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Arch. Mech., 46, 3, pp. 251-265, Warszawa 1994

Interaction of thermal and moisture stresses
in materials dried convectively

S. J. KOWALSKI and A. RYBICKI (POZNAN)

JoINT ACTION of the moisture concentration field and the temperature field in generation of drying
stresses is considered in the paper. A question whether the thermal stresses and the moisture stresses
are superimposed on each other or neutralize each other is answered. The problem is illustrated by
an example of convective drying of a bar of rectangular cross-section. The numerical results are
presented in diagrams.

Notation

=1, 2= Y, 03 = z [m)
t[s]

(g, Uy, u,) [m]
A [N/m?|

M [N/m?)

0 fN/mZ]

i [1]

T [°K]

P =T — T, [deg]
po [kg/m’]

pm [kg/m’]

O = pm/po (1]
q (W/m?]

7 [kg/m’s]

i [Jkeg]

cy [T/m3deg)

cy [J/m?deg]

co [J/m’]

ay fdcgil]

a@ (1]

ag [W/mideg]
@ [kg s/m?)

! [Ike]

Ap [W/m °K]
Ay (kg s/m?]

1. Introduction

spatial coordinates,

time,

displacement vector of the porous material,
bulk modulus of the porous material,

shear modulus of the porous material,
components of the stress tensor,

components of the strain tensor,

absolute temperature,

relative temperature,

mass density of the porous material,

mass density of the moisture referred to the total volume,
specific moisture content,

heat flux vector,

moisture flux vector,

moisture potential density,

specific heat of the medium at constant volume,
temperature coefficient of the moisture potential,
moisture content coefficient,

coefficient of the linear thermal expansion,
coefficient of the linear moisture expansion,
coefficient of the convective heat exchange,
coefficient of the convective mass exchange,
latent heat of evaporation,

thermal conductivity,

moisture conductivity.

IN TRADITIONAL understanding drying of moist materials is a process of removing moisture
due to evaporation. It is a thermal process conditioned by supplying heat to the dried
material. During this process both the temperature and the moisture content fields appear
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252 S. J. KOWALSKI AND A. RYBICKI

in the material. The first one is connected with the temperature distribution and the second
one — with the moisture content distribution. These fields are generally non-homogeneous
and nonstationary, and as such they can induce self-stresses called ,,drying stresses”. The
drying stresses consist of thermal and moisture stresses.

The main aim of this paper is to analyse the interaction between the thermal stresses
and the moisture stresses. We intend to answer the question whether these two kinds of
stresses intensify or rather neutralize each other. Furthermore, we are going to show that
controlling the temperature and the moisture content fields through an appropriate alter-
ation of drying conditions (boundary conditions) can appease the drying stresses and stop
their concentration leading in extreme cases to destruction of the material. We will also
show that too intensive heating of the material at the beginning of the drying process is
disadvantageous. Namely, it can generate a maximum of the moisture potential function
(a quantity responsible for the moisture transport) close to the boundary surface. This
means an impediment of the moisture flow from inside to outside of the material and too
fast drying of the boundary layer. As a consequence of this, a strong shrinkage of that
layer takes place and thus the self-stresses which can cause its cracking are generated.

The present considerations are based on the model proposed by KOWALSKI [3, 4],
describing the thermomechanical behaviour of dried materials. A two-dimensional prob-
lem of convective drying, i.e. the drying of a bar with rectangular cross-section is analysed.
The coupled system of four second-order differential equations is solved with the use of
the finite element method for the derivatives with respect to the spatial coordinates and
the three-point finite differences for the time derivatives, as it was shown by RYBICKI [7].
The numerical results are shown in diagrams.

2. Mathematical formulation of the problem

For the sake of clarity in the mathematical formulation of the problem in hand, we
rewrite here the model presented in KOWALSKI |3, 4] and adapt it for the two-dimensional
problem which we are going to consider in this paper. The model describing the thermome-
chanical behaviour of dried materials consists of the following system of differential equa-
tions:

5

MYV u + (1\[ + A= Z,—(Z) grad divu = 7:;“ grad ¥ + :—]g—) grad e,
(=) =) =)
(2.1) K, Vi = o+ 45 divi — ¢,

KV =10 + Kgdivi — Ko

Here u, y, v, denote the displacement vector of the porous solid, the moisture poten-
tial, and the temperature, in that order, and

A : il i i P o
K m = /1771(@\, o = l@/,”()- Cy = (i}//)lh

2.2) ¢t =co/py, Kp=Ar/cy, ¢k =colp,
Kg =T.(vs — cotre/co)cy, Ko= T,.c,;/cg;l,,
co=cy+Toch/ca, Y9 =CM+3A)ay, 7o =02M +3A)ae,

where T is a reference temperature, for example, the initial temperature.
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The equations in (2.1) describe: the deformation of the dried material (first one), the
moisture potential distribution, its gradient being responsible for the moisture transport
(second one), and the temperature distribution (third one).

The drying-induced stresses a;; are calculated from the relation

(2.3) Oij = ﬂ[(lli“f + ll.l“l‘) + [Allg_[ — ",‘I)l} — ",’(_)((‘) — ('),-)](Sij,
where @, is the reference moisture content, for example the minimum value of @ and of

the drying process under the given conditions of drying.
The relation between the moisture potential and the parameters of state is
(2.4) p=chy —youi; + (@ — O,).
We make use of the following equations for heat and mass transport,
= —Apgrad v,
(2.5) q TE
n = —A,, grad p.

For a two-dimensional problem, the displacement of the porous solid in z-direction is as-
sumed to be zero, and all other functions are assumed to be dependent on the coordinates
x,y, and time ¢, ie. u, = v (v, y,1), uy = uy(x,y, 1), p = p(r,y, 1), 7 = dx,y,1).
Thus, the system of equations (2.1) reduced to the two-dimensional case takes the form

(23\1’ A ‘yf.)) D, 5 M(')Zu_r % (f\'] b 75) (')Zu.y

co /) 0t ay? co /) dedy
Yocy\ 0V  ye du
=('Tl?_1 )_+Ti
co /O cp Oz
(ZM +A- —’-‘l) Gy o g9ty (M +A- ””g’) ? L
co/) Oy dx? ce /) drdy
vocs\ A ve Ou
(2.6) - (w - L2 ‘)‘.—l + 1828
ceo /Oy ¢y dy

AT T ) o Fu,  Pu, o
I\m(_ﬂ'*' 5 =‘—"+Af.)( — + /J)— '()*—,
ax2  oy2) ot - '®\azat " ayar) o

. ((’)21) N (')21)> o K (()2151» N i:)z'u(,> % A
T\ 33 .2 a7 E\ 3= aon, | Lo
oxr " ayr) o T P\ gxdt T gy “ ot

We formulate the initial-boundary value problem as follows: find functions ., wu,, ¥
and g which, within the rectangle (=L, L) x (= H, Il') and for { € 27, satisfy the system
of equations (2.6) under the following boundary conditions (see Fig. la):

for stresses

a.r.?‘|.r=ﬂ:L =0, (Tyy|y=iH =0,

(2.7) . -
”l‘y|w=:+:1, =4, Gl‘y|y=:{:h’ ES 07

for the mass exchange

()
Am(.-ii = iam(,”|.l'=:i:L - .L"u(t)w
2.8) 0% | pusti,
- an
A o= = fam(ply=£8 — Ha),
l()y - m My a
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a) — - = air>™ - )
I e o
~ s~ ‘-T =~ -6y70 6,70 ; :

I ( Y
e /
% ‘
"
¢y | (Lr
(
(.
U REL Y SN i) 5
o~ \Lk\| \ (L’\ ’\"
. =
e 6x=0
\ | 0
ol 6,,=0
LW [N ty
NSRRI
5 o = Ce [
. N N . ~| -~ RN
== e -
b)
3,4
LA S
r 1I
X - 1 1 o
t t

o

FiG. 1. Boundary conditions: a) rectangular cross-section of the drying bar, b) two different temperatures of the
drying medium.

and for the heat exchange

o :
ATE)_ = iaT(ﬂa - 19':1,‘::1:L) x la;'n(;u-!r:if, - ﬂa)a
Tlg=+L
(2.9) o
T = tar(Wa — y=2n) £ lom(ply=2n — pa),
dy y=+H

under the initial conditions
(210) aij(xw yvO) = 0, /J'(:Ea Y, 0) = o, 19(17 yaﬂ) = i90'

In the above equations p, and 9, denote the chemical potential and the temperature
of the surrounding atmosphere (drying medium).

In order to demonstrate some advantages of a controlled drying process in comparison
with a non-controlled one, we solve our problem for two different temperatures of the

http://rcin.org.pl



INTERACTION OF THERMAL AND MOISTURE STRESSES 255

drying medium (see Fig. 1b). In the first case the drying medium acquires high and constant
temperature ¥ at once, and in the second one the temperature increases slowly from

zero to YU, where 9!, = V! for ¢ > .

3. Numerical solution
Let us rewrite the system of differential equations (2.6) in a matrix form

Az Ary Azm AzT Uy
Ay Ay Apn A [,

(31) 0 0 ""mm 0 H
0 0 0 Apr U
0 0 0 0 g by
" '0 '0 0 ,,0 '[L'y . b,
Cmz Cmy Cam CmT H bm |’
Crz Cry Crm Crr v br
0? 0*
Al‘l‘_kla +k28 2°
0? 0?
(3.2) Apy = by + k
. “0z0y *Oydx
d
/1_,177—" - —k4%, etc.,
in which ky, ko, .. .. k; express the respective material constants or their combination (see

Egs. (2.6)). The vector of free terms
b = (bs, by, b, br)’
is here equal zero.

This system of second order differential equations is solved by the finite element
method for the spatial derivatives and the three-point finite differences for the time deriva-
tives (see LEES [5]). The functions of displacement u, and u,, the moisture potential /i,
and the temperature 1) are expressed in a form of polynomials for each instant of time
e, k=0,..., M.

INERRNE ZB (te)bn(@, y),

N

Wyl 4] = Z B (tr)pn(z,y),

n=1

N
/,L(.’L‘, Y, fk) o Z B;”(tk)ﬁsn(l', y)a

n=1

N
79(1:1 Y, tk) = Z BZ(tk)¢n(ma y),

n=1

where {®,(z, y)} is a set of base function (shape function) and N is the number of these
functions.

(3.3)
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256 S. J. KOWALSKI AND A. RYBICKI

The coeflicient vector
B,,(I},-) = (B:T(f;\) Bg(f;\) ]J’m(h\) ])’ (f;\))

is determined for each instant f; by the three-point method, (see LEES [5]), according to
the following recurrent formula:

1 1 =
(3.4) B7](/k+]) = —( A+ 7—_‘”(:)

- 1 ] .
.{EA(B”UA.))I + ( A+ EC)(B,I(“_,))' +h,,}.

where A and C are the stiffness and the time coefficient matrices, respectively, b, is the
vector of free terms (it is equal to zero in (3.1) but not in (3.4) where boundary conditions
are taken into account), and Al = {; — {;_, is the time step.

Using the notation applied in (3.1) we can easily put down the Galerkin form of those
equations. The respective elements of the stiffness matrix A are expressed as follows:

o= 1 (358) o1 (5%),
=i [ (575 00 T (525)
(Apm)ij = ks f f (%_?ﬂ

Aar)ij=ks [ | (di” e

To determine the elements of the time matrix C, the following formulas may be applied:

(Coa)ij =k [ [ (é {())L:)
(3.6) (Cmy)ij = ko ] [ (gﬁ’qg%)’

((‘m.m)ij = l‘:lﬁ j J (¢J¢l), etc.

The objective of our analysis are stresses, i.e. quantities expressed by the spatial deriva-
tives of the displacement. Then, we have to pay attention to a suitable selection and ad-
justment of the base function, in order to assure the continuity of these functions and
their linear combinations in all boundary element points, also in boundary points of ele-
ments having different dimensions. Here we have solved this problem by making use of
the bicubic Hermite interpolation on rectangular elements (see [6]). Slight modernization
of this method was made to assure the above mentioned continuity.

Note that the boundary conditions for stresses (2.7) are natural conditions for the first
two equations of (2.6), as they express the divergence of stresses. For example, the first
one can be written as

(3.5)

00z . Bozy

oz Ay ik

(3.7)
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The boundary conditions for heat and mass transfer, Eqs. (2.8) and (2.9), are more
complicated and require additional integrals over the boundary regions to evaluate the
elements of the matrix A and vector b,, (see [7]).

Because of symmetry of the problem (see boundary conditions (2.7) to (2.9)), we
confine our considerations to the quarter of the whole rectangle, namely to the domain
(0, L) x (0, H). The solutions in the other quarters will be the same since 2 and y are
the symmetry axes.

4. Results and analysis

It is obvious that the thermal and moisture stresses arise as a consequence of the
nonuniform temperature and moisture concentration fields, respectively.

Therefore we devote some attention to the analysis of these fields, strictly speaking to
the analysis of the temperature field and the moisture potential field. The relation between
the moisture potential ¢ and the moisture concentration @ is given by Eq. (2.4). They are
proportional to each other when the temperature and the dilatation of the porous body
are constant.

The computer calculations were carried out for the following data taken from the
literature (see, for example, [1, 2]),

L = 0.05 [m]. H = 0.1 [m],

A =10° [N/m?], M = 6.25-10° [N/m?),
Ap =044 [W/m°K], A, =6.04-107% [kgs’/m],
ay=3-10""[deg™!], ae =3-107"[-],
ar = 40 [W/m*°K], = 8.64-107° [kgs/m*],

Il

po = 1200 [kg/m’], co = 6.66-10° [J/m’],
I=25-10°[J/kg], At =03][s],

o = 100 [J/kg], e = 40 [J/kg),

Yy = 0 [deg], 1, = 60 [deg].

Figure 2 illustrates the evolution in time of the temperature distribution for the points
lying in the section (0, L) of the r-axis, i.e. for y = 0 and 0 < x < L, for two different
courses of drying according to the programs I and II performed in Fig. 1b.

The temperature of the dried material can be altered due to heating and evaporation.
The first alteration is clear. In order to explain the second one, let us define an equilib-
rium state between the drying material and the surrounding atmosphere. The equilibrium
means equality of the temperature and moisture potential of the atmosphere and the
dried material. For example, let us assume at the beginning (2, y,0) = ¥, = 1, and
(@, y,0) = py = pt,. In such a case also gradients of the temperature and the moisture
potential are equal zero (see boundary conditions (2.8) and (2.9)), and there is no flow
of heat and moisture (see Egs. (2.5)).

Let us now change the potential /1, to be less than . In such a case the process of
evaporation starts and the temperature of the dried material decreases tending to the wet
bulb temperature.

http://rcin.org.pl
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F1G. 2. Evolution of the temperature distribution along section ¥y = 0, 0 < < L: I — intensive heating,
IT — slow heating.
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260 S. J. KOWALSKI AND A. RYBICKI

The temporary temperature decrease of the dried body takes place also when the
drying conditions are such, that at the same time ji, < pty and v, > 1y, i.e. when the
dried body is heated convectively from the very beginning. This situation is shown in the
Fig. 2.

It is interesting to analyse the gradient of the temperature. At the beginning this
gradient is negative because the boundary surface is cooler than the inside of the body,
and the heat flows from inside towards the boundary surface. After ca 2 min in the
case of intensive heating, the temperature gradient tends to be positive near the bound-
ary, but that in the case of slow heating does not. The latter one does not start to be
positive until after 5 min. The former one is positive after this time in the whole do-
main, and at the boundary its value exceeds the initial value. Positive temperature gra-
dient makes the heat flow from the boundary towards the inside of the material. After
about 25 min the temperature distribution becomes almost constant in the whole do-
main. It is known that such a distribution of the temperature does not produce thermal
stresses.

Figure 3 shows the evolution in time of the moisture potential distribution for the
points lying in the section (0, L) of the z-axis, for two different heating programs I and
II. As it is seen, the moisture potential in the case of intensive heating is everywhere
higher than that in the case of slow heating. It is important to analyse the gradient of the
moisture potential, since it is responsible for the moisture transport (see Eq. (2.5);).

The negative moisture potential gradient means that the moisture flows from inside
to outside. Such a situation occurs in the first two minutes, however, the gradient for the
case I is higher near the boundary than in the case II.

A bad symptom appears in the Sth minute in the case of intensive heating. There is a
maximum of the moisture potential which is denoted by ,,hump” in the figure. There is a
negative moisture potential gradient on the right-hand side of the ,,hump”, and a positive
one on the left side. This means blocking of the moisture flow from inside to outside and
very quick drying of the boundary layer. This layer shrinks rapidly, whereas the inside of
the material does not or even swells a bit. The shrinkage stresses which appear in the
boundary layer at that moment can cause its cracking.

In the case of slower outside heating II, the “hump” appears later and has smaller
value than during the intensive heating I. After some time (in Fig. 3 after 33.0 min) the
“humps” disappear completely.

The above analysis brings us to a conclusion that there are some periods during the
drying process which are particularly dangerous as far as the destruction of the mate-
rial is concerned. There is, however, a possibility to avoid those dangerous situations —
namely by controlling the outside heating (presented here) and the outside drying medium
potential (to be presented later).

The fact that the temperature at the boundary of the material decreases at the begin-
ning of the drying process is unfavourable for the stresses. Very intensive shrinkage ap-
pears, caused by both the thermal and moisture contractions. The thermal stresses and
the moisture stresses are added together.

Figure 4 shows the distribution of thermal, moisture, and total stresses along the (0. /.)
section of the z-axis at the beginning of the drying process by intensive heating.

We have to explain that the thermal stresses were calculated under the assumption
that there was no outflow of the moisture from the dried body, i.e. the moisture content
of the body was kept constant all the time during heating.
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F1G. 3. Evolution of the moisture potential distribution along section y = 0,0 < = < L: I — intensive heating,
II — slow heating.
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FIG. 4. Evolution of the thermal, moisture, and total stresses along section y = 0, 0 < z < L at the beginning
of the drying process.
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INTERACTION OF THERMAL AND MOISTURE STRESSES 263

The moisture stresses, on the other hand, were calculated under the assumption that
the temperature of the body was kept constant all the time during the outflow of the
moisture.

The total stresses were calculated without the above assumptions, i.e. by changing both
the temperature and moisture content (coupled heat and mass transfer). Therefore the
total stresses are not a simple superposition of the above mentioned thermal and moisture
stresses.

We can state therefore that, at the beginning, the thermal and moisture stresses are
summed up because the total stresses are greater than the moisture ones. After 7 minutes
of drying, however, the total stresses are smaller than the moisture ones and this means
that, after this time, the thermal stresses neutralize the moisture ones (see Fig. 5).

6y
3 2
(10°N/m? 1| moisture
7 =
6+ total
5 -
4 =
3 —
2r thermal
1
1 1 L 1 a 1 1 1 -
e — = / L x
—— .~

Fig. 5. Evolution of the thermal, moisture, and total stresses along section ¥ = 0,0 < x < [ after 7 minutes
of the drying process.

This becomes clear when we look at the temperature distribution in Fig. 2 after 5
minutes of drying. We state then that, after this time, the temperature of the boundary
layer increases above the initial temperature. This means that the boundary layer starts
to expand because of heating. However, the shrinkage due to outflow of the moisture still
dominates. After 33 minutes of drying the thermal expansion and the thermal stresses
disappear completely. After this time the temperature distribution becomes constant and
equal to the wet bulb temperature.

Figure 6 presents the evolution of the stresses o, at the pointy = 0, 2 = L (maximal
a,,) for the cases of intensive (I) and slow (IT) heating. At the beginning, the stresses
during slow heating are greater than those due to intensive heating. This is because in
the former case the boundary layer becomes cooler and contracts more than in the latter
case (see Fig. 2).

After 5 minutes of drying, the “hump” appears in the moisture potential distribution
close to the boundary (see Fig. 3). As we have already mentioned, the gradient of moisture
potential at the boundary due to intensive heating is higher than that due to slow heating,
and therefore faster drying of the boundary layer takes place due to intensive heating. That
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6yy
[10°Nm?1

s
3 -
2
!
1 1 1 - e | —_— i
0 5 10 15 20 25 time [min]

FiG. 6. Evolution of stresses oy, in point (z = L, y = 0); [ — intensive heating, Il — slow heating.

means more intensive shrinkage and an increase of the drying stresses in the boundary
layer.

5. Final remarks

Analysing the results of our considerations we can draw some conclusions of consider-
able practical meaning. We can state that heating of the dried material at the very be-
ginning of the convective drying process is a positive step. After a short time, however,
heating should be reduced in order to avoid the disadvantageous “humps” in the moisture
potential distributions, since they render the outflow of the moisture from the dried body
difficult. The heating program should be therefore optimized. This is going to be the task
for our future studies.

Optimization of the temperature program for the drying medium is not the only pos-
sibility to control the drying process. Another one is a suitable batching of the moisture
(vapor) in the drying medium (air). The vapor content in the drying medium is one of
the fundamental parameters governing the drying medium potential y. Examination of
the influence of this parameter on the drying process and its control will be presented in
a separate paper.

In this paper we are interested in the interaction of the thermal and moisture stresses.
The thermal stresses appear at the beginning of the drying process, i.e. during heating
of the dried material. They disappear in the constant drying rate period, in which the
temperature of the dried material is kept constant and equal to the wet bulb temperature.

They can appear again in the reduced drying rate period, when the temperature of the
drying material increases again and tends to the temperature of the external environment.

For materials like clay and ceramics the most important period, taking into account
shrinkage, is the first period of drying.

Therefore, we have confined our considerations only to the period of heating of the
dried material, i.e. to the beginning of the drying process.
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Thermodiffusion in heterogeneous elastic solids
and homogenization

A. GALKA, J. J. TELEGA and R. WOJNAR (WARSZAWA)

OVERALL BEHAVIOUR of microheterogeneous elastic solids in which thermodiffusion occurs is studied
by using homogenization methods. Heterogeneities are characterized by a small positive parameter <.
The material coefficients of the coupled system of linear equations describing thermodiffusion depend
on €. In the periodic case, when heterogeneities are distributed periodically, the homogenization
is performed by applying the method of two-scale asymptotic expansions. The convergence and
corrector theorems are formulated for a nonperiodic microstructure. It is shown, that the initial
conditions for the temperature and chemical potential of the homogenized system are changed
in comparison with the primal one provided tﬁat the initial conditions for the latter system are
nonhomogenous. For a layered composite with periodically distributed layers, analytical formulae
are derived for all the effective material coefficients. Particular cases are studied by exploiting some
available experimental data.

Introduction

OVERALL BEHAVIOUR of micro-heterogeneous materials and composites is justified either
mathematically, yet still referring to physical notions [1-12], or rather based on physical
concepts [13-24]. Obviously those two points of view overlap [3, 7, 8, 10, 11, 12, 25, 26, 27].

Composites are often designed for structures working at elevated temperatures, cf. [13,
24, 28, 29]. Effects of moisture and mass diffusion may also be important [30-32]. Sec-
tion 1 of [155] provides an overview of papers dealing with heat, mass and moisture
transfer in heterogeneous media and composite materials. The main aim of the present
paper is a study of the equations of thermodiffusion [33-36] in anisotropic and micro-
heterogeneous solids from the point of view of homogenization. In our previous paper
[37], similar problem was investigated under a simplifying assumption that the coupling
term in the flow equations may be neglected. Neither convergence nor corrector theor-
ems were formulated and only periodic microstructure was studied. However, inhomo-
geneous initial conditions were imposed and the change in the initial temperature and
chemical potential was observed. In the note [38] the coupling term was taken into ac-
count.

The plan of the present paper, consisting of two parts, is as follows. Part 1 presents
theoretical results concerning homogenization of three-dimensional elastic solids in which
thermodiffusion occurs. Particularly, in Sec. 2 the basic equations of thermodiffusion in
an anisotropic and nonhomogenous body are formulated. Next, in Sec. 3, for such a body
the initial-boundary value problem is formulated and existence and uniqueness theorem
is given. Section 4 deals with the homogenization provided that the microstructure of the
body is periodic or quasi-periodic. The method of two-scale asymptotic expansions is used.
The local problems, posed on the basic cell Y, and the effective or homogenized material
coeflicients are examined in Sec. 5. As in our previous paper [37], the change in the initial
conditions for the temperature and chemical potential occurs. This problem is investi-
gated in Sec. 6. A general convergence theorem, without the assumption of periodicity, is
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formulated in Sec. 7.

Two topics are investigated in the second part of the paper. In Sec. 8 the corrector
theorems formulated in [39, 40] are extended so as to include the diffusion. Analytical
formulae for the effective material coeflicients are derived in Sec. 9, provided that the body
consists of periodically distributed layers (one-dimensional homogenization). By using
these formulae some specific cases are discussed in Sec. 10.

Part 1. Theoretical developments

1. Thermal effects in heterogeneous bodies and composites: very brief overview

In our report [155] an elaborate review has been performed. Here we shall only sum-
marize the main points. In [155] the contributions dealing with thermal and thermo-
mechanical response of heterogeneous bodies and composites are discussed under the
following subheadings:

1.1. General treatments [4, 13, 17, 24, 28, 29, 41-44].

1.2. Thermal conduction and thermal expansion [13, 17, 27, 45-52].

1.3. Thermoelasticity, thermoviscoelasticity and thermodiffusion [5, 8, 10, 37, 39, 40, 53-74].

1.4. Thermopiezoelectric composites [75-83].

1.5. Thermoelastic contact problem and homogenization [84, 85].

1.6. Influence of moisture on the overall behaviour of composites [8, 18, 28, 30-32, 37, 41, 86, 87].

1.7. Porous materials [19, 88-94, 154].

1.8, Damage, cracked laminates [95-99].

1.9. Fibrous composites [28, 100-110].

1.10. Plates and shells [111-123].

1.11. Random media and composites [124-130].

1.12. Micro-heat exchangers and micro-heat pipes [131, 132].

2. Thermodiffusion in an elastic body

2.1. Nonequilibrium thermodynamics of diffusion

The phenomenon of diffusion belongs to irreversible processes, and, if it is developing
under the conditions in which the deviation from the equilibrium of the system is not too
large, it obeys the laws of linear nonequilibrium thermodynamics (LNT), cf. DE GROOT
and MAZUR [133].

Essential role in LNT is played by the balance equation of entropy. It expresses the
obvious fact that the variation of entropy (as every other quantity) is composed of two
parts

(2.1) dS =d. 5+ d; 5,

where d,.S is due to the entropy flow and its exchange with the surrounding, and ;5
is due to the entropy source (because of irreversibility of phenomena occurring in the
system).
If all quantities describing the system are continuous as functions of space variables,
the exchange term variation per unit time has a divergence form
9,8

(2.2) = —divie,
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where j. is the entropy flow per unit area and unit time.

If the variation of entropy in the system is due to flows of heat (i.e. energy) and mass,
we have the following balance equation
(23) 1's = —ii t i‘j]'i,i X

where s is the entropy of unit volume, q and j are heat and diffusion fluxes, respectively;
T is the absolute temeperature and M denotes the chemical potential.
The last equation can be written as follows

(2.4) 8= _(_~—‘f' ‘TMJ’)J +a.

The first term at the r.h.s. is equal to d..5/0t and describes the entropy exchange with
the surrounding, while the second term, i.e.

@) 7= - Mi)(7) — it
T/, &
or ‘
(2.5)2 o= f/i(i) - 11(1{) ;
1y s

represents the entropy production and corresponds to 0;.5/d;.

Equations (2.5) is a specific example of the LNT law: the entropy production is a bilinear
form in the fluxes @ and thermodynamic forces X appearing in the phenomenological
equations for which the Onsager relation is satisfied, cf. [133, 134],

(2.6) = 3 [eNX O
3
(27) L(n[i} = L(J,i(r) .

(2.8) o

— Z Xioga
Since o > 0, the quadratic form

Z L@B8) x () x (B)

a,3

must be positive definite or at least positive.
Comparison of (2.8) with (2.5) indicates a certain flexibility in the choice of fluxes and
conjugate forces. For instance, in [133, 134] the following fluxes are considered

(2.9) W =q =q-Mj, P®=j,

conjugate to the forces

1 1
2.10 xW=—=vVT, Xx®=_VM.
2.10) 7 7
NOWACKI ([34], Ch. 4) assumes the fluxes

(2.11) W=q ®=j,
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as conjugate to the forces

m-Ltyr xo-vM
(2.12) X4V = TQVI’ X =V T
respectively.

The difference between q and q' represents heat transferred by the diffusion and
provides an example that in diffusing mixtures the concept of heat flow can be defined in
different ways [133].

Therefore the first [133, 134] alternative has more clear physical meaning. In the linear
case both approaches coincide.

The appropriate phenomenological relations of the type (2.6), corresponding to the
choice (2.9) and (2.10) are given by

g5 TUN (1) _ 7(2) ()

qi e A"[]i _Ll_] ‘Yl — IJZJ ‘Yj 5
; SeD (1) 50D v (@)

ji = =LEX = DX,

or explicitly

2 |
gi — Mj; = -L" L= vy )TM
(2.13)
. 21 1 22 1 g
JL=_]EJ)712T ]( )I‘ ‘]»,fa
where
~12) @) _ 7))
(2.14) =5 "=5L".
If we put
an _ 1 zan
[IL'J' _— ﬁ[/lll )
az _ gen_ 1 =uw
@ _ 170
1P = 219,

the phenomenological relations take the form
- q- Mj=-LVT - LOATVY M,
bl j=-1OVT - L®PvM .

Here L1 is the heat conductivity matrix, below denoted also by K. The matrix A = K/ 7},
will also be used.

Below, the matrix L2 will be denoted by D. It is related to the generally accepted
definition of the diffusion matrix D according to the formula

. dﬁ’.’{ _ dM (22)
(2.16) D;; = (WLVGDU = (G_C)T,UL” ;

where o is the stress tensor.
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To corroborate this statement we calculate, after LANDAU and LIFSHITZ [134], the
gradient of the chemical potential M considered as a function of o, 7" and ¢. We have

oM oM oM
17 VM = | — Ve+ | — VT + | — \Y
& (%), 7o+ () 77+ (55,7
We note that the derivative (0 M /0J0)r . in the last term can be replaced by (de/dc)r g,
since
(2.18) dG = —SdT — edo + Mdc,

where G = G(1', 0, ¢) is the termodynamic potential (Gibbs’ function or free enthalpy) of
the unit volume, cf. [34, 134]. Hence

2.19) (0_]VI_> — azg - _(%)
(2.1 90 /1. " Jode oc) 1o

Substituting (2.17) into (2.15) we get (2.16) and the matrix of thermodiffusion [¢7;, Dy ;]
such that

_ _mf 702 oM (22)
The matrix 7 with dimensionless components in the scalar case reduces to the thermo-
diffusive ratio. Similarly, we get the components of barodiftusion tp

w--(32), /()
P Jc T,o dc T,0 ‘

The matrix L{!?) describes the phenomenon of thermal diffusion, i.e. flow of matter
as a result of temperature gradient (Soret-type effect) and the reciprocal phenomenon, i.e.
flow of heat as a result of the concentration gradient (Dufour effect).

The linearization of Eqs. (2.15) consists in rejection of the nonlinear term, namely M
and assuming small changes of temperature

(2.21) O=T-T,, 0<T).

In such a case L(“?) do not depend on temperature. Thus we arrive at the following
relations

gi = 130 ; — LPTM 5,

, 21 22

ji=-L36; - LM ;.

For NOWACKTI’s [34] choice of fluxes (2.11) and forces (2.12), we obtain

— _ Dy _ p0D 5@
i = —Li; X = L7 X,

(2.22)

I ~(21) - (1) (22) 4 (2)
Ji= L5 X = L5XG,
or
_ aan 1 ap 1 M, _
gy = =L ?ET’J' =k f(M’j _?T’j) ’
(2.23) '
= _L(z,l)if_r ,_ﬁ(z?]l M ._%T :
Ji o2 1] 1] T 2] T o)
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where L',(l‘; 7 are new transport coeflicients: their form readily follows from (2.22): after
the linearization and appropriate definition of the material coeflicients we recover the
relations (2.22).

Now let us focus our considerations on linear thermoelastic solids.

2.2 Basic equations of diffusion in a thermeoelastic solid

Let 2 C R? be a bounded domain and /" = {2 its boundary. A thermo-elastic solid
in which diffusion takes place will be denoted, for the sake of simplicity, by TED. Only
physically and geometrically linear problems are investigated.

£2 is the domain occupied by TED body in its natural state. Physical fields depend on
x = (x;) € £2 (¢ = 1.2.3) and on time {. The following notations are used: u = (u;) —
the displacement vector, e = (¢;;) — the strain tensor, ¢ = (0;;) — the stress tensor, 7" —
the absolute temperature, T, — the absolute temperature of a natural state, @ = 1 — 1
— the relative temperature, q = (¢;) — the heat flux vector, s -—— the entropy, M — the
chemical potential, j = (7,) — the mass flux of a diffusing substance, B = (/3;) — the
prescribed body forces.

The equations describing TED body are specified by

(i) Field equations

(2.24) ) 1 ((’)ui . (‘)u,-)
L (’i< = — ——— —_— N
=5 daj  dx;
do,
(2.25) piy = 220 4 B,
dx;
o
(2.26) Tohe -
ox;
95,
(2.27) p=
dr;

where it; = du; /01, etc.
(i1) Constitutive equations

(2.28) ai; = Cijkierr — 7,60 — &ijcs
(2.29) § = 7€+ b@ + de,
(2.30) M = _gijfi_f —d@e + ac.
iii) Flow laws
a0 oM
2.31 =Ny — — L ;Ty—
(538 . bid dx; 4 dx
J0 oM
2.32 'i B _Li = 1)1
) d T T dx;

Here p denotes the density, (¢;j) is the tensor of elastic moduli satisfying the usual
symmetry conditions: ¢;;x = ki = €jix; (7i;) and (&) are the stress-temperature
tensor and the stress-diftusion tensor, respectively; moreover

_ T _ D
Yij = Cijki0yy, & = Cijriogg
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where (n'z}) and (n,{_),) are the thermal expansion tensor and the diffusion expansion
tensor, respectively; the last one describes the influence of diffusion on the change of
dimensions of the body (swelling); b = ¢, /T and ¢, . is the specific heat for fixed e
and ¢; (IV;;) and (D;;) denote the thermal conductivity and diffusion tensor, respectively,
while (L;;) stands for the thermodiffusion tensor. Obviously, the tensors «, vy, D, K and
L are symmetric.

On account of the symmetric role played by v;; and &;; in the linear TED equations,
the following notation will also be used

_ M _ @
Y =Wy Si=%;

The material coeflicients are not necessarily constant. Nevertheless, we make the fol-
lowing assumption :

(2.33) pybod,ae L(2), 0<py<p(x) ae x€L2,
2 2 o) dx)] [e 2 2
@3 M+ <l | g0 G 0] < aued e
ae. x€ {2 Ye, e €R,
(2.35)  Mlel® < eijmeijen < Mlel*  ae. x€ £, Ve € E;
2)_

ae. xc 12, Ve ,e; € E';,

€2

@36 Mlel +lel) < fered | Wb po] [o] < dee +

where E3 is the space of symmetric 3 x 3 matrices and 0 < A; < A, are constants.
Equivalent form of the constitutive equations is the following one

(2.37) 0ij = Tijuer — 7,0 — €M,
(2.38) s =7;€i; + b0 +dM ,
(2.39) ¢ =&;ei;+dO +aM ,

or

(2.40) Gij = Cijki€kl — Yijs — Eijcw
(2.41) O = —Fuen + bs — de,
(2.42) M = —&ijeij —ds + ac,
where

_ 1
Cijki = Cijkl — ;‘fijfkl ;

. (l (1
Vi = vis Efz‘j &= AI"(ij)"
(2.43) 1 '

£, = = =@

= Efij =i
= g =4 i
b=b+—, d=-, a=-,

a a a
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are isothermal-isopotential material coefficients, while

- 1 -
Cijkl = Cijkl — 7TYij Ykl *= Cijkl — YVij Tkl
b

- ~(1)
Yij = b7zj = 73(J )
(2.44) ) P .
§ij = &ij = 3%ij = Fi s
~ 1 ~ d d?
Paw e = = o
x X a a + b

are adiabatic-isopotential ones. Here the “potential” means the chemical potential.
The following relations are also readily obtained:

Cijkt = Cijk +
d=4d/A, a=0b/A, b=a/A, A=ab-d.

