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Preface

Polish Solid Mechanics Conferences have a long tradition going back to the first
conference in 1953 at Karpacz. At the beginning, those conferences were of the
summer school type, lasted 2 weeks and concentrated on classical problems of
elasticity and structural mechanics. Until 1969 all conferences were organised
by the late Professor Wactaw Olszak. Afterwards, they turned into Polish Solid
Mechanics Conferences held every year, and later every other year. Polish Solid
Mechanics Conferences have always been organised by the Institute of Funda-
mental Technological Research of the Polish Academy of Sciences in co-operation
with the Committee of Mechanics of the Academy of Sciences.

30th Polish Solid Mechanics Conference held in Zakopane, September 5-9,
1994, was organised by the Centre of Mechanics of the Institute of Fundamental
Technological Research. Among 255 participants there were 147 scientists from
Polish universities and research institutions and 78 participants from other coun-
tries. The conference scientific program included 11 invited general lectures, 4
sectional lectures, 113 oral presentations and 72 contributions presented during
a poster session.

The main subject of the Conference concentrated on mechanics of materials
and on the structural mechanics. Specific topics of the sessions were as follows:

¢ foundations of mechanics,

e mechanics of phase transformations,

e strain localisation and instability,

¢ mechanics of porous media and composites,

e fracture mechanics, damage and fatigue,

e inelastic materials and structures,

¢ dynamics of solids and structures,

e structural mechanics and optimisation,

e numerical methods.

The Conference provided the forum for presentation of new scientific results
and ideas in all major areas of contemporary mechanics of solids and structures.
The participants have enriched the Conference with excellent scientific contribu-
tions and with stimulating discussions during various sessions. High level of the
presented papers and friendly atmosphere created by the participants certainly
contributed to the success of the conference.

Though no conference proceedings volume was planned, all participants were
encouraged to submit their contributions as full-length papers for publication in
the Archives of Mechanics or Engineering Transactions. This proposal has evoked
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a great response and resulted in submission of more than 60 papers. A great
majority of them, after a regular reviewing procedure, have been accepted for
publication and they are now printed in this and the forthcoming issues of the
journal.

March 1995

W. K. Nowacki
. Conference Chairman
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Functional approach in nonlinear dynamics (*)

C. STOLZ (PALAISEAU)

DETERMINATION of the evolution of a system is studied through the definition of functionals pre-
sented in nonlinear dynamics. After a short account of the notions necessary for the description
of the motion and of the mechanical interactions, the paper is devoted to the Lagrangean, the
Hamiltonian and the canonical equations of shock waves.

1. Thermodynamical frame of the constitutive equations

IN ORDER to explain and to predict the motion and the equilibrium of bodies or
structures subjected to various physical interactions, a kinematical description of
the motion is performed first. In the case of a continuum, this description must
ensure the continuity of the body during its motion.

Usually one looks for the motion of a material point M from a reference
configuration by describing its displacement u(MM, t).

After a kinematical description of the body, one has to deal with mechanical
interactions. Many statements enable the description of these interactions; we can
use for example the virtual power statement. This shows the manner to describe
the mechanical interaction between each material point of the body with respect
to a given loading distribution. For the sake of simplicity and conciseness of this
presentation, a thermodynamical description of interaction is adopted.

First of all, the local state is defined by a set of state variables such as the
strain ¢(u), a set of internal parameters « and the absolute temperature 7'.

The local interaction is defined by a thermodynamical potential or the free
energy w(e, a,T'), from which the equations of state are deduced.

For example, in the case of linear thermoelasticity and a small perturbation
near the natural state at the temperature 7y, this potential has the following form
(7‘ =T - To)Z

w(e, ) = %5»0-5 +k.cT + %ST:)',
and in the case of isothermal plasticity with linear hardening this potential can
be given as

1 1
w(e, o) = 5(5 —a)-C-(e—a)+ ia-ll-a.
The thermodynamical forces are defined by the state equations:
_ Ow e ow Jw
de’ da’ oT -~
(*) General paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.

Oy
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In the case of reversibility, the knowledge of the free energy is sufficient
to determine the local state of equilibrium. In linear thermoelasticity, the local
reversible stresses o, = C : ¢ are in equilibrium with the given loading.

In nonlinear mechanics, the internal states are generally associated with irre-
versibility. Then the fundamental inequality of thermodynamics implies that the
internal production of entropy must be non-negative. The equations of state do
not provide the full constitutive equations, some complementary laws are neces-
sary to describe the evolution of irreversibility.

In the total dissipation, we distinguish the part due to the conduction and
the part due to internal forces. The two parts are assumed to be separately
non-negative. The mechanical part has the form:

: dw . : .
D, =0:¢ —(—d?+sT) =(c-o0,):é+A.-a >0.
To determine the evolution of the irreversibility, complementary laws must be
given. Let us assume that the dissipation is normal or that the material is standard.
This ensures the existence of a potential of dissipation w, and the evolution of
the internal state satisfies
g ow il od
1 B L1 [ -,
0A Jda
The potentials d and w are convex functions of the variables, with a minimum
value at the origin.
For example, in the case of linear viscosity the potential of dissipation is

d(¢) = %é :n: € with 7 being a positive definite operator, then o;, = dd/dé =

n : &. The state of internal stresses during the evolution is ¢ = o, + 0;,, and
for linear viscoelasticity we have for example o = C : ¢ + 5 : ¢; in this case we
recognize the Kelvin - Voigt model.

The Maxwell description is obtained by choosing the thermodynamical poten-

tial in the following form: w = 5(5 —a):C : (¢ — a), and a pseudopotential of

dissipation in a quadratic manner d = 00 a.

In the case of a regular and differentiable function, the hypothesis of convexity
of the potential of dissipation gives us the characterization of the evolution of
the internal state by the equalities:

ad
¢’
More generally, the definition of the gradient is replaced by the notion of sub-
gradient as

Oir =

ad
A= —.
Jda

(Uira A) € ()d(éa d)v
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if
d(é,a)+oip:(c"— )+ A (o — &) < d(e%,a%),
for all admissible fields ¢*, o

We emphazise that the hypothesis of existence of a potential for the dissipation
ensures the positiveness of the entropy production:

ot &+ A a =(0d(E, &), (&, &)) >d(é, &) - d0,0)> 0.

2. Equilibrium and quasi-static evolution

The quasi-static evolution is a solution of the local equations, the displacement
field and the internal state must verify:
o the state equations

ow A__Q_ig S=_8w

Oe’ da’ oT”’

¢ the conservation of the momentum

o, =

dive = 0, o =0, + 0,

o the equations of evolution of the state variables.
For the overall system the rule of the free energy is replaced by the global
free energy

W(E a7 ) = /w(e,a,T)(lw.
2
In a global description the equations of state possess the same form as in the

local one, but the state of the system is defined by fields of state variables. The
equations of state are relationships between fields of state variables:

oW - AW 0w
= A= F=

T g 0a ’ oT
These relations are obtained by the following definition:

ow o= ow
o7 ! dq

t

gt dw.

By using the properties of characterization of the evolution of the internal
state and integration over the body, we can define the dissipative function

a) = /d(s &) dw,
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for which the evolution is given in terms of fields of state variables:
@i, A) € OD(E &),
if
D(£,&) - DE*,@) +5;-E* - 2)+ A-(G*-&) 20, VE",a").
Then we have in the case of a regular function:

3D velsuy = / ois 1 elbuydo,
2,

oD 6a—/A bade

aa

Let us consider that the external loading derives from a potential given in
terms of traction AT¢ applied to the external surface of the body. Then, the
global free energy can be replaced by the potential energy of the system,

W, a,\) = /w(s(u),a)(lw - / A\T? . uda.
2, A2

By combining all the equations in terms of fields of state variables, the quasi-
static evolution is then given in a global manner by the variational system

__01/1/ éu + ¢y — -¢(bu) = 0,
ou a;

OW. o5 + 20 gy =0
oo S

These equations are defined on a set of admissible fields, the displacement is
subjected to boundary conditions u = u¢ over 942,.

The preceeding equations are general, they contain the essential structure of
the problem of quasi-static evolution.

The first equation of this system expresses the conservation of momentum,
taking into account the constitutive law:

dive = 0; o=o0,+0;,, o-n=\"% over 9,;

the second one expresses the thermodynamic forces associated with the internal
parameters.
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3. The Lagrangean and the dynamical case

By definition, the Lagrangean is the difference between the kinetic energy and
the potential of interaction applied to the system. For all kinematically admissible
fields, the potential of interaction of the system is the potential energy

W(ﬁ,&,f,A):/w(e,a,T)gdw— //\I_d-uda.
2 XN

The kinetic energy is given by
- 1 4
K@) = /Egv dw,
2,
and the Lagrange’s functional is then

L=K-W.

If we denote the acceleration by vy = v, we can compute some quantities:

a—€-6ﬁ= —/UT:66(Iw+//\Id-6uda,
o0u
.Qt 80:
a—f-&’ﬁ=/gv-6vdw,
v
2,

d (OL .\ _ 0L d 0L -
(7% =55+ (G g) o

=/(gv-&v+97-5u)dw+/m[v]-6uda.
¢ r

The system is determined by the equation of the motion expressed in the law
of conservation of the momentum,

dive = p7y,

where the stress o is decomposed as previously as ¢ = o, + o;, taking the
constitutive law into account.

In the dynamical case, strong discontinuities along the moving surfaces occur
and the conservation of momentum is defined by the relation between the jumps
of mechanical quantities: [0 - n] = m[v]. Taking all these relations into account,
the evolution of the system is governed by

d 9L OL\ .. _ 9D _
—(a%'—%) .61L_52_.6(5U),
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0—{:-6& 8_D ba,
da &

Q—L; 6T = /Qséwa.
oT P

These equations are a generalization of the classical Lagrange’s formulation to
nonlinear dynamics [15], they have the same form as the expression given by
Bior [1] in viscoelasticity. In this formulation we have defined, as previously, the

dissipation function as
D=/aaawm.

The first equation is the equation of motion, the second one — the evolution
law for the internal state, the last one defines the local entropy. To this set of
equations we must add the conduction law and the condition of positivity of the
entropy production,

4. The Hamiltonian of the system

The Hamiltonian is a Legendre transformation of the Lagrangean, with respect
to the velocity and temperature [13]:

H(u,p,a,3,\) = —L(u, vaT/\)+/p vdw + /I‘sgdw
2

The Hamiltonian assigns a stationary value to the right-hand side with respect to
the velocity and the temperature. Therefore:

H = /——dw /ge(u,a,s)dw— / AT . uda.

A

In this expression appears the density of internal energy, e = w + T's.
In a global formulation, we obtain successively

QI:{ op = /Bﬁpdw,
dp 0
2
%Lf cbu = o te(0u) dw — / AT $uda
u €

2¢ 982

/(cr — o)t e(0u) dw — / AT . $uda.

082
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Taking into account the equation of dynamics, the boundary conditions and the
jump conditions along strong discontinuities, the expressions are then modified
to

%-6& = —/air:5(6u)dw—/g'y&udw+/[a-n].6uda,
u
2¢ 2 r
aa—{{-&ﬂ = —a—?-fwu)—%/p-éudw,
U Py J
%/p-&udw = /g‘y-éudw+/m[v]-5uda.
2 2, r

Finally, the Hamiltonian formulation of the evolution of the system is obtained

aH-6ﬁ= —d~/u-§pdw,

0p dt
)4 o
%—g-éﬁ = —3—13~§(61L)— %/p-ﬁudw,
u 0é o
O ta= -2 s,
Jda 0
Of o & / oT6s dw.
03

i

As previously, a conduction law must be given and the positivity of the entropy
production must be verified to determine the evolution of the system.

5. Some properties

Generalization: the definition of the Lagrangean or of the Hamiltonian can be
extended to generalized media. The proposed description can be performed in all
the cases in which we can define the behaviour by the two potentials only: a global
free energy and a dissipative function. If some particular internal constraints exist,
this description must be repeated.

The conservation of energy: for the real motion, the value of the Hamiltonian is
the sum of the kinetic energy, of the internal energy and of the potential energy
of the external (given) load, then the conservation of the energy of the system
can be easily rewritten as

dH  OH dX\ _

At OoN di el
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When the external load is kept fixed dA/dt = 0, the exchange of energy is
only due to the heat rate supply F.,. Generally, this quantity has the form

P = - / q-nda,
X

where ¢ is the heat flux. This result is useful in fracture mechanics to discuss the
heat generated by the propagation of the crack, as presented in the following
section.

Conservation law: in the case of a conservative system, in an adiabatic evolution
(Peal = 0), the Hamiltonian is constant,

H(t) = H(0),
this property can be rewritten in terms of the Lagrangean

oL
57 = H(0)
Property of stationarity: the Lagrangean has the properties of stationarity in
elasticity or viscoelasticity: let us consider a variation of the Lagrangean in isother-
mal evolution:

+ a—? -E(0u),
dé

L = oL oL d (aL-éﬂ)

Xty i et o
= Rl B 7 5

then

t2
6/Ldt = 8D
t

where 6D is the total viscous dissipation during the variation.
Finally let us note that the above results may be adapted to the case of other
types of the boundary conditions, and they lead to a well-posed problem.

6. Application in fracture mechanics

In classical approach to rupture, the body can be decomposed into three do-
mains: the first one, near the crack tip, is the process zone where the local mecha-
nisms of rupture take place, the second one is a domain where all the mechanical
fields are more or less singular and, finally, the third domain where all the fields
satisfy the matching conditions with external loading.

Determination of the thermodynamical force associated with propagation of
the crack is governed by the constitutive behaviour defined in the process zone.
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In the classical approach, the process zone is assumed to be small and a global
description of the propagation of the crack is then performed. Then, the ther-
modynamical force associated with the propagation is determined, some local
hypothesis being assumed. We can admit the hypothesis of similarity and of con-
tinuity for the mechanical fields, then an asymptotical analysis can be performed
to determine the singularities accompanying the propagation of the crack.

Many results have been obtained in the case of linear elasticity or in finite
elasticity; the main result is the definition of the release rate of energy, which is
the main characteristic of the crack [5].

But in the case of inelastic behaviour, such a complete discussion does not
exist [2]. The main goal is the determination of some local dissipative process or
structure accompanying the propagation of the crack.

Here we assume that the constitutive law is described in a thermodynamical
manner, i.e. the potential energy and the dissipative function are given. The
thermodynamical description of the propagation of the crack is then performed
in a global manner to determine the equivalent heat source due to the crack
propagation.

For the overall system the crack length is an internal variable, which defines
the volume of sound material 2, = (/) and the body is decomposed into two
domains 2 and V., separated by a curve or a surface I', the volume V- rounding
the crack tip and 2(l) = 2r + V.

The Hamiltonian is the sum of two terms:

1 p? d
Hr=/ i‘g"‘é’f("vs) dw — / AL - uda,

2r an(l)

2
Hy = / (% % + ge(u,s)) dw.

Vr

Consider that the volume V- is translated with the rate of propagation of the

crack {. The variations of all average quantities F = (f)q, + (f)v, during the
propagation are easily derived:

d d
—F = —
dt dt

%(f)gr <%>QF+F/fin-eIda.

The asterisk (*) denotes the derivative in the moving frame accompanying the
crack in its motion in the direction e,.

<f>-0p + <f*>Vrv
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By integrating by parts, and assuming that all the quantities are regular, one
obtains:

P = - div],qdw+/q-nda,
r J
d OHr dp OHr OHp . /(1 5 ) :
. = —a— 4 . . — g
dtHF B 5 v+ s s + 50V +e)lda

r

Then, if in the moving domain V' the fields are regular, we have
lim | Hy +/cr n-u*da +lim/a n (v—u")+(1 24 )ld
r—-o\ Vv ol S0V +e a
I r
=i " .
FIEIO / g-nda
r

Along I', the continuity of the displacement is expressed as v — u* + iu,$ = 0.
This equation defines the heat source due to the crack; it is equal to the
derivative of the Hamiltonian with respect to the crack length. The regularity
hypothesis implies that the contributions defined in the volume V and on I’
vanish,
s + <1 2+e)d
s I"ITO —0 N Uyg 50V e) a.
r

The derivative of the Hamiltonian with respect to the length of the crack
plays the role of the release rate of energy. When some discontinuities exist in
the volume V-, on a line or on a surface ¥ ([u*] + {[u ] = 0), we have a
continuous line of heat sources defined by (2 = o + 07)

oH : | B 3
o 111_{n£ (—cr “neug+ 50V + e) da = / —7-n-[uz] + [e]da.
P ®
This result can be established by considering a I" curve which tends to the line
of discontinuities [S]. The same method can be applied to determine the part of
the entropy production due to the moving crack; the result is then

1 :
li —o-n- ~pv? da | >
I’lTO <anu_z+2gv +e)/Ta >0,
r

or in the case of discontinuities,

/—E-n- [%] + [%] da 1 > 0.
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7. The canonical equations of shock waves

The local equations of shock waves will be derived again from a thermody-
namical potential and a pseudopotential of dissipations. The canonical equations
rule the jump relations and the constitutive behaviour in a section of the shock
[6]. Let us consider a shock wave, we proposed to study the evolution of the
shock. Locally the surface of discontinuity is replaced by its tangent plane and
consider a frame moving with a velocity ¢ which is the normal speed of the shock.

Along the line of discontinuities, some relationships between the jump of the
quantities must be satisfied.

¢ For the momentum:

[o-n] — m[v] = 0.

¢ For the energy:
1,
[¢g-n] +m 2V +w|—-[o-n-v] =0.

e For the entropy production:

q-n

m[s] + [T] > 0.

¢ Denoting by m the mass flux: m = p(v — ¢), this quantity expresses the mass
conservation.

The shock is governed by the constants of the shock mT?, mQ? which are
related respectively to the flux of momentum and to the flux of energy; then the
jump conditions are rewritten as:

ot n—mvt =07 .n—mv- = mT?,

+ "
q+-n+m (%v2+e> —o.n.vt = qg -n+m <%v2+e) —0n-v = de.

The main problem is to determine the state (—) if the state (+) and the con-
stants mT'¢, mQ¢ are given with respect to the positivity of the entropy production
in an inelastic material. The jump conditions give us only the jump of entropy, but
no direct relation between this discontinuity and the jump of internal parameters.
One must determine the loading path or the history of all the quantities inside
the shock.

To solve this problem we can consider the discontinuity surface as a layer
normal to the direction of the propagation of the shock; and one has to study
the inner expansion of all the quantities in a continuous process in the frame
moving with the shock surface, assuming that all quantities depend only of the
local normal coordinate X = x — ¢ t. For the inner expansion X varies from —oo
to co. Then we are interested in a one-dimensional motion.
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A constitutive law and a pseudo-potential of dissipation being given to describe
the inner behaviour, the dissipation is known inside the shock and therefore the
jump of entropy is given by

m[s]+[ ] /T —iiﬂ > 0.

Using the other jump conditions expressed in terms of the given constant of the
shock, the jump of entropy is rewritten as

. 13
1 v (w T8¢ ) I D grad T
—| + Td ) | e el = / Lids . .
md [T] o [T] o T T U™

This defines the shock generating function P,

(a2
_ m@? 4 2

P = T + mT T m T "

in the steady state analysis: of = ¢ f .z, and P has the following form:

1
Py Syt
mQ* av (w(v’a’ 2 )
P(v,a,T) = —— 7 +m TT m T .

Properties of the functional P

The jump of P is the total dissipation:

= T Dy rad T
P*)-P@)= [ —q-gTdX.

—00

Function P is supposed to be a continuous function of X and the value of P
on a segment dX has the following form:

d d
PdX = mQ—dX + ﬂ (v(X +dX) —v(X)) - —m (w— %v ) dX;
then P is related to the Lagrangean defined on the segment d.X:

L= (;vz - w) mdX + mT?.[v]3 X,
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Defining the dissipative function D as previously, we have

D), a(X), TC0) = 7 (02, d0) + 5 7(Ta?)

where a Fourier law is adopted for the thermal conduction ¢ = —K . grad T
Then the shock structure is determined by the canonical equations:
0P _ 0D 9P _ 9D 0P _ oD
or ~ T’ ou  Ouy’ da  da,’

dP _ Dy gradT
ix 1T 917

Some comments

Let us consider a hyperbolic system
99 | o 09
— 4+ _ =
TREALY
The jump relation gives the speed of the discontinuity line:

—l9l¢ + [/ (9)] =0,

or
_ f9) = f(92)
9 - '
To study the shock structure, assuming some internal processes with viscosity,
the equation are then modified to the form

g . ., 09 _ d%
ot +f(g)£ = Voot

In the moving frame X = 2 — ¢, the function ¢ is a regular function of X,
and
82
(- 9L = pvpo L.
Taking account of the matching condmons for the shock at infinity: in —oo, g
tends to g and dg/0X tends to 0; in a similar manner, in +o0o ¢ tends to g; and
dg/0X to 0. Then by integration, the initial jump condition is recovered:

—d(91 — 92) + f(91) — f(92) =0

But this point of view allows us to study the stability of the shock discontinuity,
when the internal structure exhibits some dissipative mechanisms. This simple
example shows how the dissipative mechanism can be taken into account with the
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constants of shock. In the first case we have only the relation of discontinuities,
in the second case we make an inner expansion of the shock and the constants
of the shock are recovered at occ.

Consider a more complex system:

Q04,008 _ Py
ot 0q; Oz 0g; 9tz

where A and B are scalar functions of the n parameters ¢;, and 7 is a small
positive scalar, L is a matrix of dissipation coefficients. We assume also that

9%2A

f)qiaquin ik

for all state ¢ and non-zero arbitrary (). First we neglect the dissipation = 0,
the shock conditions are easily found; if ¢ is the shock speed, we obtain

oB
0q;

(¢%) - ¢0q1(1+)—~—(1) ¢0m( -)=Ci,

where C; are the constants of the shock. For such a phenomenon, a shock gen-
erating function is obtained from

P=¢>A—B+C,'(1i.

Two points ¢ which may be connected by a shock with a given shock constant are
stationary points of P. Now if we take dissipative mechanism into account, n = 1,
and we must write some inequalities corresponding to dissipative mechanisms. If

we define a pseudopotential of dissipation 5 ¢ .Lq ., we obtain the canonical
shock equations
apP
dq;

= ¢ Lijqja

with the same constant C’.

In plasticity, the determination of compatible state (+) and (—) is not easy to
study, but in the case of propagation of longitudinal waves, if we assume that the
loading process is monotonic, we obtain a curve, which gives the relation between
the jump of the quantities. This curve is similar to the adiabatic Hugoniot curve
known in gas dynamics [11]. This result is obtained by the assumption of a radial
loading path during the shock. This is the structure of the shock. Some other
approaches could also be employed [10].
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Towards modelling of deformable ferromagnets
and ferroelectrics (*)

A. TOURABI, P. GUELIN and D.FAVIER (GRENOBLE)
dedicated to the memory of Professor J. Kravtchenko

A ONE-DIMENSIONAL and isothermal discrete memory-type modelling of ferromagnetic properties
has been introduced recently and is briefly recalled. This modelling has been performed through
a simple and straightforward implementation of the three-dimensional patterns of elasticity and
pure hysteresis, used previously in order to describe the thermomechanical properties of various
materials ranging from shape memory alloys to granular media. The aim of this paper is twofold:
firstly, the one-dimensional isothermal model is enlarged to the non-isothermal case in order to
illustrate the ability of the scheme to model various hysteretic behaviours ranging from soft type
to hard type; secondly, some hints are given on the three-dimensional generalization of the theory
regarding magnetic, dielectric and mechanical phenomena, these phenomena being coupled or not,
far from the thermodynamic equilibrium.

1. Introduction

i. THE PRESENT PAPER i$ an attempt to suggest a new approach to puzzling problems
in the arena of hysteretic polarized systems. The proposed approach is founded
on a thermomechanical pattern of pure hysteresis which is of material discrete
memory-type: consequently, and in spite of the fact that this pattern is proved to
be rather effective, its price may be considered to be quite excessive if the material
discrete memory assumption cannot be justified further as physically meaningful,
owing to the processes involved at the relevant microscopic level.

ii. Special attention will be devoted to the case where both reversible and
always irreversible properties (of pure hysteresis) are simultaneously present as
a global property under consideration. In this case the relevant pattern is that of
elastohysteresis. Its differential form is:

(1.1) dA = dArey + dApys

where, following the method suggested by DUHEM [1], the external “action” (stress
o, magnetic field H, electric field E) is split into two partial contributions Arey
and Apy of reversible and purely hysteretic type, respectively. Such modelling,
obtained by modifying the well-established modelling of the physical behaviour
of systems capable of reversible modifications, implies that the unusual term is

(*) Sectional paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5 -9, 1994,
under the title: “From constitutive modelling of shape memory properties to that of magnetic hysteresis”.
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endowed with mathematical and physical features which are different from that
of the reversible term. It is then obvious that special attention will be devoted to
the definition of dApys without neglecting the interesting features which remain
to be studied concerning non-trivial definitions of dA. The splitting (1.1) is
discussed at the beginning of the paper (Sec.2.1).

iii. Owing to the material discrete memory form which is given to the hys-
teretic contribution dApys in (1.1), it is worthwhile to notice that the proposed
phenomenological pattern cannot be connected with the classical works based
on the switch concept. This type of approach is originally founded on the notion
of “fictitious substance” suggested by P.Weiss and J. de Freudenreich in 1916,
then studied by PREISACH [2] in order to describe some alloys [3]. Regarding the
limitations and rules of careful implementation of such models, the remarks and
method of NEEL remain to be of outstanding interest ([3] part 1 and 2). It is at
least necessary to recall the introductory warning of Neel, avoiding any distortion
through some imperfect translation (1):

Malheureusement, bien qu'il soit possible d’attribuer un sens physique aux quan-
tites H. et H,, il est impossible de justifier a priori le choix des valeurs a donner a
@ et a 1 pour obtenir les lois de Rayleigh; en fait, il ne s’agit pas la d’une théorie,
mais d’une représentation purement formelle, difficile a concilier avec ce que nous
savons aujourd’hui des processus d’aimantation dans les champs faibles, qui sont dus
principalement aux déplacement réversibles ou irréversibles des parois de séparation
entre les différents domaines élémentaires. 1l ne se produit pas notamment de ren-
versements, en bloc, de l'aimantation, domaine par domaine.

