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Arch. Mech., 46, 6, pp. 819-828, Warszawa 1994

Thermosolutal hydromagnetic instability of a compressible

and partially ionized plasma in porous medium

SUNIL (HAMIRPUR)

THE THERMOSOLUTAL instability of a compressible and partially ionized plasma in porous medium is
considered in the presence of a uniform vertical magnetic ficld to include the effects of collisions,
The stable solute gradient and magnetic ficld are found to introduce oscillatory modes in the
system for (Cp/g)3 > 1. For stationary convection, the magnctic ficld and stable solute gradient
are found to have stabilizing effects, whereas the medium permeability has a destabilizing effect
on the system for (C,/g)3 > 1. The effect of compressibility is found to postpone the onset of
convection. The collisional effects disappear for stationary convection. The sufficient conditions for
the non-existence of overstability are obtained.

1. Introduction

A COMPREHENSIVE account of thermal instability, under varying assumptions of
hydromagnetics, has been given by CHANDRASEKHAR [1]. VERONIS [2] has studied
the problem of thermohaline convection in a layer of fluid heated and salted from
below. The physics is quite similar in the stellar case in that helium acts like salt in
raising the density and in diffusing more slowly than heat. The conditions under
which convective motions are important in stellar atmospheres are usually far
removed from consideration of single component fluid and rigid boundaries and
therefore, it is desirable to consider a fluid acted on by a solute gradient and free
boundaries. The problem of the onset of thermal instability in the presence of a
solute gradient is of great importance because of its application to atmospheric
physics and astrophysics, especially in the case of the ionosphere and the outer
layers of the solar atmosphere.

A partially ionized plasma represents a state which often exists in the Universe
and there are several situations where the interaction between the ionized and
neutral gas components becomes important in cosmic physics. The existence of
such situations follows from ALFVEN’s [3] theory on the origin of the planetary sys-
tem, in which a high-ionization rate is suggested to appear from collisions between
a plasma and a neutral gas cloud, and by the absorption of plasma waves due to
ion-neutral collisions such as occur in the solar photosphere and chromosphere
and in cool interstellar clouds. SHARMA [4] has studied the thermal hydromag-
netic instability of a partially ionized plasma for incompressible case. SHARMA
and SuniL [5] have studied the thermosolutal instability of a partially ionized
Hall plasma in a porous medium in presence of uniform vertical magnetic field.
In another study, SHARMA and SunIL [6] have considered the Rayleigh - Taylor
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820 SUNIL

instability of a partially ionized plasma in a porous medium, in presence of a
variable magnetic field.

When the fluids are compressible, the equations governing the system become
quite complicated. To simplify the set of equations governing the flow of com-
pressible fluids, SPIEGEL and VERONIS [7] have made the following assumptions:

i) the depth of the fluid layer is much smaller than the scale height as defined
by them, and

ii) the fluctuations in density, pressure and temperature, introduced due to
motion, do not exceed their total static variations.

Under the above assumptions, SPIEGEL and VERONIS [7] have found that the
flow equations are the same as those for incompressible fluids, except that static
temperature gradient is replaced by its excess over the adiabatic one. SHARMA
and SunIL [8] have studied the thermal instability of compressible Hall plasma in
the presence of suspended particles.

Generally, it is accepted that comets consist of a dusty “snowball” of a mix-
ture of frozen gases which, in the process of their journey, changes from solid to
gas and vice versa. The physical properties of comets, meteorites and interplan-
etary dust strongly suggest the importance of porosity in astrophysical context
(McDonnNEL [9]). The compressibility, collisions between ionized and neutral
particles and medium porosity effects are likely to be important in astrophysi-
cal situations like stellar interiors and atmospheres and in geophysical situations
like Earth’s molten core. The present paper, therefore, deals with the ther-
mosolutal instability of a compressible and partially ionized plasma in porous
medium in the presence of uniform vertical magnetic field to include the effects
of collisions.

2. Perturbation equations

Here we consider an infinite, horizontal, compressible and composite plasma
layer, consisting of a finitely (electrical) conducting, ionized component of density
p and, neutral component of density pg, of thickness d, and acted on by a uniform
vertical magnetic field H(0, 0, /1) and gravity field g(0, 0, —¢). This layer is heated
and soluted from below so that the temperatures, densities and solute concen-
trations at the bottom surface = = 0 are Tj, pg, and (s and at the upper surface
z = d are Ty, py and C,, respectively, and that a uniform temperature gradient
(= |dT/dz|) and uniform solute gradient 3’(= |dC/dz|) are maintained. This
plasma layer is assumed to be flowing through an isotropic and homogeneous
porous medium of porosity ¢ and medium permeability /. Also we assume that
both the ionized gas and the neutral gas behave like continuum fluids and that
the effects on the neutral component resulting from the presence of magnetic
field, porosity and the fields of gravity and pressure are neglected.
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SpiEGEL and VERONIS [8] defined f as any of the state variables pressure (p),
density (p) or temperature (77), and expressed these in the form

(21) f(.'lf, U:-{) = fm + fO(Z) + f’(ﬂ"vyvzvt)v

where f,, is the constant space average of f, fy is the variation in the absence of
motion, and f’ is the fluctuation resulting from motion.
The initial state is, therefore, a state in which the density, pressure, temper-

ature, solute concentration and velocity at any point in the plasma are given
by

22) p=p(z), p=p(z), T=T(), C=C(), q=(000),
respectively, where
T(z) = Ty - Bz, C(z) =Cy - Bz,
p(2) = pm — gj(p,,, + po)dz,
0

(23) p(2) = pull — an(T = Ty) + a, (C — Cr) + Kn(p — pm)ls

(1 (')p) , (1 E)p)
Om = —\ — 35 ) U = = = = )
p ()F m 4 f) ()(' m

(o)
p o).,

Here we restrict our study to the infinitesimal peturbations, so that the mo-
tion-induced perturbations in density and pressure do not exceed, in the order
of magnitude, their total static variations. Also, the depth of a layer of fluid is
assumed to be much less than any scale height as defined by SpIEGEL and VERONIS
[8]. Let ép, ép, 6, v, h(hy, hy, h.), q(u, v, w) and q4(/, 7, s) denote, respectively, the
perturbations in presssure p, density p, temperature 7', solute concentration ',
magnetic field H, ionized component velocity and neutral component velocity;
ty V(= p/pm), e, Ky Ky g/Cp n and v, stand for viscosity, kinematic visco-
sity, magnetic permeability, thermal difTusivity, solute diffusivity, adiabatic gradi-
ent, resistivity and collisional frequency between two components of composite
medium. Then the linearized hydromagnetic perturbation equations relevant to
the problem are

10q _ 1
(2.4) -y —~(

K,,

6 .
)v51;+q(—”) +Viq+ 2 (Vxh)x H
47 o
pave v
q¢—q)—- 79,
/)7)15( ) kl

m m

+
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(2.5) V.q=0,

2:6) Mo i)

2.7) F%g = (;3 = E”;) w + KV,
(2.8) Fg—? = f'w + K'V27,

(2.9) 5‘3—': = (H.V)q+enpVeh,
(2.10) V.h=0,

where £ = ¢ + (1 — ¢)(psCs/pC) is a constant and £’ is a constant analogous
to  but corresponding to the solute rather than heat. p, ¢’ and p;, C'; stand for
density and specific heat of ionized component and solid (porous metrix) material,
respectively. Here in the equation of motion (2.6) for the neutral component,
there will be an equal and opposite term to that in the equation of motion (2.4)
for ionized component, and the effects on the neutral component resulting from
the presence of magnetic field, porosity and the fields of gravity and pressure are
neglected.
The equation of state

(2.11) P = Pm [1 —o(T = T,) + ' (C -C,),

contains the thermal coefficient of expansion a and an analogous solute coeffi-
cient o’. The change in density is caused mainly by the temperature and solute
concentration, and the suffix m refers to values at the reference level z = 0. The
change in density ép, caused by the perturbation # and =, is given by

(2.12) bp = —pm(al — a'y).

3. Dispersion relation

Here we analyze the disturbances in normal modes; we assume that the per-
turbation quantities are of the form

(3.1) [w,0,7,h.] = [W(2),0(2), ['(z), N(2)] exp(ik,a + ik,y + nt),

where k;, k, are wave numbers along the = and y-directions, respectively, & =
(k2 + k2)!/2 is the resultant wave number, and » is the growth rate which is, in
general, a complex constant.

Assuming that z,y, > stand for the coordinates in the new unit of length d
and letting @ = kd, 0 = nd*/v, pp = v/K, p2 = v/, q = v/E, ag = py/p,
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G = (C,/9)8, P = ky/ed* and D = d/dz, Egs.(2.4)-(2.10) with the help of
(2.11) and expression (3.1), written in nondimensional form become

o d?
(3.2) lDZ o (1 o el ) - []—)
1

o+ v.d?/v

2 c
- (-”’: ) (a0 — o' Ty + (ﬂ) (D? - })DK =0,

TPmV

(D? - )W

2
(3.3) (D? - a® — Epo)0 = -& (; = -”_) W,
I Cyp
3 d?
(3.4) (D? — a? — Bga)l = ~ 2w,
K
(3.5) (D? = a® — pro)K = — (M) DIV,
ne

Here we assume that the temperature and concentrations at the boundaries
are kept fixed, the plasma layer is confined between two free boundaries and
the adjoining medium is electrically nonconducting. The boundary conditions
appropriate to the problem are

W=DW=0=I=DK=0
(3.6) ] at z=0 and 1.
and h,, h,, h. are continuous

The case of two free boundaries, though a little artificial, is most appropriate
for the stellar atmosphere. Using the above boundary conditions, it can be shown
that all the even order derivatives of 1 must vanish for = = 0 and 1, and hence
the proper solution of W, characterizing the lowest mode, is

(3.7) W = Wysinrz,

where Wy is a constant.

Eliminating @, I" and A" between Egs. (3.2) - (3.5) and substituting the proper
solution W = Wysin 7z in the resultant equation, we obtain the dispersion rela-
tion

G
(3.8) Riz = ¢! ((4 1) {(1 +2)(1 + 2 + iEp0)

+i 1+ agrd® /v - 1
o o172 + v d2fv P
1+ 2)T+ 2+ iEpyoy)
(142 + ipoy) ’

142

(1 +z+iEpoy)

+ 82 n
: (1 + z2-+1Eq0;)

+ @
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824 SUNIL
where
gafd* ) ga'p'd? pe H2d?
VKT VK'T 4T pnT
2
— 2 . _ T _ o
p =P, o1 = —3 and T=3

4, Stability of the system and oscillatory modes

Here we examine the possibility of the effect of oscillatory modes, if any, on
the stability problem due to the presence of magnetic field and solute gradi-
ent. Multiplying Eq. (3.2) by W*, the complex conjugate of ¥, integrating over
the range of z, and making use of Egs. (3.3)-(3.5) together with the boundary

conditions, we obtain

(41) I +

where

2
i (1+ agred- /v ) 1

o+ v.d?/v

2.
L EHen

gao's 'aZg
v’

+ —

I +
K

([5 + E' qo 16)

Cs aka’e
(I7 + pao™Ig) =

47 v WG DBt Enatly,

L = /(|D2W|2 + 2a2 | DW|? + | W) dz,

B /(|DW|2 + W) dz,

1
= [apor + o) ez,

(4.2)

)|
Is = [(DrR+ P,
0

1
I = /(!G[Z)dz,
0

1

I6=/(

0

') dz,

L = /(|DZI\'|2 +2d%|DK)? + a*|K|?) dz,

1
5 = /(|DI\’|2 + @K ) d=.
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The integrals I, — Ig are all positive definite. Putting o = o, +i0y and equating
the real and imaginary parts of Eq. (4.1), we obtain

(4.3) I+ (or + ved?/v)(o7 + 0,(1 + ag)red?/v) + Ulz(or + agr.d?/v)
(o + eI + o7]
+1 I {](‘(’f"azu(l +L((T[)+ E}L ](] + [)
P, r 120y
b z v3 5 ' T P 7+ o lg
_ Cpaka’e
I3+ Epo,1
1/(G )( 3 p10:14),
and
2 2 2 2 )
| or tof + 20vd”[v + (1 + ag)(ved®/v) Craka’e
4.4 T 1 .
N ! [ [(o, + ved?/v) + 02] 2 (G —1) il
2 2
ga Klase e2p.m
———Fqls — il =
v{¥ 11e 47Fpmz/m 8 0

It follows from Eq.(4.4) that if G > 1 and if the magnetic field and solute
gradient are absent, o; = 0, which means that the oscillatory modes are not al-
lowed and the principle of exchange of stabilities is satisfied for a porous medium
in the absence of magnetic field and solute gradient. The oscillatory modes are
introduced due to the presence of a magnetic field and a solute gradient, which
were non-existent in their absence.

5. The stationary convection

When the instability sets in as stationary convection, the marginal state will
be characterized by o = 0. Putting o = 0, the dispersion relation (3.8) reduces to

(5.1) Rl=£_l(G(:1)[(l+r){(1 o)+ 1;3” }+51£],

which expresses the modified Rayleigh number R, as a function of the dimension-
less wave number z and the parameters Sy, 01, P and (3; let the nondimensional
number G accounting for the compressibility effects be also kept fixed. Then we
find that

. G
. R, = - ey
(5.2) g, =& (G_l)zz

where R. and R, denote respectively, the critical Rayleigh number in the pres-
ence and in the absence of compressibility. The effect of compressibility consists,
thus, in postponing the onset of thermal instability. Hence, compressibility has a
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stabilizing effect. G > 1 is relevant here. The cases (- < 1 and (¢ = 0 correspond
to negative and infinite values of critical Rayleigh numbers in the presence of
compressibility, which are not relevant in the present study.

To investigate the effects of magnetic field, medium permeablity and stable
solute gradient, we examine the behaviour of dRy/dQy, dRy/dP and dR/d5,
analytically. It follows from Eq. (5.1) that

dﬁ_C—l( G )(]+.1:)
Ox dQ,  ~ \G-1 z J’
drRy (G (1 + z)?
(D) dP (( 1) 2 P?
and
ARy _ [ G
(2 a5 ((,,1)-

Thus for stationary convection, the magnetic field and stable solute gradient
are found to have stabilizing effects, whereas the medium permeability has a
destabilizing effect on the system for (¢ > 1.

6. The overstable case

Here we discuss the possibility of whether instability may occur as overstability.
Since for overstability we wish to determine the critical Rayleigh numbers for
the onset of instability via the state of pure oscillations, it suffices to find the
conditions for which (3.8) will admit the solutions with real values of ;.

If we equate the real and imaginary parts of (3.8) and eliminate [7; between
them, we obtain

(6.1) A3C3 + A0+ A0+ A9 = 0,

where we have put € = o7, b = 1+ 2, and

E N L |
(6.2) Az = bPEE" P ps3nt {(}( 1 o 1) + Ep (M + _)jl i

» T2y P

2 2 - i 9 2
(6.3) AO = [)27[-4 l',‘[)l 2 (1 P f'l(]) U(j(l [)6 i l’,?}] I‘».(/ !)5
v P \r2
: 2
-d? 7 y
+ 4 Qi1(Ep1 = p2) b bY 4 eSi(b— 1) (Epy — E'g) il ¥l
T2y =
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Since oy is real for overstability, the three values of C'j(= ¢?) are positive.
Equation (6.1) is cubic in '} and the product of the roots is (—/A3), and if
this is to be positive, then Ay < 0 since from (6.2), A3 > 0.

Equation (6.3) shows that this is clearly impossible, i.e. Ay is always positive
if

(6.4) Epy > m and Ep, > E'g,
which implies that
(6.5) k<nk  and E'x < Er.

Then if k < nE and E'x < Ex' are satisfied, overstability is impossible and
the principle of exchange of stabilities holds good. v < 5k and E'n < E&'
are, therefore, the sufficient conditions for the non-existence of overstability, the
violation of which does not necessarily imply occurrence of overstability.

7. Conclusion

A compressible and partially ionized plasma layer heated and soluted from
below in a porous medium occurs pretty often and is of considerable importance
in cosmic physics, e.g. in the solar photosphere and chromosphere and in cool
interstellar clouds, in geophysics, in atmospheric physics and astrophysics, espe-
cially in the case of the ionosphere and the outer layers of the solar atmosphere.
For stationary convection, the magnetic field and stable solute gradient are found
to have stabilizing effects, whereas the medium permeability has a destabilizing
effect on the system for (C',/¢)3 > 1. The effect of compressibility is found to
postpone the onset of convection. The oscillatory modes are introduced due to
the presence of a magnetic field and a solute gradient, which were non-existent
in their absence. The sufficient conditions for the non-existence of overstability
has been obtained.
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Stability of flow of a viscoelastic fluid over a stretching sheet

B.S. DANDAPAT (CALCUTTA),
L.E. HOLMEDAL and H.I. ANDERSSON (TRONDHEIM)

THE EFFeCT of fluid clasticity on the stability of laminar boundary layer flow past a linearly stretch-
ing surface is investigated. The non-Newtonian fluid considered is the viscoelastic Walters liquid
B’'. An exact analytical solution describes the basic flow, which is perturbed by three-dimensional
disturbances that are periodic in the lateral direction. A linear stability analysis is performed by
means of the Method of Weighted Residuals. The analysis shows that the flow is stable with re-
spect to the Taylor— Gortler-type perturbations considered, and the decay rate of the disturbances
increases with increasing wave number. The effect of viscoelasticity is explored, and it is con-
cluded that fluid elasticity has a stabilizing influence on the flow as long as the wavelength of the
disturbances does not exceed the viscoelastic length scale.

1. Introduction

THE INVESTIGATION of boundary layer flow of an incompressible viscous fluid
caused by the motion of a rigid plane sheet in its own plane was initiated by
SAKIADIS [13], who observed that the entrainment of the ambient fluid makes this
boundary layer different from that associated with Blasius flow over a fixed flat
plate. This study was modelled for applications in the polymer industry when a
polymer sheet is extruded continuously from a die, with a tacit assumption that
the sheet is inextensible. However, in real situations one has to encounter also the
boundary layer flow over a stretching sheet, since the polymer sheet is sometimes
being stretched while being drawn from a thin slit.

To this end CrRANE [6] and Mc CorMACK and CRANE [11] studied the boundary
layer flow of a Newtonian fluid caused by the stretching of an elastic flat sheet,
which moves in its own plane with a velocity varying linearly with the distance
from a fixed point due to the application of a uniform force. This problem has
been extended to a special class of non-Newtonian fluids known as second-order
fluids by RajacoraL, NA and Gupra [12] who obtained similarity solutions of
the boundary layer equations numerically. DANDAPAT and Gupta [7] examined
the same problem with heat transfer and found an exact analytical solution of
the nonlinear equation governing the self-similar flow and heat transfer. Re-
cently, ANDERSSON and DANDAPAT [2] extended the Newtonian boundary layer
flow problem considered by CRANE [6] to an important class of non-Newtonian
fluids obeying the inelastic power-law model.

In spite of the growing literature on flow over stretching sheets and its obvious
importance in polymer and electrochemical industry, it is surprising to note that
the corresponding stability analysis does not seem to have received any adequate
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attention so far. Although it is a known fact that unless the above flows are stable,
products of the desired physical characteristics can not be achieved. To the best
of our knowledge only BHATTACHARYYA and GupTA [4] and TAKHAR, ALl and
Guprta [14] have investigated the linear stability of viscous flow of a Newtonian
fluid over a stretching sheet (whithout and with magnetic field) with respect to
three-dimensional disturbances of Taylor-Gortler type.

The aim of the present study is to examine the stability of the flow of a vis-
coelastic liquid due to the stretching of a sheet while issuing from a thin slit. More
specifically, the non-Newtonian fluid is a Walters liquid B”, for which an exact
analytical similarity solution exists for the basic two-dimensional boundary layer
problem. The linear stability of this basic flow with respect to three-dimensional
disturbances is considered by means of the Method of Weighted Residuals.

2. Mathematical formulation and stability analysis
2.1. Rheological model and governing equations

We consider the flow of a viscoelastic fluid which arises due to the stretching
of an impermeable flat sheet. The elastic sheet issuing from a thin slit at the origin
(z = 0,y = 0) is being stretched with a speed proportional to the distance » from
the slit, where the z-axis is directed along the sheet. Further we assume the fluid,
which is confined to the half-space y > 0 above the sheet, to be a Walters liquid
B”, and obey the rheological equations of state (WALTERS [16, 17]):

(2.1) Pik = =ik + Pik »
where p;;. is the stress tensor, p is an arbitrary isotropic pressure, ¢;; is the metric

tensor of a fixed coordinate system z;, and

1 0
(2.2) P = 2’10"Ek) — 2}{0}—[ ‘fk)

with 7y being the viscosity of the fluid, « is the viscoelastic parameter, fﬂ«) is the
rate-of-strain tensor, and the corotational derivative for a covariant tensor b;; is
defined as

6bi _ Obix Db duy, du,

2.3 - Uy —— — —bjy — ——
( ) ot ()1‘ s ().Ifm. (.)‘l.',”‘ i (.).l‘m

bmk~

where u; is the velocity vector. It should be pointed out here that the constitutive
model (2.1), (2.2) is valid only for short-memory liquids, i.e. for short relaxation
times. Using the equations of state (2.1), (2.2), the governing equations of fluid
motion in a Cartesian coordinate system can be written in the general form,
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following BEARD and WALTERS [3]:

du; du, Jp 0%u; J D%u;
2.4 — 4+ — | ==+ ny———m— — Ko | —
@y o [ at v ] Dei | 9zdrr 0|9t \ Dxrdzs

P du; Oy, D%u; Oug,
da,, drpdr, Oz, drpdry dr,, dry, duy,

+u,

where p is the constant fluid density.
2.2. Unperturbed state

The problem in hand has basic velocity components [ug(z, y). vo(x, y), 0]. As-
suming the boundary layer approximations, the equations of continuity and mo-
mentum can be written as

dug ~ dug

dug g 0%ug J D2ug dug 0*vg Pug
25" (?I — t+ 19— | = Vv——hy|— | W= | + — —5 + o=,
(257 00z a9y dy? 0 0r 09,2 dy dy? ¥ dy3

where v = 19/p and kj; = rg/p. The boundary conditions are:

(2.6) uy = cx, vy = at  y =0,
(2.7) ug — 0 as  y— oo,

where ¢ is a positive constant. In deriving Egs. (2.5), (2.5’) it was assumed that,
in addition to the usual boundary layer approximations, the contribution due to
the normal stresses is of the same order of magnitude as that due to the shear
stresses. Thus, both v/c and rj are 0(¢%), ¢ being the thickness of the boundary
layer which forms over the stretching sheet.

An exact analytical similarity solution of the above system was given by DANDA-
pAT and GupTa [7] as

N1/2
(2.8) ug = ca f'(n), vy = —(('JJ)I/Zf(r/), n= ((—> U,

1%

where the dimensionless stream function f becomes
(2.9) f(n) = é (1 - (‘70”) , Q = (1-kze/v)" V2.

The basic flow is therefore crucially dependent upon the dimensionless parameter
Q, for which the deviation from unity represents a measure of the degree of
viscoelasticity.

http://rcin.org.pl
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2.3. Stability analysis

We shall now examine the stability of the above system of solutions (2.8) - (2.9)
for three-dimensional disturbances. The similarity of this form of solution with
that of two-dimensional stagnation-point flow suggests, following GORTLER [9]
and HAMMERLIN [10], that instabilities may occur in the form of Taylor - Gortler
vortices. Let us therefore consider the perturbed state as

uo(, y) + u(z,y, z,10).
= vo(z.y) + r(z,y, 2, 1),

w = w(x,y, 2,1),

u

2|
|

(2.10)

p

po + p(z, vy, 2, 1),

where ug and vg are given by (2.8) and (2.9), pg denotes the constant basic pressure
and w is the perturbation velocity component along the z-direction. Following
GORTLER [9], we assume that all the perturbed quantities have periodicity in the
direction normal to the basic flow, with usual exponential time-dependence as
follows:
u = cruy(n)cos(az)e’,

@.11) v = —(cv)?vi(n) cos(az)e’,

. w = vowy(n)sin(az)e’,
p = prepi(n) cos(az)e’.

Let us now introduce the perturbed state expressed by Egs. (2.10) into the three-
dimensional continuity equation and the time-dependent momentum equation
(2.4). After linearization and subtraction of the basic solution (2.8), a set of partial
differential equations for the perturbations is obtained. Provided the disturbances
are of the Gortler-type (2.11), the perturbation equations reduce to the following
set of ordinary differential equations:

(2.12)  uy — v} + @wy, =0,
213) o + fuy = (@ + 20+ B) i+ [0y [ = (F+20) of
— (@ f - 31") uy + Fatug — [ = 20" + (@17 + ") m] = 0,
@14) o + ol + (S =B =) v+ [} - (B+3f) o]
— (@f +37") vl + (Ba? + [+ @) vi| = .
@15)  wi + fuf— (@ +B) w7 [fol’ - (B+2/) w]
= (@7 + 1) wi + Btw] = —p1,
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where a prime denotes the derivative with respect to 7, and
5 = Kye/ i = a’v/e, 3=8/c

are dimensionless viscoelasticity, wave number, and growth rate, respectively. The
respective boundary conditions are

(2.16) =1 =w; =0 at n=20 and n— 0

which assure that the disturbances vanish at infinity and conform to no-slip at
the sheet. Using (2.16) in (2.12) gives +{ = 0 at y = 0 and 5 = oc. Thus, the
boundary conditions become

(2.17) y=vy=0vy=0 at n=0 and n-— oo.

Now, w is eliminated from (2.12) and (2.15) to obtain an equation for p;. Then
p} can be eliminated from (2.14), and the resulting equation combines with the
differentiated equation (2.13) to yield:

(218) o+ fol' + ( fr-2a - B) o} + ( " _ f) v}
{7+ @ (B4 @ = f) por =20 = 20w+ [4770 + 450G
o = (B4 1) o = (47" + 262 ) o' + (2Ba® + 262" — 4") of
+ {ﬁzf" - "+ @ (azf + 3f”)} v + {f””’ +a "
@ (Bat + [+ @) fui| = 0.
Following BHATTACHARYYA and GupTA [4] and introducing the transformation:

d
T = -Qn = -f —
(2.19) T = e~@n, I

in the final set (2.13) and (2.18), we obtain
(220) QL uy+ (1 -T)Lu; - (a2 + 2T % E) up — QTvy
+7 Q%1 - T)LPuy — Q2 (B +2T) L2uy — {@*(1 - T) + 3Q*T} Luy
+Fatu + QUL = 2Q3T Loy - QT (Q* + ) 1»1] =0
and
21) QLY + QX1 - T)L3 + Q2 (T - 2a® - §) L%v
- {Qz’l‘ + @ - T)} Lo, + {(32T +al (B +al— 7)} -

http://rcin.org.pl
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(2.21)

[cont.]

20T Luy + 2QTuy + 7 [04(1 =TV = Q" (B + 1) L4,
+Q? {4(32'1" — 241 - 7“)} L3, + Q2 {252,? & (252 . 4(32)} L2,
~{a%Q*r - Q'T - = [n (- T)-30% ]} Lo, + {(25’1" + 70T
— [;'_37{ + T (Q2 P )] } vy — 4Q3T L2y + 4Q3T1. ul} =0,
while the transformed boundary conditions become
(2.22) uy=vy = Lvy =0 at T=0 and T =1.

At this stage one may recall that BHATTACHARYYA and GUPTA [4] considered the
same problem for a Newtonian fluid. Thus, the above eigenvalue problem reduces
to that of BHATTACHARYYA and Gupta [4] if y = 0 and () = 1.

2.4. Solution technique

In order to solve the eigenvalue problem defined by the set (2.20)-(2.22), we
shall use the Method of Weighted Residuals described, for example, by FINLAYSON
[8]. Both u; and vy are expanded in terms of trial functions which should satisfy
the boundary conditions (2.22) in the form

(223) Uy = Z ,»"gtll’(T) and v = Z B3, I,(l)
=1 =1

By substituting (2.23) in (2.20) and (2.21) and using the respective orthogonality
conditions, i.e. the residues are orthogonal to the trial functions, we finally obtain
the set of equations

(224) /’13‘6',:,' + B; D,'J' 0,
(225) 1‘1,‘[?0‘ + B; F,‘j 0,
where the coefficients C';;, D;j, E;; and I, are defined in Appendix 1.

The Egs. (2.24) and (2.25) have a non-trivial solution only if the determinant
of the coefficients of A; and B, vanishes, i.e.

Ci; Di;
Ei; F;

(2.26)

Now, the trial functions

(2.27) uy=T'1-T) and v =T'(Q1-T)>

used by BHATTACHARYYA and GuUPTA [4] were adopted, and it is readily observed
that w;(T) and v;(T) satisfy (2.22). For a given combination of 7 and @, the
growth rate 3 can be determined as the eigenvalue of the matrix in Eq.(2.26).
Although qualitatively correct results can be obtained even by using 1-term or

2-term expansions, see for example BHATTACHARYYA and GupTa [4], the present
results have been obtained by using 10-term trial functions.

http://rcin.org.pl
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3. Results and discussions

The dimensionless decay rate of the disturbances —/, has been plotted ver-
sus the dimensionless wave number @ for different values of the viscoelastic par-
ameter 7 in Fig. 1. Since the decay rate — /3 is positive throughout the wave-number

120 1

100
80 r
60

40 r

i " Lo 1 I i L 1

0 2 4 6 8 0 a

I'1G. 1. Predicted variation of decay rate versus wave number for different values
of the viscoclastic parameter.

range considered, i.e. the growth rate +/ is negative, there are no unstable modes
and the flow is stable to infinitesimal disturbances of the Taylor-Gortler type.
This is in keeping with the classical stability arguments for flow along curved
streamlines given by von KARMAN [15]. Based on simple “displaced particle” ar-
guments, he considered a fluid element being displaced outwards from the centre
of curvature with its angular momentum (product of local velocity and local ra-
dius of streamline curvature) being conserved. Then, if the angular momentum of
the flow increases outwards, the velocity of the perturbed element is lower than
its surroundings and the radial pressure gradient will force the displaced element
inwards to its original position, i.e. the situation is stable. Thus, although geomet-
rically similar, the centrifugal instability tends to destabilize the stagnation point
flow considered by GorTLER [9] and HAMMERLIN [10], while the flow along the
stretching sheet is being stabilized by the streamline curvature. Although these
considerations are based on purely frictionless analysis, it may nevertheless be
conjectured that this inviscid mechanism is the most influential even in the actual
viscous flow. The variation of the decay rate —/3 with @ in Fig.1 shows more-
over that high wave number disturbances are more effectively damped than low
wave-number modes. In fact, — /7 tends asymptotically to a constant value of 0.735
as a approaches zero.
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The stability curves for v > 0 show that, for a given wave number, the decay
rate —/ increases with increasing parameter values 7. Moreover, it can be seen
that the increased damping is most prominent at high @, i.e. for disturbances
whose wavelength is shorter than the viscous length-scale L = (r/¢)!/2. Since a
certain amount of the energy associated with the disturbances is used to overcome
the inherent force due to fluid elasticity, less energy becomes available to induce
instabilities. Thus, with the provision that v is small, it can be concluded that
viscoelasticity has a stabilizing influence on the disturbances.

The dimensionless parameter 4 can be identified as a Weissenberg number or,
alternatively, as the squared ratio between the viscoelastic length-scale (x5)!/? and
the viscous length L. Stabilization due to viscoelasticity does obviously not occur
when the wavelength of the disturbances is large compared with the viscoelastic
length-scale, i.e. for @2 < 1.

The present findings are in contrast to the results of CHAN MAN FonG and
WALTERS [5]. They considered the stability of plane Poiseuille flow with respect
to wave-like disturbances and concluded that, according to linear theory, the
presence of viscoelasticity has a destabilizing effect on the parallel flow. However,
the difference in stability behaviour between the flow past a stretching sheet and
plane Poiseuille flow is due to the absence of streamline curvature in the latter
case.

It may be interesting to recall that TAKHAR ef al. [14] investigated the effect of
a uniform magnetic field on the stability of the flow over a stretching sheet with
respect to Taylor - Gortler-like disturbances. They found that the decay rate of the
imposed disturbances increased with increasing magnetic field, which therefore
turned out to have a stabilizing influence on the flow. This is not surprising since
ANDERSSON [1] observed that an external magnetic field has the same effect on
the unperturbed basic flow as fluid viscoelasticity, namely to reduce the boundary
layer thickness as well as the velocity within the boundary layer.

4. Closing remarks

Finally, we would like to emphasize that the rheological model considered,
i.e. the Walters liquid B”, was developed for viscoelastic substances with short
memories. Moreover, the non-Newtonian behaviour due to viscoelasticity was
regarded as a perturbation of the Newtonian viscous flow, so that the viscoelastic
parameter v should always be appreciably below unity.

It has been observed (ANDERSSON [1]) that the same boundary layer equa-
tions for the steady and two-dimensional basic flow ug, vy can be derived for a
second-order fluid with gradually fading memory. However, in spite of the formal
equivalence between flows of a second-order fluid and Walters liquid B” over a
stretching sheet, the rheological models are completely different and so are the
general equations of motion. The results of the present analysis can therefore not
be carried over to second-order fluids.
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Appendix [

Definitions of C;;, D;;. I';; and I, in Eqs.(2.23) and (2.24) are provided in
the following. Here, the simplifying notation < f>= [} fdT and D = d/dT has
been introduced for convenience.

Cyy = ar (0 TDw) + az (u, T2 D) + a3 (w; T2D2;) + aa (u,T° D?u)
—as (u; T D3u) + a6 (; T* D) — a7 (T — ag (uju),
Dij = by (w;T3D%0) + by (0, T2Dv.) — by (0T},
Ei; = ag (0;Tu) + ago <r,~‘,»T2 Dujy — ayy <n,»'r31)2u,-> .
Fij = ba (o T D) + bs (0,72 D + bg <n,'[*2 1)%,) + by (0,73 D20y)
+bg (0, T2 D303 + by (0,74 D30) + bio {0 T4 D) + by (o, 77 D))
by <u.,-'1‘5 1)51:1-) b <nj7‘61)5-nl~> + big (o, T0) + bys o3

where the coefficients a; and b; are given by the formulae
o =Q -~ 147 (@ - Q% - Q7).
@ =1+y(2Q°-a), a=0*-y(30*+Q7),
ag = vQ%, as = 7Q?, ag = 7Q?,
a3 =2, ag=a’+ B —y3a’,
ag =2Q, a0 =2Q-8Q,  an=40Q’
ho=9Q% h=3Q)  bh=Q+7[Q(Q*+a%)],
by = QZ(QZ—I—Zaz—H) + @+ [(32(1 +7) (252—(92) —a“],
bs = 3Q* - @ + 7 [a* (4Q* + &%) - 9Q° ,
bs = Q*(7Q% - 3-2a% = B) + 1 [@%* (6 +25) - @* (15 + 75)] ,
by = 4Q% — v (8Q% + 40%W),
by = QX6Q* - 1) - 7 [Q? (25Q% + 67Q* - 2a%)] ,
by = Q2+ [Q2(15Q% - 20%)] .
bio = Q- [Q4 (10 + B)] ' b = 97Q%,
ba = Q% ba=1Q%  bu=Q -a+4(Q°-a),
bis = a* (B +a?) - ya'F,
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On the interface modelling of crystal growth processes

Part 1.

Thermostatic considerations

W. KOSINSKI (WARSZAWA) and S. TABACOVA (%) (NAPLES)

THE BASIC SET of balance laws governing the phase change processes have been presented using
both the singular surface and layer approaches. As a particular case, the solidification of a sphere
from melt in a quasi-static formulation has been investigated. In the layer approach the thickness
of the finite slab has been related to a small parameter, which depends only on the material
constants. The interfacial layer has been regarded as a boundary layer between the liquid and the
solid phase. It has been found that the solutions corresponding to the singular surface approach
are the zero-order terms of the asymptotic expansions in the small parameter of the layer approach
solutions.

Basic notations in the order introduced

G
Gr
Gr
S;

)

=t
v
v

GE

n

M

div.

8

)
(r,0,¢)
R(t)
x(¢, 0, t)

Z e o =D

domain containing material,

solid bulk phase in the singular surface approach,
liquid bulk phase in the singular surface approach,
phase-change interface surface,

reference surface for layer approach,

particle (bulk) velocity,

particle (surface) velocity,

mean curvature of the surface S; or LY,

normal speed of the surface S, or X,

general density functions in G\ Sy,

general density function on S, for singular surface approach,
general density efflux in G\ Sy,

general density effiux on S¢ for singular surface approach,
time [sec],

liquid (+) and solid (—) bulks in the layer approach,
unit normal of S, or X, oricnted towards (/] or (nr'f,
tangential part of V,

surface divergence operator defined on S¢ or £,
displacement derivative,

spherical coordinates in G,

position of S, or X in time [cm],

convected parametric representation of S; or Ty,
mass density [g/em’],

Cauchy stress tensor,

specific internal energy [J/g],

heat flux [W/em?),

absolute temperature  [deg],

thermal conduction cocfficient [W/deg cm],

(*) On leave from Technical University — Plovdiv, Sankt Petersburg 61, 4000 Plovdiv, Bulgaria.
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x%  thermal conduction coefficients in G or G [W/deg cm],
S surface stress tensor on S,
o surface tension cocfficient of S,
grad, surface gradient operator on S, or 1%,
1. metric tensor of S, or X,
Z¢ layer dividing the two bulks,
S*  boundaries of Z,,
distance of S from X,
[ parameter measuring the distance of points in Z, from X:-layer coordinate in 7,
¥*  general density function on X in layer approach,
J(I,x) ratio between the surface elements of Z, and of 2,
" Gaussian curvature of S, or X,
b curvature tensor of Sy or X,
R*  spherical container radius [cm],
8  spherical container wall temperature [deg],
6 solidification temperature [deg],
e crystal seed radius [cm],
Qo negative heat flux from the crystal seed at the center of the solid sphere G
or G [W],
p*  mass density in GE or G [g/em’?],
fmin  minimum absolute temperature on the crystal sced at the center of the solid sphere
G or 6‘: [em],
e*  specific internal energy in G or 6?" RIR
L latent heat [J/g],
Ro  initial radius of the solidified sphere GG [cm],
R;  final radius of the solidified sphere G [cm],
Af  temperature change in the layer 7, [deg],

T = Ry/Vs, solidification time [sec],
Vs solidification velocity [cm/sec],
PeS = Rip*L/A8x*7 > 1, dimensionless parameter,
5 = (PeS)~"% « 1, dimensionless interfacial layer thickness — small parameter,

¢ heat capacities in G or G [J/g deg).

1. Introduction

THE PROBLEM of crystal growth mechanism for most of the cases is still an open
question, due to the indirect character of the experimental data. Generally, two
types of interfaces could be observed (BRriCE [4]): the diffusive ones, where the
phase-change occupies several atomic layers, and the thermodynamic properties
of the atomic layers gradually change from the properties corresponding to the
melt (liquid phase) to the properties of the crystal (solid phase); and the sec-
ond one - sharp (singular) interfaces regarded at an abrupt transition when the
phase-change takes place only in one atomic layer and the crystal faces are then
almost atomically flat. The transition from one type to another, or the existence
of one of these types depends mainly on the entropy of melting.

Several methods modelling the interfaces at phase-change processes could be
found in the literature. Some of those methods are rather general and are used
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to model different physical or physico-chemical processes taking place between
two immiscible fluids, or between solids and fluids — accounting for adsorption,
solidification or melting. We shall try to adapt those models for the two observed
types of interfaces at crystal growth from melt.

In the case of macroscopic equilibrium, the Gibbs’ modelling (Gisss [13])
of the interface as a surface with a uniform tension is quite satisfactory and is
still applied by many authors. Apart from Gibbs’ classical models, in the modern
literature three classes of dynamic models exist:

i) A singular surface approach (Scriven [23], SLATTERY [24], MOECKEL [20],
NaroLitano [21], RomaNo [22], Kosinskr [15], KosiNskr [16]), in which the in-
terface is modelled as a 20 region, the dynamics of which is analogous to that
of the ordinary 3D world of bulk phases, but with new physical fields on the in-
terface. Moreover, the mechanical and thermodynamic balance laws with surface
singularities are formulated on it.

ii) A layer approach (BUFF [S], ALBANO et al. [2], ADAMSON [1], ALTs and
HUTTER [3]) — on the basis of the extended Gibbs’ ideas, the fields on singular
surfaces are correlated with mean values of excess fields defined over the 3D in-
terface region of finite thickness. In this approach the interface region is a kind of
boundary layer, in which the excess quantities represent the differences between
the actual interfacial fields and averages of extrapolations of bulk fields into the
layer. A dividing surface is located somewhere in the transition (interface) zone
and then the bulk quantities are extrapolated up to this surface by stipulating.
The main problem of this model consists in introducing surface excess densities
(quantities) to compensate the error introduced by replacing the exact (true)
quantities by the extrapolated quantities in the transition zone.

iii) A finite slab approach (GariGNoL [12], GATIGNOL and SEPPECHER [11],
Kosinski and Romano [17], DeLL’ IsoLa and Kosiskr [9], Dec’ Isora and
Kosixnski [10], Kosinski [18]), in which two dividing surfaces are introduced, mak-
ing the boundary between the single phase bulk media and the interface zone; in
the latter case, a multi-phase behaviour is observed, in which the confined matter
possesses constitutive properties different from the surrounding bulk phases and
the field quantities of the layer are the true ones. Consequently, in dealing with
this model the formulation of an initial-boundary value problem will be different
from that in which excess quantities appear.

In second and third models an averaging procedure is applied in which inte-
gration along the thickness is performed to get mean quantities defined as surface
fields. In the second model one relates those quantities to deviations between ex-
act and extrapolated quantities in the layer, and in the third, the mean quantities
are defined as line integrals of the exact fields on some reference (e.g. mean)
surface located between the previous two.

All these models are phenomenological and treat only the macroscopic ap-
proach without entering into the microscopic level of the processes.

The aim of the present paper is to compare the singular surface approach and
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the finite slab one in modelling interfacial phenomena and to show the applicabil-
ity of the second one. Moreover, by solving a rather simple solidification problem
we want to show that a solution corresponding to the singular surface approach
is the zero order term of the asymptotic expansion in the small parameter of the
solution in the finite slab approach.

As a particular case we shall observe the solidification of an elastic sphere
and its interface evolution in time. A comparison is made between the results
obtained by both approaches. It is shown that under some physical hypotheses
the interfacial layer could be treated as a “phase-change” boundary layer and
its thickness depends only on the solidification mechanism specific for a given
material. The evolution time in the singular interface approach could be regarded
as the zero order term in the asymptotic expansion (in a small parameter related
to the layer thickness) of the evolution time corresponding to the finite slab
interface approach.

2. Singular surface approach

In mechanics of continua the concept of a moving surface carrying distur-
bances in fields is a well-known and often used model of a wave front. A moving
surface, however, may carry not only disturbances, but also physical properties
different from those of the surrounding media. As an example, one can consider
the adsorption phenomena or the direct interaction of two different phases of
a material which can be modelled by the motion of a surface separating two
well-behaved material (bulk) media, while attributing to the surface the physical
properties of a phase change. Such a model will be first presented here with some
major simplification by neglecting motion of the media.

