Contents of issue 6 vol. XLV

639
653
665
679
689
727

739

767

773
779

J.S. YANG, Variational formulations for the vibration of a piezoelectric plate

J.S. YanG and J.D. Yu, Equations for a laminated piezoelectric plate

I. PIENKOWSKA, Many-sphere hydrodynamic interactions: first order Oseen’s effects
Z. WEsorLoWsKI, Transfer matrix for random system of elastic layers

A. SzANIAWSKI, Quasi-isobaric solutions of the Hiemenz equation

W. SzczePINSKI, On interaction between internal defects and external surface in the ductile
fracture mechanics

S. KosiNskr and B. DuszczyK, Reflection of oblique shock waves in Murnaghan material

Brief Notes

B. KAZMIERCZAK, Asymplotic behaviour of derivatives for systems of second order Ordinary
Differential Equations

E.V. KRISHNAN, On the phenomenon of wave breaking

Cz. WoZNIAK, M. Wo7Niak and S. KONIECZNY, A note on dynamic modelling of
periodic composites



Polish Academy of Sciences

Institute of Fundamental Technological Research

Archives

of .
Mechanics

Archiwum Mechaniki Stosowane]

.

|
— -
S

volume 45

issue 6

Polish Scientific Publishers PWN
Warszawa 1993



ARCHIVES OF MECHANICS IS DEVOTED TO
Theory of elasticity and plasticity e Theory of nonclassical
continua e Physics of continuous media e Mechanics of
discrete media ¢ Nonlinear mechanics ¢ Rheology e Fluid
gas-mechanics ¢ Rarefied gas  Thermodynamics

FOUNDERS

M.T. Huser « W. Nowacki « W. OLszak
W. WiErzBICKI

EDITORIAL ADVISORY COMMITTEE

W. Szczerinski — chairman « D.C. Drucker
W. Fiszoon « P. GeErmain « W. Gurkowskl
G. HERRMANN o J. RycHLEWSKI
I.N. Sneppon ¢ G. Szerer « Cz. Wo7zniAK

H. Zorski

EDITORIAL COMMITTEE

M. Sokorowski — editor « A. Borkowski
W. Kosikskr « W. K. Nowackr « M. Nowak
P. Perzyna o« H. PETRYK o J. SoxkOL-SuPEL
Z.A. Warenta o B. Wierzsicka — secretary
S. Z AHORSKI

Copyright 1994 by Polska Akademia Nauk, Warszawa, Poland
Printed in Poland, Editorial Office: $wigtokrzyska 21,
00-049 Warszawa (Poland)

Arkuszy wydawniczych 10,75. Arkuszy drukarskich 9,5
Papier offset. kl. 11l 70g. B1l. Odddano do skiadania w lutym 1994 r.
Druk ukoficzono w czerweu 19941,
Sklad i famanie: IPPT PAN
Druk i oprawa: Drukarnia Braci Grodzickich, Zabieniec ul. Przelotowa 7




Arch. Mech,, 45, 6, pp. 639-651, Warszawa 1993

Variational formulations for the vibration
of a piezoelectric plate

J. S. YANG (PRINCETON)

THiS PAPER PRESENTS a systematic discussion on the variational principles for the vibration of a
piezoelectric plate. It is shown that there exist four types of variation formulations depending on
the internal energy, electric enthalpy, mechanical enthalpy, and enthalpy, respectively. The one
depending on the internal energy is in a positive definite form which leads to a few properties of
the resonance frequency.

1. Introduction

IN cLassicaL ELasTICITY and in the corresponding plate theory, there are two
types of variational principles for the free vibration of an elastic body or plate.
One is associated with the potential energy, the other with the complementary
energy [1-4]. Besides their theoretical significance, these variational principles
are the foundations of various approximate methods, especially the finite element
method.

For the free vibration of a three-dimensional piezoelectric body, it has been
shown [5] that there exist four types of variational formulations, depending on in-
ternal energy, electric enthalpy, mechanical enthalpy, and enthalpy, respectively,
which is a generalization of the case of classical elasticity.

This paper is a continuation of [5] into the two-dimensional piezoelectric plate
theory which is important in many applications. Four variational formulations for
the two-dimensional piezoelectric plate vibration theory are presented. They are
related to the two-dimensional internal energy, electric enthalpy, mechanical en-
thalpy, and enthalpy, respectively. These variational principles can be considered
as generalizations of the corresponding variational formulations in classical elas-
tic plate theory. Because of the presence of the electric fields, there can be four
generalizations for the two formulations in classical elastic plate theory. They
all have a different set of independent arguments, which allow for different but
equivalent formulations of the same eigenvalue problem. The variational princi-
ples are given without constraints, with all the physical quantities, as independent
variables and, therefore, they can be called mixed variational principles. They
can be reduced to various constraint variational principles or variational princi-
ples with fewer independent variables. The constraint internal energy formulation
is in a positive definite form which can be used to show a few properties of the
lowest resonant frequency of a piezoelectric plate.
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2. The eigenvalue problem

Let the two-dimensional region occupied by the piezoelectric plate be A, the
boundary curve of A be C, the unit outward normal of C' be n; (with n, = 0),
and C be partitioned in the following way:

C,UCr=CyUCp=0C, CeNCr=CynNCp=10;

then the eigenvalue problem for the free vibration of a linear piezoelectric plate
is [6]

T(O) = zsz’tt(o) _T(l)

0 _ 22,3 q .
3,7 : 9 Ba,B + TZa =w 5!) Pug) in A,
-p® =0, DM +DP=0 in A
_51(0) + (u(o) + u(0)+5z. (1)+521 (1)) =0 in A.

S(l) + i(ug?@ + ugl) =0 in A,

E® + ¢ 4 g6 = 0, ED+¢) =0 in A4,
aH H .
(2.1) TP+ —5 =0, -TP+—5 - —5 =0 in A
a5, 95,5
ol 9,
p{® G =0 DY + —— [(]1) = in A,
0F; DS
U'EO) 0\ _“S‘kl) . O on C‘u'a
'T}?) = 0, ng ]L(i’:)) =0 on CT,
_d)(o) = 0, _¢(1) = (0 on Cy,
p =0, D =0 on Cp
where u(o) and u{" are the zeroth and first order displacements, 6( ) and 5(1) the

zeroth and first order strains, TQ(JO) and 7(]) the zeroth and first order stresses,

# and 41 the zeroth and first order electric potentials, bf Y and EL" the
zeroth and first order electric fields, D,(O) and DQ) the zeroth and first order
electric displacements, 2b the thickness of the plate, p the mass density, and
w the resonant frequency. We note that Latin subscripts ¢, 7, k£ range from 1
to 3, Greek subscripts a, 4 do not assume the value 2, and (), = 0. II =
H(S@ s EO® EM) s the electric enthalpy function. For a linear piezoelectric
plate, H and the corresponding linear constitutive relations assume the following
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form [6]: ,
0 0 0 0 0 0) ~(0 0
22) H=bcGS750 - e EDEY - 260 BV 5O

L3 1) o)) 1) (1) (1) (1) (D)
+ 35 (CaprsSanSas — Cap B ER = 2€,5, EISL),

0 _ 0) (0  (0) ;.(0) M _ 23,01 0 ) (1
e = 2b(cijklsk! _ekijEk )s Ln = gb (Cf};:)wsf(ys)—e(wﬁfjs )),

ofy

2
DY = (e E +enSi), DI = 38(eanEy’ + i), S50,

where cf?,)d, c(algw Eijy ef?,)c «3((327 are material properties.

Given p, b, and H, values of w? are sought corresponding to which nontrivial
solutions of ufo), uf,l), Sf;-)), S(&B, Tl.(;)), Tci}s), A0 p(), Efo), Eg,l), Dfo) and Dg)
exist.

3. The electric enthalpy 1 (S, S() E® EW) formulation

The eigenvalue problem (2.1) can be written in an abstract self-adjoint form
and then a variational formulation can be obtained which can be further general-
ized by Lagrange multipliers. The procedure is similar to that in an earlier paper
[7]. We define

A u® §O O TO TV 40 41 gO gD pO ph)y
= [ [196 + T, + TOuD + DO + DD + DO

A
0) g(1) R(0) (1 ~(0) () 1) p(1 (0) ¢ (0) (1) (1)
+H (8@, s, O, EM) + E DY + EODY - TP - 1()5)| ds
— / (an](?)uEO) + n.@']‘él')u(al)) ds — / (n,- Dfo)gb(o) + ng, Dgl)qb(l)) ds,

1 2
I (U(O),u“)) = f 3 (prugo)ul(-m + gbeugl)ugl)> ds,

1, (u@, u® O s 1O 1) 4O 41 gO ED pO plh)y
Ay (u@, u® 8O s TO) T 30 51 EO) ED, DO D))
B I (u©® u®) '

To obtain the stationary conditions of /7; with all its arguments as independent
variables, we begin with

1 1 Al
6l = —=(I16A; — A1) = — (64, — —61Y).
1 Flz( 16, 101) Fl( T 1)
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Therefore 611; = 0 implies
6/11 = —6F1 = ().
With integration by parts, we can obtain

844 =/{ TO6u® + (~15) 5 + T 6ul)

Jtd
A

—1)(-0-)605(0) + (_ DSL + D(O)) s

+ ( = T“”) 6519 + ( Ll ’r“,’) 65
@ — “i | 9% (1) o

+ (24 p®) sy [ 2T, po
oE® ’ aED

1/ @ 0 1 0) 0
4 [5 (uE‘J) + “5,1‘) + (‘\giu( ) + (52111( )) 9( 571(J)
I (1) M] (D
+|:§ (um,j+w )— Sn;, 6T
+ (B2 + 6D + 620M) 6D + (ED + 6(D) 61)5\')}11,5'

= / (ufo)ﬁnﬂ‘;?) + 119)57137}52) ds + f(nj—’l"l(?)bufo) k- u‘,{l"g”ﬁ ug)) ds

[a]

3.0 off

Cy Cr
- '/(d)(o)énil)f—o) + ¢Wén, 1)9)) ds + [ (vul)go)bci(o) + ng, Df‘l)bq‘)(l)) ds,
Ce Cp

o = /(prugo)é nfo) + %[)3 ulDs ufﬁ) ds.

Since all the variations oféu( ) sulD, 653(?), 6 Sf‘lz “1(10)’ 6T 1) , 60O (D), 61

615((,1), 6Dfo) and 6Dg) are independent, 6/} = 0 implies

0 — Ay (0) D L0 M23 @
=T = T, —2bpu;”’, ~Tga st T I 3() Uy, in ol
Q@ =0, DO +D"=0 in A
(3.1)

5(1) + i(u% + ,,(U) =0 in A,

3o
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3.1
(( t)] E® + ¢ + 5300 = 0, EM+¢) =0 in 4,
cont. ’ )
1O 4 & = 0, ) 4 2l =0 in A
9 gs® 07 950
aH o1 :
D1(0)+—(05 = D, [)“)+ . l) =0 n A,
IE QLS

- (-0) = 0, M = on (),

J gt
-0 = 0, —o) =
n,-Dl(-O) =0, n, (1) =0 on Cp.

0
n, T® =0, ngTH =0 on  Cr,
0

on Cyg,

Comparing (3.1) to (2.1), we have the following variational principle: the station-
ary condition of /I, gives the eigenvalue problem (2.1), with the stationary value
of 11, as w2.

The above variational principle has no constraints. If we choose our admissible

functions to satisfy the conditions

—S}O) + (u + u(o) + 6y u“) + 52]u(1)) =0 in A,

—Sc()l[; + E(”S)ﬁ + ugl) =0 in A,

EO + 60 + 50 = 0, ED+e) =0 in A
]1 dall .
S ()‘SOIJ'
(0) on w4, 97 _
b o =0 Da - i
=y e
—uSO) = 0, =0 on C.,

—¢® =0, -9 =0 on Cy,

/11(15

—/; (ZOpu( W + §b3pu u )d9

A

then /1 reduces to

(3.3) 1 =

and the stationary conditions of /I; become



© _ M (0) My 0 _ M23 g :
_Tji,j - FIprul ) _75()..5-'- 12(} - ﬁgb pufx) in A,
p® =0, -DU4+D® =0 i A

(34)
an(p) = 0, nﬁT(l) =0 on (7,

3

n,-D(-O) = 0, naDgl) =0 on Cp.

In fact, we can substitute Egs. (3.2),_s into Eq.(3.3) and express everything in
terms of ufo), uP, ¢©, and ¢(). Then we will have a variational principle
with constraints (3.2)s 7 and independent variables 2O w60 and ¢, The

1 ¥

stationary conditions will be Egs. (3.4) in terms of «!”, u{", ¢ and ¢().

4. The internal energy U(S®, SM DO DW) formulation

The internal energy U can be as introduced from /I through Legendre trans-
form as

-(0 0 -
(4.1) U =069, pO D0y =+ Pp® 4 pOph)

which generates the following constitutive relations:

7O _ au ) _ au
TooesP T oSl
’ op!” o opl)

Let
Az (@ u 8O g O T 1O 51 pO® plh)
= f [TQu® + 706l + 7DD - DY@ — DO, ¢V + PPV
A

0 1 0 1 ~(0) (0) (1) ¢(1)
+U(s@,sM, @, p") - 7050 — 75 as
— ] (n]—T}?)ugo) + nnggL)ugl)) ds + / (niDl(.O)(i)(O) + n, Dg})q’)(l)) ds,
C. Cp

Fz(u(o),u(l)) = [% (2bpu(0)ugo) + %bg’pug)ug‘)) ds,
A

(u@, u® @ s 1O T 4O 41 p® p)y
Ay(u@ M SO g1 O T HO) 51 D© D))
- I (u(®, uD) ’
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Then
§4; = f { T80 + (180 5 + 15)) 6ul - DY6®
! oU
+ (=W, + D) 66 + | —= - TV | 559
( J 2 ) asf?) J J
4| 21D a5+ (m$+¢@+6¢m)uW’
+ ( ov )wu) 5 [1 (42 + 4@ + 5 + 83,u) - (0)] 570
8D’ 2

1/ (1) (1) (1)
+[2((”5+uﬁa) S T dS

— f(u£0)6an;?) 4 ug)én,@TéL)) ds + f(anJ(?)ﬁufO) + n,gTéL)éug)) ds

Cu G
- / (#9600 + V50, DO) ds + / (nD®66® + nu DVsHD) ds,
Ce Cp

5L = / (2bpu§“’5u§°’ + %Hug)augp) ds;
A

hence é611, = 0 implies

2203 Q)

© _ A2, () M 47O <
1= T, —=2bpu; ", ~T3a 5+ Ts, I3 in A,
p®=0, -DN+DP=0 in A4,
1 .
*SS)) > ( 4 u(o) + b2;u (1) + (52J'u.(1)) =0 in A,
m,lem oy _ A
—Saﬁ+2(aﬁ+uﬁa)—0 in A,
o . OU w, oU .
@2 -TO+ =0, -T =0 in A,
Y o ¥ 258
0, 5 404 9U m, 99U _
o0+ sV + —5 =0, g0+ —5=0 in 4,
i : )
oD oD\
u® = o, =0 on C,,
T(O) =0, ngT) =0 on Cr,
_¢(0) = 0’ _¢(l) 0 on th
nD® =0, w,DP =0 on Cp,
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which is an equivalent form of the original eigenvalue problem (2.1). (4.2) can

be obtained from (2.1) by eliminating 131-(0) and £, The stationary condition of
11, gives the eigenvalue problem (4.2), with the stationary value of /I, as w?. If
we choose admissible functions to satisfy

_1)52) =0, —Dg}] + D;(!O) =0 in /‘,
1 :
—5:‘(_?) + 3 (ug?j) + ug-g) + 62iug~l) + 62111.?”) =0 in A,
@, 1 1) my _ .
-85t 3 (uw_,, + uﬁ‘a) = in A,
_USO) = ), —u?' =0 on C..

n,-D(O) = ). nal)g) =0 on Cp
then /I, reduces to

(4.3) I, = A 3 :
] (prllgo)ugo) + §b3pu(nl)ug)) dS
A

N =

We note that from Egs. (4.1), (2.2) and (2.3) the internal energy can be expressed

in terms of 5}?), .S’Llﬁ), Ij‘fo), Eé” in the form

_ A0 O L () ) — g (O O 0 p(0) (05 (0) (0 6 (0)
U=H+EPD® + EOpM = b (£ 5P - e EDED - 260 EP 5

afyé~ aB N Fi] o3 B

+:13b3 (r(l) 5(1).5'(” - sl;,,fl:'((ll)]:'(” - 2((1) lf(gl)b'(.l))

afy* By

(0 (0 0) (0 (0)2 ‘ .
+]',1-( )Zb (5,-]‘ [;} )+ CEJLSJ(A_)) + l;((\ﬂ)gb?’ (SM I:‘(jl) + f(l) S(l))

) afys~ a3 vé

— 2 (0) ¢(0)(0) S0 L) L L3y ce o))
= b (0 SPSQ + e, B0k )+§b (b s55055 + c.pENERY) .

The positive definiteness of the internal energy function U7 (or rf?z,,, (:gg,ﬂg, €i;) IS
usually assumed for stability considerations [8], then the constraint //; is positive
and hence bounded from below. Therefore the lowest resonant frequency must
be a minimum. Following some standard arguments in variational analysis [9],
we have the following immediate properties.
The lowest resonant frequency will increase if any of the following happens:
i. C', increases, or C'p increases;

ii. p decreases;

@ 0y s -(0) -(0) o\
iii. c;;, increases to ¢, such that (¢, — ¢, )aijar > 0 for any nonzero
: - -(1) -(1) (1)
Symmetric a;;, Or ¢,3-s Increases to ’fgm such that (cfn..m — €y 3 )0aflys > 0

for any nonzero symmetric a,z;

http://rcin.org.pl
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iv. ¢;; increases to &;; such that (¢;; — €;;)b;b; > 0 for any nonzero b,.

These properties are consistent with similar properties obtained from the
three-dimensional theory in [5]. Some of them may be considered as gener-
alizations of the corresponding properties in classical elastic plate theory. In fact,
it can be expected that with the orthogonality conditions with lower modes as
variational constraints of Egs. (4.3), some of the above properties may be proved
for higher resonant frequencies.

The above two formulations in terms of i and U can be considered as gener-
alizations of the potential energy formulation for the vibration problem in elastic
plate theory. In the following, we will discuss two other formulations which are
generalizations of the complementary energy formulation in elastic plate theory.

5. The mechanical enthalpy M (T(O, T, DO DM) formulation

The mechanical enthalpy M can be introduced through Legendre transform
from II as

M = MTO T DO pW) = 1 + EOp® + EOpM - OO 1))
s ) 3 1 ! “a o 1y Yy o ab”

which generates the following constitutive relations

gl oM ¢() = oM
R R T
5.1 ,
PN (D TN (Vi
oD oD}

For this formulation, we need to introduce (when w # 0)

“50) = —wzugo). e = —w u(”

(5.2)
0O = 260 g = 260

We note that the physical meaning of (LEO) and ' is related to accelerations. Let

A3(@®, a) TO T 4O 41 pO) D)

- (0) ,(0) M (0,1 ©) 1,0
_f[ 7]11 t T/?op‘ Ex)+r () Di‘iu‘()_Dg,?ﬁ-‘v[()
A

2
+D(D) AL 1 (Zb/m( )(, 31) paNal )] dS

+ / (an;?)(Lfo) + 7113'1"[(,2(19)) ds + / (ngl)i @ 4, Df,”u‘“”) ds,
& o

http://rcin.org.pl
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1y (19,10, 0®, p) = /M (1O, 70, p®, D) as,
A

113 (a®, 2, TO, T, 4@, 40, pO, p)
A (a®, a0, 6@, O, TO, 70, p®, p)
- 73 (19,70, p®, p) ’

where independent arguments are now ol a((]l), T,(JO),

o, Th, O, pM, PO and
D&l). Since

2
643 = / [(—T}‘)i + 2bpa”) 6a{” + (-T,g‘c}Jj + T 4+ §b3pag)) §a'
A

, 0
~DQsy©® 4 (—DQ}, + D) sy

Lo, (© (1) MY @ L Lo (Y (D)
+§ ((Li‘]- + (Lg'i + byia;” + b0, ) o + 2 (“a,/j + (lﬁ‘a) 6T,
+ (8 + 620 ™) 6DV + s Dg‘)] ds

— /(afo)éan}?) + ag”énﬁfl'é:])) ds + /(anj(?)éagO) + nﬁT(l)éag)) ds

Bo
Cu Cr
- /(ib(o)ﬁni DSO) + 1/1“)671(]1)&1)) ds + f (n,-DSO)MD(O) + ng, Dgl)ﬁdﬁ“)) ds,
C¢ CD
81\«[ C A/I ‘. [ _f‘[
5r3=] (méTS’)+ g w5 0Te0 + ‘M{())w,‘.“u f?—méi)gl)) ds.
o \ar; T, oD, Dy
0113 = 0 implies
2 .
—T}RE + 2bPaSO) =0, —T[g?ﬁ + Tz(g) + §b3pa£,1) =0 in A,
-p@=0, -DM+DP=0 in A
1o, 0 M my _ A3 oM
59y = (9% % 5@+ 6:00) = 2 AL
1rw , @y _ 43 M
> (aa,g =+ aﬁ‘a) oE -IT:"OT“B) in A,
) oy _ A3 oM ay _ Az OM ‘
K 1 - ) A,
7!’,1 2 d} F:; aDt(U) w,a 13 aDgl) n



VARIATIONAL FORMULATIONS FOR THE VIBRATION 649

(1

‘(Cson::’)] _a50) = 0, —ag’ =0 on C,,
anJ(?) =0 nﬁT‘gQ =0 on Cr,
—p@ = 0, M =0 on Cy
n:D® = 0, neDY =0 on Cp,

which is an equivalent system of the original eigenvalue problem (2.1) (when
w # 0). Equations (5.3)3_s can be obtained by multiplying both sides of Egs. (5.1)
by w? and substitutions of Egs. (2.1)3_s and (5.2). Hence, the stationary condition
of the functional I7; gives the eigenvalue problem (5.3) with the stationary value
of T3 as w?. If we choose the admissible functions to satisfy

0 0 1 0, 2,3 q :
T +20pa” =0, -1+ T+ =0 in 4,
-p@ =0, -DO+DP =0 in 4

anJ(?) = 0, RSTEL) =0on Cr,
n,-Di(-O) = 0, naDgl) =0 on (Cp,

then /15 reduces to

j_% (prafo)afo) + §b3pﬂg)“g)) 5

=4
/ MdS
A

6. The enthalpy (T, T() E© EM) formulation

The enthalpy ¢ can be obtained from I/ as
— (0 1 0 Dy — (0) ¢(0) 1) (1)
G =G@O, T E® EM) = H - 1757 - T, /5.2,

which generates the following constitutive relations

g o0(0) Yaf T (1)
pO = __O_G_, pM = _ﬁ__
CT TR0 oE®
We introduce
O = —n®, o = e,

Q¥ = -, QY = —w?Dy,
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and let
Ay(@®@,a® 1O TO 5O 4O gO O, Q(O) Q)

l 2
= /[ Tj(?i fO) l(])ﬁ(t(l) + 72 a 2 (21)/)(1(0) 4 3b3prtfj)a“))
A

+Q060 + QP60 + QD + GV E® + QU ED a5
+ / ( ]TJ(?) SO) nﬁ']"‘g?ag)) ds — / (niQEO)qﬁ(O) + ang)d)(o)) ds.

Cr : Co
I (T(O),T(l), E(O), E(l)) - /G’ (T(O),T(l), E(O), E(l)) d5.
A
i1, (3(0)’ aD 1O T 40 41 EO g0 O Q(l))
A (3(0)53(1)1(0)3(1)‘ A0 EO EMD_ QO Qm)
I (TO, T, EO) ED) '

It can be verified that the stationary conditions of /14 are

2 .
__Tj(loi + pra(o) =0, =T, (l)ﬁ + 72(2) + 303[)(1(]) =0 in A,
QW =0, - +0P=0 in 4,
ED + 40 + 621-d>(” =0, EQ+¢0=0 in A
1/ 0 ) (Y _ e 0G .
E(a ta;; + 152; ) ¢ 0251, ) - “ 770 in A
t
Lt M 40y = A4 0G A
2 T
Q(-D) _ A_4 oG Q(l) _ i‘l JG in A
b Lgp®’ * o TagrM
_a§0) = (), —(L(al) =0 on (),
nJT](i) =0, ngl(o) =0 on Cp,
0 0, ¢ =0 on Cy,

n,-Q(-O) = 0, noQ“)

which is another equivalent system of the original eigenvalue problem (2.1). If
we choose our admissible functions to satisfy

0 on Cp,

2 :
T+ 2bpa” = 0. =Tg) + T3 + Wpal’ =0 in A4,

VESY)

http://rcin.org.pl
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EQ + 60 + 560 =0, EP+¢D=0 in 4,
T =0, ngT5) =0 on Cr,
—6® = 0, ¢ =0 on Cy,

then 714 reduces to

2
/*% (2!)/)(1(0)(150) + 51)3/)‘19)”2”) ds

/ G dS
A

7. Conclusions

In summary, four variational formulations for the vibration of a piezoelectric

plate are obtained. They are equivalent in the sense that the eigenvalue problems
defined by the stationary conditions of the variational formulations are equiv-
alent. Each variational formulation has a different set of independent variables.
These variational formulations can reduce to variational formulations with fewer
independent variables. They can also be used to construct various finite element
formulations for the vibration of piezoelectric plates.
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Equations for a laminated piezoelectric plate

J. S. YANG and J. D. YU (PRINCETON)

TWO-DIMENSIONAL equations of motion for a composite piczoclectric crystal plate symmetrically
laminated about the middle plane are obtained by retaining the initial terms of power series ex-
pansions of the mechanical displacement and electric potential of the three-dimensional equations
of piezoelectricity.

1. Introduction

TWO-DIMENSIONAL equations for motion of piezoelectric crystal plates were de-
rived, extended, and revised by MINDLIN and TIERSTEN [1-5] using power series
expansions in the plate thickness direction. LEE [6] derived similar equations
using trigonometric series expansions.

A few versions of the two-dimensional plate equations for laminated piezo-
electric plates have been derived recently [7-10] because of the development of
intelligent structures. These plate theories for the piezoelectric laminates are
not true plate theories coupling the electric and mechanical fields. They usu-
ally either neglect the electric fields resulting from the variation in stress (the
so-called direct piezoelectric effect) [8] or use some equivalent circuit model
[7,10] for the electric fields, so that only the plate equations for the mechanical
fields are developed.

In this paper, two-dimensional equations for a composite piezoelectric plate
symmetrically laminated about the middle plane are obtained by retaining the ini-
tial terms of power series expansions of the mechanical displacement and electric
potential of the three-dimensional equations of piezoelectricity. These equations
are true coupled plate equations for the laminated plate in the sense that plate
equations for the electric fields are also derived and are coupled to the mechanic-
al fields. The equations are derived for general anisotropic materials. They are
then specialized to materials with monoclinic symmetry. Finally, thickness-shear
vibrations, which are of interest in resonator industry, are discussed.

2. Three-dimensional equations

The three-dimensional equations of piezoelectricity are

T = pi;, D;; =0,
1 3
(2D Sij = i(u,“,’ i), i = =@,

Ti; = cijriSkt — erij By, D; = e;xSik + €i; E;,
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where T; is stress, u; mechanical displacement, p mass density, D; electric dis-
placement, S;; strain, £; electric field, ¢ electric potential, ¢;;x, €1 and ¢;;
material constants. The above equations can be combined to give equations
governing u; and ¢:

CijkiUk i + €kijd ki = pU;, ekijtijk — Eij@ i =0

For a piezoelectric composite of N phases, the above equations must be true
for each phase with the corresponding material constants CU“, uk and ¢/, I =
1,2,---,N. At the interfaces of the composite, continuity of the mechanical
displacement vector, electric potential, traction vector, and normal component of
electric displacement is required.

