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Plane-stress deformation of a flat plate

by slip between elastic elements

R.L. BISH (MELBOURNE)

PRINCIPLES previously published and concerned with the plane-strain deformation of a textured
polycrystalline solid are extended to the plane-stress deformation of a flat plate. An example is
given illustrating the method.

Notation

w  vorticity,
T principal shear stress,
principal shear strain,

e )

principal shear strain rate,
0,01, ¢2 rotations in principal stress planes,
7, stress tensor,
7,  deviator of stress,
h yield function,
Jy  second invariant of 7, |
Ji third invariant of 7,
G clastic shcar modulus,
A a multiplier,
o1, 0, principal stresses,
de,,  total strain increment,
de,,  plastic strain increment,
a3 slip-line coordinates,
o, hs  scale factors for n- and d-lines,
V2 Laplacian,
p external pressure,
P’ power,
(r.0) planc-polar coordinates.

1. Introduction

IN EARLIER PAPERS the author proposed, for solids flowing by slip along banales
(Appendix 1), two principles which may be expressed as follows.

(i) The rotation rate remains continuous. If w is the vorticity, this principle
may be expressed mathematically in the form [1]

(1.1) curlw = 0.
or, if ¢;;, denotes the plastic strain-rate tensor [2],

(12) (),' ;‘ij= 0.

http://rcin.org.pl



4 R.L.Bisi

(ii) Under plane-strain, a fully textured solid work-hardens [3] in such a way
that the relation between the principal shear stress, 7, and the principal shear
strain, y remains valid when ~ is replaced by the rotation o.

Thus the yield curve described by

r=1(y)
becomes

(1.3) T = 1(¢),

where it is understood that the reference direction for @ must be properly chosen
(Appendix 2).

Work-hardening was also the subject of refined experimental investigation by
FARMER and OXLEY [4], who extruded split prisms of 5052-H34 temper aluminium
through a lubricated wedge-shaped die, of semi-angle 30°, at 0.006 mm/sec. Their
samples were pre-machined to fit the die cavity and measured 2.54 mm = 10.16 mm
in cross-section. Grids were photo-engraved on the central planes in these split
prisms and from the deformed grid patterns, rotations may be measured. The
samples were coated with alodine and the die cavity was lubricated using sodium
stearate. Friction, it was shown, remained very small. On loading the extrusion
force rose rapidly to its maximum value of 7.5kN.

The plane-strain theory developed from Egs. (1.1) and (1.2) in conjunction
with the stress-strain data provided by Farmer and Oxley leads to a force of 7.4 kN
[5], whereas by neglecting work-hardening and choosing for the yield stress the
value on Farmer and Oxley’s yield curve, at a shear strain of 0.1, one obtains an
extrusion force of 6.3 kN. Clearly work-hardening made an important contribution
to the extrusion load measured in these experiments and the measurements of
Farmer and Oxley support (1.3).

In extending this theory to the plane-stress deformation of a flat plate, the
form of the yield criterion assumes central importance. Let us therefore consider
the mechanics of yielding in a fully textured metal.

2. The yield criterion

A principal shear stress surface in a solid that has been aligned or textured by
cold-work (Appendix 1) is enveloped by a polyhedral surface that consists of faces
that are in fact crystallographic slip-planes. Each of these slip-planes is confined
within a grain that the principal shear stress surface intersects. It follows, at
once, assuming these slip-planes to remain perfectly aligned (tangent planes to
the principal shear stress surface concerned), that Tresca’s criterion must govern
yielding. This insight allows the previously developed plane-strain theory [2, 3]
to be extended to plane-stress as follows.

http://rcin.org.pl



PLANE-STRESS DEFORMATION OF A FLAT PLATE 9

If 7;; denotes the stress tensor and 7;; is the deviator of stress, while ./, and
J3 denote the second and third invariants of 7;;, then the yield condition may be
expressed in the form

(2.1) h(Ja. J3) = 0.
The associated flow rule, if d<,; is the total strain increment, is [6]

dr; . h

(JI/\.
20/ (.)(71' i

(2.2) dei; =

where (/' is the elastic shear modulus, and A is a multiplier.
In the case of Tresca’s criterion, (2.1) being replaced by

(2.3) oy —ay = *27.
(2.4) 09— 03 = F27.
(2.5) oy —ap = +27.
we have, from Eq. (2.3),

ah

by =
while by Eq. (2.2),

1113 = U
Similarly from Eq.(2.4)

dey = 0.
while in view of Eq. (2.5)

(/(2 = U

We see that the pairs of opposite sides of the hexagonal cylinder represented
by Egs. (2.3)-(2.5) describe deformation that, if the principal surfaces remained
plane, would equal deformation under plane strain. How we may interpret this
result for a flat plate is illustrated in Fig. 1, where the principal stress o3 is con-
stant (or zero) and the three rotations in the principal planes are ¢, ¢ and o.
The angle o is associated with the side of the yield locus ("D in Fig. la, which
corresponds to the Hencky - Prandtl net in the plane of the plate shown in Fig. 1d.
There are no Hencky - Prandtl nets in the plane of the plate in Figs. Ib and Ic,
and these cases are associated, respectively, with sides A and B(" in Fig.1a. In
these two cases the plate extends uni-directionally at the expense of a reduction
in its thickness, the extension being along one of the two families of principal
stress lines in the plane of the plate.

http://rcin.org.pl



6 R. L. Bisn
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I'1G. 1. Modes of deformation of a flat textured plate.

3. Continuity of rotation rate

That the rotation rate, in the case of a deforming single crystal, must remain
spatially continuous is obvious. It is not so obvious where textured polycrystalline
solids are concerned; but the banales remain parallel to the principal shear stress
surfaces, which are smooth and continuous and, at the same time, the banales
remain embedded in the solid. By the same principle a banale could not cross
grain boundaries without deflection if the rotation rates in the two adjoining
grains differed substantially.

If o and /7 are the coordinates measured along the two families of slip-lines
in the plane of the plate and if /1, and /5 are the respective scale factors, with

7 equal to the principal shear strain rate, then Eq.(1.2) reduces to the pair of
equations

. Jdo d 4
27—+ 0.
' b, da hpdi3
0 A3

Y1508 T hoda

http://rcin.org.pl



PLANE-STRESS DEFORMATION OF A FLAT PLATE 7

and from these equations, using the formula [7],

) [y O Jd (h, O
@1 e 9o \h.9a) T 25 \ 1,08
we obtain
(3.2) vis = 0,
(3.3) VZiny = 0.

4. Work-hardening

In order to extend Eq.(1.3) to a flat plate, in view of the fact that the three
modes of deformation shown in Fig. 1 are, in fact, instances of plane strain (or
would be if the first and second principal surfaces were plane), we need only
note the additional fact [8], that work-hardening produced on one slip-plane, by
slip on that plane, extends to all other slip-planes in a crystal. This must also be
true of banales made up, as they are, from individual crystallographic slip-planes.
Thus it follows for the plate in Fig. 1, irrespective of where the stress point lies
on the yield locus, that

(4.1) T =710+ ¢ + 07).

5. Stress-equilibrium

If
o= (o, + a9)/2
and
7 = (o3 — 01)/2

represent the respective normal and principal shear stresses in the plane of the
plate, then the stress equilibrium equations for the plate are

do 5 do > T
_2r _ =
h.,da h,da hsdid

(5.1)

o do or

2 — 4+ 2 +
(5-2) lp0i3 T/J,';(').’J' I, da

If, moreover, the plate remains flat

doy _ doy _ doy _ doy

3 =
-3 Jn da i3 b

http://rcin.org.pl



8 k. L. Bisn

and by Eq. (4.1)

Jdr do  dTt do
5.4 —— - ——=0
(5-4) dadi3 03 da
The consistency condition for Egs. (5.1) and (5.2) (which are in effect simul-
taneous equations in the first derivatives of ¢) is
(5:3) da? = dr? + 4r2de?,

while we obtain, from Egs. (5.1), (5.2) and (5.4), using Eq.(3.1), the second order
equation

D*a
dad3

(5.6) 2 + hohgVir = 0.

These equations are identical to the corresponding equations of the plane-
strain theory [3].

6. Method

Before we can apply Eqgs. (3.2), (3.3), (5.5) and (5.6) to a flat plate problem,
it is essential to establish that the stress point lies on ("D in Fig. la. We know
that ¢’ cannot lie simultaneously on B¢ and ('D [9] and if the plate exhibits
a Hencky - Prandtl net, in its plane, then the stress point will lie on '/) which
includes its two end points.

If, moreover, an « — slip-line starts from an edge at which ¢ = g then, by
Eq. (5.5),

o l 2 .
(6.1) a() = —(ep) + / \/(%) + 412 do.
o

since
a(og) + 7(¢g) = 0.

while, if p is the pressure on a principal surface in the plate,

@D B
(6.2) p(¢) = 7(9) — 7(¢g) + / \/ (:j_r) +4rtdo.

and by means of this formula the external load may be calculated.
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Alternately we may calculate the power, I by means of the formula
(6.3) P = ZT—/T((,‘))“; S,
A

where 7' is the plate thickness and .5 is an element of the area A of the deforming
region in the plate.

In those problems where the free edges in the plate are radial lines or circular
arcs, or where there are radial slip-lines, appropriate solutions to Eq. (3.2) are, if
(x.y) and (r.#) are rectangular and plane polar coordinates in the plane of the
plate,

o = tan"'(y/C + 2).
(6.4) o =4,
o = C+lInr,

where (' is a constant. The first of these formulae describe slip-lines in a rectan-
gular net, while the second describes the radial lines in a centred fan; Eq.(6.4)
being the equation for equi-angular spirals. The solution to Eq. (3.3) associated
with Eq.(6.4) is

(6.5) Y= av/r?,

where v is the radial velocity across the circle r = a.

7. An example

The problem of an annulus cut from a textured plate and to which forces
sufficient to cause plastic flow are applied at its inner edge, has relevance to
cup drawing and may be studied by means of the above theory. While there is
no buckling, Eq.(5.3) applies, and the stress point will lie on "D in Fig. 1a for
the plate must then deform as in Fig. 1d. In the investigation of this problem the
values of stress and strain obtained in the slow blanking of hard-drawn brass were
used, [10]; the data are approximated by 7 = 250 + 100 exp(—11.5y) MNm 2.

Material is not able to undergo slip at certain points of the annulus unless
it first re-orientates. The delay due to this effect, in conjunction with the form
of Eq.(3.3), leads to the “ears” familiar in deep-drawn cups. For an a-line that
starts from such a point we obtain from Egs. (5.6) or (6.1) and (6.4), in the case
of hard-drawn brass,

o= —k+2kIn(r/a).

where 7 = L is the limiting value of shear stress given by the above equation for
7, while « is the radius of the outer edge of the blank. This relation may also
have been obtained from Egs. (6.3) and (6.5), using p = o + k.

http://rcin.org.pl



10 R.L. Bisu

On the other hand, material in the annulus at the four intermediate points
on its outer edge is free to undergo slip immediately along the a-lines given by
Eq.(6.4), and the lower curve in Fig.2 gives the variation in ¢ along a slip-line
starting from one of these “free” points. The integrations were carried out by
means of Simpson’s rule. Note that the two curves in Fig.2 become parallel on
moving in from the outer edge of the annulus. From these results the contribution
made by work-hardening to the external load may be readily calculated.

6 T
(MNM?)

800 - .

6001 =

400 =

2001 -

I
0 05 ¢ 10

[F1G. 2. Computed initial distributions of o in a flat annulus cut from a textured plate, to which
forces are applied at its inner cdge. The upper curve applics to a slip-line starting from a point
at which an “car” develops, while the lower curve applics to slip-lincs from points free
to undergo immediate deformation without re-orientation.

Appendix 1

OsMOND, in 1904 [11], described “lines” that he had observed in deformed
iron, and that he called “deformation banales”. These trammels for extended slip
crossed grain boundaries without deflection and remained parallel to the principal
shear stress surfaces. The fact that banales may be revealed by illuminating etched
metal surfaces using polarised light testifies to the crystallographic character of
banales [12].
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When a polycrystalline metal is plastically deformed, its grains rotate (see
Appendix 2) so as to align their slip-planes parallel to the principal shear stress
surfaces. Flow then takes place, in this aligned solid, by slip of the material along
the lines of the banale network.

Appendix 2

When a solid is cold-worked, its grains rotate so as to align their slip-planes
parallel to the principal shear stress axes. Clearly the grains cannot rotate as
rigid bodies during this cold-working but must sub-divide into elastic blocks that
slip past one another on at least two intersecting families of slip-planes, since
single-slip can never accomodate a rotation. In the limit as the banale spacing
tends to zero the rotation rate becomes equal to the vorticity; indeed vorticity,
like strain, cannot otherwise be defined, in the case of plastic deformation.

Work-hardening also demands double or multiple slip [8], and the relation
between rotation during deformation and work-hardening may be illustrated as
follows.

We might imagine the yield curve replaced by a stepped curve such that the
horizontal portions (constant 7) result from alternating single-slip on the banales,
while the vertical portions (constant ) are due to re-alignment of the banales;
since the banales are embedded in the solid and so they must constantly re-align
with the principal shear stress surfaces, and re-alignment, as just pointed out,
demands double slip. In the limit as the increments in 7 and 5 on the stepped
curve become infinitesimally small, the original yield curve is recovered, but the
principal shear stress 7 remains a function of the angle, o, of re-alignment; since
it is only during re-alignment that 7 can increase.
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Analysis of dynamic shear bands in porous
thermally softening viscoplastic materials

R.C. BATRA and X.S. JIN (BLACKSBURG)

WE STUDY THE INITIATION and growth of shear bands in a porous thermally softening viscoplastic
block of square cross-section and deformed in plane strain tension. The impact load is modelled
by prescribing a time-dependent axial velocity on the top and bottom surfaces which are taken to
be free of the tangential tractions. The material defect is modelled by assuming that the material in
a small region surrounding the centroid of the cross-section is weaker than the rest of the material.
The finite clement mesh consisting of constant strain triangular clements is refined adaptively
so that the integral of the effective plastic strain-rate over an element is nearly the same for all
clements in the mesh. The effects of the presumed variation in the initial porosity and the impact
speed on the nominal strain at which a shear band initiates have been examined. For a typical
steel alloy, we have also ascertained the effect, on the initiation of the shear band, of the softening
caused by the increase in the porosity and/or the increase in the temperature.

1. Introduction

MicRroscopIC OBSERVATIONS [1-10] of the failure process in several metallic alloys
(e.g., AIST 1018 cold-rolled steel, AISI 4340 vacuum arc remelted steel, HY-100
steel, titanium and titanium alloys) have revealed that fracture occurs by a process
of nucleation and coalescence of voids and microcracks. Under dynamic loads,
the fracture of the specimen is usually preceded by the formation of a shear
band [1-6], which is a narrow region, a few micrometers (jum) wide, of intense
plastic deformation that forms during high strain-rate processes such as shock
loading, ballistic penetration, metal forming, machining, grinding, high speed
fabrication, and explosive fragmentation. ZeNer and HoLLomon [11] observed
32 pm wide shear bands during the punching of a hole in a low carbon steel plate,
and postulated that the heat generated due to plastic working made the material
softer, and the material became unstable when the thermal softening equalled
or exceeded the hardening of the material due to strain and strain-rate effects.
Since then, there have been numerous analytical, numerical, and experimental
studies aimed at analyzing the initiation and growth of shear bands; the reader
is referred to SHAWKI and CuiFToN [12] and BATRA and Zuu [13] for a list of
references. Our objective here is to delineate the effect of additional softening
caused by the nucleation of voids on the formation of shear bands in a prismatic
body made of a thermally softening viscoplastic material and deformed in plane
strain tension.

A general theory of elastic materials with voids has been developed by NUN-
z1aTo and CowiN [14] and phenomenological constitutive relations for porous
ductile solids have been proposed by Kunn and DowNey [15], GREEN [16],

http://rcin.org.pl



14 R.C. BATRA AND X.S. JIN

Gurson [17], and SHiMA and Ovank [18]. Gurson’s model has been modified
by TVERGAARD [19,20], TVERGAARD and NEEDLEMAN [21], and PaN er al. [22] to
include work hardening, strain-rate hardening and a generalization of the flow
potential. The phenomenon of shear strain localization in porous materials has
been studied by PaN et al. [22], SaJE et al. [23], KoBavasHl and Dobp [24], and
ZAVALIANGOS and ANAND [25]. Here we study a dynamic two-dimensional prob-
lem and account for the effect of inertia forces and the dependence of the ther-
mophysical properties of the material upon the porosity. Also we use adaptively
refined finite element meshes to analyze the problem. The voids are assumed to
grow due to plastic dilatation, and a plastic strain controlled nucleation criterion
is used to account for the nucleation of voids throughout the deformation history.

2. Formulation of the problem

We assume that voids are randomly distributed throughout the body and de-
note their volume fraction by f. In terms of the referential description, the
thermomechanical deformations of the body are governed by the following equa-
tions:

balance of mass

(2.1) (1 -1)) =0.
balance of linear momentum

(2.2) p(1 = f,)v=DivT,
balance of moment of momentum

(2.3) TF' =FT7,

balance of internal energy

(2.4) p(1-f)é=-DivQ+u(TE").
where
(2.5) F = Gradx

is the deformation gradient, x is the present position of a material particle that
occupied place X in the reference configuration, ./ = detF, p is the present mass
density of the matrix or void-free material, p, its mass density in the reference
configuration, f, equals the volume fraction of voids in the reference configura-
tion, v is the velocity of a material particle, T is the first Piola-Kirchhoff stress
tensor, ¢ is the specific internal energy for the matrix, Q is the heat flux per
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unit undeformed area, a superimposed dot indicates a material time derivative,
and Grad and Div signify, respectively, the gradient and the divergence opera-
tors applied to a field quantity defined as a function of X and time f. We have
neglected the balance of equilibrated forces considered by Nunziato and CowiN
[14], and have also assumed that the supplies of linear momentum and internal
energy equal zero.

We presume that the strain-rate tensor D, defined by

(2.6) 2D = gradv + (gradv)” .

with grad denoting the gradient operator applied to a field quantity defined as a
function of x and ¢, has the additive decomposition into elastic D and plastic D?
parts, and make the following constitutive assumptions:

. Bl — f) s s Ev(l .
(2.7) o+0cQl-Qo = a+0) ———=(D Df)i-—(1 ) (tr (D—D")—a f)1,
T
2.8) p=2005) o fcoh(”?“")—l—ﬂfz—o
. "2 ol \ 20,

1

(2.9) sS=0— g(tra)l.
(l _ f)U’Tl L‘m
3 B . /3
(2.11) N = ) (c — —(trcr)l) [i’l’ z [smh ( 2:0’)} 1.
f if [</[.
(2.12) =9 (.f;—f.~) (/- /) otherise.
fr—fe
(2.13) 0w = oo (140:0)" (1 + —> (1 - 1,0).
h ) -[2 E], ] fl:;. _r\)z
2.14 = (1- D" + : .
214 j= - mﬁexp( (== )
B

(2.15) q = —k (] - 5/) grad 6.
(2.16) ¢ = cf+tr(o(D—-D"),

http://rcin.org.pl



16 R.C. BATRA AND X.S. JIN

where
T
(2.17) T = Jo(F!) .
(2.18) Q = JFlq,
(2.19) 2Q = gradv — (gradv)’ .

Equation (2.7) is Hooke’s law written in the rate form with the left-hand side
equal to the Jaumann derivative of the Cauchy stress tensor o, {2 defined by
Eq.(2.19) is the skew-symmetric part of the velocity gradient, £, v, and a, re-
spectively, are Young’s modulus, Poisson’s ratio, and the coefficient of thermal
expansion for the matrix material, and 1 is the unit tensor. We have included the
factor (1 — f) on the right-hand side of the constitutive relation (2.7) to account
for the porosity of the material; this was also considered by PassMAN and BATRA
[26] and KoBavasHi and Dopp [24]. Buniansky [27] has given the dependence of
the material parameters upon f for a macroscopically isotropic composite con-
sisting of a random dispersion of roughly spherical voids in a matrix material.
These relations are more involved than the simple reduction of /7 by the factor
(1 — f) we have used in Eq.(2.7). Equations (2.10) and (2.11) follow from the
plastic yield function (2.8) proposed by Gurson and subsequently modified by
Tvergaard, and the assumptions that D? is directed along the outward normal N
to the yield function @, and the plastic working tr (¢D") equals (1 f)a,, 2], with
o, and ¢/ denoting the effective stress and the equivalent plastic strain-rate in
the matrix material. The expressions (2.12) for /= were given by TVERGAARD and
NEEDLEMAN [21] so that the computed results matched well the test findings for
the cup-cone fracture in a round tensile bar. They suggest the values /. = 0.15
and f; ~ 0.25. As [ — f;, [* — [, and the material loses all stress-carrying
capacity. In Eq.(2.8), 4, and /3, are material parameters and s is the deviatoric
Cauchy stress tensor.

Equation (2.13) relating the effective stress o,, in the matrix to the equivalent
plastic strain, equivalent plastic strain-rate, and the temperature is a generaliza-
tion, due to BATRA [28], to the three-dimensional state of deformation of that
proposed by LitoNskr [29] for the simple shearing problem. In that equation,
oy equals the yield stress of the matrix material in a quasistatic simple com-
pression test, the parameters b and m characterize strain-rate sensitivity of the
material, ¢, and n the strain-hardening, and v, the thermal softening of the ma-
trix material. The first term on the right-hand side of Eq.(2.14) describes the
growth of voids due to plastic dilatation, and the second term describes the plastic
strain-controlled nucleation of voids. CHU and NEeDLEMAN [30] suggested this
form by assuming that void nucleation follows a normal distribution about some
mean critical plastic strain. In Eq.(2.14), s, is the standard deviation of the nor-
mal distribution, f, equals the volume fraction of voids that would be nucleated
if deformation continued infinitely, and ¢, equals the strain at which the void
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nucleation rate reaches a maximum. The experimental studies of LERoY [31] and
FisHER [32] on spheroidized carbon steel indicate that, at least in these materials,
a void perfusion strain can be identified at which the rate of nucleation is maxi-
mal. The void perfusion strain can be taken as e,,. Here we have not considered
the stress-controlled nucleation of voids. Equation (2.15) is the Fourier law of
heat conduction with q denoting the heat flux per unit deformed area, and / — the
thermal conductivity of the matrix. That the thermal conductivity of the porous
materials equals (1-3/2 f) times that of the matrix material is due to BUDIANSKY
[27]. In the constitutive relation (2.16) for the rate of change of internal energy,
c is the specific heat for the matrix. Nearly all of the thermophysical material pa-
rameters depend upon the temperature. However, such dependences have been
neglected for the sake of simplicity.

For a prismatic body of square cross-section, shown in Fig.1, deformed in
plane strain tension, we presume that the deformations are symmetric about the
two centroidal axes — and study deformations of the material in the first quad-
rant. Due to the presumed symmetry of deformations, the normal component

x, X

L]

2H

2H

- e e -

I"1G. 1. A schematic sketch of the problem studied.

of velocity and tangential tractions are taken to vanish on the left-hand vertical
and bottom horizontal surfaces, the right-hand vertical surface is taken to be
traction-free, and on the top horizontal surface, zero tangential tractions and a
normal component of velocity, given below, are prescribed;
va( Xy, M t) = wt/t,, 0<t<t,.
(2.20)
= g, t>t,.

Thus the assigned axial speed on the top surface increases linearly from zero to

http://rcin.org.pl



18 R.C. BATRA AND N.S. JIN

the steady value vq in time ¢, giving an eventual nominal strain-rate of v/ /7. All
the bounding surfaces of the block are taken to be thermally insulated.

Initially the block is assumed to be at rest, stress-free and at a uniform
temperature 3. However, the initial porosity is taken to be non-uniform and
given by

F(X1.X2,0) = fo+e(1— 25

(2.21) L
= (NP+ XD/ H?.

il

The second term on the right-hand side of Eq.(2.21), models a material defect
or inhomogeneity, the value of ¢ is a measure of the strength of the defect.

The aforestated coupled and nonlinear partial differential equations (2.1)
through (2.19) under the prescribed initial and boundary conditions are too dif-
ficult to be analyzed analytically. Therefore, we seek their numerical solution,

3. Computational considerations

In order to solve the problem numerically, we first rewrite Eq.(2.13) as

: 1 m
(3.1) ch o= max |0. - ?

m I) :fl' n
ao | [1+22) (1-wu8)
sy

Thus the equivalent plastic strain-rate is positive only when

(3.2) nmmm0+*)u_%m

=
otherwise it equals zero implying thereby that all components of plastic strain-rate
tensor at the material point under consideration and at that instant vanish iden-
tically. The value of o, is computed from the yield function (2.8) once o or s
has been found.

By substituting from the constitutive relations into the balance laws, we obtain
evolution equations for p, v and # which, when combined with Eqs.(2.7), (2.14)
and (3.2), give a system of equations for the determination of p, v, 4, o, [
and 7 at a material point and at any instant of time. We obtain a semidiscrete
formulation of the problem by using the Galerkin method which results in a set of
coupled and nonlinear ordinary differential equations. We employed the lumped
mass matrix obtained by using the row sum technique, and evaluated various
integrals over an element by using the 3-point quadrature rule. At each node
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pont in the mesh we have 9 unknowns, namely, p, v, ¢, o, [ and =7 . Thus the
nunber of ordinary differential equations equals 9 times the number of nodes.
Th:se are integrated with respect to time ¢ by using the subroutine LSODE
incuded in the package ODEPACK. In LSODE, variables ATOL and RTOL
tha control the absolute and relative errors in the solution vector were each
setequal to 10, The initial discretization of the domain consisted of uniform
3-mded triangular elements, but subsequent meshes were refined adaptively with
thearea of the element generated being inversely proportional to the value of £,
at ts centroid. Thus the mesh generated had fine elements within the severely
debrming region and coarse elements elsewhere. The finite element mesh was
refned whenever the porosity at the block centroid increased by a preassigned
amunt, and the computations were stopped when the porosity at any point in
the domain reached the critical value f;. Depending upon the initial distribution
of 7, at most six mesh refinements had to be performed. The values of solution
varables p, v, 6, o, [ and <7, at the newly created nodes were computed by first
asczrtaining to which element in the old mesh they belonged, and then by using
the interpolation method to find values at the newly generated nodes.

4. Numerical results and discussion

When computing numerical results, we assigned following values to various
gecmetric and material parameters:

op = 333MPa, FE =210GPa, v =0.27. v, =667x107%/°C,

pr = 7800kg/m>. & =492W/m°C, ¢ =473]/kg°C.
(4.) b = 10000s, m =0.025 =002 f,=004 s =01,
ey =05, ¢,=0017, 5, =15 43, =10, f =015
2
fr =035 [r= 3 Il =5Smm. {, =0.00511/w,.

Th: aforestated values assigned to different material parameters are for a typical
stezl. The value of 1, equals the reciprocal of the melting temperature, taken
here to be 1500°C, of steel. For vy = 25m/s, the nominal strain-rate equals
5000s=! and the rise time for the axial speed at the top surface to reach its
steady value equals one jis.

Figure 2 depicts the effect of initial porosity distribution upon the load-dis-
placement curve for a defect-free homogeneous specimen. The ordinate is the
total axial force required to pull the specimen, and the abscissa is the average
strain. In this case the deformations of the body stayed homogeneous, thus no
mesh refinement was carried out. The plotted results are for a fixed mesh of 1600
unform constant strain triangular elements. These results evince that higher val-
ues of the initial porosity facilitate plastic deformations of the body, thereby

http://rcin.org.pl



20 R.C. BATRA AND X.S. JIN

making the system more dissipative, and oscillations in the applied load die out
quicker. Subsequent to the initial peak in the load, the average load keeps on
decreasing with increasing axial strain because of the softening induced due to
the rise in the values of the porosity and the temperature of the body.

30 T T T T T

25

20

10

non-dimensional axial force

05

LI O

1 1 Il 1

L
020 025

L1 1

o N TN N SO N Y S S B L
0 005 010 015
average strain

FIG. 2. Axial load vs. time for homogencous deformations of the body at a nominal strain-ratc
of 5000s~! and for three distributions of the initial porosity. 7 — initial porosity = 0.00, 2 — initial
porosity = 0.05, 3 — initial porosity = 0.10.

4.1. Effect of nominal strain-rate and initial porosity distribution

In Fig. 3 we have plotted the history of the axial load required to pull the bar
at a speed of either 5m/s or 25m/s and for three values of the initial porosity.
In each case the initial porosity [ is nonuniform with the highest value of f
occurring at the block centroid, and it quickly decreases to the uniform value
at a small distance from the block centroid. We attribute the oscillations of
higher amplitude and longer duration at vy = 25m/s to the predominance of
inertia effects. At the lower value Sm/s of vy, after the initial rise in the load
because of the increase in the axial speed, the load decreases gradually for each
one of the three values of the initial porosity distribution. We note that for a
nonporous thermoviscoplastic material BATRA [33] pointed out that inertia forces
start playing a noticeable role at a nominal strain-rate of 5000s~'. Just when
the axial load began to drop suddenly, the value of f at a node point adjacent
to the block centroid reached f; and the computations were stopped. Because
of this we do not see in plots of Fig.3 the precipitous drop in the load usually
associated with the initiation of the localization of the deformation. As will be
shown below, the deformation does localize in a narrow band.

http://rcin.org.pl
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30 T T T T T T
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LI I s
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non—dimensional time

"1, 3. Axial load vs. time for three distributions of the initial porosity and
at nominal strain-rates of 500s~" and 5000s~".

11— f=002501 = r?) exp(-5r?), vy = 25m/s,
2— [ =00251— r?)’ exp(=5r?), vy = 5m/s,
3— £ =005+00251 - r¥)exp(=5r%), og = 25mfs,
4- £ =005+00251 - r?)’ exp(=5r%), vy =Sm/s,

S5—  f=01+00251-r*)’exp(=5r?), vy =25mfs,
65— f =0.140.025(1 = r2)? exp(=5r?), vy = Smjs.

Figures 4a, 4b and 4c show, respectively, the evolution of the effective plastic
strain, temperature, and porosity at the block centroid for the three different
distributions of the initial porosity and two values of the axial speed. Each one of
these three variables essentially evolves gradually first, and the rate of increase of
these quantities picks up substantially once the deformation has begun to localize.
For the same value of f(x.0), the increase in the nominal strain-rate from 500 s~
to 5000s~! delays the initiation of the localization of the deformation, primarily
due to the effect of inertia forces. For a given strain-rate of 5005~ or 50005~ !, an
increase in the value of f(x.0) causes the localization of the deformation to occur
earlier. This is because a more porous material undergoes plastic deformation at
a lower value of o, thus facilitating the growth and nucleation of voids and also
causing the material to heat up sooner, both of which enhance further its plastic
deformations. Hence it is a self-feeding mechanism.

In order to illustrate that the deformation does localize and to depict how the
finite element meshes adapt to the deformations, we show below results for the
case of

(4.2) 7(x,0) = 0.025(1 — r*)? exp(—512). g = 25m/s.

http://rcin.org.pl
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F1G. 4. Evolution at the block centroid of (a) the effective plastic strain, (b) the temperature
for three distributions of the initial porosity and at nominal strain-rates of 500s~" and 5000s~".
- 1 =00251 - r%)’exp(—5r?), v = 25mfs,

2— [ =0.02501 - r*)? exp(=5r?), v = Smfs,

3—  f=005+002501-r*)’exp(=5r?), vo=25m/s,

4—  f=0054+0.0251—r)"exp(=5r?), vg=5mf,

S—  F=01+0.0251 =) exp(=5r%),  vg = 25mfs,

6- f=01+0.0251—r%) exp(=5r%), vy =5ms.

(22]
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I"16. 4 [cont.]. Evolution at the block centroid of (¢) the porosity for three distributions
of the initial porosity and at nominal strain-rates of 500s™" and S000s™".

1-  f=0.0251-r?)°exp(=5r?), vg = 25m/s,
22— f=0.0251=r?) exp(-5r?), vo = 5mfs,
3— f=005+0.0251 - r)exp(=5r7), vy = 25m/s,
4 [ =0.05+0.025(1 — r?) exp(=5r%), g = 5Sm/s,
5 [ =0.140025(1 - )’ exp(=5rt), vy = 25ms,

6 f=01+00251=r)cxp(=5r?), vy =5Sm.

Figures Sa, 5b, 5¢ and 5d show the finite element meshes generated at non-
dimensional times ¢ = 0.198, 0.285, 0.339 and 0.357. We note that the initial
mesh consisted of 1600 uniform triangular elements. The finite element mesh
was refined whenever the porosity [ at the block centroid had increased by 0.025,
a criterion chosen somewhat arbitrarily. The mesh was refined by using the code
developed by Batra and Ko [34] which generates meshes such that the area of
an element is inversely proportional to the value of a deformation-rate measure,
here taken to be &,,, at the element centroid. It is clear then that a narrow
region of the material is deforming severely at times ¢ = 0.339 and 0.357. As
stated earlier, computations were stopped when the porosity at any point in the
deforming region reached the critical value f;. This implies failure of the material
at a point which does not necessarily result in the instantaneous failure of the
block. Figures 6a, 6b, 6¢ and 6d evince the distribution of the velocity within the
deforming region at the aforestated four values of the non-dimensicnal time 7.
Initially, because of the lateral motion of the block, the velocity component in
the horizontal direction has a significant value everywhere. However, once the
deformation has started to localize, the body is essentially divided into three

http://rcin.org.pl
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['1G. 7 [cont.]. Contours of (¢) the porosity at non-dimensional time ¢ = 0.357.

regions. In the region above the shear band, the material particles are moving
nearly vertically, and those below the band — horizontally. Within the band, the
velocity changes direction sharply.

Contours of the effective plastic strain (epstn), temperature rise, and the
porosity within the deforming region at time ¢ = 0.357 are shown in Figs. 7a,
7b, and 7c. It is clear that the strain near the block centroid is quite high. How-
ever, the temperature rise there is only 2.4 x 89.8 = 216°C, and the porosity
has increased significantly only in a very narrow region surrounding the block
center.

4.2. Effect of strain-induced void nucleation

In order to present the effect of the softening caused by the plastic strain-
controlled nucleation of voids, we have plotted in Fig.8 the evolution of the
applied axial force at the top surface and that of temperature, effective plastic
strain and porosity at the block centroid for the two cases: (i) f> = 0, and (ii)
f> = 0.04. Tt is apparent that the consideration of strain-induced void nucleation
enhances the onset of the localization of the deformation, as shown by the sharp
rise in the rate of increase of the temperature, effective plastic strain and the
porosity at the block centroid.
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1 — with strain-induced void nucleation, 2 — without strain-induced void nucleation.
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4.3. Thermal softening vs. softening due to porosity change

For the choice (4.1) of parameters we assessed the effect of softening caused
by the rise in temperature versus that induced due to the increase in porosity by
performing two sets of calculations, one with v, = 0 and the other with f(x.t) = 0.
The material defect for these computations was modelled by assuming that the
yield stress Gy in a quasistatic simple compression test of material particles in a
small region around the block centroid was given by

o(X) = oo (1-01(1—s3%™5) 2= (XP+ XD/ H2 <1,

= o, r > 1.

In Fig.9, we have plotted the evolution of the applied axial force, and that of
the effective plastic strain and the temperature rise at the block centroid for
the two cases with vy = 25m/s. It is clear that for the parameters considered
herein, the softening due to the increase in porosity is considerably higher than
that caused by the rise in the temperature. Whereas a shear band initiates, as
indicated by the rise in the rate of increase of the effective plastic strain and of the
temperature at the block centroid at non-dimensional time ¢ ~ 0.5 when softening
is caused by the change in porosity, no shear band forms till a non-dimensional
time of 0.5 when the softening is induced by the temperature rise, since both
the effective plastic strain and the temperature at the block centroid increase

a) T T T T T

30

T T TTT

non-dimensional axial force

o
[T

T T
L

Ly I N N N N S | L | T Y T S '
0 ar 02 03 Q04 05 06
non—dimensional time
[F16. 9a])

I — no thermal softening, 2 — thermal softening only.
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essentially linearly with time. It is possible that a band will initiate at a later
time. Thus for the values of material parameters chosen for this study, softening
caused by the growth and nucleation of voids is stronger than that induced by
the temperature rise.

5. Conclusions

We have studied dynamic finite plane strain thermomechanical deformations
of a porous viscoplastic body deformed in tension. The material is modelled by
the Gurson -Tvergaard - Needleman yield function with the flow stress for the
matrix material given by a relation similar to that proposed by BaTra [28]. When
the dependence of material parameters upon the porosity is considered, they are
assumed to be independent of temperature. The problem formulation includes
the effect of inertia forces and heat conduction.

The coupled nonlinear partial differential equations governing the deforma-
tions of the body are reduced to a set of coupled nonlinear ordinary differential
equations by using the Galerkin method. These are integrated with respect to
time / by using the IMSL subroutine LSODE. The finite element mesh has been
refined adaptively.

It is found that inertia forces play a dominant role at a nominal strain-rate
‘;;Wg of 5000s~!, but a negligible role when ”'/uvg= 1000s~'. An increase in the
initial value of the porosity makes the system more dissipative in the sense that
oscillations in the applied axial force die out quickly. The shear band forms
at a lower value of the nominal strain when the initial porosity is increased.
Once a shear band has developed, the material above the shear band moves
upwards with the velocity imposed on the top surface, and that below the band
moves horizontally to the left, with the velocity changing sharply from essentially
horizontal to nearly vertical on the two sides of the severely deforming region.
The computations were stopped when the porosity at a point reached a critical
value. The material at the center necked. The softening caused by the increase
in the porosity is more than that induced by the rise in the temperature of the
body, at least, for the values assigned to material parameters herein.
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Continuous dependence results in the nonlinear theory

of elastic mixtures

R. QUINTANILLA (BARCELONA)

THIS PAPER 1S CONCERNED with the nonlinear theory of binary mixtures of elastic bodies. The
continuous dependence of solutions upon initial state and body forces is established. A uniqueness
result is also presented.

1. Introduction

THE CONTINUUM THEORY of mixtures has been a subject of intensive study in re-
cent years. For an extensive review of the literature on mixtures the reader is
referred to the reviews by Bowen [1], ATKIN and CRAINE [2, 3], BEDFORD and
DrUMHELLER [4] and C. TRUESDELL [S]. A series of papers are devoted to the
study of mixtures of elastic materials (see, e.g. [4], [6-8] and the literature cited
therein). In some theories for a mixture of elastic solids (for example [9-11]) the
constitutive independent variables are the displacement gradients and the relative
velocities, and the spatial description is used. The first theory for a mixture of
elastic solids based on the Lagrangian description has been presented by BEDFORD
and STERN [12, 13]. In this theory the independent variables are the displace-
ment gradients and the displacement fields. The theory developed in [12, 13] has
been extended by Por and BoweN [6] who established a thermodynamic theory
of mixtures with a long-range spatial interactions. The model of interpenetrating
solid continua was applied by TIERSTEN and JAHANMIR [17] to derive a theory of
composites, where the relative displacement of the individual constituents is in-
finitesimal. In [8], a Lagrangian description was used to derive a theory for binary
mixtures of nonsimple elastic solids where the displacement constitutive variables
are the displacement fields, the first and the second displacement gradients. The
asymptotic behaviour of solutions of the quations of motion in the context of the
linear theory of a mixture of two homogeneous and isotropic elastic materials has
been studied by DAFERMOS in [14, 15]. Uniqueness results in the linear theory of
mixture of elastic solids have been presented in various papers (see e.g. [16, 17]).
Recently, a uniqueness theorem for the nonlinear static problem 23] and some
existence results for the linear theory [22, 21] have been obtained. Asymptotic
behaviour has been studied when thermal effects are considered [22].

The present paper is concerned with the nonlinear theory for binary mixture
of elastic materials. In this theory the independent constitutive variables are the
displacement gradients and the relative displacement, and Lagrangian description
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is used. In this paper we extend some results established by DAFERMOS in [18]
within the classical theory of nonlinear thermoelasticity. We establish a unique-
ness result and the continuous dependence of solutions upon the initial state
and body forces. We introduce a distance between the states of two processes
originating at neighboring states. With a view toward a treatment of continu-
ous dependence of solutions upon the data, we study the evolution in time of
this distance. Then, we derive a continuous dependence result for smooth states
residing in the convexity region of internal energy.

For the case when the motion of the boundary is prescribed, a similar con-
tinuous dependence result is established under the weaker assumption that the
smooth state resides in the strong ellipticity region. The boundary conditions in
the theory of mixtures have been discussed in various papers (see, e.g. [2, 4, 19,
20]).

2. Preliminaries

We consider a body which, at time ¢ = 0, occupies the bdunded regular region
B of the Euclidean three-dimensional space with the boundary surface 0/3. We
assume that OB is sufficiently regular to assure the common laws of transfor-
mation of surface integrals and Friedrichs inequality. The configuration of the
body at time ¢ = 0 is taken as the reference configuration. The motion of the
body is referred to the reference configuration and a fixed system of rectangular
Cartesian axes. Let B be at rest with respect to the reference frame. Through-
out this paper we employ the usual summation and differentiation conventions:
subscripts preceded by a comma denote partial differentiation with respect to the
corresponding Cartesian coordinate; a superposed dot denotes the material time
derivative; Vy is gradient operator with respect to the place X, keeping ! fixed;
the symbol | - | denotes a norm either in an Euclidean space vector or in a tensor
space, while || - || denotes an L?-norm; summation over repeated subscripts is
implied. Let N4 be the components of the outward unit normal to J13.

We assume that B is occupied by a binary mixture of elastic materials. A
process for 13 is described by the following eight functions of X and /: the spatial
position fields x, y; the body forces f, g per unit mass, the first Piola-Kirchhofl
stress tensors T, S; the internal body force p per unit volume and time. the
internal energy ¥ per unit of initial volume. The motions x and y determine
velocities v =x and w =y, the deformation gradient F = Vix, G = Y,y and the
relative displacement d = x—y. In what follows, occasionally it will be convenient
to write various expressions in component form and to display vector and tensor
fields by their components referred to the considered system of Cartesian axes.
Thus, the components of the velocity v we shall denote v;, while the components
of the deformation gradient fields F and G will be denoted by /4 and (/.

A process for 13, defined for all X in B and all ¢ in [0. /o] is called a dynamic
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process in B3 if it is compatible with the equations of motions (see, e.g. [4])

’1‘_41_4 —pi t+ f)(l)-/i [)(1] I'I R

(2.1) '
Saia +pi+pSgi = p3 Ui,

and the energy equation

d T 1 - ' ]
(2.2) pr X+ i(p?i‘i v; + /)gu';u'g) = (Tarv; + Sa;wi)a + plfini + /)gg,-'u*l.

Here, p{ and p{ are the reference mass densities of the constituents. We assume
that p? and pg are smooth and strictly positive, i.e.

(2.3) AX) > >0 S>>0 Xeb.

where p) and p, are constants. The material at the point X is characterized by
the constitutive equations

(2.4) Y =Y(F.G.d). T=T(F.G.d), S=S8(F.G.d). p=p(F.G.d)
where Y=, T*, S§*, p~ are smooth functions. In particular, we assume that the
partial derivative of Y=, T~, §* and p~, at any fixed state (F.G.d) are bounded
functions of (X, ) on B3 < [0. ). The function ¥ is unaltered by superposed rigid
motions, so that it must be expressible in the functional form

Y= S(Cxp.Grr, DR,
where
(.'[\'L =3 N L, (?]\'[4 =T, NVYi L and DA. = .‘r',"]\'r/,.

We shall say that a dynamic process is admissible if it is compatible with
the constitutive equations (2.4). We say that A = (x.y) is an admissible state
corresponding to the loading 1 = (f.g) if (x,y.f.g. T.S.p.Y) is an admissible
dynamic process. The admissible state A is called smooth in /3 if it is such that v,

w, F, G are Lipschitz continuous, uniformly on bounded subsets of their domain.
If there is no internal constraint, Eq.(2.2) implies that

T o' oy
(2-3) T'(U—F) ' S‘(E) P g
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3. Basic results

Let A = (x.y) and A = (X,y) be two smooth admissible states on 3 x [0, ¢g].
We define the function D on [0, tg] by

3.1) D) = / {% [p?(vg —B)(vi = T) + pd(w; — T (w; — m—)]

B
+ 2 — Y —Tai(Fai = Fai)) = Sai(Gai — Gai) - pi(d; — 71,-)}(”-'.

where

Fa; = T4, Gai = T; a Y =Y(F,G.d),
T=T"(FGd. S=SFGd p=p(FGC.a.
In order to derive continuous data dependence and uniqueness results, we
first establish the evolution in time of the function D.