From Eqs. (2.24)-(2.32) we readily obtain the basic system of equations for the deter-
mination of three unknown fields: u, s and ¢:

(2.45)

8 N _ e
pii = o —[Cijuen(u) = Jijs = &ije] + B
T;

(2.46) & = 8(?‘ { Udo [—7kieki(u) + bs — (lc] + L ()0 [- fue“(u) —ds + (IC]}
d f)
= 9 { ”0 [— 7klek[(u)+bs—d€]+D1ja [— E“cm(u)—(ls+ac]}
where
(2.47) Ay = Kz Ty

It is worth noting that Eq. (2.46), for the evolution of entropy is formally the same as
Eq. (2.46); for the evolution of concentration. Thus, the system (2.46) may be written in
the following abbreviated form:

) J o
pi; = a—ﬁumeu(u) ~ A8 |+ B,
Zj

(2.48) ,
i O,
59 = oz, [[”ﬁ() (— nlmﬁ(u) +as 'Y)] ,
provided that the following notation is mtroduced
(2.49) (5*) = (s',5%) = (5,0)
711 512 ~

(2.50) [a" = [ ~21 22] = [_ba, ad} .
(251) [72]} = 5_;)’ 75])] [;)‘/U:El}]#

" Lll LlZ A L
(2.52) [L ﬁ] = [LZI L22:l = [LT D] i
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The Greek superscripts take values 1 and 2, and indicate the relation between the matrix
element and the relevant fluxes of heat and diffusion, respectively. The summation con-
vention applies also to these indices. The following symmetries are evident:

< ~aff _ =P« a3 _ rpPo _ jap
(2.53) a®” =@, L =L =1L, .

In order to facilitate the formulation of the initial-boundary value problems, we intro-
duce the following notations:

(2.54) (@) = (0',0% = (0, M).

For further convenience we set

(2.55) [¥*] = (¥, ¥?] = [Tijvzl'_,']-

(2.56) 1= 0" ¥9) = [, =€),
i b d

(2.57) [a*”] = h :7] ,

and

i 3 b d

a3y _

(2.58) [a®"] = [—(l (L} :

af

The matrix [a™"] is symmetric while [a‘*ﬂ] skew-symmetric. As it is seen from the defini-
tions (2.45), the matrices [@*”] and [@*”] are mutually inverse

(2.59) a* g = §2P
Also from (2.39) we find

~a 33 ~o
(2.60) B = 7.

By using (2.54) and (2.55), the constitutive equations (2.38) and (2.39) assume the
following concise form

(2'61) s% = T?je‘ij + C_Lnﬂeﬁ L

REMARK 2.1. KUBIK [135] derived general equations of thermodiffusion on the basis
of the mixture theory. The field equations are obtained by using the balance equations,
cf. also KUBIK [136], KUBIK and WYRWAL [137].

Various physical aspects of the diffusion in solids are presented in the book by MROWEC
[138], cf. also WERES [139].

3. Existence and uniqueness theorem

The initial-boundary value problem of the thermodiffusion in a nonhomogeneous
anisotropic elastic body is formulated in the following form

0%, a _ - .
(3.1) Pz — 5 (Cijrieni(u) —7;;0 — &;;M) = B;, inf2x(0,t),
ot dx;
_060 oM J Jd6 oM a1
PR | S W N R Y ‘
62 B i = (Mgt Logy )+ TG = e 2 O,
00 oM 9] 00 oM - Ou; _
(3.3) da + (L—at - a—xl( ijaTj + Dij__a.’b'j) + E’jé; = ¢, in 2 x (0, ty)
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(3.4) u(x, 1) =0, O 1) =0, Mx1) =0 ond2x 01,

(3.5) u(x,0) = U(x), O(x,0)=0,(x), M(x,0)=M(x), @(x.0)=V(x
where u; = du;/0t; By, ¢ and g, are given functions of x and ¢.

We make the following, rather weak assumptions, cf. (2.33)—(2.36):
p.b.d,ae L™®(2), 0<py<p(x),

(H)) Ml + ed) < [e1, €3] [Fb/g; :7183] [i‘] < Aa(ed + €3),

ae x € 2Ve e €R,
where A; > A; > 0; A\;, A} — constants;
Tijkt € L2(2), Ale]® < Tijri@)eijens < Ale)’,  ae x € Ve € EJ,

;) 2 A L 2 2
) | nlal + el <lened | A0y bog | 0] < e+l

L)' (x) D)

ae. x € 2 Ve,,e> € E‘?

Here E? denotes the space of symmetric 3 X 3 matrices.

(H5) Tijn&ij € L7(R), 70| € A, |Ei_j(x)l <A, aexe .
(Hy) I B; € L*(0,1y; L*(12)), 9o € L0, t; H'(2)) (2 =1,2).
(He) | wie H(Q):  Vi.Op, My € LA(D).

We set H'(2) = [H'(12)], etc.

We can now formulate

THEOREM 3.1. Under the assumptions (H,)—(H ) there exists a unique solution (u, @, M)
of (3.1)-(3.5) and
du;
ot
GO; M € L™(0, ty; L*(12)) N L2(0, to; 1 (£2)).

w& L¥0 i T2, € L0, ty; L*(12)),

REMARK 3.1
(1) The proof of this theorem can be performed either by using the semigroup theory
[140] or by the Galerkin’s method [141]. In fact, under (H,;)-(Hs) existence of a solution
(u, @, M) holds in the smaler class, cf. [39, 40],

(’) - b
u € G0, to; HA(2)), 73' € CO0, ty; L2(2)Y),
0
O; M € C°(0,ty; L*(2)) N L0, ty; HL (1))
(ii) For the definitions and properties of the function spaces used throughout this
paper, the reader may refer to [142, 143].
(111) The related existence and uniqueness problems are discussed in [144, 145, 146].

4. Microperiodic structure of TED body and two-scale asymptotic expansions

A subclass of nonhomogeneous bodies are those with microperiodic structure. Period-
icity is certainly an idealization, except man-made regular composites, yet in such a case



THERMCDIFFUSION IN HETEROGENEOUS ELASTIC SOLIDS 217

homogenization methods yield explicit formulae for the determination of overall (effective
or honogenized) moduli.
In ‘he sequel we shall apply the method of two-scale asymptotic expansion, which can
likewise be used in the case of quasi-periodic (nonuniform) structures, cf. [5, 76, 147].
Le: a microperiodic structure of the TED body considered be Y -periodic, where

3
¢ > 0is a small parameter and Y = 7 (0, y) is the so-called basic cell. The functions:
1=1

Ciiet(¥)s vii () € (y), Dij(y), I:5(y), Aij(y), Biy), 0(y), d(y), a(y), p(y)

are Y -periodic and sufficiently regular. Later a weaker assumption will be discussed. For
a fixec ¢ > 0 the material functions

“eijri(x) = fi.f'“(:)' i) =8 G) g Ei‘j(é) '
TR (x) = [\}_,(é) “Lij(x) = L/(i> D)= ”“(é)’
“bx) = b(f) “d(x) = (1@ :
“a(x) = a(’;‘). plx) = r(") x€ 42,

are ¢} -periodic. We note that in sections concerned with asympmlic expansions the no-
tation “ ¢4y, etc. is used, whereas the conventional notation ¢;;;, is employed in Secs. 7
and 8.

According to the definitions (2.48)-(2.52), the functions (1” , ¥ and Il'li are also
cY -periodic; thus we set

: X N X
“Cijki(X) = Cijki (;) “yi(x) = A/z/( ) ;
EL?}‘j(x) = li'ﬁ(—?) , fa*P(x) = a""'f(é) . %) = /)(é), x€ f2.

We observe that for a quasi-periodic structure we would have ¢;;i(x,y), 75 (x, y), etc.,
where the functions ¢;;(x, ), 775(x, .), etc. are Y -periodic and x € (2 is the macroscopic
variable.

From a mathematical point of view the homogenization means a passage with ¢ to zero
in an appropriate sense [2, S, 10]. Strictly speaking, the method of asymptotic expansions
is a formal homogenization method, nevertheless it is a powerful one.

In the periodic case, the basic system of Eqs. (2.48) takes on the following form (¢ > 0
and fixed):

(4.1)

(4.2)

J
E —[%Cijrieri(Fu) — °F5; <]+ °B;,
"J'

f8Y = ar. L?’j('f):z'. 7L1€U( u) + @77 S|, in 2 % (0, 1)

Eptil;
(4.3)

Obviously, the functions “u and “s® depend on x € {2 and the time ¢ € (0,1,), ({y > 0
or ) = +00). This system of equations has to be completed by the boundary and initial
conditions. The following conditions are assumed:
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(i) boundary conditions
(4.4) fu(x,1) =0, “O%%x,0)=0 on I x(0,%))
and
(i1) initial conditions
“5) “u(x, 0) = U(x), il‘l(x, 0) = V(x),
(FO%(x,0)) = (OF (0) = (O4(x), Oi(x)) = (O(x), My(x)), x€ 12,

where the functions U, V and @' are prescribed and sufficiently regular. It is worth noting
here that various combinations of initial conditions are possible. As we shall see in Sec. 6,
some of the non-mechanical initial conditions for the homogenized body may be different
from those for the microperiodic solid.
According to the method of two-scale asymptotic expansions we make the following

assumption (ansatz):
(4.6) fui(x,t) = u(”)(x y, 1)+ fu (x y, 1) + e 12 )(x y, i)+ .

v € n( [) - s(")”(x ¥, f) + fs(l)ﬂ(x y. {)+ o S(Z)u(x Y, t)

where y = x/¢ and the functions u”(x, -, 1), sV (x,-, 1), u)(x, -, 1), etc. are Y -periodic.

Before proceeding further we recall that for a function f(x,y) where y = x/¢, the
space differentiation operator d/0x; should be replaced by d/dz; + (1/£)/(9/dy.).
Substituting (4.5) into (4.2) we obtain

(4.7) p( )(u(” iy 4 fzu() )=

_(92 1 X 0 4 cu® 4 2@

- (31—';‘ Te 0J1) [C”H(S) (011 € 0y:>(u = )
J l J d 18

i, () Mo | 2@ 4 ( ) { ja/j( ) ( __)

(4.8) & +c8 5 + Edy1 L . + -

z;
) 1) 2 (2)

+cu, + €U s 3

[ ‘/u( (83‘t Eaﬂ) Uy, k k )

+&ﬁ’(§>(5(“h +esM 4 2@ 4 .)] } .
€

According to the procedure of the method of asymptotic expansions we compare terms
associated with the same power of £. Consequently we obtain:
-3
o

J
@9 0= 5 (107 (u[(y)euu(u( M),

where

(4.10) eyii(¥) = (3; + 2—;%')/2.
7 1

|

(3(”)(1 + Eq(l Yo +¢ <‘2 (2)0’ )] + B (

™ | >

http://rcin.org.pl



THERMODIFFUSION IN HETEROGENEOUS ELASTIC SOLIDS 279

—
P

[
c

)
(4.11) 0= _(—(ei‘,‘m(y)eym(u(”’)),

0 5
(4.12) 0=01-( ’J(y)—( i @eyrr(u )))

9 L
+(?(?Ji( i )_( 7#»:(!/)%!»1(““”)))
=gz ap, 0
+a§:< i Oy )—( 7L[(Y)’kl(u ") + L ﬁ( )ayj(—n,(y)fykl(um)))
+i<[/aﬂ(y) ( aﬁ(y)s(u)-y)> .
dyi

Hence it can be shown (cf. Appendix) that u”) does not depend on the local variable y,
i.e.

(4.13) u® = u(x,1).

Further, one obtains, (cf. Appendix)

du‘” dul”

i —a 3 'vﬁ ’
G ) FT O,

where a priori unknown functions C'” do not depend on y.

(4.14) S0 m(y)(

E.—l

By taking account of (4.13) an (4.14) we arrive at the following relations, (cf. Appendix)

J (_ (()u(l) Dugn )) ()"_/,J(y)
4.15 — | Ciik + — C'(x

oul)  oul?
=B k k B9 () (1Y
5 (75 + ay,)” ) )]

OL (v) 00 (x, 1)
dy; dx '

D [, ap
(4.16) w[L

n

(4.17) p(y)uw) 2™y — 72, (y)s™

~ 0
+Ciikuy)eyki(u)] + Ej—{ ..} + B;,
d
(4.18) 5O = 87( (y)—[ Taen®) = Ti@e u®) + a7 )5

+LE ) T ) = T e ®) + @) 1)+ i
J

The terms in brackets {...} are unimportant for our further considerations.
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5. Effective material coefficients and local problems

For a function [ depending on y € Y we set

1 &
(5.1) (D=7 | fxdy.
,.

By using our previous results, after some calculations, the following field equations de-
scribing the homogenized TED body are obtained

) Yol
<,[’)) u(()) _ ('/.1. () U B 7/1[- ()(.
' Rl ()z ¥ Qg
(;’_(() > hof3 o (/3
U drdr;
Here and in the sequel the superscript i denotes a homogenized quantity.

In the component form we have
0% aC, o, 8C,
(p)a{" = ek, i & - b= (. +(Bi),
1 0x 02, 10z ; * 0wy
a2/t
’\:l 06! +L:l() (C )
T 0x 0z T 82,02,
dD*Cy 0%C,;
+ D! ‘

I 0zi0z; M@z,

+ (Bz‘) 5
(5.2)

(5.2), (30

( (U)) - ],I'

Moreover we have
(53) (S(U)ft> = ;—T»fz;) ”(u([) ) + ”Imr/j(rﬁ

Hence, by comparing with (2.38) and (2.39) we infer that the functions (', o« = 1, 2, (i.e.
'y and (') stand for the temperature and chemical potential of the homogenized solid,
respectively. Consequently, it is more instructive to use the following notations, cf. (2.54)

(5:4) oM =pe"=C'=C, OM=M"=C'=C..
Then, instead of (5.3) we have
(5.4), (s = ;7’m(u "y + gheBGhs

The homogenized material constants are given by

;N d\(hl)
Cijkl = szlul + Cl]pq 0 s

—hu — ()FO

i - (o)

(5.5) ﬂ"
—h,aﬂ < —a 3 ()F)

a +
l]a

hafj < m‘i . L OAM)

kooy
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where
Cijhi = Cijkl — ;fufw ,
= _ = _ . d . =@ _F .,
Yij = Yij = Yis + ;fij* Vi = &5 = =Eij »

Lo _ = —' @ 1
(Tn/3=|i(l_; g] [)_:b_*.(_. (‘=(_1 = —.

We emphasize that the superscript i always denotes a homogenized (effective) quantity.
For instance, Ef’jkl are homogenized (effective) elastic moduli of E”M(.l‘/f).

We observe that, cf. Eq. (5.7); below,

hapB _ yhap
(5.6) BEP =17,

[

The functions x*9, T, ®>7, etc. are Y -periodic. These local functions are solutions
to the local problems, which are posed on }:

Jd o[ o d
T(Q_jﬂ:m()’) r k ) = 1”)(1(3’)

()- 1 ()ym ()( Yj
() alia l (Y)
(57) p ( 1jkm (y) ) R : 3
dy; T ay,, Dy,
0 ( Loy )o()"fﬂ) AL (y )
()i/, ()Ut ()Uz

Solutions of Eqs. (5.7); > exist up to constant vectors, while those of Eq. (5.7); — up to
constants.
Equations (5.7) are strong formulation of the local problems. In such a case the peri-

odic functions ¢;;(y), 7;(y) and L“ka(y) have to be of class C''(Y'). This assumption

may be significantly weakened provided that one passes to weak or variational formula-
tions.

Let us define the space of 1 -periodic functions

Hper(Y) = {v € H'(Y) | v takes equal values at opposite sides of Y},
Hper (V. RY) = [Hper(¥V)],

where 1 '(Y) is the standard Sobolev space, cf. Refs [5], [10]. Now we assume that periodic
functions ¢;jxi(y), 7.5 (¥), Iu‘}(y) B;(y) and p(y) are elements of the space L™ (}").

Such an assumption comprises, for instance, layered solids with discontinuous material
constants.

From (5.7) one readily obtains the variational (weak) form of the local problems:

Find x®9 = (x{?), T* = (I') € Hper(Y,R?) and ©°F = (0;°) € Hper(Y,RY);
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[ e X )eyi; () dy = = [ Eijpgyeyii(v)dy Vv € Hper(Y.RY)
Y Y

(5.8) [ En®ena Ty (v dy = ] ToiWeyij (v dy, W € Hper(Y,R),
P

f Ty )()O"” ()w

[L“ﬁ(y)——dy Y € Hper(Y).
Y

Existence of solutions to the problems (5.8) results from the Lax-Milgram lemma, cf. [10].

6. Initial conditions for the temperature and chemical potential of the homogenized body

Now we shall derive the initial conditions which should be satisfied for £ = 0 by the
pairs of the functions resolving the homogenized equations

(whcz) — (-Sh J,"[h) (Shn‘) o (Sh.(‘h and (9/10) — (911~ }uh) .

corresponding to the pairs defined by Egs. (2.49) and (7 54), respectively, where s =
sh(x, 1), M" = M"(x,1), ¢" = ¢"(x,t) and @" = @"(x,1). To this end the followmg
result will be applied, cf. [5, 148, 149].

LEMMA 6.1. If [ is a Y -periodic L°7(Y") function, then f(x

<

) converges in L™ ({2)-
-weak-* to (f) as ¢ — 0, provided that {2 is bounded. Consequently, if g(x) is any L*(12)

function, then f g(x) converges weakly in L*(£2) to (f)g(x).m

£

We recall that weak-* (weak-star) topology on L.° denotes the natural weak topology
in the sense of duality (-, )1, e, cf. [10].

For ¢ > 0 and t = 0, after (2.61) and (4.5), the entropy-concentration pair (s") =
(s.¢) in terms of the temperature-chemical potential pair (@) = (&, M) is expressesd
as follows

(6.1) om0 = 75 (2 ety + a0 () 04 0.
where
0y (x) = ©7(x,0).
By employing Lemma (6.1) we get
(6.2) lim “5%(x,0) = (72 )e;,; (V) + (@70 (x) .

e—()

On the other hand, Eq. (5.3), yields the following relation for { = (:

(63) (" (%3, 0)) = 7ies; (U() + a" 70" (x.0).
Obviously
(6.4) lim €s%(x,0) = (s""(x,y,0)).

e—l)
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Hence we finally obtain the initial condition for the pair (9") = ", M"),
O"(x,0) = {(@ () + d"(d)O(x) + (@ (d) + d"{a@)) My(x)
Ha@ (1) = 78 + (&) — Eeii(U)} /A"
M"(x,0) = {(d"(b) + 0" (d))Oy(x) + (d"(d) + b"(@)) My(x)
HAM((Ty) =7 + P(ES) — Eles(U)} /A"
where @, M, and U are prescribed, cf. Eq. (3.5). Moreover, we have set
~h _ =hl =h2 —h12

- Zh Fh _ gh _ Th=aM g =g
N =T, &=, di=dt=av, b'=a at=a

cf. Eq. (5.5) and (2.55), (2.57), and
A= @ - @y
We note that d" # (d), in general.
Written in a concise form Eqgs. (6.5) are given by

(6.5 @ (x,0)) = @ PUa)OF(x) + (T1) = TiD)e:;(UM))]

lig

(6.5)

where a” is the inverse of a"
at =@ ie @tgh? = 2P,
We have
(6.6) =hil _ Gk _ Th/jh’ ah2 = gh = dh Ak, G2 =gt = BhjAR.
Let us consider another pair of the initial data, for instance the pair
“u(x,0) = Ux), “u(x,0) = V(x),
CZ7(x,0) = (Z£;'(x) = (Bu(x), G(x)),
where (Z§") = (0. () is prescribed, and
(6.8) @u(x,0) = Oy(x), ‘e(x,0) = G(x).
For ¢ > 0, by using (2.29) and (6.7)—(6.8), the initial entropy is expressed as follows,

(6.9) “s(x,0) = 'y”( )F,J(U) + b( )@(;(X) + (l(é)(}'(x).
By employing Lemma 6.1 once again we get

(6.10) lim “s(x,0) = (7;;)ei;(U) + (B)OY(x) + (d)G(x).

(6.7)

On the other hand, Eqgs. (5.3) and (5.4) can be written as
(s@) = Flei; ™) + et + d" M,
(6.11) = T
(C((l)) 6 LF (u((l)) +d l@ v 4 —ILA[h. )

After elimination of M " and taking account of (6.8), we arrive at the following relation
(6.12) (sV(x,y,0)) = ylie:;(U) + b"0"(x,0) + d"G(x).

where

dh - . (ah)z Eh

h _=h = Th h _Fh 3" 7 By S
75.7 _717 (ThEU’ b b ah 2 d* = ah’
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because, cf. (6.8),
_lim(fc(x.O) = ("(x.y.0)) = G(x).

As previously
lin}'f.s(x,()) = (sO(x,y,0)).
ot

Finally, we obtain
(6.13) 0" (x,0) = [(1OX) + ((7i;) — ¥iHei; (VX)) + ({d) — d" )G (x)]/0" .

The formulae (6.5) and (6.13) generalize the corresponding result reported by FRANCFORT
[61, 62] in the case of homogenization of the equations of coupled thermoelasticity. From
Eq. (6.5); we conclude that the change in the initial temperature for the homogenized
TED body is also influenced by the diffusion. This change is implied by the fact that
(b) # b", (y) # ¥" and (d) # d", in general. The initial condition for the chemical
potential also changes and is given by (6.5);.

7. Convergence theorem in the general, non-periodic case

Suppose that a microstructure of an elastic solid in which thermodiffusion occurs is
characterized by a small parameter ¢ > 0. No assumption of periodicity is imposed.

We recall that formula (5.5) applies to a microperiodic structure only. The same sym-
bols for the effective coefficients are used in a nonperiodic case. The reader sholud be
aware that in the nonperiodic case formula like (5.5) is not available and one has to find
bounds on effective coefficients. The results presented in this section are also valid in the
particular case of a periodic microstructure. Consequently, the formal homogenization
procedure used in Sec. 4 is justified by Theorem 7.2 below.

For a fixed £ > 0 the system of coupled equations of the linear thermodiffusion is
assumed in the following form:

€ () . “‘f () - g = g e € :

00 P e - 0;—”(r,_ﬁ.mck.,n (u°) — 55,07 — &;M° = B;, in 2% (0. ty).
__ 007 __OM® 9 [ .00° _9Me\ _, i ,

(7.2) be i +d° BT, —()—Ll(/\:}?)—L-‘*"'L;J é)]?l‘ >+‘)’ij51'—l =4, m QX(O‘IU),

__00° __OME  d (.. 00° __OMN -, dif
00 e C C (L: d 01 ) £ d“’z g2, in QX(O.’U).

(7.3) d° _0_t+(1 0 o i’ia.—rj+D;j oz 2237 Sy
(7.4) wxt) =0, O°(xt)=0, M(x,t)=0, ondf x(0,1).
(7.5) uw(x.0) = U(x), O°(x,0)=0(x), M(x,0)= My(x), 0°(x.0)=V(x).
where it; = du; /01, etc.

We make the following assumptions:

po b A5 @ e L), M <pi(x)< A, aex€f?

d*(x) a@(x)]| |es

(A1) (e + ) < e, e2] [EE(") 35(")} [] < Mlé + €,

ae. x € 2Ve,.e; €R,
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where A\, > A; > 0; A5, A\ — constants;.

1/kl?1 € L™ & Ciem(@)eijepm < ae. x € 2Vec€ E‘; .
2 A% (x L*(x)| [e 5 2
) | A+ o) < fened (8 o] [21] <ttt + 140,
ae. x € f2 Ve, e; € EZ .
We recall that E'Z is the space of symmetric 3 x 3 matrices.

("13) ‘ Iz, \1] € L™~ ('Q) |Tf](x)i S /\Z* 'Ef](x” < ’\2‘ ae x € f2.

£

du
To obtain a priori estimates we multiply Eqs. (7.1)-(7.3) by BT , @7 and M*, respec-

tively. Next, performing integration over {2 and integration by parts one gets

16 [ ()0{“ d()"f da — J 0(;?diivj(ffjkmfkm(UE))(I.;I,'
(1.7) %']— [Flefde+ [T (MT[ de

2 2

+ J (A5,05, + L5, M5)0% da + j~,“0 c”(‘)a“[ )(1.-1: - i!‘gl(-)fdﬂ'.
(7.8) ] l“ﬂlfdy da + ;%ﬂ] | M| dx + ]‘(lf.-f. + D, MM, da

+ jgf MF%e; ( )r];1'= .[lgz.f’l.l“’rl.lr.

2

[3

since the boundary conditions (7.4) are homogeneous; here O%; = , etc.

8
Adding Eqgs. (7.6)-(7.8), we readily obtain

1d |t |? Ld _. £ & e

S JP oy dz + S I Ciikmerm (U®)ei;(u®) dz + _1_ fb |©%| d=

@ e s 2 g .
+’H:‘zf(mﬂ (l.z+§abja | A2 da

+ [ (5,05 + L5 M5)05 + (LE,05, + DS MS)MS] da
7
ous ) i
= f (B,—ﬁ de + ;07 + gzM‘) dax .
4 ot

On account of the initial conditions (7.5), integration in time yields
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a
Z

Ju®

_)52’.
ot o]

+ L_’f?-kml?km(ue)ci‘,(ua) + bE

1d
7.9) -— ‘
() 2 dt f (ﬂ
2
t

+2d°O°M° + (‘LE]MEF) de+ [ [[(505 + L5 M5)05,

0 2
+(L5;05 + D; MM de ds
1

-5 [ (f)E|V|Z + E?jkmekm(U)Ci.i(U) + EEI(";)”i2
0

t ¢
= s dus
+2d°0uMy + @ | Moy dz + [ (Bi% dz + ;0% + ;M) d ds.
0 2

The last relation plays an important role in mathematical developments, including exist-
ence problems. It also provides some useful hints for the study of correctors. Particularly,
by using the assumptions (A;)-(A3z), (H4) and (fs) combined with Gronwall lemma [150],
from Eq. (7.9) we deduce that

{u"}eso is bounded in L7°(0, ty; Hi(2)),

{8" } is bounded in L%(0, to; L*(22)?),
at e>0

{©@°}es0 and { M}, are bounded in L°°(0, ty; L*(£2)) N L2(0, ty; H)(£2)).
Now we can formulate

THEOREM 7.1. Under the assumptions (Ay)-(As), (Hs) and (Hs) there exists a unique
solution (u®, 0%, M*) of (7.1)-(7.5) and
) Jus ) .
us € L0, ty; HI(2)), ‘dit € L0, 1y LX) .

O M € L0, ty; L*(2)) N L*(0. ty; HL(12)).
REMARK 7.1. Existence of the solutions (u®, @, M) holds in the smaller class:
ous "
(‘)tl € CY0, 1y L (),
Q% M* € CY(0, ty; L*(2)) N L*(0, ty; HL(R2)).
THEOREM 7.2. If the assumptions (A;)-(As), (H4) and (Hs) are satisfied (see Sec. 3),

. ! / ! . >
then there exists a subsequence (u® ,0%, M) convergent to (u,@, M) in the following
sense:

u® € C°0, ty; Hy(2)%),

1

S —u weak-*in L0, t,; H}(12)%),
s’ . @
ot ot
O — O weak-*in L(0.ty; L*(12)) N L3(0. ty; HA($2)),
M — M weak-*in L(0,ty; LA(2)) N LX(0, ty; H1(2)).

when ¢ — 0.

weak-* in L(0, ty; L*(12)),
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The triple (u,@, M) = (u",©" M") is the unique solution to the homogenized
system given by

o0 ui 9 o 6 —EM) = in 2 % (0,1
(710) p ()tz - %(Cijklfk[(u) ’71] E ) lv mn X( ) U)’
a0 ovoM Q[ , 00 A OA-T) _p Uy
(7:11) (b+f»1) a1 (IW dzt(\ 9z, Lij(f)_,l.j %]) =,
in 2 x (O.t()),
0 9e oM J , 00 ; ()M) —, O1;
2 — - e+ D) — ) + £ —— = gs.
(7.12) d ot (“ k) py ot 01[( 0 8 Y8z, &

in {2 x (0~ tU) 3

(7.13) u(x,1) =0, O, t)=0, Mxt) =0, ondR x(@O,t),
(7.14) u(x,0) = U(x), ua(x,0) = V(x),
(7.15)  O(x,0)=O!x) # Oy,  M(x,0) = MJ(x) # My(x).

REMARK 7.2

(i) Theorem 7.2 is just a reformulation of Theorem 3.1 for the case of a solid with
a microstructure characterized by ¢. The proof of Theorem 7.2 is rather lengthy and will
be given elsewhere.

(i1) As we already know from Secs. 5 and 6, even in the periodic case the homogenized

) _ 0 - 0 _ 0 .
coefficients @" = @, b" = | and d" = ( are not equal to their mean values.

’ 0
(iii) On account of (A;), p© — £ weak-* in L™(§2). Here one has the liberty in the
choice of a subsequence ¢

0
(iv) In the general non-periodic case the effective coeflicients p, C;?fki’ ... etc. are not
necessarily constant but may depend on x € 2.

(v) The homogenized system (7.10)-(7.12) is of the same type as the primal one or
(7.1)-(7.3).

Part 2. Correctors and examples

In Part 1 of our contribution the homogenization problem was solved for linear equa-
tions of thermodiffusion in a three-dimensional solid. The formal method of two-scale
asymptotic expansions was justified by Theorem 7.2. Now we will continue our considera-
tions; particularly in Sec. 8 the results concerning correctors will be given. Secs. 9 and 10
are more specific and illustrate the general developments of Part 1. The sense of intro-
ducing correctors follows from Theorems 8.1 and 8.2 below.
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8. Correctors

For £ > 0 the initial conditions for the entropy and concentration are given by, see
(2.38) and (2.39),
(8.1) 5%(x,0) = 75 (x)ei;(u°) + b*(x)O°(x,0) + d°M*(x,0),
(8.2) £ (x.0) = £, (x)ei; (%) + ()7 (x.0) + T M*(x,0).
We recall that now no periodicity assumption on the material coefficients is a priori im-
posed. Here (u®,@%, M¢) is the unique solution to the system (7.1)—(7.5). We still pre-
serve the superscript /i for some of the homogenized coeflicients; they can be calculated
explicitly for a periodic microstructure studied in Part 1, cf. [5].

The considerations which follow owe much to the papers by MURAT and TARTAR [151,
152], where scalar cases only are investigated.

Suppose that (vfl.zf’) be any functions such that, cf. Secs. 2 and 5,
AR alvE Y — (o why] = :
dive e(vi) — (¥ — ¥ )] =0, in J’?} L8 s

v: — 0 weakly in H}(2)}

M= ol _rfe _ rhy = :
@4y < eE) ~ (" —LN1=0, in ff} as e — 0.
25 — 0 weakly in I/;(2)

(8.3)

=i

Such a sequence (v*",z: ) exists [40].
Next, we define (. #2) by extracting a subsequence, still denoted by &', such that

(8.5) FEX)e (v ) — ky,  weakly in L*(12),
(8.6) E5.(X)eij(2°) — Ky, weakly in L2(2).

It can be shown that for o = 1,2
(8.7 ke €EL®2) and k., (x)>0 ae x€82.

Further, we note that one can extract a subsequence, still indexed by ¢', such that
' = [§] /

’ 0 - i} — :
(8.8) pf—=p, b —b d —d a — ¢ weak-* in Lo(12)
with

0 0
d a

() 0
Ai(er + e2) < ey, el) |b d} [;1] < /\z(cf + c%) ae. x € 2, Ve, e2 €R.
0
We observe that in the periodic case P = (p), etc. To find the homogenized coeflicients
¥" and X" one may use the corrector tensor P° = (Pf;x) associated to €. This tensor
will be defined below.
Firstly, however, let us introduce the notion of /I -convergence for ¢, [151, 152].
The sequence ¢ (strictly a subsequence E“l) is said to M -converge to ¢"
he — b strongly in / ~'(£2)*, the solutions v¢ of the elliptic system

if for any

(8.9) —div[E ()] = b5 in 2, v € HN QY
satisfy
(8.10) &e(v) — cle(v) weakly in L3(£2,E3).
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Here v € I }(£2)* is the unique solution of
(8.11) — div[c"e(v)] = h, in £,
We note that for a general microstructure ¢ depends on x € (2.

The matrices A", L" and D" are defined similarly. More precisely, the matrices A
Le" and D*’ are said to H -converge to A", L and D", respectively, if for any sequence
(9°.0%) — (g, h) strongly in I/ ~'(£2)%, the solution (0,1 vf’) of

- div()\"', grad 1'5’ + L° urad w* ) =¢°, in{2,
(8.12) .
— div[(L7 )7 grad v° "+ D7 grad w* ] = in 2,

where (v° , w? ) € H1(12)*, satisfy

A" grad pe — A grad v |

L grad w® — L" grad w,

De grad we — D" grad w ,
weakly in L2(£2)*. Here (v, w) € Hy(§2)* is the unique solution of
8.13) —div(\" gradv + L" gradw) = ¢, in 2,
— div[(L")" grad ve + D" gradw] =h, in 2.

Let E € E? (see Subsec. 2.2); parllcularly one may take E = § = (¢;;). Suppose that a
sequence ¢ is H -convergent to ¢". Consider the function wE € H'($2) such that

ff — (Eijzj) weakly in I7'(£2)*
div(c e(wg ) — div(e"E)  strongly in H ~'(2)*.

It is worth noting that for a periodic microstructure the function wg can be determined
explicitly by solving the local problem on the basic cell Y, cf. [5].

Now we define P*' = (P, ), P, € L2(2), by

(8.14)

(8.15) PTE = e(w;) in §2.
If (vE'. z‘l) are solutions to (8.3) and (8.4) then [151, 152]

e(v‘—l) = PE’Q(V) + l'ilrl. }

(8.16) , : ,
e(z°) =P e(z) +r5,

with r? — 0 strongly in L'(§2,E?), (a = 1,2). P is called the corrector tensor associated
toe . ) )

The corrector matrices associated to A° and L® are defined similarly (we recall that
(LEI)T = LE]). More precisely, let A, € R® (o = 1.2). Consider the functions '“—'i’,\ €
H'(12), such that

Wt — (Aa,x) = Aje; weakly in I7'(12),
(8.17) e : :

!

div(A® grad 'mf\,l +L* grad wj"\;) — div(A" A, + Lh/lz).\ strongly in H ~'(12).

http://rcin.org.pl
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We can now define the matrices Q° ,R® € L2(£2,E3) by
(8.18) Q“ Ay =gradwi, RYA, = gradus,.
If (v, we') is a solution to (8.12) then

rad v = Q° prad v +re .
19 FT Te L , 0
gradw® =R" gradw + 15, withr? — 0 strongly in L'(2)

Suppose now that the tensor P’ is known. Then one can define the homogenized co-
efficients 5" and £" by extracting a subsequence, still indexed by ¢’, such that, cf. [151,
Sec. 2, Prop. 5],

(8.20) P — 7% and  PUEY — E*  weakly in LA(02,E?).

Denoting the r.hs. of (8.1) and (8.2) by (D7, D3), we have (for a subsequence, say ')
(8.21) DZ — D" weakly in LX(2).