3. Series of two-dimensional equations

We consider an N -layer laminated plate referred to rectangular coordinates z;
with plate faces at z; = 10, and with z; and 3 being the axes in the the middle
plane. The two plate faces and N — 1 interfaces are sequentially determined by
b= b(), b1, LA g bN—l»bN = b.

First we expand the mechanical displacement and electric potential into power

series in x, .
n 1
. in‘ui , o= Zl‘fq_‘qﬁ(").
n n

where ufn) and ¢(, n = 0,1,--, are functions of z, =3 and ¢ only.
Then, from Eq. (2.1),

55 =Y 2360, | Ei=Y aiE,

where
(n) 1 (n) (n.) (n+|) (11+1)
55 = 5 [ +uf Dt (1) (620D + 8y -
EM™ = —¢f;‘) — (n + 160D,

Next we multiply Eq.(2.1); by 25 and integrate across the thickness of the
I-th layer from b;_; to b;. With integration by parts in 23, we obtain

b] bI
P -1
] z3Tijdza | —n / oy Tydzy | + [7‘272J]f11 1

br_y K br—y

by

=Z f zyxydry | p u§ ),
m

br_i



EQUATIONS FOR A LAMINATED PIEZOELECTRIC PLATE 655

b] bl
fzgl);(l;rz —-n /-'L"zl_lDzdl'z +[.1,"2‘D2]ﬁ§_1=0-

br_1 br_1

Summing over /, we have

N N b
Z /zEngdzz -n Z ./l‘g_szjd.'l.'z + [2375,0%,
Izlbf—l p =1 br_
N o
Gl R i
N b N b
Z gy Didzy | —n Z .1"'21*11)2([.’1‘2 + [23 D)%, = 0.
=14 F I=1y;_,
Defining
b N b
T'.(JT‘) = /12'1”(112: Z / 2o 1isdas,
o I=1,"
b N by
Dg”) = /1:72‘[);(1:1:2= Z /.r:f,jl),-d:l:z,
b 1=lb’_]

T}n) = [2372;]%,
D™ = [23D,)b,,

N b

p(mn) - Z /ng?dfljz [)’.

I=1 bl—l

we have the following n-th order field equations:

l_],ll

N -1 ln nn oo (m)
T - Tt + 1 = 3 ptmmdi™)
(3.1) m

DY — DY+ D = 0.

We note that p(™™) = 0 when m + n is odd because of the symmetry of the
lamination.
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The constitutive equations of order n are obtained as follows:

by

N
(3.2) Ti(jn) = /f’lzTudTJz = Z / 3T dzy =) ]12(Cuk19k( eki; Ex) dxa

I= lb; i I= 1bl .
b
N ]
= Z :c”ZJ;g’ ( U“.S(m) ~ €Li; E! )) dz;
I=1 m
br—1
N b N bs
— n,_m I J(m) LT g I ~(m)
—Z Z fl'zfuz dzy Cijkl ‘Skl - Z /12752 dxy €hij E
m I=1 b I=1 b
-1 \ br-1
_ (mmn) (m) (mn) ~(m)
- ( :Jkl ‘S Ai] hk ’

33 D™= f " Diday = Z /12 sibiy = Z fzz(.»u,“sjk + LBy day

I=1y,_, I=1p,
N br
(m) I ja(m) )
Z f’lz Z’EZ 1]1\.‘5 LUL (L?,z
=1,
Fesf
N by N by
= z Z /zgr?dmz IIJK 5(m)+ Z /:1'721.1'72"(112 S:’J Ej(m)
" I=1\4,_, I=1\s;_,

- 5 (s ),

m

where

N b

g’;c?) = Z /x?ri"drz c{jkl,
I=1 br_y
N b

eﬁ'}”) = Z /rgxg‘d:cz e,{.,-j,
I=1 \ " )
N b

Egnn) = Z /1:33:5”(112 E{j,
I=1 \,~

and cfﬁ’:) =0, f;’}“) =0, ef?”) = 0 when m + n is odd.
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4. Truncation and adjustment

We begin the truncation of series and adjust the remaining terms, discarding

the strains and electric fields of orders higher than the first, leaving Sfj), 5,(11),

E(O) E(‘) which contain the zeroth, first and second order mechanical displace-

ment ugo) g ) u'? and electric potential ¢, ¢(1), 4 some of which will be
eliminated subsequently At this stage, the consmuuve relation (3.2) and (3.3)
reduce to

0) _ (00)o(0 00) ,~(0 0) _ _(00) (0 00) 4-(0)
1) 1O = Q5O _pO O = W50, 00,0

(4.2) T,-(Jl) - (11)5(1) (11)E(1) Dl(l)_ (11)5(1) LDy

Ciikl €hij €iik S Mg

Next, following MINDLIN [3], we neglect u( ) in the field equation (3.1), and

rovide for free development of the strain 5(0) = uMb setting 70 = 0 in
p p 22 2 y g 1ixn
Egs. (4.1). Thus
70 — (00 (00 - (0) _
2 = ZZH‘SA —ep by =0

which implies

00) (00) (0) (00) (00) , (00)Y 4-(0)
(4.3) ( szzczzkr 2222) Sp = (ekzz cinlc 2222) Ly
With Eq. (4.3), one of Egs. (4.1) becomes

(0 00 0 00 0)

(00) _(00) (00) (00) (0) (00) L(00) , (00) (0) (00) (0)
(CkaI Cii2¢ 22k1/"2222) S ( €522k 2222) Sk =€y LL

= (%) _ (00) (00) , (00) (0 (00) .(00) , (00)) ,(0) _ (00) ~(0)
= (Cijkl ~ Gtk 2222) Sk! ik (f’kzz ¢i;22/¢ 2222) Ly” — ey By

(00) (00) (00) , (00)\ (0) [ (00) (00) (00) , (00) (0)
(qu( €i;22622k1/ € 2222)5 (kz] — € CijnlC 2222) Ly

000 _ -(00) (0)
= 1].“'5 k1_7 L

and the other of Egs. (4.1) is replaced by

(4.5) DO = {50 00 pO)

where
-(00) _ (00) (00) (00) , (00) -(00) _ (00) (00) (00) (00)
Ciikl = Cijkl — Uzz‘-‘zzu/czzzzv €rij = €kij — €222/ o

Note that in Egs. (4.4) and (4.5) T22 is now zero and 9(0) = ug) is no longer
present.
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.(2)

The first order terms are treated similarly except that all three i in the field

equation (3.1); are neglected and free development of the three strains .S'é;) are
accommodated by setting Tz(]l.) = 0in Egs. (4.2). Since many components of stress
are to be set to zero, it is simpler to start with expressions for strains in terms of
stresses. We define s( 1) and d(Jk such that

(1) (11) _ (1(“) _ S(l]) 6(”)

tymnCijkl T fmnkls kmn = CiymnCki; o

where L,k is the fourth rank unit tensor. Then multiply the formula for 7" in
ply ij

Egs. (4.2) by s" 1o obtain

z;mn

4.6) sAD () _ () _ (D) (),

Umn 1) mn kmn

In Eq. (4.6), set T3 = 0, ¢® = 0, so that

(11) (1) _ (1) (11) (1)
(4.7) sTys = Sog —doodE

yaf

where Greek subscripts range over 1 and 3 only. Now, solve the three equations
(4.7) for the three independent 7'}

7-{E1”)_ () o) _ () (l)

n[)’m‘\ ~5 ‘}t)f
and the other equation in Egs. (4.2) becomes

1 (l) (1) (1) 5-(1)
Dg) a[j'ysii'y-*-“aﬁl‘ﬁ ’

where

) 5 = [0 ]*‘ M, = [sa0 ] J )y

oﬁ‘yé affyé ’ €rag = “aBy6 A~ 1 Ca = m')’ y

The final adjustment is made by introducing shear correction factors [3]. The

thickness shear strains S(O) and 5( ) are replaced by &) S( and 5355_2) in the
electric enthalpy density [3] where nl and ~3 are correcuon factors whose values
may be chosen in such a way that the important thickness shear frequencies have
correct values, thus compensating, in part, for the omission of terms of higher
orders in the series expansions. With the correction factors, Eqgs. (4.4) and (4.5)
assume the following form [3]:

0 _ (0 (0 _ 0 (0) O — _(0) (0 (0) ,(0)
T’J UM’AS ‘\UE D CUAS + ¢ lJ
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where
0 _ -(00)
Ciikt = z+] _aRk+1-2C k1 (no sum),
0 _ nu -(00)
ekt] - h’z+] 2€k1_] (no Sum)‘
(0) _ (00
i T &

and p and v are
1= cos?(ijm/2), v = cos?(kir/2).
Thus, 'ﬂ+] , (or K} ,,_,) is equal to ki, 3 or unity according to whether ¢ + j
(or k + 1) is 3, 5 or neither, respectively.
5. Summary of equations

We summarize the equations below.
Field equations

T,(JO,) + 1(0) - p\mu() Dfﬁ:} + O — .
(5.1) :
1 0 (1 (1 0

Tc(rﬁ)a _7( : 7;§) = P(l)u(g}, Df}n [)g )+ pM = o

Strain-displacement relation

o_1o0,,0 NOFPO o_lrm .o
(52) &'= 2(‘ +ull) + 8pul") + 6;u(V), Snﬂ"i( X3 A

Electric field-potential relation
(5.3) EP = -0 -6, BN = -6

Constitutive equations

0 _ (O o0 _ (0 (0) © _ 0 (0 ,(0) 1(0)
(5 4) TI] o IJHS LIJL Di rjks te L’
Tc(,lo) = o 5(1) D p)

1 = (1) ¢) ¢(1),(1)
Cap~s €xvap &y D’ = S +“aﬁEﬁ )

€opy
Edge conditions [3]
nnTéO») = fjw) or u¥ = fzgﬂ),

na DO = dO  or O = GO
HQTSS) = t-él) or ug) J'Lgl).

n, DV = dD  or 4 = G,
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where
p(O) = p(OO)’
0 _ v =(00)
C:('jl)cl = K':"+j 2Kkt 1- ZCSjkl (no sum),
eg; = Ky - zefw) (no sum),
0 00
(0 =
p = cosi(ijr/2), v = cos(klm/2),
-(00) _ (00) (00) (00) (00) -(00) __(00) (00) (00) (00)
Cijkl = Cl]kl —Cimn© 2261/ €222+ iy = €y T Cm 1]22/ 2222
00
p® = Z(bl_bl—-l)Plv ijk% = Z(bI*bI ek »
I=1
(00 sl (00) _
ek,,) = > (br = br_1)eki; & Z(bl —br)els,
I=1 I=1
p(l) - (11)
(1) — (11) (H _ [.an (1) AN
aﬁ'y& - [aﬁw&] ) P\a[f - [‘Saﬁwé] [\—yb"‘ “af T 013 ’
a1y an _ (a _ .an (1
Sijmn uykl — ]m"kl’ dkmn ‘Sz]mn “kiy 0
N
1 1
ka3 = Z 2 [(bl)3 - (b!-l)3] C!jk!s
1=1
(11) o
Ck:j = Z 3 [(b1)3 - (b] 1)3] pkl_] )
I1=1
L) oly 3
£ = 23[(51) =i (g 1)]
I=1
71
) = Z 5 [(b,)3 _ (b1-1)3] ol
I=1

Equations (5.1)-(5

D, 60, 40

1 (0 (0
Ukl(uk it + 62 u( )) ey e[\,z(q{’( + 5 ¢(l)) + 7( ) = p(O)uf]- )’

Uk
@ )

caﬁv&“& Yo

8]

afy

(1)

€ v.Ba T

U

0
elguluiy; + Saull)) — (85! + 860y + DO

0,

.4) can be combined to give the following equations on u; ",

(0)

(1)-d(1) ,

1 0 0 (1
+ 05000 — el + b))
0 0 1
gt )505(0) o )¢(1 +T( ) —
(1)¢(1) 521(1&05 + 6y, (1)) + ,(0)([)(0) + L_(O)@(l) + DM =9
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6. Equations for materials with monoclinic symmetry

In applications it is convenient to the employ the following notation in which
a pair of small Latin subscripts ij or kI is replaced by a single capital Latin
subscript P or @ ranging over 1 — 6 [11]

and correspondingly

Ty = Ty, T, Ty, T; =
Ty = T3, Ts = Ty, Te =
S1 = Su, Sy = Sp, 53 =
Sy = 253, S5 = 253 S =

Cijkl — CPQ , ekij — €kP .

For materials with monoclinic symmetry, many constants are zero. If z; is the
diagonal axis of the plate [3] and the layers are laminated in the same direction

I
C1s
I
€21
ef

2

which immediately

C1s

0 _
G =

(0)
€21

(0)
€12

)y _
€ =
n _
€15 =
() _
€ =

(1 _
€12 =

0 _

The equations on u”, u{?, 30 () then reduce to

(6.1)

0), (0)
Cir ¥y 1

J
(0). (0)
+ cs5 Uy 33
0),(0
+e{Po0) + ¢

0)

0 0\ (0
+ (C(M) + Cgs))“:(z,%s + (‘3(13 +

) ,(0) , (0) (1)
35 P33t Clauy g

F_ ¥ _ F ' F _F> p _
er3=e3 =€y =€y =cs=¢;=0,

I _ I _ I _ I _ I _ I _ I _

€16 = C25 = €3 = €35 = €35 = 45 = ¢4 = 0,

I _ 1 _ I _
€3) =€ =€ =
ef3 =0,

implies

O _ (0 _ (0 _ (0 _ (0) _ 0 _ (0 _
Clg = Ca5 = g6 =C35 = C3g = 45 = 45 = 0,

) _ (0 _ (0 _
¢y =3 =y =0,

O _ 0 _ 0 _ (0 _ (0 _ (0 _ (0 _ () _ (0 _
€3] =€ T €3 T €33 T €33 T ey Te3y =ej5 = e =0,
0,

0) _
ez =0,

1 _

35 =0,

n _ (1 _ (1) _ (1) _
€3] = €3 = €33 = €5 =0,

(1) _
£13 =0.

(0)y (0)
Css )“3,13

0) (1 0 1 (0 (0
b0+ Qo) + 70 = 00,

25
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(6.1) (0) (0)y_ (0) (0) (0) (0) (O) (0) (0) (0) (0)
[cont.] (css +Cl4)‘1!3 Co6 U211 T CaqUg33 F C3g U333 F C56 U3

0 0 0) (1 0) (1 0) (1 0 (0)
+(€9 + é0)69 + @ul) + Qull) + DD 4 7O = O
L0 40 0 L 00 (0 0

(0)
(ci3 +Css 1,13

(0)_(0)
56 U211 T €34 Up33 T Cs5 g T G333 33
FEQ 4 eD6®) 4 Oy 4 (O 4 OO 7O - 0O

56 411 34 U33
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
€11ty t a5ty 33 + (€4 6 U s )u

uy 13+ (€13 1313
+e0ul) 4 (O (1) 00 _ 0 o 4D 1 pO = g

€143 — €y €33% 33~ €3
(), (1) (1) (1 (1 (1)y. (1) (1) (1) (1)
ciyuy gy tessupay t (e 13)“"755)“313"‘51 ¢+ 35053

5 1
—0,0 cg%)(”w) +ul)) - (0 _ 0,00 ‘%“) 470 = p0D,

(1) 1) (1) (1) (1) (1) (n (1)
(c15 + c5 )”(1 13+ essuy ) +eyyuyys + (e}5 + €3 )C)

0), (0) (0). (0) (0) (0) (0) (0) (0) () (1ye=(D)
TClg U] Cgqllp3 = C3lz 3 — €07 — gl 3 g™ = p )“3 ,
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
eppuy gy ey gyt (63 + e )“3 — &P~ €33933
0) (0 0 0 0) (0 0 0
0,0 00000 00 0,0, 000, o,

7. Thickness shear vibrations

For thickness-shear modes, we drop all terms with spatial derivatives in Eqgs.
(6.1), and consider the case in which the faces of the plate are free of traction

and charge, which implies T( ) =0, DO =0, 7" = 0, DO = 0. We seek for

solutions such that u!”) = 0. We are then left with the last three equations of
Egs. (6.1) which now assume the following form:

0) (1 0) , (1)

-626 “(1 ) (6)‘2’(1) = p(])u(1
0 1 (1

(7_1) ( ) ( ) — p(l) ( )

(0
#(26 u

(1) + ,(0)¢(1) =0
(i) Thickness-shear in z,-direction
For thickness-shear in z; direction, we keep u!", o) and Egs. (7.1); 3

ONCIOPORERUTS
(7.2) ' ‘
eg )u“) % 5( )@“) = 0.

Now let
u(ll) Aezwt ¢(1) — Bu(;iwl .
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Equation (7.2) becomes

(pWw? — C(O))A - cg%)b’ =0,

—eDa+Q0B=0.

(1.3)

Vanishing of the determinant of the coefficient matrix in Eqs.(7.3) gives the

frequency expression
(0)y2
(¢26)* . |,
[ o+ 6 /pM.

22

(ii) Thickness-shear in ri-direction

For thickness-shear in z3 direction, we keep u(;) and Eq. (7.1),

(7.4) —eQuM = p0EM
(7.5) W) = Aet.

Substitution of Eq. (7.5) into Eq. (7.4) gives the following frequency expression:

0
B CEM)/[)(I).

where
(0 o 3 2 3
cla = K3kz Y (br—br_1)chy - [Z(bl_bl—l)c'£4] /(Z(l” _b’"l)céz) "
I=1 =1 =i
(0) S
e = K1k Y (b1 — br_1)cks
I=1
(0) X
626 = K1 Z(bf - bI—l)(‘)éGv
=1
. N
&) = Zbl—bl Deda s
1 N 1 3 3
oV = Eg[(bl) = (br-1)] o'
I=1

It can be seen that only one correction factor x; is involved in thickness-shear
in the z-direction, the other correction factor 3 is involved in thickness-shear in
the z3-direction only. The values of x; and x3 are determined in [3] for a plate
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of a single material as

2
3=

12

21 {ean + caq - — caa)? + 4cd,]
2 _ 121 {en + cas — [(c22 — caa)® + 4c3,]2)
Ky = —== 3 .

122 e~ Lofen

The above expressions can not be used directly in a laminated plate. The correct
values of the correction factors for laminates should be determined for each spe-
cific laminated plate, by matching the solutions for the thickness shear vibrations

obt

ained from the plate equations derived above, to the exact solutions obtained

from the three-dimensional equations. In many cases only flexural motions are
of interest; then these correction factors just assume the value 1.
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Many-sphere hydrodynamic interactions:
first order Oseen’s effects

I. PIENKOWSKA (WARSZAWA)

THE PAPER CONCERNS hydrodynamic interactions of a finite number N of rigid spheres, immersed
in an incompressible, unbounded fluid. In particular, we are interested in the weak momentum
convection effects, arising in the hydrodynamic interactions. Hence, the regime of flows, charac-
terized by the condition Re < 1, where Re is the characteristic Reynolds number, will be regarded.
The hydrodynamic interactions are analysed in the framework of the Oseen equations of the fluid
motion. The results obtained describe the relations between the forces Fy, j = 1,..., N, exerted
by the fluid on the spheres, and the streaming velocity of the fluid at the infinity U.

1. Introduction

THE PRESENT PAPER deals with hydrodynamic interactions of a finite number of
rigid spheres immersed in an incompressible, unbounded fluid. We are interested
in many-spheres hydrodynamic interactions, characterized by the small, but finite
Reynolds number Re.

The current status of the problem of many-particles hydrodynamic interac-
tions, in the regimes of Stokes, and transient Stokes flows, is discussed by Kim
and KaRrriLa [1]. The regime of small Re for the particular case of the motion
of a single body through a fluid has been recently considered by CHESTER [2].
The first results concerning the dependence of the hydrodynamic interactions on
Re for two spheres have been obtained by Oseen [3]. C.W. Oseen used his ap-
proximate form of the equations of the fluid motion. He considered the spheres,
translating with parallel velocities in a fluid being at rest at infinity. According to
these results, the forces exerted by the fluid on the leading and trailing spheres
are different, in contrast to the equality of the respective forces in the regime
of Stokes flows. In the subsequent papers, the hydrodynamic interactions of two
spheres have been analysed, allowing for both translational, and rotational mo-
tions of the spheres, and starting from the Navier - Stokes equations. To take
into account the nonlinear terms, the method of matched asymptotic expansions
has been used. The results obtained indicate, that two different ranges of the
hydrodynamic interactions should be distinguished, depending on the quotient
Re/(a/R), where a is the radius of the spheres, R is the characteristic distance
of the centres of two spheres, ¢ = a/R. KANEDA and IsHu [4] dealt with the
case Re/o < 1; it means, they referred to the case, when the spheres are within
their respective inner expansions. A part of the paper by Vasseur and Cox [5]
concerns the case Re/c = 0(1), describing the hydrodynamic interactions of the



666 I. PIENKOWSKA

spheres, situated within their respective outer expansions. The former hydrody-
namic interactions are, qualitatively speaking, stronger in comparison with the
latter ones.

In this paper, we consider the hydrodynamic interactions of a finite number
N of rigid spheres, using the classical Oseen equations, in the range of flows with
small, but finite Re. The presence of the spheres in the flow is expressed by the
so-called induced forces, distributed on the surfaces of the spheres. The integral
equation approach is used. It involves the second order hydrodynamic interaction
tensors, depending on Re, and on the spatial distribution of the spheres. The
first-order Oseen effects are discussed. As an example, the first contributions of
the order of Re to the lift forces, acting on two spheres, which are at rest in a
fluid having the streaming velocity U at infinity, are calculated.

2. Basic equations

We consider N rigid spheres of radius «, being at rest in an incompressible,
unbounded fluid. The streaming velocity of the fluid at infinity is given by U.
To describe the spatial distribution of the spheres we use the fixed Cartesian
coordinate system r(z,y, z). The positions of the centres of the spheres are given
by R?,j =1,..., N, and the positions of the surfaces of the spheres are given by
R;. We introduce also the local coordinate system for each sphere:

r; = R, — RY, rj(a, 12)).

The presence of spheres in the flow is replaced by the induced forces f;(r;)
[6], distributed on the surfaces of the spheres. These surfaces are described by
the appriopriate 6-functions: é(r — R;). The forces f;(r;) give rise to the source
term in the Oseen equation of motion:

N
pU-Vy—pdv+Vp=3 f 40,6 - R, (2)]E,(92,).
=1

2.1
@1 V.v=0,

where p is the density, u — the dynamic viscosity, v(r) — the velocity, p — the
pressure of the incompressible fluid. On the surfaces of the spheres, we assume
the non-slip boundary conditions

(22) R; (12;) = v(R;(12,)),

where R; denotes the velocity of the j-th sphere. The equations of motion can be
used in the whole space if the divergence of the stress tensor P(r) is determined
inside the volumes occupied by the immersed spheres:

(2.3) V-Pr;) =0, |85 < s
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To examine the relations of the induced forces f; to the fluid velocity U, we
introduce the respective integral equations. The velocity field of the fluid is
expressed in terms of the Green tensor T(r), acting on the induced forces f;

v(r)

v(r)

.
v dr'T(r—r') - dls \v¥ — RL(20)| £;'(12)),
(r)+/ T(r— r') ;/1915 ¥~ R £(2))

(24)
U.

v0(r) denotes the fluid velocity in the absence of the spheres. The Green tensor
may be presented by means of the space — Fourier representation [7]:

_ dk exp(tk - r)
T(r) = f (27)3 (k2 + iv-1U - k)

wlp. K=K/, k=K.

(1 — kk),

(2.5)

v

Using the expression for the velocity field and the boundary conditions on the
surfaces of the spheres, we arrive at NV coupled integral equations [11]:

R (2)) = V(R (2))) + [d2TIR,(2)) - RU(Z)) - 1,(2)

N
2.6) +3° [ARTIR,(2)) - Re(20)] - Re(420).
k]

V;(125) =RJ (42;) - VO(RJ(QJ))'
The first integral on the r.h.s. accounts for the interaction of the j-th sphere with

the fluid, the second integral is due to the hydrodynamic interaction between the
spheres. V; is the relative velocity of the j-th sphere with respect to the fluid.

3. The set of algebraic equations

To transform the set of integral equations to the form of the algebraic equa-
tions, we expand V; and f; in terms of the normalized spherical harmonics [8, 9]:

Var Z Vj‘!m ,{m(Qj),

lm

1 ke rm

[lm

V;(12;)

m| <1, 0<!< 0.
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Integrating over the surfaces of the spheres, one obtains the following set of
algebraic equations for the expansion coefficients:

N
[ |
B2 Vium = 2 TR0 - Gitgmy + 3 D TRt
lama k#; lam;

where R;; = R} —R? is the distance between the centres of two spheres, T:ffflf are

called, after YOSHIZAKI and YAMAKAWA [9], the hydrodynamic interaction tensors.

The self-interaction tensors
T (05)
describe the presence of the j-th sphere in the flow, whereas the mutual interac-
tion tensors
T2 (R;1)
account for the interactions between the j-th and the k-th sphere. The interaction
tensors are given by the following expressions:

(i) the self-interaction tensors

lym | i (l - i‘dﬂ() y—1mn my -
(33) Tlfmf(o.}') = 27[_—2”1.[[ l2 /([km\ '} J; ((l/u)_jlz(ﬂf\)

where jj,, ji, are the spherical Bessel functions;

(ii) the mutual-interaction tensors, using

(3.4) exp(ik - 1;) = 47 > il(kr))Y" (02,)Y, 7" (X, ), k(k, X, ),

Ilm

are presented in the following form:

m lym rm
fmf(R ) - Z T!f"’lf,d’j??l:q(leki)’Ig B(ij)r Rj/\' = |Rjk|-,

l3m3

e “‘2“/1 _ (1-kk)

hmylymy k2 + iv=1U - k
S m1ymzy ’“3]“((1”]12(%’ ity (k).

The properties of the above tensors are directly related to the properties of
the Green tensor involved (2.5). Here the tensors Tf’zz are examined from
the point of view of their dependence on Re, Re = a]U]/u and on the spatial
distribution of spheres. For that aim we use the double expansion: the expressions
for lemz are expanded into the power series of Re; the resulting coefficients are,
in turn expanded into the power series of . Knowing the above properties of the
hydrodynamic interaction tensors, one can use Eq. (3.2) to obtain the relations of
the forces F;, exerted by the fluid on the spheres, to the fluid velocity U, within
the assumed approximation with respect to Re and o.
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4. The properties of the hydrodynamic interaction tensors
4.1. Self-interaction tensors TP:?(O )

The dependence of the self-interaction tensors on Re can be expressed in
terms of the functions Fj,:

T?2(0;) = it / dk(1 — RR)Y, ™Y iy (Re, €),

EVEL 47 pa
(4.1) ok

Fi,,,(Re,§) = /dkWJI‘+I/2((‘A)]12+1/2(“L)
where ¢ = COS(U k), a = |U|/v, Re = aa. For the cases |l; — l5| = 2n,
n=20,1,2,.
@1)  TEE) = ittt fdk(l — RR)Y, "™V [y (Re €)'\ (Re ),
apm

and respectively for the cases |/} — l;] = 2n + 1,

T12m2( 0,) = 41””“ Jh—lat|li=la]+2 /(“"((1 _ RR)}?I—le!;nz[“(Re Y \(Re €),

lymy

A=max(ly +1/2, 1, +1/2),  A=min(l; + 1/2, 1, + 1/2).

A and X are the larger and smaller number, respectively, of /; +1/2, and [, +1/2,
and [, +1/2, Iy, +1/2 denote the modified Bessel functions.

From the properties of the Bessel functions in the range Re < 1 it follows
that the functions F,;, behave as

(4.2) Fyi, = AyyRef)li—l Re < 1.