THEOREM 1. If A and A are two smooth admissible states corresponding to the
loadings A = (f.g) and A = (f.g) in L>=(B x [0.y]). then

(3.2) D (1) = / [(Tm' = Ta)(wi = Ti) + (Sai — Sai)(wi — Ti)] N,ydA

9B
+ [0 =T =) + 80 - 7w, - )] v
B
= : _ OT ai — T 4, =
+ Fia | Tai —Ta; — a3 - — (G — G
/{ A [ A iy (K — I;B) U(-',H( iB—GiB)
5 : _
(I)T--h = P ' rd ()_S-h 5 Al
—— 1 = l + (,r't' 45. i .S g = —=—— ]ll - [“
a4, (d, — d)) A [ A A ('N"_,'H( 8= FiB)
t)?m Ky Ad - a7, i —
i )~ L-d)| +d i —p— e (kg — F
('76')3( iB iB) o, —=(d; — ¢ )} d; pi—P 01",}3( JB iB)
IP; P, .
@ G - f—i l; - l 5 1 e [0.1y].
=G~ T) = 5, = )H [0.14]

Proof. From Eq.(3.1) we obtain
. d
D(f):/{ d [ (/)lr,n!+p2u w;) + \“} o [ (f’1’1‘: +f’2“ W) + 3 }
B

+2(p??,— 7 +pgﬁi 'ng) - p?(?i v+, T,) - /)g(ﬁi ; +w; WC)
= 1 Az (]z A4 — 1 1 1)* S A ((’11 ﬁfA)* [L), ((lj — Ez)
—T 4 1:'1,4 +T a; Fin —Sa; (;, 4 5 (,, A =D n:f,‘ +7; ﬁ,‘}(“*—.
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By Eqgs. (2.1), (2.2) and the divergence theorem, we get

(3.3) D(1)= j [(7?1:‘ = Tai)(vi =) + (Sai — Sai)(wi — 7!"‘.)} NadA

aB

+ [ [AG= Tt = ) + d0: = g - )] v

B

+ / [Tf,t (Ta; = Tad)* Gia (Sai = Sa)+ di (pi = 7))
B

— Tai (Fia = Fia)— Sai (Gia — Gia)— p; (di — (7,-)} dv.

With the help of Egs.(2.5), we can write

- E)T [ = )ﬁ.i — )
Ts; = —= Fia AL Gia + b
ol';B ()[‘jH Jln
— a1 \i — (')Fh - ()]J
S . s — ('1 et {
Br = oG M oas M ot
. OT a; = 05 .4 = p- =
B = CN T+ G+
: dd, ()n’ od;

So that

Fia (Tai = Tai)+ Gia (Sai = Sad+ di (pi — 7))
—Tai (Fia = Fia)= Sai (Gia = Gia)- p; (di = &)

£ IT 4i JIT 4 -
=Tia [(/ Ai — Tai) — —‘(/JB F;p) - el A (Gis —GiB)
.J B
);’ { )? i ~ -
e —(d; — d; )jl + (:,\ [(51, - Sa4i)— :)I_,‘ (F;B — FjB)
J JB
0:5_',“ S ()?.\,’
e e B g
f)(_;l,-B( o = Gi) od, (@ ”)]
- Ip;
+d; |(pi = P;) - M’ -(Fi = FjB)
J
ap; JIp
L (G, -G;B) - hdid3 l; — d;
()('JB( B ()d., { a )]

If we use the above relations, then from Eq.(3.3) we obtain the desired result.

http://rcin.org.pl



42 R. QUINTANILLA

Following DAFERMOS [18], we say that the smooth admissible state A = (X.¥)
resides in the convexity region of the internal energy if for each (X.1) € /78 x
[0, tg], there exists a positive constant A such that

*y 9*r 9*x
(34) ?—("_,](:ﬂ-} + i—{:-‘h_t‘}]g + TZ,Z]
dFi40F ;B JC 400 R : dd;dd, )
7T ey BT
.—‘__‘(,—__(",'A.l"yl'B + 2_(‘4:—[ 1‘_.174‘, + 2—_(—?‘ z_~lZ;
OF 140G, ' OF .04, T TOG 04, :

Z

> A (U + VP +

')
for all U, 4, V,5, Z,. In the linear theory the above condition is equivalent to the
positive definiteness of the energy density. A detailed discussion of the convexity
of internal energy has been given in [18].

In what follows we shall need the following Gronwall-type inequality (see
DAFERMOS [18]).

LemMA 1. Assume that the nonnegative functions y(/) € L>[0.s] and ¢(/) €
L'[0. s] satisfy the inequality
(3.5) 4} < _\/2,q2(0)+/ [(2(. + 407y (1) + 2;\'_(,(/),,(0} dt. r € [0, 5],
0

where «a, 3, M and V are nonnegative constants. Then

S

y(s) < |:.U'//(0) + N / _(/(l)(/!] exp(ys + ‘f.kz).

0

where 1 = (a + ) /a.

THEOREM 2. Let (X.¥) be a smooth admissible state corresponding to the loading
A= (f.g) € L(Bx[0.4]) and residing in the convexity region of the internal energy.
Then there exist the positive constants 6, oy, My, My with the following property:

If (x,y) is any smooth admissible state defined on I3 < [0.1g] corresponding to
the loading A\ = (f.g) € L™= (B x [0.1g]). such that

(.6)  [Fx.0) — Fx. O] + [G(x.1) — G(x. )| + [d(x. 1) = d(x.1)]] < o.
(X.1) € 3 [0. fq].
G 3N [+ 5a) = Tai + 500101 + ) = @ + 7))
+%_\(,, [("1‘,.“ 4 Fad— Tar + .s'_,‘i)] [(0; + ;) — (7 + w;)]
= [(71.“ ~Ta) (e =)+ (Sai = Sa(wi —w)| Na = 0. on 91 x[0.1q].

http://rcin.org.pl



CONTINUOUS DEPENDENCE RESULTS IN THE NONLINEAR THEORY ... 43

then, for any s € [0.1y],
H(V -vw—w.F-F.G - C)(' f*’)“/](}g)

< {;\[1”(\’ ~vw—w.F-F.G - —G—)('-O)HLZ(B)
+ A / II(fF—f.g— E)HLZ(B)AI} exp(as).
0

Proof. By (3.5), (3.7), the Schwarz inequality and (3.2), it follows that one
can determine the positive constants ¢, 3 such that, for all 1 € [0.1], one has

(3.8) D) <all(F-F.G-G.d—d)(-.)[[]2
+ool|(F = £.8 = B Dl L2yl (v = Fow = W) Dl 2y

If we fix s € [0. 1] and integrate (3.8) over [0, 7] (with 7 € [0.<]), we obtain
(3.9)  D(r) < D(O) + e, / (F = F.G = God — @) )2l
0

+er [0 =Tog = B Ollpagm (v 5w = DLt

In view of Egs. (2.5)

(3]0) 35— 5 T‘.;,(I‘-‘,‘,l — T,A) - ?,;,-((.’,-,\ - ﬁ,“_l) . /_’i((]r' . ;7()

1 ?X _ .
= |l—=—=U -l B-F
Luq,\a/{,y( ! NOLIELY
PL  (Gia - T Con - T
+— lr[, - n',". "l = ,' »
aG;, \()(",H( A (R JB)
)2\" . )')‘ N
+ —=——(d 1)(d; l 42— (I — ]l Gg—G;
oo, 4~ A =) )I,\d(uﬁ( v~ FiallGip = Gin)
PPY ERN . I
O =Ty =4y + 2 (G - Toa)d, — 1,
o/”rm( v = Fia)d; =) ()(M()(( g = Go)(d; = d))

+o (|F ~FE4|G-CP+|d- a|2) .

From Egs. (2.3), (3.1), (3.9) and (3.10) it follows that there exists a positive con-

http://rcin.org.pl



44 R. QUINTANILLA

stant 6 such that, whenever Eq. (3.6) holds, we can write

(3.11) ﬁﬂKV-—V)C-T)HiqB)+'ﬁ2H0V-W)C-0Hqu,
+X[|(F = F.G — G.d— d)(-. 7)[|2 5,

< 2D(0) + 2, ] v = Vow = W.F = F.G = G.d = d)(-. )220
0

+2¢, j (=T g = D) Ol 2yl (v = ¥oW = W F = F.G = G.d — @)(-. )| 21
0

If we use the estimate
D(0) < e3f|(v—v,w = W.F - F.G - G.d — d)(-.0)[|
with ¢3 > 0 and the notations
m = min(py. pz. A7), M} = 2¢3/m, ay = ey /m. My = eafm.
then (3.11) implies that

I(v-v.w—-w.F-F.G-G.d - H)(-.r)||iz(5)

<M= Vow = W.F = F.G = G.d = d)(-.0)]|7 ()

r

+ / [200[(v = vow = w.F = Fod = )|
]

+2My||(F = 1.8 — B)(-- Dl 12| (v = v.w = W.F = F.G — G.d — d)(-. f)||,,:(,3)} di.

The application of Lemma 1 leads to the desired result.
The next uniqueness theorem is a direct consequence of the Theorem 2.

THEOREM 3. Let A = (X.y) and A = (x.y) be two smooth admissible states
residing in the convexity region of the internal energy and corresponding to the same
loading and to the same initial data. If the states satisfy the boundary conditions
(3.7), then

x(X. 1) = %(X. 1), y(X. 1) = §(X. ). for (X.t) € B x [0.1].
Theorems 2 and 3 have been obtained under the assumption that the state

resides in the convexity region of the internal energy. This condition can be
relaxed to suppose that the state (X.y) resides in the strong ellipticity region, i.e.
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there exist the positive constant ;. with the property that for any vectors &, 4 ,,
Mis Aa» i

) i 2y P2y
_— "['(S ‘h ol | /\ /\ —
TToadT g it & g g i Aads + Gaag #i%
92 92y DZy
()]";_,1()(:'_,‘3 Fiadd;” ()(u \()(1 o

zﬂﬂmﬁ+m00mP+MJ)+wﬁ}

THEOREM 4. Let (X,¥) be a smooth admissible state corresponding to the loading
(f.g) € L™(B x [0.to] and residing in the strong ellipticity region of the internal
energy. Then there exist the positive constants é, oy, 3, My, My with the following
property:

If (x,y) is any smooth admissible state defined on B x [0.1o] comesponding to
the loading (f.g) € L*(B x [0.tg]) such that

(3.12)  [F(x.1) — F(x. )] + [G(x. 1) — G(x. )] + |d(x. 1) — d(x.1)] < 6.
(X.1) € B x [0.1],
(3.13)  x(X.H) =x(X.1). yX.O)=yX.t) on 0B x[0.1]

then, for any s € [0.1g],
(3]4) ||(V—V.W*W.F—]?.G—6)('.-‘-’)]|L2(B)
< {.\[1”(\’ —V.w—W.F=F.G - G)(-.0)|[ 123,

+Ms / II(f—f.g—g)(-. I)HLZ(H)rII} exp(ags + i3s%).
0

Proof. We recall that A = (X.y) resides in the strong ellipticity and x — X,
y—y vanish on 9 B x [0. (o). In view of Garding inequality there exist two constants
A > 0 and ~ with the property that, for any 7 & [0, /y],

027y
(3.15) /[ﬁﬁ—(u1 Fo)(Fys - )
B

0 i \()1 B
9ty o B
+ — (—”i- _(;1 () = (5
(')(/,“4(')(/.,3( ! AN Cn -/B)
9?2y 5i7 N B
(i = )y = &) + 2 (Fia = T )G = G
()r/ dd, Faaq, b~ dd; — &) T \d(',h‘( A NG iB)
?y 1 1 5 NT B N
S (Fia = — ) ¥ Sl — Gl —d )| dV
m,;m/( 4= Fuld; = ;) O(HM( A D(dj —dj)
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(3.15)

|cont.]

> 2) / I(F = F.G = G.d = @)(-. )12z,
B
— [0 = %oy = D gV
B

It follows from Egs.(3.10) and (3.15) that there is a positive constant ¢ with the
property that, when Eq.(3.12) is satisfied,

/ (): — T,\,'(]"‘i,\ — ]-,J,) - F,q[((,;,‘..\ - ﬁm) - ]_Jl(([( - (_l!)) dV
B

> 6/||(F_ F.G-G.d=a)( 1) 2adV
B

—K /H(x_i-y_Y)('-T)Hiz(H)(”'.
B

By using Schwarz’s inequality and the Poincaré inequality, we get

||x(-, 7) = %(, 7), ¥(-. 7) = ¥(-, 7)) iz(s)
= [|(x(-.0) — X(-.0) + /(v(-. 0 = V(. 1) d, y(-. 0) = ¥(-..0)

0

T

+ ‘/(w(_ 1) = W(. D) dD|IF 2
0
< 2¢5[|(F(-.0) = F(-.0). G(-.0) — G(-.0))|

il(H)

+2r / 1V t) = ¥ 1) W 1) = W D)2y

0
Next we proceed as in the proof of Theorem 2. We obtain an estimate of the
form (3.5) with
y() = |(v =¥ w=W.F = F.G = G)(-. )| .3,

and g(t) = ||(f — £.g — 8)(-. )|, 2()- In view of Lemma 1, we obtain the desired
result.

Theorem 4 can be used to obtain a uniqueness theorem under the assumption
of the strong ellipticity condition similar to Theorem 3.
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A local differential geometric formulation

of dual stress-strain pairs and time derivatives

B. SVENDSEN (DARMSTADT) and CH. TSAKMAKIS (KARLSRUHE)

THE PURPOSE OF THIS WORK is to formulate, discuss and generalize, from a local ditferential geo-
metric point of view, the concept of “dual” stress-strain pairs and “dual™ derivatives introduced by
Havrt and TsaxMakis. In particular, the differential geometric represention for “line elements”
(Le., as equivalence classes of curves) and “surfaces™ (i.c., as equivalence classes of functions),
yicld the corresponding familics of strain tensors based on associated forms of the usual Green
and Piola strain tensors, respectively. Using the stress power density, two corresponding families
of stress tensors based on associated forns of the second Piola - Kirchoff and negative convected
stress tensors, respectively, are obtained, with the former conjugate to the Green, and the latter
to the Piola strain tensor. The other members of each family are obtained from the basic pair of
stress-strain tensors in each via the action of a group of time-dependent invertible lincar transfor-
mations on cach pair. From this point of view, cach family represents the “orbit” of cach basic
pair with respect to the group action in the set of all such pairs. The invariance of the stress power
density with respect to this action of the group is obtained when one takes into consideration the
fact that the group acts as well on the time derivative operator, yiclding the concept of dual time
derivatives. We emphasize that the crucial difference between our formulation and previous work
on “objective” derivatives is the dependence of dual derivatives on the extension of the invariance
of the stress power density with respect to the action of time-dependent lincar transformations, a
requirement that is material-independent.

1. Introduction

IT 1S WELL-KNOWN that in the theory of finite deformations, stress and strain tensors
can be introduced in various ways. These various stress and strain tensors are
not initially related to each other, raising the question of whether or not there
exists a method to associate with each stress tensor, a strain tensor independent
of the material.

The theory of conjugate variables of HiLL [1,2] represents a method to asso-
ciate one strain tensor with each stress tensor independent of particular material
properties. According to this theory, a stress tensor is called conjugate to a given
deformation tensor if the inner product of the stress tensor with the material time
derivative of the deformation tensor represents the stress power. HiLL’s method
is formulated using mainly Lagragian variables. A modification and extension
of the method of conjugate variables to arbitrary stress-deformation pairs was
introduced by Haupt and Tsakmackis [3] (hereafter HT), i.e., the method of dual
variables. In this work, we formulate this approach from a differential geometric
point of view.

After introducing basic definitions and notation in Sec.2, we present a brief
review of basic kinematical relations for a material body used in this work (Sec. 3).
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50 B. SVENDSEN AND CH. TSAKMAKIS

In the next three sections, we briefly review, from a local differential geometric
point of view, the basic strain and stress tensors employed by HT, i.e., the (ref-
erential) Green and (spatial) Almansi strain tensors based on the deformation
of “line elements” (i.e., tangent vector fields: Sec.4), the (referential) Piola and
(spatial) Finger strain tensors based on the deformation of “surfaces” (i.e., normal
covectors: Sec.5), and the (referential) second Piola - Kirchhoff and convected
stress tensors as based on the Cauchy stress tensor (Sec. 6). A particular result of
such a formulation for these tensors is the appearance of their associated forms
and the explicit role of the Euclidean metric. On the basis of this representation,
we analyse in Sec.7 the pairing of these stress and strain tensors that arises in
the stress power (Sec.7), i.e., the basic “dual” stress-strain pairs, as well as their
transformations. In particular, we show that these transformations can be repre-
sented as an associated action of a group. An important special case of this action
is represented in essence by the operations of “push-forward” and “pull-back”
(e.g., MarspeN and HUGHES [4]) of tensor fields associated with the referential
and spatial configurations, respectively (Sec. 7).

As a prelude to discussing the corresponding “dual” derivatives introduced
by HT, we review briefly the time derivatives of the previously-mentioned basic
referential and spatial stress and strain tensors in Sec.8. The requirement that
the stress power density should be invariant with respect to action of a group of
transformations yields in Sec. 9 the concept of dual derivatives of dual stress-strain
tensors, representing derivatives that commute with the group action.

To maintain close contact with the work of HT, as well as “classical” con-
tinuum mechanics, we utilize in this paper a local (i.e., Euclidean-space based)
representation of kinematics, stress and strain tensors, and so on. A number of
results in this work (i.e., many of those to be found in Secs.4-6 and Sec.8) can
be compared to similar results in MARSDEN and HUGHES [4, §1.3, 1.6 and §2.2].

2. Basic mathematical definitions, concepts and notation

Let R and R* := {a€R | @ > 0} represent, as usual, the sets of real and
positive real numbers, respectively. For an arbitrary set -, let A" 1= .| x ... x A
(n times) signify the n-fold Cartesian product of A with itself.

Let Map(:1. B) represent the set of all mappings between two sets .1 and /5.
Any ¢ € Map(1. B) and e Map(.1. (") induce (v x ) e Map(.1 x A. 3 x (), de-
fined by (v x2)(p1.p9) = (V(p)). 2(py)) forall p,.pye A Any e Map(AAx B.()
induces ¢, e Map(B. (') for all pe.1 and v, e Map(.1. (') for all ¢ € 13, defined by
v(q) = ¢(p.g)forall ge B and v, (p) = v(p.q) for all pe A, respectively. For
any subset (7 C .\ of a set A, the inclusion mapping 1, , € Map(l'. 1) is defined
by 1, 4(p) := p forall pe U; in particular, 1, := 1, , represents the identity
mapping. In the case of a linear space V, let 1,, represent the linear mapping
induced by 1,,. Let Inj(A, /) and Bij(:\. 13) represent the set of all injections and
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bijections between two sets A and B, respectively. For v e Map(. 3) bijective,
there exists a unique '~! € Map(B. A), called the inverse of v»€ Map(.A. 13), such
that oyp~! = 1gand v~loy = 1,.

A group consists of a non-empty set  on which (1) is defined, an associative
binary operation

(2.1) k:Gx G — G | (g.h)—— gh = k(g I)

(2), a neutral element » € (such that x(g,n) = g = x(n,g) for all g /') and
(3), a bijective mapping

(2.2) LG — G| g— g7 = (),

defined by x(g.:(¢)) = n = r(i(g),9) Vg€, assigning to each element g€ (/ its
inverse ¢! € (7. If some subset /I C (i of a group (7 is also a subgroup of (7, one
writes // < (i. Let A be a non-empty set and (i a group. A mapping

(2.3) a: G — Bij(:\.A) | g——a, =0a(y)

is called an action of the group (+ on the set .1 if it is a group morphism, i.e., if
(2.4) FRij(A,4) ° (8 X @) = Qo kg

where o denotes composition of mappings or operations in this work. In partic-
ular, (2.1) induces the actions

(2.5) NG — Bi(G.G) | gr— A, = A(9)
and
(26) P G — BIJ((;(I') | o — Py = /I((})

of & on itself, defined by g/ := A (h) := w(g.h) and hg := p,(h) = rx(h.g),
respectively, forall g, 1 €5 A and p, are referred to as left and right translations
of (7, respectively, for all g € ;. With respect to the action (2.3), the subset

(2.7) O, :={q| q=u0a,p) forsome ge}
of A is called the orbir of pe .V in /A, and the subgroup
(2.8) G = {ged/| a_,,(p) = p}

of (i the isotropy or symmetry group of pe A. Note that (ig () = (A, 2 p,-1)[(}]
for all pe A and ge .

Let V and W represent two finite-dimensional linear spaces, Lin(V. V) — the
set of all linear mappings, Lbj(V. W) := Lin(V. W) n Bij(V. W) — the set of all
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linear bijections (sometimes denoted Lis(V.W)), and Lbj " (V. W) — the set of all
linear bijections with positive determinant, between V and JV. Any L e Lin(V, W)
induces a linear mapping(')

(2.9) L": W —V | o+~——oc°L=L0

between the spaces V™ := Lin(V.[R) and W™ := Lin(W.IR) dual to V and W,
respectively. L* € Lin(WW™. V™) is refered to as the dual of LeLin(V. )W), For
any finite-dimensional linear space V, we have the natural identification (v —
i) € Lbj(V, V™) defined by v := vv for all v € V7, allowing us to treat each veV
as an element «, € V™7, and vice-versa. Such a relationship is usually signified by

writing », = v and V™" = V; from this, further identifications follow, such as
* = L and Lin(V™".W™) = Lin(V. ). In what follows, let

Sym(V,V™) := {MecLin(V.V") | M~ = M}.
(2.10) Sym* (V. V™) = {MeSym(V. V") | (Mv)v >0 YveV\ {0}}.
Skw(V. V™) := {MeLin(V.V") | M~ = -M}.

represent the sets of all symmetric, symmetric positive-definite, and skew-
symmetric, linear mappings MeLin(V, V™), respectively. Again, note that
M*eLin(V™". V") in (2.10), 3 can be interpreted as an element of Lin(V. V")
via V7 = Ve, M eLin(V. V7). From now on, such identifications will be used
implicitly in this work.

Commonly, p-contravariant, q-covariant tensors of, or on, a linear space V
(V-tensors for short) are defined as elements of the set Lin , (V™" « V' [R) of
all (p + ¢)-linear mappings

(2.11) p VPV — R | (V.Y

S JIIY  » oeqg Mg v,)

of V™ x V7 into [R. Of particular interest in this work are 2-covariant and
2-contravariant tensors, i.e., members of the sets Linz(l’z. [R) and Lir13(\/"2. R),
respectively. Each 2-covariant tensor ;[ELi]]z(VZ.I_R) can be represented by a
unique linear mapping M € Lin(V. V") (and vice-versa) defined by

(2.12) (Mvy)v, := i(vy.v5)

for all v,.v,€V, inducing the natural identification Linz(\/‘z.[R) = Lin(V.V").
Analogously, any 2-contravariant tensor j eLing(V’l. [R) can be represented by
a unique linear mapping M € Lin(V™, V) (and vice-versa) defined by

(2.13) (M), i= (v, vy)

1)The notation L*o := L*(0) in (2.9) is standard for lincar mappings.
pping
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for all v, v, € V", inducing Lin,(V**,R) & Lin(V".V™") = Lin(V". V).

A linear group on a finite-dimensional linear space V is by definition a closed
subgroup G of the group Lbj(V, V), i.e., the so-called general linear group, of V.
Any such group acts linearly on V-tensors; indeed, on the basis of (2.3), this
action is of the form

(2.14) a: G — Lbj(Lin, (V™" x V' R).Lin,,, (V7" x V'.R)) |
L+— ﬂL = G(L) R

where

(2.15) (ap0)(vy. .., Vs Vi - o Vgd o= L7y, . . L0, Ly, ..., L_lv,])

for all Leg, v,,..., v, eV™and vi....,v,€V. In particular, we have o b = k
forany k€[R, a v =Ly forall veV = V™ and qv = L™"v for allve V", from
(2.15). Note that L='e g, L* e Lbj(V=. V™), L= := L™ = L*~1eLbj(V". V"),
o, = a ' eLbj(Lin,,, (V" x V", R), Lin,,, (V" x VI.R), aq, _, = aa; !
=1 wreva ) @04 00y, = o 'e, =1 for all LeG. G acts
in particular on the sets Liny(V2. R) and Liny(V*2.[R), and so via the natural
identifications Liny(V2.[R) = Lin(V. V") and Lin,(V**.[R) = Lin(V".V), on the
sets Lin(V. V") and Lin(V". V), respectively. For example, (2.15) yields

Lin,, (VP xV1IR)

(2.16)  (ap)(v;.vy) = u(L7 v L7lv,y) = (ML7'v,) (L7 y))
= L™ (ML~ 'vy)v; = (L7"ML™"v,)v,

for all Le G, yi € Liny(V2. [R) and v,.¥, €V, inducing the linear bijection
(2.17) g : Lin(V. V") — Lin(V.V") | M+—L "ML =:qM

on Lin(V.V7) for all L<¢ (recall that a; M := a; (M) with a; linear). Likewise,
(2.15) implies

2.18) (). vy) = j(L7vy. Lvy) = (ML7v,)(Lv,)
= L(ML v, )v, = (LML )u,)v,

for all yi € Liny(V*%. R), LeG and v,.v, € V" inducing the linear bijection
(2.19) a, : Lin(V™.V) — Lin(V".V) | M+— LML =:qM

on Lin(V™.V) for all Leg.
An inner product space is a linear space V endowed with the additional struc-
ture of a symmetric, positive-definite linear mapping G € Sym ' (V. V"), which we
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will call a metric (on V) in this work. Using G € Sym™ (V. V™), one defines in the
usual way the inner product

(2.20) u-w:= (Gu)w

on V for all u,we V. Likewise, G~!€Sym™(V*.V) can be intepreted as an inner
product of covectors, i.e.,

(2.21) v+«o:=v(Glo)=(Gv) (G o)

for all v,oeV™. Any linear mapping LeLin(V,)V) between two such inner
product spaces V and W with metrics G, € Sym* (V. V") and G, € Sym ™ (W, W™),
respectively, induces the linear mapping

(2.22) L' := G;! L" Gy, € Lin(W,V)

called the transpose of Le Lin(V.) ). A linear mapping Q € Lin(V,)}V) between
two inner product spaces V and W is called orthogonal if Q* Gy, Q = G,,. As
usual, let Orth(V. W) represent the set of all such linear mappings. From the
definition (2.22) of the transpose, then, Q™ G,,, Q = G,, Q'Q = G, holds for all
Q e Orth(V. W), implying Q"Q = 1,, and in particular Q" = Q' if dimV =
dim W. As usual, let

Uni*(V.V) := {LeLin(V,V)| det(L) = +1}.
Sym(V,V) := {LeLin(V.V)|L'=L}.
(2.23) Sym*(V.V) := {LeSym(V,V)|Lv.-v>0 VveV\{0}}.
Skw(V.V) := {LeLin(V,V)|L'= -L},
Orth™(V.V) := Orth(V.V)nUni*(V.V).

denote the sets of all unimodular with positive determinant, symmetric, symme-
tric positive-definite, skew-symmetric, orthogonal, and orthogonal with positive
determinant, linear mappings of V into itself, respectively.

As is well-known, a metric G € Sym™* (V, V™) and its inverse G~ ! € Ssym " (V" V)
induce the operation of forming associated tensors (e.g., ABRAHAM et al. [5, §5.1]),
often called “lowering and raising indices,” respectively. Via linearity and duality,
this operation can be extended to tensors of arbitrary order. In particular, G and
its inverse induce the linear bijections

(2.24) (¢ : Lin(V.V) — Lin(V.V") | M+— GM =:(GM.

(2.25) (o-1 : Lin(W, V") — Lin(V.V) | M+—G™'M=:(;_ M,
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(2.26) re @ Lin(V",V) — Lin(V.V) | M+~ MG =:r;M
and
(2.27) rgor: Lin(V.V) — Lin(V.V) | Mr——MG™ ' =17 M

induced by G and G~! on second-order V-tensors.

The action (2.14) of G on V-tensors, together with the operation of form-
ing associated V-tensors, induces various kinds of associated actions of ¢ on
V-tensors. In particular, the actions (2.17) and (2.19), respectively, combined with
the associated-tensor operations (2.24)-(2.25) and (2.26)-(2.27), respectively, in-
duce two associated actions of G on Lin(V. V), as follows. From (2.17), we have
the induced associated action
(2.28) @ : Lin(V.V) — Lin(V.V) | M+~— G 'L™"(GM)L™!

=L "ML ' =:q{M
of G on Lin(V.V) for all Le@ via (2.22). In terms of the associated tensor
operations (2.24) and (2.25), this last action takes the form

(229) a;‘ = ((;,1 Oal‘o [(; y

with a; given by (2.17).
Likewise, (2.19) induces the associated action

(2.30) ¢ : Lin(V.V) — Lin(V.V) | M+—LMG HLG™'

= LML" =:a) M
of G on Lin(V.V) for all Le¢, where
(2.31) a := rge8 ore

follows from (2.19), (2.26) and (2.27).
Let V represent 3-dimensional Euclidean translation (i.e., vector) space, and
w the standard volume covector of V, i.e.,

(2.32) w(Vy. V2. v3) 1= (v) X v2) - v3 = (G(v) X v2))v3 Yvi.va.vz3e V.
In terms of the interior product operation
(2.33) () (¥s - oo Vyo1) 1= (Vs Vys e e oV y)

for all ¥;..-, v,_1-veV and peLin (V7. [R) (e.g., ABRAHAM et al. [S, §6.4]),
w(vy.v2,v3) can also be written in the form

(2.34) (VI V2. V3) = iy, ty, 1y, @ = (b, 1y, F)V3
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for all vi,v;,v3€V; note that (i, 1, =) € V™ for all vi.v2€V. Combining (2.32)
and (2.34) yields the relation
(2.35) vixva=GTl, @) Vvi.vaEV

Yi

for the Euclidean cross-product used in this work. Note that v; x v, €V and
(ty, ty, @) €V are associated tensors.

3. Basic kinematics

Let £ represent 3-dimensional Euclidean point space with translation space
V endowed with the Euclidean metric GeSym™ (V. V"), I C R a time interval,
and B, C F the region in [ occupied by a material body in some reference
configuration. A motion of this body in [ relative to 3, takes the form

(3.1) Coi I x By — E | (1,b)— p = (. (1.h).

such that the (' curve ¢, := (. (-.0) € C}(/. I) represents the motion of b€ B,
in £ for all be B,., and the C'* (L > 1) diffeomorphism(?) ¢,,: B, — B - the
deformation of B, C L onto the region 5, := (,,[B.] C I in I occupied by the
material body at the present time (€ /.

In this paper, we work with fields on both 5, and 5;. Note that any time-
dependent referential field

(3.2) P, I x By — U | (L) — b (1.h)

with values in some set .1 can be represented as a time-dependent spatial field
(3.3) P Beo—— A | = (CH ) =) -

e,

(3.4) P =P oGy

for all ¢ € I via the deformation ¢, : 3, — B;. Tt will be useful in this work to

express this last relation in the form of the operations

(3.5) C(M("bt) = o(,, =, and c(;'(¢,;r) =, OC,.-_r] = 1),

relating 4., and 1,.
As usual, the time-dependent vector

N . -
(3.6) Iap 2 4 — V| = lim =[G (t + ) = (D] =001

(2)Induced by the C'* injection (,..: Bx — E. We use the same symbol ¢, , for both, for simplicity.
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represents the velocity of be B, in [ for all be 3, From this, one obtains the
referential velocity

(3.7) 0.t I x B, — V| (£.0)—— 9., (1) =:0¢,.(1.D)

[

of the body, i.e., relative to 3,.. Likewise, the spatial velocity of the body is given,
as usual, by the explicitly time-dependent vector field

(3-8) Vi Be— V| pr— 0003 ) = vi(p)

on B3, forall t € I, such that v, = (I¢,.), ¢ ;'. The definition of the spatial velocity
also implies the flow relation

3.9) g = Vol 2 By — V

of the body in F relative to B, for all (<.
The Fréchet derivative of the deformation ¢, ,: B, — B, at each € [ defines
the deformation gradient

(3.10) E.: [ x B, — Lbj7(V.V) | (t.b)— (D) =:F., (b) = E.(i.0)
with respect to 3,.. In this work, we make use of the polar decomposition
(3.11) E =R.U = VR,

of E_, where

(3.12) Vi I x B, — Sym*(V.,V) | (1,b) — V.(1.h)
represents the left stretch tensor,

(3.13) U : Ix B, — Sym"(V.V) | (t,b)— U.(1.b)

the right stretch tensor, and

(3.14) R,:IxB.— Orth*(V.,V) | (&.b)— R, (1.})

the rotation. Note that the relation 15 = ¢, >(,;' and the chain rule yield
(3.15) 1y = (D)o ¢ DY

and so

(3.16)  (DC)™' = (D¢ oCe  and (D) = (D) el
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since (D,1,) = 1, for all pe 3. Lastly, the time derivative of (3.10) at time
t e[ yields

(3.17) (UF), = D@0, ) = D(vioCp) = [(Dv;) oG ] (DC0)
= [Lfocr:l] P:‘f = L»rl Fr.'{

via (3.9) and the chain rule, where
(3.18) L,: B, — Lin(V,V) | p—(D,yv,) =:L(p)
represents the spatial velocity gradient, with symmetric
(3.19) D, : B, — Sym(V.V) | p+— sym(L,(p))
= L) + L) =:D()
and skew-symmetric

(3.20) W, : B, — Skw(V.V) | p— skw(L,(p))

= HLO) - L0} = W)

parts, i.e.,, D, := sym(L,) and W, := skw(L,) for all 1€ /.

4. Basic strain tensors based on line elements

The strain tensors of the first family of HT are based on the deformation
of “material line elements,” which represent in essence tangent vector fields, as
we now briefly review. Let /3, C [ be any configuration of a material body
in £ and let (''(R. ), represent the set of all C'! curves at the point pe 5.,
i.e., ('!injective mappings «: IN; — £ of some neighborhood [Ny € R of 0€[R
into I such that ¢(0) = p. Two such curves ¢.c, € CI(IR. 1), at pe /3., are said
to be rangent ar pe 3, if their tangent vectors are equal there, ie., if dye; =
dyea €V, with dye; = de(0) (0 = 1.2). Since the members of each resulting
equivalence class [c], all possess the same tangent vector dyc €V at p€ 3, each
[c], at pe B, is represented uniquely by dyceV. A field of such equivalence
classes, or equivalently, their corresponding tangent vectors, on /3. C [ then
defines a rangent vector field

(4.1) u B, —V | p—u=u(p

on B, C E such that u_(p) = d,c for some equivalence class [¢], at each pe B3,
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The deformation ¢, ,: B, — B, of B, into B, maps any ("' curve ce (''(R, I),
at b = c(0)€ B, onto the C'' curve ((,,°c)e C'Y(R. )¢ 1) At G (b) € By; conse-
quently,

(4.2) D(Cr o) = (DyCr) doe = E((b) dye

via the chain rule and (3.10). Substituting the tangent vector field relations
y(Curoc) = u(hl(g',\.t(b)) and dyc = u, () into (4.2), we obtain

(43) u(h[(qrcl(b)) = (I)hgp;t)uﬁ(b) = F:;I(b) u, (b)
at be B,. Letting b€ B, vary yields then the field relation
(44) u(hl ° Cr.‘l = (])‘;r.’L) u, = E;{ u

[

Introducing now the “push-forward”

4.5) Crtublr °= [u(DCM)/’»:]OC»:—!l
and “pull-back”

(4.6) Copy = [a(l')(r._ll)ltf] °(,y

operations(®) on referential y,., : 3, — Lin,,, (V™" x V. [R) and spatial i, : B, —
Lin,, (V™" x V'.[R) tensor fields via (2.15), (4.3) can also be written in the
“push-forward”

(47) uCM = CP{f"llP[ = [u(f)(:‘.r)u;.'] O(h'_fl = [(I)‘:Hf)uﬁ]OCrTfI

= (D¢ (w0 ¢
and “pull-back”
(4.8)  w.=Chug = [0, gu JoCy = (D¢ Due JoC

= (DC:H)_I(U(M O(::t)

forms, where use was made of (3.16) to write the right-hand forms of (4.7) and
(4.8). With the help of (3.5) and (3.10), note that (4.5) and (4.6) imply the forms

(49) klh!'-< =C,_|OGF
Cut nt
(3)Such operations on tensors fields, are in general, induced by diffcomorphism between manifolds (c.g.,

ABRAHAM et al. |5, §5.1]).
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and

(4.10) Cir = 8giotc

respectively, for the push-forward (,,. and pull-back ¢, operators induced by
Cet: Bx — DB; on tensor fields associated with B, and B, respectively.

As usual, the change in squared length of any referential tangent vector field
u, due to the deformation (,,, can be represented on, or relative to, 13, via the
time-dependent function

@I A Tk B — R | () 2 g (G - ue G

—u, () - (D)) =22, (1.b)
on B3,. By definition, then,
1y
(412) —\:;l = E{in(u(,’h, : uC,\,) —u, ur;} : Br-’ — R
holds for each 1€ I, where
(4.13) (:t(“cht 2 Mg = (ugr_, : u<hl)°(.'h-t = (“chf °Cyt) * (“(;M °C,e)

represents the pull-back of the squared length (u, - u, )e("%(B,. [R"), a func-
tion on By, by (,.,. From (2.9), (2.20) and (4.3), we have

C:z(uc“ s U )

nt

(, oC) - (u, 2C.0).
[Glug oG, G0,
[G(DC.)u (D), .
[(DC,)"G(DC,)u, u,,.

(4.14)

Il

where (D¢, )" represents the dual of the deformation gradient (D¢,,,) (see (2.9)).
On the other hand, (2.17) and (4.6) yield

(415) (-:(G = aFTlc = FNMIGFHf . (I)(Hf)x G(])‘ﬁ-h’f)

(recall that G e Lin(V.V")). Comparing (4.14) and (4.15), we obtain

(4.16) Corug e )= C5[(Gug Jue ] = [ GC e, DI )
= [(Q:IG)“H]U;;
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via (4.8). With the help of the transposed form
(4.17) (D¢)" = GTH (D)™ G

of (D¢,,) via (2.22), from which follows the relation (D¢, ,)*G = G(D¢,,)",
(4.15) takes the more familiar form

(4.18) (G = G(DC,)" (DC,) = GC,, .
where
(4.19) C., = (D(.)" (D¢, = ELE, = G7(¢},G)

represents the right Cauchy - Green tensor for all te 1, ie.,

(4.20) C.:[xB, — Sym"(V.V) | (t.b) — (D(.)" (DiCr)

= E'(.b) E.(1.b) =:C (¢, D).
Clearly, (4.18) implies that (,G represents a tensor associated with the right
Cauchy-Green tensor C_,. In terms of the associated tensor operations (2.24)

and (2.25), as well as the associated action (2.29) and pull-back (4.10) operations,
C,_, takes the form

(4.21) C= GIC'TIIV = {(or0C o lghly = ([ ((g1y)] = G '(¢6)
for all 1 € I, taking (4.15) into account. Substituting (4.16)3 into (4.12) yields

Lo o
'Jh‘f = 5 [(Qr‘[G - G)“r.‘]ur."

1
(422) = 5 [C(Ch‘i - IV)uH]uH ’
= [G(E»;tu»; )]u»v
= Er.‘luﬁ -

via (4.18), where
(4.23) E.: IxB, — Sym(V.V) | (l.p)— %(Cﬁ(r.h)— 1,) =:E.(t,p)

1
2

e

represents as usual the Green strain tensor, such that E, =
tel.

(C., — 1y) for all
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Pushing the strain measure A, defined in (4.12) forward to 3, yields

(424) A, B — R | pr— %{u(”(p)-u("[(p)
~u (0D - w G O) )} = A

or

1

(425) —\1 = i{ucht ‘ uC,, - CK!J‘(“I\' - ufi)} '

such that A, = (,.A,, = A, (7! or, equivalently, A, = (7,2, = 3, 0(,, for
all 1€ 1. Analogous to (4.14),

=1 =1
(UN O Gnt ) ’ (un‘ °Cxt )

[G(u, o (w2 ¢,
[G(/)gn_ll)u(}l](l)ghifl )u"\-’\r Al

[(DQ_,;_[I)-G(D(;I )“ch[]“(

CKI'(UH : ur.')

(4.26)

~nit

holds via (2.9), (2.20) and (4.7). Comparing this last relation with the result
(427) GG = {eioa JG = [(DC) GDG)T ¢

= (D¢ G,
which follows from (2.17), (3.5),, (3.16) and (4.5), we obtain

(428)  Gunlu, - ) = Con[(Gu)u, ] = [(Gorn GNCra )]G
= [(C.-Gu Ju

again via (4.7), and analogous to (4.16). With the relation (D¢, ,)""G=G(D¢, )™
obtained from (4.17),

(4.29) (-G = GU(DC,) T (DC ) e = GBY!
follows from (4.27) for the push-forward of G by ¢,,, where
(4.30) B, := [(D¢,.) 7" (D) 1o (! = (G GTHG

represents the left Cauchy - Green tensor for all t€ [. As a field on 3., B, is given
by

(4.31) B o= Bpol = (DQ‘M)(DCM)T = F, F».'vlr

http://rcin.org.pl



A LOCAL DIFFERENTIAL GEOMETRIC FORMULATION. .. 63

forall €1, 1.e.,
(432) B, :Ix B, — Sym*(V.V) | (1.0)—— (D,C.0) (D))"
= F_ (1,)) F:r(i.b) =:B,(1.0).

In terms of the associated action (2.31), the operation (3.5); and push-forward
(4.9), B, takes the form

(4.33) B, ={c o0 Jly = {rgoCunorgiHy = r6lGen(rg-11v)]
= (La-nfo_l)G
for all €7 via (4.27). Analogous to (;,G and C_,, the result (4.29) shows that

(...G and B;! are associated tensors. Note that (4.18) and (4.29) imply C_, =
(B, or equivalently B, = (,_,.C_, for all t € /. Substituting (4.28) into (4.25), it
takes the form

1 i
A, = 3 [(G = C.rGug Ju

1 _
= S[G(1y - B u,_Ju

(4.34) 2 Gt
= (GAu. Ju,
= Au, -u

oo €

wit

via (4.29), where A, = %(lv — B, ") represents the Almansi strain tensor for all
tel, e,

g 1 =
(4.35) A, B — Sym(V.V) | pr— i(lv ~B7'(») =:A,(p) .
Note that, from (4.18) and the pull-back of (4.29), it follows that
- . i 1 o ‘
(436)  CL(GA) = 3 (056 - (LGB = 5(GC,, - 6) = GE,,

for all 1 € /. In terms of the action (2.17), the operation (3.5),, and (4.6), the last
result becomes

(4.37) GE, = (;(GA)) = {arj[ OCC,.-.} (GA) =F; G(A,;°(.)E, .
Alternatively, (4.36) can be rewritten in the forms
En’f = {((;—I © g:f e l{'(;}Al Af = {((;—l OL:“,, o ((;}Eh'f
(4.38) or
= {“;:-IOC(M}Ar = {CL.AOQIFM}E»;/

Kt

in terms of the associated tensor operations (2.24) and (2.25), as well as the
associated action (2.29), at each (€ /.
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5. Basic strain tensors based on material surfaces

The strain tensors of the second family of HT are based on the deformation
of “material surfaces”, which represent geometric objects “dual” to “material line
elements” in the following sense. Let /3., C £ again be any region in /7 occupied
by the material body. The mapping “dual” to a curve ¢ € C''([R. E), at pe B, is
a C'! function f ¢ C;(lﬂ'. R) at pe B, ie., a ("' mapping of some neighbourhood
N, C £ of pin I into [R. Analogous to equivalent (i.e., tangent) curves at
p, two such functions f|, /, € C'}I,(E‘ [R) are equivalent at p e 3., if their (Fréchet)
derivatives there are equal, i.e., Dpf1 = Dp-fz' As with curves and their tangent
vectors, any resulting equivalence class [[], of such functions is then uniquely
represented by their common covector (),/)eV™ at pe B,. A field of such
covectors on /3, comprises then a covector field

(5.1) v,: B, — V' | p—v=v/p)

on the configuration 73, such thatv. (p) = (D, [f) for some equivalence class [[],
at each pe 3.