The fact is that the works founded on basic “up” and “down” switching op-
erators have been extended by several authors [4,5] and recently mathematical
tools have been proposed [6, 7].

iv. It is worthwhile to notice that the property (or “notion”) of “spontaneous
polarization” is not explicitly invoked, except in a short paragraph put at the
end of the paper (Sec.3.3). This choice cannot be entirely justified by a short
comment. However, it may be useful to introduce immediately some hints on
this method. Let us consider the form introduced by Rayleigh (in its “Notes on
electricity and magnetism”) following [3]:

(12) I-1I,=a(H-H,)=* g(H ~H,)?, H» or <H, n=12

in order to describe the ascending and the descending branches of a hysteresis
cycle. In (1.2) the prominent role is that of the apex of the cycle which are located
at (I, Hy) and (I, H3): if one substitutes for / the usual difference: B — poH
or some other difference such as: B — p(0)H, the main point is that the differ-
ences B — B, and H — H,, are involved once more in the new functional form.

(*) The notations of Neel are obvious as soon as one knows that c is for cohercitive and that ¢ is the
probability associated with H..
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Conversely, it is possible to consider a functional form between H — H,, and
B — B, without any use of the polarization notion. The proposed pattern is built
following this method: a distinction is made between the intensive variable Apys
and what will be defined as its associated current reference value rApys dragged
along from the relevant previous reference state at time ¢g to the current state at
time ¢. This reference value pApys may be considered as the generalisation of the
field H, and the distinction between Apy and gApys is a basic feature which is
introduced as early as the beginning of the paper (Sec. 2.2.2). In fact this method
and the form (1.1) itself imply the distinction between three-dimensional intensive
and extensive variables. If hysteresis is implied, this distinction is connected with
that of cause and of effect. Consequently, the physical intuition may be less use-
ful than in classical situations to which the remark of de Gennes may be almost
always applied: “ce qu’on entend ici par cause et par effet ne préte pas a de
grands discours philosophiques, mais se sent bien sur des exemples concrets ...”
[8] (A translation may be tentatively: what one means here by cause and by effect
is not an opportunity to deliver large philosophical speeches, but is intuitively
well detected through actual examples... .). One will see that in the hysteretic,
always irreversible, case under consideration through (1.1), a non-intuitive distinc-
tion is suggested between cause and effect and between extensive and intensive
three-dimensional variables: energetic terms (/dB and (H — H,)dB, for exam-
O*H
JB?
describe the stationary process between the apex (By, H;) and (B, H>).

ple) and convexity ( for example) are indeed prominent features in order to

v. The basic limitations of the proposed phenomenological approach are im-
plied in the always irreversible pattern (1.1): the properties are supposed to be
rate independent. Non-viscous “standard” hysteresis (Fig. 1) is considered in “suf-
ficiently” quasi-static situations. This assumption is compatible with the analysis
of DUHEM [1]. Duhem considered that a study of equilibrium processes has to
distinguish three types of systems; the systems capable of reversible modifications,
the frictional systems and the systems with hysteresis. This classification rejects
the common point of view that the only distinction between a non-quasi-static
process and a hysteretic process is that of the time scale. As DUHEM concludes
(p- 164 of [1]): “Such a loophole evidently has only one aim: to subject the whole
of Physics to the laws of Statics and Dynamics which were formulated by Gibbs
and Helmbholtz. It would have a legitimacy of this goal if we had reasons to believe
that all mass systems have to yield to the rules of this Statics and this Dynamics.
But of such reasons, we have none”.

Moreover, following the method implemented in [3] (part 2), one makes the
assumption that it is possible to avoid “shape effects” and the associated effects
of “depolarizing” fields.

vi. Some remarks are useful in order to avoid misunderstanding concerning
the rate-independence assumption and the quasi-static assumption. The latter
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FIG. 1. Magnetisation curve and “standard-shaped” hysteresis loop [from R.M. BozorTH,
Ferromagnetism, Van Nostrand Comp., Princeton 1951].

may be considered as quite admissible, at least in a purely mechanical study re-
stricted to the constitutive modelling of rate-independent properties. However, it
is necessary to notice that the dynamic equation (the conservation of momentum
equation) is nevertheless involved in the approach (see Sec.2.2.3). The reason is
as follows: on the one hand the Intrinsic Internal Power P; is implied (in any
pattern of hysteresis) both at the level of the First Principle in implicit form and
at the level of the definition of the Intrinsic Dissipation @ in explicit form. On the
other hand, the momentum equation is necessarily involved, even in the study of
quasi-static cases, in order to substitute for the External Extrinsic Power P (in
explicit form in the First Principle) the power P;. Moreover, in the mechanical
case, the assumption does not imply that the dynamic equation is not required to
define the pattern in a comprehensive form resulting, for example, in well-posed
boundary-value problems. We must have reasons to believe in the dynamic equa-
tion. Now let us return to the case of a polarized systems. The main lines of the
above sketch are the same but the situation is not simple any more: it is necessary
to fix on the approach of Minkowski or to fix on that of Abraham (and different
definitions of the ponderomotive force are implied by this choice).

vii. These short remarks allow us to see that the quasi-static assumption is
not “only” a technical assumption resulting in a gap eventually admissible for
an introductory paper basically devoted to constitutive modelling. It may be also
considered as a warning acting at the level of principles and methods. Accord-
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ingly it may be useful to be aware of the heuristic features which are involved
in a large amount of works devoted to open problems which are neither basi-
cally of a quasi-static type, nor devoted to phenomenological approaches: typical
stimulating studies are for example those founded on the equations of Maxwell
[9] or on the study of “classical” difficulties regarding ponderomotive forces [10].
On the other hand, pinning processes and possible gradual, continuous, upsetting
are essential features in order to justify the discrete memory structure of some
pattern implying that a “state” may be compared with others (still memorized)
through levels of dissipated energy and implying also that the hysteretic property
is understood as a “spontaneously” perfectly stationary process what subloop per-
turbations it may be encounter: accordingly, topic as “special” as the problem of
the relationship between topological and energetic stability [11] may result in
stimulating heuristic sketches.

Field Intensity Shear Stress

Shear Strain | »

Induction

(a) (b)

FIG. 2. A unified “thermodynamic” presentation of magnetisation of a ferromagnetic material (a)
[Bozorth] and of deformation of a shape memory alloy (b) (CuZnAl polycristalline alloy
at T > Ay) [25].

Of outstanding interest are also the studies suggesting how the main com-
mon features of ferroelectrics and ferromagnets are combined with mechanical
hysteresis in ferroelastic materials [12]. Such studies lead inevitably to a compari-
son (Fig. 2) between the shape memory properties (Fig.3) and the ferromagnetic
properties: it is then easier to implement (1.1) (Fig. 4) in the magnetic case, for ex-
ample (Fig.5), and to introduce at a micro-scale some relationships between me-
chanical and magnetic basic processes (Sec.3.3 Fig. 14). Moreover, through these
studies, actual cases are as many as the opportunities in order to improve the un-
derlying principles and methods: the case of materials similar to a Nickel-Iodine
Boracite [12] is a typical example in order to avoid the implementation of classical
loophole (of first loading type).
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FIG. 3. Isothermal stress-strain tensile curves [27] for a NiTi shape memory alloy at
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F1G. 4. Splitting of the intensive external “action”.

viii. As suggested by the abstract, the aim of the paper is twofold. Firstly, a
one-dimensional approach allows us to illustrate the sophisticated features associ-
ated with a (scalar) coupling effect between Apys and Apey (in the non-isothermal
case). Secondly, the three-dimensional pattern is sketched allowing to show that
the classification of the coupling effects which are a priori possible far from the
equilibrium, cannot be obtained through a classical treatment using, for example,
some principle of additive Lagrangian or the distinction between the order of
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F1G. 5. The splitting of the magnetic field [from 21].

truncated series. It is however hardly useful to notice that the classical coupling
effects are implicitly taken as a basic heuristic background, even if there is no
explicit generalization in this introductory paper.

2. One-dimensional elastohysteretic model
2.1. From Duhem’s analysis and Neel warning to the decomposition of the normal “action”

Introducing the Helmholtz free energy F as function of the normai variable
a, the associated infinitesimal change of the external “action” A for a reversible
isothermal phenomenon is simply given by:

(2.1) dA=d (Z—D .

As Duhem emphasised, this relation is obviously not applicable for either fric-
tional systems or systems capable of permanent deformations. For the latter he
suggested therefore to modify Eq. (2.1) by incorporating another term to give
(2.2) dA =d (3—2) + hda,

where the sign + indicates when the normal variable increases, and the sign
— when it decreases. The quantity h may depend upon the state of the system
(through o) and also of the external “action” A. The splitting of the external
“action” in the elastohysteresis theory which is expressed by Eq.(1.1) is thus
similar to Duhem’s proposal. Obviously this method of modelling the evolution
of systems with hysteresis can be applied only if this evolution is macroscopically
continuous, i.e. if a macroscopic equilibrium state can always be reached and
also left by a modification of infinitesimal slowness. Phenomena of this type are
common even if accurate observations reveal that microscopically the evolutions
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proceed through a series of elementary processes [13, 14]. These implicit refer-
ences concerning modern microstructural results should be supplemented by a
short comment on the non-usual suggestion of Duhem. One notices that a single
normal variable a has been considered and that, moreover, the same variable is
used to introduce the modification (2.2) of Eq. (2.1). For sake of simplicity let us
drop out the ambition to discuss the bearing of the “normal” notion for hysteretic
system. Then one may wonder why Duhem did not suggest to study further some
alternative method such as

oF
aarcv

implying the splitting: a = arey + anys, still frequently encountered in classical
plasticity theory regarding the strain or the strain rate: D = Dejas + Dpjas.

As long as the fundamental question remains in the arena of continuum me-
chanics, it is well known (but not overpublished) that the role played by the strain
rate D is of a dramatic mathematical importance. Accordingly it is not physi-
cally relevant to introduce an approach (or even to think of a method) implying
the breakdown of such a fundamental variable without producing some decisive
unquestionable physical argument. On the one hand, the results of isothermal
classical mechanical tests do not allow to discern any opportunity: the only un-
questionable physical notion is that of limit surface of plasticity.

On the other hand, it remains possible to search for a basic argument at some
microscopic physical level and to introduce eventually some associated statistical
argument. However it is worthwhile to underline that the negative result ob-
tained at the macroscopic level is definitely ominous, owing to the status of the
first principle and independently of any doctrinal argument. The fact is that it is
now rather hopeless to find an opportunity at the level of microscopic physical
processes. For nearly 20 years it has been possible, with the aid of transmis-
sion electron microscopy, to observe dislocations movements occurring during
the deformation of small samples. The simplest case (a simple dislocation mov-
ing between two parallel walls) implies the elastic-perfectly plastic behaviour.
Following the Neel warning, the basic feature is the a priori possible coexistence
of reversible or irreversible displacements: the basic back and forth process is not
possible through the “renversements en bloc” involved in the switching process
(cf. Sec.3.3). The case of a Frank-Read source operating between the walls is
more complex but similar [15]. For such elementary mechanisms (of typical scale
about 10~ mm?3) it is possible to search for a rather clear physical definition of
the splitting of a. Unfortunately the essential result is as follows: the deforma-
tion of a real material is the result of the addition and interaction of a multitude
of elementary mechanisms, the thresholds of which are continuously distributed.
The splitting of « is no longer a convenient convention but a physically irrelevant
assumption. Some remarks are given below regarding the magnetic case (Sec.3.3
point ii).

dA =d ( ) T h(Qnys; - - -) dapys
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2.2. Discrete memory scheme of the pure hysteresis contribution

2.2.1. The Masing model. The main feature of the pure hysteresis behaviour are
its stationary properties during periodic cyclic loading. A one-dimensional model
which behaves like a pure non-relaxation hysteretic system consists of a collec-
tion of elastic springs (perfectly elastic phenomena) and rigid plastic or slip el-
ements (pure solid friction phenomena) arranged in either a series-parallel or
a parallel-series combination. With respect to the physical property, these two
combinations are identical. Owing to the remarks given above (cf. Sec.2.1) and
to the fact that one needs a R' model which may be heuristic to built a R3 pattern,
the relevant heuristic model is unique. The fact is that the model (Fig.6) has

0<e, <€y <.o.n. 4l - —

| o | o
OA| O 1
J AB| o, | 2

>4
G] Gz C'n BC (O 2
‘‘‘‘‘‘‘ - CD| o, | 2
DE| o, | 2
' EF | © 2
X H N ) FGl o |1

(a) (b)

FIG. 6. A pure hysteresis model and its behaviour.

been suggested by several authors as a simple model for the yielding behaviour
of materials and was used as early as in 1926 by MASING [16]. We will recall the
mechanical, energetic and thermodynamic analysis initiated by de CARBON [17]
excluding the general random cyclic case and enlarged by one of the authors [18]
through a radical departure of the classical approaches briefly recalled above
(Sec. 1, iii). All along the following analysis of “Masing’s model” (Sec.2.2.2 to
2.2.4), the mechanical vocabulary is used, i.e. the external “action” A is the hys-
teresis stress (denoted by o in this section) and the normal variable « is the
deformation ¢.

2.2.2. Mechanical analysis. The parallel-series model consists of a collection of lin-
ear elastic and slip elements arranged by pairs as indicated in Fig. 6a. GG;, S; and
e; are respectively the spring rigidity coefficient, the critical slipping stress and the
equivalent deformation limit e; (= 5;/G;). If the number of elements becomes
very large and because the pairs are necessarily arranged in increasing order of
e;, the rigidity coefficient (; can be described in terms of a distribution function
g"(e) where ¢”(e) de is the rigidity coefficient for the pairs having their deforma-
tion limit between e and e + de. The neutral initial assumption postulates that
there is no strength in any branch before the first loading O A (Fig. 6b). Moreover,
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there is no isolated spring (owing to (1.1) this requirement is trivial). Two features
are at the roots of the heuristic meaning of the model. The first one is that it
takes into account the warning of Neel. The second feature is that the order of
the pairs is a strictly internal intrinsic property entirely independent of the details
concerning the shape of g provided that g” > 0, g(0) = ¢'(0) = Go — ¢g'(co0) = 0;
in other words, this “absolute” or “universal” feature is at the origin of an in-
evitable algorithmic part of the pattern. Moreover, the whole structure of the
R3 enlargement will be necessarily dominated by the coexistence of “absolute”
features and of invariant (dragged along) material properties “similar” to G; and
S;. The mechanical analysis consists of distinguishing the pairs for which the slip
element moves and which transmit a stress o, from the others that have not
slipped and which transmit a stress o,,. The distribution function g”(e) is then
related to the shape S(e) of the first loading curve as follows:

o(e) = S(e) =05+ 0ns = /eg"(e) de + /5g"(e) de = Goe — g(¢),
(2.3) v ¢

o) <0, Go= [g'e)de, 9= g0 = Co- /() = 0.
0

By performing identical mechanical analysis it can be shown that any branch
(like AB) or arc of branch (like EF) of the path OABCDEFG is described by
a general functional form where piecewise constant functionals are involved:

A}?0=U—Ra=w5[(4\'£)/w], w=1or2

(2.4) Az = z(t) — z(tr),
dA%a do . de 'dg _ ., " :
dt = W_Godt E—Gof —f(/_\Ra,w)s.

ro and ge are the reference state stress and strain defined as piecewise constant
by branch or arc of branch (cf. table of Fig.6). In this equation the coefficient
w generalizes the Masing rule [16] which postulates that the unloading curve
AB is deduced from the first loading curve by a similarity of ratio —2. From
the consideration of the internal closed subloops C DE inside the minor loop
ABCF, it is clear that the reference state cannot be taken as the last inversion.
The thermodynamic analysis below has to furnish at least (cf. Sec.2.2.5) firstly a
criterion in order to define the reference state in non-obvious R3 cases, and then
an algorithm which distinguishes the current reference state from all the previous
inversion states.

2.2.3. Energetic analysis. At least in principle, the energetic analysis is straightfor-
ward because the internal energy change dF is stored in the springs and the
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sliding of the slip elements leads to an energy dissipation (considered here as a
heat loss) associated with the irreversibility. In fact there is no problem regarding
the first loading studied by de CArRBON [17]. The cyclic case is puzzling because
of discrete memory form. It has been introduced by one of the authors [18] and
results in

25) dE = op5de = 0de — de(0 — gro)/w + do(e — gre)/w,
. —dQ = o,de = +de(0 — po)/w — do(e — ge)/w.

In spite of the fact that the quasi-static form of the first law:
dE = 0W 4+ 0Q = —Pgdt + Qudt, (0= P + P)),

is trivially verified, such relations imply a conceptual breakdown prohibiting their
introduction without, firstly, the proposal of an associated thermodynamics [18]
and secondly, further physical justifications at some relevant microscopic scales
[15]. Let us suppose that these problems are solved. It is then worthwhile to
notice that (2.4) and (2.5) have the same status and that, consequently, in a gen-
eral three-dimensional approach (2.4) and (2.5) are involved in the constitutive
pattern. This point is important because it implies, for example, that a numerical
technique must include the enlarged R3 forms substituted for (2.5) as well as the
enlarged R3 form substituted for (2.4).

2.2.4. Thermodynamic analysis. Following the usual convention, a quantity received
by the continuum is positive. The thermodynamic analysis must verify the funda-
mental properties of the rheological model, i.e. each possible path is irreversible,
there is a quasi-reversibility after each inversion and it is always possible to re-
turn the model to its neutral initial state by a great number of almost symmetrical
cycles whose amplitude decreases slowly, as it is well known. Let /I denote the
reversible power, and let

(2.6) ¢ =-P; -1, ¢>0

be the usual definition of the intrinsic dissipation. The fact that the model is
entirely irreversible must be expressed by the fact that & is almost everywhere
positive along any possible evolution. The Gibbs equation is proposed to be written
in the form:

(2.7) dE = I dt + dlI.

The meaning of the introduced quantity / is outlined by deducing from (2.5),
(2.6) and (2.7) the following relation between rates (of supply):

(2.8) Al + (=dQ) = & dt.
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The quantity dI appears therefore to be the part of ¢ which is not the energy
dissipated as heat by the gliding of the friction sliders: the sum of the rate of
supply of disorder and of the rate of internal intrinsic heat extracted and given
to the surroundings is equal to ¢. Equations (2.6) and (2.8) have introduced 3
unknowns. One of the authors has suggested to complete the thermodynamic
analysis of the pure hysteresis model by assuming that /7 dt is of discrete memory
form: po de. This assumption results in [18]

(2.9) ¢ dt = (0 — ro)de, Il dt = po de.

Firstly, the non-negative value of the intrinsic dissipation & allows one to deter-
mine the inversion criterion. For instance, it is not possible to keep the point
O as the reference state along the branch AB (Fig.6), for it would result in
a negative value of @ as soon as the loading is reversed at point A. Then A
is an inversion state and this inversion state is the reference state at least for
the path immediately following the inversion. Secondly, the quasi-reversible be-
haviour which occurs after each inversion is underlined at the inversion point by
a zero value of the intrinsic dissipation and the equality of the external power P,
with the reversible power /1. The restoration of the model properties after an in-
version state is associated with a final assumption. The model has to be considered
as receiving a large flow of order at this inversion point which counterbalances
exactly the disorder produced during the preceding branch: this notion of order is
that of negentropy introduced by Brillouin (in “Science and information theory”,
p. 114, 1962). Then, after each inversion the value of I is always zero and the
disorder quantity I is defined for each branch. During the fundamental process
of demagnetization, the / value tends towards zero as does the stress supported
by the model [18].

The result of the thermodynamic analysis is used to define the reference state
from all the inversion states, and the reference state still memorized. Owing to
g” > 0 this is made possible by a rule of minimum increase of d®. This rule states
that, for instance, at the point F' of the path £ F'G the reference state has to be
changed, since

(2.10) d® (along FG with po = ¢(0)) < d® (along FF' with po = o(B)).

The rule applies also at the point £ of the path D FE F. By using the Masing rule
and the condition ¢"(e) > 0 it is shown [18] that an equivalent but more practical
way to determine the current reference state is obtained by introducing a “help
function” defined through the differential form dWj, = ¢dt. An algorithm for the
determination of the reference state is then built up from the piecewise continu-
ous variations of an integral form and easily enlarged to the three-dimensional
case [19, 20].
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2.2.5. Remarks concerning the three-dimensional extension

i. The previous analyses have demonstrated the relevance of the concept of dis-
crete memory of past inversion states in any hysteretic model. This ultimate model
has to be at least composed: firstly of a constitutive set of differential-difference
equations (2.4) and (2.5) involving piecewise constant functionals as arguments;
secondly — of an inversion criterion based on a particular form of the intrinsic
dissipation function, and lastly — of an algorithm determining at any time the
relevant reference state and the Masing functional.

ii. This holds for the one-dimensional case. However it is worthwhile to un-
derline three points concerning the three-dimensional theory. In this case the
“action” A is defined implicitly through the definition of its rate dA. The consti-
tutive set is then a set of differential-difference equations including not only the
rate form of (2.4) but also nontrivial generalization of (2.5). Secondly, the defini-
tion of the rate operator under consideration implies a nontrivial generalization
of the invariance ro = constant (and thus dro = 0) physically obvious and triv-
ially expressed in the isothermal one-dimensional case. Owing to its underlying
thermodynamics [18], the discrete memory pattern of hysteresis implies thirdly
the existence of a unique neutral state of demagnetization which can be actu-
ally reached, at least asymptotically, through any of the fundamental processes
pertaining to the set of relevant demagnetization strategies. It is then always pos-
sible to put back the model in the basic initial state and to achieve a continuous
improvement of the intrinsic pattern.

iii. In the one-dimensional case, the existence and the uniqueness of both the
basic demagnetization state and of the associated strategy are rather obvious.
The strategy is two-fold; the initial state 7, is some unknown state; for the Mas-
ing’s model there can exist some initial strengths in springs. Firstly, a sufficiently
large loading-unloading is performed, the only assumption being there that the
measurements are able to give the first and second derivatives of A(«) as ac-
curately as required owing to the subsequent process: the points D; and D, of
curvature discontinuities are then obtained. Owing to the unknown loading his-
tory preceding the initial state /;, the apparent behaviour may be the path P, or
the path P, as well. Both paths are nevertheless associated with the unique intrin-
sic behaviour: an identification process cannot be founded on the path P; nor on
the path P,. Secondly, it remains to perform the well-known cyclic loading, slowly
decreasing, almost symmetrical and tending to the point ((v, + a;)/2,0) (Fig. 7).

iv. In the three-dimensional case the problem is much less simple. It can be
sketched briefly when the properties are described through a two-dimensional
functional. This occurs for example in tensorial three-dimensional mechanical
analysis of the isotropic elastic-plastic material when both the stress and strain
paths remain in deviatoric planes. This occurs also for the vectorial pattern of
rigid isotropic magnetic material when the field and magnetization vectors re-
main in the fixed planes passing through the origin of the fields spaces. In such
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situation an extensive path such as O a; a; a3 is associated to the intensive path
(stress or field) O A; Ay As. If O is the neutral state and if O «a; represents the
unknown loading history leading to the initial state, any usual cyclic demagnetiza-
tion on A, A3 tending to O gives, on ajas, the final extensive location O,, which
is irrelevant (Fig. 7b). Owing to the definition of pattern, the relevant strategy for
a generic path such as O A (Fig. 7c) is in fact of two-dimensional type because the
polar angles must be covered back and forth, as well as the polar radius (Fig. 7c).
However, owing to the current state of the theory, the special case of Fig.7b
must be studied further. It is worthwhile to underline that the solution may be
useful for the improvement or the achievement of any continuum mechanics of
“micro-structured” media endowed with pinning and upsetting processes allowing
not only for reversible processes but also, in some sense, for “sliding” processes
back and forth.

2.3. A first proposal of one-dimensional modelling of non-isothermal magnetisation

2.3.1. The heuristic isothermal case

i. The modelling recently introduced [21] may be recalled briefly as follows.
Let o, be a saturation bound of «, taken as a unit. The reversible contribution
is taken to have the form:

Arey = 0F[02 = ey tanh™! z,
(2.11)
dAwey = d(OF/02) = arey/(1 — 2¥)dz,  with z = a/a,.

Both forms are dependent on one parameter arey. A simple integral form for the
hysteretic contribution along the first loading is

Ahys = Ag tanh(ahysx/Ao),

(2.12)
ﬂhys[l - (Ahys/A0)2] dz.

dA hys

By taking into account the discrete memory functional form (2.4) implying the
A%, notion and the Masing functional w, a generalized form of (2.12) is obtained,

(2.13) d(AziAhys) = dAhys = ahys[l - (Ahys - RAhys)C/(wAO)C] dz.

In this form, a physically useful parameter ¢ (¢ > 0) has been introduced in
order to improve the qualitative description. Then the model for the hysteretic
contribution involves 3 parameters Ay, apys and c.

The derived form for the global scheme is identical to Duhem’s proposal. The
quantity h of (2.2) is now a function of the current state (through Apys = A— Arey)
and is also a function of the history through the piecewise constant functional
of reference state rApys and the Masing piecewise constant functional parameter
w. The model is used to generate the Fig.8a which shows a calculated major
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hysteresis loop, a minor hysteresis loop and an internal subloop inside a minor
loop. Figure 8b shows a simulation of a demagnetization process. The parameters
used were arey = Ag = 1, apys = 10 and ¢ = 0.5 and have no quantitative physical
meaning.