Consider a material that consists of two different pure phases: solid ((;;) and
liquid (G}), occupying a region (i:= (/UG FUS, in the 31 space k2 as shown in
the Fig. 1. The interface 5, is the melting isotherm surface and ¢/ is a closed mate-
rial body. Let v (see notations) denote the particle (bulk) velocity in (;\S,. If the
interface possesses a non-vanishing surface mass distribution (like in adsorption
problems), then the interfacial momentum appears in the analysis and an extra
velocity vector V of “surface” particles needs to be introduced. Let /1 denote the
distribution of the mean curvature of the surface 5;, and ¢, — its normal speed
of the displacement, which measures the rate of change of the position of .5, at
different times in the normal direction of the surface. Note that ¢, is the only
intrinsic kinematical quantity — a scalar field — for the moving surface {5/}.

For a general density function ¢ with efllux w defined in (+\ 'S; and its concen-
tration v, with efllux w, on S;, in the absence of source fields we have the local
balance law split into two parts (KosiNski [15])

R IV
(2.1) ‘))—‘; +div(pv+w) =0  in G\S,
gl
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aG

I'1G. 1. Singular surface interface.

o . ‘ i
(2.2) % +divy (s V) + W) — 2e, I Y5 = [¥(v-n—c¢)] +[w-n] on Sg

here V) is the tangential part of V, div, denotes the surface divergence operator

L . S
defined on 5, 5 the displacement derivative (KosiNski [16]) and the square

brackets [ - ] denote the jump of the function inside of them. Moreover, the flux
w, has only tangential components. In the further part the velocity vector V will
be neglected and, due to the particular choice of the parametric representation
of the moving surface 5, (i.e. as the family of parallel spheres in the convected
parametrization r = R(1)), the displacement derivative will be identical with the
partial time derivative.

In the case when the balance of mass 1) equals p — the bulk mass density
function, w vanishes and then we have:
(2.3) ()l + div(pv) = 0.

ot

For the linear momentum w equals the negative Cauchy stress tensor T, while

Y is equal to the product pv. In the case of balance of energy v' = pe plus kinetic

energy, where ¢ is the specific internal energy and w = —vT + q, where q is the
bulk heat flux, assumed to be governed by the Fourier law
(2.4) q= —rgradd.

with # as the absolute temperature and x — the thermal conduction coefficient,
supposed to be different for the different phases: «* for (i and x~ for (7.

Now, with v = V = 0 the balance equations for linear and angular momentum
and energy will be

(2.5) divl=0 and T=T",
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de :
(2.6) p (m) = —divq.

On the interface, if ¥, and w, are zeros, we get for the mass

(2.7) [pea] =0,
for the linear and angular momentum
[T . n] = div,S,

(2.8)
n.§=0  S?¥=¢g"

and for the energy
(2.9) [— pec, +q-n] = 0.

Here S is the surface (interfacial) stress (tension) tensor; if it is taken to

: = ; : o .
be isotropic with a surface tension coefficient o, then S = ils and div,S =
0.5grad,c + o IlIn, where 1, is the metric tensor of 5.

We are not going to discuss the second law of thermodynamics, because as
a special case we shall restrict ourselves only to equilibrium crystal growth pro-
cesses. However, this does not exclude the future possibility of extending our
research to non-equilibrium situations.

3. Layer-finite slab approach

The model of an interface as a finite slab presented here uses the concept of
a moving surface in a continuum, as a reference surface, similarly to that in the
shell theory. N

In this approach the region (' is divided into two subregions G/ by a narrow
layer Z, with regular surface boundaries 5;° and a reference surface ¥, located
between them (cf. Fig.2), to which the mean interfacial fields will be referred
(Kosinski [18]).

The balance equations valid for the bulk media are the same as in the singular
surface approach ie., Eqgs.(2.3), (2.5) and (2.6), however, they hold in different
regions. Before writing down the balance laws for the finite slab (layer), we are
going to define the surface fields as integrals of the true 3D quantities over
the layer coordinates (! is the parameter along the normal line to the reference
surface X):

Z+
(3.1) P = / Sx+ I, ) (LX) dl =2 <)) >
Z_
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F1G. 2. Layer interface.

]

if a general density function v is considered and j := 1 - 2H[ + K2, with H
and A" — the mean and Gaussian curvatures. The choice of forms of the functions
in the layer depends on constitutive assumptions made for every particular case
discussed. The reference surface could be chosen starting from different physi-
cal hypotheses, every time obtaining different reference surfaces. The variety of
methods known in the literature is listed briefly in (Kosinski [18]).

Then the general balance law for the layer 7, will be:

(3.2) ‘5;" + div,W {4} — 2 e, " = [j((v-n—ea) +w-m)],
where

W} = (¢ @ (v + lgrad e, )A (1)) + (w - A1),
(3.3)

Ag(l) == 1, + I(b—2111,),
b is the curvature tensor of ¥, and [¢] := ¢g(x + z7n(x),t) — g(x + 2 n(x), 1) is
valid for an arbitrary field ¢ defined in G.

The particular balance laws are defined as in the singular surface case (Ko-
SINSKI [18]).

4. Crystal growth of a solid sphere in a melt

Let us consider the solidification of a sphere (; with radius R in a spherical
container with radius R* filled with its melt (7, as shown in Fig.3. The phase
change process is governed by the continuous negative heat source (heat sink or
cooling) from a crystal seed initialy situated at the center of the sphere, while
the container wall is isothermal with temperature 6~ > 6,,, where 6,, is the
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solidification temperature. Assuming that at every moment of time the solid phase
is at thermostatic equilibrium with the liquid phase, we shall try to model the
solidification process (in the absence of body forces, e.g. gravity, the spherical
shape of the boundary is the equilibrium one) in time, applying the two types of
approach presented in the previous two sections.

LIQuID

F1a. 3. Crystal growth of a sphere.

The solid and liquid phases are assumed to be isotropic and incompressible
and the sphere is assumed to crystallize with a spherical symmetry, i.e. spherical
coordinate system (r, ¢, ) is proposed, where r = (1) will describe the solidifi-
cation front propagation in time. The mean and Gauss curvature are Il = —1/R
and A = 1/R?, and div, .= 0.

In the present (first) part of our work we shall confine ourselves only to the
energy and mass balance, while in the second part we shall consider the details of
the deformation in the layer, the constitutive equation for the stress tensor and
the relation with the energy.

The crystal growth processes (e.g. for semiconductor materials) are usually
slow processes and the solidification velocity is much smaller than the conduction
one (cf. TaBacova [25]). In order to take into account the solidification front
(interface) evolution in time, it is appopriate to treat the problem in the solidi-
fication time scale, which means that the temperature distribution in the bulk
phases for the both approaches is stationary. In this way, Eq.(2.6) is reduced to
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(the densities of the solid and liquid phase are assumed constant):
(4.1 divg = 0.

In this formulation of our problem all the field quantities are functions of the
space variable r only.
The boundary condition for the temperature function ¢ at » = R* is § = ™

_of Qo

andatr =¢is —k — = 5, Where (Jp < 0 and ¢y >> |Qo|l = 2 > 0, 1,2
Jr 4re

are constants to be defined later in the text, and ¢ is greater than the critical
radius of a crystal nucleus (CHALMERS [7]).

4.1. Singular surface interface

The interface S, is described by » = R(?) and it corresponds to the melting
(solidification) temperature isotherm # = 6,,. The displacement velocity has only

the normal component ¢,, = It (where the upper dot is for the differentiation with
respect to time). Then from Egs.(2.7) and (4.1) we get:

(4.2) p* = p~ = const,
N = (o (1 1) : o
(4.3) 0 1) = 0 — 350 (5 - in G,
R*(0> —6,,) R s "y
4, 1) = i et Ty L X
( 4) 9(’ ’) Hm + ke R (] r) in ( ¢

If lim 6(r) > Onin, then from Eq.(4.3) the upper limit ¢ for [Qq| is obtained.

T—E

The energy on 5, has a jump (¢* = ¢~ + [, where L is the latent heat), while
the temperature remains constant. The Eq.(2.9) represents the classical Stefan
phase change condition:

4.5) [xgrad6] = p* I I,

and the interface evolution is described by the first order ordinary differential
equation:

(4.6) o (R)=d—cR,
where

P (R) = p*LRAR* — R), c=r*(0™ -0,k + [Qol 190l .
4r 47
with the initial condition #(0) = Ry and Ry > <. The solution of Eq.(4.6) is
R = R(1), where R € [Rg, k] and R/ is the final radius of the solidified sphere.
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The necessary condition for the crystal growth, i.e. the solid sphere enlarging with
time, is d — cR; > 0 or:

(4.7) |Qo| > ¢, where ¢y = 4nk R0 - 60,,)/(1 — Rs/R").

The solidification time (/) is the value of the inverse function of R(t) calcu-
lated at R = R; and can be given by the analytical expression:

(4.8) ts(Ry) = I(Ry) = I(Ro),

where

+L d—cR)® (d-cR) . "
1(1;&):”‘:3 {_( 36) ( = )(31 cR*) + d(3d — 2¢cR™)R

2
+d7(d —c¢R™)In(d - CR)} + const .

4.2. Constant thickness layer interface

Before postulating the initial value problem, we shall make some physical
assumptions necessary for writing the constitutive laws in the layer:

i) The narrow interfacial layer with thickness 6 kg < Ry is a 3D region and for
it the bulk balance laws (2.3), (2.6) should have to be fulfilled. However, in the
layer the field functions suffer great changes, e.g., in our case the internal energy
changes with the quantity of the latent heat when the deviation of the temperature
function A# is very small (A8 < 6,,,) or almost zero (for the singular surface case
Af = 0). Making a dimensionless analysis of (2.6) by means of the characteristic
parameters 7 — solidification time, é £y — interfacial thickness, /. — latent heat,
A# — temperature change, we get:

§2p (09;) = (PeS)” )—’ where ¢ ~ %

and the primes are for the dimensionless quantities. If the parameter (PeS)~! in
front of the highest order derivative is much smaller than one, then the thickness
of the “boundary layer” (we shall call it a Stefan boundary layer or a phase change
boundary layer) between the liquid and the solid phase is

(4.9) *—:7=6Ry,  where &= (PeS)"!/2

2

From now on, it is convenient to use the theory of perturbations and asymptotic
expansions (CoLE [8]) for our “boundary layer” problem. If A¢ = 0, then § — 0
and we get the singular surface approach. It is appropriate to seek all the unknown
functions /' in an asymptotic expansion of the small parameter é:

(4.10) F=Fy+6F+8FRK+.. .,

http://rcin.org.pl
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where I corresponds to the singular surface approach solution. If the constitutive
law for the heat flux q in the layer is known, then the problem could be treated
with the conventional technique of the matched asymptotic expansions in the
boundary layer and in the bulk regions. In the present work we propose the
layer approach given in Sec. 3 instead of calculating the 3D equations in the layer
region, but a future comparison between the two methods will be substantial.
To our best knowledge the interfacial thickness was not determined in the
other models treating phase-change processes. In HUTTER [14] it is a free phe-
nomenological constant on which the transport coefficients in the layer depend.

ii) The internal energy e is a linear function of the layer coordinate !/:
(4.11) e(D=e + LI -z7)/(z" - 27),
where e(z%) = et.

iii) There exists a non-monotone relation of the van der Waals type (LANDAU
and LirsHITZ [19]) between the temperature and the internal energy in the layer
region (cf. Fig.4), where the Maxwell approximation with A8 = 0 corresponds
to the classical Stefan condition (i.e. singular surface approach).

0-6n

: gt

['1G. 4. Energy - temperature approximate graph.

iv) The density p is a regular function of the layer coordinate .

v) The temperature function 6 is approximated as cubic polynomial of e —e~:

412) 0) =6, + " Qe +ei)e—e) | (ef e )e—e)

v - . 7
cy Lete, Licte,

S s 16
where ¢ are the heat capacities in bulk phases and #(e*) = 6,, and — = ii
v

del=ct €

vi) The reference surface Y, is supposed to be the isotherm at which the
temperature is the melting one. The condition #(¢(0)) = 6,, leads to the relation
between the thickness =™ and =7:

(4.13) 2t =—27(ej /e])
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which together with (4.9) gives the explicit expressions of both the quantities,

o e
4.14 LT | P — R -

ot ol et + ¢y
(+.19) R 3 )

Using the expression j(/) = (1 + [/R)? and the proposed assumptions, the
following forms of (3.2) in the case of the mass (v = p, ¥* = p*, w=0,v = 0)

g
and energy (¢ = pe, * = p'e’, w = (—x (_) ,0,0), v = 0) balances are

obtained:

(4.15) 0" 4 2 =y 1+iz)+- 1+£2—
' ot R i Ral s aaly

("-')(.3 é o~ z s 2

s = o W ol e T W = B —(,— _ .8
(4.16) Ly =R { (] 3 If) p (e ) (l + h’,) P (e ¢ )}

w2 N2
E )8 z 0
E ) I O -1+ =) & —
( le) | e ( 1{) " ar

Due to condition iv) stating that p is a regular function of the thickness (poly-
nomial of /) and to the relation (3.1) applied to p*, we can deduce that p® does
not possess zero order term in 4. On the other hand, analyzing both sides of
(4.15), the zero order term appears only on its right-hand side (). This implies
that if the bulk densities are expressed by (4.10), then the zero order densities
of the solid and the liquid phase should have to be equal (p* = p~ = const),
confirming the result of the singular surface approach (4.2). Consequently, the
surface density obtained after applying (3.1) is:

2 _ 32
b[l)() (( oy ) (‘SH(])Z ((?’ ~(-:’(-!' +('(. )}

4.17 = R = s
SEU e { R ((++p) I 3(cf + oy )2

r=R+:-

The surface energy density p®c* is obtained in a similar manner from (4.11)
and (3.1):

-+ s s
s _ P s 2(1 CZ}
: e’ = — g+ — + =+, = 0Rg(e™ + L/2),
where
5 (61?0)2 — - +
Cl - m[ ( it )+ 14(7( = G, )/3]

= g e (@ -t )+ (2 - 20 4307 1.

(') We have assumed that the time derivatve of p* is of the same order as the function itsclf.
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It is evident that zero order terms of (4.17) and (4.18) are zeros, as it was
assumed in the singular surface approach, ie. p* =0, p*c® =
For the temperature in the bulks, the solutions are

R Qo ( 1 1) -
(419) 0(],!) = H,,L - I—i—;‘—_ B o= = n (,ll y
o R0 —6,) [, (R+:Y) N
420) 6(r,t) =60, + R+ (1 e in G

If ¢ as given above is expanded in the form (4.10), then the zero order terms are
the singular surface approach solutions (4.3) and (4.4), respectively.

Now, having the explicit forms for p* and ¢* in terms of E and material
constants, Egs. (4.15)—(4.16) lead to the following initial value problem:

. ‘,“+
(4.21) fRd,(Ry=d—-cR (1 4 7?) ,

where

SR\ 2 B
=t (P ()
‘ (ch +¢i) It I
2
2(('J,r2 —crer + rTz) X 2 ( fi) st
) v vt | s = S 22 L[] g o »§
et +cy) CTR\"T g g =)

N2
+ (1 ¥ ~"1—?) (™ - c'*)} CRE[R - (R+zY)],

with R(0) = g — 2z~
As in the singular surface case, we get some restriction for the heat source at
the center of the solid sphere:

(4.22) |Qol 2 ¢,
where
ca =4xk Ry (0 = 0,,)/ (1 = Ry)/R™)

c R
cr+ey) Rpy(R*-R
! I f

|1+ 6Rg - +0(8Y)].

The solidification time for a sphere of radius £ (i.e. with mean surface radius
R; — 27) given in its asymptotic expansion in ¢ is

(4.23) t(Ry) = ty(Rp)+ 6(J(Rs) — J(Rp)) + O(62),
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where

R?  d(d - cR*) & [cR\* 1
J(R) = p+LRO{§ - i*;—l-?—l Z (Sd—) (1 - I)} + const.
: o

c

From (4.8) and (4.22) it is clear that the time necessary for the solidifi-
cation of a sphere of radius R in the case of the layer approach is greater
(J(R;) — J(Rp) > 0) than the solidification time in the singular surface case, and
it does not explicitly depend on the material constants, but only on the process
parameters and on the layer thickness.

If at the initial time, the sphere of radius R is assumed to be composed of a
solid sphere of radius Ro — é Ry, and an interfacial layer with thickness 6 Ry, i.e.
R(0) = Ro— =", then the solidification time for a sphere of radius R represented
as a solid sphere (R2; — ¢ Ry) surrounded by a interfacial layer (6 Rg) could be
expressed in a similar manner as (4.22). Here the disturbance due to the interface
is

R?  d(d-cR*) & [eR\F1
24 =p*LRy{ -+ ———3 (=) ¢+ con
(4.24) J(R)=1p ?0{ 2 3 : 2( y ) : const

which implies that the solidification time ¢; is less than the corresponding time
ts (J(Ry) — J(Ry) < 0). In the first case the layer occurs as an obstacle for the
solidification of one and the same volume, while in the second — the solidification
of the smaller volume is not disturbed enough by the layer and its solidification
time is still less than that of the larger solid volume. This means that we could
expect an intermediate case, where a part of the interfacial layer is inside the
sphere and the other part outside it, for which the solidification times ; and ¢,
would be equal. This result will be of importance when applying the present model
for approximation of the classical Stefan problem (singular surface approach) in
its enthalpy formulation (cf. TaBacova [25]) and its numerical realization for
geometrically more complex cases. A similar smoothing, but resulting from a
differernt phase field model, is used succesfully (CAGINALP and SocoLovsky [6])
for computing the interface propagation when the interface thickness is a free
parameter.

5. Conclusions

The basic balance laws for the phase change (solidification) processes have
been presented using the singular surface approach and the layer (finite slab)
approach. The investigation of a sphere solidification from melt in a quasi-static
formulation has been observed as a special case. Under the assumption of great
dimensionless number PeS, the conventional boundary layer theory has been
applied for the interfacial layer as a “phase-change boundary layer” between
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the liquid and the solid phases. Its thickness is related to a small parameter
and the asymptotic expansions in it have been sought for all the field functions.
For the internal energy and the temperature distribution in the layer, a van der
Waals relation has been considered. The internal energy has been assumed to
be a linear function of the layer coordinate, and the reference (mean) surface
X has been accepted to be an isotherm of the melting temperature. Finally, it
occurs that the layer thickness depends only on the substance thermal parameters
and not on the process parameters (external heat distribution or heat sources).
The comparison between the two approaches leads to the conclusion that the
solution corresponding to the singular surface approach are the zero order terms
in the assymptotic expansion of the solutions obtained by the layer approach. For
the observed case, it is found that the time necessary for the solidification of a
sphere with a prescribed radius in the layer approach is greater than the time
in the singular surface approach by an additional part of the small parameter
order. Moreover, if the sphere in the layer approach is regarded as composed by
an inner solid sphere and an interfacial annular layer, it solidifies faster than the
sphere in the singular surface approach and the time difference is of the small
parameter order.
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A rate-independent thermoplastic theory
at finite deformation(")

Z.P. HUANG (BEIJING)

INTHIS PAPER, a thermoplastic constitutive theory of a rate-independent material at finite deforma-
tion is systematically formulated in both the “entropy-strain™ and its conjugate “temperature-stress”
spaces. Based on the thermomechanical postulate of dissipative work proposed by the present au-
thor, the normality condition and the corresponding constitutive equations are derived. The strain
measure in the constitutive equations is in the spirit of Lagrangian mechanies introduced by Hill,
with any fixed configuration as the reference configuration. The stress is a work-conjugate variable
of the strain. The transformation rules and invariance properties for different strain measures and
reference configurations are investigated in detail. It is shown that the Eulerian formulation based
on the current configuration or on the intermediate stress-free configuraton (if it exists) may be
considered as a special casc of the present result.

1. Introduction

A NUMBER OF competing theories on the elastic-plastic constitutive relations for
finite deformation [1] are known. The diversity of these theories may be attributed
to the differences in the following factors [2]: 1) Foundations of the irreversible
thermodynamics; 2) The kinematics of large elastic-plastic deformation; 3) The
choice of thermodynamic state variables, especially the internal variables and
their evolution equations; 4) The existence of the yield surface (or the loading
surface); 5) The formulation of constitutive equations.

Among the various controversial non-equilibrium thermodynamic theories,
probably the local accompanying state model [3, 4] is considered to be the most
acceptable one due to its simplicity, flexibility, clear physical contents and its
mathematical consistency. Adopting this model, we may choose the (thermal)
state variables to be specific internal energy ¢, strain tensor E and a finite set
of (scalar, vectorial, or tensorial) internal variables £, (o = 1,2,...) to describe
a properly selected constrained equilibrium state, and to write down the Gibbs
equation. Thus the specific entropy 7 and the (absolute) temperature 6 of the
accompanying state may also be defined. The fundamental inequality for the rate

of production of the accompanying entropy © can be expressed as

: . r qo
1.1 Q= —pol=)+Vy- [
(1.1) Po 7 /’0(6) 0 (0>
1 o] .
= 5(T— T : E +§A“ £, +q0- Vo (-) >0,

(*) Supported by National Natural Scicnce Foundation of China.
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where pg is the density in the reference configuration, » is the specific rate of
external heat supply, qo is the heat flux defined in the reference configuration,
T and T* are the stress tensors conjugate to E, measured relative to the real
nonequilibrium state and to the accompanying equilibrium state, respectively. A*
is the affinity conjugate to &, while A~ £, (summation over «) constitutes the rate
of dissipation that cannot be recovered during the real process. From inequality
(1.1), we obtain

1 0y on on
12 - = —, T = —pobf— , A% = pof—.
= 9~ De P SE LT
If (8,E,£,) are chosen to be “independent” state variables, then Eqs. (1.2) may
equivalently be written as

_ 9
T

B
- pﬂ(f)‘faa

o

a — el @
POBE, /

(13) - T
where ¢ = ¢—07 is the specific (Helmholtz) free energy. Similarly, when choosing
(pon, E, &) to be state variables, we obtain

>
8"- 0“ c
- ~ ~

4 8= T® = pp— 4" = —pg—no.
(1.4) a0’ POSE / PO 5e.

Suppose that the strain E and n may be expressed uniquely by T* and 8 by invert-
ing Egs. (1.3) for fixed &,, then by choosing (#,T¢,£,) to be the state variables
and defining the specific Gibbs free energy: G = » — T® : E, we have

oG oG n aG

1. e S5 2 e g O e _
(1.5) m= 25 POHTe e

It should be pointed out that the strain E in Egs. (1.1)-(1.5) is in the spirit of
Lagrangian mechanics introduced by HiLL [S], with any fixed configuration as the
reference configuration. A family of strain tensors can be expressed as

3
(1.6) E = Z e(Ax)Ni @ Ny,
k=1

where e is a smooth and monotone scale function satisfying ¢(1) = 0, ¢’(1) = 1,
Ar and Nj (k = 1,2,3) are eigenvalues and unit eigenvectors of (FT . F)!/2
respectively, F is the deformation gradient from the reference configuration to
the current configuration.

It is worth noting that the reference configuration does not necessarily have
to be the natural configuration at the initial instant, i.e., any real or fictitious
configuration (e.g., the intermediate stress-free configuration — if it exists) may
be taken as the reference configuration. So, by the transformation of generalized
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coordinate, the kinematics of the large elastic-plastic deformation used in Man-
del - Lee theory may result from that used in Hill - Rice theory or Green - Naghdi
theory as a transition from a fixed coordinate descripton to a moving coordinate
description [6, 7]. One of the essential differences among the existing theories is
in the choice of the internal variables and their evolution laws. For example, if F
can be multiplicatively decomposed into elastic part F, and plastic part F, [8]

(1.7) F=F,.F,

then (F!' . F,)!/? may be taken as an internal variable in Green, Naghdi and
Casey’s theory (e.g. [9, 10, 11]), whereas the director vectors attached to the ma-
terial substructure in the intermediate stress-free configuration play an important
role in the Mandel and Kratochvil theory (Ref[12, 13, 14]), and especially in
the Dafalias and Loret theory (Ref. [15, 16, 17]) that further provides an explicit
constitutive relation for the plastic spin.

Nevertheless, it should be noted that if a certain kind of “quasi-thermody-
namics” postulate such as Drucker’s postulate or Ilyushin’s postulate is utilized,
the form of elastic-plastic constitutive equations will be greatly simplified. In this
way, a detailed discussion on the choice of internal variables and their evolution
equations may be bypassed to some extent, and only the investigations on the
evolution laws of the loading surface is needed. The Ilyushin’s postulate has been
generalized to the finite deformation case by HiLL and RIcE [18] as well as by
NaGHDI and TrAPp [19], by means of which isothermal elastic-plastic constitutive
equations at large deformation were constructed. In this paper, the Ilyushin’s
postulate is further extended to the thermomechanical case. From this postulate,
the normality condition and the corresponding thermoplastic constitutive equa-
tions are derived. The transformation rules and invariance properties for different
strain measures and reference configurations are also discussed. It is seen that the
Eulerian formulation based on the current configuration or on the intermediate
stress-free configuration (if it exists) may be considered as a special case of the
present result.

2. A rate-independent thermal elastic-plastic material

Now let us take (pg7, E,&,) to be the state variables of a material element
and assume the loading surface

(2.1) g(pon. E, &) =0

to exist. Then the loading criterion of the thermoplastic material may be defined
according to the sign of the scalar

dg

(2.2) ?=paﬁm )+
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With the use of the symbol

0, when ¢ <0,

0, when ¢ =0 and g <0,
2.3 g>= j
(2:3) e 0, when ¢ =0 and g =0,

when ¢ =0 and § > 0,

)

the evolution equations of the internal variables may be formally written as

(2.4) £,= AZalpon, E.65) <G> (a,f=1,2,..)),
where A is a parameter, which can be determined from the consistency relation

dg _

(25) i )\F:C, = (0 (summation over o)
C (e}

and =, is the a-th functon of state variables, the exact expression of which is
left unspecified. Clearly, Eq.(2.3) may be considered as generalization of the
strain-space formulation proposed by NaGHpI and Trarp [20].

If the material element is in a thermoelastic state with < § >= 0 (or £, = 0),
then inequality (1.1) will be reduced to

i
(2.6) (T-T) :E—2qo- Vob 2 0.

Noting that for a rate-independent material the stress T does not depend on E

and that inequality (2.6) is satisfied for an arbitrary strain rate E with an arbitrarily

distributed uniform temperature field, we have

2.7) T=T" &
. = = 0= .

()E (pon.€a)

Since the thermoelastic state inside the loading surface may arbitrarily approach
the thermoelastic-plastic state on the loading surface, we may conclude that
Eq.(2.7) should also remain valid during elastic-plastic loading (i.e., for ¢ = 0,
g > 0). In the following T® will always be replaced by T which represents the
actual stress conjugate to E. Then inequality (1.1) may be rewritten as

-1
(2.8) A% &, g% Vot >0 (summation over o).
It can be seen from (1.4) and (2.4) that A” and ¢, are independent of V6.

If we further assume that qq is independent of /) and E, inequality (2.8) can then
be replaced by stronger ones
qo - Vo <0

http://rcin.org.pl
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and
(2.9) ATE>0

where (2.9) is usually called the Kelvin inequality.
From the above discussion, relations betwen (pg7, E) and their conjugate vari-
ables (6, T) for given £, may be expressed as

Je de
2.10 = — ’ T = po :
( ) dn (F.én) OE |(pon.ta)
and
& &
(2:11) PO = —po- . E= —po- )
99 (1) IT |66,

where ¢ = (po1, E,£,) and -G = —G/(0, T, £,) may be regarded as constitutive
potentials with the internal variables &, (o = 1,2,...) being parameters.

Along an entropy-strain trajectory, the rates of temperature and stress can be
written as

(; = L‘Q(/JQ f/) + L, E +é<{7>,

(2.12) . o
T=Li(pgn)+L :E+T <g>,
where
¢ 109 1 0%
O podn o 02
a0 0% 1 0T
213) Lo=gg = IIE  po Oy
JT 0%c . .
L= IE - MIEIE (the adiabatic modulus),
and
~ a6 _
=X Zas
Z o€, =
(2.14)
= T —
T — AZ () B
o \(r

Similarly, along a temperature-stress trajectory, the rates of entropy and strain
can be written as

N0 f]=,WgtE)+M1 T +poif <G>,
2.15) ) ) o
E=M;0+M :T+E <g>,

http://rcin.org.pl
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where
_ On _ 80*G
Mo = pogy = —Poga7
an _ 9*G _ OE
il M = pogr = ~P0555T = 39
15 (the thermal expansion coefficient at fixed T and &),
OE e
M = 51 = Tt
(the isothermal compliance),
and
g an -
= /\ s —a)
(217) "
2.17
= ~ IE
= ®) =2y ——Z..
il = 0L,

In the above equations £y and M, are scalars, £, and M, are second order sym-
metric tensors, and £ and M are fourth order symmetric tensors, the components
of which satisfy the relations

.CABKL = EBA]\'L = cABLK = L:]\’L;\B"

MaprL = Mpaki, = MaprLk = MkLaB.

The relation between (2.13) and (2.16) can be easily obtained during a thermo-
elastic unloading (with § = 0),

LoMo+ Ly : M =1,
(218) LoMi+ Ly : M = M0£1 +L: M =0,

(1
LyoMi+L : M=1,

(1)
where I is the fourth order identity tensor, and its components may be written
as

gy 1
F . 2
(2.19) IR =5 (ke +6067).

Since the quantities which appear in Egs. (2.18) are independent of (pg 7, E) and
(9, ’i‘), so Eqs. (2.18) is also valid during the thermoelastic-plastic loading.
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Hence the rates of the temperature and the stress may be additively decom-
posed into two parts:

8. = Lo(po 1) + Ly : E,
(2.20) _ _
T. = Li(pon) + £ :E,
and
(2.21) 6,=0<i>  T,=T<g>,
b2 P

which are the elastic and the inelastic parts of the rates of the temperature and
the stress, respectively. Similarly for the rates of the entropy and the strain, we
have

25) Po 71 = Moé+M1 ¢
E.=M{0+M :T,

and

(2.23) poi,=poii <G>,  E,=E<j>,

which are the elastic and the inelastic parts of the rates of the entropy and the
strain, respectively.

From Egs. (2.12), (2.15) and (2.18), relations between (4, T) and (poij, E) may
also be obtained.

(224) 0= —(Lopoii + L1 : E), T = —(Lypoij + L : E),
(2.25) poii = ~-(Mo + M, : T), E=-MBO+M:T).

For a given loading surface (Eq.(2.1)), we can write, with the aid of (2.11), a
corresponding loading surface in the temperature-stress space using the formula

(2.26) f(0,T. &) = g(pon(0. T, £5), E(0, T, £3). &) = 0.
The outward normal to f = 0 in a seven-dimensional temperature-stress space
(g—g, %) may be expressed by an outward normal to ¢ = 0 in a seven-dimen-
dg dg\ . ; :
sional entropy-strain space ( g ,——g> in the following matrix form
podn OE

af dg

a0 My M
(2.27) 06 | — (Mo M | pody

of | “\me M) | g

JdT JE
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or
dg f
(2:27) podn | _ [ Lo L a0
[cont.] @ Ll O_f
JE JT

Hence from Egs. (2.24), (2.25) and (2.27), we have

g ~ Jg _ ()f _af
(2.28) POl —— P +E : IE —( 28 T c’)T)'

and during the thermoelastic-plastic loading (i.e., § > 0), Eq.(2.2) can be rewrit-
ten in the form

(fz,o 2l 1)([)07'])+(df£|+0f c):fa

9=\ 6 aT 06 aT
- ()f f
=f- ( ()T T) g,
where
- 0f- af
(2.29) f=3550+57 ‘T

It follows that during the thermoelastic-plastic loading, we have
(2.30) ¢=[/5 (9=0, §>0)
where ¢ is defined by

af~ Of dg . Jdg =
2.31 =1+ -0+ = : T= 1— |——(pon)+ == : E
( ) 00 JT po(')l)( 07) OE
Clearly, the quotient ¢ distinguishes three types of material response, namely
hardening, softening and perfectly plastic behaviour, by its positive, negative and
zero values. This may also be considered as a generalization of the related dis-
cussion in Ref. [10] and [21].

3. The thermomechanical postulate and the normality rule

It was emphasized in Ref. [4] that the description of material behaviour makes
no sense other than with respect to the given mechanical and thermal actions. Two
materials which behave identically under usual circumstances may exhibit totally
different behaviour in other circumstances. Hence the classification of materials
by “pairs of material-processes” is preferred. In this paper, a phenomenological
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rate-independent thermoplastic constitutive theory of polycrystalline metals is
discussed. Suppose that the pair of material-processes under discussion satisfy
the thermomechanical postulate proposed in Ref. [22], viz. for an arbitrary closed
cycle in the entropy-strain space during time interval [{o, ], with 5 and E having,
respectively, the same values at time fg and ¢;, the following integral is non-
negative:

ty
(3.1) ] (poﬂ n+T : E) dt >0,
to
or equivalently,
ty
(3.2) / (poé + A” é’n) dt > 0.

tp

Let us consider an interior point and a boundary point of the loading surface in
the entropy-strain space, which are denoted by (py(V, E(V), £} and (pon?), E®?), £,,),
respectively. If the material element undergoes a small thermoelastic-plastic load-
ing from (poy®. E(?), £,) such that the internal variables have their increments
dé,, then from inequality (3.1) we obtain [22]

Je
€,

de

(oD ED)y  Oa

(33) Po{

}n’f“ >0 (summation over «).
(o0 ED)

With the use of the mean value theorem, inequality (3.3) may be rewritten as

(3.4) O 404 9 . g
" ) - ay) .
PO de.on" " T B0k

dé, > 0

(P“”(m).E(nx))

(summation over «),

where Ay = (M — 5@, AE = E(V - E®), and the partial derivatives in the
above expression are evaluated at the point (po;(™, E(™)) which is on the straight
line connecting (ponV, EM. €,) and (pgn®, E@,£,) in the entropy-strain space.
When values of 7(1) and E(!) are very close to those of 7(? and E@), (pg;(™), E("))
may be replaced by (por(?), E@)) without changing the sign of (3.4). Thus from
Egs. (1.4), (2.7), (2.14) and (2.4), we have

(3.5) B(poAy) + T : AE > 0.

where (poAn, AE) in (3.5) may be considered to be a vector in a seven-dimen-
sional space starting from a boundary point (pgy?, E®) of the loading surface

http://rcin.org.pl
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to an arbitrary neighbouring interior point (pon™M, EM) of the loading surface.
Hence for given £,, (9 T) must be directed along the inward normal to the load-
ing surface ¢ = 0 which is smooth at the boundary point (pon®, E®) in the
entropy-strain space. It follows that

. dg
poon’ i JE’
and with the help of (2.24), (2.25), (2.27), we may deduce from (3.6) that

«Of & _ _.0f
8’ E=7gm
where the right-hand sides of (3.6) and (3.7) are evaluated on the loading surfaces
g =0 and f = 0, respectively.

It should be pointed out that from experimental observations the normality
rule may not be valid in some cases. The discrepancy between the theory and
experiments may be attributed to the following facts: 1) there are different ways
to define the rate of plastic deformation; therefore, if the normality rule holds
for one definition, it may not hold for other definitions; 2) the physical the-
ory of plasticity and experimental results show that the shape and location of a
yield (or loading) surface are sensitive to the magnitude of the additional plastic
strain-increment used to define the yield stress. So, the normality rule may be
violated when this plastic strain-increment is relatively large; 3) in this paper, the
evolution equations of the internal variables have the form given by Eq.(2.4).
This means that all dissipative mechanisms in the material are governed by the
same loading criterion Eq. (2.3). If Eq. (2.4) is not valid, the loading surface loses
its original meaning. In this case the normality rule does not exist anymore.

(3.6) §= - (v* > 0)

(3.7) poll =7" (v" > 0),

4. Rate-type constitutive equations in thermoplasticity

By means of the normality condition (3.6) or (3.7), expression (2.31) may be
rewritten in the form

(4.1) ¢=1-y"H,

where

dg 9f , g S

2 = pedn 08 T JE © OT"

The measure of strain-hardening behaviour of the material element may also be
characterized by h = ¢/ for positive 4*, which gives

(43) )=
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Hence during a thermoelastic-plastic loading, Egs. (2.12) may be expressed in the

form
S 1 dg \*|, . 1 dg 997
b= [LO_ (11 +h) (pgi)r}) l(f’o )+ {L‘ B ([{ +h) P E] sk

4.4

" b o () e e o () o ]
= “ - \w+n) poom 2] P00 I+ h (')EQ(')E]' :

whereas during a thermoelastic unloading, Eqgs. (2.12) becomes

0 = Lo(po 1) + L1 : E,

(4.5)

T=Lipon)+L :E.

Correspondingly, along the temperature-stress trajectory, Egs. (2.15), may be writ-
ten as

. . . J

pon = Myl +M, ZT+7'<[’}>_—£,

L)
(4.6) .
E=M 04M T+ <> 9f

JT

During a thermoelastic-plastic loading (5 > 0), § may be expressed by f/(hv*)
provided @ # 0. It then follows from (4.6) that for hardening and for softening
behaviour (h # 0)

e po i = {M0+ (%) (%)2 9+[M1+ (%)%% R
b s () S5 s () o 5

In the case of perfectly plastic behaviour (h = 0), the above expression is

N S 1
meaningless. But Egs. (4.6) is still valid with v~ replaced by (ﬁ) Moreover,
it is not dfficult to see that if in a thermoelastic-plastic state the material is
exhibiting perfectly plastic behaviour (2 = 0), then there is one and only one

loading direction (pg 7). E) which is the outward normal to the loading surface
f = 0 in the temperature-stress space, such that for this looading direction, the

rates of temperature and stress (()T) vanish.
In the following, we assume that the thermoelastic matrices

(4.8) (L) = (2‘1’ f:‘) and (M) = (L’? ’x“)
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are positive definite. This implies that /I > 0. With the use of notations

1 g \?
~ED = ~ - )
Fg/ S0 (/1 i h) (ﬂg():)) :
- 1 dg dg
4.9 P=L - —) e
(=) a ‘ (u + h) podny OE
, 1 ()q ()rj
P = f_
o (H ) ()E ’ 9K
Ll
4.10 L*y= (2% L1,
(4.10) L) (5,1,7 L.)
we obtain
of 0f
ey | 90 | — 6
(4.11) (L") of @(L) of
JdT JdT
or
s Ji
| 0 | = 08
(4.12) (M) of = ¢ of
JT JdT
where (M) = (M)(L?) and (M) is the inverse matrix of (L) The above expression
)
indicates that the seven-dimensional vector (()g %) is an eigenvector of the
( (
matrix (M) with eigenvalue ¢. Since in a seven-dimensional space there always
exist six linearly independent vectors (/7. T, o LT T W AP ,6) such that
af
dg . ()r/ 0
: L =0 =1,2,..., ;
fﬁpp ()T} f (f@p’ )( ) ()_f (1" 6)
JaT

and

fg,, _ rp=1,2..., 6
(f.q,f)(L)( ) 0 ( il )

50, in view of the positive definiteness of the matrix (L), we may conclude that

af of P ot _ o : , e
(06 )T) and (f5,.17), (p = 1,2,...,6) are linearly independent and (f7,.17),
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(p= 1;2¢e5 3 6) are also eigenvectors of the matrix (M) with their eigenvalues
being unities. Hence the determinant of the matrix (M) is equal in value to &,
ie.,

(4.13) ¢ = det(L")/ det(L)

Finally, from Eqgs. (2.20), Egs. (4.4) may be written in the matrix form as

0 , )
(4.14) () = (L) (M) ( )
T iy

This means that ¢ is_the determinant of the matrix which transforms the seven-
dimensional vector (4,. T, ) into (9 T)

5. The temperature-strain space formulation

In the previous sections we have introduced the thermoplastic constitutive
equations in both “entropy-strain” and its conjugate “temperature-stress” spaces.
But it may be convenient, in certain circumstances, to develop the “temperature-
strain” space formulation of the thermoplastic theory as follows. Let us take
(0,E, &) as the state variables and rewrite Egs. (1.3) in the form

r)L
a0

n=7(0,E L) =
(5.1)

. d
T =T(,E,£,) =
( L ) P05 JE’

where ¢ = ¢(6, E, £,) is the specific (Helmholtz) free energy, 77 and T are entropy
and stress, respectively, which are dependent on the variables (8, E, £.). The time
rates of Egs.(5.1) may be given by

‘ 'y . ~
/’0?7=/)0( 7 )9“31 E +po <>,
(5.2) -
T=-L,0+L :E+T <ij>.
With the help of identities

T(6.E.£.) = T(pij(6. E. £3). E. &),
(5.3) n = 17(8(pon, E. &), E, &),
T = T(0,E(0,T.£5).£).

coeflicients in (5.2) may be written as

(5.4) Cp=0—=

http://rcin.org.pl
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which is called the specific heat at fixed E and £, and

y LA o S | N §
LT T T ”"oaaE 5y oy
) oT 9%y 1
S b
Cl= D—E po()E IE =L- L—O.Cl @ Ly,

which represent a second order and a fourth order symmetric tensor, respectively.
The specific heat at fixed T and £, is defined by

dn _ My

Cr =
r 08 £0

and may be expressed through C by
0 ——

(5.6) Cr—-Cg= {)_El M= -CpLly : M.
0

L in Egs. (5.5) may be regarded as the inverse of M in Egs. (2.18), i.e.,

(H

(5.7) L:M=M:L=I
Hence from

f=f M1=M] Z
(5.8) or

Ml =M £_=Z M

and from Egs. (2.18), (5.5)-(5.8), we obtain

L5 M1=(Q>ZM1
Cg
or
Cr
(59) (M g .C) : M1 = (?*—)Ml
B

This means that the six-dimensional vector M is an eigenvector of M : £ with

. Since in six-dimensional space there exist five vectors
E

L, (p=2,3,...,6) such that

3= 2505440
Ly :L,=0, L, : L. =0 (Tp ),

TFED
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it then follows that every vector £, (p = 2,. .., 6) is an eigenvector of M : L =

1
[ - M, ® L, with the eigenvalue unity. Hence we have

1

(5.10) (det M)(det ,C) = 2—1 =LoMy=1-L : M.
- E

With the use of Eq.(5.7), (5.8) and (2.15), por and T in Eqgs. (5.2) may also be
expressed in terms of # and F:
A 1 ~ e~ —
(5.11) po1] = ——0, T=-L : E.
Lo

So Egs. (5.2) may be rewritten in the form

. Cp.» ~ _ s .
ol m7§w—ﬂ<y>)+£1:a

(5.12)

T

~L10+L : (E-E <j>).

The expression of the loading surface in the “temperature-strain” space can
be found through the relation

g = g(0,E, &) = g(8(pon. E. £3), E. £.) = g(pon. E. &)

g =9(0.E.&)=9(0,E(0.T.{5).60) = [(6.T. &),

(5.13) or

which leads to
dg 07, dg 07 r J7

—= Lo, , +-=,
podn 08 ° OE ~ 08 ' OE

af g 07 of _ J7
(5.14) %‘U_Q“L(')_E'M" (')_T_(‘)_E'M'
or
dg _If =
()E_(‘)T'E'

From the normality conditions (3.6) and (3.7), the inelastic part of (—pg 7, T)
may be given by

e 1= .07 g
—polg = E,H” =75 1 609
NPT
Ty= L:85=—T| 71 |,
JE | | 450
06

http://rcin.org.pl
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where the symbol

(5.15) ;

has been used. Therefore, the inelastic part of (—pg 1“1 T) is directed along the
inward normal to the loading surface 7 = 0 in the “temperature-strain” space.
Finally, it can be seen from (5.14) that the expression of ¢ in Eq.(2.31) may also
be written in the form

(5.16) s=1+295_9 . ¢

Obviously, this is consistent with the isothermal plastic theory.

