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Vorticity distributions for thick and thin viscous vortex
pairs and rings

A. BEREZOVSKI and F. KAPLANSKI (TALLINN)

UNSTEADY VORTICITY distributions inside the viscous core of vortex pairs and rings are presented.
All of them are solutions of the Stokes slow-flow equations, which are valid for the viscous core in
the first approximation cven in the case of slender vortices. It is explicitly shown that the condition
of conservation for the impulse of vorticity is fulfilled for such distributions. The obtained solutions
for thick viscous vortices are the direct generalizations of the classical sclf-similar distribution.
Another form of vorticity distribution for slender vortices is identical both in the plane and in the
axi-symmetric case.

1. Introduction

VORTICITY IS A NECESSARY element in almost every real flow. All the diversity
of incompressible fluid flows is provided by the presence of different vorticity
distributions. The description of vorticity evolution has fascinated researchers
for over one hundred years. Nevertheless, only a few exact forms of vorticity
distributions inside viscous vortex cores are known at present, encompassing both
unsteady flows as well as steady solutions.

A physically realistic distribution of vorticity in an unbounded viscous fluid
must satisfy the following requirements:

e It should be a solution of the Navier - Stokes equations.

e It should decay at infinity.

e The impulse of vorticity should be conserved in time (BATCHELOR [1]); that
is

(1.1) I= gjrﬂdrdz = const
in the plane case, and
(1.2) I= 971'/7'2!2 dr dz = const

in the axisymmetric case, respectively. Here, p is the fluid density, r is the radial
and z is the axial coordinate in the cylindrical system of coordinates located at
the center of vortex ring (longitudinal and transversal coordinates in the case of
vortex pair), and {2 is the azimuthal (or out-of-plane) component of vorticity (see
Fig. 1).
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F1G. 1. Schematic drawing of the cross-section of a vortex pair or ring.

In the case of a vortex ring, dimensional analysis and the condition of conser-
vation of the impulse of vorticity determine the self-similar vorticity distribution
in the long-time limit,

?

M r r? 4+ 22
1. z,t)y= —
(13) f2(r, 2,1) 4/ 2p73/2(2u1)? l(2ut)]/2 CXP( 4t )

where M is the initial value of the impulse of vorticity.
The analogue of this formula for a vortex pair in the plane can be expressed
in the form )

M r 7'2 + ,:2
. 0(r,2,0) = )|
(1.4) (r,2,1) or (2012 [(2,4)1/2 exp ( 4ut )]

It is easy to see that dimensionless distributions (in square brackets) are the
same in both cases, the difference in the geometries being contained in the dif-
ferent powers of time and constant factors in the denominators of the leading
terms.

The distribution (1.3) appears for the first time in the paper by PHiLLIPS [8]
and remains the unique example of the solution of the Stokes slow-flow equations
satisfying the conservation of the impulse of vorticity (see, for instance, TING and
Bauker [11], RotT and CANTWELL [9]), excluding the present work.

Attempts to generalize the self-similar vorticity distribution to a wider range
of times by KaMBE and OsHiMA [6] for vortex rings and by CANTWELL and RoTT
[5] for vortex pairs both take into account (at second order in a perturbation ex-
pansion) the effects of nonlinear vorticity convection, but lead to the non-uniform
validity of solution.

However, it must be noted that the vorticity distribution (1.3) is not the sole
solution of the Stokes equations conserving the impulse of vorticity. This can
be easily shown for the plane case. It is well known that the superposition of
two equal but counter-rotating Lamb - Oseen vortices satisfies the Stokes equa-
tions. The corresponding vorticity distribution can be represented in the following
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form Lams [7]:
(1.5)  2(r,z,t) = M [exp (_£+_(4Tl;i)2) _exp (_ 22+ (r + Ro)? )]

4rovt Ry 4pt

M, 2+ 7124+ R} sinh (TRO)
" 2movtRy P 4ut 2ut )’

where 2R is the initial distance between the vortices (Fig. 1).

A direct calculation shows that the conservation of the impulse of vorticity
takes place in this case. The relation for the impulse of vorticity (1.1) can be
rewritten in the following way, using (1.5):

(1.6) I= g / rdrdz

— 00

M T r2 + R} rRy 7 ¢2
= - inh d S
2moRo(2vt) /2 / e"p( 4l )S'“ (ZI/I)T Tf exp | =75 ) 46

where ¢ = z/v/2vt. Afer integration with respect to ¢ we obtain the expression

M7 (0~ n)? (o + )
(1.7) I= W j {exp (— > ) — exp (_T)] odo,

—00

where o = r/V2vt and n = Ry/v2vt. The substitutionsc —n=1,0+n=1n
transform the last integral to the difference between very similar integrals

7 w2 < .
18) I= —2-(2:)1T2n [-j(rl +n)exp (—?1) dm —:/(1'2— 1) eXp (—52) drz] ,

which can be combined to obtain the well known Gaussian integral, which is
independent of time:

i T 2
(1.9) [ = (—2—7% / exp (—%) dr = M = const.

Thus, the superposition of two counter-rotating Lamb - Oseen vortices satisfies
both the Stokes equations and the condition of conservation for the impulse of
vorticity. The similarity solution (1.4) is the limiting case of solution (1.5) for
large times. In fact, since for large times sinh(r Ro/21t) ~ r Ro/2vt, we have

M 224+ 2+ R} r Ry
1.1 - AL e ) P —
(1.10) 2rovi Ry P ( 4ut ) Sinh (21/[ )

M A i 12+ 22
To(2ut)3/2 | (2ut)l/? P 4ut '
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The generalization of the solution (1.5) to the axisymmetric case is

M r2 + 22 + R2 r Ry
1.11 A2ty = ———exp -l ( )
i (r,2,1) o(2nvt)3 /2Ry oxp ( 4ut ) "\2vt )’

where [, is the modified Bessel function of the first order. The derivation of this
solution can be found in the paper by BEREZOVSKI and KAPLANSKI [2].

The presence of additional solutions of the Stokes equations which conserve
the impulse of vorticity allows one to supplement the self-similar vorticity distri-
butions classification given by CANTWELL [4]. The aim of this paper is to present
such new vorticity distributions which are valid after the initial formation of vor-
tices has finished and before the vortex pairs or rings have finally decayed. This
corresponds to entrainment phase of the development of laminar vortices in ter-
minology by SHARIFF and LEONARD [10].

In the Sec.2 of the paper, thick viscous vortex pairs are considered in detail.
The equation of motion is reduced to a linear diffusion-like equation for the
vorticity in the case of small Reynolds numbers. The obtained distribution of
vorticity and circulation are direct generalizations of self-similar expressions. The
analogous results for thick vortex rings are briefly presented.

In the Sec.3 we describe slender vortices. The flow field is separated into
two distinct regions: the viscous vortex core and the inviscid outer flow, and the
problem is treated via the method of matched asymptotic expansions. A linear
diffusion-like equation for the vorticity is obtained for the vortex core in the first
approximation. The vorticity distributions for slender vortices are shown to be
the same both for vortex pairs and rings. Conservation of the impulse of vorticity
leads here to a time-independent circulation and distance between vortices (or
ring diameter).

In the Sec.4 we present our conclusions.

2. Viscous vortices
2.1. Viscous vortex pairs

For simplicity, we deal first with vortex pairs. The two-dimensional Navier -
Stokes equations in vorticity-stream function form are

8_0.}.2( _Qa_sp).pi(_()a_w)— 82_0.*.@
ot Tar\ 9:) T 9:\ar) T\ T 922 )
Or? 022

(2.1)
=0,

where (2 is the out-of-plane component of vorticity vector and ¥ is the stream
function, related to Cartesian velocity components « and v in the r and z direc-
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tions, respectively, by

w o _w
0z’ T oor

The vorticity field is antisymmetric about the z-axis in this case

(2.2) u =

(2.3) 2(-r,z,t) = —92(r, 2,1).

The boundary conditions include no flow through symmetry plane
(2.4) (0, z,t) = 2(0,2,t) = 0.

The far-field conditions must satisfy the assumption of the decay at infinity
(2.5) -0, @0 as r’+22- .

For initial conditions, we specify an initial radius of each vortex core 6y and
an initial distance between the centers of the vortices 2R, at time #y (Fig. 1):

(2.6) R(ty) = Ry, 8(ty) = bo.

The initial vorticity distribution inside the core remains indetermined, because
we seek a self-similar solution of the problem.

A non-trivial solution of the problem is provided by the conservation of a
non-zero value of the impulse of vorticity I in time. A prescribed initial value M
of the impulse of vorticity determines the self-similar solution completely.

It must be noted that there exist two different length scales in the problem.
One of them is the viscous diffusion scale §(t) = (2v)!/2, and another is the
distance between vortices 2 (t). For viscous vortices at sufficiently large times, the
condition &/ R(t) > 1 is fulfilled. The initial distance between vortices becomes,
therefore, an insignificant parameter, and its influence may be neglected. This is
the common way to obtain the self-similar solution (CANTWELL and RoTtT [5]).
Nevertheless, we take into account the influence of the initial distance as well.

Passing to a laboratory frame of reference, we introduce dimensionless vari-
ables:

(2.7) o=" (:ﬂﬂ _ R

"

where Z(t) is a current axial position of the vortex pair, dZ/dt = V (1), and V()
is the propagation velocity of the vortex pair. It must be noted, that the relations
connecting the stream function and velocity components change in the following
way

ov

av
——E, U——E‘*‘V([)

(2.8) u=
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Introducing dimensionless vorticity and stream function to be determined:
_ L2(r, 2,1) _W(r,z,t)

we can rewrite the equation of motion (2.1); in the dimensionless form

(2.10) —2ow— . +(—+

lile 017

( Ow Oow Bw) R [(‘)dr ow Y dw] _ &_*_?_Zﬂ
¢ do Do OC| 9o 92’

where Re = 2,62 /v, and it is assumed that the scaling function for the vorticity
has a power-law decay with time, i.e. £2p(t) ~ t=°.

For small values of Reynolds number, which are characteristic of viscosity-
dominated flows, we seek a solution in the form of an asymptotic expansion in
powers of the Reynolds number,

(2.11) w(o,(,m; Re) = wi(o,(,n) + Rews(o,(,m) + ... .
At lowest order, we obtain a linear equation for the vorticity

(9&)1 c‘)wl 0w1) _ 82w1 f)zwl
(2.12) 20w — ( C + 7 an ) = | 502 + a2 |-

The solution of Eq. (2.12) which conserves the impulse of vorticity and decays
at infinity has the form

24 .24 .2
(2.13) wi(o,(,n) = exp (—C—+02¢) sinh(a7),

and corresponds to a time-decay exponent a = 1. In dimensional form, this
solution is just the same as that for the superposition of two counter-rotating
Lamb - Oseen vortices (1.5)

M 2 +r2+ Ry . (TR
(214) QI(T‘,/,,t) = mexp (—T sinh (21/1) .

One of the main features concerns the circulation of the vortices. Since the
vorticity field in the plane case is antisymmetrical, vortices have identical values
of circulation, which are of opposite sign. Therefore, it is sufficient to determine
circulation only for one half-plane. Direct integration, using the expression (2.14),
gives

o0 00
M 22+ r2 4+ RZ rR
: Iy(t) = _ M - TN o _0) .
5do) 10 /O/ZQm/tRo exp( 4t )sm (ZVI dz dr
—00

M Ry
= —erf( ) .
oy Vaut
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This means that circulation decreases with time, but, unlike the vorticity, its
time-dependence is not of a power-law type.
Plots of dimensionless form for the obtained vorticity distribution

2 a — n)? 2 o+ n)?
2.16)  wi(o.n,C) = 2177 [exp (_#) ~exp (_c +(2+ ) )} 7

are shown in the Fig.2 for different time values. In addition, the dimensionless
self-similar distribution

(2.17) w(o,() = oexp (— 5

is shown. The smaller value of 7, the longer time corresponds to it. As expected,
the obtained solution has approached the self-similar distribution with time.

075 T T T T

060

045

030

dimensionless vorticity

015

1 1

0 1 2 3 4 5
dimensionless distance

F1G. 2. Variation of vorticity distribution with time for a viscous vortex pair. Dashed curve
corresponds to the self-similar solution.
2.2. Viscous vortex rings
The linearized equation of vorticity diffusion at lowest order in Re in this case
is

(2.18) e — ( ow ow &u) w e 10w w

%0t ot ) et oa e 2
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The vorticity distribution for the vortex ring with conservation of the impulse of
vorticity has the form (BEREzOvskI and KAPLANSKI [2])

M o2+ 2+ 9?
2.1 ? Y= ———— -
(2:4) 1(r 21) o(2rut)3/2Ry P ( 4ut h(om),

where [ is the modified Bessel function of the first order. Such a solution corre-
sponds to a time-decay exponent a = 3/2. The circulation in the case of the vortex
ring is again found by direct integration, using the vorticity distribution (2.19)

02+C2+n2

(220) () = [ ] 9(27rut)3 e P (—T) L(on) dr dz
)

- gng (1-e72).

In the long-time limit ( — 0) the vorticity distribution (2.19) approaches asymp-
totically the self-similar form (1.3), the circulation (2.20) tends to the self-similar
form as well.

3. Slender vortices

In the case of slender vortices, the flow-field is divided into two regions: the
outer potential flow and the viscous vortex core. Each of these regions is char-
acterized by its own length scale. The viscous diffusion scale 6 = /2v(t — tp)
remains valid for the vortex core, whereas the outer flow has the length scale
compared with the distance between vortices K(¢). Slenderness means that the
length scale ratio is a small parameter.

6
(31) E= ﬁ<<1

In the context of a matched asymptotic expansion method, we introduce two
kinds of dimensionless variables:

e outer variables

1 24 0

(3.2) =7 ¢ = 7 =g
e inner variables

.__T—R T_Z—Z __(50

(3.3) o = (5 5 Q_ é L] 77"5

where R, Z are the coordinates of the (dimensional) location of the center of a
vortex core.
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We seek a solution of the Navier - Stokes equations (2.1) in the form of the
asymptotic expansions, each of which depends on its own kind of variables:

e outer expansion

?
STPZ’){) = Wl(av Ca T]) + T1/2w2(0, ¢, 77) +* O(Tl)’
(3.4) R
m = wl(av Cv T]) + Tl/zd&(“ﬂ C’ Ti) + O(TI)’

where (2 is a scaling function for the vorticity and 7 = (¢ — #p). This expansion
is valid as 7 — 0 for fixed o, (, 7.

e inner expansion

2r,z,1) = %51 (E,Z, 'ﬁ) + ;11/—252 (a‘, Z, T;) + 09,

¥ (r,z,t)

14

(3.5)
=9y (0,C,71) + 7%, (7.3,7) + 0(Y),
which is valid as 7 — 0 for fixed 7, C, 7.

Substituting these expansions into the equation of motion (2.1);, we obtain in
the lowest order for the outer problem

w R (22 4 2r . 00) Z_dw
GO Gra e \Tae TS Ty ) " R ac
Dy Oy | Dy Dy _ 1 [0%1 0%,}

T 9C 0c | s 9C  Re| da? T 92

For the outer flow, viscous terms are negligible because the Reynolds number
Re = £20R?/v cannot be assumed small as it was for thick vortices. Only trivial
solution satisfies zero boundary conditions at infinity in this case, i.e.

(3.7) wi(o,(,n) = 0.

For the inner problem, we obtain in the lowest order the following equation

e _851 -—_-(9(-_&1 _051) (9?1 051 8@1 6[31
8) et (" oz ot tTen) "ot o7 T w ot
_ (‘}251 8251

We make the common assumption that the vorticity distribution in the vis-
cous core is circular in the lowest order. Introducing the polar system of coordi-
nates &, 6:

(3.9) T =£cosh, ( =¢sind,
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and representing the vorticity in the inner problem in the form
(3.10) & (7,5, = 3167)
we obtain a linear equation for the vorticity in this approximation

0wy _0w, _ 9%y | 10wy

Thus, at the lowest order, the governing equation for the vorticity in the viscous
vortex core of a slender vortex pair is a linear diffusion-like equation similar to
that which we obtained for the viscosity-dominated case.

It is easy to see that the solution of Eq.(3.11) decaying at infinity, is the
following

2+,,—]2

(3.12) €, T) = exp (5 : ) To (€,

where I is the modified Bessel function of zeroth order. Such a solution corre-
sponds to the exponent o = 1. This distribution tends to that of the Lamb - Oseen
vortex

| o
(3.13) B(0) = oxp (_.5)

only in the long-time limit (7 — 0).
Returning to dimensional variables, we have

r— RV + (2 — Z)2 + 62
(3.14) 0, = ﬁexp (*( R)4:(t(_ to)Z) + bo)
boy/(r — RY? + (= - 2)2
*Io ( 2u(t — 1) ) '

The circulation is

(3.15)  Iy() = 70]091 dzdr

—o0 0
62 21 oo Ez + 1_}2
= ]fexp . Ip(En)E dé df = 4mw.
t — 1o A 2
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The value of the impulse of vorticity is expressed through the circulation of
the vortices I" and the distance between them by the relation

(3.16) M = oRT.

We see that conservation of the impulse of vorticity requires the invariance in
time for the circulation and the distance between the vortices in this case:

1
3.17) I'(t) = L const, R(t) = Ro = const.
oRy

Plots of the dimensionless vorticity distribution inside the vortex core are
shown in the Fig.3 for different time values. For the comparison, the Lamb -
Oseen distribution is also presented.

10

08

(=)
)]

]
~

dimensionless vorticity

02

dimensionless radius

F1G. 3. Vorticity distribution inside the core of a slender vortex. Dashed curve corresponds
to the Lamb-Oseen vortex.

A similar procedure for a vortex ring (BEREZOVSKI and KAPLANSKI [3]) gives,
in the first approximation, just the same form of vorticity distribution (3.12). The
outer radius of the ring, as well as its circulation, are forced to be invariant:

M
(3.18) R(t) = Ry = const, I'(t) = ——; = const.
ToRg
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4. Conclusion

We have demonstrated that there exist additional vorticity distributions for

viscosity-dominated vortex rings and pairs which satisfy conservation of the im-
pulse of vorticity, besides the classical self-similar one. All of distributions are the
lowest-order approximations in a perturbation expansion of the solutions of the
full Navier - Stokes equations, but their validity is not restricted to the long-time
limit only.

Another kind of vorticity distribution is valid in the core of slender vortices.

Its form is the same both in the plane and axisymmetric (ring) case. Conservation
of the impulse of vorticity makes both the circulation and the distance between
vortices (radius of the ring) constant in time.
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Stability of Couette-Poiseuille flow of fiber suspensions

B. NSOM (GRENOBLE)

WE sTUDY the linear stability of the flow of fiber suspensions between concentric rotating cylinders
with an axial pressure gradient. In the dilute concentration range, the critical wave number, Taylor
number and wave velocity depend on the cylinders radii ratio, the axial Reynolds number and the
fibers aspect ratio. In the semi-concentrated range, the critical parameters depend on the cylinders
radii ratio, the axial Reynolds number and the fiber concentration and density.

Notations

Latin letters

o e

A

)

e o a

F(z)
G(x)

W(x)
Way

reduced wavenumber based on the gap-width, Eq. (3.10),

constants of integration, Eq. (3.8),

total voluminal concentration of the fibers,

gap-width (R, — Ry),

unit-vector along the fiber length,

constant, Eq.(1.3),

dimensionless axial velocity distribution in the annulus, Eq.(3.12),
dimensionless angular velocity distribution in the annulus, Eq.(3.12),
wavenumber, Eq. (3.1);-3,

fiber length,

number of fibers per unit volume,

perturbation pressure field, Eq. (3.1)s,

pressure field in the basic Couette—Poiseuille flow, Eq.(2.7)s,
integration constant, Eq.(2.7)s,

radial coordinate in the usual cylindrical coordinate system,

mid-gap radius,

inner and outer cylinders radii,

axial Reynolds number, Eq. (3.8)y,

perturbation velocity field in the usual cylindrical coordinate system with components
(u,v,w), Eq.(3.1)1-3,

velocity field of the basic Couette-Poiseuille flow in the usual cylindrical coordinate
system with components (0, V, W), Eqgs.(2.1), (2.7)1,2,

Taylor number based on the gap-width, Eq.(3.15),

axial velocity distribution in the annulus,

average axial velocity, Eq. (3.8):,

dimensionless radial coordinate,

axial coordinate.
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Greek letters

disturbance frequency, Eq. (3.15),
dimensionless gap-width, Eq.(3.10),
fiber density (nL?),
rate of strain tensor in the basic Couette-Poiseuille flow,
perturbation rate of strain tensor,
fiber aspect ratio (L/D),
dynamic viscosity,
suspension rheological parameter, Eq.(1.1),
tangential coordinate,
cylinders radii ratio (R;/R;),
kinematic viscosity,
fluid density,
stress tensor in the basic Couette-Poiseuille flow,
perturbation stress tensor,
perturbation frequency,
fiber diameter,
wave velocity relative to W, Eq. (4.8),
£2(z) angular velocity distribution in the annulus,
£21 inner cylinder angular velocity.

~~
™
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Subscripts

¢ critical value in the suspension,
DP from the literature,

N from this paper,

0 critical value in water.

1. Background

THE CoUETTE-TAYLOR flow remains a classical teaching tool of the Fluid Dy-
namics Stability topics. The arrangement obtained by superimposing to it a press-
ure gradient in the axial direction (Couette - Poiseuille flow) has many industrial
applications such as oil and gas exploration. Since the first experimental study
(CornisH, [4]) and theoretical study (GoLDpSTEIN, [10]), a large number of papers
have been devoted to that flow configuration. CHANDRASEKHAR [3] and DiPRIMA
[5] included an axial flow in the annulus to extend Taylor’s analysis of the sta-
bility of circular Couette flow. They considered the case of axisymmetric distur-
bances in a narrow gap. The arbitrary gap situation was studied later by HASOON
and MARTIN [11] and by DipriMA and PRrIDOR [6]. The resulting flow consists of
toroidal Taylor vortices translating with the axial flow. In fact, when the instabil-
ity is relaxed to allow asymmetric disturbances and for arbitrary (axial) Reynolds
numbers, LUEpTOW et al. [15] pointed out flow regimes known to exist for circu-
lar Couette {low with no axial flow which were identified by FENSTERMACHER [9].
Furthermore, they identified flow regimes which were not previously described.
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So, they could furnish a map of the flow regimes in the Taylor number — Reynolds
number plane, completing thus the results provided earlier by KATAOKA et al. [13]
and BUHLER and PoLirkEe [2]. From Lueptow et al. [15], at low angular speeds,
a laminar circular Couette flow superimposed on a laminar axial Poiseuille flow
exists in the annulus. From the critical value of that angular speed, the laminar
Taylor vortices move with the axial flow, being unaffected by the axial flow for
low axial Reynolds numbers. At higher Reynolds numbers, the vortices are no
longer individual toroids, but form a pair of helical vortices which translate with
the axial flow.

In a recent paper (Nsom, [6]), we considered the stability of the Couette flow
of suspensions of macroscopic fibers in a Newtonian liquid. Many industrial pro-
cesses deal with these fluids (paper making, water treatment ... ). In the present
work, we consider the superposition of that Couette flow of fiber suspensions with
a constant axial pressure gradient when the Reynolds number is low. So, from a
linear stability analysis, we characterize the occurence of laminar Taylor vortices
in the basic Couette - Poiseuille flow of a fiber suspension. The fibers considered
are rigid rods with a large aspect ratio ¢ (( = L/¢, L being the fiber length and
¢ their diameter). Let ¢ denote the fibers volumetric concentration and A their
number density (A = nL?), n being the number of fibers per unit volume. From
a rheological point of view, the suspension is said to be dilute if each solid par-
ticle is unaffected by the presence of the others. This situation occurs if ¢ is less
than (¢/L)? and A is much less than unity. It is semi-concentrated when c lies
between (¢/1)? and (¢/L), (Dot and Epwarbps, [7] and [8]). In the dilute range,
the suspension obeys the Ericksen anisotropic fluid equation of state Ausias er
al., [1]

(1.1) o= —pb+2nc +méd,

where o is the stress tensor, p is the isotropic pressure field, ¢ is the rate of strain
tensor, d is a unit vector along the direction of a fiber length; 7 is the dynamic
viscosity of the suspending liquid and 7 is a rheological coefficient given by

-\2

(1.2) = O
In(¢)
In the semi-concentrated range, the medium is the seat of the “fiber-fiber” and
“fiber-boundaries” interactions. SHAQFEH and FREDRICKSON [18] summed these
interactions. They established the two following results:

¢ The “fiber-boundaries” interactions are negligible with respect to the “fiber-
fiber” interactions;

e Introducing the “fiber-fiber” interactions in the dynamics of the medium, its
constitutive equation preserves the form (1.1), but the rheological coefficient 7,
is given by the following expression

B T Ang
(13) "7 3[n(1/c) + In(in(1/c)) + E]
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In this relation E is a constant with value —0.66 for suspension in which all
orientations are equiprobable. When all the particles are aligned in a common
direction, F takes the value 0.16. The latter situation which is a usual closure hy-
pothesis in the study of fiber suspension flow will be assumed (PAPANASTASIOU and
ALEXANDRIOU, [17]; STOVER et al., [19]). Thus the dilute and semi-concentrated
suspensions can be treated in a similar way since they are described by rheolog-
ical equations of the same form. The details of the two cases will appear in the
numerical results, in the respective ranges of the concentration.

In the second section of this paper, we calculate the basic Couette - Poiseuille
flow.

The third section states the equations governing the occurence of laminar
Taylor vortices in this flow. Then we solve them in the fourth section. Throughout
the whole paper, the axial Reynolds number is low as we said previously.

2. Basic flow

Consider a system of two concentric cylinders, the outer one with radius R,
being fixed and the inner one with radius R; and angular speed f2,. x denotes
the ratio R,/ RE, and b the gap-width i.e. Ry — R,. When (2, is low, a circular
Couette flow superimposed over a laminar Poiseuille flow exists. In a cylindrical
system of coordinates with basis (e, , e, e;), z lying along the common axis of the
cylinders, it is described by a velocity-field of the form

21) V= V(r)ep + W(r)e.,

and the orientation-state is given by

V W
d= ey + €,
JT+ew?) v+ w

while the components of the rate of strain tensor (which is symmetric) are

i 1 d [V . 1 dW
23) =g () Eema

(2.2)

and zero otherwise. Then using the constitutive equation (1.1), the components
of the stress tensor (also symmetric) are given by

(2.4) Orp = 0gg = 05, = —P(?‘),

d [V daw
eX) o=y (), om=wrgs.  on=0

r dr ’
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The continuity equation is identically satisfied, while the equations of motion
reduce to

0 V2
—P()’) QT!

u(!lr [T ol /)] =0

Ld (ary 1oy
rdr \| dr T \oz )y’

arPy . : :
where (0_2) is the axial pressure gradient.
0
Substituting Egs. (2.5) for the stress tensor components, a straightforward cal-
culation leads to

(2.6)

V(r) = Ar + B/r,

At
2.2 32 P

where A and B, the integration constants are determined by the no-slip condition
of the fluid on the cylinder walls. Their expressions are the following

o R
1— kK2’ T 1-k2

(2.8) A=

while Py is an arbitrary constant. This hydrodynamic field which is a superposition
of a circular Couette flow over a Poiseuille flow in the annulus, has the same
expression as in a Newtonian fluid. This is not surprising, as it is a general result
of basic theoretical rheology that Eqgs. (2.7) describe the basic flow in hand, for
any constitutive law of the fluid. Let us consider now the linear stability of this
fiber suspension flow which, to our knowledge, has never been studied.

3. Equations governing the occurence of toroidal Taylor vortices

If the angular speed of the internal cylinder is progressively increased, the Tay-
lor vortex flow, which is known to be developed by the flow in the absence of the
pressure gradient, occurs. The axisymmetric toroidal vortices move downstream
with the axial flow remaining unaffected by it.
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3.1. Equations

The flow is described by the superposition of the basic Couette - Poiseuille
flow on a small perturbation of the form

v.(r,z) = u(r) exp[{(Xt — ik2)], 2= -1,
vo(r,z) = v(r) exp[i(Zt — ik2)],

v.(r,2) = w(r)exp[{(Xt — ikz2)],

p(r, 2) = p(r) exp[i(Xt — ikz)].

The continuity equation in this disturbance leads to

(3.1)

(3.2) = —%Dl_u,
where

d 1
(33) Dy, = :i; + ;— ‘

Assuming again the alignment of the fibers along the streamlines, i.e. collinearity
of the orientation vector d with the resulting velocity field (V +v), the components
of the perturbation rate of strain (¢)" have the following expressions

(), = Diuexp[i(S1 - k2)],
(£)os = —exp[i(Zt - k2)],
(é )lzz = —kw €xp [2(2t - kz)] ’

701 () explicse - k2],

(3.4)
() = 37D1 (

v
T

(%, = —gikvexp[(St — k2)],
(&), = %(—iku + Dyw)exp[i(Xt — kz)].

In these relations, D, denotes the ordinary derivative with respect to .

If o' denotes the perturbation stress tensor, the equations of motion of the
superposition of the resulting flow (the basic flow with the disturbance) have the
form

do), 0o}, o, —o0p _  (Ou Jou 2vV)
ar + Jz + T _Q(3t+W32— r J’
dol,  doy, ol  (O0v OV ov | uV
(35) W+E‘+ZT—Q(E+UE+W€?Z+ 7‘)’

dol, 3 do!, a_;z (B_w " ow 3w)
or 0z r e\ ot or 0z /)’

where ¢ denotes the time.
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Since the secondary motion takes place in the same medium as the basic flow,
it is governed by the same behaviour law, say Eq. (1.1). Inserting its components
in Egs. (3.5), the following system of equations is obtained after linearization

i 200V
- Dip+ [iQ(VVk - )+ npo(2Dy Dy + kz) - 7)2] u—ingkDyw = — A .
¢

(3.6)  (DuV)u+ [K — vDi Dy, +i(kW + 2] v =0,
DWW

p= (nng, —ip ) u+ [% + Wo — 2itkng + I—Z—ODI,DI] w,

where v is the kinematic viscosity and D; denotes the differential operator d/dr.
These equations are associated with the no-slip condition of the fluid on the
cylinder walls, which are written in the form

3.7) v=v=D,u=0 at r= R and r=R,.

Now we define R, the axial Reynolds number, and W,,, the average axial
velocity, defined as

Re = vlsv{) b)
(3.8)
- 1|y 2 (R2)® + ()
Way = 8ijg Jz (R2)" + (B1) In(x)

Let now Ry and é denote the mid-gap radius and the dimensionless gap-width,
defined respectively by
_ R+ Ry b

and b= —

(3.9) Ro z -

We also define dimensionless radial coordinate z and wave number « based on
the gap-width by
r— Ry

(3.10) z=— and a=kb.

Define now two following functions

1 1+ 6z
T+6: 0 YO =155

(3.11) Y(z) = -

Then, G(z) and F'(x) denoting the dimensionless angular speed distribution and
axial velocity distribution in the annulus, i.e.

(3.12) 2z) = MG) and  W(z) = W F(2),
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these two functions having the following expressions:

K2 i 1 1
12 1- /g’
- 2(1 - k?) In($(x))
F@) = 0=+ + ()

G(z) = —

(3.13)

+ w2 [(2)? = 1] In(x).

Now let D and D, denote the following differential operators:

d 1
(3.14) D=+ and D.= [d‘ +é'y(r)]

and T and (3 the Taylor number and the disturbance frequency, respectively,
defined by

o AA o
(3.15) T=-—"—, f=—

After linearization, we obtain the following equations of motion in a dimension-
less form

DD, — a*— i[B — aRe F(z)] (D D. — a*)u

(3.16) iaRe [D2F(2) = §3(z)DF ()] u +

mn azéz} -7
0 7(z)? ’
[DD.‘ —a* —i[f - aRe If"(.r)]] v = u.

