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IV-th Polish-German Symposium on “Mechanics of Inelastic Solids
and Structures”

Czerniejewo, September 13-17, 1993

THE ORIGINS OF Polish-German Symposia go back to early seventies. They are result of
long lasting cooperation between Polish and German researchers in the field of Solid
Mechanics. It became a custom to organize these Symposia every three years in turns in
Poland and Germany. The VI Polish-German Symposium, which took place in
Czerniejewo (historical complex) near Poznan has been generously sponsored by the
Polish Committee of Scientific Research (KBN), and Deutche Forschungsgemeinschaft
(DFG). The co-chairman were Prof. Dr.-Ing. O. Bruhns from Ruhr-Universitat Bochum
(Germany), and Professors B. Raniecki and S. Kowalski from Center of Mechanics, IFTR,
PAS (Poland).

The subject of Symposium covered the following fields: plastic anisotropy, optimisation
of mechanical structures, localization and bifurcation, mechanics of granular materials,
inclusions, porosity, damage, microstructural aspects of mechanical behaviour of solids,
visco-plastic and visco-elastic behaviour of structures and materials, mechanics of phase
transformations, superalloys and ceramics. Most of the papers presented at the Symposium
were original.

The Editorial Committee of the Archives of Mechanics kindly oftfered possibility to
publish some of the papers presented at this Symposium, those which had not been pub-
lished in other journals. Because of the volume of one issue and organizational reasons,
the present number contains conference papers which has already been revised and ac-
cepted for publication. The other papers will be published in the successive issues of the
Journal.

B. Raniecki A. Ziotkowski
(co-chairman) (secretary)
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Experimental and numerical investigations
of thermal-mechanical behaviour
of poly- and single-crystalline nickel-base superalloys

A. BERTRAM, J. OLSCHEWSKI and R. SIEVERT (BERLIN)

Dedicated 1o Professor Dr.-Ing. F. G. Kollmann

on the occasion of his 60th birthday

THE LIFE-TIME assessment of structural components operating at high temperatures, such as e.g. gas

turbines, requires an accurate prediction of the inelastic material response by appropriate consti-

tutive models. The present paper shows some inelastic properties of rarticlc hardened nickel-base

superalloys, which are used as turbine blade materials, and their modelling by Chaboche’s viscoplas-

tic model and an nmsutro{:lc three-dimensional viscoclastic model. The simulation possibilities are

demonstrated for non-isothermal uni- and multiaxial cyclic behaviour of an isotropic material and
for creep behaviour of a cubic single crystal in comparison with the experimental findings.

I. Introduction

AN ADVANCED design methodology of gas turbines requires the use of materials with
high-temperature capabilities and, in addition, a realistic assessment of stresses and strains
in the highly stressed parts of the system. Among the most highly stressed components,
turbine blades are submitted to high temperature and thermal stress cycles combined with
centrifugal loads. To achieve maximum performance, the inelastic material behaviour must
be taken into account. In general, materials used in high-temperature applications, as e.g.
nickel-base superalloys, exhibit both short-term plastic deformation, long-term creep de-
formation, and the interaction between them. The material inelasticity and the normal
service conditions containing multiaxial, cyclic and non-isothermal loading histories rep-
resent a challenge for the predictive capabilities of the constitutive models in question.
For that purpose, unified constitutive models have been developed in the past.

In the first part of this paper, the viscoplastic CHABOCHE model [1] has been applied
to predict the material response of the nickel-base superalloy IN738LC, a polycrystalline
cast alloy used as blade material for stationary gas turbines. The prediction capabilities
of the model will be demonstrated with respect to non-proportional and non-isothermal
loadings.

The second part of this paper deals with the description of isothermal creep behaviour
of the single-crystalline superalloy CMSX6. The use of single crystals as turbine blade
materials has the advantage of a higher thermodynamic efliciency because of a higher gas
entry-temperature and a better corrosion resistance compared with similar polycrystalline
materials. They are used mainly in flight engines. The disadvantage, from the theoreti-
cal point of view, is the greater complexity of the material behaviour because of the
anisotropy which has to be modelled. We will present a three-dimensional constitutive
model based on the tensor function approach which exhibits the cubic symmetry of the
material. Furthermore, we will demonstrate the model capabilities to describe the crystal
orientation-dependent creep behaviour of the material.
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Part A. Description of isotropic behaviour at high temperature

2. Constitutive model and isothermal loading

2.1. Viscoplastic theories

Modelling of the inelastic behaviour of nickel-base superalloys is a complex task.
These materials show complicated deformation phenomena due to the various strength-
ening mechanisms caused by second phase particles which are not well understood at
present. For example, a typical response of superalloys is the non-monotonous varia-
tion of the yield strength with temperature as reported by POPE and Ezz [2]. Regarding
the alloy IN738LC, this particular behaviour is shown in Fig. la. A further complex-
ity arises from the history-dependence of the material behaviour which is obviously in-
fluenced by creep-fatigue interaction processes. Strain-rate dependent materials exhibit
the phenomenon that the relaxation response is different if the relaxation process starts
under the same applied stress, but from different points of a hysteresis loop (see, e.g.
ROBINSON [3]).

There is a vast literature on inelastic constitutive models capable for high temperature
applications. In particular, the state variable viscoplastic or unified theories, using only one
inelastic strain component, have proved their suitability. The description of creep-fatigue
interaction is based on coupling of the inelastic strain with hardening variables chang-
ing during the inelastic process. A literature survey on viscoplastic models with a special
emphasis on the hardening rules used has been given by KREMPL [4]. An overview on
the predictive capabilities of further models used in engineering practice can be found
in [5].

A widely accepted representative of the class of unified models is the viscoplastic
CHABOCHE model [1] which has been selected for the present investigation. A comparison
of models with different flow rules, as e.g. those of BODNER-PARTOM [6] and CHABOCHE
[1], has demonstrated (see OLSCHEWSKI et al. [7]) that the prediction behaviour of both
models is very similar if the model calibration procedure is performed very carefully.
Differences occur only if the direction of the inelastic deformation is of importance, such
as in relaxation processes under multiaxial loading, see the example plotted in Fig. 2. There
is experimental evidence that the direction of inelastic strain-rate is not determined by
the stress deviator alone.

2.2. Isothermal uni- and multiaxial loading

The Chaboche model valid at isothermal conditions is given in Table 1. The mate-
rial parameters are constitutive functions of temperature. The values of these functions
have been determined for several temperatures by using isothermal uniaxial tests only.
For this purpose the material parameters are divided into groups with respect to different
ranges of hardening behaviour (e.g. primary and cyclic hardening) and determined by a
stepwise optimization procedure based on the Levenberg-Marquardt algorithm [8]. Only
simple strain-controlled tensils and cyclic tests, as well as monotonous creep tests have
been used. The result of this calibration procedure with respect to IN 738 LC is shown
in Table 2.
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Table 1. Evolution equations of Chaboche’s model for isothermal processes.

Hooke’s law

(2.1) S = C(T'YE;, — E;), En :=E— F‘(h(Yv)w En = (—Y(Y‘)('F = ’I}I)l

g _\/§<,13(s'—>c)—fzy>n s’ - X
V2 K s — x|’
_fu ity>0 _ 8

()= {u, ity <o, ()= \/;”(“)”'

Flow rule

Hardening rules

sotropic
E 2
(2.3) Ry = bRy — Ry)p, = \/;HE,H, Ry (t =0) =k,
kinematica!
o §—-X (X | 5 . J5(X) N X
x= C(“‘ s —x oW )‘" ‘ ( )' J2X)’

(2.4) HP) = Poo — (P — e “F.

E total strain tensor at small deformations,
E/h, Ern, E;  thermal, mechanical and inelastic strain tensor,

S, S’ stress tensor and the deviator,
C elastic stiffness tensor of 4th order,
X internal stress tensor of induced anisotropy,
|| I Euclidean norm,
R, isotropic internal stress,

p accumulated inelastic strain.
Table 2. Material parameters of Chaboche’s model for IN 738 LC.
IN 738 LC RT 450° C 600° C 750° C 850° C 950° C
E [MPa] 197 570. 188 550. 166 230, 152 450, 149 650. 139 370.
v (.33 0.33 (.33 0.33 0.33 0.33
KN 111. 39. 84. 1166. 1150. 790.
n 8.6 10. 10. 59 7.7 6.8
k [MPa] 580. 460). 543. 330. 153. 79.
Ryoo [MPa] 439, 349. 554. 237. 0. 0.
b 17. 17, 13. 16. 317. 439,
« [MPa] 277. 234. 210. 319. 311. 188.
[& 862. 1207. 724. 499, 201. 267.
Geo 0.47 0.36 0.46 0.73 1. 1.
w 18.3 40.6 34,7 12. (0.) -
d [MPass] 0. 0. 3.5-107° 3.5.1073 2.3-107°7 9-10~7
T - (4.) 4.2 1.3 4.8 4.4

The material constants represent the typical temperature-dependence of the yield
strength R, Fig. 1a. At 750° C, IN 738 LC exhibits no strict monotonous strain-rate
dependence as it is the case at 850° C and 950° C. At temperatures less than 600° C
we have a quasi-strain-rate insensitivity. Therefore, relaxation tests instead of creep tests
have been used in the calibration process at lower temperatures to check the remaining
strain-rate dependence.
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Fig. Ib shows primary and secondary creep behaviour at 950° C. An increasing creep-
rate at constant load is connected with a decreasing flow resistance. The varying creep-ra-
te, as indicated in Fig. 1D, is predicted by the model on the basis of a competition between
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kinematical hardening and an isotropic softening which both converge to a certain limit
but with different rates.

The behaviour of IN 738 LC under uniaxial cyclic loading at 850° C and 950° C is
characterized by a stress saturation level which is reached after a few cycles, ie. the
material shows only a slight cyclic hardening. This observation leads to the values of the
material parameters ¢.. and w of Table 2.

Figure 2 points out the multiaxial cyclic hardening behaviour at 950° C under a sinu-
soidal axial-torsional loading path where the axial and shear strain are controlled in 90° C
— out-of-phase. This results in a circular strain path in the ¢ — j/\ﬂ plane. Hold times
of strain were imposed at the peak stresses (ZIEBS et al. [9]). The material response in
a saturated cycle, Fig. 2a, is simulated Chaboche’s model which is calibrated to uniaxial
behaviour only, Fig. 2b. As it is indicated in Fig. 2b, IN 738 LC exhibits no additional
hardening under non-proportional cyclic loading either, at 950° C as well as at other
temperatures. The same observation has been made for the isotropic particle hardened
superalloy B1900+Hf (CHAN et al. [10]).

3. Non-isothermal loading
3.1. Model formulation
For isothermal loading, the rate equation of isotropic hardening, Eq. (2.3);, can be
integrated to
z - senvs_=B(T)p
(3.1 R, =R,(p.T):= RyoclT) = (Ryoc(T) - k(1)) EE,
As a generalization, this finite state function can be considered to be valid also in non-iso-

thermal processes (BENALLAL and BEN CHEIKH [11], BHATTACHAR and STOUFFER [12]).
Equivalent to Eq. (3.1) is the following incremental evolution equation:

dR, OR

i?;, = — g + — ,/[ I{! (j — (}) = /‘(] )
(3.2) S Op o1 . ;
9%
= b(Ryo — R+ ('l‘?;’l i
‘ ' J1

Obviously, the finite state function, Eq. (3.1), corresponds to a temperature-rate term in
the rate equation (MORENO and JORDAN [13]).

Equation (3.2) contains two limiting cases: At the beginning of the process, p = 0, It
is equal to the initial internal stress, /£, = k, and the T — term reads (cf. SLAVIK and
SEHITOGLU [14]):

. dhe ..
(33) ]l)_,/ . {)(H_I/'\’ - Rl,)]‘! + W]
(
In a saturated state, p — oc, the isotropic hardening variable I? := R, — k has the
evolution equation
. lh .
(3.4) iR = b(h — R)p + %1 W(TY = Ry (T) — k(T).
(

This form has been enlarged to consider additional hardening under non-proportional
multiaxial loading (BENALLAL and BEN CHEIKH [15], MCDOWELL [16]). But the cycling
hardening behaviour of high-temperature alloys with relatively high volume fraction of
so-called ~/-particles (> 40%, IN 738 LC, B1900+HTf) under in-phase and out-of-phase
loading is essentially the same.
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In general, one has to take into account static recovery in the evolution equation for
isotropic hardening (CHABOCIHIE [17]). Such a static recovery term could be added to the
rate equation (3.2). Static recovery of the internal back-stress, last term of Eq. (2.4);, has
been considered to be able to simulate the creep behaviour of Fig. 1b, for example. Static
recovery of the isotropic internal stress (elastic region) which is present especially at the
beginning of the pracess, can be important for the description of the material behaviour
at very low strain-rates (¢ < 107 7/s; cf. KREMPL [18]).

Calculations with a temperature-rate term in the kinematical hardening rule have not
given any improvement of the simulation quality (cf. [19]). Therefore, only a 7'-term in
the isotropic hardening rule, Eq. (3.2), will be considered in the following section. The
temperature functions of the material parameters are approximated by linear interpolation
of the values obtained at certain temperatures, Table 2.

3.2. Non-isothermal uni- and multiaxial eyelic loading

Turbine blades are subjected to thermal-mechanical fatigue loading. Therefore it is nec-
essary that the constitutive models should be able to predict non-isothermal stress-strain

a)
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o
‘0006‘E11111111‘L4 ) I .| lllli‘|
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T E T=450 950°E.--_l .
r°ci - i l
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FiG. 3. Non-isothermal uniaxial cyclic loading: loading histories: in-phase a), out-of-phase b).
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Fi16. 3. Non-isothermal uniaxial cyclic loading: material response (c, d) T = 0.417° Cfs; solid lines represent
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behaviour of the material. Especially in cooled turbine blades, where strong temperature
gradients are present, thermal stresses are an important load. Relevant to the stress is the
mechanical part of strain. Hence, in the experiments the mechanical strain is controlled
simultaneously with temperature. In the testing machine, the total strain is applied in
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F1G. 3. Non-isothermal uniaxial cyclic loading: simulation (e, ) 7" = 0.417° C/s; solid lines represent
non-isothermal and dashed lines — the isothermal behaviour.

such a way that the mechanical strain follows a given course in time, e.g. in-phase with
temperature, Fig. 3a. At out-of-phase straining, Fig. 3b, the total strain does not have
to be so large for compression and tension because of thermal expansion and shrinking,
respectively.
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Fis. 4. Non-isothermal axial-torsional cyclic loading: Loading history a) 7" = 4.17° C/s, material response b)
and simulation c¢).

The material response measured in these uniaxial tests is shown in Figs. 3c,d. The full
lires correspond to the non-isothermal cyclic loading in the temperature interval between
450 and 950° C. The dashed lines represent the material behaviour under isothermal
cyclic straining at the maximum and minimum temperature of the non-isothermal cycle,
respectively. The resulting stress levels at the strain amplitudes in both non-isothermal
loadings are of the same order as those of the associated isothermal loadings. This leads
to asymmetric hysteresis loops under non-isothermal conditions.

Predictions based on Chaboche’s model with an additional temperature-rate term in
the isotropic hardening rule, as already discussed in Sect. 3.1, Eq. (3.2), reproduce these
pkenomena, Figs. 3e,f. The material constants, see Table 2, are determined exclusively
by isothermal uniaxial tests. Neglecting the temperature-rate term which characterizes
herdening or softening induced by temperature changes, the prediction would not meet
thz isothermal stress amplitudes, especially at the low temperature amplitude, [19]. With
the introduced temperature-rate term or, equivalently, with the finite state function, Eq.
(3 1), the model reaches instantaneously the yield strength /2, corresponding to the actual
temperature.

A more complex stress state results under non-isothermal multiaxial loading. An
example is shown in Fig. 4. The thermal-mechanical loading history is plotied in Fig. 4a.
The axial strain/shear strain path is of diamond shape. The temperature is applied under
IR07 out-of-phase with respect to the axial strain. Figure 4b shows the material response
to the non-isothermal axial-torsional cyclic loading. The simulation of the material be-
haviour is given in Fig. 4c. The model prediction shows all the characteristic features of

http://rcin.org.pl



424 A. BERTRAM, J. OLSCHEWSKI AND R. SIEVERI

the material response as there are the curvature of the stress-path which is due to the
varying hardening and stress extrema which do not correspond to the strain extrema.

From the rheological point of view Chaboche’s viscoplastic theory is a Bingham-type
model (LEMAITRE and CHABOCHE [20]). At high temperature viscous effects (relaxation
and creep) are more important. Therefore, anisotropic creep will be described by a
Burgers-type model in the second part of this paper.

Part B. Description of cubic anisotropic behaviour at high temperature

4. Creep modelling

4.1. Constitutive theories for single crystals

For single crystals the situation is quite different from that for polycrystalline materials,
as the creep behaviour depends highly on the orientation of the crystal within the specimen
or structure. The times to rupture under monotonous creep conditions can differ from one
orientation to another by an order of two decimal places. Therefore, any three-dimensional
modelling must necessarily take into account the strong anisotropy of the behaviour.

In the literature basically two different methods are applied to model the three-dimen-
sional creep behaviour of single crystals. One of them is to use the different classes of slip
systems and to formulate uniaxial creep equations for them. The advantage is that these
equations are much less complicated than the three-dimensional ones, and the assemblage
of all slip systems assures a three-dimensional law that automatically secures the symmetry
of the crystal. Interactions between the different slip systems seem to be important and
enter solely due to the work-hardening law, namely by the cross-hardening parameters.
The validity of this approach, however, is rather limited. In certain temperature regimes,
the creep behaviour is dominated by diffusional creep, which has nothing to do with slip
system mechanisms. For this reason slip system approaches turn out to be inadequate for
creep modelling within these regimes [21, 22].

The other approach, which is favoured in the present paper, makes use of represen-
tations by tensor functions, which are well known from linear algebra. The problem of
this approach, which is by no means trivial, lies mainly in the task of giving the resulting
constants and variables a physical interpretation.

We will limit our considerations to the primary and secondary creep, excluding the ter-
tiary creep phase, because little is known about three-dimensional anisotropic continuum
damage. The uniaxial model, however, has been successfully enlarged by a Kachanov-type
damage parameter, which also describes tertiary creep till rupture (see [23]).

4.2. Modelling by a viscoelastic differential equation

The starting point for the present approach is the uniaxial modelling of the monotonous
primary and secondary creep behaviour under tensile loadings in the [0 0 I]-orientation.
This has been successfully done by means of a 4-parameter differential equation

(4.1) g+ Aot + Ao = AseT + Ayel,

where the four coeflicients A, ;5 4 depend solely on the stress o, which is indeed constant
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for creep tests. This dependence has been specified by means of a linear function
(4.2) f(o) = Iy — hyo,  with [y >0,
such that

Ay = -’L)]/.f(”)«
Ay = -’1|)z/f(f’)2~

Az = A,
Ay = -/"m/f(”)-

where the /,; are material constants for isothermal processes. This form of dependence
is equivalent to the introduction of an artificial time (see [23]). The applicability of this
expression, however, is limited to a certain interval, where f(a) is positive. A more ap-
propriate form of this dependence is

(4.3) f(o) = Nyexp(— o), with K5, >0.

This function renders positive values in the whole (tension) stress regime.

The numerical integration of Eq. (4.1) can be easily done by introducing an inter-
nal variable and reducing the differential equation to a system of first order differential
equations. Appropriate initial conditions for such variable result from its physical inter-
pretation.

The three-dimensional generalization is a reinterpretation of Eq. (4.1) in the following
way:

o the stress tensor S,

c: the (infinitesimal) strain tensor E,

Ay 23,40 4thrank tensors Ay 5 4, fulfilling the cubic anisotropy conditions of the crystal.

The differential equation now reads

(44) S" + AIS + Azs = A;E“ + A4E

For the 4th rank tensors a complete cubic representation is known from linear algebra
(see [24, 25, 26]) as a linear combination of 3 structural tensors

(4.5) A = an Py + Py + a;3Ps

given by

P :=1/31&1,

3
Pi=) eDe;DeDe—P,

i=1
P;:=1-P, — Py,

where e, denotes the lattice directors, 1 the second rank identity, I the fourth rank identity,
and (- the tensorial product. «v;; are 4 x 3 = 12 (stress-dependent) material constants.

The stress dependence of these constants is assumed to be of an analogous form to Eq.
(4.3). Instead of the (unique) tension stress in the uniaxial case, we need an expression for
the stress intensity, which is invariant under cubic symmetry transformations. A complete
integrity base for the specific symmetry group is given by the nine invariants (see [27])

Jy = tr(S).
Jy = 1/2[t(S) + (8%,
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FiG. 5. Modelling of creep behaviour of a single crystal at different orientations, o and [ are the first and second
Eulerian angles.

J; = det(S),

Iy =0+ 0% + 03,

Js = 0120303,

Jo = (o + ngz)(rfz + (a2 + n;;)rr,_:‘} + (033 + rr“)(ri,.
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2 2 2 a2
Ji=0 + 03305, + 05,072,

b B

bl b 2 2 p 5
Jy = 010,05, + 020507, + 03305053,

Jy

2 ) 9
('T]](T:;:(T'—: + (T::I’T;_:(TE; + {T_;_*,UH(T_;I.

For our purposes the following ansatz-functions turned out to be appropriate:
(4.6) fi(S) = Kiyexp(—NipJy — Nisds — Wiads — KisJg),  with Iy > 0.

The number of the material constants can be reduced to 17 by assuming the inelastic
incompressibility, as usual. The remaining set of material constants has been calibrated by
the least square methods to tensile creep tests in different orientations. In Fig. 5 the results
of an adjustment by a single set of parameters is shown for the single crystal superalloy
CMSX6 at 760° C. The tests have been performed by Siemens-KWU. a and /3 are the
first and second Eulerian angles, which determine the orientation of the crystal within the
samples.

5. Conclusions

The inelastic deformation behaviour of particle hardened superalloys such as e.g. IN
738 LC has different microstructural origins dependent on both the temperature and the
strain-rate applied. It was shown that phenomenological constitutive equations like those
of the viscoplastic Chaboche model are able to simulate the inelastic response of this
class of materials under uniaxial as well as multiaxial loadings. Furthermore, the need of
an additional temperature-rate term in the evolution equation for isotropic hardening is
established if non-isothermal loadings have to be considered. Even then, only isothermal
uniaxial tests are, in the investigated loading range, necessary to calibrate the model.

The modelling of the primary and secondary creep behaviour of single crystals is
based on a four-parameter differential equation with stress-dependent coeflicients. The
three-dimensional generalization uses representations of tensor functions performing the
required material symmetries of a f.c.c. crystal. The orientation dependence of creep
behaviour is reproduced by this model, as comparison with experiments shows.
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Transient and residual stresses in progressive induction
hardening of infinite solid cylinder

A. BOKOTA, S. ISKIERKA, R. PARKITNY (CZESTOCHOWA)
and B. RANIECKI (WARSZAWA)

A MODEL OF NUMERICAL simulation of progressive induction hardening has been presented in the
paper. In the model the coupling of electromagnetic, thermal field, phase transtormations field and
stress field are considered. The electromagnetic field has been calculared from Maxwell’s equations
taking into consideration variation of conductivity and permeability of the material during the process.
The power losses (from eddy currents) result in changing of thermal field in the conducting materials
which is described by Fourier—Kirchhoft equation. The thermal ficld in the hardened element is also
affected by heat exchange with surroundings, mainly through the cooling medium. The fractions of
phases created during the phase rtransformations have been calculated by means of TTT-heating
diagram and TTT-cooling diagram. The instant and residual stresses have been determined on the
basis of the thermoplasticity theory with isotropic hardening by the finite clement method. The
numerical calculations have been made for a steel axi-symmetrical element hardened by the induction
progressive method.

List of symbols

D deviator of stress tensor [MPal,

E tensor of material constants [MPa],
e tensor of elastic strains,

e tensor of total strains,
e tensor of dilatational strains,

e’ tensor of plastic strains,

K matrix of stiffness,

R vector of external loads [MN],

T tensor of stresses [MPa],

ty  the known stress vector on I [MPa],

U vector of displacements [m],

Y actual level of effective stress [MPa],
Yo  thermal softening modulus [MPa/K],

o heat transfer coefficient [W/(mEK)],

g gL N ap

YATYBIYM AP

na-np.Ma-Mp

coefficients of linear thermal dilatation for austenite, bainite, martensite and pearlite,
respectively,

coeflicients of phase transformations of austenite into bainite, austenite into martensite
and austenite into pearlite, respectively,

phase contents of austenite, bainite, martensite and pearlite, respectively,

#  hardening modulus [MPa],
.’2} ctfective plastic strain,
pee effective thermal capacity [1/(m°K)],
Va  covariant differential operator,
d. partial differential operator,
A thermal conductivity coefficient [W/(mK)],
p density [kg/m?],
" Euler coordinates [m],
wi(ax™) base or approximating function,
@ matrix of corresponding derivatives of approximating function,
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¢ the vector of appioximating or base functions,
@ temperature of surroundings [K],
internal complete product of tensor.

o internal non-complete product of tensor,

()= =7 time derivative.

1. Introduction

THE MATHEMATICAL description of the induction hardening process is complex, as it con-
cerns the electromagnetic, thermal and mechanical phenomena occurring in the bodies
which, in the process of induction heating followed by cooling, undergo phase transfor-
mations. Due to the complexity of the model, very few papers have appeared dealing
generally with the induction hardening process, especially with the progressive one.

The papers by T. INOUE, B. RANIECKI [10], B. RANIECKI [ 18], B. HINDENWALL [7],
A. J. FLETCHER, R. F. PRICE [6] and T. INOUE, S. NAGAKI, T. KISHINO, M. MONKAWY
[9] deal with the stress states resulting from non-uniform and non-free change of specific
volume, with regard to the phase transformations at the cooling process. The available em-
pirical data or formulas by M. AVRAMI [1] and by D. P. KOISTINEN and R. E. MARGURGER
[14] have been used there. Also certain concepts of general approach to the kinetics of
phase transformations have been included in the papers [9, 21, 22]. The mathematical
model of induction hardening presented in the papers by W. SEIDEL and H. UETZ [19]
and by G. ORTH [17] merely allows to determine the distribution of the electromagnetic
field and thermal field in the hardened element. In the paper by M. MELANDER [16] the
problem of induction hardening is treated in a general way.

The mathematical model of induction hardening that accounts for the mutual correla-
tion of the electromagnetic field and the thermal field, the influence of the thermal field
on the phase transformations and the effect of thermal field and phase transformations on
the stress states have been developed and presented in this paper. The electromagnetic
field distribution has been determined on the basis of the Maxwell equations, whereas the
temperature field has been calculated on the grounds of the Fourier-Kirchhofl equation.
The phase transformations during the process of heating and cooling have been deter-
mined on the grounds of the TTT diagrams. The calculated fractions of phases and the
thermal field have been used for determining the stress states. The calculations account
for the changes in the thermomechanical parameters of the material. They depend on the
phase content and the thermal field. Residual stresses have been calculated on the basis of
non-isothermic plastic flow model with linear-isotropic strain hardening. The exemplary
calculations have been made by means of the finite element method for an axi-symmetrical
bar hardened by induction progressive method.

2. Electromagnetic field in conducting medium

The electromagnetic field is determined by Maxwell’s equations,
JB
at’

0.

H- g+ 2D tE
rot M — oty =
(2.1) : ot

divD = p, divB

Il
>

I
Il
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The equations are supplemented by constitutive relations:
(2.2) B=pH, D=cE.

Assuming a steady-state process and considering the displacement current density
to be negligible for line frequency, the magnetic vector potential in two-dimensional or
axi-symmetrical geometries is given by the equation [4, 8]

(2.3) (div % grad )A — JwyA = —Jg.

where A is magnetic vector potential A (complex r.m.s. value, in the further part of the
paper underlining which denotes a complex value will be omitted), w, v, ¢ and j are the
angular frequency, conductivity, magnetic permeability, and complex operator, respect-
ively, J5 is the time-harmonic source current density vector (complex r.m.s. value).

In the case of a long straight conductor or a ring-shaped conductor, the integro-differ-
ential finite element formulation replaces Eq. (2.3) (containing two unknown quantities:
magnetic vector potential and source current density vector) by the integro-diflerential
equation containing only the unknown magnetic vector potential and the measurable total
current in the conductor [15] (Fig. 1).

Q
r
LI
QF
r\ !
! -
L/') '/c- 7] l;\( |
I PN N A S 1. |
FiG. 1. General scheme of the investigated region.
On the basis of Ampere law we can write:
(2.4) [ = ’ I Jed2 — juwy ] j Ads,
Q, 2
where A(A = |Al. A = A_(r.2)) is the component of vector A, and the integration is

carried out over the cross-section of the conductor.

The unknown value of the source current density can be determined directly from the
equation

[ “)"J . »
(2.5) Jo= 3 +iy | ] Adg,

8y

where 1\ is the equivalent conductor cross-sectional area. The source current density J ¢
1s constant over the cross-sectional surface of the straight conductor.

By substitution of .5 from Eq. (2.5) into the right-hand side ol Eq. (2.1) we obtain
an integro-differential equation containing only the unknown quantity, i.e. the magnetic
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vector potential A [8, 15]

i 1 . W el _ 1
(2.6) (dlv ;grad)f{ — jwyA +Jj ] ] AdSf? = -3

2y

In the system of cylindrical coordinates (r, z) (for the axi-symmetrical case), Eq. (2.6)
assumes the form

| A WY prr N
(2.7) ,T(v A=) = jurA+ i [ [ Ade = -

{25

For the axi-symmetrical system the area A is determined by the relationship [15];
S
(2.8) Afr = !}f Frlr dz

and the quantity ./ is constant in any plane (¢ — const) of the conductor cross-section,

which results from the assumption that the electric current has only one component 6.
The application of Bubnov—Galerkin method [23] to Eq. (2.7) with a certain basic

function (), (¢ € H") selected in the area {2 gives the basic equation in the form:

x B A w/ Y
(2.9) J f (V‘l Vo + —o+ Jwpy Ag — o II Aod(? — j—O)dQ

2 2,

4) ﬂod’)’

(Il

The problem above has been solved by the finite element method with discretization of
the examined region into first order tetragonal elements and infinite elements [2].

In the case considered (the ring and the surrounding space, Fig. 1), we have to do
with an unbounded region. One of the methods of solving such a problem consists in
combining the methods of finite elements and infinite elements. The idea lies in the fact
that the region of interest (with sources, heterogeneity and anisotropy of the medium) is
discretized into finite elements, whereas the remaining part of the region (far away from
the investigated place) is modelled by infinite elements, where the interpolating functions
fulfil the differential equation at infinity.

After discretization of the considered finite region into first order tetragonal finite
elements, and of the infinite region — into infinite elements, the sought function (A) is
approximated by the so-called nodal functions belonging to the elements, i.e.:

(2.10) A@®) = Aigi(a®),  Aale”) = Aigiale®).
After substitution of Eq. (2.10) into Eq. (2.9) one obtains the system of equations in the
form:

N*
210 > }J (V-*l'\_@&%;ﬁjwu?:l ( pad j 11!7) )r/f.?

2
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where the region {2 under considerations is divided into N'* finite elements, which implies
N boundary elements.

The infinite element of Lagrange type [2] has been applied in the paper. Basic functions
of infinite elements have been assumed on the grounds of basic functions of the finite
elements. The introduction of modifications related to the use of finite elements into the
computer programs is easy to carry out. Moreover, the method allows us to keep symmetry
and the bandwidth of the coeflicient matrix.

The solution of Eq. (2.11) enables us to determine directly the distribution of currents
(vE) and magnetic induction (B) and, indirectly, of power loss density (Q) which in strong
magnetic fields (H > 3000A/m) (regardless of the magnetic hysteresis) is [8]:

(2.12) Q = Wy AA™

The power loss density (Q) results in changing thermal field in conducting materials,
which is described by Fourier-Kirchhoff equation.

3. Thermal field

In solid bodies the thermal field is described by the Fourier-Kirchhoff equation:
e, .
(3.1) V. (\VO) - (p('cr)((_)—f — (pea)VO -v = -0,

where ¢ is the effective thermal capacity (cef = cor(@)), A is thermal conductivity coef-
ficient (A = A(@)) and p is density.

Using the Bubnov-Galerkin method [3, 23] in Eq. (3.1) for the basic function (¢) one
obtains in the region (2. (Fig. 1):

. ()& '
(3.2) / (/\('),, Cd,o+ ([:(-cf)(T[(b + (pCer) Do Ove O — ch) ds?

