0L/ou, v)
“.7) Q=5 2= "3 )
_d@Ljov, H) _ 8(3L[ou, H)
BT ST

http://rcin.org.pl
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567

where

(48) | a2 9 \Buadv ’
. - [(0*L &L

4.9) @ = J(EE“W)'

From Egs. (4.4)—(4.9), we have the following theorem:

THEOREM. If L(u, v) is the Legendre transform function of a stream-function of
a steady plane flow of a MHD micropolar fluid in the presence of a transverse magnetic
field, and V(u, v) and H (u, v) are transformed components of microrotation and
magnetic field, then L(u, v), ¥V (u, v) and H (u, v) must satisfy Egs. (4.4)—(4.6), where
@ (u, v), J (u, v), P(u, v), P(u, v), Q,(u, v), Q,(u, v), R,(u, v) and R(u, v) are given by Eq.

@.7)—(4.9).

5. Applications

To reveal the implications of the results obtained in the previous section, we shall
investigate some flow problems of physical interest as application of the theorem.

APPLICATION 1
Let

(5.1) L (u, v) = Au*+ BV

be the Legendre transformed function, 4 and B are nonzero constants.

Substituting Eq. (5.1) in Egs. (4.4)—(4.9), we get

(5.2) J =$, @ :%;, P,=0, P,=0,
(5.4) E‘?—;+AZ% =0

(5.5) %(Au% - Bv%:_-‘) = -2kv +k(‘;:BB),
(5.6) 2AB(Au% - Bv%{Z—) = ﬁ(B’%;g-&-A’%

Solving Egs. (5.4) and (5.5) for v (u, v), we get

4Bkr\  (4+B)
pj 4A4B

(.7) o= (u_

)
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provided
rr
(5.8) AB = - 1652
where ¢, is an arbitrary constant.
Solving Eq. (5.6), we obtain
(5.9) Hu, v) = H,

where H, is a constant. Condition (5.8) implies that both 4 and B are nonzero,
unequal and have opposite signs. Since 4 # B, it follows that a steady plane flow of
a micropolar fluid cannot be a vortex flow whether the fluid is conducting or
nonconducting.

Using Eqg. (5.1) in Eqs. (4.2) and (5.7), we get

v

5.10 R -

(5.10) u(x, y) 34’ (x, ¥) 2B
A+B

5.11 _ +—

( ) v(x, y) = 2A (bkAx+pjy) A48

Substituting Egs. (5.10) and (5.11) in Egs. (2.2) and (2.3) and integrating the
resulting equations, one can obtain

p(A+B) [x ( yz) ke, | 2

h = “rpypten: t
(x, ») S4B 51 +p 5 &+ cons

B+A

which, on using in Eq. (2.7), yields

ke 26
(5.12) plx, y) = gIB( +y*) — ﬂx“i"};’k }"“ ‘Hi+m,
where 7, is an arbitrary constant.
From Egs. (4.3), (5.1) and (5.10) we get

xh . P
(5.13) Wx, ) = gptag
where 4 and B are unequal and have opposite signs.

If L (u, v) = Au*+ Bv* is the Legendre transform function of a steady plane flow
of a MHD micropolar fluid of finite electrical conductivity in the presence of
a transverse magnetic field (0, 0, H,), then the flow in the physical plane is a flow with
hyperbolic stream-lines and the flow variables are given by Egs. (5.9)—(5.13).

In case of infinitely conducting fluid, i.e. for o— oo, the diffusion equation (5.6)
simplifies to

oH o0H
(5.14) Au— — Byv—=0.
ay ou
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Solving this equation, we have

- A By?

5.15 Hu, v)=F( 22420,

(5.15) (w,v) ( >+ 2)
where F'is an arbitrary function of its argument.

Proceeding as in the previous case, H(x, y) and p(x, y) can be found in the

following form:

(5.16) H(x, y) = F(S—X;+$),
617 plx, y) = M%(xuyz) - §—2x+2(;;_czy+%9 {F(é—’g+£)}z+nz
where r, is an arbitrary constant.
APPLICATION II
Let
(5.18) L (u, v) = (Au+ B+ Cu*+ Du+E,

be the Legendre transform function, where 4,#0, B, C,, D,, E, are arbitrary
constants.
Proceeding as in the previous application, we can obtain

1 2C,

P, @e=uil | Bl | B0
(5.19) Ai Ai= 2
v v ov oH oH oH
=i =2cZ 42 R=4Z, R=20%1_4Z°.
Ql [av Q2 lav lau 1 lav 2 1 a lau

Using Eqgs. (5.18) and (5.19), (4.4)—(4.6) can be simplified, respectively, to

' ol A, dudv Ao
pJ ov ov _2kC
(521) Z{(AIV+2CIH)‘5;—AIME}_2kV +j%—la

522 {ivizca® _ 4 BH)_ 1 fac, oW ac\H &0
(G2} VIO = A = a | A, Dudy A ) o' k|

Solving the system of equations (5.20) —(5.22), we get

(5.23) V(u, v)=cz(u+/ci:v)—%,
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- 1
(5.24) H@u,v) = }.l-ﬂ:exp(i A pou’ ):ldu+ As,
_ P
(5.25) 4=

where ¢,, 4,, 4, are arbitrary constants.
Employing the previous technique, we obtain the flow variables as

(x—B,) (2Cx+A4,y — 2B,C,+ A,D))

(5.26) u(x, y)——f', wWx, y) = —— ! % 1 T
= o (x—B) (+D) C,
(527) V(x,}’)— Cz{ [l + : _A?’

(5.28) H(x, y) = % J [exp {5; (x — Bl)ﬂ dx+4,,

2C
lp{Cl-xz"‘(AlDl — 2B,C))x+4,y(x — B))}

(5.29) plx, ) =—

_P (x_B|)2+(2C1x+A1y_2B1C1+A1D1)2\
AN A }

ﬂe )LI ﬂ'ta 2 :
el - A
i Lo fiearflecsfon.

(X_Bl) (X_Bl) (V+D1)
A, { A, € C, }“LE"

(530) ¥(x,» =C,

where =, is an arbitrary constant.

If L (u, v) = (A,(u+ B)v+ C,u* + D,u+ E, is the Legendre transform function of
a stream-function of a steady plane flow of a finitely conducting micropolar fluid in
the presence of a transverse magnetic field, then the flow variables are given by Egs.
(5.26)—(5.30) when A4, = pj/2k, and the flow in the physical plane is:

a) a flow with Cx*+4,xy—A4,B,y+(4,D,—2B,C,)x = constant as stream-
-lines when C,#0 in L (u, v),

b) a flow with rectangular hyperbolas (x— B,)(y+ D,) = constant as stream-
-lines when C,=0 in L (u, v). In case of infinitely conducting fluid, Eq. (5.20) and
(5.21) remain unaltered whereas the diffusion equation (5.22) reduces to

o oH
(5.31) (Av+2Cw)— —Au—=0.
ov ou
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Solving this, we get
(5.32) H(u, v) = G(C,u* + A,uv),

where G is an arbitrary function of its argument.
Using Eq. (5.25), H(x, y) can be obtained as

~C(x—B)* — A,(x—B) (y+1)1)]
A '

(5.33) H(x, y) = G[

The pressure function, in this case, is given by

9,

ACH+(A,D, — 2B,C) x+ Ay (x — B}
1

(5.34) p(x, y)=

_P (x—B,)’ +(2C|x+A,y+ A,D,—2B,C))’
2| 4 At

+kc2(i = 1)— E(G(x, Y+,

where =, is an arbitrary constant.
The flow variables of a steady plane micropolar fluid of infinite electrical
conductivity are given by Egs. (5.26), (5.27), (5.33) and (5.34).

APPLICATION III (Radial flow)
Letting

(5.35) L (4, v) = A,tan™' (vju)+B,, A,#0,

and employing the procedure used in the previous applications, we get

(5.36) J=- ("2:;2)2, o =0, P=0, P,=0,
(5.37) %;+%§ =
(5.38) u?;+vg =E?(~§§1j_v—vz),

Solving Egs. (5.37) and (5.38), we have
(5.40) V(u, v)=0,
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which is a trivial solution. Therefore, in a steady plane micropolar fluid a radial flow
cannot exist whether the fluid is conducting or nonconducting.

APPLICATION IV (Spiral flow)
Let

(5.41) L (u,v)= %Aa In (u* +v*)+ B, tan '(v/u),

where 4,70, B,#0.
Using Eq. (5.41) in Egs. (4.4)—(4.9), we obtain

_ (u2+v2)2 -
5.42 Sl . _ _
( ) J LT B’ @ =0, P=0, P,=0,
0'v  0'v
pj (& +v) v v _

5. P — At F L
(5.44) LB {(B3v Asu) av+(B3u A,) au} 2kv |

(B, — Aw)0H (Bu+Ay)oH 1 (#H 0°H
545 it A B ol W% O
(56 @) v T ) au po\ad Tar )0

Solution of Egs. (5.43) and (5.44) is given by
(5.46) V(u, v)=0,

which is again a trivial solution. From Eq. (5.46) it follows that in a steady plane
micropolar fluid a spiral flow is not possible whether or not the fluid is conducting.
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On dynamics of systems modelling continuous and periodic
guideways (*)

R. BOGACZ, T. KRZYZYNSKI (WARSZAWA) and K. POPP (HANNOVER)

THE PAPER DEALS with the dynamics of a class of mechanical systems which are referred to as
periodic systems in the literature. A periodic system consists of a number of identical elements
which are coupled in an identical way to form the complete system. The guideways for the
Maglev vehicle are usually frames which are composed of repetitive elements. Here, the
dynamical analysis leads to the investigation of continuous periodic structures. The aim of the
paper is the determination of the dynamic response of the guideway to the action of a travelling
disturbance source. The structure is modelled as a continuous Bernoulli — Euler beam which is
made periodic system by the attachment of equally spaced supports. In the present paper the
steady-state response is obtained in the form of a superposition of travelling waves. Also the
problem of free wave propagation is briefly discussed. The method is based on Floquet’s theorem
and consists in a direct solution of the differential equation for the continuous beam, which
allows to determine the displacement field in any cell of the periodic system.

1. Introduction

THE PAPER DEALS with the dynamics of a class of mechanical systems which
are referred to as periodic systems in the literature. The periodic system consists
of a number of identical elements which are coupled in an identical way
to form the complete system. It may be constructed either by real assembling
together the identical elements or by subdividing an uniform structure. The
theory of periodic systems is well known in solid state physics and electrical
engineering, cf. [1]. The development of mechanical continuous periodic systems
is relatively new, and the papers like [2, 3, 4] constitute an important contribution
both to the theory and to its applications. The intensive studies in this area
are forced by the design and development of such modern systems like large
space structures [5], ground pipelines [6] or elevated guideways for high-speed
magnetically levitated vehicles (Maglev), cf. [7, 8, 9]. The guideways for Maglev
systems are usually frames which are composed of repetitive elements and
their dynamical analysis leads to the analysis of continuous periodic structures.
Since Maglev systems are designed to connect large distances, the investigation
of steady-state dynamics of the guideways under travelling disturbance sources
is needed.

(*) Investigations supported by the KBN grant No 309389101 and the Alexander von Humboldt
Foundation.
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The major objective of the paper is to determine the dynamical response of the
periodic structures modelling the guideways for high-speed vehicles. Two models of
continuous periodic structure are considered. The first model (A) consists of an infinite
Bernoulli — Euler beam resting on a viscoelastic Winkler-type foundation, cf. Fig. 1.