By using (8.5) and (8.6) we define (6" (x,0), M"(x,0)) by

—h 0 ‘ L 0 =4 -
(8.22) Tijeii(U) + (b +51)0" (x,0) + d M"(x,0) = DY,

_ 0
Elci;(U) + dO"(x,0) + (@ +k)M"(x,0) = D!
On the other hand we have 713,255 € L™(82) C L*(S2), since {2 is a bounded domain.
Hence, for some subsequence — still indexed by ¢/ — we have
J 0 _— 0
Vi — Vi, & — €ij  weakly in L}(92).
Thus we obtain:

lim s (x,0) = rl,im“[“,"f;c,_,-(U) + 05 (x)Op(x) + d° (x) My(x)] =

gl =0
0 0 0
=7 i€i;(U) + b(x)On(x) + d(x) My(x),

(8.23) , o o ,
lim ¢ (x,0) = lim [€5je;;(U) + d° (2)Ou(x) + @ () Mo(x)) =

0 ,
= E”'(X)Ei'j(U) + :}(X)G)”(x) + &-(X}AIU(X) .

From the systems of algebraic equations (8.22) and (8.23) one derives the initial value for
the temperature @) (x) = @"(x, 0) and chemical potential Mp(x) = M*(x,0).
Following [40] and performing energetic considerations we introduce a solution (i,

©F, M*) corresponding to initial conditions (U%,V, @, M). The latter are defined by
620) " div[c®e(U) — O (¥ — ¥") — MJ'(E° — E)] = — div[T"e(U%)].  in 12,
' U° € Hy(R2Y, @5=6 M;=M.

After these preparations we define (ii°, ©°, ]\75) and (v¢, n, N€), where (v¢, 0%, M*) =
(U +v,0°+7°, M+ N¥), as solutiogs to the following initial-boundary value problems:
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Aazﬁf s (=€ (ZE —eNE ey .
P Y —div(ce(u”) — 7 O° — EM® =B, in 2 x (0, e
_ e o E,je _ . s
bfaaet H Oat — div(A® grad ©° + L grad M*) + 756(05; ) = a1,
7 -l ‘ ~;E ) Y —£ dus
([ ()g)f + (TE dg{ — le((LE)T grad G)E + DE grad A[f) + ((_‘ e( é)u[ ) = s

in 2 x (0, f()) 3

O(x,1) =0, M%(x,t)=0, ondf x(0,1),

dJu® , _
W(X,O) =V(x) in{?;

u“(x,t) =0,

u®(x,0) = U(x), ée(x,O) = (—)‘}}(x), Ma(x,O) = M(?(x),

and
A Vinrt -
PP — divEe@) — T~ ENF) =0, in 2% (0,1),
i () 8 —E ()Ns ; - (‘T"
b (}Ut +d T div(A® grad 7)° + L grad N°) + ,_—l_ge(fTVr') —0.
— dnt ON¢ ) ) B s
d ()()i; +a = div((L)” grad n° + D" grad N¢) + E e(%) 0,
in {2 x (O~ t’(!) B
VD=0, 7®xy)=0, NH=0 ond2x(O ),

V(%,0)= U - UF(x),  n°(x,0)=0, N°(x,0)=0, (Zt

(x,0) =10, in §2.

Now, we will formulate the basic result of this section.

THEOREM 8.1. For ¢ — 0 the following corrector result holds true:
Ju® d ;
((')Lt - ()_:" strongly in ~ C%(0, to; L*(2)%),
0 - @ strongly in C“(O, to; LZ(Q)J),
M — M strongly in (0, ty; L*(2)%) ,
e(u®) — Pe(u) — Oe(v") — Me(z") — 0  strongly in C(0, ty; L' (2, E3)),
grad @ — Q°grad @ — 0 strongly in L2(0, ty; L'(2)%).

grad M® —R® grad M — 0 strongly in L*(0, ty; L' (£2)%).
where v¢ and z° are defined by (8.3) and (8.4), respectively.

We recall that in Theorem 8.1 the fields u, @ and M describe the homogenized solid.
It is worth noting that the fields ¥v¢, ° and N* do not appear in the corrector theorem.
Deeper insight into the structure of (u®, @<, M), leads to the conclusion that the

solution to (7.1)—(7.5) is provided by the following
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THEOREM 8.2. For ¢ — 0, the solution (u®, @7, M*) of the system (7.1)-(7.5) exibits the
following structure

()i—i)_u+()j+5
a oo
(8.25) " OF =0+ +r;,

M® =M+ N +r5;
e(u’) = Pe(u) + Oe(v?) + Me(z°) +e(v°) + .
grad @° = Q° grad @ + gradn® + r5 ,
(8.26) _ _ L
grad M® = R grad M + grad N° +r .
where (u. @, M) is the solution of the homaogenized system (7.10)—-(7.15), whereas v° and z°
are defined by (8.3) and (8.4), respectively; (V5. n°, N °) satisfies
Iv*
ot
n° NS — 0  weak-* in L>(0,ty; L*(12)),

— 0 weak-*in L™(0,ty; L*(22)),

e(¥\) — 0 weak-* in L°(0,); L*(22.EY)).
gradn,grad N° — 0 weakly in L*(0, iU;Lz(IJ)}).

Moreover
rji — 0 stronglyin (0,1 AN
rs,ry — 0 stronglyin  C(0, y; LA(Q))),
ri — 0 stronglyin  C"0,1; L'(Q,E),
ri,r; — 0 stronglyin L0, 1y L'(Q)Y).

REMARK 8.1. Under additional assumptions, stronger results can be obtained, cf. [40,
p. 35].

9. Microperiodic layered composites

9.1. Specification of the general homogenization formulae

The formulae derived in Sec. 5 will now be applied to a composite made of periodically
distributed two layers. The layers are assumed to be anisotropic. The material coeflicients
in both layers are denoted by

1 n M 2 2) (@,
(‘),1) ((‘) ijkns ; ;Z, ” ?jﬁ; ((’) ijkns (7 [le‘ J :\jﬂ )
Suppose that the layers are orthogonal to the Oz -axis. For simplicity we set y = ; thus
the material coefficient depends now on y only, though the dependence on macroscopic
variables x5 and x5 is not excluded:

(M J
F’jk (U) - { < 17kn for Y€ (O»E)»
tjkn @ ‘

€ ijkn fory € (£,1).
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@ s -
’Y for y € (0,&), ‘,J A :_f-’; for y € (0.§),

Ity(J) 2) i U) ) ;..;
7 ;-Y, for y € (£.1), L;; forye (& 1)

Now the local equations (5.7) reduce to

d dy'P? d
;[_1; Cik(y) [ = "Ef’ilpq(y)s
7

9.2) d( ()r)— TT)
A {[y Ciki\y (, il

d oy de;ﬁj d a3
5 (zww - ) L),

According to (5.5), in order to determine the homogenized coefficients, one must find the
following derivatives:

1l

dx Ef’(") dI'y d(—)?d
dy dy ’ dy

(9.3)

By assuming that the matrices [¢;;] = [€;151] and [L7] = [L;'Y,"/j] are non-singular, from
(9.2) we obtain

(l\((”” ~Iykio_ = 0
# - ((l I) (—('7],[,{[('(/) +c 'i])q) P
dr’f — ki = 5 a
G4 dy = ()" (Faly) - ,
oy’ - 0 oy
(f.; = DL W) = L),

where (¢™"* and (L™ )3, are components of matrices inverse to [c;x] and [L°7], re-
0 “ 3 . 3 X .
spectively; moreover ¢ ;,,,, 7 ¢, ] ,Z are con%tams of integration which can be determined

by using the periodicity conditions for \' af) o ()“/ and continuity of these functions
aty = ¢.
Solutions to the system (9.4) are sought in the following form:
M) pg
P(!)(y) \ k (U) for Y € (Of)’
VO fory e €1,

(9.5) Iy = {(f’)“’(J) for y € (0.£),
a(y) fory € (€,1),

()
0. (y) = { 07 (y) fory € (0.6),

@ .5 .
O (y) forye (£ 1)

http://rcin.org.pl
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From (9.4) by taking into account (9.5) one has

(2)
(Pq ' pq
d X ki A @ _ 0
dy = ( 1) (_ llpq irJq)ﬂ (ka = (¢ I) (— ( itpg + Cipg)s
(1) 2)
9. d[‘a —1\k (]') (i))t d[‘a @) _ ke (E)cr ”, o
(9-6) Tft( 185 dy"=(c iy e _ye,
M .53 g
d@y”  a O_1) Way O n.'O 2o P
(lyk = ( l)ﬁ"f([/ 1'. ;;7)'\ (lJ = (L )Jj f(L W"‘f - L k ).

2)
where ((C‘ _1)“ (( =i

1) @ ( _
[¢ ikl [ € i1ka)s [L ) [1, 71, respectively.

PR 0 i
Let us pass now to the determination of the constants ¢ ;,,,. The remaining constants,

)’” (L Y., (L 5. are components of matrices inverse to

(1) 0 e
that is 7 § and L; ' are calculated similarly.
From (9.6) we obtain

M) (pq My, M M,
9.7) X g)!)(?}) = (¢ ) l(_ Cilpg t C 1pq)J + A TR
' 2) () i @ 0 )
; ) 7 —1\ ke c k
/\S\-Pq (',U) = (( 1) (_‘ 1!3)q+pzy)q)y+ 4,;(1
M, @, ) ) _ ) o
Here A F pg A7 pq Are integration constants which will be eliminated.

(ra)

The periodicity and continuity conditions for \;""" given by

) (p M (pe ( D
Voo = Ve, Ve =V,

yield
1, 2 _ @,
‘4pq =(C ) (‘- Cll])r1+pipq)+A7;qq
and
) 1 ks (1) 1] (l)k @ 1\ ki (2) 0 2)
(C l) ("‘ c tlpg + ('ipq)E + A g = (C l) L(_ c ilpg + ('ipq)‘E + A ;‘},) 3
respectively.
Subtracting we arrive at
M _ypi, M 0 ] JERE ) 0
(C l) t(_ ¢ ilpg + Cipq)f = (C 1) ("' c ilpg + Cipq)(£ -1
Hence
0 _1 i () i (‘
(9'8) :pq = (B )i [E(C 4 leq + (1 - f)(C l) ! ]lTJ']]
where (B~!);; are components of the matrix inverse to the matrix B = [B*']; here
; 1) . 2) _
9.9) B = (¢ ) 4 (11— )@y

. . . (’
In a similar way one obtains the constants 7 & L o

1 o = My M @ _yki @,
(2:10) TE= B ulé(c YT+ A -E T,
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1’53

a3 —1yany (l]_| (2)5,‘3
(9.11) Ly = (W)L 1o L2+ (1= 6L "y L0,

where (I ~')®” are components of the matrix K= inverse to K and

7l -1
K.5 = {(1 Jap + (1 — f)(L Joss -
: . 0 b : _
Substituting the integration constants ¢ ;;,,, 7 { [ "5 into Eq. (9.4) and taking into account
gl g . : ipg k q g
(9.5), after simple algebraic manipulations we obtaln

Ay {( = OB Y eppd  fory € (0,6),

dy EBY [ej1p4] for y € (£, 1),
dry [ -0-B YAl fory € (0,6),
dy B YN for y € (£,1),
doy” [ (1 - OE el L] fory € (0,6),
dy E(K NaslLg fory € (£, 1),

) 1) = -
where [-] stands for a jump; for instance [¢;;,4] = € ijpg — € ijpg; MoOreover (B~1ki

(2) (1
and (Is Nps are components of mdtrlces inverse to [Bkj] =[£Cji+ (1 =8¢ rin]

and [V “’3’ = [€ L “ + (1 -¢) I ;'1/3] respectively.
Thus we eventually obtain the homogenized coefficients

,Jp,, = (Tijpg) — (L = OB [eapgllcijml »
Fio= (7 (1—5)(8 Yo lesii MvEd s
(9'12) —hilf <~—u3 ks 1 M
= (@Py+ 1 - (B ﬂ”fkl]”[’)
L = (137 — €0 - O LML,
where

_ (1) (2)
(Cijpg) =€ Cijpg + (1 = &) € ijpq-
By substituting the formulae (9.12) for the homogenized coeflicients into (6.5) we obtain

the following expressions for the initial temperature and chemical potential of the homo-
genized body

(9.13)  @"@,0) = Oy + £(1 — OB @ [1e] - A" [SD(=175190 — [¢ 1Mo
+[[Cslpq]]varJ(U))Ah ;
(9.14)  M"(2,0) = My — £(1 = OB G¢GT - d* 1D WA7s100 + [¢1My
1
"HFslpq]]qu(U))Z_h y
where

jh = (T}Lgh o (Eh.)l ,

http://rcin.org.pl
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@ M
[Yrl =7 k1 = 7 k1,
G |
[Ck] = € k1 — & 1y cf. (2.56).

9.2. Example: Numerical results

By using the formulae (9.12) we will discuss the homogenized properties of a periodically
layered medium composed of two isotropic materials. For an isotropic elastic body one

has
E v
=— (14 .
G l+l/( 1 —21/)

‘ . ) ) (1) (2) (1)
where [ stands for the Young’s modudus and v is the Poisson ratio. Let [ and [ (resp.¥

and (z'})) denote Young’s moduli (resp. Poisson ratios) of both layers. We set
(
e=—, e€(0,1),

&=EI=E

1 | 1 1 1 1 1 1 1 1

0 02 04 06 08 10 e

2) (1)

FiG. 1. Diagonal components F{'m and Eé‘m of the homogenized elasticity tensor as functions of ¢ = [/ [

Poisson ratio of both composite materials is the same: ¥ = 1/4, and the thickness of both layers is also the
same (i.e. £ = 1/2).

Figures 1, 2 and 3 show diagonal components of the homogenized elasticity tensor,
particularly Fig. 1 provides ¢}y, and ¢%,, as a function of e. Poisson ratio of both com-
ponents is the same: ¥ = 1/4, and the thickness of both layers of the considered medium
is also the same (i.e. £ = 1/2). The coefficient 4y, is identical with £)y,,, (Fi433 = Chypy)-

http://rcin.org.pl
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Fic. 2. Components c:’l,q and cfﬁn of the homogenized elasticity tensor as functions of e = £ / E. Poisson

ratio of both composite materials is the same: v = 1/4, and the thickness of both layers is the same (i.e.
§=1/2).
S
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FIG. 3. Components ¢}, and ¢l of the homogenized elasticity tensor as functions of e = [/ . Poisson

ratio of both composite materials is ¥ = 1/4 and the thickness of both layers is also the same (i.e. £ = 1/2).
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FiG. 4. Component Ei‘“l as a function of the layers thickness ratio £, for e = F'/ £ = 1/5,1/2 and 3/4, while

1 (2
vV =rv =1/5

=h
C2222
12

2
FiG. 5. Component €L, as a function of the layers thickness ratio £, for e = £/ ' = 1/5, 1/2 and 3/4 while
(@
v=v=

= 1/5.
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035

030

Q25

o_m 1 1 1 1 1 1 1 1 1 1
(] 02 04 06 08 10 ¢
2
Fi1G. 6. Homogenized constants tum (solid line) and ¢ “m (dashed line) as a function of £ fore = E JE =1/2

(1) l’)
and ¥ = v = 1/4.

It is clear that the homogenized body is no longer an isotropic one.
The components ¢}y, and ¢hy33 (resp. Chay; and €l ,) are shown in Fig. 2 (resp. Fig. 3).
Comments given for Fig. 1 still apply

Figure 4 (resp. Fig. 5) show &]},, (resp. Ts,,) as a function of the layers thickness ratio

It
£ fore =1/5,1/2 and 3/4 while P =9 = 1/5. Obviously, for £ = 1 only the more stiff

layer no. 1 exists.
Figure 6 shows homogenized constants 5, (solid line) and €43, (dashed line) as a

(1)
functions of £ fore = 1/2 and v = 0 = 1/4.
(1)

71 and 714 as functions of ¢, for V' =

Figure 7 shows the thermoelatic coeflicients 7,

{ 7 = 1/4. Remarks concerning homogenlzed coefficients CUM (cf. Figs. 1-4) apply again.

In Flg 8 the dependence of 7/, := 7./ on the thickness ratio ¢ and the ratio ¢ =

(1) 2 1)
ll/ 7 “ 15 given. The following parameters are taken into account e = F /[ = 1/2

and 7“/7;, =1/2.

Figures 9 and 10 exhibit the influence of the homogenization on the coefficients @
i.e. on the coefficients @, b and d(expressing the entropy s and concentration ¢ in terms ot
the temperature © and chemical potential M'). In these figures, performed for £ = 1/2,

the differences between the homogenized value of the coefficients and their mean values
. ; (M @

as functions of e are shown. The parameter ¢ is defined by ¢ = 7 11/ 7 11; moreover

=11h Hh

a b= b"

(x/?
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1 L L
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F1G. 7. Homogenized thermoelastic coefficients 'yl”l and 'ﬂ’, as functions of ¢ = £/ [, for v = v = 1/4.

(1 () 2
Fi1G. 8. Dependence of 7{’1 on thickness ratio § and ratio ¢y = 7 {l/ 7 }l‘ for parameters ¢ = L/ F = 1/2

n, @,
and Y §,/ v = 1/2

In Fig. 9 the difference @' — (a'') = b" — (b) is shown, which at its turn is equal to
a**h — (@*) = a" — (a). The same thickness of both layers is assumed (£ = 1/2). Two

Ll ()
ratios 7 1,/ 7 1,, as parameters of the plot are taken.
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b"-<b>}
-005

-0151
_02 1 1 L
02 e
-Q25+
_ _ (2) (1) &
FiG. 9. b" — (b) as the function of ¢ = [ /[E for two parameters ¢ = 0.2 and g = 0.5, where
4 (2)
g="u/7n
.5“-<5>T £-05
0‘04;’/—’/—’4"”//
-005

-006

-007

-008

-009

-010

= = 2) (1
FiG. 10. 1" — (k) as the function of ¢ = E / E for two values of the parameter &: & = 1/5 and £ = 1/2;

¢ is the thickness ratio.

Figure 10 is analogous to the previous one. As a parameter of the plot ratio £ is taken.
The lower curve in Fig. 10 is identical with the upper one in Fig. 9 (note that the scale
units in both figures are different).

http://rcin.org.pl
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B"-<b>

02 04 06 08 10 ¢

-002+

_Qm_

-010

= — (2) (1)
FiG. 11. b* — (b) as the function of thickness ratio ¢ for two values of the parameter e = [ / [ e = 1/5
and e = 1/2.

In Fig. 11 the difference @" — (a) = b" — (B) as a function of thickness ratio ¢ with
€ as a parameter is shown. The lower curve corresponds to ¢ = 1/5 and the upper one
toe=1/2.

Before the presentation of the results concerning homogenized transport coeflidents,
let us recall the notation introduced earlier: A, and D), denote heat and diflusion
coefficients, and the other coefficients associated with them are:

L}: = A—H/T[) = )\11 = A, Lf’lz = D“ =D.

For isotropic layers we have, e.g. Lwﬁ = TyA8yp, L% 3 = Désp.
Further we set:
M, (2) ()
/L —1\11/1\11—/\/

()” (1) (2) (1) o) (l)
11/ 2 DH/DH=D/D-

In Figs. 12a and 12b the homogenized heat conductivity L1}* = A/ and diffasion
coefficients Li{" = D! are shown as functions of £ for u = 1/2 and v = 1/5 (Fig. 12a),
and for u = 1/2 and v = 1/2 (Fig. 12b); in the last case plots of L1} and L3 coircide.

Figure 13 shows L!1* and LI}" as functions of ratio v for u = 1/2. It is seer that
the ratio v does not influence the heat conductivity L!1* = A\ The diffusion coeffcient
L3" = D" vanishes for v = 0 (no diffusion); the result for v = 1 is obvious.



Q9

o8

Q7

06

05

FiG. '2. a. Homogenized heat conductivity Lfl“ = \:‘l and diffusion L:‘F = D{‘l coefficients as the functions

of £ fort = 1/2 and b = 1/5, where
(2) (1) (2) ( 2y (1 (2) (1 (2) (1) (2 ()
u=LH/ LY =Ku/Ku=x/Axv0=L%/L%=Du/Du=D/D;
b. Hemogenized heat conductivity L’;’l“ = z\:‘l and diffusion Lfln = Df'l coefficients as the functions of £ for
u=:/2and v = 1/2; plots of L}!" and L}:? coincide. We have set:
(3)“ U)” (2) (1 2 @, M (3 (1) (2 (H
u= L“/L“ =Ku/Ku=\X/Xx0= Lﬁ/Lﬁ=Du/Du =D/ D.

(303]
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n

10+

08 -

06 + n

04 +

02r
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Fi1G. 13. Homogenized heat conductivity L:’I“ = \{" and diffusion L{’lzz = D:‘l coefficients as the functions of

ratio b for u = 1/2, where
@, m, @ @ m @, W, @ W @
u=Li/Lii=RKu/Ku=Xx/\0=Li/Lii=Du/Du=D/D.
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Appendix

Comments on the constitutive equations and the study of the terms connected with ¢ =7, ¢ =2, ¢ ~! and £

The form (2.40)-(2.42) of the constitutive realtions can be obtained from, cf. [34, 36,

135, 136],
ol o ou

Al oij=7—, 0O=— M= —
et Yo ey ds de
where /{(x, e, s, ¢) is the internal energy per unit volume. Obviously, to obtain (2.40)-(2.42)
4 has to be assumed as a general quadratic form in e, s and ¢. Then it is reasonable to
make the following assumption:

A.2 U s a strictly convex and posistive functionon E> xR x R.
Y p s

The last assumption implies that the elasticity matrix [¢;;4] is positive definite.
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The free energy function F(x, e, @, s) can be calculated as the partial concave conju-
gate of U with respect to s, cf. [153]

(A.3) F(x,e,0,s) = inf{-Os + U(x,e,s,c) | s € R}.

The function F is still strictly convex in (e, c), but strictly concave with respect to
©. Consequently, the elasticity matrix [¢;;x] is positive definite. Eqs. (2.28)—(2.30) result
from

Ad) dF a9F Y, aF

. Ui'zﬁ_'—a § = ===y k= =0
( / af,",‘ 06 de

The partial concave conjugate of /4 with respect to (s, c) is
(A.5) G(x,e,@, M) =inf{-Os — Mc+ U(x,e,s,¢)| (s,¢) € R x R}.

Under the assumption (A.2) the function G is strictly convex in e and jointly strictly
concave in (@, M). Consequently, the elasticity matrix [¢;;x] is positive definite and
Egs. (2.37)-(2.39) result from

4 G Y
A.6 i3 = &7 -f=—'.—-, ('=—‘i‘.
(A.6) s d¢;; ’ 060 oM
Let us pass now to the asymptotic analysis. From the variational form of Eq. (4.11)
(A7) [ @imeyn@eyumdy =0 Wy € Hper(Y,RY)

e

we immediately deduce that
(A8) eyij(u) = 0.

Consequently, u”’ does not depend on y € ¥ and Eq. (4.9) is satisfied.
Recalling that u”) depends on 2 and ¢ only, Eq. (4.12) simplifies to

Jd 5 0 i)uE‘,’B oull .
A9 0=—< L — [— o ( + ) + aP7. (")7] } .
( ) ay { ] dyl fmn 01_ C)yn a 5

fx,’j

The coercivity of [L (v)] and periodic behaviour with respect to y imply

0
-3 (()u(m) sy
+

(A]O) _AJ/";nn 8’[‘ 0@] ) + ?1:/375(”)7 = C'ﬂ(x, t),
n n
where CP(x,1), 3 = 1,2 are unknown functions of 2 and t. Hence, cf. (4.14)
ol guld _
(A1) O = 3G+ G ) + T ).

By virtue of (A.11) we obtain the following identity:

du((” oul!
(A.12) Ezjk,( k

c‘)u“" dul!
T gl "SIl | 7‘_?,3(‘))(‘ — + ( + _‘k)
01 ayl ) ’)1.) (Cl]kl 71]7’:1) al ayl

duiy) - July)
7:] ['7mn< 6L + OT; ) + ?gmcﬁ(xv t)]

Busn Bug) 3
= Cijpi | =2 + =2 ) = F1.C%(x, 1),
JM( 3.%‘1 8?]1 ) 71] (X )
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because ¥ o33 agh = 7

| cf. (2.59), (2.60) and
oull

( day ayn )

¢~!in Egs. (4.7) and (4.8) yield

o s 8 §

0o _
§ 71] mn

+

71

Terms associated with

+ 70,0 (x,1).

d [E (?ug”] . d [~ (au“” . 0115;)) . ((,)u]
= —_— ikl ——— — (Ciik ; - t
(A.13) day |7 ay |7 oy T\ B2y T By, v
’ . 0
0o 0 {1‘”3 d [_ﬁﬁ oul) ’]
az_ if 8 mn 8 U
a,,(0) 5,,(1)
L;Jﬁ ‘d [ _ ~/7jnn (aum + (?Um ) n E’Z'f'hf‘(“h] }
! d.j] 8? [ d%
o )
4 {Lﬂﬁ‘ ,() [_ =B (821 Bum) + 5/'7"/5.(”)7]
()yz ij 01 mn aln ()yn
1) (2)
i 2 [ ag (22, 28) | non).
7 dy; 0z, Oy

Taking account of (A.10) and recalling that u = u")(x, t), from Eqs. (A.13) we have

d ()u(“) ol
0= —|%:: + k o (H)ajl .
g [ (3 + ) ~ 70|
J s J
A.l4 0= LY —CP(x
(A14) S L #5507
: 8. (0) g (2
[ (5 o]
0y, O, " Oy,
By substitution of (A.12) into (A.14), we obtain, cf. (4.15)-(4.16),
. A (1) (1) 3
i[ﬁ";\.((auk + u )] = C)‘)/'-"'C'ﬁ(x 1),
0%‘ e oz, Ay, ()y, s
d { J s ould
A.15 — L= [ ”f,m( + ) +aﬁ‘rs(m]}
G gt gy, TR TS
0 06 0 r'ﬁ
The local problems yields, cf. (5.7); 2,
Oy 0 (E 8\“")
. = 5\ Cijmn :
Ny 8 (_ ar,;:)
By oy oy )
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Substituting (A.16) into (A.14); we find

5 a (kD) ) ; (1) ;
0 (_Limn ()\m ) ()l + = d (Eukl()u ) = ‘L(Eijmn ()F )(_'/J( t).
()JJ Ay, /) 0x; 0y oy dy; DYn

Hence we have

) ) 8 ()
(Al?) B(y [iCtJm.n C)(?j ( \E:;l a“ n + u l) F;,jl !j(?ﬂ)J
7 n '

and consequently

Kl ()uk o
X T ) = O = walx, )
./l

or

( L(‘)
1 P
’tt( ) — ;ifl)( )

m

+ 0 C(x) + wi(x, 1),
1

where w,,(x, {) remains to be determined.

Equation (A.15); can be integrated by use of the functions @¢", cf. (5.7)

) (Lu,ja@fj”) aLy
()y, Y dy; dy;

On account of (A.19), Eq. (A.15), takes the form

(A20) Jd {In/; J _%,:)n((}llm + ()?Lm) + 113,7 (1)

Dy dy; dr, Oy,
+()/g.y()( (X., f)] }
().’L‘k

(A.19)

C\Il

The coercivity of [ L, "] yields

s (0ul) 9 e ‘
(A.21) 77{;1” (BTH =+ ;;j_‘) + gl 4 @Zw

9C7(x, )

Y
Dy AP (x, 1)

where A7(x, 1) is a new function. Hence

o) oul aC"(x, t)
A.22 st = 7 (—" + ) +a"”? [A-ﬁ ) —@h— 2
( ) ; Yomn dr, Oy, . (x,) Oy,

The terms appearing in Eqs. (4.7)-(4.8) and associated with £ yield, cf. (4.17) and (4.18)

.. ad (. ()u(”) du(l) o
a2 gl = o [ G + G ) - 7s0e]

().’EJ' d”L‘[ (9y1
(D) (2)
+i [Ez .k!(a_uk__ 4 au!" ) _ r‘iﬂf 8(1)0’:|
v L\ oz "y ) T ]

and

http://rcin.org.pl



308 A. GALKA, J.J. TELEGA AND R. WOINAR

Q[ ap 0 Juyy) | duy)
A24) 0o = -——{L‘-"-’j— [ — 58 ( ) + Eﬂ".s(”)"’]
( ) S : 1] al‘j Tmn ()ln ()Jn

La/j 0 [ B ‘7,,3 | (()Um ()’ttm ) + 55’75(”’*] }
1] dJ_] mn 0-577 ()yn
0 {L?d d [_ 50 (()Um N ffurﬁ ) % a/.i*.‘s(l)'rjl
Tou " ag, i dxy, Oy

P 2 : L)
afi () ~ ()Urs-n) ()'H,(nl) ~B~ (2)5
sl e P + — +a""s :
()JJ oz, Ay

Taking account of (A.12), after averaging of (A.23) we obtain

J 8u o ()u“)

) S0 _ Y . —;3 13 > )
(A.25) (p)ii; oz, <€i_,“( ()l[ o ) SCP(x, 1) (B;)
while taking account of (A.10) and (A.21), after averaging of (A.24) we get

. d 0 o 34 0CT(x,1)

5 s 9 By afs [ By ])

(A 6) - ()< ¥] () [( ( X, )]+L11 () O 0-7,};

Hence, by substituting (A.18) into (A.ZS) and taking account of (5.5) and (5.7), the ho-
mogenized equations of TED body (5.2) are arrived at.
Finally substituting (A.18) into (A.11) we get

axsﬂmn) () (“) )[‘
A27 s — (—a + 7 —) + (raﬁ 4 O )Cw}
( ) S Ymn Vs ()ys ()l'n . Trs By, 0 ( )

Hence, again by use of (5.5) and (5.7), homogenized Eq. (5.3) is arrived at.
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Propagation of disturbances in an unbounded
inhomogeneous linearly viscoelastic material
with or without invariance conditions

with respect to time translations

B. CARBONARO (POTENZA)

AS AN EXTENSION of a result given in a previous paper [2], a general domain of dependence inequality
is proved for isotropic but inhomogeneous linearly viscoelastic solids, which furnishes the explicit link
between the maximum propagation speed of disturbances in the body and the memory functions of the
material, and allows to prove a global uniqueness theorem for the mixed problem of viscoelasticity
in an unbounded reference configuration §2. The method of proof applies regardless of whether
the memory functions are assumed or not to satisfy an invariance condition with respect to time
translations, so that such a condition is not required.

1. Introduction

THE FINITENESS of the propagation speed of perturbations, and the uniqueness of the
motion under the assigned body forces, initial past-history and boundary conditions, are
the most important topics to be investigated in the framework of the linear theory of
viscoelasticity (cf. [5, 8] for a complete exposition of the basic features of the theory), and
have been deeply studied by J. BARBERAN and I. HERRERA [1] and W. S. EDELSTEIN and
M. E. GURTIN [6], whose results concerning these problems are so basic as to address the
subsequent research on these problems. Nevertheless, in a previous paper 2], we raised
the question whether it would be possible to deduce information about the finiteness
of propagation speed of disturbances in a viscoelastic solid, and about the uniqueness
of viscoelastic motions, from a general estimate of the “energy” of the motion in terms
of body forces and initial past-history and boundary data. An estimate of such a kind
(called “domain of dependence inequality”) would involve as a consequence a “domain
of influence theorem” analogous to the ones proved in linear elastodynamics (ct. |3, 4,
7]), which in turn would be a basic result, allowing us to find the explicit link between the
maximum propagation speed and the memory functions of the material, and to deduce
uniqueness theorems as simple corollaries.

In [2], as a first step towards an affirmative answer to the above question, we proved
a domain of influence theorem for homogeneous and isotropic, linearly viscoelastic bod-
ies. Though the result of [2], when compared with the ones proved in [1, 6], seemed
to have been obtained under too restrictive conditions, we observed that the method of
proof adopted there seemed to suggest by itself the way to extending its results to inho-
mogeneous and anisotropic bodies. In this connection, the current paper gives a proof
of a domain of dependence inequality (and, as a consequence, the domain of influence
theorem and the uniqueness of viscoelastic motions) for isotropic but inhomogeneous vis-
coelastic bodies. Moreover, the memory functions of the body are not assumed to satisfy
an invariance condition with respect to time translations (cf. [1] and Sec. 2 below). From
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a purely physical viewpoint, this circumstance could seem to be of little interest, or even
in contrast with the physical principles of continuum mechanics, since such an invariance
condition is needed in order to satisfy the principle of objectivity. There are, instead, at
least two reasons why the choice of giving up this assumption is quite meaningful: (1) it
gives a result which is mathematically more general and useful in the framework of the
study of integro-differential equations; (2) not all the contimuun theories take into account
the principle of objectivity: for instance, the anisotropic linearly elastic bodies (without mem-
ory) do not satisfy this principle, whose violation is implied in anisotropy (when a body
B is assumed to be anisotropic, its response functions could appear, at least for some
particular relative motions of two observers (2 and (', to be independent of time to ()
and time-dependent to (0'); as a consequence, if we had found our results for anisotropic
viscoelastic bodies, even retaining the invariance of the memory functions with respect to
time translations, we would still have violated the objectivity principle. (This, of course,
would not be a good reason to reject all the continuum theories dealing with anisotropic
materials).

We have, in short, two ways of violating objectivity, in the framework of the linear
theory of viscoelasticity: (a) giving up the invariance condition of the memory functions
with respect to time translations; (b) giving up the isotropy assumption. In the current
paper, we have considered the former; the latter, it is hoped, will be considered in a future
work.

Thus, the present paper is to be considered as a “second step” towards the desired gen-
eral result. But it also has a feature which seems to be of some interest: it explicitly deals
with unbounded viscoelastic bodies, and points out the link between the finite speed of
propagation and the behaviour of the memory functions at spatial infinity. An information
of this kind cannot be directly deduced from the local uniqueness theorems given in [1].

Furthermore, the main result of the paper, in virtue of its nature of an explicit “domain
of dependence inequality”, i.e. an a priori estimate of the solution with respect to the
boundary and initial data and the initial past-history and the body force field, may be a
very helpful and manageable tool to obtain stability and continuous dependence results
{of course, with respect to suitable norms) for the motions of an unbounded viscoelastic
system. This problem, however, will not be dealt with in the present paper.

The plan of the paper follows the same scheme as [2]: Section 2 is devoted to re-
formulate the mixed problem of linear viscoelasticity, and to list our basic assumptions
on the regularity of data and solutions, and on the properties of the memory functions.
Section 3 is entirely devoted to the statement and the proof of the main theorem (the
“domain of dependence inequality”). Finally, in Section 4, we recall the definition given
in [2] of the “domain of influence” in the framework of linear viscoelasticity, and apply
the inequality proved in Section 2 to prove the domain of influence theorem and the
uniqueness theorem.

NOTATION. Light-face letters denote real numbers or functions; bold-face sans-sérif
lower case letters, such as x, x, etc., stand for points in a three-dimensional (real) point
space I2; bold-face lower case letters are vectors on I, i.e., the translations on [; bold-face
upper case letters denote second-order tensors, i.e. linear mappings from the whole space
of vectors into itself. The second-order tensor I maps every vector v onto itself.

We denote by o the origin of an (arbitrarily) assigned reference frame (o, {ei},gq)
on F, and, for any x € I, we set x — o = ahey, (here and in the sequel, whenever the
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index notation will be used, the summation over repeated indexes is implied). We also set
3 . . 5
|x—o| = /3, _,(x")?. Moreover, for any pair of points x, = alle, and x = e, x—x

is the vector (z' — x{)e; and |x — xy| = /3, (2 — @)% Finally e = |x — xy| 7 (x = xp).

For any x, € I/, and for any i > (0, we denote by the symbol B(xy, K) the ball
centered at x, of radius K. Its boundary will be referred to as S(x, /). For any open
connected set {2 C I, we set 2(xy, B) = 2N B(x,, R) and Y(xy, R) = 2N 5(xp, R).
We denote by n the outer unit normal vector to the boundary 92 of {2 at each point.