Equations (3.16) form the system of equations governing the occurence of the
Taylor vortices in the annulus. The non-dimensional form of the no-slip condition
(Eq. (3.7)) which is associated with them is the following

(3.17) v=v=Dau=0 at T = —% and T =+

N =

Putting 7, = 0 in that system (no fibers in the medium), we obtain again the
equations governing the transition in a Newtonian liquid (DiPRIMA and PRIDOR,

[6], TAKEUCHI and JankOwsKI, [20]).
242

So, L a( 72 can be seen as a perturbation term, characterizing the presence

Z

of the ﬁbers in the medium. This perturbation term depends on the fiber aspect

ratio, centration and density through 7.
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4. Solution
4.1. Solution method

The eigenvalue problem defined by Egs. (3.16) and (3.17) is solved by a shoot-
ing method (HArris and REID, [11]; KRUEGER et al., [14]). For numerical pur-
poses, it is helpful to convert this two-point boundary-value problem into an
initial-value problem. To do this, we define the following six unknowns

Y] = u, Yy = v, Ys= D.u,

4.1
1) Y4 = Duv, Ys=(DD.—d*u, ‘s = D.(DD, — a*)u.

Using them, the system of equations of motion (3.16) is converted into the fol-
lowing set of six first order differential equations:
(4.2) D.Yi=Ys, D.Y,=Ys  DYs=Ys;
43) DY; —a?Yy =Ys,  DYy— M(a)Ya =Y,
' DYs — M(z)Ys — N(z)Y; = ~Ta?GY>,

where M (z) and N (z) denote the following functions

M(z) = a* +i[3 — aRe F(z)],
N(z) = iaRe [D*F(x) - 67(x)DF ()] .

The associated boundary conditions are obtained from Egs. (3.17) in the form

(4.4) Y;=0 at r=—z and z =+ (i=1,2,3).

A set of three linearly independent solutions (Y;);, (i = 1,2,3,4,5,6) and (j =
a,b,c) of the system of differential equations (4.3) which satisfy the boundary
conditions at z = —1/2 can be built by imposing arbitrarily the following three
initial conditions

((Yl)a’ (Yz)av (}/3)&7 (Y4)a7 (},5)aa (Yﬁ)a) = (0,0,0, 1,0, O)»
(4.5) ((Y1)e, (Y2)s, (Y3)ss (Ya)s, (Ys ), (Yo)u) = (0,0,0,0,1,0),
((M)es (Y2)e, (Y3)es (Ya)es (¥5)e, (Yo)o) = (0,0,0,0,0,1).

A solution of the system (4.3) which satisfies the boundary conditions at z = —1/2
can therefore be written as a linear combination of these three solutions

=3
(4.6) Y =3 CY;.
=1
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The necessary condition of this linear combination to satisfy the boundary con-
ditions at = = —1/2 is vanishing of the determinant

47)  H(T,a,8,xRe,m) = det](¥;);] = 0

at T = (i=1,2,3, j=ua,be).
This is the required characteristic equation. This determinant is complex-valued
and requiring that both its real and imaginary parts vanish simultaneously. The
basic solutions Y; ( = 1,2, ...,6) are obtained by integration of the system (4.3)
by using a fourth order Ringe - Kutta method.

4.2. Numerical results

First of all, we solved the stability problem in hand for the Newtonian fluid
case (72 = 0). Typically, the case where the instability is characterized by the
occurence of laminar Taylor vortices occurs if the Reynolds number is less than
10, (Lueprrow et al., [15]). This value will define the maximum value of our study.

Table 1 shows the good agreement of our numerical results with those of
DipriMA and PriDOR [6]. Tt furnishes the critical Taylor number Ty and Wave
number ag, and wave velocity of the Taylor vortices moving in the direction of
the axial flow wq relative to Wy, defined as
B

w = .
aRe

(4.8)

Table 1. Critical parameters in a Newtonian fluid from our calculations (ag, 7y, co)n compared
to those of Diprima and Pridor (1979), (ag, Ty, co)pp-

Re K (ao)n | (ao)pp | (To)~ (T))pp | (wodn | (wo)pp

0.01 | 1 3.13 3.13 1694.3 | 1695 1.170 1.170
0.01 | 0.95 | 3.13 3.13 1754 17549 | 1.170 1.170
0.01 | 0.9 3.13 3.13 1824 1823.4 | 1.170 1.170
10 |1 3.14 3.14 1827.5 | 1826.8 | 1.169 1.169
10 | 095 | 3.14 3.14 1893.5 | 1891.3 1.169 1.169
10 | 0.9 3.14 3.14 1964 1965.1 1.169 1.169

Then we considered the case of the suspension flow. It was found that the
presence of the fibers in the medium does not change the critical wavenumber a
and wave velocity w in the investigated ranges of Reynolds number, fiber-aspect
ratio, concentration and density. But it increases the critical Taylor number with
respect to the Reynolds number.
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Furthermore, in the dilute case, the critical Taylor number increases with both
the gap-width and the fiber-aspect ratio, for a given Reynolds number (Fig.1).
From Fig.2 (drawn for Re = 1.0), the critical Taylor number also increases with
the Reynolds number for a given gap-width and fibers aspect ratio (Fig.2).

F1G. 2. Variation of 7. with Reynolds number and R;/R;.
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F1G. 3. Variation of T. with R,/R; and fibers density.

(/T -1)

02

or

c aos

Qo5

F1G. 4. Variation of 7. with R,/ R, and fibers concentration.

In the semi-concentrated case, from Fig.3 (drawn for Re = 1.0 and ¢ = 0.06),
and from Fig.4 (drawn for Re = 1.0 and A = 45), the critical Taylor number
increases with the gap-width and the concentration and density of the fibers, for
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Fia. 5. Variation of 7. with Rey and rheological parameter.

a given Reynolds number. Finally, from Fig.5, the critical Taylor number also
increases with the Reynolds number for given fiber concentration and density
(rheological parameter 7, fixed).

5. Conclusion

A theoretical study of the stability of suspensions of stiff macroscopic fibers
of large aspect ratio in a wide-gap Couette - Poiseuille configuration is presented
for the dilute and semi-concentrated ranges.

In the dilute range of concentration, we have used the Ericksen anisotropic
fluid equation of state, with rheological parameters related to the fiber aspect
ratio.

In the semi-concentrated case, the “fiber-fiber” interactions being taken into
account, the Ericksen law remains valid but the rheological parameters depend
on the concentration of the solid particles and on their density.

When the axial Reynolds number is low, the instability appears in the form of
laminar Taylor vortices, unaffected by the superimposed pressure gradient. They
just move downstream with the axial flow. This is the case that we considered in
a linear analysis.

In all the situations which have been considered, we found that

e the presence of the fibers in the medium does not change the critical
wavenumber and wave velocity, but it increases the critical Taylor number.
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e In the dilute case, increasing of the gap-width or the fiber aspect ratio

stabilizes the Couette - Poiseuille flow.

In the semi-concentrated case, increasing of the gap-width or the fiber con-

centration or density also stabilizes the Couette - Poiseuille flow.

Superposition of the Reynolds number stabilizes the suspension Couette - Tay-

lor flow in both the dilute and the semi-concentrated cases.
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Operator approach to three problems of fluid mechanics

I. Yu. POPOV (ST. PETERSBURG)

OPERATOR VERSION of the stokeslet approach is suggested. The creeping flow in coupled cavities is
described. Operator extension theory model for the description of stratified flows is described. The
Orr-Sommerfeld problem is analyzed as a problem of perturbation of the Schrodinger operator.

1. Introduction

THE PAPER DEALS with three different fluid mechanics problems connected by the
operator theory approach. The first problem is the description of Stokes flows in
complex domains. It is known that creeping flow past a small obstacle or small
rotating body may be described by means of a stokeslet, i.e. singular solution of
the Stokes equations [1]. The operator version of the stokeslet approach based
on the theory of self-adjoint extensions of symmetric operators is suggested in
the paper. It is analogous to the well-known zero-range potential approach in
quantum mechanics [2, 3] and zero-width slit model in diffraction theory [4, 5]. It
allows one to reveal general mathematical features of the stokeslet and, as a result,
to expand the range of applications of the conventional stokeslet. Namely, it
allows one to simulate creeping flows in domains coupled through small apertures.
An example of such a flow in a ring structure is considered.

The second problem is the description of two-dimensional stratified flow of
inviscid incompressible dielectric medium in gravitational and electric fields. We
derive the modified Dubreil - Jacotin equation and reduce it to the equation anal-
ogous to the Schrodinger one. The operator extension theory model for the de-
scription of such flows past a small obstacle or an obstacle with small opening is
suggested.

The third problem is that of hydrodynamic stability. It is shown that the
Orr-Sommerfeld problem in different situations (the conventional one, the prob-
lem for the case when a transversal component of the flow velocity is taken into
account, and the problem for the flow between two cylinders) can be consid-
ered as a problem of perturbation of the Schrodinger operator. It allows one to
use powerful methods of the theory of operator perturbations. Particularly, the
completeness of the set of eigenfunctions and associated functions is proved.

2. Operator version of the stokeslet approach
2.1. Stokeslet

We consider a two-dimensional flow. In this case it iS convenient to use a
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stream function v instead of the velocity v = (v, v2) (x = (21, 232), 21, ¥, are the
Cartesian coordinates):

N B oY

(21) m = 8—1‘2’ v E)Il .

Hence, the Stokes equations reduce to the biharmonic one: A%y = 0.

To give correct mathematical description of a point-like interaction for such
equation, we use a method analogous to that applied in zero-range potential
method [3, 4], i.e. we use the operator extension theory [6, 7]. Let us consider

the operator Aj in the space Lz(Rz) and defined on the set of smooth finite

functions from Ly(R?) vanishing near some fixed point ro. The closure of this
operator is a symmetric operator with the domain

22) DAY ={uw ue LR, Alue LyRY),
w(ro) = uf,(ro) = uf ,,(r0) =0, i,j=1,2}.

The operator A% has deficiency indices (6,6). An element u from the domain
of the operator A" takes the form:

2 2
(23) U(I) = Z C?_jg.r:,,xj (T) + ZC:"QJ?.(I) T COQ(I)

t,7=1 =1

2 2
+&(z) ((LO — Zaim, + Z (Ll'jgl’]'ﬂ',‘z'l‘]') + up(z).
1=1

1,7=1

Here ug € D(A¢), gi; = 1,1 # j, gii = 271 4,5 = 1,2, &(z) is a smooth cutting
function: £(z) = 1, |z| < 1, &(z) = 0, |z| > 2, g is a fundamental solution. The
function (A3*u)(z) at the point z (z # 0) is computed as (AF*u)(z) = Au(z).
The bilinear form I(u,v) = (A¥u,v) — (u, A3*v) on the elements from D(AZ")
can be computed by taking into account the representation (2.3):

I(u,v) = agcg — cjag + 3 (arey —ciad) + Y (alieh - chap) -
i=1,2 4,5=1,2

To construct a domain of self-adjoint extension of the operator AZ. It is necessary
to select such linear subset of D(A%*), that the form [ vanishes on the elements
of this subset. It is an ordinary problem of linear algebra in a space C°. As a
result, we obtain

THEOREM 1. The operator A? (extension) is self-adjoint if and only if A} C
A2 C A% Here D(A?) is such a linear subset of D(A3*) having no extensions that
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one of the following conditions is valid for the boundary vectors of any functions
from the set D(A?):

1. U = (Up,Uy), Uy= AUy, U; = (c§,ct,cy,cly,cla ),

Uop = (af, a},a¥,af, aly, ady), A: C® — C5, A=A

2.0y = AUy, A:C°* > C% A=4r,

3 Uy=a+y, Uy =+ Ay; here o, [3 are vectors from arbitrary orthogonal
fixed subspaces N* and N-, N* /N~ ¢ C® Yy €N, N = Cla Nt o N-,
A: N — N, the operator A is self-adjoint and reversible.

It is this theorem that gives us the correct mathematical description of the
stokeslet.

2.2. Distokeslet

To describe the stokeslets of higher orders, i.e. singular solutions having strong
singularity, it is necessary to modify the scheme. Namely, it is necessary to extend
the initial space L, by adding functions with strong singularities which do not
belong to the space L,. As a result, we have to work in the space with indefinite
metrics, but it does not destroy the construction. Let us describe how to take into
account such a singular solution. The general case may be considered without
essential problems. Let A; be the following set of functions:

Av= 1 f@): feLa(RY, A e LyRY), / f@)|z — zo|"*de — converges b,
]RZ
hoy(z) = g9 )(z), by = (=A% = Ag) They,

where zg is a fixed point, A\g is some positive value (a regular point of the op-
erator —A?), gUr2)(z) (j; + j, = 3, say) is the corresponding derivative of the
fundamental solution g. Let U; be a set of elements which can be represented in
a form

[=h+t+eh+c b,

where f; € A;. We define an inner product in Ul; by the following expression:

o, = (oo +of [ mprde+f [ i da
R? R?
+ (C{E+ c{lg) /MEdr.
RZ
The topology in the set U; is defined in a standard manner [8]. The form
(f, ¥, should be transformed to a diagonal form. The obtained expression con-

tains one “negative squares”. One obtains a positive form by replacing the cor-
responding sign “minus” by “plus”. This form gives an expression for a positive
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definite scalar product, which is closely linked with a topology. The closure of the
set U; in a space with such a topology is a Pontryagin’s space I1;.
Let us consider the operator A? with the domain

D(‘ﬁz) = {f E /’1"11 fl € ‘,V;,IOC’ fl = fz + (.'hl, h——l g D(jZ)}’

where f, is such function from Aj, that (—A2 — \g)f, € U;. The operator — A2
acts as a square of the Laplace operator on the set A;, and the image of the

element hy is such that B
(—A% = Xg)hy = h_;.

The operator —A? is a symmetric one. Moreover, it is a self-adjoint operator
because the following relation takes place:

(=A% — A)D(A?) = U,.

Let A? be a restriction of the operator —A? onto the set

DY) = {f: [ € DAY, ((-4% = r)f,hy) = 0},

The obtained operator A%,o is a symmetric one and has deficiency indices
(1,1). Indeed, the condition means that the element h_; is orthogonal to the
set of images of the operator —A? — ). There are no other deficiency elements
because the set U, is a dense subset of the space /1, with respect to the described
topology. The operator has self-adjoint extensions.

THEOREM 2. The domain of self-adjoint extension of the operator A%, consists

of all elements [ from the set D(A%!*O), satisfying the condition c{ = ac’ » Where a

is a real number,
C{ = ((—AZ - ’\O)flah—l) .

2.3. The model for coupled cavities

Various hydrodynamic applications of stokeslets are described in the review
of HasiMoto and Sano [1]. The operator version allows one to extend the field
of applications of the stokeslet, for example to simulate the creeping flow in the
cavities with small apertures. To construct this model one must change slightly
the described scheme. Let us consider these alterations for concrete problem. Let
2 ={(o,¢) : |o| < R}. Here p, ¢ are the polar coordinates. We shall consider
the square of the Laplace operator with the following boundary condition:

Vler =0,  Yhl,.p =0.

Let (AM? be the restriction of the initial operator to the set of smooth functions,
which satisfy the conditions (2.2) near some point (2, ¢y) = rq of the boundary.
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The deficiency elements may be obtained by the following procedure. Let r{ be
an internal point of {2. One can find the solution of the problem:

A%g(r) + K2g(r) = 8(r = 10), 9 y=p = 9glp=r = 0.

Here k% > 0. The asymptotics of the solution near the point 7{ is the same
as that of the fundamental solution. It is necessary to look for the solution g
and its derivatives when rj, — ro. It occurs that the function g; , (second normal
derivative) only gives a non-zero limit (the derivatives of higher order don’t belong
to the space L,). This function is the deficiency element of the operator (Al")?.
That is, the deficiency indices of the operator (A{!)? are (1,1). One can show
that the main term of the asymptotics of the deficiency element near the point
ro is cos® #, where 6 is the angle between the vector r — ry and the normal at the
point 7.

The analogous construction (the operator (;\8‘)2) is found for the exterior
domain R?\ 2. Let the operator A} be the orthogonal sum of the internal and
external operators. It is the symmetric one with the deficiency indices (2,2). The
domain of the adjoint operator consists of the following elements:

in [:4 ]|1 ,eX l[l ex ln ex in,(:x lrl ,€X ln ,eX
w = (u", u), =G wit +( +ug

where
w lﬂCX - 2 l(hmcx i hII‘ICX)

A = k% is a regular point for the operators AQE B s the corresponding
ln €xX

deficiency element, ("%, ("™ are some numbers, u)" € D(AP). One can
obtain the boundary form [ for the adjoint operator:

](’l[ U) = €+ugl{1 - TuCl+ + C+ug— - CE’ZE.

The domain of self-adjoint extension is a linear subset of the domain of the
adjoint operator, on the elements of which the boundary form vanishes. It is easy
to show that this domain consists of all functions from the domain of the adjoint
operator, which satisfy the condition:

an\ fcings) o)\ _ [ €n)
(cs*)"“(cz*(s)) or (—cs*(s)) b (c&*(s))'

Here A and B are Hermitian matrices.

One can realize the analogous construction for the case when 2 = {2: R} <
o < Ry}, |rol = R,. It is possible to describe a situation when there are several
point-like apertures at the points r;,i = 1,2, ... p. Here the procedure starts from
the restriction (AIM)? of the Laplace operator onto the set of smooth functions
vanishing near the points r;. The operator has the deficiency indices (p, p).
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F1G. 1. The geometrical configuration of hydrotron.

Let us consider a more complicated structure — a ring with a system of tangent
(at points ;) rings (Fig.1). Let (2 fg,‘)2 be the restriction of the Laplace operator
in the circle (2; onto the set of smooth functions vanishing near the point r; €
2; N 2" and near an internal point r;y. This operator is analogous to the one
which has been described above. Let

P
al = Y o(agP © (Apr2.
1=1

REMARK 1. The reason of using the superscript /4 in this notation is the follow-
ing. The geometrical configuration of our system is analogous to that used for the
well-known electronic device — a magnetron. That is why the name “hydrotron”
is natural for this system. The investigated flow is caused by the rotating axes (the
internal circles in the domains (2;). If the boundary of each domain f2; consists
of two concentric circles, we can find the stream-function for 2; by using the
procedure which has been described above (for the ring). To obtain the solution
corresponding to the case when the axis rotates, one must assume the inhomo-
geneous boundary condition v} |,=r,, = const. If the circles are not concentric,
the procedure fails. But we can use a stokeslet to simulate the rotating axis. This
situation is described below. We add the restriction at the points r;o to simulate
the small rotating circle.

The operator A} is a symmetric one with the deficiency indices (3p, 3p). It has
self-adjoint extensions. We shall not analyze here the dependence of the picture



OPERATOR APPROACH TO THREE PROBLEMS OF FLUID MECHANICS 1049

F1G. 3. The flow in hydrotron for Ry/R; = 0.5, p = 9.

of streamlines on the choice of the extension (one can make this analysis without
any problems). Let us fix the extension of B-type with the following matrix B:
B = {Bj;}, Bi1 = By =0, Bj; = By; = —1. The character of the flow depends
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on the number of circles. If the number is small, the flow in the ring has a
cellular structure (Fig. 2), but for greater numbers the separating streamlines are
eliminated (Fig.3).

3. Stratified flows
3.1. Modified Dubreil-Jacotin equation

Let us consider the two-dimensional steady flow of inviscid incompressible
stratified medium in gravitational field. It is known that such flow can be described
by the DUBREIL-JACOTIN equation [9]. We suppose that the medium is a dielectric
one (with the molecules of dipole type). We shall study a case when there exists
not only gravitational but also an electric field. Let ¢ be the stream function
(see (2.1)), p is pressure, o is density of mass distribution, g is the free fall
acceleration, F' = (I, F) = oVU, U = E?, E is the strength of the electric
field, the coefficient « is related to the parameters of the dipoles and the density
of their distribution. Then one obtains the modified Dubreil - Jacotin equation:

Ay + 007 Q7Y VY + gap + al) = B(¥).

In particular problems the function ®(1) can be determined by taking into ac-
count the condition at infinity.

Let us consider the flow described by the equation. We assume that the func-
tion U vanishes at infinity (for example, it has a bounded support supp /) and
L is the size of a domain where it differs from zero considerably enough in
comparison with the other corresponding parameters of the equation (for exam-
ple, L = diam supp U), and that the flow is unperturbed far from the origin:
(¢ — Voa2)|r—eo — 0, where Vj is the velocity of the unperturbed flow at infinity.
The equation takes the form:

A+ 0710 Q7Y (VY2 = VE) + gV (Vorz — ¥) + al) = 0.
Let u, ¥ = LVju, be the dimensionless stream function. Then
Au+ 20 i (Vu2 - 1+ aVg20) = 207 o (u - 22),

(u — z2)|r—00 — 0, r? =22 + 23,

where ¢2 = gJEVO‘2 = (Fr)~!, Fr is the Froude number, p;(v) = oo(Lu). The
approximation £2 < 1 should be discussed. Then the equation simplifies to

Au+ (201) 1ol (IVu]? =1+ aV;2U) = 0.

For an exponential dependence of the density on z; (i.e. oo(z2) = Aexp(—23z3),
A, [3 are some constants):

Au+ p?(|Vu]* =1+ oV, 20) = 0.
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Here pu? = L. One can replace the function u by the function v in accordance
with the relation: v = —p~2In v. Hence, we obtain the following equation for the
function v:

Av—pt(1 - aVO_zU)v = 0,

3.1
e (v = exp(—1222))ly o0 — 0.

The equation is similar to the stationary Schrodinger one with an attractive
potential (aVO_zU is positive). Hence, the eigenstates can exist (the situation
depends on the values of the parameters a, p, Vj and the form of the potential,
i.e. on the electric field distribution; as for estimates for the number of eigenstates,
see [10] and references therein). In accordance with the relation described above
it means that there exist local eddies in the corresponding flow caused by the
electric field.

3.2. Operator extension theory model for stratified flows

Operator extension theory model can be constructed for the description of
the flow near obstacles. Particularly, if we have a small obstacle, one should
make simple modification of the conventional zero-range potential method [3,
4). Namely, let us restrict the operator (-4 + p*(1 — a‘l/'O_ZU)) in Lz(RZ) to the
set of smooth functions vanishing near a fixed point ro. One can show that the
closure —Aq of this operator is a symmetric one with the deficiency indices (1,1).
The Green function G'i/(r, rg, k1) of the initial operator with the source at the
point rq is a deficiency element corresponding to the regular point k?. One uses
the “real basis” w4 (r), w_(r):

w4 (r) = Re Gu(r,ro, k1),
w_(r) = Im Gy (r,ro, k1)(Am Gy (ro, ro, k1)) 7!
in the deficiency subspace for the simplification of the construction (here we take

into account that the function Im Gy (r, rg, k1) has no singularity). The domain
of the adjoint operator consists of elements of the form:

(3.2) u=(+ws + (—w_ + ug,

where uy "™ € D(;\B"’Cx), (4, C_ are some constants. After brief calculation one

obtains the boundary form:
I(u,v) = (-Aju,v) — (u, —Agv) = (rulp — (oo -

The domain of a self-adjoint extension is a linear subset of the domain of the
adjoint operator for elements of which the boundary form vanishes. In our case
the problem of the subset description reduces to the simple problem of linear
algebra. The consideration resulted in the theorem
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THEOREM 3. The set of self-adjoint extensions of the operator A is a one-
parameter family of operators A,, Ay C A, C Ap, the domains of which consist of
all functions of the form (3.2) satisfying the condition: (+ = a(_, where « is real
parameter.

Let us consider the case of absence of an electric field. In this situation we have
the Helmholtz equation instead of the Schrodinger one [11]. The flow near an
obstacle with small opening may be simulated using zero-width slits model [5, 6].
Stratified flow near the surface with small aperture under the assumptions made
above is described by the Dubreil - Jacotin equation. We reduce this problem to
the Dirichlet problem for the Helmholtz equation (instead of (3.1)):

Av — utv =0,

33
G (v — exp(—f222))lr o0 — 0, v[r = exp(—p*ug).

Here I' is the boundary, ug is the parameter of the boundary condition for the
dimensionless stream function u: u|r = ug. To simulate the aperture at the point
rg, *g € I, we use zero-width slits model, i.e. we replace the ordinary Laplace
operator in (3.3) by the extension constructed earlier [5]. The corresponding
solution is:
(G (z, ?,k))‘ i € I,

V= 0 I)

o G @B k)| +V. zenm

Here V is the solution of the correspondmg unperturbed (without aperture)
problem

Cyin _ (l‘cx — —I/’(.L'())(Dm(k) + DCX(]]T))—I ,
where

1
Dl"(k) = (A AO)Z ()\m - )\)(/\m - /\O)

52(7‘0)
on

’

Va

ex/y. 1/2(A )\0)(13 8¢e"(L0 v, Ql/z)
D7) = /(s—/\)(b—,\o)/‘

#"(z) is the eigenfunction of the operator —A™ (unperturbed operator), i.e.
the operator for the internal problem (without opening) corresponding to the
eigenvalue A, ¢*(z,v,s!/?) is the eigenfunction corresponding to the point s
of the continuous spectrum of the operator —A*. Hence, one obtains the model
stream function u in an explicit form. The model can be constructed also for the
case of an electric field (a # 0). The only modification is that one must use the
Green function for the Schrodinger operator instead of the Green function for
the Laplace operator.
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While studying the scattering problem for the Helmholtz equation in the exte-
rior of bounded domain, P. LAx and R. PHiLLIPS [12] have shown that there exist
a series of resonances (scattering frequencies) on the imaginary axis of the spec-
tral parameter k£ complex plane, i.e. such values ,, that there exists a non-trivial
solution v,, of the equation

Av,, + kfnvm = (),

satisfying the Dirichlet boundary condition. It is not the eigenvalue of the‘operator
because v, does not belong to the space L,(f2°*) — it has an exponential growth
at infinity. In accordance with the obtained relation, these solutions correspond
to the solutions of the Dubreil -Jacotin equation, i.e. the stream functions with
a linear growth at infinity (r — o).

4. Hydrodynamic stability and perturbation of Schrodinger operator

The hydrodynamic stability problem is analyzed from the point of view of
the operator perturbation theory. This problem is difficult and is usually stud-
ied numerically. Our approach gives a new view on the investigation of spectral
properties of the Orr - Sommerfeld equation. The work [13] in which the Rayleigh
equation (the limiting case of the Orr-Sommerfeld one for an inviscid fluid) is
studied from the point of view of the operator theory should be mentioned. We
deal with a two-dimensional parallel flow of viscid incompressible fluid. In this
case one seeks the perturbed stream function for boundary layer in the form
of a Tollmien - Schlichting wave: ¥ (z,z,t) = @(z)exp(ia(z — ci)). Hence, the
Orr - Sommerfeld equation (in dimensionless form) is obtained for the function &:

(4.1) " — 20°0" + o*® = iaRe((u — )(@" — a?p) — u"'P),

where u, ©v = u(z) (u(r) = u., = const for z > 1), is the velocity of the
unperturbed flow, Re is the Reynolds number [14, 15].

4.1. Conventional Orr-Sommerfeld problem

We consider the Orr-Sommerfeld problem in three situations. The first one
is the conventional Orr-Sommerfeld equation for a boundary layer (4.1). This
equation is studied usually on the half-axis [0, c0) or on the segment A = [0, 1]
with zero boundary conditions. We shall deal with both the cases. Let us denote
by ¢ the following function v = ®" — o?¢. Then ¢ = Gy (¢ = G 41)), where
G(G 4) is the corresponding operator. Then the equation can be rewritten in the
form

(—=d?/dz* + o + iaReu)y — iaReu”" Gy = iaRect).

Let L 4 be the following operator Ly = Ha +.Va, where H 4 is the Schrodinger
operator determined by the differential expression — d?/daz?+a® +iaReu and zero
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boundary conditions at the points 0 and 1, V4 = —iaReu”G. The corresponding
operators for the half-axis will be denoted as L, /I, V, correspondingly. In such a
way the problem is reduced to the eigenvalue problem for the operator L(LA).

REMARK 2. Using conventional approach to the problem of hydrodynamic
stability, one obtains the Schrodinger operator with complex potential (Im a =0).

Since the support of the function «” belongs to the segment [0, 1], the oper-
ators (¢ and (74 are trace operators (of course, it is not a complete information
about the operators, but it is sufficient for the purpose of the present paper).
Hence, using results of [16, 17] one obtains the following theorem:

THEOREM 4. a. The operators L and L are closed operators. b. The essential
spectra of the operators L and H (L a and H A) coincide. c. The eigenfunctions and
associated functions of the operator L o are complete.

REMARK 3. It is interesting to note that the important problem of influence
of the main flow velocity profile u(z) on the stability of boundary layer is now
related to the influence of the potential profile (a? + iaReu) on the spectrum
displacement.

REMARK 4. The described approach allows one to use theorems concerning
operator perturbations to estimate the shift of the eigenvalues and, consequently,
to estimate the critical value of the Reynolds number (it is the main goal of the
investigation of hydrodynamic stability).

As for the problem of completeness for the oprator I, we can use the wave
operator approach for non-self-adjoint perturbation of self-adjoint operator [18].
Then we obtain

THEOREM 5. a. The absolutely continuous spectra of the operators L and I
coincide. b. There exist complete wave operators Wy (H, Lo) (W1 (Lo, 1)), Lo =
—d?/dz?.

4.2. Modified Orr—Sommerfeld equation

The second interesting situation occurs in the case when we take into account
the transversal component of the velocity (wu;,u;), under the supposition that
these components depend on the transversal coordinate only u; = u(x), up =
up(z) # 0. Then one obtains [19] the modified Orr-Sommerfeld equation:

" — 202" + ot = iaRe((u) — ¢)(P" — a’¢) — ul'P)
+Re(uy(" — o) — ujd).

Using the same notation as above we reduce the equation to the form:

(—d:z/d;r2 +a%+ iaReuy )y — iaReu|G1) + Reuyyp’ — Reuy (G) = iaRecy.
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The unperturbed Schrodinger operator /™ in this case is the same as in the first
one (with « = u;) and the perturbation is

V™ = iaReu{G + Reuyyy’ — Reusy (G)'.
Let M = H™ 4+ V™ (and for the segment: M, = H) + V7). The perturbation
in this case is not compact, but using the resuls of [20, 16, 17], one can prove

THEOREM 6 a. The operator V"™(VZ) is H™(H)-compact. b. The essential
spectra of the operators M and H™ (Ma and HY) coincide.

THEOREM 7. The operator H'{ has a resolvent of Hilbert-Schmidt type and its
system of eigenfunctions and associated functions is complete.

4.3. The flow between two concentric cylinders

The third case is the Orr-Sommerfeld problem for the flow between two
concentric cylinders r = a and r = b ((r, ¢, z) are the cylindrical coordinates of a
point). In this situation the Tollmien - Schlichting wave has the form ¥ (z,r,t) =
exp(ia(z — ct))®(r). Then we get [21] the following equation:

dr dr

l d
2iRe o ((u - )PP - r— (‘r'l-ﬁ) 115) = PXp,
where the operator P in Ly(a,b) is determined by the expression
P =—d*/dr*+ 7 — d/dr + o?

and zero boundary condition, Re, is the Reynolds number for the problem, v =
u(r). Using the ordinary notation P¢ = ¢, & = G.¢, where G, is the Green
operator P, one obtains the spectral problem for the operator L.:

L.y = 2iaRe.c, L.=H.+ V.,
{ ]
H.p = P + 2iaRe uty, Vb = —r— (r—lﬂ) G
dr dr

The situation here is analogous to the first one and we have

THEOREM 8. The eigenfunctions and associated functions of the operator L. are
complete.
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A hydrodynamic model of unsteady tidal flow in coastal waters
based on an inverse method

T.C.N. MONTEIRO (RIO DE JANEIRO)
and G.JM. COPELAND (GLASGOW)

THIS PAPER PRESENTS a numerical method for solving the linearised shallow water equations of
motion based on a variational principle. The solution found is that which lies closest to the flow
field defined by measurements or other data. The process of minimising the difference between
the solution and the measurements leads to the use of the Euler-Lagrange equations. A solution
is presented for an unsteady, one-dimensional (z-space and time) example obtained using a finite
difference formulation with the Successive Over-Relaxation (SOR) method.

