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Preface

This issue of the Archives of Mechanics has been devoted to the international
colloquium EUROMECH 326 organized in September 1994 in Kielce. The col-
loquium was named “Experimental and Macroscopic Theory in Crack Propaga-
tion”. More than 40 prominent scientists from all over the world (representing
14 countries) have gathered together to discuss new ideas and trends in the field
of dynamic fracture. Discussions were very stimulating since scientists taking part
in the colloquium represented various overlapping fields: mechanics of solids,
experimental mechanics, physics of solids and material science.

The rapid development of experimental and numerical techniques that took
place recently provided new tools to deal with this very complex problem. New
results obtained concerning the structure of the stress fields in front of a rapidly
propagating crack tip and crack tip trajectories registered experimentally with
a great accuracy forced researchers to reconsider their points of view on this
phenomenon. Many new ideas were discussed during the colloquium.

The intention of the organizers was to present some of the results delivered
during the conference to those who were not able to participate in this scientific
event. This issue of the Archives of Mechanics contains only 11 of the presented
lectures. Tt is very likely that up to six other papers will be published in the next
issue. The remaining lectures were published in other journals before or after the
colloquium.

The EUROMECH 326 has proved once more that this kind of scientific meet-
ing is the best forum for exchange of the scientific ideas and research experiences.

A. Neimitz
(co-chairman)
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Dynamic crack instability: the “twin-crack” model

N.P. ANDRIANOPOULOS and S.K. KOURKOULIS (ATHENS)

A GEOMETRICAL interpretation of crack instability phenomena is described in the present work.
This interpretation is based on the “twin-crack” model according to which random microbranch-
ing accompanying propagating crack-tips causes macroscopic instability, when two microbranches
dominate over their companions. The future path of such dominating pairs is predicted by means
of the T'-criterion of fracture. It is shown that all the arbitrary geometrical configurations of pairs of
microbranches can be classified to a few macroscopic patterns representing macroscopic branching,
kinking, curving and arrest-deceleration, respectively.

1. Introduction

ONE OF THE MOST intriguing aspects of a propagating crack is its directional in-
stability which appears as an either symmetric/asymmetric crack branching or as
gradual/abrupt deviation of a single crack-tip from its straight path, under condi-
tions not well-defined. Historically the first approach to this problem was devel-
oped by YOFFE [1] who assumed that a running crack splits into two branches,
symmetrically placed on both sides of the initial straight path, when a proper
mechanical quantity (hoop stress in that case) exhibits two extrema in its polar
distribution instead of one. Consequently, the crack is forced to split in order to
follow the directions of these extrema. If this is true, then each material must
possess a certain crack velocity limit separating a low velocity area where only
single crack-tips are allowed to run from a high velocity one where only branched
cracks are observed. Such a sharp limit does not exist as it is experimentally con-
cluded. On the contrary, branching is observed in a wide range of crack velocities
starting at a lower limit of about 0.30c), ¢, being the distortional stress wave
velocity [2]. The same absence of a sharp velocity limit is also observed in case
of a single deviating crack.

The same as the above Yoffe-like approach is accompanied by a more funda-
mental difficulty. Really, it is questionable how a material suddenly supplies at the
moment of branching at least double amount of mechanical energy to support two
running crack-tips instead of a single one. Such an energy-release discontinuity
had to be accompanied by an equally sudden remote unloading at the moment
of branching, which, however, has not been reported.

There are two alternatives to resolve the situation, i.e. either instability cri-
teria (like the Yoffe one) are inappropriate or they are applied in a wrong way.
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If the first alternative is true then how their success to predict crack initiation
is explained? Are crack initiation, propagation and instability three completely
different phenomena obeying equally different physical laws? If so, only casuis-
tic interpretation of physical phenomena exists depending not only on the phe-
nomenon itself but, perhaps, on the type of material and specimen geometry as
well. Such a dark and disappointing situation must be rejected simply because
it violates the ultimate goal of Science to interpret and predict the maximum
possible number of physical phenomena with the minimum possible number of
assumptions. Consequently, any failure of fracture criteria to predict crack in-
stability cannot be directly connected exclusively to them, provided that these
criteria explain to some degree relative phenomena and mainly they can be con-
nected with fundamental physical laws. This connection is guaranteed when a
criterion can be expressed in words beyond any algebraic equation. For example,
an equation obtained through curve fitting procedures on a set of experimental
data is not necessarily a criterion in the present sense, because a deterministic
relation between cause and result cannot be always established.

The second alternative, i.e. wrong application of a “correct” criterion seems,
then, more realistic. The main reason for a possibly wrong application is the
unavoidable discrepancy between theoretical assumptions concerning constitu-
tive behaviour and internal structure of materials on the one hand, and reality
on the other. Although theoretical descriptions of the constitutive behaviour of
materials can be considerably improved by eliminating mathematically friendly
(but physically marginal) assumptions like linearity, small scale yielding, plane
stress/strain etc., in expenses of simplicity, the same is not true in case of mate-
rial texture. The exact distribution of random irregularities in the microstructure
or inclusions of various mechanical properties, size and severity by no means can
be predicted. Existing micro-structural models like arrays of equally spaced cir-
cular inclusions of the same radius or a single macroscopic inclusion embedded
in a “perfect” canvas are too simple to be realistic. More sophisticated models do
not exist or they are too complicated to be manipulated and, eventually, they do
not contribute to a considerable improvement of predictions. It is a pity, because
such models are intuitively attractive as far as they resemble the “crash” of a
running crack on the wall formed by an obstacle and so they carry a physical
content.

The conclusion is that a general fracture criterion based on Continuum Me-
chanics considerations is highly desirable as far as it can be sensitive to structural
irregularities in a simple (not detailed) way. Aim of the present work is to de-
scribe such a combined model based on a Continuum Mechanics fracture criterion
and elementary geometrical assumptions concerning the state of the material
in the neighbourhood of a running crack-tip just before macroscopic instability
occurs.
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2. Theoretical preliminaries
2.1. The "twin-crack” model

It is now confirmed from many different experimental sources (e.g. [3-5])
that in materials where any type of macroscopic crack instability is eventually
observed, the supposingly single crack-tip is replaced, even from the early steps
of propagation, by a cloud or tuft of many microcracks of arbitrary lengths and
orientations. These micro-cracks are created before any macroscopic instabilities
are observed. The “shape” of the tuft (i.e. the number of microcracks and their
lengths and orientations) reflects, obviously, the microstructural situation at the
vicinity of the running crack tip.

B
A 0 A 0
S
(&
F1G. 1. The “twin-crack” model.

For the sake of simplicity it is assumed that all microcracks are straight lines
emanating from the mathematical single crack tip, 0, running with velocity v
(Fig. 1). Gradually, two microcracks dominate over their companions. At that
time and on, the mathematical single crack-tip, 0, becomes stationary and the
two “winners” run towards their initial direction with the velocity, v, of their
mother-crack. The future of each one of the two dominant microcracks (0B) and
(0C") is then predicted by applying any suitable fracture criterion as it will be de-
scribed in the next section. This is the “twin-crack” model which was successfully
applied to predict symmetric [4] or asymmetric [6] branching.

A first objection for this model might be connected with the assumption of two
winning microcracks instead of one or three. One winner is the mother-crack itself
and, so, no instability is expected in general. Three winners resulting in tri- instead
of bi-furcation is an extremely rare phenomenon, observed almost exclusively in
cases where a large hard inclusion with size comparable to the crack length is
artificially implanted ahead of the running crack [7]. So, it is reasonable to work
with two winning microcracks.

The question of energy-release discontinuity implied by the Yoffe-like ap-
proaches can also be resolved. Namely, according to the present model the ap-
parent energy release is the sum of the respective quantities of the tuft of mi-
crocracks. Domination of two microcracks implies that the rest of the tuft dies
and, so, small scale local energy transfer to two winners is adequate to support
the initial stages of their propagation. Of course, each winning microcrack forms
after a while its own tuft which may cause a second order instability, when con-
ditions permit it, and so on. Such procedures do not require any sudden increase
of energy-release.
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Application of any fracture criterion necessitates exact geometry of the star-
shaped configuration of Fig. 1, which cannot be a priori known. So, scanning of
many arbitrary combinations of lengths and orientations of the winning pair of
microcracks is required, to see whether or not these combinations can be classified
into a few groups of macroscopic patterns corresponding to the observed types
of crack instability.

2.2. The dynamic stress field in star-shaped cracks

The application of the above-described “twin-crack” model necessitates the
knowledge of the dynamic stress field around the singular points A, B and C of
Fig. 1. The values of the dynamic stress intensity factors (SIFs) K and K[}, are
obtained, according to Kostrov [8], as functions of their stationary values, K}
and K7, and suitable correction factors taking into account dynamic effects:

2.1) KP = K5k(v).

The stationary values of SIFs at the three tips were computed separately adopting
the method developed by THEOCARIS [9]. According to this procedure, the three
branches of the complex crack configuration of Fig.1 are considered as three
independent cracks. Then applying the DATSHYSHIN - SAVRUK [10] method, the
following three complex singular-integral equations are obtained:

2.2) ]gn(t)dt+ Z f[Mnk(t $)g'(t) + Lax(t, s)gk(t)] dt = w(onk—1iok)

k= kAB ,C
with 0 < s < a, and n = A, B,C. In this equation, ay (k = A, B,C) are
respectively the lengths a, b, ¢ of the cracks 04, 0B, 0C'. For the kernels it holds:

Mnk(ty 5) = Snk(iv 5) + Snk(t) 5) GX])[ZZ(B,C = 071)]1

(2.3)
Lni(t,s) = Sni(t,s {1 - %% exp[2i¢(0x — Gn)]} A
with
Suk = 5 4= sexpli = (0 = 001}
(2.4)

Onk — 1oy, = —s[1 + exp(2:0r)]/2.

Further, if the single-valuedness condition for the displacements around the com-
posite crack is considered, the following equation is obtained:

(2.5) > [exp(iﬁk) / g;(t)dt] = 0.

k=A,B,C
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The unknown functions ¢’(t) are proportional to the density of the dislocations
along the three branches. They are related to the complex SIFs, K (k = A, B,C),
through the relations:

(2.6) Ky = o(2rag)'/? lim (o = 9)'/%g1,(5)] -
Writing g.(s) as:

27 7i(s) = (ar — )[Ry (s) + ihua(s)],

where the real, h;(s) and the imaginary, hy,(s), parts of it have no singularities
in s = oy, the complex SIFs are, finally, written as:

(2.8) Ky = a(rog)? [hiy (ar) — thia K (o], k=A,B,C.

The solution of the obtained complex singular integral system was achieved
numerically by applying the Gauss-Legendre and Gauss-Lobatto integration
rules. The Gauss - Lobatto rule was applied to the integral equation for the branch
0A with N = 30 points of integration, and the Gauss-Legendre rule to the
integral equations of branches 0B, 0C with the same number of integration points.
Since the Gauss - Lobatto method has (N — 1) collocation points arising from the
linear system of 6/N real unknowns, two real equations are missing, which are
supplied by the condition of single-valuedness of the displacements in complex
form (Eq. (2.5)).

The main advantage of the procedure described above is that it permits the
direct calculation of SIFs at the tips of the branches without any extrapolation.
Also, the method is found to be very accurate and stable for extreme geometries
(small angles ¢; (i = B, and strongly unequal lengths b and c), which are of
special importance for the present study.

The values of the stationary SIFs, after being corrected through Eq. (2.1), are
introduced into the dynamic stress field given by FREUND and CuiFTon [11].

2.3. The T'-criterion of fracture

The stress field being known, a fracture criterion can be applied to predict
the behaviour of each one of the three tips A, B and C. A suitable criterion
was judged to be the 7'-criterion [12, 13] and this criterion was applied. It states
that a crack starts to propagate when the maximum value, 7y, of the dilatational
component of the elastic strain energy density takes a critical value, Ty, which
is considered as a material constant, provided that the computation of the dilata-
tional strain energy density is performed along the Mises elastic-plastic boundary,
where the distortional part, Tp, of the strain energy density equals to another
material constant, Tp g.
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For the plane stress conditions, assumed here, the T-criterion is expressed as
follows:

1+v
(2.9) TD(T’0)|T=T(9)= ( Yo )(0%1 + 0%, — onon) =Too,
ATy (r(9),0) Ty (r(9),6)
2.10 = e =0 and o A <0,
( ) 89 6=06, 892 6=8q
1-2
(2.11) T @0),00)]. . = S22 (011 + om)? = Tug.
8=6y oF

The T-criterion was selected because its physical content is clear. Namely,
its first statement (Eq.(2.9)) is the Mises yield condition connecting yielding
with shear stresses and the second one (Eq.(2.11)) is a natural expansion of
the Mises condition, connecting brittle fracture with normal stresses. Its strong
physical basis allows for the T-criterion a wide range of successful applications
from crack initiation in brittle or ductile materials [14] to crack nucleation in
initially uncracked materials subjected to metal-forming processes [15] which lie
outside Fracture Mechanics.

3. Application of the “twin-crack” model

The crack geometry according to the “twin-crack” model is shown in Fig.2
where various geometrical quantities are indicated. In general, ¢, # —¢. and
b # ¢ < a. Referring to Fig.2 we define 8,; (i = B,C) as the angle of mi-
crobranch propagation measured with respect to its initial direction and 6, ;
(i = B,C) as the respective quantity measured with respect to mother-crack
axis. Elementary geometrical considerations show that

(3.1) 6y; = i + arcsin {sin @55 [\/1 — 12sin?86,; — I;cos OW]} ;

with [; = {% : -;-}, i = B,C.In Eq.(3.1) [ is the distance from tip 0 to the point
where angle measurements are performed. Usually, [ is much larger than b and
¢, so that Eq. (3.1) reduces to:

(32) 957,' = + tgpﬂ' 3 1= B,C

which overestimates 6 ; by less than 2%.

For a given geometry (y,, ¢, b, ¢) and crack velocity v, at each one of the
three tips A, B, C of Fig. 2 there exists a direction with maximum value of dilata-
tional strain energy density 7y, ¢ = A, B,C. In order for a certain crack-tip to
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F1G. 2. The “twin-crack” model. Definition of various geometrical quantities.

propagate, the respective 77 ; must be at least equal to a material property (say
Tv,0) according to the T'-criterion. In addition, double pattern (tip 0) is preferred
in comparison to a single pattern (tip A) when the sum of maximum values of
dilatational strain energy density at this tip is larger than the respective quantity
at A. Consequently, the necessary condition for instability to occur are both:

33) { Ty > Tvo, for at least one of the microbranches,

II‘C"B + TC’,C > TV,A .

Obviously Ty, 4 = Tv, when the mother-crack is running with constant velocity.

Some examples will clarify the procedures required for the application of the
present model. For that a family of winning microcracks with length-symmetry
(b = ¢) and variable orientations (¢, # —¢.) and a second one preserving ini-
tial direction-symmetry (¢, = —¢.) and varying lengths (b # c) are selected.
In Fig.3a the ratio Ty;/Tv,a (i = B,C) is plotted versus ¢, for ¢, = =5°,
b = ¢ = a/40 and various velocities v. Any combination (¢, v) corresponding
to Ty,/Ty 4 > 1 indicates a microcrack satisfying the first of conditions (3.3)
and, consequently, able to propagate. In Fig.3b the ratio (1y g + Ty, o)/ Ty 4 is
also plotted for the same as in Fig. 3a combinations to check whether or not the
second condition is satisfied. It must not be misinterpreted that in the present
example all combinations satisfy the second condition. It is due to the assump-
tion of equal velocity of mother-crack and winning microbranches. In Fig. 3c the
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FIG. 3. a. Maximum values of dilatational strain energy density at branch tips B and C reduced
to the corresponding quantity at tip A for v = 0.35¢3, v = 0.50¢3, v = 0.65¢2. b. Sum of the
maximum values of dilatational strain energy densities at branch tips B and C' reduced to
the corresponding quantity at tip A for v = 0.35¢3, v = 0.50c2, v = 0.65¢;. c. Propagation
direction 6, ; (i = B, C) for the two microbranches 0B and 0C for v = 0.35¢;, v = 0.50c,

v = 0.65¢; and . = =5°.

expected angles of branch propagation 6,,; (i = B, C) are plotted for the same
combinations.

Similarly, in Figs. 4a, b the variation of Ty, /Ty, , fori = B, C, respectively, are
plotted for the directionally symmetric microcracks. In this case, ¢ = ¢, = —¢,
r = ¢/b and v = 0.5¢,. Finally in Fig. 4c, the expected propagation angles 6, g,
6, c are plotted versus ¢ (= ¢ = —.).
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I'1G. 4. a. The variation of TV  vs angle ¢ for v = 0.5¢; and various r-values. b. The variation of
Ty ¢ vs angle ¢ for v = 0.5¢; and various r-values. c. The variation of angles 6, 5 and 6,,c vs
angle ¢ and for v = 0.35¢3, v = 0.50¢3, v = 0.65¢a.

3.1. Branching

A typical macroscopic branching pattern, shown in Fig.5, can be obtained
from many arbitrary microscopic combinations. For example, when v = 0.5¢;
and ¢, = —¢, = 5° from Fig.3a it is obtained that both branches satisfy the
first of conditions (3.3), as well as the second one as it can be seen in Fig.3b.
Then, the two microbranches are expected to run independently to directions
0,8 = —6,c = 18°, according to Fig. 3c. According to Eq. (3.2) this combination
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D~ o
—Lb
A_{ \\0 -
FIG. 5. A typical branching pattern.
corresponds to macroscopic branching angles 6,5 = —0,c = 23°. A similar
combination is given by: v = 0.5¢, ¢, = 50°, ¢, = =5°, 0, p & -38°, 0,0 =

—5° resulting to 6, g = 12°, 6, ¢ = —10° corresponding to a slightly asymmetric
branching.

3.2. Kinking-curving

A typical macroscopic kinking-curving pattern is schematically indicated in
Fig. 6. Distinction between these two types of directional instability is based on
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F1G. 6. A typical kinking-curving pattern.

the macroscopical impression given by the pattern. Big values of deviation — angles
6). — correspond to kinking, while small ones to curving. Peculiarly enough, this
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distinction is helped by the lack of intermediate values (say 15° < 6 < 30°) of
6. However, numerical results obtained through the present model indicate that
both instabilities require asymmetric geometry of microbranch and relatively high
velocities (v > 0.48¢;).

An example: For v = 0.5¢c3, b = a/40, ¢ = a/80 (ie. r = 0.5), ¢ = ¢, =
—p = 7.5° it is concluded from Fig.4a that 7y, g > Ty 4 (= Tv,) and Ty <
Ty 4 implying that only tip B is allowed to propagate in a direction 6, g = 34°
according to Fig. 4c, which through Eq.(3.2) corresponds to a kinking angle 6, =
@+ 0, =75+ 34° = 41.5°.

3.3. Crack arrest-deceleration

Crack arrest-deceleration is macroscopically manifested when both micro-
cracks run toward paths intersecting, after a while, the mother-crack path. Such
a pattern is represented in Fig. 7. As it is shown, the “apparent” macroscopically
observable crack-tip moves from point (/ to point 0", although the real path is
(B0") = (C0") > (0’0"). This elongation of the crack-path is macroscopically in-
terpreted as reduction of the (single-tip) crack velocity. Elementary geometrical
considerations in Fig. 7 show that:

3.4 Varrest/ v = 8in(90° + ¢, — 6, ) = sin(90° — ¢, + 0, ¢)

indicating that the apparent crack velocity varest may take low values or even be
momentarily zero when ¢, — 0, g = —(p. — 8, ¢) = —90°.

D//’ ~

FIG. 7. A typical crack arrest-deceleration pattern.

However, such combinations are rare, appearing at high velocities and strongly
asymmetric geometries of microcracks.
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4. Results and conclusions

A detailed scanning of many arbitrary initial microbranch combinations be-
longing to either equal lengths and unequal angles or equal angles and unequal
lengths, was performed to locate configurations corresponding to the above-men-
tioned crack instabilities. Examination of the fully asymmetric case with respect
to both lengths and orientations of the winning pair is not yet completed. The
results of scanning are gathered in Fig. 8. In this figure the half sum of branching
angles (|0, 5| +|6s.c|)/2 in case of branching and kinking-curving angle ;. in case
of kinking-curving are plotted versus mother-crack velocity v reduced to shear
waves velocity c¢;. Typical branching angles form two rather narrow bands. The
upper one corresponds to the first maximum of 7yv; (: = B,C) in Fig.3a, and
the lower one to the second maximum of the same quantity versus angle ¢ ,.

750 T T T
o Theocaris et al., 19898
o Kobayashi et al., 197
825 = Bullen et al, 1970 — \ 23
& Bowden et al., 1967 b g \“ 4&‘;
e Carlsson, 1968 2 A
500 NN
' 5%
o KA /
=, 375
=)
250t
125

00250 0325 0400 0475 0550 0625 Q700 0775
v/c,

F1G. 8. Map of dynamic crack instability predictions.

Another band appears at the upper right corner, corresponding to kinking
angles, while the dashed line at the lower right corner of the same figure repre-
sents smooth curving angles. In the same figure, predicted branching half-angles
according to the 7'-criterion applied in the Yoffe-like way of a single tip are
indicated for comparison purposes.

Experimental points gathered from various sources [2, 16-20] agree well with
the predictions of the twin-crack model. It is also clear that the Yoffe-like ap-
plication of the same criterion of fracture fails to give acceptable predictions,
especially for branching under relatively low velocities, and it cannot give any
prediction for kinking-curving.

It is then allowable to conclude that:

i. Crack-path instabilities occur when the “twin-crack” pattern offers more
advantages over the “single-tip” pattern, in terms of strain energy release.
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ii. In spite of the completely arbitrary initial “twin-crack” configurations, in-
stability predictions in macroscopic terms (velocity, angle of instability) belong to
rather narrow bands (or even single lines) for each type.

iii. The a priori unknown lengths and orientations of the two microbranches act
as a stochastic (random) factor to the whole instability phenomenon. However,
its effect is bounded by macroscopic (deterministic) factors like crack velocity,
stress intensity etc.

iv. The double (stochastic — deterministic) character of crack instability does
not allow for sharp velocity (or any other mechanical quantity) thresholds for in-
stability to appear. In reality, the whole instability surface is an eight-dimensional
function of the form:

f(0;,0.,b/a,c/a, oy, 0.,v,05) = const.

v. Experimental evidence shows clear preference to the “twin-crack” model.
Yoffe-mode approaches lead to predictions far away from reality, especially for
low velocities.

vi. The present model is a tool to obtain predictions. In that sense this is
“true” but not necessarily “real”, whatever “reality” means.
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Theoretical analysis of the cutting method
for the measurement of crack bridging tractions

H. BASOALTO, F.GUIU and R.N.STEVENS (LONDON)

Tuis PAPER is concerned with the determination of the bridging stress field that arises from the
existence of bridging ligaments on the crack faces. The method presented here is based on a
cutting procedure, in which the displacements at the edge or mouth of the crack are maintained
constant by reduction of the external load as the bridging ligaments are progressively removed. It
provides a means of calculating the entire closure force due to bridging. The closure force was
assumed to be composed of a discrete distribution of tractions, so that we are not forced to solve an
integral equation in the displacements. The ratio R(z) of the bridging load, P, removed by making
a cut from z to z + Az and the change in the external load required to keep the crack mouth
displacements constant, is found as a function of z. The R(z) was calculated using weight functions.
From this, the bridging stress intensity factor can be determined for each removed traction so that
the total K can be obtained by summation of individual values of K. However, the calculations
can be greatly simplified if the assumption of straight crack faces is made, which allows the equality
of the stress intensity factors of two non-identical stress systems to be assumed.

Notations

A measured crack length,
a normalised crack length (= A/W),
K(a) stress intensity factor,
f(a) normalised stress intensity factor (= K'(a)/(0v/7A)),
m(z,a) weight function,
R™(z) load ratio obtained by weight functions,
R*(x) load ratio obtained by straight crack approximation,
tM(z) externally applied tractions,
t@(z) bridging stress field acting on crack faces,
Ui(z,a) crack displacement field ,
ui(z,a) normalised crack displacement field corresponding to the i-th stress system
(= Uiz, a)/W)),
X  measured position from the crack mouth,
r  normalised distance from the crack mouth (X/W),
W relevant linear dimensions of body (e.g., width in the case of a compact tension
specimen).

1. Introduction

THE PROBLEM of crack bridging deals with material systems in which there exist
ligaments that bridge the crack faces, thereby opposing the opening effect that
an external load has on the crack displacements. The nature of this closure force
depends on the microstructure of the material in question. For the case of lead
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particles dispersed in a glass matrix, it is intact individual particles intersected
by the crack that provide a negative pressure [2], while in matrix-fiber compos-
ites it is unbroken fibers bridging the crack that give rise to such a force [18].
Non-transforming ceramics such as alumina have been found to be bridged by
unbroken grains under static and cyclic loading conditions, as well as topological
mismatch between the crack faces [10, 23, 25]. The effect of these bridging liga-
ments is to shield the crack tip from the influence of an external load. In other
words, they result in a net stress intensity factor at the tip less than that obtaining
were the crack to be totally free of bridging ligaments. Bridging ligaments are
therefore a significant source of toughness to such materials and it is of great
importance to be able to understand the mechanism of bridging.

In order to calculate the contribution of the bridging ligaments to the net stress
intensity factor, one must know exactly how the bridging tractions are distributed
along the crack, since the bridging stress intensity factor, K’y(a), is determined

by [5]

(1.1) Ky = W]t(w)m(x,a)d.r,

where t(z) is the distribution of stress provided by the ligaments, m(z, ) is the
weight function, zq is the end of the bridging zone, and W is the width of the
body if it is finite. Upper case letters are used herein to designate quantities
(such as crack length A) with physical dimensions, and lower case letters for the
corresponding normalised quantity, e.g., + = X/W, a = A/W. However, the
problem is not so clear-cut, since physically the traction acting upon the crack
faces is some general function of the displacements, U (z, a). This means that the
functional dependence of the closure force on position, z, along the crack is a
result of the functional composite ¢[U(z)]. The total crack opening displacement
field is given by

\/EET//i[U(f)]m(E,S)m(x,s)dfds,

(12)  U(z,a) = Uz, a) -

ap To

where U.(z,a) is the crack displacement due to the external load and £’ is
Young’s modulus, £ for plain stress and £/(1-v?) for plain strain. Equation (1.2)
is a nonlinear integral equation of the second kind and has received considerable
attention with the aim of finding solutions appropriate for the problem of bridging
[1, 6, 7]. In order to use Eq.(1.2) and determine K,(a), the ¢{[U] relationship
must be known. A number of empirical expressions have been used for the ¢[U]
relationship [8, 17, 21]. Most of these give {[U/] increasing rapidly with U to a
maximum, then declining more slowly to zero at a characteristic displacement.
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This paper is concerned with a theoretical analysis of an experimental tech-
nique for the determination of the bridging traction and the bridging stress in-
tensity factor. The experiments consist of making a series of cuts into the crack
from the mouth to progressively remove bridging tractions by cutting ligaments.
This causes the crack mouth displacements to increase. The decrease in external
load required to return the crack mouth displacement to its original value is then
measured, and the analysis relates this change in load to the traction removed
by cutting. The crack length is divided into segments of length Az (equal to the
depth of a single cut) and the traction on each segment is regarded as being
constant. Essentially this constant traction in the model is the average traction
exerted on the segment of the real crack.

Theoretical analysis of the cutting procedure is nothing new and much of the
literature on the subject derives from the general framework laid down by Hu
and WiTTMANN [13]. To simplify the theory, the assumption of linear crack faces is
usually made. This assumption does not allow the closure force to alter the shape
of the crack in any way, so that the crack displacement fields can be approximated
by parabolas [21]. Use of a straight crack approximation leads to workable ana-
lytical solutions which are much easier to use than the integral equation [16]. For
example, Reichl and Steinbrech used the straight crack assumption to calculate
the average load of the bridging ligaments in alumina under static loading from
which the Ky(a) is obtained [19]. A similar approach has been used by Li and
Guu [15] on alumina under cyclic conditions.

The question “how good is the straight crack approximation?” is clearly very
important. To investigate the validity of the straight crack approximation, a rela-
tionship R(z) between the change in the external load and the removed bridging
traction is obtained under the assumption and compared to that determined by
weight functions.

2. General formalism

Consider an elastic body containing an edge crack and subject to an externally
applied traction, t(V, and some distribution of closure tractions, t(), on the crack
faces. The closure force is assumed to be a discrete distribution of tractions of
the form

N
t(z)(:c) = ZTJ](:U — ) zg <z <a,
(2.1) =

1 m<z< g+ Az,

Ar 1.0, T;=P/AX, H@E-—-m)= {0 otherwise

where P; is a force per unit length of constant magnitude over the interval 7, <
z < 1;+ Az. The problem is, given information about the external stress system,



848 H. BasoarLro, F. Guiu AND R.N. STEVENS

how does one proceed to calculate K,? The total crack opening displacement
field is given by superposition as
Uy(z,a) = uo(z,a)W,
g, Y i3
1
ug(z,a) = uei(z,a) - I //t(z)(f)m(f,s)m(z,s) déds,
ap o

where wu.)(z,a) is the normalised displacements produced by the external load.
Substitution of ¢ into Egs. (2.2) gives

a éitAzx
1 N
up(z, a) = ue(z,0) — — O T H(E — ni)ym(€, sym(z, s) déds .

Note that the position variable z is fixed and corresponds to that point where the
displacements are experimentally measured. Suppose that a perfect cut is made
into the crack removing the traction 7T} furthest from the crack tip, while keeping
the external load fixed. The net displacement at the mouth will increase as a result
giving a new measurable value u;(z,a) > ug(z, a). At this point it is assumed that
simultaneously with the removal of the traction by cutting, the load is reduced
so as to maintain the displacement at some chosen point (e.g., the crack mouth)
constant. Therefore, the displacement u;(z, @) must be decreased by relaxing the
magnitude of the external load until the original value, uo(z,a), at the chosen
point is achieved,

1 N a {t+Az
ug(z,a) = u(z,a) — Yol Z T,/ / H(¢ — ni)m(€, s)m(z, s)déds .
i=2 a0 &

It follows immediately that the displacement of the chosen point caused by the
removed traction must equal that brought about by the change in the external
load, i.e.,

(23) Aue(ﬂ?,d) = ueZ(xaa) - uel(zaa = %/m'(fas)m(r,s) ds.

The change in displacement at the crack mouth due to the decrease in load AP,
is given by

AE]f ¢ = 0/ £.(8)m(0, s) ds,

(2.4) Aue(0,a) =

where K is written in terms of the normalised stress intensity factor, f.(a), as

K(a) = AP, fe(a)VmaW .
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Hence, we find the ratio R(z) of the change in the external load required to
maintain constant crack mouth displacement and the bridging traction removed
by the cutting, to be

/m(f, sym(z,s)ds
AP, o

(2.5) RY(§) = Pe = —
ffe(s)nz(m,s)ds
0

To evaluate the displacements, the weight function for a given body geometry
must be known, and for details of finding such functions refer to GLINKA and SHEN
[9], FETT et al. [12], WU and CARLSSON [27]. Thus, for the case when Az < 1.0
equation (2.5) is independent of the traction size resulting in a unique RY(£)
for a given elastic body. If AP, is known then the magnitude of the bridging
traction can be calculated, and from this the corresponding contribution to the
stress intensity factor is obtained. AP, is the change in the external load required
to maintain the same crack mouth displacement as the removed traction and
is therefore referred to as the equivalent load [11]. Thus, for a fully bridged
crack, repeating the cutting procedure until it is totally traction free allows the
distribution of tractions to be found and the shielding stress intensity factor to
be calculated by summation of the individual values of K.

3. Straight crack approximation

From the last section the determination of the closure force requires knowl-
edge of the weight function for a given body geometry. However, this can be
avoided if the non-physical assumption of linear crack faces is made. Such an ap-
proximation has been made by many workers in the past [13, 14, 21, 24] in order
to simplify the calculation of the closure force. Suppose that the displacements
produced by the equivalent load and the bridging force are made equal as in the
last section; this will in effect be the same as equating moments since the axis of
rotation of the body will now coincide with the crack tip. Let the moment due to
the equivalent load be M (1), The moment of the bridging traction about the tip
is

T2
3.1) M® = ft(z)(n:)(a - s)dz;
Ty
then, equating displacements requires that
T2
(3.2) MM = ]t(z)(x)(a — s)dz .

1
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Take the case when the external load is a point force and extrapolate its point
of application to the crack surfaces, a non-physical approximation carried for the
compact tension specimen, see [14, 20]. Equation (3.2) gives

r2

(3.3) AP, = / O(2)(1 - ¢/a) dz .

Suppose that t2)(z) = Py6(z — £), where §(z — £) is the Dirac delta function and
represents a unit point force at z = &; then,

P. = PR(),
B (€) = (1 ={/a),

which gives a linear relationship between the equivalent load and load P,. Note
that R*(¢) contains no terms that are dependent in any way on the external
boundaries of the body and therefore applies to all geometries, in contrast with
the load ratio obtained via weight functions. If {(?)(z) is taken as a traction of
length Az, we have a ratio R'¢(€) related to that of equation (10) as

(3.4)

(3.5) R*(€) = R*(€) — A2%/2a,

and this reduces to R'*(§) = R*(¢) for Ar <« 1.0, which was the same result
found in the last section when using weight functions. Thus, the assumption of
straight crack faces leads to a simple approximate relation for determining the
closure force, a result that is independent of the body geometry.