For any scalar function f of the couple (x,t) € £ x R, we denote by f; = 0, f
its derivative with respect to the i-th coordinate x* of x in (o, {e;}1<i<3), and by [ its
derivative with respect to the (time) variable {. If f = f(f,s) is a function on the set
{(t,s) e R? : t €R, s € (—00, 1]}, we use the symbol f to denote the partial derivative
of f with respect to s. Furthermore

- _ars ,

fix,t,t) = m(x.t,.s) o

T(X.i.f) = gi(xtq) .
and

Fxt )= 2L s

flx.t,8) = ETER (x,t,5).

At need, we shall also use the symbol

Tty = fxt,0) + f(x.1,1).

If v = v'e, is a vector field on 2 X (a,b) (with 2 C F and (a,b) C R), we
have v = d'e;, and, as usual, Vv = (v%)1<ncs, divy = 37, 0%, For a tensor function
T 1<k<3 i

T = (Thi)i<n<s, divT = Ty ey
12K <3

2. Position of the problem. Hypotheses

Let 5 be a continuous solid body, identified with the open connected set 2 C F' it
occupies in an assigned reference configuration: as is well known, the motion of B in the
time-interval (0, o¢), obeys the system

(2.1) pi=divT +pb, on@ = 2 x (0,x),

where p = p(x) is the density field in the reference configuration, u = u(x,?) is the
(unknown) displacement vector field on (), and b = b(x, ?) is the (assigned) body force
vector field on (). The second-order tensor field T = T(x,t) is the stress field, which
depends on the strain

(2.2) E= . (Vu + Vu').

T2

The link between T and E is expressed by a constitutive relation T = T(E), which
defines the class of materials under consideration: we assume that 3 is an inhomogeneous
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but isotropic linearly viscoelastic solid, so that the functional T(E) is expressed by the
relation

(2.3)  T(x,t) = A(x, ¢, O)[divu(x, )T + 2pu(x, ¢, E(x, 1)

t. —
+ [ {4 9)[divu(x, )L+ 27i(x, £ $)E(x, )} ds

— 00

for (x,t) € Q. The functions A : (x,t,8) € £ X R X (—00,1] Ax,1,8) € (0,0)
and jt @ (x,1,8) € EXR X (—o00,t] — ju(x,t,s) € (0,00) are memory functions of the
material. Relation (2.3) simply tells us that the stress distribution on {2 at each instant
1 € R depends not only on the deformation at the same instant, but also on the Austory of
deformation in the whole time-interval (—oo, t), i.e. on all the deformations experienced
by the body B in the past.

The assumption of invariance of A and ;¢ with respect to time translations is expressed
by the conditions

(2.4) A(x, T, T) = A(x, 72, T2),  p(x, T, 7)) = p(x, 72, 72) . Vr,m € R.
In the sequel, however, these conditions will not be assumed to be satisfied.

In order to determine the future evolution of the body, once the body forces acting on
B and the contact actions on its boundary d3 (when not empty) are assigned at each in-
stant, and its past history is known, we have to find a solution u to System (2.1)—(2.2)-(2.3)
satisfying the initial past-history condition
(2.5) u=u, onfx(-oc,0]
and the boundary conditions
on 82 x (0,0).
on h§2 x (0,>),

=)

u =

(2.6)

w)

Tn =
where
NNRUKNR =02 and H02NH2=10.
We assume that the reference configuration {2 of B is unbounded and, if 72 # (), is

so regular as to allow the application of the divergence theorem. The data are assumed
to satisfy the conditions

(1) p is continuous and strictly positive on 2, and b is continuous on Q;

(2) ug is twice continuously differentiable with respect to space and time on {2 x
(—00,0];

(3) U is continuous on d;§2 x [0, oc) together with its time derivative u;

(4) s is continuous on ¢h 2 x [0, 00),
and we confine ourselves to consider only solutions u that are twice continuously differen-
tiable on @ with respect to all the variables. Accordingly, in the sequel, the phrase “a
solution to System (2.1)-.. —(2.3)-(2.5)—-(2.6)” will always denote a regular solution in
the above specified sense.

As far as the memory functions are concerned, we assume that

A) the transformation E — T(E) is initially positive definite, i.e.
A(x,t,0) >0 and pu(x,1.t) >0, VieR;
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B)\ € C2(2 x [|J{t} x (o0, 1)]) and p e CH@ x [ |J{t} x (=00, 1D]);
tER

terR

319

C) for any x € 2, and for any ¢ € R, the functions A(x,t,s) and Ji(x,1,s) are
summadle on (—oc, t];

D) a smooth, increasing and convex function ¢ : £ € [0,00) — ¢({) € [0, o) and
a smocth function x : t € R — r(?) € [0, 0) exist such that

LY GEES

q'(Ix —oDUL(x.1) < (1), Y(x,t) € 2 xR,
where, for any x € {2 and for any t € R,

A(x, 1, 1) + st
Up(x.1) = \/ (x,2,1) + 2p(x, t, );
p(x)
E) for any T > 0, the two functions

{r(x) = sup (Sup M) ,

©,1) \ (0,t) A(X,$,5)

Jie(x, 1,
WT(IL) = sup (Sup M) ,

©,7) \@,t) H(x,$,8)
are bounded on 2.

We must now observe that, by virtue of our assumptions A) and B), the four functions

. Az, 1,1)] lit(x, 2, 1)]
{r(x) = sup —————, mp(x) = sup ————
T = S 1) R TR

= XX,T,S s Ji(x, 1, <
{p(x) = sup (sup !-—(——-—)i), m(x) = sup (sup M) )
0,7y \ (0,0) A(x, s, 8) 0,T) \ (0,1) Ju(x,s,8)
are continuous on {2 for any 7" > 0. Accordingly, if, for any 7" > 0, we agree to set

KN = K(T) = sup |k(t)|.,
,7)

ky = ky(T) = max{sup f7(x), supmr(x)} ,
2 2
and, for any arbitrarily assigned ¢ € (0, 1),
2Tk(T (
e = ey = ALV T DR,

we are also allowed to consider, for any xy € 2 and for any R > 0 and 7 > 0, the
functions

ko = ko(xp, T) = max{ sup lr(x), sup mr(x)},
20x,9 = (g(R+7p)+ ¢ T)—7p) Qx9N g(R+rg)+e.T)—ry)
ky = ka(xp, T) = max{ sup lr(x), sup mr(x)},
2(wo,q~ Hg(R+7ro)+ee T)—rp) 2(z0,g7 W g(R+rg)+e. T)=ry)
where 7y = |x) — o|.
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3. The main result

This Section is devoted to the statement and the proof of our main result, namely, a
domain of dependence inequality, which, as already pointed out in [2], will be the basic tool
in the study of the propagation speed of perturbations in B. To this aim, following step
by step the method used in [2], we first re-write Eq. (2.1) and Relation (2.3) in a more
convenient form: we set

Ti(x,t) = A(x,t, t)[divu(x, ]I + 2p(x, t, HE(x, 1),
t
T, 1) = [ {Ax, £, $)[diva(x. )] + 2i(x. 1, $)E(x, 5)} ds.

0

0
To(x. 1) = [ {A(, £, 8)[divu(x, s)]+ 27i(x, 1, )E(x. 5)} ds .
o
so that Relation (2.3) is equivalent to
T(x,1) = To(x, 1) + To.(x, 1) + Ty(x, 1), Y(x.1) € Q,
and we are allowed to write Eq. (2.1) in the form
(3.1) pi = divT; + divT,y + divTy + pb, on Q.

Next, we set

1/ i
(3.2) nx,7)= ;(pir + A(x, 7, 7)[divu(x, 7)]"
. 1 3}
+2pu(x, 7, T)E“(x, T)) = ;(pir + T, - Vu) 5
and take the inner product of both sides of Eq. (3.1) by u: taking also into account the
identity
T, (x,7) - Vit(x.7) = (T, - Vu)(x, 7) — A(x. 7, 7)[divu(x, )]’
+2/01(x, 7, T)E(x, T)|* = T, (x,7)-Vi(x, 7) ,
we find at once

(3.3)  f(x,7) = div(T,a)(x, 7) + ;{X(x,r, H)[divu(x, 7)) + 2i(x. 7. 7Y E(x. 7))

+ di\/(T(()_T)l:l)(X, T) - (T(“yr) . Vu)’(x, T) + (T(U.T) * VU)(X. T) + (6“ . lll)(X, T) 5

for any (x,7) € (), where, as in [2],
Sp(x,7) = divTy(x, 7) + pb(x, 7).
It should be carefully noted that & is a vector independent of the solution of problem
(2.1)-.. ~(2.5), since it is obviously fully determined by the (assigned) initial past-history
and the (assigned) body force field. As a consequence, we may simply treat it as a “source
term”. In this connection, we also explicitly notice that the initial-past history uy is assumed
to be assigned suitably, so that T, turns out to be a well-defined ('? tensor function on
2 x [0, c0).
This stated, we are in a position to prove the following

THEOREM 1 (Domain of dependence inequality). Let u be any solution to System
(2.1)-.. =(2.5), and let assumptions (1)-..-(4), A)-.. -C) of Sec. 2 be fulfilled. Then,
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Ve € (0,1), VT > 0, YR > 0 and Vxy € 12, two continuous functions H(t) = H(xy, T, 1)
and ©(t) = @(c;xy, T, t) on R exist such that

T , t
(3.4) J ( j dr ] vy(x.T)(lv> dt

S 2x0,9~ (a(R+7g)+ee (T—7))=7p)
T t
< exp[e(T)] [ explH (1) - w(f)]( f {2 f n(x, 0)dv
0 O 20,97 (R e T) =)
i
+2 | / (n - T,)(x, ) da
0 "800 B(xy,q” (a(R+rg)+ee (T —s5))—rg)
+ ] (n + T, 5u)(x, 8) da
f?f?ﬂB(x(,,q_l(q(R+1'“)+L‘,:(T—s))—1'“)
T J (p_l[—Z—T“]z+/)b2)(x.s)du] (1.«}:#) dt. O

2(x,q9 " (q(R+7()+ee (T=s5)=rg)

Proof. Throughout the whole proof, B > 0 and 7" > 0 will be hold fixed and treated
as constants.
Let w : A € R — w(\) € R be any smooth and increasing function such that

w(A)=0, VAE(—0o0,0],
wA)y=1, VAe[l,+x),

and, for fixed K and T in (0, o0), set
1
g(xp; %, 7) = w(:—b»(q(R +719) + (T —7) = q(]x — x| + 'r'”))) .

It is readily seen that ¢ has a compact support in £ X [0, o0), namely, the set
S= |J Bxoqg @R +r0)+c(T 7)) = 19) x {7}
T€[0,T]
Furthermore, we must observe that ¢ = | on the whole set

U B, g7 '(q(R + rg) + o (T =7 = 8)) = o) x {7},
T€[0,T)

so that Vg = 0 on this set, and ¢ turns out to be smooth on the whole of £ even if
its derivative with respect to |x — xy| is not defined on the time axis x = x.

Throughout the remainder of the proof, in order to simplify the notation, and to avoid
lengthy and complicated formulae, we shall set

= q_](q(R +ry)+ (T —71)) =71y,
sothat R} = ¢ Y (q(R+ry)+c.T)—rpand R: s = ¢ ' (g(R+rg)+ c.(T—7—6))—1y.
Multiply both sides of (3.3) by g(xg; x, 7), to get

http://rcin.org.pl



322 B. CARBONARO

(gn)y(x, 7) = (gn)(x, 7) + div(gTu)(x, 7) — (Vg - Tru)(x,7) + %{)O\(x, 7, 7)[divu(x. 7')]2
+2;Dt(x, 7, T)|E(x, T)|2} + div(gT,Hu)(x, 7) — (Vg - T, ryu)(x, 7)
— (9T, - Vuy(x,7) + (§T0,7) - Vu)(x,7) + (gT0,r) - Vu)(x, 7) + (980 - i)(x, 7);

integration over {2 leads to
Ll J (gm(x,T)dv = ] (gn)(x, 7)dv + J (gn - T, 0)(x,7)da
dr ‘ Q 292

+ j {/\(x 7, T)[divu(x, 7)]* + 2,u T TERX, 7)*} do — I (Vg - Tou)(x,7)dv
9]

+ f(gn T, w)(x, 7)da — f (Vg - To,nu)(x, 7)dv
a8

f(ql“(‘,r, Vu)(x, 7)dv + I(Jl"((, - Vu)(x, 7) dv
2

+ [ (9T, - Vu)(x, 7y do + | (980 - w)(x, 7) dv;
n 7

so that, taking into account that

1 o
J(x03%x, T) = *'gwl((l(R +710) + e (T — 1) — q(|x — x0| + 7)),

1
Vyxp;x,7) = —
¢

-€

) w' (q(R + 19) + ce(T = 7) = q(|x — xo| + 79))et”,

by virtue of the inequalities

—{/\(x 7, 7)[divu(x, 7)) + 7/1(x 7, EX 7)) < (ko + kD5(x, T)

and

T,0 <2ULn;

T 7

[ A(x, 7, $)[divu(x, )]i(x, 7) ds + 2 [ Ti(x, 7, $)E(x, $)ia(x, 7) ds

0 0

T, rya| =

T

% j IA(x, 7. )| | divu(x, )| [a(x, )| ds + 2 l [72(x, 7, s)| [E(x, 8)| [a(x, 7)| ds

0

T

< kUyp, (% f n(x, s)ds + 2T7(x, T)) 2
0

(35) T - Vu=Vu- [ {Ax. 7 9)[divu(x,s)]l+ 27i(x, 7. )E(x, )} ds

0

<en+ kire™! f (%, 8)ds;

0
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(3.5) T, - Vu= Ax,7,7)[divu(x, 7)]* + 2fi(x, 7, T)E*(x, T)

[cont.]

+Vu- j {X(x. 7, 8)[divu(x, $)]L + 2i(x, 7, $)E(x, 8)} ds

0
< (ky + kBT + k:% ] n(x, s)ds;

0

1
8 u<—zé,‘,+f
2p

we arrive at

1 1 20T + 1)K .
L3 j (gn)(x, ) dv < = ] [(41+5+L*—+—&)1;](x T)dv+ I(gn <To0)(x, 7)da
dr o C,
2 Q
+ J (gn-T(n,T)l'l)(x,T)(la+ I\T J dnj w'n(x, s) dv
a8 0
k37
[(gT(n 7 Vu)(x, ) dv + — f(lq J w'n(x, s)dv
0 2
+(ky + 2k + ko) [ (gm)(x.7)dv + sz j ds [ (gm)(x.s)dv
2 0 0
1 ' —142 -1 [
+;T ] (gp™ 8)(x, T)dv + 1 ] (gm(x, )dv .
“ 2
Recalling the definition of (u,
[(qn)(x dv < —— f(JT((, o Vu)(x, T)do + (ko + 2k + kT + T
7o

kIl k r .
[ (gn)(x. T)dv + 6( ; ;T + —l;—) f ds j w'n(x, s)dv

2 0 2
T

-P/ﬂg% f ds f (gm)(x,s)dv + )!? (gn - T a)(x,7)da

+ f (gn - T, rya)(x, 7) da + Tf (gp~'83)(x, T)dv,
an

whence, integrating over (0, 1) (0 < ¢ < T), it follows that

t
(3.6) f (gn)(x, 1) dv < 2 f (gn)(x,0) dv + 4k3t [ ds J'g(xn;x,t)q(x.,q)dv
§2 2 0 02

t
+2(ky + 2k + kT +T71 f dr f (g (x, 1) dv
0 2

2/ kKK [
L) fro oo

0 0 9]
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2k, | f .
(3.6) + ,1,“ fr(lr [ ds j (gm)(x, s)dv
[cont] 0 0 12
¢
+2] { f(gn-T,fl)(x,T)([(t-F j (gn « Ty, ma)(x.T)da
0 a8 a8

+%T !}I (gp '88)(x, T)d rv} dr |

where we have used inequality (3.5); with ¢ = 1.

Set now
t
F(t) = J dr I(gn)(x.‘r)dv,
0 2
h(t) = E12+4k2t+2 ko + 2k +A-T+i>
(1) = T 1 0 1+ A T )"
t
Hty= [ h(s)ds
1]
and
t
Ap(t) =2 [ (gm)(x,0)dv +2 f{ [ (gn - Tri)(x, 7) da
o} 0 afn

+ [ (gn- T ryi)(x, 7)da + %T f(gp-‘sg)(x,r)dn}dr.
a0 o0
Bearing in mind that

t, . L .

j ds J g(xp; x, On(x, 8)dv < ] dr ’ (gm(x, 7)dv,

0 2 0 ¥
inequality (3.6) may be written in the form

. 2/ kK k2N r
F(t) < h(H)F(t) + 3(1_\ + —l) f Tdr f ds [ w'n(x, 8)dv + Ay(t) .

c.T €
5 0 0 94

Hence, a standard integration method leads to

(B.7) F(@t)< exp[H(i)]{% (% + f‘—‘)

X j‘ exp[—H(cr)]( j Tdr fr ds f u"r;r(x..s‘)rln) do
0

0 0 2

t
+ f exp|— H ()] Ay(o) (l(r} ;
0
forany t < T.
Now, as & — 0, ¢ tends boundedly to the characteristic function of the set &, so
that we are allowed to let 6 — 0 in the last inequality. Then, by virtue of Lebesgue’s
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domin:ted convergence theorem, and in view of the relation

R7
1 r | —
gl-ll‘}'g J w'n(x, s)dv = l‘.’l‘uﬁ ] dr f w'n(x, s)da
2 RI,, L0or)

= c]q¢' (R + ry)] ™! ] w'n(x, s)da < w'(@)c|q' (R + ro)] ! ] n(x, s)da .

:(X“.fi:) -‘:(‘GHR:)

letting > — 0 in (3.7), we obtain

(3.8) G() < exp[ﬂ(t)]{z-u#(a)cs("'lg“ + h)
Ci €

% j exp[—H((r)](f (¢ (RY + ro)] " dr J ds ] -ry(x..s)da)tlrr
0

0 0 D(x.RY)
t -~
+ [ exp[—H(e))Ay(0) (l(r}.
0

where

t

Git) = f dr J n(x, 7)dv,

0 2(x,Ry)

¢
_aulﬂ) =2 ] 7n(x,0)dv + 2 j f (n-Tyu)(x,7)da
20s0,R2) 0 82nB,RY)
- . - .43
+ ] (n - T Hu)(x, 7)da + EI f pl6(x, ) dv} dr
2020 B(x),RY) 2(xp, R

and ¢ € (0,1).
We observe now that

1 .
d(—r j n(x. s)dv = —c.[q' (R + 7)) f n(x, s)da ,

2(xg,RY) E(xg, 1Y)

50 that 3.8) becomes

Iy IY k%)
T i
c. T c

th
X J exp|— 1 (0)] (
0

Gt < exp[H(z‘.)]{ - 211*’(9)(

i rdr j (I.s;;—i; j n(x, s) (h:) da

0 0 2(x,R7)

6 j f3"13[_‘11((7)12\4)(0) (lcr},

0
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Hence, taking into account the relation

- j TdT IT d‘«(— ] n(x,s)dv = — ]T(IT—_ ds ] n(x. s)dv

0 0 kT 20x, RE) 0 2(xg.RY)

+ fT’lT j n(x,7)dv = — j%(r ] ds J r}(X.-“)’“-‘>ffT
o (

0 Q(x, RY) ) 20xy. RY)

+ f dr jr ds I n(x, s)dv + ]‘T([T j n(x, 7)dv

0 2(x.R?) 0 QxR

= -0 j dr f n(x, 7)dv + jdr j ds ] n(x, s)dv

0 2(x,RY) 0 0 2(xg,RY)

+ f‘rdr f n(x, 7)dv < i dr lr ds / n(x, s)dv

0 2(x, RY) 0 0 2(x),RY)

a a
+ ['r(lr [ n(x,7)dv < 20 f dr J n(x, T)dv .
0 .Q(x(,‘R’:) 0 U(x[,.R;)

m)

xt f( fr[r ] n(x.r)rln) do + j .:ln(U)da}.
0

0 2R 0

it follows that

3.9) G < exp[H(t)]{tlw (9)(

We set again
t

@(t) = 4w (0)( ,A + %) j exp[H (s)]s ds

0

and
t a N t
P(t) = f ( ] dr J n(x, T)d'l’) do = f G(o)do,
E) l.b 2(xg, R:) 0
to write inequality (3.9) in the form

¢
P(1) < P)B(1) + expH(1)] [ Ao(o)do.
0
A simple integration yields then

t s
(3.10) &(t) < exple(t)] f exp[H (s) — p(s)]( [ J.,(o)dn) ds
0

0

Since the last relation holds for any ¢ < T', the continuity of functions &(¢) and 2\(,(1) on
2 x [0, 00) allows us to let ¢t — T in (3.10). This gives the desired relation (3.4). O
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4. The domain of influence theorem. Uniqueness

By virtue of the domain of dependence inequality proved in Sec. 3, we are in a position
to give, for System (2.1)-.. —~(2.3), a definition of the “domain of influence of the data”
at each instant, which is quite analogous to the ones given in [2-4, 7]. We can also prove
that, when the data have a compact support, the domain of influence thus defined is still,
at each instant, the largest subset of {2, in which the solution may be different from zero
(at the same instant), and is in turn a compact subset of §2.

As in [2-4, 7] we first introduce the support of the data at instant T" > 0, as the set
D(T) of all the points x € {2 such that

1. x€ N =3r€(—00,0]:uy(x,7)#0 or 3ITel[0,T]:b(x,7)#0;
2.x€EN2 =31 €(—,0] : wy(x,7)#0 or 3Ire0,T]: u(x,7)#0;
3.x €N =>3Ir € (—0,0] : uy(x,7)#0 or 3IT€[0,T]:5(x,7)#0.
Then, we may give the following
DEFINITION 1. The domain of influence of the data at instant T" > () is the set
D*(T) = {xo € 2 : D(T)N B(xy,q " '(q(ro) + ¢(T)T) — 1) # 0},
where, for any T > 0,
(4.1 c(1) = E1121“c-5('T) =2(ky(TYy+ DHI(T). O
We may then also prove the following
THEOREM 2. (Domain of influence theorem). Let u be any solution to System (2.1)-. ..
-(2.5), and let assumptions (1)-.. —(4), A)-.. ~C) of Sec. 2 be fulfilled. Then, for any
T >0,
u=0 on {2\ D)} x[0,T). ]
Proof. To begin with, let £ > 0 be arbitrarily small, and define
DX(T) = {xy € 2 : D(T)YN B(xp,q ' (q(ro) + c(T)T) — ry) # 0} .
Next, with 7' > 0 assigned, let x, € {2 \ Dz(T)} x [0,T]. Then, applying inequality
(3.4) with this choice of xj and with £ = 0, we find that all the integrals at left-hand side
of (3.4) vanish, so that
T , ¢
f ( ] dr l ry(x,T)(lv) dt < 0.
& =0 2(x0,9 (g(ro) +ce (T =7))=70)
Then, the definition of 7, by virtue of the regularity assumptions on u, yields at once
u=0 on {2\ DxT)}x][0,T].
This relation holds for any choice of ¢ € (0, 1), so that we are allowed to state that
u=0 on {2\ D)} x][0,T].

Finally, the continuity of u completes the proof of the theorem. O

According to the result expressed by this theorem, we may state that relation (4.1)
defines the maximum speed of propagation of perturbations in an inhomogeneous but
isotropic viscoelastic body whose stress-strain relation is given by (2.3), with memory
functions satisfying conditions A)-. . -E).
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As a trivial corollary of Theorem 4.1, we have the following uniqueness theoreni.

COROLLARY 4.1 (Uniqueness theorem). Let u be any solution to System (2.1)-. . ~(2.5)
corresponding to zero data and body forces, and let assumptions A)-.. ~E) of Sec. 2 be
fulfilled. Then

u=0 on 2 x(-00,00). m|

Proof. Obvious: indeed, under the assumptions of the theorem, u = ( on 0 x
(—00,0],and D(T)=( forany T > 0.0
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On the lack of structure of Defay—Prigogine 2/-continua

F. DELL’ISOLA (ROMA)

IN THIS PAPER it is proved that the bidimensional continua modelling the interfaces between fluid
hases have to be endowed with a shell-like structure. Indeed (generalizing the result due to ToLMAN
1]) the Gibbs-Tolman formula is proved to be universally valid for the class of fluid interfaces

introduced by DEFAY and PRIGOGINE in [3]. The starting assumption is that (following DELL'IsOLA and

RomaNO [2]) the interfaces between different phases can be modelled by nonmaterial bidimensional

(2 D-)continua, whose independent constitutive variables are the temperature and the interfacial mass

density. Moreover, for this class of 2/)-continua (their introduction is suggested in [3]) we prove the

Gibbs phase rule, Kelvin relation between interfacial curvature and vapour pressure, and propose

a formula which could allow for experimental evaluation of the surface mass density for plane and

curved interfaces. Unfortunately, as discussed in ADAMSON [4], the dependence of surface tension on
the curvature which is experimentally measured is inconsistent with the Tolman formula. Our result
implies that, in order to supply theoretical forecasting consistent with experimental data, it is useless
to look for new constitutive equations for interfacial free energy: therefore, the conjecture formulated
by DEFaY and PRIGOGINE in [3] seems to be not true. Instead, to account experimental evidence,
it is necessary to construct 2D-continua endowed with a more complex structure. The minimal set

of independent constitutive variables which seem to be necessary to this aim is determined in the
epilogue.

1. Introduction

IN HIS FUNDAMENTAL series of paper [1, 5, 6] TOLMAN, developing the ideas of
GIBBS |7], could obtain a formula (then generalized by KOENIG [8] to the case of mix-
tures) which relates the equilibrium surface tension acting on a liquid drop surrounded
by its vapour to its radius. The fundamental assumptions accepted by Tolman are:

T1. The vapour is a Van der Waals gas.

T2. The liquid phase incompressible.

T3. The interface is a mixture between liquid and vapour: all properties of this mixture
are postulated on a heuristic ground.()

The utility of this formula, which in the literature is sometimes called also Gibbs-Tol-,
man formula, has been tested in many experimental conditions. ADAMSON [4], while
underlining its conceptual importance, quotes many papers, for example LAMER and
POUND [13], in which is shown that the dependence of the surface tension on curvature,
as predicted from Tolman’s results, is in poor agreement with experimental data. The
first attempt to point out the theoretical reasons of the quoted failure is due to DEFAY
and PRIGOGINE [3]; they conjecture that Tolman’s results have to be improved by taking
into account the dependence of the equilibrium surface mass density at the interface
upon the curvature. We remark explicitly here that if one decides to model the interface
by a bidimensional (2)-)nonmaterial continuum, this conjecture clearly implies that the

(!) In our opinion it is possible to deduce the quoted properties in the framework of the theories of the
second gradient (see for instance SEPPECHER [9] or the series of papers CAsAL-GouiN [10, 11, 12]). Indeed, these
theories provide a unique constitutive description for all the three phases (including the interface) coexisting in
the systems considered.
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constitutive assumption

(1.1) 7 =(9),
where < is the surface tension and o) the interfacial temperature, which seems t» be
generally accepted in the literature, has to be generalized as follows:

(1.2) 7 =7, p0),

where p, is the interfacial surface mass density.

We will call the 2 D-continua for which Eq. (1.2) is accepted Defay—Prigogine contnua.
The results experimentally found by KAYSER [14], once Eq. (1.2) is assumed, should be
reinterpreted: he actually measured the values of the following function

(1.3) V() = (9, P p(9)),

where p’ p(V) is the equilibrium surface mass density for plane interfaces. The ain of
this paper is to prove, by modelling the interface between different phases of the :ame
material as proposed in [2], that:

RO. The function p} p(?) is determined when the functions y5(v) and £ p(¥) (the
equilibrinm surface tension and the surface inner energy per unit area for plane interiace)
are known.

R1. (1.1) is not consistent with the Gibbs phase rule.

R2. (1.2) implies Gibbs phase rule and enables, once a constitutive choice of interfacial
free energy is made, a theoretical evaluation, in terms of the function p} p(/), of the
function p; (v, f1), i.e. the equilibrium interfacial surface mass density correspondiag to
curvature f1 and fixed temperature 2 (obviously pX (V) = pi(1,0)).

R3. The Gibbs-Tolman formula is universally valid for the interfaces modelled in [2].

We explicitly remark here that we supply a proof of Gibbs-Tolman which:

H1 — is independent of the assumptions T1 and T2: the only hypothesis we nesd is
that both liquid and vapour are perfect fluids;

H2 — is independent also of the “physically grounded” assumption T3: we only a:cept
that the interface between phases is a perfect (Defay-Prigogine) 2 -continuum;

H3 — is almost independent of the classical one supplied by Tolman: since the mode]l
used carefully ignores the concepts of Gibbs surface excess and Gibbs dividing surface,
our proof is simpler.

The results quoted in statement RO and R2 seems to supply an experimental method
for evaluating the interfacial mass density. Statement R3 implies that the models proposed
in [2] need to be improved in order to produce a theoretical approach to the problem of
curvature depending on surface tension which is consistent with experimental evidznce.
Indeed, in this paper we prove that a perfect Defay-Prigogine 2/)-continuum is nct en-
dowed with sufficient structure to see, in equilibrium conditions, the difference betveen
nonmaterial and material interfaces. In the epilogue some hints of future developmen:s are
sketched: following the ideas stemming from the work of CAPRIZ and PODIO-GUILUGLI
[15] (generalized to 2D-nonmaterial continua), the introduction of further independent
constitutive variables to describe the state of the interface seems unavoidable. It has to
be cleared up how many of these variables should be introduced: indeed, there are many
possible choices. We list here the two which are subject to our investigations: i) one could
generalize the model proposed by DICARLO, GURTIN and PODIO-GUIDUGLI [16], mtro-
ducing the curvature itself as a further independent variable (this approach implies the
introduction of interfacial couple stresses) or ii) if the ideas exposed by CHOI er al. [17] or
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by FISHER and ISRAELACHVILI [18, 19] in their comments to their experimental data are
founded) one could, using the results found in DELL'ISOLA and KOSINSKI [20], introduce
a surface scalar field modelling the thickness of the interface.

2. Constitutive equations for Defay-Prigogine 2 )-continua. Gibbs’ phase rule

Following [2] we assume that the independent constitutive variable characterizing the
state of the interface are  and p,, i.e. the temperature and the surface mass density.

Therefore the interfacial free energy per unit mass v, has to be determined as a
function of (¢, p, ). Once this function is known, the entropy principle implies that all the
other constitutive laws are determined. Indeed, in [2] the following relations are proved:

01, , Oy
—— Eq = ,0 + ’UJ"’I : P — -
()C{:‘ ) = Vg e ¥ =

where 77, and £, denote the interfacial entropy and inner energy per unit mass. If we
define the interface Gibbs’ potential per unit mass as follows

5
(2.2) Jo = Pg — —

Po

2.1 Ny = I i
(2.1) 1 ”Uapg

and if we assume that

HYPOTHESIS 1. Once v is fixed, Eq. (2.1); determines a one-to-one correspondence be-
tween v and pg;

then the Eq. (2.1) trivially implies that (if instead of p, we choose v as independent
variable)

23) LA

- 07 Po 4

On the other hand, if we assume that the interface is incompressible, i.e. if we assume
that

ICI) p, is independent of the tension v and is given as a function of the variable )
alone;
1C2) all the other thermomechanical quantities are functions of the variables v and 1J;

then the Eq. (2.3), with reasoning completely analogous to those one can find in [2], can
be proved to start from the entropy principle.

DEFINITION 1. We will call Defay-Prigogine continua those bidimensional nonmaterial
continua whose free energy satisfies Hypothesis 1 and whose entropy, inner energy and surface
tension satisfy Eq. (2.1).

We will prove that Gibbs” Phase Rule holds for Defay-Prigogine continua in all the
cases of planar or spherical interfaces.

We start from the equilibrium condition deduced in [2] from the reduced entropy
inequality, specified to the case of plane and spherical interfaces:

(2.4) 2HY =pi—poy, 9o =61, v = o,

where H is the curvature of the interface, p; and ¢, p, and g,, are, respectively, the
pressure and Gibbs’ potential in the liquid and in the vapour phases: in what follows ¢,
and g, are assumed to be, respectively, function of ¥ and of p; and p,,.
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The set S of the parametres which describe the equilibrium of a liquid and its vapour,
when capillarity phenomena can’t be neglected and the interface is plane or spherical, is

(2.5) S = AV, H,pi, pis Pvs Pvs P T} -
We explicitly remark that, in view of H1 and H2, the constitutive relations for the vapour,
liquid and interfacial phases reduce to the five independent variables appearing in S.

Gibbs phase rule

If I =0, ie. if the interface is plane, the four independent quantities appearing in
(2.5) are constrained by the three equations (2.4). If these equations are independent,
then there is a one-to-one correspondence between one parameter chosen in & and the
equilibrium states of the system. In what follows this parameter will always be the tem-
perature 1J: all the other quantities in § will become function of 7J, these functions we
will denote by the same letter with the superscript # and the subscript p.

On the other hand, if / is not vanishing then there are two degrees of freedom of
the system. This is exactly what was forecast by the suitably generalized form of Gibbs’
Rule (for more details cf. ADAMSON [4], LEVINE [21] or GIBBS [7]).

We prove now the following

PROPOSITION 1. The assumption 7y independent of p, is
i) a consequence of the relation (which is often accepted in the literature)

(2.6) Y= pots;
ii) not consistent with the Gibbs’ Phase Rule.

To prove ii) we remark that the hypothesis v = v(7/) implies (because of (2.1)3) the
following relation
v ~
@7 vo = X000,
)CY
where 12),,(0) is a function of the variable 1) alone which does not depend on 7.
Equation (2.7) implies, together the definition (2.2), that

(2.8) 9o (¥, po) = Ps (V).
The consequences of (2.8) are remarkably inconsistent with the Gibbs’ Phase Rule: indeed,
even if one could always believe that p, is very small or vanishing or negligible, so that he
is not interested in determining its value at the equilibrium states, he could never ignore
(2.4)3 (which was established by Gibbs himself) which, together with (2.8), states that

a) in the case of planar interfaces there exists an unique equilibrium state characterized
by a fixed couple of values for temperature and pressure;

b) in the case of spherical interfaces there exists for every temperature a unique
equilibrium radius.

Both the statements a) and b) are in obvious disagreement with the experimental
evidence which supports Gibbs’ Phase Rule.

To prove i) it is sufficient to remark that Eq. (2.6) together with Eq. (2.1); leads to
the following implications

0Y k(1)

(%l’a = —Pa“—“) = (iﬁn = ) = 7 depends only on 9.
a/)cr Po




ON THE LACK OF STRUCTURE OF DEFAY-PRIGOGINE 2[-CONTINUA 333

We remark explicitly that the relation (2.6) implies that

(2.9) 90, po) = 0.
The last equation is equivalent, because of (2.1), and (2.2), to
vy
—Polle = w >

which is Eq. ITI-5 in ADAMSON [4]. The validity of the last equation and of Eq. (2.6) is
therefore really doubtful.

3. Proof of Gibbs-Tolman formula

In this section we assume that
H1) both vapour and the liquid phase are perfect fluids, therefore the following equal-
ities hold:

0.(/1' _ 1 d_(j[ _ 1

S dpy  py’ g pr’

H2) the set of equilibrium equations (2.4) is independent: therefore once the tempe-
rature ¥ is fixed, the choice of the variable p,, determines the equilibrium state of the
system and therefore all the equilibrium values of the other quantities in § — {¥}; we will
denote H™, v*, p{, pj, p;, and p;, the functions which map (p,, ¥) onto the corresponding
equilibrium values.

In what follows we do not indicate the functional dependence on ).