Nomenclature

k [m] vertical displacement of water from mean surface elevation,
hg [m] measured or estimated vertical displacement of water from mean
surface elevation used as an initial trial solution,
¢ [m*~'] rate of flow per unit width,
qo [m*s~'] measured or estimated rate of flow per unit width used as
an initial trial solution,
¢ [9.81ms™?] gravitational constant,
H [m] total depth,
S [ms™'] celerity,
t[s] time,
z [m] horizontal distance, in direction of wave propagation,
w  weights, represent the relative accuracy of measured data,
A1 [m’s™!]  Lagrange multiplier,
Az [m*~!]  Lagrange multiplier,
C  the Chezy friction coefficient.

Note: other notations are introduced locally as convenient.

1. Introduction

THE USE OF MATHEMATICAL MODELS to predict tidal flows and effluent dispersion in
coastal waters is well established, for example Liu and LEEDERTSE [1], FALCONER
[2], CopELAND [3]. These models either use finite differences, FALCONER [2], or
finite element methods, JANIN et al. [4], and are able to incorporate data only
as boundary conditions or as calibration parameters. Good quality current data
on tidal flows are now available from remote sensing equipment such as the
Ocean Surface Current Radar System (OSCR), PRANDLE [5], MARCONI [6]. Such
measurements cover extensive areas of sea providing data at points regularly
distributed over a significant part of an area to be modelled. The need has arisen,
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therefore, to develop models capable of incorporating large amounts of real data
in such a way that the calculated flows follow very closely the measurements and
so are more realistic.

LaM [7] presented the theoretical basis of a model, developed by Sasaki [8]
and SHERMAN [9] from the variational principle, which had the ability to include
into the flow simulation large amounts of real data. However, this model used only
the steady state continuity equation to define the flow, and so took a kinematic
approach to the problem which has also been described by CopPELAND [3]. A
complete flow representation should include both the unsteady continuity and
momentum equations.

This paper describes an inverse method for a one-dimensional unsteady hy-
drodynamic model, with both continuity and momentum equations, to produce a
solution for an unsteady flow field, using the linearised equations of motion.

Inverse methods have been widely used in the field of meteorology and oceano-
graphy. Early work performed by Sasaki [8] based on the variational analysis,
defines the formalism from which the approach described here was developed.
The main principle is to minimise a functional composed of the variance of
the difference between the observed and analysed values and extra terms. The
approach described here shows exactly how to build these extra terms.

Another method minimises the variance by including a filter in the minimi-
sation process. HEEMINK and KroosterHuis [10] showed how to use a Kalman
filter for incorporating data into a numerical shallow water flow model by using a
stochastic process (Kalman filter) embedded into a dynamic model (shallow wa-
ter equations). Thus a stochastic-dynamic model is combined with measurements
and the agreement between the solution and the measurements is optimised in a
least-squares sense.

A second method which has received several contributions in the literature has
the functional composed of the variance and constraint conditions. The functional
is then minimised according to a least-squares criterion using a conjugate-gradient
method, NAvON and LEGLER [11]. A typical application uses the inverse method-
ology to simulate open ocean circulation using as constraint conditions the lin-
earized shallow water equations, BENNETT and McINTOsH [12].

Due to the difficulty in using inverse modelling with the full 3-D equations
for tidal circulation, an important application is to smooth the values of observed
parameters such as friction coefficients, topography, or eddy viscosity and then to
solve the full 3-D equations for tidal circulation using the conventional methodol-
ogy as finite differences, finite elements or method of characteristics, PAMCHANG
and RiCHARDSON [13].

The term “inverse method”, see BENNETT [14], is used in this context to refer
to a calculation procedure which combines measured flow data from the model
area with the governing equations which describe the movement of the tidal wave
in coastal waters.
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2. The governing equations

The well-known equations used to predict tidal flows in coastal waters can be
developed from the three-dimensional Navier - Stokes equations and the three-
dimensional mass conservation equation. Because coastal waters are usually verti-
cally well mixed, it is a common practice to integrate these equations thiough the
vertical to produce a model formulation which is two-dimensional, FAL« ONER [2].

In order to demonstrate the development of the inverse method, an unsteady
model in one spatial dimension has been used for this study in which the equations
are also integrated over one horizontal direction to produce a cross-sectionally
averaged formulation. However, in the example presented here further simplifi-
cations have been made so that the main features of the method could he inves-
tigated without undue complication. To this end the following nonlincar terms
have been omitted from the governing cquations: advective accelerations, turbu-
lent diffusion of momentum and wind shear stress terms. These simplifications
lead to the following continuity and momentum equations:

on  dq
: = =
(32 ot Oz L
dq I glalg — _
(2.2) T +g(H + 7))&1: + 0l + nyC? — 0,

where all the notation used is defined in the list of nomenclature. In the following
analysis the friction term, [g|q|]/[(/] + 1)>C?] is replaced by a term k f.

Note there are two nonlinear terms remaining. These nonlinear terms are
simplified by the use of 5* and ¢~, resulting (/ +7*)[(d7)/(0x)] and [g|q|q¢]/[(H +
7)2C?]. Both ¢* and #5* are obtained from adjusted values as soon as they became
available in the iterations of the numerical solution.

These simplifications permit a linear mathematical treatment of the equations.
However, the nonlinear behaviour caused by the terms is still present because the
magnitudes of both these terms are close to those of ¢ and 7.

The Coriolis acceleration, which depends on the angular speed of rotation of
the Earth and the latitude of the fluid under study, is a linear term and can be
easily included in a two-dimensional model.

3. The inverse method

Unsteady tidal flow in coastal waters can be described by both direct and
inverse methods. The conventional modelling method, here called the direct
method, solves the tidal governing equations subject to boundary conditions which
define the flow. On the other hand, the inverse method uses data, measured or
estimated, at each grid point in the study domain, together with the tidal govern-
ing equations, in order to predict a tidal flow field which is in close agreement
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with measurements. In this case, the solution found is that which is closest to
the measurements (that is, the difference between solution and measurements is
minimised), being subject to the constraints of the governing equations.

The problem consists in finding a conditional minimum and so can be solved
using the variational principle. In general, this optimises the solution for a func-
tion f subject to constraint conditions g;; SAsAKI [8] describes this problem in
which the constraints are satisfied exactly as strong constraints on the problem.
Here, f is the variance of the deviation between the required solution and the
measured or estimated data subject to the continuity and momentum equations
given above which form the constraint conditions g;.

The variational formalism used is the Lagrange Multiplier Method. This seeks
a solution to the generalised function:

f(vlv V2500 Um)a

where variables v, [ = 1,m are ¢ = ¢(z,t) and = n(z,t), in this particular
context, subject to constraints:

gl(l’hvz’-'-vvm) = 0,
(3.1) 92(v1,v2,...,v) = 0,

gk(”l,’ub .- -svm) = 0.

Note that z and ¢ are the independent variables represented, in general, by
z;, i = 1,n defined in n-dimensional vector space R" (in this context n = 2).

Suppose that f and ¢ are smooth functions of m dependent variables. If
(v0,, 0y, - - -» %0,,) Provide a relative minimum for the function f under the g;,
7 = 1,k constraint conditions (that is, (vg,, vo,, - - -, v0,,) is the required solution),
and if the gradient of g at the point (vg,, v, .. ., vp,,) is not the zero vector, then
there are k real numbers A}, called Lagrange Multipliers, which form part of the
definition of the functional F:

k
(3.2) F=/"+3% )g;.

i=1

The relative minimum for the function f under the constraints conditions g;,
is achieved when the following functional is minimised:

(3.3) P = / Fdz;.

That is, the functional I is integrated over the whole solution domain.
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The minimisation of the function f must satisfy the Euler - Lagrange differen-
tial equation, which can be developed according to the variational principle, see
BRECHTKEN - MANDERSCHEID [15].

(3.4) i(ap ia 8F)=O’

Ouﬁ =1 833,- 31'/_,“

ii=1
where

_ al/,','
N T

Then there are m Euler-Lagrange equations, plus k£ constraint equations, g;,
j = 1, k, for the determination of the Lagrange multipliers A;, 7 = 1,...,k and
hence of the solution vy, I = 1,...,m.

In applying the above theoretical basis to solve an inverse problem of unsteady
tidal flows in a one-dimensional model, the function f is the variance of deviation
between the required solution (the adjusted variables) and the measured or es-
timated variables. It will be shown that the required solution is found by making
adjustments to the measured or estimated variables which are determined from
the Lagrange multipliers.

It is the overall variance, also known as a residual, taken over the whole
model domain (all z and ¢ in this context) which is required to be minimised. If
the required solution is ¢(z,t) and 7(z,t) and the measured or estimated flow
field is represented by ¢o(z,t) and ny(z,t), then the following residual R(q,n) is
to be minimised:

vz

(3.5) R(q,m) = /f [w%(q — q0)* + S%A(y - 1]0)2] dr dt.
r i

Now by comparison with Egs. (3.2) and (3.3) we see that:

(3.6) 2= [whg = o) + 23 - m0)?]

where

q = q(z,1), n = n(z,1), S = (g-H)O'Sa
wy and w; are weights that represent the relative accuracy of measured or esti-
mated variables in the flow field, larger values (5, say) indicate a more accurate
measurement than a low value of weight (1, say).
Now by considering the constraints g; to be the momentum and continuity
equations, Eqgs. (2.1) and (2.2), the functional F is rewritten according Eqgs. (3.2),
(3.3) and (3.6) as:

an , 0
61 = [ et w?+ sdm-m?+ a5+ o)
Tz t

+A; (% + g(H + no)g—z + k:f-q)] dz dt .
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The Euler-Lagrange equations, Eq.(3.4), when applied to the appropriate
variables v, (which are ¢ and 7) give the following equations:

OF 0 OF 0 OF
3.8 ogr _ 29 292
G8) o¢ " 0:0, 0q, "

and

oF o9 OF 0 0F
in which, from Egs. (3.2) and (3.3), F' is defined by the kernel of Eq. (3.7). Then
by substituting f into the Euler - Lagrange equations (3.8) and (3.9), the following
results for ¢ and n are found:

kf 1.0) 1 dn

q = qo— zwz)‘z 2w2 Dz +Z§W,
1 oM

25%2 9t

The above equations produce adjusted values to both ¢ and 7 using measured
or estimated values gy and rp also using gradients of the Lagrange Multipliers.
The adjusted values are then substituted into the constraint equations (2.1) and
(2.2), resulting in two elliptical equations. The first, Eq.(3.11), is the continuity
condition:

1 9N, 9 (1 an) 9 (kN 0 (1 an
G e aﬂ*%(L?aT)—%(w Yo \22 o

(3.10)
n = 10— 252 25%3 B2 ()\2(11 + o)) +

g 0 0 on 0
+ 3ot gy 0 o+ )+ [0+ 58] =0,
and the second, Eq.(3.12), from the momentum condition:
1 9%) 1 kf oA
(3.12) 2w2 ¥ +J2(H + 7]0) |i2m2 2 92 —(A(H + 170))] 211.)12 Et—z
1 dkf-Ay sz,\z 1 9%\ G, 1 9N
T2t ot 22 Tt aee T 7’0)? 25?0t

fo] =0

A dimensional analysis of Egs. (3.11) and (3.12) shows that the dimensions of
A1 and A, are L3T ! and L2, respectively.

The problem now reduces to that of finding solutions for of A; and A, at
each point in the model domain and then of using them to find values for the
“adjustments” to qo and 7 defined in Eqgs. (3.10) such that the required solutions
for ¢ and 7 can be determined. A numerical solution for both of A is given in the
next section.
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4. Numerical scheme

The elliptical equations (3.11) and (3.12) define a boundary value problem, for
which stable solutions are relatively easy to achieve without reference to stability
parameters such as the well-known Courant condition.

The equations are solved numerically for both of A\; and A,, subject to either
Dirichlet or Neumann boundary conditions. When A is zero on a boundary, which
is the Dirichlet condition, the variables ¢ and 7 are adjusted by a term which is a
function of the normal derivative of A, see Egs. (3.10), and so the flow variables
are free to “adjust”. However, when there is a Neumann condition, that is the
normal derivative of A is zero, no adjustment is made to the measured variables.
Thus, the Neumann condition is appropriate to closed boundaries such as the
shoreline where the normal flow must remain zero, or to particular situations
when flow data are specified and is required to be used without adjustment such
as a river discharge or tidal elevation.

The derivatives in the unsteady elliptical equations (3.11) and (3.12), are ap-
proximated by finite differences according to the staggering procedure defined
by Fig.1. The space step in the z-direction is Az and the time step is At; the
indices ¢ and j denote grid positions in the =z and ¢ coordinates, respectively.
A long channel represents the one-dimensional model investigated in this study.
This allows a complete time evaluation of the tidal flow over a full period at each
T-position.

j*!

A q
je /2 !
. n i
J
j-1/2
J-1% - . , -
i-1 i-1/2 i i+1/2 i+l

F1G. 1. The staggering procedure.

The mean water depth II, water surface elevation 7, weight coefficients w
and w», and celerity S are located at the centre of each cell with index ¢, j. The
flux ¢ in the z-direction is located at i+1/2, j+1/2 and the Lagrange multipliers
A1 and Ay are located at 7, j+1/2 and ¢+ 1/2, j, respectively. The derivatives
from the partial differential equations are replaced by difference quotients as in
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the following example of a second-derivative term:

4.1) % _AGE+1,5)- 2Xi,2j)+ \i—1.4)

The result from this discretization procedure of Egs.(3.11) and (3.12) is a
system of 2 x nz x nt linear algebraic equations for 2 X nz x nt unknowns, where
nz and nt are respectively the number of grid cells in the z-direction and number
of time steps in the z — ¢t domain. Their solution is not a trivial procedure and is
achieved by numerical computation. Writing the differential form of Egs. (3.11)
and (3.12) in their matrix form, we obtain

(4.2) AX-f=0,
where A is a column vector of the Lagrange Multipliers with components A1, 3,
Mag ooy Alpzne, A211, A221, - .5 A2ng i The column vector f with each

component being the residual of continuity and momentum equations the first
nz x nt components (f14) are residuals of continuity equation, Eq. (4.3), followed
by nz x nt components (f2;) which are residuals of the momentum equation,
Eq. (4.4). The sparse matrix A is composed of coefficients which are functions of
known parameters for each grid, these do not change as the solution progresses,
such as: weights, celerity, depth and gravitational constant.

The definitions of components f; of the column vector f are:

_[dm | 99 _
4.3) fly = [ T + _6‘;] , =1 to nzent,
(4.4)  [2 = [% +g(H + 1,0)% +kfeqol, k=nznt+l to 2enzent.

The solution of the matrix equation (4.2) was obtained using a Successive
Over-Relaxation (SOR) methods, PREss et al. [16]. As an iterative process, the
first approximation of column vector ), Eq. (4.2), was used to calculate the second
approximation, and so on. The process continued until the desired convergence
was reached. The set of residuals [A\ — f]; each approach zero to within a
specified tolerance.

The process in this way produces after each iteration a new value to both ¢ and
n, which tend to values that are correct to within a specified accuracy. Based on
these successive iterations the approximations to the nonlinear terms of Eq. (2.2)
using ¢~ and n* are rewritten progressively. The frequency of updating ¢* and
n* was reduced as the iterations progressed to ensure monotonic reduction in
the residual. Then when good convergence is reached, both ¢* and 7* are close
enough to ¢ and 7 to allow the nonlinear effect to be well represented.

The final step in the calculation used difference forms of Eqgs. (3.10) to adjust
the measured flow field to give the required solution. An example of the results
from such a calculation for a tidal wave in a long one-dimensional channel is
given in the next section.
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5. Application

In order to demonstrate the validity of the inverse method, it was applied
to calculate unsteady tidal flow in a one-dimensional channel as described by
Egs. (2.1) and (2.2). This enabled us to show the development of a numerical so-
lution for Ay and A, and hence the development of the quantitative improvement
to the initial estimated solution by finding the adjusted values ¢ and 7.

Real data were not used as the initial trial solution. Instead, a simplified
analytical solution to both the continuity equation and the linearised momentum
equation was used. That is, the solution was used for cases when n < H and the
friction effects were neglected reducing Eq. (2.2) to

dq an _
(5.1) +gH 5! =

ot 0.

If the trial solution for the discharge per unit width is given by gy = vamp H cos(kz—
ot), then Eq.(5.1) has a solution 79 = qo/S, where k = 2r /L, 0 = 2r /T, vamp is
the amplitude of the tidal current and S = (g/1)" the wave speed. Clearly, when
n is not negligible compared with H and the friction effect can not be dismissed,
an initial solution based on the linearised equations will not be a good solution
to the nonlinear equations (2.1) and (2.2) which are incorporated into the model.
In these circumstances, the inverse method will find the solution to the nonlinear
equations which is close to the linear solution gy and 7.

Demonstrating the method in this way has the advantage of offering a clear
appreciation of the errors in the initial solution and of the improvements made.

The model represented a one-dimensional channel of length 500 km and para-
bolic bottom profile, subject a progressive tidal wave of period 12.5 hours (45000 s).
The domain (z — t) was represented in the model using a mesh of 50 x 25 cells,
with Az = 10000 m and At = 1800s.

A simulation was performed with a parabolic bed profile for which the depth
varied from 108.40m to 15.70m. The amplitude of the flow was 162.54 m%/s.
The wave number (k = 2r/L) used in the trial solution (estimated data) was
computed at each position in order to consider the shoaling effect, and so in that
simulation the wavelength was significantly reduced in the shallow end of the
channel, however the trial solution did not include amplitude shoaling.

In order to make a good estimate of the artifical “measured data” which was
required to be included in the input data set, a pre-simulation was performed. At
two locations over the channel, four points assumed to represent “measured data”
were taken from the pre-simulation output. The full input data set composed data
from these two locations embedded in the linear solution. All points with data
which were estimated using the linear solution were given a weight equal to one,
and the remaining points composed of “measured data” from the pre-simulation
received weights equal to five.
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Figure 2 and Fig.3 shows respectively residuals of the continuity equation
and of the momentum equation over the channel length. Three residuals were
computed over the whole domain z —¢. The sum of the absolute values of residual
over the time period at each spatial location was plotted against distance along
the longitudinal channel.

residual (m/s]

distance [x10km]

FiG. 2. Residuals from the continuity equation along the length of the channel. Each residual is
the sum of 24 absolute residuals over a period of 12.5 hours.

The first residual in each labelled “input” refers to the residual of Eq. (2.1) or
Eq. (2.2) using data from the initial input data set.

The second residual named “fda”, was obtained from the analysis of the finite
difference approximation (fda) by applying the Taylor series to the linear equations
(2.1) and (5.1), for a channel of linearly varying depth, as developed by IPPEN
[17]. According to the staggering procedure, Fig. 1, the numerical approximation
has a second-order truncation error. These errors for Eq.(2.1) and Eq.(5.1),
respectively, (continuity equation and momentum equation) are as follows:

A2 PPy Az? D

(5.2) YRRETE 2 5.3 fda (continuity),
A2 Pq Az? 93y
(5.3) T + g-1 4 0. fda (momentum).

The fda’s were evaluated using values of 79 and ¢ obtained using computer
algebra for a solution over the parabolic depth profile, allowing for shoaling
effects in amplitude and wavelength.
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residual [m?/s?]

i |
1 1 21 3 41
distance [x10km]

Fi1G. 3. Residuals from the momentum equation along the length of the channel. Each residual is
the sum of 24 absolute residuals over a period of 12.5 hours.

The final residuals plotted, labelled “output” in both Figs.2 and 3, were the
actual residual of Egs.(2.1) and (2.2) after application of the inverse method.

In the present work the fda’s were used as reference values for the residual
analysis. The fda residuals, Fig.2 and Fig.3, slightly increase when the depth is
reduced, as a consequence of the reduction of the wavelength, i.e. as the ratio
Az /L increases, but the ratio At/ L is greater than Az /L so the fda in the time
derivative is greater than spatial derivative. Therefore the major contribution to
the total fda is from the spatial derivatives.

The residual from the trial solution is relatively large because the trial sol-
ution did not allow for any amplitude shoaling nor any nonlinear effects. The
theoretical value of the fda represents the magnitude of the residual below which
improvements achieved by the inverse method are not actually justified. However,
in the inverse methodology only one convergence criterion was used over the
whole domain (z — t). Consequently, in some areas where the nonlinearity is less
important, the final residuals produced by the optimisation process were smaller
than the fda residuals (especially in the continuity equation) in order to satisfy
the accuracy requirements at the critical areas (shallow end with the momentum
equation). This, in effect, is modifying the solution to comply with the numerical
accuracy requirements.

The final residuals obtained from adjusted data following the inverse method-
ology were reduced over the whole channel even in the shallow areas where
the nonlinear effects are more important. The final residuals in the shallow area
were reduced by two orders of magnitude, showing that the simplification in the
nonlinear terms of Eq. (2.2) was successful.
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input solution
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F1G. 4. Flow over domain (z — t) showing the input and output solution.

Figure 4 and Fig.5 show the input data (full initial data set) and output solu-
tion to the inverse method in terms of discharges and elevations over the domain
(z —t), respectively. As the final solution was composed of both “measurements”
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input solution
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F1G. S. Elevation over domain (z — t) showing the input and output solution.

and estimated data, the graphs of both the flow and elevation inputs show discon-
tinuities. However, the model was able to produce a smooth final solution except
for some minor effects on the boundaries.
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6. Conclusions

It is suggested that a new modelling method is required to predict tidal flows
in coastal seas which makes maximum use of the measured data obtained from
within the model area. The term “inverse modelling” is used to describe this
approach in which the flow calculations are controlled by data points within the
model domain rather than by data along the boundaries only as in conventional
models. The increase in availability of flow data from remote sensing equipment
with a wide spatial coverage is seen as driving the need for inverse models. This
paper describes a method of this kind, based on the variational principle, in which
a solution to the governing continuity and momentum equations is found which
lies closest to the initial estimated solution determined by measurements or by
other data.

The problem is analysed for a one-dimensional long wave motion entering a
shallow area according to a parabolic bed profile. The simplified nonlinear terms
in the momentum equation, Eq. (2.2), had the ability to simulate properly the
strong linearity effect at the shallow areas.

A solution method is presented based on a finite difference scheme in which
a S.O.R method resulted in a stable and asymptotic rate of convergence even
when the nonlinearity becomes stronger in the case of a large amplitude motion
in shallow water.

In order to demonstrate the effectiveness of the method, the case of a tidal
wave in a 500 km channel was studied. The trial solution was composed of artificial
“measurements” and data estimated from the analytical solution to the completely
linear problem neglecting the damping in shallow areas. As the flow was strongly
affected by the nonlinear terms in the shallow areas, this trial solution became
increasingly less satisfactory in shallow water and so the inverse method was
required to compute larger corrections.

The results from the demonstration of the model were assessed in terms of the
residuals obtained when both the trial solution and the corrected solution were
substituted into the momentum equation. The residual error was greatly reduced
to the levels of the finite difference error well within the tolerances required for
engineering studies of tidal flows.

The results presented show that the method is valid and so it supports further
development to models with two spatial dimensions and with the extra nonlinear
term of convective accelerations.
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Comparison between strictly conical and paraboloidal flow
fields in the presence of angular momentum (*)

R. PUZYREWSKI and K. NAMIESNIK (GDANSK)

Nonviscip, compressible, stationary model of the flow along conical and paraboloidal stream sur-
faces is considered. The aim of the work is to create such a pressure field which is able to hold the
assumed shape of stream surfaces in the presence of angular momentum. The flow is described in
the nonorthogonal curvilinear system of coordinates based on the assumed stream surfaces. Due to
this specific coordinate system, the flow can be treated as quasi-twodimensional. Only the velocity
components tangential to the conical or paraboloidal surfaces are the non-zero components. This
system of conservation equations can be reduced to the hyperbolic type. There exist two families
of characteristics. The first family is a family of constant values of the mass flow function and total
energy function. Along the second family of characteristics, the pressure gradient is in equilibrium
with accelerations of three-dimensionally curved trajectories of fluid elements. The existence of
characteristics is the basis for an algorithm of solving of the whole flow field in a given axisymmet-
rical space domain. The examples of computation of the flow field are shown in the paper. The
regions of nonexisting solutions have been discovered in some cases. The obtained solution may
be applied to the design of the turbomachinery vanes.

1. Introduction

THE STARTING POINT for the problem discussed in the paper is the layout of the
flow field in turbomachinery stages. The approach presented here can be classified
among the inverse methods when no blading exists, but desirable stream lines in a
given meridional cross-section of the stage are expected. Then the blading should
be determined by stream lines given a priori. The main physical assumptions of
the presented inverse model are widely recognized in the literature [1, 2]. They
are commonly accepted in the field of turbomachinery. The present paper is
a continuation of the proposed general method of solution [3] and follows the
works presented already in [4, 5, 6].

2. Description of the model
2.1. Geometry of the flow

Let us consider the geometry as it is shown in Fig.1a and 1b.

Figure 1a shows the family of cones which are focussed at the circle r,, in the
plane z = 0. Figure 1b presents the family of paraboloidal surfaces converging
also in the circle r,, in the plane z =

(*) Presented at the 2-nd European Fluid Mechanics Conference, Warsaw, 20-24 Sept., 1994.
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: A, =
(S, ) parabolic surfaces o
characteristics (I) — — L characteristics ( IT)
h
N )
A B
Z, Fs z, z

Fic. 1. Meridional cross-section of conical a) and paraboloidal b) stream surfaces.

In the case of Fig.1a the coordinates ¢ = tgy and z describe the cones
according to the formula
(2.1) r=ry+gqz.

For the case 1b we have coordinates » and = which determine the paraboloidal
surface in the form

hz z
(22) T—T'w‘l"—zg(Z*;O‘).

Here, besides r,,, we have the second parameter z.
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In the sequel, the conical (2.1) and paraboloidal surfaces (2.2) will be treated
as stream surfaces of type S1. The aim of the considerations is to determine the
flow parameters on these surfaces.

The domain of the considerations will be restricted to the region between
points AB By A;. This region is supposed to be occupied by a stationary blading
(nozzles) of a designed stage.

The following notations will be used for the non-orthogonal system of coor-
dinates based on surfaces (2.1) or (2.2).

Coordinates:

M = g or h,asin Fig.laand 1b,
2)

2 », along the circumference,

#® = 2z, asin Fig.1a and 1b.
Nonzero velocity components in the system of coordinates are
U,y Uy

whereas U_u = 0 follows from the definition of stream surfaces of S1-type for
() = const.

2.2. Physical assumptions

The flow along surfaces z(!) = const will be considered under the following
assumptions:

stationary flow

d
o=
axisymmetrical flow
0 _ 9 _y
dp  02@ ’
compressible
0 = var,

no viscosity, hence the flow is nondissipative.

The influence of the unknown blading on the flow field will be simulated in the
mass conservation equation and in the momentum conservation equation. The
assumption of lack of dissipation implies the energy conservation equation such
as for ideal flow without energy subtraction, because we consider the domain of
the nozzle.

In the mass conservation equation the blading will be taken into account
by means of blockage coefficient, which subtracts from the full circumference a
certain fraction 27 (1 — 7(z(), 20))).
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In the momentum conservation equation, the influence of blading will be
expressed by the force components as

Fr“) = 0, Fz(z) # 0, FI(3) # O

This means that the blades influence the flow by means of body forces only in
the stream surfaces (1) = const, but not in the directions perpendicular to them.

2.3. Conservation equations

The conservation equations will be presented in the non-orthogonal system of
coordinates (), 2, 23 parallel for conical and paraboloidal flows.

Mass conservation equation

For a conical flow
(2.3) o(ry + $(])I(3))$(3)UI(3)(1 — (@™, 2)) = m(zM),

for a paraboloidal flow

2020 [ OV 23 e
I 2— 2-
2| Z| 2 2
2.4) 0 0 i 2L U, (1- (2™, 2))

g 2
(M 3
Jl * (h (1 B ))
<0 Z0

It is worth noting that the equations have one term on the left-hand side and
mass flow function on the right-hand side which depend only on (! coordinate.

= 771(17(1)).

Momentum conservation equation

For conical flow

2
re + z(MzG) 23 9D 9zr(3®’
U, z W, \ _
28 V1 + 2 (rw T+ a0m =0 T oy | = faor
R T AL SV prup e SV el B
. 0 (3 a$(3) =0 2(3) z _( T 83:(3) $(3) a.'L'(l) 9
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for paraboloidal flow

oU (3
QUj(Z) i Zg

28 - -
z(Dz3) x3) (1) YO
Tw + — 2-— 1+(21 (1—1 ))
<0 ~0 20 20
221 B3\ 2
1+ (== (1-1
=) 20 dp 220 (1 1(3)) dp

+
.'L'(3) 2 11’,'(3) a,"l:(l) 20 20 0,’13(3) ’
0 20
(2.9) oU .
' 2
z(1) +(3)
<0 20
2, (1) (3)
_ = (T
()Ur(z) 20 20 = oF
920 (1)) LY | T @
Py 2- —
20 20
42 (1 (1 .1:(3)) U
_ .o
(2.10) oU,e) U ) 3 0 (
’ )2 (3) (1) (3)
(220 (2O 2| 9= I i R
2:(0) ( mm)
s =—(1-—
: 22(1) () =) 20 Jdp p
tol,m + \J 1+ (_20 (1 R )) NE) , 2B\ 9z0 923
20 20
Energy conservation equation
1 . k p
(211) E ((]3(2) + 03(3)) + mg = h(l‘(l)).
Isentropic condition
P
(2.12) i c(zM).

The above system of equations is closed with respect to

0, U, Upowys Fros Froon, -
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3. Method of solution

It is not difficult to note that the system of above equations can be reduced
to a hyperbolic one [5].

Two families of real characteristics can be found for the system.

The first family is

=) = const S

or simply stream surfaces of (1) or (2)-type (S1). Along them m(z("), the mass
flow rate functions (2.3) and (2.4) are constant. Also h(z(!), the energy function
(2.11), is constant.

The second family for a conical flow is

(3.1) 2®V1 + z(D2 = const .
and for a paraboloidal flow is

-3
0
23 (229 — 2(®)

1 (31 )2 2(3) 2 (Z’) 2(3) z0— 2’
% | = il I _ Z ) - = — In ———= = const.
2 20 zp 20 20 zp — 23

where 2’ = 23 at (1) = 0.
Along the characteristics (3.1), the ordinary differential equation of the form

G2) O

& 0U2e®

33 -
(33 dzM (v, + zMWzG)(1 + 2(12)

has to be satisfied.
For the characteristics (3.2), the equation reads:

23) (2 ;L-(3))
dp _ QUIZ.(Z) 20 20

dz() (1) ,(3) (3) N I\ 2
Tw+l T 2_:1:_)1+ 2,(1) 1_3;()
0 0 20 20

(1) 3) .(3)
o2 (2 2)
) ZO 20

(3.4)

~0

21(1>( L2\
1+ 1 -
20 20

+
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The characteristics (3.1) and 3.2) are perpendicular to 2! = const. Along them
the presssure gradient is balanced by the centrifugal force which is expressed by
the Egs. (3.3) and (3.4).