1 ¢ 1
- M/Ms

o
\
o

(@) (b)

F1G. 8. Calculated hysteresis loops (arbitrary units).

ii. The elastohysteretic model is idealized and applies to materials with a
“normal” structure leading to “standard-shaped” hysteresis loops (Fig. 1.). The
modelling of the magnetization curves requires then the prior identification of
5 parameters. Two, o and A, are straightforwardly determined from the major
hysteresis loop obtained with a field sufficient to magnetise the material to satu-
ration. As long as the hysteresis width can then be considered as constant for low
values of the magnetization «, A is equal to the intrinsic coercivity , A.. Sec-
ondly, from the equations (2.11) and (2.13) we deduce the following expression
for the slope

(2.14) dA/dz = arev/(1 — 2) + anys[1 — (Anys — RAnys)°/ (W A0)°]-

In the case of a “standard” hysteresis loop, GANs [22] suggested that the reversible
permeability p, (defined in Fig.1 as s with A4 vanishing) was determined by
the biasing induction alone. BROWN [23] gave a theoretical justification to this
rule but considered reversible susceptibility x, to be a function of magnetization
alone. The reversible susceptibility is the slope da/dA just after an inversion state
where Apys = rAnys. Then (2.14) can be written as

(2.15) as/Xr = (lrev/(l = xZ) + (hys,

which obeys the Gans rule. Conversely, far from the inversion state, the hysteretic
contribution tends toward zero. Summarising, one can say that through the pat-
tern (1.1), the Gans rule expresses the fact that the addition of the inverse of
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a reversible susceptibility and of an almost everywhere constant or vanishing in-
verse of an irreversible susceptibility appears as an almost everywhere reversible
inverse of a total susceptibility, in spite of the prominent hysteretic features of
the properties.

The measured variation of x, with z can be fitted to any appropriate function.
With the proposed choice (2.11), the initial value of the reversible susceptibility
Xo is obtained by setting z to 0 in (2.15), and then

(2.16) Urev T Apys = s/ Xo-

The value of the slope da/dA for a zero magnetization (A = ,A.) is simply
@;/arey. Then arey and apys are determined. The last parameter ¢ characterizes
the squareness of the hysteresis curve which increases with increasing c. The value
of B,/B,, (Fig.1) is then directly related to the value of this parameter.

2.3.2. The non-isothermal case. Such an adaptation has been previously introduced
through the modelling of shape memory properties [24 to 27]. However, the
theory is in tensorial form. As usual, this form is not convenient to give briefly the
basic hints and to illustrate the modelling. Fortunately, the ferroelectric properties
can be actually similar to that of shape memory alloys. This is an opportunity to
sketch briefly the adaptation of the model in a convenient scalar case.

Let us therefore consider the properties of a lead Zirconate (Fig. 9b). A simple
modelling (Fig. 10a) must be build as follows. Firstly the hysteresis contribution
is taken as temperature-independent (Fig. 10b). Secondly, the reversible contri-
bution is expressed as the sum of two terms, the first one Ars being similar
to that previously used in the magnetization case and temperature-independent
(Fig. 10c), the second one Agr (Fig.10d) being

T
. = . h S
2.17) App(T) = Ap(T)-tan [at o
or, in differential notations,
. T) = . h2< = ) d
(2.18) dART(T) = @ [1 tan atAT(T) | @

with, for the sake of simplicity,
(2.19) Ap(T) = k(T = To)H(T - Tp),

where H(T — Tp) is the Heaviside function, and Ty = 132°C, k = 2.1073.

The qualitative result obtained with this very simple pattern (Fig. 9a) is suffi-
cient to suggest that the adaptation of the modelling can be performed in order
to take into account the main qualitative features of the hysteretic properties
from the soft type to the hard type. The features of the cyclic behaviour with
subloops and of the demagnetization path are illustrated (Fig. 11) by two sophis-
ticated cases (7" = 132°C, 146°C). The parameters used for all the modelling
were apys = 45, Ag = 1, ¢ = 4, arey = 0.26 and a; = 6.
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FIG. 9. Qualitative modelling of the properties of lead Zirconate (a) modelling, (b) experimental
results [28].
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3. On the vectorial generalization of the scalar models of pure hysteresis and
elastohysteresis

3.1. Introduction of a quasi-linear vectorial form

Owing to the implicit definition of the “action” A through the general differ-
ential pattern

(1.1) s dA = dAgey + dAhys>

the attention must be in the first step focused on the contribution of hysteretic
type in order to obtain a vectorial generalization under isothermal condition:
at the level of principles and methods this contribution is indeed much more
puzzling to define than the reversible one. Writing (2.13) in the form:

B AL A\ ©
1) d(A = Ao = i d Chiys 13- 4
(3.1) (ARAnys) hys = GhysdZ + [(AhAhys)z wA,

X (AhAhysdz)AhAhys ,
one notices that the scalar differential-difference pattern is
(3-2) Anys = a1 & + agARApys, a3 = Baa®a,  Pa = ARApgs @,

where a, is a scalar functional associated with the limit Ay of “plastic” type, and
where @4 is the intrinsic dissipation. As well as in the case of the tensorial gener-
alization [19, 20], one can make use of the quasi-linear vectorial form suggested
by (3.2):

(3 3) Ahys = a + aZ-AﬁzAhym ay = B4sPa,
' i Def
D4 = A%Ahys' a, Ag{Ahys = Ahys = RAhys-

Then one knows [19, 20] that the main difficulties occur concerning the definitions
of the rate operator, of the intrinsic dissipation ¢4 and of the scalar functional a;.
In order to introduce the solution brought by the proposed pattern it is conveni-
ent, firstly, to give a rather detailed analysis of some basic hints, and secondly
to suggest the relationships between this first sketch and the usual qualitative
features of the well-known experimental results obtained at macro or micro-scale
(Sec.3.2 and 3.3, respectively).

3.2. Basic hints concerning the Preferred Reference Frames, the dragged along material properties
and the Ilyushin representation

In this paragraph the subscript “hys” is omitted for the sake of simplicity, but
always implicit. When some hints must be given regarding the reversible features,
the subscript “rev” is explicit.
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3.2.1. Preferred Reference Frames (PRF) and dragged along material properties

i. Let us deal firstly with the difficulty concerning the rate operator. As well as
in the tensorial (mechanical) case, the vectorial pattern will be defined introducing
orthonormal PRF, where the reference external “actions” rA and the tensorial
material parameters are dragged along. The relevant rate of A is then the partial
“time” derivative in the relevant PRF, which remains to be defined.

ii. The simplest case is that of a rigid material under isothermal condition and
exhibiting a single hysteretic process. The relevant PRF is associated with the
initial material direction of the usual (quasi-reversible) anisotropy of the initial
“demagnetized” state (cf. Sec.2.2.5 iii and iv).

Accordingly, the material parameters are defined once for all in this initial
“demagnetized” state through two tensors: firstly, the second order tensor p of
reversible linear behaviour, and secondly the second order tensor P associated
with the (entirely) irreversible limit behaviour of “plastic” type. This definition
results in the usual linear form describing infinitesimal evolutions in the vicinity
of the demagnetized state:

: _ 9
(3.4) A; = pod;, podi = pij éj, 5’

and in the quadric of anisotropy of the limit irreversible behaviour:
(35) Plim.',-AiAj = A%

The linear (infinitesimal) behaviour (3.4) is written under a form taking into
account from now on the approach proposed in the case of the anisotropic de-
formable medium.

ili. Another simple case is that of a rigid isothermal material exhibiting two
uncoupled or coupled hysteretic processes (denoted (E, D) and (H, B) or (E,P)
and (H,M)). The approach is similar. The previous linear forms are now:

=

. 47 D

E; = podf, #odzE={ &
or,uUP

(3.6)

o &

. i B

Hi = podl,  pod = " -
or u;; M ;

where D and B are the displacement and induction vectors, respectively, and
where ¥ and pH are the inverse of the dielectric permittivity (or susceptibility)
tensor and of the magnetic permeability or susceptibility tensor, respectively. In
the irreversible range the limit behaviour is defined by

(3.7) P, EiE; = E§,  PH HH; = H{.
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One recalls that E and H denote purely hysteretic fields and that, at this stage
of the analysis, the relationship between these fields and the Applied External
Extrinsic (AEE) fields in not conspicuous even if it may be foreseen through
(2.3). This point is studied below (Sec. 3.3).

iv. The above presentation is supplemented considering now the case of a
deformable material exhibiting both the elastic-plastic hysteresis and the previous
couple of vectorial hysteresis. For the sake of simplicity, the analysis is restricted
to a two-dimensional sketch.

In the initial demagnetised neutral state of the material element M (0) the
mechanical and non mechanical PRF are PRF,,g PRFgy PRFy, respectively
(Fig. 12a, where PRFy is omitted for the sake of simplicity). The directions of
the PRF are associated with those of the mechanical and non-mechanical initial
anisotropic directions. The relative orientations are OE and O, respectively
(Fig. 12a).

\\
N ‘ qu‘{‘»

\ ’,’ (a)

- 1
[ . PRFm 0 ]

=

PRF,,

PR (b)
M(t) D

(c)

F1G. 12. Sketch of the evolution of the Preferred Reference Frame (PRF).



460 A. TouraBl, P. GUELIN AND D. FAVIER

Due to the Loading Process (LP), the current configuration M (t) of M(0)
is “rotated” and strained (by stretching and shearing). Let us denote by PRFp
(Fig. 12b) the reference frame defined by the rotation of the principal direction of
strain rate D: the PRF is “almost in the strip” because the rotation of the PRFp
is approximately the rotation O of the Preferred Loading Direction (PLD) (cf.
Fig. 12b where the current PRFp is represented making implicitly the assumption
that its initial orientation is that of PRF,,().

The first basic assumption is: the initial and the limit properties introduced in
(3.6) and (3.7) are dragged along in the relevant PRF (the “n” and the “Pj,”
are given once and for all in the initial state as well as in the rigid cases).

The second basic assumption is as follows: the actual rotation of the PRF,,
is almost that of PRFp, up to a “small” angle ¢,,. Consequently, the rotation
of the PRF,, is approximately the rotation of the PLD or of the PRFp, such as
suggested in Fig. 12b: the PRF,, are “almost in the strip”. It remains obviously
to define the “small” angle ¢,,. This question is revisited below (Sec. 3.5.4).

The PRFg and PRFy being both almost dragged along by the matter, the
relative orientation of this couple of PRF with respect to the current PRF,, is
almost the same as that (OE and Of) in the initial configuration (up to ¢,, + g
and ¢,, + ). The situation is sketched in Fig. 12c, where the angles ¢ are mag-
nified. Consequently, when each pattern of pure hysteresis is defined in its PRF,
it appears only to be a small correction (associated with the ¢ effect) if the
whole set of hysteretic pattern is expressed in only one of the PRF, for exam-
ple the PRF,, or in the PRFp, or in the frame of an observer. Moreover, the
reversible contribution may be defined or expressed in a PRFy only slightly
different from the PRFp up to &y, under the condition that ey is a function
of kinematics but not a functional: the functional form is indeed admissible for
em, €g and ey but not for . Let us return to the hysteretic process saying
that, finally, up to the rotation ¢, (n = m, E, H), the analysis results, with re-
spect to an extrinsic observer, in the consideration, in the PRFp, for example, of
three sets of components associated with the three external “actions” of hysteretic

type.

v. Once one is aware of these extrinsic features, one must face the turning
point of the analysis. As suggested by the entirely intrinsic one-dimensional case,
the intrinsic problems are indeed to define fields like o, gro, Alo but never o
alone, except in the special case of the first loading along which the set of discrete
memory is empty (cf. Sec.2.2.2, implemented in the case w = 1). In the pattern
the coexistence of A, gA and A% A is inevitable. One knows that the behaviour of
pure hysteresis implies a limit behaviour, as suggested by the R' model. Moreover,
the limit behaviour is defined through a limit surface of the A space (a typical
example is the limit surface of plasticity). The behaviour is therefore dependent
on the direction of the path with respect to the limit surface and a geometrization



TOWARDS MODELLING OF DEFORMABLE FERROMAGNETS AND FERROELECTRICS 461

of the pattern is obviously interesting. However one needs a geometrization able
to give A as a sum: pA + AL A. It must be done in a unique space common to A,
rA and AL A. Then, as well as in the purely mechanical case, it is now necessary
to define angular parameters of the intensive fields in a space whose axes are the
same regarding o, ro, ALo; E, RE, AYE; H, pH, ALH.

This point is immediately interesting in the mechanical case because, for ex-
ample, it is indeed obvious that the principal directions of the tensors A rA and
A% A are not the same, so that the implementation of the associated orientations
in a pattern of hysteresis leads to a set of drawbacks, the physical meanings of
which are puzzling. In the purely mechanical case this condition has been pre-
viously fulfilled with the aid of the Ilyushin representation [19, 20]: the axis of
the Ilyushin space are the same for o, ro and A% and the principal directions
of these tensors are indeed not involved. Moreover, the final expression of the
pattern must be invariant with respect to the choice of the initial PRF.

vi. Now let us return to the case where three types of fields are simultaneously
involved, one being tensorial and the others vectorial (distinction between polar
and axial vectors may be provisionally omitted). The tensorial pattern being from
now on outlined [19, 20], it is not necessary to introduce a specific formalism: it is
sufficient to define a one-to-one invariant linear mapping between each vector A
(in PRF,) and its associated purely deviatoric tensor A (in PRF4): the definition
of A is chosen in order to obtain a three-parameter geometrical object with only
one invariant. Finally, in this introductory paper one must face the definition
of three similar tensorial patterns defined through the components in the three
corresponding PRF 4 (endowed with slightly different evolutions, due to the small
rotations ¢). From the three sets of components one can obtain the three Ilyushin
representations in a unique space I° in spite of the fact that the definition of
the pattern implies the process of dragging along by the matter through the
components in the three PRF 4. No transformations of coordinates are implied at
the level of the definition in the Ilyushin space associated to the three PRF4,
where the components are physically meaningful and reflecting the three discrete
memory processes. On the contrary, an external extrinsic observer may record
second order coupling effects in the special reference frame where he specifies
the AEE fields. Moreover, some first order “absolute” coupling effect can be
defined in the “absolute” I3 space; for example, we can substitute for #m in
the mechanical pattern the total intrinsic dissipation ¢t = &m + de + ®h or
substitute for #e and éh the sum Pem = Pe + Ph. It remains to introduce the
formal features of the basic tools (Sec.3.2.2 below).

3.2.2. Basic hints concerning the Ilyushin representation. For reasons introduced below
(Sec.3.5) it is useful to implement a special representation of a polar vector: the
features of this representation are given in this paragraph.
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i. The Ilyushin representation of a purely deviatoric symmetric second order
tensor A is

e 2

. e \/;QA(l — 08?041 — cos? 047 — cos?043)1/% cos o,
8 2

A2 = \/;QA(I — cos? 041 — cos? 047 — cos? 043)/% cos (<pj14 - 21),

a8 = \/gQA(l — 08?041 — cos? 042 — cos®043)'/% cos (<pji4 + 2l),

3
(3.8)
a8 = —l-QAcoseAl,
V2
31 _ 1

A cos 42,
\/iQA A2

—12 1
A= — cosf43.
ﬁQA A3

The five parameters of the geometrical object are Q 4, ¢%, 641, 042, 0.43. Only the
first one is invariant: the second invariant ¢4 is a function of ¢4 and 6423 (see
for example the simple form (3.11) associated to the special case (3.9)). Regarding
the vectorial equivalence one considers only a three parameters case: @ 4, ¢%, 6.
A priori § may be such as 8 = 047 = 042 = 043 0r 0 = 041,042 = 043 = 0 or
0= 9.42’ 0A1 = 0,43 =0orf = 0,43, 0,41 = 0A3 = 0.

The distinction between the last cases is obviously irrelevant. The first one
is unnecessarily superabundant regarding the 6; angles. Then one considers the
representation (3.8) reduced to the form

An %Q" sin 6 cos %,
Ay = 1/ =Qa4sinfcos (cpfl = 23—7r),
(3.9)
Ay = -;—QA sin 6 cos (cpdA + 2%),
Loy 1
A.. = —=Qacosf (.. & 23 or 31 or 12),
\/iQA ( )

if: 23 & .. then: A= Z]]hl ®@hy + K..;
A= 71—22}12 ®hy + Z33h3 ® h; + A..(h; ® hs + h3 ® hy),

where h; (: = 1,2,3) denote the base vectors of the relevant PRF.
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The case
— 2
Ay = \/;QA\/l — 3 cos? B cos p;
(3.10) 1
A= —=Qscos8 = Ay3 = A3 = Ay,
\/EQA 23 31 12

is not implemented (see (3.15)).
One knows that the phase ¢4 of A defined following (3.9) is

(3.11) cos3pa = f(4f*=3),  f=sinfcosp?h = cospa
with, obviously,
cos3p% = V6 3T, /(214 )2,
M, = (1 = Q% — 243 = Y (A = [ (")
(3.12) 3 '
3y = Y (@) = (A7),
1
cos3pa = V63, /Q3.
ii. Let us consider the following splitting of A:

(3.13) A= A'hy + A%hy + A%hy = All + A? = ¢lln + A

2
= (h; + hy + h3)qﬂ/\/§ + \/;qfi [hl cos pa + hycos (LPA -

+hjcos (goA +

3)
27r)].

The role played by the direction of n (“out” of the direction hy, hy, h3) is then
similar to that played by the Ilyushin direction associated with § and A.., which
is also “out” of the directions 1, 2, 3 of the “deviatoric” Ilyushin plane. One has

obviously

d in 0
AllLAd = 2 = (2 + (¢)? g = L = Qasin Oa
0, Qi=(¢)"+(¢")", tanba = Docosh

and consequently,
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QA = (Z(An)z) ) COSHA = (Z An) /(\/§QA),
1

1
gl = Qacoséba, q* = Qasin 4,

(3.14) ¢ = f [(A1)2 + (A2)2 + (4%)2 — 4243 — A341 - AAZ]I/2

cos3pa = V6 31} /(¢%),
3
M =Y @}, A'=A-4V3
1

The splitting (3.13) results in the purely deviatoric tensor A which is “Ilyushin
equivalent” to A because it is defined following the formulae

QA = QAa 99:14 = PA, 0.4 = 0A,
3222 = _Al + 2A2 — A3, Al A“ + \/E
L 2
3A33 = —A; — Ay + 2A3, Ay = A22 + \/;A .
(3.15)
o . 2
V6A.. = Aj + Ay + As, \/;A .

| N

_—/.11+2/212-—A3, +\/»A

Each path A :(t) in the PRF, is associated with a path in the space I3: with the
aid of the angles % and 6 the geometrical sketches are obvious. It is possible to

substitute for a direct vectorial approach Ahys & @ a tensorial pattern [ ];
(which is from now on outlined [19, 20]), following the formula

W
e
N
[N
|
W

(3.16) Ahys@A@[A@D]I@D@d@d.

It is also clear that (3.15) is useful in the anisotropic case in order to substitute
for a property such as Py, (Egs.(3.5) and (3.7)) acting on A, a property acting
on A. In the isotropic case, for example, one substitutes for the (matricial) form

Ay
Ay| = A} + A3 + A3 = A3

|A1 Az A3|‘1‘ .
3
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the form
Ay
- = = - A -2 , 2 , =2 2
A Ay Ay A|[1)| 52| = A0y + Agp + A3y + 3542
Aszs 3
A..

2
g - 2
=Z(Ann+\/—:A) =Q31=A3,
1 3

which is a similar (matricial) form. The Mises-like triclinic case, where

a fe
A1 Ay As||f bd =A%
edec A3
results in _
An
— — A
A1 Axn Az A..]lP| ;éz = A},
A..
fe 2(a—d>
2
Py

A preliminary remark is as follows: even in the isotropic case and when the limit
condition is defined in the PRF4 through A2 = A2 (respA? = A3), the shape
of the limit surface in I3 is not obvious (see (3. 11)) A short hint is obtained
through the case defined with (3.9): A = Aj;h; @ hy + A.. (23 & ..) because
the form may suggest the result (the surface in I3 is of revolution with respect to
the axis 1).

The meaningful remarks are as follows: The substitution (3.15) is permitted
regarding scalar, non-directional properties, but not in order to express the prop-
erties of material symmetry. In other words, it does not hold for the anisotropic
parts of the relations (3.4) or (3.6). Consequently, the use of (3.16) implies that
the directional properties act on the relation between d and & but not in the
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constitutive scheme [ ]; of the I3 space: this remark is relevant regarding the
classical coupling effects. It remains now to give some hints concerning the phys-
ical meaning of the fields A which are neither the AEE fields nor the usual
depolarization fields, nor the spontaneous polarization field.

3.3. One-dimensional sketch of the physical roots of the principles and methods introduced above
(Sec.3.2)

The present paragraph may be regarded as an attempt to bring nearer two
different approaches: the mechanical approach suggested by one of the authors
and the classical treatment of polarized system. The latter starts from Maxwell’s
equations and implements a multipolar analysis resulting in densities: p, P, Q... ;
M, ... of electric charge, polarization ... (as spatial averages of multipole moments)
and the series

’P:D—60E=P—diVQ+...,
M= (/u)B-H=M+..

generally taken as sufficiently relevant under the usual truncated forms:
e+ P =D, po(H + M) = B.

i. In order to modify the sketch of the mechanical approach, the first step
may be to consider not only the material itself but also an ideal, very rigid,
pianowire-like continuum, the methodological role of which is similar to that of
the vacuum: it is obviously endowed with large elastic limit (103 times that of
the actual material under consideration). The second step is to make use of the
electromagnetic convention to sketch the qualitative features of the materials:
the “actions” are taken as abscissae. The third step is to distinguish reversible
and irreversible behaviours (Fig. 13a,b).

The mechanical polarization is therefore P,,. The features of the “new” or
“unusual” mechanical sketch so obtained are as follows. Firstly the reversible
(linear or not) behaviour may be studied through P,, as well as through o(¢) or
¢(o), without introducing basic drawbacks. Obviously such convention is much
more reasonable if the initial actual compliance s(0) is taken as a reference
(1(0) instead of g, £(0) instead of ¢g). Secondly, P, is endowed with the usual
property: it is a positive polarization except in the irreversible case where it may
change the sign (P,,; and P,,3). The third point is that P, is not necessarily
a priori interesting in the hysteretic case. It may be misleading if the relevant
intensive variable is Ao, if the relevant rate is the strain rate ¢, and if the
relevant power is the internal intrinsic power: —o ¢ . The consequence is simple:
it is at least interesting to study the spontaneous polarization through: o, Afo, &
instead of P,,. Following this last approach o, is a result, of discrete memory form,
referred to the initial compliance. Obviously £, is a similar result, but referred
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F1G. 13. Mechanical constitutive properties presented with the convention of the polarized
materials theory (a) case of reversible properties (b) case of hysteretic properties.
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to a fictitious continuum, and therefore less interesting. Under the assumption
regarding the depolarizing shape effects, the fields £ and H which have been
involved are similar to o. A constitutive definition concerning o, E and H may be
expressed through o, and P,, or through A} H — g (vacuum) A} B, if it is necessary
to exhibit a display compatible with the standard presentation of polarization.

ii. It is hardly necessary to add that the approach using P, is associated with
a splitting process of the extensive variable (cf. Sec.2.1). However, it remains
necessary to give some hints regarding the compatibility with the microscopic
processes of an approach involving A, rA, &. Let us consider for example the
magnetic case. The comparison of the basic mechanical and magnetic processes
are sketched in Fig. 14a,b. The analogy is made conspicuous between the strip

a Plastic bebaviour Limit behaviour Saturation
of Thnys of hyg bebaviour
% 1 = i, + /
\ ! o T ~ ‘\ .

\

3 bl ' % )

— S 4

S v '

Pl | R S ‘. Swepl area \ 0 e ! i 1 Swept volume

’ ‘ \ N

J 51 F % ' Eoglile e ,
; ' \ A \ 3 X \
' \ \ \ | \

\ i \\
.
4 ) S A

O\pinning—/R 5

R
pinning /0 X pinning

(a) (b)

FI1G. 14. Sketch of the Neel process. Dragging along of ro (resp. rH) from the state R to the
current state at t: the process associated with the pinning at R acting as a reference for the
process at t > tg. The previous reference was O acting for t €]0,tr]: rA is piecewise constant.

free of defects and the spherical grain; the dislocation and the walls; the swept
area and the swept volume; the internal stress field o and the field #; the critical
pinning stress oo and the field Hy; the reversible displacement under o smaller
than oy and under the field H smaller than Hy; the irreversible sliding for o
and H equal to og and H, respectively. However, the magnetic process is more
sophisticated, resulting in the saturation property: when the wall is sufficiently far
from the center of the grain, a strong field is necessary to obtain a decreasing
surface of the wall, a process “almost” reversible which is associated with a very
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small increase of the swept volume: the process is the addition of a reversible
process and of a pure hysteretic process. The former needs a strong field; the
latter needs not a stronger field than previously to be (slightly) activated under
the form of (small) additional swept volume. It is now possible to justify the
fact that the polarization notion is not introduced in the first part of the paper
(Sec.2.2.2 relations (2.3) and (2.4)). The associated thermodynamics, the basic
hints of the three-dimensional enlargement and the relevance at microlevel are
involved in order to introduce some heuristic sketch similar to that given above.

3.4. Formal aspect concerning the vectorial generalization of the reversible contribution

In this paragraph the subscript rev is omitted.

3.4.1. Some hints regarding the nonlinear isotropic case

i. In spite of the fact that the general pattern (1.1) is founded on the addition
of reversible and hysteretic rates it is interesting, regarding the reversible part, to
study the elastic-like approach. If such an approach is convenient, the rate form
of the reversible contribution of the whole pattern will be obtained through a
“time” derivative. In the isothermal isotropic case some hints must be introduced
briefly regarding the nonlinear behaviours such as those of limit type or saturation
type previously introduced in the one-dimensional analysis through (2.12) and
(2.11), respectively. Finally, it is possible (although not necessary in a covariant
derivation) to make use of the components in the PRF,., (base vectors h;).

ii. The geometrical relations are:

Ny = naihia Nagi = ai/Qa’ Ny-Ny = 1,
ng = nyh;, nai = Ai/Qa, n4-ny

Il
—

In the isotropic case one must obtain

ng = ng,, £= & A’Q=QAQ01-

QA Qa ’

It remains to define the relation between @ 4 and Q.. The approach is founded
on the relation

d _ dF dQ4 da; _ .da,-
al @) = dQ, da; dt Arevi=
Q2 . 23:(0,)2 Qa _ O

&= 1 y ’ dal . QO’ ’

The linear case:
A; = pa;, Qa = pQq
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is obtained with F;, = uQ%/2, and the genealizations of (2.12) and (2.11) are

(Q(,, tanh g“ ) Q; Q4 = Qotanh —g—‘;—’a,

and 0 Q
a Q; = il
A; = (starctanh Qs) 0.’ Qa = pQsarctanh 05’

respectively. They are obtained with:

Fr = % In coh—Q—‘la, ,
ar Qo

and

Fs = uQs [arctanh%2 + —l n(Q% - Q2)|,
respectively. Potential functions similar to Fj, + Fr are also heuristic.
It may be interesting to substitute for Fs a potential G, (G for Gibbs, v for

vacuum) “dual” of Ff, + Fr, in order to substitute for the saturated behaviour

lim Q, = Qs+ <2 Qa
fo

Qa—

From

Gu(@u) = 52 + Q% Incosh ( Qa )

pQs
dG, _ Qa) , Qs
S A (uQs) LT

QadQA = de - Ol,'dA,' ’
0= d(QAQa) e QA(an) 37 (dQA)Qa = d(QAQa) b dFv - de

e R

o -G+ &

iii. It is not interesting to discuss the rate forms starting from the relation:

(Q4Q2) Ai = (Quad) (- An A1) = (QuQ¥) di - (QuA) (L an ).