Q. @

= [ 20.06m.dl = [ (q+ (@ — O))pdl
F I
where (¢) is the base function, ¢ = AJ.,G@n,, is the flux for [, and n, is the vector
normal to /..
After the discretization of the region under consideration by finite elements, the sought
function (@) is approximated by the so-called nodal functions belonging to the elements,
Le.:

(3.3) O™ = Oipi(x®),  O4(%) = Oigiale™).
The solution @ = @ (2. 1) is assumed in the form
(3.4) A", 1) = oi(x)O;(1).

By substitution of the boundary conditions one obtains:

. e , ! .
(3.5) f (,\(')(, Qd,o+ (ﬂ(’ﬂ)%’:’ + (pees)d Ovao — ch) d§? + ] aGodl

{2; jel

. j (1'(")()(3([[7.
I;
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The region {2, under considerations is divided into N[ finite elements, which implies
N boundary elements, and by substituting Eqs. (3.3) to Eq. (3.5) one obtains

i
— . i . )G
(3.6) Z QI ((/\j('):., 0j0s®i + (pCer)dajva 0;)0; + (p(‘cr)m_,((T'-Oa)f”-)

Nt Ne N

¢

+ Z / 0;0;0,60;dl" = Z l QG),(IQ + Z [ @00 ndl.
i I g ) i

Qf re
The region under consideration has been divided into tetragonal elements with bilinear
base functions and approximating functions.

Since the temperature in the mesh nodes is time-dependent (cf. Eq. (3.2)), a certain
approximation after a period of time in a certain time space [ is assumed. The system of
Eqs. (3.6) can be written in the form:

(3.7) HT® = D,
where
(38) H=9K+M+9JB, D=M-(1-NE-B)T*"+BT:+0, T="T(O)),
Eo=KKy), K= [ (Aibapidapi)d,
[y

| .
M= MM, ), M = g / (peen)pjpidf? + / (PCer)DupjVapids?,
(39) 2, £,
B=8Bi), Bij= [aipipdl,
I

[ Qeids,

2,

Il
Il

‘@“((),’). (),j

At =% — 7! is finite increment of time .

In the solution it is assumed that / = 2/3 (Crank Nicholson scheme [23]).

For the calculation of Eqs. (3.9), the Gauss—Legendre numerical integration method
has been used. The solution of Eq. (3.7) yields the sought temperatures in the nodes of
the mesh assumed (©; = @;(1)), at the time { = s AL

4. Numerical simulation of phase transformations in carbon steels

Phase transformations of heating and cooling of carbon steels take place generally
in the states of nonequilibrium, ie. in time periods much shorter than those required
for equilibrium transformations. Transformations in the process of cooling are dependent
upon the cooling rate and, in the particular case of isothermal transformations, on the
temperature and transformation time. The schematic TTT-diagram for steels with content
0.9% wtC has been presented in [24] (Fig. 2 and 3). Volume fractions of the transformed
phases are determined by Avrami expression |1, 7]:
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5

FiG. 2. TTT-heating graph for a carbon steel.

4(O. 1) = 1 — exp(—b(@) ™),
(4.1) np(O.1) = na(l — exp(=b(@)" ).

(0. 1) = pa(l = yp)(1 — exp(— (@)™ ),
in which 7 is time, whereas b((—));nd n(@)) are constants defined by

In(1 = 7y)
T —In(1 - 7,)
(4.2) (O = LTS ey S =Tl
(f,,. ) (1)@
In | — '
ty
Here 0,4, g, 1p(X1; = 1) are, respectively, the volume fractions of austenite, bainite

and pearlite. It is assumed that 14 = 1, 5y = 0.01, n; = 0.99, whereas ¢, = {,(@) and
17 = 1;(@) are the time of the start and the end of the transformation, respectively:

The volume fraction of martensite is determined on the basis of Koistinen’s and Mar-
burger’s equations [10, 14] for @ < M, (Fig. 3):

(4.3) nar = na(l —np — np)(1 — exp(—0.011(M, — 6)).

The increment of isotropic strain resulting from the temperature and phase transforma-
tions has been determined by considering all possible cases of cooling, i.e.:
a) heating:

apd@, for | < tg,
(4.4) de®h = naaad@ — vy dns + ypapd@, for te (i, tr),
a4de, for t>ty,
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el

ort)

e
Fi1G. 3. TTT-cooling graph for a carbon steel.
where np =1 —14;
b) cooling:

naaad@ + ppapd@, for ¢ < tg,

NaaAdO + npagd@ + ypdng + npapdE
(4.5) de®* = +ypdnp, for 1€ (ts,15),

Nacad@ + npapd@ + naaard@ + yardnay

+npapd@, for t > f;”,

where

na=1l-np—np—nu, aa=0aus(0), ap=ap(@), ay=ay(®).
Gp = (lp((“))

are coeflicients of linear thermal expansion for austenite, bainite, martensite and pearlite,
respectively, 75 = (@), var = YMm(O), vp = 7p(O) are coeflicients of phase trans-
formations of austenite into bainite, austenite into martensite and austenite into pearlite,
respectively.

In order to confirm the correctness of the assumed model of phase transformations,
dilatometric tests on simulator of heat cycles for steel of chemical composition, (0.89% C,
0.30% Mn, 0.29% Si, 0.014% P, 0.012% S have been performed. Very good compatibility
of results obtained from the dilatation calculations by means of expressions (4.4)—(4.5)
confirms the correctness of the model assumed (Fig. 4). For the dilatation calculations
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Smitweld TCS 1405 linear temperature cycle

1000
[ N\ | S
-
800 —
R )
o 600 1 — ] 17
L L
5 // /
x| /
g 400 e // Y
F @ |
L \ 4/ //3
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FiG. 4. Temperature (1) and dilatometric curves obtained from dilatometric tests (2) and calculations (3).

the value of coeflicients of linear expansion () and volume change (7() have been
obtained from dilatometric test. They are as follows:

ap=21-10"%  apg=ay=ap=138-10""[1/K], 7B =7p = 0.0012,
var = 0.0084.

5. Mathematical model of elasto-plastic states in hardening steel elements

The constitutive relations for elastic range of strain are assumed in the classical form:
(5.1) T=Eoé +Eoce®, e =e—eP —e?,
where T = T(a%”) is the tensor of stresses, E = E(F77#(@)) is the tensor of material
constants, e® = e(c(, ;) is the tensor of elastic strains, e = e(c, ) is the tensor of total
strains (e = 1(Vu + Vu'), e? = e(c{) is the tensor of dilatational strains and e’ =
e(E\’,‘:ﬂ) is the tensor of plastic strains.

The equilibrium equations are expressed in terms of stress rates (disregarding the mass
forces) ) , )
52) VH(-TL‘VM — 01 (.J'“"? - ('7"’”, (‘Irr“’"ﬂ — t‘l\’
where i is the rate of surface tractions on the I, (Fig. 1).

The authors have assumed the model of non-isothermal plastic flow in which the plastic
strain rate e” is expressed by relationship [12, 13, 20]:

af .
(5.3) ¢P=A—~= f=0, f=0,
JT

where [ is the yield function.
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In what follows we shall use the Huber-Mises yield condition and the model of
isotropic hardening. Thus,

3 1/2
(5.4) fe (;D : 1)) -Y(®,e8) =0,
where D is the deviator of stress tensor, i is effective plastic strain (4, = (2(¢" -
¢”)/3)'/?y and ¥ = Y(@,n,cl) is the actual level of effective stress (D = (3(D -

D)/2)!/?) corresponding to point lying on the simple (uniaxial) tension (or compression)
curve.

Using the consistency equation f = 0 one gets the following expression for the mul-
tiplier A (cf. [3, 12, 13, 20])

3D-T" - 2YYe0
IDoEoD + 4y’

(5.5) A =2Y

where
T =Eo(e—¢®)+Eoe®, & =20Y/0el, Yo =0Y/00.
This problem has been solved by the finite element method.
By applying the Bubnov-Galerkin method for equilibrium equations (5.2), one obtains

(5.6) [ 6°P050d02 = [ iledr,
{2, I

where 1. is the known stress vector on [ ..

After substituting constitutive relations (5.1) (specified for axially-symmetrical prob-
lem) into (5.6) and discretizing the region considered by means of finite elements, where
the unknown functions (u and v) are approximated by the so-called nodal functions as-
signed to elements [3, 12, 23]

(5.7) w(z®) = uipi(2%), uo(2%) = up; (2%),
one gets the system of equations in the form:

e=l g 02!

N¢€
(5.8) KU = R+Z( /.d)oEoé(")(]Q+ I fﬁ"'oEoZ(S’é”(1!2+ .l.d)offoe'dﬁ).

Q¢
-

where U is the vector of displacements, R is the vector of external loads, K is the matrix
of stiffness, ¢ is the matrix of corresponding derivatives of the approximating function, o,
(o = o(p o)) and o is the vector of approximating functions (cf. (3.4)).

The solution of system of Eqs. (5.8) vields the displacement rates resulting from the
increment of thermal and mechanical loads and phase transformations, namely the stress

I " e
tensor T~ ". The problem has been solved by means of the implicit scheme, and the total
stresses at this stage of solution are equal to

t—1
(5.9) T+ At) = (1 - NPy + 9 (19%(1) + (1%(an + 3 s Thr) Ar).
k=1
Parameter ¢/ has been assumed to be equal to (.5, In this solution the modified Newton-
Raphson algorithm [12, 20] is used.
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6. Calculation example

The exemplary calculations have been made for a hardened shaft made of steel of
the chemical composition identical to that of the dilatometric sample. The longitudinal
section of the system under consideration is presented in Fig. 5.

Ny

al

]
Bl

L

Fic. 5. Longitudinal section of the investigated region.

The following boundary conditions are assumed:
For the electromagnetic field:

a) A =0 onthe symmetry axis,

by A=0 fory— ocorr— oc.
For the thermal field:
06 ) _
a) A 3 = —n(@ — @) on the external surface of the bar,
,

a = ay(@ — G,

060 .
b) o =0 on the axis of symmetry,
¢) O =06, on the surface I,

J0
d) e =0 on the surface II.

For the stress field:
a) zero stress vector on the external surface of the object has been assumed.
The following parameters have been assumed in the calculations

a=0.098 h; =0012, [=0.160, r,=00225 r =0.025][m]
[ =10000 [Hz], v =0.004[m/s], a, =800 [W/(m’K’%]. ©,=300][K].
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Specific heat, electrical and thermal conductivity of the steel are the functions of temper-
ature which have been determined according to [11, 24]. Young’s modulus and hardening
modulus are the functions of temperature and structural contents which have been deter-
mined according to the suggestions by MELANDER [11, 16].

The power density distribution has been obtained from Eq. (2.12) by solving the
Eq. (2.11). It made it possible to calculate the thermal field of the bar on the basis
of Eq. (3.1) (Fig. 6).

tength z (m]

1
0 oo1 002

radius r(m]

Fi1G. 6. Temperature field in hardened bar.

The kinetics of the austenite-martensite transformation for the bar area is shown in
Fig. 7. The calculation of kinetics of austenite-pearlite and austenite-martensite transfor-
mations in the cooling process have been made only for the area where the pearlite-auste-
nite transformation had occurred earlier. The final phase content after hardening is pre-
sented in Fig. 8. A portion of the bar (slice) contained between two parallel planes perpen-
dicular to the z-axis have been considered in the stress calculation. It has been assumed
that at fixed time the temperature changes only along the radius (& = ©(r)). The ob-
tained solution fulfils the conditions of the plane strain state with the force normal to the
z-axis direction equal to zero. The calculations of the effect of martensite contents upon
the yield point have also been made.
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FIG. 8. Volume fractions of particular phase after hardening process. 1 — retained austenite, 2 — pearlite +

bainite, 3 — martensite, 4 — non-transformed pearlite.
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Fic. 10. Residual stresses after the hardening process.
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FiG. 11. Residual strains after the hardening process.

The obtained numerical simulation results of stresses and strains are presented in
Figs. 9-11. The transient and residual stresses calculated on the basis of the proposed
model have been presented as functions of the radius in Figs. 9 and 10. The plastic strains
have been presented in Fig. 11.

7. Conclusions

The model has been presented taking into account the coupling of electromagnetic
and thermal field, and the influence of thermal field and phase transformations on the
stresses, thus enabling the calculation of the thermal fields, the volume fractions of the
particular phases, instantaneous and residual stress states and hardening zones in the
process of progressive induction hardening of steel elements.

The correctness of the assumed model of phase transformations has been confirmed
by dilatometric test, leading to a very good compatibility of results. The result of the
induction hardening process is the material hardening and a desirable distribution of
residual stresses in the hardened zone.
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Elastic-plastic shells with finite deformations
and contact treatment

A. FLOSS and V. ULBRICHT (DRESDEN)

Tue PRESENTED theory of shells is developed from the basic equations of the theory of continua in
material description. The basic equations are set up in a rate form, in accordance with the consti-
tutive theory. The constitutive equations are expressed in form of a linear tensor relation between
the Truesdell stress rate and deformation rate, with related equations of evolution. The variational
principle of the shell in a rate from is presented. As a consequence of the included contact problem,
additional requirements concerning the solution and the virtual velocities of the variational principle
arise. The penalty method is applied to the treatment of the contact problem. The penalty term is
set up in a rate form, the rate of the contact load is determined as a function of the velocities of
the shell and the body in contact. The applicability of this theory is illustrated by a one-dimensional
field problem of shells of revolution.

1. Introduction

THE PRESENTED THEORY is developed from the basic equations of the theory of continua
in material description. The basic equations are set up in a rate form in accordance with
the constitutive theory. The constitutive equations are expressed in the form of a linear
tensor relation between the Truesdell stress rate and the deformation rate, with related
evolutionary equations. The kinematics of the considered shell continuum is based on a
deformation model characterized by the normal hypothesis. The variational principle of
the shell in a rate from is presented.

As a consequence of the included contact problem, additional requirements concerning
the solution and the virtual velocities of the variational principle arise. The penalty method
is applied to the treatment of the contact problem. The penalty term is set up in a
rate form, the rate of the contact load is determined as a function of the velocities of
the shell and the body in contact. The applicability of this theory is illustrated by the
one-dimensional field problem of shells of revolution.

2. Basic equations

In the material description, the independent variables are the time-independent par-
ameters O of the material particles in a convective coordinate system and the time /.
The shape of the parametric lines, the base vector system and the metric depend on space
and time.

All variables are referred to the base vectors of the actual configuration

Jx
5 = - = = Ok 1), A=1,2,3.
(2.1) 8\ = 5o = XA =a\0".1)
where
(2.2) x = 26", t)e,
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is the position vector of the material particle of time /. This includes the reference con-

~ - o . . . ~ ~ .« . ~ .
figuration x of time / = 0, which is only needed for the definition of the displacement
vector

¢}
(2.3) u=x-x=uO"1)
and the strain tensor
I .
(2.4) Exp = 5('r1,\|,,, + uply — wy]au” |-
The velocity vector is the material time derivative of the position vector
Do
2.5 v=u=—(u = X.
(25) 5 (')

In the material description, there are linear relations, first between the rate of deformation
and the gradient of the velocity, and second — between the rate of deformation and the
strain rate:

1
(26) (1,\;1 = ;(I/ul,\ + [‘/.\J/l) - é,\[l-

For the rate formulation of the field problem, the equations of equilibrium in the rate
form
o) SR A K Ay AR i K N _ : r
(2.7) G" =ty = v"|a N+ 0V + p(f — v f)=0 in
are needed, where o is the Cauchy stress tensor, and ¢/ is the Truesdell stress rate.

Combining the equations of equilibrium written in rate form with the virtual velocity
or we obtain the variational principle in a rate form
(2.8) oMl —oll, =0,
with

bl = [ (1M bdyy + @ g vy | kbv,))) AV
=
and
. D - :
0, = [ —(pdA)ow+ | plowdy.
J Dt >
0, v

The term 0 /[; characterizes the deformation behaviour of the continuum, and the term
011, is due to the surface forces p and the body forces f.

The constitutive equations are introduced in the form of a linear tensor relation be-
tween the Truesdell stress rate and the rate of deformation, with related equations of
evolution for the set of internal state variables [1]:

’r.‘,\ = (-n,\uu(/ -+ ﬁh’.\( IS.‘;,\ — H‘h‘v,\"l" + h»:,\.
(2.9) i 1 R
P/ . - Y = o s 7
/J(g) = ]))(J) (/,1,, + €3y, €y = € ]'(,‘)I + ¢ R(i)» =1, V.
The tensors (" and B} describe time-independent, that is elastic as well as elastic-
plastic material behaviour, sﬁ'«'\ and ¢ take into account the dependence of temperature,
and s and ¢ ;) — such rheological effects as viscoelasticity and viscoplasticity.

If the symmetry conditions

(2A10) (”HV\[H’ = ('[(J’H,\
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are satisfied, the potential
; 1, :
(2.11) Iy, = ;( h’\“"rﬁ’,,,\r/m,, £ 5V .a
exists and we can formulate a potential for the internal parts of the variational principle

: L 4.
ey sim=adtp. fy= [ (e e sl

v

3. Shell theory

The kinematics of the considered shell continuum is based on a deformation model
characterized by the normal hypothesis. The kinematic relations are a special case of the
general assumptions of continuum mechanics.

93 - 93"'

8= 10

/ 93 - 93-
FiG. |. Position vector of the shell continuum.

The position vector (Fig. 1) is assumed in the form
(3.1) x = x(O°. 1) + O h(O° . Hn(O° . 1) = x(O. 1),
where x is the position vector of the reference surface, n is the normal vector and /i is
the shell thickness.

The base vectors and the normal vector of the shell are given by

a; X a; 1
(3.2) a, =x, andn= ——— = —(a; x a;).

]ﬂl X az \ﬁ

The time derivative of the position vector (3.1) yields the velocity vector

3.

(S8

) v=u+(—)3fl(w+hn).
h
The kinematical variables of the shell theory are the rate of displacement - of the reference
surface and the velocity w of the normal vector.
As a consequence of the normal hypothesis, we get the following kinematic constraint
for v and w:
D

—(axn) =0 =y n +a,w = 11|

(3.4) Di

o + W
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In rate ol deformation, inessential terms in the derivative of the shell thickness are ne-
glected:

doy = = ‘) (“ +5 (5“ [«~+() [»‘
(3.5) a3 ( )(f d~s),
([“,3 =0, (‘33 = /I/I.
with
(l{ v6 = AV = KwHﬁ —w3bys,  das = hajw s,
I
and

§8 = §f — ©3hbP.

Variables ¢ and ¢/ are the first and the second deformation rates of the shell continuum.
0 1

The variational principle in the rate form for the shell results from the variational
principle of the continuum (2.8), by integrating over &~ and eliminating the static vari-
ables, which are not admissible in a two-dimensional theory [2]:

olly +oll, —oll, =

(36) 5171 = J {71 ’6 d;iu 5 7” e b(ld) + (/ (W bﬂ/i”u + in““("w )
M

5 S : a3
+n" | ("1/1”,.1 + m“ bsyhwbwy + MmO, dA,

811, = [ { \]/ S (VaP)bu + ﬁhs)aw}

7)

SR |
' [ {\/ l)r(‘fN)”’*7—(\/(/1M)m}m

o /3

3 . . . « . . T ol Y of3
The stress resultants ™" and m"" and their objective time derivatives n " and m

are defined by

A e
(3.7) n? = \[ SNGEde?, mP = | \E 5800 de?
—(J = —o
and
not = —l£( an®Py + n®7 r/ Sy
) \/(71){
meP = (/z mn"”") + m™7q58 l({ s 2

/1f[)f

P and S are the force and moment per unit area of the reference surface, and N and M
are the boundary force and moment per unit of length of the boundary (',

The kinematic constraint (3.4) due to the normal hypothesis is introduced to the
variational principle in the form of a subsidiary condition

(3.9) L= [ 4°@w]la +wa)dA,
M
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where the variable

v
7 \/_ = ,(f q
plays the role of a Lagrangian multiplier.

The constitutive relations between the stress resultants in rate form (3.8) and the
deformation rate (3.5) of the shell are obtained from the constitutive equations of the
continuum (2.9) by introducing the kinematic assumptions of the shell and integrating
over the shell thickness

(3]0) "[ o3 _ ;1((-“) ()[ow + ludu\ ,[ 2 Dg’.
’;P..,j — jl[(’llw;"/t“ (l‘mv + lul# (lléA,- + .D(Ull)i,
with
(;)“‘ 7o~ X )
@1y AG = \ﬁ((“'f“"sfsg + 0Py OH dO, i =0,1.2
_(;.)3* a
and
Df = | ﬂ.ﬁ'ﬁf?&“"‘(@~’)’ d@®, i=0,L.
‘1 (l
-7

The condition of plane stress is included.
If the material of the shell allows to create a potential, we can also formulate a potential
for the shell continuum,

al.?".&k‘ afIvyé
f'i(()) fl{m-» {{ s~ t -"l(l) l;{ o fll Sy

-

L ap~s o af
+;11(.2) (1/ [Ty (|1’ S~ + ])U]) ([ do + [)(]) (lll_.'f('h-

4. Formulation of the contact problem

The contact of the shell with a rigid body can be characterized by the condition of
non-penetration

.1 s =nx—x) > 0,

where n is the normal vector and X — the position vector of the surface of the contact body
(Fig. 2). This condition leads to a kinematical constraint, that restricts the displacement
to the direction normal to the contact surface.

If you use the penalty procedure to solve the contact problem, the contact condition
is satisfied approximately. The contact load vector

(4.2) P=fk[—c],(An)n = Pn  with [], = max(0,")

is determined as a function of the depth of penetration of the shell into the contact body
and of the penalty factor /. It is assumed that the contact load acts along the normal to
the shell.
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FiG. 2. Shell and contact body.

Combination of the objective time derivative of the contact load vector with the virtual
velocity dv yields the variational formulation of the penalty term in the rate form [3]

, -1 D, [/ Va 5
4. = — [ == (VaP)ordA = — X P+ PnlévdA.
(43) 81, J \/(_Li)f(\/al)él_/( J [(ﬁn+w) + nJ(y(

with
P = I{~[~ sign(e)] [ — P)(En) + [—<]. (Aew)}

where the change of the contact load P is a function of the velocities of the shell and the
contact body.

The friction between the shell and the contact body leads to an additional contact
load that acts in the tangential plane of the shell. Contrary to the contact load acting in
the normal direction, the friction load is not a result of a geometrical constraint but of
the interaction between two surfaces. For the shells of revolution (Sec. 5), the friction is
taken into account as an additional external load.

5. Shells of revolution
The kinematic relations are set up in a rigid cylindrical coordinate system (Fig. 3).
The kinematic variables are the velocities

(5.1) v=[w vl y]" with v =¢ V=g o\ =o.
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Y

Fi6. 3. Cylindrical coordinate system.

Alfter specifying the kinematic terms for the one-dimensional problem and integrating in
the peripheral circumferential direction, the variational principle for the shell continuum

(3.6) has the following form:
(5.2) o(llip) — 61l,pr = 0
with

Uin = [ AUy va) + Ug(vr) + 0 (her + 07 )} d6,

L
: L r T L g T 7k
Up=cv Ay +v vy + -1 Asv +via + v g,
2 Y — e | 2 "y
1T g 1 2,
Ug=svilvy+v'Quy+ v My

and

ol

[ 18U z0) + 68Uk, v)} dO" + Y {or! (Mor + T},
I =1

0y = 60T Qs + My + T ),
U = 0w (Qra + Myv + Tp)).

The expression [1;r is a potential that described the deformation behaviour, where U,
represents the physical nonlinearity and (/, the geometrical nonlinearity.

The part ¢/l,r of the variational principle, that comes from the external loads,
additionally contains the term of contact loads 60/, where the change of contact load
is given as a function of the velocities of the shell and the contact body

e = (Pus Poy 07 = Diw - ws) + b

Using the Hamilton principle, the variational principle of the shell of revolution leads to
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a one-dimensional linear boundary value problem for the rates

= A\
k= A, + A;’z +ay+ 7',

(54) E,l = (‘_Ail - Qp)ﬂ.l + (/_1? - ﬂp - ]_)A‘)K +ap + (; l(_‘: - L/js + ]_)AEA - ﬁk
B g +i00E

 {
After elimination of the Lagrangian multiplier ¢ ' and rearranging, we obtain the following
canonical system of differential equations

(5.5) i1 =B+ b(2)
with

y=" kT = go' ), z=2z201
and

,_[B B _ b
p=[5 5] = n]
This system must be solved for a given state of the shell state 7 at time .
The linear boundary value problem is embedded in the nonlinear initial value problem
(5.6) =0y +e  zlt) =z

The solution yields the shell state variables z as functions of 1.

6. Treatment of the contact problem including friction

In accordance with the incremental formulation of the variational principle, one has

to determine the rates of contact loads P?,, and P, in (5.3) for the current contact state.
If we assume the contact body having the velocity

(6.1) p=0"G, + Gy,

we obtain for the velocity of the shell (relative to the contact body), in the normal direction
of the contact surface n (see Fig. 4)

(6.2) p=@w-v)n=w —v")sing - ¥ —1v¥)cos .
The condition
(6.3) <0

characterizes the loading process and yields the rate of the contact load

(6.4) P, = —ky(iin) = —ki cos(p — ).

Coulomb’s friction law is used in combination with a stick-slip model (see Fig. 5). If the
tangential component of the velocity between the contact body and the shell

(6.5) v=@wE-v)t=w" —v)cose+ (W —r¥)sing
is less than the limit of the sliding velocity
(6.0) |¥| < Vmins

then we suppose adhesion. In this case the rate of the contact load in tangential direction is

(6.7) f)t = —k[(z - D)tJ(tt) = —k[(v" — D )cos p + (¥¥ — DY) sin @] cos(@ — ).
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contact body

reference surface of the shell

‘ i \ . 3 \
= \\\ ‘\%\ \ \
. \

&
r &
yf Al \\\\\ -
| & -
. t
- Py s
Gy X .
% ¢
G,
i ;

F1G. 4. Contact of the shell of revolution.

= Vmin 0 Vmin

FiG. 5. Friction model.

The transition from sticking to sliding is characterized by the condition
(6.8) [Pt > pen] Pn)-

In this case the friction load will be reduced to the sliding level, which is defined by the
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punch
blankholder

blank

intermediate shape

sy
n'.
&

final shape

W

Fi1G. 6. Deep drawing simulation—tool geometry, material properties and contact parameters

material properties

material
Young’s modulus
Poisson’s ratio
isotropic hardening function
_ SopePl e €2
TP = ﬂ;;‘,{[ + :[(:,. +¢1)"2 — ¢, [}

contact parameters

penalty factor
contact tolerance

— velocity of the punch

Coulomb’s friction

e sliding frinction coefficient

e sticking friction coefficient

e blankholder pressure (constant)
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Fic. 7. Deep drawing simulation — the shell and the contact geometry in ditferent phases of the deep drawing
process.

friction coefficient j¢, within the time-step A/

(6.9) P (11, sign(P)| P| — Pi).

B 1
AL
If the condition
(6.10) {”[ 2 Vmin

is satisfied, we have sliding friction. Then the rate of the contact load is calculated from
the formula

o | = =
(6.11) Py = pysign(v)kiy — ][;ty sign(v)| P, | + Py

The condition
(6.12) >0
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logarithmic strain in % thickness in mm
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FiG. 8. Deep drawing simulation — meridional strain, peripheral strain and distribution of thickness of the
intermediate shape and of the final shape.
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describes the process of unloading. As long as the shell point is leaving the contact domain,
the contact loads will be removed:

(6.13) P,=-=p,, P =-%Ip.

7. Example

The presented example was calculated by means of a program which is based on the
transmission matrix procedure. The numerical calculation starts from the integration of
(3.11) for a given shell state by using an integration procedure that takes into account
the discontinuity of the elastic-plastic material behaviour. The fourth-order Runge-Kutta
formula, in combination with a transmission matrix procedure, is applied for the solution
of the linear boundary value problem (5.5). The nonlinear initial value problem (5.6) is
solved by the second-order Runge-Kutta formula. A detailed description of the applied
algorithms is given in |3]. Additional comparisons of the program with benchmark tests
[4. 5], experiments and numerical solutions based on other theories [6, 7] are published
in [3].

The example demonstrates the simulation of a deep drawing process with intermediate
shape. Figure 6 shows the principle of the manufacturing process, the material properties
and the contact parameters. Elastic-plastic material with isotropic hardening is assumed.
The [riction between the tool and the sheet metal is taken into account. In the domain
of the blank-holder an additional pressure is assumed.

Figure 7 shows the discretized model of the shell and the contact geometry in different
phases of the deep drawing process. The results are shown in Fig. 8. The diagrams rep-
resent the calculated meridional strain, the peripheral strain and the distribution of the
thickness as functions of the original distance from the punch center of the intermediate
shape and of the final shape.
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Effect of initial prestressing on the optimal design
of plates with respect to orthotropic brittle rupture

A. GANCZARSKI and J. SKRZYPEK (KRAKOW)

THE aim of the present paper is the analysis of effect of initial prestressing on the optimal design
ot axisymmetric plates of uniform creep strength or plates optimal with respect to lifetime, which
are subject to combined loadings. In problems of optimization formulated above not only thickness
of a structure but also parameters of prestressing are decision variables as well. Assuming the time
hardening theory associated with the Kachanov orthotropic brittle rupture hypothesis as the consti-
tutive relationships for creep, two types ot coupling are discussed: when orthotropic damage induces
or not induces anisotropic creep in initially isotropic material. The simplified von Kdrmdn theory of
thin axisymmetric plates has been extended to viscoelasticity.

1. Introduction

WHEN OPTIMIZATION of structures under creep conditions is formulated, three typical
global optimization problems may be distinguished (cf. ZYCZKOWSKI [17]):

[) minimization of volume when loading and lifetime are prescribed,

2) maximization of loading when volume and lifetime are prescribed,

3) maximization of lifetime when volume and loading are prescribed.

The lifetime of structure 7, (global condition), in most cases, is not given in the explicit
form but results from the condition of the initiation of first macrocracks inf (v, 7,.) = 0
(local damage condition), where ¢, denotes components of Kachanov-type continuity
function. Therefore, first two formulations are inconvenient from the viewpoint of practical
applications (they both require the shooting method). In consequence, third approach to
be the most convenient, particularly, when the condition of constant volume is built into
the shape correction procedure.

Apart from classification based on the global criterion presented above, one may in-
troduce another one, based on the local criterion. Generally, the local criterion applied
for elastic problems leads to the solutions of uniform strength, and analogously, in the
case of optimization under creep conditions, it yields solutions of uniform creep strength.
In consequence, three local approaches to uniform creep strength may be formulated:

1) when loading and lifetime are prescribed,

2) when volume and lifetime are prescribed,

3) when loading and volume are prescribed.

The aim of the present paper is the analysis of mechanisms of brittle damage and the
design of prestressed axisymmetric plates of uniform creep strength (third local formula-
tion) or optimal design of plates with respect to lifetime or volume (third or first global
formulations), which are subject to combined loadings. When problems of optimization
are formulated, not only the thickness of a structure but parameters of prestressing are
considered as decision variables as well. Therefore it is important to distinguish precisely
the behaviour of prestressing, which is varying in time, from other loadings, which are con-
stant and may appear as the equality constraints. The nature of the prestressing, which is

http://rcin.org.pl



464 A. GANCZARSKL AND J. SKRZYPEK

considered as the excitation imposed on the structure, also requires explanations. Gener-
ally, one has to distinguish between the internal and external excitations. The prestressing
fibres in reinforced concrete is an example for the first case, whereas the cylindrical shell
prestressed by external circumferential cable — the second. In both cases discussed, the
excitations may have the nature of forces or distortions. Typical examples of excitations,
such as the radial prestressing force 1y or the displacement A, and the radial prestressing
moment niy or the angle of support . for membrane and bending states, respectively,
are illustrated in Tabl. 1.

Table 1. Boundary excitations in axisymmetric plates.

boundary excitations

force - type drsplacement - type

n, n, . .
+

membrane
(Y
i
=
fe

state

bending
H/
N\
i~
| —

m, m, I’y @

Apart from the order of the theory, which may include or not the coupling between the
membrane and bending effects, both the membrane and bending states may additionally
be coupled by the boundary conditions. Generally, such a coupling can be described by a
function dependent on the excitation parameters:

(1.1) J(ng, mp. A, op) = 0.
From practical point of view, only a few particular representations of the function J make

sense. These cases are as follows:
1. Uncoupling, when the function J depends only on one of the arguments:

(1.2) J(ng) =0, or Jm) =0, or JAQA)=0, or J(py =0

2. Unilateral coupling of membrane and bending states, when function J may be solved
with respect to one of its arguments:

(1.3) my = j(ng), or @y =i(A).
3. Bilateral coupling, when function J implicitly depends on more than one argument:
(1.4) J(A, ¢y) = 0.