The method of solution relies on solving, by means of the Runge-Kutta
method, the differential equation (3.3) or (3.4) along the characteristics (3.1)
or (3.2), starting from the lines A; B; and AA; shown in Fig. 2.

;
h=05
Brc :Blp
A]p |
l
|
AI: I
|
|
|
=24.22°
§ Ih=0
A B I
r, =0865 |
L | N .

‘ 2.0:1,44 Z=X

F1G. 2. Geometry of compared domains for conically and paraboloidally shaped stream lines.

This means that the boundary conditions for pressure p should be given along
these lines.

4. Examples of numerical calculation

In order to show the difference in the solutions for different geometry from
Fig.1a and Fig. 1 b, we will choose the following boundary conditions as they are
illustrated in Fig. 2.

For paraboloidal and conically shaped stream surfaces, the distance BB, is
the same. At this oulet station the flow is prepared to work in the rotor which is
placed behind the nozzles in the real stage.

The boundary conditions should be given along the lines: AA;.B;. for the
conical stream surfaces, and AA,, B, for the paraboloidal stream surfaces.
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At the inlets to the domain AA;B; B let us assume the same pressure and

temperature, €.g.
po = 1500 Pa, Ty = 327°K,

and the gas constants

J
R=460—"—, k=13,
=460 3

For both cases the same mass flow rate was chosen,
m = 24.404 kg/s,
which means that normal velocity at the inlet of conical flow is
Upe = 115.257m/s,
and for paraboloidal flow is
Upp =97.623m/s.

No circumferential components of the inlet velocity were assumed.

To create angular momentum in the region of vanes, one has to introduce the
circumferential velocity change along bounds A, By, and A;.Bj.. It was assumed
to be linear (as a function of z) increase of v components along these arcs
from Uf) = ( at points Ay, Ay, up to Uiz) = 400 m/s in the points B;. and 5.
The known circumferential component along these arcs enabled us to determine
also the pressure distribution and to start the computation of flow parameters in
the whole domain.

The first comparison has been done for zero blockage coefficient 7(2(12(3))=0.
It corresponds to an infinitesimal thickness of blading.

The graphical presentation of trajectories at different stream surfaces is shown
in Fig.3 a and Fig.3b. The stream surfaces of the second family (S2), created by
the trajectories starting from the lines AA;. and AA;,, are shown for conical flow
in Fig.3 a and for paraboloidal flow — in Fig.3b.

Figure 4 shows the distribution of circumferential velocity at the outlet, line
B By. It is worth noting that in the case of a paraboloidal flow field, the distribution
of circumferential velocity component is more uniform and the velocity is higher
at the inner diameter.

If we define the moment of circumferenial momentum over the outlet area
Spp1 in Fig. 2 like

@.1) L= / oU.yUnr dS,

Spp,



F1G. 3. Solution of S2 surfaces for both cases at zero blockage coefficient .
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circ. velocity [m/s]

450

425

b)
A
4G parabolic flow

o1

375

AN

350 /
conical flow /
pa a)
325 —F — — —_——

30

00.855 0979 1093 1207 1321
radius [m]
F1G. 4. Comparison of circumferential velocity at the outlet of conical and paraboloidal stream

surfaces.

then for a paraboloidal flow one gets

L, = 10626.654 Nm
whereas for a conical flow the moment is

L. = 9393.558 Nm.

In the case of paraboloidal flow, the same mass flow rate generates a moment
higher by about 13% than the one for the conical flow.

The second point which has been checked in the present example is the sen-
sitivity of the flow to the blockage coefficient 7(z(1),2(3).

The following function was chosen for 7:

1 —(3 ni —(3 ny

tmax — tmin 1- "f\('ge)lx 'f](.,::':)lx
.(3) —
=72 0 —0s.
“p T %a

The function (4.2) with the above parameters localizes the maximum thickness
of blading at If,ﬂx = (.5. Altogether five parameters can be chosen to distribute 7
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in the domain of the flow, namely ny, ny, 7, 7, fﬁgx The set of parameters
P

enable us to approximate a large class of blade thicknesses. The aim of the present
analysis is to show the existence or nonexistence of the solution, depending on the
level of blockage coefficient 7(z(1,z3)). Out of many possible combinations of
parameters of the function (4.2), let us assume the following ones to be constant:

z, =073,  z, =098+ 0.0755(r — 0.865),

tmax = hmax = 0.5 for paraboloidal flow,
tmin = Pmin = 0.0 for paraboloidal flow,
tmax = gmax = 0.4498  for conical flow,
tmin = Gmin = 0.0 for conical flow,

ny = 2, ny = 2,

and vary only 71, 7. These two parameters control the change of maximum blade
thickness of the blade in the middle of the width at z(® = 0.5. In Fig.5, curve
C for the conical flow (r; = 7 = 0.086) and curve P, for the paraboloidal
flow (r; = 7 = 0.11219), show the limiting blockage coefficient 7 at the root of
blade z() = 0. They split the plane ino two sub-domains. The inner sub-domain
provides the existence of solution for the whole range of z(!). The regions of no
solution — “white spots” — appear in the outer subdomains. This is valid for the
set of parameters chosen for the discussion. But qualitatively, it characterizes the
general feature of the problem, namely — due to a too high blockage the solution
may fail.

T j / —_—— \\
020 % N
/ \ sub-domain of
o/ . \/?'whfte spots”
/ r/ \\
015 / /’ ‘\\( .\
/ 7oL \
/e NN
! £ N
010 Yy Ny
'\hsub -domain of| \
/ full solution \
// \ \
005 // \ \
: /7 \\
4/ AN
27 \\\
ot // 1]
0 Q2 04 a6 08 xf3 10

F1g. 5. Limiting curves for the existence of “white spots” in conical and paraboloidal flows.
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To illustrate the influence of blockage, the following parameters were chosen
for the numerical examples:

curve A — 11 =1 =0.08,
curve B - 1 =1 =0.10,
curve C — 11 =7 =0.12.

They are shown among the limiting curves in Fig. 6.

Q20

o5

010 |—

Q05—

0 02 04 06 08 %13 10

FiG. 6. Low, medium and high blockage coefficients in comparison to limiting curves.

The stream surfaces S2, for the parameters 7 = m = 0.08, for a conical flow
(Fig. 7a) and for a paraboloidal flow (Fig.7b) are shown. The solution for S2
exists for the whole range of 2(1).

For the parameters 7y = 7 = (.10 there is no full solution at the root for S2
in the conical case, but for the paraboloidal case the solution exists in the whole
range of z(1. Tt is shown in Fig.8a and in Fig.8b.

For the case of 1 = 7, = 0.12 there is no full solution at the root in both the
cases, conical and paraboloidal. The size of “white spot” is larger in the case of
conical flow — Fig.9a than that in the case of paraboloidal flow — Fig.9b.
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F1G. 8. Solution of S2 surfaces for both cases at medium blockage coefficient .
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5. Conclusions

For the presented examples of paraboloidal and conical flows, if one assumes
the conditions of comparison of these two flows, the following conclusions can
be drawn:

1. The parabolic flow produces higher moment of circumferential momentum
than the conical flow.

2. The high blockage of the flow due to a too thick blading makes the solution
impossible in the region close to the inner diameter — “white spot”.

3. The area of “white spot” is larger for a conical flow than for a paraboloidal
flow.

From the points of view presented above one can state that the paraboloidal
flow is more favorable than the conical flow. In practical applications the advan-
tages of paraboloidal flows have to be confronted with the broader aspects of a
technical character.
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A four-velocity model for van der Waals fluids

K. PIECHOR (WARSZAWA)

A simpLE, four-velocity model for van der Waals fluids is presented. The true kinetic equation
we imitate is that of Enskog—Vlasov. A closed system of equations for the number density » and
the mean velocity u is obtained in exactly the same way as in the case of discrete kinctic theory
of the Boltzmann equation, i.c. under the only assumption that the Knudsen number hased on
the mean-free-path of hard-core collisions is a small parameter, and without expanding the model
Enskog operator. Consequently, the obtained equations of hydrodynamics are integro-differcatial.
If, however, we expand the terms representing the hard-core collisions and those representing the
attractive tail in a power scries in suitably defined small paramcters, then the equations of hy-
drodynamics are shown to take the usual differential form with capillarity terms included. Also,
one-dimensional forms of both the kinetic model equations and the resulting hydrodynamic equa-
tions are given. As an application we show that the Maxwell equal area rule for liquid-vapour
transitions results dircctly from the approximate kinctic equations as well as from the hydrody-
namics ones, and that it is of the same, classical form.

1. Introduction

SINCE THE USE OF THE BOLTZMANN equation [1—4] is limited to sufficiently rarefied
gases, Enskog [1-6] proposed a kinetic equation for the one-particle distribution
function by modifying Boltzmann’s assumptions in two ways:

i. He assumed that the molecules are hard spheres and took into account that
the centres of two colliding spheres are a distance o apart, where o is the sphere
diameter;

ii. He increased the collision frequency by a factor H, which is a function of
the gas density at the contact point of the two colliding spheres, and represents
the pair correlation function corresponding to the system in uniform equilibrium.

The original Enskog equation, now referred to as a standard one, was used
to evaluate transport coefficients in moderately dense gases [1-3], and quite
recently to determine the shock wave structure [7].

Although the results concerning the transport coefficients were more accurate
than the ones provided by the Boltzmann equation, the standard Enskog equation
exhibited some disagreement with irreversible thermodynamics. This was removed
by van BEUEREN and ERNsT [8], who replaced the function / used originally by
Enskog by the exact local equilibrium pair distribution function which takes fully
into account the spatial nonuniformities in the local equilibrium state. This form
of the Enskog equation is called revised.

The Enskog equation or its mutants have been the object of intensive math-
ematical studies for the last years, and the results with long lists of earlier refer-
ences are presented in [5] and [6].
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In order to have an equation suitable to liquid dynamics and phase changes,
GRMELA [9, 10] was presumably the first who proposed the so-called Enskog - Vla-
sov equation. The intermolecular potential is split into a hard-core and an attrac-
tive tail. The hard-core is treated as in the standard Enskog equation, whereas
the tail enters the kinetic equation only linearly in a mean-field term. Later, this
equation was derived from the Liouville equation by applying the principle of
maximization of entropy [11, 12]. The hard-core term was obtained as in the
revised Enskog equation. This equation was used in [11] to evaluate the trans-
port coefficients. A comparison with experimental data exhibited a pretty good
agreement even in the case of quite complex molecules and in a wide range
of pressures. Recently this equation was used by the present author [13] to de-
duce so-called thermocapillarity equations which earlier have been derived on
phenomenological grounds.

The Enskog- Vlasov equation reads:

J
(1.1) A A N R0}
where f = f(¢,r,v) is the distribution function, ¢ is the time, r € R? is the
position, v € R? is the molecular velocity. The self-consistent force of attraction
F is assumed to be of the mean-field form

(1.2) F =/ YT o (ly - r)n(t,y) dy,
ly = r|
where n(t,r) is the number density,

(1.3) n(l,r) = / F(t, 5, v) dv,

@(r) is the attractive potential, and ¢'(r) is its derivative with respect to r.
As the collision operator F(f) we take the revised Enskog operator [4-6, 8,
11, 12]

(14)  E(f)= o> / 0 [n-(v. = )] [ (.r + oTn) f/(1) f2(r + om)
—H(r,r—on)f(r)f.(r— orn)] dndv.,

where f(r) = f(t,r,v), f.(r) = f(t,r,v.), f'(r) = f(t,r,¥), f'(r) = f(t,r,v)) are
values of the distribution function at the indicated velocities. Here, as usual, v/,
v, are the post-collision velocities related to the pre-collision ones v, v, by

vV = v+ n[n-(v. — v)],

1.5
( ) vV = v, — Il[n'(vn: - V)],

>
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with n being a unit vector bisecting the angle between v, — v’ and v, — v, and
directed from the molecule with the velocity v. to the molecule with the velocity
v when in contact. Next, #(z) in (1.4) is a function of one real variable defined

by

z if x>0,
(1.6) 9(”")'{0 if z<0.

Finally, H(r,y) is a functional of the number density as well ‘as of the space
variables, usually denoted as follows

(1.7) H(r,y) = H(r,y | n(t)),

to mark that it depends on n. We use a shorthand, but (1.7) has to be remem-
bered. Usually it is assumed that // is positive, and that it is symmetric under the
interchange of variables r and y,

(1.8) H(r,y) = H(y,r).

It is obvious that the Enskog equation, and the more the Enskog - Vlasov one,
is much more complicated than the Boltzmann equation, so that a radical but
reasonable simplification is necessary. We will show in a series of papers that this
can be achieved by extending the basic ideas of discrete kinetic theory of the
Boltzmann equation ([14-17]) to the present case.

Discrete velocity kinetic theory considers such mathematical models of kinetic
equations in which the velocity space is not all R? (where d = 1,2,3) but a finite,
fixed in advance set of d-dimensional vectors.

These ideas were extended in [18] to construct a quite general class of discrete
models of the Enskog - Vlasov equation (1.1). Contrary to this paper, we consider
here a specific, four-velocity model. Hence, we supply the general considerations
of [18] with an example, lacking in this paper. We pursue the study much fur-
ther and obtain the explicit form of the Navier - Stokes type of approximation to
the considered model. It turns out that to receive this approximation, it is not
necessary to assume that the sphere diameter o is much smaller than the macro-
scopic length scale, what is usually done [2, 3, 6]. The equations of the model
hydrodynamics obtained in this way are integro-differential, what reflects the ba-
sic postulate of the Enskog theory that the molecular interactions are non-local.
If we take the additional assumption that o is small, we obtain pure differential
equations of the hydrodynamic character.

As an introductory applications we show that the Maxwell equal area rule can
be deduced both directly from the kinetic model as well as from its hydrodynamic
approximation. The detailed and complete analysis of our model and its various
approximations will be the object of future papers.
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2. The model

We consider a model “gas” whose molecules move in planes parallel to a
certain fixed plane in such a way that their motion is independent of the distance
between the actual plane of motion and that of reference. Hence such a motion
can be totally described by two two-dimensional vectors: r = (z1,z2) of the
position, and ¢ = (¢, ¢) of the molecular velocity.

The key assumption is that the molecules can move with only one of the
following four velocities:

(2.1) e =(c1,c2), c1=(-c2,c1), e@=(-c.—c2). € =(c2,—cy1),

where ¢j, ¢ are constants.

We denote by N,(t,r), i = 0,1,2,3, the probability density of finding a
molecule moving with the velocity ¢;, i.e. the :-th molecule. in a volume dr around
r, at the time .

If we take the Boltzmann’s concept of gas ([1-4]) according to which: i) the
molecules are mass-points, ii) in the absence of external forces they move freely
with the exception of collisions with other molecules, iii) the collisions are instan-
taneous, then N;(¢,r) satisfy a system of equations of the form

(2.2) %]\ + e VN, = Qi(N), i=0,1,23,

where the left-hand side describes changes of N; due to the free motion, and
(:(N) on the right-hand side describes changes of N; resulting from the collisions.

In (2.2), as well as in all forthcoming formulae, the dot between two symbols
of vectors denotes their scalar product in the sense of R2.

In order to write down an expression for Q;(N) we take the Boltzmann’s
ideas of gas. It is obvious that due to the collisions, some molecules will leave the
considered portion of the gas, but some other, not present before the collision,
can enter it. Consequently, Q;(V) is the difference between the “gain” and “loss”
terms. Each of these terms is proportional to the product of probability densities
of molecules participating in the collision since, by assumption, the molecules
move independently in the stochastic sense. In the Boltzmann theory of rarefied
gases only two molecules can collide and the outcome of the collision are two
identical molecules moving with new, post-collision velocities. These velocities are
such that the total momentum and energy before and after the collision remain
unchanged. In our case of (2.1) the momentum conservation principle is satisfied
in the following four cases.

(23) C; + Ciy2 = Ciy1 + Civ3, 1= O, 1, 2.3
The energy conservation principle
(2.4) Hct,=c, +ch,,  i=0,1,23,

is satisfied identically owing to (2.1).
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Here and in the future we take the following convention. Let {Z;}, i =

0,1,2,..., be a finite or infinite sequence of some quantities. We assume that
if i > 4, then
Zz' = Z] )

where ¢ = j(mod 4), i.e. j is the remainder of the division of 7 by 4.
Hence, the only admissible binary collisions are such that the pre-collision
velocities are ¢; and ¢, 2, and the post-collision ones are ¢;; and ¢;43.
Therefore we write (c.f. [14-17])

(25) QEB(EV) = (TC(]V,‘.;.]]V{.;.:; -— _N,']Vi+2), 1= 0, ],2,3,

where the superscript 3 is used to mark that this form of () was obtained on the
basis of the Boltzmann’s ideas. In (2.5) o is a positive constant coefficient called
the collision cross-section, and ¢ is defined by

(2.6) c= /e + k.

In the case of dense gases the problem is much more subtle. We keep the
hypothesis that the state of the gas can be described by the one-particle distribu-
tions NV; (« = 0,1,2,3), as well as we keep the assumptions leading to Egs. (2.2).
The question is, what is the form of @,. To solve it we follow the Enskog’s ideas,
and therefore we supply Q; with the superscript 2, i.e. we write QF instead of Q;.
The basic difTerence between the Boltzmann’s and Enskog’s approaches is that in
the latter case the size of the molecules is not ignored. Hence, the centres of two
colliding molecules are at different points, and consequently the distributions, say
N; and N;, are evaluated at different positions but at the same time.

If the location of the molecule moving at the velocity ¢; is at r, then the
location of another molecule, say ¢;, when in contact with ¢; is at

r— on,

where n is a unit vector directed from the centre of ¢; to that of ¢;. Their velocities
after the collision, say ¢! and ¢/ respectively, are evaluated by using (1.5) with v =
¢;, and v. = ¢;. This guarantees that the principles of conservation of momentum
and energy are satisfied. But ¢; and ¢} have to belong to the set (2.1) of admissible
velocities, so n cannot be arbitrary. Hence, we are forced to discretize the range
of vectors n as well.

Let us notice that we did tacitly the same when modelling the Boltzmann
collision operator either. But then we did not need explicitly the vector n since the
probability densities of both particles participating in a collision were evaluated
at the same point.

In this paper we take into account only such collisions that the angle between
the line joining the centres of two molecules in contact and the line parallel to
¢; is equal to +45°.
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We have four such collisions:

i. Before the collision the molecule ¢; is at r, the molecule ¢;, is at

_ (civ2 — Cip3) — (€i — €ix1)

(2.7) [(civ2 — €iv3) — (ci — €it1)|’

after the collision ¢; changes to ¢;4+1, and ¢;42 changes to ¢;,3 (Fig.1).

[ Cisr
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Fia. 1.
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ii. Before the collision the molecule ¢; is at r, the molecule ¢, is at

_(Civ2 —€iv1) — (ci —civ3)
(€iv2 — €iv1) = (i — €i3)|

@2.7) r

after the collision ¢; changes to ¢;43, and ¢;42 changes to ¢; ;.

Norte. In the previous, Boltzmann case it was sufficient to declare that the pair
(ci, ¢;) changes to the pair (¢!, ;). Now, due to the distinction of the positions of
the centres of the colliding molecules, we have to distinguish between collisions
of the type: ¢; changes to ¢/, ¢; changes to ¢!, and ¢; changes to ¢}, ¢; changes
to ..

iii. Before the collision the molecule ¢; is at r, the molecule ¢;; is at

B (c;41 — €i) — (€i — €i41)
I(Ci+1 . Ci) - (ci - ci+1)| ’

2.7") r

after the collision ¢; changes to ¢;+1, and ¢;4+; changes to c;.
iv. Before the collision the molecule ¢; is at r, the molecule ¢; ;3 is at

(ci43 — Ci) - (c; — Ci+3)
2.7 r— ,
(&7 7 |(ci43 — €) — (€i — €;43)]

after the collision ¢; changes to ¢;+3, and ¢;+3 changes to c;.

Note. Collisions of the type iii. and iv. are called exchange collisions, since
the molecules participating in such an event simply exchange their velocities, In
the Boltzmann case such collisions are trivial because they do not contribute to
QPF. Tt is no longer true in the case of dense gases due to the shift of the positions
of the two molecules in contact.

The next question concerns the factor /7 in (1.4). We solve this problem as
follows. We define the number density n by

1
(28) 72.([,[') = Z(‘N() + Ny + Ny + N3).

Assuming that / depends functionally on the number density » only, we use
simply the same /1 as in the continuous case of (1.4).
As the four-velocity model of the Enskog operator we take

; oc Cir1— € Ciy1— €
(29) QF(N) =+ [H (r,r+ a-—-——) Niv1(DN; 43 <r+ a——)
) 2 leisr—el/ o |¢iv1 — i
Cit1 — € C;+1— C;
—H (rr+ o= ) Ni(t)Nipg (r+ o 71
lcis1 — €l eiv1 — ¢
oc C;11 + ¢ C,y1 + ¢
+— [H (I‘,l‘— O’—IH—z) Ni+3(l‘)Ni+1 (l‘ - O'-L)
2 le;+1 + ¢ [civ1 + ¢l
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(2.9) T (r’ St
|cz+1

[n (r, Sl )Nlﬂ(r)Ni .(r+ =L )
|c1+1 cz| |C1+] - cl'

el
r,T— PG & o ) N(t)N; 41 ( e o2 o )]

Ni(f)Nisa (r+ gf—i‘——c)]

[cont.] i1 + ¢

]I(
|cz+l_c1| |c1+l“cz
C+1+ ¢ + ¢
[I[ ( 1+1 ) 1+3(r)Ni (l’— z+1
HRET [eivr + ]
| ciyp+e +c

-H (r,r+ L)1\/(r)’\fﬁ.3 (r+ —-i—l>],

| ci+1+ ¢ lciv1 + ¢

i = 0,1,2,3, where the momentum conservation principle (2.3) was used.

Note. The multipliers of each of the terms in the square brackets [ ] in
(2.9) are called the transition rates. Here all of them are taken to be equal
oc/2. In general, they can be arbitrary nonnegative numbers. However, as shown
in [18], some restrictions have to be imposed on them to obtain the correct
form of the hydrodynamic approximation. “Correct” means that the equations
of hydrodynamics deduced from a discrete kinetic theory should resemble the
hydrodynamic equations deduced from the true kinetic theory. The choice of the
transition rates used in (2.9) is correct in this sense, as we will see it later.

In order to have a discrete theory suitable for phase transitions, we have to add
a term representing long-range forces of intermolecular attraction, as suggested by
Eq. (1.1). The core of the problem is to model the gradient d f /dv. It is exactly the
same difficulty which is faced when modelling the Boltzmann equation containing
external forces. In our opinion, this problem has no satisfactory solution. Here,
we follow the ideas of our previous paper [18]; other approaches (inapplicable to
our needs) can be found in [19, 20].

Our idea is as follows. Let fys be the Maxwell distribution of local equilibrium.
We approximate df/dv in Eq. (1.1) by d far/Ov. But 3 far/Ov = —0 far/Ou where
u is the mean velocity of the ordered motion.

In the four-velocity kinetic theory, the mean velocity u is defined by

1 3
(2.10) 4= g 3 Mo
where n is the number density (2.8), whereas the Maxwell distribution A, ¢ =
0,1,2,3, satisfies
(211) AJOlw_g = A[lf\fz .

Usually, the components of the Maxwellian are expressed through the number
density » and the mean velocity u. To this end we set N; = M; in (2.8) and (2.10),

\
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and using (2.11) we obtain

o\ 2 L em ) 2
(1+°'€2“) —(“C—‘z")] i=0,1,2,3.

As the four-velocity model of the Enskog-Vlasov equation (1.1) we take
Egs. (2.2) with

(2.12) M; =n

(2.13) QN)=QF " (N)=F+Q7,i=0,123,
where QF is given by (2.9), and

01\[,‘

(2.14) Fy ===

9

where F has the same form as in (1.2), but with y and r being two-dimensional
vectors, and the domain of integration being now R? instead of R>.
Explicitly, F; are given by

; c;ru\ (¢ F Citpeu ¢y F
2.15) }",-=2n[<]+c—2)(62)—( - )( | )]

1 =0,1,2,3.

ki 2 b i

3. Moment equations

It is convenient to express the kinetic equations (2.2), (2.15) in an equivalent,
moment form.
The moments of the distribution (Ng, N1, N2, N3) are n, u and R, with

1
3.1 = —(Ny— N+ N, — Ni).
(3.1) R 4n( 0 1 2 — N3)

R is not an observable quantity; it is the only nonhydrodynamic moment of
N in our model.
From (2.8), (2.12), (2.13) and (3.1) we get

C;*u : .
(3.2) Nizn(l+2—67+(—l) R), i=0,1,2,3.

The system of equations for n, u, and R can be obtained from (2.2), (2.13) in
the following three steps.
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I. Mass conservation equation

We take the scalar product of (2.2), (2.13) with the vector (1,1,1,1), make
use of (3.2), of the two identities

3 3
(3.3) Y FE=0, Y @F=o,
i=0 0

1=

and obtain the standard equation

3.4) ;%n + V+(nu) = 0.

1. Momentum conservation equation

Now, we take the scalar product of Egs. (2.2), (2.13) with (cg, ¢, €2, ¢3).

The following identities along with Definitions (2.11), (2.12) are crucial for
the derivation of these equations.

From (2.12) and (3.2) it follows that

[

3
> Nicie; = n(coeg + ¢1¢1) + nR(coeg — ¢¢q).
i=0

It is convenient to introduce the following unit vectors

¢t _ ¢ —C
lcg + ¢1’ lco — |

(3.5)

Using these we can write

EN

3 2
(3.6) ; Nicic; = %]In + (k1 + 1K)nR,

where I is the unit 2 x 2 matrix.
Next we have

ENYeN

3
(37) Zf,-ci = TIF,
1=0

for any force term F.

If, however, F is given by (1.2), the nF can be represented as the divergence
of a 2 x 2 tensor.

Indeed, from (1.2) it follows that

oF = 3 [ LIt + 0) - nton(r - ey
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We use the following identity, which holds true for any function G(r, s)
1
(3.8) G(r+y,1) - G(r,r—y) = y-V, /G(r + 5,1+ (A — 1)y)dA.

Hence, we have

(3.9) nF = 2V.A,

where
1

(3.10) - lz/ / YY & (lyhn(r + Apn(r + (A — 1)y) dy.
0

The most cumbersome it is to derive the following formula

(3.11) %i Ee; = —c*V [kkK +11£],
where -
(3.12) K= "7! H(r + oAk, 1 + o(A — Dk)n(r + aAK)n(r + o(A — 1)K)
% [1 - ?k-u(r + a/\k)] [1 + ?k-u(r +o() - l)k)l da,
and
(.13) L= \/T_j H@r+ oALr+ a(A — DDa(r + o ADn(r + o(A — DI)
0

1- ?l-u(r +oAl)| |1+ \/Til-u(r +o(A - ])l)l dA

Use of (3.8) was made when deducing (3.12) and (3.13).
Hence, the momentum conservation equation is of the form

(3.14) %(nu) + V.c? [%n]l + %nR(kl +1k) + kkK + llﬁ] = nF.
If F is given by (1.2), this equation takes a conservative form (c.f. (3.9))

(3.15) %(nu) + Vec? %n]I + %nR(kl +1Kk) + kKkK + 11 — A] =0.
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Let us notice that K, £, and A are nonlinear operators acting on hydrodynamic
moments n, u only.

iii. Closing equation

The fourth moment equation is obtained by taking the scalar product of
Egs. (2.2), (2.13) with (1,—-1,1, —1). We have the following auxiliary formulae

3
(3.16) %Z(—])iN,'C,' = nu-(kl + ]k),
i=1
1S, 2n
(3.17) ZZ(—l) Fi= SF(k1+1K)-u,
i=1 ’
and
3
(3.18) %Z(—l)iQf;(N) = —4ocn’h ll? (\/i:(-u) (\/iplu)]
i=1 ‘ :
—2u-(1k-VK + k1-VL)
where
(3.19) b= 4”1(1.) {]l(r,r + ok)n(r + ok) {1 - \/Tik-u(r + ok)

+ 1 (r,r— ck)n(r — ok) |1 + —C—k-u(r — ok)

Cre- ok

+H(r,r+ ol)n(r + ol)

1- \{il'u(r + Ul)}

+H(r,r — al)n(r — ol) [1 + ?I-u(r - al)} }
Hence the fourth equation reads

(3.20) ((()—?[(n]{) + V- [n(k] + 1K)-u] = _dgen?y [R a (\/ik-u) (\/ilu)]

& c

+2(V-A)-(k1 + 1k)-u — 2u-(1k-VK + k1.V L),

Equations (3.4), (3.15), (3.20) form the sought system of moment equations
Let us notice that R enters this system linearly, and that it does not appear in
any of the complicated nonlinear operators X, £, b, and A. This fact will be very
helpful in deriving the hydrodynamic equations.
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4. Equations of hydrodynamics

As usual, to deduce the hydrodynamic approximation to Egs.(3.4), (3.15),
(3.20), we pass to dimensionless variables. Since this is a routine procedure, we
omit the details and give only the quantities of reference. Let L be the typical
macroscopic length-scale; as the typical time we use L /c; the mean velocity u
is referred to ¢, and the number density n is referred to a typical value of it
denoted by ny. To bring the self-consistent force F to a dimensionless form we
use the characteristic value ¢, of the attractive potential and its range ry. The
dimensionless quantities are denoted by the same symbols as their dimensional
counterparts. It should not lead to a confusion since from now on all quantities
are treated as nondimensional. If however the changes are serious (for example,
if a quantity contains dimensionless parameters), then their dimensionless form
is given explicitly, but it is denoted by the same character.

Prior to applying an asymptotic procedure, it is convenient to eliminate A
from Eq. (3.20). It is done by means of Egs. (3.4) and (3.15).

Hence, the moment equations are transformed to

9
4.1) rTia + Ve(nu) = 0,

(4.2) %(nu) + Vv %nﬂ + n(kl + 1k)(k-u)(l-u) + %(kl + 1k)C

+kkK + 112 — A| =0,

and

Jd 4n
4. e —uvVC+nB:Vu=-2
(4.3) (,)tC u-VC + nlB: Vu . bC,

where C is defined by
(4.4) C = n[R — 2(k+u)(1-u)].

C can be interpreted as the measure of deviation of the distribution from local
equilibrium, because the distribution is local Maxwellian if and only if C = 0.

Next, X', £, b and A be dimensionless counterparts of the quantities denoted
by the same symbols and introduced in the preceding section. Since their di-
mensionless forms contain some dimensionless parameters, we list them below
to avoid a confusion.

1
(4.5) K= % Oj H(r + peAk,r + ge(A — Dk)n(r + Bck)n(r + pc(A — 1)k)

x [1 = V2keu(r + Bedk)| [1+ VZkeu(r + Be(A — 1K)| d,
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1
46) L= % Of H(r + BeAl,r + Be() — D)n(r + BeAln(r + fe(r — D)
x [1 = V21u(r + BedD)] [1+ V2eu(r + fe(r - D) ),
4.7 = ){H(r r + Bek)n(r + Bek)[1 — V2k-u(r + Bek)]
+H(r,r — Bek)n(r — Bek)[1 + V2k-u(r — ek)]
+H(r,r + Beln(r + BeD)[1 — V21-u(r + fel)]
+H(r,x — fel)n(r — BeD[1 + v2-u(r - g},
48) A= ¢°"°T° ] dA / Y ygts'(|y|)n(r + achy)n(r + ae(A — 1)y) dy.