One must, at first, study the nonlinear anisotropy case.

one obtains
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3.4.2. Some hints regarding the nonlinear anisotropic case

i. The constitutive problem is now much more complicated than in the isotropic
case. The aim is not to enter into a detailed physical discussion of each possible
case of spontaneous electric polarization of ferroelectrics or of magnetization of
ferromagnetics above their transition temperature. Consequently, magnetic and
electric cases are once more not distinguished.

ii. In the (well known) linear case, the number of independent coefficients
is 6, 4, 3 or 2 for the triclinic, monoclinic, orthorhombic and T-T-H (Trigonal,
Tetragonal, Hexagonal) systems, respectively. The generic potential function is

3
2 2 2 il 2
Frr(o}, 03,03, 0203, 0301, 0q02) = Y Hnn @y + 230003 + pzro30n + piponag,
1

and Arey; = pija; is obtained from

Aid; = Frr = (pog + ppog + pyzasz) ag
+(p2101 + poag + pp3az) ay + (u31ar + pxnan + p3zaz) as.

The form associated with the other systems are easily obtained. For example the
TTH case is given by the potential:

1 1
Frrrn = i’“ (01% + a%) + §;L3a§

written here with the usual convention (principal symmetry axis parallel to the
coordinate axis 3).

In the linear case it is simple and straightforward to substitute for an isotropic
form an anisotropic property s;;. The aim is now to perform the same explicit
generalization (%) starting from closed forms such as In cosh(z) or z-arctanh (z),
and excluding the use of infinite series or some trivial approximation using piece-
wise continuous functions.

iii. Let us firstly consider the case of the potential function based on the
In cosh(Q,) function. A potential function immediately suggested by the linear

case is: )
L
FTT = % In cosh (ﬂ0—> y
1o Qo

L2 = eay + epajag + 130103 + 1001 + £
+ea3apas + 310301 + 320300 + £330303 = €44,
dims,']- =1, Eij = Ejis

(?) Explicit forms of the potential function are not frequently encountered in the theory of finite elastic-

ity [24].
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= [ (35

i 0o _ @ B i o
A? = po€ijaj, Ng; = —Q-%,uofijnaj ) Qas= NO(Ejié'ikajak)l/z

one obtains

resulting in

for weak fields (uoL < Qq), and in

_ Qo Qa Qo

. 1/2
o €ji€ik QO
A I —€ijQj, ng = QA T = €ijNaj, QY = Qo (—’_“‘_)

EjkO Q)

for strong fields (oL > Qo).

Owing to the feature of the asymptotic behaviour that the pattern d Apys + dArey
must be eventually able to take into account, it is important that Q% tends toward
a bounded limit under strong field a: this condition is fulfilled.

The case of a potential function based on the function () arctanh @, + In(Q%—
Q?2) is similar. One substitutes for @, the form L. Starting from

Qs

Fst = upQsLarctanh ( Qs) 22 R0 — 1Y),

this simple approach of the saturation behaviour results in:

Qs L 0
A= [NOTarctanh @ EijQ and Aj = poecija; .

The saturation limit is defined by L? = Q%.

iv. If the implementation of truncated series or piecewise continuous approxi-
mations are avoided, the approach sketched above implies two similar drawbacks:
firstly, it is not easy to define a weak modification of the potential function in
order to improve the modelling in the transition range between weak and strong
fields; secondly, the shape of the limit surface associated with the asymptotic be-
haviour cannot be easily specified a priori or slightly modified. Such difficulties
are well known in the classical theory of finite elasticity and have been underlined
(as well as others which are more basic) in a comprehensive study of isotropic
finite thermoelasticity [24]. A differential definition in the PRF,e, may avoid these
drawbacks and is therefore revisited below (Sec.3.5.2)

3.5. Formal aspects concerning the vectorial generalization of the hysteretic contribution

In this paragraph the suffix “hys” is omitted. It is worthwhile to recall that,
in this introductory paper, polar and axial vectors are not distinguished. More-
over, in order to make conspicuous the geometrical properties of the Ilyushin
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representation, one makes use of the linear transformation (3.15), substituting
for polar vectors a special deviatoric symmetric absolute second order tensor.
Such a treatment may appear unskilful in order to deal with the vectorial case.
In fact the derivations are not more cumbersome than those obtained through a
direct treatment and, moreover, the Ilyushin representation is the only one which
is able to give unified treatment, including the mechanical case when a unified
discrete memory pattern is implemented.

3.5.1. Some hints regarding the isotropic case. Regarding the needs of experiments, the
hints given below are almost equivalent to a comprehensive study. However it is
not always possible to let the mechanical part of the pattern be restricted by the
assumption (3.9) if the aim is to perform a general numerical analysis.

i. Owing to (1.1), (3.3), (3.15) and (3.16), and under relevant provisional as-
sumptions introduced for the sake of simplicity (cf. Sec.3.2.1, iv, v, vi), it remains
to define the pattern of pure hysteresis denoted [A & D] g in (3.16).

For the sake of simplicity let us suppose that the irreversible limit behaviour

is Mises-like:
Q% = trA? = A3,

and that the mechanical process is restricted to the simple particular form (3.9)
(3.12) concerning purely deviatoric symmetric second-order tensors. If the vecto-
rial constitutive problem (A, a ) is solved in a deviatoric form following (3.15),
then the constitutive patterns regarding (6:,_5), (fl , f)), (E, D) are similar and
will be denoted by a generic single one (A4, D). Accordingly, the forms recalled
below are not new for the reader knowing all about the current state of the the-

ory [19, 20]. The generic form which is Ilyushin-equivalent to (3.3); is then, in
the PRF4:

317y DAL = i =D +0,AAY  (A=7,E,H), A=ad+aAA.
ot~ R

ii. The rate-independence of (3.17) is defined in a linear form by

a; = 24, dimpy = dim A,
asM + agN* + agP,  dimap = dim¢~!,

W= aT,Dy, W= ATLAT,Du.  PeATD..

nn

a2

The quasi-linearity of (3.17) gives then three constitutive identities:

. . d

T =t = ~d

(3.18) Do IE?‘“ =2uA< = A ﬁd ) = tg3p% ¢4,
2,7 31T, 2L,z 3Ly
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i PETRRD M P ;
(318) . e e B 2;/.,4 (_— = ) = thAHA .
M,y 2X M,; 2X
d et "
11 e & ( N P )
TReAnT T A = —Av |
MGy 2X 3G 2X
with:

Q4 = M,z = tr(AA)?, QaQa=T .o,

ad
3%

3
tr (AA°%) = S (Aa7™Y,
1

X = A%, X =24A.A7A., 6X = (AA, + Ady + AA3).

4

The scalar forms associated with (3.17) are

i§ A% = 20aM + (g M + agN* + agP)211 4,
. d

(3.19) T 45 = 204N + (s + agN” + agP)3TM% 7,
X = 2uaP + (Cmﬂ + G6Wd + ag?)zX.

|

The behaviour is quasi-reversible in the vicinity to the right of a loading-unloading
“inversion” point, for (3.17) is reduced to

. i) e
(3.20) AL =207, A = 2u,d.

iii. The generic path is split into “radial” and “neutral” infinitesimal paths
along which:

Il

o d o
® ¢a=0 2 o
(3.21) gy and 4= =0,

éA = éd =0
respectively (in-phase paths are such as: 49% = (.9; =0, pp = Oa= 0).
The radial paths are defined through

¢
2 o
A%QﬁQA(‘VA), IVA = /ﬁdsAdT,
A
R

2
Qan

(3.22) 24 = ww'(w,c,o‘i,cp‘;R, 04,6,r),
por = 0r = 0, PAA = P4, Oaa =04 if w=1,
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(3.22)

ag = ag =0,
[cont.]

as= —=—— |q | —5% ) —2ua ), a1 = q4(qy ),
o, 2
(11(1) = 07 q1 l on [Ov 1]7

where the symbol o R denotes the reference state (p) prior to the current one R
along the current branch A%,. One takes generally (cf. Eq. (3.1)):

@1 =2ua(1=2%) ¢>0 (c=2 = Prager model).

Then
as = —2u4 [ (2Qo) Q%% -

Moreover, one notices that

Ya = 99% = (PSJ-_’
A
(3.23)
0 =0==290. .
A D i
Owing to (3.15),
PAA = ¢D, faa = Op.

The infinitesimal intensive and extensive radial paths of isotropic pure hys-
teresis process have the same orientation in the relevant mechanical, electrical
and magnetic PRF, respectively.

The neutral paths are such as ¢4 = 0 and deduced by similarity from the
(Mises-like) limit irreversible behaviour. Then

Ajij = 2/t,45,‘j , 5 = O,

Qa Qa

3.24 N===
( ) 'QA ww/(wa 99i3 99‘333 0.47 0QR)

ZQA/QA + Ay o + BnO = 0.

= cte,

The two-fold identification process of PEGON [20], founded on (3.18) and (3.24),
results in the model:

ij

=
[

= ZuAEij + ﬂ45,q/_\zij, A =2u4d + ,345AAA,
(325) 54 EM+749.9(2+64éA, ‘)’4=ANﬁA/2,uA,
Ba®a = asM + agN" + agP, 64 = BNTla/2u4,
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(3.25) = Y4 2pa 1 64 2pa
ag=P4 |1+ = - — ,
[cont.] 2114 tg3¢Y sin?6 211, tgl

Y4 _2M4_ 08=_ﬁ42“_f‘ (_6‘_‘____1 )
2T t83¢% 2X \tgd  tg2htg3p%

In the isotropic Mises-like case under consideration one obtains [20]

ag = —[4

£5 . d d . .
Ay = b= [sm (‘PA'Z - cpeR) sin 6 4 sin 093] :
By = 2 [cos (cpd— - <pd ) cosfsinf,r — sinf, cosd R]
cos a AX  TeR g i
—cosa = cos (gpdAz o (sz) sin 64 sin@,r + cos 04 cosb,R ,

N = ww' =2cosa.

It is worthwhile to notice that the model can be implemented in the Coulomb-like
case: there exist actual experimental results suggesting the interest of this theo-
retical feature regarding ferromagnetic polycrystals [29].

3.5.2. The two-fold feature of the first loading process

i. It has been previously underlined that the Preisach model and the proposed
pattern was associated with basically different types of microprocesses (“en bloc”
switching and “pure hysteresis pinning”, respectively, cf. Sec. 1 iii) and Sec. 3.3 ii)).
Accordingly, there exist also several “associated” differences between the phe-
nomenological features of the two sketches. For example, the proposed pattern
is able to take into account, in three-dimensional situations, the cyclic processes
implying exactly closed cycles and exactly closed sharp-ended subloops, symmetri-
cal or not, giving in a simple and straightforward way the rate of internal intrinsic
heat at each current state of the evolution. However, the aim of the current re-
mark is in fact to warn against the trap made up of set of analogies which may
appear when one deals only with the first loading processes. For example, if one
considers only the first loading (w = 1), spiral-like process starting from the de-
magnetized unique initial neutral state, then the functional mapping between A
and o may appear as described in similar ways by the proposed pattern and by
the Mayergoyz’s vectorial model [30] which is a vectorial generalization of the
Preisach model (cf. Fig. 15). This analogy is founded on the fact that, for w =1,
the proposed differential-difference pattern is reduced to a purely differential
sketch. The trap consists in the fact that the situation of the first loading type
is either unable to reflect the foundation of the pattern, or able to restrict the
analysis in such a way that basic difficulties are avoided.

ii. On the contrary, scarcely ambiguity remains if the purely differential first-
loading form of the hysteretic pattern is implemented in order to describe a
property explicitly defined as intrinsically reversible. Let us consider, for example,
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F1G. 15. The first-loading trap: on the right — the Mayergoyz model [30]; on the left — the
discrete memory model in the corresponding “two-dimensional” mechanical case.

the case where a relevant modelling involves an asymptotic behaviour of limit
type, previously studied through the Incosh function (Sec.3.4.1 ii); Sec.3.4.2
iii)). A modelling endowed with a convenient compliance is obtained through
(3.4), (3.5), (3.15), (3.16) and (3.22), (3.25). The pattern is

. TEV . TEV . TEV — — "
A & A @[A @D]@D@d@a.
I

Input and output forms are given under explicit form by

di = (uﬁ?v/ﬂacv) dj, 3D—11 = 2(11 = d2 - d3, wo oy \/EE = dl + d2 + d3,
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. TEV o 2.2
A, = Apm+ \/;A.. (n = 1,2,3).
The constitutive kernel is (cf. (3.22), (3.25)).

« €V

D c —C AT =<2
Ba® - [2”0/(A0rer3ev )] (A,‘]'D,‘]'), Q%cv = tr(A")

in the case where the limit behaviour is isotropic and of Mises-like type. The
quasi-reversible behaviour is defined by x,; and the modelling of the transition
range may be slightly modified through c. The derivation of the forms is much
more cumbersome when the isotropic limit behaviour is Coulomb-like (Q¢ =
Qoo/(1 + ycos3pa)", n =~ 1/4, v = 1/2 for example, see [19, 20]), and when
the limit behaviour is anisotropic (see (3.24) which must be implemented under a
slightly simplified form because @ 4 is identical with Q and ¢4y, 6,r are dropped
out). The differential modelling of Ay is not only compliant but also effective

because the rate A rey is defined directly introducing only one more parameter ¢
and, for example, two more parameters concerning the definition of the PRF;y
(See Sec.3.5.4 and Eq.(3.29)): only three parameters are added to the tensorial

parameters (pf$¥; P%) ) which are necessarily involved.
]

3.5.3. Associated thermodynamics. One knows that an important consequence of the
quasi-linearity is the relation:

(3.26) Py = Q705 = Qaa-Qu

along radial paths. On the other hand, the pattern is founded on a unique discrete
memory thermodynamics which holds for the mechanical, electrical and magnetic
processes.

For each phenomenon the rates of reversible power, internal intrinsic received
heat supply, internal energy supply and order supply are such as [19, 20]:

el S R
- Qi 0 1w -1w| |
G27) £ A e A |5 2 !
Z 0 1-1/w 1/w ¢ l(m,B,H)
I (m,E,H)
where & is given by (3.25), and
—F,‘i=zijﬁij

(E @ for in-phase paths @i = o = 0 or for radial paths : ¢4 = s = 0)
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Owing to (3.26) and to the splitting of any actual path, one obtains

J = (w,)z e [Q AA T w' [’[ TQ Ay r} ; & =d/(')?,

— — o !
¢t = QIAQ’A’OM P = QIAQA’a .

Consequently the pattern is of one-dimensional type along radial paths. One
notices that the one-dimensional form of (3.28) is A Aa and that, consequently,
(3.27) gives (2.5), as required.

Regarding the electrical and magnetic hysteretic properties, of intrinsic dissi-
pation #py = &g + &y, the relations (3.27) result in the following explicit forms:

(3.28)

a) hysteretic form of Prigogine-like criterion: (9%/0Q",,.,)-(9*®'/0Q"4,.2) < 0,
18, 19];

b) Second Principle: ¢y > 0 almost everywhere;
¢) anenergetic form of the First Principle:

TeM = Qgm + PEM,
= gZ(AE-/_\D + AH.AB),

€

~

m

k<
|

~wO gy = (AE-AD + AH. AB) — (AE.AD + AH.AB),
$em = AE-AD + AH- AB = AE-D + AH-B;

d) Gibbs-like relation:

Egem = Tem + llgm,
1Tem tRED + ﬁﬂof};

e) First Principle:
Eem = Qem — Piem.
The internal intrinsic powers are:

——hys
57
1 timeca

~Pigh = E™.D + H".B.

= ths°6a

In this introductory paper the dissipative process of conduction is not introduced
(nor the Poynting equation).
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3.5.4. Some hints regarding the coupling effects. Finally, some hints can be introduced
regarding the second order effects and the coupling effects.

In order to obtain the second order effect in a fixed frame chosen for conveni-
ence, three relevant constitutive laws have to be defined regarding ¢,,, ¢. and ¢y,
under the form of differential-difference equations. A simple modelling of the
mechanical second order effect is such as [19, 32]:

AQkin 2 A_Qkin
Em — EmR = WEm1 |1 — exp —(ch tanh(wgc),
. kin

TR P S R

(3.29)

introducing two physical parameters ¢,,; and (2. (Fig. 16). In (3.29) the rotation
Qkin (0 < RKin < 7 /4) is associated with the kinematics following the form [32]

(3.30) tan 20K0 = 2(27.13)/(J2 — J? + 472)

in the special “two-dimensional” case under consideration, where 7 is the shear
and J; (i = 1,2, 3)are the stretches associated with the transformation: z! = J,Z,
22 =72 + 2123, B = J3Z8.

A€m

AQ

FIG. 16. Small correcting rotation of the Preferred Reference Frame (PRF).

Similar model of ¢, and ¢, can be studied in a first step. Concerning the
case where the reversible contribution is defined through differential equations,
one remembers that ¢, must be defined through a reversible form ((3.29) is
suggestive).

Regarding the coupling effect, the situation may be sketched as follows:

a. In this introductory paper the generalisation of the classical treatment is
not performed: for example, the features of the components dE;/0D; are not
studied in a comprehensive form in order to generalise the classical photoelastic
sketch founded on the study of the small changes of dE;/0D; as a linear function
the strain components Afe .
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b. The pattern (3.25) is basically uncoupled. However, strong coupling effects
may be introduced in the irreversible range if, for example, one substitutes for
& (resp. &) in the first equation (3.25) the total electromagnetic intrinsic dis-
sipation:

5EM = 55 + gy.

c. To the scalar, internal intrinsic strong coupling effects introduced above,
classical scalar coupling effects can be obtained through the pressure or the
temperature-dependence of the properties (both in the quasi-reversible and irre-
versible ranges). This feature of the pattern is interesting in spite of the fact that
little theoretical and experimental work has been devoted to the pressure and
stress-dependence of magnetization [31].

4. Concluding remarks

For the benefit of engineers, some hints have been given in order to derive
the hysteretic losses and the associated polarizations. However, the constitutive
study is restricted to quasi-static nonviscous situations and no hints are explicitly
given regarding the problem of forces and torques.

Regarding the boundary value problems, the proposed pattern may be imple-
mented as a rather effective ingredient regarding materials exhibiting permanent
irreversible behaviour. However a second gap must be underlined: in this in-
troductory paper there are no hints regarding conduction and concerning the
distinction between short and long range interactions.

Concerning the fundamental questions, one notices firstly that only elemen-
tary mathematical skills are required to suggest the basic forms of the current
state of the pattern. However the demagnetization problem must be studied fur-
ther. Secondly, from the continuum mechanics viewpoint, the situation may be
summarized as follows: through the notion of a dragged along material process
expressing the material discrete memory concept, one has substituted for the po-
larization the notion of “internal intrinsic proper field”, of pure hysteretic type or
of elastohysteretic type, both being associated with always irreversible properties:
however, the cumbersome derivation of the formal features of the anisotropic
pure hysteresis has not been introduced [32]. It is also worthwhile to notice that,
in order to define both the specific properties and the universal features, both
the Prefered Reference Frame and the couple: Ilyushin space — pure hysteretic
algorithm, are involved. The pattern is sensitive to the relevant microstructural
processes and is therefore both heuristic and of a rather good testability. Thirdly,
the two gaps underlined above (points i and ii) interfere with some possible
improvement of our approach. For example, it is not yet possible to take into ac-
count some microstructural results involving mechanical measurements [33]. At
the present time it may be only suggested that the classical conservation princi-
ples, the typical stationary feature of the hysteretic properties and the prominent



482 A. TouraBI, P. GUELIN AND D. FAVIER

role of short range interactions, if considered together, can be at the origin of the
fact that the discrete memory pattern is rather effective regarding the constitutive
modelling. Anyway, much more sophisticated cases are also interesting [34].
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Effect of prior quasi-static loading on the initiation
and growth of dynamic adiabatic shear bands (*)

R.C. BATRA (BLACKSBURG) and C. ADULLA (TROY)

WE STUDY the initiation and growth of adiabatic shear bands in a thin-walled steel tube deformed
first quasi-statically either in simple compression or simple tension or by a pressure applied to the
inner surface of the tube, and then by equal and opposite tangential speeds applied to the end
surfaces of the tube. The objective is to see how prior quasi-static deformations of the tube affect
the nominal shear strain at which a shear band initiates in the tube. The first set of numerical
experiments simulates the tests recently conducted by Murphy who found that the nominal strain
at the initiation of the shear bands decreased with an increase in the axial static compressive stress
induced in the tube.

1. Introduction

ADIABATICSHEAR BANDS are narrow regions, usually a few microns wide, of intense
plastic deformation that form during high strain-rate plastic deformation of most
metals. TRESCA [1] seems to be the first to observe these during the hot forging of
platinum and he termed these “hot lines”. Subsequently MAsSEY [2] also noticed
these during the hot forging process. However, the research activity in this area
appears to be influenced strongly by the work of ZENER and HoLLOMON [3] who
observed 32 pum wide shear bands during the punching of a hole in a steel plate.
They also pointed out that the intense plastic deformations of the steel heated it
up significantly, and that it became unstable when the thermal softening equalled
the hardening caused by strain and strain-rate effects. The reader is referred to
ROGERS [4], CLIFTON [5], OLSON et al. [6], and to recent issues of the Applied
Mechanics Reviews [7] and the Mechanics of Materials Journal [8] for a review
of the work in this area.

The experimental work under controlled conditions has been performed on
tubular specimens using a Kolsky bar by DUFFY et al. [9, 10] and GiovaNoLA [11].
These tests have involved the twisting of a thin tube, observing deformations of
a grid pasted on the outer surface of the tube and using infrared lamps to mea-
sure the temperature rise of a small region either included in or enclosing the
shear band. Such observations have enhanced significantly our understanding of
the mechanism of the shear band formation. Recently MURPHY [12] conducted
a series of tests in which a steel tube was loaded quasi-statically in simple com-
pression and then twisted dynamically. He found that an increase in the prior
compressive load increased the nominal strain at which a shear band initiated.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.



486 R.C. BATRA AND C. ADULLA

Here we study the dynamic twisting of a steel tube preloaded quasi-statically
either in simple compression or simple tension, or by an internal pressure. The
maximum preload applied is such as not to cause plastic deformations of the tube.
It is found that the nominal shear strain at which a shear band initiates increases
with an increase in the value of the internal pressure, and with an increase in
the tensile load applied, but decreases with an increase in the magnitude of the
compressive stress. The last result contradicts test observations of MURPHY [12].
We had to increase the thickness of the tube in order to avoid its buckling.
However, we observed that for the tube preloaded in either simple tension or
compression, the material particles underwent significant displacements in the
radial direction when the tube was twisted; these displacements were virtually zero
when there was no preload applied. This change in the radial dimensions probably
affects noticeably the nominal shear strain at which a shear band initiates.

2. Formulation of the problem

We use rectangular Cartesian coordinates and the referential description of
motion to describe the dynamic deformations of an elastic-thermoviscoplastic
body. The balance laws governing the deformations of a body are given, for exam-
ple, in TRUESDELL and NoLL [13] and are omitted here. However, in the balance
of internal energy, we assume that the deformations are locally adiabatic and that
all of the plastic working rather than 90-95% of it, as asserted by FARREN and
TAYLOR [14] and SurLnoapikusuMo and DiLLoN [15], is converted into heating.
We note that for a thermoviscoplastic body deformed in simple shear, BATRA and
KM [16] have shown that realistic values of thermal conductivity do not affect
the value of the nominal strain at which a shear band initiates. A similar result
was obtained by BATRA and PENG [17] for depleted uranium and tungsten blocks
deformed in plane strain compression. However, the post-localization response
is influenced by heat conduction.

We make the following constitutive assumptions for the material of the tube.

(21) oy = -pbi; +si5,  p=K(e/eo - 1),

i . 1
(22)  sf =2u(Di; — DY), D;j = D;j — ngklsij,
(23y 2Dy =9 ; + vy, Uf} = 0ij + 0uWij — 0juWii,
Q4) Wy = vij=vii  o0é =ech+p,  DE=0,

25) DY =Asy,  om=(A+ B(g,)") (1 + Dln (?)) (1 — v6),
0

(2.6) =0 ifeither Jy<o0, or Jy=0, and s;D¥ <0,
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otherwise, A is a solution of

1/2
(2.7) J2 = On, J2 = (ESijSij) y

) 1/2
(Gonpy) . e= [

Here o;; is the Cauchy stress tensor, p the hydrostatic pressure, é;; the Kronecker
delta, K the bulk modulus, x the shear modulus, a superimposed triangle indicates
the Jaumann derivative, D;; is the deviatoric part of the strain-rate tensor D;;,
Wi;; is the spin tensor, ¢; the heat flux per unit area, c the specific heat and ¢
equals the temperature rise. Equation (2.5); implies that the plastic strain-rate
is directed along the normal to the instantaneous yield surface J, = o,,, and
the “radius” of the yield surface depends upon the strain-hardening, strain-rate
hardening and thermal softening of the material point. The plastic strain-rate
D?; equals zero when the deformations are elastic; otherwise, its value depends
upon the state of deformation at the material point. The relation (2.5), giving the
dependence of o, upon the plastic strain, plastic strain-rate and the temperature
has been proposed by JounsoN and Cook [18]; symbols A, B, D, n and v denote
material parameters and ¢ = 1/sec.