F1G. 1. System models.

The second model (B) differs from the first one in the absence of the foundation. The
detailed analytical treatment presented in this paper concers mainly model (A), but the
problems are formulated in such a way that most of the obtained expressions can be
applied to both models. In order to compare some effects derived for models (A) and
(B) with those for continuous but not periodic systems, we refer to model (C). The last
one is either a beam on elastic foundation or a simple prismatic beam, in both cases
without periodic supports. Thus, model (C) is a continuous system which is derived
from the corresponding periodic one. The numerical results presented for models (A)
and (B) have been obtained for the case of rigid periodic supports and pure elastic
systems.

The investigation of forced vibrations follows the analysis of travelling waves
propagation in the unloaded systems, which is presented in the next section of the
paper. This analysis is needed for illustrating the fundamental properties of the
periodic systems considered. In the case of forced steady-state vibrations, the
disturbance source is taken in the form of a travelling harmonic force. Such
a disturbance source enables us to examine all effects which are inseparably related to
the dispersive systems, cf. [10, 11]. Additionally, the solution for the continuous
periodic system under a travelling harmonic force makes it possible to study the
dynamic interaction between a vehicle and the guideway by means of the way
proposed in paper [12]. The case of a constant magnitude force travelling over an
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infinite periodic structure has been studied in papers [7, 13]. One of the methods
presented in [7] consists in an integral transformation of the displacement function
and a numerical retransformation. The method presented in [13] is based on
expanding the periodic interaction between flexible supports and the continuous
beam into Fourier series. In the present paper the integral transform approach is
developed for the case of a travelling harmonic force, and the retransformation is
carried out by means of analytical methods.

2. Propagation of travelling waves in continuous periodic structures

2.1. Formulation of the problem

The equation of motion of the Bernoulli—Euler beam on a viscoelastic

foundation, subjected to the load p =p(x, t) is taken in the following form:
4 2

1) 1 S n S n Y teqw = B(x, ),
where w=w(x, 1) is the displacement function of spatial variable x and time ¢. In Eq.
(2.1) EI, i, g and 7 denote the beam flexural stiffness, the beam mass per unit length,
the foundation elasticity coefficient and the viscosity coefficient, respectively. To solve
the dynamic problem for the periodic structure we follow the way proposed by MEAD
[4] and consider the continuous beam under the action of an infinite array of
concetrated forces which are the reaction forces exerted by the supports. In case of
steady-state harmonic motion, the force magnitude p.+1 can be expressed as
pni1=p, exp(iZ ), where Zis a complex number, and the load function p(x, t) takes
the following form:

(2.2) px, f) = ZPD.é(x_nl)_ei(nU+wt)’

where p, is the magnitude of the reaction force at the support number n=0, [ is the
spacing of the supports and w is the frequency. In Eq. (2.2) the term 6(x —nl) denotes
the Dirac-delta function.

The analysis which follows is carried out by means of non-dimensional quantities:

X = xa, space variable (a, = /q/4EI),

T=tw, time (w,=~/q/K),

W(X, 1) displacement of the beam, W= w/w,, (w, = p,/(8EIay),

Q= w/w, frequency,

N =n/n, viscosity coefficient (n, = 2@),

V=uv/v, velocity of the disturbance source (v, = wy/a, vy = 4\/W),
L= la, support spacing,

(A)

A= A/a, wavenumber.
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The non-dimensional equation of motion for model (A) obtained by means of the
relations (A) can be expressed as

a*'w oW ow & :
2.3 ——+4—5+8N—+4W =28 - . LG
(23) axitdsa TN+ _);6(){ nL)-e
In case of a beam resting on the periodic supports only, the foundation coefficient
q vanishes in Eq. (2.1). The non-dimensional equation of motion for model (B) can be
written in a form similar to Eq. (2.2),

Iw W oW
—+4—+8N—=
ax e T o
The non-dimensional quantities can also be expressed by relations (A), but the
characteristic values a,, w,, 1, and v, take the following form for model (B):

(2.4) 8 8(X —nL)- eleil 00

(B) ‘10:4\/mx wo:\/ﬂr '70=2\/Ey Uu=mo/a0=4\/4E21/#2,

where E is Young’s modulus for the beam and 7 is the moment of inertia of the beam
cross-section.

The expressions for the function W= W (X, 1) presented in the paper follow from
examination of case (A). The appropriate use of the relations (A) makes it possible to
obtain the results for case (B).

2.2. Passing and stopping bands for elastic systems
The steady-state solution of Eq. (2.3)
(2.9) W(X, 1) = W(X) exp (if21),

can be obtained by means of the following Fourier transform technique:

(2.6) W'(S) = J W(X)-e¥dx, W(X) = zi IW'(S) e ST dS

The displacement of the beam resulting from the application of Eqgs. (2.5) and (2.6) to
Eg. (2.3) can be expressed as

2 p=n i . ; .
@1 W, 0= 3"[ z Af( 3 nb-SrisEt 3 e"’”“s’)_'s'x)]'eﬁ’
ji=1 -0 "tﬂi

where

(2.8) S, =24 -2iN—1, S,=iS,, A, =1/@4S}), 4,=id,.
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In Eq. (2.7) we have Xe {n,L, n,L), where n, and n,=n,+ 1 are successive support
numbers, that means that Eq. (2.7) describes the solution for the periodic structure
element (n,, n,). Assuming the convergence of the semi-infinite sums in Eq. (2.7) one
obtains

2, sinS;(n,L—X )+ e sin §;(X —n,L)

2.9 W(X, 1) = 8™+ § 4
(2.9) (X, 1) = 8e j; ! = ’
or

(2.10) W(X, 1) = W(1—&)- L+ 4 (§) . gl AL+
where

W(E) = Z,sinSLE+Z, sinhSLE, &=X/L, ¢e0,1), S§=S§,,
@2.11)
Z, = 2/[S*(cosSL — cosAL)], Z,=-2/[S*(coshSL — cosiL)].

Generally, Egs. (2.9) and (2.10) represent a travelling and spatially attenuated wave in
the periodic structure. In the case n,=0 the expression (2.9) has a form which is
similar to that presented in paper [4]. The relation between the wavenumber 4 and
wave frequency £2, which is obtained by means of the condition of zero displacements
at the rigid supports, can be written in the following form:

sinSL coshSL — sinhSL cosSL
sinSL — sinh SL

(2.12) cosAL = f(S(R) =

In the pure elastic case N=0 the above relation is satisfied by A-values which are
either real numbers or have the form 1= (kn+il)/L, where k is an integer. In the first
case, Eq. (2.10) represents a travelling wave propagating in the whole periodic
structure, and according to the well-known nomenclature (cf. [1]) the corresponding
frequency range is called a passing band. In the latter case, Eq. (2.10) describes an
exponential wave, and the corresponding frequency range is called a stopping band.
Since for the continuous periodic system considered the number of degrees of
freedom in a single cell is infinite, the number of passing and stopping bands in the
frequency 2-wavenumber A-plane is also an infinite one.

The curves representing relation (2.12) in the (€2, 1)-plane which are determined
for a few passing bands are presented in Fig.2, where also the curves S=S(£2)
for the corresponding model (C) are shown. Figure 2 illustrates the case of
a non-dimensional support spacing L=2n. The relation Q2=£(1) is a periodic
one with the period 7, =2n/L and is symmetrical with respect to the -axis and
J-axis. The region in the (€, A)-plane corresponding to the two intervals
Ae( —EE ) _&L—l)n) and Ae(k; , (k+L]) n) , where k is a natural number, represents
the so-called k-th propagation zone or k-th Brillouin zone, cf. [1]. The points of

http://rcin.org.pl
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extrema on the dispersion curves 2= £(1) correspond to the cut-off frequencies £,
ie. the frequencies bounding the passing and stopping bands. These points
(lc= m—;, .QC), where m is an integer, represent standing waves in the infinite
periodic structure. It is interesting to note that the curve S=S(2) for the
corresponding model (C) intersects the j-th dispersion curve 2=Q(1) at the i-th
extremum point (1%, Q&) exactly for i=j, cf. Fig.2. The fundamental difference in
the dispersion curves for models (A) and (B) consists in the position of the first
passing band. Since in case (A) the beam on the elastic foundation acts as
a mechanical filter by itself, the first passing band can be found for 2> 1.0, cf. Fig.2.

The configuration of passing and stopping bands depending on the ratio
L,=L/2n is presented in Fig.3, where also the scheme corresponding to Fig.2 (A) is
shown. As follows from Fig.3, for a fixed frequency range the number of passing and
stopping bands increases with increasing cell length of the periodic system.

Numerical results presented in the next sections of the paper have been obtained
for the case L=2mn.

2.3. Energy flow in passing bands

The analysis of energy flow in continuous systems, and especially the velocity of
energy flow is necessary in order to determine critical parameters for a system under
travelling disturbance sources, cf. [10, 11]. A detailed investigation of the energy flow
velocity can be found in paper [15]. In the following some general remarks are presented.

The velocity of energy flow is defined in the following way:

P
KHYY’
where {P) is the time average energy flow between two infinitesimally near-by beam

cross-sections, which is defined as the average power absorbed by the beam
cross-section during the period T=2n/w

(2 1 3) Def =

T

2 2 3
oo o IO (5

0

The integrand in Eq. (2.14) represents the sum of respective products of pairs of
quantities like shear force — displacement velocity and bending moment — rotation
velocity. The term {({H)) in Eq. (2.13) is the time and space average energy density
which can be expressed as

(2.15) CCHDD = - LT”EI( )+qw2+pA(aa ﬂdzdx.

http://rcin.org.pl
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The velocity of energy flow v, equals the group velocity v,, which is the derivative of
the wave frequency @ with respect to 2. An expression for v,, can be obtained by
means of the following considerations. Since

cosAL = f(S),
(2.16)
dicosAl) . di_d[f(9)]
g =—L-sinAL 0= do
then
dQ —L-si —L-si
@17 v, = L sm,lL_ L-sinAL

& dy®) C dye) e
daq 1719]

where Vip=v,,/v, is the non-dimensional group velocity, Vic=dS2/dS is the
non-dimensional group velocity for the corresponding model (C), and f(S) is
expressed by means of Eq. (2.12).

3. Periodic structures under travelling disturbance sources

3.1. Solution method

The equation of motion for model (A) under the action of a force travelling with
constant velocity V" and oscillating harmonically in time with frequency 2 takes the
following form:

;oW W oW

47 0 48N 1AW =88 (X — V1) - &,

G4 érXﬁ“jL ot? ot

In the case under consideration the displacements of the system are measured in terms

of the quantity w,= F,/(8 Ela; ), where F, is the magnitude of the force, cf. Egs. (A).
The conditions of zero displacements and continuity of beam cross-section

rotations and bending moments at the rigid supports can be expressed as follows:

oW(nL", 1) OWmL™, 1)

W(nL, ©) =0, g
(3.2) oxX oxX
O*W(nL-, 1) B FWnL*, 1)
oXx? - oxX* '

The steady-state solution of Eq. (3.1) which satisfies the conditions (3.2) is
obtained by means of the following integral transformation:

8 . :
(3.3) WX, ) =5 J T(X, 2) X Yoriae gy

-0

http://rcin.org.pl
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0

(3.3) 5(X— V1) =_1_, Jeil(X—Vr) di.
[oont] 2n
-0

Introducing relation (3.3) into Eq. (3.1) yields an ordinary differntial equation
for the function T=T(X, 1)

d‘T T d’T

3.4 —— o G — 3— A—=SHYT =
(3.4) e 41,1an 7 4iA +( SYT =1,
where

(3.5) S*=4(07 —2Ni2 — 1)), 0Q =-iAV+Q.