Here a, 3, ¢ are dimensionless parameters which are defined by

(4.9) a = ngroo,
(4.10) B = nga,
1
4.11 = .
( ) © Lngo

Finally, the 2 x 2 matrix B, which appears on the left-hand side of Eq. (4.3) is
defined by

(4.12) B = [1 - 2(k-w)?| k1 + [1 - 20-u)’| 1k,

For comparison, the moment form of the four-velocity model of the Boltzmann
equation (2.2), (2.5) consists of Eq. (4.1) without any change; Eq. (4.2) but with
K =L =0and A = 0; and Eq. (4.3) with § = 1. We see that Eq. (4.3) differs only
a little from its ideal gas counterpart. Therefore we can proceed in exactly the
same way as in the case of the four-velocity model of the Boltzmann equation
to obtain a hydrodynamic approximation, i.e a system of equations for n and u
only, to our model. To this end we assume that ¢ is a small parameter

(4.13) € <1,
and in the first order approximation we get from Eq. (4.3)
(4.14) =0,

i.e. the distribution is locally Maxwellian. Setting C = 0 in Eq. (4.2) we obtain the
Euler-type approximation to our model. However, the obtained equations differ
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significantly from what is usually called the Euler equations since the operators
K and £ contain some dissipation, what will be shown later.
In the second order approximation we obtain from Eq. (4.3)

(4.15) ° B: Vu + O(2).

" 4

Inserting (4.15) into Eq. (4.2) we obtain the Navier - Stokes-type approxima-
tion.

Let us notice that we have obtained the hydrodynamic approximation to the
considered kinetic equations without expanding the Enskog collision operator in
a power series in fJ¢, as it is usually done (see [1-3, 5, 6], and as it was done by
the present author in [13, 18]).

Assuming, however, additionally that

(4.16) Be <1,

we expand K, £ and b in a Taylor series in 3e. Truncating the expansion at the
first two nonvanishing terms we obtain

(4.17) K = 7 [n2h(1 — 2(k-u)?) - ﬁﬁsh(k-V)(k.u)] + O((B<)?),
(4.18) L= % [n2h(1 = 2(1-u)?) = V282h(1-V)(1-u)| + O((Be)?),
and
(4.19) b=h-— %V-(nhu) + 0((Be)?),
where
(4.20) h(r) = h(n(r,t)) = H(r,r).
We take also the next assumption, namely
(4.21) ae L 1.
Then
(422) A =an’l + A(ae)? [(2n4n + (Vn)l — 2Vn\7n] + 0((ag)),
where
(4.23) a= ¢0n0r0 / y' ¥ (y) dy,
(4.24) A= 450”0’”0 / v (y) dy,

are positive constants, and A is the two-dimensional Laplace operator.
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Using (4.15), (4.17)-(4.19) and (4.22) we obtain the purely differential form
of the hydrodynamic equations. They read

d

(425)  on+ Ve(nu) =0,
(4.26) a%(nu) + V. Ena + V28nh)[2k k(k-u)? = 211(1-u)?] — an’[ + nu u]
= (ac)’V-C + ¢V- [slh (k1 + 1K)[(1 = 2(k-u))’k] + (1 — 2(1-u))*]: Vu
+3* % h(kkkk + ll]l):Vu],
where
(4.27) C = A [@nan + (Vo)L - 2Vnval ,

is called the capillarity tensor.

These equations are written in the traditional form. To this end we kept the
first terms on the right-hand side of (4.17), (4.18) on the left-hand side of Eq.
(4.26) and counted them to the pressure tensor, whereas the second terms in
the expansions (4.17), (4.18) were transferred to right-hand side of (4.26) and
treated as a contribution to the dissipation tensor. Similarly, the first term in
the expansion (4.22) was treated as a part of the pressure tensor, whereas the
second part of it was transferred to the right-hand side of (4.27) and treated as
representing the capillarity term. Due to this dualism of treating the expansions
of K, £, and A, we wrote that the Euler type approximation (4.14) does not
produce equations which are traditionally called the Euler equations.

If we truncate the expansion of A at a higher number of terms, we obtain
model equations of so-called fluids of grade N (c.f. [21]).

Finally, let us notice that we can use the expansions (4.17), (4.18), (4.19), and
(4.22) directly in the model kinetic equations (4.1)—(4.3) prior to making the
asymptotic procedure related to (4.13). This is the traditional form of treating
the Enskog-type equations ([1-3]).

5. One-dimensional equations

In the future we will be interested in a one-dimensional version of our equa-
tions. This is such a case when the molecular velocities ¢; (in dimensionless form)
are

(5.1) ¢ = (1,0), ¢; = (0,1), ¢ =(-1,0), ¢ = (0,-1).
Then (cf. (3.5))

-1 - La_
(5.2) k=D, 1=, 1.
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Additionally we assume that v = 0, and that all other quantities, i.e. n, u, and C
depend on z and ¢ only, and do not depend on y. In this case Eqgs. (4.1)-(4.9)
reduce to

(5.3) gt n + —-(nu) =0,
a., n(l-w?) . 1, 2| _
54) anu)+0—x T+K+§L—A+nu =0,
and
d 5 J 2 J _ 4nb
(5.5) Eﬁc —u%C+n(l~u )%u— - C,
where

60 K= [l o He (e el 2 20)

VAR

1

2. 7

67 A= ‘15027;270 /([)\ / [V (JlyDn(z + acAy)n(z + ac(X = y)dy
P ENTS

with

(5.8) vish = [ @ (Vi +a2)az.

Finally,

(59) b= 2”10:) {H (:r z + %) n (a:j 5‘;) [1 !—3:1, (:L + %)] ﬂ
e ) (-5

The equations of hydrodynamics (4.25), (4.26) now become

d
81,‘

CREVENN (uu) + [% + K+ A+ nu?

(5.10) —n+ —(nu) =
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The expansions of (5.6), (5.9) for ge — 0, and that of (5.7) for ac — 0, are
simplified and take the form

2.2
(5.12) K = %nzh(l —u?) - b 52" h :—xu + 0((B<)?),
(5.13) b = h+ 0(Be?),
where h(z) = H(z,z), and
9 d \?
(5.14) A = an® + A(ec)? lZn@n — (%") ] .

It is convenient to rewrite Eqs. (5.3)—(5.5) and (5.10)-(5.11), along with the
approximations (5.12)-(5.14), in a Lagrangian coordinate system. To this end
we follow the ideas of COURANT and FrieDRICHS [22]. These ideas are based on
the law of mass conservation. We define the Lagrange coordinate X as the mass
of the fluid moving along the z-axis in a tube of unit cross-section between any
definite section and the current one travelling together with the fluid. Hence

X(th)
(5.15) X = / n(z,t)dz,
x(0,2)

where z = y(X,t) denotes the position of the particle.
The kinetic equations (5.3) - (5.5) along with (5.12)-(5.14) can be written as

d d

(516) Ew— ﬁu = 0,
0 9 [1-w? b a 1 a b2 9
G17) E”*ﬁ[ 7o (1 30) i+ 5% =eax (mﬁ)
579 \* 2 9
PR B _ s v
+ A(ac) ax lw6 (BXw) s E?sz] )
and
J ad 1-u2 8 4p
(518) U)EC - ZU(,)){C + i H = - C,
where

1
(5.20) w= =,
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is the specific volume, and

(5.21) o(w) = h (1) .

w

The hydrodynamic equations (5.10), (5.11) along with (5.12) - (5.14) take the
form

0 0

62) 2uw-u=o,

o g ge5 () - 5] - e o)
+A(ag)20% %(%w)z_%a?—;w]’

where

(5.24) P e

8w2p

The form of Eq. (5.24) suggests the following interpretation: y is the viscosity
coefficient, and p defined by

1—u? b a
-2 =g (14 1e) - 5.

is the pressure in our model. If we take

(5.26) gm ——,
w—b
and denote
1— 2
2 T =
(5:27) —

then (5.25) takes the form of the van der Waals formula

T a
(5.28) p= b Wi’

of course, if T' is interpreted as the temperature (see [14:-17], as well as [23]).
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6. Maxwell equal area rule

As an example of applications of our model we consider the problem of stag-
nant phase boundary. To this end we look for stationary solutions of (5.16) - (5.18),
i.e. we assume n, u, C to be independent of ¢. Under this assumption Egs. (5.16) —
(5.18) reduce to

61) -

w
d ,[2 & 5 /d \? o d
(6.2) i {A(cre) li? XY o6 (ﬁw) ] i av

2w w wd 2
and
2

oyt 1zuw d

(6.3) 2u (IXC . C > ax
We look for solutions of (6.1)-(6.3) satisfying the following limit conditions

(6.4) \'lim (w,u,C) = (w,u,0),
and
(6.5) \]im (w,u,C) = (wy, u,,0),

where (w;, ;) and (w,,u,) are some constants.
As we can easily see from (6.1) and (6.4), (6.5), the existence of solutions to
our problem demands

(6.6) U = Uy,

what we assume, of course.
Then we have

(6.7) w(X)=u = u,.
Integrating Eq. (6.2) with the use of (6.4), (6.7) leads to
2 d? 5/d 1
AYVA Nl A = | — —C = —
68)  Afac) [wS v ( = w) + 5= —p(w) + pu),

where

1—u? b a
(6.9) p(w) = 5 L (l + ;Q) bt

w
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Owing to (6.7), Eq. (6.3) reduces to
(6.10) -u[(‘—,c ~ e =

If w; = 0, then C = 0, since o # 0. Let us assume then that u; # 0. In this case

X
(6.11) C = Coexp ;2;—1/9[71(()] dc 'y
Xo

where Cp and X are some constants.
The general solution (6.11) satisfies (6.4); and (6.5); if and only if Co = 0.
Hence, in any case we obtain

(6.12) C(X)=0.
Consequently, Eq. (6.8) reduces to

2 d? 5 (d
(6.13) A(ae)? [F IV T (ﬁw> l = —p(w) + p(wy).

Tl)6

As it is seen, the necessary condition for (6.13) to have a solution satisfying (6.4),
(6.5); is

(6.14) p(w,) = p(wp).
We assume that this equation for w, has a solution different from wy
(6.15) w, # wy,

otherwise the problem becomes trivial.
Multiply Eq. (6.13) by dw/d X, and integrate the result over X from X = —o0
to the current value of X. It gives

(6.16) Aae) (%)2 = o’ / [p(C) — pluwn)] dC.

Since we need dw/dX — 0 as X — oo, it must be that

Wy

(6.17) /[p(w, w) — plwi, w)] dw = 0.

wy

This is the Maxwell equal area rule [24].
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Let us notice that this principle, playing the fundamental role in the equilib-

rium phase transitions, was obtained directly from our kinetic model. It can be
deduced from the hydrodynamic approximation as well.

The hydrodynamic equations (5.22), (5.23) in that case of a steady motion

simplify to

(6.18)

d
dX

u=0,

and

2 2
619 -2 AG@ep |51 > (d ) g

wax2’ we \ax " dX

X

We look for solutions of Egs. (6.18), (6.19) such that

(6.20) Xlim (w,u) = (wy, w),
and
(6.21) Xlim (w,u) = (w,,u;),

where (w;, ;) and (w.,, u,) are the same as previously.

An analysis similar to the above leads to (6.7), and therefore Eq. (6.19) reduces

to Eq. (6.13), from which we obtain the Maxwell rule (6.17).
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Unsteady heat transfer in a liquid film on a rotating disk

P.G. KALITZOVA-KURTEVA, S.G.SLAVTCHEV
and 1. KURTEV (SOFIA)

HEAT TRANSFER in an unsteady film flow spreading on horizontal rotating disk is studied. The
disk is rotating with a prescribed non-steady angular velocity and is subjected to a temperature
expressed by a given function of time and the radial coordinate. The free surface of the film
is assumed to remain flat and thermally insulated during the motion. By means of a similarity
transformation the equations of continuity, momentum and energy are reduced to a system of six
ordinary differential equations, four of them for the fluid velocity and the pressure, and the last
two for the temperature. Basing on the solution of the dynamic problem obtained in a previous
paper, the temperature equations are solved by the Runge-Kutta method and the temperature
distribution in the film is obtained. The results show that when the disk temperaturc decreases
with increasing time, the heat flows from the liquid towards the disk for large values of the Prandtl
number. For small and moderate Prandtl numbers, the heat flux changes its sign at some distance
R, and outside of a circle of radius R it is directed from the rigid surface towards the film. The
circle radius increases with time.

Nomenclature

a thermal diffusivity,

Tp  initial constant temperature,
T,  disk temperature,
T  local liquid temperature,
u,v,w velocity components,
r radial coordinate,
z normal coordinate,
p  pressure,
po  gas pressure above the film,
h  film thickness,
ho initial film thickness,
F,G,H, P functions defined in (2.13),
s non-dimensional parameter (= a/w),
qw heat flux through the disk surface,
R radius defined by (3.9),
Re Reynolds number,
Pr  Prandtl number.

Greek symbols

a acceleration parameter,
1,72,73, 74 constants to be determined,
e constant equal to 1 or —1,
¢ similarity variable defined by (2.13),
¢n  coordinate of the free surface,
6, and 6, functions satisfying Eqgs. (2.24) and (2.25),
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dynamic viscosity,

kinematic viscosity,

density,

dimensionless time,

azimuthal coordinate,

initial angular velocity of the disk,
angular velocity.

DE S A ¥ %

1. Introduction

HEAT TRANSFER in film flows driven by rotating disks is of major importance in
spin coating processes when the disk surface is covered by a thin liquid film
which solidifies after spreading. Fluid dynamics and heat transfer problems arise,
for example, in producing integrated circuits, computer storage devices, etc.

Usually, the film flows on a rotating disk are three-dimensional and unsteady.
Moreover, in many cases the liquid free surface does not remain flat during
the motion. These features of the flows produce some difficulties in solving the
physical problems of predicting the velocity and temperature distributions in the
film, and limit the possibility of obtaining the solutions by means of analytical
methods.

Unsteady film flows of a viscous fluid on a disk subject to steady rotation was
studied by HiGGINs [1]. He performed an asymptotic method of solution for the
cases of low and high Reynolds numbers, as well as for the case of small times
but of arbitrary Reynolds numbers. A class of similarity flows in a film with a
uniform non-steady thickness at a given unsteady angular velocity of the disk was
obtained in [2]. A similarity solution to the equations of motion has been also
presented in [3] for the case of a rotating disk with angular velocity proportional
to (1 + at)™! (« is a constant, ¢ the time). Applying a transformation of the
variables similar to that used in Karmén’s problem [4, 5] for steady rotating disk
in an infinite fluid medium, the problem is reduced to a system of four ordinary
differential equations which are solved numerically.

The cooling problem for a film on a disk starting stationary rotation from the
state of rest is considered in [6] because of its technological importance. The
analysis is based on the approach applied in [1] to the corresponding hydrody-
namic problem.

In the present paper, a similarity solution to the unsteady energy equation is
obtained for the film flow on a disk rotating with the angular velocity considered
in [3]. The disk surface is assumed to be at temperature expressed by a given
function of time and the radial position. For the case of viscous incompressible
fluid, the corresponding hydrodynamical problem separates from the thermal
one and the solution of the former one obtained in [3] is used to solve the
latter one. By use of a similarity transformation of the variables, the energy
equation is reduced to a system of ordinary differential equations for two uknown
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functions. The temperature distribution in the film and the rate of heat flow
through the disk surface are found from the numerical solution of the system
with the corresponding boundary conditions. It is shown that at a fixed time
there is a circle on the disk inside which the heat flows from the rigid surface to
the liquid, while the reverse heat flux takes place outside of it. The radius of the
circle increases with time.

2. Formulation of the problem

Consider a film of viscous heat-conducting liquid on a horizontal disk of the
radius which is much larger than the initial uniform thickness hq of the film. The
system is initially subject to a constant temperature Tj. Suppose that at the time
t = 0 the disk starts to rotate with an angular velocity

w
1+ at
about an axis perpendicular to the disk surface. Here w is the initial angular
velocity, and o is a positive or negative constant. After the initial rotation with

velocity w, the disk accelerates at a < 0 and decelerates at « > 0.
Assume that the temperature on the disk surface varies as the function

2.1) () =

1 r? w
. Ty =T, £ =
(22) vEl Ty Y ara y

where r is the distance from the axis of rotation, v is the kinematic viscosity and
¢ is a constant equal to 1 or —1. For ¢ = 1 the surface temperature increases with
r at a fixed time, while for ¢ = —1 it decreases and becomes negative at a certain
distance. For positive « the wall temperature at a given point decreases in time,
i.e. the disk is cooled, while for negative (and small) values of « it increases, i.e.
the disk surface is heated.

Due to the centrifugal forces, the liquid spreads outwards from the axis of ro-
tation and the film thickness decreases with increasing time. We restrict ourselves
to the film flows with a free surface maintaining uniform, but unsteady thickness,
i.e. the thickness h(t) = hol(t) is a function of time only ({(0) = 1).

The physical properties of the liquid are taken to be constant and indepen-
dent of the temperature. The viscous dissipation is neglected. In a non-rotating,
cylindrical polar coordinate system (r, ¢, z) with the axis z coinciding with the
axis of rotation, the equations of continuity, momentum and energy are written
as follows:

ou u Ow
(23) E + : + 9z s Oa

ou du  v? du 1 dp Pu 0 [u 9*u
TR P il m W*a—y(?) 22|
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2.5 .(294. QE+E‘_U+,@_, 0_%4.2(2)4.@
(2:5) Yor T Tz T Vo T ar \x 922 |’

26) iui_i. 0w+ B_M—_l@_k (')Z_w+l?_ui+22_w
2 o Yar T Yoz T 0 0z "oz Ty ar T 92|
(27) 0_T+ 8_T+ 81—( EO_T+02_T+ﬂ

’ ot uf)r Yoz “lror T a2 T 92|

where the velocity components u, v, w are in the direction of increasing r, ¢, z,
respectively, p is the pressure, p the density, e the thermal diffusivity, 7" the local
temperature.

The solution of Egs. (2.3) - (2.6) satisfies the following boundary conditions

(2.8)  u(r,0,t) =0, v(r,0,t) = r2(t), w(r,0,1) =0 at z =0,

Jw ow  Ju dv
(2.9) (p—pg)—Qu_; =0, W+ 7, = 0, 9z =0 at z = h(l),

where py is the gas pressure above the free surface and p is the dynamic viscosity.
Motion of the gas phase is neglected.
The condition of continuity of the moving fluid surface is

(2.10) % = w(r, h(t),1),

and the initial conditions are as follows:
(2.11) u=w=0, v = wr, h = hg at ¢t =0.

The boundary and initial conditions for the temperature equation (2.7) are:

or
9z

T =T, at z =0, 0 at = = h(t),

2:12
( ) T =T at t=0.

The liquid free surface is considered to be thermally insulated.

We seek a class of similarity solutions to the momentum and energy equations
in the film on a rotating disk. The solution of the dynamic problem (2.3)-(2.6)
and (2.8)-(2.11) has been found in [3] in the following form:

w=rQWFEQ),  v=r0GQ),  w= - HE),

(1)

P-m=nROPQ), (=22

(2.13)
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After substitution of expressions (2.13) into (2.3)-(2.6) one obtains a system of
ordinary differential equations for the unknown functions

(2.14) H' —2F =0,
(2.15) F'+ FFH+G* - F? + s (%F' + ,v) =0,
(2.16) G" +G'H - 2FG + s (% e (;) =0,
(2.17) P+ HI+ 11" + %(Cl[’ + H) =0,

where s = a/w is a non-dimensional parameter and primes denote differentiation
with respect to (. For s = 0 the system formally coincides with the von Karman
system [5].

Boundary conditions (2.8) and (2.9) are written as

(2.18) F=0, G=1, =0 at (=0,
(2.19) F'=0, G =0, P =20 at (=,

where the dimensionless variable

20

(2.20) Ch = Cu(l) = h(t)

depends, in general, on the time. The equation for () follows from the Kine-
matic condition (2.10), namely

d(y, 1
dr 1+ s7

S .
(2.21) [i(,h + H(Ch)} =0,
where 7 = wt is the dimensionless time. The solution of (2.21) satisfies at 7 = 0
the condition

(2.22) ¢ =Cu(0) = () = ho\ﬁ :

In the case under consideration the dynamic problem has been formulated
without using initial conditions (2.11), because the possible solutions of the un-
steady Navier-Stokes equations for axisymmetric flows due to a rotating disk
(with angular velocity (2.1)) belong to the class of solutions at “large times” after
the start of the motion (see the discussion on this matter in [7]). Such solutions
describe the boundary-layer type flows. It means that the flow is approximately
uniform everywhere except for a boundary layer near the disk. Moreover, in the
case of acceleration or deceleration of the disk, the flow becomes quasi-steady in
the sense that it behaves like a steady flow with unsteady film thickness.
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Owing to the temperature distribution (2.2) on the disk surface, the solution
of the energy equation is assumed in the relevant form

61(¢) 2(Q) w
T+at ' A+at) v |

(2.23) T=T + ngrz =Ty [

After substituting (2.23) into equation (2.7), the thermal problem is reduced to
a system of two ordinary differential equations for the unknown functions 6, (()
and 6,(¢):

(2.24) Pira’z’ + [H + sg-] 67 + 2[s — I']6; = 0,
1 4 C ! 4
i —0 + |H +s2| 0] + s = ——
(2 25) Pr 1 [ 2] 1+ st Prgz s

where Pr = v/a is the Prandtl number.
The boundary conditions at the rigid and free surfaces of the film are as
follows

(2.26) 0,(00=1, 6,(0)=c at (=0,
(2.27) 01(Ch) =0(C) =0 at (=(r.

The system (2.24)—(2.27) is solved by the approach used in [3] to obtain the
solution of the dynamic problem (2.14)-(2.19).

3. Method of solution and results

The main difficulty in solving the mathematical problems (2.14)-(2.19) and
(2.24)-(2.27) is that the right-hand boundary of the interval [0, (] is unknown
in advance. It depends implicitly on the time through the general solution of
equation (2.21)

0
h

(3.1) T=% -1+ exp f—-—S—dC—S ,
: & H(€)+§C

where the function /() under the integral is taken on the film surface (at ¢ = ()
and should be calculated from the solution of the system (2.14)-(2.16).

In [3], in order to overcome this difficulty, the two-point boundary problem
(2.14)-(2.19) has been replaced by a proper initial value problem whose solutions
were expected to satisfy the original problem for some period of time, i.e. in the
interval [0, ¢;] with (x(7) calculated from (2.19). The system (2.14)—-(2.16) with
(2.18) and additional boundary conditions

(3.2) Fl=y, G=7y at (=0,
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has been solved by the fifth-order Runge - Kutta method. Using a shooting tech-
nique, the values of ¥; and 42 have been predicted from the condition of vanish-
ing of the functions /'’ and G’ in a certain interval of the independent variable.
Equation (2.17) for the pressure can be integrated analytically [3].

The numerical calculations show that for a given s there exists only one pair
of values of v; and 7, determining the solution of the formulated initial problem
with vanishing first derivatives of /" and (' in some interval [(}, (o], where {; < (p.
In this interval the functions /* and G are zero and /1 is a non-zero constant.
Moreover, for positive s, the right-hand boundary of the interval tends to infinity,
ie. F =G =0and H = by = const for every { larger than a certain value ;.

For two values of s, the functions F', G and H are presented in Figs.1 and 2.
For s = 0.2 the angular velocity of the disk decreases from the initial value, while
for s = —0.2 the disk accelerates after the start.

08

06 |

04

02t

L 1 1 il 1 L 1

0 2 7] 5 5 w0 © %
F1G. 1. Functions F, GG, H against ¢ for s = 0.2.

08 r

06

0s

02r

1 I 1 n i L L L L s i 1 L

0 2 4 6 8 10 22 14 ¢
F1G. 2. Functions F, G, H against ¢ for s = -0.2."
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Consider an interval [(;, (o] where the solution of the initial value problem
satisfies F = G = 0 and H = b, = sb (b is a new constant). Substituting the
value of / into (3.1) and replacing (2 by (o and ¢, by (;, one can calculate the
time period (say ) during which the film thickness varies as

h
(3.3) =) =1+ A- AL+ st/
0

where A = 2b/(y. The thickness decreases generally as (1 + s7)!/2, but at very
small times (st < 1) it is a linear function of time. Note that the similarity
unsteady flow is characterized by the fluid surface velocity presented by one
non-zero component directed to the disk.

The thermal equations (2.24) - (2.25) are solved with the boundary conditions
(2.26) and the additional conditions

(3.4) 01 =v3, Oh=7 at (=0

using also the Runge - Kutta method. The constants y3 and 74 are calculated in
such a way which allows us to satisfy the condition of vanishing derivatives #] and
¢ at least in the same interval [y, (o]. The equation (2.24) for 6, is solved first,
and then the solution of (2.25) is obtained.

Representative solutions for Pr = 1 and ¢ = 1 are given in Figs.3 and 4 for
three values of s. For the same Prandtl number and ¢ = —1, the function 6, is
shown in Fig.5, while 6, coincides with the function presented in Fig.4, but it is
taken with the opposite sign. For different values of Pr (s = 0.2 and ¢ = 1) these
functions are plotted in Figs. 6 and 7, and some values of y3 and ~4 are reported
in Table 1.

0o 2 Z 6 8 10 Z % <

FiG. 3. Function #; against ( fore = 1, Pr = 1 and different values of s: 1 — s = 0.2; 2 — s = 0,
3 —s=-02
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04

02

0 8 10 12 14 ¢

F1G. 4. Function 6, against ¢ for ¢ = 1, Pr = 1 and different values of s: 1 — s =0.2;2 — s = 0;
3 —s=-0.2.

I1G. 5. Function 8, against ¢ for e = —1, Pr = 1 and different values of s: 1 — s = 0.2;
2—s=0,3—s5=-02.

It is not surprising that there exist values of 73 and 4 for which the solutions
of Egs. (2.24) - (2.25) vanish together with their first derivatives in some interval
coinciding with (or even being larger than) the interval [(1, (o], where the func-
tions F’ and G’ are zero. Such a behaviour of the solutions can be predicted
from the simplified form of these equations obtained by substituting /* = 0 and
H = sb. For example, introducing a new independent variable

(3.5) n = si/? (b 4 %) ,
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0 2 7 s 8 0%
Fi1G. 6. Function 8; against ¢ for ¢ = 1, s = 0.2 and different values of Pr: 1 — Pr = ;
2 —Pr=10; 3 — Pr=100.

) —

o 2 Z 6 5 0 ¢

Fi1G. 7. Function 6, against ¢ for e = 1, s = 0.2 and different values of Pr: I — Pr= [;
2—Pr=10; 3 — Pr = 100.

one obtains the reduced equation (2.24) in the form (Pr = 1)
(3.6) 65 + 2n6; + 86, = 0.

A partial solution of this equation is the third derivative of the function exp(-z2).
So, the solution and its derivatives vanish very quickly when the indepeadent
variable increases. For this reason the fluid temperature varies, in general in a
sublayer lying on the disk surface. The sublayer thickness becomes small with
increasing Prandtl number (see Figs.6 and 7).
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Table 1.
Pr 73 T4
1 5.321 -0.329
10 0.996 —0.679
20 0.496 -0.629
40 0.196 -0.279
100 0.1125 0.950

The heat flux across the disk surface is calculated by the expression

w\ 1/2 S 1
= -\Tp | — +— R
2=0 0 (V) [73 (1 + ST) VT ] (1 + 37')3/2

Defining a local Nusselt number as Nu = ¢,,7/AT), the formula (3.7) takes
the form

(BT qu=-A

1
(1+s7)3/2°

- _ 2_ 4
(3.8) Nu = —Re, [73 + Re,] " ST]

Here Re, = \/w/vr is the Reynolds number.

The formula (3.7) shows that at a fixed time, the heat flux depends on the
radial coordinate and does not change its direction if the constants 3 and 74
have the same sign. When these parameters have different signs, the flux changes
its sign at » equal to

1/2
. =|-2Za+sr ] .
(3.9) R o w(1+s )
For example, at ¢ = —1, when 73 < 0 (see Fig.5) and 74 > 0, the flux is directed
from the wall towards the liquid inside the circle of radius R and in opposite
direction outside of it. Note that the radius of the circle increases with time.

In the case of ¢ = 1 and positive «, the surface temperature (2.2) at a fixed
position decreases with increasing time. As it is seen from Table 1, for small and
moderate values of the Prandtl number, the heat flows from the liquid towards
the disk for » < R, and in opposite direction for » > R. In the case of Pr = 100,
when the thickness of the thermal boundary layer developing on the rigid surface
is quite small, the heat flux is directed towards the disk.

For small values of the Prandtl number, Eqgs. (2.24) and (2.25) can be simplified
and the reduced equations have the analytical solution

(3.10) bp=c, O =220 —C)+ 1.
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Then, the Nusselt number is presented by the expression

_ 4Cy,
(3]1) Nu = —ERC,-W
showing that the heat flux on the disk has only one direction depending on «.
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Bounds for the overall properties of viscoelastic
heterogeneous and composite materials

C. HUET (LAUSANNE)

THE PROBLEM of finding bounds for the creep and relaxation functions tensors for heterogeneous,
and possibly anisotropic, viscoelastic materials is considered. It is shown that extensive and unre-
strictive solutions can be given to this problem. The derivation makes use of an associated clasticity
problems approach and involves several ingredients of thermodynamic character that are explained
in the paper. In particular, it involves the viscoelastic counterpart, derived by Brun (1965), of the
classical local Clapeyron equation for the elastic strain energy together with the pseudo-convolutive
formalism previously introduced by Huet (1988), (1992). Through pseudoconvolutive extensions of
the classical Hill condition widely used for elastic heterogeneous media, the derivation makes use
of the classical minimum theorems of elasticity applied to special kinds of boundary conditions,
Strict unilateral bounds for the rates of the relaxation functions tensor and of the creep functions
tensor are thus obtained together with strict bilateral bounds for the relaxation functions tensor
and for the creep functions tensor themselves, These bounds involve for all times the computation
of appropriate elastic effective propertics only, allowing thus the numerous results of the clasticity
theory to be used.

1. Introduction

THE PROBLEM of studying and predicting the influence of the composition of
materials on their overall or macroscopic properties and/or the distribution of
internal stresses through micromechanical approaches going beyond purely em-
pirical ones, is one of the most important goals of material science in various
fields of engineering, see for instance HUET and Zaour [1], Huer [2]. This is
specially true for viscoelastic properties, the assessment of which always requires
long and difficult experiments, even in the isotropic case.

In fact, most of the developments made about the theoretical evaluation of
the overall mechanical properties of random heterogeneous materials following
from the knowledge of the properties of their constituents relate to linear elas-
tic materials, for which many results have been obtained over the past thirty
years. For random materials, they relate to effective properties, defined as the
properties of a so-called representative volume, for which the overall properties
are considered to be independent of the boundary conditions, and thus can be
used as material properties in structural calculations, the heterogeneous material
being replaced by an equivalent homogeneous one. Among the numerous ap-
proaches that have been used, the derivation of bounds through some variational
approach involving appropriate minimum theorems has emerged as a very useful
and powerful tool, see HiLL [3, 4], HASHIN and SHTRIKMAN [5], WALPOLE [6, 7],
etc. They have culminated in the systematic theory derived by KRONER [8-11]
showing that, depending of the amount of statistical information introduced in
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the formulation of the problem, these bounds can be organized and generalized in
form of a full series of bounds of increasing orders, approaching the real solution
when the amount of statistical information introduced as data into the problem
is increased.

Since almost the very beginning, several attempts were made in order to ex-
tend the results obtained for the elastic case to the effective properties of hetero-
geneous viscoelastic materials. This has been done mainly through quasi-elastic
approximations, for special values of time, in the Laplace-transform domain
and/or for complex moduli or compliances, see namely HASHIN [12 —14], SCHAPERY
[15-17], MINsTER [18], RoscoE [19, 20], CHETou! [21], CHETOUI €f al. [22], HUET
[23], GiBiaNsKY and MiLTON [24].