Hence, for the particular case of || = [l;, the leading order terms of the self-
interaction tensor are independent of Re. These terms refer to the regime of
Stokes flows, which do not exhibit the effects of the inertia of the fluid. At zero
Reynolds number the self-interaction tensors become equal to

(4.3) Thm2(0,) = Fran jrlk(l — kk) Y,y

ymy

) ] 1 Kllmz
dy/map (I + 1/2) hma00°

where
Klm2 = ;i-h-l /dk(l = kk)Y m‘)[’”z) 313

lymy,l3ms
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lamy

The constant tensors K772 | describe the dependence of the self-interaction
tensors on the sets of indices (I;,m;). The second order tensors K have been
introduced, in the context of the Stokes flows, by YosHizakr and YAMAKAWA [9].
Here, as Re = 0, we recover the Stokes self-interaction tensors.

Examining weak inertia effects, we are interested in the linear in Re contri-
butions to the relevant tensors. It follows from the properties of the functions
Fj,i, that there are two sources of such contributions. Firstly, we have a group
of the self-interaction tensors, being of the leading order of Re (specified by the
condition |l; — 3] = 1). These self-interaction tensors are given by

Re [/ Klam2 .
8ja/3r(ly + 1/2)(1 + 3/2) ly+1my,10

44) TP (0) =

[3+1my

and, respectively, by

Re [; Kl1+lmz
8ua3r(ly + 1/2)(1y + 3/2) vmld

The above expressions are obtained for the particular case of U = (0.0.0). We
see that here the tensors Kf’::ﬁf lym, have higher values of the indices (/3.m13), in
comparison with the tensors K, refemng to the Stokes flow regime. Secondly,
the contributions linear in Re appear in a series expansion of the function F.
Hence, the self-interaction tensor T{)) containing that function, can be presented
in the following form:

(4.4:) 11+1m2( _;) -

Ilml

(4.5) 000,y = W [1 - %Re/rlfi(l — RR)| cos(0, K|

Thus, we have collected all contributions, linear in Re, to the self-interaction
tensors, needed to discuss the weak inertia effects of the interaction of a single
sphere with the fluid.

4.2. Mutual-interaction tensors T\2”'? (R, Re)

Ly

Using the Eq. (3.4), the mutual-interaction tensors are presented in the following
form:

lam = Ji=la=1 /‘
(46) Tllmllam; - “N e Jk /'lk(l - l‘l‘)

_7711}71112) {1—1713 F[‘lz {3(R_]k, Re 6)

where the functions F},;,, describe the effects of Re, and of the spatial distribu-
tion of the spheres,

dk (k - iaf)

(4-7) Flyty 1y = ﬁ k2 + 0,252

T +1/20ak) Ty 1 2(ak) 141 2( R jick).
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To consider the effects of Re, the tensors T2 are presented in terms of a

[ymy,lams

series expansion, using the formula (7) from §7.15 of [10]:

lamy = i lemz,m — ﬁ (!l L=
fimi,{3ms bmulsms = 20 0(ly + 3/2) (1 + 3/2)

m=0

y (L)“”Z“ © (I + b+ 2m + 12 + b+ m +1/2)

Rk Z m!

m=0

2 2
XFy |=m, i+l +m+1/2 1, +3/2, 1, +3/2; I} s
RJ,, Rx

y=mypysmays—m K—iR; LOE
/dk(l — kk)) ') 2) 2 /d mJll+lz+2m+1/2("')'1[3+l/2(’5)7

where, for |} + [ +2m — 3] = 2n, n =0,1.2, ...

[ Kk — 1R af
(48) / d}{PTU#EEE)-Z"J[1+IZ+2771+I/2(H)-/{3+1/2(H-)
ik

= i“'”ﬁz"”_h'[Z(RJ'A-”E)I\'((Rjkﬂf)-

and for |l; + L +2m =l =2n+1, n=0,1,2,...

— 1R«
/1 R e ¢ 111+12+2m+1/2(“)-113+1/2("’)

K2+ (Rjraf)? + (Rjk E)z
- 7’-“l+!2+2m_!3|[Z(Rjknf)l\-(:(ﬁjk(‘{)-

Z = max(ly + lH +2m + 1/2, I3+ 1/2),
¢ = min(ly + 1 +2m+1/2, 13+ 1/2);

4 is the hypergeometric series of two variables.

In that series the dependence on Re is expressed in the form of the product
of two modified Bessel functions. The arguments of these functions contain the
quotients Re,, = Re/(a/R;) in view of the fact that the mutual interactions take
place at the distances R, between the centres of the two respective spheres.

In the considered range

Re,, < 1,

the products of the modified Bessel functions behave as:

' 1 =l I +h+2m—l;
(4.9) Iz(Re &)W ((Re, &) = (§> ﬁ( e, £)l1*la*2m=tsl



672 I. PIENKOWSKA

It can be seen that the Stokes regime is described by the following leading order
contributions to the respective mutual-interaction tensors:

e} \/— - l1+1+1
410) T =Y TEEE = . —
(4.10) fima,lams mzo hmulsms = 4au D1 +3/2) 0 (L +3/2) \ Rk

lzmz Z (11+12+2m+1/2)[’(11+12+m+1/2) I‘((\.)
K tama m! r'(zZ+1)

2 2
) Fy |=m, i+ b+ m+1/2 1, +3/2, 1, +3/2; =1,
R,k Rir

for the cases |1 + I + 2m — [3] = 0.
In turn, from the properties of the tensors K272 | [9] one can deduce that
only the following sets of indices are admissible for the case of Re = 0:

lamms

(4.11) i+ 1+ 13 =2n, L+l—-13> =2

Thus the Stokes hydrodynamic interactions are described by means of the tensors

(i) Tﬁf;’;f'?}mq for the cases I3 =1 + 13,
(4.12) :
(ii) Tffff ,lvm for the cases [3 =1} + 1 + 2.

Taking into account the properties of the function Fj, we see that the Stokes
tensors behave as follows:

(4.13) they are of the leading order (/R ;)" *2*!,

(4.14) the tensors with m = 1 contain terms (a/R;;)1 23,

Hence we have recovered the dependence on the inverse powers of the interpar-
ticle distances, characteristic for the Stokes conditions.

Similarly to the self-interaction case, we are interested in these mutual-inter-
action tensors, which contain contributions linear in Re.

As follows from Eq. (4.9), we have in that group the mutual-interaction ten-
sors, being of the leading order in Re. Their indices fulfil the relation

(4.15) W+l -3+ 2m|=1.

lamy

[y, l3ms arc given by

Hence, the respective contributions to the tensors T
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ﬁ a Li+l+1
lama = 12m2| =
(4.16) T11m1 l3ms Z lymy,lama apl'(Iy +3/2)I' (I3 + 3/2) (Rjk)

B3R R = Y cos(D, )

i (h+h+2m+ 1T +h+m+1/2) I
) - m! rz+1

2 2
xFy l=m, i+ bh+m+1/2 h+3/2,+3/% |—) ,[—] |,
Rk Rk

for the sets of indices |l} + [ + 2m — I3] = 1.
Taking into account the properties of the tensors K, one can deduce that the
following relations should be fulfilled:

(417) L+lL+13+1=2n, Lh+lh-LF1>-2

Thus the hydrodynamic interactions linear in Re are described in terms of the
following tensors:

. lams _ lym3,0 —_
(l) Tllml lymy Tllml.l3rn3 for 11 i 12 - [3 - 1’
I lyms o lymg,m _
(ii) T tams = Z Xy in latis for I+ 10—l = -1,
m=0,1
lama . lama,m _
418) iy TP o= STTEMT o for  L4h-ly= -3,
m=1,2

(iv) for the sets of the indices Lh+l—13#1, -1, -3,

{amy

do not contain terms linear in Re.
11m|,13m3

the tensors T
On the basis of Eq. (4.8) we see that tensors linear in Re behave as follows:

419) (i) they are of the leading order of (a/R;;)"1" 2" . Re,.;
(i) in addition to the leading order terms, the tensors with m =1

contain terms of the order of (cz/l’ffj,-,{‘.)““2+3 - Re;,,and the
tensors with m = 2 contain, respectively, terms of the order of
(a/R;x)172%3 . Re,, .

We note that, similarly to the case of the Stokes hydrodynamic interactions, the
hydrodynamic interactions linear in Re are described by means of a finite number

of the tensors T2 (m = 0,1,2).

llml l;mg
Similarly to the self-interaction tensors, we have also the second source of

the linearity in Re. Namely, expanding the functions Fj i, 1, +1,, and Fj ;0 +1,+2
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into a power series in Re, we obtain the linear contributions for the case of the
function Fyp . The resulting expression for the tensor '1‘88'00 is of the form

1 3 i a5 < =
0 0 _ _ 1 _ Lk .
(4.20) 00.00Y0 = Grnls [1 o Ren, /u’k(l kK)| cos(U,K)|| + ... .

We see that the contribution resembles that for the self-interaction tensors; how-
ever, the characteristic length is now the distance between the centres of two
spheres, instead of the radius of the sphere.

5. Concluding remarks

Once the described properties of the hydrodynamic interaction tensors are
known, the basic set of algebraic equations (3.2) can be analysed within the
assumed approximation with respect to Re and o. Here, as an example, we
consider the relation of the forces F;, exerted on the spheres by the fluid, to the
velocity of the fluid at infinity U, retaining contributions up to 0(Re), and 0(c?).
To that end, the quantities F;, and U are expressed in terms of the expansion
coefficients f; ;,, and V; .., respectively:

F,o= = [V P)d =t
(5]) VJJm = #V?JM =-U, =0

= 0, [>1.

Thus the set of algebraic equations leads to the following form of the relations
between the forces F; and the fluid velocity U:

(52)  F; =TH(0,)-U-THO,) - > THMR,) - T(0x) - U+ ...
k#j

where 'i‘gg(()j) is the inverse self-interaction tensor [11].
It follows from Egs. (3.4), (4.10) and (4.16) that the mutual-interaction tensor
TX(R;x, Re) can be written in the following form:

(5.3) TO(R;x, Re) = >~ THY

0,134

(1Rl Re)Y™ (O i b5,

l3ms

where, in the range of Re,, < 1, the terms of the zero order with respect to Re,
coming from T{J 5, and T{) ,,,, describe the Stokes hydrodynamic interactions,

whereas the terms of the order of Re, coming from TJj 5, and T9) ., | # 0,2
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describe the hydrodynamic interactions linear in Re. The Stokes contribution to
the tensors TO)(R;«, Re), calculated using Eq. (4.10), reads:

190 1 2a% /1
00/Stokes = T l+ejkejk+1— 3~ eket )|

ejr = Rjx/|Rjl.
The contributions to 1‘88‘00 linear in Re are given by Eq. (4.20). It follows from

Eq. (4.8) that the contributions to the tensor TJ)(R;1), being of the leading order
in Re, are equal to

(5.4)

Rell & k(1 — ki)~
(< Z Y[;n_q(ij)(l-)—h /(“\’(1 _ kk)Yta m3 YIO
o |

o (Zm + 1) & (m + 1) 1'(¢)
Xi . Z 2 2 I-|2m—13]
V3 m!I'(Z + 1)

3of ) (o)
2’ R ’ Rjk) i
where ( = min(2m + 1/2, I3 + 1/2),

Z = max(2m + 1/2, 13 + 1/2), U(0,0, ).

(5~5) T88|lcading order Re = —

4apm

m=0

XFy|—-m,m+ l g
4 ’ 2: 2~

The integral
/(”:(1 - l;l:))'l;m-]}rln = jl+{32\/;K(])8-13"13

is different from zero only for /3 =1, 3 [9].
Hence it follows from Eq. (4.18) that the considered contributions of the order
of Re to the tensors TJg are given by:

(i) for the case of I3 = 1:
(5.6) T

(ii) for the case of I3 = 3:

— 00,0 00,1
Jdma = TOO.lmj + TOO,lm:;’

00,1 00,2

00 —
T00,3m3 - ’100.37713 + 00,3m3 °

Using the formula (5.5), we obtain:

~

U
ng.lmg = '3 ReK{{ 1., + h.o.t..
ajil -
5.7) 3
U
T88,3mg = ‘*ﬁ'ReKég‘?’mj + h.o.t..

8v/3a
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As an example of the hydrodynamic interactions linear in Re, we consider the
linear contributions to the lift forces FL, FJL .U =0,; = 1,2 exerted by the
fluid on two rigid spheres, being at rest in an unbounded fluid, having at infinity
the streaming velocity U(0,0, U). The line joining the centres of the spheres is
perpendicular to the streaming velocity U.

Taking into acount the properties of the tensors T9(0,), and T)(Rjx), we
conclude that the linear contributions to the lift forces, considered up to a9,
depend only on the Stokes contributions to the tensor T))(0;)

(5.8) F' = —(6mua)® Y THR;i,Re)- U, k=12 j=1.2
k#j

To calculate the relevant components of the tensor T88(R12, Re), and ng(Rgl,Re),
we specify the relative distances between the spheres in terms of the vectors
Ri2(Ry2, @12 = 90°, @12 = 0°) and, respectively, Ryj(R21, O = 90°, &, =
180°).

Using Eq. (5.7), we arrive at

3
F]f —b6mpall [ERe + h.O.[.] .

5.9
G F; = —Fy.

The result (5.9) is obtained under the three assumptions:

1 all R2U
(I/Rlz<;.;~ 7<]. y

<1

Thus it concerns the case where the distance between the spheres is finite, and
where the inertia effects are weak.

Hence, for the considered case of two spheres, the Smoluchowski’s method
of description of the hydrodynamic interactions, used by Oseen [3], the method
of matched asymptotic expansions, developed by KANEDA and IsHir [4], and the
present method lead to the same results for the lift forces, with accuracy up to
the terms of the order of ¢? and Re.

We see that the relations of the forces F; to the fluid velocity U in the approx-
imation considered are not influenced by the lack of the pairwise additivity of the
hydrodynamic interactions [6]. To discuss this influence, the basic set of algebraic
equations will be regarded in the forthcoming paper to 0(Re), and 0(c?).
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Transfer matrix for random system of elastic layers

Z. WESOLOWSKI (WARSZAWA)

Two TyPES of elementary cells arc placed at random in a long chain of cells. Harmonic scalar
wave (shear wave, Mode 3) propagates along the chain. The transfer matrix equals the product
of the transfer matrices for the elementary cells. Assuming that the probability of finding the cell
of definite type at the n-th place is given, the probability of the particular value of the transfer
matrix for the whole chain is calculated. In computer simulation the transfer matrix for the chain
consisting of 170 cells was calculated for several different probabilities.

1. Homogeneous layers

CoNSIDER THE SYSTEM of N, in general different, homogeneous elastic layers,
Fig. 1. The layer situated between z, and z,,, is identified by the natural

CiQr €2.92 €3.9;
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Fig. 1.

number k, k = 1,2,3,... N. The density, thickness and elastic wave propagation
speed of the k-th layer are denoted by py, iy and ¢y, respectively. In this layer
two sinusoidal waves of frequency w propagate, one of amplitude A; in the =
direction, and an other one of amplitude By in the —z direction. The problem
of such waves was considered e.g. in [1-3]. The displacement in the layer k is

(1.1) up = Arexpiw|[t — (z — i)/ cr] + Brexpiw[t + (z — ap)/cr],

where ¢ is time, z; < z < 744, and ¢ is the wave speed in the k-th layer. The
displacement u, satisfies the equation of motion

(1.2) g rr = Ukt -

Atboth sides of the boundary between layers k and £+ 1 both the displacement
and the stress vector have the same values. This continuity leads to the following
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relation between the wave amplitudes in the layer & and wave amplitudes in the
layer k + 1

Ak+l] [Ak}
13 = B ,
(13) [ Bi+1 * | Bx
where
_ | P Qk
(1.4) I = [Rk . }
1 ,

P. = i(l + ﬁck)exp(——mk),
(15) :

Qr = 5(1 — k) exp(iag),
(1.6) R = Qx, Sk = P,
(1.7) ap = whifek, Kk = PkCk/Pre1Ckt s
(1.8) he = x441 — 2k .

The symmetry (1.6) will be called w-symmetry. A product of w-symmetric
matrices is w-symmetric.

The set of elastic layers defined above will be called a chain. Assume that
there exists an access to the ends of the chain. Some external time-dependent
forces act at the ends of the chain. In this case the displacement at one end
of the chain may be an arbitrary function of time. The displacement of the
other end may then be calculated, taking into account the total number of layers,
their dimensions and elastic properties. In particular, the displacement at one
end of the system may be given in advance as a harmonic function of arbitrary
frequency w.

The transfer matrix L for the layer k is a function of the propagation speed
and thickness of the layer k, and additionally of the propagation speed in the
layer k + 1, cf. Eqgs.(1.7). This fact makes the numerical calculations rather
awkward. In order to remove the dependence on k + 1, add after each layer a
virtual layer of zero thickness and of a fixed propagation speed and density. Now
between each two neighbouring layers a virtual layer of zero thickness is situated.
It is known that such a layer of zero thickness does not change the dynamics of
the chain.

The virtual layer and the k-th layer constitute the elementary cell. The cells
will be identified by the numbers of the layer (real, not virtual) £ = 1,2,3.4,....
Transfer matrix M, for one cell is a product of the transfer matrices for the layers
constituting the cell, and therefore it is w-symmetric.
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2. Random distribution of layers

Assume that there are two kinds of cells denoted by a, 3. Consider the
chain consisting of N cells, made of N, cells of kind a, and N cells of kind 23,
N, + Ng = N. The distribution of cells is not deterministic, but random. We face
two different cells distributed randomly, e.g. [a,a,/3,0,8,08,...,3,3,a]. The
particular cells are repeated several times at different places. Further analysis is
based on the excellent paper by H. SMITH, who considered a chain of randomly
distributed interacting masses, [4]. Closely connected with the present problems
are the papers [5-8].

The w-symmetric transfer matrices for the cells o and 3 are

— P, Qa - Pﬁ Qﬁ
(2.1) M, = [R(. Sa], My = [Ra Sa]

They are the products of the transfer matrices of the layers constituting the
cell. We assume that the virtual layer was taken into account, therefore M,
depends on the cell « only, and does not depend on the neighbouring cells. Mg
is characterized by an analogous property.

The two above kinds of cells are distributed over N places. The probability
that the place £ is occupied by the cell of type a will be denoted by py., and the
probability that the place £ is occupied by the cell of type 5 will be denoted by
pra. Obviously pr, + prs = 1. In the special case of homogeneous distribution,
the probability is independent of £ and the index % may be omitted, pro = pa,
Pkp = Pg-

Consider a large number of chains, each consisting of N cells with random
distribution of the two above kinds of cells. Calculate for each particular chain
the matrices A" defined by the relation

[ Per Qe | [P Q3] [P Q2] [ A @
(2.2) K = [[{k_l 5L._1] [33 S3) R 2R S1 ]

k=1,2,3,..., N. In general, for this chain we face N different complex-valued
2 x 2 matrices. Each transfer matrix at the right-hand side of Eq.(2.2) equals
either M, or Ms. For each chain the matrix A is in general another function
of frequency w.

Note that the matrix A’y is w-symmetric. Therefore it is completely character-
ized by its two components (/') and (A');2. These two complex numbers are
equivalent to four real numbers. The complex-valued matrix L'y, may therefore
be represented by a point in the 4-dimensional real space Rj.

Concentrate attention on the fixed place &k (fixed cell k) in a set of chains
consisting of N cells. In the situation considered in this chapter the components
Py, Qk, Rk, Si of the transfer matrix M, are equal either to P,, Q., Ra, Sa
if the k-th cell is a cell of type a, or to Ps, Qs, Rs, Sg, if the k-th cell is the
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cell of type 3. In general, for each chain the matrix A’y has another value, since
K} is a product of different matrices for different chains. Consider an arbitrary
fixed region dvy in the 4-dimensional space 24 mentioned above. The measure
(volume) of the region dv; will be denoted by V.. For some chains the point
Ky is situated inside duvg, for other chains — outside dv,. Define the probability
density distribution w(A’y) of the points A’ in the space R4

number of chains for which L'y € dvy
total number of chains '

2:3) wr(Kg)dVy =

In order to derive the equations for wi(/A’x) make a temporary assumption,
that in all chains the k-th place is occupied by a cell of the type a, M, = M,.
Then, in accord with Eq. (2.2), the matrix A';4+; (point in Ry) is a definite function
of Iy (point in Ry)

- Pu A o -
(2.4) Kiyg = [ R 521 ] Ny,
: Sa —Qul .-
(25) Ny, = [ —Hﬁ [fi ] h k+1 -

The second relation is the inverse of the first one. Denote by dv 4 the region
into which the above function transforms the region dv. In further calculations
we need the expression for the ratio of their measures (4-dimensional volumes)
dVj4+1/dVy. Derivation in complex variables is difficult, therefore we prefer to
replace each complex variable by two real variables. Write the relation (2.4) in
the form

X+ Z+:7) _[A+iB C+1D xy +ixy a3+ iay

Z—iT X-i¥| |C-iD A-iB ry—iry xy] —txy |
Obvious notation introduced here serves only for the derivation of the ratio of dV}
and dVi4, (Eq.(2.7)). The above relation, equivalent to Eq.(2.4), is equivalent
to 4 real relations

X = Az —By+ Cz+ Dt,

Y = Ay+ Ba — Ct+ Dz,
(2.6)

Z = Az - Bt + Ca+ Dy,

T = At+ Bz—-Cy+ Dz,

defining a transformation of R4 into 124. The corresponding Jacobian of the
transformation is

A —B C D
B A D -C
= ¢C D A -B
D —-C B A
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Calculation of the determinant leads to the expression

A=A+ B*4+C*+ D* +2A2B? — 242C? - 2A*D? - 2B%C? - 2B D? + 2C?D2.
The above expression may be transformed into the expression

(2.7) A= (PaSa+ QuRy.)*.

Take dvi to be a 4-dimensional box with infinitesimal edges dzx,, dz,, dzs,
dz4 parallel to the axes Re(A'y), Im(A'y;), Re(A'y2), Im(Ky3). Volume dVy of
the box dv; equals dz;dz,dzsdzs. The function (2.4) transforms dv; into a
parallelepiped dvi4; of volume dV,;. The ratio of the volumes equals the
Jacobian of the transformation (2.6). This ratio dV}4,/dV} is therefore given by
the formula

dVi41

(2.8) dVy

= (PoSa + QaRu)’.

In the special case, when in each chain the k-th cell is of type a, the transfor-
mation is not stochastic but deterministic. If the point K’y is inside {outside)
the region dvg, then the point K, is situated inside (outside) dvj4,. There-
fore the probability of finding the point Ay inside the region dvy 4 equals the
probability of finding the point iy inside the region duy

Il.?k+1([\'k+1)(l"rk+1 = w;\.([\'k)rll/}\. .

Note that Ky and I'y4; are related by Eq. (2.5), therefore

’ e =Qal ,
1L’k+1(1\k+1)(]‘/;\.+] = Wi ([ _R i}' :| "\k+l) d"k .

Since A4y is in fact an independent variable, in what follows we omit the sub-
script k& + 1 and write /[ instead of K;4;. Take into account the expression
(2.8) for the ratio dVj.+1/dVi. There follows the relation between the probability
densities w; and wy 41

Q9w = (PaSa + QukP (| _pm TS| n).

The above calculations were performed assuming that at the k-th place a cell of
type « is situated. If at the k-th place the cell of type /3 was situated, an analogous
formula would be obtained, namely

(2.9) wir(H) = (PsSp + QpRp)? wi ([ _}Szz _%g ] 11) :
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Therefore the general formula for the situation, when in all realizations at the
k-th place is located a cell of the same type is

(2.10) wir1(H) = (PiSk + Qi Ri)* wy ([ _;: —%i ] 11) :

For the parameters with subscript k& the data should be taken for the cell located
at the k-th place in all realizations, either a or 4.

Actually the k-th place may be occupied either by the cell of type « with
probability pi, (and then the transfer matrix is M, ), or by the cell of type 3 with
probability pxs (and then the transfer matrix is M), pro + prg = 1. The actual
relation between w41 (H) and wi(H) is therefore

Q1) e () = o (PaSa + QuiaP i (| o S| 1)

+pig (PaSs + Qpls)* wy ([ _15? Qf] H) .
Ie) fé]
Since in each realization K'; = M, or k| = Mp, cf. Eq.(2.1), therefore w, is
not equal zero only if X'y = M, or Ky = Mjy. Taking into account the fact
that the integral over the whole 4-dimensional R4 must be equal 1, and that the
probabilities p,, and py; are known, we have in the shorthand notation

(212) wl(U) = p1a64(ll — A‘IQ) + ].1”3(54(['[ — Mp),

where 64 is the 4-dimensional Dirac delta. In accord with the above definition of
a 4-dimensional volume dV), we have

(2.13) 84(H) = 6(ReH 1) 6(ImH,,) 6(ReH12) 6(Im ),

where 6 is the one-dimensional Dirac delta. Formulae (2.11) and (2.12) com-
pletely determine the probability distribution wy (A") for each . Note that w (/')
for each & is not a function, but a generalized function (distribution). Almost
everywhere there is wi(/x) = 0, in at most 2* points the function differs from
zero. The calculations will be confined to finding the support of wy(I';).

Perform the numerical calculations for the layers « and 3 characterized by
the following wave speeds, densities and thicknesses:

(2.14) =1, =2, ey=1, pa=ps=py=1. ha=hg=1.

The propagation speed and density of the virtual layer are denoted by c,, p,, re-
spectively. The following values of the components of the corresponding transfer
matrices M,, Mg for the two kinds of cells have been calculated

Re(M,)1 = 0995, Im(My)i = —0.100,
(215) Re(]wa)IZ = 0, Im(A{a)lZ = 0,

Re(Mp)y; = 0999, Im(Mp);; = 0.062,

Re(Mp)12 = 0, Im(Mp)12 = —0.037.
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The remaining components are determined by the w-symmetry.

Fix the number of cells in each chain N = 170. Consider the harmonic wave
of frequency w = 0.1 propagating across the random chain consisting of 170
cells. The probability p,, ps of finding at the n-th place the cell of type a or 3
is assumed to be independent of n, ps = 1 — p,. Calculate the transfer matrices
K. for particular realizations of the chain.

Imk,,

-1

FiG. 2.

Consider first the case, when the probability of finding at the n-th place the
cell of type a equals the probability of finding the cell of type 3, p, = ps =
0.5. Complex component Gy; of the global transfer matrix G = K7y for 2000
realizations is given in Fig.2a. The corresponding complex component (1, of
the global transfer matrix G = I'y79 is shown in Fig. 2b. The average values are

<Gu>=0637-0792i, <G2>=0.031-0.183i.

The remaining components are determined by the w-symmetry. It is seen that
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the distribution of ¢ is non-uniform. In some regions the density of points is

large, in other regions it is small. If all cells are of the same type, only a single
point (G, G12) is obtained. There is

Gn
G

—0.602 — 0.998i, G
~0.275 - 0.961i, G1s

-0.5989: if  p,
0 if

= (), ps = 1,

Pa=1, psg=

Take in turn p, = 0.75, ps = 0.25. The corresponding values of (¢ are shown
in Fig. 3. The average values are

<Gy >= —-0.926 — 0.380¢, < G2 >= 0.001 - 0.039:.

ImK

1 Rek,

1 ReK,

Fic. 4.
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For p, = 0.25, ps = 0.75 the realizations are shown in Fig.4. The average
values are

<Gn>=0257+105, <Gpp>=0.004+ 0.419i.

The data for p, = 0.05, pz = 0.95 are presented in Fig.5. It is seen that the
distribution of points is similar to that given in Fig.3. The same average values
may be obtained for different densities of the cells a.

ImK,,
1+

-1+

Fia. 5.

The transparency 7 is the ratio of the transmitted energy flux to the incident
energy flux. The average transparency has been plotted in Fig. 6 as a function of
po. It is seen that the same average value of = may be obtained for different p,.