Corresponding to Egs. (3.2), the conditions for the function T=T (T, 1) read:
TnL,A)=0, T(n,L,2)=0
dr(n,L, 1) dT(n,L, 1)

3.6 =
(3-6) dX dX
d*T(nL, 1) d*T(nL, )

ot - o memth

The solution of Eq. (3.4) can be expressed as
a, X 1

(3.7) LK, Afi= Z G
where

., =—i(AFS), o4=—i(AFiS).

The relations (3.6) take the following form

1

IST]

1 1 1 1

N =
. e""‘ ea;L ecuL ead‘ 52 ﬁ
34 o a a ' = = - ’
B8y (—et) al—emt) al—eh) a(l—e)| |a, 0
w(l—e"t) w(l—et) al(l—e™t) a(l—eh) ]| |a, 0

where a,=ae”™, j=1,2, 3, 4. The solution of Eq. (3.4) can be written in the following

form satisfying the conditions (3.6):

A, (e + A (Ve St + A(De™+ 4,(A)e” ¥+ - D o it
A*=5D

B9 TE W)=

’

where
(3.10) D =2-[cosAL (sinSL — sinh SL)+ sinh SLcos SL — sinSLcosh SL]

is the determinant of the square matrix in Eq. (3.8) and
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E=X—nL, €0, L),
A, = (cosh SL — cosAL) [(sinAL+sinSL) — i(cosAL — cosSL)],
(3.11) A, = (coshSL — cosAL)[ —(sinAL — sinSL) + i(cos AL — cosSL)],
Ay = (cosSL — cosAL)[(e*" — cosAL) — isinAL],
A, = (cosSL — cosAL)[(—(e>"—cosAL) + isiniL],

3.2. Solution for the elastic system

The function T=T(X, A) has an infinite number of poles in the complex
A-plane which are determined from the relation D=0, where D is given by Eq.
(3.10). The poles corresponding to the relation A'—.S* =0 contribute to the
solution only for a currently loaded cell, what is discussed in details in paper [15].
The integration expressed by Eq. (3.3) can be carried out by means of Cauchy’s
theorem taking into account only a certain finite number of poles following from
D=0. In case of elastic systems the poles can also be found on the real axis of the
complex A-plane. In such a case the important question is whether the real number
4 corresponds to the solution behind or ahead of the load. To answer this
question, the method of ,,small damping” (N~0) can be used or one can apply
the energetic analysis which is discussed in the next section of this paper.
Denoting the number of the poles corresponding to the solution behind (left) and
ahead (right) of the load by k, and k,, respectively, we obtain the solution for
Xel{n L, nL)

K
('% 1 2) W(X, ‘L') — I_ Z Qk [ka(ﬁk ) eiitl(nllr V:)+ D‘V,’((Ek ) Bii.(nzlp l"1)] eil)t ,
k=1

where — and + correspond to the solution ahead of the load (n, L= V1, K=k,) and
behind the load (n,L<Vt, K=k,), respectively, and

8i(cosh S, L — cosA,L)(cosS,L — cosi,L)

O, =- ’
. . . d dS, L
(4 — Sp) (sinS, L — sthkL)(LsmlkLﬁ—fd(;)-—df;_)- V)

sinSL cosh S — sinh SL cosSL
sinSL — sinh.SL ’

f(8) =
(3.13) W, (®)= Zxsin(®)+ Zysinh(*),
Z,.= 1/(cosS,L —cosd, L), Zy=-1/(coshS,L — cosiL),

E=8¢ i,=80-&, &E=X-—nlL.



586 R. BoGacz, T. KRZYZYNSKI AND K. Porp

rA=40 t=0/8T
4 - IR . = x K & x
t=1/8T
f By = N w —= X x 'y x
t=2/87

support number

FiG. 4. System (A) displacements for selected times and for ¥ = 0.9, 2=0.1.

FA =60 t=0/8T7
t=1/87
t=2/87
t=3/87
4 = v A b
" L i e G L I L 1 1 1 1 L L L
0 2 4 6 8 10 2 1 16

support number

FiG. 5. System (A) displacements for selected times and for ¥'=0.118, 2=2.0.

In Egs. (3.13) the number S,=S(2 (1,)) corresponds to the k-th wavenumber
A and is determined by means of the relations (3.5) for N=0.

The dynamic response of the system (A) is illustrated in Figs. 4 and S where the
beam displacements are shown for times =0, 7'/8, T/4 and 37/8 (T=2n/f2) and
selected values of the load parameters.
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3.3. Discassion of the solution

The obtained solution has the form of a sum of waves travelling in the periodic
system. Each component of the sum has the form which is similar to expression (2.10) for
elastic waves propagating in the unloaded periodic system. The wave amplitudes are
constant or they decrease with increasing distance from the load depending on the form
of the wavenumber 4,. Since the characteristic equation D = 0 (cf. (3.10)) has exactly the
same form as the dispersion relation (2.12) and the wave freqency is 2 = — 1,V + Q (cf.
(3.4)), then the real wavenumber 4, = o, corresponding to constant amplitude waves can
be determined by means of simple geometrical considerations. Namely, the
wavenumbers A, =a, are the intersection points of the dispersion curves given by Eq.
(2.12), cf. Fig.2, and the straight line @ = —a, '+ Qin the wavenumber-frequency plane,
where all four quarters of the plane should be taken into account. The question at which
side of the load the wave A, = «, propagates, i.e. behind or ahead of the load, can be
answered by means of an energetic analysis. The group velocity Vg, of the travelling
wave generated by the load is given by Eq. (2.17) where the sign should be changed. The
sign change is related to the fact that ¥, in Eq. (2.17) is positive for left-going waves, cf.
(2.10), and now we assume that the positive group velocity has the same direction as the
load velocity V. The condition for the wave A, =uw, to propagate ahead of the load is
V% <V and behind the load is ¥ %> V. These conditions concern the energy to be
radiated away from its source. It should be noted that the complex wavenumbers
A, = o, + if, satisfying the relation D=0 can be found as conjugate pairs and thus they
correspond to waves propagating behind and ahead of the load as well. Their frequencies
Q = — o, V+Qcan befound in stopping bands and, in some cases, in passing bands too.

The obtained solution has a typical quasi-periodic nature. When we consider the
displacement and the corresponding velocity of a fixed beam cross-section we find it
very irregular. This feature is illustrated in Fig. 6, where the phase plane for X=0.5L
and selected load parameters is presented. Each point from Fig.6 represents the
displacement and the corresponding velocity which have been determined at times
t=nL/V, where n is a natural number, and these times are related to the ,,crossing
frequency” ., = 2nV/L. Figure 6, is a result of observations made at times t=nT
where T is the period of harmonic oscillations of the load.

In both cases (I) and (I1) the initial position of the load is X = 10.5L. Increasing
the number of travelling waves in solution (3.12) one can find the phase plane to
become more and more irregular. It is intersting to note that the results shown in the
phase plane for X = V1, i.e. for the immaterial point under the travelling load, look
slightly different, cf. Fig. 7. As follows from Fig. 74, in the case where the ratio £2.,/£2 is
a natural number, one can find the same number of points in the phase plane. In the
case where the ratio of the two characteristic frequencies of the load is not a natural
number, one can observe closed lines instead of the points in the phase plane, cf.
Fig. 7.

For certain velocities and frequencies of the load, the solution obtained tends to
infinity, i.e. the amplitude of one wave propagating in the periodic system increases
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FIG. 8. Critical parameters of the load for the 5th passing band and selected Brillouin zones [model (A)].

infinitely in time. The load parameters corresponding to this infinite increase can be
determined from the denominator of the expression for Q, cf. Eq. (3.13)

s df(S) dS,
(3.14) ~Lesind L+ = V0.
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Relation (3.14) can also be written in the following form:

(3.15) —L~sm,1L-(1 —l)_.o,
GP,

which means that the discussed phenomenon takes place in case when the load moves
with the group velocity of the wave generated. The energy supolied to the system
cannot be radiated in such a case and it increases infinitely in time. From
a geometrical point of view the relation (3.15) correspond to the case when the straight
line 2 = — VA+Q is tangential to the dispersion curves in the frequency-wavenumber
plane. The critical curves in the €, V-plane which are determined for the 5th passing
band and selected Brillouin zones are presented in Fig. 8. As follows from Fig. 8, the
number of critical curves increases with increasing the number of Brillouin zones
taken into account. The critical curves in the 2, V-plane which are determined for the
first six passing bands and the first eight Brillouin zones are presented in Fig. 9. It
should be noted that the considered load can also be a source of standing waves in the
unbounded periodic system. In such a case the load parameters can be determined
from the relation .= —1.V+ £ where £, is the cut-off frequency and A, is the
corresponding wavenumber discussed in Sec.2.2 of this paper.

4. Conclusions

A source of disturbance in the form of a harmonic force travelling over a periodic
system creates the propagation of an infinite number of travelling waves the
frequencies of which differ from each other. From the mathematical point of view the
infinite number of waves follows from the infinite number of the poles of the function
T=T(X, A) in the complex A-plane. From the physical point of view, the discussed
phenomenon is related to the infinite number of passing and stopping bands. The
solution presented in this paper is determined as a sum of finite number of waves. The
analysis of the energy flow and its velocity in the systems enables us to explain the
phenomenon of an infinite increase of wave amplitudes. The number of critical curves
in the £, V-plane increases infinitely with increasing number of Brillouin zones and
passing bands taken into account. The qualitative analysis for continuous periodic
systems under travelling disturbance sources by means of geometrical considerations,
which is presented in this paper, seems to be applicable not only to the specific models
analyzed. The solutions obtained in the whole load parameters range make it possible
to study the problem of hybrid system stability in case of periodic structures treated as
continuous subsystems.
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Approximate friction treatment in sheet metal forming
simulation

W. SOSNOWSKI (WARSZAWA)

THis PAPER has been devoted to the numerical analysis of frictional contact problems. At the
beginning some important computational aspects of existing algorithms are presented. Contact
conditions at the interfaces are modelled using a penalty method. Certain modifications of the
contact search algorithm are discussed and some remarks about mesh requirements for typical
closest point search routines are given. Possible improvements in the contact algorithm are
described. In particular, double side contact situations can be treated in a more efficient way.
The blank holder zone treatment is especially important. Some remarks about the contact space
description are also given. Certain proposition concerning rigid surfaces with prescribed forces is
given, with the objective of applying it to a single degree of freedom model of blank holder.
Additional regularization of Coulomb law was necessary to avoid ,,artificial wrinkling”. The slip
condition of those neighboring nodal points, where small strain velocities increments with
different signs are observed, is replaced by stick condition. This gives especially good results in
case of plane strain type of analysis. The example corresponds to a case proposed in
NUMISHEET93 conference held in September 1993 in Tokyo.

1. Introduction

IN THE LAST YEARS, much attention has been devoted to the numerical analysis of
frictional contact problems. Despite that, contact mechanics is not so well developed
as continuum mechanics, and further work in this area is still needed.