To make contact with the notion of a “material surface”, we first note that
any covector field such as (5.1) defines a 2-dimensional subspace 5

{veV | v (p)v =0} of V at each pe B,. The unit vector field

v, (1)

Glv, ()

(5.2) n,,' . l}q — l/ | P TG-:TJ‘I—(;‘)—I —,n,I (’“)

associated with v, then represents the wnit normal of the corresponding material
surface Sy A each pe .. In particular, if the composition [, oceC'I(IN,. R)
of a C'! function f, € C''(B,.R) and any curve ¢ ("'(IN. /3.) represents a con-
stant map, then one has J,(/f, oc) = 0 for all s [Ny, and so (D, [, )u. (p) = 0 for
all pec[Ng] with ¢ = u oc. Clearly, each equivalence class [f], of C'! func-
tions f ¢ C‘;(E. [R) at pe I can be associated with a material surface at pe I as
represented by the unit normal (5.2).

In a fashion dual to curves, the deformation (,,: B, — 3, maps any ('!
spatial function f. e('gﬂ(,,) (2.R) to the ' referential function Gl =

e 2 G € CH(E.R), such that

(3 DS )= Dl oG = (D wnfe, ) (DhCr)
= (DGt (DC,_,(”)-[(“-')

via (2.9). Substituting the corresponding covector fieldsv,. ((..,(0)) = (D )/ )
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and v, (b) = D,(C7, [, ) into the last result, we obtain

(5.4) v, (5) = (DG ) Ve (GuD) = EZ()V (Gur(B))
at be B,.. Letting b€ 3, vary, (5.4) becomes
(5.5) v, = (Do) (Ve Ge) = B (U <) -
The last relation can also be written in the pull-back
(5:6) Ve =Gy, = [8pe e JoGa = (DT v Jo G
= (D) (v oCer)
and push-forward

(57) v(,\, = Ch"-uh‘ = [G(HCM)UN]D(;(] = [([)g'm)*ﬁ}hjogil

= (l)gr_ll )K (UH 8 Cr.‘fl)

forms via (4.6), (4.5) and (3.16). In terms of the associated vector fields G~ 'v,
and Gy, ., (5.5) takes the more familiar form

(5.8) G v, =G ELW () = ELG v )]

via the definition (2.22) of the transpose of a linear mapping.
Using the inner product induced by G~ !'eSym™(V*,V) on covectors, i.e.,
(2.21), one can define, similarly to (4.11), the change in squared length

(5.9) o, I x B, — R | (t.b)— %{u(hr((m(/‘b))+u<h'((,‘.,(/.b))

—v, (D) v, (b) } =16,(1.0)

of the “normal” covector field v, on B,. By definition, then,

1
(5.10) b= 5 G, *ve ) —voxvf o Be — R
for all 1€/, where
(5.11) Carlug  * v )= (Ve *ve oG = (Ve o Ga) * (Ve 2 C)
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represents the pull-back of the squared length (v, C* Y [): B, — [R* of the

deformed normal covector v, to B, by (,.,. Analogous to (4.14),

Cii(l’gh, *V. )

wit

We o Ca) * (Ve 2 C)s

e 2 ClGTH v, oGl
(D)™ VG (D) v, .
v [(DCe)T'GTHDEC) Y, .

follows from (2.9), (D¢,.,)=" = (D(,.,)~" (see Sec.2) and (5.6). Combining the
last result with

(5.13) G =0 6Tl = (DG GTH(DG) T

(5.12)

Il

(recall that G~' € Lin(V™,V)) from (2.19) and (4.6) yield
G14) v+ ) = Clve (G )] = (e I G v )]
= U»: [(Lr‘fcﬁ : )Ur;]

via (5.6), analogous to (5.14). Substituting the relation (D¢,.,) "G '=G1(D¢,.,)~~
obtained from (4.17) into (5.13), it takes the more familiar form

(5.15) (G = (D) (D) "G = GG

To proceed further, we substitute (5.14) into (5.10) to obtain

(Sr;l' = ur.[(c:lc_l - G_I)Vh']'

V;;[(Cﬂl - lV)GilurL]‘
& [(Er:tG—l)uﬁ]‘
= E’rcl(G_lun‘) i (G_IV»;)'

(5.16)

T N = N —

via (5.15), where €,,, := J (C' —1,) represents the Piola strain tensor for all 1 1,
lLe.,

(5.17) €.: IxB, — Sym(V.V) | (t,0)— %(C,\_‘](I.b)—lv) =:g,. (1. D).
The definitions (4.23) and (5.17) yield the relation
(5.18) E.=-C.¢,

between the Green and Piola strain tensors.
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Pushing the strain measure (5.9) forward to B, yields

1
(519)  &,: B, — R | pr— E{VCM(]))*VC”(]J)
(S (0) PN (W () S (O
or
1 :
(5.20) §, = i{u(h' V= Gy} B— R

for each (€ /, such that ¢, = ( cand ¢é,, = (7,6,. Analogous to (4.26),

hi- I
(Ur.‘ © Cr?ll) * (Un‘ © Cr?fl)‘

(UN OC,;_(l)[Gil(urc ngttl)]‘

(D¢ v NG (D¢H v ],

v(\h[[(])k:r._ll )_IG_I([’)CP?II)*KU(’\‘]'

(v, ~v.)

h!!

(5.21)

1l

holds via (2.9), (D¢ 1) = (D¢;Y)~" and (5.7). Together with
(5.22) (Gl = {ero0p }GT b= (D¢ H "6 g
from (2.19) and (4.5), (5.21)4 implies
(5:23)  Cure(W * V) = GV (GT)] = (Corn(Cetn GN(Cern)]
=v, [(¢..G v ]

via (5.7). With the relation G~ (D¢,.,)" = (D¢,.,)' G~! from (4.17), (5.22) takes
the form

(5:24) GG = [(D6) 671D o ¢
= {[(D¢) (D¢ ¢ 67 =BG
via (4.31). Substituting (5.23) into (5.20), we obtain

I

'~“-' N—-w|~4

Ve [(G' - mec‘l)uth,]‘

t mt

e Ly f)GichM]-
[(Ol G 1.
(X,(G_lvcm) (G v ).

(5.25)
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via (5.24), where o, := % (1,, — B,) represents the Finger strain tensor for all t € [,
ie.,

(5.26) o, : By — Sym(V.V) | pr— %(lv - B,(p)) =o(p) .

The definitions (4.35) and (5.26) of the Almansi and Finger strain tensors, re-
spectively, yield

(5.27) o, = -B,A,.

analogous to (5.18). Using (5.15) and the result G-! = (7,(B,G~") from (4.30),
we obtain

. - | P N | R - =
(528) Qril(atG 1) = E((-MG b QAE(BIG 1)) = i(cﬁll(" b G l) = Er;lG :
for all e /. Analogous to (4.37),
(5:29) .67t = (L™ = (oot JOuGT) = B (G o G B

follows from (2.19), (3.5) and (4.6). The associated-tensor operations (2.26) and
(2.27), as well as the associated action (2.31), imply then the operator forms

Eﬁi‘ = {T(;OC;(OI.(;-I}ul uf = {r(;ogp.'lxoll(;fl}eh[
(5.30) | or
= {ul’:;! ot oy

it

{c<—| C’al’-‘;‘f}ghr

it

from (5.29) for the transformation between €,_, and o, for all 1€ /.

6. Basic stress tensors

We begin with a brief review of area elements, with respect to which stress
tensors are defined. Let u, and w, represent two linearly independent tangent
vector fields on 3., C [. Each such pair (u,.w. ) defines an area element u., x w_
on 3, with direction

u, X W,
(6.1) n, = ————
u, X W,

and magnitude

(6.2) da, = |u, xw,|.
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Now, from the relation (2.35) for the Euclidean cross-product, we obtain the
expression

(6-3) n,da, =u, xw, = G—‘(,w_' . w)

for the area element n_ da_ . Note that the last relation can be written in the
alternative form

(6.4) Gn,)da, = Gu, xw,) =1, 1, ©.

implying that the “normal” covector field 1, «, @ is associated with the area

element n, da,.
Let u, and w, be two such vector fields on 13, and
N A

t

(6.5) (Gn, )da. =Glug xw; )= w, o, @

~it wt

— the associated normal covector field from (6.4). Pulling this normal covector
field on B3, back to B, yields the result

(66) L::I('wg ’u( I):(])Q-Hf)‘[(’“'s. 'uc w)"(»‘rlv

wt Kt At

On the other hand, one also has

(67) L;:I('[WL: ill< Z) = ('C:(W‘: Iee u. L:II) = dEt(I)C:;r) (,“)\ ’“» ”’_“') )

hi
~t At

with u, = (Ju. ,w, = (5w (see (4.8)), and (7= = det(D(,,) =, ie.,

g
(6.8) (L) (¥y.Vau¥a) 1= @ (DG Vi (DC Vo (D )V3)

= det(Dq,,,) =(v,. V2, V3)
for all v,.v,. vy e V. Together, (6.6) and (6.7) imply

(69) ("wg. iu( LU)OCM. = de’l(])gh‘f) (DCHF)_K(’W'_ ’u,_ 1t) .

it ~i

The usual form of this result is its associated form, i.e.,
(610) (n(rr (]”( ’)OCHI = de[( I)Cf.‘[) (I)‘:Hf)_an; (/“r;

which follows from (6.3) and (4.17).
On the basis of the spatial area element (6.3) for 5, the standard spatial
contact force “element” takes the form

(6.11) Tn, da. =T, G1 (aw< tu, @) .,

N wit
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where the explicitly time-dependent spatial tensor field

(6.12) T,: By — Sym(V.V) | p—T/(p)
represents, as usual, the Cauchy stress tensor(*), and

(6.13) T,G™': B, — Sym(V".V) | p—T,(p)G™'

represents a spatial tensor field associated with T,. Introducing now the weighted
Cauchy stress tensor

(6.14) S;: B — Sym(V.V) | pr— det{(l)t__l.“‘)gh,,)} T,(p) =:S,(p) .

e, S, = [det(DC,.,)o ('] T, for all te I, pull-back of (6.11) to B, leads to

G (Ting_ dag )= (T, GO, 1, @)
= (D¢, ) (T,G 1€, (D6, )~ [det( DC, ), )],
= (D) (8,0 G (D6) 7 G (11, ).
= (D6 (8,2 Cu) (DG, da,

via (4.17), (6.3), (6.9), and the pull-back

(6.15)

(6.16) ¢, (T,G™Y) = (D¢ (T, G e (1 (DC) ™
= [(D¢) (T, 0. ) (D¢) 16!

of the associated Cauchy stress tensor T, G, In terms of the second Piola - Kirch-
hoff stress tensor

c I x B — Sym(V.V) | (t.) — (DuCo) " S (LG (1. D)
X(l)’ig»;l)_‘l =:Tr:(1-b)-

(6.17) T

K

ie.,
(6.18) T, := (D) ' (8,°C) (DCe)™ "t By — Sym(V.V)
for all 1€/, (6.15) takes the usual form
G (Tyng da, ) = i,,G_i (rw, tu, @)
(6.19) o ~ S
= 'r»;f n, (]ar.' '

(4)We assume the matcrial body is non-polar, i.c., that the Cauchy stress tensor is symmetric, in this work.
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Analogous to (6.16),

(6200 LS 6T = (D) I8, G ol (D)™
= [(])L-;:P)_l (S{ N C»;I)(l’)(r:t)_-l]c_l = i.‘l G_l
follows for the pull-back of S, G~! from (6.18). In terms of the operations (2.26),
(2.27), (2.31), (4.9) and (4.10), the last result is given by
i;t = {r(; 0 {1 TG——l}St S, = {7'(; o Lot "(;kl}f«;t
(6.21) or
= {0 05, IS,

{CL-—I Oal%_l}'i‘»;l

~t

which is analogous to (5.30).
Another associated form of T, is given by

(6.22) GT,: B, — Sym(V.V") | p— GT,(p).

Pulling this back to B, yields

(:1 (GTF) (I)Ch'f)l [(GTI)OCH[](/)C;H)'
(I)Ch‘f)‘ G(Tl Ocr.’l)(l)(r;l)'

G (D) (T ) (Do)

(6.23)

by analogy with (4.18), such that

(6.24) (DC)" (TroC) (DG) = G (5 (GT))
In an analogous fashion, we obtain
i (GS)) = (D) IGS) o (o] (DC,0)-

(I)Ch'l‘)l G (SI OCr:t) (l)(ni)
G (DCr;J)T (Sl 2 Cr:l) (")(n!)'
= GT».‘(

(6.25)

Il

for the pull-back of GS,, in which the “convected” stress tensor

(6.26)  T.: 1 x B — Sym(V.V) | (t.0) — (D(.)" S, (¢ (1-0)) (Dy€,c0)
=:T (¢, D)

appears, such that

(6.27) T, = (DG (S, ) (DC,) = G (5 (GS,) : B, — Sym(V.V)
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forall t € 7. With the help of the operations (2.24), (2.25), (2.29), (4.9) and (4.10),
(6.25) can be expressed in the form

T"" - {(‘G"Oc:‘OCG}St S, = {((;~1°C~zx°((;}1—‘m
(6.28) or )
- {G;TLOCCM}S‘ = {cqfllou;:h[}rl-:;f

analogous to (4.38). Lastly, we have the relation

(629) '_I: = u]I.:—lSr; = a]t.‘—la;‘.; 'f‘r; = F;\T[F;\;l:r. Fhl][‘:\ = Cr."i:;Cr.’
between the second Piola-Kirchhoff T. and convected T, stress tensors from
(4.20), (6.21) and (6.28).

This completes the formulation of the basic strain and stress tensors involved
in the formulation of the concept of dual stress-strain tensor pairs, and dual

derivatives, to which we now return.

7. The stress power and the two families

The two families of “dual” stress-strain tensors introduced by HT are based
on the pairs (T,,.E_,) and (T_,.€,,), where

{

(7.1) Wt = _Thr

represents the negative of the convected stress tensor T_,. These pairings arise
when one expresses the spatial stress power “element”

(7.2) o, w= (T, L) @
relative to the reference configuration 5,, where the time-dependent function
(7.3) o,m =T, L, := try,(T, L= T,-D,: B — R

represents the spatial stress power density, and 7, the specific spatial stress power.
In terms of the associated stress tensors introduced above, the spatial stress power
density takes the form

- - try {(T,G~1) (L7 G)}.
4 o, = try(T,Ly) = T
tr,,- {(GT)) (L, G )}.
Pulling (7.2) back to B, and using the associated forms (7.4) for the stress power
density yields

(7.5) (o 7y @) = try{T,, (IF,)'F,} @
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in the case of the first family via (3.17), (6.8), (6.14) and (6.20), and
(7.6) Cilom, @) =ty (T, B (OF)) =

in the case of the second family via (3.17), (6.8), (6.14), (6.25), (7.1), and the
relation E;" (OF) = —(JF.;") E/}, which follows from the identity E;'E/, = 1,..
Pulling back the stress power element itself, we obtain

Cilogmy @) = (C1o0) (Cheme) (CF =)
(77) = Qr;lﬂ-r:t det(FH!) “ .

= OxTht o,

via (6.8), where p,. := p,, det(F,,) is constant in time via mass balance as usual.
Combining (7.5)-(7.7), we have

:I;ﬁl ' (aEr:L)'
(7.8) 0 Tt =

:ﬁc! : ((.)Er;l)

for the referential stress power density o, 7, ,, where

I

1 . . .
(7.9) JE, = i(()cf;/) = sym{(JF,)F,,} = sym{E(0F,,)} = /D, E,
follows from (4.20) and (4.23), and

1 - _ _
(7.10) 9, = 5 (IC7') = sym( (OF;DE,") = sym{E;'(9F"))
=-F;'D,E7
from (4.20) and (5.17). Note that

(7.11)  E.D

sl , ] T _ qor
v B = {0g_ioc. D, and E . D K, —{_GF_TIOC(,_,}Dr

ot
hold via (2.28) and (2.30), respectively.
To obtain the other members of each family from the corresponding pair, HT
introduced the “affine” transformations
I :=L[E,] := ¥ "E ¥ ! % = L[T]

LY [aY

v Ty,
(7.12) -
AR

“. := M[E'h] := \p;; €p; \I’p,l 0- := M_-]-[‘EC] :

[ K

of the basic tensors as based on an explicitly time-dependent referential field

(7.13) W i [ x B, — Lbj(V.V) | (1.b) — W (1. 1) .
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Special cases of W, considered by HT are summarized in the following table:

Table 1. Specific stress-strain tensor transformations.

v, : IxB. — Lbj(V. V)

Identity 1.. : I x B —_— {1v}
Right stretch U. o Ix B, —  Sym*(V.V)
Polar decomposition rotation R.. : [ x B, — Orth*(V.V)
Deformation gradient F. : IxB. —  Lh"V.)V)
Material spin rotation P. : I x B, — Orth*(V.V)

where

(7.14) P.: 1 xB. — Orth*(V.V) | (1.0)—— P, (I.D)

is defined by

(7.15) JP, = W, P, .

Note that 1, is a constant map. We note in passing that HT also considered the
case when W, is given by the plastic part F!. of the deformation gradient F,; in the
usual multiplicative elastoplastic decomposition F,, = FLF! of F,.. In contrast to
the polar decomposition of F,., of course, this elastoplastic decomposition is of a
physical nature, and as such, a subject to interpretation. The detailed discussion
of the formulation and interpretation of such “physical” decompositions of F,; in a
differential geometric setting is an issue in itself, requiring in fact concepts which
go beyond the scope of this work, and as such, will be dealt with in future work.
It suffices here to note that the results for F¥ are analogous to those given for F,
in what follows. Another possibility arises when W, takes values in Uni™ (V. V),
e.g., ¥, :=F,/[det(F,.)]"/? or ¥, := U, /[det(U,)]"/3. In what follows, let

(7.16) ®, = (¥, | ¥, : 1 x B, — Lbj(V. 1))

represent a “group” of such transformations, including the ones just discussed.
Note that all of these mappings have in common the feature that they map vector
fields associated with B, to vector fields associated with certain “intermediate
configurations” of the material body; in particular, of course, F,;, maps such
fields to vector fields associated with 3. to /3, as discussed in Sec. 4.

In this section, we want to show that the “affine” transformations (7.12)
introduced by HT, are, like the transformations in (4.38), (5.30), (6.21) and
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(6.28). based on (1), the formation of associated tensors via the Euclidean metric
G e Sym™ (V. V"), and (2), the action (2.14) of elements of ¥, on V-tensor-valued
time-dependent fields. Starting with the associated Green strain tensor GE, @ [ x
B. — Sym(V.V™), we note that it represents a field of linear transformations of
the kind considered in (2.17). Consequently,

agy (GE,) = ¥ "GE, ¥ ',
(7.17) = GV "E, ¥ ']
= GL[E]
from (7.12),, implying that
(7.18) Ey :=L[E]:=VY "E ¥ '=Gay (GE,) =ay E,

via (2.29), i.e, L = a\y . Consequently, the “affine” transformation L introduced

by HT represents an associated action of 8, on E, : I x B, — Sym(V.V). Note
that (4.38) represents a particular case of (7.18), i.e.,

(7.19) A = ¢ ArzAfC’Cr;:zEFc:“‘FlEm

[a (,h'

can be obtained from (7.18) with ¥ = F_. From Table 1 and (7.18), we have
then the following strain tensors of the first family:

Table 2. Particular strain tensors of the first family.

V. Ey =a E,. = Vg Wl Strain tensor

1, E, =a E =1"E17" =5(U'U ~1,) Green

U Ey = ay E, = U'E. U7 =1, - U "U ") referential Karni-Reiner
R, Eg =ax E,.=RER;" =J(V'V, ~1,)  spatial Karni-Reiner

F Eg =z E =E'EE" =5(, — V"V Almansi

P E, =6, E, = P 'E P! Jaumann

All of these strain tensors of the first family are elements of the “orbit” Og,
of E, in Map(/ x B,.Sym(V.V)) with respect to &, . Clearly, all elements of
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Og, represent strain tensors having the same physical interpretation as E_, i.e.,
deformation of tangent vector fields.

Turning now to the associated Piola strain tensore, G=': [ x B, — Sym(V".V),
we note that it represents a field of linear transformations of the kind represented
in (2.19). Consequently,

a!ﬁh(erccil) = ‘I’f\' E’rccﬁl\I’:'

(7.20) = [V e ¥']G !,
= Mg, |]G!
from (7.12);, implying that
(7.21) ey =M[e =¥ e ¥ =0y (,GHC=aye,

via (2.31), ie, M = a} . As above, then, the “affine” transformation M in-
troduced by HT represents a second associated action of ¢, via W <6, on
€.: 1 x B, — Sym(V,V). With ¥_ = F_, (7.21) yields in particular

(7.22) o, =€

ol i — —_— r
C Ot =00,y =€ =0 &, .

ie, (5.30), for all te/. From Table 1 and (7.21), then, we have the following
strain tensors of the second family:

Table 3. Particular strain tensors of the second family.

V. ey =oye, = Ye, U, Strain tensor

L, & =9 ¢ =Lell =3 'U"-1,) Piola

U g =aye, =UeU' =35(01,-01" negative Green
R, eg =0z e, =ReR; = 1(V7'V T - 1,)  negative Almansi
F. ¢ =dge, =FEeF =3(1,-VV) Finger

P e =ape, =PeP rotated Piola

As with the first family based on E,, all of the strain tensors in Table 2 are
elements of the orbit O, of €, in Map(/ x B3,.Sym(V.V)) with respect to ®,_.
Note that (5.18), (7.18) and (7.21) imply that E,. and €,. are in different associated
®, -orbits in Map(/ x B,.,Sym(V.V)).
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Following the same procedure for the associated second Piola - KirchhofF stress
tensor T.G™': I x B, — Sym(V",V), we have from (2.19) the result

u\I’,(’f:{G_l) = ‘IJrc'fr{G_l\I’r:'

(7.23) = [¥.T.¥'G !,
= L7'[T.]G .
where
(7.24) Ty =L7[T]:=¥, T ¥ =0y (T.GHG =0y T,

from (7.12); such that L™" = ay . Note from (7.21) and (7.24) that stress tensors

of the first family, as based on T, (i.e., on T_G~"), transform in the same way as
strain tensors of the second family, as based on €, (i.e., on €,G~!). Again, the
choice ¥ = F_in (7.24) yields

(7.25) S.=¢ S =8°C, =T =0 T,,

i.e., (6.21), for all 1€ /. Table 1 and (7.24) yield in particular the following stress
tensors of the first family:

Table 4. Particular stress tensors of the first family.

v, Ty =ay T, = ¥.T.¥' Stress tensor

L, T, = a'lhﬁ,‘. =1,T.1 = a’._,S, 2" Piola-Kirchoff

U Ty =T =UTU' =e._8

R, Ty =ax T.=RTR =0 S

E T, =T =ETE = @S, weighted Cauchy

P T, =apT, =ETE rotated 2" Piola - KirchhofF

Again, we emphasize that all of these stress tensors are equivalent to T, in the
sense that they are all elements of the orbit Oz of T, in Map(/ x B,..Sym(V. V))

with respect to ®_, and possess consequently the same physical interpretation.
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Lastly, for the associated convected stress tensor G, : [ x B,, — Sym(V. V"),
we obtain

0y (GT) = ¥ G797,
(7.26) = GV T v
= GM™[T]
from (2.17), where
(7.27) Ty =MTR] =0T U =Gy (GF) = oy T,
from (7.12), such that M~" = a‘;I,A. Comparing (7.18) and (7.27), we see that

stress tensors of the second family, being based on T, (i.e., on GT.), transform
in the same fashion as do the strain tensors of the first family based on E, (i.e.,
on GE,. ). Again, note the particular case of (7.27):

t

(7.28) Soi= =Sy =T, =0 T

i.e., (6.28) follows from (7.27) for the choice ¥, = F.. Combining the elements
of ®_ in Table 1 with (7.27) yields the following particular stress tensors of the
second family:

Table 5. Particular stress tensors of the second family.

v T = a’\l,h T =v 'yl Stress tensor

L, m, =q T =1"T1!' = ath_Is,\_ negative convected

U R sopn = URUT =d s

R, % =ap %= RIER =d) s,

FE, & = a‘Fh T = FE "t FE! = afi:lsh negative weighted Cauchy
P » = ai’» T =P "7 P! rotated negative convected

Like E, and €, the associated &, -orbits O3 and Oz of T, and 7, in Map(/ x
B,.,Sym(V,V)) are clearly different.
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We close this section by deriving relations between some of the strain and
stress tensors of each family induced by multiplicative decomposition of the de-
formation gradient (e.g., polar decomposition (3.11)). To do this, we first consider
the left translation

(7.29) d =7V =)\, ¥

of ¥ B, to @ c® by Z_e® . Particular cases of (7.29) include the polar
decomposition (3.11) of E, (i.e, with®_ =F ,Z =R _andW¥_ =1 ,0orZ =YV
and ¥_ = R ), or the multiplicative decomposition of F_ in finite elastoplasticity
(ie., with & = F, Z = EF and ¥ = FE). Let Y, be any time-dependent
V-tensor-valued referential field, and define Ty :=aq X, forany ¥, <® ;in
particular, we then have Y| = Y. The left translation (7.29) induces then the
transformation

(730) Tq,h = UQKT, b ﬂqilaw_iﬁr\‘l,

g Ly =04 4Ty =0z Ty

~

of Ty to Y4 . Such a transformation is induced, for example, by the polar

decompositions (3.11); in particular, with Yy = o'y T} =y T, we have

| og, Ty -
'“w; Ty -
which imply
a[iL.Tlh = U[TTIAUEI-
Tuh = ‘Y. = R'Y
0Ty = RIGGR,
(7.32) and
ag ;= RN R

/ — yuT
av—lTl“ - Y TFY

S

In particular, (7.32) hold for ¥, = E_and Y = 7. Similarly, with Ty =
ay 17 =ay T, (3.11) induces

.
ag Yy .

1.33 T =ap X =
( ) rn E» lh { G’\LTRA-
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such that
oy Xy, = U UL
Ty, = o Yy = RIG R
(7.34) and
ax i = R R,
Tr, = oYy = VGV

In particular, these hold for Y, = €_ and Y, = T.. Analogous relations are
induced by the elastoplastic decomposition F. = E°E’ of F.. Note also that
oy X, =a} Y.

8. Time derivatives of the basic strain and stress tensors

As a prelude to discussing the “dual” derivatives introduced by HT, we con-
sider in this section various common time derivatives of the basic stress and strain
tensors discussed in Secs.4-6. To begin, consider the relation (3.4) between the
referential Y, ,: B, — A and spatial ¥,: B, — A forms of some field ¢, =
P, o (,.;, wWith A representing now some normed linear space. The time derivative
of this relation takes the form

(8.1) 0, = (0,), = (M),

for all ¢ € [ via the chain rule and the flow relation (3.9), where

(8.2) v\/tvr'll’f = "i’t =, + (D),

represents as usual the marerial time derivative of W,. Tf 4, is in fact not explicitly
time-dependent, then naturally d, vanishes and .M, 1§, = (D, )v,. Note that
we have the commutation relation

(8.3) dot, =c¢. oM,
using (3.5), as well as the operator form

(84) ’\/[v( = c(_l o UOC(,.:

Kt

for the material time derivative.
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A second type of time derivative arises when we consider a time-dependent
spatial y,: B, — Lin,, (V™" x V7 [R) tensor field and its pull-back ¢, defined
in (4.6). Taking the time derivative of (7, yields

(8.5) IS = CL(Ly 1) -
where
(8.6) L‘,v{/‘ft =y, + L’v‘;z‘,

represents the dynamic Lie derivative, and l'vl,u , the autonomous Lie derivative,
of yi;: By — Lin, (V™ x V7. [R) with respect to v, (e.g., ABRAHAM et al. [5,
§§5.3-5.4]). Rather than give the general definition of £ 111, we will obtain it
directly in the cases of interest below. The result (8.5) contains the commutation
relation

(8.7) oG = Cgee Ev(
analogous to (8.3), implying the operator form
(88) L"V' = (n‘! % © d 0 c:?

for £, analogous to (8.4) for .M, . Via (4.9) and (4.10), (8.7) and (8.8) take the
forms

(89) anﬁjl OC(,.; = (-)OL;:I = (;:I OLV! = al.:?l DCC,.r OL\"
and
(8.10) Ly = (vl = ¢ -1°0F, OUOGF,T' °C; -

respectively, in terms of ap | a. and ¢. The structure ap ai)an_, present in
mt 5 wt Nt

the operator form (8.10) for £, is characteristic of all “objective” time derivatives
considered in this work.

We turn now to the stress and strain tensor relations obtained in the previous
sections. Via the relations 9(D¢,.,) = L, (D¢,,) and d(D¢,.,)" = [0(D¢.)]” =
(D¢,.,)" L7, from (3.17), the time derivative of (4.18) yields

(8.11) J(GC,)) = I(6) = (L[L/G + GL ]

since G is constant, such that JG vanishes. On the other hand, (8.5) and (8.6)
imply

(8.12) AGC,)) = D G) = (1(L,, G) .
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where
(8.13) Lle =JG+ (DG, +L;G+GL, =L;G+GL, = G[L'," +L,] = 2GD,

represents the dynamic Lie derivative of G with respect v,, with JG and DG
vanishing since G is constant. The result (8.12) can also be written in the form

(8.14) 9C,, = G (£, G) = {{g-1°C5 o Ly oG}y

using (2.24) and (2.25). Combining the definition (4.23) of E_, with (8.13), we
have

(8.15) JE., =G (5 (GD,) = {(g-10CiolgiD; = {ﬂjph—l °Cg,!}Dr
for the time derivative of the Green strain tensor at each te/ via (2.29) and

(4.10).
Taking the time derivative of (4.36), we obtain

(8.16) J(GE,,) = 9[(5(GA )] = (L [0(GA,) + (D(GA)))v,
+L;(GA,) + (GA,)L,],

where again we have used 0(D(¢,,) = L,,(D(,) and 9(D¢,.,)" = (D¢,)* Ly,
from (3.17). With 1, = GA,, (8.5), (8.6) and (8.106) yield the expression

'Lvl (GA) (D(GA))v, + L7(GA,) + (GA,)L, ,
G[(DA v, + L'!'A, +A, L]

(8.17)

for the autonomous Lie derivative of GA, with respect to v,, as well as that
(8.18) L, (GA)) = d(GA ) + £, (GA)) = M, (GA)) + L/ (GA ) + (GA )L,

for its dynamic Lie derivative with respect to v, via (8.2). In this case, (8.16)
becomes

(8.19) J(GE,) = I[(L(GA )] = (LIL, (GA))] -

or equivalently

(8.20) IE, = G (5[L, (GA))].

Note that the associated form G~ 'L‘VI(GA ) of the dynamic Lie derivative £, (GA )

of GA, represents the so-called “upper” Oldroyd time derivative of the Almansi
strain tensor A, i.e.,

(8.21) G 'L, (GA) =M A, + LA, +A L,

= {lg1o¢ 100, 2008106 o (g}A,
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from (8.17) and (8.18), where (8.21), follows from (2.24), (2.25) and (8.10). A
comparison of (8.15) and (8.20) yields the well-known result D, = G~! L, (GA,).
Notice that the transformation between JE,_, and G~! L, (GA,) is the same as
that between E_, and A, i.e.,

Er«'( {G;AIUC(M}A“

(8.22) ‘ i ‘
JE {al[lil ot HGT'L, (GA)]

Il

rt

from (4.38); and (8.20), respectively, using (2.29) and (4.10).
With the help of the relations

(D)™ = —(D¢) ' Ly,

and
(.)[(D(;r\'()_‘] = —L:E (I)Qr({)_, ’

the time derivative of (5.28) takes the form

(8.23)  I(e,.,G™") = ([0, G+ (D(o, G )Y, ~ L (e, G~ (e, GTHL]].
or equivalently

(8.24) de,, = (oL, (oG HIG

via (8.5) and (8.6) for ;;;, = o, G~ !, where

(8.25) L, (G = d(o,G™) + £, (e, G™)

and

Il

Ly, (o,G™) (D(OLEG_I))W - L(o,G™1) - (Q/G_])L7 :
(8.26) ‘

[(Dey)v, — Loy, — o, L]GT

Together, (8.25) and (8.26) yield
(8.27) L, (GG =Moo, ~ Lo, - oLy

= {erocC:rl °g OUO"F;’ o€, © r-G,.}cx, R

representing the so-called “lower” Oldroyd time derivative of the Finger strain
tensor o, where (8.27), follows from (2.26), (2.27) and (8.10). As in the case
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ofE ., A, JE_, and G~! L, (GA,) in (8.22), the transformation between €., and
@, is the same as that between de,, and £, (o,G™") G, ie,,

€ = {a;,;Tl ch“}at ’

(8.28) . , .
()E.x:! = {OF;TI Oc(“}[ﬁv[(alc I)G]
from (5.30), and (8.24), respectively, using (2.31) and (4.9).

We turn now to the time derivatives of the basic stress tensors. Beginning
with the first family, (6.20), (8.5) and (8.6) with j, = S,G~! imply

(8.29) AT G = 0[¢ (S,G7N] = ¢ [£, (5,671
with

(8.30) £,(8,671) =a(8,G ")+ £, (S,G7")

and

(8.31) L, (8,G™) = [(DS,)v, - L,S, - S,L]]G™";

the form of £, (S,G~1) follows from (8.26) since S,G~! is of the same tensorial
type as o, G~!. Combining (8.30) and (8.31) yields the form

(8.32) £,(5G7") =[M,S, - LS, - S 1L]]G"'

for the dynamic Lie derivative of S,G~! with respect to v,. From (8.29), we have
then

(833) 9T, = (IL, (8,676 = {op_iog )£, (5,67

S

for the time derivative of the second Piola - KirchhofF stress tensor T, ,; (8.33),

follows from (2.26), (2.27), (2.31) and (8.10). A comparison of (6.21), and (8.33),
ie.,

Trc(

{G’F;T, OCL}.:}S[ ’

(8.34) . , i .
JT., = {a’F_loc(M}[L“(S,G* ) GJ.

shows that ’f‘,{, and S, transform in the same way as JT,, and L‘,‘.I(S,G*l)(},
analogous to (8.28).
In a similar fashion, (6.25), (7.1) and (7.28) imply

(8.35) NGT) = CLIL, (Gs)]
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via (8.5) and (8.6) with ;i; = GS;, where

(8.36) L, (Gs)) = d(Gs)) + £, (Gs))

as usual, and

(8.37) £, (Gs;) = G[(Ds)v, + L/s, +s,L,]

from (8.17) since Gs, and GA, are of the same tensorial type. Together, (8.36)
and (8.37) yield

(8.38) L, (Gs) = G[M,s, + L;s, +s,L]
via (8.2). Combining (8.35) and (8.38), we obtain
(8.39) 0%, =G (:J[Evl(csr)] .

Lastly, the relations (6.28);, (7.1), (7.28) and (8.39) imply

Tt = {a;—t OCghl}Sr'
(8.40) o . o
{)‘T;.‘t = {a;:—l OCCM}[G : Lvl(('st)]‘

wt

i.e., that the transformation between 97, and G~! £, (Gs,) is the same as that
between T, and s,. Note that (8.40) is analogous to (8.22).

9. Induced action and dual derivatives

The transformations (7.17), (7.20), (7.23) and (7.26) between the basic stress
and strain tensors and corresponding arbitrary tensors of each family induce an
action on the referential stress power density o, 7, : [ x 3, — [R. From the point
of view that p,. 7, is a time-dependent scalar function, one would expect that the
action of any W, €®, on p, 7, would leave it invariant, i.e., @y (0,7,) = 0,7,
such that ®, is a “symmetry group” for o, 7, (see Sec.2). The question is, what
form does this action take? One possibility would be simply to substitute naively
a‘I,K(T“KG‘]) for T.G™', and so on, into o, 7, yielding

try{ag (T,G™") day (GE)]} = tr{Ty (VEg )}.
9.1)  (ox7)yg, =

tr,.{ag (GT,) Iay (£,G™ )]} = try{Ty (Vey )}

Unfortunately, since the time dependence of W implies that Joay # ay © 0, ie.,
that the operations of time differentiation ¢ and the action ag do not commute,
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0xTe)y 7 0,7, holdsin general. Consequently, the choice (9.1) does not fulfill

ST

the requirement that the action leaves o, 7 invariant. Of course, if ¢ and ay

did in fact commute, i.e., if ¥_was in fact time-independent, then we would have,
for example,

try{ag (T,G™") d[ag (GE,)]},
= try{ag (T,G™") ag [0(GE,)]},
trp{ (TG )W, W [)(GE)]¥, }.

(Orcqrr.’ )‘I’h

(9.2)

Il

try{(T,G~") 9(GE, )},

= p.T

via (2.17) and (2.19), i.e., o, 7, invariant. The same would be true, of course,
for p, m, in terms of T, and €,.. Clearly, Lbj(V, V) represents a symmetry group
for o, m, via (9.1), in essence the “subgroup” of &, containing all of its constant
elements. Since the elements of ®,_, however, are in general time-dependent,

o, T, is not invariant with respect to the action of & as represented in (9.1),
(ngrh,)% # o.7,.. This result contradicts the fact that the elements of each

family, being in the orbit of the corresponding basic strain or stress tensor, are
simply different representations of the same physical entity.

The problem here is that, in (9.1), we have tacitly assumed that the time
derivative operator O is invariant with respect to the action of ®,_, something that
is clearly true only for time-independent W _c®, . Since the elements of ¢ are,
however, in general time-dependent, ¢ loses its “absoluteness,” i.e., invariance
with respect to ®, and its action. From this point of view, the “true” action of
®, on the stress power density takes the form

try {ay (T,G™") 2y [ag (GE,)]}.
(93) (I\IL(QH‘/TH) = - _ 1
trv*{a\lg‘ (GTA) ()WA[G\K(EHG )]}

where dy represents 0 after being acted upon by the (in general time-dependent)
element W_ of ®,. The form of dy is then determined, on the basis of the above
discussion, by the requirement that ay, (0,.7,.) = 0,7, hold. In this case, we obtain

(94) U‘I{\ :a‘k.- O(.)Ou‘kil .
representing a ¥_-dependent time derivative, such that the commutation relation

(9.5) ()‘I’.. 00\1,:‘ - a‘k 0(.)
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holds. Substituting (9.5) into (9.3),, for example, we see immediately that
(9.6) tryf{ay (T.G™h dy [ag (GE)]} = try{T, (E,)} .

i€, ag (0,m;) = o,7,. This also holds, of course, for o, 7, in terms of T. and

€,.. The form (9.3) represents a generalization of (9.1) in the sense that, if ¥_ is
in fact time-independent, then (9.3) reduces to (9.1), i.e,,

(9.7) ()\I;‘ =ay o(’)oaq‘h_l =ay 00\[,:100 =0

from (9.4). Note that the usual form of the referential stress power density o, 7,
is implicitly based on the identity 1, € ®, and its induced derivative, ie., J;, =
0 odea,, = J from (9.4) with ¥ = 1.

To begin our investigation of the properties of the derivative dg induced by

elements ¥_e®, of O, we first show how the “dual” derivatives discussed by HT
can be obtained from it. To do this, we require the time-dependent referential
field

(98) Ay :IxB.— Lin(V.V) | (t.b)— (0%,)(t.b) &' (1.))
-. Aq’» (’,’J).
such that
(9.9) v, =Ag ¥, .
For the particular elements of &, given in Table 1, the last field (9.8) takes the

following forms:

Table 6. Specific derivatives.

W, Ay =(@%)¥, "' : Ix B, — Lin(V.V) Derivative

L, A =0, t I x By — {0, )} Material

U Ay =@UU™" @ Ix B, — Lin(V.V)

R, Ag = (IR )R]' : [x B, — Skw(V.V) Green-Maclnnis-Dienes
E. Ay =@E)E"" : [x B, — Lin(V.V) Oldroyd

P Ap = ((‘)lfi)lf;‘1 : I x B, — Skw(V,V) Zaremba-Jaumann
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Note again that L, = (JF.)E”! and W, = (OP)P~". Using (9.8), we have
(9.10) g [ag (GE,)] = G(0g Eg )

via (2.17), (7.18) and (9.4), where

(9.11) Oy By :={l(; 100y °(G}Ey =0Ey + AYEyg +Eg Ay

is equivalent to the first of two ¥ _-dependent dual derivatives introduced by HT,

A
who used the notation IT for Ey,, A for Ay, and I for g Ey . With the
choice W, = F,, such that Ay = Ay = L., (9.11) represents in particular a

referential version of the upper Oldroyd derivative (8.21) of the Almansi strain
tensor A, i.e.,

(9]2) ()érEEr = (‘)A;:! + L’IIA;U + A»;f Lr:l

for all ¢ € /. Turning now to the second dual derivative, we have a result analogous
to (9.10), i.e.,

(9.13) Oglag (6,G71)] = (0 €4 )G
for the Piola strain tensor using (2.19), (7.21) and (9.4), where
(914) ();IAE\I’A = {I'GQ{I)W’_ 0!'(;7|}€\k‘ == ()E‘l{ == A‘I{E\I{ —Eq,'AI‘I;

is equivalent to the other ¥ _-dependent derivative introduced by HT, who used

the notation = for gy , and T for Jg €y . Forthecase W, = F_, (9.14) represents,

in particular, a referential version of the lower Oldroyd derivative (8.27) of the
Finger stfain tensor o, i.e.,

(9]5) ()ILME'F” = ()a»;f - Lr{lan’t - L:;r

forall tel.
Note that, from (8.10) and (9.4), with ¥, = F_,, we have

(9.16) L, =t 1odg ot

t

~xit

implying that the Lie derivative of spatial tensor fields with respect to v, is a
special case of the derivative (9.4). Comparing the forms of (3.9) and (9.9), ie.

(9.17) JC,.p = Vi 0(,, and oW, =Ag W .
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however, we see that W_e (®_ could be interpreted as a sort of “local” motion on
Lbj(V. V) with “spatial” velocity A g , or similarly the “flow” of th= vector field
A g on Lbj(V,V). On the basis of (9.17), then, we could interpret dy as a type
of Lie derivative based on the flow (9.9), in which case the notation E’"w for

dy would perhaps be more appropriate. For simplicity, however, we retain the
notation dy in this work.

As in the case of the stress power, we have the induced action

ag (0, A7,) = try{dyg (Ty G') g (GEg )}
(9.18) = try{(9g Ty ) (94 Eg )} = 0, I,

ag (0,07,) = tr, {0y (GTy ) Iy (eg G')}

= tr, {(0% Ty ) (D 4,)) = 0,07,

of &_ via ¥_on the “incremental” forms

=]
L
5
|

= tr,{)(T,G~")I(GE,)}.

(9.19)
= tr,.{J(GT,) I(e, G 1)}.

>

~

=
|

of the referential stress power density with respect to each family, in which appear
the derivatives r').’l,h Ty and 0y T‘k‘ of 7 and T‘K’ analogous to (9.11) and (9.14),
respectively. In this way, the presumed invariance of the “incremental” forms
(9.19) of the referential stress power determines, for a given choice W e ®,_, the
corresponding appropriate dual derivatives of the transformed dual stress-strain
pair within each family. Note that the stress power is invariant in both families,
while the incremental form (9.19) is invariant only within each family.

We turn now to the transformation properties of the derivative (9.4). The left
translation of &, onto itself, e.g.(7.29), induces, via the properties of the action
(2.14) and the relation (9.4), the transformation

04&. = 04 odoaQ_..

= uzh\,{ Oi)oaquz:l .
(9.20) = 0y oGy o(‘)oa‘k_, oaz:, .

=0, odyg °a, i
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of dg , where
(9.21) ad: &, — Bij(D;.D,) | Z,+——ady :=adZ)).
defined by

(922) abZN 4 DK — DN | ()‘k. — azh‘ql = GZN OO\I’K 002;1 =:ab74h(0‘l’:<)

represents a linear adjoint action of ®, on the set D, of all such derivatives in-
duced by elements of ®,. Note that the form of this transformation is “tensorial”
as it must be if the referential stress power density (9.3) is to be invariant with
respect to the action of ®_. The tensorial nature of (9.20) is due in essence to
the non-tensorial nature of that

(9v23) AQ& = AZ». + Z;-:A\ILZ:I

for the transformation Ay defined in (9.8) induced by W, €®,, which follows

from (7.29) and the definition (9.8). In fact, the non-tensorial nature of (9.23)

implies that it represents in some fashion the transformation of a connection.
Another consequence of (9.20) is given by

O o0y = g otz odg ca,_,.