<T>
10

08

06t

04

021

0 = =R FiG. 6.
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Quasi-isobaric solutions of the Hiemenz equation

A. SZANTAWSKI (WARSZAWA)

Sorutions U(x), obtained from the ordinary differential Hiemenz Equation of the third order,
determine particular solutions of the Navier -Stokes Equations for stationary, plane symmetric
flows of incompressible viscous liquid, between parallel plane surfaces, on which the pressure in
quasi-isobaric case remains constant. Analytically continuated power series, with estimation of
the truncation errors, have been applied to compute U(z) with boundary conditions Cyy = U(0),
Cy = U'(0), C; = U"(0). Solutions U(z) are invariant with respect to translation and affine
transformation, by means of which they may be divided into classes of similar functions with
parameters distributed over two-dimensional surfaces in the three-dimensional space Cq, C, Cs.
The surface R = (), where R = Cf + C'z2 — CpC1C,, represents unstable Riabouchinsky’s solutions
U(x; Cy,Cy,C2,0) = —A\(1 F Be~**) and separates the parameters defining other classes of
similarity, Monotonous solutions U(z; Cy, C'y, C7,0) with R < 0 seem to be not interesting for
hydrodynamics, and thus the main attention is paid to solutions with R > 0. They may be applied
to solve some hydrodynamical problems mentioned above, but they may be also helpful to study
solutions U(x; Cy, Cy, €', o) with o # 0, describing more general flows between parallel surfaces
with pressure depending on two variables z, y.

1. Hiemenz Equation

CONSIDERING STAGNATION POINTS in laminar, stationary, plane symmetric flows of
incompressible, viscous liquids, HiEmENz [1] found in 1911 a particular exact so-
lution of the Navier - Stokes equations. By assuming nondimensional parameters:
the velocity components u(z, y), v(z, y), the pressure p(z,y) and the stream func-
tion ¥(z,y) in the form:

u U(x), v = —yU'(z), v = yU(x),

(1.1)

P U'(z) — UX(2)/2 — o - y*/2 + const,
we may satisfy the N-S equations if U(z) fulfills the ordinary differential Hiemenz
equation

(1.2) uv"-uv.u"+ U -U =o, where o = const.

For the considered case of flow in a half-space bounded by a plane, rigid wall,
Hiemenz introduced the boundary conditions U/(0) = U’(0) = 0 on the imper-
meable, rigid surface and the asymptotic condition U//(co) = const at infinity.
The four-parameter solutions U(z; Cy, 'y, (5, 0) of the Hiemenz equation
(1.2) may also have other hydrodynamic applications, fulfilling other boundary
conditions. RIABOUCHINSKY [2] in 1924 and CRrANE [3] in 1970 considered the
flow with a stagnation point at an extensible, isobaric surface for ¢ = 0 with
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boundary conditions U/(0) = 0, U/(0) # 0. From 1953 other solutions of Eq. (1.2)
were introduced to describe flows between parallel, plane surfaces: rigid and
permeable [4—8], extensible and impermeable [9], or the mixed conditions with
tangential slip at the permeable boundary [10, 11].

There may be many different ways of selecting the arbitrary constants C'o, C'y,
(5, which determine the same function /(z). Here, in further considerations,
they will be determined by the initial conditions

(1.3) Co=U(0), Ci=U'(0), Cy=1U"0).

Not all solutions U(z) of Eq.(1.2) may describe realizable flows. To this
aim they should fulfill hydrodynamic boundary conditions on the wall, U/(x) = 0
for impermeability, U’(+) = 0 for inextensibility, U/”(+) = 0 for no tangential
stress (free surface), and possibly the asymptotic condition: U”(c0) = 0. So,
for hydrodynamic application the solutions U(x) with some zero values are most
interesting, but other solutions U(z; Cg, Cy,C2,0) with any arbitrary values Cj,
', C, will be also considered here.

To find U(z), finite difference numerical methods were mainly applied [1,
4, 6-10], and in [5] the power series expansion was also used. However, finite
differences are not always sufficiently accurate and the accuracy of power series
expansion is limited by its radius of convergence. The evaluation of errors related
to the rules of convergence allowed here to apply the truncated power series not
only within their radii of convergence, but also in a larger region of their analytic
continuations. Taking into account the truncation errors, an algorithm with a
numerical program allowing to compute U/(r) for a large range of = has been
prepared here.

Mainly the particular cases of solutions U/(xz; C, C'1. (2. 0) fulfilling Eq. (1.2)
with ¢ = 0 will be considered here. They describe quasi-isobaric flows, where
the pressure p (1.1) depends on one variable = only, and the planes = = const
are isobaric.

2. Invariance rules, similar solutions
Each solution U(z) of Eq.(1.2) is invariant with respect to the translation:
(2.1) UF; Co,Cy,Ca,0) = U(z; Co, C1,C2, ), x =7 + 20,
where
zo =const, Co=Uzg; Co,C1, Caya), €y = U'(zg; Co, C1,C2,0),
Ca = U"(x0; Co,C1,Ca.0),

and to the transformation of affinity:

(2.2) U(%; Co,C1,C2,7) = AU(z; C,C1,Cau0), T = Ad,
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where
Co=XCy, C1=X2C;, Cp=xC;, F=Ms,  X=const#0.

Choosing here the particular case A = —1, we obtain the invariance of U (2) with
respect to the transformation of symmetry about the center z = U = (),

(2.3) U(-a; —Cp,C1, —Ca,0) = —U(z; Co, C1,Ca, 0).

These transformations define the classes of similarity within which the solu-
tions may be expressed by each other. The transformation (2.1) defines the iden-
tity of shifted functions as their similarity rule, and allows to choose for them any
arbitrary center z( of the coordinate axis z. On the basis of the transformation
(2.2), any solution U(z; Cp, Cy,C,0) determines its similarity class of affinity by

(2.4) U(z; ACo, N2C1, X3C3,0) = AU (Az; Co, Cy, Ca, 0).
By superposing both these transformations we obtain
(2.5) U(z; Co,C1, C2,0) = MU (z¢ + Az; Cp, Cy, C2,0),
where
Co = AU(zc; Cp,C1,C2,0), €, = NU'(z¢; Co, C1,Ca,0),

Cy = MU "(zc; Cp, C1, Ca,0).

Each U(x; Cy,Cy, C2,0) determines here by z¢, A, a two-parameter manifold of
similar functions U(z; Cy, Cy. C~'2,O)

In the three-dimensional space of parameters C'y, 'y, ('3, the similarity classes
are generally defined by parameters Cy, C'y, C,, distributed over two-dimensional
surfaces. We may arbitrarily choose some solutions as basic, by which the other
ones, belonging to the same class of similarity, are determined. The analysis of
main properties of any similarity class U/ (z; Cy, Cy, (2. 0) may be reduced also to
the analysis of its basic solution U(::: CO, C'1,C,0).

For the cases when U/ (z; Co* Chil s 0) = 0, it is possible and it seems to be
convenient to choose zg as the coordinate center of the basic solution, which may
be presented in the form

(2.6) U(z; 0,C, Cy,0),

where
= Ci(C), Cy = (5(C),

are arbitrary, but suitably chosen functions of one parameter C only. The curves
Co =0, Cy = Cy(C), C, = C(C), may be obtained here from the intersection
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of the two-dimensional manifold of the corresponding similarity class with the
surface Cp = 0. Thus, any three-parameter function U(z; Co, Cy, C2,0) fulfilling
the condition

(2.7) U(zg; Co, C1,C2,0) =0

may be expressed by a one-parameter basic solution (2.6) according to the fol-
lowing rules. o o

At first we find from Eq.(2.1): U(z — z¢; 0,Cy, C2,0) = U(a; Co, Cy, C2,0),
with zy determined by Eq.(2.7) and

G = U'(zo; €0, C1,C2,0),  Cp = U"(zg; Co,C1,C2,0).
By means of Eq.(2.4), we may transform it to the form:

= AU(M(z = 20); 0,C1, C2,0),

where zg is found from Eq.(2.7), and the formulae
(2.9) /\ZC'l(C) = U’(.’L‘(); (”,'0,51.6;2,0). /\3(‘2((1.) = U”((r‘o; 5-'0, 6’1. ﬁQ,O).

allow to choose suitably A and two functions C'1(C), ('2(C).
As a simple example of such a choice let us take C'}(C) = C, (2(C) = 1,
allowing to define the basic solutions and their affine similarity class by

(2.10) U(z;0,C,1,0) and  U(z; 0.C),C2,0),

where
Cy=2C, Cp=\.

It is seen that on the plane C¢ = 0 similar solutions have the constants 4, Oy,
distributed on the curve

(2.11) 3= (i /E)-

The representation of a similarity class with one set of constants g, C is not
unique, because the solution U(z) may have many zeros zg and C'1(C), C3(C) are
chosen arbitrarily.

3. Power series expansion

Let us assume U(z; Co, C,C2,0) in the form of the power series

(3.1) Uz — i3 ai0,i1,202,0) = Y _ iz — )"
=0
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developed at an arbitrarily chosen origin z;. Three initial coefficients: a; g, a1,
a; 2, should be given here. By introducing U(z —z;) (3.1) into Eq. (1.2) witho =0
and by comparing identical powers of (z — z;), we obtain for the consecutive
coefficients a;, the recurrent formula

1

3
|

(3:2) Uin = Cin kO ki 1 5 n=23,45,...,
k=0
with
k(2k — n
(3.3)  cnx Codadi) k=01,...n-1, n=345,....

- (n—=2)(n—-1)n’
When we combine in Eq. (3.2) the terms with identical factors

A n—k—10¢ )k = G kO n—k—1,
then, instead of ¢, x, we find from (3.3)

1 dhk(n-k-1) ,
rok FC 1 =—|1- ————= <2k < n—
Cnk t Cpn—k—1 ” 1 (n—1)(n=2) if 0<2k<n-1
1

(3.3) Cnk = _
Erish 2n(n - 2)
0

if 2k=n—-1 ’
if n—-1<2k<2n

n > 2.
Introducing either ¢, x Eq. (3.3) or ¢, Eq.(3.3) into Eq. (3.2), we obtain for both
cases the same values «;,, but ¢, is more convenient for faster computation,
giving the final formula:

64 wn= 3 L[1- 2

- Ui ki n—f—1
0<2ben1 " (n—1)(n-2)
1 2
—a’ ., n=35...,
- < 2n(n-2) i2gt
0, n=406,...,
which allows us to compute consecutively a;3, a;4, a;s, ..., if the first three

coefficients a; o, a; 1, a; 2 are known.

There may exist also particular solutions, developed about the center zy = 0,
with many vanishing coefficients a, = ¢p,. Omitting the vanishing terms, their
power series expansion may be presented in the form obtained from Egs. (3.1),
(3.2), (3.3) by putting there 2m — 1, 2k — 1 or 3m — 1, 3k — 1 (m,k = 1,2..)
instead of n,k = 0, 1.... The symmetric solutions contain odd terms only

(3.5) U(z; 0,a1,0,0) = 3 agm_yz®™ 1,

m=1
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with not-vanishing coefficients a,,,_; determined by

m—1

(3.6) -1 = D C2m—1,2k-102k—192m ~2k—1

k=1
1 { (2k — 1)(2m — 2k — 1)
- Z R @) —12m —2k—1
0<2k<m 2m —1 2m - 2)(2m - 3)
a
m=2.4,..,

=4 22m - 1)(2m - 3)’
0, m = 3.5....

Yet a larger number of coefficients «, vanish in solutions with the following
power series:

(37) (](.’l?; 0, O, 2{12’ 0) = ”3”1_].],3m—1 )
1

m=

where

m—1

(38)  @Wm-1= P C3u—13k-1034—1030—3k—1
k=1

341039 —3k—1

= 5 [1 4Bk = DB — 3k — 1)
0<2k<m 3m -1 Bm - 2)(3m - 3)
3
”5171/2—|
, =24..,
=93 2@8m - 1)(3m - 3) m
0, m=3,5....

For solutions (3.5), (3.7), the formulae (3.2), (3.3) are also valid and they
should give, at the expense of more computing work, the same results.

4, Truncation errors

In computing U(z), all power series must be truncated after a finite number
1+ N of terms. Such truncation gives only an approximation of {/(x) and thus,
the evaluation of the resulting errors is needed. Let us consider the truncated
power series expansion (cf.Eq. (3.1)):

) N
(4.1 Uz — 25 a;0,04,1,20;2,0) = E ain(z — )" + R n(2),
n=0
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with the remainder

[oe]

(4.2) Rin(z) = Z a;alz — 23)"-

n=N+1

By computing such series, reduced to a polynomial of N-th degree, we will bound
the sum (4.2) and its L = 2 derivatives by means of the allowable error ¢,

(4.3) IR\ @) <e for 1=0,1,..L L<NA.

1,

It is proved in the Appendix, that the coefficients «;,, Eq.(3.2), satisfy the
estimate (A.1) |a; | < 7;/r?*! with determinable 5;,; > 0. In consequence, the
remainder |R; y(z)| may be bounded for |z — z;| < r; by a geometric series

[>5] e vi |z — x; n
IRin@)] < D2 lain| - le -zl < 30 —=|——
n=N+1 n=N+1 " T
_ ‘)’z‘ I'L - T N+1
ri — | — T;
Introducing here
(4.4) &=z —ai|/ri< 1,

we may estimate the remainder |R; y(z)| and its L derivatives by the inequality

Vi 1 )
(4.5) |R§f}v(x)| < (qg{“‘) L, 1=0,1,....L
For | < N we find
1 NH)‘“ o A e od =D o e
(1 _Eig,» = (1_&)”!5,- bz T (N +1DEN + ...
+1_1§. (N +1) N (N +2-DeN+

L 1 V' I N+1 i 3
e 'l(l—&)ﬁ'l-&- '(1—&-) o

(N+1).-...(N+2-1)
l-(l-1)....1.¢

Taking account of

I(-1)(1=2)...(1=i)>1, (N+DNN=1)...(N+1-i)<(N+1)*' i<i<N
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and

[(l—lfi)l s ijl (1—151-)1_1* T (N; 1)1

we may obtain

B (1—151- * N&trl)l‘

1 N+1)(1) i T
(1—51‘. : <f(£;,l,/\).

where the estimating function is:

1 1 N+ 1\
4.6)  F(&;LN =(~——. {V“)u( + ) :
(ha) (€ ) 1-¢& ¢ 1-& &i
1=0,1,...,L, L <N.
The two conditions (4.3) and (4.5) may be now replaced by one inequality
Pl

(4.7) FEslN)< By, where By = ——=c.
1

In the Fig. 1a some diagrams of the function F(&;,[, N) are given. The rules for
choosing v;, r; are presented in the Appendix.

The inequality (4.7) allows us to determine the minimal value N;min (&) or
the maximal value £; max (V) (plotted in the Fig. 1b) from the condition

(4.8) F(&; !, Niming) = F(Eimax i3, N) = Eyy,

satisfying the inequality (4.3) |R{'y(z)| < ¢ for the values / = 0,1,..., L. But by
forming analytic continuations in Sec.5 we should satisfy the inequality (4.3) for
all values of | < L. Since F(&;0,N) < F(&;L,N) for & < 1, [ < L, we should
determine the region of validity of = by

(4.9) |z — 2| /ri = & < &imax,
where the new &; max(V) or N;min(&;) are defined by

E.o, 1 >1,

(4.10) F(&5 Ly Nimin) = F(Eima; L, N) = { Bir, rel

For known values of L, N, F;;, we find from Eq. (4.10) the value & max, de-
termining by (4.9) the region of z, where the truncated power series (4.1) ap-
proximates the solution U(z) and its L derivatives with an error not exceeding
e. For the third-order differential equation (1.1), the value L = 2 should be
introduced. Since the influence of r; upon the range of validity |z — ;| < 7 max
is important, much attention should be paid to the proper choice of the possibly
largest r;, formulae (A.5), (A.8), (A.9).
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5. Analytic continuations of the power series

The truncated power series, expanded at an arbitrarily chosen center z;, gives a
solution of the Eq. (1.2) in a local region (4.9) |z —2;| < 7i£; max Only. But we seek
the global solution U(z; Cy, Cy,C2,0) in an extended, larger region of =, always
with truncation errors of U(z), U’'(z), U"(z) smaller than ¢. To this end we should
determine a set of 1 + I, — I_ local solutions (4.1) U(z — z;;a; 0, a;1,2a;2,0),
which are analytic continuations of U(z;Cy,Cy,C2,0) and which should suc-
cesively match each other for growing : = 0,1,... 74 on the positive side, and for
decreasing negative ¢ = 0,—1,-2,...1_. These local solutions, with their first
L, = 2 derivatives, are defined by the truncated power series (4.1) and they should
approximate one global continuous function with its derivatives. This function is
defined by

(8-1) U(z; Co, C1,C>,0) = U(z — z;5 0,0, 6 1,20, 2,0)
for =T v 5 = 1500 50850 Ld05
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in the global region
(52) Tmin €T < Tmax
where
Tmin = T/_ = T/_ * {1 max, Tmax = 27, + 71, + &1, max -

Beginning the computation of U/(z;Cy, ('}, (2,0) from ¢ = 0, where 2o = 0
and
U(0; Co, C1,C2,0) = Co,  U'(0,Co,Cy,C2,0) = 4y,
U"(0;Co, C1,C2,0) = C7,

we must at first find 1 + L = 3 initial coefficients
a;0 = U(zi;Co,C1,C2,0),

(5.3) a; U'(zi; Co, Cy, Ca,0),
a;2 = U'(zi;Co, Cy,C2,0)/2,

for each i-th analytic continuation. The succeeding N — L coefficients a; 3,
a; 4, - ..a; N should be found from the recurrent formula (3.4). Then we choose 7,,
r; according to the rules formulated in the Appendix and we find from Eq. (4.10)
the value ¢; max, determining by (4.9) the region of validity of the local solution

(5.4) U(z — z:58;0,¢;1,20;2,0) = U(z; Cy, Cy,C3) for |o — 2| € ri€imax-

In this local region the succeeding center z; of the j-th analytic continuation
should be chosen, fulfilling the condition

i+1 for 0< i<y,

. | = < pifs s
(55) |zj—=zil=di £rifimax, Where j {1__1 for 0>i>1..

For this succeeding step j — 1, the values
ajo = U(zj;Co,C1,C2,0) = U(zj — x5 a;0. a1, 2a;2,0)

N
= Z d; ey —a)" + Rypn(e;),
n=0

N
(5.6) a;1 = U'(z;;Cp, C1,C2,0) = Z na; o(z; — )" + Rin(z;),
n=0
N
a2 = U"(2;3;C0,C1,C,0) = 3 m(n = Daj u(x; — 2:)" "% + RY y(x)),
n=0
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should be introduced into formulae (5.3) as the approximate initial coefficients
with the truncation errors (4.3) |Rf_',)\,(:c]-)] < ¢ forl < L = 2. The value z; in

Eq.(5.5) may be either defined by the formula

(5.7A) 2= 2+ (G = D7

or as one of the roots of the equations

(5.7B) U(z;)=0 or U'(z;) =0 or U"(z;) =0 with |z; — 2] < 7 max -

This procedure is repeated successively (1+ /7, —/7_) times, fori = 0.1,..., 1+
and i = —1,...,1_:

a) we find from Egs. (5.3) and (3.2) the coefficients a; ,, n = 0,1,2,3,..., N;

b) we choose from (A.9) the values v, r;;

c) we determine by Eq.(4.10) and the condition (4.9) the local region
|z — 2| < ri€imax, Where errors of truncation are smaller than ¢;

d) in this region we choose the successive center (5.7) z;, where we prepare
U(z;), U'(z;), U"(z;) for (a) in the following step j — i.

We start at + = 0 and go /4 steps in the positive direction, then we must start
for the second time from i = 0, and go —/_ steps in the negative direction, taking
everywhere account of local regions of validity (5.5), or using the roots (5.7B).

In this manner, the solutions U (z; Cy, C'1, C7,0) of Eq.(1.2) may be obtained
with the accuracy defined by the truncation error <. The initial values zg = 0,
Co = U(0), Cy = U'(0), Cp = U"(0) are given and sets of (1+ /4 —[_) analytically
continued, truncated power series (5.1) are found. It should be emphasized that
then the previous large number N of coeflicients «,, will not be needed. The
smaller numbers N; = N;pnini(&), found from Eq.(4.8), may be sufficient to
compute the truncated series (4.1), with the same accuracy, for many values of

(5.8) |z — x| < b or le = z;| < bj,

where
bi+b; < d; = |z; — zi|.

Consequently, the main result for /(z; Cp, Cy, C,0) may now be reduced to
finding 1 + 74+ — /_ local solutions (5.1) with the following basic local data:
1+ 7, —1_ centers 2 (1 = Lose .05 =150 Lecs05 1+) of analytic
continuations;
31+ I+ — I_) initial coefficients a;; ({ = 0,1,2) only;
2(1+ I+ — 1-) evaluation constants v;, 7;.
These data allow us to obtain from Egs. (4.8), (3.4) all N;, a;,, necessary to
compute U(z) in the regions |z — z;| < b; or |z — z;| < b, (5.8).
On the basis of the method presented above, the program HIMO for obtaining
solutions of the Hiemenz Equation, in two options, has been prepared. This

http://rcin.org.pl
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program allows to compute, with an accuracy of about 18 decimal digits, the
functions U (z;Co, C1,Ca,0) for the given input data Cy = U(0), C, = U'(0),
C, = U"(0) and allowable maximal values of N, /_, .

In the first (A) option, the centers z; (j = /_,...,—1....,14) are obtained
from (5.7A) without taking into account the existence of zeros of U(z). As these
zeros are not known in advance, so, taking them into account from (5.7B) in
the (B) option, we should also find their distribution by a more sophisticated
program, where smaller N; may be allowed. Unfortunately, such program with
larger number of separation centers z; may generate larger numerical errors and
its application to some particular cases U(z) with densely distributed zeros may
cause additional difficultiecs. However, the knowledge of the zero’s distribution
may be often very important and thus the preference of the option (B) is rather
suggested.

By means of the program HIMO we may also exchange the output data with the
memory, or we may transform different functions into each other, belonging to
the same class of similarity. The data memory contains three files: NAGL.DAT,
WSP.DAT, ZERA.DAT, with sets of chosen basic solutions. Main input data
of these solutions are collected in NAGL.DAT, which contains also additional
information concerning the distribution of zeros in ZERA.DAST and of local
values: Tiy Ui 0y Ui 1y @325 YVis Ti in WSP.DAT.

6. Solutions of Eq.(1.2) with 0 = 0

6.1. Trivial solutions U = const

The considered Eq.(1.2) is fulfilled by the simplest solutions
(6.1) U(z;Cy,0,0,0) = Cy = const.

By applying the transformations (2.1), (2.2) to the “immobility” case
U(z;0,0,0,0) = 0 with Cy = 0, its similarity class is reduced to one element
with Cy = C; = C2 = 0 only. The second trivial solutions (6.1), with Cjy # 0
describing uniform flows, are distributed in the space Cy, Cy, C'z, on the Cop-axis.

6.2. Singular solution Uy, = —6/z
Equation (1.2) with ¢ = 0 is fulfilled by the singular solution
(6.2) Us(z) = U(z;to0,00,+00,0) = —6/x,
which does not vanish for any z. According to Eq.(1.1), u = —=6/z, v = —6y/z?,

¥ = —6y/z, it would describe a non-realistic strong plane “negative source” in
the center r = y = 0, with straight stream-lines (Fig. 2).
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The solution (6.2) is not affected by the affine transformation (2.5), AU (Az) =
—6/z = Uy (z). But from Eq.(2.1) we obtain the translation similarity class

6
6.3 I(z:C ) =- ,
( ) ((I9CO’ClaCZ D) CE+1‘0
where
6 6 12
Co=-—, Ci=—, (3=~
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This class is determined by constants distributed in the space Cy, C';, C3, on the
three-dimensional curve defined by the equations

(6.4) C,=C3/6, Ca=C3/18.
6.3. Riabouchinsky’s solutions

RI1ABOUCHINSKY [2] found in 1924 an exact solution of the Navier-Stokes
equations, fulfilling also the Hiemenz equation (1.2) for ¢ = 0, which may be
presented in the basic form (Fig. 3)

(6.5) Ur(z) = U(z;0,-1,1,0) = —(1 — e~%).
a)
b)
2r B
UR--ffe"' \\ 3
! \ 2 UR. =-1-e”
\
1 1 1 1 \
10 J=—3 3 x AN .
a¥ Usu \g:f?
» ol 1 2 3 ¢ x
/-2 U=u
}\/ =]
I/
Q/ -2

x / streamn line
%

Fia. 3.

An analogous solution may be obtained by changing the sign,

(6.6) Up-(z) = U(z;-2,1,-1,0) = —(1 + ¢™%).
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These solutions define by means of Egs. (2.1) and (2.2) two classes of similarity:
(6.7)  AUr(AM= = x0)) = U(z; =A(1 = B), =X B,0*B,0) = A (1= Be),
(68)  AUp-(A(x—20)) = U(z; =M1+ B),\2B,=X*B,0) = = (1 + Br."‘“’) :

where B = ™0 > (.

They approach the asymptotic value — A for Az — oc, the functions AlUUr«(A(z—
zg)) do not reach zero anywhere, while Ur(z) defines a class of similarity (6.7)
with a single zero for 2 = .

By means of Eq.(1.1), the flow field (Fig. 3) may be obtained with parameters

u = =A(l — Be~*7), v = A Bye=?=,
/\2
p = —73%—2/\1‘ +const, W = —Ay(l — Be\¥),
u = =M1+ Be "\7), v = —A2Bye*=,
)\2
p = ——Z—Bze’z’\J'Jrconst, o= —Ay(1+ Be 7).

The first solution was used by RiaABoUuCHINSKY [2] and CRANE [3] for the flow past
a stretching plate.

In Egs.(6.7) and (6.8) U(x;Cp, C1,C2,0) = =A(1 F Be~**) we have the con-
stants Cp = =A(1F B), C; = FAIB, C, = +A3B, defining both similarity classes
and distributed on a two-dimensional surface in three-dimensional space (g, ',
(5. Eliminating here B = FC}/C% and A = —(/Cy from Cp, we obtain the
equation in the form

(6.9) REC%+C’22—CQC'1C'2=O.

or

(6.10) Cr=0Cy- (C'o +./C% - 4C’1) 2

It will be shown later, that Riabouchinsky’s functions (6.7) and (6.8), with the
surface R = 0 Eq.(6.9), play an important role in the analysis of other solu-
tions U(xz; Cy, C1,C2,0). The majority of these solutions may be asymptotically
approached by —ay Up(—a4(z — z4))

(6.11) U(x;C0,C1,C2,0) — ag (1 - e~} for z — Loo,
where

. (U"(=z) o ve, (P
(6.12) at = lim (U’(.r)) \ ry = lim {1: U7(x) In ( ——[U”(;r)Pl }

for r — to0o.
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In consequence, the local data of analytic continuations obtained in Sec.5, with
the asymptotic formulae (6.11), (6.12), may allow to compute U(z;Cy, Cy, C,0)
for any z in any arbitrary range —o0 < z < 0.

6.4. Symmetric cases U(—z) = —U(z)

There exist two classes of similarity of the symmetric solutions, which may be
defined by two basic solutions:

(6.13) U_(z) = U(z;0, -1,0,0).
or
(6.14) U.(z) = U(z;0, +1,0,0).

In the central region —&maxm < = < Emaxr their values may be computed by means
of the power series U(x;0, a1,0,0) Eq. (3.5) with odd coefficients only. Their first
non-vanishing values ay,,_y for m =1,2,...,15 are:

n=2m—-1|1{3 |79 11 13|15 17 19

n!agm_1 |F1|=1|-2|48|-32|564|3312| 518048 | —964992

21 23 25 27 29
427197440 | 146549760 | 330560231424 | 668929236984 | +25325353803600

Two diagrams, presenting parts of symmetric curves U/_(z), U’ (z), U"(z) or
Us(z), Ul(z), Ul (z), are shown on both sides of the Fig.4. From Egq.(3.5),
taking into account 30 terms only (mmax = 15, nmax = 29), we may compute
Uz(x), UL(z), U{(z), for |z[ < 2.5, with errors ¢ Eq.(4.3) smaller than 10-3,
10-4, 1073, respectively.