However, the assumption of zero crack curvature has much deeper implica-
tions than just allowing the equality of displacement fields as a whole of two
non-identical stress systems. Enforcing such a condition results in the equality of
stress intensity factors for the two loading systems under question, which under
normal circumstances can not be done. To show that the stress intensity factors
for the two loading systems under question, we must look at the asymptotic be-
haviour of the displacements in the vicinity of the crack tip. In real elastic bodies,
were the assumption of linear crack faces does not hold, the displacements near
the tip are

(3.6) lim (a — 2)~Y20" = 2V2

r—a El

K (a),
and the crack displacement field has the form
3.7) U(z,a) = U"g(z,a),

where ¢(z,a) is a function describing the shape of the crack faces away from
the tip and is such that it is unity at = = a. If the crack faces are assumed to
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be straight, then the singular behaviour of Eq.(3.6) will not be appropriate and
instead one must use

(3.8) lllin (a — ) lU" = %EQI\'((L);

the displacement field will require that g(z, ¢) be unity for all z. Thus, if two stress
systems produce the same displacement field, then according to equation (3.8)
their stress intensity factors must also be the same. The consequence of this with
regard to bridging is that the shielding stress intensity factor can be calculated
without having to know anything of the way the crack is bridged. All that is
needed is to be able to measure the equivalent load and compute the associated
stress intensity factor using well-known empirical formulas, and according to the
straight crack approximation, this leads to the bridging stress intensity factor.

4. Application

The above analysis can be used to calculate the magnitude of the bridging
tractions once the relationship between the change in the applied load and the
removed traction, i.e. the loading ratio is known. The change in the applied load
(or equivalent load AP,) is obtained experimentally by the methods described in
[14, 15]. In Sec. 5, we present the loading ratio graphically for the compact tension
specimen with different crack lengths. Thus, for a given crack length, equivalent
load and location where the cut has been made, the value of the loading ratio is
read from the graph, and the magnitude of the removed traction is obtained by
the simple relation

AP, 1
4. 7= 2 :
4.1) AX B R(£)

where 7; is the traction at location ; along the crack length, AX is the cut length
and B the specimen width.

5. Results and discussion

It is important to know how accurate the straight crack approximation is in
calculating the closure force. This has been done by calculating both the R™(£)
and R*(¢) for the compact tension specimen and comparing the two results. The
specimen geometry with the appropriate loading configuration is shown in Fig. 1.
The weight function for this geometry was calculated using the formalism of Wu
and CARLSSON [27], where the reference load was taken as a uniform crack face
pressure. The weight function was then used to calculate the displacements at
the loading line (2 = 0) produced by the external pin load and a closure traction.
In practise the cutting experiments are performed by equating displacements at



852 H. Basoarto, F. Guiu AND R.N. STEVENS

the back of the specimen, behind the loading line at = = —0.25. However, to
calculate the R(£) at the back requires expressions for the displacements there,
and it is not possible to use the weight functions to do so as they are defined for
the interval between the loading line and the crack tip.
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To overcome this difficulty, an approximation has to be made. It was assumed
that the displacements at the back of the specimen can be obtained by linear
extrapolation. The crack displacements were calculated at two points, namely at
z = 0 and 0.03, through which a line passed and was extrapolated to the back
of the specimen. The assumption was tested by comparing the displacements
produced by the pins with the empirical results of SAxenA and Hupaxk [22].
Figure 2a shows the result and it is observed that such an approximation is a
justifiable one for this case. For the traction, linear extrapolation can still be used
with the condition that they are not too close to the loading line, see Fig. 2b. In
practice there will be no bridging tractions in the near vicinity of loading line
because of the presence of a notch.

a) 20
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15 —

load ratio R(x)
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X
@
2
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©
=]
°
0 02 04 06 08
normalized position x
Fia. 3.

The R(£) for the compact tension specimen was evaluated by equating dis-
placements at the loading line and at the back of the specimen; the results are
shown in Fig. 3. In both cases it is observed that the load ratio is a monotonically
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decreasing function, having a maximum value at the loading line and falling off
to zero at the crack tip. If R*(£) is viewed as a normalised displacement pro-
duced by a point force, then the measured displacements will be greatest when
the traction is applied directly on the loading line and continuously decrease as
it is made to approach the crack tip, and becomes less effective in opening the
crack at the point of measurement. The crack displacement field of a traction
at different locations along the crack length maintaining a constant displacement
at the loading line is shown in Fig.4. It is observed that displacement field for
a short crack is highly distorted, especially when the traction is close to the tip,
whereas for the large crack the displacements are approximately linear. There-
fore, one would expect the errors in determining the closure force to be greatest
when dealing with short cracks.
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In Figs.5 and 6 the relative error F(z) beetween R¥(£) and R*(€) is given.

For a given crack length the error made in the magnitude of the bridging force
is seen to increase, the closer it is to the crack tip. Large errors are made if
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the displacements are equated at the loading line, requiring normalised crack
lengths @ > 0.5 to produce an error F(z) < 10% with the tractions not too
close to the crack tip and on the interval /, 09 < z/a < (0.75. Thus, in this case
if the approximation of linear crack faces is to be assumed, then the minimum
normalised crack length that can be used to measure t)(z) is 0.5. However,
in practise it is not possible to use such large cracks to measure experimentally
the closure force. Equating displacements at the back of the specimen results in
decreasing the minimum crack length required to give an error /2(z) < 10% from
a > 0.5 to a > 0.3, for tractions lying in the interval / and not too close to the
tip.

From the results the straight crack approximation does provide a good means
of computing the magnitude of the bridging tractions, as long as they are not too
close to the crack tip. However, in real materials the greatest contribution to the
closure force, and therefore to the Kj(a), comes precisely from those ligaments
near the tip. Thus, the shield stress intensity factor obtained by the straight crack
method may differ considerably from its actual value.
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Intersonic mode II crack expansion

K.B. BROBERG (DUBLIN)

EXPANSION OF A CRACK with constant velocity in an infinite, linearly elastic plate, starting from zero
length, is one example of a self-similar problem. A method for solving such problems, using double
Laplace transforms, is discussed and applied to a Mode II crack expanding at intersonic velocity.
The usual assumption for sub-Rayleigh crack speeds, point-sized process regions, leads to a stress
singularity which is too weak to allow energy flow into the process region. This complication is,
for simplicity, overcome by a combination of two problems, one assuming a point-sized process
region, and the other one assuming a finite process region, according to the Barenblatt model,
but regarding only the neighbourhood of a crack edge. The result shows a substantial energy
flux into the process region, except at intersonic velocities close to either the S or the P-wave
velocity. Intersonic Mode 11 propagation should therefore be possible for a crack that succeeds to
accelerate through the forbidden interval between Rayleigh and S-waves. Possible mechanisms for
such acceleration are discussed.

1. Introduction

A PURELY MATHEMATICAL treatment of the problem of a Mode I crack propagating
at super-Rayleigh velocity leads to the physically unacceptable result that energy
flows away from the process region, i.e. the process region generates, rather than
dissipates, energy. For Mode II the same result is obtained for super-Rayleigh,
subsonic velocities, but not for intersonic velocities (FREUND [16], BURRIDGE et al.
[14], BROBERG [9, 11]). However, a complication arises if the convenient assump-
tion of a point-sized process region is made: this results in zero energy flow to
the process region, except at the curious velocity V2¢,, where ¢, is the velocity of
S-waves. This result depends on the fact that the familiar square-root singularity
at subsonic velocities is changed to a weaker singularity, except at V2e,.

A square-root singularity in the idealization of a point-sized process region
implies a non-zero energy flux to this region at crack growth, and it can be shown
that this energy flux is, in the first approximation, the same as for a finite process
region (BROBERG [6]). On the other hand, as it will be shown here, a weaker
singularity, r =%, where 0 < ¢ < 1/2, leads to an energy flux which is proportional
to (d/a)'~%9, where d expresses the linear extension of the process region and «
is a measure of the crack length. Thus it is zero for d = 0.

The self-similar problem of a Mode I crack, expanding at sub-Rayleigh velocity
was studied by BROBERG [5] using an integral equation approach. It was later
solved also by CRAGGS [15], who took immediate advantage of the self-similarity
by reducing the number of independent variables from three (r, ¢, t) to two (r/t
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and ¢), and then applied the Chaplygin transformation

g & AT VU
(1.1) sech (cpt) Op>

-1 L g
(1.2) sech (CS t) Os,

where ¢, is the propagation velocity of P-waves and ¢ is time, to obtain the
Laplace equations for the displacement potentials ¢ and

62¢ a2¢
1.3 =0,
(13) 52 * o5

%y %Y
(1.4) 90 + 72 = = 0.

A similar method was devised by Smirnov and Sobolev for self-similar problems in
general, see SMIRNOV [24]. General methods have also been discussed by WiLLIS
[25]. Here a different approach to self-similar problems will be applied, using
double Laplace transforms. It is based on a general feature of self-similarity:
homogeneous expressions, which prevail, not only in the physical region, but also
in the Laplace transform region.

2. Double Laplace transforms for self-similar problems

Laplace transforms are here defined in dimension-true way, as in van der PoL
and BREMMER [25], so that the one-sided Laplace transform of a function A(r),

where 7 = ¢,t, is
0

@.1) Lorh(r) = p / e~P"h(r)dr,
0

and the two-sided Laplace transform of a function g(z) is
[ee]
(2.2) Loz9(z) = ¢ j T g(a)de.

With the representation

_ ¢ P
2.3) =3t 5y
(2.4) .

oy dz’
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where u is the displacement in the z direction, v the displacement in the y
direction, the equations of motion take the form

_ P
(2.5) Ap= o,

1 9%
(26) Ay = B2 or2’

where k = ¢;/c,. After double Laplace transformation,

(2.7) ¢ =q / e_qrpfe"’”'qﬁdrdz,
— G 0

(2.8) V=g / e“‘”p/e"’”@b drdz,
—00 0

the equations

d*®
2 _— = 2
(2.9) P+ e p P,
d2w 2
2 P
. b =i
(2.10) q-v 07 sz

are obtained.

For a self-similar problem within linear elasticity, stresses and strains are func-
tions of 2/7 and y/7. Tt is easy to show that the corresponding double Laplace
transforms are functions of p/q and py. It can then be concluded that the solution
of (2.9) and (2.10) for y > 0 must be of the form

1 P\ (p2—g2)1/2
2.11 45=_A(4)C(P 7°) v,
®1D " \q
(2.12) v = 512_0 (Ié) 6_(p2/k2_q2)|/2y’

and that transforms of the type

(2.13) q" F(P) (E) e,(pz_‘ql)ljzy ,
q

(2.14) (InF(S) (E) e_(pl/kZ_ql)l/zy
q

will appear, where the integer » depends on the quantity represented. Such trans-
forms can be directly inverted. Since a multiplication by ¢ corresponds simply to
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a differentiation with respect to z in the physical plane, it is sufficient to establish
the inversion for one value of n only. The simplest choice, » = 1, will be used
here, corresponding to the double Laplace transform of a stress gradient or a
mass acceleration. For S-waves, radiating from y = 0 into the half-space y > 0,
such a transform will have the form:

(2.15) ﬁprﬁqrf(s)(l'a Y, T) T QF(S) (%) 6_(p2/k2_q2)l/2y ;

Branch points are usually found only on the real axis in the (-plane, where ( =
£ + in = q/p, and inversion with respect to ¢ is then possible by deformation of
the integration path in the formal inversion

;
] 2 2 231/2 q
S)( o qz—(p*/k*—q") /2y 1(S) i)
(2.16) Loz (2,9, 1) T / e F (p dq

/ perlée=(/R=CV2] p(S) ()¢

—zoo

271’1

to the hyperbola branch I, given by (cf. BROBERG [4])
(2.17) ——-——2—=——, 7'2=$2+72’ __<O’

i.e. the left-hand branch if z > 0, and the right-hand branch if z < 0. Then

= Cz — (1/k% = ()/2y is real on I', and such that s decreases from —r/k to
—o00 as ( goes from —z/(kr) to infinity either along branch I'y (the part of I’
for n > 0) or along branch I'_ (the part of I" for < 0). During this procedure
it helps to regard p as a real and positive number, which can be done without
affecting the generality, cf. LErcH [20]. The remaining inversion with respect to
p is reduced to inversion of pes?, giving é(r + s), where 6(-) is the Dirac delta
function, and the result is

U
(2.18) f‘s)(r,yﬁ)=—( 3 (PO o0y
A o F s (9) TN 3

where U(-) is the unit step function, index plus refers to the part of the hyperbola
on S¢ > 0, index minus to the part on S¢ < 0, and

(2.19) ey = St i\/kz 22 onTly,

dgi' T ikys
ds 27 /22 — 2

(220) 9(s) =
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For P-waves (superscript P) the inversions are given by the same formulae,
but £ should be substituted by 1 everywhere, i.e. in the unit step function, in the

equation for the hyperbola and in the definitions of C(ip )(5) and g(f)(s).
For y = 0 the inversion formula can be applied for P and S-waves together,
and it reads

(.21) 1,0,7) = o [F4(€) ~ F(Okmmry

where ¢f'(q/p) is the Laplace transform of f(z,0, ) and indices plus and minus
refer, respectively, to the upper and the lower side of the negative (positive) real
axis if z > 0 (z < 0).

3. Intersonic Mode II crack expansion, assuming a point-sized process region

The crack is assumed to expand symmetrically with velocity V' from z = 0 in
the plane y = 0, so that the crack edges are at |z| = Vit = fr for t > 0. The
remote load is a shear stress 7., = 727. It is assumed that o, = 0 everywhere,
but, if so desired, a compressive stress ¢, < 0 can be superposed, combined with
Coulomb friction on the crack faces. The upper half-plane, y > 0, is studied. The
boundary conditions for y = 0 consist of ¢, = 0 for all z, 7, = 0 for |z| < g7
and u = 0 for |z| > .

Put
(31) EPT‘EQI(T.’L‘y)yZO = C]I(C)’
k2
(3-2) ﬁpr£qr(“)y=0 = ——G(C),

pp

where o is the modulus of rigidity. Then, after straightforward application of
the transformed Laplace boundary conditions and use of the inversion formula
(2.21), the following relations emerge:

(1/k* = A'2H ()
GrA/O

O0Tzy _ 1 : 2 l
69 (F2) = Rl O - A Okemrys Tor €5 5.

(3.3) G(©Q) =

65 (24 - E ee-c @ for €< 1
' or? y=0 T 2mipzt T S/ p*’
where R(z) = 4k3(1 — 22)1/2(k? — 22)1/2 — (22 — 2k2)? is the Rayleigh function,
defined through branch cuts on Sz = 0 along the portions -1 < z < -k,
k < z < 1 and branch choice such that R(z) — 2k?*(1 — k?)z2 as z — oo. The
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two last equations constitute a Hilbert problem. With regard to (3.3), the second
equation can be written as

(3.6) Ho(€) - CEOA_(€) =0  for 52<[%,

where

_ (-8 rA/9))-

(3.7) C(€)

(1 - L[4 RA/O)]
which, with extension of the definition of C'(£), so that (3.6) is valid for all ¢, can
be written as

1 for £ <1,

e2mia(€) for —1/8< &< -1,
(3.8) c@) = iy

e~2mig) for 1<£<1/8,

1 for 1/8% < &2,
where \/ \/

1 43 /1-1/€2/1/€2 — k2
(3.9) g(é) = ;atan (/e = 2k2) :

In a logarithmic form equation (3.6) reads

(3.10) [n H©)+ - [ H(©)]- = InC(),

and then Plemelj’s formulae give the solution which, with regard to the physical
condition of bounded stress-strain energy in the crack edge neighbourhood, is

(3.11) H(C) = I/Tp_@,e—l(({),

where s

(3.12) 1) =2 ] ﬁgfwc)zdw
1

and D is a constant, which is determined by using the condition that 7,, — 727
as |é| — oo. The stress 7, is obtained by integrating the expression

O(Txy Yy= 1
(3.13) om0 = _ L1, (6) - H_(€))mmrse
giving
4 =reo 4 o [0
(3.14) (revdymo = 755 + 5= [ HQ)dc,
Ir
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©
7 29 ’L
P T

FI1G. 1. Path of integration for determination of (7zy),=0 at arbitrary z > 0.

1
Xl

where, assuming = > 0, I' is the path shown in Fig.1. By letting 7/2 — oo,
corresponding to the extension of the path to ( = —oo, i.e. to the path I’y in
Fig. 2, the stress becomes zero, so that

[o0] l —_—
(3.15) oo 4 mf/ H(C)d¢ = 0.

l@
;YT

F1G. 2. Path of integration for determination of (rzy),=0 for 0 < z < V1.

It might be convenient to deform this path to the imaginary axis, giving the
equation

17 -
(3.16) 7 / H(n)dn = —17;

for determination of D. Details are found in BROBERG [12]. Of special interest is
the displacement u,—( and the stress (7,,),=0. Both result in rather complicated
expressions. The displacement can be obtained from the expression for the mass
acceleration,

1 sin® g
a1 )
s [(Pus) for 1/8 <€ =r/la| < 1/k,
em (5) 7 e e
el erge
for €=r/lz| > 1/k,
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where g = g(1/5). Note the singular behaviour both at |z| = cgt, where cp is
the Rayleigh speed, and at |z| = ¢,t, in contrast to the very simple elliptic shape
of the crack face displacement in the sub-Rayleigh case.

For the crack edge vicinity, z ~ 37 = a, the shear stress on y = 0,

ﬁﬂsinﬂ‘g-e‘fn(l/ﬁ) (l_ﬁ)g ( a )g

(3.18) Tey — asz — a+0,

N 21-9¢ 1+ T—a
where N = -2y /D, and
1/p
(3.19) To(€) = 2 f wg(w)?;zl_/ i;g(l/ i
1

Constant N is approximately 1.182 for k2 = 1/3, corresponding to Poisson’s ratio
v = 1/4 at plane strain.
The displacement gradient on the upper crack face,

Gaoy O _YaB) T fsinmge hll/5) (1 _ﬁ)g.( . )g
| gz 21—k N 21-9g 1+p a— 2z

as z — a — 0, where

(3.21) (B = (1 - k*)B?sinmg

2k2\/1 - /32
4. The energy flux into the process region at intersonic crack velocities

A Barenblatt Model of a process region with length d < V1 is assumed, see
Fig. 3. Using the same procedure as in BROBERG [6], which allows for a process

F1G. 3. Barenblatt model of a process region. Cohesive forces act across the shaded region.

region of a finite size (repeated in a more general way in BROBERG [7]), the
energy flux into this process region is calculated as

0
@.1) G(V) =2 / Tgy(s)%(is.
24
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Here s is a length coordinate measured from the front of the process region,
increasing in positive z direction, and d is the length of a Barenblatt model of
the process region, for which the stress distribution 72, is assumed to be a known
function,

(4.2) Toy = Tp-D(s/d),

where 7 is the cohesive strength. Such a stress distribution is obtained from the
solution for the crack with point-sized process regions by suitable superpositions
of such cracks, running at different speeds, from 3 to 3 + d/7, where d < 37, cf.
BROBERG [6, 7]. By using (3.18) and (3.20), the energy flux is found to be

T Z
(43) Q(V) (ry) B(ﬁ)FD(g)( )l 2g
where |
(4.4) B(B) = ple”20(/Dsin’ rg (1 —ﬁ)zg
' T 209N /T- B \1+8)
2wp(g
(4.5) I'n(y) = — p(9) 'z
sinry O/DuEl_—l;)d“'}

1 1
46)  wnly) = [ D=op' | [ Do) - Diw)
0

wl=9(w — v)

dw
+D(- ?’)/iUI_J(lU T))}

Note that both integrands of the inner integrals are positive.

The expression for G(V) consists of four factors. The first one expresses
the dependence of load and crack length, as in the subsonic case, the second
one, B(f3), is a function of 3 only, the third one, I'(y), depends on the crack
velocity and the relation (4.2), and the fourth one, (d/a)!~29, as already men-
tioned in the Introduction, expresses the dependence on the size of the process
region.

Numerical calculations have been performed, assuming the form

(4.7) D(s/d) =1+ s/d, —d < s<0.

The result, expressed as G(V)/G(0) is shown in Fig.4 for some values of the
Poisson ratio. Note that G(V')/G(0) is the ratio between the energy flux at velocity
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F1G. 4. Dependence of normalized energy flux, G(V')/G(0), on crack velocity
A in the intersonic region. Plane strain is assumed. The solid line curves for
Poisson’s ratio v = 0.1, 0,2, 0.3 and 0.4 are drawn from numecrical calculations,
after putting d/a = 1. From these curves the energy flux for realistic values
of d/a is found by multiplication with (d/a)'~?". Three examples are shown
for v = 0.2: d/a = 1072, 10~* and 10~ Filled triangles point to the velocity
B = 212} for each value of Poisson’s ratio.

V and the energy flux at infinitesimally small velocity, both at the same current
crack length a. Figure 5 (sketched) shows this relative energy flux into the process
region for all velocities between zero and the P-wave velocity.

In the middle part of the figure also the assumed absolute energy flux G(1),
for a hypothetical crack acceleration from a stationary state, is shown, and the
lower part shows an assumed relation between the crack length and velocity. If
the energy flux required were independent of the crack velocity, the dashed line
in the middle part of the figure, then the development of the crack length would
be as shown by the dashed curve in the lower part of the figure.
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F1G. 5. Normalized energy flux into the process region as a function of the crack velocity (upper
figure), total energy flux into the process region for a hypothetical case of crack acceleration
(middle figure), and the crack growth (lower figure). In the upper figure the dashed line indicates
a possible acceleration event. In the two lower figures the dashed lines indicate the acceleration
event which would result if the energy dissipation in the process region were independent of the
crack velocity; the solid lines assume a probable realistic dependence.
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5. Discussion

The investigation shows that intersonic Mode II crack propagation is possi-
ble from the energy point of view. Whether it will take place in reality, depends
therefore on other requirements, such as a high ambient pressure to prevent
Mode T growth through kinking (cf. MELIN [21]), a material which is not prone
to branching — or a weak layer to prevent branching, or a mechanism by which
the forbidden super-Rayleigh, subsonic region can be bypassed. The latter re-
quirement might be satisfied by opening of cracks ahead of the main crack, due
to a stress peak, travelling with S-wave speed (BURRIDGE [13]), and becoming
more and more pronounced when the velocity of the main crack approaches the
Rayleigh speed (cf. BROBERG [10]). Another possibility for a “jump” to a higher
velocity is the rupture of a weak inhomogeneity in front of the crack or some
other action of an inhomogeneity.

Experimental evidence of intersonic Mode II crack growth is presently scarce.
There are some indications of intersonic velocities from the Imperial Valley earth-
quake 1982 (ARCHULETA [3]), and intersonic crack growth along an interface be-
tween dissimilar media has been reported by LaAmMBROS and Rosakis [19]. Some
numerical calculations show acceleration through the forbidden region to in-
tersonic velocities (ANDREWS [1, 2], JOHNSSON [17, 18]), presumably due to the
finiteness of the finite element mesh in their simulations.

The energy flux into the process region is clearly dependent on the size of
this region. If the size of the process region is not uniquely correlated to the
crack speed, then a unique relation between energy flux and crack speed does
not exist, as has been demonstrated experimentally for Mode I by Ravi-CHANDAR
[22], see also Ravi-CHANDAR and KNauss [23]. Tt is a consequence of the loss of
a significant intrinsic length parameter at very high velocities (cf. BROBERG [8])
and it can be expected also for Mode II.
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A model for dynamic ductile crack growth

R.M. CURR and CE. TURNER (LONDON)

A mopkEL for ductile crack growth consistent with the behaviour of real elastic-plastic material is
expressed for quasi-static behaviour, firstly in terms of energy dissipation rate and then in terms of
crack tip opening angle. It is then proposed that, since the energy dissipation rate is but a statement
of conservation of energy, dynamic ductile crack growth should also be seen in the same terms,
with a critical crack tip opening angle being also a function of crack speed or local strain rate.
Some recent three-dimensional finite element computations of a crack running in a large plate are
re-examined satisfactorily in this light.

Nomenclature

[~}
e~ QBN T Ty 8

O e =X

crack length, original crack length,

ligament, W — q,

thickness,

energy rate available to drive the crack, per unit crack area,

increment in crack length, but not implying da — 0,

energy dissipation rate, per unit crack area,

cffective modulus depending on the degree of plane stress or strain,

the classical energy release rate,

the elastic energy exchange rate in the presence of plasticity,

the classical J-contour integral (but evaluated from the area under a loading
diagram in experimental work),

the classical stress intensity factor,

a normalisation factor for load, equal to the plastic constraint factor at limit load,
load point displacement,

load,

a factor that defines the position of the instantaneous centre of rotation in a deep
notch bend test during crack growth,

resistance to crack growth after initiation,

span of a bend test piece,

work done,

internal strain energy, not necessarily recoverable,

width of a test piece,

crack tip opening angle,

a mcasure of a based on the global plastic displacement rate,

surface energy,

accumulated crack growth,

a geometric factor relating J to work per unit area,

a reference yield or proof stress.
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1. Introduction

Two-DIMENSIONAL finite element computation of dynamic crack growth in essen-
tially elastic systems was established as a feasible procedure some twenty years
ago. Programs for elasto-plastic dynamic behaviour in either two or three dimen-
sions now exist and have been used, for example, to study high-speed cleavage
fracture in steels, fracture of pipe-lines and crack tunnelling. Correlation with ex-
perimental data has proved difficult, partly because of uncertainty in the interpre-
tation of experimental data, and partly because of uncertainty in the correctness
of the computational models used. Some examples of recent dynamic studies are
given [1-4].

In lefm models with well contained yield, a critical A" or G criterion is generally
used for crack advance, perhaps taken as a function of crack speed. It is believed
that representing the energy loss, G, by “hold-black” forces that reduced to zero
as the crack tip node was allowed to separate and then subtracting that energy
from the remaining system, was first implemented in [S]. An appropriate criterion
for growth with appreciable plasticity is less well agreed, even for quasi-static
behaviour. The inadequacy of a “hold-back” model for static growth in an elastic
plastic system was pointed out, [6, 7]. The present work relates to ductile crack
growth following initiation by impact or other dynamic loading. The speed of
crack advance, perhaps some two to six hundred meters per second, does not
seem to merit complicated models of the mechanical properties of the metal at
high strain rates other than a direct dependence of yield stress on strain rate.
A brief description is therefore given of a recent model for static crack growth,
followed by its relation to the dynamic case. The modelling of crack advance in a
certain three-dimensional program is then described and outlines given of some
particular results.

2. Quasi-static crack growth

The objective here is to provide an analysis for a conventional small test piece
from which data for stable crack growth can be obtained and then transferred to
other situations such as a structure in contained yield. The test piece considered
in detail is the deep notch bend (DNB) configuration.

2.1. A macro-scale model

In the presence of appreciable plasticity, toughness is usually described in
terms of either crack opening displacement (COD) or the J-integral and crack
growth toughness plotted as R-curves of COD or J versus crack growth, Aa. The
definition of COD, with growth, is uncertain. In some test data it is represented
as the opening at the original crack tip whereas in others, it is taken at the
advancing tip. In this latter case, COD may be translated into crack tip opening
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angle, CTOA. The J-integral is known to become path-dependent with growth.
Initial studies, [8], suggested it might remain path-independent for growth up to
about 6% of the ligament but recent studies, [9-11], show it is path-dependent
from the first step of growth.

An alternative approach is to describe stable crack growth through the energy
dissipation rate, D, for growth in real elastic-plastic (rep) material, i.e. incremen-
tal plasticity for loading and linear elasticity for unloading, [12-15]. The term D
relates to the dissipation of energy by fracture and plasticity, although any plas-
ticity not connected to the crack tip field (e.g. at remote loading points) should
not be included. For stable growth, the crack driving force, C', must be equal to
the dissipation rate, D, so that for a two-dimensional model, thickness, B3, crack
advance, da,

C = d(U —wa)/Bda = d(wp + I')/Bda = D,

where U is work, duy is the recoverable elastic energy, wy is the energy dissipated
in plasticity and I" is the energy dissipated in fracture. The dissipation is mainly
into heat. The energy associated with the residual stresses during unloading has
not been separately identified. It is shown, [15], that for strict lefm, C = G
and dI'/Bda = 27y, the real surface energy. For the conventional engineering
application of lefm, C' = & and dI'/Bda = 27 in the Irwin-Orowan sense.
With appreciable plasticity, there is no direct relationship between I and the
conventional terms.

Since ' = D expresses conservation of energy, it must be applicable to any
description of stable growth but will not in itself provide a criterion for growth.
Some exploration was made with fully plastic cases, [13, 14], of splitting D into
areal and volumetric components for fracture, shear-lips and general (slip-line)
plasticity, each with a specific intensity and associated area or volume. However,
a more fruitful analysis was seen, [14] in terms of crack opening angle and it was
shown, [15], that D could be re-expressed as

D =G+ Qdqy/ B da,

where @ is load, ¢ is load point displacement and subscript pl implies the plas-
tic component. This expression holds for any degree of plasticity and any (two-
dimensional) configuration. The term (' is the conventional lefm term. The
non-dimensional term dqy/da invites treatment as some global measure of CTOA.
For deep notch bend (DNB) pieces, experiment showed that dq, was proportional
to 1/b [14, 16], where b is the width of the current ligament, {W — (ag + Aa)}.
An example is shown, Fig. 1. This linearity allowed a global crack opening angle
(COA), ay 4, to be defined as

(2.1) dgp/da = Say 51 /4r7b,
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F1G. 1. An example of the linearity of ¢ with Inb, relevant to the interpretation of (2.1);
: after [14].

where S is span and r* was at first taken to be the rotational constant, r = 0.4, as
in the standard COD test. It was then realised, [16, 17], that r* should be defined
incrementally for the position of the instantaneous centre of rotation. This was
found to be at (r*b, —¢) with r* = 0.8 or 0.9 for the high strength low hardening
metals of [14, 16], with ¢ being a small negative distance proportional to Aa,
implying the instantaneous centres were rather near the “back” face of the spec-
imen and slightly into the “other” half of the piece. The value of »* was constant
with growth for these fully plastic data so that, taken together with (2.1), o, o was
also constant with growth. For a centre cracked plate in tension, dqy/da = ay ).
This analysis and that of (2.1) are rigid-plastic, so some uncertainty remains on
whether the global COA, a, ), is indeed identical to the true tip CTOA, «. Until
that is resolved, the relationship is written

ﬂ‘g’pl = RQ,
where x is a constant of the order of unity.

2.2. A micro-scale model

In [15] this analysis was associated with a model for micro-void growth and
coalescence (mvc) in which CTOA, o, was seen as the consequence of a final
crack opening stretch, é;, of the micro-ligament between the current tip and a
void at distance, d, ahead of it, as suggested by WNUK [18]. Thus

a = 6,/d.
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One consequence of that model is that each step of crack advance, written as da,
is for a finite distance, d (the spacing of the inclusions on which the void grows).
Nevertheless, the conventional differential notation is retained as a convenience
despite the clear physical statement that da does not tend to a limit of zero. An-
other consequence is that the CTOA does not exist until after the micro-ligament
has separated. In short, the true local CTOA must either be formed in the incre-
ment, as in (2.1) or, if by differentiation of COD, then that must be conducted
at constant ligament size, b.

Support for this micro-model was taken from works such as [19, 20], where
direct measurement by a variety of techniques had shown that CTOA was indeed
constant with growth. The CTOA was however a function of both the position
through the thickness and of the overall configuration, the former no doubt due
to degree of out-of-plane constraint and the latter, of in-plane constraint. In [15] a
more detailed description of this model is given in terms of two stages of growth.
The first event in each step of growth is the formation and then expansion of
voids ahead of the crack tip, thereby forming a micro-ligament between the tip
and the void ahead of it; this micro-ligament is then separated by a micro-scale
instability. For application, this model is formalised into two stages. The first is
seen as “damage” in which the voids form and expand during plastic flow at fixed
crack length; the second is seen as actual crack growth with an apparent fracture
energy, in the Irwin-Orowan sense. In this formalised model, the first stage is
driven by increments in work, dU = (@ dq, and the scond by changes in elastic
energy at fixed displacement, dwe/ Bdal,.

There are several features of the physical model that are not carried over
correctly into this practical model, but that is accepted at the present stage of
the work. Thus, in the physical model, most of the surface energy is used in
the formation and expansion of the voids in the first or “damage” stage of each
step, but there is no advance, da, of the crack tip. As in the conventional use
of plasticity in metal working, such as rolling or extrusion, the formation of new
surfaces is not distinguished from the dissipation of energy in general plastic flow.
With work hardening, there will be an increase in load and thus in elastic strain
energy during this stage. In the absence of a detailed crack tip model with large
deformations at the tip itself, the separation stage, taken as a micro-instability,
must contain the energy both to stretch the micro-ligament plastically and then
to drive the instability. There must therefore be plastic flow around the tip during
this second stage, which, since the process is taken at fixed displacement, must
be driven by “release” of elastic energy. In short, the second stage is akin to the
Irwin - Orowan model for engineering lefm and contains a much larger change in
elastic energy than just that to drive the instability itself. However, despite that
working picture, it is not clear in reality how much, if any, new crack surface is
formed in this stage, since the micro-ligament might neck to a point or to some
void growth and separation on a finer scale. In three dimensions, these two stages
of growth will, of course, be merged by random variations of micro-structure
through the thickness.
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2.3. Some features of the model; R-curves, initiation and instability

23.1. R<urves. The energy dissipation rate, D, is seen as the true mechanical
meaning of crack growth resistance. It is identical to G for strict lefm, where
G and D must be constant with crack growth. In engineering lefm, where some
amount of yielding is implied, .J is usually taken to be similar to ' as enhanced
by a correction for plastic zone size. D is conceptually the same as the enhanced
value of GG but differs slightly according to the «/W ratio as the plastic zone
correction becomes larger. In full plasticity, D differs from .J very significantly,
as shown Fig. 2. After initiation, J is usually represented by a so-called Jp-curve
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F1G. 2. An example of a conventional rising J-R-curve and of the energy dissipation rate,
D, for quasi-static fully plastic ductile crack growth, after [14].

that rises with growth. In general, D reduces rapidly with growth as the load
on the remaining fully plastic ligament gets smaller, although for high hardening
materials, there is sometimes a region of rising D where the increase in load, due
to hardening, more than offsets the reduction in remaining width. It is clear that
D/b is akin to dJ/da in that both are d/Bda rates, whereas the only energetic
meaning of an experimental .J derived from the area of the loading diagram is
a normalised cumulative energy, not a d/Bda rate. These relationships, together
with discussion on a characterising rather than energetic meaning of Jp (where
the former retains the factor 7 in the normalisation of area whereas the latter
does not) are discussed more fully in [21].