Contact and friction appears as a consequence of the interaction between
different bodies. Such interaction is typical of sheet metal forming problems where
the sheet is formed by means of a punch or gas pressure. During the forming process
the sheet interacts with the tools, adding a new source of complexity to the numerical
simulation due to the nonlinear nature of the boundary conditions. The numerical
treatment of frictional contact problems involves two main steps. First, a contact
search procedure must be done in order to detect the penetrations (kinematic
incompatibilities) between the different bodies involved in the analysis.

Second, the penetrations detected must be cancelled and the kinematic
compatibility constraints must be satisfied.

2. Contact search

Using the slave-master terminology it is imposed that the slave nodes do not
penetrate the master surface.
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In order to detect if penetration has taken place, a search procedure
for each slave node must be performed. Here a different algorithm has been
proposed (SCHWEIZERHOFF and HALLQUIST [18]; AGELET DE SARACIBAR [13]).
If the search is done using the element normals, special care must be taken
in order to treat different situations arising from the discontinuity of the field
of normals.

An alternative has been proposed by DALIN and ONATE [5] and later modified
by AGELET DE SARACIBAR [6], in which an assumed continuous normal field based
on the normals at the nodes is considered.

3. Frictional contact formulations

Different formulations for the numerical analysis of frictional contact problems
have been proposed. In the penalty method a penalized functional is added to the
standard functional of the unconstrained problem.

The main drawback of this method is that the constraints are exactly satisfied for
values of the penalty parameter only which leads to ill-conditioning of the tangent
operator. Otherwise, this is a very simple way to enforce the constraints and it is quite
easy to implement.

Frictional contact models can be described using a plasticity theory framework
where the penalty or regularization parameters may be viewed as constitutive
parameters (WRIGGERS ef al. [24]; AGELET DE SARACIBAR [7]).

In the Lagrange multipliers technique a new field (the multipliers) is introduced
by means of a contact functional. This leads to an increase of the number of
unknowns and of the system of equations to be solved. Furthermore the tangent
operator is indefinite (zero diagonal block associated with the multipliers) and special
care must be taken during the solution process. Its main advantage is that the
constraints are satisfied exactly.

Using the perturbed Lagrange multipliers method one can bypass this drawback
as the tangent operator is positive definite. With this approach both the penalty and
Lagrange multipliers methods can be formulated in a unified manner (JU et al. [10]).

In the augmented Lagrangian method, traditionally used in conjunction with
Uzawa’s algorithm, the constraints are satisfied exactly at finite values of the penalty
parameter. This overcomes the problems associated with the choice of the penalty
parameter and the ill-conditioning of the tangent operator mentioned before.
However, no increase of number of the equations to be solved is produced and the
multipliers are simply updated after each converged equilibrium step (nested Uzawa’s
algorithm) or after each equilibrium iteration (simultaneous Uzawa’s algorithm)
(StMO and LAURSEN [19]). In the first case an outer loop is needed but otherwise
quadratic rate of convergence must be expected if consistent tangent operators have
been used. In the latter case, no extra loops are needed but the update of the
multipliers destroys the quadratic rate of asymptotic convergence of the consistent
Newton— Raphson scheme (SIMO and LAURSEN [10]).
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Different augmented Lagrangian formulations for frictional contact problems
have been recently proposed (SIMO and LAURSEN [19]; ALART and CURNIER [2]).

In the context of frictionless contact problems a formulation based on
a three-field Hu—Washizu-type functional has been proposed recently by
PAPADOPOULOS and TAYLOR [16]. In such a formulation contacts between elements
rather than between node and elements are postulated, introducing an assumed gap
function that is taken as an independent variable in the formulation.

A similar procedure was previously proposed by WRIGGERS et al. [23] using
a two-field functional.

4. Contact and friction

4.1 Contact search algorithms and possible improvements, mesh dependency for the closest point search
technique

Contact and friction play a important role in many sheet metal forming
processes. The analysis of such effects involves two main steps. In the first one
a contact searching algorithm must be used in order to detect the kinematic
incompatibilities produced between the interacting bodies. In the second step these
kinematic incompatibilities are eliminated by introducing the contact kinematic
restrictions in the finite element formulation. Within the framework of the finite
element analysis there are two well established formulations in order to introduce the
kinematic restrictions imposed by the interacting bodies. These are the Lagrange
multipliers and the penalty methods. It is interesting to note that both methods can be
considered as a particular case of a perturbed Lagrangian formulation [25]. Using
standard variational procedures the exact linearization of the first variation of the
perturbed (total) functional leads to the contact consistent residual and consistent
tangent operators, for a fully nonlinear kinematics.

For the fully nonlinear contact problem, the kinematic restriction between two
interacting bodies takes the form

“4.1) g:=(@® —®)xn=0 ondB,,

where ®* @' refer to the configurations of the bodies B' and B?, respectively, n is the
normal to the contact surface 6B, =3®'(B') n 6®* B*), and g is the gap function
representing the distance between the surfaces.

The restriction (4.1) can be introduced on the basis of a contact perturbed
Lagrangian functional of the form

4.2) (o' ®)= jk( —l)ds,
2¢

Ly}
¢

where A refers to the contact forces on the surface 6B, and ¢ is a perturbation
parameter. Within the framework of the finite element method, the perturbed

http://rcin.org.pl
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Lagrangian functional can be obtained by adding the discretized version of Eq. (4.2)
to the usual total potential energy of the bodies [23].

4.3
(-3) IL(v, l)z[l(v)—{—kxg——zlflxl,
E

where ve R" is the nodal velocities vector, , € R* are the nodal contact forces, ge R’ the
nodal gaps vector and II(v) the total potential energy of the bodies. In order to
express the gap in terms of the velocities, a time integration scheme of the form

(44) 1+Atx = I+drx|.rml+ @AIH»A!‘,
is considered, where
4.5) thaiyinal — x +(1—@)Atv.

Restricting our attention to 2D problems and using a linear surface
discretization, let us consider a slave node s belonging to the deformable body that
has penetrated a master segment defined by the nodes (m,, m, ), which belongs to the

rigid surface.
’
AT \‘%/

|
a(::”_.l 1‘
,

e —

FiG.1 Geometry of the slave node s with a master segment m, —m,.

The current gap g and contact position a/;, for the slave node s are (Fig. 1)
(4.6) g = (X,—x,)xn,

1

4.7 =+ (X.—X, ) xt,

( ) |I Axm ” ( 5 1)

where t and m are the unit local tangent and normal to the master segment,
respectively, and 4xX,, = X,,, — Xp, -

4.1.1. Consistent operators. The linearized expression of the first variation of the functional
leads to the following consistent residual and tangent operators for the contact
element (s, m,, m,):

(4.8) [l,Np _k +g,}r,
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3,
(T ®N,+N,®T,+ > N ®N,) N,
Cl NT _1_ 3
S £

where A, =eg, and the following operators have been introduced:

(4.10) T, = @A4t[t, —(1 —a)t, —at]”,
4.11) N, = @4t[n, — (1 —o)n, —at]”,
4.12) N_— @4t[0, —n, .

The residual force vector R, and tangent matrix K, for the contact element are added
up to the expressions of global residual forces vector R and global stiffness matrix H,
respectively, in the global nonlinear solution scheme.

4.1.2. Lagrange multiplier method. The consistent residual and tangent operator for the
Lagrange multiplier method can be obtained by setting the penalty parameter
¢—o0 in Eq. (4.8)

(4- 13) Rc_, = D'rNsa gs]Ts
A (T ®N, + N, ®T, + | o N,,,®Nm) N,

5

N7 0
s

4.1.3. Penalty method. The consistent residual and tangent operator for the penalty
method can be obtained by static condensation of A), at the element level and setting
h, = ¢g,. This gives

R, =¢N,,
4.15)

Kc’:aI:NSQON,— T L] i (T ®N, + N, ®T,+ ”Wg, j Nn®N )}

Contact searching algorithms are very CPU-time consuming. Use of contact
searching procedures and efficient algorithms are highly recommended in order to
optimize the CPU-time, specially for large-scale computations.

The Lagrange parameter formulation is often an effective procedure. It is well
known however that it may lead to singular stiffness matrices. This difficulty may be
overcome by a partitioning method [12]. However, the introduction of new variables
results in additional computational effort. Therefore the penalty method offers an
attractive alternative, since it avoids these two problems. The main drawback of this
method is its high sensitivity to the choice of the penalty factor. In this context, an
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augmented Lagrangian method has been proposed as a procedure to overcome
partially these difficulties and ,,regularize” the penalty formulation [22, 11, 3].

In the following three sections possible improvements in the contact algorithm
are described. In particular, double-side contact situations can be treated in a more
efficient way. The blank holder zone treatment is especially important. Some remarks
about contact space description are also given.

Serious obstacles appeared when more complex rigid surface geometries were
introduced. We observed that standard closest point search technique fails in such
cases. The point of specific rigid surface, nearest to the given point of the blank, may
belong to an element different from the one which actually is in contact with this point
of the blank. These situations, observed sometimes for irregular meshes, may be
avoided by regular meshing of the rigid surface — or by introducing additional check
in the nearest point search procedure. Elements should be such that each point within
one element should be nearest to the one of the nodal points of the element it belongs
to.

In Fig. 2 the elements of the blankholder for Tokyo benchmark described in the
last section are shown. For the elements in the region of the radius the criterion
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F1G. 2. Blank holder mesh for Tokyo Numisheet benchmark which yields wrinkles in the deformed sheet as
shown in the next figure.
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F1G 3. Results obtained by wrong discretization of the blank holder shown in the previous figure.

described above is not given. This leads during the simulation to wrinkles in that

region, Fig. 3,

since the contact is not correctly detected.

3

»»g00d”

The example of
Fig. 4. The results discussed in the last section of this paper have been obtained using

this blank holder mesh.

regular mesh for blank holder for this case can be seen in

http://rcin.org.pl
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FiG 4. Blankholder mesh for Tokyo Numisheet benchmark, which yields no wrinkles.

4.2. Double side contact approximate treatment

In deep drawing applications attention must be focussed on proper restoration
of kinematic conditions for each of the contacting surfaces treated separately. Double
side contact situations can be included into the algorithm in this case. Incremental
strains are relatively small in deep drawing, so the stiffness matrix is nearly singular.
This implies that some initial stretching must be applied at the onset of computations.
Double side contact situations treatment was improved recently by some change in
kinematics of the process simulation. The contact searching algorithm has been
modified so that the contact check is made for each rigid surface separately.
A possible simultaneous penetration of specific node of the sheet into different rigid
tool surfaces (die and punch for instance) can be detected and eliminated.

http://rcin.org.pl
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In order to simulate deep drawing in 3D more realistically, the blank holder as
a third rigid surface has been introduced with blank holder force which can be applied
in a proper way taking into account friction. Blank holder force is one of the most
important parameters in deep drawing processes. Area of the contact between blank
holder and blank decreases according to equilibrium conditions between drawing and
friction forces. Change of contact area has to be taken into account. Corresponding
blank holder pressure values are automatically modified, as it is observed in real deep
drawing processes. Validity of this modifications was confirmed by numerical tests
known as Wagoner and VDI benchmarks [26, 15, 4].

In some cases additional small in-plane stiffness added for some elements
situated on the boundary had a stabilizing effect on the solution process.