Structures of uniform creep strength are usually found in an iterative way. Correc-
tions of both the thickness and the prestressing parameters are introduced until the lo-
cal Kachanov-type damage condition vy (x;, 7,) (the objective function) is satisfied at
each point 2, under additional equality constraint of constant volume (the third local
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formulation). In general, structures of uniform creep strength are not optimal with re-
spect to lifetime 7, — max, taken as the objective function. From the practical point
of view, structures of uniform creep strength (the objective function) when lifetime is
prescribed (the equality constraint) might be more promising. Therefore appropriate nu-
merical procedures, which allow for optimal design with respect to lifetime (the first local
formulation), are also enclosed. Formulation of optimality conditions for structures of
uniform creep strength, and a proposal of the numerical procedure for maximization of
lifetime, are also the aim of the present paper (the global formulation). Comparison of
both the local and the global formulations is a basis of practical recommendation for
engineers.

Assuming the time hardening hypothesis and the orthotropic damage growth rule
as the constitutive equations for creep and creep rupture, one may classify the damage
mechanisms, which may appear in plates when the boundary conditions and external
loadings are prescribed. The second step is the optimal control of damage mechanisms,
where not only the classical shape optimization but also optimization of the prestressing
have been taken into account.

Both the thickness and the prestressing optimization problems have allowed us Lo
increase significantly the lifetime (77). The posteritical phase associated with the propaga-
tion of damage zones has not been considered (73 < 7 < 7).

2. Formulation of the problem and basic equations

2.1. Basic equations for axisymmetric plates under axisymmetric loadings

Let us consider axisymmetric sandwich plate of a variable thickness of working layers
gs and a variable core depth iy — ¢, loaded by the external pressure (cf. Fig. 1).

Introducing the cylindrical coordinate system centered in the middle of the plate, we
assume that

¢ loadings are reduced to the midsurface,

e displacements of the midsurface are small as compared to the plate thickness, but
the geometry changes are taken into account (the second order theory),

e scgments which are straight and normal to the midsurface before deformation
remain straight and normal after deformation, and their lengths do not change (the
Love-Kirchhofl hypothesis),

e total strains, which are small, are decomposed into the elastic and the creep compo-
nents 3‘]#/& = 5:7:“ + ‘;f and the elastic components satisly the Hooke law,

e the plate is subject to plane stress state,

¢ the thickness of the plate depends only in the radial coordinate 7.

Let us apply the general mixed approach, where the equation of membrane state is
written by means of the Airy function, whereas the equation of bending state — by the
appropriate deflection function (cf. TIMOSHENKO [15], GANCZARSKI and SKRZYPEK [7],
also GANCZARSKT [8]). To this end we introduce the Fourier expansions of displacements

1 : i s . M : 1dl
w(r.#) = f(r)coskd, and the following definition of the Airy function n, = —(/—,
rodr
A2 F H
ng = . Hence
4 dr?
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FiG. 1. Axisymmetric sandwich plate of variable thickness loaded by an external pressure

forT =0

d ( )( Ar 2—-vdF  1dF
o 2 - —
b dr B, dr? roodr? rl r/‘r')

. d? ( 1 )(,121‘ vdl ) 0
dr?\B,) \ drt  r dr ’
) dDg ( d*f 2+ vd®f 142k r!f *D

(2.1) DA%S + 2—— + ' —f)

dr dr3d rodr2 2 dr dr?

9 2 2 27 2
X<ﬂ+££’;[_/’”—f)— dFd*f dr( af )._(,7:)

1 = Y |
dr? v dr rd »dr dr2  dr? P2

rdr
forT >0

d ( | )( PE 2-vdF 1 f/if)
2P+ s i e o — - ——
b dr \ B, dr3 roodrd ot dr

+(_[2_<i><(12_f v r]}*) _ *_\r(fl}} — i/'r'l‘,'.) 1+ 1/1(7')2 = i'f’/,)'
dr? \ B, dr? rodr B, ;

roodr B,
2y ADs (L LF 24 v 142K%d]
(2.2) DArf+ dr (2W b roodr? 2 I f)
+(12’DS (M+"ﬂ_,l“2 )_ (M{iﬂ_f) [dz (14/ Ef)]
dr? \dr2  rdr T2 rodr dr? dr2 \ovdr  r?°
d*ms Ld(2in: — 1) .
T dr isz"
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where the operators independent of circumferential coordinate take the forms:

i, ., lds B

Ap, = —+ =— — =5
(2.3) drr  rdr or?
b A2 = A 2d. 14 2RPdR. 1+ 2k%d.. . k(K% — 4)
T ded T o de?d 72 dr? r3  dr 4 S
Symbol & = 0.1,.... N denotes the number of half-waves, and decides whether the

deformation is symmetric or nonsymmetric. For numerical examples only the fundamental
mode (k = () was allowed for, due to the symmetry considered.

Introduction of the sandwich section is very convenient from the numerical point of
view, namely, the plate section may be treated as the double point substitutive section and,
hence, the process of integration of stresses along the thickness is reduced to summing
them up. Definitions associated with the sandwich section require appropriate extension
of the classical definitions, namely:

Love-Kirchhofl hypothesis

hg

(2.4) efg = LK, 167+ Arj:

constitutive equations (cf. PENNY and MARRIOTT [12])
I h
:t S {j:
(25) (Tr'/H: ﬁ _t(h,/f,‘l*l/h(,/,)z +(/\,./H+1//\H/,‘)_ L’/H“{‘JL(’/{)

definitions of generalized inelastic forces

oF
”;'/H = T[ﬁ7/H+‘ /(7+”( (1/1 (f/,)]
(2.6) -

my e = T:[s;ijﬁ — 57 + ¥(eh) — 57,0
and, finally, the membrane and the bending stiffnesses (cf. ARMAND [1]):

Eg
)

02
(2.7) D= LlsIs g oy
2(1 — /%)
In the above definitions /1, and ¢, denote the core depth and the working layers thickness
of the substitutive sandwich section (Fig. 2), superscripts + correspond to bottom or
top layers, superscript ¢ denotes creep components, subscripts 7/6 denote radial and
circumferential components, whereas dots stand for time derivatives of the corresponding
quantities.

The derived systems of equations (2.1), (2.2) are the unilaretally coupled Karman
systems extended to the case of visco-elastic plate of variable thickness. In the classical
Kdrman formulation, the full coupling of the equations of membrane and bending states
occurs (cf. KARMAN [10], also FUNG [2]), when additional nonlinear terms associated
with Gaussian curvature appear in the equation of bending state (the third order theory).
The unilateral coupling of the systems (2.1), (2.2) allows us to consider the equation of
membrane state independently. In the next step, the stress function is inserted into the
equation of bending state to yield the deflection function.
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Fic. 2. Evolution of continuity functions: a) radial 7, b) circumferential ¢»,, in nonprestressed plate of
J 7 T ¢
partially uniform creep strength.
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2.2. Constitutive equations for creep

All the previously derived formulae are not complete since the constitutive equations
have not been specified. In this section the physical equations are given in the form of
general orthotropic relationships for the substitutive sandwich section.

We assume the similarity of deviators based on the flow theory for initially isotropic
materials:

H_

(2.8) gbr = ;Séi sf kol =16,
2 a;

(O8]

and the time-hardening hypothesis associated with the Kachanov-Rabotnov orthotropic
brittle rupture law (cf. KACHANOV [9], GANCZARSKI and SKRZYPEK (3, 4, 6, 7], also
GANCZARSKI |5, 8]).

) .+ o\
(2.9) ek = (), OF = —m(—’;t) . k=10
Y

where f(7) is a given time function, { ) denote McAuley brackets, and the intensities of
the stress, the net stress (with the effect of deterioration taken into account), and the
strain rates are defined by the following formulae:

4\ 2 N2 + .t
n:i: — F n]_\ctj: _ ((Tr ) + (09 ) - n-: (TH
i 5 ki ki i U.",,:_}; U’;.:;: L‘",i e

I‘H

(2.10)

Finally, for the plane stress and incompressibility of creep we find

nu:l:)m Hi/

\ set r g ek _ ek | sek

(2.11) R Rl ( P > )f(r). T = (8Tt 8y,

In the above formulation, the isotropic creep law is coupled with the orthotropic dam-
age law. This means that creep process is governed by the isotropic flow rule (2.8), in
spite of the orthotropic nature of the damage growth (2.9). The last one affects only the
time-hardening hypothesis (2.9), where the stress intensity aft is replaced by the net-stress
intensity o7 (2.10) (the weak coupling). This simplified approach is justified only in case
of proportmnal loadings. In general, when nonpropnrtional loadings are allowed for, the

orthotropic delenoratmn process mav result i m the modified orthotropic flow rule, where
nett nett

Sy and o appear instead of (rk] and ¢ (the strong coupling). Hence, instead of
(2.8) we ()btam
ot + +
(2.12) otk oo 2 4 etk qzfaet:i: _ (77‘/6 _ l(TH/r
2. 12 Skt T 5 _nett Sk kKl T T E ST E
20" o 24
! r/é a/r

where ¢.7 is given by Eq. (2.9). Equation (2.9) contains the independent material con-

stants ('y.ny (the material orthotropy), and the independent principal components of
the continuity function ;. Since the data concerning the material orthotropy for creep
rupture are not available at present, in the next dpplICdthDS we consider the case of
material isotropy (', = 'y = (', and n, = ny = n, but admitting the independent
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evolution of macrocracks in both principal directions ¢',, ¢'s. An example of comparison
of the general (2.12) or the simplified flow rule (2.8), when orthotropic damage induces or
not induces anisotropic creep in the initially isotropic material, is discussed. No additional
effect of the material deterioration process on the membrane or bending stiffnesses is
taken into account. In other words, the elastic stiffnesses are held constant throughout
the creep process considered.

The numerical examples are presented for the plates made of the ASTM 321 stainless
steel: I = 1.77 x 10° MPa, oy = 1.18 x 10> MPa, » = 0.3, R = 0.5 m, i, = 0.025 m,
g, = 0.005 m, ¢. = 118 kPa; the temperature-dependent (783 K) material constants for
creep rupture are (cf. OpQVIST [11]): €' = 2.13 104 Pa=/s, n = 3.9, m = 5.6,
whereas material constants for the prestressing ring made of ASTM 310 stainless steel are
as follows: £, = E, v. = v, A = 29, ¥ 29, = 4g%. The elastic prestressing ring is thin
enough to satisfy the following relationship combining the displacement and the radial
force: u, = ny RZ/ L. AL, where F., A, and u, are the Young modulus of the ring, the
area of the cross section, and the displacement, respectively.

2.3. Initial, boundary and continuity conditions

Two boundary problems are considered:
e A simply supported plate prestressed by the elastic ring, imposed with the initial fit

, i e def .
D), which produces the initial radial force ny (1) = Rying — Hplare denotes the difference
of initial radii of the ring and plate, but some changes of the prestressing force nq result
from the creep-damage process in the plate):

forr =0 forT >0

1, (0) = 14(0). f1,:(0) = 714(0),

n,.(R) = —ny, i (RYdr = duny,

R R ,
(2.13) [)zﬁ[”y(]f)-l/?l,.(}{)]—U*, (1])=2({[71‘,;(11’)71/11,.(h’)]rlr—du,=(L

m,.(R) =0, - (Rydr =0,

2(0) = 0, 2(0) = 0,

f(R) =0, J(R) = 0.

e A clamped plate prestressed by the elastic ring, imposed with the initial fit D, which
produces the initial radial forces n:

form =0 form >0
n-(0) = ny(0). n,-(0) = 74(0).
n,.(R) = —ny, i (RYdT = dny.

I R
(2.14) D= ?[ny(lf)—l/n,,.(]{)]—H,g. (/l)=?|fzﬁ(l?,)fm'1 AR ]dT—du.=0,

@((0) = 0, 2(0) = 0.
e(R) =0, @(R) = 0.
f(R) =0, f(R) =0,
where p = —df /dr is the angular deflection of the plate, n is the peripheral prestressing

force, and w. the peripheral radial displacement.
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In both cases under consideration the prestressing problem might be classified as the
mixed-type force-distortions, since neither the force nor the boundary displacement are
explicitly given, but are results ol interaction between the plate and the elastic ring. The
stiflnesses of both elements eventually produce the response of the structure to the initial
prestressing imposed.

2.4. Numerical algorithm for creep problem

Numerical algorithm for creep problem will be formulated in the most general case of
the prestressed plate, of variable thicknesses of both the working layers and the core, which
is subject to brittle creep rupture described by the orthotropic damage law. Problems of
the plate under pure bending, or of the plate of constant thickness, appear as particular
cases. Numerical procedure begins when the elastic solution is known. Assuming the shape
of the structure in nodal points (g, /4], loadings, prestressing parameters and distortions
[ 710, €. 12, 2p], the continuity functions 11“‘?/”]., = | at the instant of time 7 = 0, we obtain
the elastic solution by means of the Finite Diflerence Method (the Gauss elimination pro-
cedure applied to the matrix composed of five bands). First, the equation of membrane
state is solved and the distribution of Airy function is found [/];. Then, the equation of
bending state is solved providing the displacements [ f];. When the displacements [ f]; are
known, the vector of elastic state [u", /\j_/H. e, J;Z_NQ E:ﬂfiﬁ/:. rrf,ﬁ. n:_/ﬁ. mf_/ﬁ].,- is deter-
mined. Then the program enters the creep loop, which requires the vector of stress inten-
nett

e vty et e T = et .y .
sities, continuity functions and strain rates [0, 7] NP F/H/:]‘,, In consequence,

when the right-hand sides of the equation systems [nS,,.m°,,]; are known, rates of
g | Yy r/er My ygli

change of both the Airy function [/]; and displacements |/], vectors are found, and fi-
nally rates of the vector of state can be found |, /\,.//ﬁ. @, i.',./e.éf:/ﬂ/:_ r'r,i/tr T 16 My pgl -
In the next time step, applying the Runge-Kutta II method, the ,,new” vector of state is
computed, and the program jumps at the beginning of the creep loop. Numerical procedu-
re is repeated until the lowest value of the continuity functions reaches a certain level,
and then the program quits the loop via the conditional statement.

The problem of a proper choice of both the spatial and the time steps, applied in
integral procedures, requires some explanations. Magnitudes of both steps have been
experimentally chosen. Number of the nodal points along the radius of the structure
which does not influence the lifetime (the spatial step) is equal to 50. In case of the time
step, it is necessary to introduce the variable step in order to be assured of the rates
of continuity functions at the appropriate level 0.002-0.006. The time step is increasing
during the primary creep, it does not change during the secondary creep, and is decreasing
when the creep process enters the tertiary phase.

2.4. Optimality criteria, auxiliary conditions and decision variables
2.4.1. Optimality criteria
2401 Snucuves of uniform ereep soengh. Structures ol the uniform creep strength must satisty

the following local condition:
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T
(2.15) Cn+1) [ [oralr;, )" dr = 1,

0
for all points r; € v, or at least, along apropriate lines or surfaces to produce a rupture
mechanism (cl. ZYCZKOWSKI [17]). In case when the condition (2.15) is simultaneously
tulfilled at all points of the structure, first macrocracks appear simultaneously everywhere,
which defines “the structures of uniform creep strength with respect to brittle rupture”.
Despite the fact that the condition of simultaneous damage may be satisfied (or only one
fibre of the uniform bending section (or for one working layer of the sandwich section),
ZYCZKOWSKI |17] suggests to use the term “the structures of uniform creep strength”,
though “the structures of uniform creep strength in broader sense” seems to be more
adequate in this case. On the other hand, assuming the orthotropic damage law and the
sandwich section model, the structures of uniform creep strength fulfil the condition

(2.16) inf{ L"f/ﬁ('r,-)} =0, r;ewv.

24.1.2. Snucuues optimal with respect to lifetime 7. In some particular cases, dependent of the
nature of loadings and the mode of support (prestressed plate of constant thickness), it
1s not possible to achieve the uniform creep strength in the broader sense. Therefore, the
optimization problem must be formulated on the basis of global condition:

(2.17) T] — Mmax, Vv = const,
or when a dual formulation is used:
(2.18) v —min, 77 = const.
2.4.2. Constraints. The optimality criteria formulated above require appropriate constraints,
which may take the following form:
A. Inequality constraints

e Strength constraints — the Huber-Mises-Hencky condition for nominal stress inten-
sity:

r

(2.19) V(@) — akog + (o) < o/,
where x denotes a safety factor. The effect of material deterioration on 7 is not taken
into account.

e Initial stability constraints — the elastic stability condition:
(220) np < np.
where n; denotes the basic Eulerian force (a possibility of creep buckling has not been
included into the analysis).

¢ The prestressing constraint of the maximal eccentricity ¢, such that the prestressing
ring does not exceed the half-thickness of the structure
(2.21) Cmax < N1/2.

¢ The geometric constraint of the minimal thickness for the sandwich section, excluding
a possibility of intersection of working layers:

(2.22) hs 2l = s

http://rcin.org.pl



EFFECT OF INITIAL PRESTRESSING 473

B. Equalitv constraints

e The condition of constant volume:
R

v=2r ] [a(hs — g4) + 23g5s]r dr = const,
0
i

bv = 2 / [a(8hs — bgs) + 230g,]r dr = 0,
0

(2.23) or

where a, /7 are arbitrary weight factors for the core and layers materials, or
e The condition of constant lifetime:

(2.23") 7] = const.
e The condition of constant surface loadings:
(2.24) (- = const.

2.4.3. Decision variables. Decision variables create appropriate vectors of control variables,
defined as follows:

e For the membrane-type prestressing [ny or A, g(r). 1s(r)], where ny is the initial
prestressing force, -\ is the initial membrane distortion, and g(r), fis(r) are distributions
of thicknesses of working layers and the core of the sandwich section;

e For the bending-lype prestressing [mg or ¢y, ¢s(7). hs(r)], where my, 2y are the
prestressing radial moment and the initial bending distortion.

2.5. Optimization methods

According to the previously presented optimality criteria, three numerical procedures
of optimization have been suggested, all based on the iterative corrections of the vector
of decision variables.

1. When the first procedure of optimization with respect to uniform creep strength

under constant loadings and constant volume of a structure is used, increments of decision
variables are chosen proportionally to the levels of continuity function (cf. GANCZARSKI
[S, 8]):
(2.25) Ag,, = PiAY; — Agn. Ay, = PoAY; — Ahy, Ay = ]~inl‘(uf/y)_,-.
where the average corrections Ag,,, A, must satisfy the constant volume condition
E,l ‘Pl‘—\('l_l‘r.f _\’J — E_I‘PZ—\L‘./'F./

T e 3 e = . L

25 2T

/

(2.26) Agp =

whereas the step factors Py, 7, should be chosen experimentally. When the most general
approach is used, thicknesses of the working layers ¢, and the core g, may be changed
independently, but in this paper the proportional changes are assumed when ¢ = g/l =
1/5, and Py = P> = P is held such that the working layers to core depth ratio of the
section 1s fixed and, in consequence, only one independent decision variable remains. The
process of damage equalization is continued until the following condition is [ulfilled:

(2.27) mf(vf/,,)_, <EPSI Y0 Vi

2. When the procedure of optimization with respect to uniform creep strength under
constant loading and prescribed lifetime 7, is applied, a modification of the strategy
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discussed above is proposed. At each optimization step A the volume is subsequently
decreased according to the modified shape corrections:

(2.28) Ags, = (Ahg, = —P[max(A;) — Ay,

when 1, > 7, else the shape corrections are governed by (2.25) under the constant
volume until the condition 7, = 77 is fulfilled.

3. Numerical procedure applied in case of optimization with respect to maximal lifetime
71 differs slightly from the approaches presented above as far as the global nature of the
objective function is concerned. It starts from & vector ol decision variables, for instance
when the shape of constant thickness and parameters of prestressing equal o zero are
pressumed, and at the end of the creep process, the shape corrections are imposed under
constant volume, according to the rule (2.25) as long as the global condition 7y, > 77, |
holds and the stability (2.18) and the geometric (2.19) constraints are satisfied. Then the
procedure is stopped, since further thickness corrections (2.25) result in reducing the
lifetime.

The first and second procedures suggested are essentially relevant to the concept of
the full damage design method. This method leads to exact solutions optimal with respect
to maximal lifetime when the following requirements are satisfied:

a) structure i statically determinate,

b) single loadings are applied,

c) the geometry changes are neglected.

If the above assumptions are violated, the uniform creep strength solution occurs to be only
an approximate “optimal solution”. An exact one may be obtained when more rigorous
optimization approaches are used. This kind of design method has been earlier used by
SWISTERSKI ¢f al. [14], when the optimal shape of a column with geometry changes taken
into account has been sought in order to minimize the volume, when the time to rupture
was fixed. The authors have concluded that some corrections of thickness superimposed
on the shape of uniform creep strength may improve the solution, as far as time to rupture
is concerned. However, SKRZYPEK and EGNER [13] proved that the disk of uniform creep
strength under steady loadings (not prestressed) is the optimal one in the sense of the
lifetime. On the other hand, the disk of partially uniform creep strength (with active
lower geometric constraint) under unsteady loadings (prestressed) is not optimal, because
appropriate additional corrections of thickness may lead to certain (practically negligible)
increase of the lifetime. Therefore, the second assumption restricting the loadings to single
ones, seems to be not essential, because in [13], the authors have considered structures
under combined loadings.

3. Effect of the orthotropic deterioration process on the creep process

As it was previously mentioned, essential differences between the isotropic (2.8) and
the orthotropic (2.9) formulations of the flow rule may appear only in case of a nonpropor-
tional path of loading. To support this hypothesis, some additional tests have been done.
Namely, two plates of different support conditions: simply supported or clamped, have
been considered (cf. Table 2). Moreover, all attempts of approximate estimation of the
quotient <75 /o?" show that terms associated with the damage mutually reduce. In case
of the simple supported plate, both components of continuity parameters and stresses are
approximately equal 1, = 404, and 0, = o4 at the central region of the plate, whereas
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Table 2. Comparison of lifetime with respect to flow rule: isotropic or orthotropic.

1— Type of flow rule support conditions Lifetine
isotropic £(, = %;—’.m simply supported n = 13.25
it
<
i e S ) o D, net s s ‘ted n = 13.21
orthotropic ¢, = 5~ sy simply supported 1 32
?
isotropic &5 = 535y clamped = 78.75
,
L2l 3 ;7 net 2
g opic £, = 5 —ha S amped i = 78.97
orthotropic &, = 5 et Sul clamp | b

=

in the case of the clamped plate 0 — ¢, < ¢y = 1 and |o,| > |04 are observed at
the clamped section of the plate. In both cases the effect of orthotropic damage on the
isotropic or orthotropic creep is practically negligible (Table 2).

Therefore, the isotropic formulation of the creep flow rule (weak coupling between
the deterioration and creep) is used for further analysis.

4. Examples

4.1. Plates ol variable core depth of uniform creep strength or/and optimal with respect to lifetime under

constant volume

4.1.1. Simply supported plates prestressed by the elastic ring. When the core depLh of the plale is
subject 10 optimization g, = var, the terms associated with derivatives of membrane
stiffness in Eqs. (2.1), (2.2) are omitted. Thus, the following mixed optimization problems
are formulated:

e Either the distribution of core depth h (), and the parameter of initial prestressing
ny are sought for under the constant volume constraint, such that the uniform creep
strength (2.14) is achieved:

(4.1) inf{v, (ho(r;).n0)} = 0, ¥r;.

e Or, in case when the above criterion can not be fulfilled, the vector of decision
variables which maximizes the lifetime (2.15), under the elastic stability (2.18), the constant
volume (2.21), and the lower geometric (2.20) constraints, is sought

(4.2) Ti(hs(r;), n9) — max.

Starting from the solution obtained for nonprestressed plate (1 = 0), it is easily visible
that almost the whole bottom working layer suffers damage with respect to the radial
component of continuity function hF =, except for a narrow zone where the geometric
constraint is active (cf. Fig. 2). Therefore the plate is classified as the structure of partially
uniform creep strength.

The improvement of the plate lifetime, compared to the plate of constant thickness,
versus the initial prestressing force ny, is presented in Fig. 3. It is easy to notice that, at
the beginning, the increase of the initial prestressing force causes the lifetime to grow. The
lifetime reaches the maximum at point (" where the force is ng /oy = —2.5 x 1073, and
then it starts to decrease. Further attempts increase of prestressing (/o < —3.2 x
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Fi6. 3. Influence of initial prestressing force ng/oq R on lifetime of simply supported plates optimally designed
with respect to either uniform creep strength or maximal time to rupture (results for prestressed plates of
constant thickness cf. GANCZARSKI and SKRZYPEK [6]).
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FiG. 4. Profiles of simply supported plates optimally designed with respect to either uniform creep strength or
maximal time to rupture.

http://réiiwr‘]] .org.pl



ks f a)

o I= f;
|
| e e CS ) o, ) ERSRh, e | —1 1 !
0 02 04 06 08 10 r/R

v b)

10 1 0
| \‘—’—‘ 0430
i
l e

08 :_ 0699
| -

\ Lf‘\ 0859
VI_ 0941

“ -
L 0979

0é } 0995
| 0998
’r ¥/—\

02 ’ 0999
r
1 1 1 1 | 1 1 1 i 1 1

0 a2 04 06 08 10 /R
Fic. 5. Evolution of continuity functions for working layers: a) bottom v, b) top ¢, , in nonprestressed plate

of partially uniform creep strength.

[477)

http://rcin.org.pl



478 A. GANCZARSKI AND J. SKRZYPEK

107%) leads to the optimization range where the criterion of maximum lifetime becomes
predominant. Optimal profiles of the plate which correspond to selected points from Fig. 3
are shown in Fig. 4.

When the initial prestressing increases, the zones of constant thickness become thicker
and broader. Finally, at point /7, the zone of constant thickness is extended over the whole
plate, and further thickness optimization becomes impossible.

h/R

006
= plate of partially uniform creep strength
004 T~

plate of constant thickness

e B o e e i i e e

002
- lower geometric constraint
op
-002
-004
- | S It | CHNSSIS, ST S, NS M —
e o Q2 04 06 08 10 /R
F1G. 6. Nonprestressed plate of partially uniform creep strength.
prestressed prestressed plates of variable thickness
plates of partially optimal with respect to lifetime 7
uniform creep
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Fic. 7. Influence of initial prestressing torce ng/eo R on lifetime of clamped plates optimally designed with
respect to either uniform creep strength or maximal time to rupture (results for prestressed plates of constant
thickness cf. GANCZARSKL [8]).
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4.1.2. Clamped plates prestressed by the elastic ring. Let us consider a clamped plate. It is easy
to predict that two damage zones with respect to the radial component of the continuity
function ., one in the top " and other in the bottom t,'f:.' working layers, are pro-

duced. Typical evolution of continuity functions ¢>* for nonprestressed plate (ny = 0)
has been shown in Fig. 5. The bottom *) = 0 and the top ), = 0 damage zones

are separated by a narrow zone where the geometric constraint is active. The optimal
candy-shape plate of partially uniform creep strength is shown in Fig. 6. In case when
both the thickness and the initial prestressing are subject to optimization, the lifetimes
of optimal plates compared to the plates of constant thickness have been presented in
Fig. 7. The solution is quantitatively similar to the one obtained for the simply sup-
ported plate, as far as a shift of the lifetime maximum towards lower magnitudes of
initial forces when compared to the plate of constant thickness is observed. However,
the range of initial prestressing where the structure should be optimized with respect
to maximal lifetime is broader, the maximum maximorum of the lifetime is found for
Ngopt/ o = —3.0 x 107*. The corresponding optimal profiles, approaching the shape
of constant thickness when the magnitude of prestressing increases, are presented in
Fig. 8.

h./R
A
010 +
008\
aos| s
- 2
004 -
002+
1 — 1 1 1 1 1 1 1 i
0 02 04 06 08 10 r/R

FiG. 8. Profiles of initially prestressed clamped plates optimally designed with respect to either uniform creep
strength or maximal time to rupture.
4.2. Plates of variable core depth of uniform creep strength under constant lifetime

The case of design with respect to the uniform creep strength when the lifetime is pre-
scribed, despite some numerical difficulties associated with necessity of using the shooting
method, is important for practical applications. It allows us to reduce the volume of struc-
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ture, which usually is the aim of optimal design. This subsection deals with optimization
of a nonprestressed (1, = 0) simply supported plate, which has been described by Eqs.
(2.1) and (2.2). The optimization problem, based on the local criterion 1, is formulated
as follows: the distribution of the core /i ((7), under prescribed lifetime and the geometric
constraint (2.20), is sought for, such that the uniform creep strength is satisfied (2.14).
The optimal shape of partially uniform creep strength, with the peripheral zone of active
geometric constraint is shown in Fig. 9. Volume of the optimal plate has been reduced to
45% compared to the plate of constant thickness.

h /R
003 plate of constant thickness

002 plate of partially uniform

il creep strength
001 - ) lower geometric constraint - (V=45%1V,)
0 =

-001

-002

-003 -

0 0z 04 06 08 10 /R

FiG. 9. Nonprestressed plate optimally designed with respect to uniform creep strength under prescribed lifetime
(volume reduced to 45%).

4.3. Plates of uniform creep strength of variable thicknesses of both the core and working layers

All solutions shown so far, have dealt with plates of a variable core depth but constant
thickness working layers (¢, = const). Hence the possibility of optimization with respect
to membrane stiffness B has not been taken into account. This factor may lead to certain
elongation of the lifetime, but the bending stiffness turned out to be predominant. Let us
estimate the percentage of increase of the lifetime in case of optimization with respect to
both parameters of sandwich section (¢,. 1), to support the statement that the influence
of working thickness layer variations on the lifetime is not too large, and significantly
elongates the computer time. The nonprestressed simply supported plate, described by
mixed formulation of system of equations (2.1), (2.2), is analyzed. In general, thicknesses
of the core and working layers may change independently, but here the proportional
variations of them ¢ = ¢,/h, = 1/5 have been assumed. This assumptions not only
allows to analyze one independent decision variable instead of two, for instance /., but
also guarantees the constant ratio of working layers thickness to core depth. On the
other hand, this assumption makes the lower geometric constraint (2.20) always passive,
because thickness of working layers is changed proportionally to the thickness of the core,
and working layers will never be in contact. Nevertheless, optimization of the core depth
distribution /i4(r), and simultaneously of the working layers thickness g, = ¢ x /i, leads
to structures of uniform creep strength (2.14) only when the constraint of constant volume
(2.21) is applied. Additional troubles, when the problem formulated above is solved, deal

http://rcin.org.pl



EFFECT OF INITIAL PRESTRESSING 7 ) 481

with a singularity of radial stress in the supported section of the plate. To overcome this
problem, the de I'Hospital principle may successfully be used, because when the thickness
approaches zero i, — 0, the infinite radial curvature s, — oc is reached. The above
inconvenience has been avoided by arbitrarily assumed minimum thickness constraint
hg > lig/50, where i is the uniform plate core depth, and by the de 'Hospital principle
associated with the backwards computed finite differences. The optimal shape of uniform
creep strength, versus the profile of a jump-like variable thickness, is shown in Fig. 10 (cf.
GANCZARSKI [5], also GANCZARSKI and SKRZYPEK [7]). At the instant of rupture, the
whole bottom working layer is subject to damage with respect to radial continuity function
T =10,

h/R plates of uniform creep strength :
Jump -like variable

004 & / continuous

+— plate of constant

002 + thickness

0 +

L
-002

-004 — - 1
0 02 04 06 08 10 /R

FiG. 10. Plates of uniform creep strength of jump-like variable and continuous thicknesses (case of variable
thickness of both the working layers and the core).

Conclusions

I. Simultaneous thickness and prestressing optimization allow us to enhance significan-
tly the lifetime, for both considered cases, simply supported or clamped, unless the mag-
nitude of mmd prestressing, which corresponds to the longest lllt‘,tlmt n[h,p[/rr(,lf
—4.6 x 1073 in case of simply supported or nuom/m,[? = —5.0x 107% in case of clamped
plate respectively, is exceeded.

2. Over-prestressing of the glate (Noope/ @0 = —5.0x 1077 in case of simply supported
and 71(,th/rmR = —6.0 107" in case of clamped plate) makes further thickness design
impossible since structures of uniform thickness become optimal.

3. Simultaneous design of both the distribution of working layers thickness and the
core depth (under constant ratio ¢ = 1: 5 held) additionally enhances the lifetime, but
the computation time highly increases.