6. Invariance relations

In the above discussions the strain measure is based on a certain fixed configur-
ation, which is not necessarily an unstressed one. Each change of the reference
configuration and/or of the strain measure will lead to a corresponding change of
the stress T and the parameters appearing in the constitutive equations. In this
section the invariance relations developed by HiLL for isothermal elasto-plasticity
([S, 23]) will be generalized to non-isothermal cases.

Suppose there are two ways of specifying the deformation by strains and densi-
ties in the reference configurations, E, pg and E*, pg, respectively. In the simplest
case, it may be assumed that E is a known function of E”

(6.1) E = E(E").
Hence
(6.2) E=A :E*,
where

OE
6. =
(6.3} A JE*

and its component may be expressed by

- ,_ OF.
(64) AN = S
' L3N
It may be further assumed that the specific internal energy <, the specific
entropy 7, the absolute temperature ¢ and the rate of heat absorption per unit
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1 - : : :
reference mass — () are invariant under the transformation of the reference
0
configuration and the strain measure. Then the specific (Helmholtz) free energy
1 is also invariant. In view of the First Law of Thermodynamics,

(6.5) Q=por—Vo-qo=pgé =T :E=pof i) —A“ £,

we see that ! 1
—T:E and — A“ f,
Po 0

are invariant. Therefore, from

1 : :
—T :E= l‘T* E”
£0o Po
we have
(6.6) Popr=T: A=A : T
o
and
(6.7) Dt--B:Ey=AT T,
"0
where
_ T _ Po . A
(6.8) B=B'= /’oT L

is a fourth-order symmetric tensor with its components

= 2 ;)
BRLMN _ gMNKL _ Popas_ 9" Eab
po. OEL, 07y

Also, from Egs. (5.1),

= (oxs P Poas
: T =py——=pp—= : A= =T : A,
69 PR~ MOk il
we may conclude that the transformation rules of T and T are the same as those
of T (Eq.(6.6)) and T (Eq. (6.7)), respectively.
Now let us consider the transformation rules of the parameters appearing in

)0 . )
Egs. (2.12). Obviously, poLy = ()— and the specific heat per unit reference mass
an

at fixed strain and internal variables C'; = 6/(poLq) are invariant, i.e.,

(6.10) P0pe = g
0

http://rcin.org.pl
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By combining
a0 08

(6.11) L] = B~ IE - tA=L 0 A
with (5.5) and (6.10), it follows that
(6.12) e = A

Po

which means that £; has the transformation rule like T in Eq.(6.6). Since in
seven-dimensional “entropy-strain” space there always exist six linearly indepen-
dent unloading directions, so from (2,12), (6.7), and (6.11) we obtain

(6.13) Poe~-By=AT: L : A
/’0

Likewise, in view of (5.2) and (6.9),

(6.14) f’“(c By=A" : L : A,

where B(= B) is a function of (8, E, £,). By eliminating B from (6.13) and (6.14),
”0(1: LY=AF : (E-L): A

which shows that the bilinear form

1
—dEM : (L - L) : dE?
£0
is invariant, where dE(Y and JdE®) are any two differential increments of the

strain.
The transformation rules of the parameters in Eqgs. (2.15) may be discussed as
follows. From Egs. (5.7), (5.8), (6.12) and (6.14), we have

PO M) =P AT L =AT M =2 —B): A M,
Po 0 20

and n
g—?(l M B =M A" M A
0
Therefore,
(1)
(6.15) M;=(1 —M": B): A" : M,
£ 0 . -1 . T
(6.16) M=(-p—)A:(1—M:B) M AT
0
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The value of Mg may be given, from Egs. (2.18), (5.7), (5.8), (6.12) and (6.15),
by
(1

— 1 N )
Lys M= +(@)LI:A;([ “M*:B): AL My

Mj = = ,
&= £ 0

This leads to the expression
(6.17) M5=(’?) [Mo—Ml:Z:A:M‘:B:A_I:Ml}.

0
With the use of Eq.(6.16)

(0]
A: M = (”—O)M c AT (T B 1 M),
Po

Eq.(6.17) may be rewritten in the form
My My

2= M AT B-B: M :B): A M,

(6.18)
Po P0

or equivalently,
(6.19) Cy—Cr=0M;: AT :(B-B: M :B): A': M,

Suppose that the loading surfaces in different strain measures satisfy
1 1 * * ok *
(620) ‘_!I(POU Ev EG) = _,.g (p(]” ) E 3 fa)-
Po Po

It follows that
dg* dg
Podn™  podn

(6.21) and
po 99" _ 99 A
py OE*  OE "7

dg . . . . dg . :
Hence —g is invariant and the transformation rule of 4 is the same with that

podn JE
of T. Also, from Egs. (5.14), (6.11), (6.12) and (6.21), we see that
107
po 08

I . a7 . A P
is invariant and the transformation rule of —’ 1s the same with that of £; (or

JE B
T). It can be seen from (5.8) and (5.14) that the relation between f))—,{, and g% is
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o ) 9
the same as that between M, and £;. Therefore, the transformation rule of —f

should be the same as that of M;. Moreover, with the use of (5.14), (6.15) and
(6.16), we obtain

622) ~ (%) (‘)f) 1B 4m B A

()9 £0 ()E
(1)
ldq M AT (I'-B: M):B: A" : M,
/'0 JE
10af

AT (B: M :B-B): A : M.

20 ()T

It remains to discuss the transformation rules of 6, T, pon and E. According to

1 ~ . : :
Egs. (6.21) and (5.1), values of —g and pg7 are invariant under transformation
£0

(6.1), whereas poT and pOT have the same transformation rule as that of T. Hence,
in accordance with Egs. (5.11) and (6.10), it is seen that /;09 is invariant. Suppose
that the normality condition holds. Then from (3.6) and (3.7) we see that pgy”
(or po/(H + h)) is also invariant, and pg7) and poE transform like — ()):; and (i,{‘,
respectively. .

According to the invariance theory developed by Hill, the choice of reference
configuration can be arbitrary. Especially, the reference configuration may be
chosen to be instantaneously coincident with the current configuration or the
intermediate stress-free configuration (if it exists). Suppose that for the same
deformation, the spectral decomposition of the strain E in (6.1) may be expressed

by

(]

(6.23) Z (A)Nk @ Ni,

where e*()\) is another scale function different from that in (1.6). When the
deformation is quite small, Eq.(6.1) may be written in a series form as

(6.24) E=E"+(m-m")E -E" +

1 1 . :
where m = 5[1 + (D)), m™ = 5[] + ¢*”(1)]. Taking the current configuration as
a reference configuration, we have

(6.25) E=E" =0, py=p;, E=E*=D, T=T =T,

where D is the rate of deformation, T = 7#G 4 2 Gp is the Kirchhoff stress and
G4 (A = 1,2,3) are covariant base vectors in the reference configuration. Hence
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(6.3) and (6.8) reduce to

(6.26) A=1, B=(m-m)T,

where
1 ‘ A I VB N s
T = 5 (TA.-\!GBN 4+ rBM AN 4 AN ~BM 4 _BN (,:"””) G0 Care g G

and G'1B are contravariant components of the metric tensor in the reference
configuration. Specifically, when E* is the logarithmic strain E© (m* = 0), the

logarithmic stress rate will be the Jaumann rate of Kirchoff stress: T () ='\|7', and
Eq. (6.7) reduces to

. 7 v
T=% -mT : D=7 —m(T-D+D - 7).

These results may also be found in a series of papers by Hill.

We now discuss the constitutive theory based on the decomposition (1.7). The
internal variables &, (o« = 1,2,..., n) may be taken as (s (6 =1,2,...,n—=1)
and F,,. When the intermediate configuration is chosen to be the reference con-
figuration, the state variables will become (#, E*, (5), where E° is the elastic strain
expressed in terms of E and F:

(6.27) E° = E°(E,F,).
The inverse relation of (6.27) is assumed to be
E = E(E".F)).
Thus the expression of specific free energy may be given by
(6.28) Ge(6, B, G5) = 0, (0, B (E.F,). (s) = (6, B. s, F).

Since Eq.(6.27) is different from (6.1), the corresponding transformation rules
should be revised accordingly. The stress T¢ conjugate to E° may be defined by

= A, o dy  OE i
(6.29) T = /’r()E, Per

JE 9B - PgE A

where F, is regarded as a parameter, p. is the density in the intermediate con-

JE
figuration, and A, = PR It follows

(6.30) LOT =T : A =A":T

http://rcin.org.pl



876 Z.P. HuaNG

Values of (s and F,, will remain unchanged during thermoelastic unlcading. Hence
the same transformation rules as above may be obtained (e.g. Eqs (6.7), (6.10),
(6.11) ...), if A and B are replaced by A, and

pem . OA.
po ~ OE°’

respectively.
In the following, the strain measure will specifically be taken as the Green
strain, i.e.,

i
E = L(F o F, =1
E° = 5(F )

and i
_ T e i
E=F] -E°-F, + 50 -F, 1),

where I is the second order identity tensor. Hence,

I N s
g = 3 [ENEE + E)NEYY]

B. =0
and (6.30) reduces to
(6.31) Z—‘:T*f =F,-T-F..

For simplicity, it may be assumed that the value of density will not be changed
due to purely plastic deformation, i.e., p. = pg. Then from (6.31), we have

O ) R e _me 1T -T
(6.32) 00 sl ) L o, S S
where L, =F,- F;!. This means that for fixed T,

(6.33) T°=L,-T+T-LI.

If we further assume that from (6.29), the rate of elastic strain may be expressed
by
_ OE* . OE°

- 1 .
- - € — P
o5 0+ 1T+ 5(C),

(6.34) E*

where
C.=F'.F,,
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and )
JdC,

JCs

‘Za (summation over 6),
(6.7%)

(ée)P =

then the inelastic part of the strain rate may be written as

OC

(635  E,=F, - |(C.- L), + <c

: (L, T’)] N ¥

From D = F-7 .E. F-1, the rate of plastic deformation may be defined by
(6.36) D2 = (R« Ly » B 1), £

where

D'=FT"T OC

@y T 2

From (6.36), an expression for the rate of plasuc deformation is also suggested
by many authors with D’ being zero (cf. [16]).
The loading surface in the temperature-stress space is

f( (H’T‘F?(:LssFP) = f(g‘T‘ CL‘*FP) = 0

It can be seen that for constant 6, if E 7 is directed along the outward normal to

f=0 (i.e‘, 3—4), then F/' . D? . F, must be directed along the outward normal

(oL
to fe=0 (l.e., t)TC)'
The rate of plastic work may be defined by

(6.37) W,=T :E,=2T : F" . D" .F,) = D¢ : D,
Pe P

where p is the density in the current configuration and o is the Cauchy stress. In

view of
OE?

(')_Fp ) Fp=
for fixed ¢ and E, the rate of dissipation of a material element (see Eq.(2.9))
may be written as

oY . L 0‘/ 1 e -
—_ = - - :F = C L s — . >

. (CE * Lp)s

1 d
1wl %
Po p ¢
which is always non-negative whereas the rate of plastic dissipative work W, is
not necessarily positive in the case of a strong Bauschinger effect.

éﬁa
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7. Concluding remarks

In this paper, a rate-independent thermoplastic constitutive theory at finite
deformation is discussed. The plastic deformation and the heat conduction is
supposed to be uncoupled. So the constitutive equation for the heat flux is not
provided. Within the constitutive framework based on internal state variables, one
of the important and difficult problems is how to choose these internal variables
and how to provide their evolution laws. Nevertheless, if for certain “pairs of
material-processes” the thermomechanical postulate proposed here is valid, then
the forms of thermoplastic constitutive equations will be greatly simplified. The
problem will now reduce to seeking the matrix for the thermoelastic coefficients in
the constitutive equations and providing the evolution laws of the loading surface.

Since parameters in the constitutive equations are dependent on the choice
of the strain measure and the reference configuration, we have investigated the
transformation rules and the invariance properties. It is shown that actually, the
choice of the reference configuration is not substantial. Once the constitutive
equations for some reference configuration are obtained, the constitutive equa-
tions based on current or intermediate (if it exists) configuration may also be
determined.
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Flow in a region with large density variation

Z. PERADZYNSKI and E. ZAWISTOWSKA (WARSZAWA)

IN THIS PAPER We investigate the influence of viscosity (Reynolds number) on the flow through a
“hot region” where the density changes abruptly. Our aim is to model the flow in the vicinity of the
front of such a region by searching for approximate and simple formulae. The case of gradually
changing density is also discussed. This kind of modelling can have various applications, ¢.g. in the
description of flame propagation in the case of curved flame fronts.

1. Introduction

WHEN UNIFORM flow approaches the region of decreasing density, e.g. because
of higher temperature, its behaviour resembles the flow past an obstacle. The
pressure increases when approaching the hot region, velocity decreases and most
of the streamlines avoid the region of low density; only a fraction of them enter
the low density region. On the other hand, when entering the low density region
the velocity of the gas increases due to a drop in the gas density, according to
the continuity equation. The force which accelerates the fluid comes from the
pressure gradient which is created due to the Bernoulli effect.

At first, we concentrate our attention on the flow in a region with two different
values of fluid density, e.g. a “hot” ball (p = p. for r < R and p = pg for r > R).
In the case of flow through the “hot” ball the nonviscous solution was found
analytically in [1] and can be compared with viscous solutions. In the spherical
system of coordinates it is given by

R3
v 1—2A—? cosf, r>R,
T
vy = )
T
vg (B + C—i) cosf, r <R,
L R
(1.1) o
-1 (1+A—3) sin 6, r> R,
P
Vg = r2
- (B + 2C—§) sinf, r <R.
( R

The constants A, B, C are determined from the jump condition for the momen-
tum density [pv] = 0 and momentum flux tensor [pv,v] = 0. They lead to
2—-c—¢B _3-Q2+9)B

A=2"t"¢7 ¢
44¢ 4+¢

3
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24, (1-AY = aGRl ; -

where ¢ = p./po (note in [1] an error in the sign in the last equation). In [1] the
authors derived also the asymptotic formulae for ¢ — 0

l / 3¢
Fet B ~
/ 2 ,.

For example, the maximal velocity is vmax = \/2— and the axial velocity (f = =

34 (B + C)?,

8

-P\L'J

and r = R — 0) of the fluid after entering the sphere is

Vg = (B +C)U() ~ (%H% + i) vp.

This suggests that the velocity of the fluid penetrating a low density plume is
proportional rather to \/pg/p ., where p is the local fluid density, and not to pg/p
which would take place in a purely one-dimensional flow. It also appears that
similar results can be obtained for shapes other than the sphere. In [2] such re-
sults were obtained for tube-like shapes of the hot region on the basis of what
we call hydraulic approximation, which assumes the flow to be unidirectional and
pressure to be constant on each perpendicular cross-section. In Sec. 2 we derive
analytical approximate formula which gives the velocity at the front for streamline
axisymmetrical shapes. Then in Sec. 3 we discuss the numerical evidence support-
ing the inverse proportional dependence of the flow velocity on the square root
of the density, also for a continuous distribution of density.

2. Flow modelling

For the sake of simplicity, let us assume that the “hot region” has a streamline
shape and is axisymmetrical. Let us also assume that the fluid is inviscid and its
density changes abruptly from pg outside to p. inside. We confine our attention
to the vicinity of the symmetry axis which is also a streamline. If v is the fluid
velocity at infinity, and v; — the velocity just before the fluid enters the low
density region, then from the Bernoulli equation (which still holds in the region
of p = pg) we have

1 5 )
(2.1) P = po+ 3P0 (v(, - "1) .

If p. is the pressure inside, then p; — p. is the pressure drop which accelerates the
fluid passing from the high density to the low density region. From the continuity
equation at the boundary of the region we have

£2.2) POVl = Putu

http://rcin.org.pl
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where p., v, are the parameters inside the low density region. The velocity v, is
to be determined as a function of pg, p., vy.

From the momentum equation applied at the discontinuity we have the fol-
lowing jump condition

(2.3) [pv@v+pl] =0,

which leads to

(2.4) povi — puvl+ pp—p. = 0.

The velocity »; can be expressed by v. from (2.2) and, similarly, p, from (2.1).
The only quantity which remains undefined is i(po — p.). Obviously p; —py =0

and v. = vg if p. = pg. Therefore we can postulate

1
(2.5) —(po— p.) = n(ug - 503) + ﬂ(vg - 521v3) + e
£0
where ¢ = p./pg and «, 3 are constants. Then we arrive at
2 A
v, a+ 3+0.5
2.6 ) = =l :
(2:6) T e T+a+(B-05)

In the limit of ¢ — 0 we should obtain the flow of inviscid and incompressible
fluid around the “body” which has the shape of the “hot” region with p. — 0
(i.e. defined by p(z) = p. = 0). Since we have assumed the streamline shape of
the hot region, its front part can be treated in the first approximation as the part
of the ball. Taking

@2.7) lim (po — p.) = %pov%,

i.e. equal to the cavitation pressure for the ball [3], one obtains from (2.5) and
(2.6)

p= -18(5 + ).

Applying it to (2.6), one finally arrives at a formula which surprisingly does not
contain o

(2.8) v? =

*

vgl
N

o0l 0o
oo ™

Equation (2.8) gives for velocity in the front part of the low density region values
slightly lower than the maximal velocity of the “hot” ball solution. For ¢ — 1, v,
approaches vg, whereas for ¢ — 0, v. behaves as ~ vg/\/= which is in agreement
with the conclusion of [1].
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3. Numerical results

Numerical computations were performed with the use of the numerical scheme
described in [4] which is based on the integration of the conservative form of the
Navier - Stokes equations along small contours determined by a grid. Since, in the
discretization, central differences were used, the scheme was unstable for higher
Reynolds numbers but was quite insensitive to large density gradients, even to
jumps. The results for various density ratios (p./p from 1/4 to 1/40) and various
Reynolds numbers are presented in Figs. 1-6. The Reynolds number is defined

2R I, B
by Re = vp—. In Fig.1 examples of axial velocity distribution on the symme-

try axis of the “hot” ball as the function of nondimensional distance 2/2R are
presented.

The flow at infinity is directed along z-axis in the positive direction. The
numerical results for ¢ = 0.1 exhibit some overshoots of axial velocity at the
front part of the ball as compared to nonviscous solution. This can be caused by
the difference in the boundary conditions. We assume v = v at a distance which
is a little shorter than 2x sphere radius from the center of the sphere, whereas
in the analytic solution, v = vy for z — oc. An example of streamline pattern for
¢ = 0.1 and Re = 14 is shown in Fig. 2.

The axial velocity as a function of the nondimensional distance r/2R from
the symmetry axis in the cross-section passing through the center of the sphere
is shown in Fig.3 (¢ = 0.1, Re = 34), and is compared with nonviscous solution
(¢ = 0.1,Re = o0). This distribution is flatter when compared with the inviscid
solution. Additionally, velocity at the boundary of the ball is higher, =~ 2.5v,
whereas the inviscid solution gives values lower than 1.5vp (= limiting value for
e — 0).

In practical applications the density is varying continuously. In Fig. 4 the axial
velocity distributions at the symmetry axis are presented for various Reynolds
numbers and a Gaussian-like density distribution

22 + 2 z — z9)?
@.1) p=pol1—(1—€)€><p(— +J;z( 0))]‘

In Fig. 5 the maximum of axial velocity at the symmetry axis is presented as a
function of Reynolds number for different . The dashed lines are the asymptotic
values, Re — oo, calculated from the exact analytic solution which was discussed
in the Introduction. The presented numerical values would be a little lower (a
few percent) if the boundary condition were assumed far enough.

In Fig. 6 an example of radial a) and axial b) velocity components are presented
for ¢ = 0.09, Re = 42 and R = 0.26. The radial velocity is about ten times
smaller than the axial velocity. Figure 6¢c presenting the ratio of axial velocity
from the example in Fig. 6b divided by v., where v. is computed from (2.8) at
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F1G. 1. Axial flow velocity distributions v/vg on the symmetry axis as a function of normalized
distance z/2R (“hot” ball) for various € = p,/pg: a) ¢ = 0.1, b) e = 0.025, and diffcrent
Reynolds numbers.
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F1G. 2. Streamlines, ¢ = 0.1, Re = 14.
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F1G. 3. Radial distribution of the axial velocity component in the cross-section of the sphere
perpendicular to the symmetry axis.
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FiG. 4. Axial velocity distributions at r = 0, as a function of z/2R for various Reynolds numbers
and for density as in (3.1): a) ¢ = 0.09, b) £ = 0.025.
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F1G. 5. Maximum of axial velocity at r = 0 as a function of Reynolds number and different
(density as in (3.1)). Dashed lines are the maximal velocities of the analytic solution for “hot”

ball, Re — oo.
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Fi1G. 6. Distribution of radial a) and axial b) velocity components in the case of continuous
density distribution given by (3.1); ¢) the ratio of axial velocity from the example in b) divided by
v, computed from (2.8) at every point of the flow according to the local density; at the front part

of the flow this ratio is almost exactly equal to 1, with R = 0.26 for ¢ = 0.09, Re = 42.

every point of the flow, according to the local value of density, confirms quite
well the applicability of (2.8) to a large class of flows with variable fluid density.

4. Conclusion

For finite Reynolds numbers the following approximate formula fits well the
numerical results

[y cRe
(4.1) o(Re, £) = (v(o,s)% 4 v(oo,g)) o

where the constant £ is approximately equal to 0.9, v(0, ¢) is the Stokes solution

http://rcin.org.pl
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and v(o0,¢) is the maximal velocity for the inviscid “hot” ball discussed in the
Introduction. Also formula (2.8) can be used for v(~, ).

For very small Reynolds numbers (Re — 0) the numerical results can be
approximated by the formula

)

4.2 NS
*2) R T T

where § = 2 for “hot” ball. Taking é ~ 3 one obtains rough estimates for
“Gaussian-like” density distribution (3.1).

For large Reynolds numbers deviation from symmetry between the front and
the rear of the flow are small; they become larger when Re gets smaller but then,
gradually, one arrives at the symmetric solution of the Stokes flow, Re = 0. This
appears to be true also for the continuous symmetric density distributions such
as (3.1). As can be seen in Fig.6c, for these intermediate values of Reynolds
numbers formula (2.8) works better for the front part of the flow.

If we assume now, that (2.8) expresses the axial velocity component v, then
the full velocity can be determined from the continuity equation (even in the
time-dependent case)

Ia

10 d dp

]—d—l(pr l,T) + —:([) U:) + W =0

provided p(z,t) is given. In the case of plane flows appropriate form of the
continuity equation must be used.

REMARK. The approach similar to the one described in Sec.2 can be used
in the two-dimensional case. However, this time the results depends on a. The
comparison with numerical results suggests o = (0 which leads to

1

cl+e

L S ]

Ve =

«

This approach was used to determine the parameters of the laser sustained
plasma in [5].
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Adiabatic material instabilities in rate-dependent solids

I. DOBOVSEK (MARIBOR)

A conTINUUM mechanics framework for the analysis of material instabilitics in rate and tempera-
ture-dependent solids, based upon a linear stability analysis of the partial differential equations
of elastic-thermoviscoplastic flow under the adiabatic conditions, is presented. The derivation is
general, three-dimensional, with the effects of rate sensitivity, inertia, temperature and elastic-
ity included. Critical conditions for the formation of two qualitatively different types of material
instability are discussed: shear band localization and Hopf bifurcation. The characteristic stability
equation is given in explicit form for a general three-dimensional state of stres. It is shown, that the
elastic part of the constitutive law based on an additive decomposition of the rate of deformation
tensor induces a relative rotation of the instability plane, i.e., the plane with the fastest incipient
rate of instability growth with respect to the principal directions of the stress deviator. Comparison
with the two limiting cases of material behaviour under the adiabatic conditions, namely the rigidly
viscoplastic, and rate-independent ones in particular, is given as well.

1. Introduction

WITHIN THE PAST two decades or so, much attention and considerable efforts have
been devoted to the analysis of material instabilities. Examples include Liiders
bands, diffuse necking of tensile specimens and shear bands. Diffuse necking
may terminate in fracture, but it is often followed by a second instablity process
called localized necking or shear banding. In this process, an essentially smooth
and continuously varying deformation gives rise to a highly localized deformation
pattern which may eventually lead to ductile fracture. A large class of technology
processes can be considered as adiabatic when the loading process is dynamic and
fast enough so that there is no sufficient amount of time for the heat produced
during the viscoplastic irreversible deformation to be conducted away. In such a
case, thermal effects may have a significant influence on formation of material
instability.

In this work we present a method for predicting the onset of material in-
stability in rate and temperature-dependent solids. The effects of strain harden-
ing or softening, strain rate sensitivity, thermal softening, inertia, and elasticity
on the possible mechanisms of material instability are examined in detail. Full
three-dimensional analysis is performed within the framework of viscoplastic-
ity theory which in the rate-independent limit corresponds to the standard .J;
flow theory of plasticity with isotropic hardening. The mechanical behaviour of
the material is characterized by a general rate-type form of constitutive relation
which accounts for the effects of thermal softening, strain rate sensitivity, strain
softening, and elasticity.
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The theoretical framework for analysing the localization of plastic deformation
in rate-independent solids, including bifurcation theory and the analysis of the
growth of initial imperfections, is given for example in RICE [17], Rubpnickr and
RICE [19], Asaro and RIcE [2], and YAmaMoTO [25]. The bifurcation approach is
based on the assumption that the phenomenon of shear bands can be explained
by seeking the conditions under which the bifurcation from a homogeneous mode
of deformation into a localized band mode can occur.

The method of imperfections is the most frequently used method in numerical
studies of the same problem, like for example in PAN er al. [11]. The origins of
the method are due to the widely accepted notion that shear bands nucleate be-
cause of the local inhomogeneity or defect causing enhanced local deformation
and local heating. Once non-uniform flow begins and straining continues, the
deformation becomes unstable. By introducing various geometric and material
imperfections, one hopes to induce a representative localization pattern embodi-
ed in the form of high deformation gradients in the vicinity of imperfection, which
spreads through the specimen in a direction which corresponds approximately to
the direction of instantaneous plane of maximum shear. At each stage of the
deformation history time integration is performed for the whole specimen, giving
the time evolution and spatial resolution of the strain fields which become highly
concentrated in the close vicinity of the imperfection. Hence, the evolution of
large deformation gradients and other fields that are related to it is highly in-
fluenced by the choice of the initial imperfection, and so is the efficiency of the
method itself. This makes the method predominantly descriptive. Nevertheless,
the method is important in enhancing our understanding of various growth phe-
nomena, and valuable information can be obtained on the evolution and growth
of bands triggered by different initial imperfections. Unfortunately, analyses of
this type do not provide an adequate answer about the critical orientations of
shear bands, which is of great importance in designing effective finite element
meshes for localization problems.

To avoid these problems, we study various aspects of material instability by
employing a standard linear stability analysis where the formulation incorporates
the effects of thermal softening, strain rate sensitivity, strain softening, elasticity,
inertia, their mutual interactions and individual influence on the possible mechan-
isms of material instability. The method has been employed in solid mechanics
predominantly in the analysis of one-dimensional problem, Barl [3], FRESSENGEAS
and MowriNaRrt [5], SHAawkr and CLiFTON [21], with a few attempts to generalize it
to higer-dimensional problems. A three-dimensional generalization was presented
by ANAND et al. [1], however they restricted attention to incompressible materials
and neglected the effects of elasticity. One of the main objectives of this paper
is to present a general method for the linear stability analysis of rate-dependent
materials. A plane perturbation wave of an infinitesimal amplitude propagates in
an elastic-viscoplastic (rate-dependent) material which is in the state of homo-
geneous deformation with adiabatically coupled temperature field, in absence of
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radiant heat sources. This basically means that in the first law of thermodynamics
the term which accounts for heat conduction is neglected. From the perspective of
instability, a theoretical model for prediction of two qualitatively different types
of material instability is derived, using the basic notions of linear stability analysis
in perturbation of the system of equations describing the rate-dependent plastic
flow and the first law of thermodynamics. We seek the conditions under which for
the material held in a state of pure homogeneous deformation, the superimposed
infinitesimal perturbation exhibits an explosive (exponential) growth. Once the in-
finitesimal disturbance starts to grow, the material may be regarded as unstable.
We derive the conditions at which the material system is found on the threshold
of instability. We give a detailed derivation of the resulting dispersion relation or
stability equation. The problem of material instability is addressed from a broad
perspective, where the localization of deformation or shear banding originates as
a special case of a general theory. A general form of elastic-thermoviscoplastic
constitutive relation is considered, and we emphasize the importance of the elas-
tic portion of the constitutive law and its influence on the determination of the
critical orientation of the instability plane, and its evolution in the post-critical
regime.

The linear stability analysis can only predict the necessary conditions for the
onset of instability. In spite of the limitations of this type of analysis as compared
to the full nonlinear analysis, which usually requires the assumption of a special
form of the constitutive relation together with the use of numerical techniques,
the linear stability analysis predicts the necessary conditions for the onset or
formation of instability, and sometimes allows for closed-form analytical results
for different classes of constitutive relations. The results of the linear stability
analysis are valid only for perturbations whose variations are much faster than
those of the homogeneous solution, i.e., the time scale of perturbations is small
in comparison to the time scale for the variation of the homogeneous solution.
This apparently does not hold for long wavelengths of perturbations where we
cannot assume beforehand that the variation of coefficients in the differential
equations for perturbations is sufficiently slow, so that the time-dependence of
the coefficients can be neglected from the start. Nevertheless, the results for the
initial growth of disturbances are quite satisfactory, and comply with the results
obtained for the idealized but nonlinear problem. Because of linearization, such
an analysis is not expected to characterize completely the stability of the solutions
of the nonlinear problem, since the initial growth may or may not lead to insta-
bility. This obviously depends on the neglected effects of the higher-order terms
and on the nonlinearity of the system. Consequently, the results obtained from
the linear stability analysis cannot in general be used for long range instability
predictions. Once the instability sets in, the growth of the perturbation makes it
invalid to neglect nonlinear terms. However, predictions for the onset of instabil-
ity obtained by means of linear stability analysis yield results which are in general
agreement with numerical solutions of the nonlinear system, and can be consid-

http://rcin.org.pl
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ered quite accurate at the early stages of instability evolution. The linear stability
analysis provides important insight into the critical conditions for the onset of
instability. From a mathematical point of view, the linear stability analysis gives
sufficient conditions for the stability of the solution of the linear perturbation
problem, which can also serve as sufficient conditions for the stability of solutions
of the nonlinear problem. Moreover, most of the contemporary methods of non-
linear stability analysis are based on a higher-order asymptotic expansion of the
governing field equations near the critical state which is determined by means
of linear stability analysis. This is one of the reasons why the critical conditions
in terms of linear stability should be investigated in detail. The approach based
on the same principles will be used in the forthcoming paper, in an attempt to
perform the nonlinear stability analysis of the same system of field equations.

The paper is organized as follows. The governing field equations are given in
Sec.2. In Sec. 3 we discuss the kinematics of the perturbation, linearize the equa-
tions at the current (intermediate) configuration and derive the characteristic
stability equation. In Sec. 4 we display in detail the derivation of a general disper-
sion relation and expanded stability equation with the characteristic coefficients
collected in Tables 1 and 2. Section 5 contains an augmented version of stability
criteria that stem from the algebraic structure of the characteristic equation. The
analysis of the stationary points of the dispersion relation is followed by a discus-
sion of various aspects and possibilities for the onset of bifurcation. The limiting
transformation to recover the constitutive behaviour of a rigid viscoplastic mate-
rial with the corresponding characteristic coeflicients of the dispersion relation is
given in Sec.8. In Sec.9 we discuss the transition to the rate-independent limit
and derive the localization condition for the adiabatic rate-independent plastic
deformation.

2. Field equations

Let x define the current configuration taken as reference. Furthermore, let
v(x, t) denote the velocity, L = grad v the velocity gradient, D = symL, and W =
skew L, the rate of deformation and spin tensor, respectively, and T the Cauchy
(true) stress. Consider a homogeneous solid sustaining stress T and temperature
field 6. The local balance of linear momentum and energy at x in the absence
of body forces and radiant heat sources, assuming that the irreversible part of
deformation is fast enough so that there is no spatial heat exchange with the
surroundings, are given as

(2.1) divt = p(x,t) = v (x,1),
(2.2) pe =T:L,

where ¢ is the material time derivative of specific internal energy per unit mass.
In what follows, some simplifying assumptions will be used. We assume that the
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rate of change of specific internal energy can be taken proportional to the rate of
change in temperature field with ¢, being the constant of proportionality. Here
cp represents specific heat leading to ¢y = pc, when measured per unit volume.
The elastic part of constitutive relation is decoupled from the temperature field
by making use of a scalar parameter x specifying the fraction of plastic work that
is converted to heat. For a comprehensive exposition of thermodynamic theory
pertaining to the class of the rate-dependent and rate-independent solids based
on quite general grounds, see PERZYNA [13, 14]. For a detailed discussion of
the starting assumptions leading to formally the same form of energy balance
equation, see Duszek and PERzYNA [4]. For metals x is usually in the range of
[0.85 — 0.95]. Consequently, the energy balance equation which now defines the
relation between heating and plastic dissipation takes the following form

(2} pep = xT: Dy;;.

The constitutive equations of elastic-viscoplastic solid based on the additive de-
composition of the rate of deformation tensor are given by

(24) D= De + Dups

where the elastic and vicoplastic part of the rate of deformation tensor are defined
as

e

(2.5) D.=C':7, D,,=¢tp.

v . - - . o
T is the Jaumann corotational stress rate, C a tensor of elastic moduli, C~! its
inverse, p a plastic flow direction and ¢ an equivalent or effective viscoplastic
strain rate,

(2.6) T=F+7 - W-W.r.

The elastic response is assumed to be linear isotropic with constant isothermal
moduli C, which is appropriate for metal plasticity for stress levels that are small
compared to the elastic moduli, and where the elastic strains remain small com-

pared with the plastic strains. Combining Eq. (2.4), (2.5) and solving for T gives
2.7 T=C:D-£C:p.

The effective viscoplastic strain rate is determined from an experimental curve,
and can be written symbolically as a function of effective stress, strain, and tem-

perature

(2.8) £ =% (7,5, 0),
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1
(2.9) 7t = 51" s T =7 gtr'rl.

The plastic flow direction is derived from a plastic flow potential Q
(2.10) p=0Q/dT.

Derivations will be performed for a general class of viscoplastic materials obeying
the functional relationship as defined in (2.8). Nevertheless, at certain points dur-
ing the analysis, we will specialize to the particular form of (2.8) most frequently
used in practical analyses, LEMONDS and NEEDLEMAN [8], PIERCE et al. [12]:

E —I/m
(2.11) E=6, [_] .
h(6 — 00)9(5)
Here £ represents the reference strain rate at which the tensile test was per-
formed, m is the strain rate exponent, g(¢) is the strain hardening function, 6 is
the reference temperature, and the function £ specifies thermal softening char-
acteristics of the material. The function ¢(Z) together with

s D,,:D,,r, 1/2
=/§ dt = / (———_Ll' "> dt
p:p

represents the effective stress versus the effective strain. It may take the form of
a simple power law, or it may also incorporate some softening features. Usually,
the strain softening is incorporated into the field equations by a proper choice

of ¢(3).

o

(2.12)

3. Perturbation of field equations

By instability we mean instability with respect to small or linear perturbations
that can take the shape of a wave. A perturbation of velocity and temperature
field with respect to the current configuration x as reference is defined as a
relative motion of a body x = x(x, 1), and is characterized by functions Av(x, t)
and Af(x,t) such that

v(x,t) = v(x,1) + Av(x,1),

(3.1) -
O(x, 1) = 6(x,t) + AB(x, 1),

/_’\V(x‘ i) = ¢v — Cu[-ﬁ-ik-xv — (*“‘)Ht+l‘¢v"
3.2) i o i
L\()(x’ t) = ¢(—) - 6Wﬂ+lk-x(_) — ',.uJRt+r»¢(;)‘
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where V is a constant amplitude with sufficiently small apropriate norm ||V|| < 1,
@ is the amplitude in the peturbation of temperature, ¢ = k(ct + n - x) is the
phase, w, = Re[w] is the growth rate, w, = Im[w] is the wave frequency, ¢ = w, /k
is the wave (phase) speed, £ = 27/ is the wave number, and k = kn the wave
vector. The gradient of velocity increment is thus given as

(3.3) AL = Ay €‘= (grad Av)” =kAv@n=g®n.

Consequently, if Re[w] < 0, then both Av and A# are exponentially decreasing
functions with or without oscillatory modulation according to whether Im[w] is
non-vanshing or vanishing. If the wave length of disturbance is short enough, so
that the coefficients of linearized equations do not vary significantly over one
wave-length (A = 27 /k), it is permissible in the close neighbourhood of the
same state that the coefficients of linearized field equations are considered to be
constant. Thus, we may seek the solutions of the system in terms of normal modes,
cf. (3.2). The shorter the waves, the stronger the theory. The reference solution
(Av = 0, A6 = 0) is reached in the limit as t — oo, which defines asymptotic
stability. Hence, the basic solution given in terms of velocity and temperature
fields v(x,t), 6(x,t) of the current configuration is asymptotically stable. It is
assumed that the basic flow defined by the velocity v(x, 1) is non-periodic. If, on the
other hand Re[w] > 0, disturbances tend to grow exponentially and the reference
(trivial) solution is unstable. The regime which separates the two classes of states,
stable from unstable, defines the state of marginal stability. By this definition, the
marginal state is the state of neutral stability and Re[w] = 0 determines the
threshold of instability of the reference state. Two qualitatively different states
can be distinguished here. In most cases it is postulated that besides Re[w] = 0
one also has Im[w] = 0. The eigenvalue w changes its sign by passing through
zero. Some autors refer to this type of critical point as a divergence point. Another
possibility is the case of Hopf bifurcation where besides Re[w] = 0 one also has
Im[w] # 0. Consequently, we get a bifurcation in a time-periodic flow.

The increment of velocity gradient AL, its symmetric counterpart AD (the
incremental rate of deformation tensor) and skew-symmetric part AW (the in-
cremental spin tensor), can be expressed as

AL = ik¢V@n = g@n,

(3.4) AD = (g@n+n®g)/2,
(3.5) AW = (gon—nwg)/2,
(3.6) AT = 67, |7 < 1,
(3.7) A = ¢0, 18] < 1.

In the last two expressions (3.6), (3.7) it has been asumed that the kinematics of
incremental deformation yields stress and temperature perturbations in the form
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depicted, where T stands for the amplitude tensor of the incremental Cauchy
stress with the sufficiently small apropriate norm || - ||, and 0 represents the
corresponding amplitude of the temperature field.

Now consider the linearization of the field equations at x as a starting point for
the linear stability analysis and the derivation of dispersion relation in Sec. 4 be-
low. The momentum balance at x with respect to the intermediate configuration
x as reference can be expressed as

(3.8) div [JF - F(x,0)] = p(x, 1)V (x,1).

The incremental quantities needed for further development are now given as

(3.9) x(x,1) = x + Au(x, t),
(3.10) AV (x,t) = 8*Au(x, 1)/91%,
(3.11) T(x,1) = 7(x,1) + AT(x,1).

The relative deformation gradient F, its inverse F~!, and the corresponding Ja-
cobian of incremental deformation are defined as

X -1
F= =1+H, F7" =1-H,
(3.12) x

J = det(drx/0x) =1+ trH, HT = grad Au(x, 1),

where the higher order terms in expressions for J and F~! have been neglected.
Making use of (3.9)-(3.12), the linearization of (3.8) yields

(3.13) divAT + trHdivT — (grad T7)” .« H = pAv.

By assuming that the strained reference configuration at x is in homogeneous
state of stress, i.e. T(x,t) = 7(t), Eq.(3.13) reduces to

(3.14) divAT = pAv.
Substituting (3.2) and (3.6) into (3.14) gives rise to the momentum jump condition

(3.15) n. AT+ ﬁg— 0, ikn.T—pwV=0
By analogous considerations with those which have led to (3.15), and by taking
into account Eq. (2.2), we can express the equation of energy balance at % relative
to x as

(3.16) pe—P-F=0,
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where P(x, ) stands for the nominal (first Piola - KirchhofT) stress tensor. Intro-
ducing the incremental relations between the first Piola - Kirchhoff and Cauchy
stress tensors in the form

(3.17)  P(x,t) = P(x, 1)+ AP(x,t) = T(x, )+ A7T(x, ) +trHT(x,t)—H- T(x, 1),
by virtue of relations defined in (3.12), Eq.(3.16) in incremental form yields
(3.18) pAé —A(T--D)y+trH(T--D)—tr(H-T-L) =0.

For a homogeneous thermodynamical process at a basic state at x, the funda-
mental thermodynamic variables exhibit no spatial dependence, thus in addition
to the assumptions that led to (3.14), we may take 6(x,?) = (1), and finally, in
accordance with the assumptions outlined in Sec. 2, we approximate the left-hand
side of (3.18) by taking

(319)  pAé—A(T D)+ trH(T D)= trH- T -L & ¢gAf —xA(T -- Dyp),
(3.20) c9AB —xA(T - D,,) = 0,

and thus we obtain the following form of the incremental energy balance
(3.21) co A= YA(®T 7).

Here the function of the parameter y has been slightly extended. In addition to
the decoupling role which has been originally assigned to x, the parameter now
takes care of the geometric changes due to the differences in incremental relation
between the nominal and true stress, leading to a significant simplification of
the incremental energy balance equation. A rigorous consideration of geometric
changes in incremental energy balance equation complicates the derivation to a
large extent, but for all practical purposes when the amplitude of perturbation
is infinitesimal, it is permissible either to adopt an extended concept of what
used to be originally a Taylor - Quinney coefficient, or to neglect completely the
difference between the third and fourth term in (3.19).

By considering the kinematical relations (3.3)-(3.6), the perturbation of the
kinematical part of the corotational stress rate gives

(3.22) AT = (WI+Q): AT+ S:n@g,
1 .
(3-23) Iijp = 5((51';;(%1 + 5]‘1;(5:'1)1
1 :
(324) 'Q(ij)(kl) = E(I’Vu(ski + Wby + Wiibi; + VVkJ'(S[i),

1
(3.25) Sijk = E(Tﬂﬁjk — Tikbi + Tjdik — Tikbj1).
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The perturbation increment of the constitutive part of T, cf. (2.7), can be
expressed as

(3.26) AT =C:n@g- X: AT,
(3.27) X=f(w)C:p(‘:g)T+CCZM.

020 B coAw + YEC
(3.28) M=o0os, W)= Z_U[r.w—C(;B\UC]

where the function f(w) was obtained using (3.21) and the following relations:

. fE dE dE
: E= = + — Al = AAT + BAT +
(3.29) A 00_\0 = — Az + 804 g C A8,
(3.30) AT = %TI AT 5" Af= wAE, Ab= wAb.