(9.24) = ay oi)q,k o ()‘11, 001:| .

= ad, (g o dy ).

i.e., the second-order derivative J := g oy transforms tensorially as well.
By induction, then, d5 = ab, ((‘)fl',h ), where g := 04 04 ' represents the kth

order derivative. This result might be useful in higher-order constitutive relations
of the rate type.

As at the end of Sec.7, let Y, again be any time-dependent V-tensor-valued
referential field, and define Yy :=ay X, for any W, €®,. Analogous to (7.30),

the left translation (e.g., (7.29)) of &, onto itself induces the transformation
(925) U¢h T@N = abzh (()\I,h )azh T‘I’A = {azh 0(.)@” }T‘I’.. - aZh (()‘IL T\p" )

of the derivative dg Yy corresponding to Yy via (7.30) and (9.22). Note that
both Ty, , as shown in (7.30), and its corresponding derivative dy Yy, , as shown

in (9.25), transform in the same fashion. Not suprisingly, this is also the charac-
terizing feature of the dual derivatives of HT. In particular, for Yy = o\ 1|
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= d Y, we have the transformations

©926) LYy =db (9 Yy ) = ., (Ofix’f.h,) = Ok, (OQTUJ-
T oy g (Of Ty ) = ay (O Yg )

induced by, similarly to (7.31), the polar decompositions (3.11), such that

027) oYy = 0y, (91,11, N o (97 M),

0 :l(a,{ ;) “[vh (0 i),

analogous to (7.32). As with (7.31) and (7.32), (9.26) and (9.27) hold in particular
for Y, = E and Y, = 7. Likewise, with Yy =y Y; = Y, we have

©28) Gy =e @M= .
. oo "vth(‘)lhTh) = ay (g Yy )
and so
._ o (0 Th) o, (05, 1.)
(929) 9y Yy = and g Tx =

@} (96 X)) @}, (0 M)

analogous to (7.33) and (7.34), respectively, which hold in particular for Y, = €,
and Y, = T_. Again, note that such relations are also induced by the elastoplastic
decomposition E. = E"E" of F_.
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One-way extension of a plane crack
due to tensile pre-stress and dilatational waves

A.N. DAS (DARJEELING)

IN AN INFINITE  clastic medium, initially in a state of uniform tensile pre-stress, the problem of
one-way extension of an infinitesimal flaw into a plane crack due to two identical lincarly varying
plane dilatational waves with non-parallel wave fronts has been analyzed. Fracture is assumed to
initiatc at a point a finite time after the waves intersect there, and one of its edges is assumed to
extend along the trace of the wave intersection. Following ChEREPANOV [12], and CHEREPANOV
and Aranas’ev [13], the gencral solution of the problem has been derived in terms of an analytic
function of complex variable. The results include the expressions for the stress intensity factors at
the crack tips.

1. Introduction

BROBERG [1] first considered the problem of symmetric extension of a crack at a
constant velocity under the condition of plane stress or strain in a homogeneous
isotropic elastic medium. Using the method of homogeneous function, CRAGGS
[2] also solved the same problem, while the corresponding anti-plane problem
was solved by ACHENBACH and Brock [3]. All the anti-plane problems mentioned
above are, however, self-similar ones with index (0, 0), and are concerned with
symmetric extension of a crack.

Problems involving non-symmetric extension of cracks under uniform loading
along the crack surface have also been investigated in recent years. Following
the method of homogeneous functions developed by CrAGGs [2], the problem
of non-symmetric extension of a small flaw into a plane crack under loading of
polynomial form was solved by Brock [4]. Brock [5] also solved the problem
of non-symmetric extension of a crack due to incidence of plane dilatational
waves. An integral equation approach has been developed by GEOrGIADIS [6]. He
considered the elastodynamic problem of an expanding crack under homogeneous
polynomial form of loading and reduced it to the solution of a Cauchy integral
equation. Recently, Das and GHosH [7, 8] and Das [9-11] have solved the
problems of non-symmetric extension of a crack in an infinite elastic medium.

This paper presents the analysis of the problem of one-way extension of an
infinitesimal flaw into a plane crack due to the action of two identical, linearly
varying plane dilatational waves, which have non-parallel wave fronts and propa-
gate towards each other in an infinite elastic medium which is initially in a state
of uniform tensile pre-stress. A finite time after the crossing of the plane wave
fronts, a fracture is assumed to initiate along the line where the wave fronts
crossed, and one of its edges is assumed to extend along the trace of the wave
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94 A.N. Das

intersection. Superposition considerations allow the original problem to be sep-
arated into three self-similar problems with (0, 0), (0, 1) and (1, 0) as the indices
of similarity. Following CHEREPANOV [12] and CHEREPANOV and AFANASEV [13],
the mentioned self-similar problems have all been formulated as some Riemann
and Hilbert problems, which can be easily solved. The results include the an-
alytical expressions for the stress intensity factors at the crack tips. It may be
mentioned that the anti-plane strain problem of one-way extension of a crack
due to two non-parallel plane SH-waves has been solved by Das [14].

2. Formulation of the problem
Let two identical dilatational waves be defined by
(2.1) Ty = AWl (Wy), = (1= 2m0) AW H(We)., 0,y =0
referred to the coordinate system (z.y. z), with
Wy = cit + ysinfy + x cosby. 0< by <m/2 m o= cyfcy,

where ¢, ¢, are the velocities of longitudinal and transversal waves, respectively,
and H () is Heaviside’s unit function; the waves propagate through an infinite
solid which is pre-stressed, so that

(2.2) Oyy = Oax = T, ozy = 0.
Let us assume that at { = 0 the non-parallel plane waves intersect at + = y =
0. A micro-crack is assumed to appear at { = {y at z = y = 0 and one of its edges

starts to extend along the trace of the wave intersection with velocity ¢, where
¢ is constant and smaller than the Rayleigh wave speed. The expanding crack,
the circular wave fronts associated with its motion and the plane wave fronts are
shown in Fig. 1.

Using the symmetry and superposition conditions, solution to this problem can
be obtained by considering an initially undisturbed half-plane y > 0 satisfying the
boundary conditions for y = 0, 0 < = < ¢t”:

(23) Oyy = —0 — 2001ty — 2.»1()((1/’ + x costh). Opy = 0.
and fory =0,z <0orz > ct’:
(2.4) oy =i, =0.

Here t/ =t — 1 and u, is the displacement in y-direction.

Equation (2.3); shows that by applying the superposition principle, the prob-
lem exposed can be divided into three separate problems of a constant normal
stress, a normal stress varying linearly with time, and a normal stress linearly
varying with distance measured along the crack plane.
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F1G. 1. The = — y plane.

3. Constant normal stress on the crack faces

The wave motion generated by constant normal stress on the faces of the
crack defined by y = 0, 0 < 2 < ¢t has been considered; for simplicity, ¢ instead
of ¢ has been used. The boundary conditions at y = 0 are

Ty = —10 for 0<x < e,
(3.1)
w, = 0 for © <0 and a2 > ct.
where
po = g + 2Agc1ty.

Now from [13] we obtain

du,

o) at y =0, il Re ¢p(2),
ay=0, 2= iR —S(-_)—Oo()} ,
-z
where
S(z) = (2 -2+ 452\/((‘1_2 — 22) (72 - 22,
-3) c= s =n=tr at y=0
with
O - 2y RN

2 + y2
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The transformations given by Eq. (3.4) map the semi-circular regions of the
cylindrical regions in the upper half-plane of the » — y plane into the lower half
of the complex z;-planes, as shown in the Fig.2 and Fig. 3.

Imz,
-¢;! ¢! c! Re z,
) X
0 D C B A 0
0
IF1G. 2. The complex zj-plance.
Imz,
’C; C}’ ¢! Re z
J 1
0 F G H A 0
0

F1G. 3. The complex z2-planc.

Therefore the boundary conditions given by Egs.(3.1) are converted to the
following conditions in the :z-plane:

Im= = 0. Re: < ¢!, Reog(z) = 0.
(3.5)
Imz = 0, Re: > ¢\, Imoy(z) = 0.
In order to determine the analytic function ¢g(z) subject to the conditions
(3.5) it is necessary to know the behaviour of the function og(z) when = — 0,
¢~1. The zero point of the z-plane corresponds to the point = = 0, y = 1/ in

the physical plane where du, /0!l is zero.

http://rcin.org.pl
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Hence, taking the representation (3.2); into account, we obtain
(3.6) Re ¢y(0) = 0.

Further, the condition (3.5), may be put after integration in the form

(3.7) Im: = 0. Rez > 71, Imog(z) = 0.

Moreover, the displacement derivative du, /0t at the moving crack tip = = ¢t,
y = 0 should exhibit square root singularity, so that at z — ¢~}
(3.8) d0(=) = 0[(z - )12

The boundary conditions given by Eqs. (3.5), (3.7), together with the condi-
tions (3.6) and (3.8), suggest that

(3.9) o0(z) = Ay(z — c=Hy7V2,

where the unknown constant -, is to be determined from the condition (3.1);.
Integrating Eq. (3.2), with respect to ¢, it can be easily shown that for » > 0

t/r )
Oyy(.0,t) = ,“/llti'% Re/ 2'8(”)([” ‘
2ot - A6 - ey
(3.10)
—t/r ]
(7_,,.,,(*.7'.0.{) - ;1/\|('%Re ] ‘5(”')”!~

27 = -y

-1
—c]

Next, using the boundary condition (3.1); in (3.10), we obtain, after some
algebraic manipulations, the result

—po\/c‘l + (‘1_1
z11 = 5

- 2
peesl

with
I =LE®Qp) - LE®Qp)+ LFEQ)+ LE®QY).

where
8, _ - - - =
Iy = 5—((' 1+(:[l){D_+cll(3r- 1—(:1'}.

8 . _ .
L= 2 Y Dy + B D)
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wn| co W ce

Here

(3.11) p=

and (), £() are complete elliptic integrals of the first and second kind, respec-
tively.
Performing the integration (3.10);, the following result has been used:

(¢! < M < ).

M y
az
RC] =
J Gty
C1

The stress intensity factors at the crack tips » = ¢/, y = O and » = y =0
defined by

Noy = L}H Ve — ety (z;0,t),
Nz = Lt Vzo,,(-2,0,1),

r—0+

respectively, are obtained by the results (3.10); 2,

;\’vgl = —-4/1’,/"1\/(1 = 7?2)1 .

(3.12)
Ngy = —4uA V1,

where n = ¢/c is the non-dimensional crack tip velocity.

4. Problem of normal stress increasing linearly with time on the crack faces

For the case of normal stress on the faces of the crack increasing linearly with
time, the boundary conditions are

Oy = —Mit for 0 < a < et

4.1

w, = 0 for <0 and =z > ct.

http://rcin.org.pl
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where
P’ = 2.*\0('] :

The second order derivative 9%u,/dt* can be assumed to be the real part of
an analytic function ¢;(z), so that

at y =0
P?uy,
(42) T = Reon(2);
this implies
at y =0
y; 2 4
(4.3) 07(;& = —ucst™'Re |ir—%()——ol( )}
; 2 -

where ¢, (=) satisfies the conditions

(4.4) Im:=0 Rez < ¢!, Re¢i(2) = 0.
(4.5) Im:z=0, Rez>c'.  Imgi(z)

I
<

From Eq. (4.2) we see that

1 (')uy}

Taking into account the facts that near the moving crack tip « = ¢f, y = 0 the
displacement derivative du,/d! is inversely proportional to the factor el —
and that Re ¢ (0) = 0, in view of the conditions (4.4), (4.5) and Eg. (4.6), we
obtain the result

Ayz
4.7 —_—
K o) = g2 |72
where the real constant /1, is to be determined from the condition that on the
crack surface stress o, = —pl.

From Eq. (4.3), after integration, we obtain for = > 0

1 O

4 4\/((—2—.2‘
X { L - ] dz,
\E_ 1)3 \/(7:_(.—])3

(4.8) 0y (2,0,1) = —jus lzclee
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(4.8) e

o 101——11(1Re]
[cont.] yu(= ) HA267 1 ,—-~——(r_2 B

31

1
L/(: —clP - e'P

Therefore, using the boundary condition (4.1); in (4.8), we obtain after sim-

X dz.

plification
piy el + ('71
Ay = “_ V-
/l(‘2]
with
J = IWFQ@) = LE@) + BEQ) - JLEQ)
and

-2 gy 2 £ 1 -1
5 — 2c 7+ 3¢
Jp=c¢? 2 ; L : - 8(‘?‘(('?‘ + 7N
e —cl g et

12 o2 o
to ((-,l(sfz T I (I o 2))}+11.

—3 SN2/ -1 1
" _2. ( .

(49) .]2:(-_1{((2_] (_1 ) ( ll (-—l) —8('_l((<1_|+('_l)
cp - 1 + ¢

—6(c7t+ ¢5% - 3(-*2)} + 1y,

1 el 271!
Js = {\ ¢ (1_ (11 ‘ : ((;2_2 + 24(-_'(-2_l — 29r‘“2) — I3 .

—1 L =1
e +(r2 c &

_]+ —1 2 —2
J4={ c T £ 1(2562_2—29('_2)+I4}.

=1+ r_‘gl r-z_l - c
To perform the integration (4.8);, the following result has been used:

M

R d= _
e/ Ve = ) - ety

M
1 ' ol =
R
(e = e e {—/1 \/('?1_2 ~ER)(= ~ 7l)
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In this case, the stress intensity factors are obtained,

N = Lt Vao—cto,(x,0.t) = =2uA0/(1 — n?)t .

Tr—ct+

(4.10)
L(t] Vo, (-2.0,t) = ~Pp AP
r—0+

Il

Nia

5. Problem of normal stress increasing linearly with the distance along the crack
faces

Consider the initially undisturbed half-space y > () subject to the normal stress
—pa over y = 0, 0 < = < ¢f. The boundary conditions are

Oyy = —P2%, 0<a <et,

(5.1)

w, = 0, x <0, x> ct,
where
py = 2.1 cosby.
In this case, d*u,/dzdt shows dynamic similarity. So we take
at y =20

(')zu_,, B i
geon — Re92l®)
with
at y =0
5.2) —UZJ‘W = /1('21_lRe —-———W:S(:) (‘)’(")}
‘ deot 2 i ad b
ol (]_ o .,2
where ¢,(>) satisfies the conditions
Imz =0, Rez < ¢!, Regs(z) = 0.
(5.3)
Im: =0, Re: > ¢l Imos(z) = 0.

From Eq.(5.2), after integration, it is found that

/ =28 li’ii}
(5.3) Re ¢y(z) = — d:[{ a1

Since near the moving crack tip + = ¢t, y = 0 the displacement derivative
du,/dt should exhibit a square root singularity, and also since Re ¢,(0) = 0, we
have, in view of the conditions (5.3), the result

(5.4) o) = {%] ‘

where the real constant /3 is to be determined from Eq.(5.1);.
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Equation (5.2); can be integrated to obtain for = > 0

5k
oy, (x.0,t) = =3 la,(sze
4\/(p—2 =2)

(5.3) X

el 1
L/(: By «~-‘)3] N

O

Oy (—2.0.1) = 3pu- 13621Re / ] (C—Z o
4 + dz,
\/(3—(.'*1)5 \/(;f,,fl)s

So, using the condition (5.1), in (5.5),, we obtain

2]12\/("‘ + ,.,1—1

——
jes L

—t/r

Ay =

where
L=L1Fp)— LLEQ)+ L3F(p') — LaE2(p)

with the notations

Ll = ./1 —*4[1.
./2—4/2.

Lo
(5.6)

3
Ly =3 (-/3 + 5[3).

3 (./4 - %14) .

The stress intensity factors at the crack tips are obtained from the formulae

Ny = Lt Va —cto,,(2,0,1) = dpdset /(1 — n?)t .

r—ct

Ny = L(t} Voo, (-2,0,t) = 0.
r—U+

Lq

(5.7)

6. Discussion

The solution of the original crack problem is obtained by taking pg = o +
2Agc1tp, p1 = 2Apcy and py = 245 cos by and superposing the results obtained in
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Secs. -5 over the stress fields given by Egs.(2.1) and (2.2). Putting together the
results obtained in the Secs.3-5, it is possible to write the stress intensity factors
at the crack edges in the form

: ;’\’rm + A’Vll + :’\"'21 4[! 14+ A AT
S = S AL+ oAy
ay/eilp Vel m 2
Acosé
(6.1) —w,13] Ja = n)ar
P2
Nogp + Npp + N 4 14+ A A
5'7_ = 0 L 22 _ _2 [ A+ —T:h} Vnr.
a\/cily Vel po 2py

Here 7 = (1/tg) — 1 is the dimensionless time after crack initiation, and A =
2Ageitp/o is the ratio (at @ = y = 0) at initiation of the crack plane stress due
to the plane waves and the pre-stress.

The expressions for the stress intensity factors and constants Ay, /1y and A3
given in Secs.3-5 are very simple. One may easily obtain information about the
stresses in the crack line and their intensities for each problem, as well as for the
original problem considered in this paper.

7. Conclusions

Chaplygin’s technique is, at the present, the simplest and most descriptive
formulation of all the similarity techniques and it has been employed in several
elastodynamic problems [2-6, 8-10] concerning crack extension. This technique
has also some disadvantages, especially in the plane stress and strain cases, during
the final steps of the analysis, when appropriate forms of the complex functions
are sought for. However, the method of determining the complex function pre-
sented in this paper is correct and leads to the correct solution of the problem.
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Invariant description of symmetric conservative systems

S. PIEKARSKI (WARSZAWA)

IN CONTINUUM MECHANICS, one often considers the systems of conservation laws consistent with
the additional conscrvation equation and, in particular, the symmetric conservative systems. In
thermomechanics, additional conservation equation implied by such systems is often interpreted as
the entropy balance. In this paper, the theory of the systems of conservation laws consistent with
the additional conservation law is equivalently formulated in terms of the properties of the systems
of conscrvation laws possesing nontrivially different conservative forms. Such formulation enables
one to generalize the results on the subject of the relations between the systems of conservation
laws and the symmetric systems published before (S. PIEKARSKI, On the uniqueness of symmennic
algebraic consequences implied by a system of conservation laws consistent with the additional conser-
vation law, to be published in Cont. Mech. Thermod.) and is more general than that of Friedrichs
(K.O. Friepricus, On the laws of relativistic electro-magneto-fluid dynamics, Comm. Pure Appl.
Math., 27, 1974). The description of the possible transformations between the alternative sym-
metric conservative forms of a given system of p.d.e. occurs naturally as a special case. Such
transformations are involved in the problem of finding a symmetric conservative form of a given
system of conscrvation laws.

1. Introduction

IN CONTINUUM MECHANICS, one often considers the systems of conservation laws
consistent with the additional conservation equation and, in particular, the sym-
metric conservative systems. In thermomechanics, the additional conservation
equation related with such systems is often interpreted as the entropy balance [1-7].

In this paper, the theory of the systems of conservation laws consistent with
the additional conservation equation is equivalently formulated in terms of the
properties of the systems of conservation laws possessing nontrivially different
conservative forms. Such formulation explicitly shows the most general class of
transformations relating equivalent systems of conservation laws consistent with
the additional conservation equation. Two applications of such an approach seem
to be interesting; the first concerns the relations between the systems of conserva-
tion laws consistent with the additional conservation equation and the symmetric
systems. Some results on this subject were given in [14]; however, the class of
equivalent transformations between the systems of conservation laws, discussed
there, was restricted to a certain distinguished family of transformations and was
not as general as possible. In this paper we discuss all possible transformations
and it is possible to show that the results formulated in [14] remain valid also for
the general case.

The second application of our approach concerns the symmetric conservative
systems since it makes it possible to discuss the transformations involved in the
transition between the equivalent symmetric conservative systems subjected to
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the most general transformations. Such a discussion is of interest since it shows
the class of transformations involved in the problem of writing a given system
of p.d.e. in the symmetric conservative form. One of the well-known problems
related with the transformations of the systems of conservation laws is that the
number of possible coordinate systems is infinite. Therefore, it is convenient to
use the invariant description which does not depend on the choice of a coordinate
system, and the standard approach is that of Cartan (see [8, 9] and the literature
cited therein). However, the “dual” approach initiated by PERADZYNSKI [10-12]
seems to be more convenient for the problems discussed here and, therefore, all
our discussion is held in the dual language.

In order to maintain the self-consistency of presentation, all necessary defini-
tions are given at the beginning of Sec.2. A discussion presented in this paper
is restricted to the case of such systems of conservation laws consistent with the
additional conservation equation which do not possess nontrivially different ad-
ditional conservation equations; however, the general case can be discussed in a
similar manner.

For simplicity, we assume that the source terms in the discussed equations
vanish; it can be easily checked that all results remain valid also in the case
of non-vanishing production terms. The invariant properties of the systems of
conservation laws consistent with the additional conservation equation and of the
symmetric conservative systems are discussed in Secs.2 and 3, correspondingly.
Final remarks are given in Sec. 4; in particular, in Sec. 4 we compare our approach
with that of FRIEDRICHS [15].

In principle, throughout this paper we apply Einstein’s notation assuming
summation with respect to repeated indices; however, in some cases, in order to
make the structure of the discussed expressions clearer, some sums are written
explicitly.

2. Invariant description of the systems of conservation laws consistent with the
additional conservation equation

In the invariant description of the systems of conservation laws [7, 10-14], in
the space of the dependent variables we allow “arbitrary” (i.e. diffeomorphic)
changes of coordinates, whereas the allowed coordinate transformations in the
space of the independent variables are the affine transformations. As a con-
sequence, we can interpret the space of the dependent variables as a manifold
(which shall be denoted by ) and, in turn, the space of the independent vari-
ables can be interpreted as the affine space (which shall be denoted by :1). The
vector space composed of the vectors tangent to A will be denoted by 7.

We assume, that the dimensions of () and -\ are m and n, correspondingly.
The affine coordinate systems on A have the following form

(2.1) R 3 (2.....0,) — v + 28 € A,
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where [R denotes the set of real numbers, v~ is the arbitrary point of A, and ey,
..., €, is a basis in T4. The important property of the coordinate systems of the
form (2.1) is that the vectors 9,,, ..., O, tangent to its coordinate lines can be
identified with the corresponding vectors ey, ..., e, tangent to 7'4. In turn, the
natural base forms dz', ..., d2™ of the coordinate system (2.1) can be identified
with the corresponding forms /1, ..., /" from the linear space dual to 7'4; the
space dual to 7, shall be denoted as 7 and the vectors ey, ..., e, are related
to the forms F'1, ..., '™ via the relations (2.2)

(2.2) (e Py =8, iji=1,...m,

where (,) denotes the action of a form on a vector and ¢! stands for Kronecker’s
symbol. Let (¢;), j = 1..... m be a certain local coordinate system on the
manifold of the dependent variables (). The system of conservation laws

)
(2.3) Ly =0, i=1...0  j=1.. .m
dr, :
can be interpreted as the system of equations for the function [ acting from the
affine space of the independent variables A into the manifold of the dependent

variables (); the functions

(2.4) q; = [i(x:)

solving Eq.(2.3) are then the coordinate representation of the function f. The
derivative f. of f, understood in the sense of the derivative of the mapping
between manifolds A and @, is given by

(')q] )
uwa— ® da; .
().’r'l'

(2.5) f.=0

where 8,,), 7 =1,..., m are the natural base vectors of the coordinate system
(¢, 7=1.....mon Q.
From the above mentioned identification of dz1, ..., da" and F', ..., I it
follows that the derivative (2.5) can be written in the following equivalent form:
g
(2.6) f.=0 ' @de' =0

dq; o i
1 9z, T du;

Nl

Let us define the fields of the two-point tensors w', ..., w™ by the following rule

Ul
2.7 w! 1= J*— @ dq; @ e,
dy;
where dg;, j =1,.... m are the natural base forms of the coordinate system (q;),
j=1,... m on (). As it has been discussed in literature [7, 10-14], the whole
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system (2.3) can be written in terms of the corresponding contractions of w!, ...,
w™ with [.;

( "I'i . ( N ' ( ’r,'i 7 / 1
2.8) <11‘I.fx> _ <()l ¢ @ e;, dq; o F > _ aut dq; 59 6

dq; Nz, dq; dxp 1

_ r')(/"i%_ J ((.,J‘)
dq; Oz, Oz,

= 0.

The important fact is that the fields of the two-point tensors w!, ..., v are the

differentials of the vector functions U’, ..., U™ on () with values in 7., which
are defined as

(2.9) ul=vle, I1=1,..., m, i=1....n.
since
(2.10) w =dul, =1, m

and therefore the system (2.3) can be written as

(2.11) (au'.fy=0. I=1...m

For the expression <rlU’. _f-> we shall apply also the alternative notation div U’.

The vector fields U', ..., U™ are treated in Eq.(2.10) as the vector-valued dif-
ferential 0-forms with values in 7. However, since in that notation for con-
servation laws one does not distinguish between “the time derivative” and “the
divergence of the flux”, the vector fields U/, ..., U™ shall be sometimes called
the “four-fluxes” (of course, this terminology cannot be interpreted in a strict
sense since, in general, /1 is not the Minkowski space of special relativity). We
shall assume that the system (2.3) is determined, that is, for each ¢ € () the
differentials dU'(¢). ..., dU"(¢) are linearly independent [7,10].

Let A.....\, be smooth, real functions on . Then the vector-valued dif-
ferential 1-form given by

(2.12) 2:=> \dU
I

defines the quasilinear partial differential equation which is implied by the dis-
cussed set of conservation laws

(2.13) (.0 =37, {au’ 1) =Y A divt! = 0.
1

/

http://rcin.org.pl



INVARTANT DESCRIPTION OF SYMNMETRIC CONSERVATIVE SYSTEMS 109

If the 1-form (2 is closed, that is, if
(2.14) 0=dR =Y dx A\dU’.
=1

then locally it possesses the potential 8, S:Q — T4

(2.15) 2 =dS=3 AdU’
!

and the Eq.(2.13) becomes the conservation law [7, 13]

(2.16) (dS, f.) = divS = > A divU’ = 0.
!

We shall say that the system (2.3) implies the additional conservation equation
(2.16) if Eq. (2.14) has a nontrivial solution in the sense that not all A, are constant
[7,13]. The additional balance equation is usually called the entropy balance and
the functions A,, I = 1,.... m are called the Lagrange - Liu multipliers. If we
add to all the Lagrange - Liu multipliers arbitrary real constants, then we obtain
another admissible set of Lagrange - Liu multipliers what, in turn, modifies the
entropy balance by adding to it the corresponding linear combination of equations
from the system (2.3).

Now we shall discuss such systems of conservation laws which possess nontriv-
ially different conservative forms and we shall see that for the system of conser-
vation laws the property of “possessing nontrivially different conservative forms”
is equivalent to the property of “implying an additional balance equation”.

Let us multiply the equations from the system of conservation laws (2.3) by a
real, nondegenerate, 1 x m matrix M defined on @; that leads to the equivalent
system of p.d.e.

(2.17 M{divU! =0, I.J=1...., .
/

which can be geometrically written by means of the contractions of /. with the
vector-valued 1-forms w!. . ... w™

W'J = Z A\[,';I(IUI.
(2.18) J =
<w [> = Mjdivul =0,  JI=1.... m.

The condition that the transformed system (2.17), (2.18), is also of a conserva-

tive form is equivalent to the condition that the 1-forms w',J =1...., mare
closed [7],

T

2.19 do’ =S dyi A\ dul =0, J=1..... 1.
!

=1
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If condition (2.19) is satisfied, then the I-forms w’, J = 1..... m have local
potentials V/, V/ : () — 7'y, which are such that

J

(2.20) w = dv’

and the system (2.18), can be written in the form
(2.21) (W', ) =(aV Ly =dw¥ =0, J=1...m

We shall say that the system (2.3) possesses nontrivially different conservative
forms if and only if the system of Eqs.(2.19) has a solution for the matrix My
which is nondegenerate and is not constant (in the sense that at least one of its
elements has a non-vanishing differential).

Let the values of indices (./g. fy) correspond to such an element of the matrix
My that rlﬂ[}‘!'“ is different from zero.

Taking in Eq.(2.19) J = J; we obtain the equation

i

(2.22) S dM Adu =0

=1

which is identical with the condition (2.14) ensuring the existence of the additional
conservation law.

In turn, let us consider the system of conservation laws consistent with the
additional conservation law (2.16). Let ('{ be a real m x m matrix and let '/,
J =1,...,m denote arbitrary real numbers. Let us define the set of 1-forms 17,
J=1,....m

223) L:=) cfdU +clds =) cfau’ + 75N dU!
I=1 I=1 I=1

= Z (cf + i) au.
I=1

On account of Eq.(2.14) L/, J = 1.....m are closed and therefore the contrac-
tions of L/ with f. define the system of conservation laws which is equivalent to
the system

(2.24) divU’ = 0. I=1,..., m
if and only if the matrix
(2.25) K{(q):=C] +C'A,

is nondegenerate.
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For example, the matrix (2.25) is locally nondegenerate if the matrix '/ is
nondegenerate and '/, J = 1.....m are sufficiently small. Therefore, for the
system of conservation laws consistent with additional conservation equation we
can always find nontrivially equivalent system of conservation laws. As a conse-
quence, we see that for the systems of conservation laws the property of “implying
an additional balance equation” is equivalent to the property of “possessing non-
trivially equivalent conservative forms”. We shall say that the system of conser-
vation laws (2.3) consistent with additional conservation equation (2.16) implies
only one independent additional conservation equation if the difference of any
entropy balances implied by Eq.(2.3) is equal to the sum of equations from the
system (2.3) taken with the constant, real coefficients. Let us consider the two
nontrivially different conservative forms

(2.26) divu’ =0, I=1,..., i
and
(2.27) divv/ =0,  J=1.....m

of a system of conservation laws which implies only one independent additional
conservation law, and let

(2.28) divS = > A divU' = (dS. )
!

and

(2.29) divR =Y A,divv’ = (dR. [.)
J

be the additional conservation laws consistent with Egs. (2.26) and (2.27), respec-
tively; S and R are the entropy four-fluxes corresponding to Eqs. (2.26) and (2.27).
The real functions A\, [ = 1..... mand Ay, J =1..... m are the Lagrange - Liu
multipliers relating Eqs. (2.26) with (2.28) and (2.27) with Egs. (2.29). Let

(2.30) dive = (dE. f.) =0

be any conservation equation algebraically implied by the system (2.26) (or, what
is equivalent, by Eq.(2.27)); the vector field £, € : Q — T4 is the “four-vector”
corresponding to the conservation equation (2.30). From the assumption that
only one independent entropy balance exists it follows that /€ can be expressed
in the following form

(2.31) dg =" G dU" + gdS =" 1 ,dV + I dR.
1 J

http://rcin.org.pl
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where g, h. Gy Hy, [.J = 1.....m are the real numbers. If ¢ is different from
zero, then Eq.(2.31) is an additional conservation law for the system (2.26) and,
similarly, if & is different from zero, then (2.31) is the additional conservation
law for the system (2.27). In particular, the differentials dut, 1 = 1..... m
corresponding to the conservation laws from the system (2.26) can be written in
the form

(2.32) au' =% (Bh+ blay) dv?
J

where the determinant of the matrix V1,
(2.33) Ny =B +bl4,

is different from zero and B4, 0/, I..J =1...., m are the real numbers. After
inserting Eq.(2.32) into Eq.(2.31) we obtain the identity

(2.34) STCGAU 4 g > N AU =S (Gt gAp) dU!
1 ) !
= Z(("i + f/’\l)‘\'jflvll . Z((/[ + gA)) (B{, + !'ij_\_f) A
I.J

1.J
=3 HydV + hdR = (Hy + hAy)dv? .
J J

From the linear independence of ¢V/, ./ =1.. ., m it follows that

(2.35) Hy+hA, =3 (G +gAr) (/;’, N
]
and therefore

(2.36) Ay |h=> (G + ;,,\,)h’] =Y BI(G+gA) - Hy.
I 1

what shows that in the domain where

(2.37) b= (Gr+gA)bh #0.
1
the multipliers A, .J =1..... m can be explicitly written as the functions of the
multipliers Ay, [ = 1.....m
(238) Ay = ] {— H; + z b’} ((r'] + g/\/) .
}:Z((,']+g,\,)b’} !
1
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From Eq.(2.35) we can also obtain the identity relating the differentials of the
multipliers

-1
(239) dA; = /1721;’((,';+_q/\;)} Z(Bj+b’/\_/)d,\,
1

I
-1
= [h (@ +g,\,)} D ONJdA
1 I

Identity Eq.(2.39) shows that the dimension of the space spanned by the differ-
entials of the Lagrange - Liu multipliers remains invariant under the transition
between nontrivially different conservative forms (this follows from the fact that
the matrix N/, given by Eq.(2.33), is nondegenerate).

The dimension of the space spanned by the differentials of the multipliers is
an important invariant which, in particular, allows one to classify the “canonical”
forms of the systems of conservation laws consistent with the additional conser-
vation equation [7, 14]. However, here we generalize this observation to the case
of more general transformations.

3. Invariant description of symmetric conservative systems

As it is well-known (see, for example [13]), the system of conservation laws
consistent with the additional balance equation can be written in the symmetric
conservative form if and only if the Lagrange - Liu multipliers form a local coordi-
nate system on (), what, in turn, is equivalent to the condition that the dimension
of the vector space spanned by the differentials of the Lagrange - Liu multipliers
is equal to m = dim (). As it has been mentioned in Sec.3, the transformations
between the equivalent conservative forms (2.26) and (2.27) preserve the dimen-
sion of the space spanned by the differentials of the Lagrange - Liu multipliers
and therefore, the possibility of writing the system of conservation laws possessing
nontrivially equivalent conservative forms as the symmetric conservative system
does not depend on the transformation between the nontrivially different conser-
vative forms. In this section we shall discuss the symmetric conservative systems
and therefore, we shall assume that the dimension of the vector space spanned by
the differentials of the Lagrange-Liu multipliers is equal to m = dim (). The fact
that the system of conservation laws can be written in the symmetric conservative
form with respect to the Lagrange - Liu multipliers A;, / = 1..... - means that
there exists such a function F, F : () — T4 (called the vector potential) that the
“four-fluxes” U’, I = 1.....m defining this system are given by the derivatives
of F:

0F
1 e Bt
G-D) U= o
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The symmetric conservative form of a discussed system of conservation laws is
given by

)
(3.2) div (;C} =0, [=1....m.
Let us write the vector potential F in the basis ey.. ... e, of T,
(3.3) F = Fle.

After inserting Eq. (3.3) into Eq. (3.2) we arrive at the explicit form of a symmetric
conservative system

a [(oF
(3.4) e (W) = 0. I=1,..., m.
Let us subject the coordinates of the coordinate system A;, / = 1.....m to the

affine transformation

(3.5) M= AL+ dl, I,'=1,..., m.
where Af, is a nondegenerate, constant, real m x 1 matrix and al, I =1,..., m
are arbitrary real numbers. The functions dF /oA, ' = 1.. .., m define the set
of four-fluxes which correspond to the system of conservation laws
: JdF
(3.6) div | - =0, I'=1,...,m.
dN],

From the relations

OF _ OF 0N, _ ; OF
ON; - ON, oN - T oN

3.7

it follows that the systems (3.4) and (3.6) are trivially equivalent, that is, they can
be transformed one into another after multiplying by a constant, nondegenerate,
real matrix A},. Therefore, the symmetric conservative form remains preserved
under the transformations (3.5) of the Lagrange - Liu multipliers and such trans-
formations change one symmetric conservative system into the other, trivially
equivalent symmetric conservative system. All coordinate systems which are re-
lated by means of the affine transformation (3.5) have the important property
that their natural base vectors B/\fw, H=1,..., m and O,,, [ = 1.....m are

related by the constant, nondegenerate matrix A7,

N,
()/\]

(38) a,\, = a’\’l’ = :”,8/\11‘ 5
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Also the inverse relation holds: if there exist a coordinate system (y;), J =

1.....m which is such that its natural base vectors 9,,, J = 1.....m are related
to the natural base vectors 8,\], I = 1.0 m of the coordinate system (Aj),
=4l o, m by a real, nondegenerate, constant m x m matrix D:

(3.9) 9., = D9,

then the coordinate functions of the coordinate system (y;), / = 1.....m are
related with the coordinates of the coordinate system Ay, [ = 1,.... m by the
relations

(3.10) gy = DiAr+ k7,

where &7, J = 1.....m are the arbitrary real constants. Therefore, the whole

class of coordinate systems which are mutually related by affine transformations
(3.5) can be determined by specifying the set of natural base vectors correspond-
ing to any coordinate system from that class. For example, as such a set of natural
base vectors we can take dy,, [ =1...., ni. All other affinely related coordinate
systems can be obtained in the manner described by Egs. (3.9) and (3.10) (that is,
after taking all nondegenerate, constant, real 1 x i matrices, inserting them into
Eq.(3.9) and integrating Eq.(3.9) in order to obtain the coordinate transforma-
tions of the form (3.10)). The important fact is that the transition between the
affinely related coordinate systems, which transforms one symmetric conservative
system of p.d.e into another, trivially equivalent symmetric conservative system,
does not change the vector potential F (however, it is worth to stress that such a
transition modifies the entropy law; see a more detailed discussion of this aspect
given in [13]). As it has been already mentioned, the possibility of writing the
discussed system of p.d.¢ in the symmetric conservative form does not depend on
the transition between the nontrivially equivalent conservative forms. Therefore,
we can consider the two symmetric conservative systems corresponding to the
nontrivially equivalent systems of conservation laws;

. . )

(3.11) divU’ = div (ff) =, JI=1,..m

()/\]
and

. /
(3.12) divv’ = div (f”?> =0, J=1....m

JAJ
The transformation rules between the multipliers A;, / =1..... moand Ay, J =
1,....min Eqgs.(3.11) and (3.12) were discussed in Sec.2, and from the results

of Sec.2 we could derive the corresponding transformation rules for the vector
potentials F and F” in Egs. (3.11) and (3.12). However, instead of doing that, we
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shall show that the transition between Eqgs. (3.11) and (3.12) is trivial in the sense
that both systems correspond to the same symmetric system. Let 11" denote the
tensor field defined via the relation

: [ OF
(3.13) We=Y"dy 'd(f),\,)'

!

The system (3.1) can be alternatively represented by the following contraction of
W and f.

(3.14) T rWof.=T Tr [Z A\ & d (Eﬂ O f.
!

(2.4)(3.5) ’ (2.4)(3.5) By
()f’ ()/\‘il
=Tr T A1 @ Ay G e | O .
(2.4)(3..2) L.ZL,( J (‘)/\10,\‘,[ e [;z]: 19 }
) A , DFT N () F!
Z - Lajél = dhjmoe O an, [ 2 =1,
Y (}/\]()/\] da dATON) D, r)t ()/\/

il

where Tr denoted the trace operation taken with respect to the indices listed
below, and the equivalence of Eqs.(3.11) and (3.14) follows from the fact that
the differentials dA;, / = 1.....m in Eq.(3.14) are linearly independent.

The definition (3.14) is formulated invariantly, that is, it does not depend
on the choice of the coordinate system, and the fact that the system (3.14) is
symmetric is exhibited in the property that the tensor 11" given by Eq.(3.13) is
symmetric in the first two indices [13, 14].

In turn, the system (3.12) can be represented by the tensor field 117,

OF
N W= {. o
(3.15) ;(1_,‘r(m/)

in the manner analogous to the representation of the system (3.4) by the tensor
field 11" (given by Eq.(3.13)). The relation between the system (3.11) and (3.12)
is a special case of the relation between Egs. (2.26) and (2.27); therefore, from
Egs.(2.32), (2.33), (2.39) we obtain the identities

OF OF'
3.1 | = N[ =—1.
(.16) { (U‘,\,) ! (U.l,;)

-1
(3.17) dAy = |/, =Y oG+ _q/\;)} S ONJdA;.
1 /
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After inserting Eq.(3.16) into Egs.(3.13) and Eq.(3.17) into Eq.(3.15) we see
that

A
. v =S Ndyedl| &
(3.18) | ; JdN; @ (U:l./)

and

e oF
(3.19) W'=Y da;e "(W)

J
—1 y :
= [/1 =Sl + g/\/)} S ONJdA o d ((jf ) .
d.yg
1 1.J

From the comparison of Egs. (3.18) and (3.19) we see that in the domain of the
transformation (2.38) the tensor fields 11" and 117 are identical up to the multipli-
cation by a scalar function of the dependent variables. However, this means that
they define the same symmetric system since the symmetric systems which can
be transformed one into another after multiplication by a scalar function of the
dependent variables can be considered as undistinguishable. As a consequence,
the transformations between the nontrivially equivalent symmetric systems do
not modify the structure of the discussed system of p.d.e. in the sense that their
action is equivalent to the change of variables in the same symmetric system.

4. Final remarks

As it is well-known, in the theory of p.d.e. one distinguishes between the
invariant definition of a system of p.d.e. (which is identified with a corresponding
subset of a jet space — see [9] and the literature cited therein) and the “form” of
a system (by the “form” one means a choice of a set of “independent” equations
which represent the system, see [9,10]). Some properties (like, for example,
symmetries) are related with the “invariant™ aspect of a system of p.d.e. while
other, like the properties of “being expressible in a conservative form” or “being
expressible in a Cauchy form” characterize the admissible forms of a system.

Any system of conservation laws, after multiplying by a real, constant, nonde-
generate matrix, can be transformed into the other system of conservation laws
which is equivalent to the initial one. However, sometimes a system of p.d.e. can
possess different equivalent conservative forms which are not trivially equivalent;
in such a case, different equivalent conservative forms can be transformed one
into another after multiplying by a matrix which depends on the dependent vari-
ables. In this paper we discuss such determined systems of the first order p.d.e.
which admit nontrivially equivalent conservative forms. It can be easily seen that,
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for such systems, the property of “possessing nontrivially equivalent conserva-
tive forms” is equivalent to the property of “implying additional conservation
equation”. For simplicity, only the systems of conservation laws possessing one
independent additional conservation equation are discussed in detail. For such
systems, the most important result is that the dimension of the space spanned by
the differentials of the Lagrange - Liu multipliers does not depend on the choice
of a conservative form of a discussed system.
This fact has the following implications:

a. The classification based on the dimension of this space and discussed in [7]
(see also [14]) does not depend on the choice of a particular conservative form
of a system. .

b. The possibility of writing the discussed system of p.d.e. in a symmetric
conservative form does not depend on the choice of a conservative form.

c. The different symmetric conservative forms are trivially equivalent in the
sense that they correspond to the same symmetric system (see a discussion of
trivial and nontrivial equivalencies of symmetric systems given in {16]).

d. In [14] it has been shown that every system of conservation laws admitting
additional conservation equation implies the symmetric system; it can be easily
shown that the symmetric system obtained in that manner does not depend on
the choice of a particular conservative form of a discussed system of p.d.e. (in
order to check that, one has to repeat the reasoning given in Sec. 3 but without
assuming that the dimension of the vector space spanned by the differentials of
the Lagrange - Liu multipliers is equal to m = dim Q).

The systems of conservation laws consistent with the additional conservation
equation were described by FrRiEDRICHS [15] in a manner which was, to some ex-
tent, independent of the choice of a particular conservative form of the discussed
system of p.d.e. However, he has not taken into account all possible conservative
forms of the discussed system of p.d.e. and, therefore, the approach presented
in this paper, in which we construct all possible conservative forms explicitly, is
more general than that of Friedrichs. Another important difference between our
approach and that of Friedrichs is that our approach does not depend on the
choice of a particular coordinate system.

It can be also checked that our results can be generalized to the case of systems
of conservation laws admitting arbitrary number (i.e., finite or infinite number of
arbitrary cardinality) of additional conservation equations. In such a case, the
most important result is the following:

Let S denote the set of conservation equations algebraically implied by a
given system of conservation laws. Let 5 denote the arbitrary conservation law
from S. Among all conservative forms of a discussed system we can distinguish
such conservative forms for which = is the additional conservation equation; let us
denote such a set of conservative forms by C(5). Then the dimension of the space
spanned by the differentials of the Lagrange - Liu multipliers does not depend on

http://rcin.org.pl



INVARIANT DESCRIPTION OF SYMMETRIC CONSERVATIVE SYSTEMS 119

the choice of a particular conservative form from C(5). As a consequence, a
discussion presented in this paper can be generalized to the case of an arbit-
rary system of conservation laws and, in particular, it is possible to classify all
admissible symmetric conservative forms of a given system.