According to our notation, Eqs. (2.3), (2.4); and (3.1), we have the following chain of

implications:(*)

B2 @1 ®s)) = 9u(2) > (

990 dy” _ i)yu) N (d"r* N _@)
dy dp,  Op, dp, pr)
Moreover, starting from Eqs. (2.3), ; we establish the hypothesis of the following im-
plication, its thesis being obtained by making use of Eq. (3.1) and the last equality in
(3.2)
g, _ i dp]

Ipy (2731 dp, v =
=1 42— ~* 4 gH*S1. dpy ey

dp, dp, dp,
Finally, the Gibbs’-Tolman formula is obtained by evaluating the ratio of the last equalities
appearing in (3.2) and (3.3), after having observed that the nonvanishing expression we
have obtained for the derivative d 1/ */dp, allows us to chose, instead of p,, the variable
I in order to characterize the equilibrium states:

dpy

dy _ 276

dH —  1+2H6°

where 6(H) := 5, /(71 — 7.) and where the upper tilde indicates the generic composite
function f(H):= f*(p,(H)).

(3.4)

(%) This relation seems to represent a reasonable reformulation of Eq. (I11-22) on p. 56 in ADAMSON [4].
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Trivial integration by parts allows us to obtain the following equivalent expression,
which can be more easily compared with those found in literature, and in particular in
TOLMAN [1]:

eAH)

(3-5) TN e

where

A= [ (1+2H6(H))“(2Hdd—2) dH .

4. Interfacial free energy and the dependence of interfacial mass density on temperature
and curvature

Once Eq. (3.5) is obtained, the problem of determining the function §(H ) arises. It
is easy to forecast, simply by observing Eq. (2.4), that §(H ), which is the ratio of the
functions p, and p; — p,,, has not many chances to be independent of the constitutive law
assigning the interfacial free energy .

We remark explicitly here that the classical treatment due to Tolman hides this circum-
stance behind some Gibbsian reasoning which seems to be neither logically nor physically
well grounded. However, it is our belief that these “Gibbsianism” could be made under-
standable (and the dependence of 6(/I') on the constitutive law for 1, explicit) once that
the theory of the second gradient or interstitial working (see for instance SEPPECHER [9]
or CASAL-GOUIN [10, 11] or DUNN-SERRIN [22]) is introduced to describe the behaviour
of the interfacial phase.

4.1 Determination of surface mass density for plane interfaces. The case of compressible Defay-Prigogine

2D-continua

In this subsection we aim to determine a relation between equilibrium surface mass den-
sity, surface tension and surface inner energy per unit area, which is valid in the case of
plane interfaces and which we could not find in the literature. In our opinion it could be
very useful in determining experimentally the magnitude of interface mass density involved
in capillarity phenomena.

We start with the remark that, because of our definition, Egs. (2.1) and Eq. (2.4); we
obtain (recall that the subscript P refers to the circumstance that all equilibrium functions
which we consider are related to plane interfaces, and that all the functions considered
have a unique variable, the temperature 1)

* x * * * * ( a'l,LIJa :
(4.1) EZp = paptop = Pop¥ap — Pop (_ ) )
a9 /) p
I\ "
4.2 p=—(p) —”)
( ) 7P (po'P) (apU p ’
* * aq/)ﬂ ) * *
(4.3) Yop + pc’P(—> = gop = Jipi
8p,, i

here we used the notations

(4.3); op() 1= gu(prp(9), D), g/p(?) := qi(pip(9), V)
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and the relations (resulting from (2.4), ;)
(4.3); pop(¥) = pip(?) = gu(pip (D), ) = gi(pip(V), 9).

On the other hand, using the chain rule for the derivation of composed functions, we
obtain

O, \ " {p* AP\~ dp:
(4.4) (.¢ ) =”’7P—(," ) =il

o Jp dd dps ) p dv
Then, from Eqs. (4.2) and (4.3), using simple algebra we obtain
(4.5) vop =gop + 7p(Pop) ",

B Mg \"

4.6 ~vplogp)F = ( ) :
(4.6) pPsp Opo ) p

Finally one has to

1) substitute the LHS of Eq. (4.6) in the RHS of Eq. (4.4),
ii) substitute the derivative of RHS of Eq. (4.5) again in the RHS of Eq. (4.4),
ii1) substitute the RHS of the so transformed Eq. (4.4) in the RHS of Eq. (4.1),

iv) substitute the RHS of Eq. (4.5) again in RHS of Eq. (4.1), in order to obtain the
following relation

. Cdanp dvp
; - L L9:) [NN  L)
(4 7) /’nl”(.‘]vP v AV ) TP t d + E(TP

In order to compare Eq. (4.7) with the experimental data available in the literature, it
is necessary to evaluate the second factor on LHS. We start by calculating the derivative
appearing in (4.7),

(4.8)

dg;p e i )_1( g1 f'?gu)’
d9 T Pop Prag ~ Pv gy I

The last expression is easily obtained by differentiating both expressions appearing in
(4.3); and recalling Eq. (3.1) and (2.4),. In order to make the final step of our derivation
clear it is useful to recall that the partial derivatives appearing in Eq. (4.8) are evaluated
at fixed variables p; and p,. Indeed, as a consequence of Eq. (3.1), if £, and ¢,, denote
the inner energy per unit mass in the liquid and vapour phase, we have

Bg, ()gv
4.9 — )= =& + 5 — =&y v/ Fv
(4.9) g 59 ~ & pi/pi, 9o =V 59 ~ v tP /p
and therefore (using (4.8) and again recalling (2.4),) we obtain
* ( (l{(/: * * * * * * —
(4.10) (SIUP -7 (wp) = (pipeip = Pypeup)pip = Pop) ™

and (here the enthalpy per unit mass A is introduced in both phases)

(4.11) PIpElP = PupEnp = Piphip — pLphip.

http://rcin.org.pl
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In conclusion Eq. (4.7) becomes

*

* * * * * * ‘ (laf’;’ * *>
(4.12) pop(piphip — puphip = ( -t 7’W + Enl’)(/)!P = Pup)>

which is the relation announced at the beginning of the section.

We underline that some tables of measures for all equilibrium quantities which appear
in this equation, except the interfacial mass density, are available in the literature: there-
fore it is possible to use it to determine indirectly the interfacial mass density. Before
discussing shortly the numerical information which could be drawn from Eq. (4.12), it is
necessary to compare it with the theoretical results found in the literature in order to
warn the reader about a danger which one should avoid. Indeed in the literature (see
for example ADAMSON [4]) sometimes a little approximation (cf. 50, the lines between
Eq. (111-6) and Eq. (III-7) in [4]) is made: “as a good approximation surface enthalpy per
unit area and surface inner energy per unit area are not distinguished”. The reasons for this
statement, its explanation being left to those readers which are familiar with Gibbsian
thermodynamics, most likely can be found in the papers of GIBBS himself [7]. We limit
ourselves to remark that, as a consequence of this statement, we obtain (Eq. (ITI-8) at
p. 50 in [4])

dvp
di

which trivially implies that, because of Eq. (4.12),
(4.14) pap=0.

We can conclude that the approximation quoted by Adamson consists in neglecting the
interfacial mass density. Two problems now arise:

1. Tt is not clear to us if Tolman in his papers accepts or not the quoted approximation,
but it is certain that he needs to evaluate equilibrium surface mass density as it appears
in the definition of the function § ().

2. When the tables of measurements are to be used, one should check if the interfacial
inner energy has been measured directly or indirectly by means of (4.13) (as it seems to
be the case, for instance, in case of the measures listed in WOLF [23]).

If we make use of tables of measurements which apparently do not use (4.13) (for in-
stance see [24]), we can obtain some interesting results, when organizing the data following
Eq. (4.12). Indeed,

i) we can observe that the second factor on its RHS is negative (what is physically
obvious in view of the meaning of enthalpy);

ii) its LHS is also always negative (we believe that this circumstance is related to the
nonlinearities in the dependence of the equilibrium 4 on the temperature, measured by
KAYSER [14]);

iii) the numerical value obtained for water at 20°C are of the order of magnitude of
107" — 107 g/cm?, which is the order of magnitude generally accepted as the most likely
in the literature (for a detailed discussion of this point see the series of papers of ALTS
and HUTTER [25]).

However, we do not believe it would be wise to rely much on Eq. (4.12) since we are
aware of simplicity of the model which allowed for its deduction; together with the Tolman
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formula it should be generalized to a more reliable one, once a more sophisticated model
for the interface will be available.

4.2 Spherical interfaces. The Kelvin formula for vapour pressure and the influence of surface free energy on

surface mass density

In order to simplify the comparison between the theoretical results and experimental
data, in the literature instead of the vapour pressure p, all equilibrium quantities are
often expressed as functions of the variable f/. While this choice is legitimate (at least in
the framework of the model we use in this paper, see considerations following Eq. (3.3))
it leads, even when the simplest constitutive assumptions are made, to some technical
problems in the explicit calculation of the quoted equilibrium function. A typical example
of this situation is represented by the relationship between the curvature H and the vapour
pressure, which in the literature is named after Kelvin.

Differentiating Eqs. (2.4),, with respect to the variable / and using Eqs. (3.1), we
obtain

P\ dpy d _
. ]—— ]| — = —— 2 /).
(4.15) ( pu)dﬂ a )

If we assume that

CI1. The liquid phase is incompressible.
C2. The vapour is a perfect gas so that the following relation holds:

(4.16) Py = R,0py,

then from (4.15) we obtain

(4.17) %(—/};R”ﬂ In(p,) + p, +2HY) =0

which becomes (as p,,(0,7) = p’ (1))

(4.18) pRy91n (L) = =(ptp = By) + 2H.
Pup

Equation (4.18) is exactly the Kelvin formula: it is seen that already under the particular
constitutive assumption C1-C2 the function mapping / into p, is transcendental. More-
over, in (4.18) the unknown function é appears, since 5 depends on it.

When more general constitutive equations are to be introduced, we can regard (4.15)
as an equation which generalizes the Kelvin formula.

Let us now briefly consider the system of equations which governs the equilibrium of
drops separated from their vapour by compressible Defay—Prigogine 2)-continua (we do
not indicate the dependence on the temperature ¥ which is assumed to be fixed),

PL=py +2HA,
(4.19) ai(m) = gu(po),
9o(Ps) = gu(pv),

to which we must add the constitutive relation

)
(4.20) 7= 7(%)/8/)7 >0,

http://rcin.org.pl
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which is invertible, so that we can regard the Gibbs potential also as a function of .

Now we recall that ROMANO in [26], using the consequences of the second principle
of thermodynamics together with some well-grounded physical assumptions on the Gibbs
potential, could prove the existence and the uniqueness of the solutions of the system
(4.19), . Therefore, to complete the proof of the validity of Gibbs phase rule we started
in Sec. 2, we only need to prove the existence and uniqueness of the surface density p
which is a solution of (4.19); when p, = pJ.

To this aim we assume (as done in the second part of the hypothesis iii) on p. 261 in
[26]) that

(4.21) lim g,(p,) = 00, lim g,(ps) = —0.
po—00 pe—0

Moreover, we remark that we do not need to introduce any hypothesis similar to that for-
mulated in [26] (cf. Eq. (3.7) there): indeed, starting from the thermodynamical relations
(2.1) we can easily prove that for every 0 €]9.,9U.] (V. — temperature of the triple point,
1. — eritical temperature) there exists a unique solution p7, » for (4.19); once the value
P p is substituted on its RHS. When (4.21) is accepted, the proof parallels step-by-step
that presented in [26] to which we refer. In principle, therefore, once all constitutive
assumptions for liquid, vapour and interfacial phases are made and, in particular, when
the interfacial free energy is chosen in such a way that the hypotheses (4.20)-(4.21) are
respected, the equilibrium functions 4(p,,), 7™ (p.), p5(p,) and p;(p,) can be determined.
Using the thesis in (3.3) and the definition of é, the function 6( /') can also be found. In
order to obtain some suggestions concerning the dependence of surface mass density on
vapour pressure and an interesting expression for dé /dH we assume Cl1, C2, and

C3. The interface is a linearly compressible bidimensional fluid, and its Gibbs potential
is given by

(4.22) 900, p0) = gu(prp(P), V) + a(@)In (ﬂ—ﬂ) -

pﬁl)(ﬂ)
The function (1), to our knowledge, was never introduced in the literature, neither
we could find any experimental data which could, suitably reinterpreted, allow for its
determination. However, (4.22) is clearly related, via the thermodynamical relationships
(2.1), to Eotvos relation (IT1-10) in ADAMSON [4]. Because of C2 we have

(423) 9.0, 0) = Gulpip (D), 0) + Roin (L),
]JUP(I))

so that Eq. (2.4); implies that:

]

(9)

(4.24) ( p;f’(ﬁ)) i (p:iliﬂ)) ‘

Finally we add the following assumption (cf. the experimental data listed by FISHER-
-ISRAELACHVILI in [18, 19]) that in the range of considered measures

C4. The vapour mass density is negligible with respect the liquid mass density (i.e.
Py € py); therefore because of the definition of § and the constitutive equation (4.16),
we have

a5 17¢de,N » d,’ﬁt,>
4.2 i Y. a1
sy dH ﬁ:((dH) +Po (R T

http://rcin.org.pl
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Owing to (4.15), (2.4); and (4.22), this becomes
dé _di
dH dH

which, taking account of (3.5), (4.16) and (4.18) (in which the first term on RHS can be
neglected in the range of measurements performed by Fisher-Israelachvili), represents an
equation which determines 6. Indeed,

(4.26) = —(a + Po(Ro?))
4

(4.27) §(0) = —22E
PP — PuP

5. Epilogue. Comments and program for further investigations

In this paper some classical results of chemical physics are generalized making use of
the simple model for the interface between different phases of a single material proposed
in [2].

In our opinion, the relative simplicity of our deduction compared with those proposed
by TOLMAN [1] or ADAMSON [4] is due to our use of the methods of Rational Thermo-
dynamics exposed by TRUESDELL in his classical work [27].

Therefore we expect that a further improvement in the modellization of the interfacial
structure leading to the introduction of directed bidimensional nonmaterial continua could
allow for the theoretical deduction of a relation between the equilibrium surface tension,
surface mass and curvature, consistent with available experimental data. Moreover, we
urge (cf. our discussion in subsec. 4.1) for the development of a more precise theoretical
framework for the study of capillarity phenomena, as, in our opinion, the actual state of the
art is pretty confuse. Too many theoretical prejudices make the appropriate interpretation
of experimental evidence very defficult.

We can indicate here two improvements of the model proposed in [2] which could
modify our understanding of the quoted phenomena, at least for what concerns the influ-
ence of capillarity on curvature.

i. Following the ideas developed by DICARLO-PODIO-GUIDUGLI-GURTIN [16], one
could introduce nonmaterial constrained bidimensional continua, similar to those material
bidimensional continua introduced in the theory of shells. Together with surface stress ten-
sor, a couple-stress tensor and a suitable complex family of directors (spins, etc.) describe
the state of the interface. One of these directors could model the direction of the flux
of mass through the interface: the first formulation of the model could assume that this
vector always coincides with the direction normal to the interface, thus introducing some
unknown reaction terms of both surface stress and couple-stress tensor. In this model
(contrary to the model we used in this paper), the dependence of interfacial free energy
on curvature is allowed by the second principle of thermodynamics: therefore it seems
possible to obtain, by a suitable selection of a constitutive equation for it, a generalized
Tolman formula more consistent with the experimental evidence. This approach seems
more reasonably founded for describing the interfaces, for instance, between solid and
melted crystals.

ii. In the literature (see for instance [13, 17, 18, 19]) it is often stated that an influence
of the thickness of the interface on equilibrium surface tension is possible. For this reason
CHoI et al. [17] develop a theoretical method (using statistical mechanics) to define a
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dividing thickness between different phases of some carbon compound, and an experi-
mental method to determine the thickness so defined. However these results, when used
together with Tolman’s data, lead to some results inconsistent with the experimental data.
In [20] a heuristic method is proposed to add a more detailed structure to bidimensional
nonmaterial continua used to describe capillarity phenomena. In this approach a concept
of thickness is also introduced, which plays a relevant role in determining the behaviour
of continua considered. However, we think that its physical nature is different from that
introduced by CHOI et al. Indeed, the spatial region in which in [20] the interface is lo-
calized can be identified with the region in which the material in consideration shows a
behaviour of the Korteweg type (see [22]) or of the second grade type (see [9, 10, 11, 12]).

The interfacial region so identified is more likely macroscopic than those introduced
by means of the methods of statistical mechanics, and it could be defined as that region
in which the constitutive equations for the Stokes—Navier simple materials cannot be
considered to be valid.

To make the set of equations proposed in [20] complete from a physical point of view,
it is necessary to specify the properties of the interfacial layer. This is done by

a) introducing one further surface scalar field modelling the thickness of the thin but
macroscopic capillarity region (such a region is studied for instance by SEPPECHER in [9]),
and

b) postulating (or deducing in the sense of [20]) the evolution equation for such a
field.

The interfacial free energy for bidimensional continua endowed with this structure
will depend also on the thickness, and this circumstance could lead to a solution of the
proposed problem.

This approach seems more suitable for the description of the behaviour of the inter-

faces between fluid phases.
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Growth of spherical voids in shear bands

K. L. PAN (SHANGHALI)

BASED ON MACROSCOPIC constitutive relations for nonlinearly viscous voided materials, the spherical
void growth law in shear bands is investigated through the upper bound aﬂaroach. A unit cell
isolated from shear bands is considered for studies. Microscopic velocity fields are developed by
incompressibility of the matrix material and the velocity boundary condition. From the velocity fields,
the macroscopic potential and corresponding constitutive relations are found. Then, a relative void
growth rate is obtained as an implicit function of the stress triaxiality, void volume fraction and strain
rate sensitivity. When the matrix is a perfectly plastic material, we obtain an approximate analytical
expression. When the matrix becomes a linearly viscous material, an exact expression is obtained.
The special case corresponding to an isolated void is also discussed. Comparisons of the growth rates
for three-dimensional (3 D) spherical voids with those for two-dimensional (21)) cylindrical voids are
made. Results show that the growth rates for 2/ voids are larger than those for 3D voids. The void
growth rates are also influenced strongly by the degree of damage and nonlinearity of the material.

1. Introduction

FRACTURE by shear bands has been observed in ductile materials in a lot of experiments.
The mechanism of the fracture is growth and coalescence of microvoids, which was also
observed by experiments [1]. However, studies for void growth in shear bands are relatively
little known. The early work on such a problem was made by MCCLINTOCK et al. [1] in
1966. They studied the isolated 20 cylindrical voids with circular or elliptical cross-sections
in shear bands for a linearly viscous solid using Muskhelishvili methods. Later, in 1986,
FLECK and HUTCHINSON [2] expanded the results of McClintock et al. to a nonlinear
power-law viscous solid using a potential function and obtained some numerical results.
Their work is significant since it reveals the void growth and the void shape evolution in
shear bands for the first time. These studies are only restricted to an isolated void in an
infinite matrix material. However, void interaction may occur in shear bands especially at
the stage of void coalescence. To account for void interaction effects, we usually assume
the voids to be arranged in a space filling array since this allows a simple “unit cell” to be
isolated for study. In this way, a micromechanical quantity, the void volume fraction, can be
introduced. The pioneering work using this method was given by GURSON [3] who obtained
constitutive models for solids containing circular-cylindrical or spherical voids through
an upper bound approach. Other studies on such methods were given by TRACEY [4]
and NEEDLEMAN (5] who modelled the response of an array of circular-cylindrical voids,
and by LICHT and SUQUET [6] who gave a simple model for cylindrical void growth in
a nonlinearly viscous material at arbitrary void volume fractions. Some authors extended
Gurson’s results by numerical calculations. For example, TVERGAARD [7] has attempted to
improve the accuracy of the Gurson model by adjusting some of its numerical coefficients
so that the model is more accurate for a voided material, and MEAR [8] has obtained an
exact numerical result for the stress-strain response of an elastic-plastic material containing
a cubic array of spherical voids. Studies for void growth in a finite body were also given by
DuUvA [9], and WORSWICK and PICK [10]. The comprehensive review descriptions on this
subject were given by GILORMINI et al. [11] and NEEDLEMAN et al. [12]. Recently, PAN
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and HUANG [13] considered effects of void growth on constitutive relations for viscoplastic
materials containing circular-cylindrical voids. PAN [14] studied cylindrical void growth in
shear bands for nonlinear power-law viscous solids.

This paper expands the previous work [14] to 31 spherical voids by analyzing a unit
cell isolated from shear bands in a nonlinearly viscous material through an upper bound
approach. This method has been employed by Gurson and some others to develop consti-
tutive models for porous ductile materials, as described above. Experiments have shown
that, in shear bands, there is not only the shear stress but also the transverse compressive
stress components [1]. To obtain the macroscopic constitutive relations, a boundary con-
dition of simple shearing with superimposed triaxial loading is considered. From such a
boundary condition and incompressibility of the matrix material, the microscopic velocity
field, equivalent strain rate, macroscopic potential function and the corresponding consti-
tutive relations are obtained. Then, based on the constitutive relations, the stress triaxiality
can be defined under simple shearing and hydrostatic tension (or pressure) states. The
relative void growth rate can be found numerically as an implicit function of the stress
triaxiality, void volume fraction and strain rate sensitivity exponent. From the general
expression for the void growth rate, some special cases such as perfectly plastic matrix
material, Newtonian matrix material and infinite matrix material are discussed in details,
and in these cases some analytical expressions can be obtained. Finally, comparisons of
the present results with previous results of 2/) model and Fleck-Hutchinson model are
made. The results show similar behaviors of void growth in 3/J and in 2. However, the
latter is larger than the former under the same conditions (the same loading condition,
void volume fraction and strain rate sensitivity exponent). The investigated results also
predict that void growth in shear bands is governed mainly by the stress triaxiality and the
degree of damage and nonlinearity of the material.

2. Macroscopic constitutive relations

A unit cell containing a spherical traction-free void and outer velocity field are shown
in Fig. 1. The radii of the void and the cell are @ and b, respectively. Volumes of the void
and the matrix are V), and V,,, respectively. The volume of the cell is then V = V,, + V,,,.
The macroscopic and microscopic quantities employed throughout the paper are denoted,
respectively, by upper-case letters and lower-case letters. For example, Y, and E,'j are
macroscopic stress and strain rate. ¢,; and ¢;; are microscopic stress and strain rate.
With these conventions, the outer velocity field can be expressed as simple shearing with

superimposed triaxial loading

(21) M= E“l’l + ]1.7,'2, vy = Ezz.l'z, V3 = E33.’1?3.

where x| = x, ¥, = y, r3 = z are rectangular coordinates, [ is shear strain rate and its
corresponding tensorial components are

(2-2) Ey,=FE; = F/2~

For convenience, we assume £;; > 0. The case I”;; < 0 can be treated in the same way.
The matrix is assumed to be an incompressible and nonlinearly viscous material. In
simple tension, the stress and strain rate are related by a power-law formula

o= pet,
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FiG. 1. A unit cell and outer loading.

where n (0 < n < 1) is a strain rate sensitivity exponent and g is a viscous constant
defined by

n=ou/éy,
whereas oy and ¢ are reference stress and strain rate.

For multiaxial states, a microscopic potential can be introduced to describe the relation
of the stress and strain rate in the matrix material

(2.3) @(&) = p(n + 1)~le+D]
so that the stress is
(2.4) sij = (2u/3)(E)" ey,

where s is the stress deviator and ¢, = (22;;¢,;/3)!/? is the equivalent strain rate. The
macroscopic potential is related to a distribution of the microscopic potential by

(2.5) o) =V~ [ pdV.
an
The macroscopic, or overall stress is given by
(2.6) _‘_/‘z’]’ = 8@/()12”
The key element for finding macroscopic constitutive relations is the velocity field in the

matrix material, from which the equivalent strain rate, both microscopic and macroscopic
potentials and then macroscopic constitutive relations can be found by Eqs. (2.3)-(2.6).
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The velocity field should satisfy the velocity boundary condition and incompressibility of
the matrix material. For this purpose, we divide the velocity field into three parts

!
v=v +v' +v",

where v’ and v” correspond, respectively, to the deviatoric part and the dilatational part
of the field &, and each satisfies its corresponding velocity boundary condition as well as
incompressibility. v* should satisfy zero boundary condition and incompressibility. If only
the first two terms in the velocity field are considered, an upper bound solution will be
obtained. The boundary conditions corresponding to v’ and v" can be expressed as follows
under spherical coordinates (r, 8, ) (see Fig. 1):

, " Y . 5 o f 5 1, . . )
v!|pap = B(E cos” @ + Ej,sin” @) sin“ 8 + bF5;cos” 8 + ;bl sin” 0 sin 2.

[ 2 Ll ; . | P .
2.7)  vhlr=p = =b Ioi cos” @ + B sin o — [,)sin 20 + ~b1 sin 26 sin 20,
6 77 n 22 ¥ 33 1

1. - . ;
V,|reb = Eb(Egz - E;,) sin @ sin 2¢ — b1 sin #sin’ ©;

(2'8) U::'|T'=b = bE" ’Ug|7‘=b = 07 l-":;|r=b = 07

. ; o8 i - . 5 i .
where F/;; = E;; — E is the deviator of E;j, and £ = Fy; /3 is the overall mean sress.
It can be proved that v’ satisfies the incompressibility condition £}, = 0. v¥ can be found
from the incompressibility equation

gl =0v/or+2r 0 =0

T

and the boundary condition (2.8), which gives

¥ — K3 /.2 vo_ e T
vy = Eb°/re, vy =0, wv,=0.

Then, we have the microscopic velocity field

1l

, .1 1 . . _a
v, = vl + v =rE.h +1E hycos2¢ + 57‘1‘/7.2 sin2¢ + Ar~°,

(2.9) v = Vg + V) = e 203F. + 21 cos 2 + I'sin2¢p),
v, = 'z:fp + v, = —rsin H(E’ sin2¢ + I'sin” @),
where

A = Eb3, Ee = E b E33. E' - (En - Ezz)/z,
hy = hy(8) = (1 — 3cos?0)/2, hy = hy(f) = sin® 6.

The strain rate components can be expressed by the velocity components in Eq. (29) as
follows:

0 ; . 1.
rp = —Ur = E by + E’hz cos2¢ + =1 hysin2p — 24773,
ar g i
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5 1 . ) 1.
Ego = U vg + —v, = F.hy + I?’lu cos2p + = I'hysin2p + Ar—?,
rof r 2
10 ctan 1 1. 1l 1. i
s = —v, + v+ —v, = =F., — F cos2p — =I'sin2p + Ar™—,
77 rsinf oy 7 ro Ty 27° ¥=3 "
1/ 0 J 1 1 3. . 1.
Eppg = = | —v, + —v5 — -0 =—sin20(—E + F c032ﬂ+—1“sin2ﬂ).
" 2(7-09 ar “’) 2 27e L ¥
1 10 J 1 ) Y 1. )
Epp = | ———v, + —v,— —v, | =sinf(—L sin2¢ + —I'cos2y |,
v Z(r sinfl dy ar 7 r 7 ( v 2 v
1 1 0 ctan iy 1.
gy = = —vg + —=V, — v, ) =cosf(—FE sin2¢ + =1 cos2p),
o 2(7‘ sinf d o r *) ( T ?)
where

hs = hi(8) = —(2—3cos’ 8)/2, hy = hy(f) = cos® b.
Then, the equivalent strain rate can be found as
(2.10) ¢, = H'Y?,
where

;0 4 .4, : e alfis: P _ |
H=E+ 312“ + 4l — 4B, Eahy — 4 Bahycos2p — 21 Exh,y sin2e + =

and the variable @ = b*/r® has been introduced for convenience.
Substituting Eq. (2.10) into Eqs. (2.3) and (2.5) and then into Eq. (2.6), we can find
macroscopic constitutive relations

2T T l/f

(2.11) L= él—; f j f H("_”/ZH,-J- sinfa % da df dop,
[}] 0 1

where

2. 4. 8. , 4 . N 2 . :
Hy=zE. + B + ZFa? - —(2lY — Es3)ehy — -(3E + 2E’):IT/L2C082L,Q
3 3 3 3 3
D
~§F.L‘/zgsin 2,

)
Hn =3

5 4 ./ 8 — 4 o8 . 2 . O )
-, —-F + -Fa°— -2I' — Fy3)xhy + -(3F — 2E Yxhy cos2p
3 3 3 3
2.
-gfi‘hg_sin 2,
4, R 4, 2.
Hiy = —EE,; + gbtz + E(ZE — Eoah, - 31’:,1?/12C08299 — EF.T:’)Q sin 2¢,

5 s
Hyy = =2Fxhysin2p + 51'.

In Eq. (2.11), the integral limit f is defined by
(2.12) f=V,/V =d /b

and is called the void volume fraction which is a damage variable and can be used to
describe the isotropic damage of ductile materials. In this way, some account is taken

http://rcin.org.pl



348 K. L. PAN

of the void interaction. The criterion of the void volume fraction in shear bands may
be determined by experiments. Here we assume that the evolution of the void volume
fraction and the rate of macroscopic volume expansion have the following relation:

(2.13) f=0-)Eg.

With Eq. (2.13) and the definition of E 1., we can obtain a relation between the rate of

macroscopic volume expansion and the voids’ logarithmic growth rate 1, /V,

(2.14) Ege = fV,[V,.

This relation can also be obtained by consideration of incompressibility of the material.
From the above discussions in this section, we conclude that for any given macroscopic

strain rates E,,, the macroscopic stresses Y;; can be determined by Eq. (2.11) using
numerical integration.

3. Void growth in shear bands

The void growth law in shear bands can be investigated by constitutive relations in Eq.
(2.11) and the velocity boundary condition

(3.1) I'#0 and [y =Ep=FEys#0.

They correspond to stresses Jln and Y Zm = Y4 /3. All possible overall stress states can
be described by the ratio of X, and Y,. This gives a definition of the stress triaxiality

(3.2) X = 25,/V35,

where Y, and Y, are found by the constitutive equation (2.11) with the boundary
condition (3.1) in non-dimensional forms:

| [ TV sin gt~ di de dep,

)

i
I
,‘_);_,

(3.3)

1]

T T

Y= j

0

H(n_]]/2 Hypsinft™2w dt df de,

Eg_ﬁg

whereas
1-1—171 Hm(t-,(q, LP) = 12 - fh‘!
ﬁ]zf H(t,6,0) =1—th,

H(t.0,9)=1+1* - 2th,

1
h=Nho,p) = \/gsm fsin 2.

The constants in front of the integrals for X, and X}, have been omitted for they have
no effect on the ratio . In Eq. (3.3), a new quantity, the relative void growth rate

(3.4) A=V, /(IV,)

and substitutions

t=wz, w=2X/V3, w" =23
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have been introduced using the relation (2.14). To obtain the integrals in Eq. (3.3), we

—1)/2 . ; .
"“D7% into the series of h since |h| <1

o0 k
F(n=1/2 _ pn-1)/2 (k—-1-m)tl (2t
H I [l + E ——(Zk)!! Ph :

k=1

expand '

where
P=P@i) =1+t
Noting the following integrals:

o
[ [ sin0dodp = 4r.

0 0

i fork =2m — 1,
f f h¥ sinf df dp = {47‘11',71 fork=2m (m=1,2,3,..)),

where

C(Am)l@m — DI /3"
™ Em)!(dm + 1) (_) )

we can perform the integrals in Eq. (3.3) with respect to variables f and ¢
to

(Fy + Fy)dt,

v ]
ol

, which leads

3.5
S 12 = ((;1 + (vm)f— ud(”
where
2 1 b 2
Fy=pnit g - mIa- n) P32 _ (3 ) P2,
2 1 5
Gy= POmDE— (1= m2(1 = ) PO — (3 = m) PO,
- 1
Fm = Z (glm - 5921}2PI—L) (21)._7111)(‘”—1-4”1)/2["17
m=2
- 1
Gm = m — =G ) (2t a P(n—]—4m]/2 o
22 (J] S92 )( )
and
(4m — 1 — n)!t (4m —3 —n)!!
Nwi =~ e s o = = e
(4m)!! (4m — 2)!!
Then, from Eq. (3.2) the stress triaxiality can be expressed by
(3.6) X = XA fin,m) = 2_‘7,“/\/3212.

With variables A, f, n and m, the values of function y are listed in Table 1.
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Table 1. Values of \ as a function of A, f, n and m.

n=0f=01 m=7 n=0 A=10, m=7 f=01, X=10, m=7
A = 10, 20, 30 f=01, 025, 0.4 n =0, 0.3, 0.6
X1 2.20 2.28 2.29 2.20 1.37 0.91 2.20 3.40 5.40
X3iii=2) 3.09 0.72 0.19 3.09 0.35 0.06 3.00 3.82 4.79
X3(10—1) 3.55 1.84 1.22 3.55 1.39 7.76 3.55 4.65 6.20
X4(10-2) -2.78 =146 —0.59 —2.78 =091 —0.27 —2.78 =321 —3.75
m =35, 6, 7, 8, 9 (A=10,n =0, f =0.1)
X2110-2) 3.087 3.090 3.091 3.092 3.092
Xq(10-2) —2.795 —2.799 —2.780 —2.780 —2.780

T * w* ) * ~ -1
where x| :f: Fidt, xv, = f:) F, dt, xi =fw Git7 wdt, ya = f: Gt “wdt.

It is found that y; and Y, are convergent functions since they are almost constant for
given A, f, n and m (m > 7). Table 1 also predicts that the terms y; and \; have little
contribution to y. Comparing Y> and Y4 with their corresponding main terms \; and \3,
we find that y, and y, are high order infinitesmall quantities and the quantities become
much smaller with increased A and f, but decreased n. Therefore, for large void growth
rate A and void volume fraction f (e.g, A > 10, f > 0.1), we have a better approximate,
but simple expression for the stress triaxiality

(3.7) X = 2\1/\/3U-
Equation (3.7) will be analytical for n = 0 and n = 1. For n = 0, we have

" [u. + m] 1 [w‘(2+w*2) L w(@+wh ]
2

w+/I+w) | 0l /0+0?p O+

10

=
\/i 2 *2 « = =
\/(1+w )—f\/(”'“’ )+1_6{\/(1 +w?p +~“2)3]

(3.8)

For n = 1, we have

4
.9 r= =,
(3.9) X =32

In fact, Eq. (3.9) is an exact expression for we can obtain it directly from Eq. (3.2) using
n = 1, which is true for a linearly viscous Newtonian matrix material. For small A and f,
there are some deviations between Eqs. (3.6) and (3.7), which are plotted in Figs. 2 and
3 for several f and n.

For the case f = 0, we will have a detailed discussion in the next section. The lines
of n = 0 and n = 1 in Fig. 3 come from Eqs. (3.8) and (3.9). It is found that A increases
with decreasing f and n when Y is fixed. The largest rate of void growth is for f = 0
(without void interaction effects) and n = 0 (perfectly plastic material). To compare the
present results for 3 D spherical voids in shear bands with those for 2. circular-cylindrical
voids, we also give relations of the stress triaxiality and the relative void growth rate for
2D voids from the previous work [14] as follows:

A A
(3.10) g Fl(t)dt/ [ Gy~ dt,
Y NS
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n=05
20+
10 e eq (37)
——— 20D eq. (310)
— 3D eq.(36)
— 1 It i -
0 4 8 12 16 X

Fic. 2. Relation between void growth rate A and triaxiality \ at several values of void fraction f (n = 0.5).

30+

20

e eq.(37)
10 ——— 2D eq.(310)
3D eq.(36)
1 ! y
0 ] 20 30 0 X

F1G. 3. Relation between void growth rate A and triaxiality y at several values of strain rate sensitivity
exponent n (f = (0.02).

[351]

http://rcin.org.pl



352 K. L. PaN

where

Fy = P02 4 %(1 — n)[(1 = n)P=3I/2 _ (3 — p) P2,

, 1
Gy = P12 _ (il — n)[(2P"3/2 — (3 — n) PPN,

When n = 0 and n = 1, Eq. (3.10) also gives analytical expressions

A+ (1+)\2)]_1 A2+ )% w(2+w2)]

+ /(1 +w?) VA + A 0+ wlp

w
w A w '
VW) = [+ A9 [\/(1+/\)*-\/(1+w~2)3]

where w = A f (for 2D voids), and
(3.12) Y = A

(3.11) Y=

These results are also plotted in Fig. 2 for several void volume fraction f, and in Fig. 3
for several strain rate sensitivity exponent n as compared with 30 voids. From these
diagrams, we can conclude that 2D voids in shear bands increase more quickly than 31
voids under the same loading condition and the same material behavior (the same damage
and nonlinearity of the material).