2.3.2. Initiation. Initiation has not been closely studied. Conceptually it is seen as
the first occurence of damage leading to void growth followed by micro-instability,
but all the relevant values are different from later steps in growth because there
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has been no prior region of intense crack tip damage. Despite the recent Two
Parameter models for initiation, such as [22, 23], data shown in [22] present
no effect of constraint on COD for “zero” growth. The effect of constraint is
seen when COD is defined at some small amount of growth, here interpreted
as CTOA, albeit in the transient regime before a steady state of growth be-
comes established. In [19] the COD at “zero” growth was also near independent
of configuration, but after a small transient regime the steady state CTOA was
clearly configuration-dependent (about twofold higher for centre cracked tension
than for deep notch bend or compact tension for the low strength steel used).
Any conflict between the present and Two Parameter models over the constraint
dependency of initiation is thus apparent rather than real, according to the termi-
nology used, COD or CTOA, to characterise small amounts of growth. A simple
CTOA model for the transient regime, to connect a known initiation COD and
steady state CTOA, is given [24].

2.33. Final ductile instability. With plasticity, the change in elastic energy during
each step in growth is larger than (¢ Bda but less than B.Jda, since the “release”
cannot be less than the linear case nor more than the nonlinear elastic case. For
the elastic-plastic case the “release” written [25] as B[ da, is

[ =G+ G .

The energy rate ¢ is the lefm term that drives fracture in the Irwin-Orowan
sense. The energy rate (* passes to plasticity, perhaps such as in the plastic wake,
additional to the plasticity of general plastic flow and damage in the first stage
of growth. The source of the extra elastic change is that at fixed displacement,
q, there is an interchange of movements, dq, = —dq, that cannot of course
occur in the strict lefm case. This G* term is dependent on the compliance of the
whole system over which the fixity is taken for the separation stage and leads to
the system dependence of final ductile instability, as discussed [26].

3. Dynamic crack growth
3.1. The model used

The availability of the energy in the system, and indeed in the more remote
parts of a test specimen, depends on the crack speed so that if applied to other
than ductile growth, the present concepts must be treated with caution; they were
developed explicitly for the micro-ductile situation. If they were to be applied to
brittle fracture, not only is the micro-model described above inappropriate, but
the crack speeds would have to be limited to some small fraction of the Rayleigh
wave speed to minimise inertia effects in the specimen. Perhaps more significantly,
inertia in the testing system might also be relevant, since any sustained force on
the system might not be transmitted to the test section during crack growth. In
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the limit of high speed fracture only the length-independent G term is available
to drive the crack, as in lefm.

In reality, the development of the dynamic treatment outlined below took
place quite separately from the quasi-static model just described. As a matter
of routine, in all uses of the two-dimensional elasto-dynamic program, [5], con-
servation of energy was monitored. The only terms were the strain and Kinetic
energies and the energy dissipated through the “hold-back” force, applied as the
tip node was released. A three-dimensional program became available, based on
WHAMSE, [27]. It encompassed elasto-plastic dynamic growth with finite dis-
placements and used plate and shell elements of “hour-glass” type. A constant
strain 8-node hexahedral “brick” element is well known but a number of unsatis-
factory features exist, [4], for example zero bending and torsional stiffness. These
features were rectified as suggested in [28] and the improved elements with real-
istic stiffnesses incorporated into a modified program, WHAMSE?2. Application
was then made to various dynamic crack problems. The program can be run in
either “generation” or “application” mode. In the latter, one of a variety of par-
ameters such as J, U (work), CTOA and so on is specified as a function of crack
growth. The crack speed is then the output. The program has been used mainly in
the “generation” mode where a crack speed is specified and a toughness parame-
ter generated. In two-dimensional studies, its value was derived from the sum of
the nodal “hold-back” work and the local plastic dissipation, divided by the area
of crack growth. Any plasticity not connected to the crack tip was excluded from
the sum. The use of this sum as the measure of toughness is clearly consistent with
the energy dissipation rate, D, as described for quasi-static crack growth. In the
studies made, it is independent of element size, although the “hold-back” work
itself is not. The limited amount of plasticity in many cases allowed the tough-
ness to be seen as a dynamic value of ¢ so that a more general interpretation
for extensive plasticity did not arise.

3.2. An application to the double tension test

3.2.1. A two-dimensional analysis. In the double tension test, a small secondary piece
extends from the side of a conventional tension plate, connected by a small neck
of material. The secondary piece is then loaded by tension or split by a wedge to
introduce a running crack into the edge of the main test plate, Fig. 3. Experimental
data on several different structural steels had been reported, [29a], for a series of
tests on plates about 1 m wide by 1.5 m long. The starter tab had side grooves that
extended some 100 mm into the main plate. In some tests a complete fracture
occurred whilst in others, under slightly less arduous conditions of temperature
and tension, crack arrest occurred. In certain 50mm thick plate the arrested
cracks stopped almost at the end of the side grooves but showed appreciable
tunnelling in which the centreline of the crack was from 27 to 42mm in advance
of the surface length.
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F1G. 3. The double tension test arrangement as used in [29a].

Results of a two-dimensional elasto-dynamic analysis using the program in [5]
were reported [29b]. The input data was the nominal crack speed as reported
from breaking wires attached to the surface of the plates, about 500 m/s. For the
first series at 50 mm thick, the crack speed wires embraced crack lengths of only
about 300 mm. Dynamic analyses were made for the completely broken plate with
boundary conditions of either fixed displacement or fixed load; a static analysis
was also made. It was observed that the nodal forces in the “fixed load” case
started to differ from those in the fixed “displacement case” at about 300ps, a
time almost exactly that estimated for the irrotational wave to reach and return
from the loaded boundary. The two dynamic estimates, expressed as A p, were
similar and about 10% below the static estimates for the first 200 mm growth, but
thereafter the computation for the “constant load” case reached and appreciably
exceeded the static value, whilst for the “fixed displacement” case, it converged
to the value in the static case. The value of A'p by any of these measures for the
50 mm thick plate, appeared to increase from about 100 MPa,/m at the start of
the crack run to about 200 Mpa/m towards the end of the input data at about
300 mm growth. In short, in so far as estimating G p was an objective, the analysis
appeared reasonable and indeed showed little need for dynamic treatment.

Analysis of the arrested crack cases and of other tests on different steels and
thicknesses where the crack wire data embraced nearly all the plate width, were
less promising. For the arrested crack cases, K'p oscillated around the static value
by about +£15% but both the static and mean dynamic values were uncertain at
about the same level because of the uncertainty in the effective crack length with
tunnelling. The dynamic data in some tests showed much scatter corresponding



882 R.M. Curr AND C.E. TURNER

to very erratic input crack speeds from the breaking of the timing wires. Records
of strain gauges placed near the crack path allowed a reasonably smoothed crack
speed history to be constructed, from which smoothed input a reasonable dynamic
analysis was made. The overall pattern was of K'p rising with crack growth from
about 100 MPa,/m to about 280 MPa,/m for a particular steel over a crack growth
of about 350mm, and then remaining substantially constant until the end of
the run at 700mm growth. This was interpreted as a growth of shear-lips and
tunnelling over the first part of the history, followed by a near steady state of
growth for the second part.

3.2.2. A three-dimensional model. The main uncertainty in the results just outlined,
lies in the enforced lack in two dimensions of a model of crack tunnelling and
shear-lip formation, [3]. When the modified WHAMSE?2 program came into use,
it became possible to model three-dimensional features, such as side-grooves,
shear-lips and crack-front curvature, given an adequate experimental description.
In fact, only side grooves (where appropriate) and crack front curvature were
incorporated. The shear-lip shapes were not known and it was also reasoned that
the difference in energy dissipation between flat and oblique shear modes, both
ductile, would be rather small. Comparison of predicted surface strains with strain
gauges records of the passing crack, was very satisfactory, Fig. 4, for two estimates
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FIG. 4. A comparison of a strain gauge record during dynamic crack growth, from [29a],
and the strains computed using the three-dimensional tunnelling model described here.

of the crack front profile. With such an estimated shape, the three-dimensional
dynamic calculations showed a virtually constant value of K'p ~ 155 MN,/m for
crack growth from about 100mm at entry to the plate to 140 mm before arrest,
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whilst the velocity reduced from 370 m/s at the entry of the crack into the main
plate to zero at arrest.

For the case of complete fracture in the same material, the crack speed at entry
to the plate (still side-grooved) was about 600 m/s. It fell to about 380+20m/s at a
length of about 150 mm (corresponding to where arrest occurred in the other test)
and then accelerated to about 500m/s at 300mm growth, after which there was
no crack speed available. Thereafter the results depend upon uncertain assump-
tions. Assuming little increase in crack speed, consistent with a nearly constant
extent of tunnelling, K'p showed an appreciable increase with further growth,
just as in the two-dimensional computations described in Sec. 3.2.1. Allowing for
a further degree of tunnelling (up to about 88 mm) caused crack speeds up to
about 800 m/s with a modest increase in K from 150 MPa,/m at 300 m/s (consis-
tent with the data from the arrested crack case) to about 180 MPa,/m at 800 m/s.
But in the absence of more detailed experimental data, there is no guidance on
where between the two limits of constant extent of tunelling or constant Kp,
these particular tests should fall.

4. Discussion

The computations just discussed show that the WHAMSE?2 program, as now
developed, gives a very plausible interpretation of certain dynamic experimen-
tal data for ductile crack growth and arrest but also shows that this work is a
long way from being able to predict the behaviour of a dynamic crack, a priori.
Nevertheless, a selfconsistent interpretation of experimental data and extraction
of effective A'p values seems quite possible for the ductile behaviour and crack
speeds investigated, to a level set by the accuracy and detail of the input data
available.

In the two-dimensional or straight crack front case, an effective G based on
energy dissipated in both nodal release and plastic zone, has been used. To obtain
a useful I or GG in the three-dimensional case, the mid-section nodal stresses
and displacements at the tip, in the y direction perpendicular to the crack plane,
were averaged for a pair of crack face nodes in the thickness direction and then
multiplied to give, in effect, a local dissipation rate. This was calibrated as an
effective ¢ by comparison with the ¢ based on energy dissipation rate for a
straight crack front solution of the same problem with the same element size, d,.
by d,, to give

Gp = coyb,d,/d,.

Such a calibration constant, ¢, is no doubt a function of the degree of plasticity,
the proportions of the element and perhaps the ratio of kinetic to strain energy.

In the light of the more recent static model described, an interpretation
through CTOA would now be explored but in the double tension computations
described no attempt was made to do so. Nevertheless, the nodal displacements



884 R.M. Curr AND C.E. TURNER

used (albeit not based on just the plastic component of opening as seen for the
physical model) when divided by the nodal spacing, give a CTOA measure of
toughness. In a steady state condition, where the local crack tip stress, oy, is
constant, the CTOA criterion would be identical to the effective GG or K criterion
actually used.

In general, where local crack tip stress may vary due to oscillations in ki-
netic energy and to work hardening, it is not clear whether an energetic view is
preferable to the kinematic view implied by CTOA taken as CTOD over a nodal
distance. The latter is much more easily applied to curved crack fronts than is
an energy rate and is compatible with the conservation of energy statements for
the two-dimensional quasi-static treatment of rep material, made in Sec. 2. Arrest
would be seen when the applied CTOA did not reach the critical CTOA, but on
arrest, large oscillations are seen in elastic energy rather than in CTOA. Revert-
ing to the micro-arguments of Sec.2.2, it will be recalled that a key feature was
that the final stretch, §;, was essentially plastic in nature. In the lefm model there
is no opening at the tip and the ,/r dependence of the elastic opening implies
that an apparent elastic CTOA modelled by elements of size d would increase
according to 1/v/d. In the type of modelling used in this and most other crack
growth programs, there appears to be an elastic component of opening (at the
nodal distance, d, behind the tip) which does not have a counterpart in the phys-
ical model of CTOA described here. Prior to initiation, COD has been modelled
in finite element studies by use of the collapsed node element whereby, on load-
ing, an actual displacement occurs at the crack tip. That model was extended to
certain problems of crack growth in two dimensions, [30], but has not yet been
applied to the study of dissipation rate, CTOA or E-curves, still less to dynamic
growth.

5. Conclusions

A recently developed energy dissipation rate model of stable static growth,
also expressed in terms of ¢ and a global measure of crack tip opening angle,
has been summarised.

A three-dimensional elasto-plastic dynamic finite element program has been
outlined and an application given to a ductile crack running and/or arresting in
a double tension test.

Despite a number of reservations on the details of how the physical model
seen for ductile crack growth is best interpreted for analytical or computational
studies, the treatment of dynamic toughness described is consistent with the en-
ergy dissipation rate, IJ, and thus the CTOA model developed for static crack
growth, although there is no doubt a critical CTOA is a function of constraint
and, in the dynamic case, of crack speed.
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The results also show the importance of modelling the essentially three-di-
mensional feature of crack tunnelling. But the factors of crack speed, crack front
profile and variation of toughness with crack speed are all interlinked. To get a
full interpretation of a test, a rather detailed set of input data is required, such as
of crack speed history together with a number of strain gauge records as the crack
passes, because the crack front profile is an unknown shape both as a function
through the thickness at any instant of its development with crack advance.

At the present time no a priori prediction of dynamic ductile crack growth and
arrest can be made beyond a rather general pattern of behaviour.

6. Appendix. Some features of WHAMSE2

Many details of the modified WHAMSE program have not been detailed here.
A few remarks are now given.

Work hardening is incorporated in a linear piece-wise manner, although in
some experimental data even a dynamic stress-strain curve may not be available.
Incorporation of a model of variation of properties with strain rate is quite pos-
sible but, as already noted, for the crack speeds in question here, none has been
used.

A general validation of the program has been made by comparing results
with certain published data, notably the method of caustics data in [31], and with
in-house experimental data on cracks running in araldite and impact tests on steel
pieces. A static capability has been introduced into what is essentially a dynamic
method of solution by allowing the inertia of selected elements to be increased
during early stages of loading and then setting the residual velocity components
to zero. A very modest degree of damping is also introduced to eliminate spurious
oscillations that otherwise develop from numerical round off errors. Checks have
then been made with various known two and three-dimensional static solutions.

In the double tension work described, an element of size 6.25 mm along the
crack path (about 0.06% of the width) was used in several studies. For that
element size, a time step of 0.5ps was used, about 80% of the critical time
step, but of course much smaller element sizes and time steps might be required
in other problems. For some of the computations described, using a mesh of
4742 nodes and 2787 elements, the execution time on an IBRM RS6000 work
station was just under 30 mins per 1000 time steps or 1 hr per millisecond of
real time. For comparison with another program detailed in the literature, [32], a
similar dynamic three-point bend test was run. In [32], a running time of Shr per
millisecond of real time was quoted using a CRAY-XMP computer. The present
program showed a similar running time when run on a SUN work station of about
one tenth of the operational speed of the CRAY.
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Nonlinear effects around the fast running crack tip

M. DRZIK (BRATISLAVA)

EXPERIMENTAL INVESTIGATION of stress-strain field around a fast running crack tip in polymer
material is decribed. The stress-strain field during the cracking changes rapidly so that viscoelastic
properties of polymers have to be taken into account. The analysis of influence of the viscoelastic
behaviour of the material on the real values of dynamic stress intensity factor was performed on
the basis of the holographically measured near-tip deformation. Although the deformation remains
almost the same including high crack tip velocities, the stress intensity factor grows considerably.

1. Introduction

FRACTURE OF THE PROPAGATING CRACK from the point of view of mechanics is a
highly complicated phenomenon influenced by a number of factors. Theoretical
solutions cannot completely explain some of the effects, such as non-elastic de-
formation, accumulation of micro-defects, continuity of the cracking process etc.
Most of the experimental works aimed at the observation of this dynamic frac-
ture process give an information from the macroscopical standpoint. However,
occurence of local flaws in the fracture process zone as well as the properties
of material also play a significant role. In this respect, the frequently used op-
tical method of caustics collects its shadow patterns from the region nearest to
the crack tip but, due to its nature, the data are limited to some points. The
whole field of detailed information about the deformation near the crack tip
can be reached by using the holographic interferometry. HoLLOWAY et al. [1],
RosSMANITH [2] and also KHESIN et al. [3] were the first who studied the fast
propagating cracks by means of holography. Their experiments were aimed at
the investigation of the dynamic fracture toughness and evaluation of these data
from the interference fringes obtained.

In the present paper the holographic interferometry with a high spatial re-
solving power is used for the measurement of dynamic interference pattern in
close vicinity of the running crack tip. The specimens are made of polymeric ma-
terial, so the viscoelastic behaviour of the material is taken into account. Also a
considerable distortion of the fringes close to the moving crack tip was observed.

2. Experiment

In order to obtain the isopachic interference fringes, the experiments have
been carried out by the experimental set-up of a holographic interferometer de-
signed for clear transparent objects. In the optical arrangement, the image plane
holographic technique is used where the diffusor screen is not included. That is
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why the recorded interference pattern can be photographically magnified without
any appearance of speckle noise. The holograms were taken by a pulsed ruby
laser (694.3 nm), with output power of ~ 50 mJ.

Catastrophic propagation of the cracks has been observed on the three-point
bend specimens. These slender beams (220 x 50 x 4 mm) were cut from the
sheets of polymethylmetacrylate (PMMA) commercially available as Acrylon.
Crack movement starts from an initially short notch by the loading force. This
was created by a preliminarily compressed strong coil spring which was gripped
tightly by means of a steel wire before start. Mechanical wire breaking produces
not only the external load, but also triggers the countdown in the synchronisation
block of the laser. Before that, the first exposure of the hologram is carried out
with unloaded specimen. After the wire breaking, the external load increases as
shown in Fig.1, where the time history of the load for the whole cracking pro-
cess, together with the evaluated values of stress intensity factor, is drawn. It can
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[1G. 1. Experimentally determined values of dynamic stress intensity factor vs. loading
force history.

be seen that the loading force (measured by strain gauge) grows monotonically
and passes a certain critical region when the crack starts to propagate. In the
experiment the loading time to initiation of the fracture took about 1 ms. In this
manner the quasi-static conditions of the crack propagation process are secured
and the influence of waves reflected from free boundaries of the specimen is
negligible. After the lapse of the time interval, the crack tip reaches a position
at which the second laser light pulse is flashed. At this second exposure, inter-
ference fringes of the instantaneous deformation around the crack are recorded.
Crack tip speed at that moment was determined from time intervals between the
breakings of graphite conductive lines drawn on the specimen surface, and also
from the characteristic microstructure of the fractured surfaces.
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An example of the interference pattern obtained at the moment of a fast mov-
ing crack is shown in Fig. 2. In the figure the whole field of vision of interferometer
is shown.

F1G. 2. Isopachic interference pattern in a beam made of PMMA transparent material
at the moment of cracking.

3. Evaluation of the dynamic stress field

The interference fringes in Fig.2 are the so-called isopachics. Procedure of
their evaluation is based on the fact that interference fringes visible on the trans-
parent specimen under plane stress conditions are the curves of equal changes of
specimen thickness between the unloaded and loaded state. These changes are
proportional to the sums of principal stresses, o, + o,, S0 we can write

(3.1) o+ o, = (',_%,
where N is the fringe order, £ is the thickness of the specimen, and ¢, is the
fringe value. Besides the mechanical parameters, in the case of light propagating
through the transparent material, the optical response ¢; depends also on the
optical properties of the material.

Catastrophic crack growth is a fast dynamic process. In order to evaluate the
spatial distribution of the stresses, two main factors have to be taken into account.
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If the crack propagates very fast, the velocity of stress wave cannot be regarded
as infinite. Thus we have to study the dynamic behaviour of a linear elastic body.
The value of the first invariant, under the assumption of constant crack tip vel-
ocity, is found by FREUND [4], ABERSON et al. [5] from the relationship

(32) oz + 0y = (3= D) [h1(21) + 51| »

where ¢;(z) is the complex potential function, and

-3 -1/2
(3.3) s; = 1—(1) . j=12,
Cj

where c;, ¢; are the velocities of shearing and longitudinal stress waves, « is the
crack tip velocity. Assuming the complex stress function ¢;(z;) as

(o]

(3-4) bi(a1) = 3 (Azac1 2" + A9 271,

n=1

where A,,_1, Ay, are arbitrary real coefficients, we have

(3.5) oyt oy = 2(3% o 3%) Z [AZn—l Q"_% cos (n - %) 9

n=1

+ Ay, 0" Leos(n — 1)9].

In this expression p, ¥ are the polar coordinates which are following the running
crack tip. The dynamic stress intensity factor K;p was defined by FREUND [4] as

i 45139 — (1 + s3)?
(36) Kip=- : (1-:3%) 2) V21 - Ay

After a short analysis of this expression, when real values of maximum crack
tip velocities are considered (i.e. the value of a/c, does not exceed 0.2 — 0.3),
a very small dynamic correction factor (a few percent) can be found. As a rule,
such small correction is of the order of experimental uncertainty and of the
measurement errors.

The viscoelastic properties of polymers is a much more important factor. It is
well known that all polymers creep under the load. In particular, such polymer as
PMMA presents high strain-rate dependence. An assessment of the influence of
viscoelasticity on the strain field pattern can be made by comparison of the experi-
mentally obtained interference fringes with the results computed theoretically
for viscoelastic environment at different values of the viscoelastic parameters.
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However, the complete solution including many parameters of real material may
be complicated. The determination of differences between the theoretical solution
for a linear elastic material and the results of experiments carried out on the
specimens made of viscoelastic polymer material may be an easier way.

The problem under consideration is as follows. The loading force is quasi-
statically increasing (Fig. 1), and the deformation around the crack is growing, too.
Then the crack starts to propagate and this propagation is rapidly accelerating to
the crack tip velocities of about 400 m/s and, at the end of the path, it remains
nearly constant. Due to viscoelastic behaviour of the material, the crack tip is
situated in a medium which seems to be increasingly stiff.

The concept of linear viscoelasticity is based on the following approximate
assumption. For a stress gradient of amplitude og which rises sinusoidally with a
constant angular frequency w

3.7) o(t) = ogexp(iwt),
the material response can be written in the form
(3.8) (1) = eoexpli(wt — )],

where ¢ is phase angle of time delay of ¢(t) after o(t). The effective complex
modulus of the material is defined as

(3.9) E*=E|+iE; = Z_O exp(iy).
0

If the stress is an independent variable, the deformation at any time ¢ is deter-
mined by the expression

(3.10) £=

=l Q

{
- + %/w(t — T)Z—:(IT,
0

where 1(t) is the creep function and E is the relaxation modulus of elasticity.

As a result, the constant phase shift over the whole field causes that the
strain field will be followed by the same spatial stress distribution. However, the
quantitative stress-strain relation will be described by the complex modulus of
material for the given frequency of the loading pulse.

The analysis of the shape and distribution of isopachic fringes obtained ex-
perimentally was performed. An example of comparison of the fringes with a
theoretical solution is shown in Fig.3. This is the case of the crack tip neigh-
bourhood at the moment of velocity of about 400 m/s. The quasi-static singular
solution is drawn by dashed line. As we are proceeding from the crack tip, the
layout of separate fringe curves on the whole pattern shows the shift of the curves
one after the other in the direction of crack propagation. The curves, and con-
sequently the deformation, further away from the point of the crack tip remain
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behind those close to the crack tip. The extent of the zone is limited by the di-
mension < 2.0mm (for »/h < 0.5) as it is known from the analysis of RosAkis
and RAVI-CHANDAR [6]. On the other hand, the outside contour of the transient
zone ends at points where the influence of non-uniform beam-like farfield loading
stress distribution becomes noticeable.
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F1G. 3. Comparison of experimental isopachic fringe pattern around the crack tip moving
at the velocity of about 400 m/s with that calculated from quasi-static singular solution.

The distortion of fringes visible in the part of the pattern in the near vicinity of
the crack tip is caused by the three-dimensionality of the stress field. This shape of
the fringes can be observed also in the case of static loading conditions. However,
in the transient zone, where the singular term is dominating and 3-D effects are
reduced, there is a certain similarity between the shape of curves experimentally
obtained and the curves calculated from the quasi-static singular solution. This
phenomenon could be explained by the extent of the stress intensity factor field
under transient conditions as it is described below. A higher order asymptotic
expansion of the crack tip field was obtained for transient crack growth by FREUND
and Rosackis [7]. The leading term is the stress intensity factor contribution, and
the higher order terms take into account the history of the stress intensity factor
and the crack motion. At the increasing slope of the time dependence of the stress
intensity factor, the transient solution provides a similar pattern of deformation,
as it can be seen in Fig. 3.
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However, this reasoning may exclude the possibility of non-linearities in the
viscoelastic behaviour of the material. A real PMMA material does not exactly
obey the linear viscoelasticity theory as that described above. In fact, a consider-
able residual deformation may occur due to a long-lasting period of creep. This
effect is probably observable behind the crack tip, near the crack faces. Obviously,
to separate exactly these phenomena, new investigations will be needed.

Another important question which deserves attention is the evaluation of the
real value of the dynamic stress intensity factor. As it was mentioned above,
at higher loading rates the material parameters change, so the fringe value in
expression (3.1) also changes. An expression for the optically inert transparent
material such as PMMA may be derived from the optical path difference of
interfering light wavefronts before and after deformation of the specimen

(3.11) P 4 i

co — %(ﬂo 1) b

where A is wavelength, ¢g, ng are the optical constant and index of refraction of
the optically inert material, respectively, and F, v are the material parameters: in-
stantaneous modulus of elasticity and Poisson’s ratio. On the basis of experiments
under dynamic conditions for such a material as PMMA, we can assume negli-
gible changes of the parameters A, ng and small changes of the optical constant ¢
and Poisson’s ratio [9]. Thus, modulus E is the most important parameter which
influences the fringe value ¢,. It must be noted that holography of transparent
specimens measures mainly the deformation changes. By our experience, about
70 percent of all the path difference is due to transversal changes of the specimen
thickness, and the rest — to the changes of the index of refraction caused by the
stress.

Since the dynamic value of Young’s modulus depends on the loading fre-
quency, it was necessary to find the relation between the crack velocity and the
time history of deformation near the crack path. An assessment of this relation
was performed on the assumption that for the material near the path of a moving
crack, passing of a crack tip as a function of time appears as a stress pulse [8].
The amplitude of such stress pulse and the point under consideration may be
given by the sum of principal stresses (Fig.4). Assuming that the crack speed is
nearly constant, the deformation around the fast running crack tip may be used to
determine the time-dependence of the stress sums (see upper right-hand corner
of Fig.4). The typical frequency of this pulse can be obtained using the Fourier
analysis. An example of such frequency spectrum is shown in Fig. 5 for the crack
tip velocity of about 400 m/s. As it can be seen, the maximum of the spectrum
is situated close to the frequency of about 40 kHz. The value of the modulus of
elasticity for PMMA Acrylon in the region of such frequencies exceeds 6300 MPa,
in comparison with its static value of 3400 MPa [10]. Then, the dynamic fringe
value for isopachic evaluation will exceed its static counterpart by 45 percent.
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F1G. 5. Frequency spectrum of the stress pulse created by a fast moving stress field
around the crack tip.

Using this procedure, true values of dynamic stress intensity factor were ob-
tained for different velocities of the propagating crack. These results are drawn
in Fig. 1, where also dependence of that factor on the applied loading force can



NONLINEAR EFFECTS AROUND THE FAST RUNNING CRACK TIP 897

be deduced. As it can be seen, the dynamic stress intensity factor does not remain
constant but it grows substantially with increasing crack tip velocity.

4. Conclusions

Taking into account the viscoelastic properties of the specimen material, the
important corrections to the actual values of the stress intensity factor obtained
from experimental data, as well as to the time-dependences must be realized.
These corrections are substantial and may reach some tens of percents.

It has been shown that the field of transversal deformation on the cracking
specimen under plane stress conditions is retarded with respect to the field of
sums of principal stresses, in accordance with the theory of viscoelasticity. More-
over, around the crack tip moving with higher velocities, certain irregularities in
the deformation were observed which cannot be explained within the framework
of linear viscoelasticity.
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On fast crack propagation in viscoplastic materials

S. HEIMER, J. HOHE and D. GROSS (DARMSTADT)

A FAST PROPAGATING semi-infinite crack in an infinite body is examined by two different models
using a Perzyna-type viscoplastic constitutive equation. In the first part, the crack tip fields of a fast
crack in a viscoplastic power law hardening material are investigated. Application of a separation
technique leads to a system of ordinary differential equations which is solved by a multiple shooting
method. In the second part, a damage yield strip model for fast stationary crack growth based on
Gurson’s continuum damage model is developed. The obtained system of integral equations is
solved by a finite difference scheme. Both approaches are illustrated by some examples.

1. Introduction

IF INELASTIC MATERIAL behaviour is considered in conjunction with rapid defor-
mation, rate effects cannot be neglected. Therefore, in many cases the use of
viscoplastic material models is necessary.

The importance of calculating the crack tip fields for moving cracks in such
materials has established numerous methods to solve the field equations for power
law hardening material models. A lot of work has been done to investigate creep
crack growth by Hur and RiepEL [6], RIEDEL [15], STAMM and WALz [16, 17],
CHANG, PopeLAR and StaAB [1], Li and NeepLEMAN [8], Hur and Wu [7]. In
comparison, there exist only few works on rapid crack propagation. Some analyti-
cal results can be found in [9], while purely numerical treatments based on the
finite element method are given by OsTLUND [12] and DENG and RoSAKis [3].

In the first part of this study the “classical” multiple shooting method is
used to solve the problem of dynamic crack growth. Use of a special optimiza-
tion routine that doesn’t calculate any derivatives leads, in conjunction with a
Runge - Kutta-method, to a very stable numerical scheme. It allows the solution
of problems with arbitrary material parameters for plane stress, plane strain and
antiplane shear. After calculation of stresses and strains, further investigations
can be carried out to draw some conclusions about the direction of crack prop-
agation, the unloading zone, the viscoplastic part of the strains and the relation
between the applied load and the crack tip velocity.

Another relatively new approach to consider fracture problems is the descrip-
tion of the fracture process by a damage model. Thus, the fracture process is
described by the material constitutive equation itself. Consequently, no external
fracture criterion is needed. In the range of damage models available in litera-
ture, the model proposed by GURSON [5] has been very successful. It describes the
damage process by nucleation, growth and coalescence of microvoids and uses
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the voic volume fraction f as a damage parameter. Compared with other mod-
els, Gurson’s model has the advantage of being founded very well on a physical
consideration. In the present study, this model has been employed in modified
form as given by TVERGAARD and NEEDLEMAN [19, 20, 21].

The direct application of the modified Gurson model yields a very compli-
cated boundary value problem. To avoid the resulting difficulties, ZHANG and
GRross [22] presented a simple Dugdale - Barenblatt - type yield strip model based
on Gurson’s model. In [22] it was used to consider stable crack growth and
nonrate-dependent plasticity. A similar model for rate dependent plasticity which
does not include any damage effects was used by NILSSON ef al. [11].

In the present study, a damage yield strip model is developed to describe
viscoplastic behaviour of the matrix material given by a Perzyna - type constitutive
equation [13, 14]. The application of this yield strip model to the rapid crack
propagztion problem leads to a system of nonlinear integral equations, which is
solved numerically by a finite difference scheme.

2. Crack tip fields

2.1. General formulation

To investigate the field quantities at a crack tip we start with the governing
equations, the equation of momentum balance

(2.1) Oij; = 0 Ui,
the kinematics

(2.2) €ij = %(ui,j + uji)
and the material law

(2.3) i = 85 + &P,

As can be seen, it is postulated that in this case the total strain rate can be
split up into an elastic and a viscoplastic part, which is given by a Perzyna-type
constitutive equation:

o\
(2.9) &7 = 1< kz —1> L s s n>1.
7\ k

Here k is the yield stress in shear, 7 is a viscosity parameter and = is a hardening
exponent. The deviatoric part of the stress tensor is given by o}; and its second
invariant by J5.
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If stresses and strains are expected to be singular at the crack tip, it is possible
to eliminate time as an independent variable. This is done by Galilean transfor-
mation into a special coordinate system which is tixed ut the tip and moses with
the crack velocity a (Fig.1a):

2.5) 0 d 0 d () .0
; — = — — = - = —q—.
ax Iz’ dy 9y’ Ut dz
a)
y
X
\ aft) .
bl
a5 —
B elastic elastic - viscoplastic
g . N 1 1 1 | | | 4 | ]
0 2 4 6 8 10 n 12

IF1G. 1. a) Galilean transformation, b) strength of singularity.