An additional stiffness coefficient a of order 0.001 up to 0.1 multiplied by the
element area was introduced for such boundary elements.

4.3. Angle versus vector contact space description

The interesting observations were made when the cosine coordinates were used
in the contact space description. As we know, the position of any point may be given
in many different ways. It is convenient to use in some situations, in axisymmetric
analysis for instance, the spherical @ and r coordinate system, as shown in Fig. 5.

¥

F1G 5. Geometry of the conical shell.

In this figure u, and u, are displacements in the local coordinate frame. The
normals to the elements vary from element to element and often are calculated as
cosine functions of angle of inclination of the element to the global coordinate system.
In the contact analysis it is necessary to evaluate the mean values of the normals at the
nodes.
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When the directional cosine functions are applied to describe the element
normals in full 27 range of angles, frequently the sums of type n-+0 are used.

Let us assume that for some node 1 which belongs to two neighbouring elements,
the @, coordinate after some deformations was calculated as an arccos function

o O+ 2m+ 0,4 _

@.17) 5

It may happen that node 2 has the same angle coordinate, as shown on Fig. 6, it
belongs to elements with similar configuration but different deformation history. Due

y

FiG 6. 0, and 0,+7 coordinates of points 1 and 2.

to the periodic character of cos function, in directional cosine evaluation often the
value of = is added or subtracted in order to keep the  value inside the (—n — + )
range.

The 0, coordinate after some deformations was calculated as the arccos function

cos O 1+ 0k 2 !

4.18

(4.18) 2
but finally we obtain that

(4.19) 0, #0,.

This type of erroneous description, frequently used in programming, may be easily
avoided by consequent normal vector space description, were always the resultant of
N different directions may by uniquely represented.

We have defined the normal at the node in the general 3D case as shown in
Fig. 7, i.e.

M=

(4.20) n' n,

1
= NZ

[]

where the sum of N normals of elements connected with this node, n;, is taken at the
specific time t.
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FiG 7. Element and nodal rotation vectors.

4.4. Rigid surfaces with prescribed forces

In typical industrial sheet metal forming processes approximately constant blank
holder force is applied. When the sheet is drawn into the die, its area of contact with
blank holder decreases, thus increasing the blank holder pressure. In case of the
algorithm presented in this section the internal forces and reactions are calculated
using a penalized functional similar to Eq. (4.3)

1 |
@21) I, u):= D)+ ol )+ ) ogt(u, ) — F,xu,,

where ueR" is the nodal displacements vector and the energy due to the contact
deformations is divided into that due to the rigid surfaces outside the blank holder
area (2nd term), and that due to the blank holder (3rd therm). The fourth term is due
to the blank holder forces vector F,. Gaps g, (u) and g, (u,, u) are expressed as follows:

4.22) g, (u):= (x,(u) — x,) Xn,
(4.23) g (u, u):= (x,(u) — X, (u))xn,

where index s refers to slave nodes outside the blank holder being in contact with rigid
surface and r — to slave nodes contacting with the blank holder only. m as previously
refers to master nodes of the rigid surface.

The first variation of Eq. (4.21) leads to the following two variational equations
which form the basis for the finite element approximation:

(4.24)
DIL(u, u)) x du:= DII(u) x Su+ Y egyu) x (Dg, x du)+ ) &g u,, u,)(Dg, x ou) =0,
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(4.25) DIL,(u, u,) x u,:= Y eg u, u)(Dg, x éu,) — F, x éu,=0,
where

(4.26) Dg, x du,:=n X du,,

(4.27) Dg, x du,:= —nxdu,.

After linearization of the above variational equations the following system of
discretized equations can be obtained

K;+Aen®n -Aen®n|| du | G(u)+Agn
(428) Lou, ou] [ —A,en®n Y en®n j| |:An,:| = ~[ou, ou,] I:— Yegn — F,j| '
where 5
(4.29) G(u) = DII(u)du

and ® stands for tensor product of the normal vectors n.
Recently the blank holder model with 1 d.o.f. was proposed. After establishing
the residual forces

(4.30) R=—[Gu)+Azgn, Yeg,+F,],

the modified tangent operator may be applied

" K;+Aen®n —Agn
4.31) K=
—Aen’ Ye
with variables
4.32) Au = [Au, du]";

Au, denotes the displacement increment (usually vertical) of the blankholder. The
solution procedure is relatively simple, since only small modifications of the stiffness
matrix are necessary. Let us denote

(4.33) v=—Agn’ = (en)’,
(4.34) e=)e.
We can write

435) [K ] [j:} - m

The displacement field may be obtained as follows:
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r—vy
4.36 Au, = X
¢ ) g e—vW¥,’
4.37) Au=Y¥, — Au¥,,
where:
(4.38) ¥,= K 'R
and
(4.39) ¥ =K'y,

This procedure was prepared initially but not tested for the time being. The normal
and tangential forces in blank holder zone are very sensitive to velocity field changes,
friction treatament etc., and now only blank holder in fixed positions was
implemented. Actual normal forces treatment in blank holder zone depends on the
relation between reaction R" at the specific node and blank holder force component r,
at this node.The following conditions are set into the alghoritm:

(4.40) Z R =r94+ RO,
also
(4.41) Z R =719,

i.e. the resultant of reactions Y R at the specific slave node s is equal to the blank
holder force component r*.

4.5. Friction treatment

A simple procedure to deal with friction can be based on the iterative adjustment
of nodal reactions in contact nodes at the blank-punch-tool interfaces until they
satisfy a Coulomb type of friction law [17, 14]. A variational finite element
formulation of the Coulomb friction model can be found in [13], where also other
types of friction models used are discussed in details.

Convergence and other problems appear when relatively small strain velocity
increments with different signs for neighboring nodal points are observed. The
Coulomb law gives very different friction forces for such nodes, sliding over rigid
surfaces with almost the same velocity in fact.

Thus additional regularization of Coulomb law was necessary to avoid such
Lartificial wrinkling”. The slip condition of those neighboring nodal points where
small strain velocity increments with different signs are observed is replaced by stick
condition. This gives especially good results in case of plane strain type of analysis.
Axisymmetric type of analysis seems to be less sensitive to such kind of problems.
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Coulomb friction law is usually expressed as
(4.42) A =0 if |f| <ulf |,
(4.43) du*=—4 | if |f| =ulf|,

where Au™ denotes relative sliding between two contact points, A is a positive scalar,
f is the normal contact force which may be treated as reaction to the sliding, y is the
friction coefficient. Expression (4.42) corresponds to impossible sliding (condition
LSTICK”) and (4.43) — to the possible sliding (condition ,,SLIP”). Algorithm
modifications were made by the author in search and contact subroutines. Frictional
effects can be treated on the basis of Coulomb or kinematic friction models. In the
Coulomb model, a variational formulation can be obtained from the expression of the
first variation of an unknown friction functional [10]. In the kinematic friction model
the formulation is obtained from the expression of a known friction functional. In
both cases the exact linearization of the first variation of the functional leads to the
frictional consistent residual and tangent operators [10].

Use of consistent tangent operators is essential in order to preserve the
asymptotic quadratic rate of convergence of the Newton’s method [20, 23].

In Fig.8 classical and regularized Coulomb rule is presented. Recently the
following additional regularization of this low was proposed:

a) (,’

Ml !

-Au

slip

-uit,!

b)

Ault, !

(8)

-ty

F1G 8. Coulomb friction laws (a) classical, (b) regularized.
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(4.44) Au = | g |
If reverse velocity increment at the specific node is discovered, we set

0.1xpulf, |

’

(4.45) Aw? =
&

i.e. local slip condition is transformed to ,,suave stick’ condition with sliding velocity
penalized by & and reduced additionally by 0.1.

5. Tokyo NUMISHEET 93 BENCHMARK — deep drawing of a butter box

The example corresponds to a case proposed in NUMISHEET93.
The geometry and material properties used can be seen in Fig. 9. Futher details
can be obtained from [1, 5, 4, 14].

. 5000 __, 7000 - 5000 J
£300

4300 700 700,

i N il ] = blank

holder

alurminium

E=71 GPa

v=033

¢=2700 kg/m’
6-5768(001658+€, )" MPa

F1G9. Square cup deep drawing: geometry and material data. Coulomb friction = 0.162.

Finite element model of quasi-static flow

1800 three-node membrane CST triangles were used for the analysis. The results
were compared with similar calculations performed using explicit dynamic code [1].

Figure 10 presents the thickness distribution for both the quasistatic flow and
explicit dynamic models. The draw-in is shown in Fig. 11 for both models.

http://rcin.org.pl
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F1G 10. Square cup deep drawing: thickness distribution along line 4 — B of Fig. 11.

Explicit Dynamic Model Quasi-static Flow Model

(\b

%

| 110 18.2 A X Jek=iB

F1G 11. Square cup deep drawing: draw-in effect for a punch travel of 40 mm.
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F1G 13. Square cup deep drawing: deformed shape for different punch travels.

Figure 12 shows the thickness contours obtained in both cases. Deformed shape

of the blank obtained for different punch travels is shown in Fig. 13.
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A moving boundary problem describing the growth
of a droplet in its vapour

V. A. CIMMELLI (POTENZA) and F. DELL’ISOLA (ROMA)

IN [1—5] AND [12] THE THEORY of shells is generalized: nonmaterial bidimensional continua
are introduced in order to model capillarity phenomena. In this paper we solve some
mathematical problems arising when the quoted models are used to describe the growth in
its vapour of a sufficiently small drop in the neighbourhood of an equilibrium state. We
start to consider the source terms appearing in the integro-differential parabolic evolution
equation (IDE) deduced in [5] for the temperature field in the vapour phase. We prove that,
due to coupling between the capillarity and thermomechanical phenomena occurring close to
the interface, these terms have both space and time Holder coefficients equal to that one
relative to the second time-derivative of the radius of the droplet. To our knowledge only
GEVREY [14] partially treated this case for PDE of parabolic type. We improve his results in

order to prove the well-posedness of the moving boundary problem formulated in [5] for
IDE.

1. Introduction: physical motivation and discussion of proof strategy

1.1. Physical motivation

THE IMPORTANT role played in technology and applied science by capillarity
phenomena (see for instance the classical books [13]—[14]) has drawn a growing
interest in the theoretical study of models suitable for their description. Indeed,
the classical theoretical studies, of capillarity mainly due to Gibbs (for a more
detailed discussion and more references see [12] and [13]), are confined to the
consideration of equilibrium states, while non-equilibrium phenomena have a lot
of relevance in applications. Our attention was drawn by the surface
tension-elastograms like that on p. 92 in [13]: a periodically time-varying surface
tension is induced by changing concentrations in a biphasic solution. Our idea was
to look for a similar effect induced, in a biphasic mono-component system, by
a periodically varying supersaturation vapour temperature and/or pressure.
Therefore we want to study, on a theoretical ground, the time evolution of the
radius R(f) of a liquid drop in presence of a periodical time variation of
supersaturation pressure or temperature, in the neighbourhood of an eqilibrium
state for the system

S = (liquid small drop + interface + surrounding vapour).
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1.2. Models for capillarity phenomena

The models we use to develop our theoretical treatment are those proposed in
[1—4] and more recently improved in [12]. In those papers, in order to model the
interfaces between different phases the concept of bidimensional directed nonmaterial
continuous system is introduced, generalizing the one classically introduced in the
theory of shells: indeed in this theory such systems are modelled which, during their
evolution in time, always consist of the same set of material points, while the study of
interfacial phenomena obviously requires the introduction of a continuum which at
different time instants contain different sets of material points. To bidimensional
nonmaterial continua surface densities of material properties are attached, for which
the evolution equations have to be found (see [12] for a more detailed discussion).