The tensor of elastic moduli in expressed in its standard form in terms of Lame
constants A, u

(3.31) Ciskt = N0ijbp + p(bindjr + 6;56:1).
Finally, a combination of (3.22) and (3.26) yields

(3.32) WI+Q2+X):AT=(C-S):n®g.
If we denote

(3.33) = (WI+ Q2 +X),
(3.34) B =C-8,

then Egs. (3.32) and (3.15) give rise to a set of equations

A: AT=B:n@®g,
(3.35)

n-AT + kz g =0,
which enables us to relate the unknown amplitudes of velocity and stress incre
ments. Multiplying the first of (3.35) by (n - A~! ), and substituting into the
second yields
(3.36) (n-.A":B +k21) g=0,

where A~! is the symmetric inverse of the fourth rank tensor A such that

(3.37) Al A=L
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By introducing

(3.38) LA 8

(339) Q =n-L-.n, Qﬂ = niLijklnk g
Eq. (3.36) takes the following form

(3.40) (n-L--n+%1)-g=0,

A condition for the nontrivial solution of the homogeneous system (3.40) yields
the characteristic equation

(3.41) det [Q 4 i—“z’l} =0.

Expanding the characteristic equation (3.41) gives the dispersion relation of the
following form,

a3 N .
(3.42)  D(w.k) = (%’) + (%) trQ+ (Z—f) % (r?Q - trQ?) +detQ = 0.
The signs of the real parts of the roots Re[w] determine the regions of stability
and instability. The expansion of (3.41) via (3.42) is by no means simple, since it
requires a direct inversion of the tensor A which explicitly depends on w repre-
senting an unknown eigenvalue of the stability problem. In the following section
we give a detailed derivation of the dispersion relation.

4. Derivation of dispersion relation

In what follows, for simplicity, we shall neglect the effect of tensors €2, S
emerging from the corotational parts of Cauchy stress rate. In this way we limit the
nature of perturbation to infinitesimal increments which are almost unidirectional
and without significant changes in rotation, i.e., A T~ AT

By introducing two linearly independent, idempotent, symmetric tensors J
and K

1 . 1 . |
4.1) Jijkl = g%ﬁm K = E(ézkf(’jl + 6;16:) — gézjbu,
=), K=K, J:K=K:J=0,
for plastic flow rule with isotropic hardening and von Mises effective stress, the
expressions needed for further development are given as
32 k /

=77, p=g—g=——, C=(0GA+2u)] + 21K,

(4.2) i

http://rcin.org.pl
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(4.3) M= 23—6 [K = 2—3;37’ ® 'r’] ] X=a1t" 91+ 3K,
a
9 [cy@A-E)w + s EB+2FTEC ) g
, = 3= 3u—
i) “T % [ co(w — B) — xoC p=3uz,

(4.5) A=w]+ W+ BK+atT' @7, B =C= 03X+ 2u)] +2uK.

It is a simple matter now to obtain the inverse of the fourth rank tensor A and,
according to (3.38), the expression for L:

A=E+a7 07,
E = w] + (w+ AK, E‘I=£J+

o
1+ a7 :E-1:

1
K
w+p

= [E‘l TeT ! E‘l]

(46) A'=E"!

1 1
= ]+ K— * ! /
w w+p R
. _ co(FA—E)w + g€ B+ 2xTEC )
25° (w + B)(cow? + Bucg A — cgB — xoC)w + 3\pu £ C) '

el e (BA+24) 2u
4.7) L=A":C= v J+u+ﬂ

K- 2ua™t'® 7.
Noting that

1 1 1
n-J--n-*-gn@n. n-K--n=§[l+§n®n],
(4.8)
n-TeT -n=tet, n,-Ti'jT,:mk =tt,
the perturbation wave acoustic tensor Q admits a decomposition

(4.9) Q=ql+an@n+ @ptdt, Qi; = qodi; + quninj + qatit;,

where the scalar parameters ¢g, ¢1, ¢2 which convey ihe information about the
current state of stress and other material parameters being part of the constitutive
equation, are given as

q = x
0 w+[3’
_ 1 /33 +2p 1L )
(4.10) o= (2 L),
-2
9 =

(w+ B)w + f + 2a0%/3)
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To determine the dispersion relation we need to calculate principal invariants of
the tensor Q:

I = trQ =3¢ + q + @t
@11) L= Q- wQ)/2=qBq +2¢) + 2 + )@t — et

I3 = detQ = (g0 + 1) + qo(%0 + 01)2t> — Qo1 2L5.

1l

By carrying out the expansions, with some rearrangements, (3.42) can be ex-
pressed in the following form:

(4.12) D = dy+ d, + dyt?.

Here the coefficients dg, dy, d; and expresions for t* and 2 are given as

2 pw
k2 * q0 l"z oa q0 + q1
Py ) ( ¥ ot )
= ( (] ( {
Z o) lFtota)e,

L3 flo) 9192,

(4.13) dy =

= [
(

a
o
|

(4.14) 2 =tt; = 71krét2ng, ti = (n;t;)z = (’Il.l'Tl-’jTJ,J‘)z.
Once again, the dispersion relation in explicit form yields
(4.15) D =dy+ (llrk, nen + ([27' TR nEny.

Next we observe that the scalar parameters dy, d;, d, have a common factor which
can be factorized from the original expression

D= DcDp, Do = (I;f; + QO)
(4.16)
DR:(kZ +f10> (Iﬂ f10+f11+qzt)+f!1f12(tz—t721-

This is quite advantageous, since it contributes to a significant simplification, i.e.,
it lowers the order of polynomial in w, and we are thus able to solve for w the
two separate equations Do = 0 and Dg = 0, respectively. By solving equation
D¢ = 0 first, it yields the negative real parts of the roots. Consequently, the
first subset of solutions is always in the stable domain. Therefore, the critical
eigenvalues that may eventually cause the instability should be determined from
the remaining part of the dispersion relation. It should be kept in mind that the
coefficients ¢, ¢, q2 contain w as an unknown eigenvalue of the problem as well
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as the perturbation wave vector k = kn, ie., ¢, = ¢, (w,k); L = 0,1.2. Carrying
out the expansions, after some algebraic manipulations, (4.16) in the expanded
form yields

| —

N
D(w.k) = ( Z agwi—*, d= E4w(w‘ + /3)2((-0;u2 + ciw + ¢2),
k=0

~

(4.17) s
co = cg, c1 = cg(B3pA — B) — xaC, c=3xpzC.

The order of exponent N in the formula (4.17) depends on the nature of pertur-
bation. We distinguish between the two limiting cases:

i. Quasi-static perturbation. Inertial effects are negligible, and terms containing
mass density are neglected. In this case we have N = 3 and (4.17) has the form

1
(4.18) D(w,k) = ;i-((row3 + aw? + axw + a3).

ii. Dynamic perturbation. Inertial terms are included. Here we have N = 7 and
the dispersion relation is of the form

1
(4.19) D(w,k) = —[(frow7 + a1w® + @’ + awt + agw’® + asw® + agw + a7).
d

In both cases the value of the denominator as defined in (4.17) remains un-
changed. The polynomial coefficients «; (k) which depend on the current state of
stress, strain rate, and other material parameters are given in Tables 1 and 2 in
the Appendix.

5. Stability criteria revisited

Since the stability is determined by the sign of the real parts of the roots
(wi) of the numerator in (4.17), one way of checking the sign definiteness of the
sequence Refw;] is to employ a Routh -Hurwitz criterion (RHC). A necessary
and sufficient condition that all the roots have negative real parts which implies
asymptotic stability is that all terms forming the sequence of Hurwitz determinants
{Dy} are positive, i.e., {Dy, Dy, ...Dy; Dy > 0 Yk € [1.N]}. The individual
members are defined as determinants of the principal minors of

ayag 00 ... 0

asz ap ay ag ... 0
Dy=|:1t:: : i |=ayD,,>0

000 ayay,_, a,.,

-0 00 .. @

http://rcin.org.pl
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The last two terms of the sequence { D}, namely Dy _y, Dy, deserve special at-
tention. According to the RHC we must have Dy_y > 0and Dy = a,Dy_; > 0.
First let us assume that Dy _; > 0. Thus, for stability we must require thata,, > 0.
Here index N equals 3 to 7, depending on the type of perturbation we are im-
posing on the system, quasi-static or dynamic, respectively. By comparing the last
two coefficients a,, in the expansion of the dispersion relation D p(w, k) pertaining
to the case of quasi-static (coefficient a3) and dynamic perturbation (coefficient
a7), we observe that in both cases they are the same, regardless of the nature of
perturbation. So when «,, changes its sign from a,, > 0 to «,, < 0, the transition
takes place without a direct influence of inertia. When a,, > 0 and w is imaginary,
then the stability depends on the behaviour of the term Dy _;. The discussion of
this particular case is outlined in subsection 2 below.

Since the problem can be viewed as a nonlinear evolution process starting
from the initial configuration which presumably is taken to be stable, we are
actually interested in determining the conditions under which the state of neutral
stability is reached first, and in the nature of the transition from the stable into the
unstable domain. By using the Routh - Hurwitz criterion to investigate stability, it
turns out that the last two terms in the RH sequence actually dictate the marginal
stability behaviour of the system.

Certain peculiarities of the stability criteria can be recognized by inspecting
the expanded form of dispersion relation (4.17). Since the characteristic equa-
tion takes the form of a rational expression, care should be taken to distinguish
between different types of removable and unremovable singularities which may
emerge when the conditions for neutral stability are attained and play an impor-
tant role in defining criteria for the existence of a bifurcation.

5.1. Static loss of stability, divergence point

For w = 0, (Re[w] = Im[w] = 0) one must have a, = 0. However, this does
not imply that Dp(w = 0,k) vanishes too, because of the w in the denomina-
tor, cf. (4.17). The condition a,, = 0 only provides the removable singularity
of the characteristic equation at w = 0. However, for Dp(0,k) = 0 we must

also have a, _, = 0. Thus, the existence of a nontrivial solution as indicated in
(3.41) via (4.18) requires that the following two conditions should be satisfied
simultaneously: «,, = a, , = 0. Since both coefficients have to vanish at the

same time, they define rather severe conditions under which bifurcation in the
form of branching of the solution may set in. There are different ways in which
the former two conditions can be satisfied. A detailed study of these particular
cases is given in Sec.7. Theoretically, bifurcation is not excluded, but as it will
be seen later on, under certain circumstances, it can be precluded in practice for
the class of constitutive relations considered here. Nevertheless, a sign change of
the coeficient a, will always indicate the exchange of stability.

http://rcin.org.pl
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5.2. Dynamic loss of stability. Transition to a time-period flow. Hopf bifurcation

Here we consider the case in which the dispersion relation has two purely
imaginary eigenvalues for a certain value of the control parameter A = A,
whereas other eigenvalues have non-vanishing negative real parts. The basic as-
sumption made here is that the eigenvalue is simple, and as under definition at
A = Ay, not only Re[w] = 0, but also the branch w,, = Re[w] = w(A) crosses the
A-axis. This is the transversality condition dRe[w(A)]/dA # 0. At A = A, a pair
of complex conjugate eigenvalues crosses the imaginary axis with a non-zero ve-
locity. The remaining eigenvalues continue to have negative real parts. For details
see MARSDEN and McCRACKEN [10].

The bifurcation solutions will become periodic in time if Im[w(A)] # 0. By
substituting w? = —s? into (4.17), the dispersion relation splits into the real and
imaginary part

Dr(w,K) = Dge(w, k) + i Dim(w, k) = 0,

3l
&) Dge = Re[Dp(w, k)] = 0, Dim = Im[Dp(w, k)] = 0.

In the case of a quasi-static perturbation when inertia is negligible, the expressions
obtained from (5.1) are relatively simple since we are dealing with a third-order
polynomial. Imposing (5.1) upon (4.18) yields the Hopf criterion of the form

(5-2) H3 = ajap — agaz = 0.

The preceding equation defines the relation between the coefficients of the dis-
persion relation which has to be satisfied in order that two complex conjugate
roots w? + s2 = 0 solve (5.1). From (5.2) the relation to RH criteria follows
directly. For a general third-order polynomial with real coeflicients, the RHC are
given as

(5.3) Dy =a; >0, D> = ajap — agaz > 0, Dy = a3Dsy > 0.

By comparing (5.3) and (5.2) it can be observed that the Hopf criterion, H3 = 0,
corresponds to D, = 0. The complete sequence of RH inequalities hence degen-
erates to

(54) {01,1)2,1)3} = {(Ll > 0,0,0}

In the case of a dynamic perturbation, the same procedure gives
aps® — azs* + ags? — a5 = 0,

(5.9)

a1s® — azs* + ass? —ag = 0.

After introducing a new variable £ = s%, the problem reduces to eliminating £
from the two polynomials of the third degree. To eliminate ¢ from the last two
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equations means to find a relation between the coefficients which must hold if
the two equations are both satisfied. In other words, we have to find a necessary
condition for the two equations to have a common root. The resultant of the
system (5.5) can be represented as a determinant

ay —ap aq4 —ag 0 0
0 ay—ay a4 —ag O
(5.6) R = 0 0 ayp—ay aq —ag —o.

0 0 a —a3 as —ay
0 a —az3 as —ay 0O

a; —a3 as —a7; 0 0

Vanishing of the determinant is a necessary condition for (5.5) to have a common
root: a device konwn as Silvester’s dialytic method of elimination, WAERDEN [23].
In this case the Hopf criterion can be stated as /7 = R = 0. From (5.6) and
from Table 1 it becomes apparent that the HC in this case is rather cumbersome
because of the expansion itself and because of the complexity of the coefficients
of the dispersion relation. By using one of the determinant expansion methods
one can prove that the condition f/7 = 0 corresponds to the condition Dg = 0
in the RH sequence for the seventh-order polynomial, implying that the last two
terms of the sequence vanish:

(S I7=0 = D=0, Dy=a7Ds=0.

The Hopf criteria H3 = 0 and H7 = 0 belong to a general class of possible
solutions. In the case of a dynamic perturbation, the criterion H = 0 is practically
unobtainable in explicit form because of the inherent complexity of the individual
coefficients a;. On the other hand, we are not interested in the general class of
solutions, but rather in the particular ones, providing the worst case scenario
for losing stability once the system in on the threshold of instability. It is more
feasible to seek a subset of solutions which defines the most severe conditions
under which the system is prone to lose stability in the fastest manner possible.
To answer these questions, we take a closer look at the stationary properties of
dispersion relation.

6. Stationary point of the dispersion relation

The dispersion relation defines the relationship between the characteristic
coeflicients as functions of material parameters and eigenvalues w. To determine
the regions of stability, we either have to solve for w, or use the Routh -Hurwitz
criterion to detect when the exchange of stability takes place. For practical use
it is especially important to determine the directions in which a given property
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of the dispersion relation D(w,k) assumes its maximum and minimum values.
The reason for this is that expressions which define individual members of the
dispersion relation are very complicated from an algebraic standpoint. It may be
more feasible to analyze extremal properties of the function D and the relations
which follow from them. Since D can be viewed as a function of the eigenvalue
w and the wave vector k, D assumes its extreme value in a certain direction of
the wave vector k = kn of the imposed disturbance. It is required to find unit
vectors n, such that G(n) = n .- n— 1 = 0, where the function D given by (4.17)
assumes minimum value and vanishes for certain values of w. Mathematically,
the problem is to find stationary values of the dispersion relation subject to a
constraint. We use the method of Lagrange multipliers seeking extrema of the
function

(6.1) F=D-An-n-1).

At the corresponding values of n the stationary conditions are
or oD
on,  On,

ar
dA

— 2An, =0,

(6.2)

= nin, —1=0.

Derivatives in (6.2) can be determined by defining auxiliary quantities

aD
— = 2D, .ny, T =T
on,

(6.3)

! ’ / /
n;, Dy = dir 7t + 2da7 , Tre-

nn 1ty

The components n; and the undetermined Lagrangian multiplier A are found
from (6.2)

10D
(6'4) = i ;))T‘”r = 117-]),-‘\-72k = r{ttz + 2(/2‘,,2‘ s
(65) (Dv'k = Aérk)”k = (.

The introduction of a Lagrange multiplier transforms the minimization problem
into a saddle point problem. For fixed A, D is a minimum at A = maxA. This
can be easily verified by calculating the second variation of D with respect to n.
The geometrical interpretation of the procedure can be illustrated by calculating
the gradient vector of the representation surface /) = D(wohn) of the dispersion
function evaluated at some fixed value of w, say w = wy. Since we are on the unit
sphere, we have

oD

oD ,
(6.6) grad D = — = 2An, max |grad D| = max Il = 2 max(\).
é

dn w=wp

http://rcin.org.pl
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By trying to determine max(\), we are actually searching for the direction that
gives the largest value of the gradient on the representation surface, being at
the same time the normal gradient of the unit sphere. From this a very powerful
conclusion can be drawn. When the necessary conditions for reaching the critical
state are met, the instability will evolve at the fastest growth rate in the direction
of the gradient with the largest magnitude on the stability surface D = D(w, kn).
Following the maximum value of the gradient gives the differential direction of
the path of the steepest ascent or descent (depending on the sign of gradient) in
which the absolute value of perturbation in velocity field exhibits the fastest rate
of growth. More directly, by calculating the gradient of [Av| = (Av . Av¥)!/2 in
the direction of n we obtain

d|Av| _ J]Av| Jw | Av| JaD ]_\vl

- . o1 A FE o eade et =
on TR it e o~ 777 ity e

(6.7)

from where it follows that max A via max |grad D| leads to max(d|Av|/dn), pro-
viding that the point under consideration on the representation surface is regular,
ie., D, = [0D/0w],, # 0. This is consistent with the starting assumption that
the exchange of stability takes place only through an eigenvalue which is simple.

Referring to (6.5) again, the equations can be simplified significantly by taking
the system of coordinates constructed on the principal axes of stress tensor. In
this case we have

H%T{ + 71%7’:’2 + H%T{

2
= n%‘rl + 1227'2 + n%rﬁ i

-
[ (SIS
|

(6.8)
t,zl = (”171 + nzrz + I‘I3T3) :

and the system of three homogeneous equations

111({111'1 + 2dy7) T — A) = 0,
(6.9) nz(dlrz + 2da7,,, 75— A) = 0,
713(!117'3 + 2da7,, 73— A) = 0.

The systems admits a variety of solutions depending on the stress state and the
plane orientation defined by the vector n. In general, no solutions are possible
with all three components ny different from zero and with all three stress deviators
different from each other. Other possibilities are summarized in Table 7.

For the sake of convenience, we introduce the following auxiliary variables
needed for further development:

(6.10) m? = (dy + 4dy)/6dy,  (* = (2dy — dy)/6dy,
both satisfying the condition % + (* = 1, a rational expression

(6.11) E =dy/dy,

http://rcin.org.pl
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and a normalized value of the Lagrangian multiplier ), all used in Table 7,
(6.12) A= )\/dy.

To illustrate how Table 7 can be used in the stability analysis, consider the two
special states of stress: uniaxial tension and simple shear. Here we assume that
only a static exchange of stability takes place during the deformation process.
Hence, w is changing over the real axis, implying that Im[w(A)] = 0 for all values
of the control parameter A.

6.1. Uniaxial tension

In a physical space of principal stresses the state vector is defined as T =
(11,72,m3) = X(1,0,0) with the corresponding deviatoric counterpart T/ =
(r{,73,73) = (X/3)(2,-1,-1). X is the applied external stress in the princi-
pal direction 1. According to Table 7 there are two candidates for the solution:
Cases 1 and 4A. Since we are interested in the static exchange of stability only,
the transition from w < 0 to w > 0 takes place through w = 0. At the critical
point we have w = 0, = = —1 and from Table 7 follows the max()\) calculated
for the Case 1,

6.13) X =2X%/9, 2 =m?=1/2, n?=1/2, n:+n?=1/2.
1 2 3

The last two expressions define the direction of the plane with the fastest incipient
rate of instability growth. A family of plane envelopes satisfying (6.13) forms a
double cone with the apex at the origin, inclined at an angle of = /4 to the axis
of the maximum principal stress deviator. The assertion holds for w = 0 only, or
at least in the limit, when w tends to zero (w — 0). In general, however, when
w # 0 then =(w) is not constant, implying that there exists a dependence n(w(A)).
Here A represents the control parameter. The normal vector varies during the
deformation and the loading process.

6.2. Simple shear

Without any loss of generality we may take coordinate axes x; and 23 to define
a plane of shear with 75 = 0. The physical space of principal stress and stress
deviators coincide, and the state vector is now given as T/ = X(1,-1,0), X = 75.
By analogous considerations as those in the case of uniaxial tension we find from
Table 7 that the case 6B prevails, giving

(6.14) A=x% n?=1/2, n2 =1/2, n3 = 0.

The plane of the fastest instability growth bisects the angle between the smallest
and the greatest principal stress. But in this case the eigenvalue dependence
Z(w) is completely eliminated from the start. Regardless of the current value
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of the control parameter, once we enter the unstable domain (A > A.), the
plane orientation with the fastest rate of incipient instability growth is always
fixed relative to the current directions of the principal deviators. This is not
the case in uniaxial tension, or in any other stress state where the eigenvalue
dependence defined by =(w) is retained in the governing equations. Here the
current directions of the principal stress deviators as well as the direction of the
vector n may change relative to each other. In the case of simple shear =(w)
cancels out, thus keeping the direction of n as defined in (6.14) fixed relative to
T’. Whenever the state of material parameters and the critical plane orientation is
such that it admits the onset of instability, the instability will evolve in the fastest
manner within the plane dividing the planes of max and min stress deviators. The
stationary character of the vector n relative to T/ may be viewed as an intrinsic
property of the stress state of simple shear. Thus, in a way, the stress state of
simple shear may have a deceiving character in the stablity analyses of various
rate-dependent material models, mostly because of this intrinsic characteristic of
the system.

Now we return to the stability analysis under a general stress setting by em-
ploying RH criteria. The transition from Re[w] < 0 to Re[w] > 0 is induced by
the sign change of the coefficient a,,:

5 g 2 it 2
(6.15) ay = =9Bcg T p BN+ 2u)t; + 3xCT e p1” (3N + 2u)g-.
According to the RHC the system is stable for a, > 0, implying Re[w] < 0,

and unstable when «,, < 0 and Re[w] > 0. From the algebraic structure of the
coefficient a,, it follows that

(6.16) XCTg? — 3Begt® > 0.

To determine possible ways in which the expression (6.16) can change its sign, we
first analyze the sign definiteness of the “stress functions” t? and g2:

def def

- 6E et g <o - ot

(. ) 2 / / 2 _ ! 2
t“=n-7 .7 .n, t, =(n-T -n)".

In the coordinate system of principal stresses, functions t2 and g2 can be expressed
as quadratic forms

E=7"-A.-720, g=71"-G.7,
a (112/2 g1 !712/2
6.18) T =[r, 7, A= ,  G= ’
@ pid A= | ] iz "

trA = 2n3n3 + Sn3n + Snin > 0, detA = 91L%7!%72% il
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(6.19) trG = 6(1 “2"1”2 5712113 5n? ;'13)
detG = 27(1 - 8111712 8n3ni — 8nin3 + 48nin3n3)/4.

From (6.18) a positive semi-definiteness of t2 follows directly, meanwhile (6.19)
still needs additional investigation. Since we anticipate that g2 can change its sign
irrespective of the state vector of stress deviators for a certain plane orientation
with the normal vector n = (nl,nz,ng), where at least one component in n is
zero, we take a dual pair 7:2 + ”1 1, with exclusion of the zero component
of the normal n, say n,, 0 (K + L + M = 6), and consider the conditions
for positive definiteness of the quadratic form g? in the plane with n,, = 0.
Hence, the expressions in (6.19) simplify significantly, and yield the condition for
positive semi-definiteness of the function g2 in the space of stress deviators of
the following form:

6200 g2>0 v{n? [(1 —1/V2)/2,( + 1/V2)/2);
2 e +1/v2)/2,(1 - 1V2)/2]; ni_ + ni = 1},

Equation (6.20) transcribed in terms of angles of the plane orientation with the
normal n reads

n, =cosv, n, =siny, n, =0, (N + L+ M=06),

L

(6.21)
vy = 3n/8, ¥y = 1/8, U+ ¥y =7/2.

The plane orientation given by the angles ¥; and ¥, defines the threshold for the
lack of positive definiteness of the function g2 with respect to the basis of princpal
stress deviators. If the plane orientation is out of bounds of the interval defined
by (6.20), then for some non-trivial linear combination of the components of the
state vector of the stress deviators T/, the value of the function gZ may change its
sign passing through zero first. Detecting the critical state of stress and the plane
orientation when the function g2 vanishes is of a great theoretical and practical
importance. From (6.15) it appears that when g? = 0, the temperature effects
on the material instability in adiabatic thermodynamical process disappear, and
the RHC (a,, > 0) in this particular case reduces to that of the isothermal case.
Hence, it remains to determine the critical conditions, namely the stress state and
the instability plane orientation, when the condition g = 0 is first encountered.
Towards this end, we express the deviatoric stresses in terms of the effective stress
and a single stress-state parameter ¢ defined by 7/ = (@, which is zero (¢ = 0)
for simple shear, and attains maximum and minimum values ¢ = i:l/3) for
axially-symmetric compression (7). = 7, > 7) and extension (v > 7 =71
respectively. With ¢ we can write

(6.22) KL o
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The characteristic “stress functions” needed for further development transform
accordingly:

2 v i f? t2 , .
5 = 5(4-98). ;=1—3;=1mv(4—9g2),
(6.23)
2
§—1—2J(4—9‘2) LA L3¢ (1 — 40)
oz TR mElz T T )V T
(6:24) v = ni.ni, ni + ni =1, n, =0,

v € [0,1/4], ¢e[-1/3,1/3].

In the limit (as w — 0), the instability plane orientation parameter o} attains
its maximum value (7 = 1/4) for the plane orientation with the fastest rate of
instability growth, meanwhile the minimum value ¥ = 0 corresponds to the first
degenerate case of dispersion relation with t2 = 0. From (6.23) we have

(6.25) g/t =1-204-9¢%) =0,

The equation can be solved in two differential ways. First we seek the stress state
which satisfies g; = 0 within the plane of the fastest rate of instability growth.
Here we have ¢ = 1/4 and (6.25) yields

: , )
(6.26) (=22, T JEOEVZ Ty V2
3 T 6 a 3
giving the result for ¢ which clearly falls out of bounds of the interval || < 1/3.
Moreover, one can show that in the case when ( = \/5/3, the normalized value
of Lagrangian multiplier \ in the plane n,. = 0 exceeds the one within the
plane n,, = 0, i.e. (—TiT‘:’ > —7.7;), leading to the evolution of instability
within the plane n,. = 0. The same reasoning applies for ( = —v/2/3 where
(-7l.7., > —7.7,) implies the instability in the n, = 0 plane, cf. Table 7. Since
both solutions violate the starting assumption about the preferred initial orien-
tation of the instability plane defined by n,, = 0, they can be disregarded in
further development. Previous reasoning leads to the conclusion that in general
the equation g2 = 0 cannot be satisfied within the plane of the fastest rate of
instability growth. Therefore, instead of seeking the state of stress within the
plane (¢ = 1/4) which satisfies Eq.(6.25), we reverse the task and for a given
state of stress characterized by the scalar parameter (, try to determine the plane

orientation which satisfies (6.25):

1
T 2(4-9¢%)°

V2

| He=0)= L 2 g = o
(6.27) v (¢ =0)= g v (( - j:3) =5

http://rcin.org.pl
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Upon using the same angle notation as in (6.21), we can express the angle ¥ in
terms of the plane orientation parameter 9. The angle ¥ which now defines the
plane inclination of isothermal invariance in adiabatic material instability process
is thus given by

1— 294 1= 417)”2

(6.28) ¥ = + arctan ( 29

For the values of [0 = 1/8, { = 0], which correspond to the stress state of
simple shear, we obtain [¥, ; = 3r /8, /8], which apparently coincides with the
threshold for the positive definiteness of the function g?, cf. (6.20). In the case
of axisymmetric compression or tension where [¢ = 1/6, {( = +1/3], we have
[V12 = 5797 /1664, 2537 /1664], where the rational approximations for ¥, 5 are
accurate to six decimal digits.

We return now to the discussion of the sign-definiteness of the expression
(6.16) which in the context of (6.22)-(6.24) can be rewritten in the following
form

B X7 (1-20(4-9¢%

(6.29) o < - ( I =92 .

From (6.29), after some rearrangement, we can obtain the upper bound for the
general plane orientation for a given state of stress within || < 1/3 for which

RH criterion a,, > 0 is still satisfied:

coBB 2 5 ]_1

6.30 v < 4-9C)+ (418 .

(6:30) -9 + (4 180)

RH criterion in the planc of the fastest rate of instability growth (¥ = 1/4) yields
B X7 (4 —18¢?

(6.31) C<_ca(4—9(2)'

For our representative form of constitutive relation (2.11) the former inequality

transforms into
Yagh' (4_ 18(2) _ XGgy (4- 18@2)

(6.32) g > coh 4 —9(? coh 4 —9¢?

where we have used the paticular form of temperature function
h(@) = 1 - (6 — b)), O = 1/ + 6y,
h' = dh/d8 = —~, h(fe) = 0,
where 6 defines the critical temperature at which h(f). From (6.32) it follows
that the exchange of the stability can take place when the system is still in the

strain-hardening regime. The transition depends on the interaction between the
current magnitudes of strain hardening and temperature softening.

(6.33)
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7. Some general remarks regarding the possibility of bifurcation
7.1. Steady bifurcation (divergence point, w = 0)

In accordance with the basic definitions outlined in Sec.5, the necessary con-
ditions for the onset of bifurcation through w = 0 are that the coefficients a
and a, _, vanish simultaneously:

(7.1) ay =ay_, =0.

We are interested in ivestigating the physical relevance of the solutions satisfying
Eq. (7.1). From the algebraic structure of the coefficient a,, it follows that there
are six possible scenarios which eventually may satisfy Eq.(7.1). We do not im-
pose any restrictions on the behaviour of the material parameters A, B, and C
at this point. This in turn may lead to a somehow exotic constiutive behaviour.
Nevertheless, particular cases of such behaviour which are not compliant with the
starting assumptions regarding individual material properties, like strain-rate sen-
sitivity, strain and thermal softening, can be easily eliminated. Here the discussion
is referred to the general case of constitutive relation.

Scenario 1. 2 # 0, g2 # 0

Nontrivial values of stress functions t> and g? lead to the system of two lin-
ear equztions for material parameters B and C'. Solving (7.1) yields the critical
bifurcation pair expressed in terms of the parameter A

bi=—"% BN\ € 2]’
3 (kCT) gl/é' z
2 2
9 t2 (A]ft'iz + 3%)
copts <
(7.2) Cir=-——"3 3 7 g2 |°
Xo /6 ~tn fs‘
3] —err -
R e
= 1=2p
EN

where vrepresents Poisson’s ratio and ¢, = /u/p is the shear wave speed. Since
paramet:rs [A, B, ('] evolve on a time scale, we cannot control them directly. So
we revene the task, and for a given triplet [A, B, C'] seek: a) the stress state within
the plan: of the fastest rate of instability growth which can actually bifurcate; and
b) the pane orientation for a given state of stress which satisfies this bifurcation
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scenario. For the first part we get from (7.2), upon using (J = 1/4), the relation

By \7@ [ g i 2 [o+1 Cg (Bl)
73 — = | = = = y o= —\|\==1,
=) Cq cp (3@ = ¢ i3 w+2 yo \Cy/°

which, together with the condition |{| < 1/3, leads to the following lower and
and upper bound for the characteristic w: (-1 < w < —-2/3). Whenever the
current value of w is within the bounds of the interval w € [-1,-2/3], the
value of the stress parameter ¢ will be real, and will remain within the bounds
of ¢ € [-1/3,1/3]. Consequently, we may anticipate that in the plane of fastest
rate of instability growth there exist physically admissible stress states which can
actually bifurcate according to this scenario. The interval of admissibility for the
magnitude of the parameter @ helps us to estimate the lower and upper bounds
for the allowable values of the material parameters:

o B 2\o
(7.4) 228
co & 3¢y
which in a transformed form, upon using our representative form of constitutive
relation together with particular choice of temperature function, yields

X0 2\'5{/7’.

(72) coh 3 3cgh

The last inequality shows that the bifurcation within the plane of the fastest rate
of instability growth sets in when the system is still in the strain-hardening regime.

To determine the plane orientation in which, for a given state of stress, the
system can actually bifurcate, we fix { and from (7.3) obtain

(7.6) 0= [@-9e+=)] ", 0<v<1/4

From (7.6), upon imposing the interval of admissibility for the plane inclination
parameter o € [0, 1/4], follows the lower bound of the ratio

B Yo [4—18¢2
(7.7) 2 e (4_%2 :

o

which again, specialized for the representative form of constitutive relation, yields
the upper bound estimate for the slope of the strain hardening/softening function:

oy {4 —18¢2
; ' « X0 _
(e 7=>"0h \a-9¢2
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SCENARIOZ2. B=0, C =0

Here we analyse the possibilities emerging from the case when both material
parameters B and C' vanish simultaneously. This scenario is of course precluded
for the representative form of constitutive relation with the choice of the tem-
perature function which gives 4’ = —v, thus leading to €' # 0. Nevertheless, for
the sake of completeness, we give the results of analysis in the sequel. From (7.1)
we obtain

£ (362
(7.9) Ay == (—) .

But since for this particular selection of the bifurcation pair [B = C = 0] we
acquire additional singularity in the denominator, i.e, the free coefficient in the
denominator of the dispersion relation vanishes (c; = 0), hence in addition to
Eq.(7.1) we must require a,_, = 0 to remove the resulting singularity, which
after some algebraic simplification leads to

BN ¢
7.10 30— ) S-9w5-1=0.
(50 ( ke, ) i< Y f2
Having taken advantage of the parameters ((,7), Eq.(7.10) being solved for ¢ in
the plane with 7 = 1/4, we obtain

L2 ( 3 )2+ : N e
¢ = 3ke, ke 2(1 + v) ’
(7.11)
¢y = ’[—j ¢ €[-1/3,1/3].

Of course, the value of ¢ must still reside within the range (|¢| < 1/3) to be

consistent with the starting assumption about the initial orientation of the insta-

bility plane. For ¢ = 0, which corresponds to the stress state of simple shear, it

follows that the only way in which (7.11) can be satisfied is the case of quasi-static

perturbation (p = 0). For other stress states (7.11) can be checked accordingly.
SCENARIO 3. B =0, gi =

Under this scenario we seek the critical conditions for the onset of steady
bifurcation when B = 9 £ /i = 0 within the plane of isothermal invariance of
adiabatic material instablity process. Hence, we obtain

_ 3egp (Az+ é/?f)
= 5 —
v 1+18,7‘12~(fj )]
G &k

http://rcin.org.pl
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which can be rewritten in the following form

2
Bt il Sl 2 2

1 [3ucs [A+E/T ( Jé; )2
=— |22 21+ (=) -1 =w.
180 | 2\@ C cpk
From Eg. (7.13) we can obtain the lower and the upper bound for the parameter
= in the interval |¢| < 1/3, namely w € [(1/6 — V/3/6)%,2/9]. The lower bound

is attained at Cf = 1/9, and the upper bound is at C(Z_, = 1/18. This corresponds
to:

, Sy _579r 253«
(7.14) G = +3, =5 Y™ 15640 To68"

! . iﬁ ) _ il =5 ey 757 284w
v T VT 7T Tt T 20827 2082°

Here ¥ defines the angle of bifurcation plane inclined with respect to the principal
direction of the maximum stress deviator. From the lower and the upper bound
for = we derive the inequality

2 y
1-+3 1-2v ucg [ A3+ E/T ( B\t 31-v)
: + < <
which, specialized for our representative form of constitutive relation, yields
2
1-v3 1-2v
(7.16) 1+( ; ) (=)
: , . 2 -~
" 3ucg(1 + m)(Ber - 0) o ( Ji] ) . 3(1 u)-
- 2xo? k) — (1+v)

For v = 1/2 the inequalities (7.15) - (7.16) transform into equalities. In the case of
quasi-perturbation, the second term in the middle of (7.16) drops out (3/c,k = 0)
and we are able to make an estimate of the order of the magnitude of the first term
in the middle of (7.16). It can be shown that the critical value of the temperature
6 = 6. at the onset of bifurcation scenario is quite close to the critical temperature
6. at which the temperature softening function vanishes, i.e. h(f) = 0, which
leads to the conclusion that this is a rather improbable scenario.

SCENARIO 4. C =0, t2 =0

The critical condition for the onset of steady bifurcation when ' = 9 /96 = 0
within the plane where t2 = 0, which obviously leads to the first degenerate case
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of dispersive relation, is given as

3uAy
) Be= 13 92 Ja2

Again, the scenario is precluded for particular choice of temperature function
h' = —~, which apparently leads to C # 0. Moreover, the inspection of the
free term in the denominator of the dispersion relation reveals that the term
vanishes at [B;,C = 0,t2 = 0], i.e. ¢; = 0, resulting in a singularity which can be
removed by setting a,,_, = 0, from where after some rearrangements we obtain
the supplemented form of the critical condition

~t§ ,,t%
o 1+90 = P 1+ 90
(718) A4 = B4 =

-_9~2t,21 2 ? _9~2t2 2
g (44%) v (4 ot )
a

To determine the stress state which can bifurcate within the plane t? = 0, rewrite
(7.18) in the form similar to (7.13) with 9 = 0:

2
t% _ (¢ 3 1 /3uAy =
(13 e (2 Ty § i ) 95 ( Ba 1) =

We solve it for  in terms of the characteristic parameter @ and obtain

|
(7.20) 2, = 5(§~wi,/§(4-9w)).

From Egq.(7.20) follows the lower and upper bound of w which still renders
I¢] < 1/3. We do not go into details of derivation here, let it suffice to say that
the interval of admissibility for the parameter w is given by @ € [1/9,4/9], from
where the upper and lower bounds for the ratio of the critical values of material
parameters A4 and By are readily obtained

By (1+u)
=y

For v = 1/2 the former inequality reduces to equality: B4 = 3uA4. For a repre-
sentative form of constitutive relation (7.21) yields

(7.21) 2u(l+v) > >

(1+v)g

g ’
: —21L = < < -
(7.22) 2u(1 +u)§ <g < ,u(l =
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which defines a narrow zone of negative slope in the ¢ = ¢(2) curve which
is almost vertical. Consequently, the bifurcation scenario leads to the critical
condition with regard to the strain softening function which is very restraining.

SCENARIOS. B=0, C =0, ¢ =0

A very restrictive scenario from which we cannot expect much. Indeed, the
solution of (7.1) upon using [B = 0,C = 0, = 0] yields As = 0, and the
critical bifurcation triplet [As = Bs = (s = 0] generates additional singularity
of order 2 in the denominator of the dispersion relation where the last two
coefficients vanish, ¢; = ¢, = 0. Hence, in addition to (7.1), we must require
ay,_, = a,_, =0, to remove the resulting singularity. A thorough inspection of
the algebraic structure of both coefficients shows that in general the coefficients
cannot vanish. Hence, the bifurcation under this scenario is precluded.

SCENARIO6. B=0, C =0, gt =

Here the solution of (7.1) leads to the bifurcation triplet [A¢ = — £ /7, 0,0]
which apparently cannot be satisfied for the representative form of constitutive
relation (2.11), with the additional singularity in the denominator due to ¢; = 0.
The supplementary condition a,,_, = 0 leads to the constraint

(% e
(7.23) 1+ 1802 — ( ) = (.

G- ek
In the spirit of previous derivation, we rewrite (7.23), using the relation between
the plane orientation parameter v and the stress state ¢ which are now constrained
by g5 = 0, in the following form:

\ 2 - 2
¢ _(¢c_1[2 1 [/ 8\
: b [Sg2/2-32) = L) ==
72 = (2¢2 3 ‘) 1817[((-,,,/;) 1}

Equation (7.24) has a similar structure as (7.13), with the value of the character-
istic parameter w which is obviously different. Hence, we may use the interval of
admissibility of the characteristic parameter @ € [(1/6 —v/3/6)%,2/9] derived un-
der the scenario 3, from where we obtain, by using the same reasoning as before,
the following inequality:

13\ fl=2u) B 31— )
(7.25) \JH( 2 ) (1+2V)5H5 A+
The former inequality may prove to be useful in getting the estimate for the lower
and upper bound of the wave number which still satisfies the bifurcation criteria
imposed by this scenario. In the case of quasi-static perturbation (7.32) cannot
be satisfied and the steady bifurcation is precluded. Finally, in the case of elastic
incompressibility the former inequality degenerates into equality 5 = ¢, k.

http://rcin.org.pl
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7.2. Hopf bifurcation (Re[w] = 0, Im[w # 0])

The theoretical background and the necessary conditions for the onset of Hopf
bifurcation were elaborated in Sec.S. In general, however, the expressions which
define the critical conditions for the onset of HB can be quite complicated. We
will try to get some insight into the stability behaviour of the system for the two
degenerate cases of the dispersion relation. The crucial part of the dispersion
relation that governs the stability behaviour of the system for the first degenerate
case with (2 = 0) reduces to

(7.26) Dg, = (LZ +qo+q1 + ot ) lw=is= 0.

In the expanded form (7.26) yields the third and fifth order polynomials in w
depending on the type of perturbation, quasi-static or dynamic, respectively

]
7.27 Dp = - apwhN-k, (N =3,5), d=w(f+w cow2+r1w+(’2 ;
ood
k=0

In the expression above, the coefficients ¢q, ¢y, ¢2 remain the same as in the general
case of dispersion relation, cf. (4.17). The coefficients a;. are given in Tables 3
and 4 in the Appendix. The Hopf criteria thus reduce to

H3 = ayay — agaz = 0, st >0,
(7.28) s = ajazazag + agayazas + 2apayagas — (lgltg — (I%(li
—(lg(l%(m — (L](I%HS, g~ 35

A derivation stands for ¢ = 0, i.e., for the first degenerate case of the dispersion
relation: classes 7, 8, 9 and subclass A as defined in Table 7. In the case of simple
shear we check the possibilities emerging from the second degenerate case of the
dispersion relation defined by D(t2 = 0) = 0. The equation yields

=0.

(7.29) Dp, = (12 + g9 + gt ) o

In the expanded form (7.29) yields the second and the fourth order polynomials
on w for quasi-static or dynamic perturbation, respectively:

1 N o ‘
(7.30)  Dg, = P Z g’ R, (N =2,4), d = (B+w)(cow? + crw+¢a).
| 2

Here again, the coefficients ¢, ¢j, ¢ remain the same as before, and the coeffi-
cients a are given in Tables 5 and 6 in the Appendix. The corresponding Hopf
criteria are

(7.31) Hy=a1 =0, Hy = ayagay — (1011;23 — u%m =0, s2 > 0.

http://rcin.org.pl
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From the algebraic structure of the coefficients a; is evident that /y can be
written as a polynomial in material parameters (A, B,C):

K L M
HN 3 Z Z Z X}\'LMAI\’BLCM =0, (N = 2733455)’

(7.32) [T s TURY
(K=N-1, L=K-K, M=L-L).