All observations mentioned above, describe the properties of the conservative
systems of the first order partial differential equations. However, in phenomeno-
logical thermodynamics one sometimes considers field equations which have a
structure of systems of conservations laws of the order higher than one. The
additional balance equation implied by such systems is interpreted as the balance
of entropy (in general, for such systems the entropy balance can be described by
the conservation law of the order higher than one). The systems of conservation
laws of the order higher than one can also possess nontrivially equivalent conser-
vative forms, and the relations between the properties of “possessing nontrivially
equivalent conservative forms” and “implying additional balance equation” can
be discussed in a manner similar to that presented in this paper. The only differ-
ence is that, for the systems of conservation laws of the order higher than one,
it is necessary to take into account not only the algebraic, but also the differ-
ential consequences of the discussed system (for the systems of the first order
coenservation laws it is sufficient to consider only the algebraic consequences).

Our results can be useful also for classification of weak solutions of the systems
of conservation laws.
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Excitation, waveguiding and scattering of EM and elastic

waves by a periodic system of in-plane strips or cracks

E. DANICKI (WARSZAWA)

A COMMON METHOD is applied to the analysis of two different waves, electromagnetic (EM) and
elastic. This method allows us to analyze the phenomena of scattering, detection and excita-
tion of waves by periodic systems of in-plane obstacles, such like perfectly conducting strips (in
EM case) or cracks (in elastic wave case). New 3-dimesional inhomogencous boundary problems
for strips are formulated and solved. Numerical results are presented for clastic waves guided
and Bragg-scattered by cracks. Isotropic media are considered in detail, and cases of arbitrary
anisotropic and layered media are discussed briefly.

1. Introduction

IN THIS PAPER @ common method is applied to the analysis of two different waves,
electromagnetic (EM) and elastic waves. This method allows us to analyze scat-
tering, detection and excitation of waves by periodic systems of in-plane obstacles,
such like perfectly conducting strips (in EM case) or cracks (in elastic wave case).
We consider isotropic media only, but the method can be applied for analyzing the
waves in arbitrary anisotropic bodies. Generally, the method can be applied to
solving boundary-value problems which are formulated with the help of a “planar
Green’s function” that possesses certain asymptotic properties in spectral domain.
Formally, the applied method is similar to that called “orthogonalized-plane-wave
method” and “the augmented plane wave method” in solid state physics [1]. It
exploits a properly chosen system of functions satisfying boundary conditions and
having suitable asymptotic properties for large values of the spectral variable. The
system allows us to represent the solution in the form of a short series. Coeffi-
cients of this expansion are chosen to satisfy the equations (in spectral domain)
for small values of spectral variable only.

In the problems considered, we deal with a set of two functions which are a
complementary pair of the solutions of certain electrostatic (elastostatic) problem
for periodic strips (cracks). The pair describes the electric field and electric
charge distributions in the plane of strips. The method has been introduced in
the literature by C-M. CHu [2], RM. WHITE er al. [3] and K. BLOTEKJER et al.
in two excellent papers [4,5] on the analysis of surface acoustic waves (SAW) in
piezoelectrics covered by periodic conducting strips. It was further generalized
in [6,7] for obliquely propagating SAW and for certain inhomogeneous problem
where some strips possessed given electric potentials. Application of this method
to analysis of the (i) EM wave scattering by conducting strips is presented in [§],
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and (ii) certain elastostatic problem for plates with cracks —in [9]. Tn this paper
the method is exploited to analyze certain inhomogeneous problems of excitation
of EM waves by strips, and of scattering and waveguiding of elastic waves by
cracks.

The advantage of the method is that the analysis of a “short-wave” case is
formally as easy as that of a “long-wave” case, however the resulting systems of
equations have different dimensions. Particularly, in a long-wave case we deal
with at most two equations, and twice as much in the case of first-order Bragg
reflection. Another advantage over the well-known Wiener - Hopf theory [10]
is that the method can easily be adopted to the analysis of waves in arbitrary
anisotropic media and waves in layered systems with strips (cracks) having dif-
ferent periods and orientations between layers. Full advantage of the method
is apparent in Sec.5 of this paper where an analysis of a certain 3-dimensional
inhomogeneous boundary problem is carried out.

The paper is organized in five sections as follows. Next section presents the
formulation of scattering problem for EM waves, which is the simplest problem
suitable for presentation of the method exploited in this paper. A formal solution
will be presented only, some numerical examples can be found in [10,11]. Basing
on the derived relations, in the last section we consider the excitation of EM
waves by strips which are supplied by the external potential and current sources.
Transadmittance relations for strips are derived which describe the mutual influ-
ence of the strips by means of the excited EM waves. The considered boundary
problem is fully 3-dimensional, the electric forces applied to the strips depend on
both = and = in the plane of strips.

In next Secs. 3 and 4 we deal with elastic waves. The corresponding scattering
problem and homogeneous problem of waveguiding of elastic waves by cracks
are analyzed. Some numerical examples are presented.

In the Appendices, auxiliary relations and derivations are presented. Some
Green’s functions (in spectral domain) are given which can be exploited in the
analysis of certain wave problems by the method presented. A system of comple-
mentary functions is also presented which generalizes the method to the cases of
periodic systems of groups of strips (cracks).

2. EM wave scattering by periodic strips
2.1. Formulation of the problem

Let us consider an infinite periodic system of infinitesimally thin and perfectly
conducting strips arranged on y = 0 plane. The infinite (along the z-axis) strips
are w wide, their period is A (Fig. 1). An incident EM harmonic wave of arbitrary
polarization and propagation direction is characterized by its angular frequency
w, wave-vector (r7, s;, 7), and complex amplitudes of electric and magnetic fields
E! and H', correspondingly. Below, we consider EM waves in isotropic media (in
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vacuum), the incident wave is sufficiently characterized by two vector-components
of either the electric field in y = 0 plane, that is by E/ = (£!, ET), or by the
corresponding magnetic field H' = (1!, 1I]) only.

e H'

[F1G. 1. Scattering of EM waves by periodic strips.

We shall use the following notations:

K =2r/A a strip wavenumber,

A =7w/A a parameter describing the strip width,

c. o electric and magnetic permittivity of the media,

ko = w /e EM wave-number in the media,

r; = r+ [, where [ is an integer chosen to obtain 0 < r < A,

The harmonic incident wave propagating from the infinity in the upper half-
space (y > 0) is
(2_]) e ITIE IS 1Y e =ITE piwl

where s; = /k2 - 13 - 72,

neglected.
We seek the solution to the electric and magnetic scattered fields, E* and H®,
which are parts of the full electromagnetic field E and H,

In what follows, the dependence on time will be

(2.2) E=E+E. H=H +H.

governed by Maxwell equations. In this paper we use the Maxwell equations

indirectly. They will be used to obtain a matrix “planar Green’s function” in

spectral domain (7, 7;w) which describes the dependence between the tangential

vector components of the EM field in the y = 0 plane (these field components are

involved in boundary conditions at the y = 0 plane in the problem considered).
The solutions for E*, H® are subject to the following constraints:

o they must obey the radiation conditions, which state that the scattered field
must either carry out the EM energy from the scatterer, or must vanish at infinity,
e and they must satisfy the boundary conditions at the y = 0 plane, which are

between strips,

1] = H(y=+0)—l(y=-0)=0, i=u
(2.3) on strips.

E; =0, i=a,

Ly
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It is well known, that some vector components of the electric and magnetic
fields are square-root singular at the strip edges [12], and some other are not.
However their z-derivatives are singular. According to the method applied in
this paper, we deal with the square-root singular functions only. For this reason
we seek a solution for the following functions defined on the y = 0 plane

J J
2.4 —J, = . J. = —[l;], E., —FE.,
(%:4) dr ()L[ o N 7], . dv
which are all square-root singular at the strip edges. Note that £, //; are full
EM fields, including the incident and scattered waves.
Boundary conditions at the y = 0 plane can be rewritten in the form

—J.(z,2) =0, J.(x,z) =0, between strips.
(2.5) dr 9
Efz,2)=0, (_)—E:(.’L‘. z) =0, on strips,
&r
with the following additional one-point constraints
."1 1 _ —jrz
(26) '/1' 5 + ])_1, e = Jp+l/2( - 5

E.(pA,z) = epei™.

In the scattering problem, .J ;1,2 = 0 and ¢, = 0 (the generalized boundary
conditions including ./, |/, and ¢, will be exploited in Sec.5).

2.2. Method of solution

The scattering obstacles are periodic, thus the Floquet theorem allows us to
expand the EM field at y = 0 plane and, in particular, the functions presented
in Egs. (2.4), into the series

Jo(a.z) = Z J =i

0
e -~ — ) = T'H] " TZ
—Ja(a,2) = }:1( )e=imnT e

I;V(ri)( —JTnd =T
g Y N
n

0 R
—F.(x,2) = E(Me=imnT=iT?
53 Eele.) = TEE

2.7)

E(z,2)

where 1, = r+nh, and 7. U, EYY B denote complex amplitudes of the
corresponding Fourier components.
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The scattered EM field in the media can be uniquely expressed by the above
functions. Generally, the field is expressed in the form of a series analogous to
the above ones, with additional terms exp(—js,y) (for y > 0), or exp(+7s,y)
(for y < 0). To satify the radiation conditions at y — +oc, we choose

' : , k, =1/ r,,zl + 72 <k,
o R VA T T S L

It is convenient to consider a slightly lossy media, characterized by the EM wave
number k, = k! — j<', ¢ > 0, ¢/ = 0. In this case the square-root s, is a
single-valued complex variable on the complex plane r, with cuts from a branch
point &, down to —joc, and from —k, up to joc.

Maxwell equations result in the following relations between the complex am-
plitudes of the wave components included in Egs.(2.7) (see Appendix A)

29) g || =2 [ EM 2 E
! g = —E. = =g Onl -
_]gn) Wi [g“r) Wil —j(r+mn [\')/:‘_!

[

(2.8) iy =

where Kronecker delta é,,; selects the proper harmonic component of the incident

wave.
I\[Z, - Tz jT _J’"u/'“n T/("ri‘“n)
wm e[S ] [ e ]
T 1 U "‘rt/(f_]rn)
To simplify the notations, let us introduce
== ﬂi -1 (n) (n) Z = () go(n) &
(2.11) C. =g 0], Fo= B, ER)|

which, applied to Eqgs. (2.9), yield
(2.12) C.=gF, —gFo,.

We leave this equation for a moment, and we will try to guess the solution
satisfying boundary conditions (2.5), or the equivalent ones,

ZC,,r“-“’“"‘ = 0. between strips, 1w /2 < |x| < A/2.

(2.13) |
> Fuei™* = 0, on strips, |z| < w/2.

T

Taking into account Egs. (B.2) we conclude, that Egs. (2.13) will be satisfied by sol-
ution (2.7) provided that the corresponding amplitudes C,, and F,, are expanded
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into series

g
[

= Z P, (cos A).

m

Fh = Z f(nl)-‘;nz—'m l)n—m (COS _\)‘

m

(2.14)

where coefficients ¢("), £f(") are unknown as yet.
Following Eq. (2.7) and Appendix B, these coeflicients appear in the expansion
of EM field on y = 0 plane, e.g.

(m)  —jmo
z"l fl e " \ﬁ(ﬂ}/zg_-”—:_

vcos A — cost

This shows that the coefficients ¢(”) and (") are coefficients of Fourier expansion
of a certain smooth analytical function being the numerator of the square-root sin-
gular function (we deal with square-root singular functions only, like /. above).
Thus, applying finite series over  within sufficiently large limits, we can meet
the required accuracy of representation of the EM field. Independently of the
limits, the square-root singularity of the solution is always preserved.

(2.15) lo(x,z) = —55 =N

2.3. Selfconsistency

We make the initial assumption that the summation with respect to m in
Egs.(2.14) is carried out over some finite limits

(2.16) M~ <m<M*.

In a few steps described below we shall show that ¢!} and ") depend on each
other. Indeed, let us note that for |n| — oo (|n| large and [n] > |I])

(2.17) Sp = —J\fr2 + 12— k2 — —j|r,. g — S.L

Thus Egs. (2.12) yield an infinite number of conditions (|n| large)

(218) Z c(,“) Pn—ui (COS -—\) = Z Sn fm Sn—m l)u -1 (COS —\)

i i

for a finite number of unknowns ¢(”) and f0"). There is only one solution
(2.19) ) = i)
which, substituted in Egs.(2.12), results in the equations

(2.20) S= S, )™ P, (cos 3) = —g,Flé,

m

which, according to the Maxwell equations satisfied in the media, must be satisfied
for any n € (—oc, ).
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2.4. Approximation to Green’s function

So far we have not used any substantial approximations. At this step of analy-
sis we must apply one that allows us to solve efficiently the infinite system of
Egs. (2.20). In agreement with the previously used asymptotic property of g, , we
apply the approximation

n< N— <0,
2.21 g =501 if L
( ) gn 1 { n > )\ + 2 0.

where N* are sufficiently large, and N— < [ < N ¥,

Considering Eq.(2.10) we conclude, that g, — 5,1 as fast as =2, and that
there are indeed certain large integers N+ for which g, differs from 5,1 by a
negligibly small matrix. Instead of a rigorous mathematical proof of convergence
properties of the approximation, we present here the following physical discussion
of the problem.

Consider a case of layered media with layers parallel to the y = 0 plane. We
can derive the corresponding Green’s function in spectral domain, and the matrix
analogous to g, which will be a certain complicated function of n. However, for
large n, the corresponding harmonic wave-field exp(—j(r + # ') — js,y — j72)
penetrates only the layer closest to y = 0 plane (if » is sufficiently large, the
wave-field decays at the shorter distance from the plane y = 0 than the layer
thickness). Thus for large », g, is that derived in Appendix A for a halfspace,
however with different =. .. Ttis evident that the approximation to g, corresponds
to the introduction of thin dielectric layers on both sides of the y = 0 plane. Their
properties are close to those of the considered media, because the difference
between g and 5,1 is small, depending on (N*)~2.

A small change in the dieletric property of a thin layer around the conducting
strips cannot influence much the scattered EM field. This justifies physically the
introduced approximation of g . Anyway, the discussed method of analysis should
be considered as a numerical one. Results are obtained by numerical solution of
certain system of equations. The above considerations help us to apply proper
truncation of the infinite system of Egs. (2.20).

As a result of the applied approximation (2.21), it is easy to prove by inspec-
tion that Egs. (2.20) will be satisfied automatically for all » outside the domain
[N=.N7], if we apply

(2.22) N-<m<NT+1.
that is
(2.23) M~ =N, Mt=N1T+1

(note that S, = 1 for & > 0 and —1 otherwise, note also that V= < [ < V7).
There are 2(N* — N~ + 1) equations (n € [N=.N*]) for2(N* — N~ + 2)

unknowns ¢\ and (‘2"“) in Egs. (2.20). A sample matrix of the resulting system
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of equations is shown below

.......
ooooooo

Apparently, the domain [V =, N *] can be chosen narrower by 3 in this example
(the corresponding changes in AM* follow from Eq.(2.23)).

The remaining pair of equations are those resulting from Eqs. (2.6). They are
evaluated in Appendix C in the forms

C Al MY
_]1( It ™m m
Jelomajp = e 3 [0 = A+ jred]
wpsinry 4
(2.24) X P_jp_pyrc(cOs A) =
N ] 1(_, m)
B.l,.= D"esy P (—cos )y = 0.
s|e=0 = 2sin 72 ;( )" /i ( )=

Thus the closed system of equations consists of the set of Egs. (2.20) taken for
N— <n < N*, and Egs. (2.24).

Summarizing, we have solved the scattering problem in the following steps:

e choosing the limits for M* appropriate for the assumed accuracy of ex-
pansions (2.7), (2.14), and determination of N* from Egs.(2.23). The resulting
limits must satisfy Eq. (2.21),

o evaluation of all ¢(") except ¢, by F/ and ¢, on the basis of Egs. (2.20),
taken for n € [N~ N 7],

e evaluation of ¢y by means of Egs. (2.24),

e and, finally, evaluation of EM field on the y = 0 plane, and in the media.
This can be done by means of relations used in Appendix A. This concludes the
solution of the diffraction problem.

2.5. Detection of EM waves by strips

There is some interest, particularly in the theory of leaky-wave antenna [13]
in evaluation of the total current j flowing along the strips, and the difference of
strip potentials [/ defined as follows:

w/?2 /2
J' — / /(, Z (/; = / /(l ,)(,l‘.
—w/2 -A/2
(225) A=w/2 1
[ = — / Edr = — / Ede.
xz:/Z 0
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The integration and subsequent summation over n can be explicitly evaluated
with the help of identities given in Appendix B (see also Appendix C). We obtain

- 21 . m m .
5= u (‘]T(‘(l ) + Cg )) P~m~7‘/’\'(cos—\)( i
Wit T
(2.26)
U = —A Z(_])mfl(m) Pw-mﬁr/]\'(_ cOs _\)( -7z :

L

the strip current and the voltage difference between strips can be used in detection
of the incident EM field. To generalize these results to a nonplanar incident wave,
one should apply a 2-dimensional Fourier transformation with spectral variables
r; and 7, as discussed in last section of this paper.

3. Scattering of elastic waves by cracks

Below we consider briefly the problem of elastic wave scattering by in-plane
periodic array of cracks in an isotropic body. Te problem was analyzed previously
in the literature [14,15]. In this paper we shall show how the presented method
of analysis works in this case. The incident wave of arbitrary polarization and
propagation direction is characterized by either the stress tensor components
(rl.. 1], T]) =T or the particle displacement vector u’ at the y = ( plane,
where cracks are included. The incident wave propagates in the upper halfspace
from infinity, the projection of its wave-vector on y = 0 plane is (r;. 7), r; =
r+ [N, 0<r < K. Crack width is w = AA /7 and period A = 27 /1.

Scattered field in the upper halfspace is u*, T*, and u~, T~ in the lower
one (y < 0). The relations between them (in the spectral domain) is given in
Appendix A. Full elastic field at y = +0 plane is

(3.1) u=u"+u’, T=T"+T.

The boundary conditions are (see Fig. 2)

T=T =T,
T = 0, on cracks.
(3.2) |
V=2J0JJu-u]=0. between cracks,
u — u =0, somewhere between cracks, e.g. at o = 0.

The above additional one-point constraint is imposed because we must have not
only V(. z) = 0 between the cracks but u —u~ = 0 as well.

Similarly to the EM case, we deal with a square-root singular functions V(z, z)
(—Jjr(u—u") in spectral domain) and T(x. z). A relation analogous to Eq.(A.8)
is in this case (see Appendix A)

(3.3) V=gl +2(—jr)u’.
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y(
crack
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T ut bonding

F1G. 2. Waveguiding of clastic waves by periodic cracks.

We seek the solution for T(x, =) and V(z, =) in the form

o0

(3.4) Z (‘TI" ) e ITnETITE r, =714+ nlk

n=oo

satisfying the boundary conditions

ZT,le_f"'"‘r = 0. on strips, pA+w/2 <z < (p+ 14— w/2,

n

(3.5)
ZV,—X-’T""' = 0. between strips pA — w/2 < x < pA+ w/2

and, additionally, the condition resulting from the one-point constraint

\ P
(3.6) —B. =)

n _jrn
Conditions (3.5) will be satisfied if we apply

(37) Tn = Z tm I)'rl—m(cos ~—\) Vu = Z A\ ""u -1 [)n.—m (COS —\)

n m

where the sums with respect to m: are assumed to be finite. Eqs. (3.3) yield

(38) Z(Sn—mvm - g'n.tm)l)n—m = *].271-'](5“1- gu = g(rn)-

T

Now we apply the approximation that the value of a “planar Green’s matrix
function” g(r,,) is S,g. = g(r, — £oo) if n is outside the limits N= < n < N'¥,
where N~ < [ < N*. This yields the selfconsistency condition, and ultimately
the closed system of equations

Vi = g'_\:‘th
N*+1
(3 9) Z (Sn—mgm - gn)tm [)n—m(cos -X) = _jTIu,é-nl* N~ S n S 1V+-
g m=N~—
N*+1
> (=1)"Vm Py g _pu (= cos A) = 0.
'I”,:A\f‘_
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This concludes the solution of the problem of scattering of elastic waves by a
periodic system of in-plane cracks. Analogously to the EM case, problems for
layered media with cracks between the layers having different periods and orien-
tations can also be solved by the method presented. The fields resulting in a
given plane from the solution on the other plane (see Egs.(A.11), for instance),
should be included in the equations for the fields at the given plane, such like
the incident waves in Eq.(2.9), with specific value of .1 for that plane.

4. Waveguiding of elastic waves by cracks
4.1. Formulation of an eigenvalue boundary problem

Let us consider a 2-dimensional problem for an elastic isotropic body including
periodic in-plane cracks in the y = 0 plane (Fig. 2). If cracks are wide, in the limit
equal to the crack period A, we have two separated elastic halfspaces. In this case
Rayleigh wave exists. Below we shall show that a guided wave exists for quite
narrow cracks. The wave is trapped at the y = 0 plane so that the wave-motion
decays for larger |y|, the decay coefficient and the wave velocity depend on A, w
and on the elastic properties of the body. The analysis is presented for a plane
wave propagating along the y = 0 plane prependicularly to the cracks, which are
infinite in the direction = (elastic field does not depend on :). However, the
presented analysis can be applied, without major difficulties, to a general case of
a wave propagating obliquely with respect to the cracks.

Formulation of an eigenvalue problem is the following. Apply the solution in
the y = 0 plane as represented by series (3.4) and (3.7), which satisfies boundary
conditions (3.5), and find a nontrivial solution to the homogeneous equations
resulting from the equations of motion of an elastic body, and additional one-point
constraint on u — u~ between the cracks (3.6)

N*+1

> (SicinBx = B Pusn(cos A) = 0.
(4]) m=N-—

N*+1

Z (_1)’”‘!11. /,—‘r/[\ —m (_ COos J) = 0. Vin = 8x tm .

m :.\; -

The known condition of nontrivial solution of a system of homogeneous linear
equation allows us to evaluate the guided wave wave-number 7.

4.2. Sample solutions

4.2.1. Dense system of cracks. We consider a dense system of cracks, dense as com-
pared to the wavelength of the solution sought, /" < 1, and wave-motion in
the sagittal plane only, «. = 0. In that case we can put N~ = N* = 0, and
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Egs.(4.1) are reduced to very simple forms. They are separated into two cases,
(Ty = Ty, = 0.V, =0), and (T3 = T}, = 0.V, = 0). Their solutions are

(42) m _ H‘(i') P_,./]\'(— cos J) — 1",./1\'(— Ccos J) ‘
: 2!(1\;2 — Ai") PF.P/[\’(— cos ._\) + I),.//\'(* cos _\)

where ¢ = [, . Tt is evident that the value of the right-hand side of Eq.(4.2) is
small and positive. The Rayleigh determinant w(r) (see Eq.(A.16)) is positive
if k, < r < kg, where kp is the Rayleigh wave-number. Thus the left-hand side
of Eq.(4.2) should be real-valued and small. This is possible only for / = (.
That is the case where 7, = 0 and V}, = 0. In conclusion, there is a guided
wave solution, with wave-number close to the shear wave wave-number, » = A;.
Moreover, the wave-motion includes matched displacements perpendicular to the
cracks on both sides of y = 0, u} = u;, and there are no normal stress in the
plane of cracks, 7, = 0.

If the cracks are wider, in the limit cos .\ — 1, the fraction including Legendre
functions on the right-hand side of (4.2) becomes positive infinite (see Appendix
B). The solution exists at «w(r) = 0. This is a Rayleigh wave solution » = ky as
it should be for halfspaces separated by wide cracks. In case of narrow cracks,
cos A — —1, the fraction value becomes zero (small positive), and the solution
is 7 — ki, as it should be for a homogeneous body without cracks.

4.2.2. Waveguiding and Bragg reflection by cracks. Below we analyze the case ' ~ 2k
and 7, = 0.V, = u} — u; =0, in agreement with the previous result (1. = 0).
We must now apply wider limits for » and m in Eqgs.(4.1), because g, # +g. at

small n. However, for simplicity of the analysis here, in a rough approximation

we apply N- = —1, N* = 0. These are the narrowest limits allowing us to
analyze the Bragg reflection of waves.

Equations (4.1) yield for » = —1.0 (R = r — IV, other notations are given
below)

Rs Rs_ Rs_
[—l( f“\_l +]> +{()( ts ! -—-1)‘*”[( l —I)COS_\=U.
w_y w_ Wl

TS rsg s
I (—“+ 1) cos_\+f(](—“+1> + it (——“— 1) = (.
ll‘o H'g ”VO

(43) =13 [)1_,./1\'(—- cos _\) + 1y I),,./[\’(— COos _\) — 1 /’,./,\'(~(‘H.\_\) = 0.

1
so=\rt=kt s =\ -K2-kl, w,= S+ K)/ (12 = k).

The solution (for A = 0) concerning wavenumber r is shown in Fig. 3, where
(r — k)/k, is plotted versus the relative frequency 24,/ iV,

There is a complex solution for r in a certain frequency band where 24, =~ A
It is a stopband, where the Bragg reflection takes place, which is a synchronous
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008t

006

cos A=-025

rel. wavenumber r/k, -1

00.88 092 096 100
relative frequency 2k, /K
F1G. 3. Bragg reflection of guided waves.

reflection of a wave from the cracks. It can be important for applications, that
the stopband is quite wide and a maximum imaginary value of r is quite large.
This can help to make a “mirror” for guided waves like that applied in the SAW
devices [7].

5. 3-dimensional inhomogeneous problem

In this section we consider a periodic system of strips which have infinitely
dense and infinitely thin cuts across each strip, the cuts being parallel to r-axis
(i.e. perpendicular to the strip axis =, Fig.1). In Sec.2, where the problem of
scattering was analyzed, we have assumed that the strips have “short-circuited”
cuts, so that electric current could flow along the strips without any resistance
and electric field /7. was zero. In this section we assume that in each cut an

electric field . = ¢, (for p-th strip) is applied coming from an external source,
and current /. = j, (in j-th strip) (which flows from one part of strip to the
other) flows through that external source. Let us note, however, that [, = 0 is

still valid, and that the external source does not influence the distribution of the
current across the strip (in x-direction). The source “sees” only the total current
flowing along the strip.

There is another generalization of the boundary conditions for the strips.
Suppose that there exist infinitely thin and perfect electric connections between
the neighbouring strips. In this case, the current ./, is different from zero in
the spacing between the strips but constant across the spacing, that is .../, = 0.
Let us stress that the condition /. = 0 between strips is still assumed. Like in
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the previous case, we assume that there are external sources delivering currents
into the system, and that there is a certain difference of potentials {,,/; of the
neighbouring (p and p + 1) strips resulting from these currents (/, 4,2, see the
rigorous definitions in Appendix C).

Summarizing, in this section we analyze strands of infinitely dense perfectly
conducting but isolated infinitesimally narrow “sub-strips,” which are arranged in
place of the previously considered solid strips. There can be “external” electric
connections between the neighbouring sub-strips in the same strand, as well as
between the corresponding sub-strips of neighbouring strands. The above physical
considerations are closed in the boundary conditions on strips formulated in
advance in Eqgs.(2.6) in Sec. 2.

It is worth noticing that the boundary conditions (2.5) and the resulting
Eqs. (2.20) are still assumed in the current analysis. These equations allow us
to evaluate all the expansion coefficients included in Egs. (2.14), that is f"") and
¢ by £(® and ¢© (here, we deal with a homogeneous system of Egs.(2.12),
thus the right-hand side of Eqs.(2.20) is zero). Moreover, the selfconsistency

condition (2.19) enables us to evaluate £(™ by ¢(®. In conclusion, we have only

two unknown scalars, (‘(10) and r(zﬂ)

(m n 0 i 0 —(77 m 0 m 0 r
) _ {/-l(r )/[( ) /2 /[( )] ) c( ) — (_(! )/(,l; )_ (,(7 ) (_g) .

. We introduce the notations

and we admit that ¢(® and (O are functions of r and 7.

Below we deal with discrete functions like the strip current j,, the voltage
and current between the strips (7,1, and .J, 42, and an electric field along the
strip ¢,. Following Appendix D, we introduce inverse Fourier transforms to these
discrete functions, defined by

I
(5.1 () = ll /4\'(1'.T)(_J"“'lrh
| S
0

where X' (r.7)are U/, J, e. j, the functions of r. 7 presented in Appendix C.
Explicitly,

A1 T emirr1/na
n T)= =~ f oy
Tn(7) =00 wi / sinwr/h
0

(5.2) X [C(lo)(r. (k2 - TZ)E(W) + jrr{o)(i T)'(m)] >_m—rgr (€08 A) dr,

[/f,+l/2(7—) = -1 /( ])’“ /'10)(7 )’.]m

—gr(qg+1/2)4

XI-—m—r/l\'(*COS —")( dr.
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N

(5-2) A / e O _y7m)
q - - __1 T P—u—r' (= _\ 1
[cont.] “(r) = JZI\. Slnn‘r/[\( ) ()] i—r/i(—cos A)dr
241}
] = y (0) N —,(’”) (O) N __(m)
JP(T)-— ;;Fj[]l(l (T.T)(l +(_2 (7_7’)(2 ]
0

X P_p_p i (COS A)c —irAdy,

where we marked the dependence on r and 7 only in ¢(® and £(®, however ¢(™)

and 1" are also functions of 7, 7. To simplify the notations we dropped the
summation symbols over .
As it was shown above, .J,,. /2 and ¢, are known. This allows us to determine

the unknown functions cfo’ = f}m, the two unknowns for i = 1, 2. Indeeed, in
order to obtain

N
1
(5.3) = /(( Ye P Ndr = e,8,, .
0
we must apply
2 €, (J""‘smn:/lx

(5.4) O, 7y = -j2 ] iy
ZN!( ])“ —Ih f/l\ ( COs '_\)

what is easy to prove by inspection. Similarly, from the given .J, ;2 and

N
1 et
(5.5) o2 = T/_j(,-_T)(.—Jr(p+l/2),-1(h.
\
0
we obtain
(5.6) C(O)(T ) = w/' /,,+1/2("T("'+I/2)"‘ sinwr/ K
’ 1 : m »
l ZHL _(l )13—11,—7-/]\'(COS __\) I‘g - T2
2T epcd™PAsinTr /W

—c,
F _1(/\'3 — "'2) Z . _(’“)17—”;—1'/]\’((:05 _\)
m)
Zui [( —m—r/l\' (COS -—\)
—(m) 5 . ’
Zm(_])m .[2 l'—mf;-/]\'(_ COs J)

X

which can now be applied to evaluate all other EM fields.
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Particularly, we are interested in evaluation of the difference of potentials of
strips placed around = = (¢ + 1/2)4, that is U,/ (this explains the extraordi-
nary index applied to that discrete function), and the total current flowing along
the strip placed at » = pA, that is j,, both dependent on ./, 4,/ and ¢,. We
obtain

m(_l)Tnf(lr:l)[?_,,hr/,\-(— cos )
> F(lm 'p m—r /I (€08 A)

I
i Wit 2
[-/q+1/2(7-) = - 2 _ 12 /
[v] O

s r oY,
X SIn nrr [’Jw+l/2f Jrlg=—p)A
\

N _17(7”.) ) o
(5.7) » 27 (wp) ™ 3 Py i (COS _\)(,J,-.f‘(qf,wl/z“ o
(“1)711 .T(zm)[)» m~r/[\'(— cos A)
N
] 2T —arip—qg—1/2
Ip(r) = ﬁ/{lvﬂﬂ' ir(p—g—1/2)4
o *O
4oe '7'(2”4) P m-r/N (COS J)

. =ile—DA iy 9 /R K
—J+ . gt sinwr/ N | dr/ IV,
ke =72 (—1ym o —m—r /i (— €OS A)

which fully describe the considered system, if the applied fields depend on = as
exp(—j7z).

Generally, the above relations give us Fourier transforms in the = axis with 7
being a spectral variable of the transformation. If the exciting forces /., | » and ¢,
are z-dependent functions, they have the corresponding 7-dependent transforms,
which should be introduced in Egs. (5.7). Inverse transforms are

1 ~x

, - . . N
(58)  Upnipa(z) = 3 /(‘Ml/z('f)'f e, gi(2) = 7 /J',(T)‘ T

-

This concludes the solution of an inhomogeneous 3-dimensional problem.

It should be noted that the solution is quite formal; further analysis must in-
clude computations, at least numerical evaluation of ¢, and evaluation of the
above integrals. What concerns Egs. (2.20), let us note that for larger value of 7,
the system is larger, too. This results from the approximation condition (2.21).
Thus it will be more difficult to obtain numerical results in cases where ¢, (=)
and J,;/2(>) have wide spectra in 7 domain (which is the case of a sharp cut
shown in Fig. 1). In such cases, we must apply further approximations by reduc-
ing the computed spectrum of functions, and then applying the corresponding
interpretation of the numerical results.

http://rcin.org.pl



EXCITATION, WAVEGUIDING AND SCATTERING OF KM 137

6. Conclusions

A new 3-dimensional problem for EM wave excitation is stated and solved. We
have shown usefulness of the applied method, that was for the first time applied in
[4] to an analysis of a certain scalar eigenvalue problem. In this paper the method
is generalized to vectorial problems, both electromagnetic and elastic. We have
shown that the method is useful in the analysis of layered and anisotropic media.
A 3-dimensional excitation problem can also be formulated for elastic body with
liquid-filled cracks. The liquid is a medium delivering pressure into the cracks,
which is constant in the crack cross-section.

One may also expect that the proposed method of analysis can be applied
to boundary problems for certain differential operators, the solutions of which
exhibit singularities different from the above discussed square-root type. That
is justified by Eq.(B.1), which admits different singularities for different .. For
example, it is expected that a lens-shaped cracks [16] can be analyzed by a gen-
eralized method. The field at the tip of such a crack is singular, depending on
the crack opening angle.

Appendix A
A.l. Electromagnelic fields

Let us consider an EM harmonic wave in the upper isotropic halfspace y > 0

(A1) e~ Ika o=isy gyt

with s chosen following Eq. (2.8) (with substitution of »,, to &, and 7 = 0) which
is required for an EM field satisfying the radiation conditions at y — ~c. Tt
follows directly from Maxwell’s equations that —jsf. = —jwull, and —js/l. =

jwe I, Thus, at the surface y = 0, we obtain the following solution for tangential
magnetic field H' resulting from the applied tangential electric field ET to that
surface:

HE = [*. n*)". E* = [E£% F£E),
A2 0 s/(w
( ) Hi — :EG’Ei. G; — [ / | /(0 /l):| _

The signs — concern the solution of the analogous problem for the lower halfspace
y < 0 (s should be replaced by —s in (A.1) to meet the radiation condition at
y — —~). G’ is the Fourier transform of a planar Green’s matrix function
describing the response of the body, in tangential magnetic field, to the applied
tangential electric field, both at the y = 0 plane.

The electric and magnetic fields of an incident EM wave propagating in the
upper halfspace from infinity satisfy Eq.(A.2) taken with indices —, because this
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wave satisfies the radiation condition at y — —~
(A3) H = -GE.

Let us consider a general case of a wave propagating in an arbitrary direction
(A.4) eI eIV TITE,

To evaluate the corresponding “planar Greeen’s matrix function” let us note that
in a new coordinate system z’, y, =’ rotated around y-axis, as defined by

A35) [ = a2 ““[f}/ﬂ- M bl

the wave (A.4) is transformed to the form (A.1). Thus in the “primed” system
of coordinates the “primed” planar Green’s function G is given by (A.2). In the
original system (x, y, =) we obtain

(A.6) G=aTGa=2| " ok
. sk2 kf —r? rr .

where G should be applied in relations (A.2) and (A.3) in that case.

In Sec. 2, we introduced planar current on the y = 0 plane. Below, we derive a
relation between this current and the electric field. Let us first note that relations
(A.2) concern the EM field satisfying the radiation condition at infinity. Tt results
from Eqgs. (2.2) that

(A7) H'=H-H/ E'=E-E/. E =E.

where E and H are full EM fields on the y = 0 plane. We thus obtain from (A.2)

(A.8) [_']’] = [H"” ”-"} =H'+H' -H™ = G(E - E') - GE/,

5 H.— HT
which can be rewritten in the form (/,, = —jr./, and £, = —jrl.)
[Jew. )" = j”g[lf,'_,.. E..]7 - ot El, —jrl ’]
(A.9) _—ﬂ(kz - 7% 11/s
°7 H Tr/s ko =12
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Asymptotic property of matrix g is the following:

_ o | K= | _ . . _ [ 1, forr>0,
g(y—im)_'c’"[ jT ]]—Srg.x. 'S"—{—l. for r < 0,

(A.10)
g‘lg _ I:_]T/& T/(rs) ] — g
- 0 s/=in] " *F

Replacing r by r,, in the above relations and noticing that the term with E/ appears
only with r; = r + n /', we obtain Eq.(2.9). Note that the important asymptotic
property (A.10) takes place because we have applied the properly chosen variables
E,. 0. E., d.J, and J. which are all square-root singular functions having Fourier
transforms with the same asymptotics.

Below, other planar Green'’s functions are presented which are derived by
solving the corresponding inhomogeneous boundary problems. Let us first con-
sider dielectric layer of thickness /i, 0 < y < h. There are electric fields Et
applied to its surface y = 0, and magnetic field H™ applied to its upper surface
y = h (a complementary problem is that H* and E~ are given on y = 0, and
y = h, respectively). We obtain

H' = GE" + GiH", H = -GE + G H".
0 s 1-C2 s 2C
(/1) G = wrl+ C? G, = witl+ (2 5
we 1 4(‘2 ' we -
et 0 s
s 1402 ¢ s 1+02

The system of equations is convenient for the description of cascaded layers.
Another case concerns the chiral media governed by Maxwell’s and constitu-
tive equations
V x E=—jwB. =cE+ j\H.

(A.12) | |
VxH=—jwD, B=-j\E+ ;H.

which yield, after some transformations

. (V24 k2 + W\ DE + j2%\H = 0.
(A.13)
—jluzy\E + (Vz + 1;3 -+ uz\z)H = 0.
Assuming the solution in the form exp(—jra — jsy) resulting in V2 = —2 —

s = —L?%, we obtain two possible values for k = Vr2 + s2,

(A14) ki =k, 2wy, ks = Ws/EL, sp = \fkE =12, =12
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Solving the corresponding boundary problem for a halfspace y > 0, we obtain
./\'1/-‘61 = f.'z/,ﬁz 2
(A.15) [ ”j} _ \/j Thifsi + kafsz kifsi + kol [ /‘Jf}
inr 1]y (ki/s1)(k2/s2) J./-‘z/-*z —ki/st | L ES
kifsi+ kafsy " hi/sy + ka/sa
(apply substitution s — —s to obtain the relation valid for the lower halfspace).

A.2. Mechanical fields

Below, analogous relations are presented for the elastic media characterized
by Lamé elastic constants A, ;2 and mass density p. Elastic field on the surface
of the body (y = 0) includes the particle displacement vector u = (u,.. u,. u.),
and the surface traction (7, = 7\. T,, = T», T,,. = 13). In [17] we can find the
following solution of the boundary problem where traction T* exp(jwt — jhu) is
applied to the surface of an elastic halfspace y > 0:

wt =G'TH,
jhis, jr(k? — 2r2 — 2s5;s,) 0
JLw Jw
G = ;jr(/.',z - 2r2 — 255,) JkEs 0
(A]6) IFH' /l t
0 0 —J(4rst)
w = (/\',2 - 21'2)2 + 41‘23,&(. /\'12 = /)@2/(2/1 + A). i,z = /u;z/;/.
s; = k% — 72, §= 18

(we assume the rule (2.8) to make sure that the elastic field satisfies the radiation
condition at o). Substitution s — —s results in relations for the y < ( halfspace,
and also in that one for an incident wave arriving from infinity. It is important
that
(A17) w(r — oc) — (b7 — kP)(k2 - 217).

In a general case of a traction wave propagating in arbitrary direction on the
y = 0 plane, we proceed in a similar manner as in the case of Eq.(A.6). This
results in
(A.18) g=—j2rG = —j2ra’ Ga.
where coefficient 2 is introduced for convenience, and multiplication by —jr is
introduced to obtain the relation between ¢, u(x. z) and T(x. z) in the spectral
domain. Tt is easy to show that

A+ 24

/\+//

1 A 00
(A19) g(r — +x) =g.. g.=——10A0]. A=
1o 02
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Correponding relations for an elastic slab of thickness / are [10]

a /D —ay/D 0
ary/D  a3/D 0

0 0 (g
ay = jsih? [11"(1 LAYy 4 (N2 (TP Lz)] .

1
w=GT 6=

ay = Jr[W(X = 25s)(1 = L2T%) = (X2 = Z)(X + 2s05)(T% + L?)
(A20) —4LTX(Z - 2.-\‘.~f-s[)]-
az = jsk? [W(l — 2T+ (X2 = 2)(T7 - Lz)} :

] 1+ 772 - _ /] 2 o
(14— E]—:—’]E & = A.i“f N (—].[.

D=(-1)1-THWw? +4Xx22(L -T2, W =X2+2,
X = A,{Z - 272, 7= 4]'25,5[_ T = ¢I5th, L =elsih
Its limit at w — 0 (equivalently » — o), describing the elastostatic case of a

plate, is considered in [9].

A3. Coupled electro-mechanical field

Analogous planar Green’s functions were introduced for piezoelectrics [19, 20].
In [20] a certain special but important case of piezoelectric halfspace is consid-
ered, where only transverse particle displacement u. is piezoelectrically coupled
with the electric potential . The introduced approximation to a planar Green’s
function is valid in vicinity of a cut-off wave-number of bulk waves. Below we
present a slightly modified version of this approximation by using the variable of
electric flux density 1, instead of AD, = D, + ¢9V/r26 applied in [20]. Cor-
responding transformations yield equations of the same form as those given in
[20], but with modified values of some approximation parameters marked below
by primes. We obtain for the upper halfspace (index +)

AT ,/\2,“\/ al\fr2 — k2 — o2
¢t = 1 1; 1 : ‘1‘,;.
0’ Vi fr2 g2 /72 Vi \ﬂ-—/ﬂ iz
a —Az—b" r2 '\f1r? Vf“
ul = I)+ ,/:.
\/ 12 Z 12— g2 Vi /e —lsz’\/— '

(A.21)
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which can also be rewitten in the second form

_ 2 _ ’ / 2 _
l),+ =E()_I\/7 ks 1 - :‘/” ( / b\/_ T+

r _AZFQ\/__ _~U“ \/’—‘serl\/_ y:‘

(A.22)
I(l.’“ 1'2—/“3—11”\/1‘_2‘ 1 \/‘1~—A —l]\ﬁ

+
. = o< D
Jr2 = k2 —aVi? \/7\/ 2—(}\/_

Similar equations hold for the lower halfspace (y < 0, field components with
index —). To obtain them from the equations derived above, substitutions /- —
—/~. @' — a” and b’ — > must be made. Justified by the reasoning presented
in [20], the relations and identities are found:

£ ) 3 £
E=g-1 A== (»’3 - j*) ; a' = —a, b= =b.
& ([ £ //
("=—(('-~). ","=—(‘,—>,
o/ [ ! -
(A23) : [ L
( ay’ — 2
[d]? = (, = ib’|2 = _I':_,/——/ )
<0< £ps

ac + 5" = 5'd -1

~ !

208

- w |/
a4+ al =

which allow us to use the numerically evaluated parameters presented there.

There is still another identity concerning the approximation parameters in-
volved in the above equations. Let us consider the continuous piezoelectric
medium, divided for mathematical reasons only, into two halfspaces. Both half-
spaces are in perfect contact, thus

(A.24) ul =z, T=T.=1T,, p=0"=0o".
Solving the corresponding boundary problem with the help of Egs. (A.22) we
obtain
VrE— k2
Q = D} — D] =20cpc'Vr? ' __p,
» ' r2—k2 —a V2
(A.25)

(d' = o' (Im{a})) /12 = k2 — [+ 3'd + o’ (0’ — n"‘b”‘)]\m

dy/r2 — k2 - 7/\/7'_2
provided that

(A.26) coe’(Im{b'})? = —4'y,

P=
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what is necessary to obtain a unique solution r = Lk, of dispersive equation
resulting from Egs. (A.25) for D — D, = 0 which, together with Egs. (A.24),
is a condition of continuity of the body at y = 0. Indeed, the correct solution
should be » = k, which is a projection of the shear-wave wave number &, on
the y = 0 plane [20]. Tt is interesting, that cgc’(Im{a’})* = —d is also valid for
numerical data presented in [20].