4. Design with respect to the uniform creep strength when the lifetime is prescribed,
furnishes the optimal profiles with enlarged zone of active lower geometric constraint,
and it allows to reduce significantly the volume of the structure (up to 45%).

A general comparison of the lifetime for all considered cases of plates optimally pre-
stressed or designed is presented in Tabl. 3.
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Table 3. Comparison of the lifetimes for optimally prestressed or/and designed plates.

design variables '
mode of reference plate hmp‘, ny =0 gs/he = Copts ny = 0 ] fa “ap Mape
support hgn‘ ng =0 .C.S. L.C.S. { u.C.S.
simply s 3.947 6.197° 15.847F
supported (p.-A-Fig.3) (Fig.10) (p.C-Fig.3)
u.C.s. T — max
clamped T = 5977 2227 — 18.527°
(p.A-Fig.7) (p-D-Fig.7)

5. Summary

In the present paper, a wide class of boundary and prestressing problems is presented.
The general equations of thin axisymmetric plates of variable thickness under the membra-
ne-bending state is extended to the case of unsteady creep, with the material deterioration
taken into account. The problem is written in the mixed form, the Airy and displacement
functions being used. Two formulations of coupling between the deterioration and the
creep processes are considered. Despite the damage process governed by the orthotro-
pic law, the initially isotropic material is subject 1o either the isotropic creep (the scalar
coupling between the deterioration and creep), or the orthotropic creep process (the
tensorial-type coupling). It is shown that numerical differences between these two for-
mulations are practically negligible when the proportional loadings are concerned. The
apropriate joint numerical algorithm, based on the Finite Difference Method with respect
to radial coordinate and the Runge-Kutta IT with respect to time-steps, is used. The built-in
optimization unit, which allows us to choose one of three optimization criteria: uniform
creep strength when either the volume or lifetime are prescribed (the local approaches).
or optimization with respect to maximal lifetime (the global approach), are used.
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A viscoelastic boundary element formulation in time domain
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L. GAUL (STUTTGART) and M. SCHANZ (HAMBURG)

THE BOUNDARY ELEMENT METHOD (BEM) provides a powertul tool for the calculation of elastody-
namic response in the frequency and time domain. Field equations of motion and corresponding
boundary and initial conditions are written in the torm of integral equations. Other than in domain
methods only the boundary is discretized. The boundary data often are of primary interest because
they govern the transter dynamics of the members and the energy radiation into the surrounding
medium. Formulations of BEM currently include conventional viscoelastic constitutive equations in
the frequency domain. In the present paper viscoelastic behaviour is implemented in a time domain
approach as well. The constitutive equations are generalized by taking into account time derivatives
of fractional orders. Previous paper of the authors on this subject was based on generation of a
viscoelastic fundamental solution in the time domain. The present approach uses an analytical in-
tegration of the boundary integral equation in a time step. Viscoelastic constitutive properties are
introduced by means of the clastic-viscoplastic correspondence principle and the Laplace transfor-
mation. The transient response is obtained by inverse transformation. Wave propagation in a 3-D
viscoelastic continuum is studied numerically.

1. Introduction

THE CALCULATION of transient behaviour of 3 — [) continua by boundary element fornu-
lations in the time domain is currently restricted to elastic solids. Viscoelastic solids are
treated effectively by BEM in the frequency domain. Calculation of transient response
via the frequency domain requires the inverse Fourier transform. Since the frequency
response is known in a limited frequency range, truncation effects appear. On the other
hand, direct calculation of viscoelastic solids in time domain requires the knowledge of
viscoelastic fundamental solutions.

Such a solution can be obtained by means of an elastic-viscoelastic correspondence
principle. In [7] the fundamental elastic solution has been transformed in the Laplace
domain and then the elastic-viscoelastic correspondence principle has been adopted. For
a simple rheological material model, an analytical inverse Laplace transformation is given.
This leads to the viscoelastic fundamental solution in the time domain.

For the implementation of this viscoelastic fundamental solution in a 3 — [ time do-
main BEM program it is advantageous to perform the time integration analytically in a
time step. This has been carried out successfully in [11], but it leads to a very complicated
series solution. An alternative approach to obtain a viscoelastic boundary integral formu-
lation in time domain is presented by the authors in [6]. Generalization of this approach
for constitutive equations with better curve fitting properties of the measured data is the
aim of the present paper.

2. Constitutive equation

Decomposition of the stress tensor o;; into the hydrostatic part Orrbdi;/3 and the
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deviatoric part s;; yields
1
(2.]) ai; = ;Ukkb/‘,f + Sy, where  s;; = 0.

The corresponding decomposition holds for the strain tensor =

1
(2.2) Eij = EE'H-b;_,‘ +¢;;,  where ¢; =0.

Two independent sets of constitutive equations for viscoelastic materials exist after this
decomposition

d* N

(2'3) Z[)A Hk Z “‘ }[A i ZI"‘ HA Z /A “A““

k=0 k=0 k=) k=0

More flexibility in fitting the measured data in a large frequency range is obtained by
replacing the integer order time derivatives by the fractional order time derivatives [5].

The derivative of fractional order e is defined by

0<a<l

dx(t)y 1 d j x(t — T)(lr

2.4 =
(24) dre (1 — o) di ["

T

with the Gamma function /'(1 — a) = [~ ¢~*2»~“dr as the inverse operation of the
fractional integration attributed to RIEMANN and LIOUVILLE [12]. A different definition

based on generalized finite differences is given by GRUNWALD [9]

e T {(%) Zlu—f% {( - %ﬂ}

=0

This discrete definition is more convenient in constitutive equations solved by time step-
ping algorithms, and it can be shown to be equivalent to the definition in Eq. (2.4). The
fractional derivative in Eqs. (2.4), (2.5) appear to be complicated in the time domain.
However, the Laplace transform for vanishing initial conditions reveals the useful result

(2.6) L{m} = s“L{z(D)}.

dte

where s is the Laplace variable.

With the definitions (2.4) and (2.5), the generalized viscoelastic constitutive equations
are given by

N l“"‘ M /“L N ]v‘ M o /“L
2.7 5 = 3 ; Eii
( ) Z]" dtok Fij Z‘Ik(lfuh %7 Z (h« Tii Gk (”u“”
k=0 =0 k=0 k=0
For N'= M = 1 and integer time derivatives, the corresponding rheological model is

given in Fig. 1 with two springs and a viscous dashpot. It shows one of the two possible
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o

FiG. 1. Three parameter model.

representations of a uniaxial stress-strain equation

(2.8) [)i(f +0 = lf(;‘ + r/d:>.
di dt
with
o+ 15 I+ B 15

Application of fractional derivatives in the model leads to the generalized model with 5
parameters,

(2.10) @ +a l"( + i )
2. )—— 0 =Fle+qg—c).
¢ div I(H" ;

The Second Law of Thermodynamics requires that 2]
E>0, q>p,

(2.11) ¢g>0, a=p,
p > 0.

These constraints ensure nonnegative energy dissipation.

If the same damping mechanisms are assumed in the hydrostatic and deviatoric stress-
strain states, the corresponding 3 — ) constitutive equations are obtained by replacing
the uniaxial stress and strain with the hydrostatic and the deviatoric states.

A powerful tool for calculating the viscoelastic behaviour from a known elastic response
is the elastic-viscoelastic correspondence principle. According to this principle [4], the
viscoelastic solution is calculated from the analytical elastic solution by replacing the elastic
moduli in the Fourier or Laplace transformed domain with the transformed response
functions of the viscoelastic material model. The viscoelastic solution is then obtained by
inverse transformation.

For the above mentioned generalized three-parameter model the elastic-viscoelastic
correspondence is given by

l + {[f{'c“ K l + ([(_;HL)‘!,‘

(]

, 26— 26—,
L + prs™E 1 + pgsec

(2.12) 3N — 3K

where N\ is the elastic bulk modulus and (¢ the elastic shear modulus. In Eq. (2.12) the
transformation property (2.6) has been used.
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3. Elastic BE-formulation

For completeness, let us recall the boundary integral equation of elastodynamics in the
time domain [1]. The Lamé field equations of a homogeneous isotropic elastic domain {7
with boundary I are given by

(3.1) ((]Z — ('i)llm.‘ + ('ii!l_,_,',’ + ”'_i = HJ.
with displacement coordinate u; (. {) and wave speeds
K+ 3G G

0 0

(3.2) c

-

where p denotes the mass density. The corresponding traction and displacement boundary
conditions are

Ly (%, 1) = apny = pi(x, 1) x € Iy,

(33) u,-(x‘ [) = f/i("* f) X € I‘u-

and the initial conditions are
w;(x,0) = uy;(x).

(3.4) wi(x,0) = vi(x),x € 2.

The 3-1) Stokes fundamental displacement tensor of the Lamé Equation (3.1) in an
unbounded space, excited by the volume force b;(x. £, ¢, 7) = 6(f — 7)6(x — £)e; is given
by (e.g. ERINGEN and SUHUBI [3])

t—7(3rr; b - -

(3.5)  Tij(x, 6, 0,7) = L{—T(—L . —J) [1/ (r - ’-) .y (r - ’—ﬂ
: drp | r? 73 r ) 2

LT EUY/RN A US| TP Y
roLey 1 & &) res &)

where r = /rir;, r; = ¥;—£; is the Euclidean distance between the field point x and the
load point &. Capital [/ denotes the unit step function, and ¢ the Dirac distribution. The
corresponding fundamental stress vector components are obtained by substituting (3.5)
into the constitutive equation and adopting Cauchy’s stress formula with the outward
normal 7.

~ bl oy 2~ ey
(3.6) Linyij = Oikng = 0(€) — 2€)Ujm mOixnp + 065(Uj; kMg + Ujk i )-

The dynamic extension of Betti’s reciprocal work theorem [8] combines two states of dis-
placements and tractions, (i, {(n);;) and (u;. f(y);) respectively, and leads to the bound-
ary integral equation

(3.7)  cij(uy(Et) = / [Eeayi (%, 7) * wyj(x, &, 6. 7) — F(nn‘,(x, £t 71)* ui(x, m))dTl
2
+ [ ofbilx, 7Y * Wi j (% £, 1, T) + v0i(X) + Tij(x. 1) + wi(x) - g (x. 1)}l 02,
2

where ¢;; = é,;/2 for a smooth boundary. The boundary integral is defined in the sense
of a Cauchy principal value. The aterisk # denotes the convolution with respect to time
and is defined by
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0. <0,

{
(3.8) P xl = [ ot —ryw(rydr. t>0.

0

The integral equation (3.7) will be reduced to an integral equation with boundary inte-
grals only if the volume forces b, and the initial conditions vanish. Discretization of the
boundary integral equation in space and time leads to the boundary element formulation.
Only the time discretization by introducing n equal steps A is discussed here. The sim-
plest nontrivial choice ensuring that no terms of the fundamental stress vector such as
derivatives of the Dirac distribution drop out in the boundary integral equation are linear
shape functions for the displacements u, and constant shape functions for the tractions
{(m)i in time domain

'n'-,*ll’“ -7 cm T fm—1
(3.9) u;(x, T) = T v + U] — R m(x),

(3.10) ti (%, 7) = 1 TH « ().

The spatial shape functions are denoted by i;[(x) and ¢;(x). The nodal values are /)], T}
for the corresponding boundary element 7 at time f,,, = mA{. Substitution of Eqgs. (3.9),
(3.10) reduces the boundary integral (3.7) to

t
G11) [ Ui 7) = Ty (3 &t = 7) = Ty (%, £ L = T) = wi(x, 7)d L d
0 I
Ly

- Z Z I j'l [ﬁjy,(?i.é_.,/ — 7') . (X) 1 m

m=1 [t

=1

T Tm vm— n - 'l”l wul‘m— -
’f(nu(x Et—T)m(x) - (]( = ')+l',i l_\l - U} JIIM(IT(H.

Analytical ime integration of Eq. (3.11) can be carried out because of the time depend-
ence of the Dirac and Heaviside functions. This integration leads to piecewise defined
functions [15]. For the sake of brevity, the integration is indicated only for the first term
on the right-hand side of Eq. (3.11)

b

(3.12) ] (=, £, 8 —TdT
['n:-l
0. I<f,,,_1+ﬁ.

_ . s 2 | r r
f()(’)? (1 o lml)_ o o + fl(r)i}- ['m.—l + —<t< I‘m + T

B Ci (,'i (&1 &

1 P ‘:—n {77'5—] I

= j()(") “m == ”m—l - T + T . ,m + = < 1% imfl + =
4o B = € e’

o

. 2t 1/r\¢ | ’
,I‘n(")[“m - ; — =ik .)() J + fo(r) =, tma b —<U <y +—,

FA (% (&) Ca
(2
0 by, + — < U,
Iz

b
L

with the abbreviations depending only on spatial coordinates

http://rcin.org.pl



490 .. GAuL AND M. SCHANZ

31 0,
,[“(r. - lc L — _’:_,
1 i
ril
fl(r) = ‘:’
"
) 04 rr
(r) = —=— — —.
Sy = 25— =

The time intervals are valid only for the time step At < [(r/¢2) — (r/¢1)]. By substituting
by, = mAt t,,_y = (m— 1At and t = nAt in Eq. (3.12) it can be seen, that the
functions depend on the difference (n — ). This implies that the functions in (3.11)
depend only on the difference between the observation and the excitation time. After
time and space discretization with point collocation, a system ol algebraic equations |15]
is obtained

() ( n=ly m+1)l,,,l n (n—m+1)(m)
(3.13) [0s1+1]u+z => U ot
m=1 m=l1
. T , ) (m) . . . .
where I is the identity matrix, T and U are the influence matrices of stresses and dis-

(m) (1)
placements at the time step »:. The vectors u and t contain all the nodal displacements

and tractions of the time step .

4. Viscoelastic BE-formulation

In order to obtain a viscoelastic boundary integral formulation from the elastic for-
mulation (3.13), the elastic-viscoelastic correspondence principle (2.12) is applied. This
requires the Laplace transformation of (3.13). The matrices in (3.13) consist of the func-
tions (3.12) and the fundamental solutions of the tractions for all points & after time
integration. For the sake of brevity the procedure of deducing a viscoelastic formulation
is explained for the integral (3.12) only.

The one-sided Laplace transformation

‘)(" l .)"F(lV‘
(4.1) LH=Fs)= [ fwetdt. [fy=—= [ F(s)e*ds. >0
0 =100

leads to the transformation of the first term on the right-hand side of Eq. (3.11),

.;,

(4.2) [ Z ] Ui j(x, &1 — T)dTe ™Ml

m=1 =1
!m*‘.,_ 5
1 B AT ] 5 1 , .
= — [ 1A=t ) = (=) )+ i()|e"di
4“() i N 2 Ny
m=1 /Yl-—|+,—,_l
b t4e i 5
+ ] ~/' . ,;u IZJr—l — st
Jo(r){ Ul — Uty —q — e | di
(‘”+"v| = -
7H+y_ - =Y
’ i, i L s : .
+ l [/q)(l (“m == ;r — ? + ;(:ﬁ) ) + _/2(1'{]( ”I//}_
tm—lt = . - - 2

m=1

)
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After integrating over the time interval of (4.2), the elastic constants are replaced by the
viscoelastic impact response functions. The elastic bulk and shear moduli appear only in
the compression wave speed ¢, and the shear wave speed ¢;. Thus the corresponding
viscoelastic expressions

A T L S S RSl
Ly = —(1\ 4 + =G s )
L+ ppeson 3 14 pgste

0
| + (/(,'.‘-i““

(4.3) l
2 o= lpltacs®
- o 1+ prsta

are inserted in the integrated Eq. (4.2). After Laplace transformation this leads 10

Tl tim

(4.4) L‘,(Z | ﬁ;./{x.&‘!—r)rlr)

m=lt,,_|

1 B . . | g T B TN
Lo [ - ()]
7o s L\ €y Cay

-1l . | I
RO 4 Sz E

Causality of the solution implies that no response is present prior to the arrival of the
waves. This physical requirement is assumed for the numerical inversion of Eq. (4.4). The
correspondence relation

(45) I’-('Q)( T8tmo1 I(\)( B ®—0 f(l o Im I)II([ - /Hi—l) Sl /(’ o [m)[l(’ i "m)

is taken into account as well. The inverse transformation of (4.4) leads therefore to a
function defined piecewise in the time ranges of Eq. (3.12). The inversion is carried out
numerically by the method of Talbot [16].

5. Numerical example

The propagation of waves in a 3 — ) continuum has been calculated by the present
boundary element formulation in the time domain. The problem geometry and the asso-
ciated boundary discretization are shown in Fig. 2.

Linear shape functions in space have been used. The [ree end is excited by a pressure
jump according to a unit step function /(7). The opposite end is fixed at the nodes.
The time step size Al has been chosen close to the time it takes for the viscoelastic
compression wave 1o travel across the largest element.

The viscoelastic material data of a corning glass at 550°C are used (Fig. 2) in this
example.

Figure 3 shows the longitudinal displacement in the center of the free end cross-
section as a function of time for several values of the damping parameter ¢ in the consti-
tutive equation (2.8).

Wave reflections at the fixed and the free end appear. The viscoelastic wave speed of
the compressional wave [ront is given by

5 1 O 4 ga
(5.1) o= (W g 2ok,
o\ prk 3 pG
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Fic. 5. Influence of variable damping coefficient in displacement field at a fixed time.

Increasing damping parameters ¢ stiffen the solid and increase the wave speed. Shorter
travel times show up in Fig. 3 and the stiffening leads also to smaller deflections. The
displacement field of transient wave propagation at several time steps /\{ is shown in
Fig. 4. The wave starts to propagate at the left-hand side after loading in the first picture
(1A7 = 2), between the second (1Al = 5) and third picture (At = 13) it is reflected at
the fixed end of the bar. In the fourth picture (i = 15) the wave has nearly reached
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the free end of the bar. Compared with the analytical solution of the 1 — [ rod [13],
numerical damping is indicated in the 3 — ) solution by amplitude decay. Instability due
to the improper choice of time steps below the critical value in the elastic case is much
less significant in the viscoelastic case [14]. The wave forms for fixed time step but for
different damping coeflicients ¢ are shown in Fig. 5. As a result of stiffening by the viscous
influence, a faster propagation of the wave front is detected.

6. Conclusions

So far published BEM formulations in elastodynamics calculate viscoelastic solids via
the Laplace or Fourier transform domain. The elastic moduli are replaced by the cor-
responding viscoelastic moduli. The calculation of transient response in time domain re-
quires inverse transformation [10] which is associated with truncation effects when the
solution (e.g. in the frequency domain) is known in a limited frequency range only. To
avoid this problem, the BEM formulation in time domain is derived in the present paper,
which converts the elastic formulation to a viscoelastic one. [t turned out to be advan-
tageous to perform the conversion alter integration over a time step 2\ rather than to
replace the elastic by viscoelastic one fundamental solution. The conversion is carried
out by applying the elastic-viscoplastic correspondence principle in the Laplace domain.
The inverse transformation is performed numerically and thus it allows to take general
constitutive equations into account, including those with fractional time derivatives. The
wave propagation in a viscoelastic rod is calculated by the BEM in the time domain. The
material behaviour is described by a rheological three-parameter model which has been
generalized by introducing two [ractional time derivatives.
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Formulation of anisotropic equations
by means of the theory of representations for tensor functions
and the convective method of description

R. JOHN (DRESDEN) and H. BERGANDER (RADEBEUL)

THE PAPER is aimed at the derivation of constitutive equations of large elastic-plastic deformations of
anisotropic materials, The constitutive theory of Y.F. Dafalias is discussed. Application of convective
coordinates to the theory is presented leading to the final form of the constitutive equations.

1. Introduction

NUMERICAL METHODS in solid-state mechanics have gained general acceptance. The exist-
ing programs facilitate the calculation of physical and geometrical nonlinearities. In order
to analyse the deformation behaviour and the corresponding stress distribution, extensive
universal software has been developed. The constitutive equations have to determine the
relations between the stresses and the strains.

The numerical programs, which are developed in the Department of Solid-State Mech-
anics of the T.U. in Dresden, are used to simulate geometrical nonlinearities. Because of
some advantages in the formulation of mechanical relations, the material or convective
method of description is used in our department. But the material subprograms have too
many restrictions concerning the calculation of physical nonlinear problems.

The aim of this theoretical study is the development of constitutive equations for large
elastoplastic deformations in the case of anisotropic material behaviour. The convective
coordinates will be used.

First, the constitutive theory established by Y.F. DAFALIAS [1] will be analysed. In the
second part, a short presentation of the convective way of description will be given. And
in the last part, the final form of the constitutive equations will be presented.

2. Constitutive theory by Y. I. Dafalias

2.1. Special features

A constitutive theory for large elastoplastic deformations and anisotropic material
behaviour was published by Y. F. DAFALIAS in 1987 |1]. Let us present three characteristic
features of that theory.

L. All values which are used to describe the material behaviour, are collected in the
concepl of structure variables. Using this form for the derivation of the constitutive rela-
tions, it is possible to employ the theory of representation for tensor functions.

2. The question of non-uniqueness of the unstressed configurations is answered by the
introduction of three different unstressed configurations. It is shown that the same result
is obtained, independently of the choice of the relaxed configuration.
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3. The basic line of thought is the distinction between the kinematics of the continuum
and the kinematics of the underlying substructure, which was established by MANDEIL. in
1971 [2]. The spin of the substructure is defined as the difference between the material
spin and the plastic spin. All rates of the kinematic variables must be expressed in terms
involving the corotation with the substructural spin.

2.2. Structure variables

The introduction of structure variables in the constitutive relations is necessary for
the description of the anisotropic material behaviour. The tensorial structure variables §
can be either purely orientational or can be “evolving” tensors (with variable eigenvalues
and eigenvectors). They are tensors of arbitrary order. Examples of structure variables
are unit vectors or specific tensors, such as the back-stress tensor. A collection of the
corresponding material behaviour is given in Table I. The substructure is defined by the
tensorial structure variables, but the spin of the substructure is in general not equal to
the spin of these tensors.

Table 1. Structural tensors and the corresponding material behavior.

S material behavior

scalar-valued or isotropic tensor isotropic

Sinitial = 0 and isotropic in reference to its initial unstressed
Squbsequenty 7 0 configuration

(S is an evolving tensor) anisotropic with respect to subsequent

relaxed configurations

all S have purely orientational character initial symmetries persist in reference to
subsequent unstressed configurations

S purely and non-purely orientational tensors there are mitial and evolving anisotropies

2.3. Definition of the unstressed configurations

There are three different unstressed configurations. By integration of the substructural
spin it is possible to obtain a director-vector triad in each of these configurations. The
orientation of this triad is expressed by the orthogonal tensor . The definitions of the
unstressed configurations are given in the Table 2. The configuration &; was used by
MANDEL [2]. Dafalias emphasises that, with respect to the decomposition of the rates of
deformation and the spins, the configuration £ leads to clear relations.

Table 2. Definitions of the unstressed configurations.

unstressed configurations

ku ko k;
feature arbitrary Fé¢ =V fixed orientation in refe-

orientation rence to a global svstem
F = F‘F? VRER) U VR’U VRRU

FCFP vr FEFY

1 ?

rotation of the
substructure B, B B; =1
F. VR;, B, vB VR

FB, F

B, # Rl B #R7 B, # R
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2.4. Application of the theory on the representation for isotropic tensor functions

Consider an anisotropic material represented by the constitutive relation
(2.1) o= [(e) = 0= f(e.£)).
The second order tensor ¢ is a function of the second order tensor ¢. The anisotropy
results in a variation of ¢ with the orientation of ¢ with respect to the material. In order
to specify these orientations, it is possible to introduce i material tensors £;.

The principle of isotropy of space requires, that an arbitrary transformation Q of

the orthogonal group O, applied to both the material and ¢, should produce the same
orthogonal transformation of o

(2.2) YQeO: f(e.&) = f(e.&) £=QeQ'. & =0QQ" and [ =0QfQ".

This means that o is an isotropic function with respect to ¢ and the material tensors &,;.
Consider now the invariance group S of the additional material tensors &;

(2.3) Li=ti, QeSCO
Using this relation we obtain
(2.4) VQeSCO: fEE) = f(e ).

where o is an anisotropic function with respect to ¢. The type of anisotropy is specified
by the invariance group of the material tensors &,. Table 3 shows the effect of different
additional material tensors. The theory of representation for isotropic tensor functions
([3, 4 and 5]) is a powertul tool for the development of anisotropic constitutive equations.

Table 3. The effect of different additional material tensors.

additional arguments invariance group material characteristic
Vi, V2, V3 i anisotropic

M| = vy Qv ,M; = vy O va, IR, R, Ry orthotropic

M; =v3(vy

M; =vi(Ow I, R;, Ro, Rz rotations about vy transverse isotropy

2.5. Constitutive law

In the sequel our attention will be focussed on the unstressed configuration /A, since
this is the most general one and suitable for the description in convective coordinates.
The elastic relations are developed with respect to the unstressed configuration /.

i is the complementary free energy per unit mass, and TT is the stress tensor referred
to the unstressed configuration. The equation

o

2.5 E° = p,—
(2.5) Puan

defines the elastic relation at /. By calculating the time derivative of (2.5) (use of the
same corotational rates) and by transformation to the current configuration, one obtains
the relation for the elastic rate of deformation

(2.6) D' =D+ D" =L 0+ (AN
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D" and D represent the incrementally reversible and the elastoplastic coupling or damage

components of D at k. L is the incrementally elastic modulus, ¢ the corodeformational
rate and () the loading index.
The yield criterion at the current configuration is given by

y n af
(2.7 flo.s)=0, N'=[-—"].
do /
(it does not define a fixed yield surface in the stress space for given values of s, because the
s change together with o, due to elastic embedding). N is the symmetric stress gradient

with respect to the yield criterion. The rates of plastic deformation, the plastic spin and
the corotational rates for the structure variables have the following form:

D’ = (A)N'(I, S in k).
(2.8) W? = (\QF(TL. S in k).

w>
Il

(MS(, S in k).

The specification of the loading index is possible by using the consistency condition

. o« Of «
(2.9) N':0+ o -5 = 0.
Js

The equations
(2.10) G=A:D
and

- L:NYO(N:L
(2.11) A=L—Nh(N) ( )0 )

H+N:L:NP+ N LN

represent the final form of the constitutive relations. The basic structure of the elastoplastic
moduli (2.11) is equal to that for small deformations. The loading direction is diverging
from N" to N.

3. Convective method of description

In the development of constitutive laws different ways of description are possible. In
this paper the convective way of description [6] is preferred.

The coordinate values are firmly attached to the particle, so that the coordinate lines
move along with the progressing deformation. The convective method of description is
characterized by a time-dependent system of base vectors and by time-dependent metrics.
[t connects the material description with Eulerian tensors.

4. Constitutive equations in convective coordinates

4.1. Kinematics

The values @* characterize the material particle. The material line segment with
respect to the reference, the current and the unstressed configuration is given by
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Il

dX = Xi, dO* = G,dO*,
(4.1) dx = x1,dO" = g,dO",
dp = p, dO" =y, dO".
The multiplicative decomposition of the deformation gradient,
F=F¥F = VRR'U = 6",8,G",

~

’(\“Hug“\/” _ 1-“5‘(/”‘\ Rr—.\ugﬂ ;

Il

(4.2) B
]1") = h“,z}’_ucu = 11)’”’»'(-"’Nd\[[‘\yy.UG]/‘

establishes the relations for the material line segment in different configurations. The rate
of deformation L is defined by

(4.3) L=F" = FF~ 4+ FREE ! =g, 00 g

Using the corotational rates, the relations

DE

(v,

(4.4) ]
N N \\
DL[/ = ;(.{//IH l v .(_l,‘lh]) w .(//MWIP TA\v

K

+ Guk L o Gk I)H;l + .r/r/h"""‘ﬁr\-f,\u)?
) AN | 0
D’ = (F' FPEP—ipe )
(4.5)

D, =

g

KA K KA
(.(/ur\' r v G |V + .‘j'm;] T JurW [,\/1)'

| —

with p = F'F’~'p = Pp and w = B~ represent the elastic and plastic rate of defor-
mation. The elastic transformation of the structure variables

A = dey(F*)"“FlaF T,

(46) _Aif"’ _ ('ﬁ>”'(i/”/.

\Vaul

and their increments from the unstressed to the current configuration

Wi — d N —
= det(F*)"E" ~'aF" ",

Bl AR .
=A+Aw — WA

>

(4.7)

characterize the elastic embedding. A stands for a tensor of order two. The exponent w
depends on the physical meaning of the structure variable (is it connected with a material
line segment or not). I the stress o varies in the current configuration without causing
any plastic deformation, the F* varies due to the elastic deformation change. However,
due to its elastic embedding, a will vary in such a way that A will remain constant.

In convective coordinates the transformations of the variables will differ by a scalar
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factor only,

AHU l” 2L KV LR DV JUK A s A
AV = + PHLARY + AR PY Ay awtt — wf Ty AN
(4.8)
ﬁ/u/ = (ﬂ) l(:["l!/‘
g

4.2. Kinetics
The coordinates of the elastic strain tensor are determined by
PPUT, 5°-7)
o1 '
Equation (4.9) yields the corotational rate for the elastic strain

(4.9) E°, = p,

az

FaN AN, A
E: =FE 4+ E°

jag jaz pwe

(4.10)
'lel ][\h (,\>;\T’w

;[.‘/h A Yz
with respect to the unstressed configuration k,,. Transformation to the current configura-
tion leads to the coordinates of the elastic rate of deformation

(4.11) D,, =D, + Dt

iy [

- Oy
L‘H.’ih‘\ ) <’\> 7N

The relation between the representations of the elastic moduli in different configurations
is given by the formula

(4.12) El"’h'\ == ﬁ[lumm‘,\.
VI

The coordinates of the elasto-plastic coupling term are in both configurations the same,
(4.13) N&, =N

Iy JLi

N, depend on the corotational rates of the structure variables. The coordinates for the

: [
corodeformational rate o/

O, aHY (LR I r
(4.14) att (L5 s+ PR+ w0,

which take into account the corotation with the substructure and the elastic embedding,
contain the coordinates of the substructural spin and the metric of the unstressed con-
figuration. To analyse the whole problem it is necessary to define the coordinates of the
plastic rate of deformation and the plastic spin

VaN — . .
St = (ST, S0 at k),

(4.15) DP = {AYNT (", 577 at k,,),
WP, = (A28 (IT**, §7° at k,,).

With the yield criterion in the current configuration
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(4.16)

donv

and the consistency condition of the vield criterion it is possible to determine the loading

index A

(4.17)

;\-Ar/./L"l/;J}- i ])\ K

\ = - = B -
A ]] + ;\'/,UL””H'\ A\ (_;.' + A\(,I‘!UL"',HM',\ L\‘ ,r\’{
I[ - ()/ :E;r...(l-

('4)5./;...(/

The final form of the constitutive law is given by

(4.18)

v\
oY = R /)'\h-
€ AT AT spUd kN
L} ”é‘\ffi‘\ L,’,L

T LENSC NP T ERSE e T
H+ N %.L,érr k_\w + A\ nELM L‘\Cé

.1’“”{/\ — L‘,”HH‘\ o 7;(/\)

: Vo . : ;
In relation (4.18) the term /" denote the coordinates of Truesdell’s stress-rate

(4.19)

A\ .
MY _ LV My 2}
ot =gt + oV L7 ..

The following relations hold for the expressions ol the second part of Eq. (4.18)

‘\"‘”/ = :s\f/l o Z”.\KL‘-_]

Y TRApL?
it — NP haY 1—1] f/',\h'
(420) ‘\/111 - '\un + 4 o L‘grr/h’,\/' 1
h(A) =0 for A <0,
with
Z])/m — —((J'I”" f\;:v\.{/'\r/ + g/m‘yi"\n,\u) + (ﬁw: Q']:'\ﬂ,\u o -(/;u;_(_):\n,\l/ + J\;{/\j’\ﬂ,\vrn;m.
RV L AT Av C AT A AT Nw v L
(4.2)"" = —(a"" N9 + g"" N ™) + Nio ™ g + T,
rev = _f gnen ‘)f {],\1/ i T ()f PLZRR " - ()/ "‘.h‘-»-»\r},l/l’_
()St.....\‘ - ()Sh""\ ()Hf.u.\ .
Now the constitutive relations are complete. Further studies are necessary to apply these
relations written in convective coordinates to various types of materials.
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On nonconvex problems in the theory of plasticity

M. S. KUCZMAY™ and E. STEIN (HANNOVER)

THis PAPER presents a brief review of published results of experimental studies in which noncon-
vex yield surfaces were obtained and results of micromechanical investigations of the elastic-plastic
behaviour of metal matrix composites. For such a class of nonconvex problems a variational in-
equality formulation is proposed. The variational inequality expresses the general, intrinsic features
of the elustic-lplm;tic deformation process and may be interpreted as a weak formulation of the
loading/unloading criteria of the flow theory of plasticity. This formulation covers the case where the
vield function is nonconvex and which can be defined as a non-smooth multisurface yield function in
Koiter’s sense. The proposed formulation constitutes a natural basis for the global projection within
elastic predictor/plastic corrector algorithms.

i. Introduction

THERE 1S a broad class of problems in the theory of plasticity which are nonconvex and/or
nondiflerentiable [8, 18, 36, 54, 58, 65, 73]. These problems are of great practical impor-
tance due to the demands of modern, high-developed industries to use new materials and
structural elements that could work at severe loading and temperature regimes, e.g. fibre
composites or perforated structural elements.