We take the body to be initially stress-free, and at rest at uniform tempera-
ture . It is first loaded quasi-statically and then twisted dynamically. Here the
quasi-static load is simulated by applying it slowly till it reaches the desired value
and subsequently holding it steady. Boundary conditions for the three loadings
considered (with axial compression and tension counted as two separate loadings)
are:

a. Simple compression/tension of the tube (see Fig. 1 for the choice of axes)

(2.8) ép

:}:Ut/trs, O S t S trs’
:tO', t> tr37

(2.9) o33(z1,22,0,t) = —033(21,22,(,1) = {
(2.10) O'ij(:tl,zz,l‘:;, t)nj =0
on the inner and outer surfaces of the tube,

5i3jxjw<t_ts > /trd7 |t_ts| < tya,
£i3;T;W, (t - ts) > trd,

'l)](l‘l,fl'z,(), t) = {
(2.11)
vi(zy,22,¢,t) = —vi(21,22,0,0).
b. Tube pressured from inside
On the inner surface of the tube
oijn; = —pnt/t,s, 0<t <ty

2.12)
= —pny, t>ts,



488 R.C. BATRA AND C. ADULLA
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FIG. 1. Tube geometry.

and on the outer surface of the tube

aiin; = 0, t>0,

v3(21,72,0,1) = v3(21,22,4,8) =0, 0Lt <A,

(2.13) ’ i
Ensuiw <=t Sy [t gt

vi(zl,l'Z,O, t) o i3;T] s / rd | sI > Urd

5,‘3j.’lfjw, (t_ts) Z t'rd»

vi(z1,22,L,t) = —vi(z1,22,0,1).

That is, the tube is first loaded axially either in compression or tension from
zero to an axial stress of o in time ¢,,, the axial load is held constant for time
(ts — t,s) so that the elastic waves can attenuate somewhat, and then the tube
is twisted by applying equal and opposite tangential velocities at the ends of the
tube. The angular speed increases linearly from 0 to the steady value w in time
t.q; the quantity < t — ¢, > equals 0 for ¢t < t,, and equals (¢ — t,) otherwise.
Equations (2.11) imply that the ends z3 = 0 and 23 = ¢ of the tube are subjected
to equal and opposite tangential speeds. The nominal strain-rate at a point equals
2wr/ L, where r is the radial coordinate of a point and L is the initial length of
the tubular specimen. Because of the small thickness of the tube, the nominal
shear strain-rate varies only a little through the thickness of the tube. Henceforth,
2wr,,/ L is referred to as the average shear strain-rate; r,, equals the mean radius
of an end-surface of the tube. The axial stress o and the internal pressure p are
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limited to a small fraction of the yield stress of the material. Thus the preload
causes only elastic deformations of the tube. In Eqgs.(2.11) and (2.13), € is
the permutation symbol and equals 1 or —1 accordingly as ¢, j, k£ form an even
or an odd permutation of 1, 2, and 3; and equals 0 when any two indices are
equal. Even though the pressure applied to the inner surface of the tube equals a
fraction of the yield stress of the material, the state of stress at a point is biaxial
and some material points may yield.

3. Results and discussion

In order to compute numerical results, we assigned following values to various
material and geometric parameters.

o = 7860kg/m’, G = 76 GPa, 0, = 1520°C,

c=473]/kg’ C, 6y = 25°C, A =T792.2MPa,
B = 509.5 MPa, D = 0.014, n = 0.26, m = 1.03,

maximum tube thickness = 0.76 mm, inner radius of the tube = 4.75mm, L =
2.5mm,

(3.1) trs = 20 ps, ts = 50ps, tra = 20 ps.

The values of material parameters taken from RAJENDRAN'S report [18] are for
4340 steel. The thickness of the tube was assumed to vary sinusoidally:

w(z3) _ € < 2rzy )
(3.2) - —1+2 cos — 1),

where ¢ can be viewed as the defect parameter, w(z3) is the wall thickness at a
point z3 along the gage section, w4 is the maximum wall thickness, and L is the
initial length of the tube; the thickness variation given by Eq. (3.2) is depicted in
Fig. 1 for ¢ = 0.08. The thickness of the tubular specimens employed by MURPHY
[12] was also given by Eq.(3.2). However, the value of w4 in our simulations
is twice that used by Murphy, since computations with the tube employed by
Murphy indicated buckling of the tube prior to the initiation of a shear band.
Also, the tubes tested by Murphy were made of HY-100 steel but parameters
given in (3.1) are for a 4340 steel. It is because values of material parameters
for HY-100 steel for the Johnson - Cook model are not available. Also, there are
not enough test data available for HY-100 steel to determine the values of A,
B, D etc. for it. We should note that because of the nonlinearities involved, the
determination of material parameters from the test data is not unique.

The problems formulated in the previous section were solved numerically by
using the large scale explicit finite element code DYNA3D [19]. The code uses



490 R.C. BATRA AND C. ADULLA

8-noded brick elements with one-point quadrature rule to evaluate various inte-
grals. It employs hour-glass control to eliminate the spurious modes and artificial
viscosity to smear out the shocks. The time step size is computed suitably so as
to satisfy the Courant condition, thereby ensuring the stability of the computed
solution.

Even though the specimen geometry and the loading conditions are such
as to cause axisymmetric deformations of the tube, the problem is solved as
three-dimensional because of the way the boundary conditions are applied in the
code. Also antisymmetry of the velocity field about the midplane suggests that
deformations of only half of the tube should be studied. Since the code DYNA3D
employs Cartesian coordinates, the imposition of the constraint that points on the
midplane move only radially required a major modification of the code. It was
done and accordingly deformations of the entire tube were analyzed.

In order to assess the effect of the finite element mesh on the solution of the
problem, two different meshes were tried, one containing nearly four times the
number of elements as the other; these are depicted in the insert of Fig.2. It

50.0 T T T
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z | HH
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g i | - |
s Curve No. [
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g 2 09
3 08
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Average Shear Strain

FI1G. 2. Torque vs. average shear strain curves for three different values of the fraction 3
of plastic work converted into heat. The insert shows the coarse and fine meshes used.

was found that the torque required to deform the tube versus the average shear
strain curve was unaffected by the mesh used. However, the rate of drop of the
torque is considerably more for the fine mesh as compared to that for the coarse
mesh, since once a shear band initiates, the fine mesh is capable of delineating
the sharp gradients of the deformation fields better than the coarse mesh. Also,
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the axisymmetric deformations are essentially concentrated in one central row of
elements which, for the fine mesh, is of smaller size. The CPU time required to
analyze the problem with the fine mesh is nearly 4 times that required for the
coarse mesh. Thus, if the objective is to find the value of the nominal shear strain
when a shear band initiates, it is sufficient to use a coarse mesh.

In DYNAS3D artificial bulk viscosity is added to smear out the shocks. One of
its consequences can be that the initiation of a shear band is either delayed or
is totally suppressed. In applying the artificial viscosity method, the pressure in
elements being compressed is augmented by an artificial viscous term, g, before
evaluating the stress divergence. In expanding elements ¢ = 0, otherwise

(3.3) q = 00| Dk (|Q 18] Dk | + Q26),

where (), and @, are dimensionless constants which default to 1.5 and 0.06,
respectively, 7 is the cube root of the volume of the element, and ¢ is the speed
of sound in the material and equals ((K + (4/3)G)/00)'/2. For a fixed mesh, we
computed results for @, = 1.0, 1.25 and 1.5, and for each value of @, @, was
assigned values 0.02, 0.04 and 0.06. The time-history of the torque required to
deform the tube was found to be virtually identical for the nine cases signifying
that the average shear strain at which a shear band initiates is unaffected by the
value of the artificial viscosity. Results presented below are for @; = 1.5 and
Q2 = 0.06.

3.1. Effect of the fraction of plastic work converted into heat

Because the deformations have been assumed to be locally adiabatic, i.e., the
effect of heat conduction has been neglected, the temperatue rise at a material
point is directly proportional to the total plastic work done there. A lower fraction,
B, of the plastic work converted into heat will delay the rise in the temperature
of a material particle and hence, the shear band will initiate at a higher value of
the average strain. That this indeed is the case is clear from the torque versus
the average shear strain curves depicted in Fig.2 for the three cases, namely,
when 100%, 90%, or 80% of the plastic work is converted into heat. Because of
the nonlinearities in the problem, the incremental changes in the value of the
average shear strain are unequal for the same incremental changes in the value
of /3. Henceforth, we assume that all of the plastic work is converted into heat.

3.2. Effect of initial axial load

For the case when the tube is first axially loaded quasi-statically either in com-
pression or in tension and then twisted with the load curves defined by Eq. (2.11),
Figs. 3 and 4 illustrate the torque versus average shear strain curves for four dif-
ferent values of the axial load. Note that the maximum axial stress applied equals
45% of the value of the material parameters A appearing in Eq.(2.5). Because of
the prestress, the shear stress and hence the torque required to initiate yielding
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should be less than that necessary when there is no prestress applied. Results
plotted in Figs.2 and 3 confirm this. The average shear strain at which a shear
band initiates, as indicated by the drop in the torque required to deform the tube,
increases with an increase in the magnitude of the axial compressive prestress and
the reverse happens when the prestress is tensile. This trend contradicts the ex-
perimental observations of MuRrPHY [12] who reported that the average shear
strain at the instant of the initiation of a shear band decreased with an increase
in the magnitude of the axial compressive prestress. A close examination of the
deformed shape of the tube indicated significant radial displacements of points
on the central cross-section; for example, see Fig. 5. The inserts in Figs.3 and 4
depict distribution of the effective plastic strain on a radial line in the thinnest
section of the tube. It is clear that deformations of the tube along the radial line
are nonhomogeneous, with the largest effective plastic strain occurring at points
on the outermost surface of the tube. For axial prestress equal to 0.09 A4, the shear
band initiates at average shear strains of 0.48 and 0.37 for the compressive and
tensile cases; however, the distribution of the effective plastic strain along the
radial direction is essentially the same in the two cases. The severe deformations
of the central cross-section result in an increase of the cross-sectional area for
tubes prestressed in compression, and in a decrease of the cross-sectional area
for tubes preloaded in tension. This change in the cross-sectional area delays the
initiation of the shear band for the tube prestressed in compression and enhances
the initiation of the shear band in the tube prestressed in tension. We note that
the axial length of the tube decreases (increases) for the tube prestressed in com-
pression (tension). It is not clear whether Murphy’s experimental set-up allowed
for this change in the axial length of the specimen. For the case of no preload,
the tube length, the inner radius, and the outer radius remained unchanged.
We simulated a case when one end of the tube was held fixed and at the other
end the axial component of velocity was first increased linearly from zero to the
desired value in 20ps, so as to induce an axial compressive stress in the tube
by the desired amount. Subsequently, the axial component of velocity was de-
creased to zero and a tangential component of velocity was prescribed. This type
of boundary data resulted in a gradual decrease of the axial compressive stress to
zero. Analysis of the quasi-static problem involving a cylinder subjected to com-
pressive and torsional loads given in CHAKRABARTY'S book [20] suggests that this
trend is consistent with the predictions of the Prandtl- Reuss theory of plasticity.
Figure 6 depicts the evolution of the effective plastic strain on an axial line
on the outer surface of the tube obtained by using a fine mesh. It is evident
that deformations are nonhomogeneous even at an average shear strain of 0.05,
and this nonhomogeneity in the deformations increases as the tube continues to
be twisted. Eventually the deformations localize in the central element. Once it
happens, the material outside this element does not undergo any more plastic
deformations, and some parts may even unload. The width of the region of local-
ization cannot be deciphered accurately since the mesh used is not fine enough.
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FIG. 5. Sections of the deformed tubes initially prestressed in (a) compression and (b) tension.

For this reason, the computations were stopped soon after the torque required to
deform the tube began to drop. We note that in the code effective plastic strains

are computed at the centroids of the elements.
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3.3. Effect of initial internal pressure

We assume that the end surfaces are held fixed in the axial direction and an
internal pressure is applied slowly to the tubular specimen. Even when the internal
pressure applied was 71.3 MPa, the stress state at a point was such as to cause no
yielding of the material. Subsequently, with the internal pressure held steady, the
end surfaces are twisted in equal and opposite directions by applying tangential
velocity on them so as to induce an average shear strain-rate of 5000s~!. In Fig. 7
we have plotted the torque required to deform the tube versus the average shear
strain. As expected, with an increase of the internal pressure the shear stress and
hence the torque when the tube begins to deform, plastically decrease. However,
the average shear strain at which a shear band initiates increases with an increase
in the value of the internal pressure because of an increase in the inner and
outer radii of the tube. Figure 8 illustrates the distribution, on a radial line, of
the effective plastic strain at different times. Whereas initially the effective plastic
strain is a little higher at points on the outermost surface than that at points
on the innermost surface, the reverse happens after the shear band has initiated.
Also, the variation of the effective plastic strain in the radial direction is not linear
as was the case for the tube prestressed in axial tension or compression. Figure
9 depicts a longitudinal section of the tube just before the torque is applied
and also when the average strain equals 0.45. It is clear that significant radial
displacements of material points occur during the time the tube is being twisted.
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4. Conclusions

We have studied the effects of the prior axial load and internal pressure applied
quasi-statically on tubular specimens which are subsequently deformed dynami-
cally in torsion. The thickness of the tube varies sinusoidally. It is accomplished
by keeping the inner radius fixed but varying the outer radius, so as to obtain
minimum thickness at the central cross-section of the tube. The thermomechan-
ical response of the material of the tube is modeled by the Johnson-Cook law.
For a tube with no preload, the inner radius and the axial length of the tube re-
mained unchanged during its torsional deformations. However, for a preloaded
tube, these dimensions changed noticeably. The average shear strain, 7., at the
instant of the initiation of the shear band, as signified by a sudden drop in the
torque required to deform the tube, is found to increase with an increase in the
magnitude of the axial compressive stress or the internal pressure, and decrease
with an increase in the value of the tensile stress. The main reason for the differ-
ence in the response of the tube prestressed in compression and tension is due
to the deformations of the central section of the tube.
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Some remarks on domain-transition problems (*)

Z. CHEN (ALBUQUERQUE) and T.CLARK (LOS ALAMOS)

DOMAIN-TRANSITION PROBLEMS are characterized by an evolving local change of deformation mecha-
nisms from a macroscopically uniform deformation field. Localization and turbulence are two of the
examples of current interest. One of the important features associated with the domain-transition
is the formation and propagation of a material boundary between two sub-domains of differ-
ent deformation mechanisms. Since various approaches have been proposed to model specific
domain-transition phenomena in specific fields of continuum mechanics without mutual communi-
cations, an attempt is made here, based on the moving jump forms of conservation laws, to explore
the common feature behind these different approaches. With an emphasis on localized creep dam-
age, the possibility of simplifying existing modeling procedures is investigated, which might yield a
unified simple approach to analyze different domain-transition problems.

1. Introduction

INTERDISCIPLINARY RESEARCH provides a mutual benefit in the evolution of modern
science and technology. Different physical phenomena often resemble each other
in certain forms. Better results may be achieved with less efforts if researchers
in diverse fields communicate with each other. To facilitate interdisciplinary re-
search, domain-transition problems in continuum mechanics are considerd here
due to their importance in environmental- and manufacturing-related applica-
tions.

Domain-transition problems are characterized by an evolving local change of
deformation mechanisms from a macroscopically uniform deformation field. Lo-
calization and turbulence are the examples of current interest in solid mechanics
and fluid mechanics, respectively. The similarity in modeling these two physical
phenomena has been briefly discussed by CHEN and CLARK [1]. For localization
problems, there exists a change in the type of governing equations correspond-
ing to a local change in deformation mechanisms, if local constitutive models are
used. For turbulence modeling, the Reynolds stress tensor has non-zero elements,
in particular, a non-zero trace, inside the turbulent region, while the trace of the
Reynolds stress tensor is taken to be zero outside the turbulent region. One of
the important features associated with the domain-transition is the formation and
propagation of a material boundary between two sub-domains of different ma-
terial properties. Across the moving material boundary, there might exist some
jumps in field variables such as mass density, stress, strain, velocity or inter-
nal state variables. The information from one sub-domain can be transferred to

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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another one via a certain type of continuity conditions. Since every physical phe-
nomenon must follow the conservation laws, the moving jump forms of conserva-
tion laws are employed here to explore the common feature of domain-transition
problems. With an emphasis on localized creep damage, the possibility of simpli-
fying existing modeling procedures is investigated. As a result, a unified simple
approach might be available to analyze different domain-transition problems.

An outline of the remainder of this paper is as follows. Section 2 reviews some
basic concepts, and modeling issues in localization and turbulence. Based on the
moving jump forms of conservation laws, both a deterministic and a stochastic
way are taken in Sec.3 to show how the evolution of localized creep damage can
be predicted in a proposed simple manner. Finally, some concluding remarks are
given in Sec. 4.

2. Background

Since a significant amount of energy dissipation is associated with the evolu-
tion of localization, much research has been conducted in experimental, theoret-
ical and computational aspects of localization problems, as reviewed recently by
CHEN and SCHREYER [2]. Although various promising analytical and numerical
approaches exist in the current literature, there are still some pressing limitations
that prohibit the successful prediction of localization phenomena in a general
case. Among the continuum models proposed, for instance, the experimental
means to identify model parameters and the physics behind boundary conditions
is not sufficient for a higher-order models; Mode-I failures can not be properly
regularized by the Cosserat approach; and the slow loading rates as in the cases
of creep and relaxation can not be well-specified by rate-dependent local models.
And also, the transition between different failure modes is not well-known.

In fact, the key component of various modeling approaches for localization is
nothing but controlling the evolution of inhomogenous interactions among mate-
rial particles. In a macro-mechanical sense, however, the evolution process might
be equally well characterized by the formation and propagation of a material
surface discontinuity associated with a local change in terms of material proper-
ties. Based on the essential feature of localization phenomena observed, hence, a
partitioned-modeling approach has been proposed with the introduction of mov-
ing boundaries [3]. The basic ideas of the approach are that different local consti-
tutive models are used inside and outside the localized deformation zone with a
moving material boundary being defined between two sub-domains, and that the
constitutive law governing the moving boundary depends on localization mecha-
nisms. As a result, simplified governing differential equations can be formulated
in the partitioned domains for given boundary and initial conditions. To estab-
lish a sound mathemathical foundation for the partitioned-modeling approach,
an attempt has been made to investigate the use of moving jump conditions in



SOME REMARKS ON DOMAIN-TRANSITION PROBLEMS 501

defining the moving boundary [4]. By taking the initial point of localization as
that point where the type of the governing equations changes, i.e., a hyperbolic
to an elliptic type for dynamic problems and elliptic to another elliptic type for
static problems, a moving material boundary between localized and non-localized
deformation zones can be defined through the moving jump forms of conserva-
tion laws across the boundary. Jumps in density, velocity, strain and stress can be
accommodated on this moving surface of discontinuity between two sub-domains
of different deformation mechanisms. Thus, localization problems might be con-
sidered in the same category as shock and solidification phenomena. Analytical
solutions for one-dimensional rate-independent problems have been obtained to
illustrate the proposed procedure [4]. However, analytical solutions might not be
available in general, and instead, a simple approach must be developed to ac-
commodate different constitutive models. To this end, the moving jump forms of
conservation laws in mass density and linear momentum are reviewed next with
an emphasis on their implication to different failure modes. For convenience but
with no loss of generality, it is assumed that no energy sources or sinks occur
in the purely mechanical problems so that the conservation in mass and linear
momentum implies that in energy.
Moving Boundary

F1G. 1. Continuum body with discontinuous failure.

Consider a continuum body V subjected to essential and natural boundary
conditions $¢ and S™, as shown in Fig. 1. With bold-faced letters denoting tensors
of first or higher orders, a direct notation is employed to describe equations. In
a three-dimensional framework, the spatial forms of conservation in mass and
linear momentum can be written as

(2.1) o+ 0o(Vv)=0
and

(2.2) pa—V.o =0,
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respectively. In Eqgs. (2.1) and (2.2), ¢ denotes the mass density, V gradient oper-
ator, v particle velocity vector, a particle acceleration vector, and o Cauchy stress
tensor, with body forces omitted. If there exist jumps in certain field variables
across a boundary moving with a velocity v, in the space, the jump conditions
corresponding to (2.1) and (2.2) take the forms of

(2.3) 01(V1 — Vp)'n = (V2 — v)-n
and
(2.4) 01[(vi — vo)-n] vy — 02[(v2 — V)-n]v2 = (01 — G2)-n,

in which the subscripts 1 and 2 denote field variables on the two sides of the
moving boundary, and n the unit normal to the boundary.

Introduce a local coordinate system with coordinate z% parallel to n. For the
purpose of simplicity, consider the jumps in the z}z-plane with the unit vector
t being along the z}-axis, as depicted in Fig.2. The normal speed of the moving

X5, N

A

aU,=V,at Moving Boundary

b=(V,-n)at

FIG. 2. A local coordinate system.

boundary, v,-n, represents the trend of expansion, and the tangential speed, vj-t,
the trend of shearing. As a result, the trace of the moving boundary reflects the
effect of different failure modes, as illustrated later. Suppose that the origin of
the coordinate system is the point from which localization evolves, and that the
half-band width, b, of side 1 increases as manifested by the outward movement
of the boundary. To identify different failure modes, let us first write down the
following conventional definitions:

Diffuse Failure = vi=v, and €= €y

Localized Failure == vy =v, and € # €9

Discrete Failure = vi #v,  and €1 # €9,
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with € and €, being the total strain rates on the side 1 and 2, respectively. As
can be seen, the transition between continuous and discontinuous failure modes
is characterized by the condition of localized failure.

The mechanisms involved in different failure modes can be made clear by
invoking the moving jump form of conservation laws. The substitution of the
condition for diffuse failure into Eqs.(2.3) and (2.4) results in no jumps in any
field variables across the moving boundary. In other words, the moving boundary
is meaningless. However, the case for localized failure is not simple. A careful
reasoning must be performed. Since the condition of v; = v, still holds for
localized failure, the result similar to the case of diffuse failure, except for € ; #
€ 2, follows if there is no jump in mass density. However, the occurrence of a
jump in mass density would yield

(2.5) Vil = V-0 = VN

based on Eq.(2.3). The substitution of Eq.(2.5) into Eq.(2.4) would then result
in the continuity of the traction across the moving boundary, i.e.,

(2.6) (01— 03)n=0

for €; # €,. Because there is a jump in the strain rate for localized failure, it
makes sense to claim that a corresponding jump must exist in mass density. Thus,
Eqgs.(2.5) and (2.6) together with a jump in mass density represent the essential
feature of localized failure.

To examine how the jump in the strain rate is derivable from Eq. (2.6), assume
the stress tensor in side 1 is related to that in side 2 by

(2.7) O =0+ T €}

in which T, denotes a fourth-order tangent stiffness tensor with minor symmetries,

and élf the jump in the strain rate field. For rate-dependent problems such
as creep and relaxation, a tangent tensor can be derived if it is assumed that
the total strain rate is equal to the inelastic strain rate whenever the inelastic
state is activated during the loading process. According to Maxwell’s compatibility

conditions, the jump €, must be a rank-one tensor of the form
1

(28) €1 = 2

(m®n+n® m).

To be consistent with the definition of localized failure, the vector m in Eq. (2.8)
is taken to be v; that is equal to v, according to Eq.(2.5). Thus, it follows that

. k vi-n . . k vyt ;
n-€;-n= —lb—~ represents Mode I failure, and n-e .t = % Mode II failure.
During a time increment At, the total displacement at the material point of
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concern is given by Au; = vy At, as shown in Fig. 2. The use of Egs. (2.6)-(2.8)
then yields the classical necessary condition for a discontinuous bifurcation:

(2.9) Qm =0

with Q = n.T;-n being the acoustic tensor. In other words, the arguments based
on the moving jump forms of conservation laws produce the same condition
(2.9) as derived from classical approaches based on certain assumptions. An
eigen-analysis can be performed to find out the orientation of the localized failure
mode. However, the magnitude of failure is undetermined by Eq. (2.9). A suitable
procedure must be developed to predict the evolution of the localized failure, for
which the research in turbulence modeling [5, 6] might provide a heuristic hint.

As can be found from the comparison of nonlocal investigations in solids and
fluids [1], the initiation and subsequent evolution of a turbulent zone from a lam-
inar flow field resembles the localization phenomenon, based on the viewpoint of
interactions among material particles. Historically, two different kinds of model-
ing procedures have been followed in the fluid mechanics and solid mechanics
fields, respectively. Usually, a single model, the Reynolds-averaged Navier - Stokes
equations with non-zero Reynolds stresses, is used to predict the evolution of tur-
bulent region only, while in solid mechanics a single enhanced constitutive model
is invoked to handle both localized and nonlocalized deformation fields. As a
result, two different sets of governing equations hold inside and outside the tur-
bulent region, whereas a single set of enhanced governing equations strives to be
well-posed in a continuum domain containing localized deformations. However,
the small size of the localization zone and limitations of existing experimental
techniques might not justify the expense of a detailed modeling of localization.

Recent work by SitMo and OLIveR [7] illustrates that strain softening models
must lead to the appearance of strong discontinuities (discrete failure modes), and
the discontinuous solutions for rate-independent softening solids can be obtained
based on the kinematics of strong discontinuities. In the next section, two methods
are employed to illustrate a simple approach for predicting localized failure modes
(weak discontinuities) based on the moving jump forms of conservation laws and
on analogies to turbulence modeling.

3. Proposed approach

The basic idea of the proposed approach is that the essential feature of lo-
calization might be predicted without a detailed modeling effort as long as the
equation governing the moving boundary is determined between two sub-domains
of different mechanisms.

To illustrate the approach, a one-dimensional creep problem is considered,
through which the applicability of the solution procedure to a general case can
be made clear. For a bar of length L, which is fixed at one end and loaded at
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other end by a constant tensile force f, the transition between the secondary and
tertiary stages of creep is often characterized by the formation and evolution of
localized creep damage [8].