An interesting consequence results from Eqgs. (A.21) that a guided wave exists
if a conducting plane is embedded in the considered piezoelectric body (at iy = 0).
Particularly, for a perfectly conducting plane, @ = 0 in Egs. (A.25), and we obtain
the wave-number of a guided mode

(A.27) r=ky/V1-a?,

The wave decays in the body on both sides of the plane y = 0. Theory of
propagation, generation and detection of the discussed guided mode by a system
of periodic strips is similar to that presented in [20].

Appendix B
B.1. Legendre functions

Legendre functions used in this paper are well presented in [21], where we
find

P,=Pr% 0<6<w Re{pn}<1/2. Pu(=2)= 5.(=1)"P.(x).

C

(1] , ‘ 1
(B.1) / (i - /1) Z P/ (cos #) cos (n + 5) v

n=0
(r/2)!/2sin" ¢
= ¢ (cosv —cosf)n+1/2°

0<o<b,
0, fd<v<m,

which can be transformed into two complementary forms [4] (a,, and /3, are
arbitrary constants)

S Pac(c08 3)e " = { ﬁ\/%’ S UEE
i 0. A< <,
(B.2) i BinSmin Prymins (€08, A)e~7
o 0, 18] < A,
) —j,S'(,\/EMC.N’IZ_ A<l <7,

vecos A — cosf
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where 5§, = 1 for » > 0. and = -1 otherwise. There are also relations resulting
from Dougall’s expansion [21,4].
= (=1)" Pu_m(cos ) _ T
m N( 1)—H -r 1 > ‘—\ 4
n_z_:x“ r+nl ~ Ksinw ://\ =i (C08 )
(B.3) - Snm Pp—m (c08 A) _
j"l ™ )jm ’)—mur VAT 5.4,
n_z_% r+nhk I Sm‘rr/[\( ) iel=cos4)

P,(cos A)P_,(—cos A) + P,(—cos A)P,(cos N) = 2(sin7w)/(7v).
Asymptotic values for » — 0 and cos A — 1 are [21]
(B4)  P(0)x1-(v/2)In2.  P,(—cosA)=~1+vln ]—_%‘E :

B.2. A generalization

Consider an analytical function of complex variable # having, for real #, real
or imaginary values in separate domains

2

AR J(6;4) = \/ cosfl —cos A\

Its expansion can be easily obtained from Eqs. (B.2) (apply 1 = 0, ag = /4y = 1).
A product

(B.6) J2= J(0 = a; A S0 - az; 32)

(Fig.4) can be expanded into the following series [22] (¢ real)

Re{f2} = (1 = Sp—kSu) Piem(cos A3)

k.l’ll.
(B7) X /,,I(COS_\l)’ "’) Jm+1/2) (02— ‘I)
JAm{f2} = S 7(S0 = S Pre(cos )
}\H

x P, (COSJ])(Jk((i—ng)(_/(m+l/2)(u2—n|).

Since
1-8,-15,=2 ifm—~k<0and m > 0. thatis 0 < m < k.
orm — k> 0and m < 0. thatis & < m < 0,
(B.S) =0 otherwise,

Sm - 5m (< =2= 25;4 if 0 <m < 5N
=-2=25, if b <m <0,

=0 otherwise.
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real value of f(G)

1 a, +4,
f(G} Re Im
a, -4, @,+4
5_(9)_ Im Re - .

F'1G. 4. Sample domains of real and imaginary values of functions f, f3, and fa.

§

we obtain

Re{f>} = Z X pedk(0—a2) JIm{ >} Z S X peik0=02)
(B.9) k=—oc =
X, = \ik = Z 21)1\-*;;1((:05—-\2)]m(COb_\1)("(m+1/2)(‘2 o)

0<m<hUk<m<0

and Yy = 0. Analogously, for
(B]O) f3 = _f.;.\‘/‘(f) — ()3;._\3).

Re{f3} = Z Y} edk+1/2(0-a3)

k=—rc
JIm{f3} = Z G Vel H /2 (0=a3)
JN
(B.11) ’ '
)ﬂ = O. 3‘_,__1 = )'}:_
Y, = > 2N, Pr_,(cos Az)el(@3=o2),

0<n<hUk<n<0

Similarly, f4 = faf2 (the series includes X7), fs = f3/» (that function includes
Y’), etc., where X’ and Y} have the same properties as X and ) described
above. In all cases one can easily find domains where these functions have real
or imaginary values, by considering the basic function (B.5),

Re{fy} = Z X ek(0-0),
[
B12) JIm{f) = 3 SixpH-0 xg=o.
fe=—ox
Xp= X0= Y 2N Xt Deeen),

USHL <A'UI\‘S'JN <0
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(B.12) x U
Re = Yy i (k+1/2)(0-0s)
[cont.] {/s) k;‘: k€
im{fs} = Y Sp¥e/tkr1/D0-es),
k=—co
)0’ = 0, Ylk—l = )":".
)}\’ = Z 2'\>n}’.‘(—n(}JH(HS_“B).
0<n<hkuk<n<0

A nice feature of coefficients X/ and Y is that they are expressed by finite
sums; their disadvantage is that the relation analogous to Egs. (B.3) is not known.
The derived functions can be used in expansions analogous to (2.14) and (3.7), but
additional equations like (2.6) and (3.6) must be computed (either by summation
of the series like (B.3), or by evaluation of the corresponding higher-order elliptic
integrals of real and imaginary part of functions f,). Anyway, the introduced
expansions for fa, f3 ... allows us to obtain Eqs.(2.20) in an explicit form.

Appendix C

It follows from expansions (2.7), (2.14) that

(L’% — TZ){,(IHI) - J‘T(‘(zm)

']Ib 'l"'“ = % T
= ; —Jj(r+nh’)
(C]) b4 [)H—ru (COS __\)( —J(,-+n’\>).l i —JTz
5 () ‘5’,,_71; [)n—m (COS __\) j(rtnk)e, —jre
E.(x,z) = : : g .
Az, 2) %./2 gy ‘ .

Applying identities (B.3), we easily obtain

(C2) J.i=do(x=@+1/20A.2)=J(r 1) PV —irs

P+l

1/(W'“) 2 2y (m) . (m)| p —gr(p+1/2)A =1z
&nr:/h E:[U -7 ﬁl + j7ey ]I_M_MA(COSJ)( ¢

™

=¢, = E.(z = qA,2) = e(r, r)e 77T

Z(_l)m ,/‘2(”1)])—7,‘7:-/1\'(“ cos A)e ™ 94 =iTs

m

A/2

~siner/ i

where fractional indices are applied for convenience.
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In a similar way we evaluate

gA=uf2 (7+1).1
I,’H% = _ / Eo(a,z)de = — / Eode = U(r. T)r_J"("‘H/Z)'lr e
qA+w/2 qA
(C.3) = =AY (=1 P_ i (= cO8 A)e~IT@0¥ 1 DA gmirz
pA+w/2 ’ pA+A/2
Jp = f J.(r.z)dz = ] J.dz = j(r,7)e~IPAeITs
pA—w/2 pA—A/2

2 y m m i
= TWHZ(JTC(I )+C(2 ))P—m-r/]\‘(cos—\)f .;rp.].( JT_’

T

where we have exploited the property of the considered fields that they vanish
on strips (/£,.), or between strips (.J.), as stated by boundary conditions (2.5).

Appendix D

In this appendix we consider Fourier transforms of discrete functions that
appear in the analysis of periodic systems [23]. They are, for example, the total
current flowing along the strip and the difference of potentials of neighbouring
strips.  Such functions depend rather on the strip number, which is a discrete
variable, than on the z-coordinate.

In the scattering and waveguiding problems, for convenience we deal with
functions depending on z. =, for example

o

(Dl) (').,-IL‘:(‘Z,'. :) = Z fz(m) Z t(}‘,i...m Py (CUS _\){ —j(r+nl)r, —iT=

e n=—0o0

It is clear that the “coefficient” f;’”) can be a function of r. Note, however,
that the applied r is confined to one Brillouin zone, » € (0. 7). We can intro-
duce the standard Fourier transform for E.(z, =) as follows (J, corresponds to
multiplication by —j+’ in the spectral domain)

P, —wi{cos A)
—gr' K

(D2) E()= {Z fz(m)[l\'(r" —n)] Pt

T

for n<r'<n+ 1}.

where 7 is a spectral variable spanned over (—oc. ~x).
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Thus the inverse Fourier transform to /.(r') is

(D.3) E.(z) = / E.(#")e=2m = A gt

N
x : "
S DES Sl 7 IO A LS
ol Sl , —Jj(r+ nk’)
where the sum over n can be explicitly evaluated by means of the identities
presented in Appendix B. Let us note that similar considerations can be formally
applied to other field components, however the resulting sums over # not always
can be evaluated explicitly.

Summarizing, the inverse Fourier transform of discrete functions analyzed in
this paper includes integration over the spectrum in one Brillouin zone, (0. /")
in our case.
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On experimental studies of yield surfaces of metals;

a more general approach

W. SZCZEPINSKI and J. MIASTKOWSKI (WARSZAWA)

IN ALL EXISTING experimental studies of the effect of plastic deformation on yicld condition the
results of tests are represented by assuming a certain standard coordinate system. When thin-walled
tubular specimens are used, the coordinate axes x, y are assumed to coincide with the axial and
circumferential directions of the tube. When specimens are cut out from a prestressed metal sheet,
the coordinate axes arc so chosen that they are parallel to the edges of the sheet. It is shown in
the present study that the interpretation of experimental results may be more instructive if, for the
same test, variously oriented coordinate systems r, y are used. Numerous experimental results are
recalculated for variously oriented coordinate systems and then represented in the respective stress
space corresponding to the assumed orientation of the reference axes. Such various representations
of the deformation-induced changes of the yield surface will constitute the experimental basis for
a more sound analysis of the theory of deformation-induced anisotropy of metals. [If the plastic
properties of the tested material in its initial state arc isotropic, we can always arbitrarily choosc a
reference system in which the deformation-induced anisotropy will later be described.

1. Introduction

OVER SIXTY YEARS elapsed since Lone [1] published his classical paper reporting
experimental investigations of yield surfaces of some metals in virgin state. For
almost thirty years since then no paper reporting experimental tests of this kind
has been published, except that by TayLor and QUINNEY [2], who used thin-walled
tubular specimens made of various metals. The concept of this work was dilferent
than that in the Lode’s investigations, because each specimen was prestrained by
axial stresses beyond the initial yield locus and then, after partial unloading,
was additionally loaded by increasing twisting moment while the axial stress was
kept constant. The conventional yield loci have been found by extrapolating the
smooth portion of the stress-strain diagram back to intersect the extrapolated
straight initial portion of the diagram. This was a quite different approach than
that used in most recent papers in which the proportional limit during subsequent
loading was taken as a conventional yield stress.

Experimental investigations of surfaces of prestrained metals began to attract
the attention of numerous scientists in the late fifties, when the strain-hardening
phenomenon under complex loadings became one of the most important prob-
lems in the development of the theory of plasticity. Numerous experimental
works in this field have been described in two survey papers by IKEGAmI [3,4].
Thus they will not be mentioned here.

The aim of this paper is to present a more general look at an interpretation
of the results of experimental studies of yield surfaces of plastically deformed
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metals. Our considerations will be based on the fact that most metals in virgin
state display isotropic plastic properties. Thus the analysis presented below is
valid for initially isotropic materials only.

2. The theory of experiments on plastic yielding under plane stress conditions

At first we shall present in brief the foundations of experiments concerning the
behaviour of yield surfaces of metals undergoing complex plastic deformations
(cf. [5]). Such experiments are usually performed under plane stress conditions.
Mostly thin-walled tubular specimens are used. They are loaded simultancously
by various combinations of axial force, a twisting moment and internal pressure.
At a definite point of an arbitrarily chosen Cartesian coordinate system z, y with
the x, y-plane coinciding with the local plane tangent to the specimen’s surface,
there exist three stress components o,, o,, 7., only, the stress component o
perpendicular to this surface being equal to zero or being so small that it may
be neglected in the analysis. It is important to emphasize that axes = and y
can be chosen arbitrarily. They not necessarily must coincide with the axial and
circumferential directions on the surface of a tubular specimen.

The Huber -Mises yield condition for isotropic materials under plane stress
conditions assumes the form
(2] ol — 0.0, + n% + 37'12.“ = 32,
where & is the yield stress under pure shear conditions. In the stress space of
non-vanishing components o, o, 7., yield condition (2.1) is represented by the
points of the surface of an ellipsoid shown in Fig. 1. One of its principal axes
coincides with the 7,,-axis and other two lie in the 0,0, -plane. They bisect the
right angles made by reference axes o, and o,. By heavy lines are shown in the
figure certain particular ellipses on the surface of the ellipsoid. They correspond
to the loading modes most commonly used in testing yield surfaces with the use
of tubular specimens. For instance, ellipse AB for which ¢, = 0 corresponds to
simultaneous torsion and axial tension of the specimen, if = is chosen as the axial
direction. Portion BC'D of the ellipse lying in the ¢,0,-plane corresponds to the
simultaneous loading of the tubular specimen by the axial force and by internal
pressure.

The paths of proportional loadings are represented in the stress space by
straight lines originating from the central point 0. For instance, if the x and
y-directions coincide with the directions of principal stresses, the path of propor-
tional loading with constant ratio of principal stresses will be represented by a
straight line lying in the plane o, o,, such as line 07 in Fig.2. Let us consider
an arbitrary stress state represented by the point P on the line 0. Stress compo-
nents written in the system of coordinate axes =, y arbitrarily inclined with respect
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FiG. 2.

to the directions of principal stresses o1, o, satisfy the known relations

(o, — (11,)2 + 47*3,/ = (o) — rrg)2 ;

(2.2) ’
o,+o, = o +o;.

These equations represent a certain ellipse lying in the plane perpendicular to
the bisector of the right angle between the axes o, and o, (Fig. 2). All the points
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on this ellipse represent the same stress state written in various reference frames.
Similarly each straight line connecting the origin 0 with an arbitrary point R
on the ellipse corresponds to the proportional loading path 0/, referred to the
different coordinate system. Representations of the same proportional loading
path (say 0P) in various rotated coordinate systems generate the surface of an
elliptical cone. Its equation is

(2.3) K (0’? + Uﬁ) - (] -+ 52) o0, +(1+ H)ZTEy = 0.

Here « = o,/0; is a parameter characterizing the proportional loading path.
Intersections of cones (2.3) with the yield surface (2.1) shown in Fig.1 are
also ellipses lying in the planes

o, + o, = const

perpendicular to the axis 00 of the ellipsoid from Fig. 1. Thus each such an
ellipse on the ellipsoid represents the same stress state described in a rotated
coordinate system x,y. This follows from the fact that the yield condition (2.1)
is invariant under the rotation of the reference system.

The latter conclusion is of primary importance for programming and interpret-
ing experimental and also numerical studies of the behaviour of yield surfaces of
initially isotropic materials. Let us assume, for instance, that the yield stresses of
an isotropic metal have been determined by loading a set of tubular specimens,
each by a different combination of axial force and internal pressure. Such a load-
ing procedure is usually identified with the ellipse D'’ lying on the ellipsoid
shown in Fig. 1. In such a case the reference system of coordinates is so chosen
that the z-axis is parallel to the longitudinal axis of the tubular specimen and
y-axis has the circumferential direction. The yield stresses found in this way for
a M-63 brass in [6] and [7] are presented in Fig. 3. The experimental points from
Fig. 3 may be also presented in the plane determined by 7,,-axis and the symme-
try axis 0D of the ellipsoid from Fig. 1, if the axes » and y of reference system
will make the angle of 45° with the axial and circumferential directions on the
specimen (Fig. 4). For such a rotated coordinate system the experiment presented
in Fig.3 will correspond to the theoretical ellipse DAL on the Huber -Mises
ellipsoid (Fig. 5).

In Fig. 6 are presented experimental points from Fig. 3 recalculated for a new
reference system with the axes » and y making the angle of 45° with the axial
direction on the surface of each specimen. Theoretical ellipse DL AL’ from
Fig. 5 is also shown for comparison. Note that, in order to obtain the experimental
points such as those shown in Fig. 6 with the use of the standard reference system
coinciding with the axial and circumferential directions on the surface of the
specimens, it would be necessary to load tubular specimens simultaneously by
axial force, a twisting moment and, moreover, by internal pressure.
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Numerous experiments concerning behaviour of yield surfaces were performed
by simultaneous loading of thin-walled tubular specimens by a tensile force and
a torque. The analysis of the results of such experiments was always performed
with the use of a reference system with the coordinate axes coinciding with the
axial and circumferential directions. In such a reference frame this mode of
loading corresponds to the ellipse A3 on the Huber-Mises ellipsoid (cf. Fig. 1).
An example of the results of experiments performed under simultaneous torsion
and tension of thin-walled tubular specimens is shown in Fig.7. If the tested
material is isotropic, such results can be presented in another way by assuming,
for instance, for each specimen of the set a reference system .y coinciding
with the directions of principal stresses. The experimental points from Fig.7
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recalculated for such individual reference frames are shown in Fig. 8. It is seen
that in this case the latter representation is less informative than that shown in
Fig; .

6./6;

Fic. 7.
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When the reference frames are so chosen that for each specimen the axes
x and y make the angle 45° with the directions of principal stresses, the re-
calculated experimental points from Fig. 7 correspond to the sector A/ of the
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ellipse DEAE'D' (Fig.1). These points recalculated for such reference frames
are shown in Fig. 9. Also in this case such a representation is less instructive than
the original representation shown in Fig. 7.
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FiG. 9.

Analysing more generally the equivalence of various representations of exper-
imental results let us assume, for instance, that the yield surface of an isotropic
material has been determined by loading a set of thin-walled tubular specimens
by various combinations of a tensile force and a twisting moment. Such a loading
procedure corresponds to the segment A B of the ellipse

o2 + 372, = 347

lying on the Huber - Mises ellipsoid (cf. Fig.1). The experimentally determined
form of the curve AB determines the entire portion of the yield surface shaded
in Fig. 10a. That portion of the yield surface is generated by ellipses (2.2) passing
through the individual experimental points corresponding to the curve A 73 (cf.
Fig. 2).

If the tubular specimens were subject to the simultaneous tension and internal
pressure (this corresponds to the segment B/ on the Huber-Mises ellipsoid
in Fig.1), then by constructing the family of ellipses (2.2) passing through the
experimentally determined points corresponding to B D, the portion of the yield
surface shaded in Fig. 10b would be obtained.

Carrying out the experiments corresponding to an arbitrary curve which con-
nects points D and D’ on the surface (cf. Fig. 1), such as the arc DC'B'D’ in
Fig. 10c, we obtain the entire yield surface. Additional tests corresponding, for
instance, to the arc A8 may be considered as a verification whether the material
is really isotropic.

Note that this reasoning does not apply to materials exhibiting plastic anisotropy,
whether natural or induced by previous plastic deformations. This remark applies
in particular to considerations concerning the effect of plastic deformation on the
yield surface or, in other words, to the analysis of the so-called secondary yield
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surfaces. Such investigations must be referred to a fixed coordinate system chosen
at the beginning of the experimental procedure.

However, there exists a certain practically important type of anisotropy when
the procedure described above may be used. Such a case of anisotropy occurs
in rolled sheet metals and is referred to as the transversal isotropy. Let the axes
of reference be so chosen that the » and y axes lie in the median plane of the
sheet and z-axis is normal to that plane. In most cases the plastic properties of
the sheet are isotropic in the z, y-plane. The yield stresses of specimens cut out
from the sheet in various direction are of the same magnitude Y. Of the same
magnitude are also absolute values of yield stresses under uniaxial compressive
loading. However, yield stresses in the z-direction are different from Y in the
case of transversal isotropy.

If the Bauschinger effect in z-direction is neglected, the yield condition for
plane stress state may be written in the following form:

> )2 > 0\l 2 _ o2
2.4 o — 12— — o0, oo+ 14— —) |75, =Yy,
a }'k y y }~ TY 0

In this condition Y. is the yield stress in z-direction under uniaxial tension. It
represents also the absolute value of yield stresses under uniaxial compression in
that direction. In the stress space o, 0, 7., yield condition (2.4) is represented
by the points located on the surface of an ellipsoid shown in Fig. 11. For Y. > Y}
the ellipsoid is more elongated in the 0 D-direction than that shown in Fig. 1 for
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fully isotropic material. Various methods of measuring the yield stress Y. are
discussed in the previous papers [8] and [9].

Fia. 11,

3. Presentation of the effect of plastic deformation on yield condition in various
reference systems

Plastic deformations in metals produce complex changes in the shape and
position of the yield surface. These changes are difficult to be described theo-
retically. Intensive experimental studies are aimed at explaining them. However,
there appear certain difficulties in interpreting such experimental results. They
are described for example in the previous paper [5] and will not be discussed
here.

In Sec.2 it was shown that if the material in question is isotropic in initial
state, the orientation of the coordinate system in which the stresses are defined
can be chosen arbitrarily. Thus it is possible to present the consecutive yield
surfaces deformed after plastic prestraining of the material in various reference
systems. In such a manner one can generalize the results of experimental studies
of the effect of plastic deformation on yield condition. We shall illustrate this by
a number of examples.

Let us begin with a simple method of investigating the effect of plastic de-
formation on the shape of yield surface used in [10]. Simple rectangular speci-
mens cut out from the sheet metal were tested. The sheet was stretched in the
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z-direction well above the initial yield locus. Then after unloading, a series of
small rectangular specimens were cut out from the sheet, each inclined at dif-
ferent angle o with respect to the z-direction (Fig.12). These small specimens
were tested under uniaxial tensile loading. An example of stress-strain diagram
for one of such small specimens is shown in Fig. 13. In the figure is also shown
the analogous diagram for the specimen cut out in the same direction from a
non-deformed sheet. The two diagrams are displaced, one with respect to the

other, by the

value of initial plastic prestrain.
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Such diagrams for various angles o were then used to determine the stress
corresponding to various definitions of the yield point. Then the yield stresses
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referred to the x, y coordinate system were calculated from the formulae
1
o, = ia(] + cos 2a).
(3.1) o, = %n(l — cos 2ar),
Try = %(r sin 2a .

Plotting the calculated values of yield stresses in the stress space o, o,, 7,y
we obtain a set of curves (Fig. 14) which represent the intersections of various
conventional yield surfaces of the prestrained material corresponding to different
definitions of yield stresses, with the cone representing uniaxial tensile loading
paths (cf. Fig.2). Assuming that o, = 0 and that x = 03/0; = 0 we obtain from
Eq. (2.3) the equation of the cone
3.2) L0, = le_y.

Figure 14 shows a set of experimentally determined curves projected on the
a.0,-plane and on another plane perpendicular to the bisector of the right angle
between the coordinate axes in the o.0,-plane. Point 13 denotes the end of the
path OB of initial loading of the sheet. The initial yield curve before prestraining
is shown by dashed line.

Experimental results shown in Fig. 14 can be represented in other various
coordinate systems rotated by an angle /3 with respect to the original system . y.
Rotation of the coordinate system in the median plane of the sheet causes that in
the stress space the end point of the vector 05 characterizing the initial loading
of the sheet moves along the ellipse corresponding to uniaxial tension (Fig. 15).

The experimental lines shown previously in Fig. 14 for the non-rotated coor-
dinate system are represented in Fig. 16 for the coordinate system .y rotated
by the angle 3 = 15° with respect to the original one. Such a rotation of the
coordinate system corresponds to the prestressing path 03, in the new system (cf.
Fig. 15). Similarly, the yield curves shown in Fig. 17 correspond to 4 = 30° and
the prestressing path 05,. In the Fig. 18 are presented yield curves for rotation
angle 4 = 45° and the prestressing path 0/733.

Since the material was found to be initially isotropic, all four representations
are fully equivalent because the coordinate system could be chosen arbitrarily.

This simple method of experimental investigation of the effect of plastic defor-
mation on the shape of the yield surfaces was recently extended by R. Szczesior
[11] to the region of compressive stresses in the stress space. Tensile tests for
specimens cut out in different directions from a prestressed sheet were performed
in the same manner as in [10]. However, now they were complemented by com-
pression tests with the use of another set of specimens cut out in the same
directions from the same prestressed large specimen.
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As the material, a sheet 3 mm thick of the aluminium alloy PA2N-M3 (A12%Mg)
was used. Large specimens cut out in the rolling direction, assumed by the
author as the x-direction, were plastically deformed each by difierent stresses
o, = 1245MPa, o, = 154.6 MPa, o. = 185.5MPa, respectively. These stress
levels were well above the conventional yield stresses 08.5 = 100 MPa for the off-
set strain 0.5 percent of the sheet in the initial state, in which the sheet was found
to be fully plastically isotropic in its plane. No Bauschinger effect was observed
in the sheet before prestraining.

Compression tests on small specimens cut out from the sheet were performed
with the use of special testing device preventing thin specimens from buckling.
This device was designed by L. DieTricH and K. Turskr [12] - see also [5].

In Fig. 19 are presented original experimental curves given in [11], where
the prestressing uniaxial tension 0B was chosen to coincide with the assumed
a-direction in the sheet’s plane. Thus these curves correspond to the case when
prestressing level was equal to o, = 154.6 MPa.

Note that the projections of the curves shown on the left-hand side of Fig. 19a
and their projections shown in Fig. 19b are analogous to those presented in Fig. 14
for another material. On the right-hand side of Fig. 19a and in Fig. 19¢ are shown
projections of the conventional yield curves for the prestressed material, loaded
afterwards by uniaxial compression in different directions with respect to the pre-
viously chosen x-axis of the reference system. In geometrical terms, the two sets
of experimental conventional yield curves in the tension and compression quad-
rants of the stress space represent the intersections of the deformed conventional
yield surfaces of prestressed material with the cones

0,0y = T.:z-g
on both sides of the symmetry axis 01 in the stress space (cf. Fig. 1).

Comparison of the experimental curves oprop, 7901 and g2 on both sides of
the symmetry axis demonstrates the clearly visible Bauschinger effect induced in
the sheet by previous plastic deformation.

In Fig. 20 are shown the same experimental results referred to another ref-
erence system x,y rotated by the angle 4 = 45° with respect to that assumed
for the previous representation of results in Fig. 19. Thus now the 2 and y axes
make the angle of 45° with the prestressing direction. In such a rotated reference
system the initial yield surface was pushed from inside along the straight line 0
(cf. Fig.1) up to the end point 3 of the prestressing path 073.

This bulging of the yield surface caused by previous plastic deformations is
even more distinctly demonstrated for still larger prestressing level by the stresses
o. = 185.5MPa. In Fig.21 are presented original experimental curves taken
from [11]. The z-axis of the reference system coincides with the direction of the
prestressing path 0C'. Figure 22 presents the same experimental results in the
coordinate system rotated by an angle of 45° with respect to the original one.
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Evolution of the yield surface during the process of plastic deformation of
the material may be observed if the corresponding conventional yield curves for
the consecutive stages of prestraining are presented in the same figure, as it
has been done in Fig.23 for the oy, yield curves in the original coordinate
system (cf. [11]). The mode of evolution is even more clearly visible if the same
experimental curves are presented in another coordinate system rotated by an
angle of 45° (Fig.24).

As a next example let us transform the experimental conventional yield curve
00.01 obtained by R. Kirvk [13] for the duralumin type alloy PA6. A thin-walled
tubular specimen was prestressed by uniaxial tension in axial direction far beyond
the initial yield stress and then unloaded. Next the conventional yield curve for
such prestressed material was determined by consecutive loading of the specimen
by various combinations of axial force and torque. The o, yield curve is shown
in Fig.25 in the coordinate system standard for such tests, in which the z-axis is
parallel to the axis of the tube. In Fig. 26 are presented, in two projections, these
experimental results in another coordinate system x. y rotated by an angle of 45°
with respect to the original system from Fig. 25.

Ty
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100 +

6. (MPal 200 100 0 -100

-100 |-

[F1G. 25.

Since the material in the initial state displayed fully isotropic plastic proper-
ties, the initial yield surface shown in Fig.1 is valid for any arbitrarily oriented
coordinate system z,y. Thus the prestressing path 073 in the original reference
system corresponds to the path 0L in the coordinate system rotated by an angle
of 45°.

Variously oriented reference systems may be used when experimental results,
such as those shown in Fig. 25, are presented in the stress space. Still another
reference system rotated by an angle of 22°30" is used in Fig. 27 for presentation
of the same experimental results. Now the prestressing path passes through origin
0 and a certain point lying on the ellipse BLENC in Fig. 1.
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On experimental determination of the coefficients
of plastic anisotropy in sheet metals

G. SOCHA and W. SZCZEPINSKI (WARSZAWA)

PROBLEMS CONNECTED with experimental determination of coefficients of plastic anisotropy in sheet
metals are discussed and illustrated by experimental results. Some of the coefficients can be
determined dircctly, the others with the use of various non-dircct measuring techniques only. Tt
is shown that various shearing tests techniques are of questionable accuracy. In the theoretical
analysis, a certain anisotropic yicld condition accounting for the Bauschinger effect is used.

1. Introduction

WHEN ANALYZING theoretically various processes of sheet metal forming it is nec-
essary to know the yield criterion with all the anisotropy coefficients (moduli)
experimentally determined. The deformation-induced plastic anisotropy of sheet
metals is very complex since the plastic deformation during the manufacturing
process depends on numerous factors, such as multistage rolling, hot or cold
rolling, frictional conditions that exist the interfaces between the rolls and the
work-piece. Thus it is rather difficult to expect that the plastic anisotropy of
sheet metals could be described by an universal theory. Recently a number of
new proposals concerning the form of the yield condition for sheet metals have
been published in order to describe, as accurately as possible, their real plastic
properties. A comprehensive review of these works has been given in the previous
paper [1] of the second author.

As the basic yield criterion for orthotropic sheet metals the HiLrs criterion
([2] and [3]) is commonly used. It can be written in the following form

1 2 1 1 1 1 2 1 5
(1'1) = O — (\_2 + ‘g—:,_‘ — "2) g0, + )%2(7,/ + QTT”"V =1
z y z y

where Y., Y, Y. are yield stresses under uniaxial tension (compression) in direc-
tions x, y, z, respectively, and () stands for the yield stress in shear with respect
to the principal axes =, y of anisotropy in plane of the sheet. The z-axis is per-
pendicular to sheet’s surface, and the z-axis coincides with the rolling direction.

In most existing proposals of yield conditions for anisotropic sheet metals
the Bauschinger effect is not taken into account. However, this effect is very
distinctly observed in some sheet metals (see e.g. [4]). If the Bauschinger effect
is to be accounted for, the yield condition for three-dimensional stress states may
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be assumed in the following form (cf. [5] and also [1]):

(1.2)  ki(ow — a,)* + kas(oy, — ) + kai(o. — 0,0 + kaatl + ksst2,

+/‘7667,;_?-‘y - ()12(0.1‘ - Uy) - b23(Uy - U:) - [)31(0_: - (T.l_') =1

Physical interpretation of the anisotropy coefficients k;; and b;; may be found
by analysing uniaxial stress states, each with only one non-vanishing stress compo-
nent. By considering uniaxial tension (compression) states we obtain the relations

S T O S 1
P 2\Nz Yz, Y.Z.)°

1 1 1 1
: kay = 5| - + + :
(1-3) 3 2( vz, T Y,Z, TV /)

b1 1o,
LT \%E, Y2, YZ.)’

where Y, Y, Y- stand for the yield stresses of the material uniaxially tensioned
in the directions z, y, = respectively, and Z,, Z,, Z. are the absolute values of
yield stresses under the respective uniaxial compression.

Considering uniaxial tensile (compressive) loadings in the «, y, = directions,
respectively, we obtain also the following three relations

l

b3y — b2

| = &5
“ —‘L,‘ o
—_ N

(1.4) by — b3

It
<
N

‘Y

1

Z"

I
=
|

byz — b3 =

for the moduli bya, ba3, b3y. This system of equations has no unique solution. By
assuming, for example, that b3; = 0 we obtain the relations

1 1 1 1
1. = . = i —_— / = .
(1.5) b3 =0 bi2 3 + 7 =
From Egs. (1.4) the relation follows
1 1 1 1 1 1
1.6 — = —+ —+ —.
(1:5) Y, Y, Y. Z, Z, Z.

The anisotropy of plastic strain increments may be used for indirect mea-
surements of the anisotropy coefficients appearing in yield condition (1.2). For
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materials with the Bauschinger effect the expressions for plastic strain increments
associated with the yield condition (1.2) are as follows:

d A\ {2 [A‘lz((ff - (T_,,) — A’}I(U: == (T‘,-)] = bl2 + {)3}} )
(17) rlSy = A {2 [—k‘lz((fr — (Ty) + k23(0'y — U:)] + b1y — b23} ;
AN {2 [=kps(o, — 0:) + k31(0. — 0.)] + b3 — b3}

de,

de.

2. Yield condition with Bauschinger effect for sheet metals
For sheet metals in which there exists a plane stress state, we have
O = Tap = Tz = 0.

For plane stress states the yield condition (1.2) takes the following form:

1, 1 1 1 1
: e — + - (T +
(2 1) .),, er O ()—l Z_,- ’117 ).: Z:) O,0y ‘)” Zy (T‘/‘

‘Y

. 1 SN (1 1 ) N 1 1 |
=T = T, v 7 Oy = L
2 \y, Tz ) \y, 7, )

where ) = 1/\/Igs is the yield locus in shear.

In the space of non-vanishing stress components o, o,, 7., yield condition
(2.1) is represented by an ellipsoid shown in Fig. 1. Central point O, of the
ellipsoid is shifted in the o, o,-plane with respect to the origin O of the reference
system.

Expressions (1.7) for plastic strain increments take for the plane stress condi-
tions the following form:

. 1>\— 2 Lo, 1 o i 1
acy; = « F 7 O3 — = I g, = — ==l
' (%2 Vol oy Yede) - E. .5

[ 2 1 1 1 1 1
22 le, = d\|——a, — = T TR A
22) - ( _}"yZ.uUJ (Y_,-Z.,— YyZy ):[:)U Yy A.’jl

1 1 1
le. = d\N|— | — + + !
o ( L ( Yoloe  YyZ, Y- Zf) i

1 1 N 1 n 1 1
— — a, s 7 |-
YoZe Yz, Y.Z Y. Z

In the yield condition (2.1) there appear seven coefficients of plastic anisotropy.
However, only six of them are independent if the equality (1.6) is to be satisfied.
The anisotropy coefficients Y,, Z,, Y,, Z, and Z. may in most cases be measured
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by simple uniaxial tension and compression tests. Theoretically the remaining
coefficients can be deduced from the measured yield stresses for specimens cut
out at various angles with respect to the z-direction and subjected to uniaxial
terision or uniaxial compression (cf. HiLL T2]).

Another indirect method of experimental determination of the anisotropy co-
efficients in sheet metals consist in measuring the ratios of strain increments (or
strain rates) in longitudinal, transversal and through-thickness directions in uniax-
ially extended (compressed) specimens cut out from the sheet metal in question.
This is the standard technique used in laboratory tests. However, when such a
method is used, the values of anisotropy coefficients are usually deduced from
the theoretical relations between the measured strain increment ratios resulting
from the flow law associated with the yield condition (1.1). Thus the accuracy
and credibility of such indirect method may be questioned. The observed differ-
ences between the values of certain anisotropy coefficients measured directly and
indirectly are in some works, e.g. [6,7], termed “anomaly” of plastic behaviour
of the sheet metal in question.

Most reliable are those values of anisotropy coefficients which have been mea-
sured directly. For example, the value of yield stress Z. under simple compression
in the through-thickness direction may be measured on several test-pieces cut out
from the sheet and made to adhere to each other by using some adhesive — ref.
e.g. [8]. However, it is not possible to measure directly the tensile yield stress
Y. in this direction. Certain technical difficulties arise in direct determination of
the yield stress in shear (). This problem will be discussed later on.
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3. Example of experimental determination of the state of plastic anisotropy in
a sheet metal

For experimental tests a sheet 6 mm thick of an Al-2%Mg aluminium alloy
was used. Stress-strain diagrams for two identical specimens cut out from the
sheet in the rolling direction (RD) and loaded by uniaxial tension are shown in
Fig. 2. The averaged conventional yield stress ¥, = 112MPa has been estimated
in the manner shown in the figure as the point of intersection of extrapolated
curvlinear part of the diagram with its extrapolated straight initial portion. All
tests have been performed on the INSTRON 1251 machine.

160 T T

\
|
\

120
Y 12—

80

stress (MPal

40

strain [%]
Fia. 2.
For tensile specimens cut out in the direction perpendicular to the rolling

direction (TD) the averaged conventional yield stress was found to be Y, =
113.5MPa - Fig. 3.

In Figs.4 and 5 are shown stress-strain diagrams for uniaxial compression
of specimens cut out in the rolling direction and in the transversal direction,
respectively. The conventional values of yield stresses are

Z, = 1152 MPa, Z, =113.6 MPa.

They differ only slightly from the corresponding yield stresses in tension

Y, = 112MPa. Y, = 113.5MPa.
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Thus for the material in question we shall aproximately assume that
Y, =Y, =Z, = Z, = ¥y = 113.6 MPa,

where Yy = 113.6 MPa is the mean value of all four yield stresses.
Now instead of the general yield condition (2.1) we shall write (cf. [1])

Y Yg i
(3.1 aZ — (2 . }0/) 0.0, + 0L+ Qizrf.y =Y.

However, in this case from the relation (1.6) results the equality Y. = Z.. We
shall show experimentally that for the material in question this equality is not
satisfied and that yield condition (2.1) does not describe fully the real plastic
properties of the material in question.

The through-thickness yield stress Z. was measured by a compression test on
a set of several penny-shaped test-pieces cut out from the sheet and made to
adhere to each other. The height of the cylindrical specimen composed in this
manner was three times larger than its diameter. The compression diagram is
shown in Fig. 6. The conventional yield locus

(3.2) 7. = 123.5MPa

has been estimated in the manner shown in the figure.
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To estimate the value of yield stress in tension Y. in the through-thicknzss
direction we shall use the indirect method by measuring the strain rates £, ¢,
and ¢., in the specimen cut out in the y-direction (transversal direction) nd
loaded by uniaxial tension (cf. Fig.3). The diagrams of plastic strain versus tine
are shown in Fig. 7. These diagrams are curvlinear and therefore the strain raes
change their values during the course of the deformation process. Thus a certiin
convention has to be introduced. For the plastic strain ¢, = 0.1% the followng
values of strain rates have been estimated from the diagrams

fo= —3.19.107%ec! .
(3.3) é, = 1.32.107%sec™!,
.= —497 .10 %ec!.

Theoretical relations (2.2) take for this particular case the following forms:

2 1
de, = —dA W*ﬁ Ty -
34 le, = dA .
(_) (e = (7 ﬂa‘y.
1 1
de. = —(l/\( ':Z:oy+ Y Z-)
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In the state of plastic yielding of the specimen the o, stress must be equal to the
yield stress Yj. Thus we have o, = };. Now we can write the equation

2z %
dev _se o Yo ViZ:  _ean
dex & Yo " 11
Yels Y: |2

from which the value of Y. may be found, because all the remaining parameters
in this equation have been measured directly. Finally we obtain

(3.5) Y. = 94.4 MPa.

Note that the value of Y. may also be found from the relations d=,/dz_ ordz, /d=,.
These alternative values are Y. = 95.9MPa and Y. = 93.0MPa, respectively. The
mean value of Y. is

(3.6) (Y.). = 94.4MPa.

It differs remarkably from the yield stress Z. = 123.5MPa measured directly
under compressive loading.

Since in-plane properties of the sheet are found to be almost isotropic without
the Bauschinger effect, we shall recalculate the value of Y. using the expressions
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for strain increments associated with the yield condition (1.1). For the test in
question these expressions take the following form:

2 1
de, = —dA (W - )—}) Oy s
3 o 2
(-.7) (I:y = (1/\‘)‘—'02-(7!/\
1
([5_- = —([/\Wﬁy.
Thus we can write the expression
2 Y
de, £, Y, VY2
— == —= =0.642
de., £, Yo
y2
from which we obtain
(3.8) Y. = 102.9MPa.

If the relation ds,/dz. or dz,/d=, are used, the alternative values are Y. =
97.6 MPa and Y. = 106.9MPa, respectively. The mean value is

(3.9) (Y.),. = 102.5MPa.

The numerical difference between Y. and 7. calculated according to the two
assumptions is thought too great to be attributed to the inaccuracy of measure-
ments of strain rates, or to the use of expressions (3.4) or (3.7) for indirect
evaluation of Y.. Tt indicates that the material in question really exhibits the
Bauschinger effect across the thickness. The existence of the Bauschinger effect
in the direction perpendicular to the surface of the rolled sheet metal seems ob-
vious and physically justified, because during the rolling operations the material
has been strongly plastically compressed in this direction. This effect neglected
in the theories of plastic anisotropy of sheet metals may be called the “hidden”
Bauschinger effect. It is not excluded that this “hidden” effect contributes to the
so-called “anomalous” behaviour of sheet metals observed in some experimental
studies (e.g. [6]).

The discrepancy between the measured value of Y. and the completely differ-
ent theoretical value Y. = Z. resulting from the relation (1.6) indicates that the
yield condition (2.1) does not fully correspond to the real plastic properties of the
tested material. Problems connected with the formulation of the yield conditions
for metals with deformation-induced anisotropy have been discussed in [1]. Note
that non-quadratic yield conditions [7], proposed in connection with the observed
so-called “anomalous” behaviour of sheet metals (see e.g. [6]) do not account
for the Bauschinger effect and cannot be used in our case.

http://rcin.org.pl



ON EXPERIMENTAL DETERMINATION OF THE COEFFICIENTS... 187

4. Direct and indirect measurements of the yield stress in shear

Usually the yield stress in shear () is measured non-directly. It may be deduced
from the tension test of a specimen cut out at angle of 45° to the rolling direction
(cf. HiLL [2]). To estimate the value of @), two tensile specimens have been cut
out from the sheet at the angle o = 45° with respect to the rolling direction.
The tension diagrams are shown in Fig. 8. Conventional yield stress for these

160

120 |-

80

stress (MPal

40 |4

strain (%]

IF16:. 8.

specimens is Y45 = 120 MPa. Thus yield stresses related to the reference system
x, y are

1
(4.1) Or = 0y =Ty = Va5 = 60 MPa.

By substituting these values and also the experimentally determined yield stresses
Yo, Y. and Z. to the yield condition (3.1), we obtain

(4.2) () = 68.65MPa.

Now we shall compare this indirectly estimated value of (Q with the results of
direct shearing tests. Two various shear tests have been performed, each with the
use of a specimen of a different type.

The specimen of the first type is shown in Fig. 9. It is analogous to that used
by Sato et al. [9]. Preparation of such a specimen is simple. Standard grips
of ordinary testing machine may be used to hold the specimen. The diagram of
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Fia. 9.

conventional shear stress versus displacement is shown in Fig. 10. The diagram
is very smoothly curved in contrast to all previous diagrams for tension and com-
pression tests. This is a consequence of the strong stress concentration in the
specimen in the initial elastic state, and by further evolution of plastic zones in
the deforming region. Additionally the exact determination of the shear strain is
very difficult. This problem has been analysed in [10]. Any method of estimating
the shear strain is of questionable accuracy. Thus any convention, according to
which the yield stress in shear resulting from such tests could be estimated, can
hardly be used. For comparison, the value ) = 68.5MPa measured indirectly
[cf. (4.2)] has been shown in figure.

100

conventional shear stress (MPal

0 005 o1 015 02
displacement on the 50 mm base [(mm]

1. 10,
Similar difficulties arise when symetrical specimens of the type shown in Fig. 11
are used. The shear stress versus displacement diagram for the test with the use

of specimens of this type is shown in Fig.12. The value () = 68.65MPa found
indirectly is shown for comparison.
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5. Conclusions

Experimental results analysed in this paper indicate that yield conditions of
the type (2.1) and (3.1) accounting for the Bauschinger effect do not fully corre-
spond to the real plastic behaviour of sheet metals displaying across the thickness
this effect, induced by considerable compression in this direction during rolling
operations. Neverthless, such yield conditions seem to constitute a certain alter-
native to yield condition (1.1) or to various so-called non-quadratic conditions,
neglecting the Bauschinger effect completely. Tt is shown, moreover, that indi-
rect methods of measuring the yield stress in shear () should be recommended
as a standard technique, since direct measuring methods are of questionable
accuracy.
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Stokes flow about a porous spherical particle

B.S. PADMAVATHI, T. AMARANATH (HYDERABAD) and
D. PALANIAPPAN (BANGALORE)

STOKES FLOW of a viscous, incompressible fluid past a porous spherical particle is considered,
using Darcy’s law for the flow in the porous region and Saffman’s conditions at the surface of
the sphere. The velocity and pressure ficlds of the modified flow in the presence of the porous
spherical boundary are obtained. The formulae for drag and torque are found in terms of the
undisturbed velocity which are analogous to the well-known Faxén’s laws. It is found that the
torque on a porous sphere is always less than that on a rigid sphere, whereas the drag in general is
not. It is also observed that effective viscosity of a dilute suspension of porous spheres decreases
as compared to that of rigid particles of the same size. Some illustrative cxamples are discussed
to justify the usefulness of the results.