Let us now quote some of the results derived in [S5], the paper upon which the
present one is mainly based.

i. The concept of Soap-Bubble-like (SB-) continuum is introduced: it is
a nonmaterial bidimensional continuum for which some properties which hold for
true soap bubbles are still valid. More precisely, it is assumed that the temperature
field is continuous across the interface, the total amount of surface mass is constant,
the surface stress tensor is pressure-like so that a surface tension is sufficient to
describe the stress state in the interface, the interfacial inner energy is an affine
function of specific area. It is clear that one can reasonably expect that, at least when
S evolves in the neighbourhood of a given equilibrium state, SB-continua suitably
describe the behaviour of considered interface.

ii. For SB — continua the

GIBBS PHASE RULE

is proved; if the equilibrium temperature v and vapour pressure P, belong to ]9, 99
and ]P., P¢[ , where the indices ¢ and ¢ denote triple and critical values, then there
exists a unique (uniform) field of pressure in the liquid phase, and a unique radius
R of the droplet for which the equilibrium conditions are satisfied.

We therefore get some equilibrium functions of the equilibrium parameters,
&=(9, P):

R(&), i.e. the equilibrium droplet radius;

p(&) 1. e. the mass density of vapour phase, which is determined by constitutive
equations of the vapour;

p{&) i. e the pressure of the liquid phase, which is determined when the surface
tension y(&) is given;

p(&) =P, for consistency of notations;

p,(&) ie. the equilibrium surface mass density.

iii. It is proved that, if the interface is assumed to be SB-like, the liquid phase is
incompressible, the vapour is a perfect gas and all fields are spherically symmetric,
then the linearized (') balance equation for mass, velocity and energy, valid for liquid,

() In the neighbourhood of one of the previously characterized equilibrium states.
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vapour and interfacial phases yield some evolution equations for mass, velocity and
temperature fields which are decoupled.

More precisely, this means that the evolution of temperature field can be
determined once an Integro-Differential Equation (IDE) is solved in which only the
temperature appears, while the mass and velocity fields are derived from a hyperbolic
problem, in which the (known) temperature field appears as source term.

1.3. Physical meaning of IDE and related FMB: their dimensionless forms

The IDE is quoted in Sec. 2, together with the Free Moving Boundary problem
for its arising in the treatment exposed in [5].

In IDE the coupling between thermal phenomena, mechanical and capillarity is
modelled by:

a) its source terms (cf. Eq. (2.2)), whose space and time Hélder continuity
exponents are both equal to that of the function R(t);

b) the initial and boundary conditions for the temperature;

¢) the new (with respect the classical Stefan condition) contributions appearing in
the free moving boundary condition (2.3); moreover, in the most relevant of them the
second derivative of R(t) appears.

We are thus facing the following problem: are the Hélder continuity conditions,
satisfied by the source terms in Eq. (2.2), able to assure the Holder continuity of the
heat flux jump? We will see that, in order to get a positive answer to this question, we
are obliged to improve the results found by GEVREY [6]. Indeed he manages to find
solutions of heat flow equations, starting even from the Holder continuity properties
for the heat source which are weaker than those usually applied in the literature (see
for instance CILIBERTO [7]).

We explicitly remark here that, in order to recognize that the IDE and its initial
and boundary conditions, as formulated in Sec. 3 can be easily regarded as
adimensional equations, we only need to change slightly the meaning of the symbols
in Sec. 2 by using the set of physical quantities listed in ii) together with the
characteristic time 9 (also appearing in the following Eq. (2.5)) defined as follows

leke)
4nR(E)

where M is the total mass of the interface and x, appears in the generalized
non-equilibrium Laplace equation for pressure at the interface. More precisely, it
represents the proportionality coefficient which relates the pressure lag

P, — Pt 2')1/R >
which is not vanishing far from equilibrium, with the speed lag
v — R,

where v is the normal barycentric speed of the material particles lying in the interface.
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For the sake of self-consistence we conclude this subsection recalling that

1. IDE stems from the balance of energy when it is considered in the vapour
phase in the case of spherically symmetric fields; moreover (cf. [5]), in the quoted
balance of energy the time derivative of mass density field appears; this derivative is
determined (also in terms of temperature field) once the system of linearized
hyperbolic equations (to which the balance of mass and linear momentum reduce) is
solved. This is the reason for which an integral operator acting along some
characteristic lines, appears in Eq. (2.2).

2. BE (i.c. the following condition (2.3)) is determined when balance of energy is
postulated for the bidimensional continuum modelling of the interface: it generalizes,
in the considered instance, the classical Stefan condition. We underline here that,
while in the latter only the first order time-derivative of the drop radius R(t) appears,
in BE an extra term, containing the second order derivative of R(f) times the
capillarity coefficient, is found.

3. The boundary conditions for IDE on the moving boundary (2.5), (2.6) and
(2.9),, in the following Sec. 2, are obtained from the balance of interfacial mass and
linear momentum and the dynamic version, found in [3], of Gibbs’ conditions at the
interface. In [3] these dynamic conditions are determined assuming that:

3.1. the jump of Gibbs’ dynamic potential at the interface is proportional to the
average mass flux through the interface;

3.2. the previously introduced speed and pressure lags are mutually
proportional;

3.3. the increase of interfacial mass is proportional to the interfacial average
Gibbs’ potential lag.

1.4. Discussion of the proof strategy

In this paper we prove the existence and uniqueness theorem for the solution of
the moving boundary problem formulated in Sec.2, when R(7) is known, in a space of
functions which show some regularity properties which are compatible with the free
boundary condition (2.3). The proof is based upon a fixed point method which uses
the results on the solutions of parabolic equations available in the classical works of
GEVREY [6], CILIBERTO [7] and FRIEDMAN [8].

Indeed we always consider a space of functions whose strong derivative are
Haolder continuous; however, we cannot use the results found neither in Ciliberto’s
nor Friedman’s papers, but we need to implement them with Gevrey’s results (or
better to say, with Gevrey’s techniques), which are more general. This impossibility is
due to the quoted coupling properties between thermodynamic and capillarity
phenomena: a thermal source arises in IDE because of surface phenomena, and, as we
prove in the following sections, this source is space and time Holder continuous, but
the space Holder exponent is equal to the Hélder time exponent, and both are equal
to time Hélder exponent of the function R(f). Those are difficulties we solve in this
paper: indeed, in the literature only space Hélder exponents which are twice the time
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exponents, are considered. If one tries to apply the classical results in the Boundary
Equation (BE) (2.3), one is lead to regard the boundary value of space derivative of
the solution of IDE (i.e. the heat flux), which is part of the source appering in BE, as
a function of time whose Hélder continuity exponent is one half of that of K, which is
clearly a contradiction.

We shall prove that this contradition can be solved considering the space of
source terms in heat equation whose space and time Holder exponents are equal to
o< 1/2. The solution of heat equation still exists in this case (this result is mainly due
to Gevrey, who really needs only time Hdélder continuity), and is sufficiently regular
to supply a heat flux that is space-time Hdélder continuous with exponent o.

Therefore we will use the following proof strategy:

a) we study the regularity properties of source terms in IDE as determined by the
regularity of the function R(r). We assume that the rate of growth of the drop is
smaller than the speed of sound in the vapour (cf. [9] for physical meaning of such an
assumption);

b) we define a class #" of functions and discuss the existence and uniqueness in
A of the solution of IDE when R(t) is chosen in the class C*** and boundary data are
given as in Sec.2. We are considering the Moving Boundary Problem MBP which is
obtained from the corresponding Free Moving Boundary Problem found in [57;

c) we prove that in BE the heat flux appearing as source term has the same
Hoélder continuity of the second time derivative of R(t);

d) we prove the continuous dependence of the solution of MBP, as an element of
A", on the initial and boundary data.

2. Statement of the problem. Regularity properties of the source terms

In this section we shall summarize the main features of the problem outlined
in [5].

Let now 2 be a spherical region of R® and 82 its boundary. We shall consider
a spherical liquid droplet 27, its center coinciding with that of 2, with time-dependent
radius R(t)e[R(0), b], where R(0) is a positive number and b the radius of 2. We
suppose moreover that the droplet is surrounded by its vapour which occupies the
domain 2% = 2 — 2. The temperature on 02 is a given function of time @, (t).
According to the theory exposed in [9], we assume that

(2.0) | R() | <a,

where a means the speed of sound in the vapour.
Introducing a spherical system of coordinates and denoting by r the distance of
the generic point in & from its center, we define

D*={(r,)eR* xR*: R()<r<bh},

D ={(r,t)eR* xR*: 0<r<R(1)}.
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In [5] it is proved that the problem of determining the evolution of the radius of
the liquid droplet near the equilibrium condition, when surface and convective
phenomena are not negligible, is solved if the following problem is solved:

Find a triple (37, R(f)) which satisfies the conditions

2.1) 69 =9, — %,=0 inD,
22) 8 = 9%+ 1,8+ K I 3, (0| & D,
p=1I
(2.3) AR+ AR+, +RNC8 — C9,)+¥R'AC =0,
80,0 =0, J(R(), 1) =PD), I,(r. 0) = uyr),
(2.4) 8,b, ) = @), RO)=R, R(O) =R,
where:

1) in (R(0), 0) and (b, 0), respectively, the following equalities hold:
(2-4) ¢—u0,R—u0,,+l ‘P,, ‘pg—uorr+/1 d’u
2) the physical case which is considered in [5] leads to the identifications

B(1) = ROF(1),  uy = r3y(r),
(2.5) -
v'(t) = (JR() e dt) e 10+ v,

where v, is an initial value and 0 is a given constant,
3) kK, C* and A, are suitable constants and AC=C*— C~,9"is a linear function
of the variables R, R, v/,

(2.6) 9 = bs(R— R(0))+ by R+ byt

4) F,, I, ® are functionals depending on (r, t), the function R(f) and, in the case
of @, on suitable initial and boundary conditions, [5]. They are defined as follows:
once the curve R(¢) (%) is fixed, it is well known (see [10]) that there exists a unique
couple of functions u,(r, f) and u,(r, f) defined in {(r, ) : R(¢)<r} which is the solution
of the system:

2.7 Ut cuyptciyfr =0,
(2.8) cuy i+ at(u y — w/r)+d(8,, —3,/r)=0

satisfying the initial and boundary conditions:

(?) The curve R(f), because of Eq. (2.0), is not characteristic so that mixed data problem for the
hyperbolic system (2.2) —(2.9) in D* is well-posed.
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u(r, 0) = u(r), uyr, 1) = uy(r), Vrel[R(t), oo];
2.9) u(R(1), 1) = R(O)p, (1),
w(R(1), ) = mR(t) R(),  Vte0, T1,
where m is a given constant and p, a suitable linear function of v’, R, R:
ps = ¢,(R(t) — R(0))+ c,R(t)+ cyv'(1) .
Moreover, we assume that
ug0) = RO)p(0),  wy = mRO)R(O0),
2.9) upR(0) R7'(0) = u10,:R(0)+ auyR(0) .