The last expression can be considered as an interaction formula between the ma-

terial parameters A, B and C. If Hy = 0 holds for a certain triplet of [A, Bx, Cy]

providing that 52(Ah,Bh,Ch) > 0, then we may anticipate the onset of Hopf

bifurcation.

In general, however, the expression for /3 and /s can be quite complicated.
Even if we specialize the analysis to the specific type of stress state like uniaxial
or simple shear, due to the algebraic complexity of the coefficients it is difficult
to establish the analytical criteria for the onset of HB following from the condi-
tion (7.32). One solution to this problem may be a parametric study of different
types of constitutive relations, where one would try to track down numerically
whether the criterion can be satisfied for various stress and deformation histories
of the body strained beyond the limit point of reversible deformation. We will
try to get some insight into a qualitative behaviour of the criterion in the next
section, where by neglecting the effects of elasticity, we make the transition to a
rigid-viscoplastic constitutive behaviour. Consequently, we obtain the dispersion
relation with coefficients which are much simpler and more tractable for analyt-
ical considerations. In what follows, we first examine the critical conditions for
the onset of HB in the case of uniaxial tension and quasi-static perturbation. For
the first degenerate case of dispersion relation with t2 = 0, the stress state of
uniaxial tension yields the Hopf criterion of the form

(7.33) Hy=X'-A-X+X" b+ Xo0=0,

: X200 X110/2 X101/2 ,
X'=[A,B,C], A=|Xuo/2 Xo Xon/2|, b"=[Xi00 Xor0. Xoor]
X101/2 Xou/2  Xoo2
The expression above defines a quadratic surface in material parameters [A, B, C]
considered as independent variables. From (7.33) we can express 1 in terms of
A and C and solve the resulting quadratic equation, which in turn yields the
corresponding pair of solutions of the form B = B(A,C),

5&;02082 + ;‘?mOB + j‘;()()() = (),
(7.34) Xoo = Xo20,  Xow = Xowo + X104 + XonC,
Xooo = Xogoo + X1004 + Xo01C + ‘-'\'2()0/12 + X101AC + X002C?,
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X 4X 020X
(7.35) By, = — =20 (1 $ \Jl— M) .

2 X020 X 010

In Eq. (7.35) the first solution gives a negative value of the square of the Hopf
frequency, i.e., s2(By) < 0. Hence, HB is precluded and we focus on the solution

1+ 7
1 ( V) A - EC',
1 cp

— UV
X £ It (I + u)
cg 1—v
From last inequality it follows that the value of material parameter C' must be
positive in order to have s> > 0. For our representative form of constitutive

relation, cf. (2.11), (6.33), the Hopf frequency and the corresponding critical
value of the slope in the strain hardening/softening function are given by

(7.36) B,

(7.37) $%(B2)

C=xfc%,(]+u
1-vw

)C’>O.

Cp

o % \7 1 + v
(7.38) &= CT\/m('p[l = 7(0 - 6o)] (1 N “),
( = 2T (1) 8]
(7.3)) N [C()[l — (8 = 6p)] l—-v/) T 9(%)

Theoretically, ¢} can take positive (strain hardening) and negative (strain soft-
ening) values, which depends on the current values of @ and ¢ at the onset of
HB:

. 1-v\ 72
>0 if szcr‘\’( V)U—

1+v/ cop’ 1
(7.40) g5 O = — + 6.
0 if p<ta—yx(lZ) T !
< 1 < Uer— X (1 T l/> ?jt 3

The second degenerate case of dispersion relation, when the perturbation is
whithout the influence of inertia and specialized for the stress state of simple
shear, leads to the result s = 0, which clearly excludes the possibility of HB. If
on the other hand, the inertia is accounted for, then the condition tfl = 0 brings
additional simplification, namely the order of polynomials in material parameters
A and B reduce by one, and we obtain the quadratic equation for the parameter
B of the same form as in (7.34), but with different coefficients Xy, X109 and
Xooo- We discard the solution which gives the negative value of the square of the
Hopf frequency, i.e., s>(1;) =< 0.. The other solution yields

cok? T 3xEp
7.41 By =3uA1+ - = = + —C.
(7.41) 1 = 3u ( 3.\‘?[)0) e Gy s(By) CTL\/l + i

http://rcin.org.pl
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The RH criterion («, > 0) specialized to the stress state of simple shear yields
(7.42) B+ \5C/[eq < 0.

But from (7.41) we obtain

- T ]\.2
(7.43) B+Xc =3y (1 3 i—) A <0,
Cqg 3x € pC

which can be satisfied without violating s*> > 0 only if

3 k2
(7.44) (A<0, C>0) or (,-4>0, —3”’ L<C<O).
AP <€

Hence, the HB may set in only when the values of material parameters A and €'
are of the opposite sign. In lieu of original relation £=% (7,7, ), by employing
its inverse & = o(F,,0), we can see that (7.44) for A = 9 ¢ /07 < 0 and
C = 9% /90 > 0 requires do/dz< 0 and d5/00 > 0. Hence, the material must
be temperature-hardening and strain-rate softening. On the other hand, if A > 0
and C' < 0, then 9&/36 > 0 still requires temperature hardening, and 97/9 > 0
leads to strain-rate hardening as well. This clearly eliminates the possibility of HB
not just for our representative form of constitutive relation, but for all materials
which do not allow temperature hardening. Another intricacy related to (7.41)
which merits additional comment can be observed by noting that for C' > 0, the
second relation defined in (7.41) yields the speed of instability wave front which
is greater than that of the shear wave. Even in the case when the material is
strain-rate hardening, it also has to be in the temperature hardening regime. In
a physical sense, the former restrictions may lead to quite a relaxed constitutive
behaviour.

8. Transition to the rigid-viscoplastic limit

A constitutive equation representing an elastic-viscoplastic material describes
a rather general class of material behaviour. This comprehensive law permits to
obtain or recover, with the transition to appropriate limit, various other constitu-
tive models. For example, neglecting the elastic portion of the strain rate tensor
in the limit yields a response of a rigid viscoplastic material. In this case the
dispersion relation and its coefficients simplify significantly:

1
(8.1) D(w,k) = —[((tng + aw + ay) =0, = =const = -1,
d
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o\ 2
a = 3Ac (72) p/k%,  f2=7-3, g=7" -6t

s s
’ .2 .3
ayp = AcgT 2+ 3¢p € € + 3\pCa’E [k?,
22 9 =25 N2/, e
ay = XCGE g5 —3BcgE t, d=w(3a 5) (C\5+Ac(;w).
Since = is constant throughout the loading process, the direction of instability

plane remains fixed relative to its initial position. For various stress states it can
be simply recovered from the Table 7 by using = = —1.

8.1. Steady bifurcation (divergence point, w = 0)

From the conditions a; = a3 = 0 which lead to a linear system of equations
for two unknowns B and C' expressed in terms of the material parameter A, upon
solving the resulting set of equations, we obtain

(8.2) B. = _L’”z 1+ 5{3/1) O o= C()tgkz (1 | Efszfl)
L 3/36 f 3 ? t2 ( \[,32 % 3 % t%

S

The result corresponds to the case of dynamic perturbation, where inertia is
retained in the leading coefficients defined in (8.1). When the peturbation is
quasi-static, equations transform accordingly, and we obtain two independent
solutions

n|e

et \og?
. A.= — S [}‘__ = D5 "‘
(8.3) ¥ : = ih

2N

(2 &

B

where the last expression which defines the relationship between the material
parameters 3 and C also holds true for the critical values of parameters defined in
(8.2). Since the critical value of the material parameter A, according to Eq. (8.3),
is always negative in the viscoplastic domain, we may conclude that the steady
bifurcation is precluded for the representative form of constitutive relation. On
the other hand, the solutions in (8.2) for our representative form of constitutive
relation yield

ok? ! 272} 2
(8.4) g. = Bt S ('"’ + fSZ) . = SRR (m + ‘f‘i) .
3paT £ 3t (@ ?)2 3t:

from where it follows, having considered the particular form of temperature soft-
ening function (6.33), that the steady bifurcation is precluded for this particular
choice of temperature function, because the second equation in (8.4) leads to the
contradiction; the right-hand side of the expression is in general positive, mean-
while the left-hand side takes on a negative value, i.e. k' = —v, representing the
constant negative slope in the temperature softening function h = h(0).

http://rcin.org.pl
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8.2. Hopf bifurcation (Re[w] = 0, Im[w # 0])
The Hopf criterion together with its intrinsic frequency of instability reduces to
. oy o2
65 Hy = AcgT e 2+ 3CX(TEV Ep/k* +3¢4 E 8 =0,
’ o2 .
Cx& og>—3Bcye 2
3Acy(T £)2p/ k2

azfap =

o
I

For the first degenerate case of dispersion relation corresponding to 2 = 0, the
Hopf bifurcation is not possible, since from (8.5) we get s2(Ax, By, Ch) < 0.
The second degenerate case of dispersion relation where 2 = 2, £ = 0, and
t> =n - 7' . 7' - nretains the algebraic structure of the criteria given above, with
t2 replaced by t*. For a general case from (8.5) follows

tZkZ f2 =
Ch= -2 (1 + szifl),
3xpal € 3z

K2 | B gk (12 E
2= 2 T+g5—_2 =t =0
poc |/ 3p & tz - as

(8.6)

o
|

The possibility of HB here depends on the particular choice of constitutive func-
tions. In general, the conditions for the onset of HB will be satisfied when

) |

(8.8) A =% /m7, =—%g¢'/myg, = — ¢ h'/mbh,

Q| I e

2k2 f2
(8.7) A>0, B<-EBT (3—21 +
3pT &

For our representative form of constitutive law we have

where prime indicates the derivative with respect to the argument, i.e., ¢’ = dg/de
and i’ = dh/df. After some algebra one obtains

] t2k2 fZ tlkz Zkz f2
(8.9) E = W% (m +==1, =2 |4 - 8 _g2 =5 tm]|>0.
xp(@ €)? 36 ad 3po e\

The requirement s> > 0 leads to the lower bound for the slope in the strain
softening function giving

21.2 2
8.k f;
3p7 € s
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The particular choice of the temperature function, as defined in (6.33) together
with A’ = —~, leads to the contradiction of the first relation in (8.9), since the
right-hand side of the expression is always positive. This clearly eliminates the
possibility of HB for this particular choice of the function h = h(f). For all
other types of constitutive relation the criteria (8.6) and (8.7) should be checked
accordingly.

9. Transition to the rate-independent limit

The main objective of this section is to analyze how the results obtained from
the rate-dependent theory compare to the results from the rate-independent the-
ory. The results from the rate-dependent theory are specialized by taking appro-
priate limits to recover the rate-independent material behaviour. By letting — 0
as w — 0 in the expressions for the coeflicients of the dispersion relation given
in Tables 1 and 2, after some simplifications we arrive at

1 9 (7> 1
T S . il (AN 21| =
Gh  ImWD) = G [” = (3 N B~ z/)t”)] o

where 17 is expressed as a linear combination of the stress hardening/softening
and the thermal hardening/softening moduli, as a result of the following two limits

< ef .. L )T
H=h+n »<lim (~i> .
co w—0 A Jz
(9.2) 5t
I dﬁ‘lim(g)~‘)i 7 = 5(5,0)
18 B w—0 e - 00’ - %% '
From Eq.(9.1) we find that
(9.3) 3—2(1+£) ey @2-9g
j 3 3u 20—-v) * 7

which relates to the original form of the dispersion relation by identifying
2 (3u+ H 1

(94) d() =i ? ( 3“ ) ) (11 =1, ({2 = m ,

(9.5) = =-1/Q1-v)), mi=Q1+v)/3, [*=2-v)/3.

Now we are able to use the expressions from the original analysis once again.
For v = 1/2 we have m? = 1/2, 1> = 1/2 and the same results are obtained as in
the rate-dependent case. In general however, we do not recover results from the
rate-dependent theory because of the Egs. (9.5). Here the direction of the normal
vector n depends on ¢(!) Only in two special cases results comply with the ones
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from the rate-dependent theory: in the case when v = 1/2 (elastic incompress-
ibility), and in the case of simple shear where m? = [> = 1/2 helds for both.
At first it may seem strange that the result for the orientation of the localization
plane does not depend on temperature parameters, neither has the thermal soft-
ening any influence on the direction of localization plane. The result is essentially
the same as in the case of isothermal deformation. The reason for this is that
in constitutive equations the volumetric strains due to temperature changes have
not been accounted for, and temperature in the energy balance equation remains
coupled only through the deviatoric part of viscoplastic dissipation function. The
same result probably applies for all plain J; flow theories.

The critical value of hardening modulus can be determined from (9.3) and is
defined as

H 3/, 1 2)
. S (e —_ ) .
(2:0) 3u 72 ( 2(1 - u)t”

Equations (9.5) and (9.6) define the critical orientations of the localization plane
and the corresponding critical value of combined hardening modulus in the lo-
calization problem of elastic-thermoplastic solid based on the .J; flow theory of
plasticity. In the case of uniaxial tension, the critical value of /I corresponding to
the critical orientation of the localized plane amounts to

(1l + v)

T
(9.7) her + \?g—hﬁcr = 2

whereas in the case of simple shear one obtains

9.8) her + X~ hger = 0.
Cg

These results agree with those reported by Duszexk and PErzyNa [4]. By taking
the appropriate limits which define strain and temperature hardening/softening
moduli, the results for the rate-independent material are readily obtained as a
by-product of the linear stability analysis of a general rate-dependent case. A
comparison of the results obtained from the rate-independent bifurcation anal-
ysis and the perturbation analysis for the rate-dependent materials leads to the
conclusion that there is a difference in the initial inclination of the instability plane
in the limit as the growth rate tends to zero, w — 0. The perturbation analysis
in the rate-dependent case defines the initial inclination of the instability plane
as an intrinsic property of the stress state independent of a material parameter
of any kind. In the rate-independent limit the normal of the plane depends on
the value of Poisson’s ratio v, Eqs. (9.5). This may lead to a notable discrepancy
in the initial orientation of the instability plane with the exception of the stress
state of simple shear, and in the case of elastic incompressibility (» = 1/2) where
the results coincide.
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10. Concluding remarks

The analysis of the influence of thermomechanical coupling under adiabatic
conditions on two qualitatively different types of material instability based on the
linear stability theory has been presented. The analytical structure of the highly
nonlinear governing equations allows for instability responses of a very diversified
nature. Physical restrictions imposed on the behaviour of material parameters
narrow the family of possible instabilities predicted by the theoretical analysis.

The algebraic structure of the Routh - Hurwitz criterion (a, > 0) reveals the
existence of the planes of isothermal invariance in an adiabatic material insta-
bility process. Within these planes the influence of temperature under adiabatic
conditions vanishes completely, and the RHC transforms to a criterion which
is similar to the RH criterion in the isothermal case. The spatial orientation of
these planes differs from the plane orientation with the fastest rate of instability
growth, hence the material instability scenarios within these planes do not lead
to the most catastrophic instability mechanism. Nevertheless, they are interesting
from a theoretical point of view.

Elasticity enters the stability equations in a way which is not of a vital impor-
tance for the onset of instability. It does not alter the stability properties of the
system. The onset of instability depends predominantly on interaction among the
critical values of certain material parameters emerging from the viscoplastic part
of the constitutive law. This is precisely what we should expect from the start,
since the instability behaviour of the system has been constrained to the viscoplas-
tic part of constitutive relation by choosing the incrementally linear hypoelastic
law for the elastic part of the rate of deformation tensor. However, the method
presented here is quite general, and allows one to incorporate nonlinear effects
into the reversible part of constitutive relation without much difficulty. So if one
is interested in studying various interaction phenomena between reversible and
irreversible parts of the constitutive relation, and their influence on the stability
behaviour of the system, then these effects can be readily incorporated into the
constitutive relations without significantly altering the method of derivation dis-
played in the paper. Of course, the material and control parameters must then be
redefined accordingly. Even in the case when elasticity retains its standard role
representing an incrementally linear and reversible portion of the rate of defor-
mation tensor, which is usually described in terms of Hooke’s law, even though
the static exchange of stability is not influenced by effects of the elastic portion of
the constitutive law, which clearly follows from the analysis, that may not be the
case when the dynamic transition takes place. The discussion regarding the onset
of bifurcation becomes much easier when elasticity is neglected, and the material
can be considered as rigid-viscoplastic. A model of this type can serve quite well
in establishing the qualitative predictions arising from bifurcation criteria. For the
sake of comparison, the critical conditions describing the onset of HB for two
particular stress states, uniaxial and simple shear, were performed for the insta-
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bility plane orientations corresponding to t? = 0, i.e. for the first degenerate case
of the dispersion relation, and 2 = 0, i.e. for the second degenerate case of the
dispersion relation. In the case of a rigid viscoplastic material, one can explore
possibilities arising from other instability plane orientations, since in this case the
value of the characteristic parameter = remains fixed (= = —1), and we are not
confined to the plane orientations corresponding to both degenerate cases of the
dispersion relation. Since the inclusion of elasticity causes a substantial increase
in algebraic complexity of the leading expressions, especially in the characteris-
tic coefficients of the stability equation, it is not possible to obtain an explicit
analytical expression for the criterion describing the onset of dynamic instability.
Hence, we are not able to isolate the critical point and the corresponding values
of the material parameters in explicit form, where the influence of elasticity and
other parameters on the onset of dynamic instability could be inferred directly.
Nevertheless, it is possible to formulate the problem in an implicit manner which
would enable the detection of the critical points. But this approach comes with
one additional difficulty: the complete numerical procedure requires an extensive
parametric study. If the representative data are collected, for example, for the
constitutive equations most widely used in practical analyses, it is possible to ex-
plore the intricacies of each constitutive law individually. Hence, the nature of
singularities corresponding to the class of dynamic instabilities under the more
general setting still remains to be explored.

Finally, the elastic part of constitutive relation induces a rotation of the plane
of the fastest incipient rate of instability growth relative to the principal directions
of stress deviators. By neglecting elasticity, this property vanishes completely, and
the plane orientation is always fixed relative to the directions of the principal
stress deviators throughout the loading process.

Appendix

Table 1. Coefficients of the dispersion relation: dynamic perturbation.

ap Cgp254/k4,
ay = 6cg € pp’a [k* + 3Acgup®a? k* = Begp¥at/kt — Cxp*o [k,

o2 .
ay = copa* {9 Eplp+ (N + 3,032;;2] JkY + 18Ac¢y € p2p%a Jk*

—6Bcy T pp*ad JkY = 3C & yuptat/kL,

. .2
a3z = ¢y € upo [(6,\ + 11;1)52 + 9/1t2] /Arz + 3Acgupa* {9 £
o2
+(\ + 3p)7k? — 3/112.’;2] JkY = Begpa? [9 Eplp+ (A + 3/¢)E2k2] /K

.2
+C\pa° [9 T ulp— (A + 3;1)52k2] /K4,
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2 o2
ag = cop |3u(3A + Z,u)pﬁ2 g +27¢ lizptz + (A -+ 2,“)54’”'2] /kz
+34¢0 € pp7 [(6X + 117" = 9pt?) /12

~Beg £ pup [(6) + 11p)0% + 9ut?] /12

. .2
—C & xupo? [(3,\ + 2u)ak? = 27 2p + 18;zt2k2] 154

as = ¢ £ p27 [(3N + 2007 + 9(A + 22 + 9;:t,21]
«2
+3 Acp*o? [3;1(3/\ +2u)p €

+(A + 2}")32’02 —3(A + 2;1.)t§k2 = 3;Lt721k2} /kz
w2 .2
—Begp [3;L(3/\ +2u)pot E 427E pPpl® + (M + 2”)5%2] Ik

2 i3
—Cxuo [54 € Pt = 9u(A + 31)pa” €+ (A + 2")3%2] I,

.2 .
ag = 9co & 13N + 20 + 3Aco € P3N + 2u)7(F - 3t3)
—Beg € u*T [(3/\ +21)5% + 9\ + 2% + 9,ut,zl]

. o2
+C & xula? [9,;(3,\ +20)p E +4uTckt — 18(N + 2u)t2k? — 18;1[31\:2] k2,

.2 .2
a7 =—9Bco £ 12BN + 208 + 3C F x> (3N + )7 (T — 6t2).

Table 2. Coefficients of the dispersion relation: quasi-static perturbation.

ag = cgpu(A + 2;1)'54,
ay = cp £ pu*a [(3/\ + 2p)7% + 9(\ + 2p)t + 9;ttﬂ — Begp(h + 2u)7?
+3 40202 (A + 2)7 — 3(A + 20)€ = 3] — Cxpu(r + 2p)7°,

.2 .
=9cg & p3BA + 20) + 3Acs £ 1P (3N + 2p)a(a? — 362)
—Bey %5 [(3/\ +20)7 + 9\ + 2u)t% + 9,ut3l]

az
+20 € x125° [2/152 — 9\ + 2u) — 9;11,21] )
— _QR., 22,3 2 &5, 8 e B 8
a3 = —9Bcg T o (BN + 2p)t; +3C T xp” (BA + 2p)a (- — 6t5).
£ )€ JE
Legend: A=(396’B=((‘)§’C=0—;’t2 =m=7 s v E = m- 7 -0
2=02-¢.
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Table 3. Coefficients of the dispersion relation: first degenerate case — dynamic
perturbation.

ap = cop/k?,
ay = 3cg € pp/ak® + 3Acoup/k? — Begp/k* — Cxpa/k?,
az = cg(A + 2p) + 9Acy £ uzp/ﬁkz — 3By ,up/ﬁkz,
a3 = cg € p [(3A + 2u)/7 + 9;1,12/33] + 3Acqp [()\ + 2p) — 3,ut2/‘a”2}
.2

—Beg(A + 2u) + Cx [9 £ ulp/ak? — (A + 2;:.)5} ,

ag = 3Acy & 23\ + 21)/T — Beg € p [(3A + 21)/7 + 9/tt2/ﬁ3]
+2C € xp2(2 — 9% /52,
.2

as = 3C T ypu*(3X + 2u) /7.

Table 4. Coefficients of the dispersion relation: first degenerate case — quasi-static

perturbation.
ag = cg(M + 2p),
ay =cgE p [(3/\ + 24)/7 + 9,ut2/ﬁ3] + 3Aeqpu [(/\ + 2u) — 3;112/52]
—Beg(A + 2u) — Cx(X + 2u)7,
ay = 3Ace & (3N + 2)/7 - Beg & 1 [N+ 200)/7 + 9?7
+2C 7 it (2 - 9% /7°),

o2
a3 = 3C & xpu*(3r + 2u) /7.

Table 5. Coefficients of the dispersion relation: second degenerate case — dynamic

perturbation,

ag = cop/k?,

ay = 3cq € pup/Th? + 3Acoup/k? — Begp/k* — Cxpa/k?,

ay = cgpr + 9Acy T ,uzp/ﬁkz —3DBe¢y ?;zp/ﬁ/;z,

a3 = 9¢g & p2 /5> + 3Acop®(1 =36 /3%) — Begp + Cxpu(9 & pp|ak?* — @),
as = —9Bcy € 1227 + 3C T (1 - 612/77).
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Table 6. Coefficients of the dispersion relation: second degenerale case — quasi-static
perturbaton.
ag = g,
ay = 9cg £ 12 )7 + 3Acop*(1 = 33/3%) — Begp — Cx o,
ay = —9Bey £y /3 + 3C (1 - 66 /7).

dE 0e e
Legend: A= —,B=—,C=—.8=n-7 -7 -n,=(n 7. 0
& g5 T oF a0 = )
Table 7. Stationary points of the dispersion relation D(w,k) on the unit sphere |n| = 1.
case | stress n A
1 Ty = T3 n% = {2, 71% + n% = m? A= T{Z/Z
2 |nyp=m n3 = €2, n? + ni = m? o= T:;_Z/Z
5 TI=T) 'n% = (2 n% + n% = m?2 X 7'3’2/2
4A |y =13 n? =0, n% +n5 = A E 'JTT{2/4
aen 0 | ') =T /
=1 =27 -7+ 275 |
4B |m#r|n2=0, nd=1"3 pl=_—1 2| X=_7ir}
2 3 1 ’ 2 ’ 3 2'3
2(ry—13) 2(ry —3)
5A | 3= n2=0, n2+ni=1 B = 27752/4
Tl / i /
2 ..:7'2;27'3 2 —:T2+2T1 - ')
5B |3 # 7 =0, at==—2 "3 gf=_—_—2 "l }=_7lr
1 2 ’ 1 ’ 3 ! 13
2(r] — 13) 2(ry — m3)
6A |1 =1, ny=0, ni+ni=1 X = Z5752 /4
==l / e I | ’
ETy — 27 —Zry+ 27
6B [ # 1y |nj= e i Y e i W (O L
1 2 3 ’ 1 s 2 1°2
2(r{ = 73) 2(r] = 13)
7 3 # 0 n?=0, n3=0, ni=1 A= ZXT;Z
8 | m#0 n2=0, n3=1 =0 X = Zzry?
9 | #0 nt=1, n3=0, n=0 X = 7257

Legend: (2 = 2 - £)/6, m*> = (4+ 2)/6, Zx =[1+2/Z], X = [ + 22/ =].
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Kinetic theory and thermocapillarity equations

K. PIECHOR (WARSZAWA)

IT 1s sHOWN that the thermocapillarity equations of liquid-vapour systems can be deduced from
the kinctic Enskog-Vlasov equation under the following assumptions: i) the mean free path of
hard-sphere molecules and the range of the attractive forces are much shorter than the charac-
teristic macroscopic length; ii) the mean kinetic energy of chaotic motion of molecules is much
greater than the potential energy of attractive forces. It turns out that it is necessary to distinguish
between kinetic and equilibrium thermodynamics temperatures. Explicit formulae for the internal
energy and stress tensor are obtained. Also, orders of magnitude of various effects considered in
the thermocapillary theory of liquid-vapour systems are given and their use is discussed.

1. Introduction

THERE ARE TWO approaches to liquid-vapour systems. The first one assumes that
the liquid phase and the vapour one are separated by a sharp interface endowed
with energy and entropy [1].

According to the second concept, the liquid and the vapour are separated by
a thin layer, but of finite thickness. Within this layer the flow parameters vary
violently but smoothly. The great step in this direction was made by J.D. VAN DER
WaALS [2], who proposed one pressure formula suitable both for the liquid and
gaseous state of a fluid. His formula reads

kné 2

—an
1—bn ’

(1.1) p=

where p is the pressure, k is the Boltzmann constant, » is the number density,
6 is the temperature, and «, b are positive constants characterizing the fluid.

Since then many more accurate and, at the same time, more or even very
complicated pressure formulae have been proposed. Some of them can be found
in [3]. The simplest formulae generalizing that of van der Waals can be written
in the form

(1.2) p = knf[1 + bn x(n)] — an®6~ "% (n),

where y(n) and ¢'(n) are given, positive functions of the density only; «a, @, b are
positive constants.

The next step was made by J.D. KORTEWEG [4], who contributed to the dynam-
ics of liquid-vapour systems by modifying the Cauchy stress tensor. To model the
spatial interaction effects in the transition zone he introduced the first and second
order derivatives of the density. However, as shown by DUNN and SErRrIN [5], the
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Korteweg equations are incompatible with the continuum theory of thermody-
namics.

The modern derivation of the capillarity equations can be found in [5, 6] and
[7-9].In [5] a review of earlier papers on the topic is given as well. All of them are
based on the phenomenological continuum thermomechanics. However, within
this framework one cannot obtain the form of the energy function, nor one can
say anything about the order of magnitude of the capillarity terms. To answer
such questions an augmented physical description is necessary.

These equations were applied to study film boiling phenomena [8, 10], and
shock waves in van der Waals type of media [11-19].

In this paper we deduce the capillarity equations from kinetic theory under
a series of assumptions concerning orders of magnitude of some dimensionless
parameters. In principle, such assumptions are not demanded by the phenomeno-
logical approach.

This resembles the situation very well known from the theory of ideal gases,
where the Navier - Stokes equations are derived from the Boltzmann equation
under the assumption that within the flow there are no zones of great gradients,
such as shock waves. Consequently, the shock wave profile cannot be described
correctly by the continuum gasdynamics [20]. In the case of liquid-vapour systems
we have not only shock waves but also very thin interfacial zones where the
gradients of many flow parameters are even greater. That is why we think that
in the case of liquid-vapour systems, a kinetic theory approach should be much
more necessary than in the case of ideal gases.

The most fundamental problem we face is the choice of the kinetic equation.
It should be suited for liquid-vapour systems and at the same time it should be
simple enough to be mathematically tractable. The kinetic equation satisfying our
demands is the Enskog - Vlasov equation [24 -27]. We have, however, to admit
that this equation is far from being satisfactory from a theoretical physicist’s, point
of view. This is mainly due to the fact that it contains two functions bearing the
sense of correlation functions which are chosen to fit, in the equilibrium case, the
pressure formula or the transport coefficients known from other theories. Hence,
as a matter of fact, the Enskog - Vlasov equation, similarly to the Enskog equation
itself, is quasikinetic. Therefore it is deprived of profoundness appurtenant to
other statistical theories of liquid-vapour systems. Unfortunately such theories
produce equations that are useless for practice.

2. The Enskog- Vlasov equation

We assume that the intermolecular potential is a sum of a hard-sphere core
of diameter ¢ and an attractive part, i.e.

00 for r <o,
2.1 ¢ =
2d) ’ { o(r)y for r>a,
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where r is the distance between the centres of molecules.
Consequently, the collisional part of the kinetic equation is a sum of the
standard ([24, 25]) or revised ([26, 27]) Enskog operator and a mean-field term.
The Enskog-Vlasov equation written in a dimensionless form reads

Of L, 0f

(22) ot tax, v

F; + E.(f),

where f(x,v,t) is the (dimensionless) one-particle distribution function; x =
(z1, 72, z3) is the position, v = (vy,v2,v3) is the molecular velocity, and ¢ is
the time.

When reducing x, v, and ¢ to the nondimensional form we referred them in
the usual way to a macroscopic length-scale L, thermal speed ¢, and we used L/c
as the time unit. The distribution function f was scaled by referring it to ngc=3
where ng is the characteristic number density.

In (2.2), and through the rest of this paper, the summation is performed over
the same indices.

Let & be the characteristic value of the attractive potential &, and let ro be
its range.

The self-consistent force of attraction is of the form

. .[)0(?2070) 1 /
2.3 F o=
(2.3) P

?

%o (M) Gy 0y,

where

= 10
(2.4) T= I

@ is the derivative of ¢, n(x, ) is the number density

(2.5) n(x,t) = /f(x,v,f)(lv,

and G'(x,y) = G(y,x) > 0is introduced to take into account correlations between
molecules in the regions of strong inhomogeneity.
Finally, in (2.2), E. is the revised Enskog operator

26) Eo=- / v, ] AW [k - (v. — W] [ (xx + <6K)//(x)f1(x + £6K)

k=1
—H(x,x — bk) [(x) fo(x — E(Sk)] :

where
vV =v+k[k: (v, — V)], v, =v. — k[k - (v, — V)],
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k is a unit vector bisecting the angle between the relative velocities v, — v and
v, — v/; also the common abbreviation is used: ['(x) = f(x,V/,t), etc. ¥(z) is
a function of one real variable defined by

0 for z <0,
W(x)_{r for z > 0.

The function H(x,y) = H(y,x) > 0 is the local equilibrium pair correlation
function. Finally, ¢ and é are dimensionless parameters

(2.7) 1/(ngo®L),
(2.8) 6 = ngo>.

Hence, our equation contains two indefinite functions: (¢ and H. They will be
chosen to fit the pressure formula (1.2).

Now, we assume that ¢ is a small parameter, and treat ¢ and F as quantities
of order one in . In this case we can use the formal Chapman - Enskog proce-
dure as it is described in detail in [28]. For rigorous mathematical results on the
hydrodynamical limit of the Boltzmann and Enskog equation see [21 -23].

To make calculations simpler we make two assumptions, namely

(2.9) &) =4 ("—;y Ix— y:) ,
and
(2.10) H(x,y)=h (—;X X — y|) ;

where g and h are some positive functions.
From (2.10) it follows that

(2.11) H(x,x+ cék) = h (x s %sék,sh) .

This formula suggests that we can ignore the dependence of & on |x —y|. We
want to explain that assumptions (2.9), (2.10) are not inevitable, and their only
role is to simplify the formulae.

To apply the Chapman - Enskog procedure it is enough to treat F as a given
vector field of order one as ¢ tends to zero. However, to avoid the complicated
convolution operator we assume that 7 < 1, and keep the first two nonvanishing
terms. The result is

an dgs3 2 dgz 3 on
. F; = 3An—+ -Ags
2.12)  F=a 205 011] AT [ e T 2995,
3 d_\r/3 0An *n dg3 on  0%¢3 4
+ =7 + 6- — I + s
4" 0z; dx; + 693 Ju; 60;1?[6).1.'1 o%; 3().27‘1- dw;0z; AU,
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where
D 3 &
(2.13) a= ?T % / P (y) dy,
0
and
dnn 3.,
(2.14) A= % O:zmo fysd"(y)dy,

0

are positive constants, and the functions g, are defined by

[ v e @@y
(2.15) gu(x) = °

; v > 0.

o0

/ Yy’ (y) dy

0

As it is seen from (2.12), (2.15), also the dependence of ¢ on |x —y| does not
play any important role in this approximation. Therefore, owing to (2.11) and to
the above remark, we can assume

(2.16) h=hx), g=g(x),

what makes it possible to omit the subscript 3 in g3.
The hydrodynamic, formal approximation of Eq.(2.2), as ¢ — 0, consist of:
a. The mass balance equation

dn J
! — + —(nu;) =0,
17) g =0
where n, defined by (2.5), is the number density, and u = (u, u2, u3) is the mean
velocity vector defined by

(2.18) nu = /vfrlv.
b. The momentum balance equation
J d d d
(2.19) a(‘n w;) + E(n wit; + pb;j) = sa;[)lj + ATZO—IJC‘U,

where ¢;; is Kronecker’s symbol, p is the pressure

(2.20) p =nT(1 + bnh) — an’yq,
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T is the kinetic temperature

1
(2.21) T = z/(v _w)fdv,
b is the positive constant defined by
2
(2.22) b= gmﬁ,

C;; are the components of the capillarity tensor

3 dn dn dn dg
(2.23) (i = |6bngAn + 2" 2Ag + 3]()“ ox + 6n d—u()u] bij

dn dn [ dn dg | dn Oy
o [6907,-0.—”” (a, os; T d—))l

and D;; are the components of the dissipation tensor

duy 1 /[ 0u; Ou; 1 70w\ .
o . o (e P o (D
(2.24) (da:k) B [2 ((’).z:J (‘).zg) 3\ Dy "] '
ex and 7 are the bulk and shear viscosity coeflicients, respectively. Their explicit
form can be found in [28], Sec.12.5.

c. The energy balance equation

J 3 . 1 2 J ' 3,1 1 2 -
(2:25) % [12 (—2-’1 + U )J + o [mh (2] + U ) + pu,]

Juy 0 or 0
+anzqa = 011 (/\0.‘171‘) (DUuJ) + Ar? ul() Eiggs

where ¢ is the coefficient of termal conductivity [28].
Equations (2.19), (2.22), and (2.25) involve two indefinite functions ¢ and h.
Their choice will be given in the next section.

3. Consistency with classical thermodynamics

3.1. Inviscid fluid without capillarity

Setting ¢ = 0, 7 = 0 in Egs. (2.17), (2.19), and (2.25), we deduce the following
form of the energy balance equation

(3.1) (iO_T_]+bnh 01)

(3ﬂ_ l+bnh(')n)_~0
2T Oz, n dx,)
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To be more specific, we assume that A is a function of density

(3.2) h(x) = hn(x, ).

Then we obtain

3 o 1—bnk =
(3.3) >T T - » dn = dS,
where
L3 T [1+bph(p)
(3.4) § =3 - / L dp.

ny

Here, T and »; are some constants.
Owing to (3.3) we can rewrite Eq. (3.1) in the form

(3.5) — + u,-%l = 0.

Inverting (3.4) we get

(3.6) T = Ty exp {% [.s' " / Li”/’”;(”)dp] }
)

iy

Next, we assume that

(3.7) 9(x) = g(n(x, ). T(x. 1)),

and check easily, using Eq. (3.1), that the following equation holds
J 1 J 1 P

3. 9 Ta(eo+ su?)| + -2 [nas (o0 + 2a? f)]=

(3.8) T [n (ro + 211 )} + o [nul ((0 + 211 + , 0,

where

20 [1+bpl
(3.9)  eo(n,S) = %'rl exp{E !.s' 4 / ]’—’”(")dp”
P

ny

T 2 T 1
—(1.](} {/),Tl exp [5 (S + /M(h/)} } dp,
i 14

ny 1

and

(3.10) p(n, S) = p(n,T(n,S)),
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with p(n,T) given by (2.20). Additionally, we have

(3.11) p(n,T(n,S)) = 7?-2%(30(71., 3
If we denote

(3.12) 6= 6(n,S) = 2 Saeo(n, ).

then

(3.13) 0dS = deg — %(ln.

Now, Egs. (3.5), (3.9), (3.11)—(3.13) suggest the following interpretation:
i. S is the local equilibrium entropy. Then, Eq.(3.5) says that the entropy
is constant along the streamlines. Let us notice that this equation is a rigorous

consequence of (2.17), (2.19), and (2.25) if ¢ = 0 and 7 = 0.

ii. eg(n, S) is the internal energy. Eq.(3.8) is also a rigorous consequence of
(2.17), (2.19), and (2.25). It is of the desired conservative form, contrary to (2.25)

even if wesetinite =0and 7 =0.

iii. @ defined by (3.12) is the thermodynamic temperature. Eq. (3.13) expresses

the second principle of thermodynamics.

If we perform the differentiation in (3.12) and use (3.4) to eliminate 5, we
obtain the relation between the thermodynamic temperature # and the kinetic

one T'. This relation reads

(3.14) 9-T__u/ [ /nl+bz/}1(;/) ]

ni

2 11+
xgh [Mexp (_5 [Lriic),,
P

where ¢/ is the derivative dg/d7T.
We take the following assumption

(3.15) g(n,T) = g(n) T, a >0,

where g(n) has to be found, and « is the same as in (1.2).
Inserting (3.15) into (3.14) we obtain

(3.16) =T+ ay(n)T™°,
where
T 2 n ‘
(3.17) y(n) = %a-/ﬁ(p) exp |:§a/ ]—Mdujl dp.
vV
n P
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In some cases we can solve Eq. (3.16) exactly. The simplest solutions are:
i)a=0, then T = ¢,
ii) « =1, then

o
(3.18) T = §[0+\/92—4(L’7],

where we chose this root which satisfies: 7 «x 8 as a — 0.
In the general case we can find only an asymptotic solution to Eq. (3.16). We
take the additional assumption

(3.19) a <1,

and look for solution of (3.16) in the form of a power series in a. The expansion
we find is

2 3
_ ay ay aBa+1) / ay
(3.20) T—H[l ()n+l_n(9ﬂ+1) - 3 (90+1) +....

Assumption (3.19) means that we consider high temperature flows since a is
the measure of the ratio of attractive energy to the mean kinetic energy of chaotic
motion.

Owing to (3.15) and (3.20) we get the following approximate formula for the
pressure

(3.21) p = p(n,T(n,8)) = nd[1 + bnh(n)]
1+ bnh(n)

n

—an® |G(n) +

Equating (1.2) to the first two terms of (3.21) we obtain

(3.22) h(n) = x(n),

and the integral equation for g
2 1+ bul [ 1+ buh(v
(3.23)  g(n) + R — ke l(n) /q(p) exp |:—(v/ s )] dp = ¥(n).
P

We differentiate (3.23) with respect to n, and in the obtained equation we use
again (3.23) to eliminate the integrals. As the result we get a purely differential
equation

d ng(n) _d
924) dn [l + bnh(n)] ~ dn

ni(n) .
14 bnh(n)] )
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Hence

(3:25) g(n) = (n) — granh(n) [] V(p)dp — C'] .

n
4]

where (' is an arbitrary constant.
By a direct inspection we check that (3.25) is the solution of Eq. (3.24).
From (2.20), (3.15), (3.16), (3.22) and (3.25) we obtain

an?i(n)
To(n,6)

(3.26) p(n,8) = nd[1 + bnx(n)] —

This formula coincides with (1.2) only asymptotically as « — 0 (or equivalently
as 6 — oo, orelse T' — o).
Using (3.25) in (3.17) we have

(3.27) y(n) = %a [ / a o — ('] |

]

In this way all quantities in Egs. (3.16) and (3.18), (3.20) have been completely
determined.

3.2. Inviscid fluid endowed with capillarity

The second case we consider is that when 7 > 0 and ¢ = 0 in Eqgs. (2.17),
(2.19), and (2.25). In this case a rigorous consequence of these equations is again
Eq. (3.1). Hence, assuming (3.2) we obtain Eq.(3.3) with S given by (3.4). But
eo(n, 5) as defined by (3.8) (we keep assumption (3.7)) is no longer the internal
energy. Instead, as the internal energy we will treat (see [29])

, 1 dn dn on J5
o ') = e ¥ A2 ¢ / /
(3.28) e(n,S) = eg(n,S)+ Ar » [(nq)” 9. () + (n /) dz,]

where eg(n, 9) is given by (3.8). Here g(n.5) = g(n,7(n.5)), and ¢/, and g%

denote derivatives of g(n,.5) with respect to n or, respectively, 5.
The energy balance equation (2.25) can be written in the form

0 1 0 1 J o .
(3.29) 5 [ (( + Euz)] +(').1‘¢ [nu, (( + iuz) it Hgst /} = E(',-+.»17"2Jnu5.

where
5 Je d ( de )] : (()(‘ de )
. = [0228 6+ + 2
2.20) ¥ [” on n()zk ony, " ()nt7‘ 05 <
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with

Jn ) 08
30 s TR A =4

In (3.30) and in the following formulae the quantities n, n;, S, S; are treated
as independent variables.

Next,
. de . de
: = + Sno——
(3:32) Ui=nn o Sn 25"
with
. (')n an .08 05
i = — +u; S= — +u;—.
(3.33) n u; oz, 5 T + u o7
And finally
(3.34) gi=t g% bt (( _\n+1_l)15 L
I = e ) e T q b [ '
o, In i 2 da0a,”)

We rewrite the momentum balance equation (2.19) in the form

(3.35) (nu )+ (nu u; + P;;) = Ar2S;.

Equations (2.17), (3.29), and (3.35) coincide, modulo the term &;, with the
general thermocapillarity equations as given in [7], [8]. Also the form of the
internal energy (3.27) is the same as that obtained in [29]. The only difference is
the presence of §;. A term like that does not appear in any phenomenological
approach [5-9], but it occurs in the semi-statistical theory of [29]. In order to
get rid of it and to be in agreement with [7-9], i.e. with the phenomenological
theories, Gouin used an argument which is not applicable to the present case.
We do not see any reason why this term should be eliminated. It is interesting,
however, to notice that in the van der Waals case, i.e. if ¢ = 1, §; vanishes.