The deformation process of elastoplastic materials is a very complex phenomenon
which can be analysed at different length scales. In practice some reasonable compromise
must be found, hence the mathematical models being vsually used are based on many
assumptions and simplifications. Over the last three decades a lot of efforts have been
made to describe the elastic-plastic deformation process more precisely. The volume of
the literature is very extensive. We mention here only some representative examples of
works which illustrate a variety of issues involved and approaches applied in modelling the
behaviour of elastic-plastic materials. Many sophisticated concepts have been employed
in developing constitutive models [2, 6, 13, 28, 32, 34, 38, 47, 48, 49, 60, 69] and new
algorithms have been proposed for the numerical solution of the corresponding boundary
value problems [51, 45, 53, 59, 66, 72].

In the flow theory of plasticity the concept of a yield (or loading) function is fundamen-
tal. Normally, one assumes that the yield function is convex. This assumption is very ad-
vantagous in the thermomechanical consideration of the process, and seems 10 be crucial
for the numerical algorithms developed for plasticity problems [66]. In fact, for the gen-
eralized standard model developed by HALPHEN and NGUYEN [20], the assumption of a
convex yield function and a convex potential function allows one to satisfy automatically
the second principle of thermodynamics. But convexity of a yield function need not be
assumed a priori, it should be rather regarded as an additional constitutive assumption,
see GREEN and NAGHDI [17] or HILL [22]. Guided by the principles of thermodynamics,
Green and Naghdi have shown that star-shaped yield surfaces in stress space are pos-

(*) On leave from the Technical University of Poznar, Poland. The work of M.S.K. was supported by the
European Communities under the grant £RB-CIPA-CT-922073. This support is gratefully acknowledged.
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sible. In this context it should be mentioned that the well-known and useful postulate
of DRUCKER [12] and that of ILYUSHIN [25], which imply convexily of a yield surface
under the assumption of small strains, are not unconditionally valid but rather can only
provide for classification of material behaviour, as was shown by HILL and RICE, cf.
[23], and restated by NEMAT-NASSER [50]; for an extension of Drucker’s postulate, see
also PANAGIOTOPOULOS [SS]. It is also worthy to note that the general anisotropic vield
condition proposed by HILL [21] “to account for the so-called anomalous behaviour of
some materials” can be nonconvex for many combinations of the defining parameters [71].
Moreover, it may be noted that there is some ambiguity in the practical implementations
of the notion of vyield surface, e.g. PHILLIPS and SIERAKOWSKI [57] have distinguished
between a yield surface and a loading surface, and also HILL [21] has difterentiated be-
tween surfaces related to an elastic limit and to a plastic limit. This reflects to some extent
the fact that the experimental determination of a yield surface for a given material is a
complex task as it is subject to some unavoidable disturbances.

The behaviour of real materials subjected to complex loading histories is quite compli-
cated as has been recently revealed in many computer-controlled experimental investiga-
tions, using improved and accurate experimental techniques [7, 8, 11, 18, 34]. The main
difficulties arise due to plastic anisotropy which is a common feature of commercial metals
or can be induced by a deformation process. Experminetally determined subsequent yield
surfaces for metals exhibit translation and changes in size and shape, including non-afline
distortion. However, it should be noted that the definition of the yield point strongly af-
fects the experimental results on subsequent yield surfaces. In the literature, the generally
adopted definitions are based on: (a) depature from linearity, (b) strain-oflfset and (c)
backward extrapolation method. In many experimental investigations, especially on ma-
terials with sharp yield point, the offset method is used, although the drawn conclusions
on the existence of nonconvex yield surfaces may be doubtlul. A comprehensive sur-
vey of experimental results in plasticity was given by IKEGAMI [24], and by MICHNO and
FINDLEY [44]. For additional references on plastic anisotropy, the conference proceedings
edited by BOEHLER [4] and BESDO and STEIN [3], and the paper by SZCZEPINSKI |70] can
be consulted.

Analysis of non-smooth multisurface plasticity was initiated by KOITER [29, 30] forty
years ago, and further advanced by MANDEL [42]. MAIER, see e.g. [41], has applied the
mathematical programming approach to elastoplasticity problems with piecewise linear
yield surfaces, this approach was also used to the so-called slackened systems by GAWECK!
[16]. An integration algorithm for a singular yield function was proposed by DE BORST [5].
SIMO et al. [67] have carried out a systematic analysis of the computational aspects of
non-smooth multisurface plasticity and viscoplasticity and developed a closest-point-pro-
jection algorithm for this sort of problems.

The variational approach to many problems in solid mechanics provides the most
natural framework that takes into account all specific features of the problem. Usually, the
energy functionals encountered in mechanics are differentiable and convex. Convexity of a
functional is a required property since it assures, in principle, the existence and uniqueness
(for strict convexity) of a solution to the corresponding boundary value problem. Difleren-
tiability being a measure of smoothness of a function is another restrictive requirement
which, from mechanical considerations of many practical problems, can be weakened
drastically. Yet, there are many practical problems in mechanics, e.g. unilateral contact
problems and problems in plasticity where one may consider only unilateral variations of
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some quantities governing the problem. The unilateral problems can be efliciently dealt
with by means of the theory of variational inequalities, as presented by DUVAUT and
LIONS [14] and ODEN [52]. The theory of variational inequalities is, on the other hand,
closely connected to the notion of subdifferential, introduced in the 1960°s by MOREAU,
see e.0. [46], and ROCKAFELLAR, cf. [64]. The mechanical notion of superpotential covers
the case of generally nondifferentiable but convex energy functions. The requirement of
convexity of the superpotential poses a restriction on subdiflerential laws to be monotone.
But in enginnering practice, many constitutive laws are not monotone, e.g. the behaviour
of granular media, or can be properly described by nonconvex models, e.g. the behaviour
of composites or materials with phase transitions.

A general approach to nonconvex and nondifferentiable functions has been developed
in the 1970°s by CLARKE |9] and ROCKAFELLAR [63]. This approach hinges also on con-
vexily, i.e. instead of local linearization of a function at a given point on its graph one looks
for convexification at this point. Clarke showed how it can be done automatically. These
mathematical ideas have been introduced into mechanics by PANAGIOTOPOULOS, see e.g.
[56]. KiM and ODEN [26, 27] have studied nonconvex problems in finite elastoplasticity
for the so-called materials of Type N, i.e. materials which obey the (generalized) normality
rule.

Our aim in this paper is twofold: first, by way of motivation, to show some evidence of
nonconvex problems in the theory of plasticity; and second, to provide a new variational
inequality formulation for a class of problems of this type. The variational inequality 1s
derived directly [rom the very basic requirement of the theory of plastic flow that

(1.1) F<l, A>d, F-A=0

For (a yield function) [/ being a lunction of \F o= I"(;\), Eqs. (1.1) constitute the
so-called complementarity problem [10], which is in general nonlinear. In the particular
case when I is an afline function of \, Eqs. (1.1) are called a linear complementarity
problem. As will be shown later, conditions of type (1.1) are equivalent to a variational
inequality. The formulation based on this observation was applied latelv for a convex
differentiable elastic-plastic problem by KuczMmA and WIHITEMAN |[31]. The layout of
the paper is following. In the next section we shall briefly review problems in which
nonconvex yield surfaces were obtained. In Sec. 3 we define a general mechanical model
of the elastoplastic deformation process and develop the variational formulation. Some
remarks close the paper. Selected concepts of nonlinear functional analysis that are usuful
in approaching the problem are summarized in an appendix.

2. Nonconvex problems in plasticity

In this section we shall briefly review both the available results of experimental tests and
the results of theoretical considerations on micromechanical modelling of fibre composites
in which nonconvex vield surfaces were obtained. Complete details are contained in the
references cited below.

2.1. Experimental results

Plastic behaviour of initially anisotropic metals was experimentally investigated by
SHIRATORI et al. in the 19707, cf. [65]. The authors tested, among others, tubular speci-
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FiG. 1. Subsequent vield curves atter prestraining along stress paths displayed in the figure, obtained by SHIRATORI
et al. [65]. A concavity can be seen in the yield locus defined by (— A —) or (— ¢ —) points.
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mens of mild steel by applying various prestraining and reloading paths, and taking the
von Mises effective stress/effective strain relation. The yield surfaces was determined by
the stress points corresponding to the offset strain of 0.0002. Figure 1 shows the results
they obtained for a tubular specimen of mild steel in reloading under combined torsional
and axial prestrainings. The results were approximated by convex curves, although some
concavity of the yield locus can be seen in the zone opposite the last prestraining in
the cases denoted with symbols (— /A —) and (— ¢ —). ZYCZKOWSKI and KURTYKA [74]
represented these experimental results also by convex curves, using a geometrical descrip-
tion of anisotropic hardening, see Fig. 2. On developing the description the authors [74]
employed Ilyushin’s postulate of anisotropy and defined the subsequent yield surfaces
in a generalized Ilyushin space. The general functions they arrived at for the distorted
vield surfaces may be nonconvex; in the above example, a simplified (convex) version was
applied.

In 1983 GUPTA and LAUERT [18] published the results of their experiments on subse-
quent yield surfaces of annealed mild steel, Ck-15. The experiments were performed on
tubular specimens, using an automated machine with computer interface. The yield points
were determined in all four quadrants of normal-shear stress plane according to a regular
pattern of probing (16 points on each vield surface). The specimens were analysed in
annealed condition and after having been prestrained by 10% in pure tension. The offset
definition of yield-point was adopted. The subsequent yield surfaces they obtained for the
prestrained specimen, when taking different values of offset, are shown in Fig. 3. For the
values of offset equal to 1 x 107* and 2 x 107, a vertex can be seen in the direction
of prestraining, accompanied by a reentrant corner in the opposite direction, where the
yield curve becomes nonconvex. LEHMANN [33] is seemed to be the first who attempted
to explain and describe the phenomenon observed by Gupta and Lauert. He proposed
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FiG. 2. Zyczrowskr and KURTYKA's [74] approximation of the experimental results of SHIRATORL et al. [65].

a constitutive law with two yield mechanisms that leads to a nonconvex resulting yield
surface (cf. Fig. 4). A yield function that accounts for prestrain and is based on one
vield mechanism was proposed by GUPTA and MEYERS [19]. The proposed relation is
a function of second and third invariants ol the shifted deviator stress tensor and can
generate nonconvex functions, see MEYERS [43].

The similar material, i.e. an annealed mild steel with comparable composition, was
earlier tested in a series of experiments by MICHNO and FINDLEY, cl. [44]. The yield
surfaces they obtained were convex and smooth. Michno and Findley determined yield
points adopting also the offset definition, but used a rather random seqeunce of probing,
and constructed the resulting yield surface as an approximating curve of 30 to 40 probes.
In the discussion paper [15], these authors have attempted to find out possible reasons
for the differences between their results and the results of GUPTA and LAUERT [18]. As
an explanation of the findings of GUPTA and LAUERT [18], FINDLEY and MICHNO [15]
pointed out a possibility of reverse yielding on unloding to zero from the first 10% strain-
ing, followed by the ordered sequence of probing of local yield points. According to the
authors” opinion, this resulted in that “each of the 16 probes represents only one point on
16 different subsequent yield surfaces caused by yielding under each “probing”. A criti-
cal discussion about the existence of the vertices and concavities in Gupta and Lauert’s
experiments, and the explanations of FINDLEY and MICHNO [15] has been recently given
by SUPRUN [68]. Tt was showed in [68] that also the experimental results of MICHNO
and FINDLEY [15] represent a yield surface with the pointed vertex and cusp, like that of
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GurTta and LAUERT [ 18], if the vield surface were defined only by the first 12 yield points.
Suprun has emphasized the role of time effects in the defromation process and claimed,
al some variance 1o FINDLEY and MICHNO[15], that the 16 points represent one point on
16 different yield surfaces, but this is mainly due to the process of recovery or return of
the surface. According to his suggestion, the theory of viscoplasticity could be a remedy
for the situation considered.
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F1G. 5. Polygonal and square strain paths applied by ChenG and KrempL [8]. The numbers indicate the stations
or prestrain points from which yield surface probing can start.

CHENG and KREMPL [8] have recently reported interesting results of their detailed
experimental studies on yield surfaces of an Al/Mg alloy. The experiments were conducted
on tubular specimens, using a servohydraulic computer-controlled axial-torsion testing
machine. In determing yield curves, the offset definition was used, with a plastic offset
strain of 1 x 107%, and 16 probes radially emanating from a base point. Long and complex,
nonproportional loading paths were examined, cl. Fig. 5. Yield surfaces in stress space as
well as in strain space were determined. The yield surfaces experimentally determined by
16 yield points were then smoothed with cubic spline curves by the least square method.
The whole experiment and data postprocessing were performed by the computer. The
subsequent yield surfaces obtained by CHENG and KREMPL in [8] exhibit the characteristic
features: translation, change in shape and size and a cross-eflect. Figure 6 (Fig. 12 in [8])
illustrates the effect of prior history on the subsequent yield surfaces at the same prestrain
point. The increase in size and the characteristic front part and the flattened rare part
with a small concavity can be observed.

Finally, is should be noted that a pronounced concavity of the yield surface was re-
ported a long time ago in experiments involving high hydrostatic pressure by BRIDGMAN
(1955) and VERESHCHAGIN and SHAPOCHKIN (1960), cf. LEVITAS [35]. Following Levitas
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&

Fi16. 7. Characteristic relations 7, = 7, (o) for tour groups of materials, from LEviTAS [36].
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[36] we display in Fig. 7 four typical relations 7, = 7,(0y) between hydrostatic pressure
o, and ultimate shear strength 7., obtained for different groups of materials. The rela-
tions may be treated as a yield condition of Schleicher-Nadai type. To account for this
phenomenon LEVITAS, cf. [35], developed a mechanical model with structural changes;
for further extensions of the model, see Levitas [37].

In the next subsection we describe a mechanical model of a medium in which the loss
of convexily of an initial yield surface is caused by the influence of plastic deformation on
the elastic properties of the medium.

2.2. Micromechanics model of metal matrix composites [58]

PINDERA et al. [58] have reported recently interesting results concerning the elastic-
plastic response of metal matrix composites. Some main points of their analysis are
briefly presented below. The authors have investigated the initial yield surfaces of the
graphite/aluminium composites in the presence of material nonlinearities of the fibre
phase that exhibits a stiffening response along the fibre direction. By accounting for the
stiffening effect in fibres the authors arrived at a material model which was already con-
sidered in a simpler form by PALMER et al. [54]. In the investigation [58] ABOUDI'S mi-
cromechanics model of fibre-reinforced composites was employed, for a description of
the model see ABOUDI [1]. Here we only record that the model relies on the analysis
of a repeating cell of a unidirectional fibrous matrix composite in which the fibres are
distributed regularly in the matrix, cf. Fig. 8a. The representative cell, showed in Fig. 8b,
consists of four subcells (/7.4 = 1.2), one of which is occupied by the fibre (7 = v = 1)
and the other are occupied by the matrix (7 + 7 # 2) . The micromechanics analysis of
the representative cell is based on the assumption ol a linear variation of the displace-
ments in each subcell, and enforces the continuity ol displacements and tractions at the
interfaces between the subcells and between adjacent cells through an averaging process.
This approximation leads finally to closed-form constitutive relations in terms of average
stresses and strains, which describe the overhall response of the composite.

In [58] the elastic response of the [ibre phase was derived from a potential function
and is defined by the following nonlinear stress-strain relation

/,",' (7'“,‘
\Y ',rHu‘ (T/H (TH

where the reduced notation is used, and A;; and [;; are positive definite and positive
semidefinite fourth-order tensors, respectively, and « is a positive scalar. The elastic-plastic
behaviour of the matrix is assumed to be linearly elastic with yielding governed by the
Huber-von Mises condition:

o

(] o (‘—:\ !run Tm /T”).

(2.1)

= Ao+

(2.2) FONEEM Yy =0, B+7 42,

where Y is the yield stress of the matrix, and S99 are the matrix subcell stress deviators,
whilst the stresses S7”) developed in the matrix and fibre subcells are defined by

g = gz
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Fi6. 8. Repeating unit cell of Aouprs model [1].

with @ being the external loading, and B/’ is Hill's stress concentration matrix:

I

By Bp Bis 0 0o 0¥
By By By 0 0 0
By By DBy 0 0 0

0 0 0 By 0 0
0 0 0 0 Bss 0
0 0 0 0 0 B
In this model, initial yielding takes place if the condition (2.2) is satisfied in any matrix
subcell of the cell, whereas the yield surface of the composite is defined as the inner
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envelope of the three yield surfaces of the individual matrix subcells. On demonstrating
the loss of convexity, the authors considered the simplest case in which the nonlinear
relation (2.1) was approximated, under longitudinal stress |, by a bilinear function

-
(2.3) f1=— for 0< o <ar
Ey
a .
(2.4) £ zl',—l+bf for oy > oy.

In (2.3) and (2.4), Fy = 1/(Apy + aly), Lo = 1/, are the initial and final Young’s
moduli of the fibre, respectively, and 7 = /[1;. In this case the yield condition (2.2) in
the matrix subcells is defined by the following two expressions:

(2.5) FODYBYE) -y =0, A+y#2. it S0 <

(1) . - . :
where .Sfl Vs the longitudinal stress in the fibre, and

(2.6) FrON@E + 0N v =0, g+q#£2, it |SUY] > o7,

where
S;(/_'M) = B(;‘i*‘,)ﬁuz

. —k (11 - .
and the composites stresses o~ correspond to the stress .Sfl ] through the [ollowing equa-
tion

(2.7) v = plhzr 4+ sz 4+ BVa:, =72

Equation (2.7) defines a plane in stress space that separates the two regions within which
(2.5) and (2.6) are satisfied. Comparing the form of arguments in the yield conditions
(2.5) and (2.6) it can be seen that due to the stiftening effect the yield surface (in each
subcell) is translated and rotated. Such a situation is presented in Fig. 9, taken from
PINDERA ef al. [S8], for loading in the @), — @,, space, where the resulting yield surface

ot

£q. (26)

FiG. 9. Hlustration of the loss of convexity of the initial yield surfaces of unidirectional composite with a bilincar
fibre response in the @y — 22 stress space due to yielding in one matrix subcell, from PINDERA ef al. [58].
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is denoted by the bold line. The authors have noted that in the case of unidirectional
graphite/aluminium and loading conditions considered in [58], the loss of convexity of
the yield surfaces occurs when the ratio # = .../ I, of asymptotic moduli is four and
higher (the documented stiffening is much smaller, cf. [58]). But they claimed that in some
laminated structures the loss of convexity may occur under specific combinations of loads
for realistic values of I{. The influence of temperature on convexity of the yield surfaces
is also analysed in [58].

3. Variational formulation of the problem

In this section we are concerned with the elastic-plastic quasi-static deformation process
of a solid body. The process is described by a mechanical model which is based on the
assumption of (generalized) normal dissipation.

3.1. Mechanical model

Let the body occupy an open bounded domain 2 C R* with sufficiently smooth
boundary /. The quantities describing the elastic-plastic deformation process are functions
of the space variable x € (2 and the scalar, time-like parameter / € [0.1'],T" < oc, which
determines the sequence of events as the process develops. The boundary I consists of
two mutually disjoint parts [, and [,, on which, respectively, the conditions for the
displacement vector u = (u(x. 1), ua(x. 1), u3(x. 1)) and the stress tensor o = (a;;(x. 1)),
1 < 1.y < 3, are prescribed. Let ¥ stand for the gradient operator. Confining ourselves
to small deformations we may split the total strain tensor

(3:1) e = ;[\—u + (Va)')

into an elastic € and a plastic €’ part,

(3.2) e=¢"+¢€’
which can be expressed in rate form

(3.3) £ =é" + &l

Passing on to the constitutive relations we adopt the general assumption that the
irreversible characteristics of the deformation process can be described by means of a
suitable collection of internal state variables . Let X' C R® denote the space of stress
values at a point x € (2 and time ¢ and let /A C 117 be the space of values of the internal

variables cx.

When employing the concept of the yield function /7 = F(eo.«) it is said that the
state of stress is admissible if the following condition is satisfied
(3.4) (o, a) < 0.

The elastic region is defined by the strict inequality
3.9 Flo.a) <0
and 1s supplemented with the condition of no progress in irreversibility

(3.6) elr=0. a=0.
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We further suppose that within the elastic region the relation between the stress rate
tensor and the elastic strain rate tensor is given by a linear symmetric operator C which
may possibly depend on the actual state (. «):

(3.7) ¢ = C(o.a)o.

The plastic region is defined by the equality

(3.8) Flo.a) =0

and is accompanied by increments of the irreversible quantities, so that
(3.9 ¢ =Cla.a)e + &

The flow rule and the hardening rule are, besides the yield function, the basic constitu-
ents of the flow theory of plasticity. In this paper we take the associative form of these rules
and consider first the case in which the yield function is differentiable in the classical sense.
Then the evolution ol the irreversible variables involved in the process may be expressed
by the following laws:

Elp = f\v(rll"(.(f. (\).

3.10) : :
/\T(y ]'1((7'.(7) with /\ 2 (.

—H(e. «)cx

where A is an unspecified scalar function called the plastic mudtiplier, whilst H is an operator
that defines the conjugate variable to «; see e.g. [67] for a disscusion concerning H and C.

The introduction of internal variables «v in the description of material response accou-
nts for specilic microstructural rearrangements of the constituent parts of the material
in the course of deformation. Using the internal variable framework, RICE [61, 62] has
studied the form of macroscopic constitutive laws in metal plasticity as motivated by un-
derlying microscale mechanisms of deformation. He showed that the macroscopic laws for
a class of microstructural deformation mechanisms possess a plastic normality structure,
which is similar to (3.10),. Moreover, in |61] the rates ¢ were proposed to be governed
by the consistency condition, i.e. /' = 0. LUBLINER |39, 40] has also analysed the general
forms of rate equations for internal variables and derived some restrictions imposed on
them by thermodynamics. The form (3.10), is a specialization of the general local harden-
ing law, in the isothermal case. Referring to LUBLINER |39], we suppose that there exists
the operator H™" which can be expressed as

H (0. ) = h(o.qa) - (Val(o.a)".

Then it follows that (3.10), represents an evolution law which is similar to that assumed
by LUBLINER (Eq. 17 in [39]). The presence of A in (3.10), is motivated — as generally
known — by physical aspects of the process, and it is useful from the computational point
of view. Furthermore, the permitted nonconvex yield function and the matrix operator
H may cover nonmonotone evolution laws for «, e.g. due to phase changes or damage
processes in the material. Note that substituting A > 0 from (3.10); into (3.10); leads to
a relation between the rates ¢ and ¢ which is similar to that derived by RICE (Eq. 25 in
[61]). It may also be noted that convexity of the yield potential was proved by RICE [62]
under some additional assumptions concerning monotonicity of the rates ¢.
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As can be easily seen at any point of the material the following possibilities may be
distinguished:

<0 then A=0 elastic state ;
elastic process.

(3.11) F =0 and A =0 plastic state: neutral loading

I"=0 and A > 0 plastic state: plastic loading } plastic process.

Thus the process (or loading) is termed plastic, if it is accompanied by an increment of
plastic strain thogether with a change of internal variables, otherwise it is elastic.

The relations (3.11) can be equivalently written in a more compact way as the comple-
mentarity conditions

(3.12) F<0, A>0, F-A=0.

Now we wish to extend the presented constitutive relations to the case in which the
elastic region is described by a yield function consisting of a number of segments. Following
KOITER ([29]), we let the yield function to be defined as the maximum-type [unction
(3.13) F(o,a) = max F/(a. ).

1<<m
We assume that the component yield functions [/ are difterentiable, but they may inter-
sect in a non-smooth manner and may be non-convex. The case in which /7 is defined
by three differentiable and convex yield functions (Mises ellipses) has been considered by
PINDERA et al., ¢l. Fig. 2 in [58]. A non-convex, non-smooth yield function generated by
two differentiable convex functions [ is illustrated in Fig. 9, in which case an additional
condition corresponding to (2.7) must be taken into account.

Note that in the case of the non-smooth yield function only the evolution laws (3.10)
must be generalized due to the lack of classical differentiability at the vertices (conical
points) of the set /v,

(3.14) K={(c,a)e ¥ x A| F(o,a) <0}
As the plastic potential we take the indicator function of the set /v,

) if (0.« -
(3.15) Crlo. ) = {(x i EZ.(:; 2 ﬁf

In the case of nonconvex nonsmooth yield function we assume, as a generalization of
(3.10), that the evolution of irreversible variables satisfy the following normality condition

(3.16) (¢". ~H(o. a)&) € Do (a.a) = Ny(o, ).

In (3.16) ¢ denotes the generalized subdifterential operator, and NV is the normal cone
to the set /v, as defined in the Appendix by (A.11) and (A.0), respectively; cf. also (A.14).
A two dimensional case, i.e. A C R? is illustrated in Fig. 10, where both the normal cone
and the tangent cone to A are shown.

Hence the elastic-plastic deformation process is characterized by the following relations
(.)€ I,
(3.17) £ =Clo.a)o + &’
(e”, —H(o.)&) € Ny (o, «).
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=

[
N2
=\ 2=
x —

NK(X)

FiG. 10. Tangent and normal cones to a set ' C 1%,
By virtue of (A.13) relation (3.16) implies the inequality
(3.18) (¢” | &')x + (—H(o, a)ex | "I>.~'l < L“]l\-(((r.(x):((rl.u’)) V(o' ,a') € ¥ x A,

Tk

where (- | -) v and (- | -) 4 signify duality pairings on Y™ x X and A" x /, respectively.
On the other hand, by making use of the definition of the normal cone to the set i\,
Eq. (A.6), we may write

(3.19) (" | o'y e + (-H(o,a)a | ') 4 <0 V(o' ) € Ti(o, ).
When the set i' is convex Eqs. (3.18) and (3.19) reduce to the known form, cf. (A.4),
(3.20) (" |o' —o)s + (—H(og,a)x | o' —a) 4 €0 V(o' ,a')€ L.

Nonconvex nondifferentiable problems for finite elastoplasticity were studied in the frame-
work of thermodynamics by KiM and ODEN [26, 27] who extended the normality condition
to the (generalized) normal cone and introduced materials of Tipe N. These authors pro-
posed generalized plastic potentials in the form suitable for computations by an interior
penalty method. When the set K is convex, they recovered the generalized standard ma-
terials introduced by HALPHEN and NGUYEN [20].

In the next subsection we demonstrate a variational inequality formulation for the
elastic-plastic process which is derived directly (rom the loading/unloading conditions as
in (3.12).

3.2. Variational inequality formulation

The variational inequality formulation proposed here is based upon a lemma which
states the equivalence between the so-called (generalized) complemetarity problem and a
class of variational inequalities.
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Let © C (7 be a non-empty closed convex cone in a real Hilbert space (7. and let
C* C U~ denote its polar cone in the dual space (/™. Moreover, let I’ ' — [ stand
for a continuous operator, and let (- | -) indicate duality pairing in {7 »x /.

The lemma is concerned with the following problems.

e The (generalized) complementarity problem (in short, CP):

Find « € T such that

(3.21) P(u)€ . (P(u)|u) = 0.
e The variational inequality (in short, VI)
(3.22) weC, (Plu)y|lv—u)>0 Voel.

LEMMA. The complementarity problem (3.21) and the variational inequality (3.22) are
equivalent.

The prove will be given in two steps. First it will be shown that VI (3.22) implies CP
(3.21). If C is a convex cone (with vertex at the origin), then yu € Z and u + w €  [or

any w.w € C, 1 € [0, 20). After substitution © = 0 and ¢ = 2u into (3.22), we obtain
respectively
(P(u)| —u) >0 and (P(u)]|u) >0
thus, for u € C,
(P(u) | u) = 0.
Next, taking © = w + w in (3.22), the latter is reduced to
(P(u) |w) >0 YweC

which means that P(u) € C*.

In order to show the inverse implication we shall use the definition of the polar cone.
If v € Cand P(u) € C*, then

w€e€C, (P)]|v)>0 Vved

Subtraction of the equality (P(u) | ) = 0 from the above inequality gives VI (3.22),
which completes the proof.

Returning to the multisurface yield function /" we can see that the condition (3.13)
implies that each component function satisfies

(3.23) Fi(o,a) <0, V1< j<m.

Furthermore we note that, for any fixed x € {2 and time {, the function /" is defined in
finite-dimensional space K", with n = 6 + ¢ being the number of components of the pair
p = (0. «). The normal cone to the set I can be defined as a linear combination of the
gradients of functions /':

m

(3.24)  Ny(p) = {w € R" {w =S EVEI(p), & 20, & = 0if Fi(p) < 0}.

J=1
where

VFi(p) = VIV(e.a) = (Vo Fi(o.a), Val' (o, a)).
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Eventually, in the light of (3.23) and (3.24), relations (3.17) can be written as follows
¢ =Clo.a)o + &',

m

(3.25) (e —H(o.)x) = Z,'\"Tl-"(n.u).
=1

/'

o)y <0, A >0 ool =0 Y1<j<m.
(

Let (- | -) be now defined as the inner product in (L,({2))", i.e. for r,v € (Ly(§2))"

m

(rlv) = Z I ! (x) 0 (x) el

=11
and let  stand for the closed convex positive cone in (L2(§2))",
C={r e (La(2)" [ (e V)20 Y>>0 in  (L(2)").

Bv A we denote the vector of plastic multipliers, A € .
From Eq. (3.25) ; one obtains the following formulae for the stress, plastic strain and
internal variables at a given point x € {2 and time level 1 € [0.T]:

(320) ()= [ CTN(@(r). a())e(r)dr

t 1

— [ o) alr) SN (O o I (a(7), (7)) dr.
0 i=1
i e
327) ') = [ S N@ONVali(a(r). o(r))dr.,
uoog=I
(3.28) «(l) = _]'41*‘(0@).(.(7))ZX’(T)Tn/ﬂ-'((a(r).a(r))r/r.
0 J=1

When C and H are constant, (3.26) and (3.28) take the usual forms
a(t) = € e(t) — CleP(H1),
afl) = —H 'w(l).

with

f T

o) = [ 3 MOVl (7). alr) dr.

0 y=I

Substitution of the pair (a. «) as defined by (3.26) and (3.28) to F = { ]} leads to
new yield functions which will be designated by G = {(+/}, ie.

(3.29) Ge.e”.a) = I (a(e. €”). ).

By taking advantage of the lemma, we can express the complementarity conditions
(3.25); in the weak form as the following variational inequality

(3.30) (=G(e(u).e"(N).a(A) [y = A) >0 V~ye
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The system (3.30) describes completely the evolution of irreversibility during the de-
formation process under consideration. The variational inequality (3.30) is defined for the
whole body (2 on two fields: the plastic multiplier A € € and the displacement u € 1, V'
being a set of kinematically admissible displacemets of the body. The displacement u can
be determined through the equilibrium equation for the body and is treated, in this paper,
as given. Bearing this in mind, consider the time integration of the variational inequality
of evolution. To this end, the time interval [0. 7] is divided into finite subintervals by se-

lecting on the time axis points ty = 0, 4y,....lr—, tr g, I = T'. The quantities
at a fixed { = /. will be indicated with the subscript 7, thus e.g. u- = u({-.-) is a function
only of the space variable x, and let A stand for a finite increment.