Very few results were obtained concerning the bounds of the creep and relax-
ation properties in the time domain, and only under very restrictive conditions,
CHRISTENSEN [25, 26] or as pseudo-elastic approximations, SCHAPERY [17]. In par-
ticular, the idea used by Christensen was to look for minimum theorems in linear
viscoelasticity problems that might be the viscoelastic counterparts of the mini-
mum theorems of linear elasticity on which most of the various bounds obtained
for elastic media are based. But no sufficiently general theorems have been ob-
tained that might provide us with bounds of the same degree of generality as the
elastic ones. This is discussed for instance in CHRISTENSEN [26]. The variational
theorems of GURTIN [27] do not provide the information needed since they are
stationary theorems only, and not the required minimum theorems. Many par-
ticular minimum theorems which have been derived since the Gurtin stationary
ones are not able to provide the expected results. This is so because, as discussed
extensively in HUET [28], most of them relate to bodies involving one scalar vis-
coelastic parameter only, or give results for the instantaneous elasticity only. Even
the more general viscoelastic minimum theorems that we recently derived in [28,
29] through a so-called pseudo-convolutive approach, are submitted to restricting
symmetry conditions that have to be checked for each particular problem. This
strongly restricts the domain of validity of the bounding results that we published
in [30].

This led us more recently to another approach, still using, as in [28, 29], the
general thermodynamic properties of linear viscoelastic materials, first derived
by STAVERMAN and SCHWARZL [31], but avoiding the use of viscoelastic mini-
mum theorems. The purpose of this paper is to present this approach, and to
show that it allows us to derive various kinds of bounds that apply to the creep
and relaxation functions of heterogeneous materials of any kind. In Sec.2, we
recall elementary but basic concepts about the local properties of viscoelastic
materials and introduce the mechanical definitions of their effective properties.
In Sec.3 we recall, following mainly HUET [28], the basic thermodynamic con-
cepts for viscoelastic materials that are used in the sequel. In particular, we recall
the Brun-Clapeyron equation that leads to our pseudo-convolutive formalism,
the latter extending to the thermodynamics of viscoelastic materials the classi-
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cal Stieltjés convolution currently applied to viscoelasticity at least since GURTIN
[27], and in particular by Laws and McLAUGHLIN [32], Laws [33]. This allows
us to provide pseudo-convolutive extensions of the classical Hill conditions that
are key points in the derivation of bounds. The results of these two sections are
explicitly used in the subsequent derivations. In Sec.4, we sketch the principles
of the approach leading to the results that are to be presented and we recall the
results given by the classical variational theorems when applied to appropriate
boundary conditions. In Secs.5 and 6, we successively derive unilateral bounds
for the relaxation functions tensor, its rate, the rate of the creep functions tensor
and the creep functions tensor itself. In Sec.7, we derive bilateral bounds for the
creep and relaxation functions tensors. Some discussion and possible extensions
of the results are provided in a concluding section.

2. Effective properties for viscoelastic materials
2.1, Local relaxation and creep functions tensors

We consider a heterogeneous viscoelastic body with linear viscoelastic con-
stituents without aging. Some of them may be possibly purely linear elastic or
purely viscous-Newtonian — as limiting cases of linear viscoelasticity. We restrict
ourselves to small strains. As well known, the behaviour of each such linear vis-
coelastic constituent is completely defined, in the observable variables approach,
by expressing the stress tensor as a linear functional of the history of the strain
tensor ¢. Thus, for each point z inside the body, one may write two dual con-
stitutive equations which are of the simple Volterra - Stieltjés integral form, with
convolutive kernels, that can be interpreted as expressing the BoLrzmANN [34]
superposition principle:

t

O'gj(l) = ]7‘5jk1(t — u): d{;‘kl(u),

(2.1) ’,
f0) = [ Simlt = w): doy(w)

In Eqgs.(2.1) shown above, r is the local relaxation function tensor, a tensor
of the fourth rank with components being the functions r;;x;(t) of the time ¢; f is
the local creep function tensor, also of the fourth rank with components f;;x(t).
Throughout the paper, the summation convention upon repeated subscripts is
used and it is understood that r, f and the field variables are not only functions
of the time ¢, but also functions of the position z of the considered point inside
the body, including its boundary.
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We will also write Egs. (2.1) in the convolutive form:
(2.2) Oij = Tijkl © €kl €ij = fijkl 0 Okl
or, in a symbolic tensor form:

(2.3) o=roc, e = foo,

where aob denotes the temporal Stieltjés convolution between scalars or tensors:

t

(2.4) aob= ja(/ — u): db(u).

o~

As it is usually done, we assume that the tensors r and f are zero for negative
times and have at every instant the same symmetries as in linear elasticity:

(2.5) rijkt(t) = rji() = riju(t) = ri () Vi

No restriction is made about the material symmetries of the constituents of
the body, that may involve any kind of anisotropy. For times going to infinity, the
constituents may behave indifferently as solids or fluids unless otherwise specified.
All the evolutions are supposed to be quasistatic in small deformations.

The two dual constitutive equations, Egs. (2.3), are not independent. As well
known, the associativity property of the Stieltjés convolution yields that r and
f are convolutive reciprocals, meaning that they satisfy the following Stieltjés -
Volterra’s equations:

(2.6) rof=for=I%,

where Y (t) is the Heaviside step function of time, and where I* is the unit tensor
of the fourth rank, with components expressed in terms of the Kronecker é by:

1 .
2.7 I = 5(5fk5j1 + bubjk).

In fact, as it is also well known, these Stieltjés - Volterra equations are Volterra
equations of the second kind, for which a unique solution always exists.

The Stieltjés convolution has thus all the properties of a commutative algebraic
field.

In addition to the properties recalled above, it has been shown by Bior [35]
that every viscoelastic behaviour defined by a set of linear differential equations
in terms of the observable variables and of a set of internal variables with the clas-
sical Onsager symmetry admits a spectral representation even in the anisotropic
case. This spectral representation has also been studied by MANDEL [36] and
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more recently by Coussy [37]. For most real viscoelastic materials, the relax-
ation and retardation spectra are continuous. In particular, this is the case for
the behaviours based on simple or multiple power-law creep elements. They are
specially important since they are very often observed in real materials, see for
instance HUET [38, 39], Rubpock et al. [40].

For materials with a continuous spectrum, the relaxation and creep function
tensors are given by

2.8) r(t) = / o(r)e~ V" dr
0

29) 10 = [ [1=ear,
0

where (r) and p(7) are positive definite tensor functions of the fourth rank,
and where the curves defined by the functions p;;x(7) and ¥z (7) in terms of
the scalar variable 7 define the relaxation spectra and the retardation spectra,
respectively.

The case of a discrete spectrum corresponds to taking ¢(7) and o(7) in the
following forms, making use of the Dirac ¢ (see for instance [41]):

(2.10) P(r) = Z Prd(T — T1),
k

(2.11) o(r) = > onb(r — ).
h

An important consequence of the existence of a spectral representation is that
the time derivatives of the relaxation function tensor and of the creep function
tensor are monotonic functions of time: the second derivative of the relaxation
tensor is positive definite while that of the creep tensor is negative definite. In
fact, as can be seen from Eqgs. (2.8) and (2.9), the successive time derivatives of
r(t) are of alternating signs (in the tensorial definite positiveness sense) and the
same holds for f(1).

As a consequence, one has from Egs. (2.6), the following inequalities for the
algebraic product of the present values r(¢) and f(t) of r and f at the same single
instant ¢:

(2.12) rof < 1%,
(2.13) fir < I,

This is because, from
(2.14) 0<r()<r(t—u) and  f(u)>0 Yuelo,

(2.15) 0< f(t—u)< f(1) and  F(u)>0 Vuelo,
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one finds immediately
t t

2.16)  r(1): f(t) = r(1): / df (u) = f r(t): df(u) < ] r(t = u): df(u) = I,

o (e

and

@17 1) r(t) = () /dr(u) = 1(0): 7-(0+)+ff(i.): i (u) d(x)

< (1) r(0+)+/j(z — ) F(u)du = I*

for all viscoelastic materials exhibiting instantaneous elasticity, meaning that r(0 ")
is finite. This latter assumption will be made all over the paper.

All these classical properties of the relaxation and creep function tensors and
their rates will be used in the sequel.

2.2. Effective relaxation and creep functions tensors: mechanical approach

In a fashion similar to what is currently done in the literature for the elastic
case, we assume that we may define the effective properties of a heterogeneous
linear viscoelastic material through linear convolutive relations between volume
averages of the stress and strain tensors taken over a representative volume:

(2.18) (roe) = (o) =10 (¢)
and
(2.19) (foo)=(e) = [To(a),

where 7 and f°f stand here for the effective relaxation and creep function ten-
sors, respectively. They are also tensors of the fourth rank, with corresponding
current components rffffkl and L’*’J-'L being also functions of time. This usual as-
sumption is made possible by the linear character of the viscoelasticity problem
involved.

Equivalent indicial formulations of the above equations read thus:

g;5) = 7Eff o 0
(2.20) (@ij) 1_7;1 (ekt)
(i) = ficjkz o (oki).

As shown by Laws [33] in 1980, r°ff and f°f have at least the same general
symmetries — but generally, of course not the particular material ones — as the
local r and f tensors, even for the most general anisotropic case. In particular,
they also remain invariant under exchange of the pairs of subscripts (:7) and (k).
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The problem which is addressed in this paper is to find relationships between
these effective viscoelasticity tensors of the heterogeneous material and the local
viscoelasticity tensors of its constituents.

Of course, no dependence upon the space variable z is involved in the effective
Equations (2.18) to (2.20). From Eqgs. (2.20); one gets, because of the commuta-
tivity property of the volume average and the temporal convolution operators:

(2.21) (o) = (roe)={(ryo(e)+ (r'oe)
and
(2.22) () =(foa)=(f)o(a)+ ([ od’),

where o’ defines the local fluctuation a — (a) of the variable a around its average
(a). This shows that — like for the elastic case — the viscoelastic effective properties
differ in general from the volume averages of the corresponding local properties.

From Egs. (2.18) and (2.19) it can be seen that, for bodies with the repre-
sentative volume, and by definition, the effective properties are supposed to be
well defined and independent of the spatial distribution of boundary conditions.
Then, the property of » and [ being convolutive reciprocals, extends to the ef-
fective properties 7°f and f¢f:

(2.23) pefl o pofl = pefl o peff = pdy

Of course, for the same reasons as for the local properties above, this yields

the effective analogs of inequalities (2.12) and (2.13):
T.cff: fcff < I4
(2.24) feits peft < 4,

These properties will also be used later on in this paper. Of course, the re-
sponse of the viscoelastic representative volume depends on the history of the
imposed variables, and not only on their current values. This makes a difference
as compared with the elastic case.

2.3. Effective relaxation rate and effective creep rate tensors: mechanical definitions

Let us consider again the definitions of the effective relaxation functions ten-
sors, Egs. (2.18) and (2.19). Taking their time derivatives and denoting the time
derivative of r*f by:

eff _ ircﬁ
dt

we get, from the convolutive derivation rule,

(2.25) 3

(2.26) (r(0*): &) + (o) = (&) =rM(0%): (&) + 77 o (e).
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Since one has, for the instantaneous elastic part of the response:
(2.27) (r0*): &) = r°f0*): (&),

it follows that

eff

(2.28) (Fog)= 1% o(e)= (&) —rf(0%) o ().

This shows that the effective tensor associated to 7 is simply the time deriva-

tive of r°ff,
Similarly, from Eq. (2.19), denoting the time derivative of the effective creep

functions tensor f¢f by
d

_fcff’

Feff _
(2.29) [ = oy

we get

(2.30) (FOF): &)+ (foa)= (&)= fO"): (&) + [o(a).

Together with

(2.31) (f(0*): &) = [F*): (&)
this yields:
(2.32) (Joay= [Fo(o)=(2) - fF(0)o0 ().

This shows that the effective tensor associated to f is simply the time deriva-
tive of f¢ff. This will also be used later on in this paper.

3. Thermodynamics of viscoelastic behaviour for heterogeneous media

3.1. Integral expressions for the local free energy, free enthalpy and dissipation densities
in isothermal linear viscoelasticity

In order to make further progress, we need to go beyond the mechanical
definitions given above and consider the energetics of our viscoelastic bodies.

For linear viscoelasticity without aging, the thermodynamic framework has
been developed mainly in the fifties and sixties, through the works by STAVERMAN
and ScHwWARZL [31], BioT [35], MANDEL [36], BRUN [42, 43], and in another context
by CoLEMAN [44] and some others.

Staverman and Schwarzl showed - in the one-dimensional case and through
an internal variables approach — that all the viscoelastic models that are mechan-
ically equivalent are also energetically equivalent. Moreover, they showed — in
the one-dimensional case also — that the free energy density ¢ per unit volume
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and the dissipated power density D per unit volume (briefly named dissipation in
the sequel) at time ¢ are quadratic functionals of the macroscopic strain history
up to time ¢, involving as their kernels the relaxation function tensor r up to time
2t and its rate © up to 2{, respectively.

These results were then extended by several authors to the three-dimensional
case in the following form in which the time origin is set at the first loading:

e(t) = %f/r(Z( —uy — up): de(up): de(uy),
(3.1) o
D(t) = —// F (2t — uy — up): de(up): de(uy).

In these equations, the brackets needed to separate the two contracted prod-
ucts in each integrand have been omitted to simplify the formulas. This is done
all along this paper except when specially stated. It should be remembered that
the first product has to be read first.

Similarly, three-dimensional Staverman and Schwarzl formulas can be written
for the free enthalpy density 7 and the dissipation D as quadratic functionals of
the stress history up to time ¢ involving as their kernels the creep function tensor

f up to time 2¢ and its rate f up to 2t, respectively,

(1) = ~% / / J@ZU—uy —up): do(up): do(uy),
(3.2) o

t

D(t) = ]/ }(Zt —uy — up): do(up): do(uy),

(<]

where 7 is defined, as usually, as the local Legendre transform of ¢ relative to o:
(3.3) Yy=p-—o0:c.

In case of one-step histories with amplitudes € and o, respectively, Eqgs. (3.1)
and (3.2) become, in terms of €%

e(t) = %r(ZI): il
(3.4) D(t) = —#(21): %: €9,

7(t) = —%[27‘(1‘,) — (@20 2tz 2
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and, in terms of o0
1) = ~3 /@03 0% o,
(3.5) D(t) = f@b): 0% o,
ol1) = 120() ~ J@)): o .

From the second principle of thermodynamics, expressed here as the Clau-
sius - Duhem inequality in local form:

(3.6) | =—(¢p-0:8)20,

the dissipation should be positive for every evolution and zero for equilibrium.
Thus, for isothermal relaxation, D(t) - and thus (— ¢ ) in Eq. (3.4); — is positive
for every ¢%, meaning that  is a definite negative tensor for all finite times,
conforming thus to the common experimental observations. On the other hand,
for time going to infinity, ¢ tends to its final equilibrium value which is the
non-negative final elastic energy of the body. From this and the above result it
can be concluded that, for viscoelastic materials with the Staverman and Schwarzl
form of the free energy, the relaxation function tensor is positive-definite and
decreasing for all finite times.
Further, taking the time derivative of ¢ in Eq. (3.1); yields:

t

(3.7) b)) = a(t): E(1) + f/ (2 -y — wa): deuz): de(ur)

o

which is compatible with (3.1), through (3.6).

Similarly, the positivity of the dissipation during the evolution involves, from
its dual expression in terms of the stress history, that fisa positive definite
tensor kernel. Thus, f is an increasing monotonic tensor function of time.

All this is compatible with the properties obtained in Sec.2 from the spectral
representation, which itself leads to the Staverman and Schwarzl formulas, see
for instance [28].

3.2. Brun-Clapeyron equation and associated pseudo-convolutive calculus

In Huer [30, 28], we introduced a pseudo-convolutive formalism based on the
above results and on further results obtained by BRUN in [42, 43]. In particular,
Brun gave a generalization of the local Clapeyron equation for the non-aging
viscoelastic case. It can be written in the form:

t 2t*
1

(3.8) o) = 5 ff/ (2t — u): de(u).
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This is a bilinear form in o and ¢, which restitutes the Staverman and Schwarzl
formula when replacing o by its value given by the constitutive equation, and for
which we have introduced the following pseudo-convolutive notation:

(3.9) o) =500

showing clearly its similarity to the elastic case and also to the convolutive notation
classically used in viscoelasticity.

Generally speaking, the pseudo-convolution of the tensor a by the the tensor
b is the non-commutative bilinear operator defined by:

t 2tt

(3.10) aob= ‘[—/ a2t - u): db(u).

The properties of this pseudo-convolution involve a set of identities that define
the rules of the pseudo-convolutive calculus. Some of them were given by BRUN
[43] without use of the pseudo-convolutive notation, and also by HUET [28] in
the pseudo-convolutive form. Others were derived by ourselves and are here
published for the first time. The most important ones, that will be used in the
sequel, are recapitulated below and can be easily verified:

t 2tY\ 2t—u

(3.11) (gobd)o b= /— / / g2t — uw —v): db(v): db(u)

= jjg(Zl —u—v): db(v): db(u);

%(al:lb-i-bna)=a:b,
ana=a:a,
(312) dob+boa=doa=0,
(ko:a)ob=ko:(aob)=1Fky:aob,
(ko: @)o b+ (ko: b)oa=(kg: @) oa=0,

for every fourth rank tensor which remains constant in time.
Moreover, taking the time derivative of Eq. (3.10) gives:

d 4 .
(3.13) —(laub)=a:b+aab,
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which appears as the pseudo-convolutive extension of the Leibnitz rule (with the
1/2 factor not to be forgotten). It is also a pseudo-convolutive analogue of the
time derivative of the Stieltjés convolution:

(3.14) %(go(,)=g0:é+aob_
al

In the two equations above, a: b is written for its value a(f): b(t) at time ¢
while go stands for the value g(0%) of ¢(¢) at time zero. The same notation is
used throughout the paper.

One must pay attention to the fact that the bilinear pseudo-biconvolution
(g o €) o b differs in general from the corresponding bilinear double integral as-
sociated to the Staverman and Schwarzl formula:

t 2tY\ 2—-u

(3.15) (goe)o b= /— / ] 92t —u — v): de(v): db(u)

o—

# jjg(fll —u—v): de(r): db(u)

and that one has in general:

(3.16) (goe)ob# (gob)oe.

This means that, in contrast with the bilinear form associated to the Staver-
man and Schwarzl quadratic one, the pseudo-biconvolution is not symmetric even
for kernels ¢ having the universal symmetries of linear elasticity. This is the ba-
sic reason for which the minimum theorems derived in [28] are submitted to
restrictions.

Nevertheless, one still may mention that — for such symmetric kernels — the
equalities are recovered for those special histories that keep both e and b constant
in the time interval (¢,2t). Moreover one has, for all cases,

(3.17]) (goe)ob+(gob)oe= 2/ /g(ZI. —u—wv):de(r): db(u)

= Zj /t g2t — u — v): db(v): de(u)

which is twice the symmetric-bilinear form associated to the Staverman and
Schwarzl quadratic form.
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On the other hand, using Eqgs. (3.11) and (3.12)4 shows that algebraic quadratic
forms can be expressed as pseudo-convolutive ones, since:

(3.18) (k:a)oa=k:(eoa)=Fk:a:a.

This remark will simplify the derivations in the final sections of this paper.
It will be also useful to extend the algebraic definition of the order relationship
between two viscoelastic kernels to a pseudo-convolutive one as follows:

(3.19) h<g & (g—h)oaoa>0 forall histories a over [0,2t].

For this relationship being valid, it is enough that the same one will be valid
in the algebraic sense for all times. From this the following general inequality
can be derived, valid for any kernel tensor g(t) which is a monotonic decreasing
function of time in the algebraic tensor sense:

(3.20) g(20): b(t): b(t) < (gob)aob.
The proof is straightforward owing to

g2ty < g2t —u—v) Vt>0, VYVue]0,2t],Yve]0,2t—u] =

321 o
(321 g(2t): b(t): b(1) = g(21): / /(lb(u): db(u)

0- 0-

= j jg(Zt): db(v): db(u)

0- 0-

t 1
< / /y(Zt —u—v): db(v): db(u)
0- 0-
t Y\ 2t-u

= /_/ / g2t — u— v): db(v): db(u)
g

t 0-
=(gob)ob.
We will make an extensive use of Ineq. (3.20) in Secs. 5 to 7.

3.3. Thermodynamics of viscoelastic behaviour in pseudo-convolutive form

From the rules given above it can be easily verified that, in the pseudo-convo-
lutive formalism, all the local thermodynamic quantities studied in Sec.3.1 may,
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at time ¢, be written in the following symbolic forms:

1 1
<p=5aae=E(roa)ma=a:£—-z-sma=0:6+*y,
1 1 1
7=—-2—5D0=—5(f00)0c7=i(rDS—U:E=Lp—(r:£,
(3.22) D=—<'7Dg=—(7'~os)cl£=éua=(}’oa)no,
. d (/1 i : . .
cp=;ﬁ(§ame)=a:5+aus=0:s+(ros)m£,
. d (1 s, s . y
- =E£(§EDU)=EZO’+EDU=£1U+(fOU)DU,

where the time dependence is implicitly understood.
In Egs. (3.22)3, the second Identity (3.12)s has been used in the form:

(3.23) (ro: E)oe=(fy: 6)oo=0.

Combination of Egs. (3.22)3, (3.22)4 and (3.22)s5 restitutes the two classical
forms of the isothermal Clausius-Duhem inequality when written in terms of ¢
and v, respectively:

(3.24) D=—(p—-0:é)=—(y+ec:0)>0,
showing thus the consistency of this formalism.

3.4. Macroscopic expressions for the viscoelastic thermodynamic quantities of heterogeneous
materials and pseudo-convolutive Hill conditions

In order to be able to perform viscoelasticity calculations for heterogeneous
bodies through the use of an equivalent homogeneous medium, it is useful — just
as for the elastic case currently studied in the literature, see for instance [45] —
to know the macroscopic expressions for the thermodynamic quantities in terms
of the volume averages of the stress tensor, of the strain tensor and of their rates
only. In addition to that, one requests the corresponding viscoelastic effective
properties being the same as the ones introduced in Sec. 2.2 through mechanical
definitions. For instance, the macroscopic free energy will be required to be the
volume average of the local one and, at the same time, to be expressed in terms

of the strain average and effective relaxation functions tensor by:
1 1
(3.25) () = 50To (N o (e) = 3@ o ().

When comparing this macroscopic thermodynamic expression with the volume
averages of the corresponding local equations obtained in Sec. 3.3 above:

(3.26) () = %((r ce)oe) = %(a oe),



BOUNDS FOR THE OVERALL PROPERTIES 1139

one sees that it implies the following pseudo-convolutive extension of the classical
Hill condition, see HiLL [4], KRONER [8], widely used for the elastic case:

(3.27) (cgoe)y=(o)ole) & (o) =0,

where here again «’ denotes the fluctuation of the variable « around its volume
average.

Doing the same for the other thermodynamic quantities considered in Sec. 3.3
yields also:

(e00) = (c) o (o),

(3.28) —(doe)=—(c)alc)=(¢ aa)= (&) a).

As can be easily seen from the general pseudo-convolutive identity (3.13)
given in Sec.3.2 above, this is compatible with the macroscopic forms of the
Clausius - Duhem inequality:

)

(329) (D) =-((¢)=(o:2)) == (($) = (o):
=—((9) +(e:6)) == ((3) +(e): (&) >0,

Moreover, combining Eq. (3.13), Eq. (3.27) and the first Eq. (3.28), shows that,
when the pseudo-convolutive Hill conditions above are verified, the algebraic Hill
condition for the strain power density:

(3.30) (01 8) = (o)1 ()

is also fulfilled, as requested for the definition of an equivalent homogeneous
medium for heterogeneous materials with behaviours of any kind, see HUET [46,
47, 48].

We shall see now that the pseudo-convolutive Hill conditions are indeed veri-
fied for the viscoelastic counterparts of two special kinds of boundary conditions
currently considered in the elastic case. For this we need first the pseudo-con-
volutive counterparts of the classical general relationships existing between the
volume averages of the mechanical and thermodynamic variables and the bound-
ary conditions.

Me

3.5. Relationships between volume averages and boundary conditions

We denote by z the material point coordinates vector in a given fixed frame of
reference. By applying the Gauss theorem, in the form of the gradient theorem, to
the strain tensor field £(z) inside a domain D with volume V, external boundary
dD, and perfect interface, one has for the volume average of the strain at any
time, the classical universal relationship:

(3.31) (e) = %/sym (€ xn)dX,
oD
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where ¢ is the displacement vector, “grad” the gradient operator, “sym” the op-
erator giving the symmetrical part of a tensor (one half of the sum of 1 tensor
and its transpose), x the tensor product (dyadic), d¥ the area elemen' of dD.
Thus, when the displacement ¢ is and remains continuous on the interfice, with
no slips or cracks, the strain average at a given time is completely deternined by
the knowledge of ¢ at all points of the external boundary at the same tine.

By employing the same theorem, in the form of the divergence thearem ap-
plied to the product (z x @), and by taking account of the conservation tquation
for the momentum in the assumed absence of body forces, one also has for im-
pervious interfaces, the other classical relationship, valid only under tlese two
simplifying conditions:

(3.32) (@) = l]_/ / sym (P x z)dY,

abD

where P is the (prescribed or not) boundary stress vector defined at any time by
(3.33) P=on,

with n being the outer unit normal to the external boundary.
For the strain power in small deformations one has in a similar fashicn, when
the two simplifying conditions above are fulfilled, the relation

S 1 . 1 .
(3.34) (0: €)= v /(m-n)-{ dY = v ] P dY,

oD aD

which is nothing else, for this particular case, than the principle of virtwil power
applied to the real solution fields at a given time.

But the same derivation may be applied to the stress and the straintaken at
two different times ¢; and t,:

. 1 . . 1 .
(335) (o) i) = 3 [lo@)nl-E@)dx == - [ P(t)-En)ay.
aD aD

Through time integration and permutation of the time and domain ntegrals,
this gives the pseudo-convolutive versions of this formula:

1
(ous)=%/(a-n)m£d§=‘—//PD§d.§,
aD

(3.36) aD

(eoo) = %/Em(a-n)d«_‘?=%/§ul’di‘,
aD ap

Similar formulas apply when the real field variables are replaced by aumissible
virtual ones or by their rates in the equations of this section, and conversey. In the
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presence of body forces and imperfect interfaces, more general formulas have to
be used. They may be found for instance in [45] for the usual algebraic case, and
in [28] for the pseudo-convolutive case. In the latter case, they can be considered
as pseudo-convolutive extensions of the virtual work and virtual power theorems.

3.6. The case of kinematic uniform boundary conditions (gp—KUBC)

Let us first impose to the heterogeneous viscoelastic body the kinematic uni-
form boundary conditions. In the sequel they are denoted ¢,—KUBC for brevity
and defined by prescribed displacements &% applied to the whole boundary 9D
of the body D in the form:

(3.37) €z, u) = eo(u)ex  Va indD, Yu in[07,207],

where ¢g is uniform on the whole external boundary, but can be a piecewise
continuous function of time in the interval [07,2¢%].
Taking account of the formulas given in the preceding section this yields, as
usual, the universal formula:
1
v / ExndyY

338)  (e(u) = %l/s(u)dV
D

ap
1 L1 ~
=V co(u)x x nd¥ = FEO(u)' / rXndX
aD aD

1
= so(u)'V/grad zdV = eo(u),
D

which is the well known formula equating the average strain to the uniform one
imposed on the boundary, and where the equality of grad = to the unit tensor 6
has been used.

With the free energy density given in the pseudo-convolutive form, Eq. (3.22),
one derives similarly:

(339)  2(¢(t) = ((roe) o e)

(0 0¢)

1 1 ]
- / Po(s02)dS = o /(P x z)dZ a g
aD aD

=(0)oeo= (rToey) oep.

Replacing, in the above sequence of equations, o by ¢ and P by P yields
also:

(3.40) (D)= —((i oc)oe) = —

oegg=—(0)o(e) = —(%eﬁuso) 0&Q.
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Thus, as announced above, the required pseudo-convolutive Hill conditions
are indeed satisfied in £9p—KUBC for both the macroscopic free energy and the
dissipation densities.

3.7. Static uniform boundary conditions (g;,—SUBC)

Similarly, let us consider the same body in static uniform boundary conditions
of the kind oy, briefly named 0p—SUBC in the sequel, and defined by a prescribed
stress vector surface density P?, applied to the whole boundary 9D of the body
D in the form:

(3.41) Pl(u) = og(u)n Vzin 0D Vuin [07,2(%],

where og is a given symmetric tensor with dimension of stress and with values
taken in the order of magnitude compatible with the linearly viscoelastic domain
of the material. In this case, the volume forces and accelerations are still sup-
posed to be zero or negligible, as appropriate for the assessment of constitutive
equations.

As can be easily verified by replacing P with its given value in (3.26), and
through application of the Gauss theorem in the reverse way, one obtains the
also well known universal result

(3.42) (a(u)) = é / sym [(og+n) X 2]dE = ag(u).
oD

Moreover, for oy still uniform on the whole external boundary, but a piecewise
continuous function of time u in the interval [0~,2¢*], one gets:

(B43) -20()) =((Jeo)o o)

= (¢ 0 o)

1 1

—f{ o (ogen)dX¥ = v /(E x n)dX ooy
aD aD

v
=(e)oag=(fToog)oap.
Replacing in this sequence of equations ¢ by ¢ and £ by E yields also:
(344) (D)=((feo)oo)=(taad)=(t)aa=(fMoa)oa.

Thus, in 0g-SUBC, the required pseudo-convolutive Hill conditions are ful-
filled for the macroscopic free enthalpy and dissipation densities. All the above
preliminary results will be used in the final derivations to be presented now. Nev-
ertheless, in order to simplify the notation we will avoid, in the sequel, the use of
the brackets in the pseudo-biconvolutions such as (g o ¢) o b: the formula will be
written simply ¢ o e o b thereafter. One should remind that the left-hand product
has to be read first. The same holds for the algebraic bi-products of the form
(g:€): b= g:: (e xb)written simply g: e: b.
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4. The associated elasticity problems approach
4.1. Principles of the method

The basic idea of this approach is to make use of auxiliary elasticity problems
for which, at some given time t taken as a fixed parameter during the calculations,
the elastic properties are taken as some appropriate functions of the viscoelas-
tic ones, and for which the boundary conditions are taken the same as for the
vicoelasticity problems at the same time ¢.

Then, it can be observed that the displacement, strain and stress fields which
are solutions of the viscoelastic evolution problem at the considered instant ¢ in
the considered viscoelastic body are admissible fields for the associated elasticity
problem. Thus the various already known minimum theorems of elasticity can be
used. Here we will make use of the classical minimum theorems for the potential
energy and for the complementary energy. In fact, it will be enough to write the
theorems for the kinematic and static uniform boundary conditions, respectively.

4.2. Potential energy minimum theorems for elastic bodies in uniform kinematic
boundary conditions

As well known, the elasticity modulus tensor €' and the corresponding com-
pliance tensor S have symmetry and positivity properties associated with the
existence of elastic potentials like the free energy and the free enthalpy, and
with the stability of elastic equilibrium. Together with the classical virtual work
theorem, this yields two minimum theorems for elasticity problems. The first one
relates to the potential energy F> of the elastic system.