3.3. General case

Now we consider the general case of Eqgs.(2.17), (2.19), and (2.25) without
assuming that 7 = 0 and/or ¢ = 0.
Under assumption (3.2) on £ the entropy equation is now

aJas a5 3 d Jd1 du;
_ — tu— = — A— 1]+ D;j—1|.
(5:39) ot ”l(‘)‘rl nT [ oz, ( (').1',') i (').I‘J
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We rewrite the momentum (2.19) and energy (2.25) balance equations in the
form

(3.37) (nu Y+ — (') —(nuu; + P;5) = D + AT2S;,

and

J 1, J . 1, N
(3.38) 3 [ (e + S )] + oz, [nu, (e + S ) + Py zLJ]

d € d arT 9
= —[. ki S| A= D L 0 — 3/ 27\
Bl’ill * nT [ (’).'l?i ( ().l’,‘l) o v ()1‘1} [”9 3AT (ng)nAn

_3AT2(71(])5._\71] + cu, 00 D + ATu;S;,

where all symbols have the same meaning as previously.

The system of equations (2.17), (3.37), and (3.38) is equivalent to (2.16), (2.19),
(2.25), and no approximations have been made.

As we can see, the right-hand side of Eq. (3.38) contains terms which are not
usually present in the energy equation with the dissipation included. To give the
traditional form to this equation we are forced to make some approximations.
First, let us notice that due to the assumption that ¢ < 1 and 7 < 1 we can
reject all terms multiplied by 72, as they are small of higher order of magnitude.
However, this is not sufficient since after doing that the heat flux term will be of

the form
S o)
T Oz; \ 0x;)’

instead of being the divergence of —Ad6/dx,. Hence, secondly, to achieve the
desired form of this term we assume that « in (3.16) is a small parameter, even if
we can solve (3.16) exactly. In this high-temperature approximation 7" = #+ O(a).
Hence, ignoring terms of order as we can rewrite the energy balance equation in
the form

d 1, J 1,
: Zn - e o ' oD
(3.39) n [n (r + Tk )] + T [nul (( + S ) + (P D yu;
d

d 2
——U;, + e—q; = AT°S;u; ,
(');I‘l‘ ' ().’l‘g . o

where
J
dx;
Ignoring terms of order as in (3.36) we write the entropy equation in the
standard form

05 d5 € J 06 du;
; o ; —— — )+ D;i—.
(3.41) ot * 81'1- né l Oz, (A()‘zr,) ! 0‘l‘f‘|

f.

(3.40) )
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In this way we have obtained equations coinciding (modulo the term S;) with
those of [7-9], where a certain analysis of them can be found.

4. Comments

We have shown that the Navier - Stokes equations with capillarity terms can
be derived, under some conditions, from the Enskog-Vlasov kinetic equation
(2.2). The basic assumptions are:

L

(4.1) e 1, nga? = 0(1) as ¢ — 0,

i.e. the hard-core collisions are the main mechanism leading to the local equili-
bration of the fluid flow.
ii.

4.2) r< 1,

i.e. the attractive forces are long-ranged. Their range is long as compared to the
molecular diameter, but short as compared to the macroscopic length-scale.
Equations (4.1) and (4.2) are the usual assumptions taken when constructing
hydrodynamic approximation to the kinetic equations.
iii. Unless the van der Waals case is concerned, we needed an additional
stronger assumption that

(4.3) a1,

i.e. the temperature is high. More precisely, the condition means that the average
kinetic energy of chaotic motion of a molecule is much higher than the attractive
potential of forces exerted on it by the surrounding molecules.

The van der Waals case, i.e. the case when g(x) = 1, is exceptional, since then
T = 6, and (4.3) is not necessary.

The three parameters ¢, 7, and « are independent. Consequently, the terms
in Egs. (3.37), and (3.39) which have ¢, a, A7? as multipliers can be of different
order of magnitude with respect to each other. The most natural assumption
would be

a < €, AT? = 0(e).

Then the dissipative and capillarity terms are of the same order of magnitude.
The phenomenological deduction of the capillarity does not use any of our
assumptions. Hence, various ordering of the three parameters can be met.
In [8-10] it was assumed that

(4.4) e < Ar?,
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This is not inconsistent with our results if we limit ourselves to Case B (inviscid
fluid endowed with capillarity).

On the other hand, in the shock wave problem an assuption opposite to (4.4)
was taken. Namely it was assumed in the isothermal case (see [11,12]) that

(4.5) e=0(1), and Arf=0().

It is important to add that in these papers it was also assumed that Ar? cannot
be too small. On the other hand, numerical calculations of [19] demanded that
the parameter should not exceed an upper bound.

Of course, an assumption like (4.4) is inconsistent with our theory. We have
to admit, however, that the necessity of using the capillarity equations in the
shock-wave problem is not obligatory. Other approaches were used as well, with-
out mentioning any capillarity (see [30], [31] and [32, 33]). Hence, the use of the
kinetic theory in problems like that seems to be even more justified than in the
cases of the Boltzmann equation. Unfortunately, to our knowledge, [34] is the
only paper where the Enskog equation without attractive forces was used to study
the shock waves.
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Jiffracted waves in the problem of electromagnetic diffraction
)y a screen residing between dissimilar media

A. CIARKOWSKI (WARSZAWA)

THE pAPER 1S concerned with electromagnetic wave diffraction by a conducting screen located on
the interface between two dielectric media. The aim of the work is to determine amplitudes of
the diffracted waves that arc generated from the edge of the screen. The analysis is based on the
boundary layer method.

. Introduction

'HIS WORK DEALS with the problem of electromagnetic plane wave diffraction by a
lane, infinitely thin, perfectly conducting screen residing on the interface of two
ifferent, homogeneous and isotropic dielectric media. For the screen of arbitrary
hape derivation of even an approximate solution is not an easy task. If, however,
he edge of the screen is described by a smooth curve and the wavelength is small
ompared to the radius of the edge curvature (high frequency approximation),
he problem admits asymptotic solution which can be obtained by means of ray
echniques.

For the screen of particular shape — the half-plane - the problem considered
as an exact solution [1]. With asymptotic analysis of the solution it was shown
hat far away from the edge, the total electromagnetic field may be represented in
erms of various species of waves. The mechanism of waves generation was studied
1 [2]. That mechanism can be summarized as follows. In the plane separating
wo media the incident plane wave gives rise to two reflected waves, one from the
creen surface and the other from the interface, all three waves propagating in
ne medium, and to a refracted wave propagating in the opposite medium. These
7aves constitute the geometrical optics solution. In addition, the incident wave
enerates two diffracted waves that emanate from the edge of the screen and
ropagate with different velocities in the corresponding media. On the interface
nese waves give rise to lateral waves. Propagation of a lateral wave depends
trongly on whether the medium it propagates in is optically dense or thin.

In accordance with the ray technique approach, the total field in an arbitrary
oint sufficiently distant from the edge is a sum of all waves whose rays reach the
oint. On their rays the waves are characterized by phase functions (eikonals)
nd amplitude functions. Variation of the phase function along a ray is described
y the eikonal equation, and that of the amplitude functions — by the recursive
ystem of transport equations. The eikonal and the transport equations are first
rder partial differential equations. On the rays, however, they reduce to ordinary
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differential equations (cf. [6]). The crucial point in determining the waves on
families of their rays is proper determination of initial conditions for the sol-
utions to those equations. In the case of the eikonal equation such a condition
follows directly from the principle of phase matching of both the generating and
generated waves at the initial manifold (i.e. where the wave generation occurs).
For the transport equations, however, choice of the initial conditions is not so
simple. In particular, the diffracted rays originate from the screen edgz which is
a caustic for the diffracted waves. Their amplitudes blow up at the caustic, and
hence the initial conditions for the amplitude functions cannot be impcsed at the
points the diffracted waves are generated from.

In this work it is assumed that the edge of the screen is curvilinear, and the
wavelengths admitted are much smaller than the radius of curvature of the edge.
In order to find amplitudes of the diffracted waves, an asymptotic approximation
will be constructed for the total field in the vicinity of the edge, which in the
literature is referred to as a boundary layer. Next, the approximation obtained
will be matched to the solution of the transport equations in the regon where
both field representations remain valid. (Our considerations will be restricted to
the leading amplitude function, i.e. the function that satisfies the first equation
in the recursive system of transport equations.) As a result, we shall obtain the
initial condition necessary for determining the leading term in the ssymptotic
representation of the diffracted waves. The condition will be recognized as the
diffraction coefficient, describing angular dependence of those waves.

The procedure described above is known in the literature as the boundary
layer method. BucHAL and KeLLER ([3]) employed it in their study of diffracted
waves in a scalar problem of diffraction in a single medium. WitLox ([4]) adapted
the method to the analysis of a vectorial diffraction problem in elastcdynamics.
The presentation of this paper is based on the latter approach.

2. Formulation of the problem

In the Cartesian coordinate system z,y, = the plane y = 0 is the irterface of
two different homogeneous and isotropic dielectric media. A perfectly conduct-
ing screen occupies a portion of this plane. The screen has a curvilinear edge
described by a regular curve

(2.1) C: x=xp(s),

where s denotes arc length along the curve. The region occupying the halfspace
y > 0 is assumed to be optically thinner, while the complementary one, filling
the halfspace y < 0, is optically denser. The wave impedance in the former and
the latter regions is equal to Z; = (u/e1)"/? and Zy = (u/cn)'/?, respectively.
The quantities ¢; and ey (= N2¢;) are permeabilities in the upper and lower
halfspace. p is a permittivity common to both media. To refer to a particular
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medium we shall use the subscript ¢ = (¢,/¢1)!/?, which takes respective values
g =1and g = N in the upper and lower halfspaces. By our earlier assumption
&y =l

It is assumed that the electromagnetic plane wave

Ei(x) — EO thySt(x
(2.2) {Hf(x)}_{ﬂo}pk (x)

propagates in the upper halfspace toward the screen. Its time-dependence is
described by exp(—iwt).
Eikonal of this wave is real and equal to

(2.3) S'i(x) =1z — 1y + 13z, 1/12 + u% + 1/32 =1, vy > 0.

This wave comprises both TM and TE fields with respect to the y-axis. In the
following we shall use the subscripts ¢ and m to denote fields TM and TE,
respectively(!). Consequently, the vectorial fields Eq and Hy can be expressed as
the sums

(2.4) Ey =E, o+ E.g, Hy = H,,p + H,g,
where
E.o = k3Z1a,,§ x VS, Eg = 2. VS x (§ x VS,
S H,o = k¥a,, VS x (§ x V5%, H, = -Y.a.§ x VS§*
and
E H
(2.6) a. = ”12 +OUV§ - Q= WO‘;‘/_V%S

The quantities £y, and /gy, are y-components of the fields Ey and Hy, and y is
a unit vector in the direction of the y-axis. a. and a,, measure TM and TE field
contributions in the incident field (2.2).

The total field, by definition being the solution to the problem considered,
satisfies in each halfspace the Maxwell equations
27 V xE, =ik, Z,H, and V x H, = —ik,Y,E

g1

where Y, = 7! and k, = w(c,)"/? are the admittance and the wave number
in a particular medium. Furthermore, the following conditions should also be
satisfied: (i) the continuity condition for the tangent components of the electric
and magnetic field in the aperture (i.e. the part of the plane y = 0 complementary

(') We say that an clectromagnetic ficld is of TM (TE) type with respect to a certain axis if its magnetic
(electric ) component vanishes along that axis.
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to the screen)(?), (ii) the boundary condition E, xy = 0 on the screen(?), (iii) the
edge condition and (iv) the outgoing condition (comp. [6], [1]). The last condition
generalizes the Sommerfeld radiation condition to the case of scatterer of infinite
extent.

We assume that the radius of curvature of the edge is large as compared to
the wavelength. This assumption can be expressed in terms of edge curvature and
wave number

(2.8) Ll <&, e€1,

ky

where & is a “signed” curvature of the edge C. It is understood that x > 0 if the
edge is locally convex, and x < 0 if it is locally concave.

Under these assumptions the asymptotic solution, as k, — oo, for the problem
considered can be sought using the ray techniques. Underlying assumption in the
construction is that the solution for the screen with curvilinear edge comprises the
same species of waves that appear in the case of the screen with a straight edge.
Naturally, the phase and amplitude functions should account for the curvature of
the edge. Such a construction has been carried out in [1]. Another assumption
has been adapted there that the field in the vicinity of the curved edge can be
locally approximated by the field obtained for the straight edge.

In the present work we reconsider the construction of the diffracted waves, this
time not using the last assumption. Instead, we shall construct an approximation to
the total field valid in some vicinity of the edge. It then will be used to determine
the lacking initial condition needed to determine the amplitude function along
the rays. We shall refer to that approximation as the “inner” solution, and the
region of its validity as the “inner” region.

A different asymptotic solution, interpretable in terms of propagating waves,
we shall call the “outer” solution, and the region where it remains valid — the
“outer” region. That solution breaks down in the vicinity of the edge, where
diffracted waves have their caustic. Unknown amplitudes of those waves will be
sought by matching inner and outer solutions in their common region of validity.

3. The inner solution

At a fixed diffraction point on the edge C we introduce an orthogonal coor-
dinate system iy, t, t3 such that the unit vector tl( ) is orthogonal to the edge
and points to the interior of the screen, t, =y and t3(s) = t; x tp. The vector t3
is tangent to C.

We also define orthogonal curvilinear coordinates p, ¢ and s, where p and
& are, respectively, the distance from the edge and the angle measured from

(2) If this condition holds then the total field satisfies integral Maxwell equations in regions containing

points belonging to both media (comp. [5]).
(*) The screen itself is a boundary of the region wherein the total field is analyzed.
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the screer surface in the plane orthogonal to the edge. The third coordinate s
specifies tie point on the edge where the plane cuts the edge. Define the inner
region by

(3.1) |k p < e.

In this rezion we shall find high-frequency asymptotic expression for the total
field, which we shall call the inner solution.
Replac: the coordinates ¢y, t, (or p, ¢) and s by the scaled coordinates

(3.2) y1 = kity, o= kit (or v =kp, @), s.
In the cocardinates vy, yo, s the metric coefficients are

1 ky — K|
(3.3) hi=hy= ., hy=1-rpcosé=1+0()= —‘7"_”1-
1 'l
Assum: that in the boundary layer the total electromagnetic field can be ex-
pressed ac¢ — 0 in the form

E,, = ¢*50) [, (y1,y2.5) + 0()]

(3.4) e T
oy = eh156) [hm(yl,yz,.c) + ()(s)] ;

H

where S(:) = §'(0,0,s) and v = e, m.

Also assume that the dependence of €,, and Em on y; and y, is such that
their diffe-entiation with respect to both coordinates does not modify their order
in £. Thuswe have(*)

(.)Eq'y k1 S(s) [ém(yl-'!/za“) -1 ]
— 9T = pthols _ 4 O ll\: 5
G = 9y, (k)

(3.5)

(‘)ZEW = (k15(s) [azém(yhy%")

, + OkTH .
dy;0y; dy:0y; ¢ )]

Furthermcre, since d5/ds = f;; - VS5 = cos /41(s), where the angle /3, is defined
with this tquality, we obtain

d;:'?w = ikjcos Bi(s)E,, + O(1),
(3.6) }

PEov _ ity cos (o) oQ

92 = [tk cos 31(s)] E,, + O(1).

(*) Since »= O(1), then by virtue of O(@)O() = O(¢) we have O() = O(x/ky) = O(kl"l), ase — 0
(kg — o0) inthe region p < =/|x|. In this region the asymptotic relation O(A-l'l) = O|(k1p)~"] is generally

invalid becaus p~1 can be arbitrarily large.
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Similar formulas can be found for derivatives of the field H,,. Note also that

1 1
. SRR o 1+ — !
(3.7) e LS R LICD R
The Maxwell equations (2.7) lead to
(38) k’VXxVxXEy-E,=0 and k;?VxVxH,—H,=0.

Substitute the representations (3.4) into these equations. First notice that in the
new coordinates the operation of double curl applied to a doubly differentiable
vectorial function D takes the form

*Dy 9Dy 1 9*D; 1
Ipdyy Oy ki — Ky dnds  (ky — Kyp)?

02 E)Dz K "N ()D] -~
L% Dy - :
* ( 0s? sl 0s ) (k1 — ki )? ( s % hDB) L

2Dy 0*D, N 1 9?2 D3 e (01)2 anl)
Indyy  dyi k1 —kyr \ 0y20s dyi Oy2
i 1 Dy ky 9Dy~
(k1 — ky1)? 92 (ky — ky1)? Os
021)3 _ 0*Ds 1 9Dy | 9*D, . OD;
+ = + — — +— 4k
c?Jl dy; k1 — ryp \Oinds  Oyr0s dn

K ()Dl
Moeed eI

where the indices 1, 2 and 3 denote components of the function in the directions
of t1, t; and {5 axes.
Having this in mind and with the use of (3.4)-(3.7) we find

(3.9) V><V><D=A-f{[

(3.10)  kyZe RSBV x V x E,,

0%, 0%, 0,
= |52 r"’;l+zcosd
Jdy1dyr dys 0*]1

9%, 0%, 07,
+ ol _ 792 4 cos B —222 + cos? B¢ + O(k7?
laylf)!/z dy? ()yz s GOt

3 + cos? Br€gy1 + O(ky 1)} ]

0% ,.3 0%, 0, e, -
+ |- P"f - — ";3 + icos /i ( ol ('("“2) + O(kTh]| 6.
i D5 i dy2

Define the operator

(3.11) V= [ £ 9 ,1COS 31
Dy Oy’
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Since

B o= D%, 0%,
3.12 VxVxé, =|—2_ 92+ icos
(312) " {Uyﬂ)yz dy3 '

Y'm 1 )] i1

) (
= + i cos /3 o

dy10y2 dy?

02,5 0%, e JE, 5
+ -2 - T8 4 icos ) ( 21l o ﬂ) (3
dyi dys dy; dyr

()2( 1 ()( 2]
[ L4l 4 + cos? 31€y72 t2

then (3.10) can be written down with the help of this operator in the form
(3.13) ki2e= 15OV x V x Egy = V x V x & + OTY).

Substitution of (3.4) to the first equation in (3.8) leads to the equation satisfied
by €.,

(314) 0*16 X % X ég"f - ég'y + ()(5) = 0

Here, the relation k,/k; = g was used.
Additionally, from the boundary condition t; x E,, = 0 it follows that

(3.15) ty x &, +0()=0

97

holds on the screen.

Now we turn to diffraction of the plane wave (2.2) by the half-plane t; > 0,
1 = 0. We assume that the configuration made by the direction of the incident
wave propagation and the half-plane edge is the same as that made by this direc-
tion and the tangent at the fixed point of diffraction x(s) to the curvilinear edge.
Exact solution to this problem takes the form

(3.16) E, () =%, (1. 12)q(13)  and  H, (t) = hy, (11, 12)q(13),

where q(i3) = exp[ik; cos 31(s)!3]. Hence,

s Jde (!/_1 22_
OE. () _ TNk Ry _
()!z = i\]([(f?,)T ) 1= ].2,
(3:17) _
M = thycos 31(s)q(t3)€,n.
dl3

Since V can be written down as

Jg 0 0 a0 §
pul V= a-am| = ki3 3 v,
815 [0!1 Jiy ()13] 1 [()yl ()UZ 1eosBi(s)| =V,

http://rcin.org.pl
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then by using the first equation in (3.8) we arrive at the following equaion sat-
isfied by €,

(3.19) g7 IV XV x &, —€, =0.

On the half-plane surface this function satisfies the boundary condition t, < €,., = 0.

Comparison of the boundary value problems for the functions &, (witl fixed s)
and €,, shows that to terms of O(¢) both problems are the same. Thercfore, by
restricting our considerations to the leading terms in (3.14) and (3.15), we obtain
é,, = €,,, and as a consequence,

(3.20) Ey = eflSe-csmllal [ (g + O(e)] .

Similar relation can be found for the magnetic field. Thus the procedur: for the
approximation of the diffracted field in the vicinity of a curved edge, as used
in [1], has been confirmed with the considerations based on the boundiry layer
method. The solution (3.20) valid in the inner region (3.1) will be referred to as
inner solution.

4. Matching of the inner and outer solutions

In order to find the diffraction coefficients for the diffracted waves we shall
match inner and outer solutions in the common region of their validity. The outer
solution, valid in the outer region kjp > 1, is given by the sum (vide [1)

E,. (x E? (x
(4.1) {Hy'*/( )} s Z Z {HB‘Y()}
9y (x) y=em  fB=i,rlr2zdb (x)
where the superscript /3 indicates the species of waves present in the problem:
the incident wave, the wave reflected from the screen and that reflected rom the

media interface, the refracted wave, the diffracted and lateral waves. Asymptotic
expansions for these waves as k, — oo are of the form

H (X)} 3 ko SH(x - { ﬂ (X)} . —m
4.2 Bx)q” (k, )e'*oSs () ik, ),
(42) { b oy |~ SO0 GO S 4 i)

where 6§(x) equals +1 in the illuminated region of a particular wave or -1 in its

shadow region, and ¢”(k,) determines its order of magnitude. In particilar, the
dominant term in the diffracted wave is of the form(®)

(4.3) EJ(x) ~

, ky
/2D$(¢’«”)a .5'3 = _ls(sg) i rg'

d 1 h l-,'
; d a g
et (13|

(®) This is a result of solving the eikonal and transport equations on the diffracted rays.
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The vectorial function D;j’(,:, s) appearing here is the diffraction coefficient of the
diffracted wave, which is to be found.

The quantities a = RRcscfy(s), ¢ and s are the ray coordinates, spec:fymg
a diffracted ray emandtmg from a diffraction point on the edge and running
toward the observation point. The angle 3xy(s) is related to the angle 5,(s) via
kycos 31 = kyncos 3y, and I, ¢ and {3 are cylindrical coordinates attached at the
diffraction point xg(s).

The inner and outer solutions are asymptotic ones, valid for large values of
ky. Each solution, however, has a different form and is defined in a different
region. Nevertheless, by virtue of (2.8), both solutions have their common region
of validity

(4.4) W< p<eflnl,

where they can be matched. To this end we expand asymptotically the inner sol-
ution with respect to the large parameter kyp (for instance by using the technique
of asymptotic evaluation of integrals described in [1]). We thus arrive at the outer
expansion of the inner solution. The term corresponding to the diffracted field
in this expansion appears to be of the form

ke, sin 3, p

2 " ,
Dig o+ ¢i,\ Pylw(o)]
e " + : ll
[Ez {(csc csc > ) P [w(dy, )] ,,(o) L

- (csc o= i _ cse ¥ ! OM) b ((5)] dy () i }
2 2 M,[w(e;,)] vy (w;)

+O[(k,) ) + O()]
= 5% {15 VBl 6 (9), 1]+ 01Uy 1}

1/2
(4.5) E‘;(x>=,;_{,(2——” ) (iHS(o) ik sin 4

Here

o~ k - .
(4.6) 54(x) = Z»‘l‘“ (s) + sin 3,(<)p,

g

E’;O is the principal amplitude of diffracted TE and TM fields in the outer expan-
sion of the inner solution, and

(4.7) ¢, =¥x VS, d, = [VSEx G xS

We shall now determine the inner expansion of the outer solution. It can be
shown that in the inner region, i = p + 0(¢), ©» = ¢ + O(<), ,S'[f(x) = ij(x) +
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O(e), sin By(s?) = sin By(s) + O(c) and o /pd = O(c). By using these asymptotic
relations in (4.3) we find that the inner expansion of the outer solution is

eikeSq

48)  El~ 7Di(, ) {1+ 0l(k,n) "1+ 0()}
2 P
k; [sin i 8 (s)}

On matching the expansions (4.7) and (4.8) we obtain

1/2
(4.9) D;i(¢>,8)=( £ ) Ejolt; ¢'(s). S1(s)].

sin ﬁg(s)
By taking into account the asymptotic relations between both p and R and ¢ and
@, we finally arrive at the following expression for the diffraction coefficient of

the diffracted waves

iz

e '3
sin B,(s)

@ — Pi o+ .\ P,[w(e i
B { (csc L. 21 A y'”) il (y)]cg(,:)k‘gdypj

410)  Di(p,s) = (g)“

j=0 2 2 ‘Dfl(”".i)
g
¥ = @y p+ ‘rgju) "”rl[“'(‘rg)] Mg 45
— | cse — CSC - dy(p o
( p. 2 My(w;) «(?) Doy
we sought. Here,
w(yp) = kysin G, cos g, vg0 = [(k, sin ,.-’f.,,)z — 1[:5]1/{
(4.11) wg = kysin /3] cos p;,
wy = —wy = ik cosf, vy = v = k.

The diffraction coefficient D{(y, s) comprises both TM and TE fields. Substitution
of this coefficient into (4.3) concludes the construction of the diffracted waves on
families of their rays.

References

1. A. CIARKOWSKI, Electromagnetic wave diffraction by screens residing on interfaces between dielectric media
|in Polish], Report 4/1994, Inst. Fund. Technol. Research, PAS, 1994,

2. A. CIARKOWSKI, On the field continuity condition in the problem of electromagnetic plane wave diffraction by
a half-plane residing between two media, Wave Motion, 18, 227-241, 1993,

3. R.N. BucHAL and J.B. KELLER, Boundary layer problems in diffraction theory, Comm. Pure Appl. Math.,
XIII, 85-114, 1960.

http://rcin.org.pl



DIFFRACTED WAVES IN THE PROBLEM OF ELECTROMAGNETIC DIFFRACTION 963

4. H. WrrLox, High-frequency diffraction of elastic waves by a plane surfuce, Master’s Thesis, Eindhoven
University of Technology, Dept. Math. and Comp. Sci., 1983.

5. K. BOCHENEK, Methods of analysis of electromagnetic fields [in Polish], PWN, Warszawa — Wroctaw 1961,

6. D. AnLuwaLIA, R. LEwis and J. BOERSMA, Uniform asymptotic theory of diffraction by a plane screen, SIAM
J. Appl. Math., 16, 783-807, 1968.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received December 30, 1993; new version September 9, 1994.

http://rcin.org.pl



Arch. Mech,, 46, 6, pp. %5-988, Warszawa 1994

On the kinematics of the sets of oriented elements

A. BLINOWSKI (WARSZAWA)

A DESCRIPTION of the orientations of the objects in 3-dimensional Euclidean space using the or-
thogonal tensors is outlined. Local and global geometric propertics of the manifold of orientations
(tensors of rotation) are discussed. Functions and differential operations on the manifold of ori-
entations arc considered, particular attention being paid to the density of orientation (oricntation
distribution) function. The problems of averaging of the orientation are briefly discussed, The time
derivatives of the rotation tensors are examined, their relation with the angular velocity vector
being presented. Eulerian and Lagrangian rates of changes of the scalar functions and tangent
vectors are defined on the manifold. The local differential law of mass conservation on the mani-
fold is derived and verified for the important example of rigid motion. Co-rotational rates of the
Euclidean tensor-valued function on the manifold are discussed as well.

1. Preliminaries

THE NECESsITY of appropriate kinematical description of the behaviour of sets of
oriented elements arises almost at every attempt to produce any continual model
of the material, particularly in these which are motivated by the considerations
on the micro- and/or meso-structural level. The problem of texture evolution in
plasticity of polycrystalline materials [2], [3] as well as a complete description of
the configuration spaces in thermodynamics of structured polymers [20] can be
pointed out here.

Every author dealing with his particular problem solves this problem in his
own way, thus it is sometimes difficult not only to verify the correctness of the
results, but even to compare the results obtained by different authors. Some
results are rather assumed than derived. Even if the particular presumptions
were correct (as they probably are) the others could be erroneous. This applies
mainly to the descriptions using Euler angles which, in the cases different from the
rotation around nearly constant axes with nearly constant angular velocities (like
in most rigid body rotation problems [9]), definitely obscure the problems. The
intuitive comprehension of the relations derived become almost impossible. Thus
even a plain nonsense may be not so easy to detect as it should be using more
natural coordinate systems. Moreover, Euler angles taken as the coordinates in
the Riemannian space of orientations yield non-diagonal metric tensor, drastically
complicating all differential operations [6, 3, 20].

The goal of the present paper consists in the attempt of the unification and
simplification of the description of local and global geometry and kinematics of
the manifold of orientations. There are several results, among the others that will
be quoted here, which the author was not able to find in the earlier sources; he
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is however firmly convinced that all of them are known, likely, they simply have
not been gathered together yet.

In the course of the considerations which follow, we shall keep in mind as
a distant aim the description of the behaviour of structured continuous media.
At this stage, however, we have no need to specify neither the physical nature of
the oriented elements under consideration nor even their spatial localisation. They
can be gathered together as, e.g. the set of single crystals constituting the material
neighbourhood of the chosen point in polycrystalline material (whatever it exactly
means), or they can be quite dispersed apart as, for example, the set of honeybees
from one hive during a sunny day. It is the orientation not the localisation what
we are trying to describe.

We shall confine our consideration to such elements for which at any in-
stant ¢, a set of three orthonormal vectors { €;(t)} can be distinctly pointed out,
i.e., speaking about orientation of the material object we may understand under
this term any geometric object capable to specify the actual directions of three
mutually orthogonal vectors. An orthogonal tensor is, in author’s opinion, the most
appropriate object for this aim - this one, (denoted by Q(t)), which transforms
the chosen fixed three orthonormal vectors {e;} into another orthonormal base
vectors {€;(1)}, describing the orientation of the element under consideration:

(1:1) €:(1) = Q(t)e; .

Therefore we shall say that the orientation of all elements o € A of the (finite,
countable or continuous) set A is given at any time instant t if some (orthogonal)
tensor-valued function Q(a, ) is specified on the set A.

In further considerations we shall assume that the determinant of Q is positive,
excluding thus from the considerations all (inappropriate for the description of the
behaviour of real material objects) transformations with reflections (inversions).

2. The space of rotations

As it has been pointed out in the previous section, the set of all possible
orientations of the material elements can be represented equivalently by the set
of all tensors of rotation (the proper orthogonal group).

In the properly chosen orthonormal basis, for which the unit vector of the axis
of rotation n is taken as the third base vector, the representation of any tensor
of rotation assumes the following form [7]

cosp —sine 0
(2.1) Q= |sing cosp 0
0 0 1

where ¢ is the angle of rotation of the vectors orthogonal to the axis of rotation.
It is not difficult to notice that the form of this matrix does not depend on the
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choice of the first and the second base vector in the plane of rotation. Taking
into account that the determinant of the tensor Q is positive (equal to one), it
is evident that any tensor of the form (2.1) can be expressed in the absolute
“dyadic” notation as follows

(2:2) Q=n®n+(1-n®n)cosy +ensing,

where 1 is the unit tensor, € denotes Levi- Civitta skew-symmetric tensor. Rep-
resentation of tensor Q in arbitrary orthonormal basis takes the following form:

(2.3) Qi; = nin; + (8;; — nin;)cose + niey; sin .
Expressing the unit normal vector n as follows:
(2.4) n = sin # cos e, + sin f sin ey + cosfes ,

and examining simultaneously expressions (2.3) and (2.4), one easily concludes
that the set of rotation tensors is a smooth three-parametric compact subset of
the nine-dimensional space of the second rank tensors (the tensorial “square” of
the three-dimensional Euclidean vector space V? @ V?). These three parameters
(¥,0,¢,) will be used as the coordinates at the three-dimensional manifold of
the rotation tensors (or — what is equivalent — the manifold of orientations).
For the further considerations we shall need the definition of the scalar product
of the second rank tensors. We shall adopt the simplest and most standard one:

(2.5) AoB = tr (ABT) = Ai;Bi;.

This product bears the following norm in nine-dimensional space:

(2.6) e (trAAT)l/z = JAijAij .

One can easily see that, in the sense of this norm, the submanifold under
consideration is a subset of eight-dimensional hypersphere of the radius v/3. It is
also not difficult to show that the manifold of rotations cannot be embedded in
any Euclidean proper subspace of the nine-dimensional space. If it were not true
then it would exist a non-trivial (different from zero) tensor being orthogonal
to all rotation tensors. Let us take arbitrary tensor T and choose the basis of
eigenvectors of the symmetric part of T. In such a basis for all non-diagonal terms
we have T;; = =T}, (¢ # j). We can immediately point out representations of
such six rotation tensors that bear the linear combination equal to T:

10 0 1 00 0 0 —1
00 1], 0 0 1/, 01 0],
01 0 0 -1 0 10 0
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001 0 -1 0 010
§ % B 4 | B R 05 -100
-100 =i 001

If all these tensors were orthogonal to T then we would have 7;; =0 (i = j)
for diagonal terms and 7;; = T}; (i # j) for the others, but this is possible only
if these term also vanish. This proves our assertion. Other details concerning the
global geometry of the manifold will be discussed later.

We shall examine now the local geometric properties. To this end we need
the derivatives of the vector n with respect to > and 6. Diflerentiating (2.4) we
obtain the following relations:

Jn

(L) oW = —sin#sin e, + sinfcosire; = sinfey, ,
dw
Jn . .

(2.8) % = cosfcose; + cosfsinye; —sinfles = ¢;.

The meaning of the two unit vectors e, and ey (tangent to the unit sphere in
3-dimensional space) is clear from the context of the Eq.(2.7) and (2.8).

For clarity we shall introduce the following convention: we shall sometimes
treat all vectors from nine-dimensional space V3 o V3 like any other vectors, for-
getting about their tensorial nature, thus in order to avoid the misunderstandings
we have to distinguish between these objects and the usual “three-dimensional”
vectors. Thus, we shall denote them by capital boldfaced symbols and, for the am-
plification of this distinction, capital letters will be used also for indices. Writing
the representations of nine-dimensional vectors in the three-dimensional bases of
the subspaces of the nine-dimensional space, we shall use single (capital) indices,
while the representations of the same objects treated as tensors from V° @ V3
will be written using pairs of indices.

Differentiation of the second order tensors with respect to scalar parameters
(coordinates) bears of course objects of the same kind. Making use of relations
(2.7) and (2.8) and denoting parameters {¢:. 0, o} by {£1. €2, &3}, respectively, we
are able to obtain the following relations for the vectors (from nine-dimensional
space!), tangent to the three-parametric manifold of orientations [16]:

(2.9) G, = 3—% = (n ey + e, n)(1—cosg)sint —eeysinsind,
.) : )

(2.10) G, = %H)_ = (n® ey + e ®n)(1 —cosy) — €epsinp,
) .

2.11) Gs = (,)Q = —(1-n@n)sing —ENCcos .
de

These three vectors Gy constitute a basis of the three-dimensional space T3, tan-
gent to the manifold at a given point (for given values of the coordinates). In the
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space T2 a scalar product can be introduced giving rise to its Euclidean structure;
it is quite natural to use the same definition (2.5) as in the nine-dimensional space
containing T as a subspace. Space T2, although isomorphic to V* space, should
not be confused with the latter; we shall point out later at least two important
reasons for this.

The adopted definition of the scalar product operation makes it possible to
define covariant representation (/;; of the metric tensor G at the manifold:

GioGy =G = 4sin20(1 — COS ),
Gro Gy = (i =41 — cos ),

2.12) 20G, 2 ( ®)
G},OGg =(r'33=2.

G] OG]\' = (r'][\’ =0 for [ 75 .

Due to the diagonality of the metric tensor, the expressions for co-vectors and
the contravariant representation of the metric tensor are almost trivial:

it GIF=0 for I#K _
(2.13) 1 no summation!

;[\ — (:]\_ (lrI\ I

We shall not specify these terms explicitly here. It is worthwhile, however, to
quote the representations of the base vectors G* (considered as the second order
tensors) using the basis {n.e,.e;} of the 3-dimensional “physical” space V.

0 sin . cosf
sin 5

~

G, = 23in95in§ 51n§ 0 0
na
- cos 5 0 0
PP
0 ~cos§ sin 5
(2.14) G, = ZSin% cos% 0 0
sinT 0 0
sin 5
0 0 0
G; = |0 —sing —cosy

0 cosye —sing

Taking into account that for the basis under consideration the tensor Q (this
“point” of the manifold for which we determined the tangent vectors G ) has the

http://rcin.org.pl



970 A. BLINOWSKI

particular representation (2.1), one can rewrite expressions (2.14) in the following
form

(2.15) Gy = -WHQ (K =1,2,3),

where W(X) are a skew-symmetric second rank tensors (from V* @ V3). The
product operation at the right-hand side of the last relation has the usual sense
of matrix multiplication (simple contraction) (H“'i(;\)()_,',). For W) the following
expressions hold true:

W = sinfe [e, sinp — e5(1 — cos )],
(2.16) W2 = g [e,(1 — cosi) + egsin ¢ ,
w® = en.

Relations (2.15) and (2.16) suggest the natural mapping of the tangent space
onto the Euclidean three-dimensional “physical” space V?, according to the fol-
lowing scheme:

(2 1L7) S-V3i:A—e: (A QT) (A — Epqr Ags@rs€p in orthogonal hase),

where by A, we denote tensorial representation of the tangent vector A. It is
not difficult to see that such a mapping can be defined for all points of the
manifold, moreover this mapping is linear and preserves the structure of the
Euclidean linear space. Nevertheless one should not identify the tangent space
with the “physical” Euclidean space — the main difference is based upon the
fact that the mapping depends on the “radius-vector” Q (i.e. on the coordinates
on the manifold), and therefore there is no decomposition of the vectors from
the tangent space corresponding to one radius-vector in the basis of the tan-
gent space belonging to different Q (different radius-vector). It can be easier to
accept this fact intuitively, if one realises that the tangent vectors correspond-
ing to the radius-vector Q are orthogonal to it in the sense of scalar product in
nine-dimensional space (compare (2.1) and (2.14)). The comprehension of these
differences is quite important for everyone who wishes to avoid the fatal errors
when differentiating the vector (tensor) fields defined on the manifold.

Calculating the Riemann - Christoffel symbols according to well-known for-
mula() [7], [16]:

2.18) e 1( KL ((‘)(}’“ & oG (‘)(:”>
. = —-U = = =
o dEd ot! gEL
(') Using nothing but the well-known definitions Gy = Gy o Gy, Gro Gl = l‘;‘-, ete., one can readily
rewrite (2.18) in the following, equivalent form:

Gy aG!

(2.18) Tr = Gez °6' =5z °6x:

This interpretation will be sometimes useful in the course of the forthcoming considerations.
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we arrive at the following expressions for these coefficients of Riemannian con-
nection which are not equal to zero:

1 )
Iy =ctgh, I'h=Ih=cgl,
12 = Clgo, 13 23 20g2
(2.19) I'Y = —sinfcos¥,
F232 = —siny, 1“131 = —sin’fsin .

Knowing the representation of metric tensor and the Riemann - Christoffel
coefficients one can calculate the components of the tensor of curvature according
to the following relation:

(2.20) Rik1i = 2 \9ERael — 9eRped T aeloel — geLogd
+G‘PQ([‘[1‘—)‘]]‘[?] - rl}\?JFI?I)'

1 (02(71,.1 G *Gry 0201{1)

Performing differentiation one obtains:

Ri212 = 2sin®6(1 — cos )2,
(2.21) Ry313 = sin?6(1 — cos ),
Riz12 = (1 - cosg).

All other components are either equal to zero, or can be obtained from the
symmetry conditions, which must be obeyed by any tensor of curvature:

(2.22) Riyke =-Ryxe =Ryix = —Ryrkr--- -
Bearing in mind relations (2.12) one can write the following important identity:
l T al 1] 1]
(2.23) Rpo rs = g(GPR('QS . CPSGQR)-

Relation (2.23) defines the constant curvature A" of Riemannian space [16, 19]
where

(2.24) K =1/8.

The quantity r defined by the following relation

(2.25) =

i1s known as a radius of curvature.
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Another tensor of curvature called Ricci or Einstein tensor can be obtained
from the following relation:

(2.26) Riw = GTeRpoK
In the case under consideration we obtain:

(2.27) Rix = —%(}',,\- .
The following quantity f:

(2.28) R= G5 Ry

is called the scalar curvature, in our case

(2.29) R=-3/4.

Both curvatures are scalar invariants characterising the deviation of local
geometric properties of the manifold from the Euclidean ones, for Euclidean
spaces both are equal to zero (in general, these quantities can depend on the
coordinates).

It has been proved [19], [13] that all n-dimensional spaces of constant curva-
ture are isometric to the factor-spaces 5™ /1" (sets of orbits with respect to /" [13,
11]), where S™ is a n-dimensional sphere and /" denotes a discontinuous group
of isometry acting freely (having no fixed points). Such spaces, in the case of
positive K, are called spherical space forms [13].

Closer examination of such subsets (c.f. [14]) of the manifold of the orthogonal
transformations seems to be promising from the viewpoint of the description of
the spaces of orientations for the oriented elements having non-trivial symmetries,
e.g. crystal lattices. It is of course a well recognised item (among the people
involved in the texture evolution problems), that, e.g. for the case of cubic or
hexagonal crystals the set of all rotations is too wide. Nevertheless it seems that
far not always, as it has been pointed out in [4], proper clarity reigns in the
considerations concerning that point. We shall, however, for the time being, leave
this question open for further studies.

The simplest spherical form, called elliptic space (projective spherc), is gener-
ated by the two-element group /" consisting of the inversion and identity transfor-
mations. Orbits of such a group are two-point sets of opposite poles of the sphere.
One can perceive such a form as the sphere with opposite points identified.

Elliptic space is the only — besides the full sphere — spherical space form
preserving maximal homogeneity, i.e. possessing the group of isometric transfor-
mations of the maximum possible number of parameters: n(n + 1)/2, in our case
— 6 [13, 19]. One can point out easily the six-parametric group of isometries of
the space of rotations, e.g. the one generated by two three-parametric subgroups:
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left translations (Q) : Q — LQ, where L is any rotation tensor, and rotations
R(Q): Q — RQRT, where R is any orthogonal tensor. Another possible isomet-
ric transformations like right translations can be obtained as the superpositions
of the former two. On the other hand, we have essential reasons to assert that
the form under consideration is not a sphere, namely: the orthogonal elements
of opposite sign —Q are not rotations and do not belong to the manifold under
consideration.

Owing to the simplicity of the manifold, we are able to point out some features
of its global geometry. Let us consider for this aim the equations of geodesics

2k ndel de!
2. =P e
2.30) ds? I ds ds
Using (2.19) one obtains:
d%y Ay dg ] o (di\?
= g— — — — e I = .
L i ((/s)
26 1 odide | o doN?
(2.31) 2= -ECO[E(I’TIJFMH f cos 6 (({—\) .
d*o . do\ 2 ] . di\?
(1:2’ = sin ((/—\) +sin? ¢ sin ¢ (I) .
On the other hand we have:
(2.32) (ds)? = G pdehdet
Thus, taking
(2.33) # = const, " = const, || = ?}_2 = 2;

we fulfil equations (2.31) defining, at the same time, along the geodesic line, the
length parameter s congruent with the local metric.

One can see now that any orbit of the identity transformation I with respect
to the subgroup of the rotations around the fixed axis

(2.34) Q(s) = R(:)I.
where
2s 2s 2s
R = (a ) a) (1 — COS ﬁ> + Icos — + agsin —
r T r
(2.35)
a = const, la] =1

defines a geodesic line.
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In virtue of the uniformity of the space we can claim that an orbit of any
element with respect to arbitrarily chosen subgroup of rotations around the fixed
axis defines some geodesic line. Taking into account the known fact of stationarity
(in this case minimality) of the path along the geodesic lines, one can define a
global notion of the distance between two orientations.

Let two orientations Q; and Q; be given; we shall denote by R the rotation
tensor transforming by the left-hand translation the orientation Qy into Qz:

(2.36) R = QQ] .