A typical time-step t, — {4, consists in the following updating:

e given the pair (u.. ;) which defines the state of the process at time [ = /., 1e.
(=G(e(u;), €?(Ar). (X)) |y — AX;) >0 Yy €L

e determine the increment (Nu, 4, AA-41) which will define the state of the process
at time level { = {4, through the pair

U, =u, + Aoy,
Ar+1 = A7' + -—\Ar+l~

This amounts to solving the problem (given Au, . ):
find AX, ., € T such that

(=G(e(ur + Aurpy)oe” (A + AN ) alA + AN 1) |v— X 4) >0 Vye Ll

The proposed variational inequatlity formulation provides for the global projection
step in the sense of elastic predictoriplastic corrector algorithms. This kind ol numerical
scheme was applied in KuczZMA and WHITEMAN [31] for an initial elastic-plastic boundary
value problem with linear elastic behaviour and yielding governed by the Huber—von Mises
criterion. After having been discretized by the finite element method, the variational
inequality therein is solved as a sequence of linear complementarity problems.

4. Closing remarks

A variational formulation for a class of nonconvex problems in multisurface elastoplas-
ticity was proposed. This represents a coupled system of variational inequalities that can be
interpreted as a weak form of the loading/unloading conditions for the whole body under
consideration. The formulation seems to be attractive from the computational standpoint,
as it leads directly to an elastic predictor/plastic corrector algorithm within which the
projection onto the vield surface is performed for the whole body under study. This
formulation enables one to apply various finite element approximations of the field of
plastic multiplier A\,

It is noted that nonconvex models arise in describing the elastic-plastic behaviour of
materials with complicated substructure, e.g. composites, or when the influence of high
pressure is taken into account (phase transitions). The existence of a nonconvex yield
function for metals is a very controversial issue. It was not the purpose of the present
paper to explain the causes of the observed concavity on experimentaly determined yield
surfaces of metal specimens. In the light of the presented results the following questions
are still open: (a) what is the influence of these (local) anisotropic singularities of the
yield surface, e.g. meassured by oflset tests, on the overall response of the body or m
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other words, on the solution of the corresponding initial boundary value problem and,
(b) what is the admissible extent to which the experimentally determined, nonconvex and
nonsmooth yield surface can be approximated by a convex and smooth one so as not to
lose the proper information about the material behaviour.

Appendix

We present here a brief summary of selected concepts of convex and nonconvex anal-
ysis; further details can be found in [63, 9, 26, 56]. Let I be the extended real number
system, ie. B = RJ{Loc}. Letting X indicate a real topological linear space and X'~
its dual, we denote by (- | -) y duality pairing on X* x X, ie if #™ € X" and z € X,
then 2*(z) = (a™ | ) x.

A set i C X is said to be convex if and only if for every pair of elements v,y € IV
the element fa + (1 — @)y isin K" forall 8§ € [0, 1], i.e. I is convex ifl the line segment
connecting any two points , y € I\ is entirely contained in the set A"

Fi(x)

X
Fic. 11. Epigraph of a function [ defined on R.
The epigraph of an extended real-valued function I": X — T, is the set (see Fig. 11)
epi F' = {(x,7) € X x R|r > F(a)}.
Let I\" be a convex subset of X'. A function /" : i~ — E is said to be convex on A" iff

it satisfies the condition
Ffa + (1 —&y) <O0F@@)+(1—-0F(y) Ye.ye K. V8 e [0,1].

whenever the rigth-hand side is defined; i.e. I is convex ifl epi [’ is a convex set (cf.
Fig. 11).

A function I : X — R is Gateaux-differentiable (G-differentiable) at a point » € X
iff a unique continuous linear functional /''(x) € X~ exists such that
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[ : . oo .
lim E[[‘ (e + 6y)y— Fly)y) =1 "(x) ly)y Vye X.

H—0)"
If I': X — I?is G-differentiable on .\, then / is convex iff
(A1) Fy) - F@)> F'@)|y—a)y Vae.ye X.
The subdifferential of a function I' : X — R at 2 € X is the subset dF(r) C X7,

defined by
(A.2) IF@)y={x"e X" | Fy)—F@)> (" |r—yy Vye X}

The elements ™ € ¢17(v) are called subgradients of I at . It is worth noting here that
the condition in (A.2) must be satisfied for every direction y € X, ¢f. also (A.1). The
geometrical interpretation of the subdifferential of a continuous function I : ' — I is
illustrated in Fig. 11, where e.g. 0F (a) = [tg. 37 .1g/3]]. The subdifferential ¢ /(') may
be an empty set, even in the cases where ordinary derivatives exist, e.g., JI'(r) = () for
a < a < bin Fig. 11.

Let /' be a nonempty subset of X', The indicator function ¢ : X — If of the set I\
is defined by
0 e e kv,
(A.3) Yr(e) = { ~ il g' N

The indicator function ¢ is Ls.c. ifl A is closed. When A is a nonconvex set then
v is nonconvex. I I\ is convex, then ¢ is a convex function and its subdifterential

(Ad)  Duge(r) = fo" € X7 [ éx(y) — ba(@) > (2" [y —2)x Vye N}
={"e X7 | (T |y—a)xy <0 Yye W},
The tangent cone 1o N at v € I is the set
. R .
(A.5) T'i(x) = El’nll,n} 5(1\ -2y = ﬂ U ﬂ (a(l\ — )+ l)
. AEU®) BEU() JeRnp
6—0 a>0 HE(.)
In the finite dimensional case, for K' C [? cf. Fig. 12, (A.5) can be simplified:
Trex)={ye R"| VO —0",x* —xwithx* € i
Jy* — y such that x* + 0,y* € I},

L) ==

S
K =
T~

FiG. 12. Tangent cone to a set A" C R* at ro.
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In (A.S5) the notation is used that
=g e —a with 2 €N

[t should be remarked that 7 (2) is a closed convex cone containing 0. If A" is convex,
then

Te(x)=cf{ye R" |36 >0x+0ye L}
The normal cone to I\ at @ & I, denoted Ny (), is a subset of the dual space X' ™ and
can be defined by polarity to the tangent cone 7'y (),

(A.0) Nr@)y={2"e X" | (2" |y) <0 VyeTr(x)}.
It is noted that N () is a convex cone, and in two dimensions N (@) consists of

these vectors which make obtuse angles with vectors belonging to Ty (), cf. Fig. 10010
I\ is convex, then

(A.7) Ne@={a"eX | |ly—-2)<0 Vye N}

and in this case the normal cone N (@) coincides with what has been called the normal
cone in convex analysis. If » € int ', i.e. @ belongs to the interior of the set A, then
.\']\'{.I') = 0.

Let [' be an extended real-valued function defined on X, F': X — Randlet x € X
be any point where [ 1is finite. The (Clarke-Rockaffelar) upper subderivative ol I at @ in
direction y € X is defined by the expression

Fa' + 6y")y — o

(A.8) jal (x3y) = limsup inf
(J_/_ﬁtH P .,//7” ”
H—0"

where, with (', a’) € epi I, the notation is used
P
(@ oY lpae e @ a)y— (v, Fx)) with o > F@').

If /7 is Ls.c. at @, then (A.8) can be reduced to the slightly simpler form

: Fe'+ 6y — Fa!
(A.9) ! l(.r;y) = limsup inf G v) i ).
J‘/—,.xl‘ _’j’_!/ H
g—0"

with

@ —parea’ =2 and F@") — F(2).

If 1" is locally Lipschitzian at a given point @, then /(.1 ) reduces to Clarke’s original,
directional derivative

‘ Fer' + 6y — Fo!
(A.10) eyl = Tmenp s o !;) @)
.7',— ko
h~l;"
Let I be an extended real-valued functional on X', /' : X' — R U {~c}, and let & be

any point at which £ is finite. The generalized subdifferential of I at @ is defined as the
set

(A.11) IF(@)y={z"e X" | (2" |y) < Fl(r:y) Vye X},
or equivalently as
(A.12) IF@E)={2"€ X*|(@". - 1) € N (2. F(2))}.
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The following propositions may be proved. It /" is differentiable at ., then its generaliz-
ed subdifferential consists of only one element, the gradient of I at v, ie. dF(v) =
{VF(x)}. If F'(2;0) = —oc, then JF(x) is empty, but otherwise /() is nonempty
and
(A.13) Fla;y) =sup{(a™ | y) | 2" € dF(x) Vye X}.

If /' is the indicator function of a set I\, ie. F(2) = w2, (2), the latter being defined in
(A.3), then

(A.14) JF ()

{a* e X~ | (a* | y) < ¢l (;9) Vye X}

= Nk (x).
If F'is a convex function on X, then dJF(r) is equivalent to the subdifferential in the
sense of convex analysis, as defined in (A.2).
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On Cosserat plasticity and plastic spin
for isotropic materials

D. LACHNER, H. LIPPMANN (MUNCHEN) and L.S. TOTH (METZ,)

DIFFERENT THEORETICAL approaches to the problem of the effect of grain rotations during plastic
torsion are compared with experiments. On the theoretical side the concept of Cosserat plasticity
includes a Cosserat continuum to calculate an independent macroscopic rotation — the plastic spin.
Some crystal plasticity theories are applied to calculate the rotation of each individual grain. With
the help of statistics. again a macroscopic rotation can be calculated. In experiments the rotations
of a sample of grains in some Al-cylinders and rods of different geometries are measured with the
v. Laue backreflection method. After statistical evaluation of the individual rotations, the averaged
rotations arc compared with the different theories.

Notations

m nonsymmetric tensor of couple stresses,
m . confidence interval,
S nonsymmetric stress tensor,
Y uniaxial vield limit,
o, /3 material constants,

=

macroscopic rotation rate,
O symmetric part of S,
T antimetric part of S,
A = A,y torsional shear rate,
w absolute rotation rate,
) relative rotation rate (Cosserat rotation rate, plastic spin),
/A normalized Cosserat rotation rate.

i. introduction

Tiie SUBIECT of this paper is a comparison of experiments with the predictions of several
different plasticity models that can describe more than just the deformation and stress
stale, usually accessible by the classical methods in plasticity.

A more detailed description may incorporate some internal parameters like hardening,
damage or the development of a substructure that characterize the state of the material.
The behaviour of the material then depends on these internal parameters. Often the
rotation of the substructure of the material is regarded as an important parameter.

Numerous papers deal with the so-called “plastic spin” — in non-isotropic materials
— and look for a constitutive law for this independent rotation, see for example [1] or [2].
According to these papers, the plastic spin vanishes in isotropic materials. Another ap-
proach to a detailed description of such rotational effects results from the crystal plasticity.
It has to be noted here that the term “plastic spin” is defined as a macroscopic quantity
in the continuum descriptions, while in crystal plasticity it has a different meaning under
the same name, and originates from the crystallographic slip. Thus, with the help of some
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theories of crystal slip, for example the Taylor theory [3]. it is possible to calculate in-
dividual crystal rotations. Averaging these rotations over a number ol crystals leads to a
corresponding macroscopic quantity. A third possibility to calculate internal rotations has
been presented in some papers of LIPPMANN [4] and BESDO [S]. In this latter approach
the Cosserat-continuum based on extended yield conditions has been used. This approach
is a generalization of the classical continuum plasticity in the sense ol more degrees of
freedom, where also the corresponding static quantities like couple stresses or antimetric
shear stresses are incorporated.

The purpose of this paper is to compare the predictions ot the Cosserat approach and
some crystal plasticity approaches with each other and mainly with experiments, where
the free rotations of the individual grains have been measured.

2. Experiments

Experiments have been carried out on cylindrical and tubular specimens made ol pure
aluminium Al 99.999. After a heat treatment this material is rather coarse-grained (Fig. 1)
and its grain orientation distribution is nearly isotropic. The specimens were twisted up
to a plastic shear deformation of about 0% under the condition of free end torsion
(Fig. 2), and the rotations of about 60 to 100 randomly selected grains were measured.
These grains lie on the outer surface of the specimen, and they have been marked in order
to identily them before and after deformation. In this paper especially the experimental
results obtained from two of the various specimens will be discussed as examples. Specimen
DV2 is a full cyvlinder with 14 mm diameter, TB3 a tube with 39 mm outer and 22 mm
inner diameter. For both specimens, the homogeneously deformed length amounts to
75 mm. The maximum torsional angle, imposed on this length, was about 457 (TB3) or
120° (DV2). This corresponds to a plastic shear of about 10%. This total deformation
was achieved in three consecutive steps. In each step and for each grain, the rotation
was calculated from the orientation change of the crystal. In order to get this orientation,
the X-ray v. Laue-technique was employed. In order to measure the orientation ol only
one grain, the polychromatic X-ray beam must hit only one crystal in the polycrystalline
material. For that reason the material must be coarse-grained. From the position ol the
reflection spots on the v. Laue photographs, the orientation ol the crystal can be calculated
in a given coordinate system. For more details the reader is reterred 1o [6] and [7].

The values of the individual grain rotations can approximately be transformed into
rotation rates by forming the difterences between two subsequent rotational steps and di-
viding them by the time increment. In this way it is found that, up to the above-mentioned
shear limit of 10%, the rotation rate of most grains remains nearly constant. For each
grain, therefore. a constant angular velocity w is assumed.

The macroscopic torsional shear rate A and the macroscopic rate ol rotation y can be
caleulated from the symmetric and the anuimetric part of the macroscopically homoge-
neous velocity gradient of the specimen. Thus, the relative rotation rate €2 for each grain
can be obtained as

(2.1) Q=vy— w.

€ is also called the Cosserat rate of rotation, or the plastic spin (if, (or large deformation,
the elastic part is disregarded). To enable the comparison of different experiments (difler-
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Fi. [ Coarse-grained specimen of 99.999% purity Al (heat-treated and surface-etched, grain diameter about
1.5 mm).

FiG. 2. Plastic torsion of cylindrical specimens.

ent specimen geometry or different twisting rates). € is normalized by the macroscopic
shear rate A, = A, If the dimensionless quantity Q/\ differs from zero, the individ-
ual grain rotation is larger or smaller than the macroscopic rotation rate related to the
deformation field. In this way the distribution of the relative spin Q/A of the selected
sample of all grains in each specimen can be obtained (Fig. 3), where the subscripts @, y
or = reler to the axial, circumferential and radial direction, respectively, at the outer
surfaces.

In the following these experimental results will be evaluated on a statistical basis. First
of all a rather large scatter can be observed, especially for §2./)\ which is the rotation
rate around the radial direction. A value of 2./ = 1 means, because of 7. = A,
and (2.1), an absolute rotation rate w. = 0. On the other hand, a value of {2./\ = —|
means an absolute rotation rate twice as large as the macroscopic rotation rate 7 .. These
ralues + — 1 are reached for f2./A by a considerable number of grains; in the other two
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FiG. 3. Distribution of the experimental values of the relative spin Q/,\ for specimen TB3 r-axial, y-circumfe-
rential and z-radial direction.

directions at least by some grains. Therefore the individual grains show a very disperse
rotational behaviour. This may depend on the initial orientation of the crystal lattice, the
shape, the size and also the behaviour of the neighbouring grains. Besides it is interesting
to notice that the angular velocity of a needle thrown into a fluid under simple shear A,
would also vary between the same limits, i.e., 0, if the needle is parallel to the stream lines,
and 27, if it is perpendicular. This implies that the needle in a shear flow constitutes the
simplest model for the individual grain rotations, although it is not clear as yet whether
or how the direction of the needle can be identified with the crystal lattice.

If one single parameter is looked for describing the rotation of the substructure of the
material, it seems to be reasonable to choose the average value of all selected grains and
to regard it as the mean rotation. The confidence interval 7, of this mean value is also
calculated as

is
(2.2) m, = :

Vi
with the standard deviation s of the distribution, the number of grains » and a correction
factor ! (Student-distribution), that depends on the desired probability. This confidence
interval is shown in Fig. 3 as an example. The real average spin of all grains of the specimen
will lie inside the shown confidence intervals with a probability of 95%. Unfortunately,
these confidence intervals are rather large in relation to the mean value of 2/ itself. The
reason of it will be discussed later. The experimental confidence intervals compared to
the theoretical predictions are also shown, for cylindrical or tubular specimens, in Figs. 5
and 0, respectively.

3. Cosserat plasticity

As mentioned in the introduction, it is possible to calculate the plastic spin by means
of the application of a Cosserat continuum to plasticity ([4. 5, 6, 7]). The Cosserat brothers
proposed, at the beginning of this century, a generalized continuum with three additional
kinematic degrees of freedom, corresponding to the spin components around three (local
Cartesian) axes. In a continuum they must represent local or spatial averages which will
be compared with the average spin of the grains obtained from the experiments. Note
that the continuum considered in the present paper is isotropic (within the technological
limits), while the plastic spin as discussed in the contemporary literature (unaware of the
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Cosserat approach) is related only to anisotropic, textured media in which the rotation of
the texture may be interpreted a priori as an average grain rotation.

In the Cosserat continuum there are also additional static quantities related to the
kinematic ones. The stress tensor S, for example, may be nonsymmetric. Its antimetric
part T is known to generate work against the spin components of £ ([4, 5]) — a property
recently re-discovered by VAN DER GIESSEN [2]. Moreover, the non-symmetric tensor of
couple stresses, m, is introduced to generate work against the components of the so-called
internal twist (i.e., local bending and torsion). Taking into account the complete set of all
these static and kinematic quantities, generalized field equations can be set up comprising
generalized equilibrium equations, compatibility equations and a constitutive law.

The constitutive law contains, as usual in plasticity, a yield condition and the flow
rule. One yield condition for metals was proposed by LIPPMANN [4, 7]. Tt consists of two
separate conditions, the first for the stresses, the second for the couple stresses, according
LO

3 5
o \/A(n;*n;’ + 2321y =Y =0,
(3.1) . |
) YL

2 /T
f My g — ——= =il
ar,

so that the simultaneous fulfilment of both equations corresponds to an edge in the
generalized yield locus. Equations (3.1) is similar to the classical von Mises yield condition.
}" describes the uniaxial yield limit which may depend on internal parameters like the
equivalent strain. For this reason isotropic hardening is taken into account. L represents
a characteristic length of the continuum to be identified with the mean grain diameter.
o and /# are material parameters to be identified experimentally with the help of one of
the specimens only. This has been done in [6] with a specimen that was nearly identical to
specimen DV2. These values for a7, and /3 are kept constant for the specimens regarded
in this paper.

Complete Cosserat solutions for the case of free end torsion of full cylinders are
presented in [6] and [7]. They have been extended in a straightforward manner also to
tubular specimens [8].

4. Crystal plasticity theories

Another approach to plastic spin can be based on the theories of crystal plasticity. Tt
gives us a possibility to calculate the behaviour of single crystals within a polycrystalline
aggregate under plastic deformation. In crystal plasticity the initial orientation and the
mechanical boundary conditions must be known in advance. Obviously, this latter infor-
mation is not available for the individual grains, so it must be replaced by appropriate
assumptions.

One crystal plasticity model employed in this paper is a Taylor-type viscoplastic model
presented by TOTH er al. [9] with various relaxed constraints conditions. In this model,
several possibilities for the boundary conditions of the grains are available: If all compo-
nents of the deformation gradient of the grain under consideration are prescribed, the
classical Taylor theory is applied (in Fig. 5 and 6 entitled “Taylor”). If all components of
the stress tensor are prescribed, the classical Sachs theory is modelled (in Figs.: “Sachs™).
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number of grains
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Fic. 4. Distribution of the predicted values of the relative spin /A, Specimen TB3, crystal plasticity model
“2 shears™, r.y, z as in Fig. 3.

Mixed boundary conditions are modelled if only one or two shear components of the
deformation gradient are prescribed. (in Figs.: 1 shear” or 2 shears”).

Other crystal plasticity models are also used in the present work: the minimum plas-
tic spin theory of Fuh and Havner [10] (*Mi.plspi”) and the self-consistent model of
Molinari [11] (*Sell cons.”). For more details see ref. [12].

All these theories were applied to the grains measured in our specimens experimen-
tally, using the v. Laue technique. With the initial orientation measured, the rotation
was predicted by means of the different crystal plasticity models. The distribution of the
nearly 100 spin values for each model (e.g. Fig. 4) was compared with the experimentally
determined distribution (Fig. 3 as an example).

As a first result it was found that the calculated rotations tor the individual grains as
predicted by the different models show rather large deviations from the experimentally
measured ones. Looking at the predictions of all theories, it is seen that some grain
rotations agree well with one theory, others with another one, and some with none at all.
This is understandable as the grain boundary conditions may vary very strongly from grain
to grain, and can be very different from the assumed boundary conditions.

A statistical evaluation is also applied to these predictions. The mean value of the
spin of all selected grains was determined together with the standard deviation and the
confidence interval 1. (Eq. (2.1)) of the distribution. In this way, a comparison between
the experimental results and the ones calculated by the different crystal plasticity theories
could be done, not only with respect to their mean values, but also with respect to the
widths of the distributions. The results are shown in Figs. 5 and 6 for the relative spin
Q/ A obtained at the outer surface of the specimen.

It is seen in Fig. 5 that the confidence intervals have all the same order of magnitude.
This is due to a nearly equal standard deviation of the experimental and the predicted
distributions, and it indicates that the large widths of the distributions of the relative
spin /A must be a consequence of the distribution of the initial grain orientations. In
our nearly isotropic specimens the initial grain orientations are rather homogeneously
distributed. This obviously leads to a correspondingly wide distribution of the spin. As
discussed in Sec. 2, the half-width may be comparable to the macroscopic rotation rate
Y- In Fig. 3 or 4 this means a half-width 1 for §2./\. It is reached rather satisfactorily
in the experiments as well as for the predictions based on crystal plasticity, so that the
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FiG. 5. Confidence intervals and mean values tor the relative spin £2/A: experimental results and theoretical
predictions, specimen DV2: ., y, = as in Fig. 3.

standard deviation or the adequate confidence interval of the distributions must actually
be regarded to be specific for the initial state of the material. Note that the theoretical so-
lution [ollowing the Cosserat plasticity yields only one value, so that there is no confidence
interval.

Except for the theoretical results obtained from the Sachs-theory and from the self-con-
sistent theory, both with respect to {2, /A and to 2./, the theoretical predictions do
not differ very much from each other in Fig. 5 if the large width of the confidence in-
tervals is taken into account. The experimental results agree also quite well with the
theoretical ones, at least for 2,/ and (2./A, the latter quantity being the most
representative one. If the specimen was truly isotropic, £2, /A = (2,/A = 0 should
hold as it is also reflected by the results of the Cosserat theory. However, the experi-
ments as well as the other theories yield values different from 0 which are also different
from each other. This must again be due to the initial distribution of the grain orienta-
tions showing obviously, despite the careful preparation of the specimen, some hidden
anisotropy.
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FiG. 6. Confidence intervals and mean values for the relative spin €2/ \: experimental results and theoretical
predictions, specimen TB3, z, y, = as in Fig. 3.

In specimen TB3 (Fig. 6) the differences are larger. In contrast to all the other speci-
mens, the representative quantity, i.e. £2./A measured in the experiment, is not positive
as it was predicted by the Cosserat theory (based on truly isotropic behaviour), and also
measured experimentally on a different specimen with the same geometry (TB2, results
not shown). The reason for this must be again a hidden texture, more pronounced in
specimen TB3 than in the other ones.

5. Conclusions

In this investigation on the rotational behaviour of the metallic grains in isotropic
non-textured aluminium specimens under torsion, experimental results were compared
with theoretical predictions obtained from several different theories.

The Cosserat theory of plasticity as a macroscopic generalized continuum approach
has the advantage that the individual inhomogeneous distribution of grain shapes and
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crystal orientations are not required as an input. Thus the knowledge of the orientation
distribution of the grains and the boundary conditions are not necessary for the calculation.
The results obtained from this model are, nevertheless, not too far from the experiments.
However, large deviations may occur il an initial texture can not be avoided, even if this
texture is small due to a careful preparation of the specimens.

The crystal plasticity theories take the real distribution of the grain orientations into
account, i.e., the initial texture of the material. Besides, also the mutual constraints of
the grains are regarded by some assumed and simplified boundary conditions which vary
from theory to theory. Nevertheless, the behaviour of individual grains shows a poor
agreement with the experiments. Therefore statistical mean values of a number of grains
are regarded, where the agreement with the experiments is better.
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Viscoplastic numerical analysis of dynamic
plastic strain localization
for a ductile material

T. LODYGOWSKI (rOZNAN), P. PERZYNA (WARSZAWA)
M. LENGNICK and E. STEIN (HANNOVER)

THE THEORY Of viscoplasticity was used to describe the plastic strain localization in o ductile material
under dynamic loading, and scrves as a tool for regulavization of initial boundary value problen.
The method of numerical integration of the constitutive equations is proposed and implemented
into ABAQUS environment. During the presentation of the numerical results the problem of mesh
dependence is discussed. Using a well-posed mathematical formulation one can avoid the so-called
Primery Mesht Dependence which is detined in the paper.

I. Introduction

THE PITENOMENON called localization [requently accompanies inelastic deformation and
consists in the formation of localized, relatively narrow, bands of intensive straining. For
large variety of experiments the results expressed in load-displacement space exhibit a
descending branch alter the peak load has been obtained. In phenomenological approach,
a simple mapping ol such data onto stress-strain relations provides negative stilfnesses in
the constitutive models. This introduces the so-called strain-softening models. It is known,
and it was explored by many researchers, that in the classical frame of rate-independent
continuum it can lead to the loss of well-posedness of the initial boundary value problem
(IBVP).

The problem ol well-posedness which is the fundamental one for the statement and
the following numerical solution, has been studied by KATO [ 1] HUGHES, KATO, MARS-
DEN [10], PERZYNA [25, 21], de BORST et al. [6], and recently also by KIBLER et al. [12].

The proper posedness of the BVP affects also, according to the study of LENGNICK
et al. | 14], the significant decreasing of the so-called primary mesh dependence (PMD) in
finite element computations. By PMD we understand here the behaviour of the numerical
solutions which is very sensitive to the finite element mesh and which directly is a result
ol ill-posedness ol IBVP.

Application of rate-independent material models does not ensure the well-posedness
in posteritical states. The classical papers of HILL [9], MANDEL [16], and RICE [27] stated
that loss of material stability and, what follows, localization will not occur until at least
one eigenvalue of the acoustic tensor is equal to zero. The Maxwell’s or Hadamard’s
compatibility conditions used here decide that the localization is associated with a strain
rate jump within a planar band, and it does not enforce any kinematic incompatibilities
with the remaining material. According to the rate-independent model, the further study
ol evolution of the localization domain is not possible because of the change of type of
the incremental governing operator. Instead of studying the abstract Cauchy problem to
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discuss the posedness, it is easier to concentrate the attention on the acoustic tensor [12].
The interesting study on bifurcations in inelastic materials has been recently published by
NEILSEN and SCHREYER [19].

For the static problems, when the system of governing equations changes {rom elliptic
to hyperbolic (if one of the eigenvalues A = 0 — to parabolic), we can not expect the
results of the described physical phenomena in real space (ill-posedness).

Moreover, the bifurcation analysis mentioned above predicts only the localization line
which basically is not fully confirmed in laboratory experiments. It appears, that always
the localization zones have finite width, which depends upon material properties, but also
very strongly on the boundary and initial conditions.

To regularize the system of equations (PDE) that drives the incremental process in
post-localization states, one has to introduce a length scale parameter what leads to the
specification of the width of localization. The comprehensive study was presented by
SLUYS |28]. To enrich the softening continuum, the length scale parameter can be in-
troduced to the formulation in a different way; for example: using nonlocal theories —
BAZANT and PUAUDIER-CABOT [2], the addition of higher order (second order) strain
terms — BELYTSCHKO [3], gradient model — DE BORST [5, 7], inclusion of micro—polar
effects DE BORST [6], STEINMANN and WILLAM [29], or application of rate-dependent
formulation — PERZYNA [25], NEEDLEMAN [18].

At last it is also possible to introduce the width of the localization zone (length scale
parameter) explicitly into the formulation, as it was shown by PIETRUSZCZAK and MROZ
[26], BELYTSCHKO et al. (4], ORTIZ et al. [20] or LODYGOWSKI [15]. The only drawback
of the rate-dependent formulation seems to be the necessity of full dynamical analysis of
the process under consideration. In authors’ opinion the rate-dependent model, specially
for ductile metals, is physically well founded, and then it has a variety of advantages in
comparison with the other models. Using such parameters like viscosity, particularly for
fast mechanical processes, has a deep physical reason on the micromechanical level. For
these reasons we will use viscoplasticity to describe the physical process, as a tool of
mathematical regularization of softening behaviour.

In view of the achievements [14] for the viscoplastic (rate-dependent) formulation, the
problem remains well-posed in each interval of time, so the unique solution in numeri-
cal calculations can be reached. Using dynamical formulation for two-dimensional cases,
both failure modes (I-mode and Il-mode) can be performed and also, because ol the
wave propagation phenomenon, no artificial imperfections are necessary in computations
to be superposed to activate the process of localization. Approaching the calculations of
localization phenomena, we are not going now to avoid all the variety ol numerical sub-
tleties which occur, for example, due to secondary mesh dependence SMD [14] or mesh
alignment (cf. SLUys [28]).

One of the aims of this presentation is to show numerically that proper mathematical
formulation helps to avoid the serious mesh sensitivity called here PMD.

The study is reported as follows. First we will present the set of field equations which
governs the described physical phenomena. Here the kinematics and the constitutive
model will be formulated. Then 2-D plane strain case will be specified. Later, there
are the remarks on the integration of the field equations. In the next section the results
of numerical computations of two boundary value problems are presented and discussed.

These examples refer to the problem of biaxial impact loading, but with different
initial conditions. The good agreement of the results for different finite element meshes

http://rcin.org.pl



o4

VISCOPLASTIC NUMERICAL ANALYSIS OF DYNAMIC PLASTIC STRAIN - . ‘::‘_4__

is shown, as well as a strong influence of initial boundary conditions on the results (the
shape of localization zones). Final remarks close the paper.

2. Formulation

2.1. Kinematics

Following the notation of GURTIN [8] we assume two configurations: 3. at time [ = 7,
for which the state is in equilibrium, and 5; at time { = 7 + A when the continuum is
going to occupy the current configuration. Then the basic problem is to determine the equi-
librium state of the body at each material point in B; based on the given constitutive law
which is discussed in the next section. From the viewpoint of numerical tormulation and
computations, it is important to assure the consistency with the set of constitutive equa-
tions, numerical stability and objectivity; it means that the proposed algorithm should be
invariant with respect to the rigid body motions. The summary of incrementally objective
integration schemes was recently presented by ZABARAS and ARIF [32].

The requirements of objectivity starts from the definition of two motions ®(X,7) and
@7 (X, ). It can be stated that those motions are objectively equivalent if they fulfill

(2.1) O(X. 1) = Z()(D(X. 1) — 0) + ¢(1).

where o 1s a fixed point in space; Z(1) and ¢(/) are rotation and translation, purely time-
dependent functions, respectively. Moreover, the rotation Z(f) satisfies the condition

(2.2) Z2'2Z=1 and detZ = 1.

As a consequence of the above assumption, the tensorial quantity is frame-independent
if for any equivalent motion (2.1) we obtain the following tensor transformation laws for
scalar s and tensors a, B. C of the first, second and fourth order, respectively;

a = Za,
B* = ZBZ'.
cr =z[zczhz'.

(2.3)

2.2. Constitutive model

Assuming after LEE [13] the multiplicativity of the deformation gradient in the form
[ = K" (see Lee), it follows that the total deformation rate D is simply a sum of its
elastic D" and plastic D” parts. In GURTIN’s [8] notation, one can write the evolution of
the Cauchy stress tensor in the form:

v
(2.4) T = C'[D - D”].
V 2
where T is Jaumann rate of Cauchy stress and C° = 271+ (A — (/)1 0 1 is an elastic

isotropic modulus. In the last formula, ¢ and I\" are the known shear and bulk moduli,
respectively, and I and I denote the fourth rank and second rank unit tensors.
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To specify the essence of the plastic approach, one has to assume the fundamental
definition of inelastic part of deformation rate, generally in the form:

(2.5) D’ = [(S.6. ).

where S is the deviatoric stress tensor, & is the temperature, and p represents the vector
of internal state variables which can consist of scalar, vector or tensor components. The
variely of models can be analysed and/or constructed using in general the following basic
relations:

e a {low rule of tensorial character,

e the necessary evolution equations which describe the evolution ol internal variables p,

¢ a kinetic equation (e.g. balance of energy) of scalar type that relates stresses, inelastic
parts of strain rate and temperature.

We will restrict our attention to the isothermal processes and assume the flow rule in
the form:

(2.6) D’ = An.

where A denotes a scalar-valued function, and n represents a tensor of second rank.

2.2.1. Rate-independent plasticity. [f we assume the [low rule in the form (2.0) and the definition
ol scalar function A as follows:
2.7) XN ife=0 and B:C:D >0,
- 0 ife<0 or =0 and n:C:D <0,
where o represents the yield condition, we arrive at the definition of rate-independent
plasticity. For n = dg/d7T we specily the associative plasticity if g = [, or nonassociative
oneif g # [. )

The parameter A is derived [rom the consistency conditions.