1. Introduction

THE PROBLEM OF SLOW, streaming motion of a viscous fluid past a porous spherical
particle assuming Darcy’s law for the fluid in the porous region (0 < r < a) was
studied by JoserH and Tao [1]. Assuming the permeability to be small, they have
considered the no-slip condition for the exterior tangential velocity as one of
the boundary conditions at the permeable surface, the other boundary conditions
being continuity of pressure and normal velocity. The no-slip condition was
justified by Josept and Tao [2], and several problems relating to the lubrication
of porous bearings were solved using this condition (see [2, 3] and the references
therein). In [1], it was found that the drag on the porous sphere is that of a rigid
sphere with reduced radius. But recently, PADMAVATHI and AMARANATH [4] have
shown that by employing the conditions as in [1], in the general case, the drag
is not always less than that of a rigid sphere; indeed, it decreases or increases
depending on whether the undisturbed velocity is harmonic or purely biharmonic,
respectively.

However, the experiments of BEAVERS and JosepH [5] suggested that there is
actually some slip at the boundary, in particular, when the permeability is large.
To accommodate for this, they [5] proposed a slip boundary condition for plane

boundaries
du

x
@ - TE(“ - (2)
where u is the velocity parallel to the surface, y is the coordinate normal to
the surface, () is the velocity inside the porous medium, & is the permeability

and o is a dimensionless constant whose value depends on the properties of the
porous medium. Their experimental values showed a reasonable agreement with
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the values predicted by this condition. Using a statistical approach to extend
Darcy’s law to non-homogeneous porous media, SAFFMAN [6] gave a theoretical
justification of the condition proposed by Beavers and JoserH [5]. He showed
that in the limit £ — 0

Vi du

— + O(k)
o dy

u =

at the boundary. NEALE ef al. [7] have reviewed the different boundary conditions
that can be applied to the Darcy law and arrived at the conclusion that the one
derived by SAFFMAN [6] was the most satisfactory one. Therefore for small values
of &, Saffman’s condition is more appropriate than no-slip condition.

In this paper, we shall discuss an arbitrary Stokes flow past a sphere using
Darcy’s law for the fluid inside the porous region (r < a) with SAFFMAN'S [6]
boundary conditions. We derive the expressions for drag and torque and show
that while the torque is reduced as compared to the rigid case, in general the
drag may not. However the drag is reduced whenever the velocity of the basic
flow is harmonic.

2. Mathematical formulation

Let us consider a stationary porous sphere of radius « in an arbitrary Stokes
flow in a viscous, incompressible fluid. For the flow outside the sphere, the
governing equations are the Stokes equations

(2.1) uViv = vp,
(2.2) V.-V =0,

Il

where o is the coeflicient of viscosity, V the velocity and p the pressure of the
liquid.
The flow inside the porous sphere (0 < r < «) is governed by Darcy’s law

}‘.

(2.3) Q= ==F

(24) Vip =0,

where Q is the volume rate of flow per unit cross-sectional area, /” the pressure
and & > 0 is the permeability coefficient. Q represents the filter velocity rather
than the actual velocity of the fluid in the pores.

The boundary conditions on » = « (in spherical polar coordinates (r.6.0))
are:

a) the pressure is continuous at the boundary of the sphere

(2.5) pla.b,0) = P(a.0.0);
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b) the normal velocity is continuous at the boundary of the sphere
(2.6) qr(a,0,0) = Q,(a.b,0);

¢) Saffman’s condition for tangential velocity on the sphere is

(2.7) a0(.0.0) = AWk Al % (a,9.0).
and
(2.8) qs(a.8,0) = A\f (n 0, 0).

where A is a dimensionless constant characteristic of the porous medium. NEALE
[7] and HaBer and Maurr [8] have noted that much of the data of BEAVERS
and JosepH [5] can be reasonably correlated by assigning A the value of unity.
Therefore the conditions (2.7) and (2.8) on r = « are

f()(]g (” 9 ”)
\/—()(/,)( L0.0).

(2.9) qo(a, 0. 0)

(2.10) Go (1.0, 0)

3. Method of solution

We assume the following representation proposed by PALANIAPPAN ef al. [9]
for the velocity and pressure in the region r > a

(3.1) V = curlcurl (rA) + curl (r73).
(3.2) p = pp+ ,u—_;)—(rvz.-l),
dr
where
(3.3) via=0, VB=0.

In the absence of a porous sphere, suppose the basic flow is given by a bihar-
monic Ay and a harmonic By whose form near » = « is as follows:

(3.4) Ag(r.0.0) = Z {nnr +alr “+2} S,.(8. 0).

(3.5) Bo(r. 8. 0) \n " T (6, ),

I
[\/)? [

Il
—
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where

n

Z P (O)(Apm cosme + B, SIn o),
m=0

(3:6)  Su(6,9)

n

(3.7) T.(0.0) = Z P (O(Crm cosme + Dy, sinmo), ¢ = cos#.
Ul-"(]

and the constants a,, a’,, \n, Anms Bums Crm and D, are all known, and P"
is the Legendre polynomial. Now in the presence of a porous sphere of radius «
in the flow field of Egs. (3.4) and (3.5), the modified field is assumed as follows:

= N A D
G8)  AC0.0) = Y [ar 4ol e D Dl 0.0)
n=1
o< ~
(3.9) B(r.0.¢) = Z [\,Lr" + rrii]] T,.(8, ¢), r>oa
n=1
and
(3.10) P(r,8.¢) = po+ Y 6."5.(6,0). r < a.

n=1

The components of velocity and pressure from Egs. (3.8) and (3.9) for » > « are

3.11 g = n(n + 1) [a, "~ 1+n 7"+1 + g, 2 4 3' TS, (0, 0),
1
n=1

4]

(3.12) G5 = Z [(” + 1)“”‘7."1—1 +(n+ 3)O:L7,u+l 2
n=1
—(n —2)B, '—n] ig (0. ¢) + cosecd Z [\ C 4y 7~_"'—'] i/ )
n n' n ()O A0, ®),

n=1

1 & : , ,
(3.13) 9 = 55 Z [(n + Dapr™ 4+ (n + Dal r = pg

- 5
—(n = 2)357 '”] isn((’ ?) — Z [\‘nT'” + gy 1 (—Ir«(g ).
n=1
(3.14) p=po+ Z [2(272 +3)(n + 1)r"a, %ﬂ%l——]—-)»rj,'i] I () B

n=1

Similarly, for » < a, from Eq. (3.10) we have
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o & ,
(3.15) Q: = —I—LZnh,(‘r”_l.S'.,l(()_o).
n=1
3.16) Qs = —© ia =19 ¢ (9.0)
( » 6 = 'an n' ()Hn L),
(3.17) 0 Eos st s 6.0)
. s = = . nl a0 n 1Y)
¢ jesin - oo '
(3.18) P = pot+ D 8" 5u(8,0).
n=1

The expressions given in Eqs. (3.11)-(3.18) satisfy the boundary conditions given
in Egs. (2.5), (2.6), (2.9) and (2.10) on r = a if
B = {00+ 1)@= 1) [0* = @VE + 2uka = 2u(n — DEVE| e,
+@u+ 1) [+ 1)a® = 3 + DaPVE + 400 + n = 3)ha
~6n(n + DEVE] a®al, } /X,
=—{@+1En+1) [0+ VE| o> e,
+(n + )20 +3) [0 + 2nka — Vi + 2u(n + ki @l b X
b= —2u(n + D@n + 1) {n@n - 1) (a + VE) 0,
+(@n + 3)a® [(n = 2)a — 3 Vi| ol } /X,

iz

T

(n\/A_: - (L) a2+l
Tn = \n s

[(n + 1)\/[ + (r}

where
L — [2(71 + D)+ 20220 — Dka + 4n(n + l)uzﬂ + 203 (n 4+ 2)2n — ])/\/q

It may be noted that by setting

) A U
A(r.0,6) = A(r.0),  B(r.8.¢) = 0. (a—a =

where v is the Stokes stream function, we can recover the corresponding axisym-
metric case.

http://rcin.org.pl



196 3.S. PapmavaTHi, T. AMARANATH AND D. PALANIAPPAN

4. Faxén’s law for a porous sphere

The force D exerted on the sphere by the fluid in the region r > « is found
by following the procedure given in [4]:
GBhkVE + ka + 2a2Vk) Vo]
(2(13 +4a2VE + ka + 31.?\/17) 0J0
3/ e — 2 /1. R
+apad 1+ 3@hE + ka ~207VE) [\_‘VOJ :
(2a3 + d4a2 'k + ka + 3kVE) 0

(4.1) D = 67pa (1 -

Similarly, the torque on the porous sphere is

3VE

4.2 T=drpua 1=
(4.2) e ( (2ﬂ+n)

) [T X V()]O N
where

Vo = velocity corresponding to the basic flow,

[Jo = evaluation at the origin » = (.

When &k = 0, the expressions for D and T coincide with the well-known Faxén’s
laws for a rigid sphere. When Vj is harmonic, |D| < |Dg| where |Dy| is the drag on
a rigid sphere (corresponding to & = 0). In general, it may increase or decrease
depending on the value of #. However, the torque always decreases as compared
to the rigid case, as seen from Eq. (4.2).

5. Effective viscosity

The effective viscosity ;~ of a dilute suspension of porous spherical particles,
each of radius «, is found to be

o0 il (i ST D |

2 a3 + dak + 4021 + ]6/rﬂ)

where @ is the concentration by volume of the fluid containing the spheres. This
result coincides with EINsTEIN'S [10] result jo= = ;{1 + (5/2)¢} for a dilute sus-
pension of rigid spheres when & = 0. Tt is observed that the effective viscosity of
the dilute suspension of porous particles is lower than that of rigid particles of
the same size.

6. Examples
6.1. Stokeslet

Consider a Stokeslet of strength /87 located at (0.0. ¢), (¢ > «) whose axis
is along the positive direction of the x—axis. The corresponding expressions for
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Ao and By due the Stokeslet are [4]

61) o= 2 Z\ - =D | pl(¢)cose
VT g 2 A D@+ e u+ D@ - Der |
.I( )] i . )

(6.2) Bp= 4”[ E [_#_H____”(” m 1)(““} P (C) sin .

n=1

The modified flow fields in and around the porous sphere can now be written
down using Egs.(3.11)=(3.18). It is of interest to study the asymptotic behaviour
(i.e., as 1 — oo) of the external flow field.

The asymptotic forms of the velocity components for large r are given by

F 3(;3((1 -+ ﬁ)
6.3 Ar.0,0)~ — <1 —
= i ) 4 p { (2(-(203 + 4a2Vk + ka + 3kVk)

(13(r13 + 2ka — (Iz\ﬁ + 6/.'\&) )} sin f# cos @

2('3(2n3 + 42k + ka + 3k ﬁ)
L {1 B ( 3(13(” + \/[)
8yt 20(2a3 + 4a2/k + ka + 3k\V/E)
N a3(ad + 2ka — a®>\Vk + 6k\/k) )} cos # cos ¢ .
2¢3(2a3 + 402V + ka + 3k ﬂ)
{] B ( 3(13((1 + \/Z)
2¢(2d3 + 402k + ka + 3/-'\/?)
113(4'13 + 2ka — o*Vk + 6/\‘\/2'-) ) } sin o

r

(6.4) qo(r. 0, @) ~

r

(6.5) Gs(r.0.0) ~

871

+
263(2a3 + 4a2Vk + ka + 3kVE)

’.

Hence the dominant flow at infinity is that due to a Stokeslet of strength F
located at the origin and oriented along the z-axis, where

i {1 B ( 3a3(a + Vi)
871 2¢(2a3 + 4a2\/k + ka + 3k ﬂ)

(:3(“3 + 2ka — a*Vk + 6/.\/%)
2632a% + 402Vl + ka + 3l\ﬂ_)) } -

6.6) =

From Eq. (4.1) the drag on the porous sphere is

3a(a + Vk)
2e(2a® + 4a®Vk + ka + 3kVT)
riq'(n + 2ha — a* 'k + 6k \/—)
+ I
263203 + 402k + ka + 3k\Vk)

6.7y D= {
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and from Eq. (4.2) the torque is

(13((11 - \/_)

(560 B (2\/_ + (z)(

6.2. Rotlet

Consider a rotlet of strength F3/87 . located at (0.0.¢) (¢ > «a) whose axis
is along the positive direction of z-axis. The basic flow is given by -1y and By,
where

(6.9) Ag = 0,
F3

; By = ————.
5:10) 7 Bruck,
where R? = r? + ¢? — 2rccos.

We can rewrite By as
6.11) Bo= 5 )

’ 0= 8ﬂ“’q=0 entlon ¢)

The modified flow fields in and around the porous sphere can be obtained
using Egs. (3.11)—(3.18). The drag D on the porous sphere is zero. The torque T
is

rr3(n - \/-)

(6l12) N (2\ﬁ+ rL)(
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Some results and new experimental technique

in studies of adiabatic shear bands(*)

J.R. KLEPACZKO (METZ)

SHEAR STRAIN instability and localization at diffcrent nominal strain rates arc investigated in this
paper through numerical analysis of a layer deformed at wide range of nominal strain rates. A
one-dimensional model for simple shearing deformation was applied together with constitutive
relations based on structural cvolution and dislocation dynamics. Generalised condition for in-
stability for adiabatic shearing has been derived and discussed. Since Split Hopkinson Torsional
Bar has been used for some time to study catastrophic thermoplastic shear in materials, a short
discussion is offcred as to the range of applicability of this experimental technique. A new ex-
perimental technique implemented in Laboratory of Physics and Mechanics of Materials, Mctz,
is briefly described. This experimental technique based on the principle of direct impact is more
flexible and offers much higher nominal strain rates, of the order 105s~!, than the SHTB tech-
nique. A double shear specimen is loaded directly by a projectile launched with a wide range of
impact velocitics. The range of impact velocitics from 2m/s to 200 m/s allows for a wide range
of high nominal strain rates, usually not accessible for the SHTB technique. Preliminary series of
experiments on anncaled mild steel XC18 has been performed with this technique. The results are
compared with the numerical data for the same material.

1. Introductory remarks

DURING THE LAST DECADE substantial progress has been made in testing, analytical
solutions and numerical calculations of adiabatic shear bands. Tt has been well
known for a long time (for example, see the paper by H. TREsca [40] and review
by W. Jounson [14] of early works) that metals can develop a thermal instability
of plastic flow due to heat generated during deformation. Zener and HoLLOMON
[45] noted that an increase of strain rate is inevitably associated with a change of
the deformation conditions from isothermal to adiabatic. The same authors found
that the plastic deformation becomes unstable when the strain hardening rate
(the tangent modulus of the stress-strain curve) starts to be negative. Although
localisation of plastic deformation in the form of shear bands is common in
many materials, a great deal of interest has been recently devoted to study the
non-isothermal cases. The present study is also limited to the non-isothermal
case when the adiabatic conditions of plastic deformation prevail.

At moderately high and high strain rates plastic deformation in metals is
nearly adiabatic; as a consequence, the deformation heating can lead to a size-
able amount of flow softening and hence to flow localization in the form of ASB,
called also the thermoplastic catastrophic shear which can lead to fracture. The

(*)Part of this paper has been presented at XVIIth International Congress of Theorctical and Applicd
Mechanics, Haifa, Isracl, August 1992,
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ASB are narrow, a small fraction of a millimeter, zones of highly nonhomo-
geneous deformation developed by a complicated interplay of strain hardening,
temperature softening, strain rate sensitivity, dynamic strain ageing and, some-
times, inertia forces. In some materials, especially in steels and titanium alloys,
a phase transformation or amorphous-like microstructure may develop within a
narrow zone of the highest temperatures. It may be mentioned that ASDB, with
or without phase transformation, often act as sites of fracture initiation in Mode
I1, VARFOLOMEYEV and KLEpaczko [41]. The importance of the ASB is obvious
in diverse applications like rolling, drawing, machining, impact on structures and
ballistic impact.

A number of analytical, numerical and experimental studies have been per-
formed in attempt to determine the critical conditions for the onset and evolution
of catastrophic thermo-plastic shear. The early review on the subject demon-
strated difficulties in the analysis of the problem, for example ROGERs [36]. A
more recent up-to-date review was published by Bar [1].

Analytical studies of ASB are more numerous and they will not be reviewed in
this paper. Generally, because of simplicity of constitutive relations, in order to
find a closed-form solution, unacceptable simplifications were automatically intro-
duced in some ASB analyses. More recent analytical studies are more acceptable,
for example FRESSENGEAS and MOLINARI [10], FRESSENGEAS [9], WRIGHT [42].

On the other hand, more and more numerical analyses on ASB formation are
available and, in general, the final results are very sensitive to constitutive rela-
tions chosen. Although, most frequently, the fully nonlinear system of equations
is employed in such studies, the material behaviour characterized in the form of
constitutive relations is quite simplified. Such situation may lead to some mis-
interpretations of how ASB evolve as functions of both the initial and boundary
conditions.

The state of the art is that relatively large quantity of theoretical studies have
been published so far with much less effort put into the experiment. Most ex-
perimental studies make use of the Split Hopinson Torsion Bar (torsional Kolsky
apparatus), COSTIN ef al. [5], GiovaNoLA [11], MARCHAND and DuFFY [29]. They
are based on fast torsion of thin, short tubular specimens. Such a test with SHTB
has a very limited range (in the logarithmic scale) of the nominal shear strain
rates, usually around 103s~!, and the boundary conditions imposed during the
test, although well defined, are not constant, ¢f. LEroOy and MoriNari [25]. Thus,
the majority of experimental studies were limited to a thin tubular gecometry and
to the nominal strain rates around 103s~!. In addition, the effects of length and
stress concentrators in a short tubular specimen have not been properly studied.

The other range of rates, albeit much higher, occurs in external ballistics and
explosive loading. Although it is very easy to produce a network of ASB during
ballistic or explosive loadings, they do not provide a good experimental basis to
study the fundamentals.

The most important, and so far unresolved class of problems, is the effect
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of initial and boundary conditions on the onset and formation of the ASB.
From the point of view of experiments, the following loading schemes can be
specified:

i. Initially uniform deformation field with small initial perturbations;
the initial perturbations which are usually assumed:
a) small defect of geometry;
b) small thermal perturbations;
¢) heat sinks.
ii. Imposed deformation fields with instantaneous stress or strain concentra-
tors;
a) controlled loading conditions;
b) direct impact at different velocities (including ballistic impact) and
different projectile/target geometries.

iii. Explosive loading;
a) expansion of tubes (fragmentation via ASB);
b) shock waves generated on limited surfaces.

iv. Controlled shock waves;

a) plate/plate impact (micro ASB).
v. Metal forming processes;

a) machining;

b) high speed rolling;

¢) high speed drawing.

The systematics shown above points out to a wide class of loading conditions
and, in turn, to a wide class of initial and boundary conditions under which the
ASB can be generated. The cases iii., iv. and v. will not be discussed here;
however, the most fundamental cases, i. and ii., are worth discussing. The
case i. is clearly related to SHTB technique. It can be pointed out that the
active specimen length and initial conditions can influence the outcome in the
form of ASB. For example, LitoNski [26] has furnished a detailed analysis of the
deformation in torsion of a thin-walled tube with an initial geometric imperfection
in the form of a slightly thinned section. The analysis was repeated in a similar
way by CosTIN ¢t al. [S] but with comparison to SHTB experiments on 1018 CRS
(cold-rolled steel). Some time later LitoNski [27] has shown, by a similar analysis,
but with the thin-walled tube without geometric imperfection and with the heat
sinks at the ends, that the ASB occurs above a certain critical strain rate of the
order of 1.0s~!. Another numerical study was reported by Kaminski [15] where
a thin-walled tube of a constant cross-section had a Gaussian imperfection of the
yield stress 7, i.e. 7,(r) = 7,0(/(x), where (/(x) is the Gaussian distribution and
7,0 i the mean yield stress. It was shown in that study that at lower nominal
strain rates, of the order of 0.1s~!, the strain and temperature fields differ for the
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adiabatic and heat conduction cases. When the nominal strain rate was increased
to 1s~1, the differences were substantially reduced.

Also later the geometry imperfections were the most frequently studied cases.
MERTZER [31] reported numerical simulations of ASB observed on 1020 CRS by
CosTIN et al. [S5]. SEMIATIN et al. [37] assumed a geometrical imperfection in the
specimen. SEMIATIN et al. [38] also studied the effects of material imperfections
via geometric imperfections on flow localization in the SHTB test.

Suawki and CLiFTON [39] presented a number of analytical solutions and nu-
merical studies, including torsion of a thin tube with geometrical imperfections,
with one or more circumferential grooves and with thermally isolated sides. Three
simple constitutive relations were used in those calculations. It was found, as
expected, that at high nominal strain rates of the order of 10% to 10%*s~!, the lo-
calization mechanism which accounts for ASB formation is exclusively adiabatic.
For this mechanism, at advanced deformation, the thermal softening dominates
in reduction of stress and in increase of local shear strain, leading to catastrophic
local shearing. Atsmall strains a positive strain hardening dominates and localiza-
tion does not occur. The rate of localization depends strongly on the strain-rate
sensitivity. The qualitative discussion as offered above is consistent with earlier
findings and physical intuition. The qualitative analyses of the ASB formation for
particular metals and alloys and for different geometries and boundary conditions
are still waiting to be solved.

A more recent numerical study by Burns [3] has shown that the heat sinks
introduced at the ends of a thin-walled tube can modify the whole process of
the ASB formation in comparison to the assumption of the adiabatic boundary
conditions. In addition to the heat sinks, a temperature perturbation was intro-
duced. A small local maximum in the initial temperature distribution along the
tube axis led to formation of the ASB just in this cross-section. A simple lin-
ear Arrhenius model combined with a power strain hardening was employed in
those calculations, the nominal strain rate was assumed as 1.6 x 10*s~'. Again,
numerical results discussed above clearly indicate the influence of the initial and
boundary conditions on formation and final geometry of the ASB.

2. Transition from isothermal to adiabatic deformation

The localization of deformation in the form of ASB is observed in thin-walled
tubes when the nominal strain rate exceeds a certain value. Obviously, a transition
exists between pure isothermal and pure adiabatic regimes of deformation. This
transition depends, in the first place, on geometry of the deformed body and
on effectiveness of the heat extraction from the heated zones. When correct
boundary and initial problems are posed, it is possible to estimate the range
of strain rates within which the transition occurs. Preliminary attempts to find
an approximate strain rate range of transition were reported by Kaminski [15]
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and Litoxski [27]. In the first case, numerical calculations were performed for
the length of tube L = 30mm and initial temperature 673K, and three cases
were studied: isothermal, adiabatic and mixed. Three nominal strain rates were
assumed: 0.01; 0.1 and 1.0s~'. The final results of those calculations indicate
that the difference between adiabatic and mixed cases is substantially reduced for
shear strain rate of 1.0s=!. A similar calculation was performed by LiToNskr [27]
for a thin-walled tube, /. = 5.0 mm, and with the heat sinks at the ends, again the
initial temperature was assumed 7y = 673K, and four values of nominal strain
rates were considered: 0.01; 0.1; 1.0 and 10.0s~!. Similar results were produced
for the complete case (heat conduction included). Tt was found that the transition
must occur between nominal strain rates 0.1 and 1s7!.
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IF1G. 1. Critical values of shear strain rates (/5 )er as a function of tube length L; + — copper,
+ — aluminium, o - steel.

A more exact transition analysis for a thin-walled tube was performed more
recently by Oussouappr and Kreraczko [34]. The finite difference technique
has been applied with relatively exact constitutive relation, and calculations were
carried out at different nominal strain rates in shear from 1.0s7! to 10371, at
T, = 300 K. In addition, the effect of length on the isothermal/adiabatic transition
was studied. Since the heat sinks were assumed at the tube ends, the transition
was defined as the maximum of partial derivative of the temperature gradient
with respect to the nominal strain rate

@ s |
dlog [, \07
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where 2 is the axial coordinate; — /2 < o < /2, T is the absolute temperature
and I.‘,l = ([, /dt is the nominal strain rate in shear, I, = (r/L)p, r is the
mean radius and ¢ the angle of twist. It was found that the transition can be well
defined by the maximum value of &. The critical values of (/) are shown in
Fig.1 as a function of L. The results support quantitatively the physical intuition
that the critical strain rate increases in proportion to the thermal conductivity,
which is the lowest for steel and the highest for copper. When L decreases from
10mm to 1.0mm, the critical strain rate increases approximately twofold for all
three materials which were studied.

Those results clearly indicate the importance of the boundary and initial condi-
tions, in both experiment and numerical analysis, not only in the case of transition
isothermal/adiabatic, but also in formation of ASB.

3. Shear strain of instability

The earliest studies on the onset of the shear localization were limited, by
analogy to Considere condition of instability in tension test, to the load insta-
bility dM/dp = 0. The condition dAM/de = 0, where M is the torque and ¢
is the angle of twist, gives possibility to determine the critical instability strain
if a specific constitutive relation is assumed. [t was confirmed by LiToNsk [26],
by numerical application of the flow localization model (MARCINIAK - KUCZYNSKI
[30] approach), that the onset of instability corresponds to the maximum load,
that is the condition d M/ /d> = () was confirmed as the onset of instablity. Many
authors derived formulas for a critical strain using different empirical consti-
tutive relations; a review of those derivations was published by DorRMEVAL [6].
Experimental confirmation of the onset condition d A /d = 0 was provided for
a low-alloy structural steel by MarCHAND and Durry [29]. A high speed photog-
raphy combined with SHTB technique was applied in those studies.

Since up to the maximum of torque the shear deformation is uniform, the
condition for load instability reduces to the formula

dr
@3.1) 75 =0
Since many authors use constitutive relations in the form of multiplication func-
tion

(3.2) r = [T () (D).

a more general analysis of the condition (3.1) will be given, as compared to the
earlier one by KLepaczko [20]. If the mechanical equation of state is assumed
and the history effects are neglected, one can write

dr ar oT dT Jr dr
dl al' )y daT ) - dl Ol ) 5. dl
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then the condition (3.1) leads to

or Jdr dT or dr
4 — + | — — 4+ (| — — = (.
(3 ) (()1)[]. (0T>[“i' dl ((-)j-),[.l.(lf 0

Condition (3.4) can be satisfied only in very specific conditions of deformation.
One of them is the adiabatic process of deformation, then

(3.5) ﬂ = (i{> ’
dl d1" ) ADIABATIC

Condition (3.4) can be analysed for a variety of deformation histories I(I') and
T(I'), but the simplest case is usually limited to the constant strain rate, in general

Jr Jar dT
3. =] + —.) (—) = 0.
(3-6) ((’)I )'1' ((’)’1 F\dl') 4
It is important, then, to have an estimate of the adiabatic increase of tempera-
ture 7,(1") and (07 /d1) 4 due to plastic work converted into heat. Assuming

constitutive relation (3.1), it follows from the principle of energy conservation
that

(3.7)

(rl"l) _ 1= (T. 1)]f|(1)f2(/)f3(1)
dl [1([)( ')

where (7. I') is a coefficient taking into account the stored energy in the material,
p(T) is the mass densiy of the material and C',(7") is the specific heat at constant
pressure, both p and (', are functions of temperature.

The partial differentials can be found after (3.2) as follows:

T/ rr
T

38 —

( ) ((-)l‘)i'.’[‘

(UT)
;) f TorT

Introduction of (3.8) into condition (3.3) yields

1 df2 1 NN [dT 1 d/3
3.9 ( ) L=y (—‘> (_w> + . — ] =0.
(3.9) Ky \ar NYNIT/ Ndl )4 ey \orT
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After elimination of (d7'/d "), using (3.7), the condition (3.9) is transformed into
the following form:

1 dfr Jf 1-¢
6100 25 (57) + 200s() () some s

1ofafsy (dl
fmh(mﬂ(”) :

If the strain rate is constant, (d I"/(l ") = 0, condition (3.10) reduces to

where [ is the strain at the onset of instability.

/2
or

1-¢ _
p(T)C(T)

@3.11) +m1huwwﬁ

Since only f>(/.) depends on the critical strain, the explicit equation for f>(17.)
is

1/2
. dfa/0l ")
(3.12) .mm=[(”‘)“’( ].
(0 f,/0T) (D) =)
The expression [—1]'/2 has real and imaginary parts. Inversion of />(1)) makes
it possible to find /'

1/2

EhE) I.o= f7' [-An. i‘.'/')]

where A is the expression in the square brackets of (3.12). Existence of the
real f>(1%.) is possible only if /1 is negative. Since p, (', (1 — () must be always
positive, and the function of strain rate sensitivity, f3(/7), is also assumed in this
case to be positive, the only term which may be negative is () />/01)/(d [, /0T).
The most common case is the thermal softening which leads to negative value of
df1/0T, of course, if dfy/d1" is at the same time positive. Another possibility
is if the tangent modulus 0 f;/d1" is negative and at the same time there is no
thermal softening. The role of a positive rate-sensitivity is quite interesting, that
is if f3( 1") is an increasing function of strain rate /. The positive rate-sensitivity
has a negative effect on the onset of adiabatic instability, that is, /. is reduced
when strain rate is increased. The positive rate-sensitivity increases production of
plastic work converted into heat. However, after the critical strain /. is reached,
I" > I'., a positive rate sensitivity diminishes local strain gradients in ASB. Since
the assumption was made (d l"/(/l') = 0, function [3(/") plays the role of a
parameter, it must be constant but rate-dependent.
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In many publications constitutive relations are employed which fall into the
class of Eq.(3.2). For example, LitoNskI [26,27], Kaminski [15], COSTIN et al.
[5], and others, used in numerical studies the following relation

(3.14) r=B0—ar) (146 0)" 1

where n is the strain hardening index and m is the rate sensitivity, a.b, B are
empirical constants. In this case the thermal softening term has been linearized.
Other authors employed the following constitutive relation

(3.15) r=a(2) () (=
7) \Toy) \T,

where B,v,n.m are, respectively, plasticity modulus, temperature index, strain

m

hardening index and logarithmic strain rate-sensitivity, 7, Iy and I"y are normal-
ization constants. Relation (3.15) falls in the class of nonlinear liquids since 7 = 0
if I' — 0. This relation was used many times for both the numerical solutions
and perturbation analyses, for example MoLiNaRrT and CLiFTON [33], Buisson and
MOoOLINARTI [2], FRESSENGEAS [8], SHawkI and CLIFTON [39], and others.

In order to discuss further the condition of adiabatic instability, it is assumed
that the flow stress is represented by a more specific relation

(3.16) r= B ™,

where (1) is a known temperature-dependent plasticity modulus. The condition
(3.9) yields the following relation

o D on 1 -
(3.17) w1 4 2 (_) —
) JT ) poC ,(/)
it is assumed that the mass density py and the coeflicient of stored energy remain
constant. From (3.17), the critical shear strain at the onset of instability is

n+1

npoCL (1)
o T ol
1-Q) T | —==
(1-0) ( m)

A positive role of strain hardening in delaying the instability was well documented
in early publications. Since the specific heat is an increasing function of tempera-
ture, it also delays the instability. The most important factor is the mathematical
form of —(0/07T), especially in the case of post-critical analyses.

Adiabatic increments of temperature at the point of instability, J7 /01" = 0, are
usually not very high, and constant n and i are acceptable. Constant values of
and 7 are only the first approximation for small increments of temperature. Since

(3.18) =
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it has been shown by HARTLEY ef al. [12], and later by MARCHAND and DuUFFyY [29],
that post-critical temperature rise for steels is of the order 425 K < AT < 595K
at the central part of the ASB, the constancy of n and m is a very crude approxi-
mation. A similar conclusion was reached by JOHNSON [13] by numerical analysis
of a thin-walled torsion test specimen. The thermal softening —(0/3/J7") was
assumed to be linear in the first calculations of the post-critical deformation of
copper, and bilinear in the second one. Substantial differences were revealed in
the evolution of stresses in both stages of deformation, at the instability points
and during localization. Another paradox of the temperature-independent loga-
rithmic rate sensitivity, if the thermal softening (07/07") is negative, lies in the
fact that, according to formula (3.16), the stress differences at two constant strain
rates increase when temperature is decreased, what is in complete contradiction
to the real behaviour of metals, KLEraczko [16]. A more rational approach is to
use some form of the Arrhenius relation to take into account, at the same time,
thermal softening and temperature-dependent rate sensitivity; see, for example,
SHAWKI and CLIFTON [39] and also Burns [3].

Because of the complexity in formation of the ASB, the analytical studies in
this area, although important, have a qualitative character, mostly due to simplis-
tic constitutive relations. The importance must be focused on a full numerical
approach with physically-based constitutive relations.

4. Some results of numerical studies

Among publications on numerical analyses of ASB, only few take into account
the fully nonlinear system of governing equations. However, the crucial problem,
even for the complete formulation, is the choice of constitutive relations.

Two boundary value problems are most interesting from the point of view of
experimental techniques:

1) fast torsion of a thin-walled tube (interesting due to SHTB technique),

ii) fast shearing of a layer of finite height (interesting due to new experimental
technique described in the next part of this paper).

A relatively complete analysis of torsion was reported by Burns [3]. A nu-
merical study of a layer as a complete nonlinear problem, fully coupled with
temperature, was reported by KLErACzKO er al. [23]. The fully coupled problem
was formulated including heat conduction, changes of specific heat as a func-
tion of temperature, complete effects of temperature on mechanical properties
and inertia. A layer with geometric imperfection was assumed, and the top and
bottom of the layer were adiabatically insoluted. A complete phenomenological
constitutive relation has been used in those calculations. A more exact analy-
sis and discussion of this constitutive relation is published elsewhere, KLEPACZKO
[17]. The fully temperature-coupled constitutive relations are as follows

(4.1) r=BO) (I + DYy~ o) 4 <,/(H)( I ""0)>-
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where # is the homologous temperature, = ’1‘/’]‘,,1, and 7,, is the melting
temperature of a material under consideration, 7 is the pseudo vmosny and
< + > Is the operator, < +>= 0 if I < Igand< s=1if I > In, /nls
the threshold strain rate. Both the strain hardening index » and logarithmic
rate sensitivity mn are coupled with temperature. For BBC metals »: and » are
expressed as functions of # as follows:

f
n(6) ngﬂ( ) .
1o

m(f) = afexp(—bf) + apt" .

(4.2)

where ng is the strain hardening index at 0° K, and «, 0, ag are constants, i(f) is
temperature-dependent shear modulus of elasticity

(4.3) p(0) = jio [1 — fexp (9;4 (] - %)N :

where ji is the shear modulus at 0K. All constants for two steels (1018 CRS
and 1020 HRS) are identified in the paper which was mentioned above. Varia-
tion of specific heat was taken into account according to the Debye formulation.
Geometric imperfection was assumed in the form

(4.4) w(y) = wy {] + & sin [n (% - 2’%)] } :

where wy is the layer thickness and £ is the layer height, 4 and ¢ are geometry
parameters. Equations of momentum, balance of energy with a suitable Fourier
constant for heat conduction and compatibility condition were assumed in their
standard form in those calculations. Numerical calculations were performed us-
ing the implicit finite difference method. The duration of the successive time
increments was chosen in such a way that the algorithm was unconditionally sta-
ble. The following boundary conditions were assumed: the bottom surface of the
layer was fixed, and a constant velocity " was assumed at the top, a steady state
process.

The input for those calculations was the nominal strain rate in shear I n = V/h.
The output of calculations consisted of a detailed spatial history of all important
physical quantities like shear stress 7(y. 1), strain /(. 1), strain rate I"(y. 1), abso-
lute temperature 7'(y.t) and local velocity v(y. ). Thus, the simulation provided
a whole dynamic history of the ASB development at different nominal strain
rates I.‘,l.

Two values of critical nominal strains were evaluated, the instability strain /.
associated with the maximal force and the final localization strain /¢ defined
as follows:

(4.5) I, — loc when lim I'p= .
]‘—O
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where [, is the local strain rate in the strongest section of the layer and /'p
is the local strain rate in the cross-section where localization occurs. Numerical
solutions obtained for two steels within the range of nominal strain rates 10>s~! <

[, <10%s! (1018 CRS and 1020 HRS) have shown a minimum of both values
of I,, i.e. I'. and I'Lgc, at the nominal strain rate ~ 2 % 103s~1. Values of I o¢

were obtained numencally using the condition ILOL = 10? l,( In the range of
1,1 lower than I“ 2 % 10%s~! both nominal strains /. and /i oc decrease
when [ . is increased, the trend with agreement to formulas (3.12) and (3.18).

In the range of the nominal strain rates higher than I . =2x10%s~! an increase
of I'. and I' gc was observed. Since calculations were performed twice, without
pseudo-viscosity 1 = 0, and with pseudo-viscosity, the positive effect of excessive
strain rate-sensitivity on the localization is obvious. The ratio /' oc/ /. Increases
at the higher rate if the pseudo-viscosity is included into calculations; if only the
logarithmic rate-sensitivity is taken into calculations, the ratio /1 oc/ /. increases
only slightly as a function of I",. Tt has been, thus, shown in the paper discussed
above that for a given material and a given geometric imperfection, there exists a

domain of nominal strain rates l.',‘ where development of the catastrophic shear
in the form of the ASB is the most likely to occur. A similar minimum of /'
was also found by WrIGHT and WALTER [43] using the finite elements technique
and confirmed later by WRIGHT [42] by an approximate method. In both cases
the initial temperature defect was assumed. Attempts to find the final thickness
of ASB after those numerical results were not quite successful. Although it was
found that ASB were formed, the asymptotic width was difficult to estimate since

at I.'LQC = 10? 1",L the evolution of ASB was still not terminated. One of the
reasons why it was difficult to specify a finite thickness of the ASB is the excessive
strain hardening introduced by the term /™(/) at large strains, even when the
correct relation for n(7") was used.

As a result, a completely new series of numerical calculations were under-
taken, but this time a physically based set of constitutive relations has been used.
Here only some results will be discussed, a more thorough of that study will be
given elsewhere, KLeraczko and RezalG [22]. The constitutive modeling is repre-
sented by a consistent approach to the kinetics of macroscopic plastic behaviour
of metals with BCC and FCC structures, KLepaczko [18,19]. The constitutive
formalism is used here with the one state variable which is the total dislocation
density p. Itis assumed that plastic deformation in shear is the fundamental mode
of deformation. It is assumed that at constant microstructure the flow stress 7
consists of two components: the internal stress 7, and the effective stress 77, thus

(4.6) r=r7, [h (F.7). 1".’1']STR +7 (1 '/‘)STR :

where (/. 1) are the histories of plastic deformation, /" and I" are, respectively,
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plastic strain and strain rate. The internal stress 7, is developed by long-range
strong obstacles to dislocation motion, and the effective stress 7~ is due to ther-
mally activated short-range obstacles. In fact, the internal stress 7, must be also
rate- and temperature-dependent via the dynamic recovery processes. To de-
scribe completely the strain rate and temperature effects, including evolution of
microstructure and strain hardening, an evolution equation must be defined. In
this case a simple evolution equation has been adopted which is adequate to
account for strain hardening in mild steels, KLeraczko [17,18],

dp -
(4.7) # = My = k(I T)(p = po).

where pg is the initial dislocation density and £, ( I".’I‘) is the annihilation factor.
The multiplication factor My is related to the mean free path A of dislocation
storage by the formula My = 1/0A, where b is the modulus of Burgers vector.
For constant temperature and strain rate, the explicit form for p can be found
after integration of Eq. (4.7),

(4.8) = g b il \ [1 —exp (4;,(1"//')1‘)] .

f»',,( .l,, l}
If the strain rate and temperature are not constant, like in the case of ASB
formation, the evolution equation must be numerically integrated to find the
current value of p. If p is found, the internal stress is also found from the
relation

(4.9) .= ap(1T)b/p .

where a is the dislocation/obstacle interaction constant, and p(7"), the shear
elasticity modulus, is specified by Eq.(4.3). Annihilation factor k, is given by the
formulas

by = ko for 0<T <T.
and
oy 2m(T=T2)
o

i

(4]0) ""u = k(] for /, < T < "/-.,,, .

A constant value for &, = ko for 0 < 7" < T. is a good approximation for miid
steels which have the ability to dynamic strain ageing. Equations (4.7) to (4.10)
characterize completely the evolution of the internal stress 7,,.

The effective stress 7= can be obtained from the generalised Arrhenius rela-
tion, KLepaczko [17, 18]

AG (=T p)
kT

(4.11) = vp(pm.T) lexp -
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where ;. is the frequency factor for the kinetics of double dislocation kink, and
AG) is the free energy of activation for this micromechanism. Inversion of
Eq.(4.9) leads to the explicit formula for the effective stress, with G, = 21,

kT AR
* % ; vy

In this case the universal form for the free energy (/. was employed, KOCKS er
al. [24],

* mMa
(4.13) AG =211, {1 = (T—) }
0
with
(4.14) o= fp,

where 2/, is the energy of the double kink formation and 7 is the Peierls stress

at 0K, KrLeraczko [19]. The frequency factor v is assumed in the form
o2 h

(4.15) vi = Joub“v,po |1 + — exp

I )'0*’ (mﬂ '

where [y is the initial fraction, Eq. (4.14), p,. is the mobile dislocation density, 1/,
is Debye frequency, fi, T, are constants. The set of Eqs. (4.12) to (4.15) provide
complete evolution of the effective stress 7~

This constitutive modeling involves two kinds of constants, the absolute phys-
ical constants and the constants also based on physics but specified for a par-
ticular metal or alloy. The complete discussion of all constants will be given
elsewhere, by KLepaczKO and REZAIG [22], but some basic values are given be-
low My = 1.2x 100%em=2; 7. = 558K; 7, = 300K; mg = 1.47 x 1074,

Iy =10%s71; Gy = 0.315eV; l]— 9.23; f1 = T7; 75 = 520MPa; n = 2; fp = 0.05;
po = 6.2 % ]Ohcm”; q = 4/3; p = 3/4. Those constants are representative
for a mild steel XC18 (French Standards) after annealing, 0.17% C; 0.58% MN;
0.21% Si.

Numerical calculations were performed using a similar finite difference pro-
cedure outlined previously, but the height of the layer was assumed to be /1 =
2.0mm and the number of elementary sublayers was 100, so that the elementary
sublayer had the thickness . = 20 pm. With such a value of A, an analysis of
the terminal thickness of the ASB could be attempted.

Results of seventeen computer simulations for different nominal strain rates,

80s~! < I, <4.5x10% !, will be briefly presented here. The nominal instability
strain /. and the nominal localization strain /¢ are shown as a function of
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F16. 3. Nominal values of instability strain /. in expanded scale as a function of the nominal

strain rate [, numerical simulation for XCI8 steel.

log I in Fig. 2. The minimum of the instability strain /. is found again in the
region of nominal strain rates above 1025~ log 1", = 2.3, I, =~ 200s~!. This is
visible better in Fig.3 with expanded scale of .. The stabilizing effect of strain
rate and perhaps inertia are clearly shown in Fig. 4, where the ratio 1./l oc

is plotted as a function of log I",. The ratio begins with a value around 2.0 at

[, = 10%s~! and ends with ~ 5.0 at I, ~105s~'. Around the nominal strain
rates ~ 5x 10*s~! the maximum temperatures at the center of the ASB are found
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to be quite close to the melting point for iron 7;,, = 1785K. This is why the last

point of localization strain /] o¢ calculated for the highest /7, is on the same
level in Fig. 2 as the preceding point, /1 oc = 2.5. A high probability that at the
latest stages of material separation the temperature exceeds the melting point
was suggested by MAkeL and WiLspORF [28]. It was found after examination of
fracture surfaces formed during tensile tests of high strength steels that the tops
of the dimples separated by a fast shearing are spheroidized, apparently due to
melting.

A
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! 2 3 4 5 log(l’)

F1G. 4. The ratio of ./ 1 oc as a function of log [, numerical simulation for XCI8 steel.