To predict the essential feature of creep damage, it is assumed in the first
method that a moving material boundary is initiated and two local rate-dependent
models hold to the left and right of the boundary, if a critical state is reached.
Inside the damage zone, i.e., in zone 1, the total strain rate is given by

(31) 6tl = fl(sl’Ta ¢7 99)7

and outside the damage zone, i.e., in zone 2, the total strain rate takes the form
of

(32) 52 = f2(32,T, 1»[))a

with T' being the absolute temperature, and ¢ and ¢ denoting the measure of
plasticity and damage, respectively. The plasticity and damage evolution equations
can be formulated based on the work by CHAN et al. [9] which assumes a uniform
damage across a material sample. The true stress s reflects the damage effect.
Because the damage term is active only inside the damage zone, the true stress
s1 will accelerate ¢4, while ¢, is only due to the dislocation flow. As a result, the
evolution of localized creep damage can be predicted whithout invoking enhanced
constitutive models, as long as the moving boundary is determined. It should be
pointed out that conventional rate-dependent models do not introduce a length
scale into creep problems, and hence, do not yield mesh-independent solutions.

With 50 denoting the length of initial imperfection, and with the strain inside
the damage zone, ¢, being known at the critical state, the moving boundary can
be determined based on the results in Sec. 2. Assuming that the fixed end initiates
damage and the strain inside the damage zone is constant, the solution procedure
for given total strain increments Ac™ is summarized as below with the superscript
n denoting the loading step:

Step 1. el = e{“l + Act.
Step 2. uf = epbnl,
Step 3. b™ = b" ! + .

By using the condition of localized failure, the deformation response outside
the damage zone can be easily calculated at any time because the condition of
u; = uz = up holds and ¢, is known. As can be seen from the above analysis,
the moving material boundary can be derived from the moving jump forms of
conservation laws as long as the constitutive models in both sides of the bound-
ary are known. An alternative method will then be a direct formulation of the
equation governing the boundary. As long as the boundary is known, simple local
models can also be derived according to the jump conditions.
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Based on turbulence modeling, a stochastic method is used here to derive the
equation governing the moving boundary. According to the recent studies on the
failure wave [10], it is assumed that the evolution of creep damage ¢ is of wave
type. For Mode I damage along the normal to the boundary after a critical state
is reached, the “exact” evolution equation is then defined to be

%y

3} 0z,0z,

32
& A(‘P)(()—tf

with the subscript n emphasizing the normal component of localized damage.
Equation (3.3) is hyperbolic through the whole damage process. Although a creep
damage wave has not been conclusively demonstrated, the propagation of a de-
layed front of cracking following the initial elastic compression wave has been
observed in some dynamic experiments, which might be due to the sudden re-
lease of the large strain energy stored behind the large-amplitude elastic wave
[10]. Further study is required to understand how a critical energy state can drive
a damage wave.

We introduce the average over ensembles of samples of the damage, and de-
compose the variables into a mean part, denoted by an overbar, and a fluctuating
part with zero mean, denoted by a prime, as follows:

(3.4) p=p+¢
and
(3-5) A(p) = A(p) + [A()]-

For convenience, we will assume a simple linear relation for A(y), namely,

(3.6) A(p) = o+ (7 + ¢')

with a¢ and «; being material parameters. For an elasto-damage process, ag
corresponds to the inverse of the square of elastic wave speed. Substituting (3.4)
and (3.6) into (3.3) yields

(@ + ¢') m 04@ + ¢)
. —r Tl ={ag+a(z+ —r Y
Averaging Eq. (3.7) over ensembles and exploiting the zero-mean property of the
fluctuating quantities give

P _, 0% 020!
(38) 0z,0z, T {00+0199}“07+01‘P FYO
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Equation (3.8) is “exact” for $, but involves the unknown correlation, ¢'¢/;,.
Subtracting (3.8) from (3.7) results in an evolution equation for the fluctuations,
ie.,

o N 0% 0% 92y
(3.9 Gz 0r. (ap + 01199)3{2— MUy B R Uy el vl €

Multiplying (3.9) by ¢’ gives

0% 0%y’ 0%z
/ — —\, A/ 1.
(3.10) @ Y (g + 1P)p iz +a1p'p 2

8299' 3299/
+al‘PI {99,—5?2—- - (10, o912 )

and averaging over ensembles of Eq. (3.10) then yields

0%y’ 0%y — 7 0%y’
: ' = (ag + ' T —L 4 oyl —
(3.11) @ 9z oz, (ap + 1P)p 52 + a1’ oz t vV 55

Equation (3.11) relates the unknown statistical quantity, ¢/¢’, , to other statistical
quantities, known and unknown.

At this point, the unknown correlations appearing in (3.11) will be modeled in
terms of the “known” (i.e., to be computed) quantities by choosing the simplest
dimensionally correct terms. First, we recast the derivatives as conservative terms
to whatever degree is possible, as follows:

) 82(,9' =1 82%9/99/ B 0@/ a(p/
L4 0z,0z, 2 0z,0z, Oz,0z,

(3.12)

Note that ¢’ ¢’  is non-negative definite, and is, in some sense, a measure of the
steepness of gradients of the damage. A simple model for this term may be

899/ 399/ 99199,
(S.15) 0z, 0z, - 2
where ¢ is a characteristic length scale for the damage. If the rate of growth of

the length scale is proportional to the rate of change of the fluctuating damage,
it follows that

¢’ 0’ Py
(3.14) 9o, 9o €0
and

o |ogg
(315) E = C(OZ T )
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where ¢y and ¢y are dimensionless constants. We follow an analogous route for
the time derivative. With the assumption that the rate of change of the fluctuating
damage parameter is proportional to the rate of change of the average damage,
we get

i)  pOP LPPF WV LI e
s 2 G ot ot 2 ot? ot ot

Again, ¢; is dimensionless constant. The last correlation on the right-hand side of
(3.11) is third-order in the fluctuation, and is assumed to be zero. We recognize
that the assumptions used here might appear unjustified, but we seek to merely
demonstrate a possible approach to closure of the equations. Letting § = ¢/’
for convenience, the resulting system of equations, for the three quantities to be
computed, is

1 9% b _[10% 07\ ? 0%p
(3.17) 3 —Oxnaccn - COE_Z = (a9 + 1) {5 i c (E) + QIHW ;

&Fg _0%p 102 0%\ 2
i Ty = ot @ gE tenizga -a(F) |
and
ot 06
(3.19) =7 = cal EI

The above set of equations is closed, and thus, in principle, solvable. After rear-
ranging the terms, we have

1 1 0% 0
F(0,5,3,) = 1. 9% .9
0,7, 20) {a%O — (ap + ala)z} {al (2 0z, 0z, COﬁ)

Lo P
_(ao + al(p)awnazn} .

G(b,w,P,z,) = 2c1w?

2 (1 0% 6 0%
i {(ao e aifo}{(a" el (E dandz, C"ﬁ) - zaloaxnazn} ’

and a first-order system of equations in ¢ as below:

0% _

(3.20) 55 =@
ow

(3.21) W = F(aaav Z‘n),
00

(3.22) a = 0,

(3.23) 80 = G(vavaszn)?

ot
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and

ot
(3.24) o = o

a
ot|’

which can be solved via standard numerical schemes.

To illustrate the features of the model, Egs. (3.20) - (3.24) are solved by using
a fourth-order accurate Runge - Kutta- Fehlberg algorithm for the time advance-
ment, and second-order finite-difference approximations for the spatial deriva-
tives. The following values are chosen for the model parameters:

ag = 1.0, a; = 1.0, co = 0.5, ¢ = 0.1, cpo = 0.5.
The initial conditions are assumed to be Gaussian as follows:

P(z,t) = 0.1,

f(z,t) = 0.05 exp{— [10 (z - %)]2}
{(z,t) = 1073+ 10" exp {— [10 (1: - %)r} .

The numerical grid spacing is A, = 0.01, and the error criterion for the time
advancement scheme is ¢ = 10~7. It should be noted that a parametric study has
not been performed for the model parameters. The calculations presented here
are for illustrative purposes only.

Figure 3 shows the evolution of the average damage parameter. Note that
the average damage appears to be evolving at an increasingly rapid rate, and
is quite localized, showing very little spreading, or smearing. This sharp change
of the function appears to cause some degree of oscillation in the numerical
solution. This oscillation also appears in Fig. 4, which shows the evolution of the
fluctuating damage self-correlation. We have not determined to what degree these
oscillations are due to the numerical algorithm. It is important to know that ¢/’
should, by definition, never be negative. The model presented above, however,
does not impose this condition. As can be observed from the figures, the damage
wave front identifies the moving boundary, and the average damage measure
reflects the overall damage effect on the creep bar. And also, it is interesting to see
that the fluctuating damage self-correlation decreases in time as the fluctuations
serve to drive the average damage. This indicates that the various fluctuations
in the damage zone tend to coalesce in some sense to form an average damage
(a macrocrack), and that this coalesced damage shows less statistical variation as
time progresses. Hence, the coalesced damage seems to be characteristic of this
type of models.

and
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FIG. 4. Evolution of the fluctuating damage self-correlation.

As shown by de BoRrsT ef al. [11], a local stochastic model without an evolving
internal structure can not predict the evolution of localization. The stochastic
model presented here provides an alternative for localization problems, without
invoking nonlocal terms. Because an evolving structure for the internal damage
variable is constructed only inside the damage zone, the material boundary be-
tween damaged and undamaged zones can be easily determined. With the use of
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moving jump forms of conservation laws, the overall response of localized creep
damage can then be found.

4. Conclusion

As characterized by an evolving local change of deformation mechanisms from
a macroscopically uniform deformation field, the common feature of domain-tran-
sition problems has been explored based on the moving jump forms of conserva-
tion laws. Without considering too much detail within a small zone, the evolution
process might be predicted by a simple approach, i.e., the use of a moving mate-
rial boundary between two sub-domains of different material properties. Future
research is required to verify and improve the adequacy of the proposed simple
constitutive models.
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Fatigue damage modelling of elastic-plastic materials (*)

J. JACKIEWICZ (BYDGOSZCZ) and W.OSTACHOWICZ (GDANSK)

IN THIS PAPER a simple damage model is proposed to take into account the nature of fatigue
damage processes in certain materials. The model can be used to determine the effect of material
deterioration during high-strain low cycling. The definition of the damage state is related to an
irrecoverable plastic conversion rate of the volume element. Furthermore, this volume element
is representative in the sense of the mechanics of continuous media. Emphasis is focused on the
unified constitutive equation, which is expected to provide the applicability to evaluate the damage
growth of the process zone in the widespread plastic zone. The special form of the constitutive
damage evolution equation has been checked by the experimental results.

1. Introduction

FATIGUE is a damaging process, which occurs when stresses vary between maxi-
mum and minimum values due to periodic cycles. The process of fatigue damage
of metals (see [9]) consists of:

e formation of intrusions or initiation of micro-cracks in active slip bands in
favourably oriented grains, because of irreversible dislocation glide process,

e crack growth along slip bands, which form angles of about 45° with the
maximum tensile stress direction (stage I),

e crack growth normal to the direction of maximum tensile stress (stage II).

In the high cycle fatigue case, because of the small amplitudes of the plas-
tic strains, the formation of intrusions occurs only on slip planes of adequately
oriented grains, and distributes sparsely in the material. Thus, a major part of
the fatigue life is spent in the formation of these intrusions. On the other hand,
low cycle fatigue is considered when the plastic strain is high enough to be mea-
sured. In low cycle fatigue, numerous active slip bands appear in many grains,
and a large number of distributed micro-cracks develop in the material. Here,
most of the fatigue life is occupied by the crack growth of stage 1. Therefore,
low cycle fatigue in metals must be considered separately from high cycle fatigue
when the irreversible strains are only micro-plastic. Micro-plastic strains are not
measurable and difficult to calculate.

The problem of crack initiation is quite complicated since it involves the crack
nucleation at the micro-scale level. It is difficult to describe the small and short
cracks growth in detail. Despite these complexities, fatigue damage assessments
must be made for structures and components. The objective of this work is to
further develop a mathematical model for the prediction of the fatigue life satis-
fying two conflicting requirements: simplicity and accuracy. Owing to the inherent

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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complexity of the problem, resulting from the random distribution of interacting
defects, analytical expressions of the fatigue damage process may be described by
global criteria only under some restrictive conditions emphasizing modest levels
of defect concentrations.

2. Modelling of cyclic deformations and calculations of plastic strain energy

Fatigue damage is a process always associated with deformation and which
also involves dissipation. The general constitutive equations describing the com-
plete material behaviour are obtained by appropriate couplings of the damage
evolution law with the evolution laws for the other internal variables and the
elastic-plastic stress-strain laws. Cyclic deformations have important significance
as a precursor to fracture. Because of their widespread significance, there was a
considerable interest in the modelling of deformations. Complete understanding
of the deformational behaviour of a particular material would require detailed
knowledge of the atomic structure of that material. Therefore, the deformational
properties are described by constitutive equations, which are derived from mi-
cromechanical and statistical considerations. In general, constitutive equations
relate to the material modelled as a continuum, i.e. a material without atomic
structure. The deformation is described by a field variable, the strain. Modelling
of cyclic deformation under simple proportional loading can be accomplished
with existing deformation models by replacing the axial strain with the equiva-
lent strain. Extension to non-proportional loading is more difficult. Much of the
early work in low cycle fatigue centred on the study of the transient behaviour
of cyclic hardening and softening. In non-proportional loading, a path-dependent
hardening often occurs and must be incorporated into the models for cyclic stress
and strain. The ORNL model proposed by EISENBERG [4] and the INTERATOM
model originally proposed by BRUHNS [2] belong to this type of constitutive re-
lations, and this kind of models, which are considered to be the most promising
constitutive laws.

The irrecoverable plastic strain energy is dissipated during a high-strain low
cycle fatigue test when primary and subsequent prestrain fields are formed. Hence,
the plastic strain energy per cycle is the area of the hysteresis loop and the to-
tal dissipated energy is the sum of the areas of these loops. In some cases the
hysteresis loops stabilize after a few cycles and thus the strain energy per cycle
may be assumed to be constant during the fatigue life. The uniaxial relation be-
tween the stress range Ao and the strain range Ae¢ may be derived from the
Ramberg - Osgood strain hardening law and from Masing’s rule (symmetry with
a ratio of 2 between tension and compression curves).

Fatigue lives of specimens are determined from constant amplitude tests. Real
structures seldom experience constant amplitude loading. Therefore, some type of
cycle counting schemes must be employed to reduce a complex irregular loading
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history to a series of constant amplitude events. The most accurate fatigue life
estimates are obtained using an analysis based on the strain at the most highly
strained/stressed location. The rain flow method (see [3]) is usually used to define
cycles as closed stress-strain hysteresis loops for damage analysis. Moreover, the
rain flow method is treated as a special, uniaxial form of a hardening rule for
elastic-plastic solids based on yield and memory surfaces.

3. Formulation of the cumulative damage model

The simplified physical model for ductile porous materials (aggregates of voids
and a ductile matrix) has been employed, with the matrix material obeying the
Huber -von Mises yield criterion. In predominantly ductile materials, material
damage (see [1, 10]) is characterized by the development of distributed micro-
scopic cavities (more generally by the microscopic internal structural changes)
leading to the deteriorations of their mechanical properties. From a physical
point of view, damage develops because of the initiation, growth and the coa-
lescence of micro-cracks or micro-cavities. The initiation of these micro-defects
occurs through a decohesion process at the interface between the defects (such
as inclusions) and the matrix. During that process, in the plastic zones the in-
compressibility condition (i.e. ¢, = 0) is in force but not in the highly localized
process zone. When voids are present in ductile materials, the hydrostatic com-
ponent of stress can cause macroscopic dilatation and influence the plastic yield.
Because the material surrounding the voids is idealized as incompressible, the
dilatation is completely caused by void growth.

The evolution of the void volume fraction (the material damage) results from
the growth of existing voids and nucleation of new voids

(3'1) D =D nucleation Dgrowth *
In general, the damage state (see [8]) takes on the form

AdV*p
AW’

where [ denotes the coefficient of the energy dissipation in the material, AdV*?
and AW*? are the volume of the damage zone in the widespread plastic zone
and the plastic strain energy dissipated in the damage zone, respectively. This
follows from the equivalence of plastic work dissipated in the continuum and in
the matrix material

(.2) D =4

33 oijde?. = (1 = D*) [ o, deP for D* = const.
J 1)

A volume element damaged may be geometrically modelled by a cube with
defects inside it. The damage is very localized which is not always compatible with
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continuum mechanics for which the damage is uniformly distributed in a volume
element of a finite size. On the other hand, the constitutive damage evolution
equations must characterize the behaviour of the volume element, which is rep-
resentative in the sense of the mechanics of continuous media. The constitutive
equations at the macro-scale may be derived from:

o the constitutive equations of the material matrix and the geometry of defects
using a structural calculation at the micro-scale, and

e the homogenization technique using some mean values of the variables at
the micro-scales.

The homogenization technique (see [10, 12]) is used to find the strain proper-
ties of the volume element or to derive the constitutive equations for the damage
evolution. This technique refers to a method by which it is possible and reason-
able to substitute for a heterogeneous medium (at a microscopic level) a ho-
mogeneous continuum model (at the macroscopic level). It is essential to define
a volume element that is small enough to allow to distinguish the microscopic
heterogeneities, which are large enough to represent the overall behaviour of
the heterogeneous medium. Such a volume element V' is called the representa-
tive volume element. Most of the macroscopic quantities are the averages over
the representative volume element of the microscopic quantities. More precisely,
the macroscopic quantity f is associated with the microscopic quantity f and
defined by

(3.4) 7=,
where

1
(3.5) (= v/ f(y)dy

and y refers to the microscopic set of coordinates (local coordinates in the rep-
resentative volume element V).

Within the general framework of the thermodynamics of irreversible processes,
the definition of the damage state is related to an irrecoverable plastic conversion
rate of the representative volume. It is assumed that damage is accumulated
during a given duty cycle. Therefore, the damage state D}, (see [7, 8]) after n
reversals can be given as

n Ad‘/’*p

; » =N\ D* = =i
(3 6) Dn Z:l 1 ﬂ AW’;p ’

1=1

where AdV;"? and AW.” are caused by the i-th load reversal.
The macroscopic measurable size of the fatigue defect is supposed to be
present if the damage summation expressed in Eq. (3.6) approaches one, i.e.

(3.7) > D=1
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In the damage rule (3.6), the macroscopic effects of the microscopic defects are
assumed to be isotropic, so that the damage variable D* is a scalar, which takes
values within the range zero (for the virgin material) to one (corresponding to the
complete failure of the elementary volume element). Moreover, the irreversible
microscopic deteriorations of the material can be described by a variable D* just
as the movements of dislocations are represented by the plastic strain tensor.

The following assumptions were made for calculations of the damage zone
growth:

e limitation to isothermal and quasi-static processes;
e limitation to a small coupling between micro-plasticity and elasticity;

e during any increment of stress the changes of the strain tensor de can be
decomposed into a sum of the elastic component de¢ and plastic component de?,
thus

(3.8) de = de® + de?;

o the nucleation of micro-voids occurs by a decohesion process of the ductile
matrix material from the rigid inclusions and carbides (it may be controlled by
the accumulated plastic strain in the matrix material);

¢ in the nucleation case, during a given loading cycle the relative volume incre-
ment of the damage zone (see [8]) in the widespread plastic zone is proportional
to the change of the third invariant of the plastic strain increment, i.e.

AdV=p
av

(3.9) = (I3(Aef;) = (A Ah Al

where ( is constant;
o fatigue failure depends upon the mean stress o,,;

e because the cavities on the grain boundary facets can coalesce to form open
micro-cracks, the elasticity modulus has two different values in cyclic tension and
compression loads close to fracture.

The phenomena of the distinguishable differences of the damage behaviour
in tension and compression are associated with crack closure. This means that
the effective stress must be a different function of the variable D* in tension and
compression loads close to fracture.

Notice that the plastic strain energy dissipated per unit volume during a given
loading reversal is determined directly by the following equation

AW
(3.10) o / aij(er;) det;

where o;; is the stress tensor.
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By substituting from Egs. (3.9) and (3.10) into Eq.(3.6), the fatigue damage
increment of the Masing behaviour material can be expressed as follows

{1+ n’)Aa?/",_l
(2[{/)2/71' 2

(3.11) Dr = 45¢

where n’ denotes the cyclic strain hardening coefficient and K’ represents the
cyclic strength coefficient of the Ramberg - Osgood relationship. Equation (3.11)
defines the fatigue damage increment caused by the -i-th load reversal corre-
sponding to the stress range Aog;. On the ground of Eq.(3.11), the relationship
between the cyclic stress range Ao; and the number of cycles to failure, Ny;, for
uniaxial symmetrical loading (i.e. 0,,,; = 0) may be established. Thus at the end,
the number of constant amplitude reversals to failure, 2Ny;, is given by

~1\2/n'
(3.12) 2Npi = 1,. = . T
DY 4pc1 + n)Ac™

4. Comparison with experimental results

The special form (3.12) of the damage rule (3.6) has been checked by the
experimental results. A set of fatigue properties has been proposed by Morrow,
which describes the empirical relationships found between stress, strain and fa-
tigue life. The Morrow relationships may be expressed mathematically as

Ao
= = op@Ny),
AegP "
4.1) — = 5}(2Nf) ,
Ae _ Ae® | AeP 0y Bl
28 _ 85 L 25 LDl aNgt 4 2N
3 > > AGMUREY L

where o’ /E and ¢/ are the strain amplitudes corresponding to the elastic and
plastic intercept for one cycle, respectively. The coefficients ¢, o, and the expo-
nents b, ¢ were fitted by the method of least squares. The coefficients describing
the fatigue properties of the examined materials are taken from references [5, 6,
11] and summarized in Table 1. Furthermore, the theoretical high-strain fatigue
results are reported and compared with the experimental results in Table 2 and
Figs. 2, 4. It is seen that the damage rule (3.6) exhibits the same general tendency
as the experimental data. The results obtained by means of the special form (3.12)
of the damage rule (3.6) are very close to the experimental results.



Table 1. Properties of the examined materials.

SAE0030 | E36 |SAECMn |A—516Gr70
(6] (5] (6] (1]
n' 0.136 0.21 0.141 0.193
K’ [MPa] | 738 1255 896 1067
¢ 0.28 0.6 0.15 0.204
oy [MPa] | 655 1194 869 842
b ~0.083 | —0.124| —0.101 | —0.102
c -0552 | —057 | —0514 | —0.499
B¢ [MPa] | 4537 1515 | 9389 3394

Table 2. Comparison of experimental and theoretical high-strain fatigue results.

SAE 0030 E 36 SAE CMn A - 516 Gr 70

2Ny Ae/2 [%] Ae/2 [%] Ae/2 (%] Ae/2 [P]
from equations | from equations | from equations | from equations
41) | 312) | 41) | (3.12) | (41) | (3.12) | (41) | (3.12)
1000 | 0.794 | 0.772 | 1.416 | 1.398 | 0.637 | 0.640 | 0.854 | 0.914
2000 | 0.588 | 0.578 | 1.014 | 1.007 | 0.494 | 0.492 | 0.650 | 0.672
4000 | 0.444 | 0.442 |0.738 | 0.737 | 0.390 | 0.388 | 0.502 | 0.504
7000 | 0.361 | 0.362 | 0.579 | 0.581 | 0.328 | 0.326 | 0.413 | 0.406
10000 | 0.319 | 0.322 | 0.500 | 0.502 | 0.295| 0.295 | 0.367 | 0.357
20000 | 0.255| 0.261 | 0.382| 0.385 [ 0.245| 0.246 | 0.296 | 0.282
40000 | 0.210 | 0.216 | 0.299 | 0.303 | 0.207 | 0.211 | 0.243 | 0.228
70000 | 0.183 | 0.190 | 0.249 | 0.253 | 0.183 | 0.189 | 0.210 | 0.196
100000 | 0.169 | 0.176 | 0.224 | 0.228 [ 0.170 | 0.177 | 0.193 | 0.179
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F1G.1. The cyclic stress-strain curve for the SAE 0030 steel.
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FIG. 2. The fatigue curves for the SAE 0030 steel: 1) theoretical data from equation (3.12),
2) experimental data from equation (4.1).

€ [%0]

1
1
FIG. 3. The cyclic stress-strain curve for the E 36 steel.
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FI1G. 4. The fatigue curves for the E 36 steel: 1) theoretical data from equation (3.12),
2) experimental data from equation (4.1).
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5. Conclusions

From the analysis of the formulated theory and the experimental results of
the examined materials the following conclusions may be drawn:

1. The theoretical model is formulated as some means to analyse the effect of
distributed fatigue defects in certain materials, which correspond to the Masing
hypothesis.

2. The fatigue failure condition (3.7) has the property of cumulation, which is
known as Palmgren - Miner’s rule.

3. If the plastic strain range Ac? — 0, then because of Eq. (3.6), the increment
of the damage D; may be assumed to be zero.

4. The proposed approach considers the mechanics of continuous media in
which the crack at the structure scale is such set of points (see [7]) for which the
critical damage condition of macro-crack initiation has already been reached (i.e.
D* = 1). Application of this approach to current FEM or BEM structures codes
can be straightforward.
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Gradient generalization to internal state
variable approach (*)

W. KOSINSKI and W. WOJNO (WARSZAWA)

A THERMODYNAMIC THEORY of a rigid conductor is developed in which the response of a typical
material point is influenced by information from its infinitesimal neighbourhood: the conservative
state variable vector is enlarged by adding an internal state variable and its spatial gradient. The
theory leads to a modified Fourier law of heat conduction governed by a system of quasi-linear
equations. The type of the system is discussed under particular forms of the heat flux constitutive
law. Analysis of weak discontinuity thermal waves is performed. A short discussion of relations
between the present model and some previously developed ones is made.

1. Introduction

THEORIES OF MATERIALS with memory make use of different approaches. Some
of them are based on the concept of constitutive functionals, which are defined
on a Banach space of infinite histories of the thermo-mechanical configuration.
Other formulations are based on rate-type equations, in which time-derivative of
deformation and temperature appear. In all those approaches, infinite or finite
histories of deformation measure and temperature at a typical material point
appear as a final result. Then in most cases, the memory of the temporal type
is only present, and no information from the infinitesimal neighbourhood of the
configuration at the point influences its response.