The solution U_(z) obtained from the option (A) with N = 127 yields

i or | o z U_(z:) UL (2:) U (xy)
0|4.24| s4 0 0 ] 0
+1]3.03| 59|+2.754609910| F6.567801477| —5.557663257| F4.215903455
+2(2.41[143| £4.716089780 | F31.682463060 | —24.609177657 | 18.668067949

It reaches zero U_(0) = U”(0) = 0 at the center 5 = 0 only, and for 2 — +o0
it may be asymptotically approached by Riabouchinsky’s solution (6.11) with

ay = £0.758581542572728, z4+ = F0.2348999287870.
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The solution U4 (z) seems to be more interesting for hydrodynamics and it
was computed here by means of both options of HIM0. The option (A) with
N = 127 gave

vl o |y T Ui(zi) Ui(z) Ui (z))
0(4.24 |54 0 0 1 0
+1(2.09 38| £2.754609910 | 1.448820288 | —4.814100016 | 77.779260281

with the asymptotic values

ay = £1.59124076522024, ry = 1£2.34842678820127.

In the option (B) larger [ = —/_ = 3 with smaller N; have been obtained
N | i |m T Us(zy) Ui(z:) Ui (zi)
0f 51(4.184|51 0 0 1 0
+1| 51(3.012|24 | £1.39728669028 [ +0.93800239840 0 F1.5042499245
+2(127|2.388 (39| +£2.33915869848 0 —2.40299296054 | F4.2498130492
+3|127|1.475|75 | £3.88739750540 | ¥16.82783786109 | —29.30918867538 | 746.6379777796

The basic function Uz (z) define two similarity classes AU+ (zc + Az), depend-
ing on A, z¢. The constants Cy, €', C5, determining the first similar solutions

http://rcin.org.pl
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U(z;Cy, C1,C2,0) = AU_(z¢ + Ax), are distributed on a two-dimensional sur-
face, intersecting the coordinate planes Cy = 0, C; = 0, at the negative semi-axis
C1<0,Cy=0Cr=0.

The parameters

Co = AU+ (zc), C1 = N (z¢), Cy = MU (2¢),
determining the second similar solutions
U(z;Co, C1,C2,0) = AU (zc + Az),

are distributed on the surface intersecting the same planes at the positive semi-axis
C1 >0, Cy = C = 0, but it has also other lines of intersection. To show them,
let us choose the translations passing through the zeros z; for i = 0, £1, £2:

U(z; Cig, Ci1.Ci2,0) = AU+ (z; + Az),

Cio=AUs(z;),  Ciy = N2U4(z:),  Ciz= NU"()).

The positive ('j-axis is here obtained for i = 0: (y = ¢, = 0, (', = A2, For
1 = +1,+2, we find the respective equations of other intersection lines:

Cy =0, = U{(z))/U3(a1) - CF
and cf. Eq.(2.11)
(6.15) Co=0, C=cii/c3,
with
Cy = Ul (z2)/ YU (22)? = —0.9158814887904800478.

The solutions AU, (z; + Az) determine flows in channels between plane, par-
allel walls with symmetric boundary conditions. As an example, let us consider a
quasi-isobaric flow between rigid, porous walls with uniform suction, and let us
find conditions necessary for its realization.

To solve this problem, we should satisfy the no-slip boundary condition
U'(£1) = 0 for the symmetric solution

U(2;0.01.0,0) = AU, (Az).

Since
U, (:fll) = O

it is sufficient here to take A = z; and we obtain

U(z) = 21U+ (x12).
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From Eq.(1.1) we find the velocity v = U(z), v = —yU’(z), and the stream
function ¥ = yU(z). The obtained field of quasi-isobaric flow ¥(z,y) = const
is shown in Fig.5 and to realize it, the suction velocity u,, on the wall should
be equal to its quasi-isobaric value, u, = U(1) = zU4(x;) = 1.310658266. In
our dimensionless reference system, the value u, is equal to a Reynolds number
referred to the dimensional suction velocity. If u,, # u,, then the obtained
solution with ¢ = 0 is not valid and the pressure gradient dp/dy with ¢ # 0
should be taken into account.

yi
e AN
12|~
0 |7
72 o8 Z
05+
e .
2 2

xy

-1 -05 0

AV RAVIRAY

AARIARAY

6.5. Case U(0) = U'(0) =0
Let us introduce for our case the basic function
(6.16) Ua(z) = U(z;0,0,1,0).

The power series U(z;0,0,0,2a3,0) Eq.(3.5), expanded here at the center zo = 0
for a; = 1/2, has also several non-vanishing coefficients a3, 1, for the first values
of m=1,2,3,4,5,6,7.8 they are given in the table below

n=3m-1(2| 5|8 |11 14 17 20 23

nleay,_q [1|=1|=1|=27|-951|-51465|—3355857| ~151875891

We will apply here both options of HIMO.
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From the option (A) with N = 127 we obtain the values at the centers z; of
analytic continuations:

1| T ¥s z; Ua(z:) Ulk(x:) Ui(z))
—212.27]125| —4.599564890 | 27.652066714 | —24.282529941| 20.686287834
—1]2.90| 53| —-2.772533721| 5.159131567| —5.120743824 4.362763158
0[4.39] 60 0 0 0 1
1[1.84| 27| 2.772533721| 2.318085943| —0.263962035| —4.537369331
210.98| 52| 3.933984044 | —8.976345513| —35.882443310 | —107.55628806

and the asymptotic values
a_ = —0.8519000237691, r_ = —0.4789764813954 for T — —00
and
ay = 2.996961192059, x4 = 3.471823699089 for T — +o0c.
No zeros exist here for ¢ < 0 and thus it is not necessary to use the identical values

of N; = 127, ri, vi, 4, Ua(2:), Uy(:), U{(2;), obtained from both options. For
¢+ > 0 option (B) yields

1| N, LY Y I, U.—\(Il) [”1(1!) Uj{(I.)

0| 70(4.374(58 0 0 0 1

1| 70]2.698|21|1.78014746588| 1.43256891674| 1.34780768981 0

2| 70(1.871|25]2.71001917889 | 2.32613658590 0 —3.92268342579
3112711.293|37|3.47040219504 0 —8.84825811071 | —27.35379056568

The diagrams of U(z), U/ (x), U{(z), with stream-lines ¥(z,y) = yUa(z) =
const are shown in Fig.6. Such flow could be realized in a liquid layer on a
rigid impermeable plane wall, when its upper free surface is stretched by linearly
variable surface tension (for instance, due to the Marangoni effect).

The function U4(z) defines similar solutions

U(z;Co,C1,C2,0) = AUs(2c + A2)
with parameters distributed on
Co = Ma(zc), C1=XU4(zc), Ci2=NUi(zc).

The obtained surface intersects for z- = z; (i = 0, 1,2,3) the coordinate planes:
at the axis Cy # 0, Cy = C = 0, at the line C, = U/(z1)/U%(x)) - Ccz, on the
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plane C; = 0, at the line C; = U{(z2)/U3(22) - C3 on the plane C'; = 0 and at
the line

(6.17) Co =0, Cy =Cay/C3,

with
Ca =Ul(z3)/y U{(x3)? = —0.974644204225262984.

6.6. General solutions U(z;Cy, Cy, C2,0)

The solutions U(z; Cy, Cy,C2,0) of the Hiemenz equation (1.2) depend on
three parameters Cy, C', C3, and in such a general form they are more difficult
to analyze. However, due to the invariance rules (Sec. 2), by translations (2.1) and
affine transformations (2.2) they may be expressed by each other from the same
class of similarity. So, instead of analyzing all similar functions, we may choose
any of them as their basic representative for studying their main properties. Three
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constants Cy, C'1, C7 of these basic solutions may be determined by one parameter
Co(C), C1(C), C2(C), only (cf. Sec.2). Main attention will be paid to such basic
functions, their similarity class being defined.

In Sec.6.3 the surface R = 0, Eq.(6.9), determining constants Cy, C', C3
from Riabouchinsky’s solutions was obtained. In the Fig.7 the contour lines of
this compound surface for positive Cy = 0,1,2,3 are plotted, and for negative
Cyp they are situated symmetrically with respect to the ('j-axis, as it is shown for
Co = =2, Cy > 0. Outside this surface the expression R(Cy, Cy, ;) of Eq.(6.9)
is different from zero, but its sign does not change for similar solutions. In the
space Cg, Cy, Cy, the surface R = 0 separates regions with different similarity
classes of solutions with different numbers of zeros.

CE

Fic. 7.
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To show the sign invariance of R(Cy, C', C,) for similar solutions, let us in-
troduce the function

(6.18) S(x;Cp, C1,Cy) = (U + (U"Y? —UU'U",

where
U(l‘) = U(:l:; C(), Cl, Cp_, 0).

Putting U = UU” — U'U’ Eq.(1.2) into
8 = ZIPIFTT % 2P . TP — T - G,

we obtain the differential equation §’ = US with the integral

(6.19)  S(z.;Co,Cy,Ca) = R(Cy.Cy,Ca) - exp (/(z;co,cl.cz.()) ,z.r) .
0

Since the sign of R(U(z.), U'(z.). U"(z.)) = S(a.; Co. C1. ('2) remains unchanged
for any z. and the transformation (2.4), R(ACp, A2C'1, A3C3) = NOR(Cy, 1, Ca)
does not change it as well, this sign remains invariant for all similar solutions and
it becomes one of their main attributes.

By the condition R < 0 two “negative” regions of C'y, ('}, C'; may be defined:
for C'1 > 0 without zeros of U(z; Cy, C1, C,,0) # 0, and for C'; < 0 with only one
zg fulfilling U (zg; Co, Cy, C,0) = 0, where —oo < z, 29 < oo. The functions with
parameters Cy, C'1, C2, from the first inside region of two surfaces of conical shape
(Fig. 7) R <0, Cy > 0, do not reach zero anywhere. The function R(Cy, C, )
decreases here for each Cy = const from R - = 0 for some Al/p+(A(z — g)) (cf.
Sec. 6.3), through R, = —C§/648 for U(z; Co, C3/6,C3/18,0) (cf. Sec.6.2), until
its lowest value Rpyin = —C©/432 for U(x; Cp, C3/6,C3/12,0). The diagrams of
the functions U (z; Co, C3/6,C,,0) for Cy = -2 and for C; given below

Mark 1 2 3 4 5
—~(1-1/V3)-2/3| —4/9 —-6/9 —(1+1/V3).2/3
“ 1 0.28176648... LU s ~0.66... —1.05156684...
R Rpe =0 —2.7-107%| Roo = —8/81| Rppin = —4/27 Rpe =0

are plotted in the Fig.8.

All solutions U(z;Cy, Cy,Cy,0) with Cy, Cy, (o, belonging to the second re-
gion R <0, '} < 0 may be expressed by the basic functions U(x;0, —1,C,0) with
0 <€ < 1. They also do not seem suitable for hydrodynamics. Their diagrams
(Fig. 9) show that they intersect the z-axis at one point only and their first deriva-
tives are negative, U'(z) < 0, for all —oo < & < . For 2 — toc they approach
asymptotically a4 (1 — e*%(==2£)) Eq.(6.11).
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In contrast to the above “negative” cases, the solutions U (z; Cgy, C'y, (', 0) with
Co, C1, Cy, fulfilling R > 0, may satisfy boundary conditions for hydrodynamics.
Using the transformation

(6.20) U(z; Co, C1,C2,0) = AU(z¢ + Az;0,C,1,0),
where

Co = AU(zc;0,C,1,0),
(6.21) C1 = NU'(z¢;0,C,1,0),

Cy = MU"(z¢;0,C,1,0),

we may express all these solutions by means of the basic functions
(6.22) U(z;0,C,1,0)  with -1<C<Cy =-0915881....

Also this “positive” region Cy, Cy, C,, defined by Eqgs. (6.21) and (6.22), shall be
divided here into two parts, with

(6.23) Ca = —-0.974644... < C < C4+ = —0.915881...,
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and
(6.24) —1<C <Cyq=-0974044....

The main hydrodynamically interesting solutions are obtained from the first
region (6.20), (6.23), with the functions U(z) and their derivatives U’(z) inter-
secting the r-axis at three and two points, respectively. Their examples are shown
in the Fig. 10 with the basic functions:

1) U(z;0,C4,1,0);

2) U(z;0,-0.95,1,0);

3] U(z;0,C+;1,0).

By introducing Cy = 0, C; = 1, into Eqgs. (6.20) and (6.21) we may find similar
solutions of the same form, but with C; > C4,

(6.25) U(z;0,Cy,1,0) = AU (zx + Az;0,C,1,0),
where

U(zx;0,C,1,0) = 0,
(6.26) A =1/{/U"(2130,C,1,0),

C1 = \U'(2;0,C,1,0).
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In Fig.10 these similar solutions are denoted by the same numbers as their
basic functions, but they are marked by single or double primes. They are deter-
mined by the constants obtained from Egs. (6.25) and (6.26)

1) ry = 10.4564833..., A —3.01304653..., C; = 0
2') r; = 9.21531218..., A —1.52881783..., () —0.839523460630094446...;

2"y z3 = 5.27078097.., A —2.61153498..., 1.56193441358539807....

I

Ulx;01,10)

——— Ulx:0,1,1.0)

I'1G. 10.

The functions U(z;0,C,1,0) with C4 < C < 0 instead of C4 > C > C4 could be
chosen also as basic functions to define the same similarity classes. An exemplary
field of flow between two stretched, parallel surfaces, obtained from 2/, is shown
in the Fig. 11.

The solutions U (z; Cy, C, (2, 0) with constants (g, (', (', from the “positive”
layer R > 0, adjacent to the surface R = 0, are not monotonous, and their first
derivatives intersect the z-axis twice. Examples of basic solutions U(z;0,C, 1,0)
with C = —-0.99, —0.985, supplemented by C = —1, C4, are plotted in Fig.12. In
the Fig. 13 are shown the resulting stream-lines of a quasi-isobaric flow between

two parallel surfaces, first of them being stretched and second one — porous, for
C = —0.985.



Fig. 11.

o5l c=C — U(x;0,C.10)
————U'x,0,1,0)
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Solutions U(z) = U(z;0,C,1,0) are very sensitive to small changes of C
around C = —1. Although for C = —1 we obtain Ugr(z) = —(1 — e™*) with a
finite asymptotic value Ug(o0) = —1, an infinitesimal perturbation |§] € 1inC =
—1+ ¢ is sufficient to produce an infinite decreasing to —oc of U(z; Cy, C'y, C3,0),
giving U(z;0,C,1) = a1 Ur(—a+(z — z4)) = a4 (1 — e2+E=7+)) with a4 > 0 for
z — oo.

The constants Cy, C, C, Egs. (6.21), defined in similar solutions (6.20) U/(z) =
U(z; Cy,Cy,Ca,0) by U(z;0,C,1) with —1 < C < C4 (6.24), are distributed on
both sides of the coordinate surface C'; = 0. In the close vicinity of Riabouchin-
sky’s surface for C) < 0, the solutions U(z) with Cy =~ —~A(1 — B), C} =~ —\?B,
Cy = AB, (cf. Eq.(6.7)) tend to infinity instead of the bounded asymptoti-
cal value —\ for Az — oo. But the influence of infinitesimal perturbations of
solutions AUg.(A(z — zp)) = =M1 + Be~**) Eq.(6.8) with Cy = —A(1 + B),
Cy = AB, Cy = —)\3B, on their asymptotical behaviour is much stronger. For
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C; > 0 and 0 < R < 1 such perturbations provoke not only tending of U(z) to
infinity instead of the asymptotical value — for Az — oo on one side, but addi-
tionally also on the other side the perturbed solutions tend to infinity U' — +00
with the sign opposite to the unperturbed solutions AUg. — oo for Az — —oc.
By perturbations with ® > 0 of both solutions (6.19) and (6.8), we may ob-
tain all solutions belonging to the classes of similarity defined by basic functions
U(z;0,C,1,0) with —1 < C < C4, or even with —1 < C < C4. An analogous rule
for the case R < 0 is not valid: solutions with (" < 0 are not similar to solutions
with Cy > 0.

o) U=-F(1+5e7%)
(+) Ulx;-2, 3,-0,135:35734,0 )

1 ux ,2,3,0.755:35:3@0)

FiG. 14.
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. i 1
High sensitivity of U(z;-2,5/9,-5/27,0) = —3(1 + 5¢7%/3), R = 0 to small
perturbations of C, = —0.185185185... for = < 0 is shown in Fig.14. The main

exponential formula was used to plot U(z), U'(z), U"(z) denoted by (0). Signs
(+) and (—) denote the perturbed solutions with

(+) C, = —0.185185184, R =13.107">0

and
(=) C, = —0.185185186, R = —8.9-107"° <0,

respectively. It may be observed that all solutions almost coincide for moderate
values of z, but for higher |z|, exceeding some characteristic values, they dif-
fer from each other not only quantitatively, but also qualitatively. The solution
(+) U(z;—2,0.555...,—0.185185184,0), being similar to U(z;0,-0.9967...,1,0),
may be also obtained by means of Egs. (6.20) and (6.21) with:

R = 0.00979..., C = —0.996724521256897738...,

zc = 64.10609306..., A = 11.00385215... .

7. Final remarks

The solutions U(z; Cy, Cy,C>,0) of the Hiemenz equation (1.2) may be di-
vided into different classes of similarity (Sec.2) with parameters Cyy = U(0),
Cy, = U'(0), C, = U"(0), (1.3) distributed on two-dimensional surfaces in the
three-dimensional space Cy, C', C2. By means of the transformation (2.5), every
solution may be obtained from a similar one, which eventually may be chosen
as their basic representative function. These basic functions may be also used to
analyze main properties of their similar solutions and they may be chosen in such
a way that they depend on one parameter only (Sec. 2).

Two cardinal classes of similarity are represented on the surface R = C7 +
C%-CyC)C; = 0, Eq. (6.9), by the Riabouchinsky solutions (6.7) and (6.8), which
may be obtained from the basic functions (Sec. 6.3, Fig. 3):

Ur(z)=-(1-¢€7) for C;<0 and Up:(z)=-(1+e") for C>0.

Being defined by Cy, Cy, Cy, with R(Cy, Cy,C3) = 0, they are unstable and very
sensitive to small perturbations of R. Solutions U (z; Co, C}, C2,0) perturbed with
0 < |R(Cy, C1,Cy| < 1 differ much not only quantitatively but also qualitatively
from Riabouchinsky’s solutions (6.7) and (6.8) with R = 0. This is shown in the
Fig. 14 for the example U(z;-2,5/9,-5/27,0) of Eq.(6.8) with R = 0, C >
0, where perturbation of C ~ —5/27 with |R| ~ 10~'* gave rise to infinite
differences of U(z) for |z| — oo and to discrepancies in U(—6) and in U"(—6)
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of the order of 100 and 10°, respectively. But such perturbed solution fulfills
also the Hiemenz equation (1.2) and it belongs to a similarity class defined by
the basic functions (6.22) U(z;0,-0.9967...,1,0) with R = 0.00987... and C < 0.
The Riabouchinsky solutions take intermediate position between the main classes
of similarity represented by R(Cy,C,C3) < 0 and R(Cy,C,C3) > 0. Thus,
the sign of R is here considered as the main attribute of Hiemenz solutions
U(.’L‘; Co,cl,C'z,O).

Monotonous solutions U(z; Cy, Cy,Co,0) from the “negative” side R < 0,
with C; > 0 (Sec. 6.2, Fig.8) or with 'y < 0 (Eq.(6.13), Figs.4, 9), do not seem
interesting for hydrodynamics and here they will not be considered.

All solutions U(z;Cy,Cy,C3,0) with R > 0 are not monotonous and their
derivatives U’(z) have two zeros (Figs. 4, 6, 10, 12). Each of them decreases from
infinity, where U(z) — a_(1 —e*~=%=)) for z — —oc with a_ < 0, then it goes
through local minimum and maximum and, finally, it decreases to minus infinity,
as U(z) — as(1 — e+(==2+)) for 2 — oo with ay > 0, Eq.(6.11). So, they all

tend asymptotically to Riabouchinsky’s function a4 (1 —e®+(=7%)) for ayz — o
and they may be defined by the basic functions U(z;0,C,1,0), Eq. (6.22), with
C from the close vicinity —1 < C < C4 of the Riabouchinsky’s value C = —1.

Examples of flow fields ¥(z,y) = const, obtained from the considered cases of
solutions U(z), are shown in Figs.5, 6, 11, 13.

Since for computing U(xz; Cy,C',C2,0) a high accuracy was needed, much
attention had to be paid to the evaluation of errors. The analytically continued
power series, with their truncation as the source of errors, was chosen to prepare
the numerical program HIMO, which was tested by comparing similar solutions
computed in different ways with both options. Exact solutions from Secs. 6.2
and 6.3 were compared also with their approximations computed by means of
HIMO. Although the results obtained were in general satisfactory, discrepancies
were also observed, but they could be explained by instabilities, as in the case of
U(z; -2,5/9,-5/27,0) (Fig. 14).

Hydrodynamic parameters wu, v, p, Eq. (1.1) expressed by U (z) of Eq. (1.2) may
describe some stationary, symmetric flows between two parallel plane surfaces
ry = const of incompressible, viscous liquid, if they satisfy at these surfaces
the suitable boundary conditions, mainly four kinematic conditions concerning
normal u(zy,y) = U(ry) = Uy and tangent Jv(ry,y)/dy = —U'(rx) = =V
components of velocity with iy, V1 = const. Such problem may enable us to find
four unknown values Cy, C, C3, o from four equations U/(zy; Cy, C,C,0) = Uy,
U'(z4;Co,Cy,Ca,0) = Vg, but in order to find here for ¢ = 0 three unknown
values Cy, C, C,, we must satisfy an additional relation between i/_, U, V_, V,.
It means that the quasi-isobaric flow, with pressure depending on one variables z,
may be realized for particular boundary conditions only. Generally, the pressure
(1.1) found from U(z; Cy,Cy,Ca,0) with o # 0 should depend on two variables
z, y but analyzing the flows between parallel surfaces, an introductory analysis of
properties of U(z;Cy, Cy,C2,0) with ¢ = 0 seems to be also useful.
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Appendix

The aim of this Appendix is to prove the existence of two positive numbers
7,7 > 0, allowing to estimate the coeflicients defined by Eq. (3.2)

(A1) lan| < v/t n=0,1,2,3,...,

and then to formulate the rules of the proper choice of v, r. As the inequality
(A.1) allows to bound and to estimate the remainder Eq.(4.2) by means of a
geometric series with the radius of convergence r (cf. Sec.4), we will try to find
a possibly large value of r.

In the first part we will prove the following:

THEOREM. For ay determined by Eq.(3.2), there exist two positive numbers
v,7 > 0, such that if ay fulfills (A1) for k = 0,1,2,...,n — 1, where n > 2, then
the condition (A.1) is valid for k = n. In consequence, the inequality (A.1) becomes
valid for any positive integer k = 0,1,2,3, with the same v, .

In the proof we will use I',, n = 3,4,..., defined by means of ¢, » (3.3),

n—

Z Cn,klw

1
(A.2) =1
k=0

1
I
where

_ k(2k —n)

= , k=0,1,...n—-1, n=3,4,...,
(n—=2)(n—1)n

Cn,k

and we will need there the conclusion of the auxiliary
Lemma. The progression I, > 0 is not decreasing, i.e
(A.3) I S Ll for n=3.4,....

To prove this Lemma, let us introduce the difference

n

oy L 2ol 1 =l
— e ST t— Z |cn‘k| o=
k=0

- — |cn+l,k|-
[‘n * 1n+l Fn Fn+1 0

Taking into account (A.2) ¢, < 0 for 2k < n, ¢, = 0 for 2k = n, ¢, 1 > 0 for
2k > n and ¢, o = 0, let us apply here the following transformations:

n—1 n v
Z lcn,kl i Z ICn+l,kI - Z(cn,n—k = Cnk — Cn+ln+l-k b3 Cn+l,k)
k=0 k=0 k=1

= (+2)-4 _v-(n+2)-v-(2r+2)

k=1(n—2)(n—])n (n—=2)-(n—1)n
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where )
" for w=35,...,
e 211
5 for n=4,6,...
In consequence, all differences
1 for 3.5.7
FYAEEETY n=29,9,/y...5
Tooy=Tn=TnTps1-4 2n-(n—-2)
0 for n=4,6,8,....

are not negative and the relation (A.3) is satisfied, what had to be proved.
Now we return to the main Theorem. Taking account of (A.1) in Eq.(3.2),
we may obtain the rough estimates

n—1 2 n-—-1
2 P g
(A4) |ﬂ'n! < Z Icn,k| : |(lk| : ’an—i—kl < Fntl Z lcn.k| = (T) ’ pn+l’
k=0 k=0 %
From Eq.(A.2) we find /3 = 2 and from the Lemma we obtain I3 < [, for
n > 3, hence in order to prove the existence of v,r > 0 in the Theorem, it is
sufficient to choose for (A.1) two numbers:

(A.5) y=13=2 and r = Min (7/|ag|, /e ,\3/7/|a2|) .

The inequality (A.1) is now fulfilled for n = 0,1,2. Satisfaction of (A.1) for
any larger n = 3,4,... results from v//I, = I3/, < 1in Eq.(A.4). Thus the
existence of two numbers v, r > 0 has been proved, but their values, determined
by (A.5), seem to be too small. The following part of this Appendix will be
devoted to the proper choice of v, r.

-1
n—1
It may be observed that we could also use I, = (Z |r",n_k|) instead of the
k=0
slightly smaller I, < fn. Some values of nondecreasing progressions [, I
obtained from Egs. (3.3), (3.3’), are given in the table below

n |3|4 8| 16 | 32 64 | 99 | 128 |
In]2]3]3.5|3.75]3.875]3.937|3.959|3.968| 4

In|2|3]4.9/5.60|5.863|5.952(5.975|5.983| 6

In the same way as in (A.5), we may find higher v, r, satisfying the inequalities

v 1/(k+1)
(A.6) T < rs = , k=0,1,...,N,

ny ak
n=N+1,N+2,..., N > 2, ar # 0,
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but their increment (I, — I3 < 4) is not large. The value v is determined by

N and by the matrix ¢, ; (3.3’) only, and r additionally depends, through a, on

the particular solution U (z;ag, ay, 2a3,0). Such v, r are obtained from the rough

estimations (A.4), which take into account neither the posible vanishing of some

a; n, nor the signs of ¢, ra; ra; ,_r—1. Application of better evaluations would be

difficult and so we will try to obtain higher values of v, r by a heuristic method.
At first let us transform (A.1),

(A7) r<AVOD g, TV and g > ag] - ™!
for n=0,1,2,3,....

As lim v+ = 1 we may introduce the asymptotic values

n—00

(A.8) roo = lim ioonf(|an|"1/(”+l)), Yoo = limsup(|a,| - 1),

n—oo
which should majorize all coeflicients:
lag] € 3™ &y fri for =028

Our aim is here to find the largest possible » and v, approaching their asymptotic
values 7., and v...

From the error evaluation (4.7), (4.8) and from Fig. 1 it is seen, that a con-
siderably large number 1 + N of terms is advised to be taken in the truncated
power series (4.1). To find the convenient, higher values +, fulfilling (A.1) with a
sufficiently large r, the following procedure is proposed.

We begin by choosing a large truncation number N and the initial input values:
not too large p_; = 7ini (for instance ¥i5 = /N+1) and large gn41 > po1. We
determine the output values r, 7 by means of the recursive procedure:

N = Min ((IN—71+13 (Pn—]./|”N—n|)1/(N_”+”) for Ay ?é 0,
(A.9) e GN—nt1 for “o,'=10,

Pn Max (Pn 1> [“HI([]\—n)

T = GN—-M, ¥ = pn, where n=0,1,2,....M and N-M<M<N.