The most sensitive parameter for numerical analyses of the ASB is the final
width of the band. In the present analysis a gradient method was assumed to
define the final width of shear band. The profiles of shear strain /'(y) and

temperature 7'(y) as shown in Fig.5 and Fig. 6 for ', = 103s~! and for different
levels of the nominal strains /', served as a basis for all strain rates analysed
to find strain and temperature gradients ¢,(y) and g7(y) at different levels of
the nominal strain. The strain gradients ¢;-(y) obtained after such procedure for

1",1‘ = 10%s~! at different levels of nominal strain are shown in Fig. 7. The width
of the ASB has been defined as an asymptotic value of the distance between the
gradient maxima,

(4.16) lim Ay, = 2a or im Ay, = 2a,

r'—noc I'=Tioc
where Ay, is the distance between the gradient maxima, both for strain and tem-
perature. Figure 8 shows how the asymptotic half-value « of the ASB thickness
was determined. The dashed line shows terminal evolution of the band thickness.
The same procedure was applied to the temperature gradients. The final result
is shown in Fig.9 where the asymptotic values of the shear band width 2« is
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plotted versus logarithm of the nominal strain rate, log I".. The points illustrate
the values of the band width obtained by deformation gradients, asterisks are
obtained by the temperature gradient method. Differences between those two
approaches increase when the nominal strain rate decreases. This is due to a
more intensive effects of heat conduction at lower strain rates. The shear band
widths were found to have a minimum of 2a,, ~ 140pm at 17, =~ 3.2 x 103s71,
Figure 9 shows also that at lower strain rates the shear bands are more diffused.
At high strain rates inertia and rate sensitivity may again increase the width of
ASB. However, the dimensions of the widths are in general agreement with ex-
perimental observations for annealed mild steels, including the XC18 one. Some
steels with a high yield stress and low strain hardening may substantially reduce
the ASB widths. For example, MARCHAND and DuFFy [29] have found the shear

band width about 20 um for HY-100 low alloy steel tested at Iy =1.6x103s"1,

600
e defarmation

o temperature
5001

2a cr [pm]

400
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2001
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100 |

0 1 1 1 1
i 2 3 4 5 log(f")

I'1G. 9. Evolution of the ASB band thickness as a function of the nominal strain rate;
o — analysis based on strain gradicnts; * — analysis based on temperature gradients.

Seventeen computer simulations of deforming layer with thickness /i = 2.0 mm
and with adiabatic boundary conditions, for seventeen values of the nominal

strain rate [, 80s~! < 1.‘,, < 10°s !, have revealed existence of the strain
rate range within which the development of the catastrophic shear is the easiest.
This region lies around the nominal strain rate of 10°s~'. Also this study has
confirmed existence of the minimum of both the instability strain and the final
localization strain, reported earlier by WRIGHT and WALTER [43], and KLEPACZKO

et al. [19]. The minimum of the ASB thickness was also revealed at the nominal

strain rate I, ~ 3.2 x 103s~!. Evolution of the critical values /., I'.oc and 2a
at different nominal strain rates found by numerical simulation has provided a
strong argument for experiment in this area.
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S. New experimental technique of impact shearing

The torsion tests of thin-walled tubular specimens are a very effective method
to study advanced plastic deformation, for both quasi-static and dynamic loadings.
In the literature three types of torsion devices are reported: the rotary flywheel
machines, the high-speed hydraulic testing machines and the SHTB. All those
systems of loading have their limitations. For example, the SHTB technique
has a strong limitation in maximum strain (the net angle of rotation), maximum

nominal strain rate of the order I =~ 2 x 103s~! (for a standard specimen
length) and, finally, the variation of strain rate during the test are quite high.
At high strain rates the finite risetime of the incident wave may cause relatively
large specimen deformation in absence of the mechanical equilibrium between
the incident and transmitter bar.

Another experimental technique very useful in material testing is the dou-
ble shear test introduced by FErRGUSON et al. [7] and perfected by CAMPBELL
and FERGUSON [4]. Since one of the promising specimen geometries to study
dynamic plasticity and ASB is the Double-Notch Shear specimen, it has been
decided to use a similar concept in shear testing at medium and high strain
rates. Originally, Campbell and Ferguson applied the loading scheme consist-
ing of the incident Hopkinson bar and transmitter Hopkinson tube to study the
temperature and strain-rate dependence of the yield stress of a mild steel. Inter-
pretation of oscillograms was the same as that for the Split Hopkinson Pressure
Bar (SHPB or original Kolsky apparatus). Due to combination of a small gage
length, L, = 0.84mm, that is the shearing part of the DS specimen, and a
standard risetime in the incident bar, ¢, = 20ys, relatively advanced plastic de-
formation was reached during the risetime period. This negative feature of the
bar/tube configuration was recently discussed by KLEraczKO [21].

It was decided, then, to develop a new experimental configuration based on
a Modified Double Shear specimen. The new experimental technique combines
several positive factors already experienced with the other setups. This new
technique has been described in some detail elsewhere, KLEraczko [20, 21]. The
scheme of the loading setup and measuring devices are shown in Fig. 10. The
fundamental change has been introduced, the direct impact is applied to load
the MDS specimen. In this way the risetime in specimen loading present in
the bar/tube configuration is practically eliminated. The flat-ended projectiles
of different lengths made of maraging steel and of diameter ¢, = 10mm are
launched from an air gun with desired velocities V5, 1 m/s < 1, < 200m/s. The
impact velocity is measured by the setup consisting of three sources of light, fiber
optic leads 1, 2, 3 and three independent photodiodes. The time intervals of
dark signals from the photodiodes generated during passage of a projectile are
recorded by two time counters. The setup with three light axes makes it possible
to determine acceleration/deceleration of a projectile just before impact thus, the
exact value of 14 can be determined.
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F1G. 10. New configuration of experimental sctup developed in LPMM-Metz; P’ - projectile,
S — double shear specimen, L — source of light, 1, 2. 3 - fiber optics, £ - photodiodes,
TC1, TC2 - time counters, £ — optical extensometer, T} — strain resistance gage,

S — DC — supply unit, A1 - amplifier, DO - digital oscilloscope, PC' - microcomputer,

R — \N'Y" — recorder or graphic printer.

Axial displacement {/,.(1) of the central part of the MDS specimen is measured
as a function of time by an optical extensometer /., acting as an non-contact
displacement gage. The optical extensometer reacts to the axial movement of a
small black and white target cemented to the central part of the MDS specimen.

Axial force transmitted by the specimen symmetric supports can be determined
as a function of time from the transmitted longitudinal wave ¢ (f) measured by
strain gages Ty, DC' supply unit S; and amplifier ;. All electric signals are
recorded by digital oscilloscope (), and next stored in the computer hard disc.
In addition, a hard copy of the recorded signals can be produced with an X'}’
recorder or a printer. This new configuration of experimental setup permits a
wide variation of the nominal strain rate. Direct determination of the axial dis-
placement enables also a more exact evaluation of deformation history, a very
important piece of information in development of adiabatic shear bands. After
elimination of time, a force-displacement curve can be constructed for the MDS
specimen, and next (/") or /'(I") curves can be found. The experimental tech-
nique described above has proved to be quite effective and flexible for material

http://rcin.org.pl



222 J.R. KLEPACZKO

testing at high strain rates as well as for studies of adiabatic shear bands. Detailed
description of stress calibration of the MDS specimen by /12 is given elsewhere,
KLepaczko [21].

The net displacement 6, imposed on the central part of the MDS specimen is

t

(5.1) 8.() = 6.,(1) ('0/5,,\(0):10.

0

where é,(t) is displacement measured by the optical extensometer/displacement
gage shown by F in Fig. 10, ¢,.(¢) is the transmitted wave signal, measured by the
strain gage station 77 cemented on the transmitter tube surface, (g is the elastic
wave speed in the tube. If /i is the deforming gage length of the MDS specimen,
the nominal shear strain can be found from the formula

t
1
(5.2) I'(t) = ;A [6_».(/) - Co /;‘T(ﬂ) (/z}] .
! ,
0
The nominal strain rate can be also found,
. _ 1 [dé,
(5.3) = [ 2 c(,;.,.(/)] |

In the elementary approach it is assumed that the transmitted signal <, (/) in
the Hopkinson tube is sufficient to find the axial force transmitted by the MDS
supports into the tube

(5.4) F(l) = EAge, (1).

where Ajp is the cross-section of the tube and F£ is Young’s modulus. The
cross-section Ay is related to the external and internal tube diameter

Ap = % (1)2 - (12) ‘

The shear stress in the MDS specimen can be found from the formula, KLeracz-
KO [21],

1 (1)
ab ~
where ab is the active cross-section of one side of the MDS specimen, ¢ is the

calibration factor, £ > 1 and I is the axial force in the Hopkinson tube. The
final formula for the shear stress is

(5.5) (1) =¢

ﬁ (1)2 - (12) €E
(5.6) (1) = Sl s (1).
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Thus, the shear stress in the MDS is proportional to the current signal of
the transmitted longitudinal wave <,.. All those relations have been derived
using the elementary wave theory of longitudinal elastic waves. In addition, it
was assumed in derivation of Eq.(3.14) that the local pressures applied by MDS
specimen at the end of the Hopkinson tube are transmitted uniformly at the
distance = = 3D; this is the dynamic St. Venant rule. Preliminary FE calculations
by a dynamic code confirm this assumption when four S gages are cemented
with the circumferential distribution of 90°. At the impact velocity V" ~ 100 m/s
time to fracture of the MDS specimen is relatively short, for example, for /I, =
1.0 the time to fracture is 7o = 20 ps, it gives the wavelength A = 100 mm and the
relative wavelength is A\ = 2A/(D —d) = 11.1; D = 32mm and ¢ = 14 mm. Those
wavelengths indicate that some geometry dispersion may be present, but the
so-called Pochhammer - Chree vibrations, and of course the geometry dispersion,
are much smaller in a tube of the same external diameter than in a solid bar.
A more exact analysis of wave dispersion in tubes is in progress and will not be
discussed in this paper.

Another important parameter is the length of projectile L,. It is desirable to
reach the time to fracture ¢, during the first cycle of elastic wave propagation in a

projectile. If the nominal strain rate /", is assumed and the critical shear strain
I';r can be estimated, the length of the projectile L, which assures the contact
with the MDS specimen up to fracture can be found from the formula

[er

(5.7) L, = —%Cj.
2T
For example, when 7, = 1.0 and I, =5 x 10°s~!, the projectile length
is reduced to L, = 50 mm, but for 1’““ = 10%s~! the length should be L, =

2500 mm. It appears that at lower strain rates it is almost impossible to deform
and fracture the MDS specimen during the contact time ¢, = 2L,/Cy. The
longest projectile used in this study was £, = 300 mm.

Nevertheless, the elementary wave theory can be applied, as the first approach,
to obtain a complete information on the whole process of deformation and frac-
ture of the MDS specimen; the following data can be obtained from one test:
T(t); 1'(t); f'(l); (") and I.’(l“). Since a two-channel fast digital oscilloscope
was used (sampling rate 1 GHz), the useful portion of the digital memory could
be taken for analysis to determine all the functions needed. A computer program
was made to calculate all those functions.

6. Preliminary results of experiments

A preliminary series of experiments was performed on low-alloy steel XC18
(French Standards) of the following composition in %: C 0.17; Mn 0.58; Si 0.21;
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S 0.032; P 0.024. The specimen material was supplied in the form of cold drawn
bars DIA 12 mm. After precision machining, all specimens were vacuum annealed
at ~ 1000K for 1 1/2 hrs and furnace cooled. Metallographic examination showed
a uniform microstructure with evenly distributed grains of ferrite. The tests on
MDS specimens were performed within two ranges of strain rates: medium rates

102s~! < I, < 103s~! with closed-loop fast testing machine and high rates

10%s=1 < I, < 105s~! with the new experimental technique. One of oscillo-
grams obtained with impact velocity V' == 35m/s is shown in Fig. 11. The upper
trace comes from the strain gages on the transmitter tube and the lower one from
the optical extensometer. It can be seen from Fig. 11 that, after the upper yield
peak, there are small oscillations on the upper trace; those longitudinal vibrations
of the transmitter tube were also revealed by the FE dynamic calculations.

hp stopped
remote listen

voltage

1 | 1 L 1

I 1 I
-90.0000 us 160.000 us 410000 ps

I'1G. 11. Oscillogram from the test at impact velocity Vi, = 35.08m/s; upper trace is the signal
from SR station T'1; lower trace is the displacement signal from the optical cxtensometer.

Since the length of the projectile was L, = 180mm and ¢, = 74s, around
three full cycles of wave reflexions had occured during specimen deformation.
They are recognizable in the oscillogram. As a whole, both the upper and lower
yield stresses can be found, as well as the plastic flow curve up to fracture. The
signal from the optical extensometer shows that the displacement rate of the
central part of the MDS specimen is almost constant. The optical contact was
lost before the specimen fractured.

A number of MDS specimens was tested at different impact velocities from
30m/s to about 100 m/s. The deformed part of the MDS specimen had the follow-
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ing dimensions: /» = 2.0mm, « = Smm and b = 6.0mm. Value of /i = 2.0mm
was the same as the assumed thickness layer in the numerical study. In addi-
tion to the dynamic plasticity parameters like the upper and lower yield stress,
KLeEraczko [21], the nominal strain to fracture and the total energy to fracture
by ASB were determined at impact velocities 1, =~ 30m/s, the nominal strain

rates are, respectively, /', = 1.5 x 104s~! and 5 x 10*s~!. Estimated value of

the localization strain ' o¢ from the five tests performed at "= 1.5 % 10%s!
is I'toc = 2.60 (from the formula (5.2)) and from three tests performed at
I~ 5% 10!, I'Loc ~ 0.85. This surprising result is in complete contradiction
to the numerical results shown in Fig. 2. The experimental mean values for /' o¢
are perhaps slightly too high because of a small additional displacement which
has occurred due to some plastic deformation of the specimen supports. How-
ever, the two groups of specimens tested at two impact velocities were deformed
in a similar way. The most plausible explanation of this severe discrepancy is
the existence of different initial and boundary conditions in the form of stress
concentrators in the corners of the MDS specimen. In addition, the numerical
simulation was performed for the sready state of shearing, whereas the experi-
ments were performed for the case of impacr shearing where accelerations play
an important role. In general, all stress concentrators activated during impact
loading will change to a high degree the formation and development of the ASB.
At high impact velocities stress concentrators and inertia will ease the shear band
formation. This hypothesis must be again verified in the future.

300
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I'1G. 12. Energy of fracture for MDS specimens tested at high nominal strain rates as a function
of log 15, XCI8 stecl.

Non-direct confirmation of this finding was attempted by energy analysis. The
total energy to fracture was determined for all specimens tested at high strain
rates. The result is shown in Fig. 12. The tendency is obvious, the total energy
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of fracture decreases as a function of log I".. The trend is not so strong in com-
parison to changes of /' o¢ because of a positive strain rate-sensitivity. A similar
observation concerning energy consumption during fracture by ASB formation
was reported by PINTAT er al. [35]. The so-called “hat” specimens made of two
plain carbon steel of the garde 1010 and 1045 were deformed with SHPB at dif-
ferent velocities, 5.5m/s < 1y < 8.3my/s; strain rates are difficult to estimate,
probably around 10%s~!. Tn both cases the fracture energy decreased with the
loading velocity, more than twofold in the cases of the softer versions of those
steels, that is for annealed states. In the logarithmic scale reduction of the energy
would be very abrupt.

7. Concluding remarks

There is a general agreement that the critical instability strain is related to
the zero hardening condition, d7/dI" = 0, of the adiabatic stress-strain curve.
The post-instability behaviour is much more complex. In addition to material
behaviour, initial and boundary conditions could play a decisive role in devel-
opment and formation of ASB and also in fracture. The steady-state solutions,
like the numerical one reported in this paper, or analytical ones, are very useful
tools in ASB studies, they can depict the late stage morphology during ASB de-
velopment as a function of initial and boundary conditions. However, the steady
state solutions neglect the stress concentrators which are always present in real
situations including the experiment. It has been shown in this study that the
stress concentrators and perhaps inertia invert the post-localization behaviour as
a function of the nominal strain rate. To study further those effects, a variety of
experimental techniques must be applied with well specified initial and boundary
conditions. The next inevitable step is a superposition of fracture dynamics on
ASB morphology. Comparison of all available approaches for the same or similar
materials may provide a data base on development and formation of ASB.

Up to now, majority of analytical and numerical solutions have been obtained
for rigid-viscoplastic constitutive relations. When elasticity is included into anal-
yses of the ASB, the post-instability behaviour will change in a manner similar
to fracture dynamics where the elastic energy in the loading train interferes with
a crack. In addition, the wave dynamics makes the problem still more complex.
Because of rapid interactions between the ASB and elastic boundaries, some 0s-
cillations can be excited, WRIGHT and WALTER [44]. At very high strain rates
where a local wave interaction is expected, the development of the ASB may be
controlled by elastic unloading waves, for example FRESSENGEAS [9].

Another important problem, not addressed in this paper, are post factum met-
allographic examination of ASB. Electron microscopy, both in transmission and
scanning, is a very important tool, for example MEYERS et al. [32], GiovaNoLa [11].

Since morphology of ASB is closely related to several branches of mechanics
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and materials science like plasticity, thermodynamics, fracture mechanics and
metallurgy, a concerted action must be pursued to clarify the remaining problems.
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Many-sphere Oseen hydrodynamic interactions

I. PIENKOWSKA (WARSZAWA)

IN TS rAPER the hydrodynamic interactions of N rigid spheres, immersed in an incompressible,
unbounded fluid, are considered. The velocity and pressure ficlds of the fluid obey the Oseen
equations. The paper concerns the weak inertial effects, arising in the hydrodynamic interactions.
The scope of the paper is specified by the condition Re < 1, where Re is the characteristic
Reynolds number. The forces, exerted on the spheres by the fluid, are presented as duc to the
multiple scattering processes.

1. Introduction

THE PRESENT PAPER deals with the Oseen hydrodynamic interactions of a finite
number N of rigid spheres, immersed in an incompressible, unbounded fluid.
The paper is a continuation of the paper [1], in which the notion of the Oseen
hydrodynamic interaction tensors has been introduced. Here we present the
further analysis of the properties of the tensors, relevant for the consideration of
the forces, exerted on the spheres by the fluid. The dependence of these forces
on the spatial distribution of the spheres, and on the weak momentum convection
(Re < 1) is analysed.

The properties of the Oseen boundary-value problems of flows past a body
have been examined not only on their own but also in view of the fact that
the knowledge of these properties can be useful in the analysis of the related
Navier - Stokes problems. For example, in the series of papers by FINN [2, 3], we
can find the analysis of the mathematical aspects of the Navier - Stokes boundary-
value problem, for the case of small data, based on the consideration of the re-
spective linearized problem. The papers by GaLpi [4], and Sarvi [5], being de-
voted to the mathematical questions arising in the Oseen boundary-value problem
for a single body, contain also the considerations on the relations between the
linearized and the nonlinear cases.

The first results for the flows past two spheres have been obtained by Oseen
himself [6]. The author used the Smoluchowski’s method of description of the hy-
drodynamic interactions. In the papers by KANEDA and IsHit [7], and by VASSEUR
and Cox [8], the case of two spheres has been considered in the framework of
the Navier - Stokes equation. To examine the velocity, and the pressure fields, the
authors applied the matched asymptotic expansions approach (for more details
see the paper [1]).

In this paper, to examine the properties of the Oseen hydrodynamic interac-
tions of N rigid spheres, the integral equation approach is used. It involves the
second order hydrodynamic interaction tensors, related to the Green tensor of
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232 I. PIENKOWSKA

the problem considered. The properties of the interaction tensors are analysed
in the range of small Reynolds number, Re < 1. As an example, the drag forces
acting on two spheres, being at rest in a fluid, are calculated up to terms of the
order of O(Re) and O(a/R) (a — the radius of the spheres, R - the typical
distance between the centres of two spheres, U — the uniform velocity of the fluid
at infinity, » — the kinematic viscosity, Re = «a|U|/v).

2. Basic equations

The spatial distribution of the spheres, being at rest, is described in the fixed
Cartesian coordinate system r(z. y, z). The positions of the centres of the spheres
are given by R?, J = 1,.... N, and the positions of the surfaces of the spheres
are given by R;. We introduce also the local coordinate system for each sphere:
l‘]' - RJ‘ — R?,rj((t. .QJ)

The presence of the spheres in the flow accounts for the induced forces f;(R;)
[9,15], distributed on the surfaces of the spheres. These surfaces are indicated
by the appropriate ¢ — functions: é(r — R;). The forces f;(r;) give rise to the
source term in the Oseen equation of motion:

N
pU - Vv — Ay + Vp mejh [r— R,(2,)] £;(12,).
=1

(2.1
Vv =0,

where p is the density, ;o — the dynamic viscosity, v(r) — the velocity, p — the
pressure of the incompressible fluid. On the surfaces of the spheres, we assume
the no-slip boundary conditions

(2.2) R; (12)) = v(R;(12))),

R,‘ denotes the velocity of the j-th sphere.
In the volumes of the spheres we determine the divergence of the stress tensor
P(r) by the following relation:

(2.3) V.P(r,)=0, |rj]<a.

Next, the velocity field of the fluid is expressed in terms of the Green tensor T(r),
acting on the induced forces f;:

v(r) = VO(r) + /(:’I‘JT(rf r') - Z\: /(/.Q"l-b [r’ — [?;(Q;)] fl/('()’/)
p=1"

24
e v(r) = U.
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v!(r) denotes the fluid velocity in the absence of the spheres. Below the Green
tensor is presented by means of the space-Fourier representation [10]:

_ dk exp(i k- r) "
T(r) = / @r) 12 + iU - K) (l ~ kl\) _

v=/p, k =Kk/|K|, ko= |K|.

(2.5)

Using the expression for the velocity field and the boundary conditions on the
surfaces of the spheres, we obtain N coupled integral equations [11]:

R, (2,) = VR(2) + [ 42T [Ry(2) - Ri(2)] - £(2))

N
(2.6) +3 /(ka R, (2)) - Ru(2)) - £ (122).
k#]

Vi(92;) =R; (2)) = V'(R;(12;).
where V; is the relative velocity of the j-th sphere with respect to the fluid. The
first integral on the r.hs. describes the interaction of the j-th sphere with the

fluid, the second integral concerns the hydrodynamic interactions between the
spheres.

3. The set of algebraic equations

To transform the set of integral equations (2.6), we apply the technique of
expansion in an infinite series of normalized spherical harmonics [13]:

VAT >V Y (42)).

Vi) =
{m
. 1 - g ~Th
(3.1) t./'('Q.i) = —4:“”_22'11'“)1‘ (QJ)‘
ot lm
[ < 1, 0<] < .

In the considered case of the uniform velocity of the fluid at infinity, the expansion
coeflicients V;;,, read:

-U, I =0
= 0 -
(32) Vj_[m == —VI/-_h“ - { U / 2 1

The forces F, exerted by the fluid on the spheres, can be expressed in terms of
the coefficients f; ;,,, as follows:

(3.3) F, = - /\‘- P(r;)dr; = —f;00.
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In view of the orthogonality property of spherical harmonics, the set of integral
equations (2.6) leads to the following relations for the expansion coefficients:

N
[ my f mp
(3-4) J Lymy — Z T(fm (OJ) Jdamy t Z Z T[fm (Rﬂ\) fy. lama -

[y k#j lamy

where R, = R? — R? is the distance between the centres of two spheres, T2
/ # ¢ P lymy

are the hydrodynamic interaction tensors. The interaction tensors are given by
the following expressions:

(i) self-interaction tensors:

3.5 T2m(Q.) = —1 URCN (1 - k&) VY (ak) i (ak
(3.5) T:,:(0)) = S eyt sl Ji(ak)j,(ak),

where j;,, ji, are the spherical Bessel functions,
(if) mutual-interaction tensors:

IEYP) m -
Z Tf:m;_[;n;-;URIAD} x('(2”\')‘

[3miy

1 . kk)
Ji- tw—zq] A Sl
u,u A2+11F1U k

[zrn's (RJj )

[1’”1

(3.6)

{917

11 my .[37713

X)“ 7”'3 e } T (k) (ak) ji (B k).

The properties of the above tensors follow from the properties of the Green
tensor (2.5).

To discuss the relations of the forces F;, exerted on the spheres by the fluid,
to the fluid velocity U, we present the basic set of the algebraic equations (3.4)
in the following form:

o 1 nep 1 m g
(37) t.j.flml Z T[f,”l (0;) /fzmg Z Z T[;,”: /A) " ik.[}mg

lam; k#j lymg

)
[ymy?

The inverse self-interaction tensors T appearing in the above relations, fulfil

the condition

ml3m 271112
(38) Z T[:m:(o.f) B T;;IH:(OJ) = 1(57“1’“25[1[2 -

l3m3

Starting from the relations (3.7), we can calculate the forces F; within the assumed
approximation with respect to Re and o (cf. Sec.5), ¢ = a/R.
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4. The properties of the hydrodynamic interaction tensors

To perform the analysis of the weak interial effects arising in the hydrodynamic
interactions, we will examine the dependence of the interaction tensors on Re,
in the range of Re < 1, and on the spatial distribution of the spheres.

4.1. Self-interaction tensors T ni(0)

To evaluate the interaction tensors (3.5), we introduce spherical coordinates
in the A-integrals. The |k| integration leads to the following formulae:

(i) For the cases |l — I =2n, n=0,1,2,...,3 =1,

P ,"3 Ay = —1 " h F—TT N ST -
4.1)  TH0,) = m," L2+ ’—'/«l’,k(l— kK) Y, L (Re€) Ry (Re€),
where
1 1 : 1 1
A = max Il+§,/2+§>. A = min Il+§'12+§>'

; 1 1
A and A are the larger and smaller number, respectively, of /; + 3 and [H + =,

symbols /; 41,2, Ky 4172 denote the modified Bessel functions of the first, and
third kind, respectively,

U =U/lU, ¢=cos(U,k)

(ii) and respectively for the cases |l| — (5| =2u+1, 3 = —1.
From the properties of the Bessel functions in the range Re < 1 it follows
that tensors T ’2’"2(0 ) behave as follows:

lym

For |f| - [2| =2n, J =1,

3 _ 1\ =l I'(\)
42 lznm — '{;—12+|!l_[2| <__) _
( ) l|m|(0’) 87‘—”,'”] 2 [‘(." + 1)

% [ dk (1 —Kk) Y, 7"y "2(Re€)l' =2 + h.o.t,
. ll Il

and, respectively, for the cases |/, — lh| =2n + 1, 3 = —1.

Hence, for the particular case of [} = I, the leading order terms of the self-
interaction tensor are independent of Re. These terms refer to the regime of
Stokes flows, which do not exhibit the effects of the inertia of the fluid. At zero
Reynolds number the self-interaction tensors become equal to

1 1 K[I”lz
4\/;(1,'[[ (,1 —+ ]/2) {ymy,00°

(4.3) T,'™2(0,) =

lymy
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where

lymy,l3ms I3

K2 o= jhimheh /(112(1 — ki) Yy

The second order tensors K have been examined, in the context of Stokes con-
ditions, by YosHizaki, and Yamakawa [13]. Here, as Re = 0, we recover the
Stokes self-interaction tensors; for example, the tensor T))(O;) describing the
interaction of a single sphere with fluid, having at infinity the velocity U, reads:

1
2vmap 0T 6744

Examining weak inertia effects, we are interested in the contributions, of the
order of O(Re) to the relevant tensors. From the properties of the modified
Bessel functions we see that there are two sources of such contributions. Firstly,
we have a group of the self-interaction tensors, being of the leading order of Re
(specified by the condition |[; — [3| = 1). These self-interaction tensors are equal
to

(4.4) TH(0;) = 1.

Re
4.5 T('ﬂll’: =
(45) tr iy (01) 8vV/3 /T au(ls + 1/2)(1> + 3/2)
A N P
v [5m T TT rlam
X |il:K(1+‘]Z,, .10 + — \/7 (( T l{‘.’/) klg-ﬁ—fu”l—l

1 H Iy /2/”
+ﬁ([_,-+l(”) 1\[+l” l]] +h0t

and, respectively, to

4.6) T '"0)) =

Re rope Ly
(‘*I\[ niy. 10
8V3 vmap(ly + 1/2)(1, + 3/2) i
] 7 l]+1m ] +1lma
+ (0 —i0,) K2, + 7 (0. +i0,) Kiv 2| +hot..
We see that here the tensors Kf o Lyms Mave higher values of the indices (I3m3)in

comparison with the tensors K, referring to the Stokes flow regime. For example,
the tensor T}y (0;) reads:

lm 1m i a1 Ly
(47  T0) = m{f O-Kado — (0o = i00) K3

+ (00 +i0,) Kt} + hout..

Secondly, we have the contributions linear in Re in a series expansion of the
tensor TJ) with respect to Re. It can be presented in the following form:

(4.8) 199(0,) = T™(0,) + T9(0,).
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where

(1)00 1
T =
00 (0,) 67 ja

describes the Stokes interactions, and

T (0, : [——R 31— UU }
(0)) = 6rpa | 16 e( )
describes the Oseen interaction, in the approximation considered.
Thus we have brought together all contributions linear in Re to the self-
interaction tensors, needed to discuss the weak inertia effects of the interaction
of a single sphere with the fluid.

4.2, Mutual-interaction tensors T (R,x, Re)

4 m] lymy

To consider the effects of Re, the tensors T are presented in terms of

1117l|,1_1m3

a series expansion, using the formula (7) from §7.15 of [14]:

4'9 T!Z”‘iz — l”!ll(') m —_ ﬁ l’l 1‘\ i"{
( ) lymy Jymy — 7;0 lyiry, lwu 2”}[[ (ll + 3/2)/ (1_) + 3/2)

([« “””'i(/l+/2+2,,,+1/2)/‘(/1+/2+m+1/2)
Ry,

m!

2 2
3 a «
Bt =3 [ —] & [=—
2 (R,A) (Rﬂ,) }
x /(n} (1= ki) vy ey

K= il;af
X/([Hm'/h+1:+2m+1/2(H)‘113+1/2(H)'

where 1} is the hypergeometric series of two variables, ./, ,1/; are the Bessel
functions, and where, for |/} + 1o+ 2m — 3| = 2n, 3 =1,

m 20

[SSHRS]

1
X 1y {m./l + 1+ m+ E; h +

K — it af
! g2-J’i.+t2+2m+1/2('\')4’1;+1/2('\')

4100 [ er

= il et 2n=bly (R aE) K ((Ra€).

and for |ly + la +2m — 3| =20 + 1, 3= 1,

Z = max</1+i2+2m+%«/3+%>.
(4.11)
. ; 1 1 |UJ
C=mn({h+L+2m+=.3+=]. a = —.
2 2 1%
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Similarly to the self-interaction tensors, the dependence on Re of the mutual-
interaction tensors is given in the form of a product of two modified Bessel
functions. However, the arguments of these functions contain the quotients
Re,, = Re/(a/R;i) in view of the fact that the distances [ are characteristic for
the mutual interactions. In view of the properties of the modified Bessel functions
in the considered range of Re,, < 1, we see that the Stokes regime is described
by the following leading order contributions to the respective mutual-interaction
tensors:

00 \/F g l1+1+1
4.12 T12m2 — lemz,m — ! e
( ) lymy,lamy Z lymy,lams 4““ [1(11 -+ 3/2)r(,2 + 3/2) (R,L)

m= 0
Klam2 Z (h+bL+2m+1/2)(Lh+L+m+1/2) T'©)
llm] l3ms e’ m! [(Z + ])

2 2
] 3 3 a \\ l
Fa|-mh+h+m+50+5 h+55 55—, '
X Iy m,ly 2 m ok 1 2 2 2 (HJ;\-/ (Rﬂc)}

forthecases [l[{ + l,+2m — 13| =0, h+l+l3=2n, L+1lp-13> -2
Thus the hydrodynamic Stokes interactions are described by means of the
tensors being of the leading order of (a/R)1*02+1

Gy TRl for the cases I3 =1/, +1,. and

[ymy,lyma?
(4.13)
. mlama,l
(i) 1E,.,. forthecases [3=1 +1+2.
Hence we have recovered the dependence on the inverse powers of the interpar-
ticle distances, characteristic for Stokes flows. For example, the tensor TH(R,x)
reads:

(4.14)  THR;L) = TeH oo(IR;kDYG(25) + D T00 2, (1R DYF" (420)

m

1 2a% /1 (oo
=——[1+&é+ — |5 — €& )| =Ty (Rjr),
BmpR ;i Cik€ik Rfk (3 e./*e.fkﬂ (Rjx)
where
. R,
Rjr = Rje|, &= |R—,k|
IR

Similarly to the self-interaction case, we are interested in these mutual-interaction
tensors, which contain terms linear in Re. As follows from Eq. (4.10), the respec-

tive contributions to the tensors T,l o are given by

my,,l3m;
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(4]5) Tl‘l"”z _ i T(gmz,m _ il_!3Re 27T(2f3 + 1)

Lymylymsy —

lymy,dymy = 16”[! 11(1'1 T 3/2)]1([2 n 3/2)5(—'“?3)

X {Z V2 + 1K/ (—1)"*2(—s) ( 3 1r )

m=0

lymy,rs 000

~ 13 1 r ~ .~ I3 1r
J. — ——
8 {ﬁl ( —m3 0 A‘) (("I I(y) (—71)3 1 s)
-~ S l3 I r
+ ((/JA+ zl_u) (—77?3 1 “)H

X( a )““2 (I + I+ 2m + 12D+ L+ m+ 1/2)

Rk m!
') [ 1 3 3
— 2 —m, L+ h+m+ o L+ L+
XF(Z+1)F4 mith+m+ o h+5.0+3

" 2 2
il
— |, | 5 + h.o.t.,
(l{jj‘-) (R_,k) }
where (::1) is the Wigner 3 — j symbol [12],

r=1, for the cases of /3 =10
r=13—-1, and r=1I3+1 for the cases of I3 >1 .
and the following relations should be fulfilled:

[ly + 1 +2m —13] =1,

h+h+13+1=2n, h+lbh—-13+12> -2,
—3m—|m|
f-my=(-1)" 7 .
Thus the mutual-interaction tensors, being of the leading order of Re, can be
written down as follows:

. [amng _ l31119.0 _
(l) T[lml.lgm_x - Tllml..f_-;m_q for ll + ,2 - [3 =1,
.s [pmq — lyma,m _
(4]6) (") Tflml.l3m3 - Z T1177zl.13m3 for hH+lh—-13=-1.
m=0,1
lamg _ lama,m _
(i) T2, = > Thrh,. for h+h-1l3=-3.
m=1,2

On the basis of Eq. (4.15) we see that the considered mutual-interaction tensors

11 +12
- . We note that,
Hih

are, with respect to «/R, of the leading order of (
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similarly to the Stokes regime, the Oseen hydrodynamic interactions, in the ap-
proximation considered, are described by means of a finite number of the tensors
f?;’;fj’;ms, with m being equal, respectively, to 0,1,2. Below we give two examples

of that kind of the tensors:

0 00,0 00.1
T80 17,13(R'k.R€) = TDU lms + TOO,lm] +h.o.t..

001m3= \[(—7}13)—{2 V2r + KODH( )7 %z(—s)

(4.17) ;i 7 ]
T T A, = 1 r
2U, (U, - iU
(0 0 0) |:\/_l/~ ( —ms 0 .ﬂ‘) ( ! y) (~/u3 1 s)
= 5 1 1 "\ 2 a :
+ ‘Tr =+ . r' N = I — h )
(t. fl_,> (_”’3 » “)H (1 3 (/f’m) ) + h.o.t
\ .
Too 3ms(Rji. Re) = 88 ;,,H.‘ + ngjing + h.o.t..
Re .
003!:1} - [ (_’”3)“{2 \/—’ +1!\00“’( ]) 'f(g )
(4.18) ! a L .
T ~ A i T = n g r
20, — (0, -0,
X(ooo)[‘/ (ﬂmu.&) ( ’-/)(_,,,31,\)
+ (0, +i0,) o Y N (
T ty —1m3 1 ' - H“[‘ %8 X
where 1
K00 = = and K¥., = —— K, [13].
00,00 = f;\/— 0.2 = 5 A [13]

Similarly to the case of self-interaction tensors, we have also the second source
of contributions linear in Re. Namely, expanding the tensor Tj) o, with respect
to Re, we obtain

1
67«’[/ Iy

3 e

Collecting the terms linear in Re, we denote:

2)00 Re O 00 i 00
(R;x-Re) = a2 (31 - UU) + 3 Too1n, M0 + 2 Too, + hoot

niy ni3

We see that the expression resembles that for the self-interaction tensors having,
however, as the characteristic length the distance 1.
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T . . . l
4.3. The inverse self-interaction tensors T;?"*(0,)

For the particular case of the hydrodynamic Stokes interactions, the inverse
self-interaction tensors are given by

plpms limay _ y¢
(4'20) ZT“?N[ ' T[[T?l] - Ih”i‘”lz -

ma

For example, the tensor 'T‘”OS = 6mpnal describes the Stokes drag force, exerted by
the fluid on the single sphere.

To examine the properties of the tensors T, m’(Oj) we apply the approximate
formula, used in the paper [15]:

(4.21) T=Ty—TgTog T+ Ty Tog+Tyg Tos Ty

where T, and T, are the diagonal (in /), and off-diagonal self-interaction tensors,
respectively. The above approximate formula leads to the power series expansion
in Re of the inverse self-interaction tensors. Considering the tensors, being of
the leading order of Re, we obtain

(422) T(l+lmZ(0]) = ZZ hnn T11+lmd i ’nl:‘[l+1’“2 + ho.t.

lymy [y lym3 [+ 1mg
ms3 g

and, respectively,

!2”'2 (0 ) = _ Z Z 11+17111 lenu T[:mL + h.o.t.
J

l7+lm| {h+ 1y [+ 13 [51114
msa g

Thus we have, for example

lmz _ riu Imz
[)(l - Z : lmg +.

m3
423)  Th= fmmRe{fl g0 + (00 = 70,) by
+ ((A\",. + ilﬂ,) - 1)} 1+ ho.t.,

where [11]:
pliig — 1niy
T].m" 6\/_#”1(11!1‘\ 00 -
Similarly to the case of the self-interaction tensors, we calculate the contribution
to TY(O;) linear in Re,

~(1)00 +(2)00
i%0,) = TH™(0,) + T™(0,) + h.o.t.

with the respective tensors equal to

(4.24) T{)0;) = 6rpal.

(4.25) TO%0;) = 6mpa []36Re (31- 60)] .
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5. The multiple scattering representation of the hydrodynamic interactions

Using the relations (3.7), we can write fi ;,,,,(0y) in terms of V,;,,.,(O;) as
follows:

Hlom
(5]) f.T'-[lml Z T!ImT(Oj) . VJszz
lymg

[y l3m Tlgm
- Z Z Z Z Tlimf(oj) ' Tl;n;(RJA') ! Tl;*m;(ok) : Vk-b”u, ...

k#j7 lamy lams lymy

Thus we obtain the multiple scattering representation for the expansion coef-
ficients f;;,, of the induced forces. The different sequences of the admissible
interactions, appearing on the r.h.s of Eq. (5.1), are expressed in terms of the re-
spective interaction tensors. In view of the properties of these tensors, discussed
in Sec.4, we have to take into account only a finite number of the admissible
sequences, assuming an approximation with respect to o and Re. Thus we obtain
the following series for the expansion coeflicients f; oy, appearing in the expression
for the vector forces, exerted on the spheres:

(52)  fi00=TH(O,) - V;00
~ 5 ST TR0,) - TR - T, .(00) - Vigo + -«

k#j lama

The different sequences of the interactions, described by the above series, are
listed below, and the contributions up to O(o) and O(Re) are retained. The
inverse self — and mutual — interaction tensors entering the sequences are given by
the formulae (4.24), (4.25), (4.14) and (4.19). We apply the following shorthand
notation:

Il

Fr (2)00(0 y = TZ

J

(1 )UO(O )

1)00 2)00
Ty (Ri) = T). T (Ry) = T
Voo = Vioo = Vz,oo = -U.

(5.3)

The Stokes contributions to the coefficients f; o9, describing the linear dependence
of the forces exerted on the spheres, on the velocity of the fluid, read:

Al —T} - U

AT ST LU

k#]

(5.4)

Here we have two sequences of the interactions, generated by the relevant relative
velocity V; gy, which are described by means of the two tensors. These sequences
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are related, respectively, to the interaction of a single sphere, and a pair of spheres
with the fluid. Thus, the property of non-additivity of the interactions does not
appear for that case.

The Oseen contributions to the coefficients f; 9, giving quadratic relations
between the forces on the spheres and the velocity of the fluid, are as follows:

o0 —i‘? - U
T, .Y T3, -TL-U
k#j
T} ST, - T} U
J Ik k
(5.5) N
T3 > T, -T,-U
”1‘\.#‘1- 2 1 1
=T -y Z{T_;‘k ~ I« Ty
k#i l#k -
Tl TL TR U

Here we have the six sequences of the interactions, which are expressed in terms
of the four tensors. These sequences describe the interaction, respectively, of a
single sphere, a pair of spheres, and three spheres. Hence here the non-additivity
of the interactions plays a role in the determination of the forces, exerted on the
spheres.

Qualitatively speaking, the structure of the Oseen hydrodynamic interactions
is, in comparison with the Stokes interactions, more complex. We also note that
the mutual interactions yield to the particular type of the contributions to f; g,
being of the zero order with respect to a. Such contributions are not generated
in the Stokes regime.

The contributions to f, g9, being of the order of O(c?), and O(Re'), are listed
in the Appendix.

Here, as an example, we consider the drag forces F_'f, 7 = 1,2, exerted on
two fixed spheres by the fluid, having at infinity the uniform velocity U(O, O, U.).
The line connecting the centers of the spheres, is perpendicular to the velocity
of the fluid. We obtain the following expression for the vector forces, retaining
the terms linear in Re and o:

(5.6) Fo= QT+ = 3 1) [T T+ 1 T - U
k# g
To express explicitly the components of the drag forces, we specify the relative

distance between the two spheres in terms of the vectors Ry (|Ry2|, #12 = 90°,
12 = 0°), and respectively, Ry (|Ry2|. 021 = 90°. oo = 180°).
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Using the relation (5.6), we arrive at

3a

3
— ——— 4+ ~Re + h.o.t| .
HRp| 4O

(5.7) (FH. = (). = 6mpuall. |1
We note that the terms linear in Re are due to the two sources: self-interaction
of the respective sphere (3/8Re), and the mutual interactions of the spheres
(3/8Re). The above formula agrees, to within the approximation assumed here,
with that part of the results of Vasseur, Cox [8], and KANEDA, IsHir [7], which is
related to the drag forces acting on two spheres. To examine the hydrodynamic
interactions of two spheres, the authors used the asymptotic expansion method
of solving of the Navier - Stokes equations.

We note that the different terms of the mutual-interaction tensor TJ)(R, ;. Re)
describe the different vector components of the forces exerted on the spheres by
the fluid. The tensors T3, and TJ),, describe the contributions to the drag

forces, whereas the tensors T00 | and TJ) , = give rise to the contributions to the
lift forces (cf. [1]).

Appendix

The Stokes contributions of the order of O(c?%) to the coefficients f, 00 , de-
scribing the linear dependence of the forces on the fluid velocity, read:

(A.1) -5y T.eT, T T, - T, - U
k# ) 1#k

Hence we have one type of the admissible sequence of the interactions, which is
described by means of two tensors. Two, or three different spheres take part in
the above events, giving rise to the non-additivity of the considered contributions
to f; oo.

The Oseen contributions of the order of O(a?), and O(Re'), describing the
respective quadratic relations, are given by

| 2 Tl
(A.2) T - ZTﬂc ‘TL-U
k)
+ 3 T (0;) - S TR (Rj) - T+ U
1 A'#J
+T) 3N Th (R - T, (0) - U
]\‘¢J i
TSN T TR T T - U
k#g 1#£k
~T) -3 ST, - TL-T - T - U
k#; 1#k
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-T?. Sy T .1, . T .U
k#5 1#k

+ Y ST T T T

k#jy (#k n#l
2 aml oml al ml
+T5 - Ty - Ty - Ty - Ty,
L &1 o & wd |
T Ty - Ty - T, 'Tm} T, - U.

In that case we have the nine different sequences, described in terms of the eight
interaction tensors. Two, three, or four different spheres contribute to the above
interactions. Hence here the non-additivity of the interactions can possibly be
more pronounced in comparison with the Stokes regime.
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