Using the results found in [10] we can see that the characteristic curves of Egs.
(2.8)—(2.9) are the lines whose angular coefficient is a.
We set

DR, r, t, IBO)=uy(r, 1).
Let
Do(r, 0={(, DeR" xR 0<t<t, r+a(t—)<i<r—a(t—1)}.
Once the curve R(¢) is fixed, we define the application
Prp: R* xR"5R* xR,
1) Pyr, D=(R@), 1))
as follows:
@ cither it is the unique intersection, if it exists, of the characteristic line
stemming from the point (r, £), whose angular coefficient is a, with the curve R(z) (°);
® or it is the intersection of the quoted line with the line t=0.

We remark here that t, =1,(r, 1).
Let us moreover assume

D'(r, 0=(DTND(r, 1) — D (P, 1)).
The functionals I (R, r, f) and F.(R, r, f) are defined as follows:
(2.11) D'(r.= \J {}x[,F,].
1[0, 1]

In order to find the regularity of the time derivative of the function @ we
represent the solution of the system (2.7) —(2.8) in the whole plane R* using the method
of characteristic curves, as it was done in [10], and prove some lemmas.

(*) Uniqueness of this intersection can be easily proved starting from assumption (2.0).
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This solution will be given by a couple (,, ¥,) which will satisfy in the interval
[R(0), co] the initial data (2.9) and (2.9), and in the interval [ - co, R(0)], some suitable
initial data of the type

ll’i(r, 0) = x;(r) s l/’z = Xz(r)-

Hence we have
U(R(), 1) = ROps (1),  Wy(R(@), & = mR(A)R().

The existence of such initial data is assured by arguments completely analogous
to those found in [10].

Due to the uniqueness theorems quoted in [10], together with the D’Alambert
representation formula, using some simple algebra we conclude that:

When (r, t) is such that t,(r, £)>0, then
212) @R, 1, t, IBC) = R(x)p, (1)) — 1/2u;y (R(x))+ar,)

r+at

+12u(r+an+1/2a | uyp(§)de,

R(t)+ar,

while if (r, £) is such that 7/(r, £)=0, then

r+at

2.12)  D(R, r, t, IBC) = 1)2 (uio(r+ at)+ ui(r—an)+1/2a | uxn(&)de.

r—at

LEMMA 1. If 7,(r, 1) is defined according to Egs. (2.10), then

=L =a(a—R@(r D),
(2.13)
dt, . »
S R )-a

Proof. It is a trivial application of the Dini Theorem. B

LEMMA 2. If ®(R, r, ¢, IBC) is given by Eq. (2.12) and R(¢) is a-Holder
continuous, then @, is a continuous function in D* which is a-Holder continuous in
both the space and time variables.

Proof. In fact, using Eqs. (2.12) and (2.12) we have: when (r, f) is such that
7,(r, £)>0, then

2.13) &, =1, {Rt,pe(t)+(R(x,) — RO)) [c,R(x))+ c,R(x,)
+ (cs/¥) (R(x,) — (&) —1/2 0z (R(v)+07,) [R(r) +a]
— 12au(R(x,)+at) [Rt) +a T} +a/2 s (r+at) + 1/2 uy(r +ar),
while, if (r, t) is such that 7(r, t)=0, then
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(2.13) @, =af2(u 0z (r+at) — uy; (r—at))+ 1/2 (uyy (r+at)+ uy (r—at)

so that the regularity of @, follows from Egs. (2.9), (2.9) and (2.13) and from the
assumed regularity of R.H

LEMMA 3. Let f (r, ) be a given function whose domain is D", and let G(r, f) be
defined as follows:

p=Fy

dr.

p=1Ir

G, 0= [ 10, )

0

If f(r, 1) is

1) either a-Holder continuous with respect to r with Hélder constant H (f),

it) or a-Hélder continuous with respect to ¢ with Hélder constant H,(f), then
G(r, t) is a-Holder continuous with respect to both r and ¢.

Proof. We prove this statement only in the case i) which will be used later. The
proof when ii) holds is completely analogous.

We start defining

(2.14) A(+a, B, ) = [f(+ar+B, v,

0 —
A i1s a-Hélder continuous with respect to B.
Indeed, from (2.14) we get

(2.15) | A(+a, B,,t)— A(+a, B, ) | <H.(f)t | B,—B, | ,

where H (/') is the space Holder coefficient of f.
We now split G(r,, t)— G(r,, ?) into four parts and prove that G(r, ) is space
Holder continuous.
In fact, it is easily seen that
t
G(rla t) — G(rzs t) = j(f(F(rlﬂ ty T)’ 'f) 7f(F(r25 t: ‘L'), T) dt
0
' t](rz,l)

+ j (fd(r, t, ©) — f(ry t, T), T)dr+ § (fU(r,, t, ) — fU(ry, 1, T), T)dT

2 (r] 1) 0

1l(rl,z)
+ [ (fU@r, t, )= fU(ry t, 7), T)dr.

'zl(rz..l)

Now the first three terms are of the form (2.14), where b, have suitable values.
In the first two integrals we have

B —B, = x,—x,,

http://rcin.org.pl
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while in the third one we have
|B,—B,| < |R| logfor| Ir,—rl.

Finally, the absolute value of the last integral is easily bounded when we
remark that

Vre[t(r, 1), t,(r, D],
| Kr, t,0) — I(r,, t, ) | < | @rfor | 2alr,—ry|.
We can conclude, using Eqs. (2.15) and (2.13"), that
2.16) H(G)<2H(Nt+H()t | aR—a)y" [*+2H,(f) | (R—a)y" | abr.
In order to prove the time Hdolder continuity of G, we split

G(r’ Il) - G(r’ t2)

in a way similar to that used in space Holder continuity to obtain finally

2.17) H(G)<2H,(f)ta*+2H,(f)ta* W

3. Existence and uniqueness of the solution of MBP. Class K

Let us recall some definitions:
A real function f is said to be Holder continuous with exponent « if there exists
o€ (0, 1) such that

| f(x+h) —f() | SHNA,

where H_(f) is a constant Holder coefficient of f.

For every me N we shall say that fbelongs to the class C"** if its m-th derivative
exists and it is a-Hdlder continuous.

A function of n real variables f(x,, ..., x,), whose domain is a compact subset
X of R", belongs to the class C™** ™" if the m-th partial derivative with respect to
x,(i=1, ..., n) is a-Holder continuous with respect to x; itself.

Let

DF=D*n{(r, ©: 0<t<T}.
We now define the class #°(D7) as follows:
H(D})={v:D*— R with v eC***; p, e C'**0**; p, e C™**% .
We define in & the following norm:
loll,=supl vl +suplov, | +sup| v, | +H@)+HJv,).
Let us introduce the following notation:

<D} = oDy —{(r,t): R()<r<bh; t=T},



A MOVING BOUNDARY PROBLEM DESCRIBING THE GROWTH OF A DROPLET... 625

=},
<p

Consider now the problem (2.1)—(2.2) when R(t) is a given function belonging to
C?***and the initial and boundary data, listed in Eq. (2.4) and imposed on the function
9, , are vanishing.

The existence of the solution of Eq. (2.1) is assured by standard theorems on the
parabolic equations which can be found, for instance, in [8].

Let us introduce the function

so that we can define

JKO(D;-)E{UEJ{, v

(3.0) F: Ky Ay

such that #(v) is the solution, satisfying the conditions Fy(v) . =0, of the

following equation:

~ ¢ p=Fq .
(31) ‘SpR(U).t o 5R(U)n = ]*od)r'{' k jv‘rr(p7 ‘E) d’H—s(r, 't) Ef 1nD+)
0 p=I
where & (r, 1) is a source term belonging to C°+*%+=,
Moreover, we introduce the following quantity:

p= inf {|RO|, | R@—b]|},

tel0, T

which will be assumed in the following to be strictly positive.

PROPOSITION 1. As the solution of Eq. (3.1) belongs to X7, definition (3.0)
makes sense and there exists 7" such that & (v) is a contraction in %|. Moreover,
there exists a unique solution of Eq. (3.2) with vanishing initial and boundary data.

Proof. As ve A, the Lemmas 2 and 3 assure us that the right-hand member of
Eq. (3.1) belongs to C%*=%*<,

Moreover, in Appendix A, theorem A.1, we shall use the last result together with
some theorems stated in [6-8] in order to prove that, if R(t) belongs to C*** then
Fplv) € A and there exists a constant L (i, T, b, a), which is bounded when 7" tends
to zero, such that:

(32) V(W1s wz)e'ftz) ” yR(Wl) - yR(wz) ” 1’0<L(,uils Ts b, a) “ w| _ wz |I .x’ot'

Obviously, for suitable value T’ of t, we have LT” < 1 so that 5%(v) is a contraction
in (D).
Using the Banach—Caccioppoli fixed point theorem we conclude that

Nved ,: Fpv) =,
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i.e., when R(t) is fixed, there exists a unique solution of Eq. (2.1) with vanishing initial
and boundary data(*). W
Let us consider a couple

(PR(1), P()eC'** x C'*®
and use it to define the function
(3.3) vy(r, t) = A(r, t)+ B(r, 1),
where
Alr, )=[®g(1) — P11 — RO) (b — R(1)) '+ Py(1),
B(r, )= vy(&(r, 1)) = u(S) — AL, 0)=uy(8) — pl+4,
E=[(b—R(0)) (b—R(®) "1 (r— R(t))+ R(0),
p=(@L0) — 2x(0)(b—R(0)) ",
q=-R(0)(®H0) — Px(0)) (b—R(0))"" — Px0).
It is easily seen that
0,(R(1), £) = @p(t), vy(b, t) = D), v,(r, 0) = uyr).

If R()eC?** then, because of Proposition 1, we can assume that
@.(t) = 3,(R(¢), t) belongs to C'*+*.
LEMMA 4. If the functions

(¢E(t)s @R (t))ECI'“‘ b4 Cl+a

and u,(r) belong to C***, then the functions v,,, and v, , are x-Hélder continuous both
in the space and time.

P r o o f. Since evidently v,, and v,,, exist and are continuous, in order to prove
this statement it is sufficient to calculate the space and time Hélder constants of both
v, and v,,.. Now it is easily seen that

A=0,
H(B,,) < bW Hv,,),
H(B,) < b'yH,(vy.)+sup | vy, | 2abyu’,
H(A) <sup | &g, — Pp, | dbu"' +sup | &y — P | ap?,
H(A) < (H(®Pr, — P )by + H(@r)+sup | @p— Py | 2ba’u™’,
H(B,) < H(vy )abu?,
H(B) <sup | vy, | @b*.
so that the lemma is proved W .

(*) Note that Eq. (2.1) coincides with Eq. (2.2) when s(r, 1)=0.
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We put now
(3.4) v=10,+0,,

where v, is the solution of Eq. (3.1) with vanishing initial and boundary data.
Lemma 4 assures us that the function

Fr
dt+c,vy, — €0y, = g(1, 1)
_}'.t

(3.5) 3 fvz..,(p, 7)

0

P
p

belongs to CO®0%=,

Setting g(r, t) = s(r, t) we conclude that v satisfies Eq.(2.2) with arbitrary initial
and boundary conditions.

In this way we have proved the following:

THEOREM 1. If R(f)e C*** is such that u>0, then in the interval [0, T'] there
exists a unique solution of Eqgs.(2.1), (2.2) with initial and boundary conditions given by
Eq. (2.4) and satisfying Eq. (2.4").