There are, however, situations in which the necessity of such information is
crucial for the appropriate description of the material behaviour and its dissipa-
tion. Thus in this paper we enlarge the set of state variables by adding to this
set the spatial gradient of internal state variables. Consequently, the response of
the material under consideration at the typical point will depend on the previous
history and on its infinitesimal neighbourhood as well. In this approach, however,
no higher gradients of temperature appear.

In the so-called gradient theories, on the other hand, additionally to higher
gradients of temperature, also the higher order heat fluxes have to appear in
order to express the power at a material point. This is not our case. Here the
evolution equations for internal state variables themselves are rather postulated
in the form compatible with the concept of internal state variables, that are
quantities not-controllable from the exterior, while their initial values have to be
specified.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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In the course of derivation of the consequences of the thermodynamic laws,
some particular examples of the constitutive dependences are considered. In the
first one, a scalar internal variable has the meaning of a semi-empirical tem-
perature scale, introduced by the first author in a series of papers. This case
gives a modified Fourier-type heat conduction. Then, if the heat flux depends on
the gradients of both the temperatures, absolute and semi-empirical, the theory
leads to a parabolic system of equations. However, if additionally the depen-
dence on the gradient of the absolute temperature is neglected, then the system
of equations becomes hyperbolic, under mild assumptions concerning the signs
of material functions. In this way one ends up with a wave-type heat conduction
of thermodynamic model.

The classical theory of the heat conduction rests upon Fourier’s law, in which
the heat flux is proportional to the gradient of temperature. This hypothesis does
not permit thermal disturbances to propagate with finite speeds. In the literature
one can find many proposals modifying the proportionality law: MAXWELL [34],
CATTANEO [5, 6], VERNOTTE [44], KALISKI [20], MULLER [41], LORD and SHULMAN
[33], ACHENBACH [1], GURTIN and PrpkiN [18], Fox [15], BoGy and NAGHDI [4],
MEIXNER [37], KosiNski and PERZYNA [26], LEBON [32], MAziLu [35], MORRO and
RUGGERI [40], LArRECKI and PiekARSKI [31], and LARECKI [30].

Due to those proposals one can observe that additional memory effects are
necessary to get a finite speed of propagation of thermal waves.

In the present paper the history of the spatial gradient of a thermal internal
state variable is taken into account in the description of the material response.

In a series of papers of KosiNski [23], and CiMMELLI and KosiNskI [8-10], the
scalar internal variable has been called by the authors a new or semi-empirical
temperature, for the heat flux vector is proportional to its spatial gradient. Such
a proportionality law is of the Fourier type, however, in the case of deformable
continuum it can lead to a modified thermoelasticity with a wave-type heat con-
duction governed by a system of quasi-linear hyperbolic equations. It was recently
shown by KosINski [24].

The aim of this paper is to derive the heat conduction law in a general case
of an anisotropic heat conductor. We propose a rigorous procedure of derivation
in the framework of a gradient generalization of the theory with internal state
variables.

The organization of the paper is as follows: in Sec. 2 we shall present a general
framework of the theory including universal balance laws of thermodynamics in
local forms, together with constitutive assumptions that relate the response of a
typical material point to an actual value of a state variable vector. Moreover, the
evolution equation for the internal state variable will be postulated. In Sec.3 we
shall derive consequences of the thermodynamic laws for the constructed model
of heat conducting solid. In Sec. 4 a particular case of an isotropic medium will be
considered. In Sec. 5 the analysis of the type of the governing system of equations
will be made, together with the derivation of expressions for weak discontinuity.



GRADIENT GENERALIZATION TO INTERNAL STATE VARIABLE APPROACH 525

The thermal (so-called second sound) waves will be investigated under a particular
set of assumptions. A short discussion relating the present model to the model
developed previously and to a model developed in the framework of extended
thermodynamics is included in the final section.

2. General framework

In 1954 Biort [3] and MEIXNER [36] for the first time applied the internal state
variable formalism in continuum mechanics. This formalism, called also the hid-
den variable approach, was already known in physical chemistry and quantum me-
chanics. In 1972 KosiNski and PERZYNA [26] (and later in KosiNski [21]) working
in the framework of a thermodynamic theory with internal state variables derived,
for the first time, expressions for finite speeds of thermal (and thermomechani-
cal) waves. The results of those derivations were used later by MIHAILESCU and
SuLiciu [38], and MoRRO [39]. Some generalizations of the thermoelastic model
of KosiNskr and PERzYNA [26] for more complex materials were developed by
KosiNskr and Szmit [29], and WoroszyNskA [45], and then partially reported by
KosiNskr [22].

Later on COLEMAN et al., [13] repeated the first results of KosiNski and
PERZYNA [26] in a slightly different setup, without referring to the internal state
variable approach and to the original paper.

In 1989 the first author introduced, for the first time, a (material) gradient
of a scalar internal state variable as a state variable in response functions of a
thermoelastic material. In the course of derivation of consequences of the laws
of thermodynamics he obtained a modified Fourier’s type law and finite speeds
of propagation of thermal and thermomechanical waves. That new model differs
from the corresponding model of 1972. The new scalar internal state variable
has been related to the absolute temperature by a suitable evolution equation.
Later on a statistical interpretation for the variable has been given (CiMMELLI and
KosiNskl, [8]). The model has been mostly applied to rigid heat conductors in 1D
and 3D cases, and to thermoelastic solids in 1D case (CiMMELLI and KOSINSKI,
[8, 9], KosiNski and Saxrton, [27, 28], CIMMELLI et al., [11], FRISCHMUTH and
CIMMELLI, [16, 17], KosINskl, [24]).

There are some open problems related to the new model with the internal state
variable gradient. One of them is the question of the absence of the internal state
variable from the constitutive function for free energy. Moreover, in that model
the gradient of the absolute temperature does not influence the response of the
material. There were some reasons of constructing such a model, namely, to keep
the generalization as simple as possible. The aim of this paper is to answer some
of those questions.
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2.1. Formulation of basic equations

Consider a motionless rigid heat conductor B that undergoes a thermodynamic
process restricted by the two thermodynamic laws

d(pe)/0t + divq = pr,
d(en)/0t + div(q/9) > er/d.

Here p is the mass density, q — the heat flux vector, ¢ — the specific internal energy
per unit mass, r — the body heat supply, 7 — the specific entropy, ¥ — the absolute
temperature.

Consider the material body B to be a heat conductor with the internal struc-
ture described by an influence of the history of the spatial gradient of absolute
temperature on the response of a typical material point X of B. In particular, it
means that for the internal energy we are postulating the following constitutive
equation
(2.2) e = ¢*(n,grad ¥, 8, grad ).

The variable grad 8 will represent the history of the spatial gradient of 9 if the
internal state variable 3, having the dimension of ¥, will satisfy an evolution
equation, i.e. it will be regarded as a solution of an initial value problem

(2.3) B = F(d,gradd,8,grad8),  B(to) = fo,

where 1 is an initial instant and [ is an initial distribution of 3, assumed to be
given at to for each X of B. Let us notice that at this stage of considerations the
variable 3 can be either a scalar-valued or a vector-valued quantity.

Assuming that the partial derivative of ¢* with respect to the entropy is equal to
the absolute temperature, one can use the Legendre transformation to introduce
the free energy v as ¢ = ¢ — 9, and to regard the latter as a function of . Then
the constitutive equation for ¢ will take the form

(2‘4) I)b = ¢*(0,Vﬂ,ﬂ,Vﬂ)

To get a more compact form we have used the standard symbol V for denoting
the grad operator. For the remaining thermal fields characterizing the response
of the material we are postulating the following set of constitutive equations

(2.5) n=n"0,V9,5Vp), q=q0, V95 Vp).

With the help of the notion of free energy, the laws (2.1) can be written as

2.1)

o( + 97 + 9n) +divq

er,
(2.6)

v

—o( + Un)— 0" 'q-gradd > 0,

where a dot - denotes the scalar product operation, while the superimposed dot
denotes the time partial derivative.
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3. Thermodynamic restrictions

Now we are ready to derive the necessary and sufficient conditions under which
the second law of thermodynamics will be satisfied at any thermodynamic process
consistent with (2.4), (2.5), (2.3). To this end let us perform the time differenti-
ation in (2.4), use the chain rule property and finally insert the result of these
operations in (2.6). After grouping the terms standing in front of the appropriate
time derivatives of the components of the state variable vector (9, V9, 5, V), we
get
(3.1) 0(0g¥* + ™)V + p0vsyp*- VI + 0™ F + pdypy*- VB +q-VI/9 < 0.

Now, taking the gradient of (2.3) we arrive at

(2) VB = 05FVD + dyg FYVIIFVS + dys FVVB.
Hence, the last inequality can be represented as
(33) 0By + n) D + 00v9¥*- VI + pdysyp*-0vy FVVY

+00vpy™-0vg FVV B + 00vpp™-0s FV 3
+00p9" F + 0(dvpy*0s F + (09)~'q)-V4I < 0,

where 0, denotes the partial derivative with respect to c. Since the time derivatives
of V4, as well as the second gradients of ¥ and 3, do not depend of the other
variables and its derivatives, the inequality (3.3) leads to the identities

(34) Ovep™ =0,  n=-09¢",

then to the conditions

(3.5) Ovp™-Ovg I = 0, Ovpy™-0vpF =0,

and, at last, to the inequality

(36)  — 0vpy™-0pFVB — p0py"F — o(Ovpyp™dg F + (09)"'q)-V4 > 0.

In view of the restrictions (3.4), the constitutive equations (2.4)-(2.5) take the
form

d) = d)*(ﬂ’ ﬂ’ Vﬂ)’ n= —aﬁﬂ’*(ﬂ, ﬂavﬂ)v
q=q°(,Vd,5,Vp).

These equations are still constrained by the orthogonality conditions (3.5) and
the dissipation inequality (3.6).

(3.7)
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3.1. Orthogonality conditions

The orthogonality conditions (3.5) can be fulfilled trivially in four ways:

A. When dygy* = 0, then the constitutive equations (3.7) are simplified to
(B8) Yv=v"(d,8), n=-00¥%"0,6), a=qO, VI35 Vp),
and the inequality (3.6) — to
(3.9) — 00" F — 971q-V¥ > 0,

leaving the evolution equation (2.3) unchanged.

B. When dvgy* = 0 and OvgF = 0, then the constitutive equations (3.7) and
the dissipation inequality (3.6) have the same form as relations (3.8) and (3.9),
while the evolution equation (2.3) simplifies to

(3.10) B = F(9,V9,5).

C. When dyp9* = 0 and dyg F' = 0 then, similarly to the previous case, the
constitutive equations and the dissipation inequality are also the same as in (3.8)
and (3.9), however, with the evolution equation in the form

(3.11) B = F(9,8,Vp).

D. When at last dyyF = 0 and dygF = 0, the constitutive equations (3.7)
simplify to

(3'12) ’()b = w*(ﬂa ﬂ’ Vﬂ)a V= —aﬂlb*(ﬁ, /Bv Vﬁ)v q= q*(ﬁ’ Vﬁ)ﬂavﬁ)v
and the inequality (3.6) takes the form
(3.13) — 00wy 05 FV B — p0sY*F — 0(Ovp0s F + (09)1q)-Vd > 0,

while the evolution equation (2.3) becomes

(3.14) 3 = F@,p).

This is the only case of the general theory in which * may depend on V3, and
F must be independent of V4 and V. This is the most interesting case of the
general theory and, as it will be shown below.

In general, when fulfilled nontrivially, the orthogonality conditions (3.5) in-
troduce constraints between 4 and ¥ and their derivatives. In the isotropic case
these constraints are always of a differential type; meanwhile, in some anisotropic
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cases they can be of a function type. Excellent example is given by the semi-linear
constitutive equations, with a scalar-valued £,

65) ¥ = $i(9, ) + a(, §)-V 5,
' F(3,V9,8,V8) = Fi(9,5) + b9, 5)-VI + (9, B)-V,

then the orthogonality conditions (3.5) take the form

(316) 8(19, ﬂ)'b(ﬂ’ﬂ) = 07 a(ﬁ’ﬂ)«:(ﬂv ﬂ) = 07

of the function type.
When for every 9 and

(3.17) alb and alc,

then the orthogonality conditions (3.5), though satisfied nontrivially, do not yield
any relationships between 9 and £.
Let us consider an isotropic conductor governed by

(3.18) ¥ = ¢*(9,8,|VH]),

with 3 as a scalar-valued internal state variable, and with F' depending on 9,
V43|, B, |VB| and V9.V3. Now the orthogonality conditions (3.5) lead to the
constraints

(3.19) AVY.V3 + Bi|VB| =0, AVI-V3+ B, =0,

of the differential type, where A, A, B}, B, are expressed by partial derivatives
of ¢* and F, that do not vanish identically. Hence there exist always relationships
between 9 and S.

4. Isotropic case

Let us assume that the conductor described in the case D by Eqgs. (3.12), (3.14)
is isotropic. If so, then the constitutive equations (3.12) take now the form

'w.(ﬂ,ﬂalvﬂl)a n= —ag’(l)*(ﬂ,ﬂ,lv,ﬁl),
ql(ﬁv |V19|7;87 |Vﬂ|7 V’L?-V,B)V'l? + q2(197 IV19|3ﬂ$ |Vﬂ|a Vﬂ-Vﬂ)Vﬂ,

(4.1)

with the evolution equation (3.14), and restricted by the reduced inequality (3.13),
that consequently can be written as

4.2) — 00vpY*- 05 FV 3 — 00" F — 97 1qV9-V3
—0(Ovp*0g F + (09) 1 V¥)-VV > 0.

This set of equations form a most general system for an isotropic heat conductor.
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Now we consider q as being independent of V1
(4.3) q = q(d,8,|VB)VA.
Then (4.2) will lead to extra potential relation. Since ¢ vanishes, then we have
(44) - p0vpY"-0sFVB — 00" F — 0(Ovpy™0s F + (09)~'qV3)-VV > 0.

In (4.4) the coefficient of V4 and the rest of terms are independent of V4.
Moreover, due to prolonged evolution equation (3.2), that now reduces to

4.5) VB = 89FVY + 85FV,

we can see that the coefficient of V¥ has to vanish. This requires

(4.6) q= _a*Vﬂ’

and

4.7) — (W09 F) ' 9pFa*|VBI* — 9™ F > 0,
where

(4.8) a*(9,B,|VA]) := 0| VB g F dywpv™.

The law (4.6) is of the Fourier type for q in terms of V3 with the coefficient a*
defined by the thermodynamic potential.

This constitutes a generalization of the existing heat conduction theory with
the so-called semi-empirical temperature, developed recently by W. Kosifiski and
his co-workers: V.A. Cimmelli, K. Saxton, K. Frischmuth, and already applied to
thermal wave propagation problems in several papers.

If we require the linearity of (4.6) in V3, then the coefficient o* will be
independent of V4. Simple integration shows that the last requirement will be
reached iff the free energy function is of the form

(4.9) ¥ = Y9, B) + 0.545(9, )| VP,

where the factor 0.5 has been assumed for the convenience only. Then

(4.10) a*(09dy F)~! = 43,
and
(4.11) — {(WgF) 19sFa* + 0.500505 F}|VB|* — 07 F > 0.

Since the last term as well as the coefficient of |V3|? are independent of the
latter, the last inequality can be split into two inequalities

(4.12) (s F) 10sFa™ < —0.5005%3 F,
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and
(4.13) Ipy1F < 0.

When, however, the free energy is independent of §, then instead of (4.12) we
get
(4.14) (W09 F) 19sFa* < 0.

If for the stability reasons, as far as solutions of evolution equation (3.14) are
concerned, we assume that dg F' is non-positive, then (4.14) requires

(4.15) dgFa” > 0,

and no more inequalities will be present in this case. Inequality (4.15) gives
the restriction on the generalized heat conduction coefficient a*. If the present
constitutive model is regarded as a first order generalization of the classical heat
conduction model with the Fourier law, then the partial derivative dyF should
be of a fixed sign. Assuming it to be positive, as we have done in our previous
papers (cf. KosiNski [25]), we get from (4.15) the restriction on the positiveness
of a* only.

In Arcisz and KosiNskr [2] and KosiNskr [25] papers, in the course of de-
veloping a generalized thermoelasticity with a wave-type heat conduction, three
requirements have been formulated. One of them requires the evolution equation
to have the same form as that discussed here in the isotropic case (3.14). The
next property is:

¢ as a zero order approximation of the evolution equation, the Fourier law
should be recovered, that is a proportionality (linear) law between the actual heat
flux vector q and the spatial temperature gradient grad 9, i.e.

q = —kgrad 9.

The form of the right-hand side (RHS) of (3.14) will be compatible with this
requirements if a control parameter exists, on which /' depends, such that if the
parameter tends to zero, the state variable 3 becomes a function of the absolute
temperature. If 7y is that parameter, we define a new function f as f = 7y F,
where now f is independent of the control parameter 75. Then the evolution
equation (3.14) will be rewritten in the form

(4.16) 0f = (9, B).
Taking the limit of LHS in (4.16) in 7y and confining ourselves to bounded solu-

tions for 3, and to such evolution equations for which the function f possesses
nonvanishing partial derivatives 0 f/d/, and at least one null point, we get

(4.17) if 79— 0 then S — B(Y),
where a function B(?) satisfies the identity
(4.18) f(@, B®)) = 0.
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5. Parabolic and hyperbolic heat conduction models

In this section we shall analyse the equations that follow from the energy
balance and the evolution equation when the constitutive assumptions made in
the previous section are included. First the case of the heat flux depending on
V4 will be considered, then the simpler dependence (4.6) will be investigated.

Let us notice that in the most general case described by (4.1) the governing
system of equations, composed of (2.6) and (3.14) leads to two equations: the
first one is of the second order in ¥ and 3, while the second equation is of the
first order in 3. However, if the second gradient of ¥ is expressed with the help
of the (second order) prolonged equation of (3.14) in terms of the derivatives

of (3, then in the first equation the third mixed derivative vV 3 appears. This
third order derivative is a singleton: no more third order derivatives appear,
only lower order ones are present after that substitution. Moreover, provided
the nonvanishing partial derivative of F' with respect to ¥ does not vanish, the
evolution equation can be regarded as an equation for 9, that allows to solve
(independently of 9) the energy equation in terms of /.

The appearence of VV B asa singleton in the resulting system shows, that
the resulting system is not hyperbolic, provided the energy equation is written as

a first order quasi-linear system of four equations in terms of: g, v = B,p=
V3, z = V. In the 1D case the system possesses only a double characteristic
eigenvalue \? = (. This means that the system is of parabolic type. We will
see in a moment that the second simpler case leads to a quasi-linear hyperbolic
equations, under mild assumptions concerning the signs of material functions.

Let us pass to the second case described by (4.6), i.e. the heat flux independent
of V9. Performing the differentiation in (2.6) we get

(5.1)  oco(9,B,VB)D — 0dse* B + pdype™-V B
—0pa™ (9,3, VB)VB-VE — 0ya™ (9, 3, VB)VE-VI
_aVﬁa*(ﬂ’ IB’ Vﬁ) ® Vﬂ-VV/j Ty Q*(ﬂ, ﬁ? Vﬁ)Aﬁ = or,

where ¢, (9, 8, V3) := 0gc* denotes the specific heat. If we apply to this energy
equation the first two prolongations (i.e. spatial gradient and time derivative) of
(3.14) in order to express the first derivatives of ¥ in the forms

52) O =70,0@ -0FB), VI=10,8)(VB - 0FVp),

then we obtain one equation of the second order in £, similar to that derived
already in previous papers (KosiNskI [23, 24], DoMAKskI and KOSINsKI [14]),

(53)  ocu(9, B, VBB — 0dge™ B + 0dvse™-V B — dpa*(V,8,VBVE-VS
—dga*(9, B, VB)r VBV B — dyga™(¥,3,VE) @ VB-VV
—-a* (9,3, VBAL + dya™ (9, 3,V B)T*03VB-V 3 — 0c,(V, 5, Vﬂ)T*BgB = or.
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This equation is more complex than the corresponding one derived in KosINskI
[24] for 3D thermal weak discontinuity waves. There it was shown, for example,
that in the rigid case the governing system of equations for determining 3 and ¥
is composed of (4.16) with f given as a sum f = f;(9) + f(5), and

(54)  Toec,(9)B — Toa™ (D)V B-VB — a* (9) fI(9) LB
—0c,(N)JH(B) B + ™ (9) FL(B)VB-VB = rfi(9).

Since ¥ can be expressed in terms of 3 and 3 from (4.16), Eq. (5.4) can be solved
independently for 3. The speed A of a purely thermal wave is given here by

(5.5) T00¢,(0)A? — 1™ (9)V3-n\ — o*(9) f](9) = 0.

We can see that the wave propagation is not symmetric if V3 differs from zero,
and the hyperbolicity condition is ¢,(9)a*(9) f{ (V)9 > 0.
Here, in the general case governed by (5.3), the speed is given by the equation

5.6 0c,(9, B, VB)T*N2 — pdyse*-n) + dga*(9, B, VB)r*VE-n\
B
—dvpa*(9,5,VB) ® VA-n®@n — o*(¥,3,VS)nn = 0,

where n is a unit normal to a wave front. As previously, the propagation is
nonsymmetric in general.

6. Concluding remarks

We want to close our paper with the final remarks concerning the role of
our general derivation in the framework of gradient theory. The rigorously de-
rived general first gradient theory with internal state variables supplies the previ-
ously developed model with the semi-empirical temperature, with new methods
of analysis of singular solutions in the thermodynamics of heat conductors. Now,
for the model we have at our disposal the natural viscosity method, given by the
parabolic system, if the heat flux depends on the both gradients: V¥ and Vg.
This can have a particular importance, when developing appropriate numerical
schemes for finding solutions of the quasi-linear hyperbolic system.

The last but not least remark concerns the applicability of the hyperbolic
model. In FRiscHMUTH and CIMMELLI [16, 17] the semi-empirical model has been
elaborated from the numerical point of view. The numerical solutions to the
governing system of equations in the case of a rigid conductor were reported
and compared with the results of experiments obtained for several materials at
low temperatures (cf. NARAYANAMURTI and DYNES [42], JACKSON and WALKER
[19], and PAao and BANERIEE [43]). The results of those comparisons show that
the model can reproduce sufficiently well the existing experimental results. We
can point out, that the modification of the classical Fourier law developed in



534 W. KosINskl AND W. WoINO

the framework of a simplified gradient theory with internal state variables, when
B does not appear in the constitutive laws, has been already compared with
another one, developed for a rigid conductor in the framework of an extended
thermodynamic approach (MoRRO and RUGGERY, [40]). The results of the analysis
have been reported in CIMMELLI et al. [12], and they show the conditions under
which both models lead to the same system of equations, when a rigid conductor
is discussed.
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Finite element simulation of 3D mechanical behaviour
of NiTi shape memory alloys (*)

G.RIO, P.Y. MANACH (GUIDEL) and D.FAVIER (GRENOBLE)

A THREE-DEVELOPED finite element model of the isothermal deformation of shape memory alloys
has been used in order to analyze and predict the mechanical behaviour of NiTi alloys. A general
3D kinematics has been studied. The constitutive behaviour is written using an elastohysteresis
tensorial scheme; it is based on the splitting of the Cauchy stress tensor into two fundamental stress
contributions of hyperelastic and pure hysteresis types, respectively. The equilibrium equations are
then discretized by the finite element method. The validity of this formulation is established in the
case of three-dimensional plate bending behaviour of NiTi shape memory alloys.

Notations

(O,1.) orthonormal fixed reference frame (a = 1,2, 3),
t absolute time,
d/at partial derivative with respect to time,
M material point,
6' curvilinear convected material coordinates (i=1,23),
M position of point M,
G; initial reference frame associated with the 6°,
G,; initial covariant components of the metric tensor G,
g current reference frame associated with the 6",
gi; current covariant components of the metric tensor G,
current density of metric volume per unit of material volume with g = det |g;;|,
strain rate tensor (2D;; = dgi;/0t),
deviatoric part of the strain rate tensor,
inversion time associated with an inversion point,
Cauchy strain tensor L. G = Gi;(t-)g' ®g’, .
Almansi strain tensor Aj..€ = Ae =1/2(G - .. LG),
deviatoric part of the Almansi strain tensor,
Cauchy stress tensor,
deviatoric part of o and of its variation,
invariants used for strain tensors: €}, 1/2 2,87, 1/3 &',8,g*,, respectively,
internal energy density,
intrinsic dissipation rate,
help function,
von Mises parameters (limit shear stress Sy and radius Qg = V25,
of the von Mises cylinder),
interpolation functions,
Kronecker symbol,
Masing functional (w = 1 or 2).
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(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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1. Introduction

THE SHAPE MEMORY ALLOY (SMA) specific properties lead to many projects of in-
dustrial applications such as, for example, electrical and mechanical connections
or thermal regulation [1, 2]. However, most of these projects did not succeed
due to several metallurgical and mechanical reasons. Among these reasons, the
fact that no numerical tool (such as Computer Assisted Design (CAD) programs)
adapted to these materials exists is an important obstacle to their industrial de-
velopment. Thus, even if SMA crystallographic structure and microscopic prop-
erties (i.e. the martensitic transformation and related phenomena) have been
extensively studied, it becomes essential to deepen the modelling of their ther-
momechanical behaviour and then to propose a numerical formulation of this
behaviour adapted to an integration into CAD programs.

Up to now several authors have intended to model the thermomechanical
behaviour of SMA. Some of these models are monodimensional ones [3-6]
and are indeed devoided of interest to model the deformation behaviour of
three-dimensional bodies. At the same time several theoretical tensorial schemes
have also been developed [7-9] but as far as we know, none of these constitutive
laws resulted in industrial programs or applications; for example, the program re-
cently developed by BRINSON ef al. [10] takes into account only monodimensional
effects.

This paper is devoted to a three-dimensional finite element model of the
isothermal deformation of SMA, in order to analyze and predict the mechanical
behaviour of NiTi alloys. The formulation of this model is developed for large
geometrical transformations including large deformations. In this context, a gen-
eral 3D kinematics has been studied. The constitutive behaviour is defined using
an elastohysteresis tensorial scheme which is based on the splitting of the Cauchy
stress tensor into two fundamental stress contributions of hyperelastic and pure
hysteresis types, respectively. Such a constitutive law has already shown its ap-
plicability for SMA [11-13]. The equilibrium equations are then deduced using
the principle of virtual power, the system of nonlinear algebraic equations being
solved by the Newton - Raphson method.