Next, it is assumed that the field quantities can be written in separated form as
power series in 7. Because of the singularity, only the first term of the series must
be considered. This yields the following ansatz for the crack tip field:

1
(2.6) aij(r, ) = rFi;(¢), —3%A<0

The lower limit for A is a consequence of the postulate that the energy in a
small region around the crack tip must be bounded, the upper one guarantees
singular stresses. The strength of singularity is directly given by Eqs. (2.1)-(2.4).
Following Hur and RIeDEL [6] it is simply found out that the viscoplastic part of
the strain rates can never dominate the elastic one. Hence, either the crack tip
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fields are described as purely elastic, or both parts of the strain rates have the

same singularity. However, A is a function of the hardening exponent n (Fig. 1b):

: . a 1
i) ¢° dominates: ,\=—§, 1<n<3,

1
1-n’
This result leads to the introduction of new dimensionless field quantities:

k" 1/ 1)
ar e
aij(r,p) = ( ) nai; (),

"

B el
ui(r, ) = ( ) i (),

n > 3.

ii) otherwise: A=

2.7)

T

where u is the shear modulus.
Substitution of (2.7) into (2.1)-(2.4) yields a system of nonlinear differential
equations for the angular distribution of stresses and displacements:

dY

e.g. in case of plane stress

di, di, . . . . -\
yTrs Ty Trps Uy, Uy .

dp’ dp

¥(e) = (

The solution depends only on the hardening exponent n, Poisson’s ratio v and
the Mach number m = a /c;, where ¢, is the shear wave velocity.

2.2. Numerical solution

Equation (2.8) describes a nonlinear boundary value problem which has some
properties that make the solution more difficult. Because matrix M is singular
at ¢ = 0 and ¢ = =, some differential equations change to algebraic ones.
Moreover, very steep gradients can occur in the solution what demands a special
integration routine.

First, the problem is transformed into a nonlinear optimization problem by
introducing a residuum describing the condition of stress-free crack faces

(2.9) R=5l(p=m)+7(p=7) — 0.

Now, (2.8) is solved like an initial boundary value problem by using a suitable
starting approximation Yo = Y(p = 0). The integration is carried out by a
Runge - Kutta method of fifth order using an automatic step control. The bound-
ary conditions at ¢ = 7 are controlled by (2.9) and the same procedure is repeated
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with a better Y until 2 < ¢. To make the scheme more efficient, the optimization
algorithm will be combined with Newton’s method, if ¢ is small enough. This leads
to a very stable and powerful multiple shooting algorithm to solve the boundary
value problem described above.

2.3. Results

The system of differential equations has been solved for different combinations
of parameters n, v, m. For example, Fig.2a shows the angular distribution of
the dimensionless circumferential stress o, in plane stress for n = 9. If it is
assumed that the direction of crack propagation is determined by Erdogan’s and

a) 25
6 Mach number m

-05 1 | 1 1

b) 08

unstable

o7

1 1 1 1 1 1 1 1
0s 3 6 9 n 12

F1G. 2. a) Circumferential stress, b) stability of direction of crack propagation.
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Sih’s hypothesis of maximum circumferential stress [4], its stability is given by the
second derivative of 7, with respect to ¢ (Fig. 2b). As can be seen, the assumption
of straight crack propagation (2.5) was correct because the crack velocity usually
does not exceed 0.6-m.

Mach number m

b) 180
0 / unlcading area
L /
6%, 7.t)
)
\
& 4
m=04
0 1 | 1 | | 1
4 8 2 6 n 20

F1G. 3. a) Equivalent stress, b) unloading area.

In Fig.3a the angular distribution of the equivalent stress is plotted versus
the angle ¢ again for n = 9. The picture clearly shows loading, unloading and
reloading areas for different Mach numbers m. The boundaries between the three
zones can easily be calculated by

95, (,3,D _
ot
and are represented in Fig.3b as functions of the hardening exponent n.

(2.10)
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a) 1o

" |

b) ps

041 stable
£"" maximum

03

02

o1 unstable

Mmin |——

F1G. 4. a) Viscoplastic part of the strains, b) small scale yiclding investigation.

Next, the viscoplastic part of the strains is computed. Using (2.4) and the
ansatz

up _ ~up
(2.11) E;f = (—-—) &

T

a system of differential equations of the form simitar to (2.8) is obtained. It can
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be integrated analytically [9] by

1o
en) / o1
\/— smn l(tg

but it is more efficient to integrate it using the same algorithm as (2.8). The result
is presented in Fig.4 a. In analogy to quasi-static creep crack growth [6], in the
case of small scale yielding a more detailed investigation is possible. Adopting
the fracture criterion that the equivalent plastic strain must reach a certain level
g¥? = g, at a characteristic distance z, ahead of the crack tip, it is possible
to find a relation between the applied load and the crack tip velocity, which is
shown in Fig.4b. There is a minimum load and a minimum speed below which
no crack growth will occur. The upper branch is stable in the sense that the crack
will accelerate or slow down, if its velocity is higher or lower than that given
for a certain load level. The lower branch is unstable, because the crack will be
arrested for m < my;, and accelerate for m > mp;, until the upper branch is
reached. It should be mentioned that 7 will attain its maximum value, if the
stable state is obtained.

3. Damage yield strip model
3.1. Constitutive equations

As noted before, Gurson’s damage model [5] in modified form given by
TVERGAARD and NEEDLEMAN [19, 21] is used to describe the fracture process
in the second part of this study. Thus, the following approximate yield condition
is used: 4
(3.1) &= 7 +2q,f* cosh (”"“’“) ~ (14 @) =0

M 20y,

3 1/2
G (EUSJU;J') ’

where

(3.2) U{j = 0',']' — §Ukk5ij .
f if f<fe,
PRVl -p s>
f

In (3.1)-(3.2), 0;; and o}; denote the macroscopic stress tensor and its deviatoric
part, respectively, o. is the macroscopic equivalent stress, o,, the equivalent stress
of the matrix material, f the actual and f* the effective void volume fraction; ¢,
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¢, f- and f; are material parameters. Note that (3.1) is reduced to the v.Mises
yield condition if the void volume fraction f vanishes.

The void volume increment is divided into an increment dependent on the
growth of the existing voids and an increment dependent on the nucleation of
new voids:

(33) f= fgrowth + f nucleation »
where a superimposed dot denotes partial differentiation with respect to time.

In (3.3), the first term can easily be derived from the condition of plastic incom-
pressibility of the matrix material:

(34) ]growth =(1- f)lei :

According to NEEDLEMAN and RIcCE [10], the nucleation increment is taken to
be of the following form (only strain-controlled nucleation is considered in this
study):

(35) fnucleation =D é::f’

where ¢ 7 denotes the equivalent plastic strain in the matrix material. For D,
CHu and NEEDLEMAN [2] have suggested a Gaussian distribution around a certain
microscopic equivalent plastic strain ¢ :

vp 2
_lfﬁ*M)
(3.6) D=—ll—ez<s~

where fy and s, are material parameters.
As in the previous section, a Perzyna-type constitutive equation is used to
describe the microscopic material behaviour:

1(eo !
SUP = M
(3.7) & n(% 1),

In (3.7), o, is the initial yield stress, n a hardening exponent and 7 a viscosity
parameter. Introduction of the flow rule

(3.8) = 4 92

Ciq '
L do;;

and the equivalence of macroscopic and microscopic work rate

(39) 0i; 8 = (1= f)o, &7
yields the macroscopic stress-strain rate relation:
. 1- M 1 (o "
:UP — —___( t j— A —
(3.10) S T 3 . ( = 1) ;
Z€ 4 qkE g
a2 o
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where
£,
A/I” = § ij + Q(S,'j ,
2ay,;
(3.11) A
* 0 Okk
a = —z—qlqu smh(-q’z—2 -U—if) :

By introduction of a macroscopic equivalent plastic strain increment

2 e 1/2
(3.12) ew = (serer)

Egs. (3.3) and (3.10) can be rewritten in the form

" 1-f 1(c g
VP s S M
(3.13) 22 im o (Uﬂ 1) ,
Tt Te
. Y &
(3.14) Fu| 220D peeny] L (&— 1) ,
Te Okk B\ P
—= +a—
U,M Ty

which is more appropriate for implementation in a yield strip model (Fig.5).

61x,t)

~
a(t)
1 alt)er(t)
/144rlfrﬂ H

F1G. 5. Yield strip model.
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3.2. Yield strip model and numerical treatment

Direct using of (3.1), (3.3) and (3.10) with the kinematic equation and the equi-
librium condition or the momentum balance yields a very complicated system of
equations which is difficult to solve. Therefore, a simple Dugdale - Barenblatt-type
yield strip model (see Fig.5) is employed. That means, that the crack length a(t)
is extended by a certain length r,(t), which is unknown as yet. Then, a stress
a(z,t) is applied to the crack surfaces in the area of this extension. By assump-
tion of a linear relation between crack face displacement in the yield strip area
and plastic equivalent strain (using a finite yield strip width 4,)

2vy(z,0,1)

(3.15) e (a,0,1) = =25

if a(t) <z < a(t)+ (),

P

it becomes possible to implement the viscoplastic part of the constitutive equa-
tions (in one-dimensional form) by setting

(3.16) o(z,t) = o92(c"" (2,0, 1)).

The out-of-strip area is regarded to be linear elastic. Using this procedure, the
elastic-viscoplastic problem is modelled by a linear elastic problem with an ex-
tended crack and special, highly nonlinear boundary conditions.

Due to the assumption of linear elastic behaviour in the model problem, the
yield strip opening displacement 6(z,t) = 2v,(z,0,t) can be determined by su-
perposition of the well known fundamental solutions given in the Handbook by
TADA, Paris and Irwin [18]. It is obtained in the form

(17) bz 1) = 8ol \/“(”) a1 Rl

Ex 2T
Repe Va®) +rp(0) — 2 + \Ja() + 1 (1) — 2
~ o o(z”™) In dz*,
™ ) ‘\/(;(t) + rp(t) — 7 - \/a(i.) + rp(t) — z*
E for plain stress,
3.18 E* = E :
(3-18) T2 for plain strain,
-V

where K, denotes the applied stress intensity factor describing the external load,
while £ and v denote Young’s modulus and Poisson’s ratio, respectively (Table 1).

The length r,, of the yield strip is determined from the condition, that no elastic
singularity occurs at the mathematical crack tip (z(t) = a(t) + r,(?)). Therefore,
the total stress intensity factor must vanish:

(47,0
(3.19) Kia—1/2 f o(a’) dz* = 0.
LS a(t) \/a(t) + 1p(2) — z*
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Table 1. Material properties.

E [%] - [W] n | nis | b [om] | Kieo #]
2.1-1° [ 03 400 6 1.0 0.1 3200

In SN En fe Iy q q2

0.06 0.1 0.3 0.15 | 0.25 1.5 1.0

For convenience, a dimensionless coordinate z = (z — a(t) — r,(t))/r,(t) (see
Fig.5) is introduced. Thus, Eqgs. (3.17) and (3.19) are rewritten to the form:

0 k
§(z) = 81‘\/"’_ VPV —T — 4’"” / o(@*)In ’gi’ \/:Z-df*,

(3.20)

For implementation, the material equations (3.13) and (3.14) have to be rewritten
in one-dimensional form. Assuming 02;(Z) = o(%) is the only non-vanishing
component of the stress tensor, the following equations are obtained, definig the
relation between yield strip stress ¢(7) and yield strip opening displacement é(z):

S et D1 ()
(—UM @ + a(z))

(T = f(Z))? Gl n
(3.21) %f(f)- el — A + D(8(z)) % (_M()_l) 7

o’ () a(x) %0
ot (LL') e ® 0, (%)
_ o ( ) q U(T) * =
- 2t S @eosh (3275 ) - (14 @S @F)

An analytical solution of the system (3.21) is impossible, a numerical scheme
must be employed. Therefore, the yield strip is discretized and the integration in
Egs. (3.20) is carried out numerically by using a summarized trapezoidal rule. A
nonlinear algebraic system of equations is obtained, which is solved by a New-
ton - Raphson-method using parameter tracking.
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33. Example

Numerical calculations have been carried out for the material example given
in Table 1 under plane stress conditions. Four different load levels have been
examined, the results are plotted in Fig. 6 a-d.

In Fig. 6a, the yield strip stress o(7) is presented as a function of the coor-
dinate 7. Starting from the mathematical crack tip z = 0 at the right-hand side
of the plot, first an area is observed, where neither hardening nor softening oc-
curs. In this area, the yield condition is satisfied but nearly no plastic strains are
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F1G. 6. Yield strip model - results; a) Yield strip stress, b) void volume fraction,
c) yield strip opening displacement, d) crack tip velocity.

present. The extended crack remains perfectly closed as can be seen in Fig. 6c¢.
If the yield strip starts to open, the yield strip stress increases due to viscoplastic
hardening. On the other hand, the presence of plastic strains results in an increase
of void volume fraction (see Fig. 6b). For this reason, the macroscopic yield strip
stress reaches a maximum and decreases towards the physical crack tipz = —1. If
the void volume fraction f exceeds the value f., the stress gradient becomes very
steep. At the crack tip, the void volume fraction f reaches the maximum value
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of f = 25%. At this point the stress carrying capacity of the material is totally
lost. Note that this value is not reached at the lowest load level K;, = K,o. At
this load, the level crack propagation is impossible.

The different values of the stress maxima in Fig.6a can be explained by the
fact, that an increasing load results in increasing crack tip velocity (see Fig. 6d).
Therefore, the strain rate is increasing with increasing load, what yields increasing
viscous hardening of the material.

4, Conclusion

In the present study, fast crack propagation has been investigated. Because
rate effects often cannot be neglected at high velocities, a rate-sensitive material
behaviour described by a Perzyna - type constitutive equation was considered. The
problem was investigated by two different models.

First, the crack tip fields were calculated by means of a multiple shooting
method. A special optimization routine in conjunction with a Runge - Kutta inte-
gration led to a very stable numerical scheme to solve the field equations. Further
investigations gave some results on the behaviour of a running crack. Especially
it was shown that under small-scale-yielding conditions crack propagation is only
possible for a certain load level that governs the crack tip velocity.

In the second part of the study, a damage model was introduced to describe
the fracture process. Therefore, no external fracture criterion was needed and a
direct relation between external load and crack tip velocity could be determined.
To avoid the difficulties of the numerical solution of the very complicated system
of constitutive equations resulting from a direct implementation of a damage
model into the mechanical field equations, a damage yield strip model based
on Gurson’s continuum damage model has been developed. By discretization of
this model, a very efficient numerical algorithm was obtained. The method was
illustrated by calculating a material example.
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Dynamic interface crack propagation
and related problems of caustics

K.P. HERRMANN and A. NOE (PADERBORN)

DYNAMIC CRACK extension of cracks running along curvilinear interfaces of brittle bimaterials sub-
jected to mechanical crack surface loads and superimposed thermal strains acting along the liga-
ment is considered by utilizing the linear theory of thermoelasticity. In the framework of Stroh’s
method, from the corresponding boundary and continuity conditions, a vectorial Hilbert problem
is derived to determine vectors of generalized complex potentials. Based on a physically reasonable
stress intensity vector definition, explicit integral formulae for the stress intensity vector of mechan-
ically loaded crack surfaces and a thermally strained ligament are obtained and discussed in view
of interface mechanics parameters: applied loading, interface, crack-tip velocity and curvature of
the interface. In the course of an experimental determination of stress intensity factors from the
experimentally recorded caustics, a measuring algorithm is proposed which does not require the
crack-tip location to be known exactly.

1. Introduction

IN RECENT YEARS, compounds of materials with different material constants have
turned out to be the starting point or the precondition for the development of
newly designed high-tech products or high-performance processing technologies.
The enumeration of various examples includes classical composite structures in
spacecrafts as well as in aircrafts, electronic devices in the field of information
technologies or more refined bonding processing technologies in the domain of
adhesive joints and protective coatings. Essentially, the interface is often the
most sensitive locus in the aforementioned compounds regarding their structural
performance as well as failure behaviour. Since substantial mechanical interface
characteristics of multi-phase materials are not primarily affected by the typical
length scale of a structure, the mechanics of interfaces can be investigated by
an intrinsic mechanical interface model, now commonly known as bimaterial. In
general, during manufacturing or due to the operating conditions the interfaces
are damaged and, in particular, interface cracks have been proved to be the ele-
mentary failure mechanisms in bimaterials. Nevertheless, cracks may arise inside
the bulk of the phases, which are referred to as matrix cracks, or as a combination
of matrix and interface cracks.

From the mechanical point of view, the formation of interface cracks and a
prospective subsequent unstable propagation can be described by a set of dis-
tinct parameters of the mechanics of interfaces. Predominantly, the prescribed
mechanical loading conditions and the additional influence of residual stresses
due to a thermal mismatch caused by thermal loading must be taken into ac-
count. In addition, in composites the crack extension is observed, among other
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phenomena, to follow curved paths along the interface. This geometrical effect,
by itself, conditioned by the shape of a given structure, influences the stress fields.
Finally, after the onset of unstable crack propagation, the material inertia can-
not be neglected if the crack tip velocity exceeds about one half of the Rayleigh
wave velocity, v, of the more compliant bimaterial component. In this case a
non-negligible portion of the initial elastic energy is converted into the kinetic
energy of the cracked body.

This explains the strong demand for the theoretical modelling of the general
situation of dynamic crack extension of straight as well as curved interface cracks,
in order to study the interactions of the crack-tip velocity, and of the self-stresses
superimposed by mechanical crack surface loads, which originate from the applied
thermal strains, and from the curvature of the interface. Restricting attention to
composite structures which behave in a brittle manner and thus can be modelled
as elastic bimaterials, the first basic theoretical studies of interface fracture me-
chanics of elastically isotropic bimaterials were published by ERDOGAN [14, 15],
Rice and SiH [41] and ENGLAND [12, 13] about thirty years ago. Mathematically,
these contributions were based on Muskhelishvili’s method. Conceptual features
of the static interface fracture mechanics, especially the importance and conse-
quences of the peculiar oscillatory singularities have been addressed in review
articles by RICE [42] and ComniNoOuU [7]. Moreover, noteworthy contributions are
those by RUHLE et al. [46] and HutcHINSON and Suo [24]. Later on, inspired
by the capabilities of Stroh’s method of generalized complex potentials [48],
which was algebraically structured by TING [54], the analysis of interface crack
problems was successfully extended to the quasi-static and steady-state dynamic
interface crack propagation between dissimilar anisotropic materials. Although
LEKHNITSKII'S competitive method of generalized complex potentials [29] could
also be utilized, Stroh’s technique is preferred since its algebraic structure is
much more refined. Concerning the quasi-static case, important research work
was supplied by Suo [50], Qu and Bassant [40, 4], TinG [55], Hwu [27] and Wu
[60]. The influence of a constant cooling or heating, AT, or of a constant remote
heat flux in the anisotropic case was investigated by ATKINSON and CLEMENTS [2],
SturLA and BArBER [49] and Hwu [26]. Intensive efforts dealing with the case
of rapid interface crack propagation can only be encountered since a few years,
apart from the basic research contribution by WiLLis [59] and the review arti-
cle by ATkinsoN [1]. Employing the method of Stroh, these new studies started
from papers of YANG ef al. [62] and Wu [60] and were continued by DENG [9,
10], and HERRMANN and NOE [36, 37, 38]. In the latter papers, the most general
situation of rapid crack extension along curvilinear interface contours subjected
to mechanical and thermal loads was investigated to a certain extent. Indeed, it
should be mentioned that the influence of the crack curvature was studied in an
explicit manner by CotTeERELL and RICE [8], Gao and CHiu [21], ENGLAND [13],
and Tova [57] for the cases of a quasi-static crack extension in a homogeneous
material as well as along the interfaces of a bimaterial, and by Xuv and KeEr [61],
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Liu and Rosakis [30, 31] for a dynamic crack extension in a homogeneous mate-
rial. The aforementioned demand for a theoretical analysis of the dynamic inter-
face crack extension is not restricted to the determination of displacement fields,
stress fields and the derived fracture mechanical parameters like mixed-mode
stress intensity factors. Apparently, in view of the experimental failure analysis,
by utilizing a proper experimental technique an adequate measuring algorithm
has to be provided in order to extract the required experimental parameters from
special patterns of the selected experimental method. In this paper, attention is
focussed on the shadow-optical method of caustics. The geometric shape of the
caustics is proportional to the stress field gradient and therefore the contour of
a caustic can be taken as a measure for the experimental determination of stress
intensity factors. For completeness and apart from the method of photoelasticity,
the development of the recently presented method of coherent gradient sensing
(CGS) created by Tippur and Rosakis [56] should be mentionend.

The method of caustics was developed by MANOGG [32] for a quasi-static crack
propagation. Essentially, THEOCARIS [52] extended the method to mixed-mode
loading cases for interface cracks. The formulation of the equations for caustics
for arbitrarily curved, quasi-statically propagating interface cracks was considered
by HErrRMANN and NOE [22] and NOE et al. [35]. Even for the simplest case of a
crack propagation in homogeneous materials, experimental results and simulated
caustics show that the application of the static theory instead of the dynamic
theory leads to essential differences in the case of higher crack tip velocities.
The first attempts to apply the method of caustics to fast running cracks have
been performed by ROSSMANITH [44], THEOCARIS [53], BEINERT and KALTHOFF [5].
Extensions to cases of mixed-mode loading in homogeneous materials, including
the consideration of the optical anisotropy of the material, the presence of which
makes the method more difficult to apply compared with the optical isotropy of
the material, were carried out by NisHioka and Kittaka [34]. The rapid extension
of cracks situated in the interface of a linear-elastic bimaterial was reported by
HerrRMANN and NOE [22, 23] wherein, apart from the simulated caustics guided
by the method of SANFORD and DALLY [47], a measuring algorithm for the de-
termination of stress intensity factors from experimentally obtained caustics was
presented, which at that stage did not cover all of the demands of the experi-
mentalists and which is different from the algorithm proposed by ROSSMANITH et
al. [45].

Apart from a revised summary of some previous results regarding the steady-
state dynamic interface crack propagation, this paper contains systematic exten-
sions of earlier results. A more comprehensive treatment of the described subject
of the mechanics of interfaces was recently presented by NoE [39]. The general
situation of the dynamic crack extension of straight and curved interface cracks is
analysed in order to study the interactions of the crack tip velocity, self-stresses
originated from thermal strains superimposed by mechanical crack surface loads
and the curvature of the interface cracks. The first main objective is to present a
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stress intensity vector of physical significance. From the calculated elasticity so-
lutions for the cases of mechanical loading and thermal loading, explicit integral
formulae are derived and discussed. In order to reach this goal the following three
step strategy will be pursued. Firstly, the problem of the interface curvature in
conjunction with a moving crack-tip will be addressed. Secondly, the problem of
the motion of a crack through a dissimilar thermal displacement field will be stud-
ied. Thirdly, the solution technique of a vectorial Hilbert problem arising from
the remaining elastic boundary and continuity problem will be provided. The so-
lution vectors of the Hilbert problem are algebraically related to the mechanical
fields looked for. The second main objective is to introduce a refined formal-
ism for the simulation of caustics, to point out the significance of the associated
parameters and, particularly, to present an algorithm for the determination of
stress intensity factors from the experimentally gained caustics without knowing
the crack-tip location.

2. Statement of the problem and thermoelastodynamic foundations

This section provides the preconditions and the mechanical methods, to ob-
tain an at least almost time-independent mathematical model for the analysis of a
dynamic crack extension in thermoelastic anisotropic dissimiliar media subjected
to mechanically stressed crack surfaces, and to a constant cooling or heating,
AT. The elimination of the time is equivalent to the transformation of an initial
boundary value problem to a boundary value problem which, from the mathe-
matical point of view, is much more easier to treat.

Figure 1 shows a bimaterial with a slightly curvilinear interface containing an
interface crack running at speed v. The crack-tip velocity, v, is assumed to have a
constant magnitude, v, but a slight variation of the orientation due to the curva-
ture of the interface. Compared to homogeneous material, crack kinking has to
be excluded since then, even for straight interface cracks, the distance between
the crack tip and the interface is proportional to (vt) and, therefore, a strong
time-dependence is induced. As will be shown below, the time-variations of me-
chanical fields are small in the sense of a first order approximation as long as
the slope of the interface remains small. The vectors p and q denote the pre-
scribed mechanical tractions on the symmetrically loaded crack surfaces and the
given thermal strains along the ligament, respectively. The crack tip passes the
space-fixed basis, (e, ,e, ), with assigned coordinates, (X,Y) = (X, X»), at the
time ¢t = 0. In addition, a running but irrotational basis, (e,,e,), with associ-
ated coordinates, (z,y) = (z1,27), is attached to the crack tip. Moreover, the
load vectors p and q are assumed to move with the crack tip basis, (e, e,), and
pertubations by initial or reflected waves are avoided by studying the long-time
behaviour of the crack extension and a bimaterial of infinite extension. Under
these conditions the mechanical fields expressed by the coordinates (z,y) are at
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FiG. 1. Propagation of a curvilinear interface crack.

least almost time-independent; thus they are strictly time-independent for straight
interface cracks. The associated boundary value problem is formulated by com-
bining Volterra’s dislocation method which was applied to quasi-static interface
crack problems by BRowN and ERDOGAN [6], and Stroh’s method of generalized
complex potentials [48]. Volterra’s method is utilized in order to handle the ther-
mal displacements since the unbounded adjacent bimaterial components would
yield a dislocation along the interface due to different tensors of thermal ex-
pansion coefficients, («;;); and («a;;),. Application of the running basis, (e.,e,),
requires the space-fixed total thermal displacement fields, (u!M), and (u{M),, to be
decomposed into parts (u!"); and (u!l),, denoting the reference displacements
associated with the moving basis, and the relative displacements (u{"), and (ufh),.
Since the reference displacements behave as rigid body displacements, no ther-
mal stresses are generated. Henceforth and without loss of generality, (u!); and
(ulh), are set to zero by selecting ¢ = 0. Thus Volterra’s technique can be used
in the sense of BRowN and ErRDOGAN [6]. In the first step, the stress and dis-
placement fields in the unbounded bimaterial parts are calculated. For a constant
change of the temperature, AT, the thermal stresses and displacements read:

(2.1) AT = const — ofr =0, ull = a;;ATz; .

In the second step the bimaterial parts are bounded. Since the stress vector is
intrinsically continuous due to the non-existing thermal stresses, the compatibility
of the displacements can only be fulfilled by adding unknown (as yet) elastic
displacements. Thus, the set of transition conditions reads as follows

22) (s + u™y = (! + uM)y,
. 1 - |
(e5nin = (a5ins)2 -
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The elastic displacements, u¢l and ¢}, are determined from the remaining bound-

ary-value problem govemed by the generalized Lamé - Navier equations (LNE)
02 cl ()211,"'

Gl gxox; L oR

(2.3)

where c¢j;;; and p are the coefficients of the elasticity tensor and the material
density, respectively. For completeness of the boundary conditions, zero stresses
at infinity have been chosen. While the LNE in (2.3) formulated in the space-fixed
basis, (e, ,e, ), are time-dependent and are partial differential equations (PDE)
of hyperbolic type, the transition to the moving crack tip basis (e,,e,), provides
the PDE

aZuel 5 2 cl 82ucl
(2.4) c‘““m ov (cos (a)a B + 2 cos(a) sm(a)a 5
D?uf!
. 2 ?
+ sin (“)azzaa;z) ,

which is only slightly time-dependent. Referring to Fig.1, the angle a denotes
the slope of the interface contour at the crack tip location. If crack tip positions
near to the non-moving basis, (e, , e, ), are considered, then for small angles, «,
the time-dependence of the LNE can be neglected and they assume the form

aZuel 2
(2.5) Cii - =0;,  Cji(v) = (cjist — 0v°81;016is).

e aCL‘[a:EJ‘
This form of the Lamé - Navier equations represents a set of homogeneous PDE’s
of the elliptic type, the same as in the case of a straight crack extension. It must
be emphasized that the elasticity tensor, C};y, varies with the crack-tip velocity,
v. Since (2.5) is an elliptic PDE, a complex variable method can be invoked which
is the onset for Stroh’s method of generalized complex potentials. By introducing
the displacement vector approach

(2.6) uf, = ayfij(ag), g =rtpgy (k5 =12),
the solution of the LNE is reduced to the eigenvalue problem
2.7) (Q + px(R+ R") + piT);a;; = 0,

where, according to TING'S notation [54], the matrices

(2.8) Aj = (aj,ap);,  P; =diag(p1, p2);

are composed of the eigenvectors and eigenvalues of the LNE. The eigenvec-
tors and eigenvalues are complex conjugate in pairs, respectively. In a wide class
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of problems it is sufficient to restrict to purely imaginary eigenvalues, py; =
ifBk;. With this restriction isotropic bimaterials and a considerable number of
orthotropic bimaterials are covered. Then, for the case of a dynamic crack prop-
agation, the eigenvalues are functions of the crack-tip velocity, v, and the char-
acteristic wave velocities, vy, of each of the elastic materials are given by f; =

/1 — (v/vg;)? Moreover, it should be noted that for the limiting case of degen-

erate eigenvalues, p;; = py; = i, assigned to isotropic material and quasi-static
crack extension (v = 0), those algebraic features of Stroh’s method which are
required for the mechanical analysis of interfaces continue to apply. Referring to
Ting, the matrices Q = (Clisl) = QT, R = (C],’sz) #* RT and T = (Czisz) =TT
contain elements of the elasticity tensor, C;5, from (2.5). The potential vectors

(2.9) fi(z) = (L), L(2)], 7 =(a,2)]

can only be obtained from the solution of the associated special boundary value
problem. The displacement vectors, u;, and, by the definition of Ting, the stress
vectors, s1; and s;;, composed of elements of the stress tensor, o;;, are given by
the subsequent expressions:

(210)  u¢' = 2Re((AB™V)Bf(z));, uw; =u +ul,
(211) sij = 2RC(BiBf’(Z))J', Bt —BPB—I + QT)zAB_l, S]j = (011,0’21)?,
(2.12)  sp; = 2Re(Bf'(z));, B; = (RTA + TAP);, s2; = (012,022); -

Il

As a fundamental essence of Stroh’s method, it is worthwhile mentioning that
the matrices A and B are not independent. Stroh proved the important property
of the product (AB~!)? = —(AB-!) to be skew-Hermitian.

With regard to the mentioned derivation of caustics equations and the asso-
ciated measuring algorithm, the stress invariants of the plane stress tensor o,
namely the sum of the principal stresses, Iy = (o) + 03), and the difference of
the principal stresses, I = (o1 — 03), are formulated in the framework of Stroh’s
method. By introducing the principal stress vectors

0 1
(213) st =s1+JIsy, st =(oy+0n07", J= (_1 O) N CIE §

(214) 5™ =5 -Js, s = (o1 —on,201)"

and by using sj, (2.11), and s, (2.12), the expressions
+7
(215) s* = 2Re(E'F(z)). E* =(JB-BP+p?A), E' = (‘*1 ) |

-T
(2.16) s~ = 2Re(E f'(z)), E~ = (-JB-BP+ pv’A), E = ("1, )
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are obtained. Taking the lengths of s* and s~, provides the principal stress for-
mulae

2.17) (01 + 02); = 2/ [Re (e} (@) + [Re (e 7T (@))%,

2 2
(2.18) (01 — 72); 2\/ [Re (e;71(@)] " + [Re (e 7F(2))] .-
In view of the isotropic material behaviour, the vector e] is zero and thus oy +
oy = 2Re[e} Tf'(z)] holds true.
Since a slightly curvilinear interface is under investigation, according to (2.2)
and Fig.2, the transition conditions for the stresses along the interface with the

Ey (2] F(€)

Fi1G. 2. Stress vectors along a curvilinear interface contour.

unit vector, n, perpendicular to the interface contour have to be used. Therefore,
the stress vectors, s; and s,, defined by

el

(219) s;=4s1+ sy =S+ f'(€)s2, st = (Strvsty)T =S,
(220) s, = mys;+ sy —f()s1 + 52, Sn = (Suas Sny)| = 88

are introduced where /() is the slope of the interface contour, f(€), for the time
t = 0, and the unit vectors t and n, shown in Fig.2, are normal vectors of the
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respective planes along the interface. The formulae (2.19) and (2.20) are valid
for small slopes only. The components of the vectors, s; and s, are coordinates
of the Cartesian basis, (e,,e,).

A curvi-linear interface associated with the determination of complex poten-
tials implies the application of the conformal mapping technique. Its usage in the
comparable case of an orthotropic half-space with a parabolically shaped bound-
ary subjected to a line load dates back to LexHNITSKII [29]. As already noted
by Lekhnitskii, open contours can be treated much easier than the closed ones
like the elliptic inclusion problems which, in the meanwhile (referring to Hwu
and TiNG [25]), have been investigated by utilizing Stroh’s method. Moreover,
since slightly curved interfaces are considered, a combination of the conformal
mapping technique and the first-order pertubation technique can be successfully
applied. This approach was also suggested by Gao [20]. On this basis, the curvi-
linear interface contour, L, is mapped onto the arc, L, of an auxiliary (-plane
by the conformal mapping function

221) z=w(@Q=C+if(Q), (=&+in,  f(0)= f(0) = f'(cc) =0

The supplementary conditions f(0) = f'(0) = f(oc) = 0 cover the afore-men-
tioned restriction of analysing a crack trapped running in a smooth interface with
a zero slope at the location of the fixed basis, (e, ,e, ), as well as at infinity. If
restricted to purely imaginary eigenvalues, py; = if3;;, the boundary mapping in
the LNE reads

(2.22) 2k (€) = wi; (§) = E + Bk f(§),  J(§) = Re (f(Cry)).