Since
Ppo<p1<...<pm and  gN 2 gN-12 .. qN-M

we obtain also from (A.9) the following inequalities:

o, < P P )
n|l = 31 = n+1 - pntl’
IN-n  UN-)
Prn-1 PM _ 7
laN—n| S N-n+1 S N-M+1 7.11+].

IN-n aN-M
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forn=0,1,..., M.

In consequence, the main inequality (A.1) |a,| < y/r"*! is here satisfied
for all 1 + N coefficients a, (n = 0,1,...,N). The number M of steps in the
recurrence formulae (A.9) should be not less than N/2, but not necessarily much
greater than that. The recurrence (A.9) may also be repeated many times with
larger N and with the input value 7;, taken from the previous output result:
Yini = pm. With growing N — oc, the values r, ¥ approach their asymptotic
values r — ro, and v — v..

The suitable values 7;, r; depend not only on solutions U (z; Cy, Cy, C7,0), but
also on their analytic continuations U(z —z;; a; 9, @, 1. 2a; 2, 0), the errors of which
are determined in Sec. 4. Thus, the proper choice of v, r; is here very important
for the accuracy of computing analytical continuations. The heuristic procedure
presented was “empirically verified” by analyzing several examples.

As an example of choosing v, =, let us consider Uy(z) = U(z;0,0,1,0)
(Sec.6.5), expanded at the center zp = 0 into the power series (3.7). Their
first non-vanishing coefficients a, (n = 3m — 1 for m = 0,1,2,...,11) with
la, |~V = |as,, 1|73 and I3,,_,, obtained from (A.2), (3.3') with ¢, 4 =
C3m—13k—1, are presented in the following table:

m|3m—1 A3m—1 |a;rrllf_3;" Dot
1 2| 172! 1.260 =

2 5|-1/5! 2.221 30

3 8|—1/8! 3.249 | 168
4 11| =27/11! 3.267 | 31.93
5 14| —-951/14! 3.394 | 30.33
6 17| —51465/17! 3.520 | 26.15
7 20| —1.3793638168 - 10~'2| 3.671 | 24.60
8 23| -5.874817912 - 10~ | 3.917 | 23.60
9 26| 7.435121112- 107" | 3.956 | 22.67
10 291 1.730926415- 10~ | 3.909 | 22.33
11 32| 1.311332744 . 1072 | 4.004 | 21.66

_ It is seen that in this case, with many vanishing coefficients «,, the progression
I3,,,-1 non-monotonously depends on m. With m growing to infinity it decreases

to its asymptotic value I, = 18, obtained from Eq. (3.8),
lim —— = lim 1 > ‘1—4§"—1(1— 3k_1)
moes [y M3 g 3m -3 3m -2
1/2
= %Oj|1—4ﬂ(1—ﬁ)|45= 11—8.

3
Im-—-1
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The values v = 2 and r = /2/0.5 = /4 = 1.5874 may be found here from
Eq. (A.5), basing on the rough estimates Eq. (A.4) with (A.3) for N = 2.

Introducing the same truncation number N = 2, but applying (A.6) and taking
into account I, < I3,_1 for m = 1,2,..., we find higher values of 7 and r,

v=18 and r=/18/0.5= v/36 = 3.3019.

Let us pay more attention to the heuristic method based on the recursive
formulae (A.9). At first let us assume N = 19, M = 11 and vi,; = 18. At these
assumptions we obtain from (A.9)

Q18 = qu9 > 18,

p = po =18,

g8 = o= q10=qu1 = q12 = 913 = qua = q15 = Q16 = Q17 = 4.134,
ps = p3=py = 3532,

P11 = P10 = P9 = pg = p7 = pe = ps = 41.595,
r = 4.134,
y = 41.595.

The same procedure may be repeated for N = 34, Al = 17 and v,; = 41.595,
giving (some gy _, and p, have not been written here):

g32 = 4.48, G20 = 23 = 26 = (29 = 4.4379, N7 = 4.4346, T = 4.4346,

Po = 41.595, P2 = 45.045, P17 =P1a=pP11=pg=ps= 6366, Y = 63.66.

It should be emphasized that the value 7;,; may not be assumed to be arbitrarily
large. Choosing in the considered case arbitrarily v, = 100, by means of (A.9)
for N = 34, M = 17, we obtain r = q;7 = 4.5473 and v = p17 = pp = 100. It
may be easily shown that such results are wrong and do not fulfill the conditions
(A1) |azm-1| < 7/r*™ for many n > N.

The examples of comparison of a3, _; with v/r*" (3m —1 > N), for different
v and r obtained above, are presented in the table. It is seen that v = 2,
r = ¥2/0.5 = 1.587 Eq.(A.5) and v = 18, r = 3.302 from (A.6) give correct
but rough estimates of |a3,_1|. More convenient for computing are y = 63.66,
r = 4.4346, obtained by the heuristic method (A.9). But the same method with
erroneous initial value v = vj, = 100 yields too large r = 4.5473 giving, in
general, wrong results with |as,,_1| > 7/r".
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v/r*m

3m —1 Q3m—1 lag 2™ |y =2 18 63.66 100

r = 1.587 3.302 4.4346 4.5473

35| -6.527662- 1072 | 4.133 |[1.2-1077 |3.8-10""®|3.29.10"%2|2.1-107%
47| 2.864759-10% | 4.125 |4.7-107"°|23.107%(5.69: 107 (2.7 107>
65|-5.333759 . 107*?| 4.220 |1.1:107®|1.0-107*[1.29.107*|3.9 . 107*
95| —1.593358- 10| 4298 [1.1-107"{2.8-10"*[5.08- 10 |7.2-107%
125 —4.541070- 10~*' | 4.341 |1.0-107%[7.8-107%(2.00- 10~*[1.3 . 107
152 —2.829481- 107 | 4.340 |3.9-107*'|7.6-10""[6.84 - 107®[2.3- 107"
188| 1.566638 - 10~'2'| 4358 |23.107®|1.6-10"%|23-107""|5.107'2
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On interaction between internal defects
and external surface in the ductile fracture mechanics

W. SZCZEPINSKI (WARSZAWA)

SLIP-LINE TECHNIQUE is used for the analysis of the ideally ductile interaction between internal
defects in metals close to the external surface of the body and that surface. During plastic defor-
mation of the body local reduction of the working area to a point may occur. Such a separation
of the material is referred to as the ideally ductile fracture.

1. Introduction

THE MECHANICS of ductile fracture in metals is complex and not yet fully examined.
Depending on the temperature, which in some cases (rocket engines, gas turbines,
chemical installations) may be very high, on the rate of deformation and on the
internal structure of the metal itself, various mechanisms may play a crucial role in
the fracture process understood as a process leading to a total or local separation
of the material. Coalescence of voids, various mechanisms of interaction between
internal defects, interaction between such defects and external surface of the body
may contribute to the progressing process of ductile fracture. Ductile fracture
processes cannot be analysed in terms of the brittle fracture mechanics based on
the assumption of the elastic model of the material.

In numerous theoretical studies the model of the elastic-plastic material has
been used for numerical calculation of the propagation of plastic zones at the
front of the crack. Usually such calculations are performed with the use of the
FEM technique.

In most commercial metals the fracture mechanisms is accompanied by both
the ductile and brittle phenomena. The interaction between the two factors is
complex and still not fully examined. Depending on the circumstances, either
brittle or ductile phenomena are dominating during the course of the fracture
processes. In some cases both of them play almost the same role. In the extreme
cases plastic phenomena may prevail and the fracture consists in reducing the area
of the critical cross-section of the body to a point as the result of the process of
local plastic flow. Such a local separation of the material will be referred to as
the ideally ductile fracture. It may be interpreted as an extreme contrast to the
ideally brittle fracture which is not accompanied by any plastic deformation.

Numerous problems of ideally ductile fracture can be analysed by using the
standard slip-line technique based on the assumption of an idealized rigid-plastic
model of the material. It has been shown, for example in a previous paper [1], that
in the presence of certain systems of defects the ductile fracture mechanisms may
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lead to a total separation of the material, even when its total plastic deformation is
rather small. Interaction between variously oriented systems of cracks or defects
was analysed in [2] also with the use of the slip-line technique.

In the present study we shall analyse, using the slip-line technique, certain
configurations of cracks and voids interacting with the external surface of the
body. It will be demonstrated that the plastic deformation process leads to the
local separation of the material even in such cases when a linear crack is oriented
parallelly to the surface of the body under uniaxial tension. A crack of such
orientation does not play any role in the brittle fracture theory.

2. Interaction between a linear crack and the surface of the body

Let us begin with the particular case important for the mechanics of ideally
ductile fracture when a linear crack of the length 2a > m is parallel to the
stress-free surface of a half-space subject to uniaxial tension (Fig. 1a). The process
of plastic deformation will be analysed under plane strain conditions. Thus it will
be assumed that the thickness in the direction perpendicular to the plane of the
figure is large as compared with the characteristic dimensions m and a. Since the
plastic deformation is strongly localized, only a certain domain A — B - C - D
indicated in Fig. 1a will be analysed in the following figures.

SO T RO

FiG. 1.

In Fig. 2 the complete slip-line solution to the limiting case when m = 2a is
presented. The mechanism of plastic deformation consists is rigid blocks motion.
Initial configuration of slip-lines constituting simultaneously the lines of velocity
discontinuity is shown by dashed lines in Fig.2a. In Fig. 2b is presented an
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advanced stage of plastic deformation. In the ligament between the crack and the
external surface the well-known ideally plastic symmetrical necking takes place.
We shall not discuss the details of the theoretical solution to this necking process
since they are given in other papers (cf. e.g. [2]).

For that part of the material which is located to the right of the crack, an
infinite number of complete solutions satisfying all the static and kinematic con-
ditions can be constructed. However, that of them which is shown in Fig.2b
requires the smallest energy expenditure to carry out the deformation process.
In this particular solution the plastic deformation consists in localized shearing
along the two slip-lines L — M and K — M, while the triangular region K LM
moves to the right as a rigid block. Such a shearing mechanism can occur in the
ideally plastic material without fracture (cf. e.g. [3]). Solution of this type looks
rather artificial, even within the ideal plasticity theory. However, it can be viewed
as a limit case of more realistic solutions such as that shown in Fig.3, where a
shearing band of a finite width is formed.

ol
sl
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N
T
A

A

Fiac. 3.

The necking process in the ligament leads finally to the local separation of the
material as shown in Fig. 2c.

For short cracks when 2a < m the solution must be modified. The initial
configuration of slip-lines for such a case is shown in Fig.4a. Contrary to the
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previous case, now this configuration is not symmetric. An advanced stage of the
deformation process shown in Fig. 4b was reached by assuming the mechanisms
of rigid blocks motion. On both sides of the crack the mechanism consists in
localized shearing along particular slip-lines. As before, such a deformation mode
should be treated as a limit case of other more realistic possible solutions when
shearing bands of finite width are formed. Note, however, that the particular
solution from Fig. 4b requires the smallest energy to carry out the process of
plastic deformation.

From the moment when the sectors P — R and S —T reach the same length, as
shown in Fig. 4b, the symmetrical mode of necking may be assumed. This second
stage of the process leads finally to the local reduction of the working area to
a point, as shown in Fig. 4c. Geometrical parameters of the whole solutions are
shown in Fig. 5.

3(+m-a)

Fia. s.

Total separation of the ligament shown in the figure takes place when the
plastic elongation of the whole body reaches the value 2d = m. The initial end
points K and L of the crack are shifted then to the new positions A" and L’. The
initial triangle k' — L — W shown in Fig.4a has moved during the initial stage
of the deformation process to the left, sliding along the shearing lines L' —
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and K’ —T to assume the configuration shown in Fig. 4b, when the two segments
P — R and S — T are of the same length. The segments A — P and B — R of the
external surface are, after the initial stage of deformation, inclined at the angles

a = arc tan% = 18°26'

to the vertical direction. The final stage of the necking process is symmetrical,
being identical with that shown in Fig. 2.

This type of slip-line solution may be used also in other cases of the ideally
ductile fracture mechanics. An example is shown in Fig.6 when a plastic strip
weakened by a short (2a < m) crack parallel to the longitudinal direction is
loaded by uniaxial tension. In the theory of brittle fracture mechanics such a
crack has no influence on the behaviour of the strip loaded, as shown in the figure.
However, when the problem is analysed in terms of the ideally ductile fracture
mechanics, such configuration of the crack leads to the local strain concentration
and, finally, to the total separation of the strip.

ti1eyyd

EERERE

FiG. 6.

Complete solution to this problem composed of two slip-line solutions of the
type shown in Fig.5 is presented in Fig.7a. A portion of the solution corre-
sponding to the stage of deformation when symmetrical necking begins, is shown
in Fig. 7b.

Analogous solutions may be used for the analysis of the ideally ductile fracture
for such cases when the internal crack is perpendicular to the surface of the body
(Fig. 1b) or is inclined to it.
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3. Interaction of a cavity with the surface of the body

Consider now an important case of interaction between the external surface
of the body and a cavity located at a short distance from that surface (Fig.8).
The stress distribution in the elastic state around a circular hole lying close to the
boundary of a semi-infinite plate loaded in tension was analysed by G.B. Jeffery
and later by R.D. MINDLIN [4], cf. also [S]. The maximum stress occurs on the
hole boundary at point £ nearest to the straight edge. From that point plastic
zones will begin to propagate if the value of the maximum stress reaches the yield
point.

Analysing the problem in terms of the ideally ductile fracture mechanics, we
shall assume as before the rigid-plastic model of the material. We shall analyse a
certain domain A - B —C - D indicated in Fig. 8, because the plastic deformation
is strongly localized.

http://rcin.org.pl
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In Fig.9 the complete slip-line solution to this problem is presented. The
mechanism of plastic deformation consists in rigid blocks motion. Initial configu-
ration of slip-lines is shown in Fig. 9a. In Fig. 9b is presented the advanced stage
of plastic deformation, when the width of the ligament between the hole and
the external surface of the body was reduced to zero. The deformation in the
ligament itself has been shown in the figure only schematically. However, it has
been analysed according to the solution of the type shown in Fig.5 by assuming
initially a small value of the dimension 2a.

Deformation mode of an experimental model corresponding to the above
theoretical solution is presented in Fig.10. On the left is shown the specimen
made of a rolled bar of an Al-2% Mg aluminium alloy in the state before the
test. The thickness of the specimen was five times larger than the width of the
ligament between the hole and the edge. Thus the deformation mode was close
to the plane strain conditions. On the right-hand side of the figure the specimen
after tensile loading up to the stage corresponding to that in the slip-line solution
(Fig. 9b) is shown. It can be seen that the predicting ability of the slip-line theory
is satisfactory when applied to the problems of the mechanics of ductile fracture
of metals. Enlarged part of the fractured zone (Fig. 11) shows the similarity of
the real fracture mode to that predicted by the theoretical solution.

A similar test was performed with the use of a specimen made of the same
material but with two holes drilled symmetrically close to the edges. The spec-
imen after tension test is shown in Fig.12. Note that plastic zones shown in
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the photograph as white bands caused by reflection of the light from the slightly
deformed surface, coincide with the corresponding shear bands inclined at the
angles of 45° which have been obtained in theoretical solutions. In spite of cer-
tain differences caused by the strain hardening effect neglected in the theoretical
slip-line solution, the general layout of deformations is similar.

4. Final remarks

The theoretical slip-line analysis of the mechanisms of ductile fracture in the
presence of internal cracks or voids close to the external surface of the body shows
that during plastic deformation strong local strain concentrations appear, leading
to the local reduction of the working area to a point. Such local separations of
the material is referred to as the ideally ductile fracture. Simple experiments
show that such fracture mechanisms are of real practical significance.
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Reflection of oblique shock waves in Murnaghan material

S. KOSINSKI (£6DZ) and B. DUSZCZYK (GOLD COAST)

THE SEMI-INVERSE METHOD of solution is used to examine a 2-D reflection problem for a finite
oblique shock wave reflected from a plane boundary of a half-space filled with Murnaghan material.
The incident wave is assumed to be a longitudinal plane shock wave. There are, in general, two
reflected waves, each of them can be a simple wave or a shock wave. Using a perturbation
procedure, the equations for the wave fronts of the reflected waves from a clamped boundary are
derived. A numerical analysis of the reflection solution shows that each pair of the reflected waves
consists of one simple wave and one shock wave. For small values of the angle of incidence the
first reflected wave is a shock wave and the second one is a simple wave; the order is reversed for
the incident angle passing through a certain transition value.

1. Introduction

WRIGHT IN HIS PAPER [11] on reflection of an oblique finite shock wave at a plane
boundary of a nonlinear elastic solid presented a general procedure for combining
the reflected simple (or shock) waves to obtain the reflection solution. In this
procedure (often referred to as a semi-inverse method) it is assumed that, if the
angle of incidence does not exceed a certain critical value (which, in general,
would depend on the incident shock strength, the initial state of the solid, the
material properties and the boundary conditions), then the reflection solution
consists of a family of plane simple waves [12], centred on a moving line of
contact between the incident wave and the boundary. Each wave in this family
connects a fixed state ahead of the wave with a one-parameter family of states
behind the wave. In anisotropic solids there are three possible reflected waves, so
that a sequence of such waves connects the state behind the incident shock with a
three-parameter family of states adjacent to the boundary. In general, there are
three independent boundary conditions from which the parameters specifying the
reflected waves can be determined. The assumed solution pattern reduces the
reflection problem to an initial-boundary value problem for a system of ordinary
differential equations governing the variation of the deformation gradient and
the velocity fields in the region of simple waves. Its solution determines the
wedge-shaped regions of simple waves and the distribution and strength of the
wavelets within each wave. If the assumed reflection pattern fails the admissibility
test, it is modified to include shocks as well; for shocks, the reflection problem
is then reduced to solving a system of algebraic equations for the direction of
propagation and strength of the reflected shocks.

We will apply the semi-inverse method to study the reflection problem for a
plane shock wave incident on a plane boundary of an elastic half-space. The
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medium initially is unstrained and at rest. Bearing in mind the complexity of the
analysis of finite amplitude waves in nonlinear solids, we confine our attention
to a special kind of an isotropic compressible elastic material of second order
[9]. The motion is assumed to be plane strain and hence the reflection solution
pattern should include only two reflected waves, both centred on the line of
incidence.

Section 2 contains a summary of the necessary theory and derivation of the
propagation condition for shocks and simple waves. In Sec.3 a description of
the incident shock, the constant state of the region behind the shock and the
assumed solution pattern is given. An approximate reflection solution, derived
by using a perturbation method, is presented in Sec.4, and a numerical analysis
of the solution is conducted in Sec. 5.

2. Basic equations
The motion of the continuum is given by a set of functions
(2.1) T; = .’!:,‘(.XO,I),

where (z1,z3,z3) and (X, X, X3) are the coordinates of a iaterial particle in
the present configuration B at time ¢ and in an unstressed reference state Bp,
at t = 0, respectively, both with respect to a global Cartesian coordinate system.
The deformation gradient and the particle velocity are denoted by

Oz, . _  _ Oz,
(2:2) Fiy =% = ax. Ei=u = o

It is assumed that det(F) # 0. It is also assumed that the material is homogeneous
and hyperelastic. The Piola - Kirchhoff stress tensor for such materials is

= do
23) Tia = P

where ¢ = o(F)(") denotes internal energy per unit mass in By and p, is the
mass density in Bg.

If the stress and velocity fields are differentiable, then the equations expressing
balance of momentum and moment of momentum are

(24) Tia.a = Pr ﬁi 5
(25) FiaTja = FjaTia-

(Dndex notation as well as direct notation will be used when convenient.
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Simple waves

Simple waves are defined (VARLEY [10]) to be regions of space-time in which
all field quantities are continuous functions of a single parameter. This means that
in the region of a simple wave all field quantities can be expressed as functions
of one of them. Hence, if one of the field quantities is constant in this region,
the remaining quantities are also constant throughout this region.

It is known (cf. [10,11]) that simple waves are one-parameter families of
planes

(2.6) 9(7) = Na(7)Xo0 = U()t

called wavelets, propagating at speed U(y) in the direction of the unit vector
N(7). Equation (2.6) defines implicitly the wave parameter 7 as a function of X,
and t : v = ¥(X,,t). We have then

V.o
| Ayl

and the equation of motion (2.4) and a compatibility condition in the region of
simple wave are now

(2.7) No(y) =

(r)Tio-
dF;s

(2.9) Fig = dyg,

(2.8)

.
pu; P,

Fig¥a

where the prime indicates differentiation with respect to . If b# 0, Egs. (2.8)
and (2.9) can be rewritten in the form

(2.10) (Qi; — pU%ij)u: = 0,
(2.11) UF), + ufJ-Na = (),
where

(2.12) Qi; = OiajpNaNp

is the acoustic tensor and

0%c

(2.13) OiajB = m

are the material elasticities. For simple waves to propagate it is necessary that
the eigenvalues of (J;;, that is the roots of the equation

(2.14) det(Q:; — pU%6;) =0,

are real monotone functions of the wave parameter (cf. [11]).
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Shock waves

If the functions (2.1) are continuous everywhere but have discontinuous first
derivatives on some propagating surface Y'(X, () = 0, Egs. (2.4) must be replaced
by the jump conditions on this surface [9]

(2.15) [Tia]lNa = —pVI[uil,
(2.16) [Fia] = aiNo [w.] = —a;V.

Such a surface is called a shock wave. Vector N is a material unit normal to the
wave, V' is the speed of propagation along N and a is the amplitude vector of the
jump. The square brackets indicate the jump in the quantity enclosed across the
surface; thus

[1=()° - ()F,

where the letters /' and B refer to the limit values taken in front and rear sides
of ¥, respectively. Eliminating the velocity jump [u;] from Egs. (2.15) and (2.16),
we obtain

(2.17) [TilNaNs = p V[ Fig).

Since T is a given function of the deformation gradient, Eq.(2.17) represents a
system of nine equations for F2, in terms of I, V and N.

The propagating shock wave is assumed to be stable. With no thermal effects
included in the constitutive equation (2.3), criteria other than the thermodynamic
one should be considered to determine the shock stability. According to Lax [4],
for a shock wave to be stable it is necessary that it must travel faster than the
corresponding type of acceleration wave ahead of the shock and slower than the

corresponding type of acceleration wave behind the shock.
Plane longitudinal shock wave

For plane longitudinal shocks equations (2.17) can be considerably simplified
by a suitable choice of the coordinate system. Without loss of generality we can
choose the coordinate axes such that the wave normal N is (ref. Fig.1)

(2.18) N = (sind, — cosé,0).

Since for a longitudinal shock to be stable it is necessary that the parallel vectors
N and a have opposite directions (cf. [6]), that is

(2.19) N = -a/a,

where a = |a| is the shock strength, we conclude from Egs. (2.15) and (2.16) that
(2.20) [Fia] = —aN;N,, [w] = aV N;,

(2.21) Vim ﬁi[Tia]N,-No.

Pra
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X

F F
@ ; :’;d
F

X?:is 7/ Ea_ = 5i¢z
N,=(-sin 8,-c0s&,,0)

o<

N=(sin@ -cos@
N=(1-t,0)

H,=a(-sinq,cosE,,0) B

Utp) %,

FiG. 1. Incident shock and assumed reflection pattern.

Thus, the region behind the propagating shock is in a state of plane strain defor-
mation specified by

(2.22) F§ = Ff —aNiN,,
(2.23) uf = ul +aV N;

and, for a fixed state of the region in front of the shock and a fixed direction
of propagation N, completely determined by a single parameter a, the shock
strength.

Simple wave in plane strain

Suppose a simple wave (2.10) propagates through a region of constant state
given by Eq.(2.22) in the direction of its unit normal

(2.24) N()\) = (sin 6()), — cos #()), 0).

Since in a plane strain deformation the components Q3; = Q;3, i = 1,2, of the
acoustic tensor (2.12) are zero and since Q33 — p,U? is arbitrary (because of
uy =2 0), the propagation condition (2.14) is reduced to a quadratic equation
in U*:

(2.25) det(Q:; — prU%;) =0, ij=1,2.

3. Incident shock

In general, a propagating wave incident on a boundary of an elastic medium
does not meet the boundary conditions. If it is the only wave, the medium is not
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in a state of dynamic equilibrium; this is the reason for some additional waves,
called reflected waves, being formed in association with the incident wave.

Suppose the incident wave is a plane longitudinal shock wave, as described
in Sec.2, and it is propagating through an elastic half-space X, > 0. The angle
of incidence 6y € (0,6.) on the boundary X, = 0 and the shock strength a are
known, and the material region ahead of the shock is unstrained and at rest:
(3.1) FE =8, uf mif=oF=T,=0.

Then, the constant state of region 3 just behind the shock (ref. Egs. (2.22) and
(2.23)) is completely determined by

1—asin?fy asinfycosby 0

(3:2) Fg) = | asinfgcosfy 1—acos?fy O |,
0 0 1
(3.3) ufly = (sinfy — cos by, 0)aVp

with speed Vj given by formula (2.21); the critical angle 6, (< 7 /2) will be specified
later. The problem now is to find out what combination of additional waves is
required in order that the appropriate conditions at the boundary behind the
incident shock should be satisfied.

Reflection pattern

To solve this problem we will follow a procedure proposed by WRIGHT [11].

The reflection solution is assumed in a form of a sequence of simple waves
centred on a moving line of incidence (point O in Fig. 1). This sequence of waves
connects the state just fixed by the travelling incident wave with the constant state
adjacent to the boundary, compatible with the boundary conditions. Since the
motion is restricted to plane strain, only two such waves are possible. Each wave
is specified by a single parameter, so there are two parameters, say v; and 77, to
consider and there are two boundary conditions to satisfy.

Suppose a simple wave (2.10) is centred at point O on the X; axis (Fig.1)
and travels through the region of constant state specified by Egs. (3.2) and (3.3).
The wavelet normal (2.24) varies with the wave parameter v, and the corre-
sponding family of wavelets can be depicted as a wedge-shaped region in the
(X1, X2)-plane, connected with the boundary at O. For such case g(y) = 0 in
Eq.(2.6). Since point O moves along the boundary with speed

(3.4) Vi, = Vp/ sinfy ,
the normal speed of the wavelet at angle 6(7) is

(3.5) U(y) = Visinf(y)
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and Eq. (2.6) which determines the wavelet planes may be written
(3.6) Xysinf(y) — Xacos6(y) = Vitsin (7).

It is expected (causality requirement, (cf. [1], p.165)) that the reflected waves
will propagate away from the boundary, hence

(3.62) g <O(y) <.

Let us denote
(3.7) 7 = cot (7).
We have then from Eqs. (2.24), (2.10), (2.11) and (3.5)
(3.8) N = N/siné(y) = (1, -7,0),
(3.9) Qi — prViE6i U, = 0,
(3.10) VuFL, + u'N, =0,

where 1,5 = 1,2, (:),-J- = 0i0;sNoNs, and Vj is independent of 6(y) (ref.
Egs.(3.4)). At every point in the wave region the following conditions must be
satisfied:

(3.11) () = det(Q;; — paV326i;) = 0,
(3.12) ul = kr;,

where 7(7) is a fourth degree polynomial in 7, r is a right eigenvector of the
acoustic tensor Q = sin®#(v)Q associated with a particular root 7, and k is a
scalar function of the deformation gradient; it is convenient to assume that r is
a unit vector. The corresponding eigenvalue of Q, the characteristic speed of
the simple wave, is prV}?/(1 + 72). Thus, if 7 and r correspond to the reflected
simple wave under consideration, then by Eqgs. (3.12) and (3.10) we have

(3.13) W=kr, F=-VroN.