2.2.2. Rate-dependent plasticity. [ we assume that A is an isothermal function of the tyvpe .\(S. (),
we are starting to determine the rate-dependent law which has to be supplemented by the
next two relations which were pointed out before. It means, that for the rate-dependent
flow law we arrive at:

(2.8) D” = A(S. wn.

Additionaly we have to define the evolution equations for the internal state variables.
Among the variety of internal parameters p, let us now restrict our attention o only two
of them, namely: the scalar value which describes the yield limit s, which is responsible for
isotropic hardening/softening, and tensorial value B which is called back-stress (symmetric,
traceless tensor) that defines the kinematic hardening eflect, both expressed in stress units.

The evolution of internal state variables can be then proposed, for example in the
following form:

(2.9) s = A

(2.10) B = HD" — AC'B.

where r is the hardening/softening parameter, and /[ and (" are parameters which are
assumed to be functions of the list of variables p.

A different function can be adopted to specify A what defines the type ol rate-
dependence.
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Let us for example assume

3
P _ —aps
(2.11) D’ = \/2_ n
and
38
(2.12) n=,/>=.
[ 24

(2.13) 8= \/ls 28
is the equivalent stress.
Additionally, plastic equivalent strain rate £/ = (D" : D)2 is prescribed as a function
ol current equivalent stress 5 and state variables p,
(2.14) o= f(5, ).

To complete the system of equations it is necessary 1o add the evolution equations:

(2.15) = m(5. .
where
(2.16) 111(.77'. u) = h(p)'.

and i(p) denotes the hardening/softening function.

The selection of functions [(.5. u) and m (5. p) is based on phenomenological theories
and should be strongly related to micromechanical observations and to the experimental
results obtained in physics of solids.

For further numerical considerations, let us now restrict the class of functions (5. 1)
in such a way that p will be represented only by a scalar value s. If we assume then the
yield function in the form:

n

5 -
(2.17) f(S.5) = I)(: — I.U) i 5
0 if 5 < s,
we arrive at the restricted version of viscoplasticity originaly introduced by PERZYNA |22,
23, 24|, where 1 is the viscosity which is the reciprocal of the relaxation time of mechanical
disturbances 1, (= 1/7,,).
Il we assume the form

v

we deline the known viscoplastic power law. There are also other possibilities ol choosin

0
o

S5, s) functions, which can be succestully applied in various particular cases.

2.2.3. Rotation-neutralized description. F()llowing the discussion in 13(), 3|] we introduce
rotational-neutralized form of our constitutive model. Bar form of the Cauchy stress tensor
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T is now expressed as,
(2.19) T = Q1 1Q.
where the rotation tensor Q(¢) was introduced as the solution of the following initial value
problem:
QMQ (1) = W(t) for 1, <t < ly4,
Q(t,) =1

in which the spin W(#) is defined as an nonsymmetric part of the velocity gradient L. This
significantly simplifies the equation (2.1), see also NAGTEGAAL [17], to the form:

(2.20)

T T\— SV 14
(2.21) T=Q ' TQ=C[D-D"].
Using this bar formulation we obtain the following system of equations that, together with
Eq. (2.21), describes our rate-dependent model:

= B o
(2.22) D' = \/;é”ﬁ(s..‘)'L

o = 38

(7 23) n(s ‘)) . ig’
= I_ _
(2.24) §=1/38:5
(2.25) &P = f(85, 3).

The evolution equation for the only one scalar value s is
(2.26) S=m(S.s) = h(s)z’.

Then for different choice of functions f(5, s) we can define the Perzyna’s type viscoplas-
ticity (2.17), or creep model (2.18). The integration of such a system (bar formulation) is
computationally much more eflicient.

3. Time integration procedure

The goal of this integration is to find the state represented by Cauchy stress tensor
T and the scalar independent variable s at time ¢ = 7 4+ At = {,,,;, when the state
(T,,s,) at time { = 7 = {,, is known. The values of the unknown can be obtained from
the formula

fnfl
t 3.ep_ ‘
(3.1) Tus1 = Quas (' + C[D - \[Sf’“} ")Ql

tn

rna_—l
(3.2) Snet = sp+ [ &,
lli

where Q,, 4 is the rotation tensor at time { + | corresponding to the configuration at #,,.
Using the following classical approximation:

(33) Sp+p = Spt dénhj‘—\t-
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(33) ";u'f"‘)/ = l”(-sln-hj' '“/i+11)-
[cont.] ’T“‘F‘)/ (] — .)')T,, + ‘)'Tn+1'

Il

one can generate diflerent integration schemes. We will use here for # = [ the so-called
full backward integration method. Then we arrive at

(3.4) Tusr = TV — VG ALF(Se1s Snet)iner.
(3.5) Spat = Sa + AM(Snr1, Snr1)s
where
(3.6) T]:,r:rl = Qn+|TuQ;{‘+| + C[AE, ],
and the strain increment AE, 4 is

fhel

AE = Qi ([ Dat)Ql,,.
o

Finally, the problem is reduced to determining the scalar values s,y and 5,4 from the
pair ol algebraic equations:

(3.8) Sn+l T Sp T —3,}’)(3’:1+I-'“-11+1) =0,
o 'E"lr+l o 3’5“‘- + 3("J’4/‘(‘;(u*l~'“'n+l) = 0.

i+

Locally this system of equations has to be solved in each point of integration at each
increment (iteration). Good convergence of the results and the power of the algorithm
depends on the efficiency of the solver. The subroutine BROWN that was adopted for
this purpose appears to be unfailing in the variety of tests which were performed. After
the solution of the system (3.8), one can easily predict the corrector step and update the
stresses.

The scheme of integration of the global system of equations (for dynamics), implicit
or explicit, is realized by the environment of the ABAQUS |[1] program.

The summmary of necessery steps to integrate the system of rate-dependent equa-
tions that consists of two classical steps (elastic predictor and plastic corrector) is finally
presented in Box I.

BOX 1

Summary of the constitutive algorithm
1. Calculate the trial stress and normal mean pressure

n+l1

pre pre l e
Tt =To + ClAB, ] g, = S (@),

2. Deviatoric trial and equivalent tensile stresses

v

gmc . §prc

n+l *vYn+l-

ohre _ mpre pre opre
h,,.]“T,,,1+P”.|I' ‘Sn—l_

[\

30 5P < s, then only elastic deformations occur
o _ mpre pre T
1 = Sns Tn«l—T,,,I—QH»IT,,AIQ,,q

Sp+

the constitutive algorithm is complete

else — continue
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wn
£

| 4. Solve the svstem of algebraic equations
| )

Sn+t — sp — Ag(Sy 185y 0) =10

Snit = SP 3GALf(Snar.snar) =0
5. Calculate the radial return tactor
] _ Snel
S

6. Updarte stresses

- opre pre
Toet = i+18,5, + 1,241

=Qy vlTn + IQ,{ +

=

4. Numerical results

The numerical calculations were supported by using a commercial general purpose
finite element program ABAQUS. Using the open architecture of the code, which allows
the user to create his own constitutive relation, all the necessary parts of the program
were introduced by a procedure called UMAT(").

The UMAT procedure is called at each Gauss point on every iteration. Among other
information introduced by this procedure, the most important are the definition of the
actual Jacobian ol stiffness matrix ol the material and the way of integration ol the con-
stitutive relation on the local level. Because the integration of the constitutive law at the
local level is basically reduced to solving the nonlinear algebraic system of equations, one
can imagine how important it is to use practically reliable solver. This role is played by the
adapted procedure BROWN which, due to sophisticated tests which were chosen to check
its validity, proved its high efliciency and very fast convergence, even il the starting points
lor the iterations were picked up arbitrarily. In practical computations this important local
part of the code never lailed and. together with such a formulation ol integration. the
constitutive relation confirmed its high quality. The hardening function /1(s) is assumed
1o be constant in the presented examples.

4.1 Biaxial impact loading — force controlled process

The specimen of dimensions 60 mm % 120 mm (a plane strain case) shown in Fig. la
was loaded dynamically at the top side in longitudinal direction by the force #(1), and 1o
break the symmetric behaviour — by the horizontal lorce 0.117(1).

The force [(1) changes in time as it is depicted in Fig. 1b, so that after the time period
fr = 15 % 107 "< it reaches its maximal value and remains constant for the rest of the
process. The whole duration of the physical process is {,, = [.65 < 107 5. The material
data used in the computations were as follows:

[= 119200 N/mm’. =049, oy = 100.0N/mm*. 2 =10, o=350g/mm.

(") In the version 4.9 of ABAQUS which the authors used. contrary to the newest version 3.3, the access
to the deformation gradient at the beginning and at the end of the increment is not possible. The kind help of
Dr. Do Hhiesrr of HIKS Ine. is gratefully acknowledged.
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F(t)
H(t)
+
TOP
. F()
120 mm
BOTTOM |
T 1
i 60 mm 1 15%10°s  Time
1 ]
a) b)

FiG. 1. Definition of the boundary value problem a) geometry of the specimen, b) loading history.

In spite of the fact that the authors have the experience with dillerent spatial discretiza-
tion (4-Node hnear and bilinear and 8-Node quadratic elements),the results presented
herein are restricted to those of 4-Node bilinear reduced integration elements. To study
numerically the mesh sensitivity, three meshes 3 > 0, 6 x 12 and 12 x 24 elements were
used in the calculations.

The boundary conditions are formulated as [ollows:

e The bottom side of the speciemen is [ixed (the displacements of all the nodes that
lie on this edge in both directions are zero),

¢ The top side can rotate as a rigid body, but the nodes remain on the same straight
line (MPC — multipoint constrain option was used to declare this behaviour).

On the global level ol the integration of nonlinear dvnamical system of equations, the
explicit method was used with the time step A/ = 1.5 x 107"« which ensures the stability
of integration for the set of parameters defined above.

The whole process is realized in one step that declares simultanous vertical and hori-
contal increment of loadings.

The process ol creation of the zones of localized plastic strains is shown qualitatively in
Fig. 2 a~h. The scale of indicated plastic equivalent strains which accompanies Fig. 2 a-h
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Fic. 2. Development of zones of plastic deformations (Plastic Equivelent Strains) tor load-controlled dyvnamic

analysis:
a) £ =6.00%10 s, =900+ 10 s,

ey £ =1.20%107%, 1)

354107 s, @) L= 1504 107 s,
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FiG. 5. Comparison of Plastic Equivalent Strains for ¢ = 1.65 + 10* s for different meshes.
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is valid only for the final state { = ¢, = 1.65 X 10~ *s. These results were obtained [or
the mesh of 12 x 24 elements. The stress relaxation time was ol the order of 1, = 107 s,

The final state of the localization of plastic strain zones is shown in Fig. 3.

To compare the influence of mesh discretization on the results obtained, we propose
the discussion on the integrated level of information by presenting the result in /7 — ¢
space and on the local level showing, for example, the distribution of plastic equivalent
strains.

In Fig. 4 the rigid rotation of the top side against the time is depicted. One can observe
very good agreement of the curves, in spite of the fact that the mesh 3 X 6 is very coarse.
The important diflerences will be visible on the local level.

The contour plots of plastic equivalent strains are presented in Fig. 5 a-c for all the
meshes under consideration. Of course, in this case the poor approximation obtained
from the 3 x 6 mesh is evident, but the remaining meshes show the good agreement.

This result is better visible in Fig. 6, which presents for all the meshes the distribution

of the plastic equivalent strains along the line » = 40.0 mm in the specimen for time
L= im-
3 ___ Mesh 3* 6, T = 3.33E-4 s
SOLED = " Mesh 6*12, T = 3.33E—4 s
] — Mesh 12%24, T = 3.33E-4 s
o]
= ]
!
E 8
ﬁ 0.0120 1
-
- ]
= ]
8} .
o -
« 4
» 0.0080 —
Ha B
- ]
= ]
=] »
o ]
) ]
n 0.0040 -+
< ]
[
A ]
T
] e
0.0000 ) G o G o o i (o S G e B o (o e e Gy (D T i o M S it e |
0.00 40.00 80.00 120.00
Cross-section x = 40 mm
FI1G. 6. Convergence of Plastic Equivalent Strains for ¢ = .65+ 107 % s in the cross-section .+ = 40 mm.
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FiG. 7. Comparison of the distribution of Plastic Equivalent Strains for ditferent relaxation times;
a) Ton = 1074, 0) Ty = 10735, ¢) Ty = 107 5.
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The results presented in the last two figures computationally confirm that the rate-
dependent formulation drives to the solutions which are free of spurious mesh depend-
ence observed when the formulations of problems become ill-posed (for discussion see
LENGNICK et al. [14]).

In the viscoplastic formulations the internal length scale is introduced implicitly by
the relaxation time for stresses and the velocity of elastic wave propagation. Generally,
it drives to the stronger localization for the shorter relaxation times. For the cases under
consideration the different, but reasonable for the material parameters used, relaxation
times that change between 7, = 107° = 10~ *s only slightly influence the distribution of
plastic equivalent strains, see Fig. 7.

4.2. Biaxial impact loading — velocity-controlled process

Now for the specimen of the same dimensions as shown in Fig. la, the loading process
is realized in two steps. The first one is static and kinematically driven. The rigid top
edge of the specimen is horizontally moved (without rotation) by the distance of 2 mm.
This introduces the initial state of stress for the second dynamical step. Then, on the top
side of the specimen the ramp function of the velocity in the vertical direction is applied.
The speed v = 12121.212 mm/s is such that after the time period { = 3.3 x 107" s the
displacements of all the nodes which lie on this side are equal to 4 mm. In this case the
displacements of the top side nodes in horizontal direction are not allowed.

The Fig. 8 a—f qualitatively show the process of nucleation and the development of
the zones of plastic localized strains at different increments at the second dynamical step
of the analysis.

In Figs. 9 one can observe the final position of the zones of localized plastic strains
on the specimen area. Additionaly, in Fig. 10 one can find the development of plastic
equivalent strains along the line @ = 40 mm for the three indicated time increments. The
results shown in the last two figures confirm the localized character of the plastic strains
distribution.
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FiG. 9. Distribution of Plastic Equivalent Strains for ¢ = 3.3 % 107 %5 (3D plot).
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FiG. 10. Development of Plastic Equivalent Strains in time.

What is obvious, but still interesting to notice when comparing the results of the
examples mentioned in Sections 4.1 and 4.2, is the observation how strongly the boundary
conditions and initial conditions influence the distribution of localization zones.

All the results presented herein were obtained without introduction of any artificial
local imperfections to start the localization process. This role is naturally played by dy-
namical formulation and the propagation of the wave in the solid body under analysis.

Conclusions

e The rate-dependent formulation is explored in the paper to study numerically the
behaviour of a ductile material under dynamic loadings.

e The formulation presented preserves the well-posedness of the system of governing
incremental equations and, in consequence, what is numerically shown in the examples,
reduces significantly the severe mesh sensitivity on the final computation results.

e The material parameters which are used in this formulation have a good physical
interpretation and these values can be easily obtained from the experiments. Especially
for the case of ductile materials, introduction of the viscosity parameters (relaxation time
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for stresses 17, ) 1s physically justified and, moreover, as a parameter mathematically reg-
ularizes the system of PDE which incrementally describes the process.

¢ The constitutive model introduced into ABAQUS program can now serve 1o solve
a class of problems important from the viewpoint ol engineering applications.
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On yield surface interpolation of prestrained ductile materials

A. MEYERS (BOCHUM)

EXPERIMENTS sHOW that initial yield surfaces of ductile materials may show deviations from the
von Mises representation. Moreover, after a prestrain yield surfaces are translated, rotated and
distorted. In order to describe these effects, formulations have been presented in the past which
considered functions of second and third invariants of the translated stress deviators. It could be
shown that these tormulations were able to interpolate efficiently the experimental yield surfaces,
mostly in o — a2 and o — 7 planes. A special inconvenience, however, is the number of material and
history-dependent parameters used in interpolation. A formulation is proposed, where this number
scems to be quite restricted. The parameter variations are plotted as functions of the prestrain tor a
number of experimental yield surfaces taken from literature.

1. Introduction

PRECISE DETERMINATION of size and shape of initial and subsequent yield surfaces and
their functional dependence on the hardening parameters is an important problem in
plasticity. Initial yield surfaces are often well described by the von Mises vield criterion,
ie.

=

(][) /.‘_2.]3.
where

1
(1.2) Jo = ;5;4,‘5_,‘;

is the second invariant of the stress deviator S.

In order to describe deviations from the von Mises description observed experimentally
(see e.g. TAYLOR and QUINNEY [1]), PRAGER (reported by HILL [2]) and DRUCKER |[3]
introduced a relation of the form

-

(1.3) 11.:2:4];(1+nj—’§).
where

) A o B
(1.4) Jy = E.S,A,’.‘)J;‘-.Sk,

is the third invariant of the stress deviator and «v is a material-dependent constant. Drucker
proposed a relation of the form

(1.5) k=1 + alJi.

Both relations give better representation of the initial material behaviour, and they are
closely connected. This may be seen when polar coordinates p, @ are used in the /] -plane
(Fig. 1). It may be found for the Prager relation (1.3)

(1.6) K= 21— %(1 — c0s20)(1 + 2c0s260) |,
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360 A MEYERS

FIG. 1. Prager’s yield function represented in the f7-plane.
and for the Drucker relation (1.5)
0
(1.7) B = rf|1= Z(1 —c0s20)(1 + 2co0s20)|.

[t may be noted that the terms in braces are identical.

Yield surfaces of predeformed materials are drastically changed in shape and size.
A number of experiments have shown that a corner may appear in the direction of the
preloading, whereas the surface tends to be flat in the direction opposite to it (see e.g.
NAGHDI et al. [4], SHIRATORI ¢t al. [5], GUPTA and LAUERT [6]). A [unction that represents
such surfaces should also be able to describe the original material behaviour.

In order to take account of the described features, BETTEN [7] proposed the relation

(1.8) k* = gy + als,

where a. /v are material and history-dependent. This relation will reduce to the von Mises
criterion in case of o = (). For the consideration of larger prestrain values, an extension
of the formula was given by MAZILU and MEYERS [8]

(1.9) E =07+l
where the invariants
(1.10) Jy=Joc—-07). JiT=Jy(c—07)

are functions of material and history-dependent shifts (back stresses) ¢™ and ™. Though
this formula may represent yield surfaces well when there is a prestrain in direction of
tension, it seems to fail in a general case. MAZILU and SKIADAS [9] extended Eqs. (1.10)
Lo

, b Bd SR
(1.11) P [1 = i 4 (1 — V54 /5 ) = iy # (1 —54—)} = JX +ad},

.
3

V) 3

=x3/2 /wz)
=37 73
2z

Jn
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and (ound good representation for a couple of experimentally measured yield surfaces.
REES [10] proposed a relation of translated stress deviators wherein the stress translation
is a {unction of plastic strain-hardening. This relation, however, deviates from the experi-
mental results when there is a corner or a rounded corner in the direction of preloading,
and a flattening in the direction opposite to it. Further interpolation schemes proposed
by DRUCKER, BETTEN and SAYIR [11] use tensors ol the fourth or, respectively, of sixth
order instead of scalar constant; BOEHLER and SAWCZUK [12] take functions ol second
and third invariants of translated and non-translated stress deviators. An overview and
discussion of these formula is given by WEGENER [13]. ZYCZKOWSKI and KURTYKA [14]
veneralized a parametrical description of yield surfaces and showed the interpolation of
experimental data in [13].

2. Proposed formula

1986 GurTa and MEYERS [ 16] proposed the interpolation formula given by

n ’]3( N\ Yy
(21) IZZ{(II']2,‘<]+[},]—3/TE) ]}

i=1
Herein n:; are positive integers, «; and b; are material and history-dependent parameters.
The stress deviator invariants .J,; and .J5; are functions and history-dependent stress shilts
a;, Le.

(2.2 = J(o - 0;),  Jii=Ji(o-a)).

In the case of a single term (n = 1) and zero translations (¢ = 0), Eq. (2.2) reduces to
Prager’s form (1.3).

The interpolation of experimental data, both lor partial and full unloading, taken [rom
the literature showed that a reasonably good interpolation can be achieved for n = 3 and
m; taking values of I and 2, respectively. The experimental yield surfaces were determined
in the @ —7 plane with prestrain in the ¢ and 7 directions, or in o) —; plane with prestrain
in o direction. The development ol the various parameters involved have been plotted
as functions of the prestrain (see GUPTA and MEYERS [17]).

Relation (2.2) may be simplified. The identity holds

7

(2.3) Z i)y =als + S
=1
where
(2.4) a = Zu,.
i=1
(2.5) J3 = Jy(a - a”).
] 1.
2.6 T == iTi
(2.6) a . ; (;ad

and A" is a function of «¢; and ;. Considering (2.3) and introducing further simplifications
in the third invariant components, a revised yield function of the second and third invari-
ants of translated stress deviators is proposed for describing the initial and subsequent
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yield surfaces in the form

n
(2.7) K=z (143 as™].

i=1
¢; and k are material and history-dependent parameters. The first term on the right-hand
side of (2.7) represents the translated von Mises surface, and deviations or distortions are
given by the summation terms. Equation (2.7) cannot be reduced any more to Prager’s
form.

3. Comparison with experimental results

Experiments have mostly been conducted in 0 — 7 and o, — o planes. In o — 7 plane
the second and third invariants of the deviatoric stress tensor take the form

3-1) 17 = %(n — a4 (r =)
(8:2) Jsi = %(rr — ) é(a — )+ (r =T

in o, — o, plane one gets

| "
(3.3) J;= gl((ﬁ —0) — (01— o702 — 03) + (02 — 73)7],

1
(3.4) g3 = —T7(U| — 0+ 0y — Ty)

oy — oy = 202 — ox)llon — g2 — 2oy — o4)].

Several variously obtained initial and subsequent yield surfaces, taken from the litera-
ture, were interpolated with the proposed formulation (2.7), and their fittings were seen
to be reasonably good, when one takes only one summation term and 1, = 2, i.e.

(3.5) k2 = J3[1 + e(J3)3,

where ./3; has been called ./;™. The similarity to formula (1.10) may be noted.

In Fig. 2 the surface determined by IKEGAMI [ 18] in o —7 plane for material prestrained
in o-direction after full unloading is shown. The prestraining values were 0%, 2%, 6%,
12%, 20% and 30%. As it may be observed, there is a corner in the direction of prestrained
and a flattening in the direction opposite to it.

In Fig. 3 the parameter evolution is displayed. It may be noticed that the initial surface
is best described with the third invariant included, i.e. ¢ # 0. In the interpolation the shift
) was zero.

For partial unloading and the same prestrains as above, the yield surfaces are leaving
the stress-free state @ = 7 = (). Figure 4 represents the yield surface by IKEGAMI [18] and
interpolated through formula (3.5). The parameter evolution is displayed in Fig. 5, ¢ was
held constant to 1.03 - 10™*. Due to experimental data, which differed already quite a bit
from the positive to the negative side of 7 (see e.g. the third curve from the left in Fig.
4), the parameter evolution is not very smooth. The shifts o, and o are in the direction
of prestrain.

Yield surfaces shown in Fig. 6 have been obtained by IVEY [19]; prestrains were
in 7-direction and values of prestrain were 0%, 0.064%, 0.47% and 1.527%. The yield
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Fi1G. 2. Yield surface in ¢ — 7 plane of Ikegami after full unloading and prestrains in o-direction.
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F1G. 3. Parameter evolution for yield surfaces in o — 7 plane of Ikegami after full unloading and prestrains in
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250

o83

-083

F1G. 6. Yield surfaces in o — 7 plane of Ivey after partial unloading and prestrains in r-directions.

surfaces have been interpolated by formula (3.5), and parameter evolutions are shown in
Fig. 7. The value of ¢, is varying from 2.11 for 0% prestrain to —8.77 - 10~ for 1.527%
prestrain. The shifts 7, and 7 are in the direction ol prestrain.

For prestrains of 0%, 0.8%, 1.8%, 3.4% and 5.1% in the a,-direction SHIRATORI et al.
[20] measured the yield surfaces in the o, — o;-plane. Their interpolation through formula
(3.5) is shown in Fig. 8 and the parameter variation in Fig. 9. In this case & remains almost
constant: the shifts o and a are in the direction of prestrain.

SHIRATORI et al. |5] produced several yield surfaces for complex prestrain paths. In
Fig. 10 prestrains were in the (—a,.a,)-direction and had values of 0%. 0.8%, .89,
3.4% and 5.1%. Although the material should be isotropic, the measured data reveal
anisotropic behaviour. This leads us to consider a non-constant relation between o) and
a’ and, respectively, between o™ and o7 ". In Fig. 11 the development of the parameter is
displayed. In this case /- seems 1o remain a constant value, whereas ¢; decreases to 1/10th
of the starting value in the initial case. The shift directions are mainly, but not exclusively,
in the prestrain direction: this mav be due to the non-isotropic material behaviour in the
initial state.
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FiG. 10. Yield surfaces in o) — a2 plane of SHIRATORI after partial unloading and prestrains
in (—o)(o)-direction.
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4. Numerical procedure

I. In the case of the required symmetry and when the number of experimental data
was not suflicient on one side of the symmetry axis additional points on the other side
were generated by reflection from the symmetry axis.

2. The first optimization procedure returns the center of the best von Mises ellipse
where (see Fig. 12)

"
Z(J‘; - /;,)3 — min,
i

and p; are the radii from the center of the ellipse to the experimental data, r; are the
parallel radii to the von Mises curve, and » is the number of experimental data.

3. The number of requested data points should be greater or equal to the number
of free parameters. Often the number of experimental points supplied was not sufficient.
In order to generate additional pseudo-experimental points, the following procedure was
chosen:

a. Using the Akima spline algorithm adopted to periodical functions, the first curve
was drawn through the experimental data (see Fig. 12).

b. N = max(20;2n) equidistant radii were drawn to the spline curve. The intersection
points of these radii and the spline curve generated a new set of data for which the
interpolation was performed.
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FiG. 12. Numerical procedure.

4. Finally, the variable metric optimization procedure was used to evaluate the (ree
parameter for which (see Fig. 12)

N
Z(!t’k — pr)° — min,
k=1
where py. are the radii to the experimental data resp. to the generated data, and 7, are
the parallel radii to the interpolating curve.

5. Conclusion

A revised formula is presented that enables us 10 interpolate the experimental vyield
surfaces taken from literature very well. This formula is a function ol the second and third
shifted deviatoric stresses. It is shown that the number of parameters taken into account
may be restricted, and that the stress shifts are mainly in the direction of the prestrain.
The formulation of evolution laws for the considered parameter, however, will require
multiple sets of more precise experimental data.
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Some remarks on modelling of semi-brittle ceramics
by application of mesomechanics

T. SADOWSKI (LUBLIN)

THE PAPER PRESENTS an application of mesomechanics to the constitutive description of semi-brittle
ceramics behaviour under external loading. Simple states of stress: uniaxial tension, uniaxial com-
pression and pure shear were considered as examples of the deformation process.

1. Introduction

SEMI-BRITTLE, polycrystalline ceramics is a special kind of material which exhibits limited
plastic flow during the deformation process. Plastic strain is of the order of the elastic one.
Plastic flow is created by dislocation motion, mainly within the grains of polycrystalline
structure. In general, the dislocations pile up at the grain boundaries which can resist their
free sliding because of misorientation of crystalline axes at the border of the adjacent
grains. In that way the grain boundaries play the most important role in the constitutive
description of material behaviour. Namely, the activated dislocations pile up at the grain
boundary and can initiate microcracks by Zener-Stroh’s mechanism. It is additionally
motivated by the fact that mechanical parameters of the grain boundaries are much lower
than those of pure crystals. Thus, microcracks spread mainly intergranularly, changing
their direction ol propagation (zig-zag cracks) and leading finally to the failure of the
material.

In this paper we will discuss a possibility of application ol mesomechanics to modelling
the semi-brittle ceramics behaviour (MgO-type like in [ 1] and |2]) under complex loading.

2. Meso-macroscale transition in the description of material behaviour

Let us consider a polycrystalline specimen subjected to two-directional loading which
increases quasi-statically.

To describe the deformation process of the material we apply a simple volume (area)
averaging procedure over the unit cell. On the level of the unit cell (mesoscale), the solid
is inhomogeneous and anisotropic because of diflerent defects propagating in grains or
at the grain boundaries. The state of the material is characterized by the local values of
stress and strain (o', ¢'). Averaging the influence of all these effects over the unit cell area
A we obtain the material response in the macroscale, (0. ¢), as a continuum:

i &
(2.1) o= —‘] a dA .
A
|
(2.2) B = j! edA.
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Having (2.1) and (2.2), one can postulate the following expression for constitutive relations
(3]

(2.3) £ = £(0. W),

where w is a tensor describing internal damage of the material. In case of a quasi-static
load increase

(2.4) w = w(o).

and (2.3) takes the final form:

(2.3) ¢ =S(o.w):o0.
Here
(2.6) S(o.w) = S"+ S8 (0. w).

where 8" is the compliance of the virgin material, and §* the compliance attributable to
the propagation of all microdelects N; inside the unit cell.
In the two-dimensional state of stress Eq. (2.5) can be rewritten as

(2.7) i = Si(0)o;,  i.j=1,2,6,

in Voigt’s notation.

3. Estimation of damage influence on the compliance tensor

During the deformation process of MgO ceramics the malterial passes through the
following phases which reflect the changes of internal structure inside the unit cell:

1) dislocations nucleation and slip-band development phase,

2) initiation and propagation of straight mesocracks.

3) dellection of straight mesocracks (kinking process) and their elongation.

[n other words, each phase of deformation is characterized by diflerent components
of the current state of the material damage.

It is worth noticing that the first phase is not recoverable during unloading ol the
material, whereas the second and third ones can be partly or totally recovered.

3.1. Slip phase

Experimental results show that, alter a purely elastic phase, the dislocation sources are
activated within grains (Fig. 1), creating the conjugate slip systems (100) (110). They pile
up at the grain boundaries, but they cannot cross them, in general, because ol a strong
energetic barrier to easy glide. In that way surrounding grains resist free deformation of
crystals with an activated slip system. According to [2], the following components ol §”
are diflerent from zero:

. \ I)A.\[ .7; Te0
(3.1 b’zw =" [~ sin(/3) cos(/79) — '—”]n:: Apa (DY 3 d 1),
) : 77(’”(] = ()l)/).a] J ( a, + o> ( )I (
(s) N D Ts0)
32) S e 2 sin(/3) cos(3) — ———|aas(D)p2(D)d3dD .
(3.2) o e _]’I)”'] :/ [Sm( )cos(/7) 5 +ﬂ2]n,__( Ypa( 1)) it

dm 3
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(3.3) 5;*1(5) _ WAS’;,(S), 57;('” _ _S.;z(s) ‘

where .V, is the number of grains with conjugate slip system inside the unit cell, 74, is
the lattice resistance to dislocation glide, p;(1)) — grain size distribution function, 1),
and 1)y, — the smallest and largest grain sizes, (4, is the Kirchhoft modulus of the vir-
oin material, b, is the coeflicient connected with the shape of grains. /3 is the angle of
the slip band inclination to the axis @, whereas /4, < J < 3, denotes the fan of N,
orains.,

3.2. Mesocracks influence on the compliance tensor

The initiated dislocations slide to the grain boundaries under shear stress acting along
the slip lines, Fig. 1. They are blocked at the grain boundaries and create tensile stress
in that part of the material. When the critical value of the shear stress is exceeded, the
Zener-Stroh microcracks can initiate. In general, such microcracks develop as an open
or closed ones, depending on the sign of the normal stress to their faces. In case of a
positive sign — microcracks grow to become mesocracks under mixed mode, whereas for
negative one — under Mode 11.

mesocrack

2]

6x-kq

X,
L

Fic. 1. The Zener-Stroh cracks nucleation mechanism.
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Table 1. Components of the matrix .W,(y).

i\7 | 2 6
1 sin® (2 — 3cost @) 3sin’ ¢ cos ¢ 0
2 cos” o(1 — cos” @) cos” o(1 + cos’ @) 0
6 — % sin2¢(1 + 2sin® &) . l; sin 26(1 + 2cos” @) 0

Table 2. Components of the matrix _‘UJJ‘.V),

i\j 1 2 6
1 —% sin® 2¢ + p sin® ¢ cos ¢ i sin® 2¢ — p sin G cos ¢ 0
2 i sin” 2¢ + jesin’ ¢ cos & —% sin® 20 + jt sin ¢ cos® ¢ 0
6 % sindo + psin’ o cos 20 —i sind4o + gt cos” ¢ cos 2¢ 0

Assuming that the mesocracks occupy a straight segment of the grain boundaries, one
can simply estimate the compliance tensor components, 3]

. - 2T ’_\rr(f_j)
(‘)4) ‘Si_j o A E() { ‘\T(l*)}

4Ym

hes Dy () 2
2 Dar (™Y g
Moy — Np(IDYdD do .
w4 Pi(@)p2( D) dD de

Pcy D

where ;V,(,(,') and ;\-",(,‘;) are numbers of open and closed mesocracks, respectively; p(),

. 8 . & a 4 i . . " . I ()
p2(1)) are the inclinations of mesocracks and grain size distribution functions. :\lff-) and
.-\[L-(;-') are the two-dimensional matrices, (see Table 1 and Table 2). &, < ¢ < .., denotes
the fan of NV, cracks, and

(35) 3'\'472 - .\"(“) o :‘\Y(“).

nt m

Integration in (3.4) must be performed separately for open cracks, NS, and closed ones,
N for appropriate angles of inclination. In Table 2 symbol j denotes the [riction sliding
coeflicient.