It should be pointed out that along the boundaries of the z;;-planes the inequality
[2]e # [2x;]c holds, whereas along the boundaries of the auxiliary planes, the
Ckj-planes, the relation [(], = [Ckjle, = £ is valid. Finally, instead of the
potential vectors f;(z;), the transformed potential vectors

(2.23) fo; = (fa1(G1), fa2(G2))]

have to be determined. This goal, by neglecting terms of the order O(f"2(£)), re-
quires to provide mapping expressions for the potentials and their first derivatives
in the direction of the interface. The results have the form

224) 6@ = [f2;( O], f0i(©) = (a1 (6), f2(©));
(225)  [6@)]L = (1= [P, (O, P = diag (151, 162))-
Moreover, Suo's generic approach to apply the analytic continuation technique

to potential vectors for the case of straight interface crack problems [50] has been
used. From its extension to the case of curved interface crack problems along the
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interface, the continuous stress vectors

(2.26) $n1(6) = Fo1(©)Bif 1 (€) + Foa(6)Baf 55 (€) = par, (6),
(2.27) $02(6) = Fo1(6)Bif51(€) + Foa(6)Baf 5, (€) = par,(€),

and discontinuous stress vectors

(228)  sa(6) = 2Re [(Bu + [/(E)1 + BA)Fo1 (OB (6)] ,
(229)  sa() = 2Re [(Ba + [/(E)1 + BR)Foa€)Baff5 ()] ,

with the matrix, Fp;(£), and its inverse, accurate to within the first order approxi-
mation,

(230)  Fg;(©) = (I- ['()ev®AB™Y);,  (Fai(O) ' ~ (L + f'(§)ev’AB™Y);
as well as the displacement vectors

231)  w@=ul©+unE,  uw=(u,u) =),
232)  w() = 2Re [(AB™! +if'(€)[-iov*(AB™')’])FBia(8))]

(2.33) ul(¢) = AT(anz (), any(€))’ = AT(ané, anf(€)"

have been derived. The representation of the elastic displacement vector, u¢'(€),
has been adapted to the further requirements. The notations ff;}(¢) and f5;;(£)
denote the limits of the unknown potential derivatives when, referring to Fig. 1,
the interface contour Ly, is approached from above and from below, respectively.

3. Vectorial Hilbert problems for a dynamically extending interface crack

By applying the stress vector formula (2.26) and the derivatives of the dis-
placement vector formulae (2.31) to (2.33) with respect to the interface contour
coordinate £, the transition conditions in (2.2) are converted into the vectorial
Hilbert problem stated as

Fo1(6)Bif51(€) + Faa(6)Baf 5 (€) = Pm,';z(g)a Eely,

(3.1) _ ~
Ho (OFa1(6)Bif51(€) + Ho(E)F 2()Bof(€) = anry,(§), €€ L.

This Hilbert problem is a linear, inhomogeneous vectorial functional equation
for the determination of the potential vectors in (2.23) which holds in the run-
ning crack tip basis, (e,,e,), at the moment of time ¢ = 0. It is parameterized
by the coordinate, ¢, of the interface contour, Lg. The given vectors, Pm,';,(f)
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and g (€), denote the respective (z, y)-coordinates of the symmetrically acting
surface loads

(32) p!’lL’r’2 (é.) = (pnr’ pny)?)[,}{) )

and the mismatch of the thermal strains along the ligament is defined as follows:

d
(3:3) 4oL, (§) = (qx,Qy)szL'n y o Yar, () = Eg(utzh —ui)gp -

The jump of the thermal strains in (3.3) may also be regarded as a prescribed den-
sity of thermal dislocations continuously distributed along the bonded part of the
bimaterial interface. The non-constant coupling matrix, Hg (), whose algebraic
structure determines most of the mechanical interface parameters, is defined by

(3.4) Hpo(6) = H+ if'(6)v°H;

and consists of the respective skew-Hermitian matrices

H=-H', H=AB'-4B;",
(3.5)
: —iDy —w3
H= -D-W= . ,
w3 —tDz
and

=
ey
Il

T A ~ o 1\2
-Hy, Hy = —2 [QI(A1B1 2 — o2 (A2B2 ) ] ,
. inl 1Uj3
6) Hy=iD;+W; = ,

— [o1(w3(D1 + D)) + o2(w3(D1 + D2))2]
[o1(w3(Dy + D)) + 02(w3(Dy + D2))a]
i [gl(D% + w%)l - Qz(D% + w%)g] '

( t [QI(D% + wi) - 0D} + w%)z]
H/ o

where the matrices A; and B;, have been introduced in (2.8) and (2.12). In con-
trast to the matrices H and Hy, the matrix Hp(€) does not have a distinguished
structure, such as the skew-Hermitian symmetry, aside from the crack tip at the
coordinate £ = 0. As the constant matrices, H and Hy, contain material constants
of both bimaterial components, they characterize the interactions of adjacent
parts of different materials. The coupling matrix, Hp(€), can be physically inter-
preted as a compliance matrix, which can be concluded from the comparison of
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the stress formula and the strain formula in the Hilbert problem, respectively. In
view of dynamic effects, detH is proportional to the Stoneley wave velocity v,
and detB; are proportional to the Rayleigh wave velocities v, , related to the
respective bimaterial component. The Rayleigh wave velocities v, are ordered
by vy, < v, < v, where v, and v ; are the transversal and the longitudinal
wave velocities, respectively. Referring to a fundamental investigation of BARNETT
and LoTHE [3], the Stoneley wave velocity, v., and the minimum Rayleigh wave
velocity, v, .., are related to each other by v, . < v, where v, . = v, holds if
additional but special limitations are fulfilled. Without loss of generality, through-
out this paper v, . = v, has been chosen. Keeping in mind the terminology
of acoustics, the matrices, Y; = i(AB~!); and Y = iH, are known as surface
admittance matrices and interface admittance matrix, respectively.

The solution of the vectorial Hilbert problem is constructed by superim-
posing the problem of mechanically loaded crack surfaces, hereafter called the
p-problem, and the case of the thermally strained ligament, hereafter called the
g-problem. Since the Hilbert problem is a linear vectorial functional equation, it
is effective to apply the methods of the linear algebra. Therefore, the solutions are
gained by utilizing operations in the eigenvector planes of the p-problem and of
the g-problem, respectively. The required mappings onto the eigenvector planes
are provided by similarity transforms defined along the interface contour, Lg.
For each of the problems the special mapping forms a set of two scalar Hilbert
problems for a set of two scalar potentials. Referring to Muskhelishvili, the meth-
ods of the function theory are applicable. Thus, each solution is expressed by a
Cauchy integral in terms of a generalized complex variable, z;;. The curvature
of the interface makes the Hilbert problem more difficult to solve and the struc-
tures become less transparent. However, by handling the Hilbert problems for
a straight interface in the first step and, in the second step, using the results
(eigenvalues, eigenvectors, potentials) as the basis to treat the case of a curved
interface combined with the first order theory arguments, provides an effective
strategy. This strategy leads to a simplified procedure for the determination of
the potentials and to the identification of distinct algebraic quantities, which can
be discussed in the framework of interface mechanics.

3.1. Mechanically loaded crack surfaces (p-problem)

The p-problem

G Fo1(6)Bifg)1(€) + Foa(6)Baf »(€) = papn (6), €€ L,
T Ha@©Fa1(©Bif(6) + Ho(§Faa(O)Baf5(6) = 0. §ely
is diagonalized by introducing the similarity transforms
Ho(6)Fa1(6)Bifg,(€) = Vapns, (),

(38) -
(~Ho(E)Faa(©)Bafly () = Vahs, (6).
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whose selection is motivated by the physical fact that the elastic strains along
the interface are continuous if thermal strains are absent. By employing this
transforms, the decoupled vectorial p-Hilbert problem

h$,(6) + Aaphy,(6) = Poary () = Vo, Hoprar: (6), €€ L,

(3.9) . _ ;
h.ﬂp(&) - hﬂp(f) = 07 E € Lg

is generated if, due to the essence of the similarity transforms, the conditions

(3.10) Agp = diag (App1, Aep2) = Vgl Ho(-H); 'V,

(3.11) Vo, = (Vep, Vo) = BV (Ho(-Hg)™")

for the eigenvalues \p,;, and eigenvectors vg,;, of the matrix (Hp(-Hg)™ ') are
fulfilled. In order to get a more detailed understanding of the interface mechanics
and to extract the governed mechanical parameters directly, instead of solving the
eigenvalue problem for Ap,;, the equivalent eigenvalue problem

(3.12)  [Bapl+ WD~ +if' (v’ (W,D'WD™" + adj (D;D71))] vay; = 0
is analysed. The pair of complex conjugate eigenvalues reads
Bap = Ba =B +if'()Bus, Bav2z = —Bap
Y

(3.13)

1
det(tWD-1),  fys = —zvzu(um*‘wfl)—1 + DD,
and is related to the eigenvalues A, ;, by the definition

1+ ,6.() ]
3.14 Agp; = ——2BL
( ) Npj l ﬁ -

For the pair of complex conjugate eigenvectors the formulae

Aoz = Qap) ™t

1 .
Vopr = | . : Vop2 = Vopt p=1+if'(Epny,
TN
(3.15)
D, v? 1 : 2
LRV R VAT L [D-'D; — adj(D-'Dy))]

have been obtained. The set of velocity-dependent parameters, (3, v,), charac-
terizes straight interfaces. The pair is augmented by the velocity-dependent par-
ameters, (Ouy,pus), which is intrinsically connected to curved interfaces and to
the moving basis, (e.,e,). It should be noted that these elastodynamic interface
parameters do not necessarily presuppose the interface to be cracked. From the
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special case of the quasi-static interface crack propagation in an isotropic bimate-
rial, Dundurs parameters are the well-established parameters for bimaterials [11].
In this context, the real part of the eigenvalue, 3, can be interpreted as a gen-
eralized second Dundurs parameter. Moreover, the complex-valued eigenvalue,
Bn, may be denoted as a complex-valued generalized second Dundurs parameter.
Each of the four interface parameters increases continuously in case when the
velocity v grows.

For the sake of the further analysis it is advantageous to decompose the eigen-
values Ap,; into the product

Agp = ApAyy, Agp = diag (Agp1, Aop2),

(3.16) . —2re  27e 2imo /
Ap d]ag (e , € ): Apf =lIe . ) af(E) = f (f)a’llf )

I

leading to the definition of two additional interface parameters which are in-
trinsically related to cracked interfaces and, from the literature, are known as
bimaterial constants. The matrices, A, and A,;, are eigenvalue matrices where
A, is associated with a straight interface, and A,; corresponds to the curvature
of the interface. The additional interface parameters read as follows

(3.17) ol o (1'ﬁ), ¢ lm(l"vdet(wn_l)),

—In WIESRREC T [
2w 1+ 27 1 /det(WD—l)
and
2
(3.18) auy = ﬂ!——, gy = ——i —B—~tl‘(‘VD_I“"!‘D_1 + DfD—l).

T x(1-p5%) 2r 1- 32

Thus, both the bimaterial constants may be physically traced back to the general-
ized second Dundurs parameters which in turn, from the mathematical point of
view, are eigenvalue coefficients of the p-Hilbert problem (3.7). The classical bi-
material constant, ¢, causes the peculiar and intensively discussed phenomena of
oscillatory singularities and crack surface interpenetration. The additional bima-
terial constant, ayy, appears only if the situation of a fast interface crack extension
and a non-vanishing interface curvature is simultaneously present. The bimaterial
constant, oy s, vanishes in the case of the crack extension in a homogeneous mate-
rial, since the trace of (WD~'W;D~! + D;D~1!), which is also proportional to the
trace of (H;H™1), vanishes identically. Similarly to the afore-introduced interface
parameters, (3, Ouy, vp, ptuiy), the bimaterial constants increase with the growth
of the crack tip velocity. The ¢-value for the quasi-static case is approximately
doubled if the crack tip velocity reaches 80% of the minimum Rayleigh-wave
velocity, v,,... = vi. The value of ay; goes to infinity if v, . is approached, but
remains small within the first order theory if the velocity, v, is again limited to
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about v = 0.8vp;. The results of an experimentally observed interface crack prop-
agation, reported by TippUR and RosaAKis [56], state that the crack-tip velocities
v are usually not higher than v = 0.8vp;. Consequently, the presented bimate-
rial model based on the simplest theory of linear elasticity remains applicable.
It is instructive to point out that, for the theoretical limit case of v = vp;, the
bimaterial model would totally fail since the extent of the oscillatory fields would
cover the whole bimaterial and the zone of crack surface interpenetration would
cover the whole length of the crack. It can be concluded that the singular stresses
and strains are proportional to r~1/2£/(")ens where r denotes the distance from
the crack tip [39]. By inspection of this expression for the most general case of a
dynamic and curved interface crack extension, a decrease of stresses and strains
is detected which depends on the distance from the crack tip. However, at the lo-
cation of the crack tip itself, the order (—1/2) of the singularity is preserved since
f'(0) = 0 holds true identically and the deviation of the stress field behaviour
from the (—1/2)-order is negligible close to the crack tip.

Now, approaching the Hilbert problem, the associated homogeneous p-Hilbert
problem

Xop(©) + AapXp,(6) =0, €L,

(3.19) .
Xﬂp(E) - X.Flp({) =0, £ € L,Q

has to be solved for the fundamental matrix, X;,((x;). Guided by the first order
theory approach, Xq,((x;) is factorized into the product

(320) X.Qp = xpxpf = dlag ("YPI. pr]a sz ‘X’PfZ):

where X,, is associated with straight cracks and X,y comprises the deviation due
to the curvature. Substitution of (3.16) and (3.20) into (3.19) results in two
independent homogeneous Hilbert problems for the determination of X,({x;)
and X,s(Cx;), which are formally identical with (3.19). The general formulae
for X,(Ck;) and X,;(Cx;) are expressed by Cauchy integrals for InX,((x;) and
In X, r(Cx;). Moreover, since the factorization has been introduced, the evalua-
tion of the integrals is considerably simplified. Solutions for Xg,(Cx;), which fulfil
the given limits

-1 -1
= + - =Y+ -

G20 Agp=-Xpo (Xg) o T=Xh (X, )

along the interface, have been evaluated for a semi-infinite interface crack along

the segment L, € [-cc,0], and for an interface crack situated along the finite
segment LY, € [—a,0]. These solutions read

g i —(1/2-ag)+ie .- —ag)—ie
(3.22) x!?v(ﬁkj)=dlag(4kj(1/ g )
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for a semi-infinite interface crack, and

(3:23)  Xnp(Ckj) = diag (C;;(llz_af)HE(ij 4 q)(/2+ap)—ie,

—(1/2—af)—te , » = a¢)+ie
ij(/ 1) (Ckj + @) (1/2+a)+ )

for a finite interface crack of length a. By introducing (3.21) into (3.9), the inho-
mogeneous p-Hilbert problem can be rewritten as follows:

(X5, "h5, 0], - [(X5,()"h5, ()]

L L
(3.24) = (X5, 'paa®)] , . €€ Lh,
(K, W5, 0], — [(XG,©) 5,0, =0, Eelp.

For an arbitrarily generalized complex variable, (;, the simplest solution for
(3.24), which primarily fulfills the jump conditions (3.21), is determined by the
Cauchy integral representation

d¢
€—Crj’

1 .
hoy(Crj) = ﬁxﬂp(fkj)/ (szpL;g(ﬁ)) lpnAL',;(E)
i
3.25
Sy ho, = (hapts hap)’ -

Thereby, it is essential for an uncoupled eigenvector plane solution that a distinct
element of Xp, is related to a distinct potential, hp,. With the exception of a
single force acting on the crack surface, on account of the bimaterial constant,
amy, the integrals cannot be evaluated analytically.

3.2. Thermally strained ligament (q-problem)

Apparently, the treatment of the q-problem is analogous to the p-problem
and straightforward. Therefore its exposition is shortened. The g-problem

Fo1(6)Bifg, (€) + Faa(6)Bafy 5 (6) = 0, £ e Ly,

3.26 =
- H ()Fo1(6)Bifg;1(6) + Ho()Fa2(6)Bafy, 5 (6) = anr, (6), €€ Ly,

is diagonalized by introducing the similarity transforms

Fo1(6)Bifgy,(€) = Vashh,(6),

(3.27) ,
Fnz(f)Bﬂn_qz(f) = _Vf?rzh.?lq(g)v
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whose selection is motivated physically by the fact that the thermal strains along
the interface are discontinuous. By applying these transforms the decoupled vec-
torial q-Hilbert problem

(3.28) h3,(6) —hg,(6) =0, £ely,
h$,,(6) + Anghy,(6) = daarr (6) = Vo, Hy'aer (), €€ L,

is obtained if the conditions
(3.29) Aqq = diag (Aaq1, Aog2) = Vg, Hp' (-H)aVa,,
(3.30) Vo, = (Vag1,Vaqe) = EV(H,' (-Hp)),

for the eigenvalues, \q,;, and eigenvectors, vq,;, of the matrix (Hy,'(~Hp)) are
fulfilled. Instead of solving the eigenvalue problem for Ag,;, the fully equivalent
eigenvalue problem

(331)  [Bag L +iWD™) —if (€’ (WD'W,D™' + DD~ | vp,; = 0
is investigated. The pair of complex conjugate eigenvalues reads
Bag =-B—if'(OBns,  Bogp=-Baga, Bag=-Ba,
33 ! : : :
B =/det(WD-1),  py; = —Evztr(WD_IWfD_l +D;D7Y).
For the pair of complex conjugate eigenvectors the formulae

1

11 . _ .
Voq = 3 e, V42 = Voq1, p=1+ zf’({)vz,uf ,
Up
(3.33) ,
_ D2 _ v 1 -1 . -1 2
vy = Dl ) HUuf = Zﬁ Ztr[D Df - adJ (D Df)]

are valid. Based on the physical reason that the selected eigenvector plane can-
not affect the physical problem itself, both the similarity transforms could have
been applied to the mechanical p-problem (and vice versa) to the thermal strain
q-problem. Therefore, from a comparison of the eigenvalues for the p-problem
and the g-problem, the relations

Ba =B+ if'(E)bny,

(3.34) _ _
ﬂnpl = ﬁﬁ ) /30p2 = _ﬂf) » ﬁﬂql = _[jﬁv ﬁﬁtﬂ = /j,(?
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become obvious. It is important to recognize that the relations between the
eigenvalues in the expression (3.34) are equivalent to the eigenvalue relation,
AppAp, = L Furthermore, by expressing the stress vector along the ligament
either by the eigenvector matrix, Vg, or by the eigenvector matrix, Vg, it can
be concluded that the eigenvectors are linked to each other by the orthogonality
relation

VorHo = (VaeSa)™',  Sa(€) = diag (isp1,ise2),
2‘cosh(rrs)
Dy

(3.35)
Sa(€) = SA(6) = Seim©),  §=2 A2,

The scaling matrix, S;(€), is obtained from the comparison of (3.35) and the
eigenvalue problems associated with the matrices (Hp, (—H;)™!) of the p-problem
and (H,,'(~Hp)) of the q-problem. Note that the matrix, S, is the scaling matrix
for straight interfaces. It is noteworthy to emphasize that due to (3.34) and (3.35),
only one eigenvalue and one eigenvector problem has to be solved explicitly.
Moreover, regardless of the mechanical problem under investigation, only one set
of elastodynamic interface mechanics parameters, namely (3, Buy, vy, tny) and,
consequently, only one pair of bimaterial constants, namely (¢, any), exists. This
fact is reasonable from the viewpoint of mechanics, since (3, fuy, vy, uny) and
(¢, any) should characterize the material-dependent elastic coupling independent
of the eigenvector planes used.

Proceeding with the q-Hilbert problem, the homogeneous q-Hilbert problem

X.—(;q(f) Kk x?}q(&) = 07 E e :’I),
X5,(6) + AaX5, () =0,  £€Lh.

has to be solved for the fundamental matrix, X,((x;). Invoking the factorization
of X,(Ck;) provides the product representation

(3.36)

(3.37) Xng = X,X,; = diag (X,1X, 51, X,2X,12),

where X, is associated with straight ligaments and X, covers the deviation due
to the curvature. Solutions for Xg,((x;), which fulfill the given limits

=i -1
= + - — v+ -
(338)  Aag=Xbo, (Xau,) 5 1= Xbuy (Xauy)
along the interface, have been evaluated for the cases of a semi-infinite ligament

along the segment L), € [0,00] and a ligament along the finite segment L, €
[0, b]. The solutions read

20 i -(1/2-« e —(1/2—af)—is
(339)  Xo(Gy) = Ay (Ge) diag (¢, (AT
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for a semi-infinite ligament, and

(340) an(ckj) = dlag (C;:j(l/z_al)+i£(ij _ b)_(1/2+a!)_i5’

—(1/2—a)—1e _ i
ij(l/ f) (Ck] _ b) (1/2+a4)+ 5)

for a finite ligament crack of the length b. By introducing (3.38) into (3.28), the
inhomogeneous gq-Hilbert problem is reformulated as follows:

(X)),
G4 [, Q)] - [Ka, @) 'hg,©)],
= [(X&,©) " a04(9)]

- (X5, "hg,©)],, =0, ¢elLl,

"
LD

Eell.

y
]
LI?

For an arbitrarily generalized complex variable, (x;, the simplest solution of (3.41),
which primarily fulfills the jump conditions (3.39), is determined by the Cauchy
integral representation

d€
€—Crj’

1 . -1
hoq(Ckj) = mxﬂq(ékj)/ (X!-;(;Lb(‘f)) 4o, (8)
Ly
(3.42) !
ho, = (hag,hag) -

4. Stress intensity vectors for a dynamically extending interface crack

In this section, a stress intensity vector Kr; definition of physical significance
is introduced starting from the eigenvector planes for the p- and the q-problem,
respectively. The denomination stress intensity vector is simply an adaptation of
Stroh’s method and will become apparent instantly. From the calculated eigen-
vector plane potential vectors for the cases of mechanical crack surface loading
and thermal strains along the ligament, respectively, explicit integral formulae for
stress intensity vectors, Krg, and Krg,, are derived and discussed.

A proper eigenvector plane definition of the stress intensity vector indepen-
dent of the special loading reads

Koa = Vi gl_rfb [(X}L?Lb)_l('f)pQAL})(f)} ;
Koa = (Ko Kea)'

@.1) o o
XF]L’H = diag (5‘1/2+f onytic ¢=1/2+f an;—ze) ,

_ T
Poar., = (paaw, Poaly
2 n
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and formally assigns a single eigenvector plane stress vector component pp4; to
a single eigenvector plane stress intensity vector component Kg4;, (7 = 1,1I),
similar to the case of cracks in a homogeneous material. However, the special
interface fracture mechanics feature of the coupling of stress intensity factors and
stress components is maintained in the physical plane and is only mathematically
resolved. The derivation of the physical plane stress intensity vector definition
is based on the physical requirement that the proportionality of any two vectors
undergoing a transform must be preserved. Starting from the transformation re-
lation of the stress vector in the physical plane and the eigenvector plane via the
mappings ’

Popa = (V_F);)H-Q)pﬂp = (VQQS-Q)_IP-QP

;5 Popa = (V;lﬂ)pm) = (VqS)*pop,

(4.2) 2 ol
P4 = AyVp,Paq = SaVy,(-H)a

5_“76 Poga = Aqvq_lpﬂq " SV;IHTP.Q(;,

to be applied for the coordinate £ = 0, since the stress intensity vector measures
the stress intensity at the location of the crack tip at £ = 0, the stress intensity
vector transformation laws

Kopa = (V; ' H)Kpp = (V,8) Ko,  Kop = (Kapin, Kopl)'
K.OqA = AqVq_lK.l?q = SV;IHTK.qu Kﬂq = (I‘-qula I"f?q[)T

(4.3)

must hold. Introducing the mapping (4.2) and (4.3) into (4.1) and omitting the
respective indices p and ¢, determines the desired stress intensity vector definition

— /e + e ly-1 i
Ke = v2rlim |V, (XQLh(7)) \Z PrzL'n(')] )
Ko = (Kom, Kan)',

(T_]/2+f,n’llj+i5’ T—1/2+f’(x]{/—i£) ,

(4.4)
& o S
Xow, = diag
[1\;',7]1,[] = Nmm_B/zmm_”

for the physical plane, where £ = 0 has been replaced by r according to the
standard notation of fracture mechanics. Like the stress vector components, the
stress intensity factors are coordinates of the basis, (e, ,e, ). Apart from the
intrinsic coupling of the stress vector components and the stress intensity factors,
as originally recognized by RICE [42] for quasi-static interface crack extension,
the stress intensity factor, (K o1, K 1), has the physically meaningless dimension
[K o] = Nmm~3/2mm~*. Rice removed this physical inconsistency by relating
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the ligament stresses to a characteristic length, 7, from which results a scaling of
the stress intensity factors by the length 7. Transferring this scaling argument to
Kp, the relation

KR_Q(F) =V XR(?)V_IKQ s
(4.5) !
Xr

diag ( e Mw) , [I{RQ[L[] = Nmm /2

provides the physically reasonable stress intensity vector definition
~ . ~ —1 —
(46)  Kpa = Kgpq(7) = v2r lim [VqXR(T‘) (XE%(T)) \L ll’nL'n(T)] :

On account of the introduction of the length 7, the stress intensity factors in
(4.6) are unique only if the length 7 is known. Since the stress intensity factors,
(Kgan, Kgrp), are associated with » = £ = 0 and, consequently, are assigned
to coordinates of the irrotational basis (e, ,e, ), due to the finite characteristic
length 7, one would expect the Krg-definition to start from normal and shear
stresses along the curved interface which, of course, rotate with respect to the
basis (e, ,e, ). However, if 7 remains small as compared to an overall specimen
length like the crack length or the ligament length, this effect can be neglected.

Explicit formulae for the respective stress intensity vectors of the p-problem
and the g-problem, denoted by Krp, and Krgo, can be obtained, if the eigen-
vector-plane representations of the ligament stress vectors, PapaLl, and pg,4 L
specified in

~ v=l _ 1
@9 Popart, = (Va,Ho)Poprr, »  Pagary, = AagVoePagLy, »

aoaz;, = (HoVa)) 'aar,

are replaced by means of the eigenvector plane potential vectors, hg, and hg,,
according to

I+ ’lﬂp(f))han (&) = Papary, (£); Eely,

(4.8)
I+ Agg(EDh, (€) — Aoar,(§) = Pagar, (),  £€ Ly

By inverting (4.7), introducing the result into the stress intensity vector definition
(4.6) and carefully employing some lenghty but straightforward calculations, the
generic-type integral representation

49)  Knay(7) = —/2/7 cosh(re) / VX R()Yap (OVE (OPg, 1 (1) dt
i
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for the p-problem and

(410)  Kroy(F) = \/2/ cosh¥(re) / YV, Xr(P) Y, (OVE (D agr, () dt

Ly

for the gq-problem can be recovered. These generic formulae hold for crack sur-
faces and ligaments of finite and infinite length, only the corresponding diagonal
matrices, Yg, and Yg,, look different in each case. The index (2 indicates the
simultaneous presence of curvature and fast crack propagation to be formally
incorporated. It follows from a dimensional analysis, that the term D~ 1q, Ly, in
(4.10) is a stress vector, since D~! is a compliance-like matrix and q, 1, is a strain
vector. However, unlike the velocity-independent stress vector, pg s the vector
D-lq, L, is a decreasing function of the crack-tip velocity v.

For the sake of further discussions, due to the condition that the crack surface
loading acts in normal and tangential direction along the interval [—a, 0] and only
the first order terms are taken into account, the general formula (4.9) is written
out to give

Kropun) _ (2
e ReY, —f'ReY, + v,ImY,
Pt
X —dt),
/ (1 + ““f) f'ReY, — vilmyp ReY, (pn>( )
P

0 Vp

(411) Y, = (-t)" 12Oy (—i)_ , for a semi-infinite interface crack,
r

- ( —at )‘l/z‘f'(‘)““f ( t a )‘“ for an interface crack

: a+t CFa+t of length «,

for the stress intensity factors of the p-problem. The analysis of the explicit in-
tegral formula (4.11) as well as the inspection of the table in Fig.3 leads to the
conclusion that the individual influence of each of the interface fracture me-
chanics features of interest: mechanical loading, interface, crack-tip velocity and
interface curvature, and their relations with the stress intensity factors are rather
complicated. Since multi-valued relations between the mechanical features and
the mechanical parameters, (p;, pn), 7> vp, €, [’ fty,»> 0y, (denoted by bold type
dots in the table) exist, it can hardly be concluded from (4.11) that certain me-
chanical parameters and/or their interactions dominate.

An analytical solution of (4.11) can only be obtained for a single point load
which stresses the crack surface at ¢ = —is. Restricting the analysis to a pure
normal load, p, = py,6(t + t5), in order to extract the essential phenomena,
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o [ oo lel s o
loading | e

interface oo e o | o
velocity o e . °
curvature o | o .

F1a. 3. Dependence of the stress intensity factors (K ropu, K ropt) on the parameters
of interface fracture mechanics in the case of the p-problem.

the evaluation of (4.11) and the subsequent determination of the magnitude as

well as the mixed-mode phase angle, defined by K g, = \/1{%2%1 + K}, and
Wg, = arctan( K ropii/ K ropt), provides the following first order approximation

1 1/2 1\
\/2/7 cosh(re)po, (T) (7) )
§ 5

(4.12) ay(—ts) = f'(—ts)omy,

om =~ (7 mem ().

Different from the case of a straight running interface crack, the magnitude is
affected by the newly introduced bimaterial constant oy, and by the interface
slope f’. The linear relation between the slope f’ and the phase angle is an effect
to be anticipated. This characteristic is maintained in an average manner, if the
integral for Krg, in (4.11) has to be evaluated for mechanical loads stressing
along the whole interval [—a, 0]. By inspection of the integral formula (4.11), the
interface slope f’ is basically a linear factor. This structure is well known from
the first order analysis of CotTerReLL and RicE [8] for the case of a quasi-static
crack propagation in a homogeneous material. Furthermore, Gao and CHiu [21]
recently investigated among other things, the quasi-static crack extension in an
anisotropic homogeneous material in the first order sense. Keeping in mind that,
even for an isotropic material, the dynamic case is formally equivalent to the
quasi-static case for an anisotropic material, the stress intensity factor formula
(4.11) is a generalization of the established results. It has to be stressed, that this
paper does not deal with any time-dependent stress intensity factor formula. It
treats the long-time and thus steady-state interface crack extension case, which
was firstly studied by Yorre [63] for a running Griffith crack in a homogeneous
material. Therefore, the formation of the stress intensity factor as a product of a
velocity-dependent and load-dependent function times a v/¢-function, which was

Krap
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introduced and comprehensively discussed by FREUND [18, 19], is not an objective
of this paper [18, 19]. To make it clear, in /¢ the letter ¢ denotes the time. The
factorization problem for the general time-dependent interface crack problem
is currently a completely unsolved problem, since the solution procedure of the
most promising mathematical method, the vectorial Wiener - Hopf technique, is
still not available. Nevertheless, as proposed by YANG et al. [62], a factorization,
which has to incorporate the bimaterial constant ¢, should exist. According to
Yoffe’s contribution and some extensions also confined to homogeneous mate-
rial, the magnitude of the steady-state stress intensity factor is not a function of
the crack-tip velocity, v. This physically unsatisfactory result can be explained by
interpreting the pair of crack tips as a reversible energy converter. In this inves-
tigation, the deviations from the Yoffe problem due to an interface as well as its
curvature are of interest. With regard to a qualitative understanding of the corre-
sponding velocity dependence of the stress intensity vector Krg,, its magnitude,
KRrap, and its mixed-mode phase angle, w,, have been simulated for curvilin-
ear interface contours up to the maximum slope of |f..] = 0.5. The contours
are assumed to behave as third order polynomials. The magnitude of Krp, has
been normalized with respect to the value corresponding to zero-velocity and to a
straight interface. The normalization is denoted by Kr,0. The simulations have
been performed in the velocity interval [0,0.91v,,]. A bimaterial with the bima-
terial constant ¢g = ¢(v = 0) = 0.096, the Rayleigh-wave velocities v,, = 988 m/s
and v,, = 2914m/s have been chosen. In addition, the characteristic length
7 = 1.0mm has been selected. Note that this bimaterial is strongly elastically
mismatched and, as an example, corresponds to the material combination of the
resin ARALDITE B and steel. From representative plots for the mixed-mode
loading situation of constant magnitude, with loads p; = p, = —1.0 N/mm? acting
along the interval [-a, 0], @ = 5.0 mm, and shown in Figs.4 and 5, it is seen that,
in contrast to the Yoffe case, the normalized magnitude, (Krop/Kpropo), varies
versus the crack-tip velocity v. However, significant changes can only be observed
if the crack velocity exceeds about one half of the minimum Rayleigh-wave ve-
loctiy, v,,, and non-straight crack surfaces are additionally involved. The rapid
increase of (K rnp/KRraopo) for velocities higher than v = 0.8v,, indicates the
limit of validity of the presented first order theory. One should remind that the
experimentally measured crack-tip velocities are limited to about 0.8v,,. The fail-
ure of the theory can be traced back to the tendency of the bimaterial constants
to become infinite by approaching v,,. Although not anticipated at the first sight,
the mixed-mode phase angle w,, varies only slightly with the crack-tip velocity as
long as the first order theory remains valid. This behaviour is confirmed by the
mixed-mode phase angle in (4.12). It should be noted that the loading situation
pr = p, imposed to a straight crack in a homogeneous material is associated with
the mixed-mode phase angle, w, = 45°. In addition, a phase shift proportional to
the respective maximum crack surface slope, f},., is not astonishing. In view of
the experimental interface fracture mechanics, a velocity-independent w, makes
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possible a reduction of the experimental parameters, recorded from a running
interface crack, to only one if the mixed-mode phase angle w, of the static case
has been measured once.