Each simple wave is completely described by a one-parameter set of func-
tions, the variation of which is governed by the above system of ordinary differ-
ential equations. Since the velocity and the deformation gradient are continuous
throughout the regions behind the incident shock, the initial values for Egs. (3.13)
are the constant values of the region in front of the wave. The constant state of
the region just behind the wave is fixed by the values at the trailing edge of the
wave.

A detailed discussion and geometric interpretation of the roots of 7(7) can
be found in [11]. Here we shall only state that for a simple wave to propagate,
7 must be a real decreasing function of y € [0,7]; this means that its wavelets
(rays) diverge with increasing v (ref. Eq.(3.7)). If 7(y) increases, then the
assumed reflection pattern should be modified to include shocks as well.
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4. Shock reflection in Murnaghan material

Further analysis of the problem described in Sec.3 is restricted to a special
kind of second order elastic material, called Murnaghan material. According to
MURNAGHAN [7], the internal energy function o for isotropic compressible elastic
materials under moderate strain can be approximated by

(4.1) P 1+2m(11_3)3+ /\+2,u+4m([1_3)2+ 8 +n(ll _3)
24 8 8
m 40+ 1 n
—Zh =N -3 - T2 -3+ gl - 1),

where Iy = By, I = Z_I(B,‘,‘Bjj — B;jBi;), I3 = det(B;;) are the invariants of
the left Cauchy-Green strain tensor B, A and p are Lamé coeflicients, and /,
m, n are the elastic constants of second order. In view of Eq.(3.2), for a fixed
shock parameter 6, o can be seen as a polynomial function of the other shock
parameter, the shock strength a.

Numerical analysis (cf. [6]) shows that only shocks of a relatively small (of
order up to 10~3) strength can propagate in materials defined by Eq.(4.1). It
is reasonable then to consider perturbation methods as a means of finding an
approximate solution of the reflection problem.

We assume now that the half-space X, > 0 is filled with Murnaghan material
(4.1). Expanding Q, V;? and r in powers of a and retaining the linear parts only,
we have in region 3

N P 0 1
(4.2) Qij = 0iajgNaNg =Q;; +a Q5 ,
0 1
(4.3) Vi=vi+avi,
0 1 0
(4.4) r; =r; +ar;, rl=|r|=1,
where
0 A+ 2u+ptt —1(A+p) 0
(4.5) Q= —r(A+p) A+ 2u+ pr? 0 ;
0 0 (1 +72)

and the non-zero elements of matrix (1) are
qlzu = —(¢y + 2¢25in® 6y + 27y sin by + 72¢3),

(4.6) ?12 = Cl?z1= (1+ %) ¢y sinfgcos by + (&1 + o+ m)7,
Qun = —(¢3 +2rgysinfgcosfy + (61 + 262 cos” 6)),

1 n 2 n .9 5
Qi = —¢3+ (Z,u + 5) cos” by + (—053 + (ZN + f) sin” 90) T
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and
“.7) o1 = A+ 2, ¢ = A+ 3u+2m, d3 = A+ 2u+ m.

We note here that the (33 component does not contribute to the setting of
the problem and it will be ignored in the further steps.

Substituting Egs. (4.2), (4.3) and (4.4) into Eq.(3.9) and using Eq. (3.12), we
obtain

(4.8) ((& +a 6) — Pl (‘l{/)i+a‘/l%> I) (?’+a }‘> =0

and subsequently

0 0 2
(4.9) (Q —pr V3D
1 1 0
(4.10) (Q=pp VI F+(Q —pp VIDT=0.

Equation (4.9) can be easily solved to obtain the eigenvalues and eigenvectors in
the zero-order approximation

=0,
0

0, 2 2 0 ( 1 T )
V = ¢ (1 + 1), r = , - L0,
4.11) = G+ U \VTr 2 i+
' 0 T 1
P2, = (1412, = ( , .0),
" r( V1i+712 V1412

where ¢2 = (A + 2u)/p, and c?r = y/p,, are the squared speeds of infinitesimal
waves in linear theory. The directions 6; of propagation of the reflected waves in
zero approximation can be now found from Eq. (3.4) after substituting Eqgs. (4.11).

Two pairs of solutions + % are obtained, but only the negative solutions corre-
spond to the reflected waves (cf. [11])

- . 2 12
7[-]1 = cotf; = — ( L_O ) -1 .
| \c, sinfy
4.12
(4.12) 0 o
Ty = cotfy = — ( g ) -1
|\ ¢ sinfy ]

We note here that since Vy > ¢, > ¢, both solutions are real for arbitrary values
of the angle of incidence, and that ¢ < 6,.

To find the coefficient I/l,% in Eq.(4.3) we pre-multiply Eq.(4.10) by (n)'l-;

.0 . ; 1 0 0, .0
matrix Q is symmetric, so the second term can be written as r; (Q —p, Vi,

http://rcin.org.pl
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(no sum) and by Eq.(4.9), it is equal to zero. The remaining term gives

1 1
g (Q —Pr V%“.I) 7:= 0, and hence

1, 0 10 .
(4.13) prVii=ri-|Qri], i=1,2 (no sum).
The first term in Eq. (4.10) is now known. Denoting it by z;:
1 1

(4.14) zi = (Q—-p, VED T
we obtain a nonhomogeneous system of linear equations for the unknown vec-
tors ll','

0 0 2 1
(4.15) (Q —pg ViD= —2;.

To solve Eq. (4.15), first we replace }'; and z; by their linear combinations of 9-,-:

1 0 0

(4.]6) r= (11'_,’ l‘j 5 zZ, = ﬂ,‘j I‘J 5
0 0 0 0

(4.17) @ —pp ViDay rj= =B 15 .

Then, the first equation in Eq.(4.17) is pre-multiplied by (112, and the second
equation by 10'1. Noting that

0 0
(4.18) ?',- . (Q?‘g) = pg Vi (no sum)
and using Eq. (4.9), we can write the resulting equations for ¢ # j in the form
0 0
(4.19) Pr (sz— V%;) = [ (no sum)

and oy, oy are arbitrary; it is convenient to assume a;; = aj; = 0. The coef-
. . . . 0 .
ficients 3;; are determined by Eq. (4.14). After inserting z; = 3,1y in Eq.(4.14)

and pre-multiplying the resulting equation by E-j we obtain

0 1 1 0
(4.20) Bij =i+ (Q-p VLD T .
The required in Eq.(4.19) coefficients 32, 821 are

(4.21) Biy =By =h - (6%’2)
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and hence

0 1o
ry- (Ql‘z)
(4.22) ap = —a = 0 0 .
b (Vh- V)

Finally, after substituting Eq.(4.22) into Eq.(4.16) and then into Eq.(4.4), we

‘ ' —_— . . 0
obtain the linear approximation of the eigenvectors r; expressed in terms of r;

(423) I =(])'1 +aaq; ?‘2 . r; =9‘2 — ) ?’1 .
We note that ry - r; = 0 and |r;]2 = 1 + a2ap =~ 1.

So far the quantities (4.2)-(4.6) have been expressed as functions of the
yet unspecified values of the parameter 7 = cotf(y) defining the propagation
direction of the reflected wave. As in the case of zero approximation, we will use
the centred wave condition (3.4) to establish the equations determining 7. We
have now two equations to consider

(4:24) P +avi i=1,2

Sifl2 90 ’

which, after using Eqgs.(4.11), (4.13) and (4.5), (4.6), take up a form of two
polynomial equations in 7;

4
p(n) = g(rl) + (J,ZIJ(TI) . Z (pk +a]1’k) Ti‘: =0,
(4.25)

0 1 470 1
() = qg(m)+aq(n)= Z (qk +a qk) 5 =0,

where r}" is the k-th power of 7; and

Ps = A+ 2, Ps = —(¢1 + 2, cos? bp),
1?’3 = g|= 0, ;ZJ; = }111= —4¢, sin By cos by,
Py = 2X+4u— p V2 sinby, Py = 2(2 - p),
@.26) §o = A+ 2u— p V@ sin? 6y, i;o = (61 + 26, 5in*p),
94 = W, 94 = —¢3,
83 = 81=0, (}3 = f}1= 0,
32 = 2u — pV#/ sin® 6y, (}2 = —¢y + 21+ 2m — ¢ cos? by,

Go = p— pgV{/sin by, Qo = —¢3.
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The solutions 7;(a) of Egs. (4.25) are assumed in the form
(4.27) r(a) =% +at;, i=1.2,

where 79,: 7;(0) is given by Eq.(4.12). Substituting Eq.(4.27) into (4.25); and
using Eq. (4.26) we obtain

(4.28) p (7(')1 +a Tll> = p(T) + (T )aTy = 0,

(4.29) P+ (}) (i %12'(91)) a'= D

where the prime denotes differentiation. The first term in Eq. (4.29) is zero (ref.
Eqs. (4.11)) and the second term yields

10
(4.30) f= 20
0
P(T1)

In a similar way we find the remaining unknown coefficient in Eq.(4.27)

1 0
(4.31) fo= _% .
q'(T2)

We now examine the solution of the differential equation (3.13).

Let the i-th reflected simple wave be specified by the parameter v, € [0.7,]
where 7; = 0 indicates the leading wavelet and 4; = 7, indicates the trailing
wavelet of the wave. It will be shown later that v, = O(«) for small (but finite)
a. By definition, all field quantities in the region of simple wave are continuous
functions of the wave parameter. Following the perturbation procedure used
here, each such quantity is represented by its linear approximation [8]. Denoting

2
by H(v;) a typical field quantity, we have then: H(5,) = H(0) + v, * where H(0)

2
is the value of H in the preceding region and ¥ is to be determined.

First reflecied wave

We have then in region 1:
2 2 ~
(4.32) ugy(71) =u@y+ 7 uqy, Fay(m1) =Fay + 11 Foy, 0<m < 5.
2 N
(4.33) () =n+771, 0<y <.

The leading wavelet is determined by Egs.(4.27) and (4.30). Substitution of
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Eqg.(4.32) into Eq.(2.10) leads to the following system of equations:
~ 2

(4.34) (Q(0) - p VA (O ugy= 0,
2 Y ~

(4.35) Foy= -Via' uq) @Ngy

. 0 1 0 1 ~ 0 1

where Q(0) =Q +a Q, V2(0) =V} +a V? and Ng) = (1,— (rl + Tl) ,0).
The eigensolutions of Eq. (4.34) are now independent of the wave parameter and
Egs. (3.13) can be easily integrated.

A particular choice of the coefficient k in Egs. (3.13) affects only the parametri-
zation of the wave. It is convenient to retain k as an arbitrary scalar, but with
opposite sign; we will use it later as a scaling factor for the wave parameter 7.
We have then for the i-th wave:

(4.36) U(,’) = —kr;, FE,‘) = kvh_,'lri ® I/\\J(i) .

The initial conditions for the differential equations (4.36) describing the first
reflected wave are provided by the constant values of the region behind the
incident shock (region 3). Thus, integrating the first equation (4.36) (i = 1) with
respect to v; and using Eq.(4.32) we obtain

(437) u“)('y]) = —"‘/ﬂﬁl‘l + U(3) s F(l)(’?’l) = ’ylk""h_llr] ® ﬁ(l) + F(3) s
DL <

The acoustic tensor, the eigenvalues and eigenvectors in region 1 are assumed
in the form

- 0 1 2
(4.38) Q=0Q+aQ+7,Q,
0 1 2
(4.39) VE = Vii+avii+m Vi,
(4.40) r; = ?‘,- +a lt‘; +7 lz‘i .

2
The non-zero components of Q, calculated from Egs. (4.1) and (4.2) after substi-
tuting Eq. (4.38), are

2
Qu= (¢1+2¢2) Fliyi + 1 Fliya = 2((+ m) F{iygy + (2 — = m) Fyy10)7
+3(Fyn + Flyp)™? s
2
(441)  Qxn= ¢s(Fiyn + Fuy) — 2((n + m)Fyp + (02 — p = m) )7
+(¢1F(’1)11 + (o1 + Zfi)z)f}':)zz)Tz )
2 2
Q12=Q21= (d2—p—m) F{1yp1+ (tm) Fyyip— (01 p+m)(Fyyn+ Fiyz)T
+((¢2 — p — 171)17’('1)]2 + (i + 11:)]-’(’1)21)7'2 '
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2
(1) are given by Eq.(4.36). To find V£, and F we

consider equations (3.9) and (3.12), with Q, V2 and r replaced by expressions
(4.38), (4.39) and (4.40). We have then

(4.42) (((0) +a 6) ~ Pr (19%,,- ta x}i,-) I) (9‘ +a .‘-,-) =0,
(4.43) ((2) —Pxr 15%,,—1)(9-,- +a 11-.) + ((6 +a (1)) e (19%“- +a 1}%”-) I) F= 0.

Equation (4.42) is satisfied identically (ref. Eq.(4.8)). Then, following the steps
as in Egs. (4.13)-(4.23), and retaining only the terms linear in a, 5;, we obtain
from Eq. (4.43)

where the components of F;

2 2 2
(4.44) pr Vi =9-,- . (Q(l)',') + 2a 9'1- . (Q}-i) (no sum),
2 _ 0 2 0

(4.45) r=apr, = -apr,
where

0 20

r - Qrp
(4.46)

The second terms in Eq. (4.44) become, after substitution in Eq. (4.39), small of
order O(a?), so they can be ignored. The expressions (4.39) and (4.40) are now

0 1 2
(4.47) V2 =t (Q +aQ +7 Q) r (nosum),

0 L0 0 N
(4.48) r; =r; +(aajy + y1a12) 12,4 r, =r; —(aajy + yia2) ry -

The propagation directions of the wavelets in the reflected wave are given by
0 1 2 P
(4.49) n(e,m) =71 +a 7 +711 71, 0<m <.

To find Tzl we will use again the centred wave condition.
Substitution of (4.47) into (3.4) leads to two equations

0 1 2 2
(4.50) ¥ (Q +a Q +1 Q) b= P sz o (no sum)
sin” Gy
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which, after using Egs. (4.5), (4.6) and (4.41), take up a form of two polynomial
equations in 7;:

p(r) = P(r)+ap(n)+mb(n)=
(4.51)

WE

0 1 2
(.’Pk +a Pr +m Pk) le = 0,

>
Il
[=]

N

0 ) 2 0 1 2
g(r2) = G(m)+aq(m)+19(n)= (‘ik +a g +7; qk) 5 =0,

=~
It
=]

0 1 0 1 .
where Pg, Pk, 9k, 9 are given by Eq.(4.26) and

Pa = ¢1F(yy + (61 + 202)F )y,
9% = ¢3(Fy + Fliym),
py = 12’1= —202(Fyy12 + Fiayar) »
4.2) T =0
Py = 2(Fyy + Fly(dr + ¢35+ m + p),
b = 22— m - W)(Fhyry + Flypo).
Py = (f1 + 262)Fyy1y + &1 F{(y02 5
‘30 = g3(Fyn + Flyn):
Sutstituting Eqs. (4.49) into (4.51), and solving the resulting equation for 72'1 we
obtiin
P (1(0,0)
P/(r1(a,0)) + a P/(r1(a, 0))

(4.93), -

Equation (4.51); is concerned with region 2; its solution

2
(453)2 TZ(a, 7]) =22 +a 712 +v1 7%2 s 722= —r 1 (Tz(a’?))
q'(r2(a, 0)) + a ¢'(r2(a,0))

willbe used in determining the direction of propagation of the second reflected
simole wave.
The final values of region 1, for y; = ¥, define the constant state of region 4:

(4.54) ugy = v (h), Fay = Fy(h1).
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Second reflected wave

Region 2 connects the constant state of region 4 defined by Egs. (4.54) and
the constant state of region 5, adjacent to the boundary X, = 0. Integrating the
second equation (4.36) (+ = 2) with respect to 7, and using Egs. (4.54) as the
initial conditions we obtain

(455)  wg = -mhr+ue, Fo=7V3'knaNg +Fy. 0<12<

with r; and V), subject to a correction due to a change of field values across region
1. The wave normal is ﬁ(z) = (1, —1(a,7,),0), and the corrected expressions for
ry, Vi are given by Eqs. (4.47) and (4.48) for v, = 7).

We have in region 2

(4.56) Q
(4.57) V2

0 12 3
Q+¢Q+7,Q +1, Q,

0 1 2 3
72 r2 ~ 432 N r2
V ht +al h1 + I V hi + 12 ! hi -

3
The non-zero components of Q, calculated from Egs. (4.1) and (4.2) after substi-
tuting Egs. (4.55), are

3 ~/
Q= (1+262) Fop11 + 01F qy0 = 2((e+ m) Fypp + (02— pi=m) Fy0)7
+63(Fayy + Flap)?
3
(4.58)  Qun= d3(Foyut Flayp) =20t m) Foyam+ (@1 F oyt (@14 262) Flaypn)T?,

3 3 . ; W '
Q12=Q21= (p2—p—m)F o1+ (n+m) Floy = (@14 j4m)(Figy i+ F o)) 7

The correct value of the eigenvector r; associated with this region is given by

3
Eqs. (4.48). The correcting term V % in Eq.(4.57) is found from Eq.(3.9), in a
similar way as in the case of region 1:

3 0 30
(459) Pr V,zu- =r;- (Qrz) .

The propagation directions of the wavelets of the second reflected wave are given
by

~ 0 12 3 N
(4.60) (e, 51,72) =T2 ta T2 +§1 T2 +12 72, 0<m<H
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with the last term to be found from the centred wave condition. Substitution of
Eq.(4.57) into Eq.(3.4) leads to the equation

2
Vo
sin® 6,

0 0 1 2 3\ o
(4.61) r;- (Q +aQ +5,Q +72 Q) ry=

which, after using Eqgs. (4.5), (4.6), (4.41) and (4.58), takes up a form of a poly-
nomial equation in 7,

0 1 2 3
(462)  ¢(m)=q(r2)+aq(r2)+7,4(m2) + 724 (12)
S0 12 3\,
= Z G +Ya q +5 9 +y245 ) 72,
k=0

0 2
where ¢y, ék, 4y are given by Egs. (4.46) and (4.55), and

3 303
(4.63) 4 = &3(Foyn + Fapn)s 93=0= 0,

3 , 5 3 : y
(464) @ = 2dp — p—m)(Foy + Fom),s fo=o3(Fou + Fay)-

Substituting Eq. (4.50) into Eq.(4.62) and solving the resulting equation for 732
we obtain

3 -
@ot)  Fym o Pn0) |
q'(m2(a,51,0)) + a ¢'(r2(a, 71, 0)) + 51 7/(12(a,71,0))

The constant state of region 5 is defined by the final values of region 2:
(4.65) uesy = u2)(32), Fisy = F2(32)-

The requirement that this state must meet the appropriate boundary conditions
will provide a set of equations for the two parameters 3, 7.

Boundary conditions

Let us assume that the incident shock is reflected from a rigidly constrained
boundary. This means that

(466) Uis) = 0 on ‘Xz = 0.
Substitution of Egs. (4.65), (4.54) and (4.37) into Eq. (4.66) leads to the equation

(4.67) Fir + Forz = kMg,
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which can be easily solved for 7; (ref. Eq.(3.3)):
(4.68) ¥ = %k_l =r; - Nok~laVp,
where r; is given by Eqgs. (4.23) and r, by Egs. (4.48).
As we can see from Eq. (4.68), a suitable choice of £ can make the values of
¥; and a to be of the same order.

Propagation condition for simple waves

Once the wavefronts in the assumed solution pattern are determined, it is
necessary to test the solution against the propagation condition. This condition,
in the case discussed here, is

(469) Tl((lﬁl) < Tl((l,O), Tz(“,’?lﬁz) < TZ(“* :110)

for the first and the second reflected wave, respectively. The problem is to
establish for what values of the incident shock parameters 6y and a the above
inequalities are satisfied (a) simultaneously, (b) first or second, (c) neither is
satisfied. In event (b) the assumed solution pattern should be modified to include
a shock as well; in event (c¢) the assumed solution should consist of two shock
waves.

Modified reflection pattern

If 7 increases with v, the travelling pencil of wavelets converges to the leading
wavelet, thus forming a shock wave (Figure 2). The corresponding differential
equations (4.36) should be replaced by the jump conditions (2.16)

(4.70) [w] = -Va, [Fia]=-a@Na,

where the unit normal N = (sin 4, — cosf,0), the amplitude vector @ and the
normal speed V of the reflected shock are the quantities to be determined.

Suppose the first reflected wave becomes a shock. According to Eqgs.(4.37)
and (4.55), the jumps of the velocity and the deformation gradient across the
wave are

(4.71) [uqy] = —F1kri, [Fayial = 11V YeriN e -

Also, since the reflection angle # of the shock is equal to the angle 6(0) of the
corresponding simple wave leading wavelet, we have

(4.72) N = sin 0(0)N) .

This means that the reflected shock is longitudinal. Further, from Egs. (4.70),
and (4.71), we find that

[uapn]l @ _
[ugyel @ 2

(4.73)
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0 v, =¥, /sin8,
4 . > VP4

F

£
@LE
-5

T fa

N,=(sin8,,-cos8,,0)

o<

N=(sinG-cos B 0)
N, =(1-1,,0)|T,=1,(a,0)

F1G. 2. Modified shock reflection pattern: the reflection solution consists of a shock wave and a
simple wave.

that is, the vectors @ and r; are parallel. We can write a = +ar, where @ = [a]
is the shock strength. For reason of stability we choose (ref. Eq.(2.19))

(4.74) a= —ar.

Then, using Eq. (4.72) and (4.74) we obtain from Egs. (4.70); and (4.71),

(4.75) a=5V 1+ 72,

where 1 = 71(a,0) is given by Eq.(4.49) (ref. also Eq.(4.27)), and k is selected
positive.

In a similar way we can determine the parameters of the second reflected
shock wave which appears to be a transverse wave.

5. Numerical analysis

The reflection solutions discussed in Sec.4, are examined numerically for a
certain kind of steel and for two values of the incident shock wave strength
a = 0.0085 and « = 0.0045. The elasticity constants of the first and second order
were taken from [6].

The calculations were realized under the previous assumption that the incident
shock is reflected from a rigid boundary and relations (4.65), (4.68) and subse-
quent holds. The expression for the components of the acoustic tensor (4.2) in
the region behind the incident shock wave meets the standard perturbation analy-
sis condition. The Lamé constants and the second order constants have the same
order of quantity, the parameter a — shock strength has the order o(10~3). For



758 S. NoSINSKI AND B. DuszczyK

this reason the matrix a@Q;; can be treated as a small perturbation of the values of
components of the matrix ),;. The form of the expressions (4.32), (4.54) suggests
that the components of the deformation gradient F(3y and F(;, have the same or-
der of magnitude and the parameter 4, < 0. In fact, according to the cases just
calculated and Fig. 6, the parameter 7 fluctuates in the limits +50. The values
of the elements of the matrix F(3, (Which represent the deformation gradient in

the region 3) outside the main diagonal have the order of magnitude 10% greater
than the values of the elements of second matrix in the sum (4.32) Fy,.

Formally the treatment of the problem does not change. The elements of both
matrices differ in the order of quantity so much, that the problem can be treated
as a typical perturbation problem. In order to retain its perturbation character,
we can use a scaling factor for the wave parameter 7. Introducing the scaling
factor equal 77 = 1072, the expression (4.54) takes the form

Fa) = Foy(m) = Fz) + 71 (1/7TF(1)) :

The elements of both above matrices F(3) and F(;)/4] have the same order of
magnitude and the parameter which is in the form of the product 177 < 1.
Figure 3 shows the relation between the incident angle and the final values of

the parameters 7y, 7, for two values of strength of the incident wave (¢ = my).
i;‘:’é‘ T T T T T T
50  —— m,=00085 )
—=— m,=00045
30
B // B
0
&3 ~
10 62° - 1
’/
0 = e
SN
\\ - % Y
=10t ~ e os
~ — P
~ ~"F ~
~ - ! =
- /\,\’ ~ > 4
[ —_ ™ - - ~
-30F e ————— 4
_50 4
1 1 1 I 1 1 1 1
0 10° 30° 500 720° @, 90°

FI1G. 3. Final values of the simple waves parameters as function of the incident angle.

In the plane problem the wave surface consists of two branches. The front
of the first reflected wave intersects the first wave surface (external) at an inci-



REFLECTION OF OBLIQUE SHOCK WAVES IN MURNAGHAN MATERIAL 759

dence angle Oy = 85° for « = 0.0085 and at angle ©y = 80° for « = 0.0045,
respectively, (Fig.4a) and the assumed reflection pattern no longer holds true.
The parameter 7, is equal to zero for the incident angle @¢ = 62° or Oy = 63°
depending on the incident shock wave strength. According to Eq. (4.75), the re-
flected shock wave strength in this case is equal to zero and one of the reflected
waves disappears. According to [5], the front of the incident wave and the front
of the single reflected wave are perpendicular. Compare Fig. 8, for « = 0.0085
the incidence angle ©p = 62°, and the reflection angle for the single reflected
wave @, = 152°, The second equivalence theorem [9] admits the propagation of
the reflected infinitesimal progressive wave for the values v; = a = 0. Tt results
from the numerical calculations that, for small incidence angles, the first reflected
wave is a shock wave (Fig.4b) and the second reflected wave is a simple wave.
If the incidence angle increases, there is a transition in such reflection pattern
for the value of the parameter v, = 0, the first reflected shock wave changes
into a simple wave, and the second reflected simple wave changes into a shock
wave, respectively. Figure 4b presents a graph of the reflected shock strengths
@1, a, as functions (ref. Eq.(4.75)) of the incident angle. The dotted curves in
the graph are representative of simple waves. In the case treated here there is
no possibility to obtain the reflection pattern in the form of two reflected simple
waves for any value of the incidence angle. Some of the results presented here for
Murnaghan’s material agree with the results obtained by Y. Lt and T.C.T. TING
[5] for a different class of hyperelastic materials. The value of the incidence angle
at which the transition in the reflection pattern from shock to simple wave takes
place is the same as in [5], for the incident shock range considered here. Figure
4a presents the difference in values of the cotangent functions, for angles fixing
the position of the extreme wavelets in the second (1), and first (/) reflected
simple wave, respectively.

Both graphs are in the same figure. The ordinates of graph .1 have the
multiplier 10-% and the ordinates of the graph B — the multiplier 10-!. Figure
5 presents graphs for the components of the right proper vectors ry, ry of the
acoustic tensor and polarisation vectors d(a;), d(a,) for the first and second
reflected shock wave.

The solid lines mark the relationship between the proper vector and the po-
larisation vector, for such intervals of the incidence angle, which are connected
with the existence of the reflected shock waves. The other parts of the graphs,
which are marked with the dotted line, are connected with the simple waves in
the reflection pattern. For comparison, in the Fig.5 are shown the graphs of
functions sin © and cos @, when the components are reduced to the proper
vectors in the “zero” approximation. The graphs of these trigonometric func-
tions are shown only for the value « = 0.0085, because of very small differ-
ences for the lower value of incident shock strength. Tt is interesting to no-
tice the symmetry of the graphs for components of the qualitatively different
vectors.
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F1G. 4. a) Angular opening of the “fan” for reflected simple waves; b) reflected shock strength
as function of the incidence angle.

[760]



REFLECTION OF OBLIQUE SHOCK WAVES IN MURNAGHAN MATERIAL

761

a8 [ el
(RIS e d,(a,) ]
562 f2 cos8 | T
o8 )
06 1
sin 6,
04 t
"
& e
O
6= (L),
’ (lail) g
02 e N 1
04 d(d,) .
d,(a,)
sin 8, EYST,
06 _
cos 6, )
08 d,(d,)
L 21 .
10 0 1 1 L L 1 1 R
0 30° 6 50° g0 ¢ a3
F1G. 5. Components of the right proper vectors and polarisations vectors for both reflected
shock waves.

Figures 6 and 7 show the relationship between the components of the de-
formation gradient and the incidence angle. We also note the fact that at the
transition point, when one reflection pattern changes to another, the relationship
remains continuous at this approximation.