3.3. Influence of the mesocracks deflection on the compliance tensor

Experimental evidences [4] show that mesocracks propagate mainly intergranularly,
although transgranular mode is also possible. It is due to the fact that the surface energy
of grain boundaries 7, is substantially less than the surface energy of pure crystals 7.
Thus, the change of the mesocrack direction causes toughening of the ceramic materials.

Tension cracks (kinks) appearing at the end of main mesocracks inclined to it at the
angle #, propagate under mixed mode initially, but tend to become the Mode I cracks as
1 increases. The stress intensity factors at the kink tips can be approximated according to
the formulae
— L o 4 7 sin(f) - =\11/2
(36) =~ { 7, sin(f) + o} cos(#) } [l + 1

2
—(ﬁl)”z;[ﬁg + o + (o — 02)cos2(0 + @),

75 cos(t)
75 cos(f) + o) sin

*\11/2
@ | 170+ 1)

D
(3.7) ky= 3{
—(77[)1/3%[(0, — ;) sin2(8 + 0)].
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The upper expressions in the braces are related to the closed mesocracks like in [5],
whereas the lower ones — o opened cracks. The second parts of (3.6) and (3.7) present an
influence of external load. [+~ is the equivalent kink length, as in [5]. Here 7, = o{ + j0?
is the component of the shear stress.

With these assumptions, the influence of existence of the kinks on the compliance
tensor can be described by

o (RO M Bt O :
(3~R) ST_/ = ‘}‘“ { "\?’("") } I VA‘I(]) j t(f ]1;_.3((') -+ (;‘))/ dl (l'((q tr (.'i) ’
() Ym "'] rj“l +r.r';Ll 1[

where VO and N ar2 numbers of open and closed mesocracks strong enough to
produce kinks, ! l(f] and U(I are two-dimensional matrices (see Table 3 and Table 4).
Pk, and py, are distribution functions of the tension crack lengths and their inclination
angles, respectively. lkl <1< IA, characterizes the fan of the kink lengths, whereas
B, + Op, < 0+ & < 0, + O, the fan of kinked crack inclination. Integration in

’ : () Se)
(3.8) must be performed separately for open crack N ™ and the closed ones, N\, for
appropriate angles of inclination.

Table 3. Components of the matrix M (len

i\J 1 2 6
| sin @ cos(26)sin(f + @) cos @ sin(28) sin(@ + @) ]
2 — sin ¢ sin(20) cos(# + ¢) cos o cos(28) cos(f + o) 0
6 — sin @ cos(30 + o) — cos @ sin(30 + ¢) 0

Table 4. Components of the matrix "’({;)'

i\ 1 2 6
| sin® & cos ¢ sin(0 + d)ctgd — pt) cos® dsin(0 + d)tgp — p 0
2 — sin® ¢ cos(0 + ¢)ctg o — ju| sin ¢ cos® g cos(d + o)tgd — pu| 0
6 — sin® @ cos(0 + 26)[ctg d — pu] cos® ¢ cos(f + 20)te d — p] 0

The compliance 57, Eq. (3.8), is related to the opening effect of tension cracks due
to slip of the main mesocrack faces. Another effect influencing total compliance of the
material response is the closure or opening of kinks under external loading. The amount
of changes can be estimated by the following expression:

: o 7 D? ro Iy iyt
(3.9) Wiy = 16 kg { Kr_r(;l")} I i (1) ] Mijpr, (0 + N Al (B + )
ikl H"’I +bk,

where components of the matrix M ;; are specified in Table 5

Table 5. Components of the matrix ”m)
i\J 1 2 6
1 sin*(0 + &) () 0
2 0 cos™ (0 + @) 0
6 —1sin2(0 + o) —1sin2(0 + o) 0
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3.4. Overall response compliance tensor

Summarizing our discussion of the preceding sections, the total response of the ma-

terial (2.6) will be calculated by superposition of Eqs. (3.1)—(3.4), (3.8) and (3.9):
¢ _ b *(5) 1 T )

(3.10) 2ij(o) = a5; + Pt 8 .5‘,‘/ +.5;; + .5” .
The expression (3.10) shows a rather complicated structure of the compliance tensor, pos-
tulated for the Taylor model (no crack interaction). It strongly depends on the inclination
fans of the existing mesocracks, and on the propagation mode of the secondary cracks.
They are directly related to the actual state of stress o.

4. Numerical examples of MgO ceramic deformation process

To illustrate the possibilities of the model, let us consider MgO ceramics characterized
by the following constants [4]:

e Young’s modulus [, = 316.4 GPa,

e Poisson’s coeflicient 1, = (0.272,

e Kirchhoff’'s modulus 7, = 121.9 GPa,

o the surface energy of grains v, = 1.0 N/m,

o the shear stress resistance for uniaxial compression 7, = 75 MPa,

e the shear stress resistance for uniaxial tension 7/, = 25 MPa,

61
2t}
ok 3
7
s/
/
2 7
/
/7
7
v
1+ : 4
/
/
/
/
/
S/ _
/
/
/
/ 1 i -
0 7 2 € /€,

FiG. 2. Uniaxial tension.
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We assume that the surface energy of grain boundaries is 7, = (.57, and the mean grain
diameter in the unit cell is 1) = 45um. It is also assumed that grains are hexagonal in
shape (6 = 607).

Figure 2 presents the deformation process of MgO semi-brittle ceramics subjected 1o
simple tension. Only open mesocracks (A\T,(,[Z) > () develop within the material. Segment
(0-1 reflects a purely linear elastic response of the MgO ceramics. At point | (limit of
the purely elastic phase, characterized by the stress 27/, and the strain ¢), the first
conjugate slip systems are created inside the grains. They are potent enough to nucleate
the first mesocrack at point 2. Segment 2-3 represents the nucleation and development
of mesocracks. At point 3 the saturation state is reached and the “worst” mesocrack
is capable of kinking and spreading along the grain boundaries causing final failure. It
should be stressed that there is no continuity of the tangent in 2 due to the fact of intensive
mesocracks initiation at the beginning of the fissuration process.

5
2tr

s0

it

S S

0 ' 2 3 4 5 £,/65

FiG. 3. Uniaxial compression.

Figure 3 shows the deformation process of MgO semi-brittle ceramic subjected to
simple compression. Contrary to simple tension, only closed mesocracks appear, NS >0,
Numerical calculations were performed for g = 0.3. Segment 0-1 reflects purely linear
elastic response of the material. At point | (limit of the pure elasticity, characterized by
the stress 275, and the strain £5;,) the slip line phase initiates. Nucleation of Zener-Stroh
microcracks begins at point 2. Segment 2-3 obeys the nucleation and development of laws
of mesocracks. The frictional sliding of some suitably oriented mesocracks initiates tension
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SOME REMARKS ON MODELLING OF SEMI-BRITTLE CERAMICS 579

cracks at their ends. Further loading (3-4) causes the growth of the tension cracks and
spreading along the sequential segments of the grains. At point 4 some tension cracks
produce kinks again or spread through the adjacent crystal.

Under pure shear both the open and closed mesocracks appear inside the material

(;’\",(;l:) (R .\’,L,‘," > (). In numerical calculations it was assumed that friction sliding co-
efficient j# = 0.3. Figure 4 presents the correlation 0,(¢;), whereas Fig. 5 — o1(51),
respectively. Segment 0-1 reflects purely linear elastic response. At point 1 (characterized
by the stress 275, and the state of strain ey, 2%,), the first conjugate slip systems are cre-
ated inside the grains. They are able to produce the first mesocrack at point 2. Segment
2-3 represents the nucleation and development of mesocracks. Like in uniaxial tension,
the function (<) has the characteristic shape with the small inflection, whereas o,(<;)
is smooth. At point 3 the first opened mesocrack produces kinks and spreads in a stable
manner. The first compressed mesocrack changes its direction at the load level corre-
sponding to point 4. Final failure is associated with unstable unconstrained propagation
of compressed mesocracks.
In all the figures unloading of the material was marked by dashed lines.

4. Conclusions

The deformation process of semi-brittle materials is characterized by many difterent
phenomena developing within the material. The most important ones are taken into ac-
count by application of the appropriate averaging procedure.

In mesomechanical modelling we do not introduce any internal parameter describ-
ing the damage process, contrary to the phenomenological description. However, many
reasonable assumptions concerning geometry of the grain size, distribution of the crack
lengths etc. must be done to obtain an effective constitutive model.

In the present paper the model was applied to the case of the so-called proportional
loading by the two-dimensional stress. Unloading was described in [3]. It seems 1o be
applicable also to nonproportional loading path as well as to cyclic loading, though it
can entail more complex numerical calculations. The problem will be investigated in the
nearest future.

However, because of its simplicity and deep physical foundations, the proposed model
seems to be a very convenient tool for engineering applications concerning the analysis
of deformation processes occurring in advanced materials and structures.
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Concept of a singular surface in contact mechanics

G. SZEFER, D. JASINSKA and J.W. SALAMON (KRAKOW)

THE PAPER DEALS with an application of the notion of material singular surtace to the description
ot contact problems in elastic continua. Two Kinds of contact problems are considered: 1. Dynamic
contact with friction in terms of large detormations, and 2. Static contact between reinforced media.
In the first problem — the singular surface has been used to model the frictional contact: in the second
one — the singular surface describes the reinforcement. Variational formulation and numerical results
tor both these problems are given.

1. Introduction

IN THE PAPER two classes ol contact problems will be considered: . Dynamic analysis
of frictional contact in terms of large deformations, 2. Frictional interaction between
reinforcement and the layer in elastic, multilayered media. In both problems a unified
approach based on the concept of a material singular surface in continua has been used:
in the first case to describe the frictional interface response in the contact zone, in the
second one — to describe the structural properties of the reinforcement.

The model of a continuum /3 with a singular surface /" which divides the body into two
parts BTUBT UL = [} is known in continuum mechanics [4, 6, 9] and was used to describe
several surface phenomena like transition, surface tension etc. The theory of continua with
material singular surface is based on the assumption, that any thermodynamical quantity
Y/ has the representation

Vo= l iy + [ o .
B-1 I

It means that, beside of the usual field density ", an additional independent field ", on
" is defined. Hence, using the standard procedure for balance equations and taking into
account the Green—-Gauss theorem for discontinuous fields, the system of equations of
motion has the local form [9]

B\I": dive + pb = pii.

[ divi o, + psbe — [lo]n = p.ii, .

where

/5 b, u, o mass density, body force, displacement and stress tensor of the body B,
ps by ug. o independent mass density, body force, displacement and stress tensor of the

surface [ particle, respectively,

[¢..)]=(.)" = (...)" discontinuity on /',

n vector normal to the surface /' (Fig. 1).

These relations, together with the kinematical equations for the strain tensors e, e,
(of the body, and of the surface, respectively) and with the constitutive equations for
the stresses o and oy, constitute the closed system of the continuous body containing a
material surface /.
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2. Dynamic contact problem with friction

2.1. Statement of the problem

Let us assume an elastic body B* (contactor) which may be in contact with another
elastic body B~ (target or reference body) (Fig. 2b). Assume that the contact surface /.
is rough. To describe the frictional phenomena, the idea of a material singular surface will
be used. It means, that the material particles of a contact zone ['. have physical prop-
erties different from the contacting bodies B+ and 37. The concept of singular surface
in description of a rough contact is based on three fundamental, physically motivated
postulates [15, 16]:

1. The contact zone [, is a two-dimensional manifold, with material which has prop-
erties different form the contacting bodies (the concept of the “third body™ [5, 20]).

I1. The constitutive equations of this manifold should take into account the influence
of asperities of the surface.

ITI. The process of friction has a “fractural” character.

From axiom I it results, that each frictional contact boundary value problem should
consider the system of equations mentioned above with the additional unknown surface
stress tensor o defined on /.

Axiom 1II provides the constitutive law for the material of /.. It should be of the type

oy = Fla.ey).
where a means the approach or penetration (the definition will be given later).
Axiom 111 leads to the criterion of friction (stick-slip condition). Here two kinds of
formulation are possible:
i) A classical condition f({7.fn) = 0,
i7.tn — tangential and normal contact stresses in bodies B=:
ii) A new condition of the type

max |ts| = max|osn| < S, = stick,
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384 G. SZEFER, D. JASINSKA AND J. W. SALAMON

max |ogn| = 5. = slip.

where t, — stress vector of the manifold /., n — vector normal to the cross-section in
I'. (see Fig. 1), S, — critical value depending on the micro-structure of /. and on the
slldmg velocity.

In the present paper, a dynamic contact problem ol an elastic body with the above
proposed model of friction will be formulated. The stick-slip condition in the classical
version has been used. It means, that the material singular surface models the structure
of the contact manifold in the form of a kind of “hardening™ or “loosening™ ol the contact
material. The break of cohesion is induced by the critical value of the tangential stresses
t7 (according to the Coulomb law or to other formulas like those given by ODEN [11],
GROSCH, or THIRION-DENNY [13, 14]).

The new criterion (ii) needs further experimental investigations on micro- and macro-
structural level, and will be the aim of separate papers.

So, assuming large deformations, the system of equations in the natural Eulerian
description contains:

equations of motion

+ o, + S N SR
BT o v+p b =pt il

ij.J i
2.1) Io: Oige = o] -mj +p% - 07 = p° - @
B rrl-:-!j +pT b =pT -0
kinematical relations
Bt (E = ;(“I.i - n,;_,- - uf._c- . u,t_‘,-).
. 3 1 s
2.2) oo ez = ;(u,\ Bt Uga— Uy ot ln ),
B~ 1 €; = E(u;f + U — Up;cUp ),
constitutive equations
; = f+(e )
(2.3) dwj = FI. (e’ a),
o = Fi;(e7).
Here are: u™, e* o — displacement vectors, Almansi-Hammel strain tensors, Cau-
chy stress tensors of the contactor and target body, respectively; u®, e, ¢” — displace-

-

ments, strains and stresses of the surface I%.; {«'}, i,j = 1,2,3; {#"}, a. 3 = 1,2 —
Eulerian coordinates defined in space and on the surface /., respectively; (.. .)., — mears
covariant differentiation, « — penetration (as mentioned by Axiom II);

the following transformation I‘ormulas should be taken into account:

(Fa} au t oot ] oo f

o’ =o'y b =biar u; = ulw

The systems (2.1)—(2.3) must be completed by
1. Boundary conditions

ot ‘mj-i = I)ii(x,l) on ¥,

(2.4) 'ul-i = _q,;:t(x.f) on Jl"‘“i .
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(2.4) ah3 g = pe(x,1) ondl..
fcont.|
2. Initial conditions
.+ i
u,-i(x.f“) =+ u',—'(x). 7 (x, ty) =% i“j'(x). x € BT,

(25) S _ s .S _ ,Us . I
wi(x,ly) = ;" (x). it (x. L) = ;7 (x). xe /..

3. Compatibility between the body B and the singular surface /.

(2.6) u’ =u’

(generally not necessary but here assumed for simplicity).

4. Contact conditions describing the normal interlface response. The unilateral contact
in terms of large deformations is described by using the contact distance function defined
as follows (see Fig. 2a):

(2.7 d, =(x; =x7)-n" =[(X"+u")
Here

— (X" +u )]0 =d,(x".x)).

P P

. too— it : -
x,n . x[:(x ’ IL' ) = pro.]]‘lf X
is the projection of x~ on the deformed potential target surface I'" (candidate contact
surface of 7)), cf. [19]. The unilateral contact law has then the form

dy >0=1,=0. d,=0=1,<0.
2.8) -
by ~d,=0. 1, =0, -n;-n,.

To avoid the Signorini unilateral conditions, one can use the so-called normal compliance
law [11]

(lq) tu = (.ri . ”;’—’”‘ ”‘+ = {

a = —d,  defines penetration

0 fora <0,
a fora > 0.

(note, thatd,, is well defined even if the bodies penetrate each other, it means for d,, < ().
5. Friction conditions
Taking into account the previous remark, the classical formulation of the friction con-
dition will be used. Then we have

ftp.t,) <0 onl[..
(2.10) Fp.ty) <0 = wt =0,
flr. ) =0=3X >0, ap=-X-tp.

where
iy = uyp — a7 — sliding velocity,
1
tp = tp| = (lg - tp)2 g =0y -nj — 1, -y
by — -1, for the Coulomb law,
I
ty — ————1,,  for the Thirion-Denny model,
A+ DB, i
1
] . = {n -3 5 ~
(2.11) f(r.14) tr — py - (T) ' -1, for the Grosh-Schallamach model,
C'r - 1y i .
tr — —op tn—— for the normal compliance law.
(' 1y,

T
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The systems (2.1)-(2.3) with conditions (1)~(5) constitute a consistent system of relations
for the boundary value problem of the frictional contact in local, Eulerian formulation.
Contrary to the existing models of friction, additional terms u®, e, o* describing the
intrinsic frictional phenomena in form of a singular surface /. are introduced.

2.2. Variational formulations

To solve the nonlinear boundary value problem (2.1)-(2.9), the variational formulation

of the problem will be stated.

Defining the set of kinematically admissible velocities
- \'+={v+=w+;v+=0(‘)lllf}.
(2:12) Vo={vT=w ;v  =0on1l,},

and applying the standard procedure for derivation of the virtual power principle, the
variational formulation in Eulerian description takes the form

213) [ oyN)e 0NAVT + [aT e vV T + [ od e vy

2. o I
+ l ot v dVT + l o i e dV T+ ] o wleldl
2, 2 I
= ] ot b dVT 4+ l 0" b e s dV T+ ] o° - biojdl
2. 0 i
+ j P z'f(/]' + ] pi -vidl + } plenldS
Iy I'= ar,

+ ] [ogn; (v —v) + nfjuf(rf —)dl YTy E v,

where
] . | )
giiv) = ;(tf,"., +v;0). cap(y) = ;(".};d + 054). V' =V on .

and the following equalities

§ 58 8§ 8 28
A ) = 7.8 = g2 -
oo (Tz.] i afBca

have been used to describe the power of the surface stresses,
The last integral in (2.13) can be written in the form

Je= [logny (o7 = o))+ alinf(vf = vi)dr
s

= [ 17 @] = o)+ 7@ — o))l
&
= ] [ty (vr = v3) +t7i(vn; — V3L + [ [h(vf = vi) + 13,05 — vi))dI,
I, I

where v* and z‘%l denote the normal and tangential components of the vectors v*.
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CONCEPT OF A SINGULAR SURFACE 587

Taking into account the condition (2.6) and using the notation

(2.14) vy =0, —vn,  Up; = Up; — Upis

n n !

it will be finally

(2.15) Jo= [trowdl + [ tpefdl

T £
The variational statement (2.13) of the dynamic boundary value contact problem (2.1)-
(2.9) needs additional remark. Since the kinematical admissible sets (2.12) are defined
for velocities (and not for displacements), it is necessary to complete (2.13) by additional
variational inequality

[ ta@dnly™,¥;) = da(x™ x> 0
I,

VyT e Ny ={y": d,(y".y;) >0 onl.},

which is equivalent to the unilateral contact condition (2.8) (it vanishes of course, in the
case of the normal compliance model (2.9)).

In numerical calculations, the current contact zone [ . is determined iteratively, so
one can treat at each state (step) the actual configuration ol /. as known. In that case
(2.8) will be fulfilled automaticaly and therefore formulation (2.13) needs no additional
conditions. Another remark concerns the fact of creation and annihilation of the material
surface /. (third body), and hence the change of all balances (mass, momentum, energy).
This situation will not be considered in the paper, since we assume that the contact zone
exists all the time and wear is not taken into account.

From the numerical point of view it is also convenient to write all terms in (2.13)
(except the contact integrals) in the material description.

Therelore, after introducing the I1. Piola-Kirchhoft stress tensor for the bodies ks

Sgp=J-05 - X5 X%,
(2.16) ' A
J = det(x'y) > 0,

the equations of motion in the reference configuration Q?; will have the form

x '+ o + & _ s+
B*: (Skp-zig)rtey by =op-u].

Assuming that the common part of the boundaries which are in contact or the candidates
of the contact zones [ . are known in the reference configuration, it is emphasized that
all kinematical!g admissible quantities (velocities and displacements) remain well defined
in domains {27, and their boundaries. So, repeating again the usual procedure for the
virtual power formulation, it will be

(2.17) f Sk -al ol dVg + ] Skp(™) @ v dVp
2} o
+ l oRitl cvfdVy + f opit; v dVy

g

http://rcin.org.pl



G, SZEFER, D. JASINSKA AND 1. W, SALAMON

588
o+ + + 777 - - - R to+ + gt
(2.17) = [op-blvfdVi+ [ op b7 ordVE 4 [phefdl,
[cont.] 4 _ )
i P T'fr

+ I Pri-vi dI'g + I Skp@™) a0l - NEdI

'y I’y
+ | Sk (W) a0l o NdDS, YiviovT)ed +
J KL TN 0 L clt ( ’ ~ :
I
After applying the formulas
= A -1 s e = %
a5 =) Sk ik XL
da
NE=,t. RS
o X (/.'l:t ( ) i,J
da dl. .
= —= (da. d-\ are the area elements in the current
(].‘i:t (ll[(_,?
and reference configurations),
n" = —-n~
to the last two integrals, we obtain
e + + T+ + e - - - - — —
[; = l Srru™)-ai -] - NidI ' + ] Sipu™)-a s s NpdE T,
in ln
= ] ﬂ,»,’(u*') 5 1/? {-r,*(/l‘_ + ] ai(u)- 117 . r‘:(l,’-‘ .

I -

Here I't = [, U liif — means the mapping of [‘(,i;), in the current configuration, /. —
is the proper (common) contact zone, [J*'f — denote these parts of /'* on which d,, > 0
(and hence the boundary traction vanishes).

Using the above mentioned meaning of the mapping zones and taking into accont the
equation (2.1),, we obtain

In= } aij(¥) - nioldl, + l oij(u”) - ny - e dl
I 4
= ] llojll - njoldl. + f o)} - (wf —v7)dl
e I
= [ (0h.o*) + 0°0F = 0%y - o d I+ [ 4,0l Ly - ol

T, r

Finally, the mixed variational formulation takes the form

(2.18) / Srr™) ol g ol pdVR + l Skrp™)-a v dVe

> O~
¥y 2y
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(2.18) v [ a0

|cont ] r.
+ [ ol ~oldVE + ] opl; v dVy + I o'l vidl
25 25 I

= [ o 0T - vfdVe + ] op by -vidVp + l o’ b eidl

s (4

- _ I
2 25

+ ] Phi - vidl; + l Pri-vi Al + / pioelds

1 !
I'ir I'in e
+ [ tovedl + g cofdl YT vy e VE
I, I
This equation constitutes the basis of our further considerations.

The last two terms which follow from the integral /. lead to serious mathematical
difficulties since the Signorini conditions (2.8) as well as the [riction conditions (2.10),
are multivalued and nondiflerentiable. To omit these difficulties, the usual regularization
procedure will be applied. Therefore, after introducing the regularization formulas

, 1 _ .

lp-1(u™) = —= | d,(x x;) | ford, < 0only.

(2.19) l—’,f—‘— for |ay| > ¢,
trie = —pt(ln, 0%) 1y - 4 17

U for oy < =

the contact integrals mentioned should be understood in the sense of their regularization.
To solve the nonlinear contact problem, the incremental approach has been used.
Applying the standard expressions [3]

w2 =u' + for displacements.
F+at = §t 4 o/ Au for the deformation gradient.
ST = 8"+ AS. AS = C-e(Nu) for stresses.
1
¢
CNL = ;(—\“/\;L + dup p +uy o Aung

+u'y, - Auny)  for strains,

s b+ At s,t ; 5 5 . .
o’ =o'+ Ao’ . Ag® =C%(e)-s(AMu’)  for the surface stresses,

1] Ll ¥

and using the substitution (2.19), one obtains (2.18) in the incremental form

- Yo+ 4 ’r.f_+ L . : - - ~t,— ) ‘ .
(2.20) f Ciearn exn - Figp - vindVip + / Cromn - exn - Faar - vindVy

25 .".),_‘,

+ [ Climu(e@"™)) - £ AW) - e (VAT + [ SiE, - Auf g - 05 pdVR

I 852
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(2.20) + [ Sk Ay,

[cont] "

i i ndVig
”;,
+ j o) v dVR + J ogi, - dVip + ] ot vdl
25 9= I

R
. e B R
] T

‘ Aul - pvdl
1 ()' 1 n

du, gy
= ] of bpordVe + l o - brvidVR + ’ of - bivdl
l5 3 27, I,
* i ) Tt t,— : b t+ At {
+ ] p;:'\?'r copdl 'y + / p/:f“ copdlp + ] pf- " S

~+ — oalr
[fH IJH

T oot ot r Tot.— ot . Yoots -
- ‘j 'S[\.L].l.’\. . "ij([“ R — J 'S[\'f,/'i,\' . f'l"]J(II R — I (T/I \:”(V)(lll
Q4 25, I
— [ they vdl = [ t5. - vfidl
I I,

The integral containing the term dt,.,/du,, needs some explanation. It is important
to note that {,., is nondifferentiable (see (2.19)). Nevertheless, for small displacements
(following from small increments) it will be d,, = g —u,, (where g is the gap between the
bodies). Hence the mentioned integral is well defined on /.

Finite element space discretization and the Newmark procedure for time integration
were applied to solve the problem numerically.

Expressing the increments of the unknown displacement vector in the usual form
Au(X,t) = H(X) - Au(t), Av’(X,t) = Hy(X) - Au,(?),
where H is the shape function matrix, u is the nodal displacement vector,
[Aup, Aup]? = [Hy Hy )T - Aa,
e = B(X.u') - Au(1).
F(u) = B, -u.

2*(u) = B¥(X) - u(l).
AS = C-BAi, Ac® =C* B*Ai

one obtains from (2.20) the matrix equation

mt+A 2 2
M-t 5"+ Kb Al + [KP+ Ky + Ky ] Al = £74 _ f — £ — R,

where
M= [ HL -HydVp+ [0 (8)"-HdT

Rrt I
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K'= [(Bs)-Cy -BedVp+ [ () C-Bdlp

o 29 I , , _
+ .] (Bli)! 'S;;'Blj:(“ R
2
i ()'. ) = ) ““R+
Ky = [ —L=@g)"  Hpdl.
Qi
I,
. Oth :
Ky = [ 55 (Hy)! -Hpdl,
du,
[‘ 1. (”r,f"”" (Hv)! -HydI for the classical models,
. | Ug,— G
{ | 3
K\v - ! | t ENDln —1 Vi 1 .
j my, - Co- (il — gy T (Hy)' -Hydl™ for the normal compliance
r model,
£52 = [ opy - 05" Hpd2p + /' 0, - bITACHNT
2p+ I

+ [Pl 4 [ plrRtEdS
iRt or,

T

I, I

e = [t -Hydl. th= [t -Hpdl,

R = [BL-slavp+ [ ()" sldr.
B b

The solution procedure is realized by an iterative process in which we calculate:

e the normal pressure and contact zone under the assumption that the friction stresses
are known;

e the friction stresses with known normal pressures and known contact zone.

The algorithm starts with the assumed friction stresses t7; = 0, and ends when the
norms of the errors are small enough.

2.3. Numerical example

Consider a rubber cube B* : a x b = 0.48 x 0.5 m in a plane state of strain, resting
on a rigid half-space I3~ (Fig. 3). The following data are introduced:
rubber
E=5-10°kNm’, » =045 p=17-10(kgm’).

Singular surface

1) linear elastic [2y = 10 kN/m

2) linear elastic [y = —10 kN/m (for testing only),

3) nonlinear elastic like in Fig. 4.
Boundary conditions

w =005m, v=1m/s.

Initial conditions

. . ~ o
u = static solution for uy. w=10.
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FiG. 4.

Space discretization: 348 four-node elements +48 two-node elements for the singular
surface +48 four-node contact elements.

Time discretization — max Al = 1.107%,

Newmark’s parameters o = 0.5; 5 = 0.25.

Friction condition — for Odens model my = 3, my = 8/3, cn = 10Y, ¢y =
A

Some of the obtained resultats are presented in Figs. 5-9.
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3. Static contact in elastic, multilayered reinforced medium

Let us consider a multilayered halfspace like that in Fig.10. Such a system models
the structure of road pavement reinforced by geosynthetics (dense geogrids or geotex-
tiles). The layers are treated as linear elastic, the material of the reinforcement transmits
tension only. We assume perfect glueing (adhesion) between the reinforcement and the
upper layer B (u™ = u®) which follows from technological conditions. Several contact
conditions (adhesion, decohesion, friction, unilateral contact) between the reinforcement

il

—s ]
' = = |
. B geosynthetics “
| /
| ‘I
1 J"
<
A
o
Ny //
— o
Fic. 10

http://rcin.org.pl



598 G. SZEFER, D. JASINSKA AND J. W. SALAMON

and the bottom layer B~ are taken into account. Singular surface as a model of the rein-
forcement has been used. Then, such a material structure will be described by equations
(2.1)-(2.3) where, instead of (2.3);, the constitutive relations for the geosynthetic rein-
forcement should be used. Friction between the surface /" and the layer B~ is described
by means of the Coulomb law. Since the problem now concerns the static case, the varia-
tional principle is based on kinematicallly admissible displacements (instead of velocities).
Neglecting the inertial terms and taking into account the unilateral contact between the
reinforcement and the layer B~ (decohesion possible), the variational equation (2.13)
can be used.
The friction conditions are of the type

dy =0=tr < pty,
by < ply, = wy = 0,

tpy = pt,, = wp = —/\t']'.
PSS [
q:U_7MPG
P44 @-02m B
E=5000 MPa v =03 006m
E=6000 MPa v =03 E=5000 MPa v =03 018m
E=500 MPa v =03 v E=400 MPa v =03 ! 015 m
. 0 X |
gap
E=100 MPa v =03 2m
[ 2m 2m 1 02m
Fic. 11.
a6”°
E, =2000 kN/m
eS
Fic. 12.
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! Fic. 13.
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02

—1 i' ‘l ‘;'.,'

-05 0 05 0 5 20 x/d Fic. 14.

The quantity wp means here the fictitious “velocity” (describing slip) which results from
the incremental action of loads. This incremental procedure in updated Lagrangean de-
scription has been used to solve the problem.

For the data given in Figs. 11, 12 and for several values of friction coeflicient, a series
of numerical calculations was performed. Results for stress distributions are shown in
Figs. 13-18.
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4. Conclusions

In Sec. 2 the notion of a singular surface to describe frictional phenomena has been
presented. To formulate the constitutive equations for the real “third body” (contact zone)
as well as for the friction criteria (stick-slip condition), further investigations and experi-
ments in micro- and nanoscale are necessary. Nevertheless, the presented approach gives
an effective formalism to describe such surface phenomena like friction, lubriacation, wear
etc. The numerical results show that high frequancy vibrations occur in the contact zone,
what is in agreement with experimental observations (e.g. [or tires).

In Sec. 3, the state of stresses and deformation in layered, reinforced media is analyzed.
Different contact conditions between the layer and the reinforcement are considered. The
obtained results show the stresses in the reinforcement and the influence of the contact
conditions on the stress distribution in the layer. Such an analysis can be important for
the explanation of the influence of reinforcement on the initiation of the reflecting cracks
in road pavements.

Further research for inelastic properties of the contact zone, as well as for the lavered
material, is necessary and will be presented in the future.

As one can see from the above considerations, the notion of singular material sur-
face constitutes a useful formal tool for description and analysis of complex reinforced
structures and interacting continua.
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