For completeness note that, for a pure normal crack surface pressure, p, =
—1.0N/mm?, and for a pure shear crack surface traction, p;, = —1.0 N/mm?, the
characteristics of (Krp,/ K rnpo) and w, do not change apart from the apparent
phase shift induced by the rotation of the phase angle corresponding to the ratio
(pt/pn)‘

For a more sophisticated analysis of the thermally strained ligament case,
assuming that the thermal strains act along the finite interval [0, b] of the length b,
and neglecting second order terms, the general integral formula (4.10) transforms
to the explicit expressions

KRrogn ) 2 2
, = /= cosh
( Vg — €08 (re)

b ReY, 0

Aa“ AT
X/ FEReY, - Limy, fiRey, |\dan) D7 ™

0 v gl : v2 1 it b

P P P
/ Bt gk e
(4.13) Y, = ()" V2 owy (:) : for a semi-infinite ligament,
:

S L o R f length b
Y, = (m) (7: m) , or a ligament of length b,

for the stress intensity factors of the q-problem, where Aay; = [(a11)2 — (eni]
and Aagy = [(a22)2 — (a22)1] denote the difference of the thermal expansion ten-
sor components of diagonal form, and AT = T'— T} denotes the applied cooling
or heating relative to the reference temperature, 7j. Similar to the p-problem,
it is recognized from (4.13) that the relations between the thermomechanical
parameters, (¢z,qy), 7> D1, vp, &, f',umy, amy, and the thermomechanical fea-
tures in question: thermal loading, interface, velocity and curvature, are rather
complex and by no means single-valued. This fact becomes more obvious from
the inspection of the supplementary table in Fig. 6. However, note that beyond
the parameters of the p-problem, the compliance-like constant )} (compare with
matrix H (3.5)) occurs additionally. Furthermore, as the y-component of the ther-
mal strain vector, g = (dan AT, ['(OAanAT) = (¢,,q,)", depends on the
slope of the ligament, given by the geometrical shape of the structural element
under investigation, the thermal strains intrinsically cause a mixed-mode ligament
stress field.

In view of outstanding dynamic aspects of the thermal strain problem, the
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Fi1G. 6. Dependence of the stress intensity factors, (K rnqu, K rnqt), on the parameters
of interface fracture mechanics in the case of the g-problem.

g-problem differs from the p-problem substantially by the factor

cosh(re(v))(AaAT) _ (AaAT) ;LLRlcosh(re)
D1(v) Dy + Dy Ry)/(uaRa)
= (g . Y(v),
(“19) ) (ih“) Y(v)
g (U) = 0p y E(U) »

0<v <, = a™0)>a™w) > oa™(v,) =0,

where mechanical and thermal isotropy of the material is assumed for simplicity.
From the physical point of view, the expression (4.14) states that, due to dimen-
sional reasons, the stress-like loading in (4.13) or (4.10) splits into a constant
thermal stress, of® = ey, generated by the thermal strains, e™ = AaAT, and
the shear modulus 1, as well as a non-dimensional but velocity-dependent stress
factor, ¥(v), to result in a velocity-dependent thermal stress, o''(v), along the
ligament. The analysis of X'(v) proves o(v) to be a monotonically decreasing
function of the crack-tip velocity v. This function tends to zero if the minimum
Rayleigh-wave velocity v, is approached. Moreover, a monotonic decline of the
(K raqu, K rogr)-graphs versus the crack-tip velocity, v, can be detected. For the
theoretical limit case of the stress intensity factors at v,,, a universal statement
concerning the (K roqir, K ragr)-values is not possible. However, this velocity be-
haviour of Kgg, is confirmed by the velocity characteristic of Nilsson’s studies of
a rapid crack propagation in a homogeneous material [33]. Nilsson investigated
the problem of a finite strip subjected to uniform displacements at the edges and
arrived at a comparable velocity influence on the stress intensity factor. Since the
jump of the thermal displacement along the ligament can be interpreted as a dislo-
cation, a comment in the framework of material science is instructive. WEERTMAN
[58] studied the fast propagation of a dislocation running along the interface of
dissimilar isotropic media and concluded that the stresses, o7;, decrease, if the
velocity rises. He especially calculated the stresses, o7;, to be zero slightly above
v,,. Like in the p-problem, the normalized magnitude, (Krqe,/ K Rroq0), and the
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mixed-mode phase angle, w, = arctan(Kro.u/KRroq), of the g-problem have
been simulated to determine the velocity characteristics of K4, where ligaments
of the third order polynomials with the same limiting values of | .| = 0.5 for the
maximum slope have been used. The thermal strains are selected to operate along
the interval [0, b] of the length, b = 5.0 mm. The special material constants of the
p-problem and the characteristic length, 7 = 1.0 mm, have been retained. The
results of the simulations are shown in Figs. 7 and 8. Similarly to the p-problem
and despite the curvature involved, almost no sensitivity to the crack-tip velocity
is observed for the mixed-mode phase angle, w, = arctan(K rpo.u/Kraq). The
theoretically estimated decrease of the magnitude (K rp,/ K roqo) versus increas-
ing velocities becomes clearly apparent. A more detailed analysis demonstrates
that the individual decrease is visibly altered by the special maximum slope of
the curved ligament.

5. Determination of stress intensity factors by the method of caustics
5.1. Caustics for dynamic interface crack propagation

This section deals with the derivation of caustics equations for dynamically
propagating interface cracks where the framework based on Stroh’s method,
which was developed before, is utilized. The curvature of the interface is excluded
from the analysis. Figure 9 shows the deviation of parallel light beams, penetrating
a cracked bimaterial specimen. Due to the change of the elasto-optical constants
and due to the deformation of the specimen surface, induced by the stress field
singularity, a shadow spot is generated in the real or the virtual reference plane.
The bright limit curve of the shadow spot is called caustic. While the just described
transmission principle, developed by MANOGG [32], is restricted to a transparent
specimen, due to THEOCARIS [51], an opaque specimen can also be investigated
by invoking the reflection principle [28]. In order to simplify the experimental
set-up, the method of caustics has been extended to non-parallel light.

The mapping equation for the shadow spot is given by the expression

(5.1) W, =m [l‘j — CJ(V(CTl + O’z)j + /\J‘V((ﬁ - 0'2)]')] G = ],2),

where C; = (z9dgc;)/m. The constants, ¢; and A;, are the shadow optical con-
stants and the so-called optical anisotropy constants of the bimaterial component
J, respectively. The mapping scale, m # 1.0, concerns the case of non-parallel
light and is determined by the experimental arrangement. The caustic can be
obtained by introducing the so-called initial curve, r = r(¢), following from the
solutions of the equation (5.2) into the formula (5.1)

_ 9y _

G2 J= Ay 0, w=@y), r=@0e0),y0r,9¢).
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F1G. 9. Physical principle of caustics around an interface crack.

In other words, a light beam intersecting the fictitious initial curve is deflected in
such a manner that it forms a point of the caustic contour. In the case of existence
of optical anisotropy in both parts of the bimaterial, two shadow spots and thus
two caustics, so-called double caustics, are generated, where the latter are built up
from two initial curves. The caustics are no longer simply connected curves due
to the discontinuity of the material constants along the interface. By applying the
gradient operator to the sum and the difference of the principal stresses, referring
to the equations (2.17) and (2.18), and by introducing the results into the general
mapping equation (5.1), the expressions

L (®Re®@)T [ Ef(2)
(53)  wi=r;-2C; ( IRe (E*f(z))|; e <E+Pf”(z)>j

(Re (E~f'(z)))f E~f"(z)
M ReE TR, (E‘Pf”(z))J,)

are obtained. Since the experimental determination of the stress intensity fac-
tors is in question, and therefore no potential vectors calculated from the special
solutions of the p-problem and of the q-problem are required, the near-tip po-
tential vectors are utilized. The near-tip potential vectors which are much easier
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to handle are derived by presupposing the mechanical loads on the crack surfaces
and the thermal strains along the ligament to be zero, and thereby arriving at the
homogeneous vectorial Hilbert problem related to (3.1). The components of the
near-tip potential vectors valid for the bimaterial part j, (j = 1,2) read

=11 - “1ymvw-l1c (2
fia() = BT ==V + 4,) 7 Ky ()X )V Kn(P),

po-1_1 = i per-Tge
G4 fialaw) = WBy =Vall + 47 Xy (2)XE (V' Kr(®),
1,007, iy =(0,1)T.

i

Here, with the exception of the parts related to any interface curvature, the
diagonal matrix X,, is the same as the fundamental solution of the p-problem
in equation (3.22). In order to determine the initial curve, the functional de-
terminant (5.2) is calculated from equation (5.3). Disregarding the index j, the
reformulated result reads

(5.5) J =1+ Cu(z,y) — C*o(z,y) = 0,
where u and v are obtained from ¢ and h by evaluating the expressions

oh  0Og _0g O0h  0Oh Og

9y 9z’ ' 9z dy 0z dy’
g1:§:/\g2, h=h1i/\h2

u

(5.6)

9

and ¢ and h are related to the gradients of (o + 03) and (o7 — 02) by

(5.7 V(o + 02); = (91, —h1)T, V(o1 —02); = (92, —h2)] .

The fundamental problem to calculate the initial curve » = r(¢) from (5.5) can be
achieved only in the case of a crack situated in a homogeneous material, because
otherwise the functional determinant becomes a transcendental function and the
initial curve, 7 = 7(¢), has to be calculated numerically. Especially for the case
of interface cracks, it is not advantageous to write down the mapping equation in
an explicit manner, since lengthy expressions arise from which almost no quan-
titative conclusions can be deduced. Therefore, the characteristic influences on
the caustics are obtained from numerical simulations. In what follows, the stress
intensity factors (A, (7), K ,,,(7)) are denoted by (K7, K1r), and the characteristic
length 7 = 1.0mm is chosen for convenience. Figure 10 shows the mixed-mode
caustics around an interface crack tip on both sides of the bimaterial interface,
where optical isotropy of the material is considered. The jump in the caustic size
is caused by the different elastic and optical material constants across the material
interface. In this study, the interface crack is assumed to be situated in a bima-
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terial with material properties of the compound of resin ARALDITE B and steel.
Figure 11 demonstrates the influence of the crack-tip velocity on the shape of the
caustics obtained by considering the mixed-mode loading relations around the tip
of a running interface crack where only the upper side of the bimaterial interface
has been taken into account. The size of the caustics increases with increasing
crack-tip velocity, this increase being significant only for crack-tip velocities of
at least about one half of the minimum of the Rayleigh-wave velocity v, . This
result has been confirmed by the investigations of KALTHOFF [28] and NISHIOKA
and Kirtaka [34] for running cracks in a homogeneous material. In addition, it
is confirmed by the conclusions inferred from the simulations of the magnitudes
and the mixed-mode phase angles of the stress intensity vectors, Kro, and Krgq,
versus the crack-tip velocity v. A more extensive discussion concerning different
mixe-mode ratios can be found in [22, 23, 39]. In Fig. 12 both parts of a double
caustic are compared with the associated caustic for the case of optical isotropy.
Figure 13 shows that each branch of the double caustic is influenced by the crack
tip velocity, but a general comparison with Fig. 12 demonstrates that the influence
of the optical anisotropy is more distinct for that chosen A-value.

5.2. Algorithm for the determination of stress intensity factors

Basing on the caustics equations derived before, a measuring algorithm has
been formulated in order to determine stress intensity factors from the experi-
mentally obtained caustics. For a more accurate and more complete recording of
the caustic geometry, the application of a digital image system has been included
into the evaluation process, since the latter allows to use numerous appropri-
ate measuring points along the caustic contour. It has to be pointed out that, in
addition to the stress intensity factors, A1 and K7y, the radii »; and the angles
¢; of the measuring points : in the reference plane are additional unknowns.
Moreover, if the method of caustics is applied, the position of the crack tip can
hardly be detected from the experimentally determined shadow spots. Thus, the
previously proposed algorithm [22, 23] in which the crack tip position is assumed
to be known has been improved in order to cover all demands of experimental
arrangements. Regardless of any especially devised algorithm and apart from the
application of the mapping equation (5.1), the algorithm must necessarily contain
the functional determinant (5.2), since the latter selects the caustic as a special
mapping function.

The new two-step algorithm assumes, in the first step, one crack-tip coordinate
to be known and calculates pairs of stress intensity factors, (K, K1), depending
on the variation of the unknown crack tip coordinate. In the second step, the
known and the unknown coordinates are interchanged leading to a second set
of stress intensity factors, (K, K1), depending on the other crack-tip coordinate
variation. This procedure generates two curves in a plane spanned by At and K.
The point of intersection represents the pair of the physical stress intensity factors
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being in demand. For the purpose of realization of the algorithm based on one
unknown crack-tip coordinate, a pair of measuring points, (Py;, P;_1), is selected.
Next, those components of the associated mapping equations are subtracted which
eliminate the unknown crack-tip coordinate. This operation leads to a set of 3
equations. This set completed by the functional determinants belonging to the
pair of measuring points provides a system of 5 nonlinear equations, reading

fa
(58) 0= f,'(xi) = f,‘3

fis
23 — o) — ((r cos(@) — Cg)ai = (r cos(@) — Cg)ai-1)
& _ (rsin(¢) + Ch)pi_
= v _ (rsin(¢) + Ch)y
(1 + Cu— C?)yy
1+ Cu— C)y
for the algorithm independent of the z-coordinate of the crack tip, and

fi1

(59 0=fi(x)=| fa

23} — (rcos(d) — Coina
75 — (rcos(6) - Coa
= | G = oZD) = (sin(@) + Chysi — (rsin(6) + Chyir)
1+ Cu- CZ'U)Z,-_I
(1 + Cu— C2U)2i
for the algorithm independent of the y-coordinate of the crack tip, which can be

solved for a set of N (N > 2) pairs of measuring points. Provided N pairs of
measuring points are given, the following system of SN equations

(5.10) 7 = (fy, £, -, fn) = 07
can be constructed and solved for the (4N + 2)-vector of unknowns
T
X = (X\,, X1, % Xj, 5 X )1
(5.11) ! ’ N

xL = (K, Ku), %0 =(rj,¢) (G =2i—1,2i).
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By applying a series expansion, this overdetermined system of nonlinear equations
can be simplified to an overdetermined system of linear equations, which can be
handled by the Householder-transform technique available in any linear-algebra
package. In order to find the desired solution vector for f(x) = 0, the series
expansion

ox

starting from point x(™), and truncated after the first term is found. Assuming
x(m*1) to be the solution vector of (5.10), the following system of algebraic equa-
tions

G o) = gy [HO) e, e (2]

with the (SN,4N + 2)-functional matrix
(m)
= OB 5 L. D
OXKx 0x1 0%y
et i 2o soae s sansaediens
(m) - 1 1 1
(5.14) A . 0 Do %o, 0
Qfﬁ . O ......................... afN ..... BfN
D e R

is obtained. The sub-matrix formed by the partial derivatives with respect to the
stress intensity vector, x,., reads

Ofn 0fn 0fs 0fia Ofis\ 7T

(5.15) of; _ 0Ky 0Ky 0K; 0Ky 0K
' OX 0fin Ofn O0fiz O0fia 0fis

3]\’[[ (9]&"[[ 31\"[[ (91\"[[ 0K
The sub-matrices resulting from the partial derivatives with respect to the space-
coordinate vector, x;, read

0fa 0fi 0 0 fia 0 T
of, | 9rzi-i Orain J0ryi1
0%2i-1 dfa dfi 0 0fia 0 ’

0¢ai_ 0dai_ 0¢ai_

(5.16) $ric1 021 (073 ;

Oh o Vs o Vs
of, | ora ory; ory;

0 ,'— g . . ’
T U T

02 0o 0¢2i
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for the algorithm independent of the z-coordinate of the crack tip, and

dfa 0 0fis 0fia 0 &
of, | Oraia Ori1 Orgiq
Ox2i-1 dfa 0 0fi3 0fia 0 ’
0 - 0 g 0 i—
(517) $2i-1 $ri-1 09 1T
0 0fn 0fi 0 dfis
i Oryi  Ory; ory;

i o Ya 0fs o Ofs
0¢2i O 0y
for the algorithm independent of the y-coordinate of the crack tip. Since, in

general, f("*D(x(m*1) does not fulfill equation (5.12), the starting vector, x(™),
is corrected by the solution vector, Ax("™), of (5.13) to give the new start vector

(518) x(m+l) = x(m) + Ax(m)

for the next iteration step. This procedure has to be repeated as often as the
truncation criterion

(5.19) 14x) ) < ||| *™)-

is satisfied for a fixed ¢, where ||| denotes the L,-norm.

The newly developed measuring algorithm was tested for quasi-static and dy-
namic crack extensions of straight cracks in a homogeneous material matrix as
well as interface cracks, where optical isotropy as well as optical anisotropy of
the material was considered. Simulated shadow spots of the most general case
are shown in the Fig.14. The tests have been performed for a crack-tip veloc-
ity v of 65 percent of the minimum Rayleigh-wave velocity, v,,, in order to
guarantee noticeable dynamic effects. A bimaterial with the bimaterial constant
g9 = (v = 0) = 0.067 has been chosen. The shadow optical anisotropy constant,
A = 40.29, which, for simplicity, is assumed to be the same in both bimaterial
components, ensures considerable anisotropy effects. For the location of crack-tip
coordinates, (z,,y,), an indefiniteness of (Az,, Ay,) = (0.1 mm,0.1 mm) has
been presupposed. This inaccurate crack-tip position is located inside a squared
interval of lateral length, 0.2 mm, centered at the real crack-tip position. Thereby,
the algorithm runs throughout this two-dimensional interval. The stress inten-
sity factors which have been calculated from a set of measuring points recorded
from simulated caustics and by using the digital image system developed by
FerBER and Hinz [16, 17], have been compared with the stress intensity factors
K1 = 10Nmm~3/2 and Ky = SNmm~3/2 assumed for the associated simulations.
The circles marked on the caustics contours are the used measuring points. In the
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case of interface cracks the data points have been equally selected from the upper
and the lower caustics. By consideration of the optical anisotropy of the material,
provided the existence of two sharp caustic branches could be observed, two sep-
arate sets of measuring points were chosen, each of them being taken from the
caustics related to the positive and negative parts of the optical anisotropy term
in the mapping equation (5.1). For the cases when one branch of a double caustic
outshines the other one, cf. Fig. 14 b, the brightest caustic branch was used for the
evaluation process. Although the proposed algorithm, of course, is not so precise
as the formerly presented algorithm assuming the crack-tip location to be known
from the measurement, it has led to results for K1 and Ky with an average error
of less than 10 percent. The obtained results are surprisingly accurate, although a
relatively large system of linear equations had to be solved and a simple L;-norm
convergence criterion has been applied.

6. Summary

Dynamic crack extension of cracks running along curved interfaces of brit-
tle bimaterials subjected to mechanical crack surface loads and superimposed
thermal strains acting along the ligament was investigated. Assuming a small in-
terface curvature, an at least almost steady-state boundary-value problem was
obtained. In the framework of Stroh’s complex method, from the correspond-
ing boundary and continuity conditions a vectorial Hilbert problem was derived
to determine the generalized complex potentials. The solution of the vectorial
Hilbert problem was constructed by superimposing the problem of mechanically
loaded crack surfaces, called p-problem, and of a thermally strained ligament,
called q-problem. Since linear vectorial problems were under investigation, the
solutions were constructed by utilizing the eigenvector planes of the p-problem
and of the g-problem. For each of the problems, a set of two scalar Hilbert prob-
lems for a set of two scalar potentials expressed by Cauchy integrals was obtained.
The curvature of the interface was handled by applying the conformal mapping
technique and methods of the first order pertubation analysis. This strategy led
to a considerably simplified determination of the potentials and to the identifi-
cation of distinct algebraic quantities, from which the following results could be
extracted. Firstly, the parameters of the eigenvalues and of the eigenvectors of the
Hilbert problem must be interpreted as interface mechanics parameters reading
(8, vp, Buy, pus). Secondly, the parameters of interface fracture mechanics are
additionally influenced by two bimaterial constants, (e, any), which are related
to (B, Buy)- Based on a physically reasonable stress intensity vector definition,
explicit integral formulae for the stress intensity vectors of the p-problem and
of the q-problem were determined by applying the suggested eigenvector-plane
approach, and by invoking Rice’s scaling procedure for stress intensity factors.
It was concluded that the individual influences of each of the interface frac-
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ture mechanics features of interest, namely: thermomechanical loading, interface,
crack-tip velocity and interface curvature, and their effects on the stress intensity
factors are rather complicated, because the existence of multi-valued relations
between the mechanical features and the thermomechanical parameters, (p¢, p.),
T, vp, €, f', pmy, any for the p-problem, and (¢, qy), 7, D1, vp, €, f', puys, ans
for the g-problem, could be demonstrated. The discussion of the mixed-mode
phase angles of the stress intensity vectors shows that they are almost indepen-
dent of the crack-tip velocity but shifted due to the slope of the interface. In the
case of the p-problem, the normalized magnitude of the stress intensity vector is
considerably affected by the crack-tip velocity if it exceeds about one half of the
minimum Rayleigh-wave velocity v,,. In contrast to this, for the g-problem the
magnitude decreases monotonically with increasing crack-tip velocity.

In determining the stress intensity factors from the experimentally recorded
caustics, a measuring algorithm was proposed which theoretically yields an arbi-
trary number of measuring points. Moreover, it does not require the crack-tip
location to be known exactly. This measuring algorithm proved to be almost
as accurate as the formerly developed measuring algorithm which assumed the
crack-tip position to be available.
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The influence of the temperature field
on the propagation of cracks

S.K. KOURKOULIS and N.P. ANDRIANOPOULOS (ATHENS)

THE INFLUENCE of the temperature field, that is developed around a propagating crack, on the
further crack propagation process itself is studied in the present work. The main target is to check
whether the temperature field supports the experimentally observed tendency of a running crack to
deviate from its initial straight path after a certain velocity limit. The study is carried out by means
of the “Twin Crack” and the “Non-Steady Heat Source” models and it is proved that an intrinsic
relation between the temperature field and the dynamic crack instability phenomena exists.

1. Introduction

IT 1s NOWADAYS GENERALLY accepted that around the tip of a propagating crack
a temperature field of significant intensity is developed. The origin of this field
is found at the irreversible (plastic) processes that take place in the immediate
vicinity of the crack tip, since 90% of the respective work is converted into heat,
in the case of metals [1], and about 70% in the case of polymeric materials
[2]. Experimentally, temperatures between 150°C and 450°C have been detected
for cracks propagating in 4340 steel [3] and of the order of 3000°C for cracks
propagating in glass [4]. On the other hand, various theoretical approaches of
the problem have appeared, predicting temperature elevations varying in very
broad limits [5, 6]. The number of works devoted to the subject that appear in
the literature increases steadily, indicating an increasing interest in the subject.

The importance of studying this temperature field can be easily understood if,
for example, the case of PMMA is taken into account. Really, temperatures of
the order of some hundreds ° C have been reported for this material, while it is
known, that a temperature increase from 20°C to 80°C causes a decrease of the
yield stress to half its initial value. The same is true for the case of steel for which
a temperature increase of 300°C causes a 25% reduction of its elastic modulus.
It is, thus, obvious that, locally, the properties of the material are completely
different than those initially assumed.

On the other hand it is proved [7] that the spatial distribution of the tem-
perature increase around the crack tip is not uniform. It is, hence, implied that
the material surrounding the crack tip is not homogeneous. Based on this ob-
servation, an effort is undertaken in the present work to check whether or not a
connection exists between the branching phenomenon and the temperature field.
In other words, the influence of the temperature field on further propagation of
the two microcracks emanating from the mother crack-tip and forming finally the
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macrobranches is studied. The main question is whether the temperature field
supports the tendency of these microcracks to further deviate from their original
straight path and to develop independently.

The study is carried out by engaging the “Non-Steady Heat Source” and the
“Twin Crack” models which are briefly described in next sections. However, a
short chronological survey of the most important works on the subject is given,
first, in order to obtain a global picture of the state-of-the-art.

2. Short chronological survey

In spite of its importance, it was only in early fifties when WELLS [8] measured
the temperature elevations around running cracks by using a thermocouple sys-
tem, in order to estimate the amount of the emitted heat quantity. More than
a decade later KAMBOUR and BARKER [9] estimated the temperature elevation
around cracks propagating in PMMA by considering a rectangular layer ahead
of the tip to be the heat source and gave a velocity limit above which the phe-
nomenon is measurable. RICE and Levy [10] used the Dugdale model to obtain
the shape of the heat source and calculated the temperature rise for various
crack speeds, while FULLER et al. [11] measured the temperature rise by using
infrared detectors and thermocouples. WiLLIAMS [12] estimated the heating ef-
fects at the moving crack tip by considering a simple energy balance for a circular
craze at the crack tip, as a means to explain the K — a (critical stress intensity
factor — crack velocity) function for PMMA. DOLL [5] calculated the tempera-
ture elevations and heat outputs for fast running cracks using thermocouples and
one-dimensional theory, and MARSHALL et al. [13] investigated the temperature
effects on the fracture of PMMA by modifying the Dugdale model.

With the works of WEICHERT and SCHONERT [4, 6], who calculated the tempera-
ture distribution by considering a circular heat source of uniform heat distribution
and also measured the temperature rise by using a very sensitive radiation ther-
mometer, a new period begins, in which the temperature field is studied not as
a secondary effect of fracture but as the main subject. Later, SHOCKEY et al. [14]
recorded temperature maxima, very near to the running tip, with the aid of ther-
mocouples and related these measurements with K ;p variations. ZIMMERMANN
et al. [15] monitored the temperature profiles close to the running tip and gave
the velocity limits for which all the energy delivered at the tip is transformed into
heat. They also considered heat measurements as an alternative tool for checking
the validity of dynamic fracture criteria. KUANG and ATLURI [16, 17] employed
the finite element method to solve the problem and overcame the difficulties ap-
pearing by considering the heat distribution to follow an 1/r law instead of being
constant.

DoucLas and MAIR [18] analyzed the Mode-III problem by using asymptotic
fields, and L1 et al. [19] solved the same problem by considering the plastic zone
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around the crack tip to be the heat source. A plane strain solution was employed
by SUNG and ACHENBACH [20], while MALALI [21] used a superposition principle
for the heat sources to calculate the temperature rise. Also, KLEMM [22] obtained
the temperature profile for cracks running in ductile materials.

In the very recent years the number of works studying the problem increases
steadily. Among them, the works by KOBAYASHI ef al. [23] who measured experi-
mentally the heat generated around the tip using thermistors, by KUMAR et al.
[24] who solved the Mode-I problem numerically and also studied the influence of
strain rate sensitivity on the temperature rise, and finally the experimental work
by ZeunDER and Rosakis [3] who used noncontact infrared sensors to measure
the temperature rise, are worth mentioning.

3. Theoretical preliminaries
3.1. The non-steady heat source model

The Non-Steady Heat Source (NSHS) model, introduced by THEOCARIS et al.
[7, 25], is used in the present analysis. It cures some of the drawbacks of previous
models by engaging more realistic assumptions concerning the shape of the heat
source and the distribution of heat production over it. It is based on the following
two hypotheses:

1. The heat source coincides with the plastically deformed region enveloping the
propagating crack tip.

2. The spatial heat production distribution is intimately related to the distribution
of plastic work or, equivalently, to the distribution of plastic deformations.

The second hypothesis is fulfilled by a family of functions of the following
form:

(3.1) dq(rs,05) = — [ 2, ) 1] cos™ (%) dA-

ry t 75

covering additionally the requirements of maximum heat production at the crack
tip, zero heat production at the elastic-plastic boundary and simulation of the
equivalent stress variation (which is analogous to the plastic work) between these
two extreme values. In this function dg(rs, ;) is the elementary heat produced
at the elementary area dA around point (r,, 6;) of the heat source (Fig.1), A is
the total area of the plastic enclave, and r,,(6;) is the radius of the elastic-plastic
boundary along the line connecting the crack tip and the elementary heat source.
In the same function A is a parameter defined by satisfying the demand that the
integral of dq over the area of the heat source equals the total heat produced @,
i.e through the equation:

(3.2) / dq(rs,0s) = Q
A
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{L wB
7 \r X

FIG. 1. The plastic envelope as heat source.

Finally, n is an arbitrary positive real number, the value of which describes the
abruptness of the radial and polar variation of the heat production distribution.
The exact value of this parameter depends on the constitutive equation of the ma-
terial and on its thermal properties. Its influence on the final results is significant
and has been analytically discussed in Ref. [7].

The heat production function being known the ROSENTHAL'S [26] solution
for a moving point-heat-source is integrated over the whole area of the plastic
enclave and the total temperature elevation at an arbitrary point outside the
plastic enclave is obtained:

_ c __crpscosaps} (crps)
(33)  AT(r,,6,) {/ gz oxp { - 20 b iy (T2 dg(r, ),

where AT'(r,,0),) is the temperature rise at the point P(r,, 6,) outside the plastic

zone, c is the velocity of the crack, (r,s,6,;) the coordinates of the point P

in relation to the elementary point heat source S(rs,6;) (Fig.1), K and a are,

respectively, the coefficients of thermal conductivity and thermal diffusivity of the

material, and K is the Bessel function of the second kind and zero order.
Combining Eqgs. (3.1) to (3.3) the temperature rise is obtained.

3.2. The “Twin Crack” model

Based on the experimental observation that, long before macroscopical branch-
ing, the tip of the running crack is surrounded by a tuft of microcracks, from
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which, at the final steps before macroscopic branching is observed, only two dom-
inate over the others, THEOCARIS et al. [27] proposed the “Twin Crack” model,
in an effort to explain the branching phenomenon and predict the future path
of the newly formed branches. Hence, according to this model the macroscopic
dynamic path instability is the final outcome of microscopic multibranching at the
tip of the running crack.

The main assumptions of the “Twin Crack” model are as follows:

1. The propagating crack is better described as a running cloud of microcracks
rather than as a single point.

2. At the final steps two of these microcracks (0B and 0C in Fig.2) dominate
over the others, exactly the ones which form the final macrobranches.

3. Each macroscopic fracture criterion is applied in the vicinity of two mutually
influenced microbranches instead around a single mathematical tip.

4. The future path of each microbranch (0:,’0) depends both on macroscopic
factors, like stress level and crack velocity, and microscopic ones, like local structure
irregularities and local abrupt changes of the material properties. The dynamic insta-
bility phenomena are, thus, confronted as doubly faced, with both deterministic and
stochastic parts.

5. The stochastic part is assumed to be represented by the initial orientations o;
(i = B,C) of the two microbranches and also their initial length ratio r = b/c
(Fig. 2).

y

FI1G. 2. The geometry of the prebranched crack configuration.

Selecting, thus, a suitable fracture criterion and knowing the dynamic stress
field distribution and its intensity (the respective dynamic stress intensity factors
(SIFs)), the future path of each microbranch can be predicted.
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It has been proved [28] that the “Twin Crack” model constitutes a very flex-
ible tool and, depending on the values of ¢; and the lengths’ ratio of the mi-
crobranches, all types of macroscopically observed dynamic crack path and crack
velocity instabilities (branching, kinking, curving, arrest and reinitiation) can be
satisfactorily predicted by it. Also, in spite of the arbitrariness of the values of the
stochastic factors, the predictions of the model are not random, but they form
rather narrow prediction bands, in close agreement with experimental results.

4. Application and results
4.1. Description of the procedure

A crack 0A (Fig.2) propagating with constant velocity ¢ in thin sheets of
PMMA under plane stress conditions is considered in the present study. Tip
0 becomes suddenly stationary and two branches 0B and 0C of lengths b and
c appear and start propagating towards initial directions ¢; (: = B,C) with
velocities equal to c.

The dynamic stress field distribution around tips B and C is given by the
FrReEUND and CLIFTON solution [29]:

-D D
4.1 0y; = \;;I?Filj(ﬁ,c,cl,cz)+ \j\i{r_rfg(ﬂ,c,cl,cz)+0(l),

where (7, 6) are the polar coordinates in relation to a system centered at the tip
of the running crack, 7 ,-é (¢,7 = 1,2 and A = I,1I) are analytic functions of the
angle 6, the crack velocity ¢ and the dilatational and distortional stress waves
velocities ¢j, ¢, respectively.

The Mode I and II dynamic SIFs, K2 (A = I,1I) are obtained by adopting
the technique described by Kostrov [30], according to which the dynamic SIFs
are given as functions of their respective stationary value, Ky and a correction
factor k), which depends on the velocities of the crack and the stress waves:

(42)  KP(t) = KJK (), kY =S (-%) [1 - <Ci>] /[1 3 (é)] 1/2’

A=11I, =12,

where ¢, is the velocity of the Rayleigh stress waves and S is a holomorphic
function of crack velocity, which can be calculated numerically.

Concerning the static SIFs around the crack tips in the configuration of Fig. 2,
the technique developed by THEOCARIS [31] is adopted, based on a system of three
complex singular integral equations, according to the DATSHYSHIN and SAVRUK
[32] method, which is solved numerically.
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Combining Eqgs. (4.1)-(4.2) with a suitable yield criterion, the radius, r,,(6), of
the elastic-plastic envelope can be obtained. In the present work the von Mises
criterion is selected and thus the following expression for r,,(6) is obtained:

(4.3) 70 (0) = a1 f2(0) + a2 f3(0) + a3 f1(8) f2(6) + aa[f3(8) — fa(6)]

in relation to a polar system (r,6) located at the running tip. In this equation,
fi(0) (z = 1,4) are functions of ¢, ¢; and ¢;, and a; (i = 1,4) are constants. Their
analytic expressions can be found in Ref. [7].