Let us denote by £and 7 any admissible virtual displacement and strain fields
satisfying the conditions

@1 ¢ continuous and & sym (grad E) YVzinD,

£ =¢ Yz on 9D .
The potential energy minimum theorem states that the elastic solution dis-
placement and strain fields { and ¢ minimize F- among all the corresponding

admissible fields. In £g—KUBC the displacement is prescribed over all 9D, and
we have:

(4.2) IdD, =0, 0D¢ = 0D.
Thus the classical expression for the virtual potential energy F: reduces here

to

1 1
(4.3) F;=EfC:E:EdV=EV(C:€:§),
D
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and the same without tilde for the potential energy of the real elastic solution.
Thus, the minimum theorem gives here

(4.4) (C:e:e) < (C:€:¢),

the volume averages being taken again on the domain D.
Through the classical elastic Hill condition and the effective Hooke law, this
still reads:

(4.5) (0:e) = (0):(e) = CMigg:e9 < (C:E: 8.

4.3. Complementary energy minimum theorems for elastic bodies in static uniform
boundary conditions

The second classical minimum theorem of elasticity relates to the complemen-
tary energy I~ of the elastic body. Let us denote by & any admissible virtual stress
field, satisfying

diveg = -F*  Vaz in D,

4.6
() Gen = P? Yz on 0D, .

The complementary energy minimum theorem states that the elastic solution
stress field o minimizes /% among all the corresponding admissible stress fields.
In 0p-SUBC, the surface traction og-n is prescribed over all the boundary 0D of
D, and we have

4.7) dD, = 0D, dDe = 10.
Thus the virtual complementary energy F’ reduces here to

1 _
(4.8) F = 5/5: §:5dV = %V(S: 51 ),
D

and the same without tilde for the real solution. Thus, the minimum theorem
gives here

(4.9) (§:0:0)<(5:0:75).
Using the elastic Hill condition and Hooke law again, we get:
(4.10) (o:e)=(a):(e) = 5F:0p: 09 < (S:5:5).

We are now ready to determine the sought bounds for the effective viscoelastic
properties.
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5. Bounds for the relaxation properties

Let us consider first the relaxation functions tensor and its rate.
5.1. Lower bounds for the effective relaxation functions tensor

In this section, for the sake of clarity, we present the derivation step by step for
the first bound. Since similar arguments will be used in the subsequent sections,
we will simplify the derivations for the other ones in order to shorten the paper.

Let us consider the viscoelastic body D subjected to ¢g-KUBC with ¢ being
a known function £o(f) of time. The real displacement and strain fields £"¢!(¢)
and ¢¥°!(¢) at time ¢ for this viscoelasticity problem can be taken as kinematic
admissible fields for any elastic problem of the corresponding body with same
geometry, with any modulus tensor €' and subjected to the same ¢;—KUBC, for
¢o taking the value ¢4(1). This is so because, at a fixed value of time ¢, £¥(¢) is
continuous over D and satisfies the boundary conditions at the same time value
t. Moreover, £¥°!(¢) is the symmetric part of the gradient of £¥¢(1).

Thus, from Eq. (4.4) one has, for every time ¢:

(5.1) CM: g eg < (C: ¥ ¥y,

where C°f is the effective elasticity modulus tensor corresponding to € for the
associated elastic body subjected to the ¢¢(1)-KUBC defined above. Let us take
for C' the value taken by the relaxation functions tensor r(2t) at time 2¢. Thus
we get:

(5.2) ref €(20) 1 g9 e < (r(20): €¥U(1): €7 (1)),

where rff ¢ is the corresponding effective elasticity modulus tensor. But, from

the monotonic decreasing property of » derived in Sec.3.1 and Ineq. (3.20), one
has:

(5.3) (r2t): () : (D)) < (roe" o ") = rfogp o gy,
where Eq.(3.39) has also been used. This yields finally
(5.4) rof e 20): 9169 < 1Mo gg o gp.

Taking the history =o(t) as a one-step function £JY (1), see Sec.3.1 Eq.(3.4)y,
the RHS becomes equal to:

(5.5) 2(p(t)) = 7 21): d: €.
Thus, for this history of ¢, Ineq. (5.4) becomes

(5.6) rE A2y 6D ) < rM(21)2 621 ]
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This, being true for all non vanishing ¢, means that the following order re-
lationship, in the tensor algebraic sense, has been established between the vis-
coelastic effective relaxation function tensor 7¢f(2¢) and the associated effective
elastic moduli tensor ¢ €(2¢), the latter being, for each value of the time, strictly
smaller than the former one taken at the same finite time value:

(5.7) ref el(24) < ref(21).

We have thus obtained the first bound, in fact a lower one, for the effective
relaxation function tensor r¢f,

Moreover, every lower bound for the associated effective elastic modulus at
time ¢ is also a lower bound for the effective relaxation function tensor at time ¢.
By this result, all the results of the previous efforts aimed at finding lower bounds
for the effective elasticity moduli, and in particular the works by Hill, Hashin,
Walpole, Kroner mentioned in the Introduction, can be applied to the relaxation
function tensor of the viscoelasticity problems through the result obtained here.

In the light of the remarks made at the end of Sec. 3.2, the order relationship,

Ineq. {5.7), may also be understood in the pseudo-convolutive sense.
5.2. Upper bounds for the effective relaxation rates tensor

In Sec.2.3 we have defined the effective tensor associated with the relaxation
rate tensor and have shown that it equals the time derivative of the effective
relaxation function tensor. From its definition, it has the same general symmetries
as r itself. Thus, a similar procedure as in Sec.5.1 can be applied to it by taking
into account the fact that its opposite, [— 7 (1)], is positive definite for all finite
time, see Sec.3.1.

Let us define the tensor function g(t) as

(5.8) g(t) = =7 (1),

and let us consider the associated elasticity problem in which the modulus tensor
C has the positive definite value g(2t) everywhere in the body D, the latter being
subjected to eo(t1)-KUBC. The viscoelastic strain field ¥ at time ¢ is still an
admissible strain field for this elasticity problem, to which the kinematic elastic
minimum theorem can be applied, with g(¢) being the kernel of the potential
energy functional.

Moreover, let us suppose that, as provided by the assumed existence of a
spectral representation (see Sec.3.1), the relaxation rate tensor is a monotonic
increasing function of time ¢. Then g(2t) is a decreasing monotonic function of
t. From Eqs.(4.5), (3.20) and (3.40), one has the following chain of relationships:

(5.9) geﬁ ey €00 &g = gt CI(2!): go: €0 = (9(2t): se'(t): 5“'(1))
< (g(2): (1) (1) < (goe™ o)

. . eff
=—(foe o) =3+ 0goe.
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As in Sec. 5.1, this corresponds to the following order relationship, in both the
tensor algebraic sense and the pseudo-convolutive sense:

(5.10) P20 < —gT 2 <0 V1e]0, oo

This is an algebraic upper bound for the effective relaxation rate tensor. It is
valid for all finite times. Of course, because of the minus sign, every lower bound
to ¢¢ ¢! provided by the theory of elastic heterogeneous media provides an upper
bound for the effective relaxation rate tensor.

6. Bounds for the creep properties

If we apply directly the procedure of Sec.5.1 to the creep function, one can
see that one link is missing. This is so because the creep function is an increasing
function of time in place of a decreasing one used above. Nevertheless, from the
analyses presented in Secs.2.1 and 3.5 it can be seen that the local creep rate
tensor exhibits the desired properties.

6.1. Lower bounds for the creep rate tensor

In Sec. 2.3, we have shown that the effective tensor associated with the creep
rate tensor is the time derivative of the effective creep functions tensor.

Let us assume now that, as provided by the existence of a spectral representa-
tion, see Eq.(2.9) at the end of Sec.2.1, the creep rate tensor is positive definite
for all finite times and monotonic decreasing. Thus a chain of arguments similar
to the one described above can be used when starting with the associated elas-
tic complementary energy minimum theorem applied to the viscoelastic body in
o9-SUBC.

Let us define the tensor function A(t) as

(6.1) h(ty = (1),

and let us consider the associated elasticity problem in which the elastic com-
pliance tensor S has the positive definite value h(2t) everywhere in the body D
subjected to o(1)-SUBC. The viscoelastic stress field a¢!(¢) at time ¢ is a statically
admissible stress field for this elasticity problem, to which the static elastic mini-
mum theorem can be applied, with k(2t) being the kernel of the complementary
energy functional.

Under the assumptions made in Sec. 2.1, the tensor function A(t) is a positive
definite and monotonic decreasing function of time. Thus one obtains, in a similar
manner as above, the following sequence of relationships:

62) T ooy 009 = kT AN20): 091 a9 = (R(21): o°l(t): a°I(1))
< (h(20): 0*(1): (1)) < (ho o™ 0 0*) = [T oog o 0.
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This corresponds to the following order relationship, in the tensor algebraic
sense or in the pseudo-convolutive sense:

(6.3) 0 < hfe2r)y < 72 Vie]0,of.

Thus we have found an algebraic lower bound for the creep rate tensor. It
is valid for all finite times. Since the creep rate is always positive at finite time,
this implies that the effective creep function increases at a rate which is always
larger than the associated elastic effective rate. This looks consistent with the
observation made at the end of Sec.5.2 above for the relaxation function.

Of course, as in the above sections, every lower bound to the tensor %
provided by the theory of elastic heterogeneous media is a lower bound for the

eff el

creep rate function tensor f .
We are now in a position to return to the creep functions tensor itself.

6.2. Lower bounds for the creep functions tensor

Let us write Ineq. (6.3) for time v and integrate it up to ¢. This yields
t t
(6.4) //Ldf Nu)du < / My du = f(1) — £5(0"),
0+ 0+

where the definition (2.29) of }"“ﬁ has again been used.
Thus we get a lower bound for the effective creep function:

(6.5) 7R 0%) + / Ry < ) e e 0, o0
O+

Of course, the instantaneous compliance f¢f(01) is itself an effective elastic
compliance tensor, and the inequality becomes an equality at time zero.

Since the L.H.S. of Ineq. (6.5) involves effective elastic quantities only, every
lower bound provided to at least one of the latter ones provides also a new lower
bound to the effective creep function [T, In particular, this happens with every
lower bound to the tensor ~¢% ¢! provided by the theory of elastic heterogeneous
media in some finite time interval that can be (0, ) itself.

7. Two-sided bounds

In the elastic case, one-sided bounds for both the effective modulus and com-
pliance tensors provides immediately two-sided bounds by using the fact that they
are reciprocals in the algebraic tensor sense. This property is no more velid in
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the viscoelastic case since the relaxation function tensor and the creep function
tensor are not algebraic reciprocals, but convolutive reciprocals only.

Nevertheless, from the above results can be derived a set of two-sided bounds
for both the effective relaxation functions and the effective creep function ten-
sors. They are of two kinds, the first one resulting from the use of the algebraic
inequations (2.24) of Sec. 2.2, the second one being due to the results obtained
here for the rates.

7.1. Two-sided bounds of the first kind for the creep and relaxation function tensors

Let us first define the tensor function [(¢) by the L.H.S. of Ineq. (6.5):
t
(7.1) i) = 0% + /hcff dluydu Vi e]0,o0f.
0+

Inequalities (2.24) may be written in the form

I ORN(] -

(7.2)
T < [170)

where the reciprocals are taken in the algebraic sense.
On the other hand, taking the algebraic reciprocals of Egs. (5.7) and (6.5) we
obtain
-1

[T_Cﬂ'([)]_l < [Tcﬂ' cl(f)] :

(7.3) B
) < ot

Together with Tnegs. (7.2), this gives upper bounds for 7°f and f¢f. Thus one
has finally the following two-sided bounds of the first kind for the effective creep
and relaxation function tensors, respectively:

-1
ity < 1) < [T @)
(7.4) i

rof @y < 1) < L))t
7.2. Two-sided bounds of the second kind for the relaxation function tensor

Let us write Ineq. (5.10) for time u and integrate it up to ¢. This yields:

(1.5) / M) du = r<T(1) — r<T(0%) < — f Ty du Vi €]0, 00
0+ 0+
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from which we get immediately an upper bound for peff;
t
(7.6) Py < reT(0%) - / Ty du V€0, 0l
0+
This, together with the previously derived lower bound, Ineq.(5.7), provides
us with the following two-sided bounds for the effective relaxation tensor:

(7.7) ref ey < v (1) < k(1) VL €]0,00],

with k(t) defined by

(7.8) k(1) = 10" — / Ty du Vi 0,00
o

Since the existence of instantaneous elasticity has been assumed, r¢f(0") is
finite and the upper bound is not trivial. Of course, r*f(0*) is an elasticity moduli
tensor that can be calculated or bounded by the elasticity theory. When used in
Eq. (7.8), every upper bound to it provides also an upper bound to the effective
relaxation functions tensor 7¢f(¢). And every lower bound to the associated elastic
effective tensor ¢°f ¢(u) on some finite interval in (0, t), including the full (0,t)
interval, provides also an upper bound to r*f(1).

In addition to this, it can be shown in a similar fashion that the tensor function
m(t) defined by

(7.9) m(t) = rf + /gCﬂ °l(u) du
t

is also a lower bound for r¢ff(¢), but not as good as 7 (1) itself.
7.3. Two-sided bounds of the second kind for the creep functions tensor of a viscoelastic solid

For a heterogeneous viscoelastic solid, the effective creep functions tensor
grows toward a finite asymptotic value which corresponds to the final equilibrium
elastic compliance. Let us denote it by

(7.10) [ = rof(c0).

It can also be obtained from Sec. 2.3 in the form

(7.11) = @ + [ Few du
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Thus, taking Ineq. (6.3) into account and integrating it we obtain the following
upper bound for fe¢ft:

(7.12) IR ORI}

the tensor function j(t) being defined by
(7.13) j@y = s — /heﬁ “l(u) du.
t

Combining this with the already derived lower bound yields the following
two-sided bounds for the effective creep function tensor of a viscoelastic solid:

t 00
(7.14)  fT0*) + / B ) du < [y < e - f R V€10, 00] .
0+ t

Thus, every lower bound for A% ¢ will provide new lower and upper bounds

for ffi(¢). On the other hand, every lower bound for f¢f(0*) will provide new
lower bounds, and every upper bound for f¢f will provide new upper bounds.

7.4. Recapitulation

To summarize, all the bounds obtained in this paper can be, V¢ € ]0, ][, recap-
itulated as follows, independently of their order of derivation:

Py < —gT el < 0,

0 < kT el21) < Fef2r),

m(t) < rT ey < vy < [ < L1,
m(t) < rE ey < rf(1) < k(1),

1t) < f() < [0 < [T )

() < F() < (o).

The various auxiliary tensor-valued functions appearing in these inequalities
are defined by

(7.15)

i = 18- [ 1 4wy du,
(7.16) ‘

t
k(t) = r&f - /geﬁ “l(u) du,
0+
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t

I(t) = fS + /heff € (u) du,

0+

oo

m(t) = < + jg“ﬁ “l(u) du,
t

(7.16)

[cont.]

where the subscript 0 denotes instantaneous elasticity, and the subscript ~ — the
final equilibrium value when it exists.

It may be thought that some order relationship might be found between
[[(H)]~! and k(t) on the one hand, and between [rf ¢!(¢)]~! and j(¢) on the
other hand. This is left for further research.

8. Conclusion

In this paper, we have considered the old problem of finding bounds for the
creep and relaxation function tensors for heterogeneous, and possibly anisotropic,
viscoelastic materials. We have seen that this problem - that resisted several ef-
forts since the sixties — can be given in fact extensive and comprehensive solu-
tions, representing thus at least the beginning of an answer to the 1991 remark of
CHRISTENSEN in [26] “it is not known how to effect the transition from elastic bounds
to viscoelastic bounds”. This has been done here without restriction for the wide
class of linear viscoelastic materials for which the relaxation and creep function
tensors are monotonic tensor function of time with monotonic rates. For these
materials, two-sided finite bounds have been obtained for the relaxation functions
tensor on the one hand, and for the creep functions tensor on the other hand.
The creep and relaxation rates tensors each admit one-sided finite bounds only.
These bounds are valid for all finite times. For zero or infinite time values, the
bounds reduce to the effective elastic values, or are trivially zero or infinite for
cases devoid of instantaneous and/or delayed elasticity. These results hold for any
kind of anisotropy and for any kind of heterogeneity, including polycrystalline,
spinodal or matrix-inclusions materials, with random or periodic microstructures.

The field of possible applications appears to be very wide since elastic com-
putations only are needed in order to calculate the bounds, and since classical
elasticity results or methods (including numerical ones, see for instance AMIEUR
et al. [49], GuibouM et al. [50]), may be used to evaluate the bounds or to provide
further ones. From these results, it will be also possible to evaluate the maximum
error made in using quasi-elastic approximations in place of the real material
properties, as suggested for instance in SCHAPERY [17].

It can easily be seen that many other results may be gained from the approach
introduced in this paper. In particular, a straightforward application will be new
viscoelastic extensions of previous results for the apparent properties of hetero-
geneous bodies not having the representative volume that we studied in [45] for
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the elastic case. This is so because, as shown in this paper, the elastic effective
properties are bounded from below and from above by the apparent properties
in appropriate uniform boundary conditions. Thus, we will get in this fashion the
time domain counterpart of the bounds and hierarchies for the size effects and
boundary conditions effects that we derived in [23] for the complex moduli and
compliances in the frequency domain, also by an associated elasticity problems
method.

It may be expected also that an extension to the class of nonlinear viscoelastic
behaviours (for which the pseudo-linear representation recently developed for
rubbery materials by our past co-worker Araour in [51] is valid will be possible).
This owes to the fact that it makes also use of the Staverman and Schwarzl func-
tionals as in the present paper, but in terms of appropriate nonlinear measures of
the strain and stress tensors. One may also expect that these results will find ap-
plications in more general nonlinear viscoelastic behaviours, like the ones studied
by HUTCHINSON [52] in the steady-state case, or the ones defined through multi-
ple integral expansions for which we developed in HUET [53] a multi-dimensional
Carson transform approach. This is so because the inversion formulas that we
gave in [54] involve multiple quadratures with kernels associated to the linear
part of the nonlinear functional. This is left for further investigation.

On the other hand, despite the fact that many useful results have been ob-
tained through the new approach presented here, there are still classical results of
the elasticity theory that cannot be transferred through it to the viscoelastic case,
and which still remain open problems. Among them are the important modifica-
tion or strengthening — theorems derived by HiLL [4] and used by WALPOLE [55],
and more recently by us in [56]. For this, true viscoelasticity minimum theorems
preserving the viscoelastic kernels and valid for heterogeneous materials of any
kind are still needed.
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Peristaltic transport of a viscoelastic fluid
(a long wavelength approximation)

SURIPEDDI SRINIVAS (VIJAYAWADA)
and N.Ch.P. RAMACHARYULU (WARANGAL)

THE AIM of the present investigation is to study the peristaltic transport of a second order viscoelas-
tic fluid (Coleman and Noll-type) in a two-dimensional channel. Assuming that the peristaltic wave
has large wavelength compared with the mean half-width of the channel, a solution for the stream
function has been obtained as an asymptotic expression in terms of the slope parameter. Ex-
pressions for axial pressure gradient and shear stress have been derived up to the second order
approximation, The effect of viscoelastic parameter on the stream-line pattern and shear stress,
together with the phenomenon of trapping, has been discussed.

1. Introduction

PERISTALTIC PUMPING is a form of fluid transport that occurs when a progressive
wave of area contraction or expansion propagate along the length of an extensible
tube containing a liquid. It appears to be a major mechanism for urine transport in
ureter, food mixing and chyme movement in intenstinal transport of spermatozoa
in cervical canal, transport of bile in bile ducts and so on. Technical roller and
finger pumps using viscous fluids also operate according to this rule.

Since the first investigation of LATHAM [6], several theoretical and experimen-
tal attempts have been made to understand the peristaltic action in different
situations. A review of the early literature is presented in the article by JAFFRIN
et al. [5]. The theoretical investigation of peristaltic motion by BUrNS et al. [2],
BARTON et al. [1], FUNG et al. [4], CHOW [3], SHAPIRO ef al. [10] have excited
some interest in recent years. However, these studies are confined to Newtonian
fluids only. Some of the theoretical and experimental studies considering blood
as non-Newtonian fluid are discussed in [7, 8, 9, 11, 12]. RAJU et al. [8] studied
the peristaltic transport of blood considering blood as a power-law fluid and later
extended the problem to a visco-elastic model [9]. They obtained the solution
for stream function as a power series in terms of the amplitude of the defor-
mation and evaluated the stream function and velocity components by solving
numerically two-point boundary value problems with a singular point at the ori-
gin. RADHAKRISHNAMACHARYA et al. [7] studied the peristaltic motion of a power
fluid, under long-wave length approximation.

In this paper we study the peristaltic transport of a viscoelastic fluid (Cole-
man - Noll type) in a channel with a sinusoidal wave of small amplitude travelling
down its wall. Following [7] we obtain a solution for a stream function in terms
of the slope parameter, and the expressions for axial pressure gradient and shear
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stress are obtained. The influence of viscoelastic parameter on the stream-line
pattern, shear-stress and pressure rise is discussed.

2. Formulation of the problem

We choose non-Newtonian fluid of viscoelastic model which is characterized
by the constitutive equation

2.1) oi; = —pl + 0, AV + AP 4§40
where

(1)
A = w gy,
(22) 17 »J 2y
A(Z) -

i = i +a;; + ZiLm_izth- ,
01, 0, and Q5 are material constants, A() is the rate of deformation tensor, A(?)
— the Coleman -Noll tensor characterizing the second order effects of the fluid,
u; is the component of velocity.

We consider laminar flow of a viscoelastic fluid, characterized by Eq.(2.1)
through a two-dimensional channel with flexible boundaries on which are im-
posed travelling sinusoidal waves of long wavelength. Let us choose a Cartesian
coordinate system (z, y) with z-axis coinciding with the central line of the channel.
The travelling waves are represented by

(2.3) n(z,t) = d + asin 2%(? - ct),

where d is the mean half-width of the channel, a is the amplitude of the wave, A
the wavelength and c is the wave speed.
The equation of momentum and continuity are

[@+u@+va—u] _(')a”+0crry
®lac T Yo T Yoyl T Tar T oy
v v | Jv] _ dogy | Doy
(2.4) 0 6‘t+u8x+vﬁy]_ P + 3y
@4._8_2—0
oz dy

where u, v are the velocity components along the = and y directions, respec-
tively, and p the density of the fluid. The boundary conditions on the velocity
components are

u=0 at y =,

Jn
= — at =7,
v a1 y=n

(2.5)
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together with the regularity condition

du
(2.6) v—O—@ at y=0
Using the transformation
a'(ﬁ 81,[) ’ ’ T , ct
: — =u-—c = — =£—1 == = —

from a stationary to a moving frame of reference, the following non-dimensional
quantities are introduced.

y Y
J o= — t’ = Z Vo=
T 6 L y (l ? '(/ (’d ?
1 nd
28 E = E N = (— /= T—
( ) dd? «a ;\37 P QCZ/\ )
R ” ’ ﬁ* (12 ’ n d .

Equations (2.4) can be writen in non-dimensional form, after dropping the primes,
as

(b, V) 1 4 A, V4p)
2. A LA & A VA R e L.
29 0y) -~ Ra' Yoy
where 5 12
7 (
2_ 9", 207
Ve = 952 + a 922"
The corresponding boundary conditions are assumed:
A at y =,
dy
(2.10) Y =gq at y =1,
o*y
Y= 57/_2_ =0 at y =0,

where ¢ is half the flux in the negative axial direction in the moving frame of
reference. However, by accounting for Galilean transformation, there will be a
net positive flux in the stationary frame of reference.

3. Method of solution

Let us assume that the wavelength of the peristaltic wave is large in comparison
to the mean half-width of the channel. Solution for the stream function can be
obtained in terms of slope parameter a (@ < 1) as

(3.1) =g +aP +atr . 4.
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Substituting (3.1) in (2.9), (2.10) and collecting terms with coefficients of like
powers of a, we get the following set of equations:

ZEROTH ORDER

9*o _
(3.2) 5,7 =0
Mo _ i
5; = -1 at Yy = I](.'I,),
(33) Yo = q at y = (z),
9%
g = -———ayz =0 at y=0.
FIRST ORDER
Oy [0 BPve Dy Py
(34) oyt R oz oy -(E dzoy? |’
Py _ -
P 0 at y = n(z),
(3.5) P =0 at y = (),
_ P _ _
P = 0y2 = at y = 0.
SECOND ORDER
Iy &%y Qg O Dy Py
(549) oyt _26.1-2(7!,2 HadFr dyS Ay dxdy?
R 91 iy N o 3y 0P P Fg Py |
dz  Oy3 dy 0y3 dy Oy20xr Oy Oy?oz|’
a;; =0 at y = n(z),
ML P =0 at y = n(x),
9%y
=== at oy = 0.

Solving Eq. (3.2) subject to the boundary condition (3.3), we get

(3.8) o = Ay’ + Agy,
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where 1+ ) 30+ )
_ _WTq =2\ Tq
A= 27 Ay —-2,] 1.
Solving Eq. (3.4) subject to the boundary conditions (3.5) and using (3.8), we get
(3.9) V1= By’ + Byy’ + Bay® + Bay,
where
R R
By = 70/11/‘11 ; B, = ﬁAn’
R /3
- £ + A
B; 10 (7A1 1.1 12) n°,
_ R /2 An\ 4
By = lU (7414117] + 2 )T).

Az = A4 — A1 A2,

Solution of (3.6), under the boundary conditions (3.7) and using (3.8) and (3.9),
can be obtained as

(3.10) o = Cry't + Coy® + C3y” + Ca® + Csy® + Cey,
where
= SAB TA B
Cl 330( 4 13." l.‘L ])
Cy = [420ﬁ (A1oBy — A\ B1,) — 1141 By, — 541, By

- 504
*35/’121-B1 - 7112Blr]7

Cy = ;(f) ]Oﬂ*(fhrBz + 2145, 81 — 3A1 B2, — 7/12TB13_~)

10
— Ay By,
322.17

+A B3, —

Ca= = Ay + 22208 Asy By — 2043 By, — Ay Bay — Agy B
4 = 10 lzz T 20 x A2y D7 A2 104z 2203
—A1- B4 + /12B3x),

G- \mT e Tt
l Cl 6 Cz 4 C3 2 C4) 4
Cs = 13 (165’ teal s )

The axial pressure gradient can be obtained from (2.4); using (3.8), (3.9) and

(3.10) as
7= (@), (5, (5)
(3.11) (?I_(E)m . al 5 1 o\ 52 2+...+....

1(C1 6+CZ 4, 3C3 5 ﬁ)vlz
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Substituting (3.11) in (2.4); and collecting the like powers of «, after some rear-
rangement we get

(22 - 64
Jx 0 - R ’
op\ _ 4 3 2
(3.12) — 1 =Dy + Dy + Dyy“+ Day + Ds,
1

Ox

a
(52) = E1y®+ Eay’ + Exy® + Eqy’ + Esy* + Ey® + E7y* + Egy + E,
z/2

where
70
D=3 (M + Th).
D2 = 6ﬁ-=Al + Al.‘l:.z"
2
Dy;=3 (AlAzx — AAq + -I?OBZ + 18&«/111‘111) .
-D4 = 6ﬁ*AlAl:1: )

6
Ds = 63.A2A1, — AyAp, + -R-Ba,

Ep=3 (14A1xBl —5A By, + %Cl) )
Ey = 68.(35A1.:B1 + A1 Bies),
E3=5A1,B, +35A,,B1 — 941 By, — TA; By, + %Cz

+3.(882A, By, — 5464, B)),
E4 = 63.(1041,. B2 + 3542, B1 + A1 Ba,2),
Es = [—3,41133 + 1545, By — 34, Ba, — 5A5Ba, + %003

+3.(210A, By, + 3004, B,, — 840A2rB1)],

Ee = 63.(10A2:: By + A1z B3 + A1 B3;;),

20

1
E;= B[Al:cBEl + A1 By — Ay B3, — A1 By + EC“ + AL t B.(184) B3,

+18A,. B3 + 204, B,, — 40/12:513:)] s
Eg = Gﬂ*(AZra:BZS + A1B4rx)7
1
Eg = 63.(A2B3, + A1, Ba) + E(Azm + 6C's) — (A2 B4z + Ay Ba).

The pressure change over one wavelength Ap,, also called pressure rise, is given
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by

(3.13) Apy = /—d:c

This integral is solved numerically and the results are shown graphically (Fig. 3).
Shear stress acting on the wall is defined as

dr d
Ory [l (d;) ] + (oyy — U”)d_z
B dn
+
! (dx)

The shear-stress can be obtained from (3.14) in the following form

(3.14)

at y = n(z).

=T0+CIT1+(Y2T2+..‘+...,

(3.15) T =

where

o = 72L2A177 ,
m1 = 6117 [Bu(SALat? + Ay, — Ar) + 61| + 4Ly [RA.(25241 By

+12041By7*) + 3(12RA. A1 Bs — Av)n® + A,

10
T = 6L|77|:ﬂ*R(7/11IB-1 + 15/11]311.)1]6 + (7B1 + —-Bz + llAler

50 10
B, - —RB
3A21: 2= 3 2_r,>

+4, R(2A21-B3 + 3A, B4, — B3T) — B3] + 20, [ﬂ, R(660A1617]10

(3.16) + 49A2xB1)n4 + B.R (7,4er3

+432A,Con%) + (252RB.A1C3 — 14By,) + (120RB,A1C4 — 10B,,)n*
—(36R B, A\Cs — By, )" + 6RB. A1 — 2Ba|
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4. Numerical discussion

The stream-line pattern has been presented for different values of /3. in Fig. 1.
The phenomenon of trapping can be noticed in the figure. When trapping oc-
curs, the central stream-line splits and there is a region of recirculating, closed
stream-lines and it comprises of the bolus fluid. In the stationary frame of refer-
ence the bolus fluid is trapped by the wave and it advances as a whole with the
wave speed. Though the stream-line patterns remain the same with /., the area
of the trapped bolus decreases with the increase of /.. For 3. = 0 (Newtonian
case) the stream-line pattern is similar to the one obtained by SHAPIRO et al.

a)

08 07 -06 -05 -0¢ -03 02 @ 0 _0oi 02 07 Oix

aor

07 06 05 -0 03 02 0 0 0 02 03 0/ 05x

[F1G. 1a, b)



oot
%
0

1 | 1 L ! 1 1

07 06 05 0 a3 Q2 o 0 & 02 03 04 05 x

FiG. 1. Stream-lines in wave frame when a trapped bolus exists in a laboratory frame for:
a) . =0.0,b) f. =0.2,¢) . = 0.4.

020
dp/dx

ars

010

005

-005

-010

Fi1G. 2. Variation of pressure gradient versus y.

[1165]
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Figure 2 shows the variation of pressure gradient with radial distance for
different (.. It can be observed that the pressure gradient increases with the
increase of ..

In Fig. 3 we see the dimensionless pressure rise per wavelength as a function of
y and the rheological parameter of the liquid. It can be noticed that the pressure
rise decreases with increase of §,.

0

-005

-Q10
€=02 e———= p,.=0

q=03 o—o P04
-055 - R=50 s—a P.z06
a=0! o—a B,=10

pressure drop

0 02 04 06 08 10 72
channel width

-020

F1G. 3. Pressure rise versus channel width.

10

~

N
T

Fi1G. 4. Variation of shear-stress.
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In Fig.4 the variation of shear stress with z is shown. It can be observed that

the amplitude of the shear-stress curve increases with the increase of S..
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Generalized method of Schwarz and addition theorems
in mechanics of materials containing cavities

V.V. MITYUSHEV (SLUPSK)

THE LINEAR STEADY-STATE problem of materials containing cavitics is considered by the generalized
method of Schwarz. The convergence of the method has been proved.