4. Continuous dependence of the solution of MBP on initial and boundary data
We now introduce the space &, i.e. the space of initial and boundary data:
(4.1)
9 =C"*[0, T]xC'"*[0, T] x C***[R(0), b] x C'**[R(0), b] x C°**[R(0), b],

which satisfy all compatibility conditions, in (R(0), 0) and (b, 0), listed in Sec.2.
An element of 2 is the set (@5, Py, Uy, U, ) Which will be denoted in what
follows by IBD.

In order to define a norm in 2, we recall that:

if f(x)eC™*e,
(4.2) Il £() I cnta=sup [ +sup | f,| + ... +sup Ifx,, | + |fx,, | :,

so that we can define

#3)  NBD I G= 1@l pat 10l it Nt Il at Mg | oot il o
B We begin with the observation

(4.4) vfr, t) = A(r, )+ B(r, 1).

Simple calculations yield the result
2
(4.5) ANl < IIIBD llgla,+a, | Rl civatas | Rl iiad,

.
(4.6) I Bll o< [IIBD |l gla;+a, 1 R, Ml grya + a5 I R Ml 1ia s
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where a,, a,, a,, are three suitable constans such that the following limits are finite:

4.7 lim ga,, limg’a, limp'a,.

u—0 w—0 u—0
Consider now function »,. We remark that v, is the solution of the following
equation:

t

(48) vl,z - Ul,rr = X‘O¢l+ TC‘ jv];r(pa ‘C)

0

p=F_
dt+s(r, t) inD*",

=TI

where s(r, t) = —dv, is a source term belonging to C°"*°** which vanishes on 1Dz,
We split the function v, in the following way:

(4.9) v, =V, +U,.
¥, is such that
(410) V;,r - I’Il,rr = A’U¢.t+§(r! t)

and U, satisfies the equation

t

@.11) U= Upp= & [Usnlp, )

0

p=F p=Fz

dr+ R [Vialp 0| dr
0

p=Iy

p=Iy

We can apply to the solution of Eq. (4.10) the Theorem A.2 of the Appendix and
Lemma 4 in order to prove that V,e ¥ and, moreover,

(4.12) IV, < LR, DK,
where K, is || 2,® ,+s(r, ) || O+, 0+a-
Let now U} be such that

p=Fy

t
(4.13) Ul,-U!,= Zjn,,(p, 7| dr.
0

p=1I.

Lemma 3 assures us that the right-hand side of Eq. (3.13) e C°**%*% 50 that we have

4.14) [| U} ||x,u$ L(R(t), t) K,,
~ f p=Fr

where K, is the C°**°** norm of k IK,,(p, T) dr ..
0 p=I;

On the other hand, owing to Lemma 3, we can write

4.15) K, < JR@), K.
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Using Eqgs. (4.12), (4.13), (4.15) we conclude that
(4.16) io} I, < LRO), 0Ky + JRE), DKot
where
vi=V+Ui.

Consider now the solution of the equation

t

U’ll,r - 'll,rr b ﬂi{ jU?;l ’ T)

0

p=F_

p=1I,

As proved in the Appendix, the application
F:UT— UG

is contracting in J, so we conclude that

4.17
“.17) lim Ut =U,
and, if o] =V, + U,
(4.18) :
lim v} = v,.

On the other hand, for every n we have
4.19) Il o7l v, < L(R(t), ) Ky + J(R(t), ) Ky it
where K,,_, is the C***°** norm of

t =F, : p=F
EJU;‘,@ Im+-FJKAgﬂ

0 0

dt.

T

p
p=

t
dt + ’l?IVl,,(p, | dr.
0

As n tends to infinity, the constant K,_, is bounded by || v, | . So that we can write

(4.20) Il oyl v, S (LARQ@), ) Ko (1 — JR@), 1) "
On the other hand, we have

(4.21) K, < (Ly) I IBD || 5,

so that (4.20) reads

(4.22) ol 2, S (L)' ( Il IBD [l ,)(1 — J(R(t), )t) ",



630 V. A. CiIMMELLI AND F. DELL’ISOLA

where J(R(t), t) is found in the proof of Lemma 3, and is easily seen to be
bounded when

inf |R(t)—a|=u>0.
te[0,T]
[ |
The last formula, together with Egs. (4.5) and (4.6), proves the
THEOREM 2. If R(t) € C*** and is such that j1 and i’ are not vanishing and the initial
and boundary data belong to %, then the operator which maps I1BD onto the unique
solution v of MBP, ve X, in a suitable interval [0, T"] is continous and

(4.23) loll <L) IIBD|l,.

Appendix

In this section we prove

THEOREM A.1. Ifve X, IBD € 9 (°) and Egs. (2.4), holds, then F(v) € X, and Eqs.
(2.2) holds.

P r o o f We note that #(v) is the solution of the heat equation with a source
term () fe C**®°** satisfying

.0 IBD = 0.

As it is well known (see for instance [6]) we can write Fy(v) as follows:
(A1) Fr) = Z,(r, 1) — z((r, 1),
where

1) Z,(r, t) represents the following integral:

(A2) Zy(r, ) = ()2 [ Uy 1, & n)f(E, ) dédn,

D*
(A3) UP(T, t, 5’ n) e e(r—f)i/“(t»—ﬂ) (t_rl)Al/‘Z.

ii) zy(r, t) is the solution of dz, = 0 corresponding to the IBD given by Z, .
ap

In GEVREY [6] it is proved that:

a) | Z, | <)) H )" (p.344),
b) H(Z,)<(L) | f] 7~  (p.360),

o 1Z | <) Iflt (p358),

(*) The space 2 of initial and boundary data IBD is defined by Eq. (3.1).

(%) The source f was defined in (2.1) where s=—g and g is given by Eq. (2.5).

(")(L) is a constant which is bounded, when r tends to zero, and its value is varying in different
formulas.
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d) Z;, exists and is time-Hélder continous with exponent y<ua; its Holder
constant will be denoted by H/(Z,) (p.361—362).
Note moreover that, as it is easily seen from Eq. (A.2),

(A.4) Z,(r0) =0, Zr,0)=0.

In the hypotheses d) and (A.4) the following results hold (Gevrey, p.342 and
footnote 3 p.362):

o |z, | <@WH

D |z, | <(L)H() PP

g) Hzo,)<(L)H(/) 1.

h) z,, exists and is time-Hoélder continous with exponent y<e; its Holder
constant will be denoted by H/(z,,). The last result is an obvious consequence of d),
the footnote at p.361 and the theorem before Eq. (22), p.342 in GEVREY [6].

i) Statements d) and h) imply that F(v), exists and is time Holder continous
with Holder constant H (F(v),)-

Moreover,

H} (S ) ) <(LYH(S)

because of Eq. (34)" p.363, the footnote p.361, and footnote 3 p.362 in Gevrey.
The inequalities a)...c) and e)...g) prove that

(AS) | yR(U) | + I ‘?R(U)J | +H£‘9?{(U),r < (L) [lf” C0+"'VO+“'
On the other hand, using d), h), i) and Eq. (A.0) we can see that
(A.6) | H0) S OH (L g(0),) < ' (H] (L gv) )+ H() < (L) H(S).

In order to prove that H,(F(v),,) exists and is bounded by (L)H(f), we perform
the following transformation:
E=[(b—R(0)) (b—R(1)"1(r— R(1) + R(0),
(A7) ‘
v =[(b—RO) (b—R(e) 2 do,
0

which maps the domain D* on the rectangle R* =[R(0), b] x [0, T].
If we introduce the notation (¥ = (1))

(A.9) S(r(E, 1), 1) = F(E, 1),

we have

(A.10) H(r(€, 1), = F& 1), &,

(A.11) K&, 1) = FE D €))

(A.12) Hr(E, 1) = Frl&, D Tut FR(E 10 Lo

Under such a transformation the equation 6%, = f becomes
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(A.13) FlE Dge — A D) =T,
where
f=Ar( 1), d)ta+ A D)oLt

We note that as %,, = &, +f we have
(A.14) H(%y) < H(S)+H,(f).

Moreover,

A15)  H(Fr) = H, (%74 % £ 1) < H (HK7)( 1)
+H (% L) D)< | o | H (&K 0)+H (&L 1)
(A16)  H (A& L), 0) = H (S L0 (5 1)
L | Frer | ab’ P +apt | Fr, | < (LH(Na@u e +u't'?),
where we used formula (A.6).
(A.17) H (%) ) < Hy (S (r, 0) | & | * < bu*H(Sk,)-

We split now £(Z, 1) as in Eq. (A.3) and write
(A.18) H(& 1) = ZYE, 1) +34(¢ 7).

Because of Eq. (A.18) we have
(A.19) Hy%) < H (Z(E, 1))+ H,GoE, 1))

In order to apply to 2, the results found by FRIEDMAN in [11] we remark that,
because of the hypothesis (2.4") & is vanishing in (R(0), 0) and (b, 0) so that (see [11]
Lemma 1 and its proof):

(A.20) H, (Z (& 1)) < (D)H(f).

On the other hand it is possible to find an upper bound for H, (3,(¢, 7)) by using
the following arguments:
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I. Owing to footnote p.361 Eq. (21") p.338, and to the results quoted at the
beginning of p.362 in GEVREY [6]

(A.21) 2, (RO), )eC™**?,  Z,.(b, )€ CO**2

II. Owing to Eq. (3) p.469, which is obtained only for rectangular domains, we
conclude, taking again into account footnote 3 p.362 in Gevrey:

(A.22), H, 34(&, 1)) < (L) (HF)+H.(T)).

Finally, we have to estimate H (f) and H (f) in terms of Il £l comor. - It I8 €asily seen that
(A.22), H(f) < 12,0 1A oreones

(A.22), HE) <L) TN orones

where 2, are bounded functions of the variable .
Using now all results (A.15) ... (A.22),,, we observe that (A.14) becomes

(A.23) H{(S(r, 0. < 27 | 1] e

where 2 is a bounded function of the variable u .

Equations (A.5), (A.6) and (A.23) prove that F(v)e .

Consider now v, and v, € 5. The function %(v,) — H(v,) belongs to ¥, and is
a solution of the following equation:

(A24) S[%w) —Ho) = K (@, — 0)inlo, 1)
0 p=I
The right-hand side of Eq. (A.24) belongs to C°**°*% owing to Lemma 3, and
vanishes when t—0 so that we can apply to H(v,) — %(v,) formulas (34") p.363 in
Gevrey and (A.23).
In our notation they read

(A.29) | %@), — @) | ¢, < SR, T5) | E 1l osa,04a
where

p=F,

dt .

p=Fq

dt.

g=Fk I(vl — 0)p. 1)
0 p=1I

On the other hand, using the estimates found in proving the Lemma 3, it is easily
seen that there exists a constant K, bounded when t tends to zero, such that
(A.26) HE N osa0ra < KR, 8, D)t Nl 0y =0y |l

Equation (3.2) is proved when we choose L= SK g
We remark that in proving Theorem A.1, we also proved the following
THEOREM A2 If e C***°** and V] is the solution of

I/U - I/l,rr = l(ri t)

which vanishes on <|D*, then V€ X", and, moreover,
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” I/l ” s < L(-R(t)’ t) ll / II c0+a0+a,

where L(R(?), t) is bounded when p and ' are not vanishing.
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