Introducing the expression for r,,(6) into Eq. (3.3), combining with Egs. (3.1)-
(3.2) and with the further assumption that n = 1, i.e. adopting a 1/r distribution
for ¢ in the plastic zone, we obtain the following expression for the temperature
rise at a point P in the vicinity of tips B and C"

Qe

=P
2 cos(()s /2)
Ty t 7

(3 - 41n2) / 2 cos(f,/2)
_ CTps COS Ops } (crﬁ)
xexp{ T Ko 2 dA.

Solving numerically the above equation with the aid of a suitable code devel-
oped for this purpose, the temperature elevation at any point P can be obtained.
The code proved to be stable and accurate [7] and the maximum error, for the
present application, was estimated to be less than 2% in all cases.

@4)  AT(ry0,) = // -

4.2. Results and discussion

The procedure described in previous section was applied for the case of
PMMA with K = 0.193Wm~'°C, and @« = 9.46 x 10~°m?s~!. Thin plates of
PMMA were subjected to dynamic loading causing propagation of a preexisting
crack of initial length 2a¢ = 0.10m under Mode-I plane stress conditions, with
constant velocity c¢. Suddenly two microbranches 0B and 0C' of equal lengths
(b,¢) and inclinations ¢; (: = B, (') appear, propagating with the same velocity
c. Three characteristic values for ¢ were selected, equal, respectively, to 0.35¢5,
0.5062 and 0.65C2.

Concerning the values of the total heat quantity ) produced during crack
propagation, use was made of the results obtained by KoBAYAsHI et al. [23]. For
the externally applied load, a reasonable value equal to 0.20(, where o is the
yield stress of the material, was assumed.

In Figs.3-5 the reduced, over the initial temperature, polar distribution,
T* = T*(6,), of the temperature elevation is plotted for the three character-
istic crack velocities. The inclinations ¢, and ¢ of the two microbranches are
assumed to be equal, since in this case the total amount of heat can be distributed
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symmetrically to the two microbranches. Seven different values for the initial an-
gle inclination are selected, namely ¢ = ¢, = —p, = 5°, 10°, 15°, 20°, 30°, 40°
and 50°.

100
. PMMA
T
€=035¢,
'A%
P
75
p
50°
50 .\
40°
4 i
= N N
50
20°
150 o
0 30 60 v, (°] Y

F1G. 3. Polar distribution of temperature elevations around tip B for ¢ = 0.35c¢;,, for various
branch inclinations.

From these figures it can be seen that the distribution of the temperature
rise around tips B and C is neither monotonous nor self-similar for the various
inclination angles. In fact, concerning the initial inclinations of the microbranches,
two cases can be distinguished, i.e. angles ¢ below the limit of 20° and angles ¢
above this limit. Obviously this limiting value is connected to the local minimum
value of the dilatational strain energy density distribution separating its two local
maxima [27].

For the first crack velocity (Fig. 3), i.e. ¢ = 0.35¢,, the T* = T*(6,) distribution
decreases steadily for ¢ values in the first group (¢ < 20°) and then this tendency
is reversed and the values of 7 start increasing as angle ¢ increases. Concern-
ing its 6,-dependence, the 7™ distribution shows a monotonously decreasing be-
haviour with a minimum value for angles 6, between 50° and 60°, depending on
the specific value of angle ¢, for the first group of angles ¢ (¢ < 20°). For angles
¢ > 20° this tendency is reversed and a maximum value, whose magnitude and
position strongly depends on the ¢-value, is observed.
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FIG. 4. Polar distribution of temperature elevations around tip B for ¢ = 0.50c, for various
branch inclinations.

For the second crack velocity (¢ = 0.50c¢;) (Fig.4) the situation is almost
similar and only the absolute magnitudes of the temperature elevations are sig-
nificantly higher, almost up to 25%. Things are, however, dramatically changed
for the third characteristic crack velocity, ¢ = 0.65¢; (Fig.5). From ¢ = 5°, a
local maximum already appears, whose absolute value decreases with increasing
p-values and, at the same moment, it is removed towards lower 6,-values, until
it disappears. Then, for ¢ > 30° it appears again, weakly in the beginning, and it
increases steadily moving towards higher 6,,-values.

Since it is known from many sources (see for example Ref. [33]), that for the
case of PMMA, the most possible crack velocity for branching to be observed is
about 0.6¢,, it is reasonable to connect these dramatic changes of the temperature
rise for velocities higher than 0.50¢, with the branching phenomenon.

For this purpose it is recalled, that applying the T-criterion of failure [34]
according to the “Twin Crack” model and for symmetric prebranching condi-
tions [27], it is predicted that the most favourable initial direction ¢ is about 7°,
independently from crack propagation velocity, giving angles of further branch

propagation, 05, = 0;, between 16° and 35°. It can be concluded, according to
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Fi1G. 5. Polar distribution of temperature elevations around tip B for ¢ = 0.65c¢;, for various
branch inclinations.

the previously described behaviour of temperature fields and Fig.6, where the
T* distribution is drawn for the three characteristic velocities and ¢ = 7°, that
for crack velocities lower than 0.50c, the branching tendency is suppressed by
the decreasing temperature field, in the whole range (16° — 35°) of 6,-angles.
On the contrary, for higher crack velocities this tendency is supported by the
increasing temperature field, for the same 6,-angles, since the material appeares
to be weaker due to higher crack temperatures.

Finally, in Fig.7 the first attempt is described to take into account the influ-
ence of a slight asymmetry of the initial lengths of the micro-branches. In this
figure the polar temperature elevation distribution is plotted for the case with
b/c = 1.00/0.75, for a ¢ value equal to 15° and crack velocity equal to 0.5c¢,.
Considerable differences in the absolute values of temperatures around the two
tips are observed. However, this phenomenon demands further investigation in
close relation to the assumption of equal velocity of the two microbranches of the
“Twin Crack” model, which seems rather inadequate for the case of asymmetric
prebranching conditions.
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F1G. 6. The influence of crack velocity on the temperature elevations, for ¢, = ¢ = 7°.
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FIG. 7. Polar distribution of temperature elevations for tips B, C in case of slightly asymmetric
branch lengths (b/c = 0.75) and ¢, = —p. = 15°.

[967]
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5. Conclusions

In the present work the temperature distribution around microscopically pre-
branched propagating cracks was studied. The main conclusion is that the tem-
perature field around a running crack tip interacts with the crack path instability
phenomena. Also, it is indicated that the temperature field and its influence on
the mechanical and thermal properties of the material cannot be ignored. Indeed,
maximum temperatures up to 180°C detected in a very narrow zone outside the
plastic envelope cannot be ignored in case of temperature-sensitive materials like
PMMA, in spite of the narrowness of this zone (temperature gradient about
1.5 x 1083°Cm~! [7]) indicating insignificant temperature elevations just a few
microns away from the plastic envelope.

A complete solution of the problem is not yet available. Hence, this study
should be only considered as a first step towards the understanding of the com-
plicated procedure connecting the temperature field and the dynamic crack in-
stability phenomena, since a number of questions remain still open. For example,
in the theoretical domain, the exact shape of the heat source, compatible with
a fully dynamic elastic-plastic solution of the respective stress field and the ex-
act spatial distribution of the produced heat are needed. Also, the variation of
the mechanical and thermal properties of the studied materials with temperature
should be taken into account, since an initial study of this problem [35] made for a
different material (steel) indicated that a reduction of the estimated temperature
elevations of the order of 25% is observed. Significant difficulties, of course, exist
also in the experimental study of the problem. For example, the extremely small
dimensions of the area in which temperature elevation is measurable compared to
the dimensions of the measuring equipment and sensors, in combination with the
fact that the trajectory of any dynamically propagating crack cannot be accurately
predefined is the most serious difficulty. Also, the slowness of most experimental
devices for application in truly dynamic phenomena causes significant difficulties.

Finally, the influence of initial asymmetry of the prebranched configuration
should be subject of further study, since initial indications exist that other in-
stability phenomena, apart from branching, could be better understood through
a combined approach including the temperature field influence on the whole
procedure.
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Dynamic fracture under pressure and shear

J. LU, A. DHUMNE and K. RAVI-CHANDAR (HOUSTON)

POLYCARBONATE EXHIBITS transitions in the failure mechanisms and modes, as a function of the
rate of loading and the constraint placed on the crack. In this paper, the recently discovered
transition from brittle to ductile mode with increased loading rate is examined by the method of
photoelasticity. The evolution of the dynamic stress field as a function of time and rate of loading
is examined both near the intial crack tip and the growing shear band/crack tip.

1. Introduction

BROBERG [1] showed that if the in-plane compression is sufficiently large, the only
available path for the crack extension might be along the direction of maximum
shear and that while experimentally difficult, “Mode II growth should be obtained
for virtually all materials”; the reasoning behind this is that any micro-cracks that
are formed ahead of the crack will be closed by the compressive stresses. Re-
cently, KALTHOFF [2] experimenting with a high strength steel, showed that some
combinations of pressure and shear loading of a crack resulted in a transition
from a brittle to a ductile mechanism of crack growth as the rate of loading was
increased; this is thought to be due to the large compressive stresses parallel
and normal to the crack, that are introduced by the asymmetric impact load-
ing arrangement, which inhibit brittle fracture. However, since the stresses are
still quite large in the impact loading, a shear failure occurred. KALTHOFF [2]
suggested, through post-mortem examinations of the failure surface, that an adia-
batic shear band had formed prior to the shear fracture. Rosaxis et al. [3] have
observed similar shear banding in steels.

Recently, we obscrved a similar transition from ductile-to-brittle-to-ductile
failure in polycarbonate [4], a thermoplastic polymer capable of sustaining large
inelastic deformations. Using an asymmetrically impacted, single edge-notched
specimen which is slightly different from the loading arrangement used by KALT-
HOFF [2] in his investigations on the high strength steel, and varying the rate of
impact loading, it was found that at low rates of loading the failure was ductile
with a transition to a brittle Mode-I cracking at higher speeds of impact; finally,
at very high impact speeds, again a ductile shear banding/cracking along with
shear strain localization was observed. The dissimilarities in the microstructure
of the two materials and the micromechanisms of deformation and fracture are
readily apparent — the high strength steel with a polycrystalline grain structure
and with deformation and fracture mechanisms such as dislocation motion, grain
boundary sliding, cleavage, and intergranular fracture and the polycarbonate with
an amorphous, entangled macromolecular structure and with deformation and
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failure mechanisms such as crazing, molecular disentanglement, molecular seg-
mental rotation, chain scission etc. However, the macroscopic manifestations of
deformation and failure, if characterized in terms of the observed deformation
localization and failure mode transitions, appear to be identical [4]. In this pa-
per the extent of similarity in the macroscopic deformation and dynamic failure
behavior is examined. LEE and FREUND [5] analysed the corresponding elastody-
namic problem for a stationary crack and found that the crack experiences both
a compression and shear, at least for a short duration after initial impact; MASON
et al. [4] showed through experiments that at long times from impact, a Mode I
loading developed. The finite length and diameter of the projectile make the ac-
tual loading to become significantly different from the idealized loading assumed
by Lee and Freund.

2. Experiment

The specimen geometry and loading are shown in Fig. 1. The specimen mate-
rial was polycarbonate; the choice of polycarbonate was motivated by its ductile
response under some loading conditions and by its suitability in dynamic pho-
toelastic investigations. A 12.7 mm deep crack was machined into a 100 mm wide
x 400mm long x 5mm thick specimen with a mill cutter of 0.3 mm thickness;
the root of this machined crack was scribed with a sharp razor blade to simu-
late a sharp crack tip. The dynamic asymmetric impact loading was obtained by

suspended by strings

44

100 mm

crack

400 mm

E

projectile

FI1G. 1. Specimen geometry for the asymmetric impact loading experiment.

launching a polycarbonate projectile (50 mm diameter, 100 mm long), at speeds
in the range of 25 to 60 m/s from the barrel of an air-gun. The air-gun consists of
a reservoir, a solenoid valve and a 1.5m long barrel, with a maximum pressure
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capacity of 90 psi. The speed of the projectile was measured by the interruption
of a laser beam placed across the path of the projectile.

The stress field information was acquired through the methods of photoelas-
ticity and caustics, and recorded on film using a high speed camera capable of
making 100,000 frames per second (fps). The high speed camera, built in-house,
was a continuous access rotating mirror camera. Shuttering or framing is achieved
solely by pulsing the laser light source with a pulse time of 15ns, short enough
to freeze the motion of the crack. The camera was triggered by detecting the
projectile just prior to impact on the specimen, and at the rate of 100,000 fps
the crack motion was followed until the crack moves out of the field of view,
usually for about 200us.The application of the method of photoelasticity and
caustics is rather well established in dynamic fracture investigations and hence
the techniques will not be described here at all.

The impact velocity was varied in the range of 25 to 60 m/s. Also, since the
air-gun was at some distance away from the specimen in order to allow for our
speed measurement system, aiming for the projectile impact to occur just below
the crack line was not easy; in different experiments, the projectile impact was
always at some level below the crack line which varied from about 3 mm to 25 mm;
this actually becomes another way of varying the rate of loading as well as the
ratio of the shear to compressive loading. These variations in the loading lead to
interesting transitions in the mechanisms and modes of fracture and we discuss
these transitions in the next two sections. The transitions in polycarbonate bear
a very strong resemblance to failure mode transitions in ductile metals, even
though the microstructures of the materials as well as the micromechanisms of
deformation and fracture are very different.

3. Fracture under asymmetric impact

Polycarbonate is a thermoplastic polymer with a molecular structure that con-
sists of a bisphenol A component and a carbonate component; the bisphenolic
component gives a high glass transition temperature of about 150°C, while the
carbonate component provides a high rotational mobility resulting in a capacity
to shear yield. Thus, at room temperature at low to moderate loading rate, poly-
carbonate exhibits ductile fracture behavior; as the loading rate is increased, a
ductile to brittle fracture transition occurs [7], which is similar to such transitions
observed in metals. In the present series of experiments using the asymmetric
impact of the edge cracked plate, in addition to this ductile to brittle transition,
at higher rates of loading a brittle to ductile transition with increasing loading
rates was observed, similar to the observations of KALTHOFF [2]. It must be ob-
served that, as the loading rate was increased, the crack tip constraint could not
be maintained at the same level due to the nature of the biaxial loading wave
that is generated by the impact.
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Depending on the velocity of impact, the time for the initiation of crack growth
and the mechanism governing the mode of crack growth changed. Figure 2 pro-
vides a summary of the various impact velocity ranges and the corresponding
crack behavior; in each range, the crack surface is also shown. Corresponding to
each of these velocity ranges, the high speed photographs are shown in Figs. 3-6.
At this stage, we will interpret the high speed photographs qualitatively with re-
spect to the stress field parameters, since the region near the crack tip is obscured
by a pseudo-schlieren (1) effect. Note that the pseudo-schlieren appears only in
the photoelastic pictures, where the camera is focussed on the specimen plane
and not in the caustics, which are recorded on a screen plane at some distance
away from the specimen and hence do not contain the light rays from a small
region near the crack tip.

At slow impact speeds (less than 28 m/s), the magnitude and the rate of load-
ing on the specimen are small, and the amplitude of the stress wave loading is not
sufficient to cause initiation of the crack. In fact, the material exhibits a ductile
response in this loading regime and a large plastic zone is formed near the crack
tip; Fig. 3 shows a selected sequence of dynamic photoelastic pictures. From the
frame labelled Ops it is clear that impact has already occurred some distance be-
low the crack line, and that the loading wave front is just beginning to enter the
field of view of the camera. After 20 ps, the wave front has arrived at the crack
tip and the beginning of the scattering event is evident. However, it takes another
20 s before the crack tip isochromatic fringes resemble the typical pattern asso-
ciated with a Mode II square root singular stress field. The stress state changes
quickly as the wave loading continues; further frames in the figure indicate that
at 80pus and 110ps after impact, the isochromatics are suggestive of a Mode I
type loading. At about 200 s, the isochromatic fringes indicate the disappearance
of the usual square-root singular crack tip stress field. The large fringe density
indicates a large shear gradient near the crack tip; the crack does not initiate
even after very long time from impact (~ 500 ps). Post-mortem examination of
the specimen revealed that the crack tip had significant plastic deformation.

As the impact speed is increased to the range between 29 m/s to 32 m/s, crack
initiation occurs, but only upon the arrival of stress waves reflected from the
boundaries of the specimen, which provide additional loading to the crack tip.
Figure 4 shows a selected sequence of dynamic photoelastic pictures from this
experiment. The initial impact event was not captured by the high speed camera
due to a trigger problem and hence we are unable to precisely indicate the time for
initiation; however, it is possible to infer from the frames that were recorded that
the initiation occurred at least 800 ps after impact, and that many wave reflections
had occurred from the boundaries of the specimen before crack initiation. The
pseudo-schlieren effect blocks out the near-tip isochromatic fringes and hence

(1) The diameter of the rotating mirror of the high speed camera is about 13 mm and therefore light rays
that deviate to large angles are effectively cut off from the film; thus the mirror plays a role similar to a knife
edge in a schlieren set-up and these rays do not reach the film plane.
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['1G. 2. Summary of crack growth behavior in polycarbonate; specimen geometry and fracture
surface morphologies are shown.
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F1G. 3. Selected sequence of high speed photographs showing isochromatic fringe patterns;
impact speed = 25 m/s.
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FIG. 5. a) Crack position variation with time corresponding to Figs.4 and 6. b) Crack velocity
variation with time from Figs. 4 and 6.

we are unable to get a quantitative estimate of the stress intensity factor along
the crack path. The crack tip state is a mixed mode loading state and thus the
crack propagates along a curved path, with a initial kink angle of about 22°. The
crack position variation with time is shown in Fig. 5a (labelled Specimen 2), where
the distance along the path of the curved crack is indicated; the corresponding
velocity variation is indicated in Fig. Sb. Clearly the crack accelerates quickly to
about 450 m/s, which is one half of the Rayleigh wave speed in the material. The
fracture surface, shown in Fig.2a indicates a mirror-type, rather featureless flat
fracture in the middle of the plate and a shear lip towards the outer edge of
the plate. While the shear lips are very similar to observations in the quasi-static
fracture in metallic materials, the mirror-like fracture surface is quite unusual
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F1G. 6. Selected sequence of high speed photographs showing shadowoptical caustic patterns;
impact speed = 32 m/s.
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in polycarbonate. The shear lips are rather small, about 400 m on either side,
compared to a plate thickness of about 6.3 mm.

As the impact velocity is increased above 32 m/s, crack initiation occurs prior to
the arrival of waves reflected from the far boundaries and we have an experimen-
tal realization of the infinite geometry configuration illustrated in Fig. 1; Fig. 2b
shows a post mortem picture of the crack path and the fracture surface. Figure
6 shows a selected sequence of high speed photographs from this experiment.
These high speed photographs were taken under a shadowgraph arrangement of
the optics and hence caustics are seen in these figures instead of isochromatics;
the size and shape of the caustics can be interpreted in terms of the crack tip
stress intensity facors, but here we interpret them only qualitatively. During the
first 50 ps, the build-up of the crack tip loading is evident from the increasing size
of the caustic; the shape of this caustic indicates the presence of both a shearing
component and a compressive component, as can be expected from the loading
arrangement. Crack initiation occurs at about 50ps after the initial impact and
the symmetry of the shape of the caustic about the new crack direction at 60 ps
indicates that the crack had initiated along the direction of the local Mode-I. The
crack kinks from the initial direction at an angle of about 68°; several repeated
experiments in this impact velocity range indicated very little change in the crack
kink direction. The following frames suggest that the crack propagated nearly
along a straight line, with the caustic pattern suggesting a mixed-mode loading.
The crack position variation with time is shown in Fig.5a (Specimen 10); the
corresponding velocities are shown in Fig. 5b. The crack accelerates quickly to a
velocity of around 220 m/s and propagates at a constant speed until the arrival
of the waves reflected from the far boundary at about 100us, when the addi-
tional loading induces an acceleration of the crack. The slow speed of the crack,
compared to the speed in Specimen 2 is puzzling, considering that the impact
energy is higher; however, the high impact speed is also associated with a larger
compressive loading parallel to the initial crack, and thus the kinked crack could
experience crack surface friction leading to smaller speeds. An examination of the
fracture surface indicates periodic striations, with a spacing of 36 pm; however,
these striations are not visible all along the crack path as can be seen from Fig. 2.
The mechanisms of formation of these striations is not clear yet, although there is
some speculation that sequential formation and breakdown of crazes might lead
to such striations [8].

A more dramatic change in the mode and mechanism of crack initiation and
growth occurs as the impact speed is increased above 50 m/s. Figure 7 shows
a selected sequence of high speed photographs corresponding to the specimen
shown in Fig. 2c; the projectile impact speed was 55 m/s. Even though the impact
speed was higher, the crack did not propagate along the direction of local Mode
I (about 68° from the crack line as indicated from the previous experiment),
but instead a shear band/crack grew from the crack tip along the original crack
line. The first frame that was captured by the high speed camera occurred about
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30ps after impact; subsequent frames were 10ps apart. The high intensity of
the loading is indicated by the large number of isochromatic fringes that can be
seen in these photographs; each isochromatic fringe order corresponds to a shear
stress difference of about 1.1 MPa; the largest measured shear stresses are of the
order of 100 MPa. During the first 30 to 40ps after the stress wave encounter
with the crack tip, the machined crack faces can be observed to close; also, in
the frames +20ps and +30 ps isochromatic fringe lobes characteristic of a crack
tip field can be seen to appear. Furthermore, the isochromatic fringes are very
closely spaced, compared to the isochromatic fringes in Figs.3 and 4, indicating
that the shear stress gradients along the crack line are quite large. The large
intensity of the crack tip deformations exacerbate the pseudo-schlieren effect
and at increasing times, the crack tip region is not clearly visible. Therefore, the
exact time and evolution of the shear band/crack as it initiates from the crack
tip are not resolvable, but from the photographs at later times, particularly at
+170 ps and +190 ps, and from the sudden drop in the shear stress gradient one
might surmise that the shear band/crack had begun propagation around this time;
the unloading waves from this initiation event decreases the shear stresses ahead,
as can be seen from the decrease in the fringe density at later times. Figure
2c shows the fracture surface of this specimen; the surface is distinctly different
from other fracture surfaces, presenting a dull apearance to the eye and at high
magnifications showing indications of ductile type of fracture, with dimples and
stretched ligaments visible on the fracture surface.

4. Conclusion

In summary, polycarbonate presents a wide array of ductile and brittle fail-
ure mechanisms; under suitable external loading arrangements, such as in the
asymmetric impact experiment, transitions between a ductile fracture mode, a
brittle fracture mode and shear banding/cracking are observed. Such transitions
have been observed in metallic materials by KALTHOFF [2] and RoOSAKIs et al.
[3], but the present results suggest that such transitions could also be possible
in nonmetallic materials. In order to explore the material dependence further,
these asymmetric impact experiments were performed in polymethylmethacrylate
(PMMA); in the range of impact speeds from about 20 to 60m/s, only brittle
fracture was observed. However, a rather curious observation is shown in Fig. 8,
where a selected sequence of high speed photographs from a PMMA specimen
is shown; the impact speed was 32m/s and the photographs were taken using a
shadowgraph set-up, resulting in caustics. The projectile impact occurred about
15mm below the crack line and hence the projectile itself is not seen in the
photographs. Two observations from this figure are worth noting. First, the crack
kinks at an angle of 90°; this is quite unexpected, since an analysis of the state
of stress near the crack tip indicates that the crack should kink at an angle of
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F1G. 8. Selected sequence of high speed photographs showing shadowoptical caustic patterns
in PMMA,; impact speed = 32 m/s.
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about 70° for pure Mode II, and at smaller angles for combined Mode II and
compression normal to the crack. Secondly, the crack speed is very low — about
200m/s — compared to the Rayleigh wave speed of the material, about 1200 m/s;
Mode I cracks typically grow at about 600 m/s in PMMA. The shadowgraphs in
Fig. 8 suggest that the crack faces are in contact, and perhaps the contact pressure
and and crack surface friction play a role in dictating both the large kinking angle
and the low crack speeds.
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Controversies in dynamic fracture mechanics

A. NEIMITZ (KIELCE)

IN THE ARTICLE the discrepancies between theory and experiment in the fast crack growth phe-
nomenon will be shortly reviewed. The main features of this phenomenon will be listed according
to the experimental observations. The sources of those discrepancies will be suggested. The crack
growth equations will be characterized and discussed from the point of view of equilibrium and
nonequilibrium thermodynamics. The recently introduced crack growth equation will be presented
and discussed along with the computer simulation of the crack growth process.

1. Introduction

ACCORDING TO CARL PorpeER (philosopher), the theory can not be verified by
experiment. The experiment may only show that the theory is wrong. One can
prove the theorem but not the theory. Therefore if we want to compare the theory
with experiment, we should seek for discrepancies between them. Thus, the main
purpose of this presentation is to point out the experimental facts that contradict
widely accepted theories within the field of the fast crack growth. This will be
done in the first part of the paper. Next, the most important features of the
fast crack growth phenomenon will be listed including recent observations. The
theory must reflect these features as well as it must introduce parameters that are
measurable and are connected with boundary conditions, since only the theory
sets up what is observed experimentally. Finally, the origins of the discrepancies
between theory and experiment will be discussed and certain recent theoretical
results that much better reflect the basic features of experiment than the theories
based on equilibrium, non-dissipative thermodynamics, will be presented.

2. Discrepancies between theory and experiment

e The best known argument against the existing theories based on the linear
theory of elasticity and assumption that effective fracture energy is not dependent
on the crack tip speed is the observation that the limit crack velocity is much lower
than the Rayleigh or shear wave speeds. Such a velocity limit is predicted by the
theory. Usually, we observe speeds less than half of those values. However if one
assumes that the effective surface energy is a function of crack tip velocity and
the crack growth equation is in the form:

(1) Gla,00,v] = GLv]l = 4[v], i=LILII
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or
) K{[aoe,v] = Kig[v],

where G¢ is dynamic energy release rate (DERR), K{ is dynamic stress intensity
factor (DSIF), v is crack tip speed, the material functions K{. and G{. are
geometry-dependent and from the practical point of view become useless.

¢ Another important discrepancy between the theory and experiment is that
experiments show the lack of the unique dependence between the crack tip speed
and Dynamic Stress Intensity Factor (DWIN). It was shown by KALTHOFF et al.
[5], RAVI-CHANDAR et al. [13] and FINEBERG et al. [1], among others. Such a
dependence is predicted by the theory.

¢ According to the theory, the stress field in front of the crack tip and the
energy flux to the crack tip are not functions of the crack tip acceleration. In
the experiment the acceleration/deceleration are observed and the change of
the crack tip speed does not follow the SIF-velocity relations. Quite recently,
new results by FREUND and Rosakis [3] as well as MARDER [8] introduce the
acceleration to the equations for the stress distribution in front of the crack tip.

e There are other features of the fast crack growth that are either not pre-
dictable (as periodic oscillations) or not predictable correctly (the crack branching
process).

3. Features of the fast crack growth process

Thus, because the existing theories were so many times questioned by experi-
ment, they should be changed or at least corrected. To have a predictive power,
the theory must reflect the basic features of the process observed. What are those
features? Let us repeat the most important ones:

a. Just after the moment of the fast crack growth initiation (that is often
preceded by subcritical, stable crack growth), the crack tip accelerates rapidly (the
acceleration is of the order of 10° — 108 m/s) to a certain critical velocity, usually
less than 0.5¢,. This velocity, say, mean velocity does not change considerably
over almost all the period of cracking. In most of the experimental works this
velocity was constant. However, FINEBERG and coworkers [1] reported increasing
mean velocity, although with a modest acceleration. During this first stage of
propagation the fracture surface remains smooth and is usually called the mirror
surface.

b. According to the FINEBERG et al. [1], the critical velocity at which the ac-
celeration decays is independent of the specimen geometry, specimen thickness,
applied stress, surrounding ambient atmosphere and acceleration of the crack
tip. It is a very important feature, although other authors do not confirm it in all
aspects. E.g. KALTHOFF [5] observed that the mean maximum velocity was depen-
dent on the external loading level. TAKAHASHI and ARAKAWA [19] reported the



CONTROVERSIES IN DYNAMIC FRACTURE MECHANICS 987

influence of the specimen geometry on the maximum crack tip speed. However,
more experiments are necessary to verify the above controversies; one thing re-
mains unquestionable: when the critical velocity is reached, the crack propagation
reflects features of the dissipative, nonlinear dynamic problem. This conclusion
is supported by the observation that the fracture surface changes from mirror to
mist, and the mist region is characterized by coherent oscillations with a particu-
lar wavelength that is increasing, as well as surface amplitude, together with the
mean crack tip speed. In contrast, the frequencies of oscillations are constant.

c. With increasing crack tip velocity, the oscillations become more chaotic and
fracture process enters the third stage with a hackled fracture surface. The oscilla-
tions registered on the fracture surfaces are accompanied by dramatic oscillations
of the crack tip velocities.

Three-stage fast crack propagations in the form of mirror, mist and hackle
surfaces were observed in the amorphous materials by several authors. Sharp
oscillations of the crack tip velocity were observed by FINEBERG et al. [1] only
because of high resolution in their experimental techniques.

d. It should also be mentioned that experiments performed by RAvi-CHANDAR
et al. [13], ROSAKIS et al. [16], TAKAHASHI and ARAKAWA [19] show that the stress
field in front of the crack moving with high velocity is not dominated by a one-term
approximation of the asymptotic expansion that is represented by a well known
Dynamic Stress Intensity Factor.

All experimental facts that were discussed so far are not described and pre-
dicted by the theory. These facts, along with the earlier mentioned discrepancies
between the theory and experiment allow us to postulate that the existing the-
ory should be changed or at least corrected to take into account transient and
nonlinear effects.

4. New theoretical results

Recent years brought several theoretical results that, being not the theory,
have yet sketched a path along which the theory should go. These results can be
classified within two groups of problems. The first one, certainly better known,
concerns the structure of the mechanical fields in front of the moving cracks.
The second one, equally important, concerns the structure of the crack growth
equations. Now, both of them will be discussed with the emphasis put on the
equations of the crack evolution.

4.1. Stress field in front of the moving crack

FrREUND and Rosaxkis [3], stimulated by experimental results, derived the for-
mula for stress distribution in front of the crack tip in the form of asymptotic
expansion with several terms relatively well defined. It turns out that the higher
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order terms contain an important information concerning the transient stages of
the crack growth. The structure of this formula is as follows:

@) on+on~r P [p®),0, K@) + L), A®)]

#1713 o), 5 0, K40 K 10, 6] + 00

where

4 rg = a3 +
( i

1- vz(zt)] 23

2
Cd

cq is a speed of dilatation wave.

The role of the third term in the transient stage of the crack growth seems to
be very important, in particular at the beginning of propagation. Liu and cowork-
ers [7] compared the third term of the above expansion with the equivalent term
of the expansion of the Broberg problem. It turned out that the third term was
singular with respect to time. The Freund and Rosakis analysis requires deeper
and more extended studies in order to determine unknown coeflicients. As far,
they were determined with the help of caustics by Liu and coworkers [7]. It fol-
lows from this analysis that DSIF becomes a function of the crack tip acceleration
through the caustics diameter. It should also be mentioned that MARDER [8] de-
rived formulas for DSIF and ERR that are functions of crack tip acceleration at
almost the same time as FREUND and Rosakis [3]. He used a simplified proce-
dure postulating that elastic potentials are functions of acceleration. The result
of Freund and Rosakis is probably a milestone in a fast crack growth analysis,
although the three-term approximation of the stress field creates a serious prob-
lems in definition of the appropriate parameter or parameters that can be used
in the crack growth equation formulation.

4.2. Crack growth equations

The crack growth equation is absolutely necessary to select a particular motion
from the class of all dynamically admissible ones. The proper formulation of this
equation creates a very serious problems even for the one term approximation
of the stress field. Let us discuss this problem in more details.

The most of the known crack growth equations are dynamic equivalents of
the Griffith’s energy criterion and Irwin’s relationship between global quantity —
the energy release rate and the local quantity — the stress intensity factor. The
ingenious idea proposed by Griffith was extended to the nonlinear materials and
to the fast crack growth. The structure of all crack growth equations used can be
written in one general form:

Q) X (04,a,geometry,v) = X \/ = Xc(v),
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where ' . '
K¢  dynamic stress intensity factor,

G¢ dynamic energy release rate,
64 crack tip opening displacement,
er=gc Strain in front of the crack,
T* Atluri, Nishioka, Nakagaki integral,
Jit  dynamic version of J integral.

However, the concept of the energy release rate is the main one from which
other quantities can be derived directly or indirectly, provided that the stress field
is characterized by one term singular approximation.

Classical derivation of the relation:

(6) GY0o,,a,v) = GL(v) =27,

where 5 is effective surface energy, follows from the first law of thermodynam-
ics. It was done first by Kostrov and NIKITIN [6] and later by FREUND [2]. In the
final stage of derivation the contour integral is shrunk to zero and this procedure
requires that it should be path-independent. It is true for steady state motion
and in this case G represents energy flux directly into the crack tip. For the non-
steady motion the integral is only asymptotically path-independent as was shown
by FREUND [2] and NiLson [12]. In addition to this limitations, certain thermody-
namical quantities that were used during derivation may not be well defined in
the case that is far away from the equilibrium state. In general, the above equa-
tion characterizes situation which is close to the equilibrium and represents the
non-dissipative processes. It was shown by RICE in [15], who derived the following
equation:

(7) Si=(G-2%),

where S ; denotes the rate of the internal entropy production. If the process is

reversible, non-dissipative, S; = 0 and we obtain the structure of our equation
of motion. Since, according to the second low of thermodynamics,

(8) §:>0,
the above equation is in fact the lower limit for the all crack growth processes
©) (G-27)=0.