Let us denote by o the angle of rotation associated with the orthogonal tensor
R(?). Then we have

trQ -1

(2.37) cosa = —

thus, according to (2.33), we can write

t ) -1
(2.38) s = V2arccos _r%

For small angles this definition of the distance between the two orientations is
equivalent to the global metrics in nine-dimensional space of the second rank
tensors.

IRQ - Q| . /6—=2(1+ cosc)
> = lim =1
r(QQ)-1) =  Vaa
2

(239)  lim
\/i arccos

One can evaluate the maximal possible distance between two orientations, cor-
responding to the rotation angle equal to 7:

wr

(2.40) dmax = V21 = -

while the maximal possible distance between two rotation tensors in nine-dimen-
sional space equals 2v/2. It is not difficult to notice that one can not point out
uniquely the element most distant from the given one, there are many of them;
the set of all most distant elements is often called the polar plane.

(%) Note please that this is not the angle of the rotation of the tensors in three-dimensional Euclidean
space. Indeed, let the orthogonal tensor P generate a rotation, mapping Qy onto Qz: PQ, pl = Q; then the

corresponding value of R is equal to QZQT = PQ,PTQT. Now, if c.g. P and Q, commute, then this yiclds
R =1 ie. o = 0, independently of the angle of rotation corresponding to P.
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The elementary volume element in the space of orientations is defined by the
usual relation

(2.41) dV = VG dpdbdip

where G denotes the determinant of the matrix [(;;]. This gives rise to the
following expression for the volume of the whole space

2r 0w

242) V= f dV = ] / / VG dpdfdy
Vv 000
2r T w

= ///\/32sin29(1 _ cos) dedbdyp = 16v2x2 = v3.
00 0

The angle ¢ varies here from 0 to 7 (instead of, say, from —7 to 7) because
the change of its sign is equivalent to the change of the sign of n (compare (2.1),
(2.2)), while all possible directions of n have already been taken into account (cf.
(2.42)) by the suitable choice of the variation range for > and 6.

All relations like (2.40) and (2.42), coincide with the results obtained in the
framework of Riemann’s non-Euclidean geometry [13] (not to be confused with
the geometry of Riemannian spaces).

3. Functions and operators on the set of orientations

Assigning an element from some set to every orientation (every rotation ten-
sor) one defines a function on the manifold, which can be effectively represented
as a function of three coordinates {£1,£2, €3}, Functions of two different kinds
are worthwhile to be considered here: scalar functions and the functions assign-
ing to every orientation (every point at the manifold of orientations) a vector
from the tangent space taken at the same point. Any other reasonable cases can
be reduced to, or obtained (as a generalisation) from, the two cases mentioned
above.

Among the scalar functions most useful in practical applications one should
mention the function of the (mass) density of orientation (orientation distribu-
tion) which, for the case of material elements, can be defined as such a function
u(€%) for which the following relation holds true for every domain (2 of the man-
ifold of orientations:

(1) m(2)= /;f(Q)dV = ///lf(y,e. u")\/BZSinZH(l — cos @) dpdfdi,
o} Q2

where m(f2) denotes the total mass of all elements whose orientations fall into
domain §2. We assume of course that the set of oriented elements is large
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enough to justify such an approach and the proper regularity demanded by the
Radon - Nikodym theorem can be assured.

We should mention here that for practical applications the question of the
interpretation and, hence, of the range of validity of the orientation density con-
cept can be more important than in the case of material density in the “physical”
space. This applies particularly to these cases when we consider the “localized”
sets of oriented elements such as “material particles” in polycrystalline materi-
als. In some problems of plastic deformations the characteristic length of the
problem, e.g. the radius of curvature of the tool, may be equal to several grain
diameters. Under these conditions, speaking about the “continual distribution of
crystal orientations in every material particle” sounds somewhat odd.

The same problem of contradiction between “continuity” and “smallness” of
the material particle arises of course in the classical continuum mechanics of real
(discrete on the atomic level) matter. It is, in that case, however, suppressed im-
mediately by the powerful Avogadro number. The portion of the material can be
considered simultaneously to be very small when compared to any characteristic
length of the macroscopic problem and large enough to contain such a great
number of molecules which makes sensible all the local state variables of contin-
uum mechanics and thermodynamics. Unfortunately there is no analogous great
number in the meso-scale considerations, for which the concept of orientation
distribution is usually applied.

It seems that, if the probabilistic interpretation were involved, then the rig-
orous concept of the orientation density, sensible even for not very numerous
sets, could be defined. We shall, however, leave aside this question in the present
paper. We shall, nevertheless, come back to the problem of continuity in Sec.4
in the context of the velocity field definition at the orientation manifold.

It is not difficult to define the mean orientation density — averaged over a
chosen domain — as @ = m(£2)/V (£2), where V' ({2) denotes the volume of the
domain 2. Such a quantity (particularly when divided by the total mass of whole
set) can be possibly useful for semi-quantitative estimation of crystallographic
textures of polycrystalline materials. The author cannot however point out any
serious advantages of this approach when compared to the use of the X-ray
orientation distribution diagrams (pole figures) based on the slightly different
concepts [2], which are at present widely used for this purpose.

Here, the related question arises: is it possible to define mean orientation,
for a domain (or for the whole set of orientations), if the orientation density
function is known everywhere? If such a notion made sense then one would
expect to get from it some preliminary information, concerning, for example, the
rough approximation of the orientation of the orthotropy axes of polycrystalline
material.

The difficulty lies upon the fact that the set of the orthogonal tensors is not
closed with respect to summation, thus the usual averaging procedures can not
be used even in the case of the finite sets of orthogonal tensors: (Q + Q2)/2 is
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not an orthogonal tensor and there is no orientation associated with this quantity.
Definitely we should look for other concepts. Let us notice that, in the case of
mass distribution in three-dimensional space, we can define the centre of mass of
the material body (or of the set of material points) as such a point for which the
moments of inertia with respect to any axis passing through this point are minimal
(in the set of moments of inertia with respect to all parallel axes — compare the
well known Steiner theorem [18], [9]). Recalling that the trace of the inertia
tensor is invariant with respect to frame rotation we can define the mass centre
¢ as such a point for which the following condition holds

(3.2) le — x|%p(x) dV = Min.
/

Differentiating the integral in (3.2) with respect to Cartesian components of ¢ one
obtains, from the conditions of vanishing of the partial derivatives, well known
formulas for the coordinates of the mass centre.

Proceeding in the same way, we can define the mean orientation as described
by such a rotation tensor R, for which the following condition is fulfilled:

tr (R QT) -1
(3.3) / arceos | ————5-"—— 1(Q) d = Min.
Q2 -

Conditions of minimum of this functional contain the nonlinear functions of
unknown tensor R under the integral sign and, most probably, are of no practical
significance for the analytic considerations, thus we shall not even quote them
here. It seems that the problem, for every domain and every density distribution,
should be separately solved numerically.

The problem becomes much simpler if we take the concept of distance from
the space of second rank tensors, then the corresponding minimality condition
takes the following form:

(3.4) /|R ~QP2u(Q)dV = 2/(3 —Ro Q)u(Q)dV = Min.
0 n

Condition (3.4) is evidently equivalent to the following:

(3.5) Ro / Q/(Q)dV = RoA = Max.
9)

Thus we have reduced our problem to finding the “nearest” rotation tensor for
a given tensor A.

One may ask which definition of the mean orientation is “better”. The answer
to this question lies beyond the scope of the author’s present knowledge. Some
two-dimensional analogies can suggest that the use of the definition (3.4) may
sometimes yield rather surprising, from the viewpoint of common sense, results.
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Beginning from this point, up to the end of the paper, we shall assume that
the set of oriented elements is large enough and the functions defined are as
smooth as required for the use of differential calculus.

The field of the gradient V[ of the scalar function f on the manifold of
orientations is defined in a usual way:

9f(Q)
(’)El\'

We remind here once again that the value of the gradient of the scalar function
for given Q (given coordinate point (!, &2, £%)), is (as any vector tangent to the
manifold of the orientations) at the same time a second order tensor from V3@ V3.
This tensor can be represented as AQ, where the skew-symmetric tensor A is a
linear combination of the tensors W) defined by the relations (2.16):

G N

(3.6) V/(Q) =

3. 0f '
(3.7) A=—I§wwﬂ.
Three functions
(3.8) ¢ =€)
define the curve at the manifold:
(3.9) Q = Q(s).
Vector 7(s) defined by the following relation
(3.10) T(s) = #(.’

will be called a vector tangent to the curve Q(s). If this vector along the whole

curve is a unit vector, then the parameter s will be called natural. We shall omit
here the proof of the rather obvious fact that the linear part of the increment of

the function f corresponding to the increment of the parameter s by the value %

can be expressed as follows:

" ogh
IR s

where O(h) denotes, as usual, terms of higher order in / : }Im}) O(h)/h = 0. And,

(3.11) f(s+h)= f(s) + + O(h) = f(s) + VfoT+ O(h),

obviously the following relation for the derivative along the curve holds true:
df(Q)
ds

There is no need to re-derive all the known results of the differential geometry
of Riemannian spaces [13, 16, 17], we shall just quote them for the completeness.
Thus, if a(¢!) denotes the function ascribing to every point (radius-vector) Q of

(3.12)

=V/f(Q)or.
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the manifold a vector from the tangent space at Q, then the second order tensor
Va from the tensorial product of the tangent space by itself T* ® T3, defined by
the following expression:

ocl
will be called a gradient of the tangent vector field a(Q). Such a tensor can, of

course, be interpreted also as a fourth-order tensor from vipv? r?>V3 @ V3. The
term in parentheses represents covariant derivative(®) of the field a” (¢7):

) K i
(3.13) Va = (l $ u"l‘j‘,) (Gr ® G")

N -

K — J K
(3.14) ay = ael +a’lyy.
The corresponding expression for covariant derivatives of the covariant represen-
tation is the following:

day
¢!
We shall not quote explicitly all the expressions for these derivatives, and confine

our attention to the trace of this tensorial expression — the divergence of the
tangent vector field:

(3.15) ai. | = —ay [‘,‘{-, .

. - day .
3.16 diva = ag 1 GH = = — gy P L3
; KL

(")gld
_ 0(11 011 0(!2 <272 ()(13 33 22 11 i /11 3 22
= OEIG +6—£—2(r +d—£3(' —(121“(1 — 3 ([“(l +l’226 )
_ Oy 1 + dﬂ 1 ()if'. 1
dY 4sin®0(1 —cosp) I8 4(1 —cosp) Do 2

ctgd ) sin ¢
— l .
4(1 — cos ) 32(1 — COs )
Relation (3.16) immediately yields the following expression for the Laplace op-
erator of the scalar function on the manifold of orientations:

—a

: 1
i . = [ GNL = °
317y Af(Q)= /KL 30 —cosg)
D?f 1 orf L O%f of of .
S vl 429 cose) - Yhetgd -2 sing |
8 (i)g,'z =3 T g T Epa sl —ensiRl = iEt Saa Hikg

(*) Usually for the explanation of the geometric sensc of the covariant derivative, the notion of parallel
displacement of the tangent vector along a curve at the manifold is introduced. In our case, when we can point
out the Euclidean nine-dimensional space in which all the tangent spaces can be embedded, we are able to
propose the straightforward interpretation of the covariant derivative as the tangent component of the partial
derivative of the vector, Recalling (2.18)" we are able to write

d ]
3‘{‘;\. o GY o —(a'G)o G =
and similarly for the covariant components.

a 1 p Jq L
da oG da’
¢ L I I <L _
e S +a —zo G" = - T
3% 9 5

+a'Ify,
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4. Time derivative of orientation

Let for every instant ¢ a rotation tensor Q(/) be given. We shall assume that
the function Q(/) is smooth enough to make sensible all subsequent differential
operations. We shall not specify, for the time being, how our time-dependent
tensor is connected with the motion of material bodies or media. It can describe
either the sequence of the orientations of one chosen material element or, on the
contrary, the change of the orientation at the chosen point of the (considered as
remaining in rest) “physical” space, which can be occupied by different (oriented)
material particles at different time instants.

Let, then, the tensor-valued function of time under consideration be specified
by the following three scalar functions:

(4.1) =6, (v=v), 0=00) ¢=q00).

Relations (4.1), on the other side, define a time-parametrised curve (a trajectory)
in the manifold, thus the time derivative d[Q(?)]/d! is a tangent vector and we
are able to write

9Q _ 0Q deh deh

. = s = WQ,
dt dEN dt dl Ci Q

(4.2)

where skew-symmetric second rank tensor W from V? : V¥ is defined as follows:

! de!

: W=-_S"wh>
(43 ; dt
Hence, we are able to write

1
(4.4) # = -—weQ,
(

where w is a vector from V2 dual to the tensor W, w; = IW;;eix. Vectors dual

;
to tensors W) form (after normalisation) an orthonormal basis {m.} in V3

P i P
M = €, 08 —epsin o,
P v
(4.5) T, = ey sin % + €5 cos 3.
T]‘-:’ = n.

The representation of vector w in this basis

(4.6) W = _‘_'!-TI’.
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has the following form:

: . @ dy
wp = 2sm()sm%%.
o df
4. wy = 28I t(—.
(47 T
o _dy
S dt’

and for the square of its length we obtain

AN E o\ 2
(48) W= (1 = COSQ)SinzH (%[LT) + (1 - COSL,:‘) ((]0) 4 (dl) )

dl d!

It is not difficult to notice that in the case of “infinitesimal rotation” vector w is
directed along the axis of rotation, or, more rigorously:

(3}
4.9 lim — =
(49) A0 ]

Let a rotating vector a(/) (from V?) have the form

(4.10) a() = Q(hao.

Then for its time derivative we can write
d d

(4.11) Wa(l) = WQ(/)aoz —weQa)=wea=w x a,
(L (

thus one can see on this example that we have properly chosen a symbol w for
the vector under consideration which had turned out to be exactly equal to the
well-known vector of angular velocity.

This is a proper place here for two remarks:

The first — one should not confuse two related, but entirely different vectors:
vector dQ/dt from the space tangent to the manifold at Q, and vector w from
V3; it is not difficult to notice that the mapping dQ/dt — w depends on the
coordinates, thus these two vector fields have different properties, especially with
respect to differential operations.

The second — we have not assumed (nor obtained) any relation between our
skew-symmetric tensor W and the skew-symmetric part of the velocity gradient
in the motion of the continuous medium. We have not even assumed that our
oriented elements are embedded in any continuous material. Moreover, even if
we considered such a situation, we do not see any reason for identification of
these two tensors, with one exception, probably — the case of rigid motion.
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5. Velocity field on the manifold of orientations and the mass conservation law

The main scope of this section consists in the obtaining of the local mass
conservation law (evolution rule of orientation density) on the manifold of orien-
tations. Before we start this main task, we have to come back to the fundamental
problems of continuity already discussed in the Sec. 3.

In the dynamics of continuous media the fundamental property of the (topo-
logic) continuity of motion is assumed. The very notion of material fibre and
material surface is invariant with respect to the motion (except, maybe, some sets
of zero three-dimensional measure). One realises of course that, from the phys-
ical point of view, this assumption is incorrect; if it were true, then no diffusion
process could be possible in the material. Nevertheless, due to the different time
and space scales of the dynamic and diffusion problems, nobody takes care of
this inconsistency — free paths of molecules even in gases (wit the exception of
extremely rarefied) are, due to the already mentioned Avogadro number, much
less than any characteristic length of the usual boundary value problem. In the
case of the manifold of orientations, as it has been already mentioned, all these
problems are not so evident.

Let the countable set of the oriented elements be given. There is no conceptual
difficulty to ascribe the velocity vector from the tangent space to every element,
simply we take as Q(¢) the orientation of the given element and take a time
derivative of this function denoting it (as analogue to material time derivative in

the “physical” space) by Q. Thus we have the following situation: at the countable
set of points of the orientation manifold (at the points occupied by the oriented
material elements) two functions are defined: the first — a finite mass of the

element and the second — a velocity vector Q from the tangent space T3.

This situation looks like in the large scale description of the set of all stars
of the galaxy, or a portion of rarefied gas. There are however some essential
differences: there is no physical reason for different elements forbidding tiem to
occupy the same place in the manifold of orientations, also no physical reasons can
be pointed out to ban different velocities being assigned to the elements having the
same orientation. It is not difficult in the “physical” Euclidean space to defne the
mean velocity of several material points summing their momenta an dividing by
the total mass. For the obvious reasons such an operation can not be performed in
the case of rotating elements in the space of orientations. As it has been ilready
mentioned, the number of oriented elements is usually much smaller than e.g.
the number of molecules in “small” neighbourhood of any point in real meterials.

All this creates a lot of doubts about the sensibility of the averagihg and

smoothing of the rotation velocity Q distributions defined on the maniold of
rotations. It is however the author’s good hope, that the probabilistic approach
is capable of eliminating these doubts in future, supplying, at the sam: time,
some cues concerning the limits of applicability of the continuity assunptions
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with respect both to the orientation distribution and to the functions defined on
the sets of oriented elements.

It is quite possible that a new approach, permitting the simultaneous existence
of the continuous velocity spectrum for every orientation, would be more ade-
quate for the description of the density of orientations evolution. The present
author, however, prefers rather to leave this unrecognised path to the future stu-
dents of the problem, confining the present considerations to the simplest model.

Thus we shall assume, that a unique velocity field Q (Q. 1) is given for some
domain of the orientations and some time interval < ¢, {, >. We shall also assume
that at some time instant { €< {;,{; > the orientation density function p(Q, t) is

known. We assume at last that the field Q (Q,t) is regular enough (e.g. certain
Liepshitz conditions are satisfied [15]) to provide the existence of well-defined
integral curves, making possible to introduce such a system of “Lagrangian” co-
ordinates {Z',Z% =3} (i.e., in fact, the functions =/(¢"".1)) in the set of the
oriented elements which satisfy the following conditions:

= (51‘52’53! [)

(5.1) det PEL

> 0,

. a0 0N (=1 =2 =3
52 Q= og %" (=" )=c,<

ael (51,52,53. f)
OER ot .

ot

The first condition (5.1) is necessary for the relation (5.2) to be sensible(*).
Like in the “physical” space, we can introduce here two different kinds of the
time derivatives: the local (Eulerian)

af _9f(Er. 0

{:3) ar ot

and the Lagrangian (we shall rather not call it “material” here):

(54) F= UELD 5

Hl

(*) The situation here is resembling the one in the theory of mixtures, where, despite the diffusion, some
“material in the averaged sense” or “quasimaterial” coordinates can be introduced [1].

(®) If our sct of oriented elements is “localised”, i.e. constitutes a material particle in Euclidean space
then this notation can be confusing: we would not know if the Lagrangian or Eulerian approach in “physical”
space is considered. It is however beyond the author’s mental capacity to give an interpretation of such a
derivative which is “Eulerian” in the Euclidean space, being at the same time “Lagrangian™ at the manifold of
orientations. For consistency 1t would be better, probably, to denote the time derivative of the orientation of

a given material element by Q rather than by Q, for the reasons of tradition, however, we shall preserve the
notation used in the previous sections,
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There is a simple (expected from the analogy with the “physical” space) rela-
tion between these two quantities. To show it, we transform the expression (5.4)
in the following way:

A : el =i : i
(5.5) })= %f (fl (:—l\",) .’,) - ;(})g_ff o€ (_ .!) N of (E ,i)

at dt

Nl [ =J .
o ,) OSSR gt g
_<(')£]G o((:/\ T +(')1. —VfoQ+0—i.

In the forthcoming considerations concerning the formulation of the local
mass conservation principle, we shall consider the orientation density function as
a continuous approximation of the real discrete distribution of the orientations of
the elements of a very numerous set. It will be also assumed, that all the elements
of the same orientation have the same rate of the orientation change (rotation
velocity) Q. The author believes that for such a restricted case the Reader will
agree with these considerations. As regards the general situation — he has the
right to treat all reasoning as heuristic only.

Let us choose a surface S in the manifold of orientations given by the following
equation:

(5.6) F(Q) = 0.

Let us assume that, for a given oriented element // with Lagrangian coordinates
(%o, @0, %) and a varying in time orientation O(//,1) = O(Py, Oy, ¥y. 1), the
following inequality holds true at some time instant /:
(5.7) F(O(11, 1)) < 0.
For the Lagrangian derivative we can write

o (dI" .

Trajectory O(/7,t) of the element /1 in the orientation space will intersect the
surface S at a time instant from the interval (/y.(y + %) if and only if the mean
o

value of the time derivative /' * satisfies the following inequality:

(5.9) F h > —F(O(P, o).

Denoting by d the distance between the orientation O(P. y) and the surface S
at time instant /g and making use of the property (3.11) of the gradient of the
function /', we can write:

(5.10) WY -Q > |[NE(OIL, ly + h))|d + Od).
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Introducing the following notation for the unit vector normal to S(°)

VF

|V F|

and taking into account that the mean value of derivative over the time interval
(to, to + h) differs from its value at any instant inside the interval at most by the
terms of the order of /i, we are able to formulate the following condition:

(5.11) N

During the time interval of duration h orientations of only these elements will
cross the surface S which are contained in the layer of thickness d, adjacent to the
surface S, where the thickness d is given (with the accuracy to the terms linear in
h and/or d) by the following relation:

[ B
(5.12) ;T =NoO.

The mass of all elements contained in the layer (per unit area of S), is equal to
jth, thus, under the assumption that the mass of every element remains constant,
we are able to write, for the arbitrary domain 2 of the manifold, the following
integral mass balance law:

dm(2,1)

(5.13) .

~ //1 Q oN(S.

a0
Taking into account the definition (2.1) of density ;2 and making use of the
Gauss - Ostrogradskii formula [17, 10] one can rewrite expression (5.13) in the
form of the following volume integral:
(5.14) /{‘)”()’) + Div |1(Q. 1) Q (Q.:)J} AV = 0.

s !

By virtue of the arbitrariness of the domain (2, the last integral equality is equiv-
alent to the following local condition
i
ot
where operators Grad and Div should be interpreted in terms of the differential
calculus on the manifold, thus e.g. the field Grad . is a field of the second rank
tensors tangent to the manifold. Using relation (5.5) one can readily rewrite (5.15)
in another form:

(5.16) it +pdiv Q= 0

(5.15) + Grad ji0 Q +5Div Q= 0.

resembling the most popular form of the expression for the local mass conserva-
tion law in the “physical” space.

(®) One should remember that N, being normal to the surface S is a tangent vector with respect to the whole
manifold.
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If all the elements of the set rotate with the same angular velocity w, one
should expect vanishing /7 and the Eulerian rate of the change of y to be governed
by the sole convective term

H.17) % = -Vuo Q (in rigid motion).

Indeed let w = const, then by virtue of (4.4) one can write:
N 2Q.r, & 9Q _

(5.18) 06" (QQ") Gen Q@+ QG =

Multiplying (5.18) (in the sense of a simple contraction in three-dimensional
space) from the right-hand side by Q one obtains:

0Q o Q
'E!\ i (}fK

0Q QT dQ
(')Eh Q £A Q EK

For better clarity of further considerations we shall denote contravariant compo-

(5.19) -QQ" -QQ'Gx =0.

nents of Q in the basis of the tangent space by ¥/

(5.20) Q= v "Gy .

Then, taking into account (2.18)" one can rewrite (5.19) as follows:
our i , .

(5.21) (")E"' + ,)J[JL,\_) 3L = WGy,

where W denotes a skew-symmetric tensor defined by (4.2). Multiplying both
sides of (5.21) by G"* (in the sense of scalar product in nine-dimensional space, in
accordance with the summation convention), one obtains the following equality:

)0 .
(5.22) ((‘);h + 0 JJ,\)zs{‘ (WGr) o (GF),

which, by virtue of the definitions of the divergence and the scalar product in
V3 © V3, taking into account diagonality of the matrix [(/; ], (compare (2.13))
can be rewritten as follows:

: » GiG] | G,G] | G3GJ

(5.23) divQ =Wo (GNGL) = Wo [ 2L 4 2222 4 2323 ) =,
(l 11 (122 (r33

The last term equals zero due to the symmetry of the second order tensor in

parenthesis and the skew symmetry of W. This result, proving our assertion con-

cerning the vanishing of the Lagrangian rate of change of the orientation density
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for the case of rigid rotation, supplies an indirect evidence of the sensibility of
the introduced rates and differential operations. One has to understand the last
sentence as a declaration that we would be rather inclined to reject the theory
violating this condition.

Expression (5.4) gives a rule for the transition from the Eulerian to Lagrangian
rate of change of any scalar function defined on the manifold of orientations.
This rule can be generalised for tangent vectors and tensors of any rank from
the corresponding tensorial products of n copies of the tangent space T>® T3
...®T3. The present author, however, does not see any direct application of such
quantities in continuum mechanics.

Much more useful may turn out to be the quantities describing the rate of
change of the functions ascribing Euclidean tensors from E> @ E> ... E to
the oriented elements and/or to the points of the manifold of orientations. The
problem exists with respect to both Lagrangian and Eulerian rates of change. We
shall consider it here, however, for the individual element, the interpretation of
the obtained results in terms of Lagrangian rates will be meaningful in the same
sense as the very notion of the Lagrangian coordinates at the manifold.

Let some time-dependent tensorial object A be assigned to the rotating ele-
ment (e.g. vector of external force or moment, second rank tensor of dielectric
permeability, fourth rank tensor of elasticity etc.). It may be useful to define
such a rate of change of a tensor A, which is equal to zero if the representation
of a tensor in the basis rotating together with the element under consideration
remains constant, and equals the usual time derivative (e.g. Lagrangian in the
“physical” space) if the element does not rotate with respect to the “laboratory

frame of reference”. In other words, we try to define such a rate of change A as
the one measured by the observer rotating together with the element and “not
knowing” about this rotation.

Thus let {e,} denote the time-dependent orthonormal basis in V3 : €.(1) =
Q(1)e?, where Q describes the orientation of the element. Let A = Ai s(D(E; ®
...®€;) be a tensor of any rank, then the following quantity:

(5.24) A=A 5 (E:@ . .E5)
will be called a co-rotational derivative of tensor A with respect to the rotating
element of orientation Q.

We can express this quantity in the form independent of the choice of the

base {e,}. To this end we write

(5.25) K=:ii__.{, (€:®...Q0€,)+ A, (Q'el- B s B Qeq) * s
+4; 4 (Q €®...0Q eq) ’

(5.26) A=A +4; ,(We;®...0€)) +...+ A 4,(;®...® We,),
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and finally we obtain

. ° n 2.[
(5.27) A=A oW

i=1

where by W %" A we understand a simple contraction of the second index of
tensor W with the :-th index of tensor A.

This terminates, for the time being, our considerations on the kinematics on
the manifold of orientations.
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On some one-to-one constitutive correspondences

in plasticity

Q.-C. HE and A. CURNIER (LAUSANNE)

ONTHE BASIS of non-smooth convex analysis, it is shown that: (i) when the elastic domain is a convex
sct containing the origin, a gauge yicld function (a non-ncgative positively homogencous convex
function) can be constructed so that the elastic domain is uniquely related to this function; (ii) if the
normality rule is further postulated for plastic flow, the polarity operation can be used to establish
a one-to-onc symmetric correspondence between the dissipation and gauge yicld functions. Several
examples are given to illustrate the results,

1. Introduction

IN A PREVIOUS paper, HiLL [8] has shown from geometric considerations that if the
elastic domain is convex and the normality rule applies, a one-to-one symmetric
relationship exists between the positively homogeneous convex (i.e. sublinear)
yield and dissipation functions. The present paper proposes to reexamine this
duality correspondence in the light of non-smooth convex analysis (MorReAU [14],
ROCKAFELLAR [18]).

Two observations motivate this work. Firstly, the dissipation function for rate-
independent plasticity or its conjugate, the indicator function of the elastic do-
main, is not differentiable but subdifferentiable and hence taking it or its con-
jugate, as a constitutive potential makes sense only when the notion of subdif-
ferential of (non-smooth) convex analysis is introduced. Secondly, although the
correspondences between closed convex sets and closed sublinear functions on
the one hand, and between the characteristic functions of a closed convex set and
its polar on the other hand, are well established and classical in convex analysis
(HORMANDER [9], MOREAU [14], ROCKAFELLAR [18]), yet they are far from be-
ing well-known in mechanics and their application in the mathematical theory of
plasticity, going back to a work of PRAGER [17], remains fragmental (FriaA [2],
HALPHEN et al. [4], EVE et al. [1], HE et al. [6], ROMANO ef al. [19]). A systematic
and detailed exposition of this application is now called for. It is the aim of the
present paper to provide one, centering on the duality correspondence investi-
gated by HiLL [8]. In some sense, this work contributes to further structuring the
classical mathematical theory of plasticity.

In Sec. 2, after introducing some basic concepts of convex analysis, Moreau’s
pseudo-potential (or super-potential) formalism for plasticity is briefly recalled.
In Sec.3, it is shown and illustrated that: (i) provided the elastic domain is a
convex set containing the origin, a gauge yield function can be constructed for
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the elastic domain to be uniquely related to it; (ii) if the normality rule is further
postulated for plastic flow, the polarity operation can be used to establish a duality
correspondence between the dissipation and gauge yield functions, the inequality
given by YANG [21] appearing as a by-product. For the purpose of this paper,
consideration of rigid-perfectly plastic materials undergoing small deformations
is sufficient.

2. Pseudo-potential formalism for plasticity

As in classical theories of plasticity (HiLL [7], LUBLINER [12]), we assume the
existence of a convex elastic domain in stress space and postulate the normality rule
for plastic flow. For any plasticity theory based on these two hypotheses, convex
analysis represents a suitable and powerful mathematical tool for formulating its
constitutive equations (MoREAU [15, 16], GERMAIN [3], HALPHEN and NGUYEN [4],
ZEIDLER [22], MAUGIN [13]). Before entering into the title problem of the paper,
we first recall some elements of convex analysis and then give a brief review of
Moreau’s pseudo-potential formalism which will be used as the starting point of
our further development.

2.1. Some basic notions of convex analysis

Let us designate by V a normed real linear space and by I{ its dual. A function
ffrom Vto R := R U +oo U —oo is said to be convex if

(2.1) SIAV+ (T =AW < Af(v) + (1= )f(Y)

holds for each A € [0, 1] and all v,v' € V. The set dom (f) := {v € V|f(v) < +c}
is called the effective domain of f. When dom(f) # 0, i.e. f is not identically
equal to +oo, we say that f is proper.

One of the most often used notions in convex analysis is the lower semi-
continuity. A function [ :V — R is lower semi-continuous (1.s.c) at vy if, for every
¢ > 0, there is a 4 > 0 such that ||v — vy|| < é implies that f(vy) —¢ < f(v). When
f verifies this condition at each vy € V, f is called ls.c. on V.

A subset C of V is said to be convex if the line segment [v,v/] := {(1 — A\ +
AV[ 0 < A < 1} is included in C whenever v, v/ € C. The epigraph of f, defined
as the subset

22) epi(f) = {(,a) €V R | J(¥v) < a),

is a constructive notion in convex analysis. Indeed, a function [ : V — R is convex
if and only if epi(f) is a convex subset of V x R; in addition, f is L.s.c. on V if
and only if epi(f) is closed in V x R [18].

Given a convex set C of V, the function o, : i/ — R, defined by

(2.3) o.(u) := sup{v.u},
veC
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is called the support function of C. It can be interpreted geometrically by Fig. 1,
in which the supporting hyperplane P to C is perpendicular to u and has vg as the
supporting point. We can easily show that o. is positively homogeneous (of degree
one), i.e. o.(Au) = Ao.(u) for A > 0, and convex.

I'1G. 1. Geometric interpretation of the support function of C: o.(u) = u.vy.

Consider any proper function [ : V — R. Then the function f* : I/ — R
defined through the Legendre - Fenchel transformation

(2.4) [*(u) := sup{v.u — f(v)}
vev

is called the conjugate of f and the function f**:V — R, defined as

(2.3) f*(v) := sup{v.u — f(u)},
ueld

is the biconjugate of [.In the case where [ is from R to R, a geometric method of
constructing its conjugate [~ is given in Fig. 2. Let us recall the important result
that f is convex and Ls.c. if and only if f** = [ (see e.g. [18]).

The subdifferential of a convex function is another key concept necessary for
the presentation of Moreau’s pseudo-potential formalism. Letting f:V — R be
a proper convex function, the subset

(2.6) df(vy:={ueld| f(V)> f(¥)+ (¥ =v)u, W eV}

is called the subdifferential of f at v. The elements of Jf(v) are called the sub-
gradients of [ at v. If f is not finite at v, we define df(v) = 0. In the case of
df(v) # 0, [ is said to be subdifferentiable at v. In geometric terms, df(vy) is
composed of all the slopes a supporting hyperplane to epi(f) at (vg, f(vp)) can
take (Fig.2). Clearly, d/f(v) reduces to V f(v) when [ is differentiable at v.
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flv)

F'1G. 2. Geometric interpretation of the conjugate of f @ f*(u) = weg — f(v0).

2.2. Pseudo-potential formalism for plasticity

Let V be identified with the symmetric stress tensor space & and I with the

symmetric plastic strain rate tensor space £. These two spaces are placed in
duality by introducing the bilinear form: § : E := tr(SE’) = tr(SE) for S € §
and E € &, where tr represents the trace and E! the transpose of E.

Let C be a given closed convex set in S, that contains the origin 0. Suppose
the yield surface corresponds to its boundary JC and the elastic domain to its
interior int (C). By definition, the indicator function 1.(S) of C is

0, if SeC,
(2.7) (8) = { +o00, if S¢C.

On account of the conditions imposed on C, /.(S) is proper, convex and lLs.c..
Applying the definition (2.4) to /.(S) and using (2.3), we get

(2:8) I7(E) = o.(E),

i.e. the conjugate of 7.(S) coincides with the support function o.(E) of C, which
is convex and positively homogeneous. Furthermore, owing to the convexity and
lower semi-continuity of /., we can write [18]

(2.9) o7(S) = (I7)(S) = 1.(S).
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It is seen from Egs. (2.8) and (2.9) that the Legendre ~Fenchel transformation (2.4)
induces a one-to-one symmetric correspondence between 1.(S) and rr(.k(l'Z).

Following Moreau’s pseudo-potential formalism for plasticity [10, 11], the plas-
tic law takes the form

(2.10) E c 21.(S).
With the definitions (2.6) and (2.7) in mind, we can easily verify that

0, if S¢C,

Ll olen) = {N(S) if SeC

where N.(S) represents the outward normal cone to the convex C at S € C (Fig. 3):

(2.12) N.(S):={Ee&|(S-S):E<0, VS eC),

i.e., Eis an element of N.(S) if E does not make an “acute angle” with any 68
which has § as starting point and is in C. In particular,

(2.13) N.(S) = {0} when S € int(C),

and N_(S) reduces to the outward normal half-line to JC when S is a regular point
of 0C (Fig.3). Therefore, the classical normality rule of plasticity is included in

16 3. Outward normal cone to the convex C.

(2.10). A justification for (2.13) can be given as follows. Suppose § € int (C) and
consider E € N.(S). Then, for any S of sufficiently small norm such that 6§ with
S as starting point is in C, we have S : E < 0 and —6S : E < 0. Hence, it is
necessary that E=0.
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It is well-known in convex analysis [14, 18] that the inclusion (2.10) is equiv-
alent to either one of the following two conditions:

(2.14) S € I*(E) = do.(E),
(2.15) S:E=1(S)+ I"(E) = I.(S) + o.(E),

in which (2.14) acts as the inverse of (2.10) in the sense of multivalued mappings,
ie. Se Blg(fi) if and only if E € 0I.(S). In (2.15), the term S : E represents the
plastic dissipation power density since E and S are implicitly related by E € 91.(S)
or S € I(E). As I.(S) = 0 for $ € C, it follows from (2.15) that o.(E) = S: E
when S € C and hence aC(E) plays the role of the plastic dissipation function.

Moreover, (2.12) shows that the plastic law (2.10) or its inverse (2.14) is consistent
with the maximum dissipation principle of plasticity.

3. Some one-to-one correspondences
3.1. Gauge yield function

How to analytically describe the convex elastic domain C is not specified in
the precedent section. However, this specification is necessary for the explicit
expression of the plastic law (2.10).

With Moreau’s pseudo-potential formalism, we have seen that the dissipation
function of plasticity is identified with the support function o .(E) of the elastic

domain. According to convex analysis [18], the support function m.(I'E) of a closed
convex set C is characteristic in the sense that C is completely determined by

o.(E), i.e.
(3.1) C={SeS|S:E<a.(E), VSeS)

Physically, this means that the elastic domain C of a (rigid-perfectly) plastic ma-
terial obeying the normality rule can be determined by measuring its plastic dis-
sipation power. The fact that o.(E) is a characteristic function of C is due to
its convexity and positive homogeneity properties. More precisely, any positively
homogeneous closed proper convex function can be regarded as the support function
of a certain closed convex set and a one-to-one correspondence exists between them
[18]. In the context of plasticity, the idea of characterizing the elastic domain
by the plastic dissipation function was initially introduced by PRAGER [17]. In a
work by TELEGA [20], the same idea has been used for dry friction. On studying
certain specific cases LUBLINER [10, 11] has remarked that if the plastic dissipa-
tion function is positively homogeneous and non-smooth, then a yield criterion
follows.
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Describing the elastic domain C by the plastic dissipation function is not the
usual way employed in plasticity theories. Indeed, a scalar function f, defined over
the stress space S and called the yield function, is commonly used to describe C:

(3.2) C={SeS|f(s)<0).

In such a way, a countless number of (convex continuous) functions f(S) can be
utilized in (3.2) to get the same convex closed set C. Hence, it is natural to ask
whether among these yield functions there exists a characteristic one in the sense
that it is associated with C in a one-to-one manner. Let us illustrate this problem
by a simple example.

ExampLE 3.1. For von Mises criterion, the following two yield functions of
different forms are often used in the literature:

@ S =h-k% 0 fS)= -k

where J, = (8% : §%)/2, $* denoting the deviator of S and & being material
elastic limit in simple shear stress. It is obvious that the two convex sets obtained
by Eq.(3.2) together with (a) and (b) are the same.

Now we come to the construction of the characteristic yield function. Geomet-
rically, remark that every convex set C in § can be considered as a cross-section
of certain convex cone K in & x R. Indeed, if we define the convex cone K from

C by
(3.3) K:= {(AS,\) € S x R

SeC, >0},

then the intersection of K with the hyperplane P := {S,\)| S € §, A = 1}
in § x R is precisely C. A one-dimensional example is given in Fig.4. Let us
introduce ¢(S) by

(3.4) (S) := inf{A| (S,)) € K}.

This function can be shown to be closed, convex and positively homogeneous and
its epigraph coincides with K [18].
Substituting (3.3) into (3.4), we obtain

(3.5) 4(S) = inf{A > 0| § € AC} =: 7.(S)

which identifies ¢(S) with the gauge or Minkowski distance function ~.(S) of the
convex C. It is readily shown that v.(S) is a non-negative positively homogeneous
convex function with v.(0) = 0. A geometrical interpretation for this v.(S) is given
in Fig.5. Let S # 0 and Sy be the point at which the ray vector from the origin
and along S pierces the boundary of C. (If C is not bounded in the direction
S, Sp is a point at infinity). According to (3.5), we have § = +.(S)Sy and so
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FIG. 4. Cone K and gauge function v.(S) associated with the line scgment C = [a, b).

v:(S) = |IS]|/|So|| with ||.]|? := (.) : (.). Thus, the value of the function 7.(S) can
be regarded as the distance (relative to the convex C) from the origin to the point
S if ||So|| is taken as unit of measure. When the convex C is not a ball centered
at the origin, the unit measure ||Sy|| depends on the orientation of S. In addition,
7.(S) = 0 if the ray vector along S does not intersect the boundary of C.

S-1(5)S

I'1G. 5. Geometrical interpretation of 4.(S).

In particular, if, in addition to the conditions (closedness, convexity and 0 €
int(C)) previously imposed on C, we assume it to be bounded and centrally sym-
metric with respect to the origin 0 (i.e., —S € C for all S € C), its gauge function
7.(S) has the properties of a norm [14, 18]:

(a) 1.(S) > 0 forall S € S;

(@) ~.(S)=0 ifand onlyif S=0;

(b) Y(a8) = |a|y.(S) for S€ S andall aeR;

(c) (S + 8') € 7(S) + 7.(§8’) forall §,§8 € S.

In plasticity, the boundedness of the elastic domain C is often not satisfied; for
instance, the elastic domains of most metal materials are pressure-independent.
In this case, 7.(S) reduces to a semi-norm from lack of property («’). However, it
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is interesting to observe that certain gauge functions +.(S) which are semi-norms
in § behave as norms in some subspaces of §.

ExampLE 3.2. For a von Mises material, the gauge function of its elastic domain
C has the form of

7:(8) = \/_— | = 7elsa(8%).

o
\ﬂ IS

In S, 7. is only a semi-norm but its restriction v.| s« to the deviatoric stress tensor
space S? is a norm in S<.

ExampLE 3.3. For a Tresca material, we have
1 : d_ g ¥
7:(S) = ﬂsup{lﬁ S;} = SUP{IS’ S} =27l 5a(8"),
ty]

where S; and S¢ (1,5 = 1,2.3; i # j) are respectively the principal stresses of S
and 8%, As in Example 3.2, 4. is a semi-norm in § whereas v.|s. is a norm in §7.

ExampLE 3.4. In the plane stress case, the gauge functions for von Mises and
Tresca materials are given respectively by

M) ) = Vo
(i) 7:(8) = 5 sup{1S]. 152l 151 — $al).

where S belongs to the two-dimensional stress tensor space S°. These two func-
tions act as norms in &°.

Nevertheless, if C has no central symmetry with respect to the origin, 7.(S) is
even not a semi-norm due to the fact that v.(—S) = 7.(S) cannot hold for every
S € &, and hence the property (b) necessary for a semi-norm is not verified. In
order to illustrate this remark, let us consider the following example:

ExampLE 3.5. When Drucker -Prager criterion applies, the gauge function
v.(8) for the corresponding convex elastic domain C has the form of

. 1 /L )
v(S) = — Jy+ —=1 ).
=1 (VR+ L2

where I} = tr(S) and y is a material constant. Obviously, this function is not
centrally symmetric relative to the origin.
In agreement with the definition (3.5), the convex C is given by

(3.6) C={SeS|(5)<1).
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According to convex analysis [18], given a closed convex set C, a unique closed
gauge function 7.(S) is defined through (3.4) or (3.5); conversely, C is uniquely
determined by v.(S). Up to this stage, we have resolved the problem of finding
a characteristic function (defined over §) for C such that a one-to-one corre-
spondence is established between this function and C. From now on, it is natural
to refer to v.(S) as the gauge yield function and to 7.(S) < 1 as the gauge yield
criterion.