4. An isolated void model

At the initial stage of void growth in shear bands, it can be assumed that voids are
relatively far apart. In this case an isolated void model can be employed as that given
by FLECK and HUTCHINSON (2] for 2/) cylindrical voids. This consideration results in an
infinite matrix material. We can obtain the solution of the problem by setting [ = 0 in
the present results (3.5)-(3.9). In this limiting case f = 0, we have w = ( and

w.
3 N 1
Sp=dr [ (Gi+ G'm)t_“(lt/; — 4r.

Then, Eq. (3.6) becomes

g
4.1 = (A, n, = — Fy + F),)dt.
(4.1) X = X(A,n,m) /3 Ef( 1 )

)

The approximate expression corresponding to Eq. (3.7) can be given by

g
X\ =— | Fidt
X \[3 (_)]‘ 1
which has the following closed form for n = 0

1 2 # )
sh™!(w*) - ete w1+ w72

/_2
A=A
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For large A, we have

2
4.2 ~ —[In(2w*) — 0.1].
(4.2) \ \/3[ (2w7) ]

When n = 0, Eq. (4.1) also gives an analytical expression

2
(4.3) \ = ﬁ{ln[w' +4/(1 + w*h)] + c},

where

*
w

I : e
(4.4) €= W 2w+ w4 [ Fplneodt.
0

As discussed in the case f # 0, the function ¢ is convergent for large A. Table 2 gives the
numerical results of ¢ for variable m with large A (e.g., A > 10. In fact, for large A, ¢ can
be expressed by the series as shown in Appendix).

Table 2. Numerical results of Eq. (4.4).

m C m C

2 —0.1833 [ —(.2277

3 —0.2172 7 —(0.2279

4 —0.2250 8 —0.2280

5 —0.2271 9 —0.2280
It is clear ¢ = —0.228. Then, we have

3
4\ ~ In(%”) — 0.228

or

(4.5) A = 0544 exp (\? \).

The similar results for 21 voids were given by PAN [14], FLECK et al. [2] and MCCLINTOCK
et al. [1], which are listed here

(4.6) A = 0.68exp(\). from PAN or FLECK et al.,
(4.7) A = 0.50exp(y), from MCCLINTOCK et al.

For comparison, these results are plotted in Fig. 4.

As expected, the lines for 20 voids are higher than those for 3D voids, which means
that 210 voids grow more quickly than 3/) voids in an infinite matrix material. It seems
that Mc CLINTOCK model overestimates the void growth rate. The approximate expression
(4.2) underestimates the void growth rate. In the last section, we have pointed out that the
void growth rate is larger in an infinite (f = 0), perfectly plastic (n = 0) matrix material
than in other materials. Now we know that the growth rate for 20 circular-cylindrical
voids 1s larger than that for 37 spherical voids. So we conclude that the growth of
circular-cylindrical voids in an inifnite, perfectly plastic matrix material is larger than
in any other cases under shearing deformation.
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A
30+
(1) 3D eq.(45)
(2) 20 eq.(4.6) (3)
(3) McClintock (47 )
=== eq. (4.2)
20+
k&0 (2)
D:O
/
/
10
e ) 1 1 1
0 1 2 3 { X

F1G. 4. Comparison of present results for 3.0 voids with those for 2 voids from an isolated void model (f = 0).

5. Conclusion remarks

The void interaction effects on void growth in shear bands are considered by introdu-
cing arbitrary void volume fractions. Numerical and analytical results show that the void
growth rate is a strong function of the void volume fraction and the strain rate sensitivity.
The former gives the degree of damage of the material, and the latter corresponds to the
degree of nonlinearity of the material. Relatively simple approximate analytical formulae
are obtained for perfectly plastic materials.

Apart from void interaction effects, the other phenomenon in shear bands is the void
shape evolution. This problem may be discussed in the forthcoming paper.

Appendix. Calculation of the constant ¢ in Eq. (4.4)

Substituting the expression [, in Eq. (3.5) for n = 0 into Eq. (4.4), we have
(A.1) c=c1+ Cpp,
where

1 5
= —ﬁw*(Z + w ) (1 + w*z)_3/2,

3 T 1 i 2m p— m)/2
Cm = Z ]m f (glm - ; ZmPt 2) (21‘)‘ P (1+4m)/2 dt.
0 =

m=2
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The following recurrence formulae are useful to obtain the integral in Eq. (A.1):

o f Mdp =1 " M -1 J $M-2

i) PNlZ (M - N+ 1)PWN-2/2 " N-M-1J pN2
~dt t N-3 , 1

(A.3) J PN/ T (N — 2)P(N-2/2 tN 2 J P(N-2)/2

dt,

dt.

When A is large, the first term of the right-hand side in Eqs. (A.2) and (A.3) is about

1.*"\*]*1 t
b (M=N+ v 6-N
PN=-2)/2 ) PN-2)/2 ’
In our problem, N = 1+4m, M =2m,sothat M =N +1= —2mand3— N = 2—4m,

(m > 2). It is obvious that the first term at the right-hand side in Eqgs. (A.2) and (A.3)
is an infinitesmall quantity of A~?"". For example, when A = 10 and m = 2, we have
A~ = 1074, but [ P7Y%dt ~ 107, [#*P~%/2dt ~ 1072 Therefore this term is
negligible. In this case, we have

¢ m—1 2m—2
T 5 2m—2J -1 i4m —-2J =2
I o = iZmp—(H»Jm)/‘_dt _ ( ) ( )
]“ J H 2m + 2.J H dm —2.J — 1

0 =0 J=0

i m=2 2m-—3
TP 5 2m —-2J -3 4m — 2. — 4
[2771 = J 1meLP(l 4m)/2 i ( | l ) ( ] [ : )
2m + 2.J 4m —2J -3

0 J=0 J=0

Thus, from Eq. (A.1), ¢ can be expressed by the series

- 1 2m
c=-0.1+ Z (f/lmllm o 5.(/27)1]2771)(2)5 ‘]m-

m=2
It is convergent to a constant ¢ = —0.228 as shown in Table 2.

The author would like to thank Prof. Z.P. HUANG and the Faculty in the Division
of Solid Mechanics, Department of Mechanics, for their help and discussions during his
employment in the Beijing University.
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Wave pulses in one-dimensional randomly defected
thermoelastic media

Z. KOTULSKI and Z. PRETCZYNSKI (WARSZAWA)

IN THE PAPER the propagation of wave pulses in a one-dimensional thermoelastic medium is conside-
red. The problem is described by the transition matrix method. The transition matrix for such a wave
roblem lﬁ obtained and then the equation for the reflected and transmitted wave field is derived.
“inally, the effective thermoelastic constants are derived with the use of the law of large numbers
for the product of random matrices.

1. Introduction

THERMOMECHANICAL phenomena in elastic media conducting heat are usually modelled
by the equations of thermoelasticity (see [31]). Using such a theory, many authors have
attempted to solve both the stationary (harmonic) wave problems and non-stationary wave
problems (wave pulses). In this short review let us confine the analysis to the problems of
one-dimensional (or planar) thermoelastic waves.

In the paper [37] the problem of harmonic wave propagation in a semi-infinite and
infinite bar has been considered for various boundary conditions and, consequently, vario-
us excitations generating the waves. Analogous problems for the thermoelastic medium
have been considered in [31], where the effect of planar mass forces in an infinite space
and the effect of planar heat sources acting on the layer was studied.

The non-stationary problems of thermoelasticity are more complicated from the ma-
thematical point of view; since here the additional, time variable appears, they need more
involved computations. The most effective method vsed in such problems is the applica-
tion of the Fourier transformation with respect to spatial variables and (or) the Laplace
transform with respect to time. As an example of the nonstationary thermoelastic prob-
lem, we can present the propagation of plane wave generated by a sudden heating of the
plane boundary of the half-space (the Danilovskaya problem). Such a problem has been
considered in [5, 11, 12, 29]. Another example can be the propagation of the longitudinal
wave in infinite and semi-infinite bar, considered in [13, 37]. In the paper by IGNACZAK
[13] the method of spatial Fourier transformation of the thermoelastic wave equation was
applied to the analysis of the problem.

In the literature, thermomechanical phenomena have been mostly analyzed in the
homogeneous spaces. The description of the problem in spatially non-homogeneous case is
not simple, because then one must analyze the equations with spatially variable coefficients.
However, considering the stratified media we can apply the methods known from the
homogeneous media theory, using equations with constant coeflicients and applying the
suitable continuity conditions. The stratified models can be approximations of the continu-
ously variable media, as well as they can describe physical situations where the stratified
scheme is natural, like wave processes in layered soils, defected or compound elements
of structures, etc.
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The mathematical description of the thermoelastic wave processes in stratified media
and the methods of solution of the problems are analogous to the methods of analysis
of the purely thermal or elastic problems. In the literature there is a number of papers
where such problems are considered. In this short introduction we only mention the most
important of them, and give the references to the literature where more information about
the state of art can be found.

The problems of heat transmission through multi-layered structures and their inter-
actions with environment are presented, among others, in the papers [2, 6, 7, 32]. The
most effective methods proved to be the transition matrix method and the thermal factors
method.

The first method of the analysis of heat transfer in layered bodies with periodic bound-
ary conditions is shown in [6, 32].

The thermal factors method, originally presented in [27], is discussed in [7, 30, 15,
16]. Applying this method, the processes of heat transfer through multi-layered walls is
analyzed in [17]. Analogously, using the factors method, the computer simulation of heat
transmission in the solar wall is performed in [18, 19].

The literature concerning elastic waves propagation in stratified media is very rich (see
e.g. [14]). In this presentation we restrict ourselves to the presentation of the transition
matrix method, widely applied as the method of analysis of this problem. The earliest
papers where the method was used for the surface harmonic waves are [34, 36]. Later the
method was applied to SH [9] and P + SV [10] waves. The method proved to be useful
for the stochastic models: one-dimensional [39, 3, 20, 21] and two-dimensional [22, 23]. It
was also effective in the case of wave pulses propagation in stratified media: deterministic
[1, 28] and stochastic [24, 25, 26].

In this paper we apply the transition matrix method to the analysis of the dynamic
problem of thermoelastic wave pulse propagation in a randomly segmented one-dimensi-
onal medium. Starting from the one-dimensional equations of thermoelasticity ([31]) and
the appropriate continuity conditions, we obtain the transfer matrices for the randomly
stratified medium. We apply two methods: we use either the Legendre interpolation poly-
nomials, or alternatively, solve the appropriate system of continuity equations. Then we
are able to write the solution of the wave problem applying the derived matrices. Fi-
nally, using the limit theorem (see [4]), we obtain the equation for the homogenized
problem.

2. Governing equations
2.1. The equations of motion
Consider the linear thermoelastic wave propagating in a one-dimensional medium.

The equations describing the changes of the displacement of the medium u(¢, 2) and the
temperature fluctuations of the medium (¢, ) are the following (see [31]):

0’u J*u v
2.1 = 2 —(3) s
(2.1) Pag =W+ 2 —(BA+ 2mag,
o 0% J du
2.2 o— = [J—— — : 2 —_—
( ) p(.E ai /301'2 71”(3/\ + p:)a at a.’r‘
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where A, p — Lamé elastic constants, T\, — the reference temperature, ¢. — the specific
heat at constant strain for the unit of mass, p — the density of the material, / — the heat
conductivity coefficient, & — the coefficient of linear expansion of the medium.

The system of equations (2.1)-(2.2) can be alternatively written in the form of two
following continuity equations:

the principle of the conservation of linear momentum:

2.3) Pu _ o
- Porr ™ oz
and the heat equation:
00 ¢
24) . i —_—
24 Peeat = o

where we have introduced, as new variables, the stress ¢ and the heat flux ¢, defined as

(2.5) o=(A+ 2,&)? — (BA + 2p)ad)
@
and
)
(2.6) p = i;—l — To(3A + 7,u)aiu

Using Eqgs. (2.3)-(2.6) we can write the following system of thermoelastic equations:

(2.8) 3_(17 _ p(é);tlj
(2.9) ‘;—Z) - ,lﬁ fﬂ@;ﬂ(()};ﬁ
(2.10) 39: - c())t:

Introducing new definitions of constants,

|
2.11 PR S
S : (A +2p)
(2.12) 2, = GAF2ma
B o (A+2p)
(2.13) A= p.
(2.14) B - 022
ﬂ ]
1
(2.15) B, = =
(2.16) By = pe.,
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we can write the system of equations (2.7)—(2.10) in the following vector-matrix form:

i 0 ;‘11 .*'12 0 7
02
Ju Ay— 0 0 0 u
(2.17) o lei_| % i
' x| | B— 0 0 B |
0 0 B i 0
! Yot |

Applying the Fourier transforms to the system of equations with respect to the time
variable ¢, according to the following definition:

(2.18) 3(w) = j exp{—iwt}s(t)dt,
2.19 0
( ¥ ) a = wws,

we obtain the following system of linear ordinary differential equations:

0 A 1 A, 0

u 2 U

d |a ~wiAs 0 0 0| |&

2.20 — |0l oo % a
(2.20) dx g iwB, 0 0 B 1}
2 0 0 iwB; 0%

where the variable of the Fourier transformation w is now the parameter.
Let us define the matrix of the system of equations (2.20) as

0 -41 ./12 0
—w4; 0 0 0
fu)Bl 0 0 Bz

(2.21) A =

Then the eigenvalues of the matrix A of the system of equations are the solutions of the
characteristic equation

(2.22) det(A — rId) = 0,
(Id is a 4 x 4 identity matrix), or explicitly
(2.23) ' — Plo[— A1 Asw + (A2 By + By B3)i] — ByB3 A Asiw® = 0.

The solutions of the characteristic equation are

(2.24) P2 = :h\/T;;\/f)l- —aw + Vaiw? — b + 2idw

and

(2.25) T34 = i%\/bi — aw — Va2w? — b + 2idw,
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where the following notations have been introduced:

(2.26) a = A1 Az,
(227) b = /'12131 + ]3233,
(228) d = .r1.|.r1_':,(AzB| - B:B}).

2.2. Discontinuity surfaces and continuity conditions

The governing equations (2.1)—(2.2) are valid for the homogeneous media, that is for
such media where the coefficients in the equations are constants. If the medium is built of
several regions where the coeflicients are constant, in every region the suitable governing
equation of the form (2.1)-(2.2) is valid. If the solution of the wave problem exists in
the entire medium, then on the interfaces of the homogeneous subregions (being the
surfaces of discontinuity) some continuity conditions must be satisfied. The conditions
are: the mechanical variables — displacements (%) and normal stresses (o), and two
thermal variables — temperature (v) and normal heat flux (), are continuous across the
surface of discontinuity of the medium.

2.3. Excitation, initial and boundary conditions

The complete description of the thermoelastic problem necessitates the governing
equation and, additionally, appropriately described excitations acting on the system, and
initial and boundary conditions. Usually one defines the mechanical excitations acting on
the structure (displacements or stresses) and heat sources distributed in the medium. Anal-
ogously, one defines the initial displacements, stresses and the temperature fluctuations
over the body.

In this paper we assume there are no external excitations acting on the body in the
r-direction. Moreover, we assume that at { = 0 the medium is in equilibrium (homo-
geneous initial conditions).

The wave processes analyzed in the paper are one-dimensional; we consider the wave
pulse in the (stratified) slab or bar. The pulse is generated by suitable changes of the
boundary conditions. The boundary conditions of thermoelastic problems are of two types:
mechanical and thermal. In the literature authors usually assume known displacements
or normal stresses (on non-overlapping surfaces of the boundary), and known tempera-
ture and normal projections of the heat flux (also on non-overlapping surfaces). Some-
combinations of the above conditions are also possible.

In our wave problem, since we consider a one-dimensional model, we should assume
only one mechanical and one thermal boundary condition on the whole surface of the slab.
The wave problem considered requires precise specification of the boundary conditions
(being in our model the excitations generating the thermoelastic wave pulse in the slab
or bar).

3. Continuity equations and transition matrix

To construct the transition matrix for the solution of Eq. (2.20), we postulate the form
of two components of the solution as
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4
(3.1 u(x) = Z Cexp(riz),
i=1
R 4
(3.2) d(z) =) Cexp(rix).

i=1

Then the spatial derivatives of the functions are

(3.3)

(3.4)

du(x)
dx

4
- 3 Ciriesra)

(h)(l) Z( r;exp(r;a),

i=1

where r;,1 = 1,2,3,4 are the eigenvalues of the matrix A of the system of equations
(2.20), given by formulae (2.24), (2.25), and the constants ('} and C'”, ¢ = 1,2,3,4, must
be determined from the boundary conditions. Then the value of the solution of Eq. (2.20)

at the plane z = 0 is

(3.5)

(3.6)

(3.7)

(3.8)

and the value for z =

4
TL(O) = TL() o ZCVF,
1=1
d(0) =9y = Y C7,
=1
£ 1A . A, &
a(0) =0y = TZC’; = 4—22C
L it P
1< :
2(0) = 3y = B > Cir B: Tw
i= =1
L is

l 13
1, Z( exp(r;L),

4
(3.9) u(l) =1ty =Y Clexp(riL),
1=1
n ~ 4
(3.10) L) =1p = Z C?exp(ril),
(3.11) o(l)y=5; = Z('% exp(r;L) — ==
A i=1
(3.12) (L) =@y, = ii(:?’r-exp(w) - &iwz exp(r L)
o B Bl i=1 s l Bl i=1 1 .

Our purpose is to express the values of the solution at © = 0 in terms of its value at

v

= L. To do this we must eliminate from the equations (3.5)—(3.12) constants ('} and
;s 1 =1,2,3,4 From the above equations we obtain the following matrix equation for
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the constants C'*, ¢ = 1,2,3,4:

Uy

uy, Cvlu
R [.‘2 n (v
(3.13) go+ —do | =A"| 2|,
-31 3
gL+ v Cy
aj, A] vy, 4
where matrix A“ has the following form:
1 1 1 1
exp(riL) exp(r,L) exp(rsL) exp(ryl)
1 1 1 1
) 4 AH - £ 7z ;. —_—
(3.14) 1 AIH 1 Al;'z AlT,’. Al?-t
1 |
irl exp(r1 L) A—]rz exp(ryl) A—17'3 exp(r3L) Iu exp(ryl)

Now we can obtain the following formula for the coefficients C'*:

Uy

o "

(3.15) cu | = AT G+ 20
; A,

¢ oL+ fﬁl,
L2

Analogously we can obtain the following matrix equation for the constants ('Y, i =
1,2,3,4:

J
[ & c
(3.16) B+ Dy ”?%
1 3
i oL+ Bf wiiy, ] cy
where matrix A” has the form
1 1 1 1
exp(rL) exp(r2l) exp(rs;L) exp(ral))
(3:.17) AY = BLITI BLITZ 3}77'3 Bilm
EIITI exp(r L) 5{1 roexp(r, L) 231—17'3 exp(rs 1) Bilm exp(rql)
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Now we can obtain the following formula for the coefficients ('’

Jo
cy oL
(’U v1— 2
(318) ('i’ = [A)] 1 L:’J“ 2.
/'3‘ ]
i )
U,

] B
The formulae for the derivatives are

do N 1 2 . ‘
3.19 — = — ,-l P = C'fL,.J_- 'v_d‘__
(3.19) dzl. . 3w Ty i Z e
do e s 4 y
(320) I__L‘ = — .43(.;) nwy, = — Z ( re exp(] L) Z C’( 75 CXP(T'I'L),
aT =g, =
(321) @ = B}‘iu)‘l)[, = Z('l) e BZ Z (,“
da |, -’ B, o
(l(,? 17 B, i
(3:22) o=t = Biwi, *—Z( v exp(r; L)——Z(‘ riexp(riLL).

i=1 i=1
Now we can obtain the expressions for the functions sought for at the front plane x = (,

(3.23) ug, 0y, Yo, Do,
under the given values of the functions at the rear plane x = [:
(3.24) ur, o, v, @r.

The formulae constitute the following system of linear algebraic equations:

(3.25) /13w2ﬂ|,= l Z(w 2 l Z(’l}
A1 55 o
A 4
(3.26) AWty = T Z('"7‘exp (r L)+ T‘ Z('})r;exp(r,-[,).
s g
& 10 o B, &
(3.27) Byiwdy = — > Clri— ==Y " Ctry,
By i=1 B, i=1
- e Bs o
(3.28) Biiwd, = T ZC‘?T? exp(r;L) — E‘- Zv‘,— exp(r;L).
(- Vit

where the constants C'* and '/ are the solutions of Eq. (3.13) and (3.16), respectively.
The above system of equations can be written in the following matrix form:

m uy,
a0 1| or
3.29 ~ =T ~
( ) Uy vy |’

L;\C‘” @L
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where matrix T~! is the inverse of the transition matrix for a single layer. It can be
represented in the following form:

(3.30) T =[P]'Q
where matrices P and Q are defined by the formulae
(3.31) = [Pijl i,j = 1.,2,3,4,

(3.32) Py = —Asuw’ - ZA“ - + mZA“u
‘l I

1 o : A; B
3.33 Py = —— ) Ajri 2  tiw
( ) 1 :'11 Z k1 Al B] e
4
(334) P31 = Iw ZAA-” ‘k + LinAxl’l'k,
By k=1
B: BZ : - w
(3.35) Py = — g tel) + Engk,rk exp(ri L),
(3.36) Py = —T ZAH k>
b=
l 4
(3.37)  Pn=-—— > Alriexp(ril),
A k=1
(38)  Po= 2 ~ At
: =5 k3T ks
B, —
B 4
(3.39) Pyp= B Alyrh exp(ri L),
1 =y
2 AZ
(3.40) Py =— ZA“ ri == ZA“1k,
Ay k=1
(3.41) Py = — 4 ZAE*” exp(rel) + — ZA (T exp(ry L),
I k=1
(3.42) Ps; = Byiw — ——ZA i+ IHUZAHT‘;;,
3.43 Py = — Al 1+ !
( ) 43 ]}] ; LlTL exp(’/k ) l B] = )
g
(3.44) Py, = A > AR
1=t
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3.45 Py = L),
(3.45) 4 A1 2
4
1 v .2
(346) P34 = —F AkST'kﬂ
L
(3.47) Pyu=—— ZA“rkexp(uL)
By =1
and
(3.48) =[Qi;], 1,7 =1,2.3,4,
I & , A3By. &
3.49 Qu=—) ALri — —=—iwY Alr,
( ) 11 Al§ k2" ke A, B RZ;] k4! k
Ay B
(3.50) Q= A’ + —ZA‘PT‘k exp(ri L) — wZAMu exp(ril),
f*il k=1 A Bl

B, <. B, o
(351) Q= EinAzﬂ'; - EiinA}jzrk,

B B,
(3.52) Gy = Fi’“‘ZAM’keprkL) — §~1u ZAU_IA exp(rg L),
1 k= L ok=
1A
(3.53) Qi = 1 ALl
Ly

1 uw .2
(354 Qu =3 Aurien(ril),
U=

B, &
(3% Qu=-F ZA;::J;.,

(356) Q42 = ZA‘AT}LCXP(T AL)
B k=1
4
2
(357  Qus= ZAM i - ZAizm,
1 k=1

(3.58) Q= AQZA%nexp(rkm i Le S AR e cspiral)

I k=1 k=1
L = As B, o
(359)  Qu= ) AbLri— —==Siw A7y,
Bl; Tk~ 25 AZ, ks

A B
(3.60) Qs = —Biiw + — B, ZAu?kexp(uL) - A—B—zuZA“nexp(q &L),
k=1 k=1
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(3.61)  Qu=-——0Y Abri,

Ay & ; _
(3:62)  Qu=—— Y Alriexp(ril),

A,

(3.63)  Qu= > Al

T N,
(3.64) Qu = — ZA}:“‘L exp(riL).
k=1

4. The Legendre polynomial and transition matrix

In this section we present the alternative method of calculating the transition matrix
through a single layer of thermoelastic material. The method is based on the spectral
representation of the matrix and the Legendre interpolation formula.

The transition matrix through a single layer of thickness L is the solution (taken at
point L) of the ordinary differential equation of the form

d

(4.1) T = AT,

with the initial condition
(4.2) T(0) = 1d,

where A is the matrix of the system of equations defined in (2.21). The solution of Eq. (4.1)
can be represented by

(4.3) T(L) = exp(AL).

Since the eigenvalues of the matrix A are known, we can calculate its exponent using
the Legendre interpolation polynomial method (see [35]):

(.A e ’Ij_ld)(.A - 73Id)(./4 -~ TL;Id)F,.lL
(ry—r2)(ry—r3)(r —rg)
" (A — mId)(A — r31d)(A — mId)e,.zL
(rz = r)(r2 — m3)(r2 — 74)
N (A = rlId)(A — rId)(A — ryld) Ly (A= rlId)(A — r1d)(A — rId) il
(r3—r)(ra—r2)(ra—ry) (ra —r)(ra —12)(ra —13)
Substituting the matrix A in Eq. (4.4) and performing calculations, we obtain the explicit
expressions for the transition matrix T:

Ti(L) = (chrsL(rf — iwA; By + WA Az)
+chriL(=7} + iwA; By — w*A;43))/(PDw),
(4.5) Ti(L) = (r3shrL(=13 — w? A, A3 + iwA,By)
+ryshrsL(r? + WP A Az — iwA;By))A, /(r173P Dw),
Tia(L) = (r3shriL(—13 — WP A A3 + iw(A, By + B, B3))

(4.4) exp{AL} =
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(4.5)

[cont.]

+ ryshrL(rl + WA Az — iw(Ay By + By B3))) Az /(s PDw),

Tis(L) = (chr L — chr3L)A; By /(P Dw),
Tu(L) = (r3shr L(r3 + WP A A3 — iwA, By)
+ryshral(=rf — wiA Az + iwAd; B))) Asw/ (113 P D),
Tao(L) = (chrsL(r} + w?A1As) — chrL(r? + WA, A3))/(PDw),
Ty(L) = (—chr L + chrsL)wA;A3/PD.,
To(L) = (=r3shr L + ryshryL)w Ay As By /(ryrs P D),
Ty (L) = (=r3shr L(ir? + iw? A A3 + w(A; By + By By))
+ryshrsL(ir] + 1w’ A Ay + w(AL B, + ByB))) B,/ (rrsP D).
Ti2(L) = (¢hr L — chrsL)iAB,/PD,
Ta3(L) = (chrsL(r] — iw(A; By + B;B3))
—chr L(r} - iw(A: By + B, BY)))/(PDw),
Taa(L) = (r3shr L(—r3 + iw(Ay B, + B, B3))
+ryshrsL(r — iw(Ay By + B3 B3)) B,/ (ryrsPDw).
Ty(L) = (—chriL + chrsD)wB,B;/PD.
Ty(L) = (—ryshr L + ryshrsD)w A By By /(rim P D),
Ty3(L) = (—r3shriL(rii + w(A, By + B:B3))
+ryshrsL(rii + w(A; By + B2B:) B3/ (rir3 P D).
Ty(L) = (chr3L(r] — iwB;B3) — chrL(r3 — iw B,y B3)) /(P Dw),

where ch, sh are the hyperbolic cosine and sine functions,

(4.6)

4.7)

and

(4.8)

‘M -
e+ e
cha =
2
et — e~ T
sha =
2

PD = \/(z,zw2 — b2 + 2iwd
= \JA2AR? — (A,B) + ByBY + 2iw A As(As By — ByBy),

ri, t = 1,2,3,4 are defined in (2.24), (2.25), @, b, d are defined in (2.26)-(2.28), and the
constants A;, By, i = 1,2, 3, are defined in (2.11)-(2.16).

5. The layered thermoelastic medium

The transition matrices obtained in the previous section enable us to describe the
passage of the thermoelastic wave through a multi-layered medium. In such a case, know-
ing the transition matrices through individual layers, we can obtain the transition matrix
through all the stratified medium as the product of the matrices. The transition matrix
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T(.) enables us to express the wave field U,

(5.1) U=

) )Q) =)

at any point 2 in a homogeneous medium, provided the boundary condition U, = U(0)
at » = 0 is known, in the following form:

(5.2) U(z) = T(x)Uy.

Consider now the multi-layered medium (slab) consisting of N layers of thermoelastic
materials, with thicknesses A;,7 = 1.2,..., V. Assume that the stratified medium is
surrounded by a homogeneous thermoelastic environment, located at * < Oand 2 > d =
Ei; A\ ;. Since the wave field U must be continuous at the interfaces of the layers in
the stratified medium, we can express the wave satisfying some boundary conditions Uy
at x = 0, after it reaches the plane = = d:

(53) U((l) . TN(A‘,\-')TN_1(&1\[*1) wite .Tz(Az)Tl(/_\.])U().

or, in a more compact form:

N
(5.4) U = [T 12,00

J=1

In the above equation all the material properties of the multi-layered medium are
completely described by the 4 x 4 matrix 7, being the product of the transition matrices
through the individual layers and interpreted as the transition matrix through the slab
built of NV layers of homogeneous materials,

N
(5.5) T =[] 1i(0)).

7=l

Let us remark that the boundary condition U, represents jointly the initial wave pulse,
going along the positive direction = and measured at » = 0, as well as all the pulses
generated due to multiple reflections and transmissions of the initial wave pulse at the
surfaces of discontinuity inside the slab, going in the opposite direction and also measured
at v = 0. The vector U(d) represents all the transmitted wave pulses generated inside the
stratified slab, going to plus infinity and measured at @ = .

6. The limiting case — homogenization

Assume that the slab is built of 2\ layers of the thicknesses [1(7), [2(7), . . ., L (7),
where [;(7),2=1,2,..., 21\ are random variables. In the above ¥ € [ is an elementary
event and (I, F, P) is the complete probabilistic space (cf. [38]). Assume additionally that
the material parameters of the layers and their thicknesses (P25=1(7)s Azj—1(Y), pi2j—1(7)s
gj—1(7) Bai—1(1)s €e2j—1(): {2 -1(7), P2i(7)s A2i (Vs 12i (), @23 (7), B2j(7), €e2;(7),
[2;(7)) are, as the vector random variables, independent and identically distributed for j =
1,2,.... L. Moreover, we assume that the thicknesses of the layers have the following
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particular property:

) Lyj1(y) L2;(v)
6.1 (5510, byt = (2, 260)),
for j = 1,2,.... K\, are independent, identically distributed two-dimensional random
variables with the given mean values:
(6.2) E{Lyj(M} =1', E{L()} =L

independent of j. In this particular case the periodically repeated segments of the bar are
built of the couples of elements with the lengths /5;_,(7), [,j(7), 7 = 1,2..... . For
such segments the transition matrices M;(7) are the products of the pairs of the transition
matrices through the individual layers

(6.3) M;(7) = Toj1(lzj 1 (YN T2(02; (7)), 7 =1,2,..., K,
and Eq. (5.4) for the Fourier transform of the amplitudes takes the following form (2A" =
N):
"
(6.4) u(d) = [[m;(mu,
J=1
N

where d = d(v) = 3,2, L;(v)-

To study the asymptotic behavior of the randomized equation for the amplitudes of the
waves we apply the law of large numbers for the products of random matrices obtained
in [4]. This theorem can be written in the following form:

Consider the sequence of the products of real random matrices

K
(6.5) Pi(7) = [[ M5 (7)-
J=1
It is assumed that for K tending to infinity the matrices M; i can be represented by
1 .
(6.6) M; k(y)=1d + T\TB""[\- (v) + RJ'([\ . 7Y,
where B, () forj = 1,2,.... I, are independent, identically distributed random matrices,

integrable with respect to probability measure T and |R; (I, )| = o( '~ for large K. Under
these conditions the law of large numbers takes place and

(6.7) Jim Pr(y) = exp(E{B; k(1))

in the sense of convergence in distribution of all the vectors obtained by multiplication of the
random matrix by an arbitrary deterministic vector.

To analyze the limit case of Eq. (6.4) when A" tends to infinity, we decompose, at
the beginning, the transition matrix defined in (4.5) under the assumption (6.1) on the
thickness of the layers, with respect to the powers of 1/ A

1000 0 Ay Ay 0
wor (LiY_ |0 1 0 0f  Lj|-wd;; 0 0 0 L
(0R r_,(jk_)_ 001 0T K| iwB, 0 0 B, ”(E)'
00 0 1 0 0 iwBs; 0
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Multiplying the matrices T (L), corresponding to the transition matrices with odd indices
and T,(L;) — even indices we obtain that the matrices B; required in formula (6.7) are
given by (we have changed the numbering of the random variables being the malerlal
pdrdmelers and the thicknesses of the layers according to the following rule: ps;_; = p

P2 = p]- for any parameter p and j = 1,2,..., K, so the parameters with identical
superscripts — 1 or 2 — have the identical distribution):

(6.9) B;=
Al L A2 2 L 2
(: Af; LV + A L AL LY+ AS LG 0
| —wHAL L J+4;J/J) 0 0 °©
(B} L} + B}, L; 0 0 B}, L+ B3, L}
0 0 iw(By; L} + BT LY) 0

The common average value of the matrices B; is

(6.10) E{B;} =

0 E{AIL' + AJL*}  E{ALL' + A3L°)} 0

_ | —w*E{ALL! + AJL7} 0 0 0
iwE{B]L' + B{L*} 0 0 E{BIL' + BiL*}

0 0 wE{BIL' + BIL?} 0

Here the parameters and the thicknesses under the expectation are the random vari-
ables with the distribution common for all couples of layers.

The matrix eZ 1%} is of the form analogous to (4.5), where instead of the parameters
Av(), A2(), As(y), Bi(v), Ba(7), Bs(7), being random variables, one has the effective
constant parameters AST AT, AT BT BST RS defined as:

(6.11) Acn = B -4i(‘f)-L'(v)d+ AL}
(6.12) AT = 11'{4'4§(‘/)L'(7)d+ AL}
(6.13) As = "-'{-"‘é(‘r)f«‘(v); AL}
(6.14) B = "5{131'("1)1"(7)(}+ Bf('r)ff("r)}‘
(6.15) Bt - PJ'{Bz‘(v')L'(v)[;- Bi)L*()}
(6.16) B = 1”/'{1935(7)L'(7)(/+ B,f(v')Lz("f)}*
where |

(6.17) d=1"+ 1%

Summarizing this section we can say that the effective (homogenized) medium is also
thermoelastic, with the material parameters defined in (6.11)-(6.16). It is seen that the
statistical relations between the constants inside each layer make the form of the effective
material parameters rather complicated.
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7. Closing remarks

The formulae for the transition matrices in the thermoelastic wave problem make it
possible to analyze certain wave problems. To define them accurately, one must assume the
particular kind of excitation at the front boundary of the stratified medium. The excitation
is included in the boundary condition Uy, in the matrix evolution equation (5.4). Since the
boundary condition contains also the reflected wave pulses, one must separate two waves:
the ones going to the right (excitation), and to the left (reflected pulses). This is possible
by postulating the specific form of the solution of the equation analogous to (3.1)-(3.2).
Then the terms with positive exponents represent the waves going to the left, while the
terms with negative ones — that going to the right (excitation). Assuming the known
excitation, we can obtain from (5.4) the system of algebraic equations for the coeflicients,
what makes it possible to calculate the amplitudes of the reflected and transmitted waves.
Substituting them into the formulae analogous to (3.1)-(3.2) and calculating the inverse
Fourier transforms (using for example the Fast Fourier Transform numerical algorithm —
see [33]), one can obtain the shape of the reflected and transmitted waves. The analysis
of some particular thermoelastic wave problems will be the subject of our future research.