Figure 8 presents the dependence of the angles ©, @,, determining the fronts
of the reflected waves (for the approximation (a), m2(«¢)) on the angle of inci-
dence. The graphs for the next approximations do not practically differ in shape
from that presented here, in the assumed scale of figure.

Characteristic in the Fig.9 is the width of region between the two reflected
waves. The graphs are realised by two cotangent functions for angles, character-
istic for wavelets which envelop this region.
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Figures 10 and 11 present the speed of propagation as a function of the
incidence angle. In the two intervals: < 0 — 62° > and < 0 — 63° > for the

6500 T T T T T T T T

U
[msAecl|

6300

6100

5900

1 i | i
30° 500 I\ 70° e  90°
g2° 63°

|
57000 00

F1G. 10. Speed of propagation as a function of the incidence angle.
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F1G. 11. Speed of propagation as a function of the incidence angle.
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incident angle in the Fig. 10 (for the considered here incident shock strength
U(y1 = 0) = 1}), if the incidence angle increases beyond the transition angle,
the inequality U(y; = 0) > U(y;) holds and the “fan” of wavelets in the first
reflected wave can expand. The differences in the propagation speed in the
second reflected wave are so small, that practically U(y,) = U(y2 = 0), Fig.10.

6. Concluding remarks

The initial deformations, and the material region behind the incident wave
front should remain elastic. Hence the discontinuity jump can not be arbitrary
and the appropriate estimate for a — shock strength should be established [6]. In
the elastic materials as described by Murnaghan’s potential, when the incident
shock wave strength is of the order of 103 (treating the problem as elastic), the
expansion into power series of all the quantities describing the wave process in
the body is justified.

The differences in values of the parameters between the unstrained state and
the state after the propagation of two reflected waves are in the limits 2 — 4%
depending of the angle of incidence. The components of the proper vectors are
practically the same for all approximations, Fig.5. The values of the final par-
ameters i, 2 are much greater than 1, but the proposed perturbation procedure
is valid, because all elements of the matrices which are multiplied by 4, and v,
are by some orders of magnitude greater than the values of the basic matrix.

For the value +; = 0 a transition occurs, and the first reflected shock wave
changes into a simple wave (the incidence angle increases), and for the same
angle the second reflected wave changes into the shock wave, and the strength
of it has immediately a finite value. When the fronts of the incident wave and
the second reflected wave are perpendicular, the first reflected wave vanishes and
this angle of incidence simultaneously becomes the angle of transition from one
reflection pattern to another for both reflected waves. When the incident shock
wave strength tends to zero, the solutions are exactly the same as those known
from the linear theory of elasticity.
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BRIEF NOTES

Asymptotic behaviour of derivatives for systems
of second order Ordinary Differential Equations

B. KAZMIERCZAK (WARSZAWA)

IN THIS WORK we analyze systems of the form v = G(&, u,u"), where w € R™ and € € (0, 00). We
prove that, if certain conditions are fulfilled, then every solution v, such that G(co, v(>0),0) =0,
must have its first (and second) derivatives tending to 0 for £ — oco.

1. Introduction

IN MANY APPLICATIONS, When we are dealing with ordinary differential equations
(e.g. in asymptotic theory of nonlinear reaction-diffusion systems), arises a ques-
tion of asymptotic behaviour of derivatives of their solutions. To be more precise,
let us consider a second-order system of ODEs:

(1.1) u" = G(& u,u),

where

wi= (g, ..., Uy x u = (u'l,...,u'n)’r, G = (C'].....,G',L)T. neE Ng.
Let us assume that

(1.2) G(,0,0) =0

and suppose that we have found a solution u(£) such that [[u(£)]] = 0.

Here and below || || denotes the norm on [R"™ defined by

lu(EIl := max{[w ()], . . -, [ua(E)]}-

A natural question arises:

Does the above condition imply that u'(£) = 0?

As one may suspect, this problem is essentially connected with the possibility
of a priori estimating ||u’|| (in terms of ||u||) on compact subsets of the half-line
(0, 00). Thus if

IG(E, u, 2)|| < Clu, 2|1,
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and C(u, 2) is sufficiently small for ||z|| — oo, then for any natural £ and B =
(k,k + 1) we have an estimate

(1.3) Illces) < @ (lullow),) -

where
lullcsy = sup [|w(é)|]
¢eB

with the function @ independent of £ (cf. e.g. [1], Sec. VIII 1-4). This time
a simple argument allows to prove that »/(£) tends to 0 if only u(¢) tends to 0
(for £ — o) (point a of the proof of the Theorem 1). However, condition (1.3)
becomes invalid when C = const (see the counter-example in [S]). In this paper
we are going to prove that even in this case the question has a positive answer.

2. Main result

We have the following theorem:

THEOREM 1. Let us assume that:

H1: G(00,0,0) = 0.

H2: G is of C° class.

H3: there exist real nonnegative numbers M, p, ¥ and C such that for

E> M, Ju]] < p, and [Iz]| > %17
we have
(2.1) 1G(&, u, 2)|| < C|l=]1%.

Suppose that u(€) is a solution of Eq.(1.1), such that ||u(§)||{-_—_»0_ Then
1wl — 0 and also [|u"()]] — 0. =

Proof. Aswe are interested in the asymptotic behaviour of u’ then, without
losing generality, we may confine ourselves in the following proof to £ > M.

a. First we will prove that, if the components of »'(£) remain bounded for
£ — oo, then the theorem is valid. Thus, from Eq. (1.1) we conclude that u}/(£),
k=1,...,nis also bounded. Now, suppose to the contrary that there exists an
index k such that u}(¢) does not tend to 0 for £ — oo. Then, there would exist
a sequence (£); diverging to infinity, such that u}(£;) = v; and |J;| > o > 0. By
choosing an appropriate subsequence we may assume that, for all j, J; is of one
sign, say, positive. As ux(£) — 0, then for every ¢ > 0 there exists / = J(¢) such
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that |uk(€)| < &/2 for all £ > £;. Due to that, the value of uj must decrease from
u}.(€;) to o /2 in an interval shorter than 2¢/0. However, for £ € (¢;,&; + 2¢/0)

2e

2¢
() 2 w(€s) - =5 2 0 - —5,

where S is a bound for ||u”||. For ¢ sufficiently small we arrive at a contradiction.
Ths [[w/()]] — 0 and [[u"(E)]| — 0.

b. Now, let us suppose that the sequence ||z(&)|| = [|[«'(&)| = 95, § =
1,2,...,00, diverges to infinity. Without losing generality we may assume that
¥; > 9 and ||Ju(€)|| < p for all £ > £,. Tt is easy to note that ||2'(€)[| > [[|=(&)|I']
if the derivatives are eventually understood as the right or left ones (comp. [2]
Sec.II1.3 Lemma 3.2). So, from Eq. (2.1) we have ||z(¢)||' < C||z(€)||* and

2.2) 1=l < (1) - e - €)™

1
for all £ > ¢; sufficiently close to &; (i.e. such that [|z(§)[| > 50). From (2.1) we
obtain consequently

-2
(2.2 1@l < Cll=@IF < € (=)™ - Ce - &)

Now, for all j there exist k € {1,...,n}, such that |z£(§;)| = v;. By choosing
appropriate subsequence, and renumbering the components if necessary, we may
take £ = 1 and assume that z;(§;) > 0. (If zx(¢;) < 0, the proof would be the
same). For all sufficiently small ¢ > 0 we have (according to the definition of
J(¢) as in point a)

(2.3) lur(€) —wm(y)| < ¢
forall £,y > &7, J = J(e). As for £ > £;

¢
@4) 216 2 216 - [ 17l dy.
&
then the value of z; according to (2.3) must decrease from zy = z1(€7) to z9/2
in an interval shorter than d = 2¢/z. If ¢ < C'/4), then 5 et > — for all
Z0 20 20

zp > 0. Hence, from Eq.(2.2); forall £ < £; +d, J = J(¢) we have

¢ ¢
2.5) / 12 ()| dy < / C(20) dy < 4C=2d = 4C =e.
& &y
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Let n; > £&; denote the first point, where z; is equal to zp/2. As ny — €5 < d,
then from Egs. (2.4) and (2.5) we obtain

1
(2.6) 5= 1-4Ce.
For ¢ suficiently small Eq.(2.6) cannot be fulfilled, so we arrive at a contra-

diction. Thus ||u'(£)|| p 0 and [|u"(&)|| b 0. The theorem is proved. =

3. Counter-example

The assumption /13 of the Theorem is in a sense optimal, i.e. it cannot be
weakened. To show it let us consider the following system of two equations:

1" ’ 2
uy = Arb(r)(auy + u5) + a“uy,
3.1 .

Uy

1

Arb(r)(auy + u}) + a?usy,

where A\, € RY, a > 0, r2 := (au; + u})?* + (auy + uy)’. We assume that
b e CY0,00), b > 0, b(r) — oo, b(r)r~' is monotonically decreasing and
b(r)yr=1 —— 0. Despite its nonlinearity, the system can be integrated after be-
ing written in polar coordinates. So, if z; := au, + u!, i = 1,2, then rZ = z2 4 s%
and Eqgs. (3.1) are equivalent to:

™y

Arb(r)z + azy,
=Arb(r)z + az.

18]
Il

N~ =~

Then, if z; = r cos ¢, z; = rsin ¢, we obtain the system

!
T = ar,

o = —Arb(r).

The last system has the following solution:

'
r=Sexpad), 6= A [ W)Y+
0

where ¢p and S are constants. Let us take S = 1 and ¢y = 0. Then we obtain

¢

u(© = ()" [ ) cos (~A / r(a’)b(r(o)«zq) dy + Crexp(-af).
0

0

In the expression for u;(£) we must put sine instead of cosine.

http://rcin.org.pl
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Let us make still another change of variables:

¢
s©) = [ 1) dy.
0

Then s may be treated as a function of r:

r(£)
s(r) = s = a7t [ WO dc.
1

As b(r) > 0, then for &, € (0, oc) we have:

ds ds dr ¢ _ =1
oo T Too Eop@ie@I >0

Thus, the expression for u;(£) may be written in the following form:

u1(§(s)) = (r(s)7"! /"‘(8')(b(?'(é"‘)))'1 cos(—As™)ds™ + Cpexp(—al(s))
0

= b(r(s))"" 0/ % cos(=As*) ds* + C) exp(—a&(s))

= b(r(s)) "V I(s) + Cyexp(—ak(s)).
In the integral /(s) let s* := s — 7. Then

sy = ] h(s, n) cos(=A(s — 7)) diy
0

= sin(As) / h(s,n)sin(An) dn + cos(As) / h(s,n)cos(An)dmn,
0 0

where (s = b(r(s))
r(s — mb(r(s
h(s,n) i= ——~——25 .
(1) = s = m))
Now, for J = H/\_l, k=1,2,..., let

(k+1)J

ay = ] h((k + 1)J,n)sin(An) dy.
kJ
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We see that
h((k + 1)J,(k + 1)) = r(0)o(r((k + D) [r((k + 1).])1;(7-(0))]‘l

and
h((k + 1)J kJ) = r(J)b(r((k + 1)) [r((k + ])J)b(.})]"l.

Due to the assumptions satisfied by b we infer that 6(r(s))r(s)~! tends mono-
tonically to 0 as s — oo, 5O |ag41| < |ag|. Thus, due to the Leibnitz theorem
(concerning alternating sequences) and the fact that cos(An) = sin(Ay + (7/2)),
we conclude that [(oo) is finite. In this way we have u (§) — 0 as £ — oc.
Similarly we can prove that uy(¢) — 0 as € — oc. However, r2(€) = ¢2°¢, so due
to the above definitions we have (u}(£))* + (u5|€))? — oo as £ — .

This work was supported by grant KBN No. PB 20480-90-1.
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On the phenomenon of wave breaking

E. V. KRISHNAN (MUSCAT)

THE DU Bois-REYMOND equations are used to investigate the wave breaking phenomenon. Various
relationships between the components of wave slopes are determined and it is shown that abrupt
discontinuities in the bottom profile initiates breaking.

1. Introduction

THE BREAKING phenomena in wave profiles lead to the development of singu-
larities in them. Many scientists have done extensive work in this field such as
BANNER and PHiLips [1], BENNEY [2] and LoNGUET-HIGGINS and CokeLET [3].
WHITHAM [4] has given a good account of this phenomenon in detail in his book.
The discontinuity in the wave profile begins with steepening of the front and it
persists until the front becomes vertical and then curls over. This can be explained
in terms of changes in wave slopes on both sides of the wave crest. To model
this phenomenon, an extended form of the Du Bois - Reymond equations of vari-
ational methods [5] are assumed to be suitable. These equations are applicable
only when the oscillations are normal to the shoreline. In shallow water, it is not
necessary that the bottom contours should always be parallel to the coastlines.
Thus in most of the cases the wave crests approach the shoreline obliquely. We
extend the Du Bois-Reymond equations to incorporate this effect.

2. The Du Bois - Reymond equations

The Du Bois- Reymond equations give the conditions for the curve C' : y =
g(z) to have discontinuous slopes at a given point or points on a line. Here we
intend to extend this idea to plane surfaces defined by the coordinate system r, ¢
and 7(r, #). For this purpose, we introduce the dynamical system with Lagrange’s
functional 7 and Lagrange’s density L(r,#,1,p,q) which are connected by the
relationship

Tl'/z o0

(2.1) I = j -/L(T,B,n,p,q)drdﬁ,

-2 0

where p = 7,,q = 1.
For sufficiently small a, we write

(2:2) n(r,0) = no(r, ) + aij(r,d),
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so that we have,

p = o, + (1, 6).
(23) _
noe + aijp(r, 8).

q
We specify the conditions
(2.4) i(r,+m/2) = 7(0,6) = 0,

and require 7, and 7 to vanish along the shoreline.
Using Egs. (2.2) and (2.3), we have,

(2.5) d[(a) / / (A + ur 7, + Ty (())[) dr d6.

-n/2 0

We now introduce 7(r, 8), 7j(r, ), in the region 0 < r < =, —~72—r~ <6< % for

functions which are continuous on the specified plane but their derivatives are
discontinuous at breaking point. Thus p and ¢ are discontinuous across a breaker
zone. We therefore introduce

/2 oo
(2.6) reoy= [ [
Jdn
0 T
where
9*F 0L
2.7 =
(2.7) ordd IOy’
(2.8) F(r,m/2) = F(00,0) = 0.
Now,
LRI 3 ) .
(2.9) 05{08) = qFg + 0. Fg + g F, + Fijg.

From Egs. (2.7) and (2.9), we have
02(iF)
daroé
Substituting Eq. (2.10) in Eq. (2.5), we obtain

(2.10) AL, =

=T by — 7-)6’1"1' - F’-]rﬂ-

/2 oo
dI
@1y == / f [#n Ly + oLy + (iF), g — iivFs — figFy — Fiiyg) dr db.
-m/2 0
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From Egs. (2.8) and (2.4), we have

fE o
2.12) / / (7F), o dr df = 0,
/2 0
and
T2 oo 00 "2 /2
(2.13) / fFf;rgdrd0=fF1'yr dr — / /ﬁngdrdﬁ
—2/2 0 0 A —x/2 0
w13 o
Lo f [ﬁ,Foa’rdf).
—-n/2 0
Therefore, using Eqgs. (2.12) and (2.13), Eq. (2.11) becomes
"2 oo 2 o
(2.14) 3—2 = / /ﬁer dr df + f /.173(Lq ~ F.)dr do.
=fd 0 —x/2 0

Since 7j(r, 6) is the region (0, 00; —7/2,7/2) and 7(r,£7/2) = 7(0,6) = 0, Du
Bois - Reymond’s theorem gives us the results concerning the extreme values of
a function of two variables from Eq. (2.14), that is,

(2.15) L, = Cy(6),
(2.16) Ly—F. = Cy(r).
Since F, is continuous across any discontinuity in the plane under consideration,
(2.17) Ly = Coy(r) + Fr = C3(r).
Here, ¢y, C, and C are arbitrary functions. Now, we define r and ¢ by
(2.18) = p+alAp),
(2.19) 0 = &+ a(o),
where A(0) = (ig-) = 0 and A(p), j(#) are in (0, oo;—g, g)
Corresponding to the extrema at «; = ap = 0, we have

a1 o

(2.20) Sa = f / (LA + AL, + ApL,) dpdg = 0,
-r/2 0
Y i

(2.21) / /(L,ug + plo + poqly)dpdd = 0.

day
—7/2 0
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Now, we introduce the two functions G'(r,6) and H (r, 8) given by

(2.22) G(r,0) = f L, dr, G(o0,6) = 0,
/2
(2.23) H(r,0) = / Lods,  H(r,x/2) = 0.
[}
Using G, = L,,
/2 o /2
(2.24) f / AL, drdf = — / / \G dr do.
—7/2 0 -r/2 0
In the same manner, using Hy = Ly, we have,
oo T2 /2 oo
(2.25) / / plgidld = = f ] o H dr db:
0 -r/2 -7/2 0
Therefore, from Eqgs. (2.20) and (2.24), we get
2 oo
ar ,
(2.26) LAy / /A,(L +pL, — G)drdo =0,
(90/1
—x/2 0
and from Egs. (2.21) and (2.25), we get
.
ar
(2.27) — = / /M(L +qL, — H)drdf = 0.
a
-r/2 0

Equations (2.26) and (2.27) establish the conditions concerning the extrema
of the functional (2.1) at a; = a3 = 0. Now, application of Du Bois - Reymond’s
results leads us to

(2.28) L+pL,— G = C40),

(2.29) L+qlL,—H = Cs(r).

Since GG and /I are continuous across any specified plane, we conclude that
(2.30) L+pL, = Cg(0),

(2.31) L+qL, = Cy(r).

Here, C4, Cs, C¢ and C7 are arbitrary functions.
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3. Long waves in shallow water

We consider the equation governing the propagation of linear long waves in
shallow water, which is

0 on d (hony r2%y
where n = n(r,0) is the wave profile, h = h(r, ) is the bottom topography of
the sea-bed, (2 is the wave frequency and g is the acceleration due to gravity.
We now multiply this elliptic equation (3.1) by (77 — 1) and integrate with respect
to r from 0 to oo and with respect to ¢ from —x /2 to 7 /2, using the conditions
n(r,0) — 0 as r — oo, h(r,0) — 0, h(r,0)n(r,6) — Oas r — 0 and § — £7/2.
Then

(3.2) 1) > I(n),
where
o /2
(3.3) I(n) =/ / L(r,6,7m,p,q)d0 dr,
0 —x/2
(3.4) L(r,0,n,p,q) = rthp* + ng + 2,"(;27]2 g

Here, 1 is a solution of Eq. (3.1) while 7 is any admissible function.

Now, let (r{, ;) be the point on the wave crest where the front has a tendency
to be steeper progressively. Also, let ¢2, p2 and ¢3, p3 be respective wave slopes
in front and behind this point. Then, we have ¢3 < ¢2, p3 < p2, and h; is the
water depth measured from the undisturbed level at h = h;. Thus

(3.5) hyripz = hirips,
(3.6) hiriqe = hirigs,
(3.7 Tl(;r)%—pg) = q%— qg.

On the shoreline, where » = 0 and h = 0, Eqgs.(3.5), (3.6) are satisfied and
Eq. (3.7) is satisfied if ¢ = ¢3 at the beginning. This is a known fact concerning
wave breaking along the shoreline, which is a kind of singularity that does not
propagate away from the source.

Now, along the curve I : » = R(#) across which h(r,#) is discontinuous in
shallow water,

anl _ @
(3.8) h@n]l = [han]z ,
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where 7 is the unit vector normal to I" and subscripts 1 and 2 denote two sections
separated by I'. This result (3.8) is the well-known law of conservation of mass
and gives an indication of the fact that the discontinuity in wave profile can be
brought about by an abrupt change in the bottom profile.
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A note on dynamic modelling of periodic composites(*)

Cz. WOZNIAK, M. WOZNIAK (WARSZAWA) and
S. KONIECZNY (LODZ)

IN THIS NOTE it is shown under what conditions the refined macrodynamics for linear-elastic
micro-periodic composites [1], can be obtained from the linear elastodynamics as an asymptotic
approximation.

1. Preliminaries

LET {2 BE A REGULAR REGION in the referential 3-space occupied by a linear-elastic
micro-periodic composite body. By V' = (0. ;) x (0.62) x (0.é3) we denote the
representative volume element of this body. Setting 6 = max{é;, 67, 63} we shall
consider § as the microstructure parameter, sufficiently small as compared to the
smallest characteristic length of 2. The second small parameter is the modelling
accuracy parameter A which represents the admissible computation accuracy of
functions describing (in the dimensionless form) the properties or the behaviour
of the composite. For the known values of ¢ and A, function F(-) defined and
continuous on 2 will be called the macro-function if for every x, z € 2 condition
Ix —z| < ¢ implies |F(x) — F(z)| < A. Similarly, function F(-) defined and
continuous on 2 and having in £ continuous derivatives up to k-th order is said
to be the macro-function of the k-th order (or regular macro-function) if F(-),
together with all its derivatives, are macro-functions.

Let f(-) be an integrable V-periodic function (a function with periods ¢,
&2, 63) defined on R®. If < f > stands for the value of f(-) averaged over V'
(constant) and F'(-) is an arbitrary macro-function, then we obtain

(1.1) /fF dv = <f> '/‘F dv + 0(A), dv = dxy dry das,
2 n

where 0(A\) — 0 together with A — 0. Moreover, if f(-) = fo(-) + fs(-), where
[5s(x) € 0(6) and fy(-) is independent of é, then we also obtain

(1.2) /dev =< fo> dev+ 0(8).
I

n

(*)This research was supported by the State Committee for Scientific Rescarch, Warsaw, under grant
3 3310 92 03.
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Formulas (1.1) and (1.2) will be applied in the subsequent section. Following
[1], by the micro-shape functions h,(-), a = 1,...,n, we shall mean the linearly
independent system of continuous V -periodic functions having picewise continu-
ous derivatives dh,/dz; such that < dh,/dz,>= 0, h,(x) € 0(0) and Oh,/dz;(x)
are independent of 6. Functions h,(+) describe, roughly speaking, the shape of
expected micro-vibrations related to the micro-heterogeneous periodic material
structure of a composite body.

In the sequel subscripts ¢, j, k, [ run over 1, 2, 3 and are referred to the
orthogonal Cartesian coordinate system in the referential space. Points of this
space are represented by triples x = (z;,22,23) and 7 is the time coordinate.
Indices a, b run over 1,...,n, where n is the number of micro-shape functions.
Summation convention holds both for i, j, £, [ and «, b.

2. Analysis

Let a;;1(+) and p(-) be the V-periodic elasticity tensor field and the V' -periodic
mass density scalar field, respectively, in the composite body. Let ¢; be the
boundary tractions on 912, b; be the constant body force vector and define the
V-periodic vector field f;(-) = p(-)bi. Moreover, let u;(-, 7) be the vector field of
displacement from the natural configuration of a body. As it is known, the gov-
erning equations of the linear elastodynamics can be derived from the principle
of stationary action for the action functional

(2.1) A= /(/c —P)dr,

where K and P are kinetic and potential energy functionals, respectively, given
by

K = %]p(x) u; (x,7) U (x,7)dv,
2
(2.2) P = %/aijkx(x)u(i,]-)(x,T)u(k',)(x,'r) dv — ]fi(x)u,(x,r) dv
2 7

- f ti(x, Tu;(x, 7) da.

an

Following [1], we introduce the Micro-Macro Kinematic Hypothesis by imposing
on displacements u;(-, 7) in Egs. (2.2) constraints of the form

(2.3) ui(x,7) = Ui(x, 7) + h(x)Q7 (x,T), x€ 2, 1€ (r0,74),
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where U;(-,7), Q?(-,7) are arbitrary, sufficiently regular macro-functions (to-
gether with their time derivatives) and h,(-) are the postulated a priori micro-
shape functions such that < ph, >= 0. Substituting the right-hand sides of
Egs. (2.3) into Eq. (2.2), applying formula (1.1) to functional X' and formula (1.2)
to functional P, we obtain

1 5 . . .a
K = ][5 p>U: X, 1) Ui (X, 7)+ <pho >U;: (%, 7)Q; (X,7)
7]

.a . b
+% <phahy >Q; (x,7)Q; (x, 'r)} dv + 0(A),

1
(24) P = = < ikl > U(,-_J-)(x,'r)U(k‘,)(x,T)+ < (L!'J';\-[]la‘k > U(i"]')(X,T)QT(X,T)
2 2

1
+§ < aijrtha jhe > QF (X, T)Qﬁ(x.r)] dv — / < fi> Ui(x,7)dv
7

- ]5 (%, T)Ui(x, 7) da + 0(8).

an

The crucial point of the procedure proposed in this note is the Macro-Modelling
Condition which states that in Egs. (2.4) terms 0(\) in the kinetic energy functional
K and terms 0(4) in the potential energy functional 7 can be neglected. Using
this condition as the modelling hypothesis, we obtain from Egs.(2.1) and (2.4)
the new action functional 4, given by

Tf

2.5) = ] (Ko — Po) dr

T

where we have denoted

1 o o Wl 1 TRy
Ko = / (5 <p>U:Ui + <ph, >U:Q; +:2- <ph,,h},>Ql~Q[> dv,
n

1 7 T a
(26) Py = / ('2‘ < Aijkl > U(,"j)l/’(k_{)*' <aijklha.k> U(,'J)Q[

1
+§ <aijklha,_jhb‘l> Q?Qi— < i (72) dv — %tiUi da.
an

The material and inertial properties of the composite are described in Egs. (2.6)
by constant (averaged) elastic and inertial moduli <p>,..., <ajjrhq jhs;>. The
new dynamic variables are represented by macro-functions U;(-,7) and Q¢(-,7)
which are called macro-displacements and correctors, respectively, [1].
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3. Conclusions

Applying the principle of stationary action 6.4y = 0 to the action functional
(2.5), we obtain the system of field equations

<aijkl > L/k,ji(x,r)— <p>(:},' (X,T) + <”’l‘jk[lla“\‘ > Q?,J(X.T)
3.1 - <[i>=0,

b
<phahy >Q; (X, 7) + < @ijriha,jhoy > Qo(x.T)
+ < ﬂzjk(ha,j > Upa(x, T) =0

which have to hold in {2, and the natural boundary condition
(3.2) [<aijer> Uki(x, 1)+ <aijrihar> QF (X, 7)) n;(x) = t;(x,7)

for almost every x € 012, where n;(x) is an outward unit normal to df2 at x.
Equations (3.1), (3.2) constitute governing equations of the refined macrodynam-
ics which were obtained independently in [1]. For a discussion and applications
of these equations the reader is referred to [1] and the related papers. Here we
shall restrict ourselves to the general conclusion that the refined macrodynam-
ics of linear-elastic micro-periodic composites can be obtained from the linear
elastodynamics as an asymptotic theory, provided that the constraints (2.3) hold
and the Macro-Modelling Condition is taken into account. It has to be notified
that, under this condition, terms of order 0(¢) are neglected in the asymptotic
approximation 6 — 0 of the potential energy but they are retained in the ki-
netic energy where we deal with asymptotic approximation A — 0. Retention of
the terms 0(6) in the kinetic energy has a clear physical sense; they are terms
involving inertia moduli < ph,h;, > which in Egs.(3.1) are responsible for the
description of the scale and dispersion effects that are typical for a dynamic be-
haviour of inhomogeneous media [1-3]. On the other hand, neglect of terms 0(é)
in potential energy is motivated by the expected local (i.e. independent of the
microstructure parameter ) character of internal interactions (stresses), as well
as interactions with external fields (body forces and boundary tractions). Reten-
tion of terms 0(6) also in the potential energy leads to additional 3n boundary
conditions for correctors )¢ which do not have any physical sense and cannot be
properly formulated in the boundary value problems encountered in engineering
applications of the theory. That is why in the proposed approach we have in-
troduced two small parameters A, ¢ and two different asymptotic approximations
for the kinetic and potential energies.
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