3.2. Plastic flow rule with the gauge yield function

Firstly, let us specify (2.10) in the case where C is given in the form of (3.2):

E € AJ/(S),

(3.7)
f(8) <0, A>0, Af(S)=0,

which is obtained by aplying the Kuhn-Tucker theorem of convex analysis [18]
to (2.11) and (3.2). Then, putting f(S) = 7.(S) — 1 in (3.7), we get

(3.8) E € A07.(S),
7(8) <1, A>0, M.(S) = A,
the expression of the plastic flow rule relative to the gauge yield function ~.(S).
In the study of differentiable homogeneous functions, a remarkable fact is
Euler’s identity. Let ~(S) be a differentiable homogeneous function (of degree
one) from & to R. Then Euler’s identity reads i(S) = VA(S) : S; additionally,
Vh(S) = VA(0) for all § € S. In the following, a similar result is established for
any subdifferentiable and positively homogeneous function h(S). This allows us to
show some properties of the multiplier A in (3.8), due to the utilization of v.(S).
Let h(S) be a subdifferentiable positively homogeneous function. Suppose E ¢
dh(S). By definition, i(S') > h(S) + E : (8 — S), VS’ € S. Taking 8’ = oS with
a—1 > 0 and using the assumption that i(S) is positively homogeneous, we have
(a = DA(S) > (a — l)fi 1 S, ie A(S) > E: S. On the other hand, if §' = aS with
a € [0, 1], it follows that h(S) < E : S. Consequently,

(3.9) h(S)y=E:S for E e dh(s),
in addition,
(3.9 Oh(S) C 9h(0), VSeS

since E € 9h(S) implies that h(S") > h(S)+E : (S'=S) = E: S = h(0)+E : (S'-0)
for all 8’ € S, namely E € 94(0).
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We now return to (3.8). In order to apply (3.9) to (3.8), we write E € AD7.(S)

as E = ANwith N € 907.(S). Thus, E:S=AN:S= AY:(S). Due to the fact that,
in (3.8), A > 0 when 7.(S) = 1 and A = 0 when 7.(S) < 1, we have

(3.10) A=E:S=o.(E).

»”

HiLL [8] refers to A as a “work-equivalent measure of strain-rate”, since the plastic
dissipation power is the same for all E with a common value A of o.(E).

ExaMmpLE 3.6. The plastic flow associated to the gauge yield criterion of Druc-
ker - Prager is

- A s 1

o= T B e -4 | I
v2k [Ilsdll V3 }

70(8) S 1» A Z Ov ’\7t“S = A

A simple calculation shows that

E\2E : E

V14 2 '

A=E:S=o0/(E)=

3.3. Duality correspondence between o (E) and ~.(S)

Prior to showing the duality relationship between o.(E) and v.(S), we intro-
duce the polar of a convex set, a very useful notion in the duality theory of convex

sets and functions [14, 18]. By definition, the polar C? of the convex C is given
by

(3.11) C':={Ecé|S:E<1, VSeC).

It is straightforward to verify that C° is a convex set containing the origin. As C is
assumed to be as closed convex set containing the origin, the following classical
result of convex analysis [18]

(3.12) c®=cC

holds and implies that a one-to-one correspondence exists between C and its polar
C°. In Fig. 6, the polars to the elastic domains of von Mises and Tresca materials
subjected to plane stress (see example 3.4) are shown as an illustration. (Note that
von Mises and Tresca criteria are here matched in shear rather than traction).

Let ¢.0(S) and 76(.(]-5) represent the support and gauge functions of C’:

(3.13) o.(S) := sup{S: E},
Eel’
(3.14) vo(E) := inf{\ > 0)| E € AC"}.
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s, /k (KE, )

172 3/ ]2

S5,/k (KE,)

Bt

FiG. 6. Polars C" to the elastic domains of von Miscs and Tresca for plane stress.

In convex analysis (see e.g. [14, 18]), we have the following important relations:
(3.15) va(E) = o.(E);
(316) 'Tcm(S) = (Tl._\u(S) = L(S)
A simple demonstration is now given. First, in view of definitions (3.14) and
(3.11),

vo(E) = inf{\ > 0| E € AC"}
inf{A>0|E:S<A VSeC)

sup{fi : S}
SeC

= (T(E)

Il

which justifies (3.15); next, replacing C” by C and invoking (3.12), we obtain
(3.16). Taken together, formulae (3.15) and (3.16) show that the polarity operation
(3.11) induces a unique symmetric correspondence between the support and gauge
functions of C (or C°).

In order to describe this fact in an analytical way, ROCKAFELLAR [18] defines
the polar ¢° of a gauge or support function g as

(3.17) ¢%(E) := inf{A > 0|E : S < \g(S), VS € S}
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With this definition, the following relations

(3.18) 7AE) = 7.4(E) = 0.(E),
(3.19) 1% = 5,:(S) = 0c(S) = 7.0(S) = o%(S)

hold [18] and hence the duality relation between +.(S) and ~.(E) is established
without involving the polar CY of C.

When ¢(8S) is positive for § # 0 and finite for every S € &, the definition (3.17)
is equivalent to the following

: S
3.20/ Nk su
(3.20') g (E) = Self 78)

S5#0

For example, this formula is applicable to v.(S) or o.(E) if the convex C is compact
(closed and bounded) with 0 € int(C). By using the positive homogeneity of ¢(S),
we can write (3.20") as

. S:E
(3.20" ¢°(E) = su R
) ( ||5||£1 9(S)

If ¢(S) is furthermore assumed to be symmetric with respect to the origin, i.e.

g(—=S) = ¢(8), it is a norm and q“(fi) in the form of (3.20") can easily be rec-
ognized as its dual norm. For (3.20") or (3. "0”) to be appl:cable to von Mises or

Tresca cntenon it is sufficient to replace S, E, S and &, ", respectively, by S%, E’

4 and £9.
As a direct result of (3.17), we have the inequality

(3.21) S:E<gS)y"E), VSe& and VE€ &,

Cauchy - Schwarz and Holder inequalities are two examples of this. In fact, given a
gauge function ¢(S), g“(ff‘,) represents the smallest of the functions ¢(E) satisfying
the condition S : E < ¢(S)¢(E) for all § € S and E € & If (3.21) is applied to
7.(S) or nc(l::) while taking account of (3.18) and (3.19), we get

(3.22) S E < 7.(8)1%E) = 7.(S)o.(E). VSeS and VE € €.
This inequality for plasticity has been obtained recently by YANG [21] with the
help of a generalized Holder inequality that can be regarded as a particular form

of (3.21). As a matter of fact, (3.21) reduces to Yang’s generalized inequality
when ¢(8) is a differentiable norm.
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In the case of E € I,(S), the inequality (3.22) is attained, i.e.

(3.23) S:E = 7.(S)o.(E) if E eI (S).

This is immediate from the formula (3.22) together with (3.8) and (3.10).
Below, two examples are given to illustrate the polarity operation (3.17) and
the duality correspondence between o.(E) and 7.(S) in detail.
ExampLE 3.7. Tt is proposed to construct the dissipation function rrL,(['i) for a
von Mises material from its gauge yield function v.(S) by introducing ¢ = 7.(S) =

V. J2/k into (3.17):
o.(E) = 7%E) = inf{\ > 0| V2kE : S < A\VS: 8¢, VS € S}.

We need to distinguish two cases. If trE # 0, aC(E) = +o0; to see this, it is
enough to take S = pI (p € R). Next, if trE = 0, the space S can be replaced
by §? and o.(E) is nothing else than the dual norm of 7.(S) in 8%, i.e., 0.(E) =
k(2E? : E!)1/2, In sum, o.(E) can be expressed in the form of

o) = (\/2 i R /{m(m::)) |

Here the presence of the indicator function Iyg)(tr (fE) is due to the plastic in-
compressibility of a von Mises material.

ExampLE 3.8. Consider the anisotropic gauge yield function
7.(S) = VS : HS,

where H is a positive definite three-dimensional tensor of fourth order with the
usual symmetries Mz = i = Hyij (1,7, k0 = 1,2,3). We apply (3.20') to
calculating the polar ac(}'z) of 7.(S); that is

E:S
S.HS

o.(E) = supr(E,S) with 7(E.S):=
S#0

As H is positive definite, the function 'JT(]:‘:,S) is differentiable provided S # 0.
For a given E and with S # 0, the condition necessary for YF(E. S) to attain the

maximum takes the form

_on(E,S) _  E (E : SHS

0= viz. Hgp= (E:S)S

S T VS:HS (S:HSP/?’ S:HS
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If this condition is satisfied, we have

.. (E:S2 [ (E:S)
BHE = -
S:HS ~ |\/S:Hs

Then, it is not difficult to see that

o.(E) = sup7(E,S) = VE : H"'E.

S#£0

Note that, when the function g(8) in (3.20") is non-differentiable at a point other
than S = 0, the calculation of gO(E) may become much less straightforward.

4. Conclusion

In the light of some fundamental notions and results of non-smooth convex
analysis, an attempt has been made to give a comprehensive account of several
one-to-one constitutive correspondences in plasticity. In keeping with Moreau’s
pseudo-potential formalism, this should contribute to getting a deeper insight
into the intricacy of plasticity and to rendering the classical mathematical theory
of plasticity more structured.

Acknowledgement. The authors are grateful to the Referee for his critical
remarks leading to improvement of the manuscript.
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Outlooks in Saint Venant theory
I. Formal expansions for torsion of Bredt-like sections

F. dell’ISOLA and G.C. RUTA (ROMA)

STARTING FROM a regular curve (middle line), we define a section of a Saint Venant cylinder trans-
porting the curve along its normal; this we call a Bredt-like section. A formal series expansion for
Prandtl stress flow function valid for these sections is given. Starting from it, and using standard
relationships, formal expansions for warping, shear stress vector field and torsional stiffness are
obtained. Although the expansions are affected by degeneration in regularity, at least where curva-
ture of the middle line is not smooth or at its ends, we obtain all traditional results of the theory of
strength of materials and are able to give an estimate of the crror associated with them. Morcover,
some interesting open problems are formulated, concerning both the problems of regularizing the
expansions and of generalizing them for sections with variable thickness.

1. Introduction

IT1s WELL KNOWN [1 —7] that in the Saint Venant linearized theory of torsion there
are two different ways to find the tangential stress vector field, each leading to a
boundary value problem. Both ways are equivalent; one is based on the search of
a potential function for the stress, sometimes called the Saint Venant function,
which is also proportional to the warping; the other leads to the so-called Prandtl
stress flow function. If we look at the general expression of the problem, one has
to find that vector field t, defined over the section D of a Saint Venant cylinder,
which obeys the Cauchy balance equations

(1.1) divt=0 in D?,
(1.2) t-nyp =0 along 9D,

and the integrability condition

(1.3) [ t:1z=2Cr4: VL.

C

Here n;p denotes the outer normal unit vector to the boundary of the domain
D, where D denotes the interior of D, 7 is the angle of twist, (/' is the modulus
of elasticity in shear and £ is an arbitrary circuit (closed curve) in D. By 1; we
denote the unit vector tangent to £ while A is the area confined by £, with sign
depending on the orientation of the cycle with respect to the orientation of the
plane P containing D.
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The first method to solve system (1.1)—(1.3) starts from a particular function
which satisfies (1.3):

(1.4) t=Grxr,

where * is the Hodge operator, which rotates a vector contained in 7 by 7 /2 in
the positive orientation of P. By r we denoted the position vector of a typical
point ¢ in P. Even if the domain is not simply linearly connected (we will suppose,
that it is monoconnected), from (1.4) and (1.3) it follows that

(1.5) (t=1)-1=0
/

for any circuit £ included in D. Equation (1.5) is equivalent to
(1.6) t—t=Grgrad¢,

where ¢ : D — IR is a potential function for the field t — ¢, sometimes referred
to as the Saint Venant warping function. By substitution of (1.6) in (1.1)-(1.2),
one obtains

(1.7) Ap =0 in D°,
(1.8) grad¢ -npp = —*+r-Ngp along 0D,

where A is the Laplace operator. The problem of finding tangential stress vec-
tor field is now reduced to a boundary value problem which is in the standard
Dini-Neumann form.

The second method to find the field t starts with observing that (1.2) implies

(1:9) fl s Mgy = jé*t -lgy = 0.
A\ aA
With this result, we may now deduce from (1.1) that, for any cycle L,
(]10) f*t-]g=f*t-*n35= ?gt-n,-,;5=/divt=0,
‘ as as s
S C D being a surface whose boundary is £ Jd). Equation (1.10) assures that
(1.11) st =Grgrady = t=-Gr*grady,

where 7/ : D — IR is known as Prandtl stress flow function [8]. If we substitute
this result in (1.1)-(1.3), we obtain another boundary value problem, this time
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in a Dirichlet form:

(1.12) Ap+2=0 in DY,

(1.13) P = P, along 0D;,

(1.14) j{grad Xl = —2A, V closed line L.
c

In (1.14) the 0D; are all the connected components of dD and the ¢! in (1.13)
are uniquely determined by (1.14) up to an additive constant. The constant can
be chosen in such a way that ¢» = 0 along the outher connected part of the
boundary.

Both systems (1.7) - (1.8) and (1.12) - (1.14) in general do not have a solution
in analytical form: such a solution is known only for a few domains, that is, for
sections whose boundary is a circle, an ellipse, a square or a triangle with equal
sides; in the last two cases the solution is given in terms of a series and is due to
Saint Venant himself.

There always is, of course, the possibility of searching solutions of (1.7)-(1.8)
and (1.12)-(1.14) by a numerical approach, but this would lead to list of numbers
giving no qualitative understanding of the problems. Qualitative results are a good
tool for the designer: they put into evidence which parameters are of importance
in the design of a structure undergoing torsion.

Among these there are also “technical” results derived to searching solutions
sufficiently close to the exact one by approximating the functions of interest by
means of linear functions; such an approximation is valid only when the section
is made up by thin stripes. These results are usually attributed to Viasov [9]
for open sections and to BReDT [10] for closed, hollow (tubular) sections: Vlasov
starts from a constrained material (the section is rigid in its own plane and the
middle line of the domain is free of shear), while Bredt uses a particular geomet-
rical construction of the domain which lets him attain his result quite easily.

Our aim is, starting from Bredt’s way to imagine the geometry of sections,
to develop a different approach to the problem: we will use a “rational” series
expansion for the functions of interest (warping, stress, torsional stiffness) and
a perturbation technique [11]. This is a well known standard procedure that
will provide a set of equations, valid for thicker domains. We will prove that
this method will let us recover “technical” results and give us further qualitative
results for sections which cannot be considered “thin”, both for open and closed
sections.

We choose to study a section whose geometry can be described starting from
its “middle line”, trying to follow Bredt in his analysis of torsion of “thin” closed
hollow sections. Let us choose in P a line I" of length /, which can be either open
or closed, and parametrize it through an abscissa s:

(1.15) I(s):={qeP: q-o=rs), se0I]},

http://rcin.org.pl
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where P is the plane to which the section belongs and o is one of its points,
chosen as the origin. It is possible to define a Frenet basis over /'

(1.16) I(s) := (/l‘((;# . ra(s)
(1.17) m(s) := dlggﬂ) = k(s) * 1(s),

where k(s) is the curvature of I" at s. After this, let us build the section D by
“thickening” the middle line along m; more precisely, we say that the domain we
consider is

/)(;)‘ /»(zs)] } ’

(1.18) Drgs:= {p EP:p—o=ry(s) +zxrp(s), z€

6(s) being section’s thickness at s; the section will be said to be open or closed,
depending on I" being open or closed. We can also write:

5(s)
2

(1.19) D:= {pE'P: p—o=ry(s)+ 2 «1y(s), s €[0.1], :6[—1,]]};
we choose the orientation of the boundary of D, in order to have always outer
normals expressed by the equation

(1.20) nop = —m.

In this paper we will confine ourselves to the case of sections with constant
thickness. This will imply that the curvilinear coordinate system € = {(s,z)\s €
[0,1], z € [~1,1]} (see (1.19)) is orthogonal and therefore the Laplace op-
erator can be represented without use of covariant derivatives, i.e. Christoffel
symbols. The choice of such a coordinate system does not lead to a well behaving
asymptotic expansion (for a discussion of this problem see [11] Sec. 2.5): indeed,
although the first terms of our expansions perfectly match the results already
known and supply their generalization, some regularity problems are left open in
the case of middle lines whose curvature is not analytic. Moreover, in the case
of open sections, there occurs a problem of matching inner and outer solutions
of an edge boundary layer. These phenomena most likely arise from the fact
that the particular expansion chosen is singular: the starting elliptic operator is
turned into a hierarchy of ordinary differential equations in which either a shift
in singularity or a coordinate singularity appears (see [11] Sec. 2.4 and following).

2. Representation of Laplace operator in system

One of the most interesting features of torsion is that, in general, sections
cannot remain plane and undergo a deformation traditionally known as warping.
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Such a strain is strictly linked with section’s shape and resistance and so we
will begin our study analyzing it. If we wish to know the warping of a section
undergoing torsion, we should remember the following relation between warping
and the potential function ¢:

(2.1) w(p) = 1o(p), pe€D.
To find warping we have now a boundary value problem similar to (1.7)-(1.8):

(2.2) Aw =0 in DY,
(2.3) gradw - ngp = =7 *r-nyp along 0D.

Problem (2.2) - (2.3) is well-posed, that is to say, as

(2.4) f grad w - ngp = 0.

aD

Condition (2.4) assures that there exists a unique solution of the system
(2.2)-(2.3) and that this solution is the only one. However, it is well known
that in order to determine this solution for sections of interest in technical appli-
cations, there are two possible approaches:

a) numerical methods of integration;

b) the so-called “technical” theories for cylinders with “thin” sections, i.e.
“thin-walled beams” (for example [9, 10]). These theories give solutions under
the hypotheses usually based on the fact that if the section is “thin”, one may
approximate functions involved in the problem by first order polynomials.

Let us now use curvilinear coordinates system C, that is to say, abscissa s along
the middle line /" and ordinate = along the direction of Frenet normal m; let us
also suppose #(s) to be constant with respect to s. A basis for 7 can then be
obtained considering vectors tangent to the coordinate lines:

(2.5) ij(s,2) = ()Lg‘:—:) = ry(s) (] - :f\'(s)%) .
(26) is,2) = 3 2 2oy

such a basis is orthogonal. To avoid tedious notation let us omit the dependence of
the functions of interest on the coordinates, where this does not lead to confusion.
If we wish to have an orthonormal basis, it is sufficient to divide (2.5)-(2.6) by
their norm, and to obtain (cf. Fig. 1)

2.7) 6 = L =1,
i

(2.8) e = I—Z = *Iy).
[li]]
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FiG. 1.

We may therefore formulate the problem (2.2)-(2.3) in the following way [12,
13, 14]:

LLofe llizllf’w) d (i li|0~r)] bl
) Ml a: Vi a9 — - _ D(,
=2 [lia] Izl [95 (Ilhll Tl (| NIGE 0 in
1 Jw 1 Jw
: —_— Ty + — *1h ) - S Y I 9D
e (llhil 950" iall 9= 0) g = —Tro-ry  along J

In our case it is easy to see that Eq.(2.9) assumes the form

6 1 b
1 19} 5 dw J =) s“‘ﬁ dw Sign
i) (1) ps | s |Ta| T e || T
2 2 2
we have to assume that
(2.12) 6 < sup
sEIO[]

to be sure that the Jacobian of C is not singular.
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To solve problem (2.9)-(2.10) by means of an “asymptotic” analysis, let us
suppose to have a set of domains built exactly as D, but with different thickness,
constant for each domain. It is then obvious that warping depends on ¢ as well
as on s, z: we suppose that it is possible to write a formal series expansion for w
in terms of ¢é:

0

(2.13) w(s, z,6) = Y wa(s, 2)8";

71.:0

with (2.13), system (2.9) - (2.10) becomes now

i 3| 2K 2353 28" 2263
2.14 Y | ——wp s — —— ct —Wps — —— Wy,
( ) E){ 3 Wn, 58 g 15 5 3 Wh, s 3 i }
. 1 3 -
+67+2 [Zw"’” + 232"52“}”,:: -+ 32“”11,2]
445711 [—"~hﬂ'r zz — Emn,::l + ﬁﬂ[l!’n,z ]} =0 in D,
-
i 0
(2.15) Z Wy 6" = —T5T0 - rp z2=41,Vs;
n=0

here ¢, stands for the derivative of g with respect to . In particular, (2.15)
implies

(2.15) Wy, =0, n# 1,

(2.15)" Wn, = 412-“1'0 - T, n=1.

To (2.14) - (2.15) we shall also add, for closed sections, the condition of continuity
(2.16) w(l) = w(0), Vz.

Thus we have transformed (2.2)—(2.3) into a hierarchy of systems, one for each
power of é. One could expect that, since the originary problem was well-posed,
so should also be each problem of the hierarchy; unfortunately, it is not so.

This may be proved by induction: one can at once see that the zeroth step of
the hierarchy gives us an equation for wy .. so that we know the dependence of
wp on z; however, to have an equation for wyg ;,, one must wait for the third step
of the hierarchy. It is clear though that, in order to solve the same third step, one
is supposed to know also the exact expressions for the other terms that appear
in that equation; in particular that implies one should know w; .. This is possible
because of the very simple relations one has at the first two steps; but proceeding
further this implies overwhelming difficulties.

http://rcin.org.pl
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In general, at the A-th step one has a relation between wy. .. and the derivatives
of w at previous steps. Unfortunately, boundary conditions (2.15) do not com-
pletely determine wy, leaving in it an undetermined function of s. This implies
that fundamental information for that step are at our disposal only by solving
the following steps, whereas for this solution one has to know all the preced-
ing solutions. Tt seems to be impossible to solve the system (2.14)—(2.15) using
the proposed procedure: even though (2.2)—(2.3) was a well-posed problem, its
analysis through a perturbation technique leads to a ill-posed set of successive
problems.

We may give a justification of this phenomenon by observing that the expres-
sion of Laplace operator as given by (2.11) is affected by the possible singularities
occurring when (2.12) is not verified: moreover, the regularity of coordinates C
is C'!, while for a theorem due to KeLLoGa [19] the solution belongs to the class
CY(D)Nn C¥(D"). As a matter of fact, a singularity (see [11]) occurs in expansion
(2.13) whose terms have a regularity lower than that of the exact solution. Such
an effect is in our case enhanced by the circumstance that warping is given as the
solution of a Dini—Neumann problem, i.e. a boundary value problem with data
on normal derivatives, whose regularity is even weaker.

Our idea is then to look for a solution of the warping problem by an analogous
technique, starting from basic torsion problem expressed in terms of Prandtl stress
function.

3. Asymptotic expansion for Prandtl function

We choose an expansion for Prandtl function of the form

o'e)

(3.1) (s, 2,6) = Y (s, 2)8";

H:n

in this way, system (1.12)—-(1.14) is turned into

= 43| =k 2R zK' 2253
(32) z onTe _'g'ﬁ"n.ss - *8—‘.‘:‘!)‘:: + '?L"u.s - 8 Ls‘n.:
71=0

_ 1 3 K2
+é”+2 I:Z‘-i'n,ss + Z‘jzf{:‘v"n,:: + :Ed’n,:‘l
3 Iy . )
+é”+l [_53"— L“JL,ZZ 5 _L.‘n,:] + ("”{Q"n,:z]}

2
62 3 1 .
= - — (1 - g:h’é + 2225262 _ ﬁ:3f;.3(53) in DY,
2 2 4 8

(3.3) S =>"9,6" along dD;,
n=0 n=0
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(3.4) j{ 23 6" — f KD o6 = 206 16+ 78 along OA.

s n=0 s n=0

If the section is simply connected (in our case, if it is open), its boundary is
only one closed curve, and Egs. (3.2) and (3.3) supply a hierarchy of well-posed
problems, as will be proved below. If the section is not simply connected (in our
case, if it is closed, with a hollow), we must consider, in addition to (3.2) and (3.3),
Eq. (3.4) as a condition of integrability; A is the area enclosed by the middle line
and JA is the boundary of the hollow, which has opposite orientation to that of
the same curve regarded as part of the domain boundary.

We must observe, as it was remarked at the end of the previous section,
that also asymptotic expansion (3.2) is affected by a degeneration in singularity
phenomenon; however, as the boundary value problem is in a Dirichlet form, the
sequence of ¢, allows an evaluation of all quantities of interest in torsion, at least
when I is analytic. However, although we do not prove here that this is really
the case for expansion (3.2), we believe that at least its first steps reasonably
approximate the frue solutions; we limit ourselves to refer to [11] for a more
detailed discussion on this subject.

We now look for the solution of system (3.2)-(3.4), step by step, both for
closed and open sections; we remember that one may always choose ¢ so that at
the outer boundary (= = —1) it equals zero.

3.1. Closed sections

Solution at step 6"

Considering in system (3.2) —(3.4) the coeflicient of the zeroth power of é, we
have

(3.5) o =0 = o(s2) = 2¢ga(s) + doo();
substituting (3.5) into (3.3) we obtain

(3.6) vo(s,—1) =0 = (s, 2) = (= + Didgo(s),
(3.7) Po(s, 1) = const = (s, 2) = ¢(2) = (z + 1)thgo,

where iy is a constant independent both of s and =. It is now possible to use
(3.4) and (3.6):

(3.8) 2 f o, =0 = Yoo=0 = g(z)=0.
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Solution at step &'

Let us go on with our solution; keeping in mind (3.8), the second step of
Eq. (3.2) gives us

(3.9) P1z2. =0 = P1(s,2) = 2¢P1a(s) + Yrols);
again applying (3.3) it results that

(3.10) Pi(s,=1) =0 = (s, 2) = (= + Dihro(s),
(3.11) P1(s,1) = const = ¥1(s,2) = ¥1(2) = (2 + )10,

11,0 being a constant; another relation must be used, that is, Eq. (3.4); substituting
in it (3.11), we have

—~.I| :b.{

(3.12) 2§ 41.=2 > Po=% = d’l(:)=;(z+l),
1

z=

A, : : . ’
where 7 := 27 is some sort of “equivalent radius” for the middle line I'. Tt

is worth noting that expression (3.12) is the same as that which can be found
in “technical” books (for example [15, 16, 17]) under the assumption that the
cylinder is “thin”, that is to suppose the Prandtl function t be linear along =.

Solution at step 6°

If we take (3.2) at its third step, Eqs. (3.8) and (3.12) lead to
(3.13) .. - i3S N Pa(s, z) = ? (h% = 1) + 22:(s) + P20(s).
Equation (3.13) and the boundary conditions (1.13) in the form of (3.3) give
(3.14) Va(s, 1) =0 = Po(s,z) = 3—1(32 -1) (h.; —~ 1) + (2 + Da(s),
(3.15) (s, 1) =const = (s, 2) = %(22 = 1) (hg - 1) + (= + D)y,

where 1. is a constant. As usual, we now turn to apply (3.15) to (3.4):

(3.16) 2 }f V2,2 = }f k.=l = Y21 =0
z=1

)

[N I

> vals, ) = 3G -1
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Solution at step &

Equations (3.8), (3.12) and (3.16) give us
(3.17) .. = % (kT —1) = ds(s.2) = :32"—;1 (57 — 1) + 293.1(5) + ¥30(s).
Equation (3.17) and boundary conditions (3.3) lead us to the results
(B18)  Us(s~1)=0 = ¥a(s.2) = 23 4 DT = 1)+ + Dikaa(s),
B19) s D=c 3 (s = G - DET - 1)+ ez +1),

where c is a constant. If we apply (3.19) to (3.4), we obtain

K 1 A, R e
(3.20) 2 }{ V3. — }g Ky, = }{ 1 = ¢= i EZ(M -1) = 7((17 - 2m)
z=1

z=] z=1 z=
= YP3(s,z2) = ;—4(:3 —z)(kT-1)+ %47 (a7 - 2m)(z + 1),

where

(3.21) a = fﬁ(nr— 1.
z=1

Solution at step &*

Itis a straightforward calculation which gives us (x” is the second-order deriva-
tive of «)

‘ 5. K2 (KT — 1) .2 KT n(m —2m) .
(322) 1/4,2: ( 9 ) 8 ) 487 7
and
’ o : K (m K'T
(3.23) Ya(s,z2) = (1 + 2:2 -3z )—2 ¢ - 62 384
+(E - 1)r‘(r1? —_27r).

481

Without going on to further steps, we observe that every ¢; is uniquely deter-
mined. We may prove this by induction: having proved that we are able to find a
complete solution at the first four steps, it is easy to see that at each step i one
has:

a. One equation, derived from (3.2), which gives us a relationship between
¥i .. and an algebraic sum of derivatives of v»; with j < i; as these constitute a
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homogeneous polynomial, it turns out that (s, =) is a polynomial of degree 7 in
= and it depends on two functions of s alone;

b. Two equations, implied by (3.3), which define the form of the polynomial
¥;(s,2) and give us some information on the functions of s above mentioned,;
more precisely, we obtain one of these functions in terms of the other. Therefore
we are left with only one function to determine, about which we have some
information, of the kind: it is a constant, or equals a known expression plus a
constant;

¢. Such information is employed by the equation derived from (3.4) which
finally lets us solve the problem and find the expression of ¢;(s, z). One interesting
property of (s, z) is that it presents only odd or even powers of z, depending
on whether : is odd or even.

We may say that this way of seeking a solution of the torsion problem for
hollow cylinders is rather succesful (see Conclusions); let us then turn to examine
the case of open sections.

3.2. Open sections

As already said, an open section is simply connected, which implies that the
problem is now ruled by Egs.(3.2) and (3.3) alone; in particular, if D is con-
nected, we can say that Eq. (3.3) reduces to

(3.24) =0 along D.

Let us now look for the solution of system (3.2)—(3.24). It should be remirded
that the solution which will be given here is an outer solution (see [11]), that is,
it coincides with the exact solution only outside a thin region near the shorter
edges of the section. Indeed, in closed sections an edge effect layer arises, since
solutions given in this section are not capable to satisfy a// boundary conditions.
They need to be matched with an inner solution valid in the edge layer which
satisfies boundary condition at s = 0, s = [. Tt will be a further step of our
research to investigate what happens in the edge layer and to provide complete
matched asymptotic expansions. We remark explicitly here that the outer solution
we supply coincides with those found in the literature [4, 17].

Solution at step &"

It is quite easy to see in this case that (3.2) implies
(3.29) 0,22 = 0,

which means that v is affine in z; but, as (3.24) tells us that ¢’y vanishes both at
z = —1and =z = 1, we may at once conclude that

(3.26) Vo = 0.

http://rcin.org.pl
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Solution at step &'

At this step results (3.25) and (3.26) show us that we have exactly the same
situation as in the previous section concerning step ¢%; we may thus conclude that
(3:27) Yy = 0.

Solution at step 4°

Equations (3.2), (3.26) and (3.27) tell us that now we have

ol

= ( )—~T+(21()+L20().

while the restriction of Eq.(3.24) to the lines = = +1 gives us

(328) V2,20 = —

M| =

_ 1- 22
(3.29) bals, 2) = dalz) = —,
The remaining part of the boundary condition corresponding to the lines s = 0
and s = [ cannot be fulfilled. This is a well-known phenomenon in singular

perturbation problems. We will return to this problem in the final section. We
can observe that this is the solution one usually finds in ordinary handbooks on
the strength of materials.

Solution at step &°

This time we have
7,

ZK oAl

(3.30) Voo = =7 = ¥a(s,2) = ‘E 2030(8) + V30(s),

which, with the help of (3.24), becomes

(3.31) P3(s,2) = (1 - 24 .

Solution at step &*

This step is also easy to solve; we obtain from (3.2), (3.27), (3.29), (3.31),

K ; |
9:2) = (s, 2) = 1()2(2.:2 — 32%) + g ()7 + Yao(s)

f|2
32) Yyq .., =
(3.32) Y4z 13

and this, with the help of (3.24), becomes

(3.33) Va5, 2) = — (27 -3+ 1),

192

We can stop now and repeat what we said about the solution of system
(3.2)-(3.4) for closed sections: we have, as a matter of fact, the same struc-
ture at each step as that observed there; we can conclude that also for open
sections the torsion problem in terms of Prandtl function may be solved in this
way. Let us now look for the relations between warping and .

http://rcin.org.pl



1018 F. peLL’IsoLa anp G, C. Ruta

4. Asymptotic expansion for warping

An equation which lets us link the warping and Prandtl functions is given
directly by (1.5), (1.7), (1.13), (2.1):
(4.1) gradw = —7 * (grad ¢ + r)
where each function is a field defined over the domain. We may now explicitely
express the gradients in (4.1) in terms of the coordinates s and z, use expansions

(2.13) and (3.1) for w and > and write as well the complete expression for r given
by (1.19). We get

(4.2) % fj wn 6" = 1 li P 26" — % Z T L

n=0 n=0 n=0

(43) Z wn,:an - 5% Z wn.:‘ﬁTl+1
n=0

n=0
1 00 J i $ 52
- [QZ‘*‘M‘“ +(i‘~’”4 "o " o|

n=0

having proved in the previous section that we are able to find the complete
expression for ¢ for each k, we can as well find complete expressions for w; at
each step, what we were not able to do following the method described in Sec. 2,
both for closed and open sections.

4.1. Closed sections

Solution at step &"

It follows directly from (4.2) and (4.3) that
(4.4) . = 0,
(4.5) wp,. = 0.

It is worth noting that (4.4) corresponds to (3.8) and (4.5) could be derived also
from an attempt to solve (2.2)—(2.3) at the first step; in this case we may note
that at the first step the shift in singularity phenomenon did not occur, so that
also system (2.2)—(2.3) provides a correct solution.

Solution at step &'

Again starting from (4.2) —(4.3) and keeping in mind (3.8), (3.12) we have
(4.6) wy s = 27% — TIg X Iy,

4.7) wi. =~ 51,
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Simple integration of (4.5) and (4.6) gives
(4.8) wo(s, 2) = wo(s) = 27 (iq — 2(s )) + wo(0),

where (2(s) is the area enclosed by the arc comprised by the values 0 and s of
the abscissa on the middle line and the two radii r(0) and r(s). Equation (4.8)
is the same which is possible to find in “technical” books under assumptions of
“thin” section (see the already quoted books [9] and [18]).

Solution at step 6°
If we now substitute (3.8), (3.12), (3 16) and (4.8) into (4.2), (4.3), we have

(4.9) wys = — 5 (1+ kry x rg) ,
(410) wa . = 0.

By integration we find

(4.11) wi(s, z) = —szro . 1,

2

plus an inessential constant; this is a new result which enables us to predict the
warping of a hollow section of the kind described in Sec.2 when the wall is not
so “thin”; we may see that warping is not constant and varies with z, such a
variation might be called #lting. Equation (4.10) corresponds to the boundary
conditions (2.3).

Solution at step &

At this step, with the same procedure as that used in previous sections, we
find

- 27
412 g ¢ = 1- - ,
(4.12) s = 75 |61 = w7y + T2
(4.13) w3, = —]T—ﬁ 22— 1K'T,
and integrating we obtain
(4.14) wy(s, 2) = wals) = = { . / K(KT — 1)} .
12 [
0

Solution at step &*

We have now
(4.15) w3 s = 4L8(333 — 2T
which implies
(4.16) wi(s,z) = (3~ K'T.
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4.2. Open sections

In this section we will apply the same procedure as that used in Sec.4.1,
starting from Egs. (4.2)-(4.3); we shall make use, of course, of expression for
the Prandtl (outer) function for open domains, that is to say, Egs. (3.26), (3.27),
(3.29), (3.31), (4.33).

Solution at step &’

We have immediately

(4.17) Ty, = 0,
(4.18) wy,. =0,

about which we may make the same remarks as those concerning Eqgs. (4.4), (4.5).

Solution at step &'

Going on to the next step we have

(4]9) wgs = —TIrp X I‘6,
(4.20) wy . = —%"0 1.

From (4.18) and (4.19), one obtains
(4.21) wo(s, 2) = wo(s) = —7ry X 1y,

which is the well known Vlasov equation of warping for “thin-walled beams” of
open section [9].

Solution at step &°

This time we have

(4.22) wys = —2= (1 — Krg X ry)
4.23 wy . = 0,
(

integration of (4.20) and (4.22) gives
T /
(424) lI‘l(.k‘, 3) = ﬂgir[—j - Ty,

plus a constant; this is a new result concerning sections which are not so “thin”;
note the filting already mentioned concerning (4.11).

http://rcin.org.pl
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Solution at step &
If we want to follow the procedure for further steps, we have
2

12°

(4.25) wys =T
(4.26) w3, = 0,

we may integrate (4.23) and (4.25) to obtain

(4.27) wa(s, 2) = wa(s) = %/m
0

which is another new result.

Solution at step &°

Let us examine the last step:

(4.28) w3, = 0,

; el 7 . 3
(4.29) Wy, 748(,. =),
one integration of (4.26), (4.28) gives us
(4.30) w3 (s, z) = const,

which is a new and interesting result that shows us that there is a gap between
the third and fifth step in this calculation.

We remark that at all steps the cross-derivatives of wy, are equal, which is an
important test of the validity of our derivations.

So we may say to have found a kinematical solution of the torsion problem
for these sections. Let us now examine some interesting statical properties.

5. Tangential stress field
Let us suppose to have a formal series expansion of the tangential stress field t:

(5]) [(.«_:‘6) = itra(-“-l)ﬁ"';

n=0

as we know each coefficient of the formal series expansion (3.1), we may use
(1.11) and (1.6) to find an equation for t. In particular, we have

(52) i l“(ﬁ”+1 - % i t,ib:1+2 = 20T [(i ‘L",,‘:{s” - % i L-‘”‘:(SH-*I) l'f)

n=0 n=0 n=0 n=0

1 = ,
=50 v»n,m”“@rz))] ;

&
n=0

http://rcin.org.pl
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so, operating as in the previous sections, we can solve system (6.2) —(6.3) step by
step both for the closed and open sections.

5.1. Closed sections

Solution at step &"
We immediately have, on the basis of (5.2),

(53) '4[,70'3 = 0’
conciding with a result already obtained, cf. Eq. (3.8).

Solution at step &'

We have now

2GTA
(5.4) ty = Gr7r) = i’ .
Equation (5.4) can be found in technical literature: due to the assumption of
“thin” section, the state of stress is plane, directed along the middle line, and
besides one may neglect terms of higher than the second order in a power series
expansion of Prandtl function, and obtain a constant distribution of tangential

stress.

Solution at step °

Simply applying (5.2) and (5.4), we get

(5.5) t, =Grz (h% - l) rp;
equation (5.5) is a new result that, as already said in connection with (4.11), takes
into account the fact that the section is not so “thin”.

Solution at step &
If we go on with our simple procedure, it is quite easy to prove that
(5.6) =G {[1( T 1)(2 1)+ 1(— 2 )]r'
. = 0uT —={KT — L = = —ar — £mw
: 4 3) " 12 o
H,F 2
+ [E(l -z )] (*!’6)} )
which shows that this is the first step in which a component of shear stress along
m appears.

Solution at step 6*
Our last result for this case is

(5.7) t; = zkty + GT + %(2,“—‘ —1)(1 - 22)(+1)),
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which is another new result. Let us examine what happens in the case of an open
section, keeping in mind that we have at our disposal only a partial knowledge
of the complete solution.

5.2. Open sections

Solution at step 6"

We immediately have from (5.2)
(5.8) o, =0

about which we may repeat the remark made before, concerning (5.3).

Solution at step &'

We have now the possibility to write tangential stress vector field at the first
step:

(5.9) to(s,z) =0,

this is a result already known: stress distribution in an open section cannot be
determined before arriving at the third step of Prandtl function.

Solution at step 5°

We get now from (5.2), (5.8), (5.9),
(5.10) ti(s,2) = —Grzr,.

Solution at step &

We have at this step, remembering the results of previous steps,
(5.11) tr(s,z) = GT%(] — 322y},

which is the first of our new results for open sections.

Solution at step 6*

Equations (5.2), (5.8), (5.9), (5.10) and (5.11) yield

k2 1 &

(5.12) t3(s,2) = G7 |2 (5 — 29)r) + sﬁ(sz — 1),

which is another new result. We see that, starting from this step, the effect of
tangential stress along the normal to middle line becomes appreciable.

http://rcin.org.pl
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6. Higher order torsional stiffnesses

Usually the torsional stiffness is defined as the ratio of torque divided by unit
torsion angle, that is to say,

T
N =
(6.1) IR .

since it is possible to express tangential stresses in two ways, either by means of
a potential function or through Prandtl function; it is also possible to derive two
different equations for torque, each starting from a different point of view. That
implies we have also two different formulae for torsional stiffness:

(6.2) Iy

(6.3) KN =26 ( / ) + /1.\75.\) ;

D

Gr="D),

in (6.2) J is the section’s polar moment of inertia and D is the so-called Dirichlet
integral, which is given by

(6.4) D= /grad ¢ XT.
D

In (6.3) A, is the area of the hole. To simplify the calculation, we use (6.3). Let
us suppose for A" a formal power series expansion similar to those already used:

(6.5) K@) =>_ K"
n=0

we may then substitute (6.5) into (6.3), as well as the formal series expansion
(3.1) for Prandtl function. We then have the following results.

6.1. Closed sections

We may see at once that
(6.6) hNo=10

which means that at the zero order, that is to say, when thickness tends to zero, the
considered section exhibits no resistance to torque, which is physically reasonable.
Going on with our calculation we have

— —2
—24 4/ A
(67) 1\~1 = 2(1' (/ l‘;"‘() + l—j—) = 7 .

D
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which coincides with the well-known Bredt formula that one may found in every
book on the strength of materials. At next step we find

1 .
(6.8) K2 =26 (5 /c~1 A} =0
>

which is a new result and gives us a mathematical reason for the validity of Bredt
formula: since there are no immediate corrections to the torsional stiffness of a
Bredt-like section, its approximate value has proved to be good enough for some
applications. If we go on, we find

- i

(6.9) Ky =G ll_Tﬁ + ”"] :

which gives us a third-order correction for Bredt formula. At the next step we
find

(6.10) Ky =0.
6.2. Open sections
It is absolutely trivial to show that
(6.11) No= R, =hy=0;
it is also easy to see that
i’f
3

which is the usually known result for “thin” sections; going on we have

(6.12) Ky =

(6.13) Ky=0

which is a new result, interesting because it enables us to see that for open
sections there are corrections for A only at higher orders of é. However, we have
to remark that we have not developed a matching of Prandtl function close to
the ends of the section to account for the edge effects. This seems not to affect
(6.12), but it could change the result given by (6.13). Further investigations will
clear up this point.

7. Conclusion and open problems

The only exact solution available in literature with which we can compare our
results is that of a circular ring. Our asymptotic expansions supply exact solutions
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after three steps. All sections belonging to the class 5 we have studied share the
property of having a vanishing second order torsional stiffness. We remark that
the only other solution in analytical form for our problem which may be found
in literature is that of an elliptic shaft [4] and that, unfortunately, this section
does not belong to B: indeed, its second order torsional stiffness does not vanish.
Further investigations will be developed in the following directions:

a. To find an expansion valid for Bredt-like sections with variable thickness;

b. To develop a matched asymptotic procedure to handle the edge layer effect
appearing in open sections;

c. To cure the loss of regularity arising in present expansions using the methods
proposed in [11];

d. To determine mathematically the range of validity of the proposed expan-
sions using the potential theory, as first done by KeLLoG [19];

e. To estimate rigorously the errors associated with the Bredt results in some
cases interesting from the point of view of applications.

In our opinion, the expansions proposed in this paper show a new example of
a well-known phenomenon occurring in asymptotic analysis: first terms supply an
accurate approximation of true solutions, while starting from a given step, a loss
of regularity may be observed.
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