The wave problem considered in this paper is an example of a wide class of dynamic
problems that can be called the coupled field problems. The applied transition matrix
method proved to be very effective in the analysis of elastic, thermal and thermoelastic
wave problems. The method seems to be applicable to more complicated coupled field
problems, for example those including electromagnetic effects.
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Internal geometry, general covariance and generalized
Born-Infeld models
Part 1. Scalar fields

J. J. SEAWIANOWSKI (WARSZAWA)

DiscusseD 18 the geometric structure of nonlinearities of the Born-Infeld type, known from electro-
dynamics. It is shown that this kind of nonlinearity is strictly related to the demand of general
covariance combined with an appropriate gmu]iv of internal symmetries. Multiplets of scalar and
covector fields are analyzed in more details, with special stress on the status of internal geometry.
Models suggested here may be useful in relativistic mechanics of continua, alternative approaches to
gravitation, and unified field-theoretical treatments.

1. Introduction and motivation

A CORNER STONE of general relativity was the experimental coincidence of the inertial
and heavy masses. According to A. Einstein, the most natural explanation of this mysteri-
ous coincidence is achieved when one interprets the metric structure of the space-time
continuum as a carrier of gravitational interactions. In this way, the metric tensor, which in
specially-relativistic theories was a purely geometrical parameter of the matter Lagrang-
ians, becomes a physical field subject to the variational procedure, on the same footing with
all other fields. If one modifies matter Lagrangians by adding to them the Einstein-Hilbert
Lagrangian of the gravitational field, one obtains field equations compatible with experi-
mental data. The total Lagrangian of matter and gravitation is invariant under the group
of all diffeomorphisms of the spatio-temporal continuum. This was a very essential nov-
elty in physics, and the general covariance has become a new fundamental principle.
This principle states that, on the level of fundamental interactions, there are no absolute
spatio-temporal objects. Geometry disappears and becomes physics.

Nevertheless, some special, so to speak post-geometric status of the metric tensor
survives in dynamical structure of the Einstein theory of gravitation. Metric tensor is the
central member of the family of all physical fields. Tt is self-interacting and all other fields
interact through it even if there is no other interaction between them. Any system of
fields which includes the metric tensor, admits a generally-covariant variational principle
of the first differential order. And one often claims incorrectly, that any generally-covariant
model must include the metric tensor as one of fundamental physical variables (roughly
speaking, the metric tensor is to be necessary for the very existence of other fields).

Some philosophical objections may be raised against this non-democratic scheme. The
bundle of symmetric second-order tensors is not any special element of the universe of all
associated bundles of the principal bundle of linear frames. From the purely mathematical
point of view this scheme is not necessary for the general covariance of a theory. And
physically, the Einstein—Hilbert principle of general covariance seems to be independent
of the particular, metric model of gravitation; probably it is much more general and
fundamental.
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Nevertheless, it is true that geometric objects admitting nontrivial, generally covariant
variational principles are rather exceptional. It is instructuve to review simple examples.
First of all, the number of dependent variables N must exceed the number n of indepen-
dent variables, i.e., there must be more field components than space-time coordinates.
Indeed, the general-covariance group is “parametrized” by n arbitrary functions of n
variables, thus, at least to some extent, any system of & < n field variables may be
transformed by an appropriate diffeomorphism to any a priori given form. This implies
that, if N < n and Lagrangian is generally covariant, then, either any or no field is a
solution, i.e., the theory is either trivial or empty. Let us quote two examples of such
trivial schemes with N = n.

(i) Let A denote a contravariant vector density of weight one. The only scalar density
of weight one, built of A alone, has the form

2 o
(1.1) L= ﬂ
dav
The divergence structure of this generally-covariant “Lagrangian” implies that the rzsul-
ting Euler-Lagrange equations are trivial, 0 = 0.

(ii) Let A denote a differential one-form; put F' := . We can interpret | s an
electromagnetic potential and /" as the corresponding field strength. In terms of coordi-
ﬂ B 04,
dzr  Oav
alone, has the form:

nates: [, = . The only scalar density of weight one we can construct Hf A

(1.2) L= \Jldet[F,. ]l

It is implicitly assumed that det[F),,] # 0; otherwise we would have been dealing with a
differential singularity of the type +/0. It is clear that Lagrangian (1.2) is generally-covari-
ant, thus, the resulting Euler-Lagrange equations must be either inconsistent or tnvial,
because there are as many dynamical variables as coordinates. Indeed, one can show that
L may be represented as a total divergence,
2D

n DaV
where " [, = 6%, and n is the “space-time” dimension. Therefore, the correspo-
nding Euler-Lagrange equations are trivial identities 0 = 0.

The field of symmetric and non-degenerate second-order tensors (twice covariart, or
twice contravariant) provides the simplest and oldest-known example of an irredwible
geometric object admitting a generally-covariant variational principle of the first differen-
tial order. Let us remind that irreducible linear objects in an n-dimensional manifolc are
defined as quantities the components of which transform according to irreducible rep-
resentations of the group GL(n, %), when the local reference n-leg is deformed. Thus,
scalars, vectors, covectors, symmetric and skew-symmetric second-order tensors ar: ir-
reducible, whereas the multiplets of the above objects, as well as general (asymmuetric)
second-order tensors, are reducible. It is a nice feature of symmetric non-degenerate 7% -
and T}-tensors ¢ that, the very geometry of their degrees of freedom determines alnost
uniquely the structure of generally covariant variational principle of the first differeitial
order in g. Namely, the most general Lagrangian leading to second-order field equaions
is a combination of Hilbert Lagrangian and cosmological term,

(1.3) | det[ Fu. ]| AL FH /| det[ Fuu)l,
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1
(1.4) L= Zlz[g]\m + A7,

R|g] denotes the curvature scalar built of g, A — the cosmological constant, and k& —
gravitational constant.

The peculiarity of non-degenerate symmetric TY- and T}j-tensors is that they provide a
universal tool for constructing scalars and scalar densities from arbitrary tensorial objects.
This justifies to some extent the special status of the metric field and Hilbert-Einstein
model among the family of all generally covariant theories. It is natural 1o ask what is
the position of another inhabitants of the second floor of the tensor algebra, namely,
the mixed second-order tensors (7} -tensors). A distinguishing geometric feature of such
tensors is that they are linear mappings of tangent spaces into themselves and define local
automorphisms of the full tensor algebra. They are not irreducible geometric objects, but
their trace-less parts are irreducible. In spite of its special geometric status, the 7' -field has
not yet found any direct physical applications; none of the recently known fundamental
interactions or matter fields is representable in terms of mixed second-order tensors.
Nevertheless, it is interesting that such tensors admit generally-covariant variational princi-
ples. To construct them, we must use the Nijenhuis torsion concept. Let us remind that
the Nijenhuis torsion S(X,Y) of two 7} -tensor fields X, Y is defined as the following
skew-symmetric 7 -tensor:

(1.5)  S(X,Y)un = X0 Y i, +YO.X )\, - YOXY,, - XOYH,,
— X" Y, —YH X, + XH YO+ YH, X,
It may be represented in a coordinate-free form by means of its evaluation S(X,Y) -

i
(A, B) = S5(X,Y)*,\A B* % on vector fields A, B:
dxt

(1.6) SAAY)- (A B)=[XAYB]+ YA XB]|+ XY[A, Bl + Y X[A. D]
-X[AYB]- X|YA,B]-Y[A,XB]-Y[XA,B]
where [ A, B3] denotes the Lie bracket of vector fields,
[A, B]* = A*BY, - B*AX,.

Apparently, the formula (1.6) involves the derivatives of A, B; nevertheless, it may be
shown that the terms involving derivatives cancel each other, thus as a matter of fact, the
expression (1.6) is algebraic in A, /2 and may be correctly used for defining the 7. -tensor
field S(X,Y).

With any second-order mixed tensor X we can associate the torsion S(.X ):= 5(X, X).
Obviously, the expressions S*/(X) := §(X*, X') are also possible, including negative
powers k, { when X is non-degenerate; however, they are much more complicated. Using
S we can construct the following metric-like object based on the Killing prescription:

(17) (—";[u = Gvun o= Sl\;u;‘s‘xu,\-

It is quadratic in derivatives of X'. The most general twice-covariant second order tensor
built algebraically of S alone and quadratic in derivatives of X has the form

(]8) T,_“/ = -4-5"\,“(—5‘)(1/,\ + BAS"\,‘_J.\'S'”LIX + (_,’S'\Z'\SX“U‘
A, B, ', being constants. Let us observe that the quantity

(1.9) L:= /| det[T,.]|
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is a Weyl density of weight one, thus, in principle, it may be used as a generally-covariant
Lagrangian for the field X

Lagrangian (1.9) is more complicated than the Hilbert-Einstein Lagrangian (1.4).
Namely, the latter is quadratic in derivatives ¢, \ (with coeflicients built algebraically of
Jop), and the resulting field equations are quasilinear. The expression (1.9) is irrational
in derivatives. The resulting Euler-Lagrange equations are essentially rational (become
rational after dividing by \/[T) however, the coeflicients at second derivatives of .\
depend not only on X itself, but also on its first derivatives.

Any generally-covariant theory must be nonlinear, however, the nonlinearity of the
model based on Eq. (1.9) is much stronger than the nonlinearity of Einstein equations.
It resembles the Born-Infeld nonlinearity in electrodynamics. Indeed, Lagrangian (1.9) is
obtained by square-rooting the determinant of the tensor 7" quadratic in derivatives. Let
us remind that the Born-Infeld electrodynamical Lagrangian has the form

(1.10) \ﬂdet[rjw +aly,ll,

thus, the tensor under the square-root and determinant symbol is a first order polynomial
of field derivatives A, ,. There are also certain modifications based on second-order
polynomials,

(1.11) VI detlg, + By, + bg<eF Py

Thus, perhaps the most essential structural feature of the Born-Infeld nonlinearity is that
Lagrangian has the form (1.9), where 7" is a low-order polynomial of field derivatives. Let
us remind, incidentally, that the square-rooting of twice-covariant tensors is a standard
tool for constructing Weyl densities of weight one. Thus, one can reasonably expect that
generalized Born-Infeld models are geometrically and physically distinguished within the
family of all possible Lagrangians. Another, much more familiar class of physically privi-
leged models consists of traditional Lagrangians, quadratic in derivatives, and factorized
as in Eq. (1.4) into dynamical scalar factor comprising all derivatives, and some Weyl
density depending on the field variables in a purely algebraic way. There are certain
weak-field correspondences between these two kinds of models; they seem to indicate

that generalized Born-Infeld models 1. = /| det[T},, ]|, with 7" quadratic in derivatives,
are particularly promising and reasonable. For any kinds of fields they are the simplest
possible generally-covariant models. For example, as we have just seen, the second-order
mixed tensor field X admits such models, but does not admit any model quadratic in
derivatives. Lagrangians (1.9), (1.8) do not exhaust the class of all generally-covariant
models for the T}'-field X'. More general and much more complicated models are ob-
tained by replacing the constants A, B, €' by functions of basic scalars built of X; the
expression (1.9) also may be multiplied by a factor depending on basic scalars. If the field
(i Eq. (1.7) is non-degenerate, the basic scalars may be obtained, e.g., with the help of
Weitzenbock prescription:

~f w3 Ny o &e
Jl ol (,l,u,u IU € ’»5“;,,\.5“,%,, Jy =

P4

"oy 3 T
G"'8° 535" vy 3= G*ET 108 0.

!

It is easy to see that all such scalars are zeroth-degree homogeneous functions of deriva-
tives, thus, all generally-covariant Lagrangians for X are homogeneous of degree n in
derivatives (n equals the “space-time” dimension).
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It is not well known that the affine connection field also admits generally-covariant
variational principle. Let I"\,,,, be a symmetric afline connection, l?'\,u,, — its curvature
tensor, and £, = R‘\Hl\,, — the Ricci tensor of . The twice covariant tensor [?,,, gives
rise to the scalar Weyl density of weight one,

(1.13) L= /| det|R]|.

This density is built algebraically of 3 .o and its derivatives 1"\,,,, .+, thus, at least for-
mally, it looks acceptable as a Lagrangian for r’ - This Lagrangian was suggested many
years ago by EDDINGTON and SCHRODINGER [15], who expected to formulate an alterna-
tive gravitation theory. More recently, KIJoOwsKl showed that the resulting scheme is essen-
tially equivalent to the Einstein theory; the metric field appears, roughly speaking, as a mo-
mentum conjugate to [, [8]. This physical equivalence of the Born-Infeld scheme (1.13)
and the quadratic in derivatives model (1.4) is interesting in itself. Let us observe, inciden-
tally, that (1.13) differs in one essential respect from Eqs. (1.1), (1.2), (1.4), (I.S)' namely,
1"\;“, is a geometric object ruled by the affine group GA f(n.®) = GL(n.I )>< R"

whereas the tensorial objects A, A, ¢,,,, X/, are ruled by the linear group (;L(n )

This short review seems to exhaust the list of low-dimensional irreducible objects
admitting reasonable generally-covariant variational principles. However, there exist redu-
cible objects, first of all — multiplets of scalar and covector fields, which admit reasonably
looking and physically promising Lagrangians invariant under the group of all spatio-tem-
poral diffeomorphisms.

All non-gravitational interactions are described by scalar and covector fields, and any-
way, it seems that differential forms are the best candidates for describing fundamental
interactions in generally-covariant theories, because they can be intrinsically differentiated
in the sense of exterior differentials [1, 2, 21, 22, 23]. This motivates the attempts of in-
terpreting also gravitational interactions in terms of scalars and covectors. Moreover, one
actually describes gravitation in this way, expressing the metric field through the tetrad
(Vierbein), ie., the quadruple of covector fields. This procedure is necessary when we
introduce fermion fields into the treatment. Originally, in Einstein theory, tetrads were
introduced as nonholonomic reference frames and there were no attempts to interpret
them as genuine physical fields. There exists, however, a wider class of Vierbein-based
theories of gravitation, known as metric-teleparallel theories [S, 9, 12, 13, 14]. This class
includes the tetrad form of Einstein theory as a special case. There are certain theoretical
arguments in favour of this generalization, and as yet there are no experimental arguments
against it. In generic metric-teleparallel models, tetrad components acquire a microphysi-
cal individuality. They become fields and it is no longer possible to reduce their meaning
to that of being axes of auxiliary non-holonomic frames.

Thus, at least formally, the whole boson sector may be described with the use of no-
thing but covector and scalar fields. Gauge fields also are representable as multiplets of
differential one-forms ruled by appropriate groups of internal symmetries. Among covec-
tor fields there is a singled-out geometric quadruplet (Vierbein) responsible for gravitation
and general covariance. This quadruplet absorbs the most essential nonlinearity of dynam-
ical models. Thus, even after eliminating the metric tensor from the system of dynamical
variables, we still have to do with “post-geometric” quantities. But, if we once decide to
use only scalars and covectors as fundamental fields, and if we agree that the principle
of general covariance and the particular metric or Vierbein model of gravitation are two
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different things, then it is natural to object against this picture and search for “democratic”
models in which all covector and scalar fields occur in a completely symmetric way. In
such models one does not distinguish a quadruplet of carriers of gravitational interactions.
Moreover, on the fundamental level, characterized by the use of strongly nonlinear equa-
tions, there is no division of “duties” between covector fields, i.e., no assignment of special
kinds of interaction (gravitational, electromagnetic, weak, strong, etc.) to particular mul-
tiplets of fields. Splitting of this interaction into a few kinds of forces and identification of
covector fields as carriers of those forces should appear scarcely on the level of solutions,
due to a mechanism like the spontaneous symmetry breaking. Thus, it will be character-
istic for small perturbations of “vacuum™ solutions. The latter, roughly speaking, will be
“flat” or “constant”, i.e., they will describe situations physically to be as non-excited as
possible. Let us notice that in classical generally-covariant theories, the concept of energy
is a rather delicate matter and one must be very careful with the energetic criterion of
vacuums as solutions minimizing the energy functional. The point is that the formally
introduced Hamiltonian vanishes in virtue of the general covariance. Performing the sym-
plectic reduction of Dirac’s primary and secondary constraints (ADM-procedure), one
can obtain an effective Hamiltonian of the reduced dynamics; however, there are certain
ambiguities in this procedure, and one is faced with computational difficulties increasing
drastically together with the order of nonlinearity.

The aim of this paper is to review a family of generally-covariant Lagrangians for
systems of scalar and covector fields. As yet I have not carried out a detailed mathematical
analysis of the consistency of the resulting Euler-Lagrange field equations. It is expected
that among those Lagrangians there are good candidates for unification models. We begin
with some class of very ascetic field-theoretical models, involving only scalar fields as
dynamical variables.

2. Generally covariant Lagrangians for multiplets of scalar fields

Let M and W be differential manifolds of dimensions n and N, respectively. Differen-
tiable mappings @ : M — W will be interpreted as W -valued fields on the “space-time”
continuum M. We shall consider first-order variational principles for such fields, thus,
@ are assumed to be at least twice continuously differentiable. Diffeomorphism groups
Diff M and Dift 11" act on the fields € according to the formulas:

DIf M 3 ¢:d— dop!,

(2.1) R ]
DIt W s U:@+— Uod.

Formulas (2.1); and (2.1), describe, respectively, spatio-temporal and internal (isotopic)
transtormations. The rule (2.1); expresses the scalar character of @.

Letz*, p=1,....n,y% a =1,..., N be local coordinates in A and . Th: fields
@ and their tangent mappings 7¢ : TM — TW are analytically represented ty their

components,
(')(P.’l
P =y o P, P, .
y (.5 )

We are interested in generally-covariant variational principles for @, thus, no gecmetric
structure in M will be assumed. The isotopic space IV, on the other hand, will be erdowed
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with some absolute geometry. The simplest and most intuitive possibility is a nonsingular,
twice covariant tensor field 7 on 1.
Any field @ : M — W gives rise to the pull-back tensor field g[®¢] on M,

(2.2) g[P] = g(T'®) = &7 3.
Analytically,
bt AHb
’ o 1 N ()( {)(I)
(2.2 glPluw = Nan(P ... P )(‘);1'“ —re
The assignment @ — ¢|®P] is generally covariant in M,
(2.3) glP o o] = ¢7g|P],

for any ¢ € Dift M. It is also invariant under isotropic transformations preserving the
structure (W, n), i.e.,

(2.4) glU o @] =g[®] it U™-n=n1.
From ¢[®] we can construct the following scalar W -density of weight one on M [10]:
(2.5) L[#] = \/I9[9]] = \/| detlnap(®)be, .80, ]|

It is a homogeneous function of degree n of derivatives " ,. Algebraic values of ®*
enter through the internal geometry 7. The density (2.5) is generally covariant in M and
invariant under symmetries of (W, ),

Ll®o @] =0¢"L|®] forany ¢ € Diff M,
LIUo®) = L[®] if U y=y.

We can interpret Eq. (2.5) as a Lagrangian for the nonlinear scalar multiplet # : Al — W.
Its shape is uniquely defined by the assumed invariance properties (2.6). There is, however,
a wide class of Lagrangians invariant under (2.6), alone. They have the following general
form:

2.7) L) = [(2)/| detlglP],.,]] = \/|k(®) detlg[],.,1].

where f: W — R resp. k : W — & is a sufficiently regular “potential” function. If f
is non-constant, then Eq. (2.7) is not invariant in the sense of Eq. (2.6); under the total
group Diff(W, ) of isotopic isometries (diffeomorphisms of W preserving 7).

Another convenient representation of Diff A — invariant Lagrangians is:

(2.8) L#] = /| det{T[D),],  T[9] = (@YD 1) + ™ (a & ),

o, (3 being differential one-forms on W. By an appropriate redefinition of %, g, w, 7, «,
3 we can formally identify expressions (2.7) and (2.8). Nevertheless, it may happen that
the tensors 1), a, /7 have a well-defined physical meaning (isotopic metric, directions in
the isotopic space); in such situations (2.8) is more convenient.

Obviously, we must assume that N > n. Indeed, as mentioned in the Introduction,
any generally covariant Lagrangian involving N < n real field variables is trivial; its space
of extremals is either empty or identical with the family of all kinematically admissible
(sufficiently smooth) fields. The reason is that Diff M is controlled by n real functions of
n variables (space-time coordinates), thus, any Dift A/ — invariant theory with [V real
field quantities involves min(n. V') gauge variables. If N < n, every field is a pure gauge.
For example, g[®] Eq. (2.2) is singular for any N < n, and Lagrangian (2.5) identically

(2.6)
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vanishes. If N = n and @ is a local diffeomorphism, then ¢[®] is non-degenerate and
Eq. (2.5) needs not vanish. Nevertheless, the corresponding variational principle is still
trivial, because for any field @ and for any domain {2 the action I[¢. 2] = [ L[]
depends only on the boundary conditions @ | Jf2; more precisely, /[, {2] equals the
i-volume of the region contained within the closed hypersurface ¢(0§2) C W It is clear
that this region, thus, also its volume, is uniquely determined by ®|J§2 and does not
depend at all on & | Int 2. If L is given by Eq. (2.7) and f is non-constant, then /[, §2]
becomes functionally dependent on the behaviour of ¢ within the interior of 2. However,
if, as assumed, f depends on @ in an algebraic way, then, it is rather typical that the
resulting Euler—Lagrange equations are inconsistent, because for N' = n, the dependence
of Eq. (2.7) on derivatives is artificial. It is impossible to introduce the derivatives of & to
f without violating the general covariance of Eq. (2.7).

We conclude that N > n, and ©% are immersions, i.e., rank ¢ = n, except isolated
singularities. For non-immersive ¢ Lagrangians (2.5), (2.7) have differential singularity of
the type V.

The structure of Lagrangians (2.5), (2.7) is particularly intuitive when (11, 7) is a
Riemannian space, i.e., when 7 is symmetric and positive. For any immersion @ the pair
(M, g[#]) also is a Riemannian structure. If L is given by Eq. (2.5) and & : 2 — W is
an injection locally minimizing the functional /[-, {2] on the family of all injections with
given boundary data ¢ | 02, then the image ®({2) C W is a surface of locally minimal
n-dimensional 7-volume among all surfaces with the same boundary ¢(0f2) C . As an
intuitive example let us realize a rubber membrane or a soap film stretched on a ring;
n =2 N =3 If n = 1, the extremals of Eq. (2.5) are geodetic curves in (V. n).
When (W, 7)) is a mechanical configuration space and n = 1, then Eq. (2.7) becomes the
integrand of Jacobi-Maupertuis variational principle if we identify f with \/2(f —17),
where IV is a fixed energy value, V' denotes the potential energy function, and the kinetic
energy is understood in the sense of 7). If 1) is normally-hyperbolic instead of elliptic, and
n = 1, then the extremals of (2.7) are geodetic world-lines in (W, 7). If n = 2, we obtain
strings.

If M is interpreted as an n-dimensional space-time, then the model (2.7) describes
the physical world as a vibrating n-dimensional “membrane” in N -dimensional isotopic
space W endowed with some absolute geometry 7). This absolute metric induces on the
“membrane” the physical metric ¢[®] depending explicitly on the configuration .

Minimizers of the action functional based on Lagrangians (2.5) with symmetric posi-
tively definite 77 are known in Riemannian geometry as “minimal surfaces”. Their peculiar-
ity is that they minimize the n-dimensional Riemannian volume of n-dimensional submani-
folds of W spanned on a fixed (1 — 1)-dimensional boundary. The corresponding Euler—
Lagrange equations are equivalent to vanishing of the mean curvature vector, i.e., the first
trace-like invariant of the second quadratic form of ¢(AM) C .

Generally-covariant Lagrangians for multiplets of scalars are never quadratic in deriva-
tives; we have seen that expressions (2.5), (2.7), (2.8) are homogeneous of degree n in
derivatives of @. The corresponding field equations are essentially nonlinear. Nevertheless,
it must be stressed that expressions (2.5), (2.7), (2.8) are, roughly speaking, “as quadratic
as possible”; they are given by square roots of tensors quadratic in derivatives. Thus, we are
dealing with a generalized Born-Infeld nonlinearity; the square-rooted tensor 7'[¢] will be
referred to as a Lagrange tensor. Variational principles with Lagrange tensors quadratic
in derivatives (more generally — low order polynomials of derivatives) are interesting
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in themselves; it may be very instructive to investigate their general structure in some
details.

We can also admit complex manifolds 1V and analytic isotopic metrics 77. Then g =
& .17 is a complex twice covariant tensor on the real manifold A7. Its real part, Re g,
if symmetric, is a candidate for the spatio-temporal metric tensor. It suggests us to use
Lagrangians

(2.5") I = /| det[Re g,.,]|.

nevertheless, the previous expression (2.5) is also a priori possible. Obviously, for complex
fields @, the use of the absolute value symbol in Eq. (2.5) becomes more essential than for
real fields; it is unavoidable even locally. Let us observe in this connection that if ¢ is real
and immersive, M orientable, and 7-globally nonsingular in W, then the absolute value
in Eq. (2.5) either acts trivially or reverses the overall negative sign of the determinant
under the square-root expression.

When dealing with complex isotopic manifolds ¥, one uses rather sesquilinear, e.g.,
Hermitian, scalar products than the analytic ones; let us recall the defining property of
sesquilinear metrics 7:

Ne(Az1 + Ay, 2) = x:;,,.(zl. z) + 5\;7],,,,(:2, z),
Nw(z, A121 + A2z2) = Anw(2, 21) + Aau(2, 22),

s

forany w € W, z;, 2,z € T,,WW. Thus, if (..., €,,...) is an ordered basis in 7\, }" and
z; = zle,, 1 = 1,2, then
a.b

Nw(Z1. 22) = Nap(w)zy' 25,
where

’]uh(“') = 7]11'(( as Fb)-
The pull-back g = @~ - 1) of a sesquilinear form 7 is analytically given by

Ba b
(28’) Yuv = ’/ub(p‘t.gr(l)’.l/'

Usually in applications one deals with Hermitian isotopic metrics, when 1),,(z1, 2;) =
(22, 21), 1.€., Nap = TJp,. The corresponding spatio-temporal metric g[®] is also Hermi-
tian, ¢, = Jop, its squared arc element ds* = g, dv/dz" and determinant det|g,,,] are

both real, thus, the use of the absolute value symbol in L = /| det[g,,]| has the same

status as for real-valued scalars.

In physical applications we usually deal with linear scalars, in which case 117 is a linear
space, the field 7 is constant, i.e., identical with an algebraic tensor 1 € W* & W=,
and (...,y"....) is a linear basis in W*. The quadratic form v — n(v,v) = [|v[]*
disu’?guishes a nratural class of factors f in (2.7), namely, those depending on @ through
197 = st @,

(2.9) J(@) = k(|]").

The corresponding Lagrangians (2.7) are invariant under transformations (2.6); iff U/ €
O(W,n) C GL(W), ie., ift U is a linear mapping preserving n; U™ -n =no (U x U) =
7. Let us observe that if 1 is symmetric and nonsingular, the group Diff(W, 7)) is not
essentially wider than the n-orthogonal Lie group 0(W, 1), because then Dift(W, ) =
0O(W,7) X W. More generally, if the symmetric part of 7 is nonsingular, then Diff(W, ) =
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G x W, (& being a Lie subgroup of 0(W,7n + n"). If the potential term f is constant,

8
then the “free” Lagrangian

(2.10) L=\/lg|l= \/ | det[7,97, 2%, ]|

is also trénslationally invariant in W. Thus, if 7 is pseudo-Euclidean (constant, symmetric,

nonsingular), then Eq. (2.10) is isotopically invariant under the non-compact Lie group

E(W,n) = 0(W,n)x W — the group of affine transformations of 1 preserving 7.
s

Moreover, Eq. (2.10) is uniquely determined by the demand of invariance under Dift M/
and F(W,n). If we give up the assumption of translational invariance in isotopic space,
and retain the demand of invariance under Dift M x 0(W, 7), then the class of admissible
Lagrangians is given by

(2.11) L =\/| det(T,.]l.

where

(2.11") T(®] := (|

o B G TR ) P
Yy + #5191 ) 0 d( 101 ).
w, » denoting scalar functions of the 0(1¥, n)-invariant quantity ||®||*. Analytically,
541t 7 IP* JD°

; w = Whab 57
( ) i Jab ():’.p, ()ll'i’

_10]¢

+ '/c/\l,/\v

‘ ()
T Uubgpa Qgp_
2 Jdar dar
Obviously, Eq. (2.11") is a special case of Eq. (2.8) corresponding to a &) 3 = >p &) p,
where o denotes the differential form on W obtained from the radius-vector field w — w
by means of the canonical isomorphism W 3 u — n(u,-) € W* — lowering of indices.
If W is complex and 7 — Hermitian, then, in virtue of Eq. (2.8") we have

o

(2.12) L = /1g1®] = \/det[n..®7 @ ,]
instead Eq. (2.10). The complex-Hermitian analogue of Eq. (2.11') is given by
(2.13) T,, = u)i;,,;,ﬁ_,,@bvu + A\,

obviously, the quantities A, are real.

Lagrangians (2.10), (2.12) are simplest generally-covariant models for multiplets of
scalar fields. Their position among all Diff M — invariant Lagrangians (2.7), (2.8), (2.11)
may be compared with that of Klein—-Gordon Lagrangians

1 e Ab | ——
(2.14) L= (;'iab ,l‘”’dwd,(ﬁl‘y -~ anbfb”fl”)

G|

among all models formulated on the basis of a fixed pesudo-Riemannian geometry (M, ().
Obviously, when dealing with multiplets of scalars in a structureless manifold M, we
have no fixed (' at disposal, and because of this there are no quadratic models like
(2.14). Expression (2.14) provides the simplest Lagrangian for immersive mappings acting
between pseudo-Riemannian spaces (M, (v), (W, n); Lagrangians of this kind are used
in o-models. In spite of the structural difference between Eqs. (2.5) and (2.14), there
exists an interesting relationship between them, invented by Polyakov and used in certain
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problems of strings theory. For simplicity we assume that & is real and there is no mass
term in (2.14), thus

1 .
(2.14") L= 5:;,,,;15“,‘,,gbb‘l,(,"“’\/l(;|.

Let us consider a reducible field system ((+, ®); the quantities (7, ¢ are to be independent
dynamical variables. As a dynamical model for ((+, @) we use the Lagrangian

y 1 : _
(2.147) LG ®] = Snu® 8" G\ /|G| + ¢y/lal,

which differs from Eq. (2.14), by the “cosmological” term C'\/|(/|. The metric (& enters
L' in a purely algebraic way, just as in the gravitational Palatini Lagrangian. If n # 2,
! 1

2C

2—n

g*". Substituting this result to —— = 0, we

(5 gbu.

o/ 1912]]

(ﬂ(pu‘

= 0 is consistent only if ' = 0, and implies that

the equation = () gives GHY =

3G

obtain equations equivalent to those following from the Lagrangian (2.5), = 0.

!
0G
G = fg"¥, f being a completely undetermined function. Thus, the space-time metric (¢
is now conformally-equivalent to g[®], but not necessarily identical with g[®]. Substituting

L 0 \/1912]]

this result to -—— = 0, we again obtain the equations T T 0. Thus, if we introduce

If n = 2, then the equation

a
subsidiary dynamical variables (v,,,,, then irrational Lagrangian (2.5) becomes essentially
equivalent to the Lagrangian (2.14),, quadratic in derivatives. This means that there exists
an interesting kinship between quadratic models and generalized Born-Infeld models.
It is instructive to investigate field equations corresponding to Lagrangians (2.10),
(2.11). For the model (2.10) we obtain the following Euler-Lagrange equations:

9 g
(2.15) gV ,v =0, a=1,...,N,

9
where V ,, denotes the covariant differentiation in the sense of the Levi-Civita connection

induced by the metric g. Equations (2.15) have the form of nonlinear d’Alambert equa-

9 ,
tions; their nonlinearity is due to the dependence of g and V on the fields @', ..., ¢V,
This nonlinearity is responsible for the mutual coupling of equations in (2.15), because

9 4
the “Laplace-Beltrami” operator A[?] := ¢#*V ,V, depends on the total system
@', ... @M Itis possible to rewrite Egs. (2.15) in the form:

0 v :
(2.16) g + B, (;g““a"” = g““‘g"‘j)ga-ﬁ,“ = 0.

Equations (2.15), (2.16) are equivalent to vanishing of the mean curvature of ¢(M).
The separate terms in Eq. (2.16) are evidently non-tensorial. The total expression is
generally-covariant and we can simplity its form by an appropriate choice of coordinates.
The most natural coordinate condition reads
l L ) § LY L
(217) (59,{1!](/3 - gﬁ 9”3)9(1/3,;: = 0.
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The transversal gauge (2.17) reduces Egs. (2.16) to the form

(2.18) g"et ,, =0, a=1,...,N.

Let us observe that, locally, the simplest way to fulfil (2.17) and to visualize the dynamics of
(N —n) genuine degrees of freedom consists in identifying coordinates v#, jut = 1,....n,
with an n-tuple of fields @, e.g.,

(2.19) Pl =0l p=1,...,n

The remaining fields ¢", » = n + 1...., N, represent the true, physical degrees of
freedom. It is always possible to choose a basis in ¥ in such a way that

(2.20) Nyr =0, p=1,...,n, r=n+1,...,N.

Equations (2.19) and (2.20) imply that

(221) gpy = 7]‘“/ <+ T],‘Sgbr‘“(bs‘,,.

The true dynamics is expressed by equations

(2.22) et L, =0, rT=n+1,...,N,

whereas the first n-tuple of Eq. (2.16) becomes an identity in virtue of Egs. (2.22) and
conditions ¢ = ¢, p = 1...., 7. One can obtain Eqs. (2.22) from the following effective
Lagrangian:

(2.23) Lot = /| detln, + 0 @7, .

Using the gauge (2.19), (2.20), we easily prove that all affine injections are solutions of
Eq. (2.16). By affine injections we mean the mappings ¢ : M — W whose images ®(M )
are n-dimensional affine subspaces of W. Indeed, for such mappings we have

(2.24) & =C"uzt +C7,  guv = Mo + DG uC8,

[C",] denoting an arbitrary constant matrix, ('" being also constants. Thus, ®” ,, = 0,
g"" is finite, and Eqs. (2.22) are evidently satisfied. Obviously, in physical applications we
are interested in fields well-behaving at infinity (up to a constant, if Lagrangian depends
on ¢ only through its derivatives). Thus, we put C'", = 0, i.e.,

(2.25) " =C", Guv = Muv-

Afline injections are classical “vacuums” of our model. They represent physical situations
to be as non-excited as possible (constant, thus non-oscillating functions without isolated
nodes and stationary points). Besides, solutions (2.25) minimize the energy of the effective
Lagrangian (2.23) interpreted as a model assuming some absolute background metric Nw
in M. Obviously, this energetic interpretation of Egs. (2.25) as a classical ground state of
Eq. (2.23) is correct if the signature of [7),,,,] is normal-hyperbolic. Jacobi fields, i.e., small
oscillations about vacuum solutions (2.25),

(2.26) P ="+ ",
satisfy the usual, i.e., linear, d’Alambert equations
(2.27) pt¢" =0, r=n+1,...,N.

Thus, they are ruled by the quadratic background Lagrangian

(2.28) %1”517"“(15"'”(7‘)5'”«‘/!det[?)m,”.
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Linearized system (2.27) is an (N — n)-tuple of mutually independent equations; the
coupling between different @" is an essentially nonlinear effect.

The square-root-determinant structure of Eq. (2.23) resembles the Born-Infeld electro-
dynamics. In some sense one can interpret Eq. (2.23) as a scalar version of the Born-Infeld
theory. To demonstrate this, let us put n = 4, N = 5, [5,,] = diag(l, -1, —-1,—1),
nss = 1 > 0, ie.,

(2.29) Lew = \/| det[, + 1 0. ®]].
One can show that stationary spherically-symmetric solutions are given by

VO o da
2. r)y=+— | ——,
(2.30) U(r) NG ;,j T

where ' > 0 is an integration constant. Expression (2.30) is identical with the formula
for the electrostatic potential of point charges in Born-Infeld theory. In particular, ¢ is
asymptotically proportional to [/ at spatial infinity (r — o0), and at the origin r = 0
s finite, but non-differentiable.