1. Introduction

THis PAPER is devoted to linear steady-state problems of materials containing
cavities which are described by self-adjoint elliptic partial differential equations
of second order. We shall apply the generalized method of Schwarz [1-3; 4,
Chapter VII] which consists in replacing the given problem by a sequence of
problems for a domain containing a single cavity. The crucial ingredient in this
approach is the repeated solution of the Dirichlet problems for a simple domain.
If the shape of the cavity is complex, then the computations can be expected to
be tedious. However, in special cases the generalized method of Schwarz leads
to a straight-forward solution [3, 7, 10-13]. The method of images [14, 15] can
be interpreted as the Schwarz method for spheres. The method of images, when
used in combination with addition theorems, allows us to calculate the induced
electrostatic moments on a pair of dielectric spheres and the square array of
cylinders [16-19].

At the beginning, the generalized method of Schwarz has been proposed by
G.M. GoLusIN [1] and S.G. MIKHLIN [2] for the classical boundary value problems
for harmonic functions. In Sec.3 we treat the method of addition theorems as a
discrete interpretation of the method of Schwarz. In [2-4] this method has been
developed on equations of fourth order.

There is the question of convergence of this method which is related to the
problem of convergence of the method of successive approximations for some
linear equation

(1.1) U=AU+ f

in a Banach space with respect to U. Here A is a linear operator, f is a known
element. In [1, 2] the additional condition ||A|| < 1 implies convergence of the
method of Schwarz. This condition may be considered as an additional condition
on geometry of the domain [1, 2].

However, there are other types of convergence. Let o(A) be the spectrum of
the operator A, p(A) be the resolvent of A. Let A be a non-zero complex number.
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We consider the equation
(1.2) U=XAU+ f

in a Banach space . From the definition, the following assertions are equiv-
alent [5]:

i) A1 € o(4),

il) 3 (I — \A),

iii) Equation (1.2) has a unique solution for each f € .

If we show that the spectral radius

r,= sup |A7Y = lim ||A"|/"
A-lea(A) Rt

of A satisfies the inequality
(1.3) r, < 1,

i.e. the condition iii) takes place when |A| < 1, then the method of successive
approximations for (1.1) converges in the space . It means that the series

(1.4) U= i AP

m=0
converges in D. So let us recall the following

THEOREM 1. [5] If equation (1.2) has a unique solution for each A\ < 1, then
the series (1.4) converges in .

Remark. The inequality ||A|| < 1 implies absolute convergence of the series
(1.4). But the series (1.4) can be convergent in 3 when ||A|| > 1.

In the present paper we shall study the problem of convergence of the series
(1.4) in a Banach space  for an elliptic equation of second order. Our results can
be considered as not only a suggestion for those who apply the method of Schwarz
in computation. Actually, we indicate a modification of the method allowing us
to approach a convergent algorithm. Such examples have been carried out in the
language of the addition theorems in [8, 19].

Let us consider a self-adjoint equation in R3 [6]

d o Ou(@) )

where = = (z1,2,23), a;;(z) = a;i(z). We shall consider the Dirichlet problem

(1.6) u(t) = f(2).

3
(1.5) fu:=
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Here, the mutually disjoint domains D, are bounded by the Lyapunov boundary
DL eR*(k=0,1,....n ODm(')Dm = 0 form # k), (1) is a given differentiable
continuous function ( f € C (0D)). We orientate 0Dy in the positive direction

and assume that 9D = — U dDy. Let D be the complement of Dy, to R3U{o0},
k=0

D:=(R % U D) U {oc}. For certain equations, under conditions

(1.7) lz]|iLnoo u(z) =: u(c0) =0

where
2
|z] 1= (a2 + 2} + 23),

the problem (1.5), (1.6) has a unique solution (for instance, the Laplace equation
Au = 0). For other equations we need an additional condition

(1.8) Fou = lim Fu(z) =

|z|—o00

For example, the Dirichlet problem for the Helmholtz equation Au + k*u = 0
has a unique solution if

u=0(z|™h), + iku = o(|z| V), when |z]| — oo.

du
dfe]
The condition (1.8) is a counterpart of the last relations. We shall use the following
properties of Eq. (1.5):

a. F' is a linear operator, (1.8) implies (1.7).

b. If 2z = 0 in R? and if (1.8) holds, then u(z) = 0.

c. For each 9D, there exist such operators [6]

ou
P = ]] %’Lds’ Qi =] Upds,
oDy 9D

which are counterparts of the potentials of simple and double layers. The follow-
ing jump relations hold true

Pu) - P = pey,  2TEED 2T

Q1 0Q,
Qtu) = Qrup, D 9QLHD)

Here, the function p(t) is continuously differentiable in 9 Dj. The functions Pyu
and Qp satisfy Eq. (1.5) outside 9Dy and the condition (1.8).

= u(t), t € dDg.
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d. The Dirichlet problem v, = f in 0D, with respect to the function wy
satisfying the Eq.(1.5) in D, and continuous in D, when Fyvi(z) = 0, has a
unique solution for each continuous data f. The Dirichlet problem for D, has a
solution. The Dirichlet problem for each ball in R> has a unique solution.

e. Let us introduce the Banach space C'(0D) of functions continuous in 9D
with the norm || f|| := rgla)xlf(t)l. Let us consider the subspace 3 C C'(0D),

where f € B if ¢f = 0 in all Dy and [ is continuous in all Dy. Along similar
lines define B~ C C'(9D), where f € B if {f = 0in D, Fyf(z) = 0 and f is
continuous in D. We assume that D is a closed subspace of C(0D), ie. if f, € B
and || f, — f|| — 0, when n — oc, then f € . Sometimes we shall indicate the
domain: f € B(G). Also we shall use the subspace B'((7), when f is continuously
differentiable in (. Let us note that the convergence in ¥ means the uniform
convergence because the principle of maximum takes place for Eq. (1.5).

The conditions a—e are natural for a wide class of elliptic equations [6]. For
instance, b is a counterpart of Liouville’s theorem, e is a counterpart of Harnack’s
theorem.

LeMMA 1. Let the domains (¢ and (7, constitute the domain G := G{USUGH,,
where S is the surface dividing the domains. Let u; € D'(G1), ua € B(G,). Let

) Ju . .
the relations u, = uy, (()% = (0% hold in S. Then the function

in  GUS,
u = { i : belongs to B'(G).

wp in GhUul,

Proof. Let us consider the closed ball B C G with the center at an arbitrary
z € S. Let us consider the Dirichlet problem

_Ju in S,:=0BNnaGy,
Y= uy in Sy := 9B NG,

with respect to v. According to d, this problem has a unique solution satisfying
the relations

dvt v~
+ - — . J
vt =, i an in SN B,
where, for instance, v*(t) := lig} v(z). Let us consider the following problem
reGy

vy = up in S, v = uy in Sy,

_ (9171 _ a'l)z . -
(1.9) v = vy, - Bn in SnNB,
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in B with respect to v; € BY(G)), v € B'(G,). We shall use the following

Green’s formulas
Jdu Ou Ou
f/fz“u( ") 9 B O "ff

Jdu
// (UJFL a ()n)dq =&,

where (7 is a domain, dG is the boundary of G, u,v € B'(G). Ellipticity of
Eq. (1.5) implies the inequality

(1.10)

3
du du ,
(111) i]Z:](lU(T)'J'“()—IJ>O When IEG
Let us show that the homogeneous problem v = 0 in dB and (1.9) has only
the zero solution. From the first Green’s formulae (1.10) and conditions (1.9)

8U
//m In //v ()n 2s = /f vl*dq*-,/f tzg(ls

SuS; —-5SuUS;

dvy dvy dvy dvy
-/// > at Vow , *//fz“”( ) 3 B2, %
BNG, =1 BNG, 1=

Since vy = 0in 5} and v, = 0 in 57, the integral at the left-hand part is equal to
zero. Taking into account (1.11) we obtain vy, = 0 in (7 3, respectively. There-
fore, a nonhomogeneous problem can have not more than one solution. The
function v is a solution of this problem. Hence, »; = v in BNy and v = v in
B N G5, So we have proved that the function u,; is continued in each point z € S
into the function u; preserving the class .

The lemma has been proved.

2. Dirichlet problem

Let us introduce the function f(z) € D' which satisfies the Dirichlet problems
in each domain Dy

(2.1) lim f(z)= (1), t€dDy, k=0,1,..n

TED),

According to the condition d, the function f(z) exists. According to the same
condition there exists such an operator Si: C'(0D;) — 3~ (D) that the function
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Sxvr(z) is a solution of the following boundary value problem:

lim Srvr(z) = vi(t), t€ oDy,
IEDk

F()Skvk(l') = 0.

Let Gi(z,v) be the Green’s function of this problem [6]. Then the operater Sk
has the form [6, p.430]

Srvr(z) = [/ vk(t)ﬂgs’—t)db
oDy

If 2 € 0D,, (m # k), then the operator Si: C(0Dy) — C(0Dy,) is compict as

A : Gi(z,t
an integral operator with the continuous kernel —La(&r—) in 9D, x 0Dy.
n

LemMMA 2. The problem

(22) Pk gy 2okt

()= g(t), L€ Dy,

with respect to ug € B'(Dy) has the unique solution
(2.3) ur(z) = Qry(z), z € Dy,

for a given function ¢(t) € C1(9D). Here, Qi is the potential of a single larer.

P ro o f. The function vi(z) := Siux(z) has to satisfy the conditions

wr(t) = vi(h), a“"

The function ux(z) from (2.3) and vx(z) = Qrg() satisfy the last problem. Let us
prove that the homogeneous problem has only a zero solution. If g(t) = 0.then
w = vp € B(RY); it follows from the Lemma 1. Then b implies the equality
uk(z) =0

The lemma has been proved.

5, (= —(f) =g(t),  Foor =0.

LeEMMA 3. The problem

Ouy (t) /\askuk

w = - 0u®, =5 W, tedD,

24) u(o0) = 0,

with respect to the complex functions u € B~ (D)NCY(D), ux € B!(Dy) ha: only
a zero solution if |A| < 1.
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Proof. Letu = i + iy, up = vx + 1w be the complex solutions of (2.4),
and let A = v + i be a complex number. Following the book [2], let us multiply
the first equality (2.4) on u(t) = (1 — N)ux(l), integrate it and sum from 0 to n.
We obtain

(g v wy) o[ (wl%-w%‘ﬂ
=D | ] (i ) o

=0 Dy
0 0v 08
+ z]/ (nk ' %) ds | — A1 - /\)Z /] (Skvk i
9D = ang
+ Spwy 05“)}") ds + 1// (Skwk 05wy - Skvkabkvk) ds
on~ dan~ on-
oD;
o _ vk
R /\)Z/]( an)ds
k= Ode
.. ; (9Sk-uk ) BSkwk )
-1 - /\)E /] (Skvk e + Skwk&T) ds |,
aD;
h
whnere _0_ 3 _-a_-
an- " on’

We have used here the second Green’s formulae (1.10).
Let us use the first Green’s formulae (1.10)

e
=/]f ( ai;(z )agil) 8§£T)) for €D (D)nCY(D),

Dyv := /fv——ds

0D
3 1 r N
I (S0 5250 o et
Dy 1,7=1 b ]
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Then we have

A+ (=B + (A -v)C =0,
pB — pC =0,
where all numbers
A= D'l,l’l + D¢’27
B = Z(Dkl’k + DkUJk),
k=0
= ST (DiSkvr + DiSkwr)
k=0

are non-negative. For A # 1 these equalities are possible only if A = B =C = (.
It implies that « = constant and u;, = constant. But Fou = 0, and hence u(z) = 0.
If A = 1, then from the second equality (2.4) and the Lemma 2 we obtain
u(z) =0

The lemma has been proved.

Let the function u(z) be known. Then, using the Lemma 2, we may introduce
such function ux(z) € %I(Dk) that

Bu ()uk OSA uy,

([) t e dDy,

where f(z) is a solution of the Dirichlet problem (2.1). Let us define the function

ug(z) + Z Smum(z) + f(z), € Dy,
m=()

P(z) = m ok E=0,1,..n,
u(z) + Z St (2); zeD.

‘I’TL-O
Let us calculate the values

ST () — & (t) = u(t) + Spur(t) — up(t) = f(t) = 0,

8¢+(t)_ gg()_ gzz()_. 81LL([)+ aSLuk(t)_ ',C(t) =0, tedDs.

It means that ¢(z) satisfies (1.5) in R>. Checking the condition (1.8) we obtain
from b that ¢(z) = 0. Therefore, from the definition of #(x) we have the system
of integral equations

(2.5) up(z) = — Z Smum(z) — f(x), z € Dy,

m=0
m#k
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and the relation

(2.6) u(z) = — Z Smtm(z), zeD.
m=0

LeMMa 4. The system (2.5) for uy € B'(Dy) has the unique solution

(2.7) we(@) = —f@)+ > Sk f@) = > > Sk Sk f) + ...

ky=0 ky=0  ko=0
k1 #k k1 #Fk  ka¥ky

The last series converges in the space D(Dy).

Proof. According to the Theorem 1 it is sufficient to prove that the complex
system

(2.8) up(z) = —A E Smm(z) — f(2), 2 € Dy,
m=0
myk

has a unique solution if |A| < 1. Let us consider the system (2.8) as an integral
equation in the space C'(0D):

(2.9) ue(t) = =AY Smun(t) - (1),  t€ID.
m=0
m#k

Since S, is a compact operator, the last equation is of Fredholm type in C'(0D).
If f € B, then each solution belongs to D too. It follows from the properties of
Sm-Soif f € B, then the system (2.8) has a unique solution if the homogeneous
system

up(z) = =X }: Smtim(2), z € Dy,
m=0

m¥Ek

has only a zero solution. Study the last system. Let us introduce the function
“(I) = —) Z Smum(z), T € D‘?
m=0
satisfying Eq. (1.5) in D and (1.8). The following boundary conditions hold true:

0 Dug DS kux
() = (1 — Nux(t), 8_7‘%(5) = %(1) ~A a‘;z"‘ (1), tedD;.

According to the Lemma 3, the last problem has only a zero solution. This proves
the lemma.
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THEOREM 2. The Dirichlet problem (1.5), (1.6), (1.8) has the unique soluion

(2.10) u(z) = Z Sef(x) — E Z SkSk, f(z) + ..

k=0 k=0
ky #k

The last series converges in the space B~ (D).

P roof. If we substitute the formulae (2.7) into (2.6), we obtain the fornulae
(2.10). The change of the order of summation is proved as in [7].
The series (2.10) corresponds to the generalized method of Schwarz.

3. Addition theorems

Let us sketch the main idea of the method of addition theorems fo- the
Dirichlet problem (1.5), (1.6), (1.8). Let us consider the Hilbert space /2 df the
sequences « := (aj,ay,...qk,...) with the norm

) 1/2
lall := (Z Iaklz) :
k=1

Let the functions wf(z) (I = 1,2,...) for fixed numbers k& = 0,1,...,n belong
to BD7(D, ) and generate an orthogonal system in the Hilbert space ¢5. Here,
fe®, if fe® (D7) and

1/2

1= | [ 1r@Pa

IDy

Each function u,,(z) from 2,2,1 is represented in the form of the series
3.1 um () = Z X" (x

Since the Hilbert spaces 9% and [? are isometric, the sequence X} belongs o [%.
Let the function f(z) € ¢, and let the condition (2.1) hold; then

(3:2) J@) =3 flef),  teaby,
1=1
where ff € [2. In view of the representation

(3.3) u(z) = Xn: uk(z), t€D

k=0
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and (3.1), the unknown function u(z) is represented in the form

u(z) = Z Z X wi™ ().

m=0 [=1
In each surface 9Dy from (1.6) and (3.2) we have

(oo}

ST Xfwf(0) + Z Z XPwh(t) = 2 frof @), t€dDy.

=1 m=0 [=1
m#k

The formulae

(3.4) w(t) = Zyggﬂwk(z), tedDy, m=0,1,....n, m#k,

where 7 ™ are constants, is called an addition theorem. Using the addition the-
orem we obtam the relations

E}WW@+Z:ZA Z#%ﬂn=zﬁﬁm.
=1

i P
If the second series converges absolutely, then it is possible to change the order
of summation

> | Xf +): ZV""'\’” wf@) =S fRuf),  k=0,1,...,n.
=1

=1 m0 pel
Since the system wf (t) is orthogonal, we obtain from the last equality the following
infinite system of linear algebraic equations

(35) X["'Z Z'}" ‘\m—fl, l=],2,..., k=0,1,4..,n
k. P
The method of addition theorems is a discrete variant of the generalized
method of Schwarz under the condition of absolute convergence of the corre-
sponding series. Let us consider the method of successive apprommatlons for
the system (3.5). As the zero-order approximation we assume (X[)o = fF. The
corresponding function from B~ (D)

wo(e) = Y (xF) wf@) = 3 flef (@)
=1

=1
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coincides with the zero-order approximation of the generalized method of Schwarz.
Once the (s — 1) approximation (X[),_; has been constructed, then the s-th ap-
proximation will be constructed by the formulae (3.5). This coincides with the
construction of the function

uks(z) = = f@) 4+ D Sk f@) =+ (1D 0 Y Sk Sk, f(2)

k=0 k=0 ks=0
ky#k ky #k ks#ks 4

of the generalized method of Schwarz, and Fyu,, = 0 because Fgw,’" = (. Since
convergence in B (D) implies convergence in E,ZC = |2, convergence of the
generalized method of Schwarz automatically implies convergence of the method

of successive approximations for the system (3.5):

THEOREM 3. Let the infinite system (3.5) with respect to the sequence { X [}52, € 2
(k = 0,1,...,n) correspond to the Dirichlet problem (1.5), (1.6), (1.8). Then the
method of successive approximations always converges in the space 12

The aim of the method of addition theorems is to construct an appropriate
system w/(z) and to find the relation (3.4), i.e. to calculate 71‘]]" [8, 9]. We do not
study such constructive questions. We can only verify that it is possible to apply
addition theorems in such a way that the corresponding infinite system (3.5) can
be solved by the method of successive approximations converging in a certain
space. There is a concrete example in [8], where the properties of an infinite
system concerning the convergence are changed after simple transformations.
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BRIEF NOTES

Trapping of waves by horizontal cylinders
in a channel containing two-layer fluid

N. KUZNETSOV (ST. PETERSBURG)

A cHANNEL of infinite length and depth is filled by an inviscid, incompressible fluid consisting of
two layers of different densities, the upper one being of finite thickness. A rigid cylinder extending
across the channel is immersed in one of the layers. Free harmonic oscillations of the fluid are
analyzed, special attention being paid to the determination of the so-called trapping modes of finite
encrgy. The integral equations and perturbation method techniques are used for the analysis.

1. Introduction

A HORIZONTAL channel of infinite length and depth and of constant width contains
inviscid, incompressible, two-layer fluid under gravity forces. The upper layer has
constant finite depth and is occupied by a fluid of constant density p. The lower
layer has infinite depth and is occupied by a fluid of constant density o* > p. A pa-
rameter ¢ = (p*/p)— 1 is assumed to be small. One of the fluids (upper or lower)
is bounded internally by an immersed horizontal cylindrical surface .5, which ex-
tends right across the channel and has its generators normal to the sidewalls.
The free, time-harmonic oscillations of fluids having finite kinetic and potential
energy (such oscillations are called trapping modes) are investigated. Trapping
mode problem for a homogeneous fluid in presence of submerged cylinders or
other obstacles is investigated extensively (see EVANS ef al. [1] and references
cited therein for bibliography). Apparently, the first treatment of this problem
for the two-layer fluid is given by Kuznetsov [4]. In the case when a cylinder
is immersed in the lower fluid, it was found that, under some restrictions, there
exist two finite sets of frequencies of trapping modes. The frequencies in the first
set are close to the frequencies of trapping modes for the homogeneous fluid
(when o* = p). They correspond to the trapping modes of waves on the free
surface of upper fluid. The frequencies in the second set are proportional to ¢
and correspond to the trapping modes of internal waves on the interface between
two fluids.

Here similar results are presented for the case, when a cylinder is immersed in
the upper fluid. The general scheme of investigation is the same as in KUZNETsOV
[4]. First, the original problem is reduced to the problem in the layer, which
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contains the cylinder. Then perturbation technique is applied in combination with
URSELL’s [6] method of integral operators. This work was stimulated by a remark
in ‘Frus, GRUE and PALM [3], that long underwater tube bridges are proposed to
be constructed across the Norwegian fiords, which are often occupied by two-layer
fluid (fresh-salt water).

2. Statement of the problem

The zyz-coordinates are chosen so that the y-axis is directed upwards and the
zz-plane coincides with the undisturbed interface between two layers. The depth
of upper layer can be assumed to be equal to one without any loss of generality.
Using the linear water-wave theory, we consider velocity potentials of the form

exp(—iwt)u™(z,y)coskz (exp(—iwt)u(z,y)coskz)

for the lower (upper) fluid. Here w is the unknown radian frequency of the
trapping mode, and the wavenumber & along the z-axis should be taken so that
the impermeability condition holds on the sidewalls. In what follows we suppose
k to be prescribed, but its value is an arbitrary positive number.

The pair {u, v*} must be a solution of the following problem

(1) ul, +u), = k" in W,
= 1.2 ' 7
Upy + Uyy = k0 in W,
(2) du/dn =0 on S,

Uy, —vu =0 when y =1,

3) Uy = Uy, o™ (uy — vu™) = o(u, —ru) when y=0.

Here W(W*) denotes the cross-section of the region, occupied by the fluid of
density o(0*), v = w?/g is the spectral parameter to be determined along with u,
u* (g is the acceleration of gravity). For trapped-mode solutions the motion must
decay at large distances, i.e the relations

(4) w, Ve =0 as 2?+y? — o, and u, [Vu| =0 as |z|] = oo

must hold.
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3. Perturbation method for spectral problem in the upper fluid

First, with the help of the Fourier transform one can eliminate »* from (1),
(3) and (4). In this way we arrive at the following boundary condition

5) cuy, = v[(1 + e)Au — u] when y = 0.
Here -
(A, 0) = = [ Kolklz — €Dy ,0)dg

and Ay is the MacDonald function. Thus, we have the boundary value problem
(2), (5) with the second condition (4) at infinity.

Since the parameter ¢ is assumed to be small, it is natural to seek eigenvalues
and eigenfunctions in the form of expansions

(6) v=ug e+, w=u®+ a4 2@ 4

which is common in the perturbation theory (see e.g. FRIEDRICHS [2]). Substituting
(6) into (2) and (5), and equating the coefficients at the same powers of ¢, one
obtains an infinite system of boundary value problems. The problem of the zero
order is

u® + u(y(;) = *u@ in W, du'W/on =0 on S,
N ugﬂ) —pu® =0 when y=1,
vo(Au® — u(o)) =0 when y=0.
The first order problem has the form

(8) u) + ul) = k%@ in W,  9uV/On=0 on S,
(9) ugl) — you = 1@ when y =1,

(10) 1y (/lu(l) - u(l)) = ug)) — g Au® — (Au(o) - u(o)) when y = 0.

The problem for u(™ (m = 2,3,...) can be easily written down.

In order to fix an arbitrary factor in the expansion for u, which should be
found from the system (7), (8)-(10), it is convenient to use the linear condition
(u(+,1);ul®(-, 1)) = 1, where (-;+) is the scalar product in L,(cc, —occ). The last
equality combined with the following normalization condition (u(®(+, 1); u(®(., 1))
= 1, gives

(11) (@O, 1; O, 1)) = (@O, 1); O, 1)) = =0



1186 N. KuzNETSOV

The problem (7) has a finite set of positive point eigenvalues {u(()ﬂ }, because

this problem is another form of the problem on trapping modes above the cylinder
immersed in the homogeneous fluid (o* = p). If 1/(()+) is a positive non-degenerate

eigenvalue for (7) and u(f) is the corresponding eigenfunction, then (10) takes
the form

-1
(12) AP — o = Q4+ 1/((]+)] 0u” /9y when y=0.
The problem (8), (9), (12) is solvable under the orthogonality condition
0 0 -1, 0
AP = w0 P, 0) + [157] @D, 005 @6 /0y)(,0) = 0,

which expresses z/r). Then u(i), can be found uniquely in view of (11). Thus, the
terms in the expansions (6) can be successively determined, what gives v(*) > 0
and u4 with necessary accuracy when ¢ is small enough.

1f 1\ = 0, then (7); trivially holds and (10) takes the form

(13) u!(]()) = UEO) (Au(o) - u(o)) when y = 0.
This boundary condition, complémented by (7); and by the homogeneous Neu-
mann condition on y = 1 (it follows from (7);) forms a spectral problem. It

differs by the term Au(® in (13) from the problem on trapped modes above a
cylinder immersed in a homogeneous fluid of finite depth.

4. The spectral problem for 1/{0)

Following URSELL [6] we seek ugo) in the form of a single layer Green potential

Way) = Vi) = 1r [ w©ge. i€, 0,

where p € Ly(—o00,00) and g¢(. . .) is Green’s function satisfying (8) and the homo-
geneous Neumann condition on y = 1 and on y = 0 (except for z = { in the last
case). This Green function was constructed by URSELL [6]. Since OV u/dy = —p
when y = 0, then (13) yields

(0 o
14)  p= 0T =" [ okl - €)) + 9(e.0:€, 0)]u(E) d.
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In the same way as in KuznNeTsov [4] one can show, that 7T differs from the
operator 2G' with the kernel 2g(z, 0; £, 0) by an operator, whose norm exponen-
tially decays as k — oco. On the other hand, URSELL [6] proved that G has a finite

set of positive point eigenvalues. Hence, there is a finite set {u%o)} of positive

eigenvalues for 7', when k is large. Applying the same procedure as in Sec. 3, we

arrive at the eigenvalue expansion (@ = exl® + ¢2{” + ., which is positive

for sufficiently small . Then, w; = (gv™)!/2 is the frequency of trapped mode
of internal waves on the interface.

It is easy to see that w;/w, = (¢/2)!/?, when ¢ is small enough and & is large
enough. Here w, is a trapping mode frequency for waves on the free surface of
the following finite depth channel. We have to turn over the upper fluid layer
with the cylinder and to supply it with the rigid horizontal bottom.

5. Conclusion and discussion

Kuznetsov [4] demonstrated that there exist trapping modes of internal waves
when a cylinder is immersed in the lower infinite depth layer. Here the same is
shown to be true when the upper layer contains a cylinder. For both positions of
the cylinder the relation w;/w, = (¢/2)'/? is valid, but with different meaning of
ws. It should be reminded that in KuzNETsov [4] w, denotes the trapping mode
frequency for waves on the surface of the lower fluid, in absence of the upper
layer. In Sec.4 the meaning of w; is quite different.

The existence of trapping modes of both the types considered can be demon-
strated similarly for any cylinder position in a two-layer fluid of finite depth. The
method developed here can also be applied to finding the trapping mode fre-
quencies of internal waves in the case, when a cylinder intersects the free surface
of the upper layer. It is interesting to note, that there are no trapping modes of
surface waves, if the latter configuration satisfies John’s condition. This follows
from a result proved by McIVer ([5], Appendix A) on absence of trapping modes
in the homogeneous fluid in presence of such surface-piercing cylinder.
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BRIEF NOTES

Comments on instability of disturbed elongational flows
of viscoelastic fluids

S. ZAHORSKI (WARSZAWA)

Our RECENT discussion [1] on the instability or sensitivity problems of simple elongational flows
of viscoelastic fluids is extended to the case of non-isothermal spinning processes. It is shown that
the flows considered may be unstable even for vanishing external disturbances.

1. Introduction

IN OUR RECENT paper [1] we discussed the instability problem, or rather the prob-
lem of sensitivity to external disturbances of steady simple elongational flows of
viscoelastic fluids. Such flows are usually realized in the rotary clamp extensome-
ters (cf. [2]). Under the assumption of flows with dominating extension (FDEs),
it was shown that the steady elongational flows considered might always be un-
stable in the presence of external disturbances, either of stationary or oscillatory
character.

In the present comments we extend our previous considerations to the case
of fibre spinning processes dicussed elsewhere [3, 4]. To this end we repeat only
more important relations, retaining the majority of notations used in [1]. It turns
out, on the basis of the present results, that non-isothermal steady spinning flows
may be unstable also in the case of vanishing external disturbances.

2. Governing equations for steady and unsteady flows

Treating the spinning processes as particular cases of FDEs (cf.[3, 4]), we can
use Egs. (2.1), (2.2) from the paper [1], bearing in mind that the fundamental
velocity gradient V/(z) is not constant along the spinline and depends on the
axial coordinate z. The boundary conditions at both ends of the thread amount
to

(2.1) V)=V, V(I)=V,=V(L)L.
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The corresponding incremental constitutive equations (cf.[3, 4]) introduced
into the dynamic equations of equilibrium lead to the following nonlinear differ-
ential equations:

2.2) 19 ( f’_w) PR (Bw) CE) , 00w

4
ror\'or) 2V 9z \or 3 "8’
where w denotes the axial component of additional velocity, C'(2) is a function
of z only, and

— 1 aﬁl 852 ' ’ — 1 ’
(2.3) ’”‘E(W+av'fv)v’ B =301+ 5V,

where 3; (: = 1,2) are material constants; /3 is simply related to the extensional
viscosity 7. For instance, under the Newtonian approximation (k = 0) we have
the simpler equation:

10 Ou' Co(p) 1 0 0 aUQ
Or( 01) 5o ———(3ﬁ0 )+ ,(3 ot

The additional boundary conditions used in the problem are exactly the same
as those (3.4), (3.5) in [1]. They express the conservation of volume output in a
sample as well as the balance of forces acting on the free surface.

The steady-state solution of Eq.(2.4) can be written as

_Doz) (2 R? _Co(x) 1 9
(25) wo = — (7 = 2), Do= =5~ 4 52 3V,

(2.4)

where

RI
(2:6) Cote) = s + L3

and R(z) denotes the variable radius.

3. Instability or sensitivity problem

For slightly non-Newtonian fluids, i.e. for relatively small parameters k, we
seek unsteady solutions in the form of the following series:

5.1) w = wo + kwy + (wo + kwy)exp A(t — tp),
C = Co+ kCy + (Co + kCy) exp A(t — to),

where A is related to the first frequency of harmonic oscillations imposed at the
moment ¢ = {.
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In the case considered Eq.(2.2) simplifies to the following linearized form:

19 (00 er__CGE) 10 450
32) o ()~ 5= 5OV,
the solution of which amounts to

5 " ~ 7 1 [/~ J ,
(33) wy = wp = CNI() (11—3) - Q_/\ (CO,I = 8—2(3[51/ )) ’

or finally to

T
Coy | 1 Io(lf_i) 1

(3.4) wo,1 = T 7 W 22|

where Iy and I, are the modified Bessel functions of the first kind and of order
0 and 1, respectively.
For time-dependent disturbances the boundary conditions lead to

(3.5) i) = ZAL-T% + %(3;31/'),

where A;T (i = 0,1) denote the increments of normal stress difference, viz.
(3.6) T3 — 71V = 38V 4+ (AT + kA T)exp A(t — 1o).

If the above increments are caused by disturbances of the velocity gradients and
the extensional viscosity, we have

G.7) AT = 3AV' +3V'A8,  i=0,1.

4, Final remarks

It is clearly seen from Egs. (3.5), (3.7) that unsteady solutions are possible if
the corresponding increments are identically equal to zero; then the functions
Co,1(z) are fully determined by d/0z(33V").

Our discussion in [1] concerned with various instability or sensitivity forms
remains valid for the case considered. Thus, we may conclude that steady non-
isothermal spinning flows realized under the real conditions, i.e. with inertia, drag
and surface tension effects, variable viscosity etc., may be unstable also wihout
any external disturbances. This is the case, in particular, when the boundary
conditions are satisfied exactly.
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