The above relations were derived for isothermal, reversible and quasi-static pro-
cesses, utilizing the Helmholz free energy definition. These assumptions are really
very strong. The isothermal conditions are acceptable for subcritical crack growth
but by no means for fast crack growth. The processes of the crack growth in real
materials are undoubtedly irreversible processes (with the exception reported for
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mica where the partial reversibility was observed). Thus the product 4 v repre-
sents the consumption of the irreversible energy. In thermodynamics the irre-
versibility is usually identified with the entropy production, thus in general the
entropy should be associated with the new surface and the Rice’s equation could
be written in another form. The Rice’s equation is in fact a typical equation of
the thermodynamics of linear dissipative processes if we identify (G —2+) as a
thermodynamical force and v as a flux. Close to the equilibrium, the Onsager’s
relations are valid and the crack velocity can be computed from the relation:

(10) v=L(G -27%),

where L is a phenomenological coefficient with all properties defined by Onsager.
The subcritical (stable) crack growth is an example of the linear dissipative process
being very close to the state of equilibrium. For this situation both the free
energy and entropy are potentials and extremes of these functions determine the
attractor state. The theorem of minimum entropy production tells us that in the
domain where the Onsager’s relations are valid, it means in the linear domain,
the system evolves into steady, stationary state (under given boundary conditions).
The steady state, which is an attractor state must be a nonequilibrium state in
which dissipative processes take place with the non-zero speeds. For this state
also entropy becomes independent of time, thus

(11) ds=0 — dS.=-dS;,

where S is total entropy of the system, S, is reversible part of the entropy.

In the steady state the entropy of the system steadily increases. The theorem
of the minimum entropy production tells us more. In this particular state the
entropy production is as small as possible under the given boundary conditions.
In this situation the equilibrium state becomes possible as soon as the boundary
conditions allow the entropy production to vanish. In other words the system
becomes passive. These properties reflect the properties of the subcritical crack
growth which usually is considered as a sequence of the equilibrium states, where
the time is not an independent variable and enters equations only as a parameter.
The subcritical crack growth is arrested immediately after the external loading is
reduced.

However, our interest in this paper is not in the subcritical crack growth but
in the fast crack growth that is, by no means, the process which is close to the
equilibrium.

Many of the experiments performed indicate that the fast crack growth is a
strongly nonlinear, dissipative process, which takes place far from the equilibrium
state. Its features including oscillations with increasing amplitude and chaotic be-
havior locate this process within the so-called deterministic chaos. The definition
of the deterministic chaos was proposed by mathematicians during the confer-
ence organized by Royal Society in London in 1986 and is as follows: “Stochastic
behavior taking place within deterministic system”.
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The thermodynamics of the nonlinear, nonequilibrium, dynamic systems does
not provide us with precise tools to solve particular problems. As far there is
no proof available concerning the theorem of the minimum entropy production
for cases where fluxes are not linear functions of thermodynamical forces. It is
also known that far away from the equilibrium, the system must evolve towards a
certain steady state, but this state can not be characterized by a properly selected
potential. If we do not know the potential, we can not say anything about stability
of states to which the system evolves. If we can not define the minimum of the
potential, the oscillations are not controlled by the second law of thermodynamics.
For such a systems, according to Prigogine: “Stability does not follow from the
general laws of physics”. Thus, fluctuations that arise may not vanish, they can
considerably increase leading to a chaotic behavior. These features are clearly
observed during the fast crack growth and are visualized by mirror, mist and
hackle surfaces as well as branching process.

From the discussion presented follows that the crack growth equation for the
fast crack growth can not be derived (at the moment) rigorously from the laws of
classical and nonequilibrium thermodynamics. But such an equation is absolutely
necessary to analyze the process of the crack growth. It must be postulated. The
postulates must be based on the analysis of experimental results. They do not
have to follow from the constitutive equations or the classical laws of mechanics.
The intuition will play here an important role. However, the equation should be
written utilizing measurable and well defined quantities.

Experiments provide us with a certain information that should be the frame for
the postulated form of equation. Experiments and requirements that any theory
should have a predictive power suggest the following conditions which the crack
growth equation should satisfy:

a. In general, the equation should be valid for both subcritical and fast crack
growth.

b. It should be able to predict (describe) both the stage of rapid acceleration
and propagation with a relatively constant mean velocity.

c. It should be able to predict oscillations and instabilities (it should be a
nonlinear differential equation).

d. It should predict the limit crack tip speed for a given material, specimen
geometry, and boundary conditions (so-called attractor state).

e. It should contain well defined and measurable quantities.

The starting point for the further discussion is the Rice’s equation (7) that
can be rewritten in the form:

. . FS
(12) S+ 8, (=2%v) = G,

. FS
where S; is entropy production rate associated with a fracture surface.

At the moment we forget about all uncertainties concerning the derivation of
the above equation that arise when it is applied to the nonequilibirum process.
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In this case if one knew the proper definition of the entropy production, the
above equation would become the expected crack growth equation. However, in
general, the definition of the 5; becomes a formidable task. Dissipation during
the fast crack growth may have a variety of forms:

e dislocations creation and propagation,

e voids nucleation and growth,

¢ other microstructural mechanisms,

e roughness of the fracture surface,

e crack branching,

e crack velocity oscillations,

e other (?).

Thus, to solve a problem one should choose those mechanisms or mechanism
that would probably dominate during the crack propagation. In the further discus-
sion the results of the following works will be utilized: A. NEmmITZ [9], A. NEIMITZ
[10], A. NemmrTz, Z. Lis [11], L.I. SLepyan [17], L.I. SLepyan [18], H. Gao [4].

In [17] SLepYAN formulated the principle of maximum energy dissipation in
the form:

(13) N =0G) — maxN (G >27).

The same principle was proposed by Gao [4].

Physically it means that if N is the energy flux into the crack tip and this
energy is dissipated there, the criterion of the maximum energy dissipated with
respect to the crack tip speed gives the maximum possible crack tip velocity
(14) 00—];/ = —  Umax-

One could associate the dissipation of energy with the entropy production and
the maximum of this quantity would define the attractor state to which the system
evolves.

Slepyan obtained the following possible maximum crack tip velocities:

Mode 1 Vmax = 0.517¢, for v =0.3,

Mode IT vpax = 0.638¢, for v = 0.3,

Mode IIT  vmax = 0.618¢, .

In [18] SLepyaN extended his principle. He defined the excess of the energy
flux M:

(15) M= (G-2%),

which is in fact the Rice’s equation with S replaced by M. According to the
principle of the maximum energy dissipation, the crack can propagate with the
maximum speed according to the equation:

oM ON .
(16) Fr !
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and it can be demonstrated graphically in the form shown in Fig. 1, where v, is
an actual maximum crack tip speed.
N
2rv
N
)Y //
2yv
}
l

|
|
|
Vh Vmax v

FIG. 1. Energy dissipation as a function of the crack growth speed.

According to the definition of the quantities entering the above principle, the
equation obtained is not a crack growth equation. It defines the attractor state
to which the system evolves.

In 1990 the equation similar to that introduced by Rice was proposed by
Neimitz as a crack growth equation. In this case the entropy production rate was
replaced by the energy flux, and the flux of dissipated energy was absorbed by
the whole plastic or process zone, not only by the crack tip. The computations
were performed for the strip yield zone model of the crack. The Mode III was
analyzed.

The strip yield zone was allowed to change the size during propagation. The
energy flux was computed in the form:

K% /1-7 ij2
(17) I m = pe, 2/1L” (1 5 ﬁ) for g, =p8, =7,
where 8, = v./c,, B, = v, /c,, v, and v, are velocities of the leading and

trailing edges, respectively, A7y is the instantaneous static SIF, ¢, is the shear
wave speed

(18)  Fur=pye H‘I“(Lﬂ)”z{z (1+ﬁf)‘/2+2<m—m>

20 \1+ 53, 1+5, 35,
Br =B \2 (14BN [+ B2+ (B~ B,)
+< 3, ) (ﬁT ) A+ 5,)7

for g, > f3,,
; (2 - 1/2 1/2 _
19 Fw= e, S (1202) {2—(1+‘3T> 4 26, -5,)

2u \1+p, 1+ 5, 38,

(52 (52 (i)

for B, > f3,.
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The right-hand side of the above equations can be written as:

(20) ﬂTCTEiiH(a7Ua’vT’vL)

and =g, can be called the energy release rate, but released within the whole
plastic zone. In the next step the crack growth kinetics was assumed in the form
shown in the Fig. 2.

)

F1G. 2. The scheme of the crack growth kinetics, s = ¢, 1.

The smooth trajectories of both the leading and trailing edges were approxi-
mated by a piece-wise linear functions. Such an approximation was not arbitrary
but included the interaction of both edges. The leading edge is allowed to change
the speed after it obtains the information (with a speed of the sound) transmitted
from the trailing edge. It generally follows the velocity of the leading edge. The
trailing edge changes the velocity when it obtains the information from the lead-
ing edge and the new velocity must satisfy the crack growth equation. What is
the shape of this equation? We assume that the whole energy that is transmitted
to the plastic zone is dissipated there. Thus,

(21) Eﬁl(a,aa,vT,vL) = f,

where I' can be considered as a net power per unit thickness dissipated within
the plastic zone and the energy of a new unit surface is also taken into account. In
such formulation the quantity I" is not only a material property but includes also
the geometry of the specimen through the size of the plastic zone. If the energy
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dissipated I" is assumed to be a function of the crack tip speed (v,) and this
function is expanded into series around the steady-state ((v,)ss), the net power
can be rewritten and the crack growth equation assumes the following form:

dm(t)
dt ’
where (with a good will) m can be called an “equivalent mass” (the units are

mass unit over meter).
The above equation can be rewritten in the form:

_ . d dv
(22) Sfp=1T IIIC(UT)|ss+m(t)d_tT + vy

dm(t)

_ o d dv
(23) v {:fin = ch(v)’ss] = vy [m(l)d—f +op—

or to make it more familiar,

. d
(24) Uy [EIdII - FIIIC|SS] =v, M.
For a steady state crack growth when 5, = 3, = j the equation reduces to the
classical form of equation and = = G.

This equation was tested numerically using the earlier shown formula for
=i, and the crack growth kinetics model. The equivalent mass was taken to be
proportional to the product grf,, where r, is the length of the strip yield zone
and o is material density, and it was assumed to be constant. In the Appendix
several examples of the computer simulation were shown. One may notice that the
analysis based on the proposed crack growth equation gives the qualitative picture
of the fast crack growth, that is quite similar to those observed experimentally.
One feature is not observed within this model - the oscillations of the crack
tip velocity. However, the oscillations may appear if the viscous dissipation is
introduced into this model.

In general, the above equation can have another form if dissipation is associ-
ated with other mechanism, e.g. void nucleation and growth.

Appendix

As a result of the computer simulation, more than 100 examples of the fast
crack growth histories have been obtained. A few of them are shown in this
Appendix. In the left-hand side of the upper part of each figure the shape of the
function I;(v)ss is presented, in the centre the assumed external loading history
is shown. Lower part of each figure shows the crack edges (leading and trailing)
trajectories (a), plot of the crack edges velocities vs. time (b), plot of the length
of the crack vs. time (c), plot of the plastic zone length vs. time (d).

In each figure the characteristic stage of the crack acceleration is observed.
When certain critical velocity is reached, one can observe relatively constant crack
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tip speed (with a modest acceleration). This velocity is not strongly dependent on

th

e specimen loading history. It can be seen by comparing the succeeding figures.

However, if the external loading is sharply increasing while the crack is growing,

th

e tendency to the crack arrest is observed due to the rapid enlargement of the

plastic zone. All those features are in agreement with experiment.
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Terminal velocity of rapid crack propagation

M. WATANABE (HIGASHI-HIROSHIMA)

ASSUMING THAT A CRACK “sees” the nonlinear Young’s modulus, ENL, the velocity of a crack during
rapid crack propagation (RCP) is obtained by the improved Mott’s analysis. When the inequality,
E/ENL > 1, is satisfied, the theory predicts the constant speed of RCP, provided the Young’s
modulus changes from E at t = 0 to EN for t > +0. The results are in qualitative agreement
with the published experiments.

1. Introduction

ALTHOUGH MUCH WORK has been done on rapid crack propagation (RCP) for many
years, the mechanisms that govern the dynamics of cracks are not well understood.
One of the obvious controversions between theory and experiment in the RCP is
that cracks do not attain the terminal velocity (or the limiting velocity) predicted
by the linear elastic theory [1]. We will elucidate the difficulties associated with
the terminal velocity of a crack referring to the most recent experimental works
on RCP, and try to explain their results qualitatively.

STROH [2] argued that the terminal velocity can be found from the crack length
dependence of various energies, Us, Ux and Up associated with RCP, where Ug
is the elastic component of stored energy and Uk — the kinetic energy of a crack.
Up is the sum of all the irreversible energies such as surface energy, plastic work
and viscous dissipation. All the energies except Up are proportional to the square
of the length of a crack, 2, while Up is proportional to the crack length, a, when
the fracture surface is smooth. Thus the dissipative energy may be neglected for
large values of a and the propagation of a crack becomes the motion of surface
disturbance in nondissipative medium. Such a motion is known to propagate at
the velocity ¢, of the Rayleigh wave. Thus the terminal velocity of a crack is
found to be the Rayleigh wave speed.

Let us derive the velocity, v, of a crack by the improved Mott’s analysis [3,
4] based on the presentation given by ERDOGAN [5]. We consider propagation
of a centrally located through crack in an infinite elastic plate subjected to a
time-indpendent uniaxial tension perpendicular to the plane of the crack. The
energy balance equation of a crack is

dUet _ dUs | dUg | dUp
(1) @ @ T a TTa
where ¢ is time. These energies and the crack resistance, R, are defined as

rola? Up = kpa?vio? R= oUp
E )

(12) cht - US = 2E2 ) 3@ )
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where the quantity £ is Young’s modulus and o is the applied stress. o is the

&

mass density of the plate and « is a constant. The crack resistance R is set to be

2
(13) R=Gr, Gp=22%
E

where G, is Griffith’s critical energy release rate for the growth of a crack and
ag is the initial crack length. Notice here that the crack length dependence of
various energies can be easily seen from Egs. (1.2) and (1.3), which are identical
to that discussed above.

Substituting Eq.(1.2) into Eq.(1.1), and then integrating Eq.(1.1) from ¢ = 0
tot = t, we find

(1.4) v=\/%(1_%).

The terminal velocity of a crack becomes identical to the Rayleigh wave speed if
the constant x is so chosen that

2K
(1.5) \/ o =cp.

Thus Eq. (1.4) can be written as

(1.6) v=cn( _@>.

a

Derivation of Eq. (1.6) is based on the idealized modeling of RCP, in which the
crack resistance, R, is assumed to be a constant. The crack resistance corresponds
to the fracture surface roughness, which is known to exhibit a characteristic se-
quence of pattern called “mirror, mist and hackle”, as a crack proceeds. Recent
experiments using thin plate of Polymethylmethacrylate (PMMA) [6, 7, 8] and
glass [9] reveal that the transition from smooth to rough fracture surface is trig-
gered by the instability associated with RCP, which is observed when the velocity
of a crack exceeds the critical velocity, v.. When the velocity is larger than the
critical one, it oscillates. This oscillation is found to be strongly correlated with
fracture surface roughness. Although the terminal velocity of a crack is of the
order of 0.6¢,, the average velocity of a crack is compared with Eq.(1.6) [7, §].

We are not interested in clarifying how the fracture surface becomes rough,
but we are interested in the terminal velocity of a crack when the fracture surface
becomes rough. For this purpose we can consider the case v. — 0 without loss
of generality, and the crack resistance can be written as

_ R

1.7) R =G+ R -(a — a), R = B at a = ao.
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The crack resistance is a function of the velocity of a crack rather than the crack
length since the material properties are, in general, rate-dependent. In this sense
Eq.(1.7) is not realistic and we will not be able to find the correct terminal
velocity if the velocity dependence of the crack resistance affects its value [10,
11]. However, Eq.(1.7) combined with Egs.(1.1), (1.2) and (1.5) at least gives
the answer to the question related to the argument of STROH [2]. The question
is, how the terminal velocity, which is the Rayleigh wave speed, is modified if the
dissipated energy Up associated with RCP is proportional to a2, which is a similar
crack length dependence to that of U and Us. Such crack length dependence of
R defined in Eq.(1.7) can be seen in Fig. 12 of Ref. [8] provided that the crack
resistance is proportional to fracture surface amplitude.

Substituting Eq.(1.2) and (1.7) into Eq. (1.1) and then integrating over time,
we find [12]

Ic
(1.8) v=j1- & “OCR(l—(;—"),

where Eq.(1.5) was used. Equation (1.8) can be compared with the observed
average velocity of a crack. Making use of the experimental result [7, 8] where
the terminal velocity is of the order of 0.6¢,, we find the value of the quantity
(I - R"ay/G1c) = 0.36.

In Sec. 2 we will discuss the cases when the velocity of a crack remains constant,
while the fracture surface is smooth in one case [13], and rough in the other [14].
Section 3 is devoted to discussion.

2. Constant crack velocity during RCP

Terminal velocity of RCP is ordinarily defined as the velocity of a crack when
its length approaches infinity in the limit (¢ — oo). Recent refined experiments
[13, 14] seem to destroy the concept of the terminal velocity since the velocity of a
crack remains constant during RCP. The authors of these experiments proposed
two different ideas on RCP by comparing their results with the following equation
of motion of dynamically propagating Mode I crack in the infinite elastic plate [1]

(2.1) (1 = 1) 7= s

Cr

where the quantity GG* in Eq.(2.1) is the “static” energy release rate and 74 is
the effective surface energy. Equation (2.1) is the energy balance equation based
on the elastodynamic solution for arbitrarily moving crack. Since G* increases
approximately linearly with increasing crack length, «, the quantity (1 — v/c})
must gradually decrease towards zero when 7, is a constant. Thus the velocity of
a crack approaches Rayleigh wave speed according to Eq.(2.1). If the equation
v4 = G, is substituted into Eq. (2.1), the velocity of a crack becomes essentially
identical to Eq. (1.6), as remarked by FEINBERG et al. [7, 8].
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2.1. Experiment by Ivankovic and WiLLiams [13]

These authors performed an experiment using single edge notch tensile
(SENT) specimens made of PMMA and polycarbonate (PC). Remarkably con-
stant crack speeds were observed with smooth fracture surface and higher crack
speeds corresponded to the higher preload. The two-dimensional finite element
simulation was performed to calculate the crack resistance R, which was equal
to the energy release rate. The basic equation for this numerical analysis was the
macroscopic energy balance equation (1.1) with the appropriate boundary condi-
tions and experimentally measured crack speed. They found that the numerical
simulation of the constant speed RCPs generated highly scattered crack resistance
data with respect to the crack speed, and also very large variations of the crack
resistance with the length of a crack. These numerical results did not correspond
to the observed smooth fracture surface appearance. These discrepancies indi-
cate that the conventional analysis of the energy balance equation (1.1) can not
be used to explain the experimental results. They tried to overcome these diffi-
culties by exploring the concept that the anomalies arise from large local strains
around the rapidly moving crack tip, resulting in the crack “seeing” a low local
modulus, which was proposed and studied by BROBERG [15, 16] as a local low
modulus strip model of RCP. The numerical analysis of this model applied to
RCP is performed by determining the width and nonlinear Young’s modulus of
the strip from the measured strain histories near the crack tip. They found that
the local strip modulus analysis resolved the difficulties discussed above.

We now use the concept that a crack “sees” a local low modulus to derive the
velocity of a crack. We denote the value of Young’s modulus at time ¢ = 0 and
t =t by E and ENL, respectively. Since the observed fracture surface is smooth,
we use the crack resistance expressed by Eq.(1.3) and take the similar procedure
in deriving the velocity of a crack shown in Eq.(1.4), and then use Eq.(1.5). The
velocity of a crack is found to be

22 om e B (-2 ().

If the condition

E

is satisfied, Eq.(2.2) can be written as

ENL

(2.4) v = CR T’

which is the Rayleigh wave speed in the medium with the Young’s modulus ENL,
Equation (2.4) predicts a constant velocity of RCP provided the Young’s modulus
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changes from E at t = 0 to ENL for ¢ > +0. The infinitesimal time, +0, could be
the time resolution of the experiment. The observed maximum speed of RCP in
PMMA was 420 m/s, which is of the order of 0.4¢,. Substituting this value into
Eq.(2.4), we find +//EN" ~ 6, which satisfies the incquality shown in Fq. (2.3).

2.2. Experiment of Ravi-Crannax and Knauss [14]

These authors performed a series of experiments on RCP [14, 17]. The termi-
nal velocity of a crack was discussed in the third of a series of four papers. They
observed that the velocity of a crack remains constant during RCP. Discussion of
the results obtained was based on the energy balance equation (2.1), which was
rewritten in terms of the stress intensity factor, K, in the following form:

E 1-v/e,
25) K2 'Yd("{)

where the velocity dependence of the effective surface energy is explicitly written.
According to their observation [14, 17] the velocity of a crack remains constant
in spite of considerable changes (factors on the order of 2) in the stress intensity
factor, and fracture surface shows a characteristic sequence of “mirror, mist and
hackle”, accordingly. We quote their argument, which is based on Eq.(2.5). “If
74 is allowed to be a function of crack velocity, it creates a contradiction in
explaining the constancy of crack velocity. The reasons for the existence of a
terminal velocity lower than the Rayleigh wave speed has to be explained then
in a different way.” The authors suggested that a microcrack formation reduces
the terminal crack tip speed. This interpretation was that RCP in an amorphous,
brittle solids was associated with multiple flaws or microcracks preceding the main
crack and these multiple cracks coalesced to form the main crack. Thus it takes
time for waves to travel back and forth between the individual microfractures
in order to coordinate them into forming the major crack. Then the terminal
velocity of RCP could be substantially smaller than the Rayleigh wave speed.

This microcrack interpretation of RCP sounds reasonable; however, it is very
hard to make this idea quantitative because such microcrack interactions are not
usually accounted for in elasticity models of RCP. Therefore, we assume that the
crack “sees” nonlinear Young’s modulus through multiple microcracks generated
at the tip of a crack. In other words, we consider that RCP may be governed by
such microscopic processes as microcrack interactions generated at the tip of a
crack, but in some respects it behaves like a macroscopic property of the mate-
rial, which is characterized by nonlinear Young’s modulus, ENL, This observation
suggests that a detailed analysis of the interaction between microcracks is not
necessary, at least not until the point when branching occurs.

Distinguishing Young’s modulus at ¢t = O and ¢t = ¢ as E and ENL, respectively,
and then using Eq.(1.7), the velocity of a crack can be easily obtained from
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Egs.(1.1) and (1.2) as

ENL R -aq ag\ 2 E
R ([ )

where Eq. (1.5) is used. Equation (2.6) has a form which combines two Egs. (1.8)
and (2.2). It indicates that the effect of nonlinear Young’s modulus on the velocity
of a crack is more dominant than Eq.(2.2), because the value of the quantity
(1 — R'-ap/Gy.) is smaller than unity since the fracture surface is rough in this
case. If the condition expressed by Eq.(2.3) is satisfied, we again obtain the
constant velocity of a crack expressed by Eq.(2.4). Substituting the observed
terminal velocity of a crack, 0.46¢,, into Eq.(2.4), we find E/EN- ~ 4.7 for the
experiment of RAvi-CHANDAR and KNAuss [14].

3. Discussion

Since the experiment of PAxoN and Lucas [18] in 1973 it is known that the
effective surface energy 7, increases very sharply as the terminal velocity (or the
maximum crack speed) is approached . The dynamic crack instability observed by
FEINBERG et al. [7, 8] could be the mechanism of this sharp increase in v,4. In this
experiment the strong correlation between the oscillation of the velocity of a crack
and fracture surface roughness was emphasized. It is known, however, that the
increased fracture surface roughness accounts only for a minor part of the energy
dissipation at fracture [5, 10]. The greater part of this increased consumption of
energy by the crack is dissipated as heat, and the temperature rise at the tip
of a crack in RCP for PMMA was measured [19, 20]. In the present work the
effect of this temperature rise on the properties of material is taken into account
as the nonlinear Young’s modulus, ENL, while the fracture surface roughness is
expressed by the crack resistance R, although the treatment is phenomenological
in nature.

Let us consider how the crack “sees” nonlinear Young’s modulus at the tip
of a crack. The region around the rapidly propagating crack tip is characterized
by large strains, high strain rates and high temperature. Unfortunately, neither
of these nor the parameters which may describe the response of the materials
under such conditions were known. The experimental results that the velocity of
a crack in RCP remains constant suggest that the material properties at the tip
of a crack can be macroscopically characterized by a one of nonlinear Young’s
modulus since RCP is in a steady state. In this argument we have disregarded
the possible spatial dependence of this modulus. If it is possible to use a single
nonlinear Young’s modulus and if such treatment as distinguishing the Young’s
modulus at ¢ = 0 and ¢ = ¢ as discussed is allowed, the velocity of a crack shown
in Egs. (2.2) and (2.6) could be meaningful. Considering the difficulty asssociated
with RCP, it is worthwhile to regard the results shown in Eq. (1.8), (2.2) and (2.6)
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as a working hypothesis since these results are in qualitative agreement with the
corresponding experiments discussed. The validity of these results, however, has
to be proved by more rigorous treatment.

References

1. L.B. FREUND, Dynamic fracture mechanics, Cambridge Univ. Press, 1990.

2. A.N. STROH, A simple model of a propagating crack, J. Mech. Phys. of Solids, 8, 119-122, 1960.

3. N.F. MorT, Fracture of metals: Some theoretical consideration, Engng., 165, 16-18, 1948.

4. J.P. BERRY, Some kinematic considerations of the Gniffith’s criterion for fracture, J. Mech. Phys. of Solids, 8,
194-206, 1960.

5. F. ERDOGAN, Crack propagation theories, 2, 497-590, [in:] Fracture, H. LieBowitz [Ed.], Academic Press,
N.Y. 1968.

6. K. TAkAHASHI, K. MATSUSHIGE, Y. SAKURADA and T. MAEDA, Bull. Res. Inst. Appl., Mech. Kyushu Univ.,
No. 57, 285-300, 1982 [in Japanese].

7. J. FINEBERG, S.P. GROSS, M. MARDER and H.L. SWINNEY, Instability in dynamic fracture, Phys. Rev. Lett.,
67, 457460, 1991.

8. J. FINEBERG, S.P. GROSS, M. MARDER and H.L. SWINNEY, Instability in the propagation of fast cracks, Phys.
Rev., B45, 5146-5154, 1992.

9. S.P. GROSS, J. FINEBERG, M. MARDER, W.D.McCoRrMIck and H.L. SWINNEY, Acoustic emission from rapidly
moving cracks, Phys. Rev. Lett., 71, 3162-3165, 1993.

10. L.R.F. ROSE, Recent theoretical and experimental results on fast brittle fracture, Int. J.Fract., 12, 799-813,
1976.

11. M. WATANABE, Phenomenological equations of a dynamic fracture, Phys. Lett., A179, 41-44, 1993.

12. M. WATANABE, Dynamic crack propagation and surface roughness, [in:] Impact and Dynamic Fracture of
Polymers and Composites, ESIS 19, J.G. WiLLiAMs and A. PAvAN [Eds.], Mech. Engng. Pub., London,
147-153, 1995.

13. A. Ivankovic and J.G. WILLIAMS, A local modulus analysis of rapid crack propagation in polymers, Int.J.
Fracture, 64, 251-268, 1993.

14. K. RAVI-CHANDAR and W.G. KNAUSS, An experimental investigation into dynamic fracture III. On steady
state crack propagation and crack branching, Int. J. Fract., 26, 141-154, 1984,

15. K.B. BROBERG, On dynamic crack propagation in elastic-plastic media, Proc. of Int. Conf. on Dynamic
Crack Propagation, Nordhoff Int. Pub., Leyden, 461-499, 1973.

16. K.B. BROBERG, On effects of plastic flow at fast crack growth, ASTM STP, 627, 243, 1977.

17. K. RAVI-CHANDAR and W.G. KNAUSS, An experimental inveastigation into dynamic fracture. I. Crack initiation
and arrest, Int. J. Fract., 25, 247-262, IL. Microstructural aspects, 26, 65-80, IV. On the interaction of stress
waves with propagating cracks, 26, 189-200, 1984.

18. T.L. PAxoNand R.A. LUCAS, An exprimental investigation of velocity charactristics of a fixed boundary fracture
model, 415-426 [in:] Dynamic Crack Propagation, G.C. S [Ed.], Nordhoff, Leyden 1973.

19. W. DoLL, An experimental study of the heat generated in the plastic region of a running crack in different

20.

polymeric materials, Engng. Fract. Mech., 5, 259-268, 1973.

K.NN.G. FULLER, P.G. Fox and J.E. FIELD, The temperature rise at the tip of fast-moving crack in glassy
polymers, Proc. of the Roy. Soc. London, A341, 537-557, 1975.

KINKI UNIVERSITY
FACULTY OF ENGINEERING, TAKAYA, HIGASHI-HIROSHIMA, JAPAN.

Received January 13, 1995.



DIRECTIONS FOR THE AUTHORS

The journal ARCHIVES OF MECHANICS (ARCHIWUM MECHANIKI STOSOWANE]J) deals with the
printing of original papers which should not appear in any other periodicals.

As a rule, the volume of a paper should not exceed 40 000 typographic signs, that is about 20 type-written
pages, format: 210 x 297 mm, leaded. The papers should be submitted in two copies. They must be set in
accordance with the norms established by the Editorial Office. Special importance is attached to the following
directions:

1. The title of the paper should be as short as possible.

2. The text should be preceded by a brief introduction; it is also desirable that a list of notations used in
the paper should be given.

3. The formula number consists of two figures: the first represents the section number and the other
the formula number in that section. Thus the division into subsections does not influence the numbering of
formulae. Only such formulae should be numbered to which the author refers throughout the paper, and also
the resulting formulae. The formula number should be written on the left-hand side of the formula; round
brackets are necessary to avoid any misunderstanding. For instance, if the author refers to the third formula
of the set (2.1), a subscript should be added to denote the formula, viz. (2.1)3.

4. All the notations should be written very distincly. Special care must be taken to write small and capital
letters as precisely as possible. Semi-bold type should be underlined in black pencil. Explanations should be
given on the margin of the manuscript in case of special type face.

5. It has been established to denote vectors by semi-bold type. Trigonometric functions are denoted by sin,
cos, tg and ctg, inverse functions — by arcsin, arc cos, arctg and arcctg; hyperbolic functions are denoted by
sh, ch, th and cth, inverse functions — by Arsh, Arch, Arth and Arcth.

6. Figures in square brackets denote reference titles. Items appearing in the reference list should include
the initials of the first name of the author and his surname, also the full title of the paper (in the language of
the original paper); moreover;
a) In the case of books, the publisher’s name, the place and year of publication should be given, e.g.,
5. S. Ziemba, Vibration analysis, PWN, Warszawa 1970;

b) In the case of a periodical, the full title of the periodical, consecutive volume number, current issue
number, pp. from ... to ..., year of publication should be mentioned; the annual volume number must
be marked in black pencil so as to distinguish it from the current issue number, e.g.,
6. M. Sokotowski, A thermoelastic problem for a strip with discontinuous boundary conditions, Arch.
Mech,, 13, 3, 337-354, 1961.

7. The authors should enclose a summary of the paper. The volume of the summary is to be about 100
words.

8. The authors are kindly requested to enclose the figures prepared on diskettes (format PCX, BitMap or
PostScript).

Upon receipt of the paper, the Editorial Office forwards it to the reviewer. His opinion is the basis for the
Editorial Committce to determine whether the paper can be accepted for publication or not.

The printing of the paper completed, the author receives 25 copies of reprints free of charge. The authors
wishing to get more copices should advise the Editorial Office accordingly, not later than the date of obtaining
the galley proofs.

The papers submitted for publication in the journal should be written in
English. No royalty is paid to the authors.

Please send us, in addition to the typescript, the same text prepared on a
diskette (floppy disk) 3 1/2” or 5 1/4" as an ASCII file, in Dos or Unix format.
EDITORIAL COMMITTEE

ARCHIVES OF MECHANICS
(ARCHIWUM MECHANIKI STOSOWANE])



INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH
is publishing the following periodicals:

ARCHIVES OF MECHANICS — bimonthly (in English)
ARCHIVES OF ACOUSTICS — quarterly (in English)
ARCHIVES OF CIVIL ENGINEERING — quarterly (in English)
ENGINEERING TRANSACTION — quarterly (in English)

COMPUTER ASSISTED MECHANICS AND ENGINEERING SCIENCES —
quarterly (in English)

JOURNAL OF TECHNICAL PHYSICS — quarterly (in English)

Subscription orders for all the magazines published in Poland available trought the local press
distributors or directly trought the Foreign Enterprise ARS POLONA, Krakowskie Przedmiescie 7,
00-068 Warszawa, Poland and trought the Editorial Office.

Address of the Editorial Office:

Institute of Fundamental Technological Research,
Swiqtokrzyska 21, p. 508,
00-049 WARSZAWA, Poland.