Let us observe that if M is the one-dimensional time manifold, and (W, 7) is the
four-dimensional Minkowskian space-time, then, using appropriate coordinates in " and
denoting d®* /dt by v', we can rewrite Eqs. (2.23) in the form

(2.23" Leg = V1 —v? = /1 = §;50'07.

Apart from the mass-multiplier, this is the three-dimensional representation of the rela-
tivistic material point Lagrangian, written in the natural units, when ¢ = 1. Its char-
acteristic saturation property when v — 1 was just one of primary motivations for the
Born—Infeld model.

It seems to follow from the above remarks that the most essential geometric feature
of the Born-Infeld type nonlinearity consists in a very peculiar link between general
covariance in the argument space and internal geometry in the value-space.

Coordinate conditions (2.19) are reasonable only locally, in bounded domains of A .
Indeed, in general the manifold M need not admit global coordinates. But even if M is
diffeomorphic with ", the global gauge (2.19) is meaningless if all the fields ®“, a =
l...., N, thus, also #2, p = 1.... n, are to be interpretable as genuine physical fields
propagating in space-time M and carrying energy, momentum and angular momentum.
Obviously, from this point of view the linearly increasing behaviour of @¢ at infinity is
unacceptable. The global gauge (2.19) would be equivalent to assuming from the very
beginning that the n-tuple ¢, p = 1,..., n is essentially non-physical and that the true
degrees of freedom are represented by cross-sections of an affine fibration 7 : W —
W/ H, I being an (N — n)-dimensional linear subspace of .

If all members of the multiplet (..., &%, ...) are to be dynamically interpretable as
true fields on M, then one should use the general transversal gauge (2.17) together with
appropriate asymptotic conditions for @ at spatial infinity. When dealing with fields @
vanishing, or, at least, bounded at infinity, we cannot separate n gauge parameters from
(N — n) physical degrees of freedom so simply as in Eq. (2.19); instead, any field ¢,
a = 1,..., N involves both of them mixed in a rather complicated, non-algebraic way.

When discussing the scalar Born-Infeld model (2.29), we considered time-independent
isotropic solutions for the gauge-free variable 1, after identifying the remaining fields of
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the multiplet with spatio-temporal coordinates (including the time variable). In certain
problems, however, it may be more convenient, or even necessary, to use another sense of
stationarity, including, e.g., harmonic oscillations. The general Ansatz for such stationary
fields will be

(2.31) (2", 2"y = B, ") = exp(Rt)b(z"),
where the linear mapping {2 € L(1V) is an element of the Lie algebra so(1V, 1) of the
n-orthogonal group SO (W, ), ie.,

(2.32) (2w, v) + y(u, 2v)=0
for any u, w € W, or, analytically,
,]bt“‘(zrﬂ + ”caQCb = 0

In formula (2.31) we apply the usual relativistic conventions, thus, 2 = ¢ is the “time”
variable and z° are “spatial” coordinates. Expressions of the form (2.31) comprise, in
particular, the usual complex-valued stationary fields ¢‘“*4)(27) represented in terms of
real-valued fields with doubled dimension. The factor exp({2¢) in Eq. (2.31) is 7j-orthogo-
nal, thus, physically interpretable quantities built of @ will be time-independent. Obviously,
the coordinate gauge conditions #* = x* may be combined with the Ansatz (2.31) applied
to the remaining (N — n)-tuple ((N — 4)-tuple in the physical case) of fields @"; thus,
roughly speaking, 2 will be an (N — n) x (N — n) matrix skew-symmetric in the sense of
an (N — n)-dimensional part of 1. General covariance implies that the “time” variable is
always somehow involved in the total multiplet @“,a« = 1, ..., N. Therefore, if we subject
all the fields @“,a = 1,..., N to physical conditions of vanishing at spatial infinity, and,
consequently, exclude the coordinate-type gauges (2.19), then it is impossible to use the
trivial stationarity condition corresponding to {2 = 0 in Eq. (2.31).

3. Natural models of internal geometry

Let us turn to the problem of the status of isotopic geometry (W, 7). Formally, in the
above treatment, the structure (W, ) is logically independent of the space-time M. The
differential structure of A/ and geometry of (V. 7)) are unified into one framework in a
completely artificial way. Obviously, it is a tempting idea to derive them both from some
common principle, however, it is diflicult to postulate a priori a convincing scheme. Let
us quote two extreme possibilities: (i) M is a fundamental entity, and W is implied by
M, or at least, suited to M in a natural way; (i) (W, ) is a primary entity, and physical
situations are represented by n-dimensional surfaces in 1. In (i) the general covariance
is something very fundamental and expresses the fact that there are no absolute objects
in M and that every quantity explicitly present in Lagrangian or field equations has the
status of degrees of freedom and is subject to the variational procedure. In (ii), on the
other hand, M is merely a parametrization of surfaces in IV, and the principle of general
covariance simply expresses the fact that the particular choice of parametrization does
not affect the physical content of equations. Obviously, there is also a whole spectrum of
possibilities placed between two extrema (1), (ii).

If VW is finite-dimensional, as it usually is in realistic models, then, without going into
philosophical details of its origin, we can simply put W = B~ or W = 'V, The arbi-
trariness of isotopic structure is then reduced to the arbitrariness of N and the signature
of 1, when the latter is a real symmetric or a complex Hermitian scalar product. A neutral
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choce is N = 2p for a sufficiently large natural number p, and sign 7 = (p(+), p(—)). To
avod a non-motivated choice of N, we can assume n = oc, i.e., admit potentially denu-
merably infinite multiplets (in typical situations only a few components being noticeably
excied).

There are certain geometric hints concerning the choice of candidates for internal
structures (1. n). Namely, there exist linear spaces which, due to certain details of their
structure, are endowed with natural bilinear forms, e.g., metric structures. We shall now
quoce a few examples.

(i) Let {/ be an arbitrary linear space and [/™ its dual. We take the self-dual space
W = U x U*. There are two natural non-degenerate scalar products on W, namely, the
skev-symmetric (symplectic) bilinear from /" and the symmetric form 7, given by:

F'((xy, 1), (02, p2) = (131,-172> = (])L'Tl)s

n((z1,p2)s (22, p2)) = (p1,22) + (P2, 21)-

The symplectic structure (W, ') is used in mechanics; {/ is then interpreted as the con-
figuration space of a system, IV as its phase space, and the elements of [/™ are canonical
moments. Poisson bracket of functions on I is given by

{[ _(j} o Fah ().f ()‘7 T

dw* dwb

w seing linear coordinates on W, I, — components of /” with respect to w®, and
1'%l = 6%,

I U/ is a real p-dimensional space, then 7 is a pseudo-Euclidean scalar product of
signature (p(+), p(—)).

Let® = (Q,P): M — W = U x U~ be a W-valued scalar field on M, thus, ), P
are scalar fields with values respectively in {7 and I/ *. Introducing a pair of mutually dual
bases (....€4....), (....e?,..)in [/ and /", we can represent & = (@), P) with the
help of 2n real-valued functions Q*, P4 on M, where Q = Q"¢ , P = P,e’'. The
metric g[®] = $71 is then represented as follows:

(37-) Juv = (21 .;l])r‘.l/ + (2 & N P/\.;z .
It is clear that the group GL({7) is naturally imbedded in O(W, ) = O(U/ x 7", 7). This
imbedding is given by

(3.3) GLW)>Lw— L xL,

(3.1

where 1, € GL(U’™) denotes the mapping contragradient to L € GL(U): L:=1*"=
L=, Explicitly:

(3.3 (L x L)(q,p) = (Lg,po L™").

It is obvious that such transformations belong to O (U7 x [7*,n), thus, in particular, the
metric tensor ¢[(2, P] and Lagrangian L = \/|g[(Q, P]| are invariant under GL(U) acting
through the above prescription. If 7 is a model space of M, e.g., [/ = [£", one obtains the
scheme invariant under GGL(n, ), the structural group of /"M — the principal bundle of
linear frames over M.

(i1) Again let U/ be an auxiliary linear space and W := L(U/) ~ [/ ¢o U™ — the algebra
of endomorphisms of {/. Another natural possibility is s/(I/) C L(U/) — Lie algebra of
trace-less endomorphisms; obviously, L(I7) = sl{(I/) ¢ 2 1dy;. There is a natural family
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of symmetric scalar products on 1:
(3.4) n(A,B)=(A| B)xu = Atr(AB) + ptr Atr B,

A, pt being free parameters. If this scalar product is to be non-singular, then there is
essentially only one free parameter i, because one cannot put A = 0 without violating
the nonsingularity. Thus, we can normalize Eq. (2.4) in such a way that A = 1. If we
restrict ourselves to s/({7), then the only surviving term is tr(AB). Scalar products of this
type are closely related to the Killing metric of L({/) as a Lie algebra of GL(I7). Killing
form is given by

(3.5) (A | B) =tr(ad sadp),
where ad 4 : W — W acts as follows: ad4 X = [A,X] = AX — X A. One can easily
show that
1 1
(3.5 (A|B)=2ptr ((1 — —1tr .--U(ll-) (H - —tr BI(IU))
P p

=2pr(AB) = 2ur Aw B.

where p = dim U/. Thus, Killing product is the special case of Eq. (3.4) with A = 2p,
j0 = —2. It is degenerate, and its one-dimensional singularity consists of all dilatations,
B dy;.

No doubt, the main term in Eq. (3.4) is tr(AB). If I is real, then the signature of
tr(AB)is (Ip(p—1)—, %p(})-&- 1)+); the minus signs corresponding to compact dimensions
in L(U)), ie. infinitesimal rotations, and the plus signs corresponding to non-compact
dimensions, i.e., infinitesimal deformations.

The metric tensor g[®] = @~ - 1y induced by ¢ from W = L(I) has the form

(3.6) G =AMud @)+ pturd b, = Ay D5, L+ bty 6P

Just as in (i), the group GL({/) is canonically mapped into O(W, ) = O(L(U/).n) and
acts through the adjoint representation,

(3.7) GL(U) > L — Ady, € GL(L(U)),

where
AdpA = LAL™!,

This representation is not faithful; its kernel consists of all dilatations Al dy;, A € B/{0}. Tt
is clear that the metric 7 is invariant under { Ad;, : L € GL(U7)}. Thus, the spatio-tempo-
ral metric g[®] and Lagrangian L = +/|g|®]| is invariant under GL(U/) acting through
the above prescription. If [7 is a model space of M, e.g., / = ", we again obtain the
amorphous scheme invariant under GL(n, ), the structural group of I'M, [3, 4, 5, 16,
17, 18, 19, 20].

(iif) More generally, if 1 is a semisimple Lie algebra (semisimple commutator subalge-
bra of some L(U)), there is a natural isotopic metric 77, namely, the Killing form,
(3.8) n(X.,Y) = tr(adxady), adxZ:=[X,Z].

(iv) Let U/ be a complex linear space, [/ its dual, and {/ — the linear space of
antilinear functionals on {/. As denoted, elements of I are complex conjugates of linear
functionals, i.e., elements of [7*. By analogy with example (i) we define the internal space
as V := U x " This space is endowed with two natural scalar products, 7 : V x V — C,
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p: V x V. — C, namely,
(3.9) n(wy, ws) = n((xy, p1), (X2, p2)) = pilx2) + pa(ay),
P(wy, wy) = O((x1, p1), (T2, 72)) = Mil@2) — palay)-
Obviously, the forms 7, 7¢> are sesquilinears, i.e., antilineer in the first argument and linear
in the second one. They are Hermitian,

n(wy, wy) = 1w, wy), ig(wy, ws) = 1w, wy),
and their signature is neutral, signn = signie = (p(+), p(—)), where, obviously, p =
dim U.
The Hermitian metric g[®] = ®*7 induced by @ = (Q, P): M — U x U in the
manifold M has the form

= —A
(3]0) Juv = I)A,;JQ,u + [)A,UQ:A;‘(‘

These objects are used in spinor theory. Namely, the Weyl spinors in four-dimensional
space-time are analytically represented by scalar fields taking their values in a two-dimen-
sional complex linear space {/. That is usually considered as a non-scalar transformation
rule of spinors under spatio-temporal Lorentz transformations, or, more rigorously, under
the covering group SL(2,0C) is, as a matter of fact, a result of coupling between the
Weyl field and the gravitational co-tetrad. Besides of [/-valued spinors, one considers
also /" -valued anti-Weyl fields; the latter may be interpreted as spatial reflections of the
previous ones. Unifying them in a single object, we obtain V -valued Dirac bispinor fields.
The sesquilinear form 7 is related to the Dirac’s 7"; it is necessary for the construction of
the mass term in Dirac Lagrangian. Raising the index of ¢ with the help of 7}, one obtains
the y°-operator. The whole Clifford-algebraic structure is also an intrinsic element of the
geometry of U x U~

(v) Let U again be a two-dimensional complex linear space of Weyl spinors. Its
complex-conjugate space will be denoted by /. As usual in the case of finite dimen-
sion, [/ may be canonically identified with the space of antilinear functions on /™. Now,
let us consider the space of twice contravariant Hermitian tensors on [/,

(3.11) W:=hermU @ U C U U.
It is canonically isomorphic with its own transpose
(3.11") WT =hemU@UcCUxU.

Obviously, W, WT are real four-dimensional spaces. We can construct also analogous
spaces of Hermitian covariant tensors,

(3.11") ~UT := herm (~ @U C i ®U*,
W :=hemU QU " CU Q@U"

It is clear that the duals of W and W7 are canonically isomorphic with any of the linear
spaces W W7, Linear space W is endowed with the natural Minkowskian-conformal
structure. Indeed, let us fix an arbitrary basis {¢,,a« = 1,2} in U/. For any tensor = =
iabeg ¢ ey, we define the quantity

(3.12) Q1] := det[1*"].
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The peculiarity of dimension two is that the assignment { — ([{] is a quadratic form
on W = herm U/ © U. Polarizing it we obtain some bilinear form, ie., scalar product
neEWwW @w*~ W oW on W. Its signature is normal-hyperbolic, thus (W, 7) is a
four-dimensional Minkowskian space. The quantities (), 7 are unique modulo the nor-
malization constant, because the change of basis (¢,, @ = 1. 2) results in multiplying them
by a positive factor. Thus, Minkowskian-conformal structure is intrinsically built into the
space W = herm {7 0 [/. Another way of constructing 7 is based on fixing some sym-
plectic form ¢ € U* A U*. It is unique modulo a complex multiplicative factor, because
dim [/ = 2. The form ¢ gives rise to Minkowskian metric 7 on W, namely

(3.13) NAB = Mayea = SacCod-

Its contravariant inverse, i.e., the dual metric y on W™ @ W= ~ W W is given by

(314) ,”AH = _’]ubcd — S(IC?LH[‘

It is clear from this prescription that 7) is unique up to a positive factor equal to the
squared modulus of the complex factor at ¢.

If M is a four-dimensional manifold and the two-component complex Weyl fields ¢ :
M — U are assumed to be the most fundamental physical fields, then the normal-hyper-
bolic signature and conformal-Minkowskian geometry in tangent spaces of A/ become
intrinsic, because the model space of M may be identified with W = herm I7 @ U,

There are also interesting examples of nonlinear internal spaces W with intrinsic
metric structures.

(i) Let I/ be a linear space and W C U &) U denote the manifold of nonsingular sym-
metric and twice contravariant tensors in {/. The manifold W carries an almost canonical
metrical structure. The corresponding arc element is given by

(3.15) (1-55 = T/AB(’D([{/A(' ) r/g[”),
where
(3.15") napcp(9) = AgaBdcep + HGACIBD-

A, jt being constant parameters. The term ¢ 4ggcp must be taken with a non-vanishing
coeflicient (we may put it equal one by convention), because otherwise 174 pc:p would be
singular. Tt decides about the structure of 174 g p; the next term is a secondary one. Quite
similarly we can use the space of nonsingular, symmetric, and twice covariant tensors,
W c U™ @ U~. Then, obviously,

(3.16) d::; = nBCP(g)dgsc @ dgpp,
where
(3.16') gABCD = \gABCD 4 1 AC (BD

Let us observe that, although the manifold ¥ is an open subset of a linear space, the above
metrics are not flat. They have nontrivial curvature tensors and are not translationally
invariant in U @ U or U™ @ U~.



INTERNAL GEOMETRY, GENERAL COVARIANCE BORN-INFELD MODELS. PART I 393

The spatio-temporal metric tensor g[®] induced by @ : M — W has the form:

()gb’“ 0(13!}[)
dxzr dav

= (APap(x)Pcp(x) + pPac()Ppp())

(3.17)  g[®]uu(2) = Napcp(P(a ))
()Q5AC‘ ()¢BD

dar Qv
and, similarly, for covariantly-valued fields:
0P s 0D
(3.18)  gl®],u(x) = y*POP(P(2)) S AC TBD
dxih dav

()@A( ()QDH[)
dz+  Ozv ’

matrices [#7], [ 4] being mutually reciprocal. Obviously, similar structures may be
introduced for non-symmetric tensor-valued fields; however, they are more complicated,
because their arbitrariness is stronger than that of the choice of A, p. If {7 is complex,
then it is natural to define W as the space of Hermitan tensors in /. There exist obvious
Hermitian counterparts of Eqs. (3.16)—(3.18); compare also (2.8").
The above scheme is particularly natural, when U is a model space of M,eg., U = R"
The linear group GL(U) acts in a natural way on the manifold W, namely,

LeEGLU): U@U3g—LgelUQU,

= (AP (@) P (2) + p@ ()2 P (2))

where, analytically,
(3.19) (L) = LELDg".
Similarly, when we deal with covariant tensors, then
LeGLWU):U"@U* 39— L.geU*Q@U",

where
(3.20) (Lug)aB = 9cp L3¢ L0,
Transformation group {L. : L. € GL(U/)} preserves the metric tensor 7 on W, thus, it is
a subgroup of the isometry group &(W,7) of the pseudo-Riemannian manifold (W), 7).

As usual for generally-covariant models using multiplets of scalars, the metric (3.18)
is quadratic in derivatives, and the Lagrangian L[®] = \/|g[®]| is homogeneous of de-
gree n in derivatives. There are also, however, some new features following from the
non-Euclidean character of 7. Namely, the functional assignment ¢ — g¢[®] between

the field @ and the corresponding metric tensor ¢[®] is homogeneous of degree zero (it
was quadratic when 77 was pseudo-Euclidean). Similarly, the functional dependence of
the Lagrangian [ = \/|g[®]| on the field @ is also homogeneous of degree zero (it was
homogeneous of degree n when 1 was flat, i.e., pseudo Euclidean).

An interesting scheme is obtained when we consider scalar multiplets with values in
U x U* ¢ U*. Analytically, they are represented by the arrays (¢4, ® 4 5). Combining
the structures (2.5), (3.18), we obtain Lagrangians of the form

(3.21) L = /| detlg[¢4, @ 45]]),
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where
(3.18)  g[®*, D 4p)
= a® 50" 0P , + 00 L Doy B, + cOPOE Dy Dy,

a, b, ¢ being constants.

This means that the manifold W = U x U* @ U* is endowed with a curved,
pseudo-Riemannian geometry wth the arc element:
(3.22) d"q%u,g) = agapdu® @ du® + bg“F P dgep @ dgpr
+cg“P g dgep @ dgpr.

(i) Let us assume that the internal manifold W is identical with some Lie group .
To simplify notation we shall consider (¢ as a linear group, e.g., GL" (/) or a subgroup
of GL*(U); U denoting a finite-dimensional linear space.

One can distinguish a few natural groups of internal transformations in W = G,
namely, left regular translations X — AX, right regular translations X +— X A™',
two-sided regular translations X — AX B~', and inner automorphisms X — A XA
A, B being arbitrary elements of (7. Obviously, all these groups are subgroups of the
group of double translations, X — AX B~'. Left and right regular translations provide
faithful realizations of the group . If G = GL*(U), then, of course, the two-sided
translations provide a non-faithful realization of GL™(U) x GL™(U); its kernel consists
of elements (Al dr, A dr), A € B Similarly, the group of inner automorphisms provides
a non-faithful realization of GL™ (), and its kernel consists of dilatations A d;, A € F ™.

The above groups act on (7-valued fields as follows:

¢ — Lo, (LP)(x) := Ld(n),
$— PL", &L Y (z) = d(2)L 7",
5.23) o ( --1)( ) () N
P LONT, (LN ")) := LP(a) 7,
d— LOL™Y, (LDL YY) = Ld(a)L "

If, as assumed, (¢ C GL' (/) C L(U), the field & takes its values in the linear space
L([7), thus, it may be invariantly differentiated in the sense of L(I/)-valued diflerential
forms, d®,. € L(I'.M,L(U)). Let us now define some auxiliary objects built of the
field @ and its differential d®, namely, differential one-forms (2, {2 on Af taking values
ing = Try, G C L(U) and acting on tangent vectors u € 1,.M according to the
prescription

(3.24) (2(x),u) = (dP,,u)P(x)", (), u) := ()" (db,. u).

Their components with respect to local coordinates 2/ are given by

, dP

dar’

Obviously, all multiplications in (3.24), (3.24), are meant in the L({)-sense.

(324') .Q(.l‘)“ = %(P(I)_i _@(;1:)‘1 = d(a)”

REMARK. For simplicity, and having in view typical applications, we have assumed
that ¢ C GL™(U). Nevertheless, the above constructions are essentially valid for any Lie
group (i. The g-valued differential one-forms {2, £2 on M are then defined as follows:
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for any @ € M and any u € T, M, we have:

(2(x),u) = (T Rp-1())(TP(u)),

(2(x), 1) = (T L1 (TB(w)),

where [ ,, R, denote, respectively, the left and right regular translations, L,(z) = gz,
Ryz)=2g,and T® :TM — TG, TL,: TG — TG, TR, : TG — TG are tangent

mappings. -
Differential one-forms {2, {2 have the following transformation properties under left
and right regular translations in the internal space (5:

¢ LE: 02, LRL™, 2,0,
G BL: 02, 0, 2, L'2,L.

Thus, being Lie-algebraic objects, they are either Ad-covariant, or invariant, depending
on, which kind of regular translations is applied. These transformation properties are
helpful when we aim at constructing Lagrangians with appropriately postulated symmetry
properties under the above internal groups. If we had at disposal a fixed metric (' on M,
then, on analogy of Eq. (2.14), we would be inclined to postulate Lagrangians like

(3.25)

(3.26)

1 .. ~
(3.27) L= SG* u(2.2,\/IG] = SG* w(@,2,),/1G.

The simplest Lagrangians built of ¢ : M — ( alone, without using extrinsic elements
like (v, have the previously introduced form

(3.28) L =+/lgl®]l.

where g[®] is an appropriately constructed spatio-temporal metric tensor. The prescription
for @ +— g|®] depends on the assumed symmetry properties.

If [ is to be invariant under Eq. (3.23),, i.e., left regular translations, then we must
put

(329) v = ﬁdp,flbuNubv

where N € g™ 0 ¢” is some metric tensor on ¢ and f?ﬂ,, N,;, are components of f?“, N
with respect to some fixed basis in g, thus N,y = Np, and det[N,;] # 0. If ¢ = L[U],
ie., G = GL*(U), then

(3.30) guv = 2%, 02°p, NoB L.
It is clear that Eq. (3.29) may be written as
(3.31) gl®; N, 1] = ¢*n[N, 1],

where [N, ] denotes the left-invariant metric tensor on the manifold (7, obtained from
the algebraic metric N € g~ ) g* with the help of left regular translations; thus

(3.32) DN, (X Y) = N(TL (X), TL (V)

‘w
for any vectors X, Y € T,,G.
If we assume that Lagrangian is to be invariant under right regular translations (3.23),,
then

(3.33) Guw = 2°,02°, Ny,
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with the same meaning of N as previously. This expression may be rewritten as
(3.34) g|P; N, 1] = ™[N, 1],

where 5[V, 7] denotes the extension of N € g* ) g™ onto the manifold (v through the
right regular translations,

(3.35) N[N, r]o(X,Y) = N(TRNX). TR,\(Y)),
where X, Y are arbitrary vectors in T°,M
If G = GLY(U),ie., g = L(U), then
(336) ,(jﬂl# = !?1]3“-(2( UJ\ AB I)
If Lagrangian is to be invariant under (3.23); with L running over the whole of GLT(17),
and A restricted to the orthogonal subgroup SO(U, ), = € U™ & U™ denoting some
fixed metric tensor in {7/, then
(3.37) Qv = amac 22,0 puxBP + fu(2,0,) + yu 2,0 02,

a, (3, v being constants.
If Lagrangian is to be invariant under (3.23); with L restricted to SO(U, >) and I
running over the whole GL™ (), then

(3.38) Jup = OxAC ‘(2}3,‘19’71/ + Btr(2,02,)+yuw 2, 2,.

If Lagrangian is to be invariant under (3.23); with L, A" running over the whole GL"(17),
then
(3.39) G = Btr(0,02,) + yur 2,10 0, = Be(2,0,) + yu 2, u Q,.

If @ takes values in a subgroup (; C GL'(U) and Lagrangian is to be invariant under
left and right regular translations (3.23); with L, A" running over the group (v, then

(3.40) Juv = -QI -Q vNap = J(-)”u-Qf)uf\'/rh-

where N € ¢* () ¢" is some metric tensor on g, invariant under the adjoint group
Ade - g — g. This means that

(3.41) g|P, N = @"n|N],

where the metric tensor 5[N] on (i arises from /N by extending it through the left or
right regular translations. The assumed invariance of N under Ad,; implies that its ex-
tensions through the left and right regular translations give the same result 5[ V'], and the
resulting pseudo-Riemannian structure is simultaneously left- and right-invariant. Thus,
in particular, when ( is semisimple, N is proportional to the Killing form on g.

Geometric meaning of quantities {2, f)i, becomes more lucid, when we consider the
special case of mechanics, n = 1, and the manifold M is interpreted as the time axis.
Then (2, {2 are non-holonomic velocities, i.e., so-called quasi-velocities, corresponding
to the action of (¢ on itself through the left and right regular translations. For example,
when ¢ = SO(3.1), we are dealing with the mechanics of the rigid body, the matrix
elements of {2 are components of the angular velocity with respect to the laboratory-fixed
frame, and the matrix elements of §2 are projections of the angular velocity vector onto
co-moving, i.e., body-fixed orthogonal axes. If G = GL"(3,12), we obtain the mechanics
of the so-called affinely-rigid body [18].
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Convection effects in an inclined channel
with highly permeable layers

D.S. CHAUHAN and V. SONI (JAIPUR)

IN THE PRESENT investigation a coupled flow of a fluid between two inclined rigid walls with a highly
permeable layer on the inner sides, is considered. The flow is governed by Navier-Stokes equations
in the free fluid region, while in porous layers Brinkman equation is taken to govern the flow. A set
of modified boundary conditions, discussed by Kim and Russer [1], is applied at the fluid-porous
interface, and the velocity, pressure, temperature distribution, the mass flow rate and its fractional
increase are obtained and discussed.

1. Introduction

GERSHUNI [2] was first to discuss the stability of the conduction regime of natural convec-
tion in an inclined slot. In recent years the study of convection in an inclined layer bounded
by solid walls heated uniformly from below has attracted considerable attention [3-5],
as well as the study of convection in an inclined porous layer [6-9]. Convection in a
fluid-saturated porous layer uniformly heated from below is of considerable geophysical
interest. In general, convective flow problems involving porous media have many important
applications in various disciplines of engineering and have intrinsic importance in many
industrial problems. RUDRAIAH et al. [10] and RAMAKRISHNA et al. [11] studied convec-
tion in an inclined channel bounded by permeable material. They studied the coupled
flow, taking Darcy’s filter velocity inside the porous material and matching this to outer
pure fluid flow by BEAVERS and JOSEPH [12] slip boundary conditions. In fact, the majority
of existing studies on convection in porous media are based on the Darcy flow model.
Darcy’s law, however, is found to be inadequate for the formulation of fluid flow and
heat transfer problems in porous media when there is a solid boundary. Therefore, it is
necessary to incorporate the boundary and inertia terms into the momentum equation.

The model considered in this paper is based on the Brinkman equations which were
developed to treat dense particle suspensions. The results of this paper might be applied
to problems of water motion in geohydrology.

2. Formulation of the problem

The fluid is contained between two parallel, flat, rigid walls with a highly porous layer
of thickness a on both inner sides. The walls are separated by a distance / and inclined
at an angle # to the horizontal direction. The temperature difference between the rigid
walls is 6f. A Cartesian coordinate system is taken as shown in Fig. 1. The flow is due
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400 CONVECTION EFFECTS IN AN INCLINED CHANNEL

to an imbalance between pressure and boundary forces when the Grashof number, Gr,
is different from zero; however, at low Gr, this motion is described as a base flow in
which the velocity is only in the axial direction and is a function of y and 6 only. The heat
transfer is assumed to occur by conduction only, therefore, the corresponding temperature
is linear in .

m|°‘
pa

Fig. 1. Schematic diagram.

Using the following non-dimensional quantities:

. U U U; . & .U
U= —, J& = , 2T == yo= -,
v/h " v/h h ST
t ty P . I
tr = —, ty = —, )t = —, K* = -3,
ot 4 ot ! Q[)gll, h_Z
. a 1 .
a*=—, and - —a" =d,
h 2

the governing equations for the free and porous region flow (after dropping asterisks) are
given in the following forms:
for free fluid region (—d < y < d):

(21) 2= Q(){I = /3(7‘ = [“)(‘)t],
deu dp ; . o m
(2.2) Egﬁ - 7)(; + sin 9) + Gr(t — ) sinf = 0,
2.3) P [1 - —(f - n,)} cosf = 0,
dy

r[z,
(2.4) — =0

dy?

and for porous regions — I(—% <y< —dyand II(d < y < J):
dzU,' . () D .
~ — ¢~ 'KU; - (,6_17)(_—7 + sin@) + ¢ Gr(t — ty)sinf =0, i=1,2,
dy? oz :
under the assumption of the same pressure and temperature for the flow in the free fluid
region.
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Boundary conditions:

du all,
aty=—-d, u=U; and — =¢—,
y : 1 By q By
) ol
at y = d, w =10, and $=¢s. =
dy dy
: 1
(2.6) aty = — U, =0, = (z[, - 5).
= Uyz=0, t=\ty+ 1
aty = % 2=0 =S

andat 2 =0, y=0, pa,y)=0,

where
gh? T
Gr = nfét, n= Ji , v= Lol and ¢ = ﬁ.
ve 20 H

Here w, U; (¢ = 1, 2) are the velocity components in the free fluid and the porous region,
respectively, £ is the temperature, p is the pressure, y is the viscosity of the fluid, 7 is the
effective viscosity of the fluid in porous medium, v is the kinematic viscosity, /i is the
permeability of the porous medium, #; is the ambient temperature, o is the density, o is
the density at ¢ = {y, and /7 is the volume expansion coefficient.

3. Solutions

On solving equations (2.1)~(2.5), under the boundary conditions given in Egs. (2.6),
we obtain

(3.1) =1y = -y,
Gr ,
(3.2) p=ap— (y + Z—I’/y“> cosf,
G P
(3.3) w= Zsinfy’ — Ly? + Ay + B,
O 2
and

(3.4) U; = Ajexp(my) + B, exp(—my) — K(Grsinfy —p). i =1,2,
where py is the pressure at @ = 1, y = 0,
m=(K¢)"? and p= —1(py + sin ).

The constants of integration A, 3, A;, B; (+ = 1,2) are given in Appendix.

4. Particular case

When ' — 0, we obtain
Gr | s Gr | 5
(4.1) w= (?’I sin fy° — ?r sin 9(1Ly) + g(d2 - %),

which is in agreement with the formula given by RUTH [5], when d = 1/2 and P = 0.
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402 CONVECTION EFFECTS IN AN INCLINED CHANNFEL

5. Mass flow rate

(i) The mass flow rate through the channel (—1/2 < y < 1/2) with permeable layers
on both inner sides is given by
(51) M- = Q(l[(fll + Bz)(l’{; = (.-*1-2 + B|)([4 + ([5]
O Gr
+
U
(ii) The mass flow rate through the free fluid channel (—d < y < d) with permeable
walls is given by

pd? Gr /G 2A
(5.2) M, = Qu( d g 234) 4 £ r(r sinfd° + —J‘).
3 n \15 3

(iii) The mass flow rate through the channel (—d < y < d) with rigid walls is given

by
p) 00 Gr [ 2 .

(5.3) M, = yu(31m’3> - 0“” r<4—§(,’rsin el )
where dy, d,, ds, dy4, ds and d, are given in the Appendix.

The relative increase in the mass flow rate through the inclined channel with permeable
walls over the one with rigid walls is given by

" .-‘Ul = ."‘Jz
5.4 =
S M,

. ir (G N /2] . Gr :
=|—-pd-+20 + E<E sin 6d* + 2:\(:")]/ {]1(1' =20 in0d] .
3n\ 3 3 157

[(A = Byydy — (Ay — B)dz + dg].

6. Discussion

The effect of Brinkman flow with effective medium considerations in the porous layers,
have been studied on the (low in the free fluid region of an inclined channel. The velocity
distribution is numerically evaluated for different values of p, /i and «, and the results are
drawn in Fig. 2. The effect of the porous layers fixed to the inner sides of the bounding
rigid walls is clearly seen, since in this case the fluid slips (depending upon the permeability
and thickness of the porous layer) at the interface of fluid-saturated porous layer, unlike
the case of rigid walls where the fluid clings and the velocity becomes zero. It is found
that the flow in the channel increases by increasing permeability A and [’; however, the
flow decreases at increasing width of the porous layer, since when the width of the porous
layer increases, the free fluid region becomes narrower. There is a backflow above the
middle of the channel due to the momentum diflusion in the direction opposite to the
flow. In fact, the adverse pressure gradient surpasses the action of the viscosity forces in
this region. Due to this, an analogy can be seen in velocity profiles of this study and the
other flows, e.g. when the walls of the channel are moving in the opposite directions with
the same or different speeds.

The relative increase in mass {low rate is calculated (Table 1) in the free region channel
over the corresponding values for a channel having rigid bounding walls. It is found that
this mass flow rate grows at increasing permeability A of the porous layer. The same is
true when the thickness of the porous layer increases.
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Fig. 2. Velocity profiles for Gr = 50, 0 = w/6, n = 2 and ¢! = (.8.

This physical configuration may be used in many engineering devices for measurenents
in the laboratory experiments, lubrication problems and to analyze the problems of vater
motion in geohydrology.

Appendix
(G = Grsin#,
A= G (31{771 — ¢omd coshep + e3sinh cl)
0 mdcoshe; — ¢~ 'sinh ey '

d*>  do! ) )

B = P(—— .- tanhe; + A — I sechcn),
2 m

/‘11 = —CsA + C4B + ¢y,

Bl = —c3A + C‘lzB + C19,
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A,
B,

€1

€3
Cq
cs
Co
C7

Cg

Cy
10
i

C12

€13

C1a

C15

C16

C17

Clg =

C19

C13A + ClzB + 15,
C5A + C4B + C10,

2 m
. |
(4]& G (( = —)
m
— N Pey,

ceg + 7+ cg + Cy,

(€7 + ¢g) — (c6 + c3),
1
4C4 ’

-1
C12 ((l + qb—) B
m

(7 ((13 (izrp“)
—— — + .
2 3 m

12 1!
—(?12])(( + ' ).
2 m

|
CIZKG'(([ + ——) ,

m

— K Peys,

Cia + €15 + €16 + €17,

(c15s + c17) = (c1s + C16)s

[Exp(—m/2) N exp(—m/2) B d exp(—md) B exp(—-rml)]’

m? 2m m m
[exp(m/?.) exp(m/2) N d exp(md) exp(m(l)}
m? 2m m m? ’

1
E[exp(—m(l) —exp(—m/2)],
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1
dy = —[exp(md) — exp(m/2)],
m
nd?
ds = K P(1 - 2d) — % +2Bd,
G ‘d>  2Ad°
= KNG (2(13 B 1) 4 Gd N 2Ad
3 4 15 3
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