In a second part, the modelling ability of this formulation is presented in
the case of three-dimensional plate made of NiTi shape memory alloys under
bending. We focus at first on the influence of several boundary conditions on the
simulation of NiTi plate bending. A set of numerical data is then displayed and
compared with some simple elastic theoretical results found in the literature. Sec-
ondly, a simulation of the typical isothermal behaviours of shape memory alloys
(i.e. pseudoelasticity and rubber-like behaviour) of a simple 3D body subjected
to bending is proposed. This gives the first approach to the thermomechanical
behaviour modelling of industrial shape memory alloy bodies.
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2. Theoretical formulation

The theoretical formulation of the model is written considering large geo-
metrical transformations including large deformations. As it was previously men-
tioned, a general 3D kinematics has been studied, no particular direction being
favoured. Such a formulation allows for example the study of mechanical cylin-
dric connections made of NiTi SMA. The definition of this kinematics in terms
of involvements in the finite element program is briefly detailed in this paper.

2.1. Three-dimensional kinematics

Due to the incremental character of plastic constitutive laws, the description
of elastoplastic deformation process is performed using an updated Lagrangian
scheme, i.e. the configuration of the material at time ¢ is taken as reference con-
figuration for the time interval [t,t + At]. At the end of the increment At, the
configuration of the material and the boundary conditions are updated, the new
configuration being chosen as reference configuration for the next time increment.
Let us consider a body {2, its configuration at time ¢ being the reference config-
uration. The equilibrium conditions are written in the final configuration, i.e. at

Fi1G. 1. Three-dimensional kinematics: definition of the convected material coordinates
and of the local natural frame G;.

time ¢ + At. The position of the body {2, see Fig.1, is defined using convected
material coordinates 6*, so that at time ¢, its position can be written as

(2.1) M(0',t) = z°(8°,1) L,

where the I, vectors denote a fixed reference frame. The local frame (M, G;),
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also called natural frame, is defined by the relation:

oM 02
s G (W), 7 (50?),‘“'

In the final configuration, the position of the body 2 at time ¢ + At can be written
in the form M(6*,t + At) = 22(6",t + At) 1,, the local frame g; being then defined
by

oM 0z°
2.3 ;= (———) = ( ) |
(3 e 00" ] 1+ At 00" ) 14 At

From these definitions, the Almansi strain tensor is written as [14, 15]

(2.4) Attt giggl = 5 (G- 14 G) .

ST

t+4t G represents a tensor, the components of which are those of the metric
tensor G in the natural frame at time ¢, convected without modification until the
time ¢ + At. Similarly, Ai*4tc;. represents the two times covariant components
of the strain tensor between times ¢ and ¢t + At. For the remaining part of this
study, the strain tensor will be denoted by Ae.

For sake of simplicity, the map of material coordinate is taken as the map
of coordinate of the finite element discretization [16]. Practically, this choice
imposes that the global integrals of volume should be divided into a sum of
integrals performed on each element; this choice is in fact natural in the case of
the finite element method.

Discretization of the kinematic fields. Let M be a material point of the body (2. Its
current position is defined by the relation:

2.5) =21, = 2% . 1,
where the interpolation functions ¢, depend on a coordinate map §; on the refer-
ence element, i.e. ¢, = ¢, (). Since the elements are assumed to be isoparamet-

ric ¢, = v, (¥, represents the interpolation of the functions), the displacement
field Au between times ¢ and ¢t + At may be written as:

(2.6) Au = Au1, = Au*® P51, .

The choice &; = 6; implies that &; corresponds to the material coordinate of each
element.
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2.2. Constitutive behaviour

The thermomechanical behaviour of the alloys with shape-memory proper-
ties is the result of the action at a microscopical scale of reversible phenomena
in association with irreversible phenomena; the observable effect of irreversible
phenomena is the hysteresis loop [17] which can be universally spotted in many
fields of physics [18]. Such an observation is the starting point to elaborate a class
of thermomechanical schemes called elastohysteresis [11].

For SMA, the permanence of the simultaneous existence of reversible pro-
cesses and hysteresis suggests to express the Cauchy stress tensor o as the ad-
dition of two partial stresses, the first one being hyperelastic o, [11], while the
second one is related to hysteresis of elastoplastic type o [19, 20, 21]. This ap-
proach leads to the studies of two tensorial schemes of isothermal hyperelasticity
and hysteresic behaviour, respectively. The last one which may be pure hysteresis
(periodic under periodic loading) or evolutional hysteresis is non-standard and
belongs to the discrete memory type [19, 22]. Both hyperelastic and hysteresis
schemes allow the introduction of a particular formalism, the choice of which is
driven by the physical processes involved in the thermomechanical behaviour of
SMA. The pure elastohysteresis scheme allows the description of isothermal ef-
fects (i.e. superelasticity and pseudoelasticity) as well as shape memory effect [11].

2.2.1. Hyperelastic behaviour. For an isotropic body the hyperelastic stress is deter-
mined if one defines a density of elastic energy depending on three variables, i.e.
three strain invariants. The thermomechanical properties of shape memory alloys
are related to the thermoelastic martensitic transformation which occurs mainly
by a shear-like mechanism. Macroscopically, if the material is assumed isotropic,
the choice of the intensity of the deviatoric strain IIz as the first variable of the
density of elastic energy, is thus physically meaningful [11, 12]. The set of variables
is completed by the ratio of elementary material volumes » and by the phase of
the deviatoric strain tensor ¢z. Let us denote by g = det | g;; | and G = det | G;; |,
the ratio of elementary volumes is then defined by the relation v = (g/G)V/2
Denoting by  the deviatoric part of the Almansi strain tensor defined between
the initial neutral state and the current state, the last variable can be expressed
as:

(27) COS 3(,95 = 3\/6 W 5

JUg
IT
where IIIz denotes the third invariant of the deviatoric strain tensor.

Let E be the density of elastic energy. The reversible stress contribution o,
is defined, for an isothermal evolution, by the rate form

oE

(2.8) =

=09 Djs.
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D denotes the strain rate tensor for which 2D;; = 0dg;;/0t and in the isothermal
case, E is simply the Helmholtz free energy. One obtains then by identifying all
terms [11]:

(2.9) 0, = apg + aj Ahe + ap Ahe - Afe,

where the coefficients «; are functions of v, ITz, ¢z, OE /0v, 0E /01lz and OF /9.
In the case of shape memory alloys, a simple form for E is chosen as follows
[11, 12]:

2 2
(2.10) g="F 12 L. Zfi In [cosh (2; \/2ﬁg)] T |

where k., Q,, pr and ., are the parameters of this law and depend on the alloy
and on the temperature. At this step, the variation of the hyperelastic constitutive
law is needed to calculate the stiffness matrix; but for sake of clarity, the variation
of strain and metric tensors, natural frame vectors as well as the variation of this
law with respect to the degrees of freedom will not be detailed in this paper.

2.2.2. Pure hysteresis behaviour. The hysteresis contribution has the property of be-
ing always irreversible as it is related to the intervention of microstructural phe-
nomena of dry friction type (strain rate-independent). It is different from a purely
frictional stress due to the presence of some physical phenomena which are also
able to store elastic energy. Rheological models containing elastic and slip el-
ements have been considered to establish general pure hysteresis model [19].
From this analysis it has been shown that the internal energy and other thermo-
mechanical quantities associated with the pure hysteresis contribution depends on
the current state but also on the previous thermodynamical history through the
memorisation of some discrete memory states. The material is assumed isotropic
and the hysteresis contribution is only deviatoric. The basic hypotheses are the
non-coupling volumetric-deviatoric behaviour and the isotropic plasticity evolu-
tion limited by the von Mises criterion which is directly included in the rate-form
formulation of S; such hypotheses can be easily justified in the case of metallic
materials. The constitutive law is then written in the form:

(2.11) % [ALs%] =20, D' + B4 § ALS™.

The term S’ is related to the deviatoric stress tensor S through the relation (2.14)
and D denotes the deviatoric strain rate tensor. The subscript 7 represents a
reference situation which corresponds to the initial state for the first loading and
to the last inversion state for the other cases, as long as any crossing point is not
detected as it will be described in the next section [20]. The variable ¢, analogous
to the time, is used to describe an evolution, and the parameter p; corresponds
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to the Lamé’s coefficient, while for a radial path, 34 is defined by:

== Hh
(212) ﬁ4 w250 ’
where the similarity function of Masing w is equal to 1 for the first loading and
to 2 for the others. Sy denotes the limit shear stress for the pure hysteresis
contribution. The main advantage of this definition is that the identification of
the parameters can be easily performed with only a tensile and a simple shear
test [23]. The term ¢ represents the intrinsic dissipation rate during an evolution
and is defined on a radial path by the relation:

(2.13) ¢ =ALS" D,

The definition of the constitutive equation (2.11) is performed by using a mixed
transportation scheme. The symmetrical components of S are obtained from those
of S’ by the relation:

(2.14) S = % (S'z)c g5+ SI{- gki) _

It can be noticed that the constitutive equation (2.11) defines the Lie derivative
one time contravariant and one time covariant of the tensor S, while the previous
relation can be interpreted as the integration of the Jaumann derivative of this
tensor.

Resolution of the constitutive equation. The constitutive equation is a first order partial
differential equation, the values of which are known at time ¢. It is then necessary
to integrate this equation between times ¢ and ¢t + At and two simple integration
methods can be used. On the one hand, the equation can be linearized and
then directly integrated by an implicit Newton method; on the other hand, it
can be integrated by a Runge-Kutta explicit method [15]. In this last case, it
implies that the calculation of all different values is made at several intermediate
points while the first method necessitates only a calculation at time ¢ + At. For
the sake of simplicity and in order to be consistent with the resolution of other
numerical problems (e.g. determination of inversion points), the first method has
been retained here.

From these hypotheses, the derivative of §’ with respect to time is linearized,;
denoting 7 = t + At, one obtains the constitutive equation in the form:

(215) 3P4 [A:S”k gk + ATS™ g Dy ATS" — ATS" + 2, D'; =0
with
(2.16) ATS" = ATS" — ALS"H .

This equation, quadratic in ;\,T.S’g», is then solved by a first order Newton method.
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Determination of inversion and crossing points. The necessity of introducing discrete
memory concept can be observed in the mono-dimensional case such as the one
presented in Fig. 2. It can be seen in this figure that the third branch BC can not be
continued along the path CD’ but along the path CD which is the continuation of
the first loading branch. This shows that along the path ABC, it is necessary to
keep the memory of point A, memory which is erased along the path CD for after
C, the behaviour is identical as if the path ABC has not been performed. Along
the paths OA, then AB, BC and CD, one must keep successively the memory of
points O, then O and A, then O, A and B and finally O only. Points such as A and
B are called inversion points while points such as C are called crossing points.
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FIG. 2. Quasi-monodimensional simple shear test: definition of a pure hysteresis behaviour
and of the inversion and crossing points.

The management of inversion points is performed by using the intrinsic dis-
sipation rate function ¢ presented in equation (2.13). This value is related to a
volume element and must always be positive. The state at time ¢ is an inversion
point when the function ¢ becomes negative. Furthermore the management of
crossing points is performed by using an associate function W called help function
and defined on a radial path by the relation [19, 21]:

2 -
2.17) W= / () dr.

After each inversion point, the level reached by the W function is memorized and
W is set to zero for the next evolution. This function represents a measurement
of dissipated energy along the path between two inversion points. A crossing
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point is then observed when the current level of exchanged energy reaches a
previously memorized level of W, reached on a previous branch. The crossing
point represents the closure of a cycle which can then be erased. For non-radial
path, the expression of relation (2.17) is rather more complicated [21]. It can
be noticed that the crossing point has to be determined accurately, in order
to avoid a numerical drift when performing a succession of centred cycles or
loading-unloading loops.

2.3. Variational formulation

Let 2 be the region occupied by the material and X' its boundary. The weak
formulation of the boundary-value problem defined by the boundary conditions
and by the equilibrium equations is obtained by using the principle of virtual
power. In fact, it may be shown that this boundary-value problem is satisfied at
time ¢t + At if and only if the following condition:

2.18) /aif 3 1; dQ:/T" 5 dE
n b3

is fulfilled for virtual velocity field v resulting from kinematically admissible dis-
placement field. Here o and T represent the Cauchy stress tensor and the surface
external force, respectively. The region 2 as well as the surface ¥ correspond
to the material positions of the body at time ¢ + At. From the finite element
discretization and taking into account that the virtual velocity field is arbitrary in
2 and on Y, this leads with (2.6) in a standard way to the system of algebraic
nonlinear equations:

(2.19) Ros(Au®) =0 Vbs,

where Au denotes the displacement between time ¢ and t + At, and

i * «bs ;% xbs
(2.20) Ryy(Au") = /cr” (AuT) ¥ |; (5= 1) d2 - / T 5 (5 =1)ds.
2(t) Z(t)

xbs . . * .
v corresponds to the virtual velocity of a degree of freedom, v being chosen

under the same form as the displacement field. The previous system is then solved
by using the Newton - Raphson method.

3. Numerical results

This section is devoted to the numerical study of the bending behaviour of a
NiTi square plate under several boundary conditions. The aim is to analyze the
convergence and the ability of the elastohysteresis constitutive law to model the
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pseudoelastic and the rubber-like behaviour of such shape memory alloys. The
first part deals with the influence of the boundary conditions on the mechanical
behaviour of a plate loaded by an uniform pressure on its upper side; then the
second part deals with the influence of the mesh on the numerical results. Finally
the last part is devoted to the description of the behaviour of a NiTi SMA plate
in the austenitic as well as in the martensitic state.

3.1. Plate under several boundary conditions

The square plate which is studied here has the following dimensions: 40 x
40 x 2.6 mm. For symmetry reasons, only the quarter of the plate, presented
in Fig. 3, has been used for all tests. Therefore on faces BCGF and EFGH, the
boundary conditions are symmetry type conditions, i.e. v = 0 on BCGF and u« = 0
on EFGH. Three types of edge boundary conditions are used; a clamped plate
(Case 1), a simply supported plate (Case 2) and a sliding simply supported plate
(Case 3). For the first case, the boundary conditions are v = v = w = 0 on
ADCB and AEHD. For the second case w = v = 0 on CD and w = v = 0 on
DH, while for the last case, w = 0 on CD and DH. The plate is subjected to
uniform pressure on the upper side ABFE. The mesh used for all these cases has
10 elements on each lateral side and 2 elements in the thickness, the elements
being quadratic hexahedrons.

D H X

F1aG. 3. Square plate used for the numerical results. u, v and w are the displacements
along the z, y and z directions, respectively.

The pressure-deflection loading curves obtained for these three cases are pre-
sented in Fig. 4. The parameters of the elastohysteresis constitutive law are those
determined from experimental results and given in Table 1 of the subsection 3.3.
The curves drawn in dashed lines represent the simulation of respective prob-
lems with particular boundary conditions for a linear elastic material, with the
Young modulus £ = 83000 MPa and the Poisson’s ratio » = 0.393; these param-
eters have been determined from those in Table 1 so that the associated linear
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F1G. 4. Pressure-deflection loading curves obtained for a clamped plate (1), a simply supported
plate (2), and a sliding simply supported plate (3). The curves in dashed line represent the elastic
results associated to each case of boundary conditions with the parameters £ = 83000 MPa and

v = 0.393.

behaviour coincides with the initial quasi-linear stress-strain relation of the elas-
tohysteresis behaviour. These elastic results have been compared to the analytical
solutions given by TIMOSHENKO [24] and, despite the fact that these analytical re-
sults are given for thin plates, there is a good agreement between analytical and
numerical results. Moreover, the curves drawn in full lines feature a strong non-
linear behaviour and it can be observed (like in the elastic case) that the clamped
plate requires a higher pressure to be deformed, while the pressure is of the same
order of magnitude in the two other cases.

The curves plotted in Fig. 5 and Fig. 6 represent the stress distributions in the
thickness, both for a deflection of 2mm. The longitudinal stress o,, and shear
stress o, are presented in Fig.5 and Fig. 6, respectively. The value of o, is
taken in the middle of the plate while o, is taken on the symmetry side EFGH
near the edge, i.e. where it reaches its highest value. It can be observed that the
variation of oy, along the thickness follows a third order symmetric curve and
that this value is not too different in all cases. Such a small difference is due to the
fact that the deformation state in the center of the plate is identical for all cases
(as the deformed shapes are the same, see Fig.7), since this region is far from
the edges. It can be expected that for an infinite plate, these three curves will
merge together. Conversely, the shear stress depends strongly on the boundary
conditions, the value of o, being much higher in the case of the clamped plate
compared to the other cases when the same central deflection is considered.
The clamped plate having the higher stiffness, the load must be increased to
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FIG. 5. Longitudinal stress distribution o, obtained between points F and G, along the thickness
for a 2 mm central deflection, for a clamped plate (1), a simply supported plate (2), and a sliding
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FI1G. 6. Shear stress distribution o, obtained between points E and H, along the thickness for
a 2 mm central deflection, for a clamped plate (1), a simply supported plate (2), and a sliding

simply supported plate (3).

obtain the same central deflection, which lead naturally to a higher shear stress
level. Moreover, all curves have a classical symmetric shape with respect to the

mid-plane.
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F1G. 7. Initial and deformed shape of the symmetry side EFGH of the plate for a deflection
of 2 mm. Meshes correspond to a clamped plate (1), a simply supported plate (2), and a sliding

3.2. Influence of the mesh

simply supported plate (3).

The influence of the mesh on the numerical results has been studied on the
clamped square plate (see also subsection 3.3 for details about the material pa-
rameters). The pressure-deflection loading curves obtained for n = 4, 6, 8 and 10
quadratic elements on the lateral sides, respectively, are presented in Fig. 8. It can
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F1G. 8. Pressure-deflection loading curves obtained on a square plate for n = 4 (1), n = 6 (2),
n = 8 (3) and n = 10 (4) quadratic clements on each lateral side of the plate, respectively. The

mesh contains 2 elements in the thickness.
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be observed that the number of elements on the edge side has a great influence
on the numerical results, especially when this number is rather small. As it could
be expected, a small number of elements leads to an overestimation of the bend-
ing rigidity. When this number increases, the calculations converge to a stable
solution which seems to be reached for n = 10, for the gap between curves 3 and
4 is rather small. The curves presented in Fig. 9 represent the pressure-deflection
curves obtained for n = 1, 2 and 3 quadratic elements in the thickness. It can be
seen that for a small number of elements (n = 1), the rigidity of the plate is again
overestimated in the range of small strains, but also that it tends to saturate for
larger deformations. For a higher number of elements, the difference between
curves obtained for n = 2 and 3 elements becomes quasi-negligible.
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F1G. 9. Pressure-deflection loading curves obtained on a square plate for n =1 (1), n = 2 (2)
and n = 3 (3) quadratic elements in the thickness of the plate, respectively. The mesh contains
10 elements on each lateral side.

As a whole, a mesh of n = 10 elements on each lateral side and of n = 2
elements in the thickness offers a good compromise between the accuracy, the
reliability of the mesh and the calculation time. This mesh is used for all the other
calculations; indeed, one observes that the convergence is stable in all tests, no
locking phenomenon appears and the solution always converges to a stable shape.

3.3. Shape memory alloy behaviour

Concerning the study of SMA, the material parameters have been identi-
fied on a NiTi alloy from the experimental results obtained in simple shear by
MANACH [13]. The determination of these parameters has already been detailed
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in MANACH et al. [23]. The values are given in Table 1 (in MPa) and are considered

as temperature-independent.

Table 1. Material parameters of the elastohysteresis constitutive law.

k.,

Hr

Koo Hh

So

Austenitic state | 425000

22500

2500 | 7500

100

Martensitic state | 425000

22500

2500 | 7500

200

The evolution of @, as a function of the temperature has been determined
to follow a linear relation such as: Q, = 5v2(T — 313)MPa [23] for T > 313K,
and 0 MPa otherwise. In the austenitic state, the test is performed at 7' =
353K and in the martensitic state at 77 = 313K. The numerical simple shear
stress-strain curves obtained using these parameters are presented in Fig. 10 and
Fig. 11 for the austenitic and martensitic states, respectively. Moreover, loops
and subloops have been performed on these simulated curves in order to fea-
ture the main characteristics of the elastohysteresis model. The results obtained
on the pressure-deflection loading-unloading curves in the middle of the plate
are presented in Fig. 12 in the austenitic (A) and in the martensitic (M) state,

respectively.
750
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F1G. 10. Numerical stress-strain curve obtained in simple shear on a NiTi alloy from the
parameters identified by the experimental results of Manach [13] in the austenitic state

at T =353K.

0.060

It is now well known that the deformation mode of materials presenting a
thermoelastic martensitic transformation is highly influenced by the tempera-
ture at which the deformation takes place. Two mechanisms of deformation can
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F1G. 11. Numerical stress-strain curve obtained in simple shear on a NiTi alloy from the
parameters identified by the experimental results of Manach [13] in the martensitic state
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F1G. 12. Pressure-deflection loading-unloading curve obtained for the bending of a NiTi
clamped square plate in the austenitic (A) and in the martensitic (M) state, respectively.

occur, i.e. the reorientation of the martensite variants when the material is in
the martensitic state, and the stress-induced martensitic transformation when the
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material is in the austenitic state. Qualitatively, the curves presented in Fig.12
exhibit the typical mechanical behaviours of SMA related to these two previous
phenomena, i.e. the superelastic effect of the austenitic phase and the rubber-
like behaviour of the martensitic phase. Then for curve (M), the deformation is
produced by the motion of internal defects such as martensite-martensite inter-
faces or martensite twins. The loading curve corresponds to the development of
the martensite variant reorientation, while the unloading curve is characterized
by a partial reorientation of the martensite variants, producing then a greater
reverse deformation than the classical elastic deformation. For curve (A), the
main mechanism of deformation is produced by the stress-induced martensitic
transformation during loading and its quasi-total reversion during unloading,
e.g. [25].
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F1G. 13. Longitudinal stress distribution o, obtained between points F and G, along the
thickness, for a 2 mm central deflecton, for a clamped plate at the end of the loading
and unloading in the austenitic (A) and in the martensitic (M) state, respectively.

The stress distributions in the thickness are presented in Fig. 13 and Fig. 14
for the longitudinal stress o, and for the shear stress o,., respectively. Compar-
isons are made for the same centrz deflection of 2mm. It can be observed that
the residual stresses are of the same order of magnitude, the longitudinal stress
oy, being greater in the martensitc state (which is more deformed) while the
shear stress o, is similar for both cases, which is coherent with consideration of
subsection 3.1. It can also be pointed out that those stress distributions are in
agreement with the analytical solutons given by Kirchhoff for an elastic clamped
square plate.



554 G. Rio, P.Y. MANACH AND D. FAVIER

,/’ f
T
~— f
~ |
2.00 s |
(ol r P |
E I A l// A !
) v £ s i AT T Joan s e e R e ‘f
7] \
b N |
g 1.00 - ye) \l
= I s,
> i Ml o \l
. iy \
0 00 lllllllllll T 3 | IlLJ_LlLJ Akiad I . llllLll\Ll
-200 -1756 -150 -125 =100 =75 —50 =25 0
yz (MPa)

F1G. 14. Shear stress distribution 0. obtained between points E and H, along the thickness
for a 2 mm central deflection, for a clamped plate at the end of the loading and unloading
in the austenitic (A) and in the martensitic (M) state, respectively.

4. Conclusions

A new three-dimensional finite element model of the unusual deformation of
shape memory alloys has been developed. The validity of this model has been
analyzed in the case of the bending behaviour of NiTi alloy. The formulation of
this model is written in the case of large geometrical transformations including
large deformations. In this context, a general 3D kinematics has been studied.
The constitutive behaviour is defined using an elastohysteresis tensorial scheme
and finally, the equilibrium equations are deduced using the principle of virtual
power which is solved by the finite element method.

The modelling ability of the formulation has been presented in the case of
three-dimensional plate behaviour, the numerical study concerning the bending
behaviour of a NiTi square plate under several boundary conditions. The be-
haviour of the plate under several boundary conditions features a good agree-
ment, at the beginning of the loading, between the numerical and analytical elastic
results, while the influence of the mesh has also been analyzed. Furthermore, this
study shows that the behaviour of SMA is well modelled by the elastohysteresis
constitutive law and that the main effects observed numerically are consistent
with those observed experimentally on such shape memory alloys.
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Development of ground liquefaction due to surface waves (*)

A. SAWICKI and R. STAROSZCZYK (GDANSK)

EXPLOSIVE-INDUCED GROUND motions cause a number of complex phenomena in the water-satu-
rated subsoil. For example, pore pressures are generated as a result of ground motions leading
to a progressive weakening of saturated soil and to soil’s liquefaction. The phenomena of pore
pressure generation and liquefaction seem to be the main reasons which initiate underwater slides.
It is assumed that these phenomena are induced by the passage of Rayleigh waves caused by
explosions. The process of pore pressure generation is described by the compaction and liquefac-
tion theory of saturated granular materials. The theory is applied in order to study the behaviour
of water-saturated half-space, the motion of which is induced by the passage of Rayleigh waves.
Numerical computations were performed by means of Finite Element Method. They show the his-
tory of pore pressure generation, development of liquefaction zones and changes of displacement
amplitudes in the subsoil. The analysis was carried out for both harmonic in time and transient
Rayleigh waves.

1. Introduction

THE PRESENT PAPER has been inspired by a field experiment ADFEX (Arctic Delta
Failure Experiment) designed by the Canadian and Norwegian researchers in or-
der to study submarine slides. There is an urgent need for predicting the be-
haviour of natural underwater slides for risk assessment of offshore structures,
underwater pipelines, communication cables etc. One of important problems that
appears to be insufficiently recognized deals with the submarine slide initiation,
Syvitskl and SCHAFER [29], cf. also FRYDMAN and TALESNICK [9].

Experimental slides were artificially triggered using explosives. Explosive-in-
duced ground motions cause a number of complex phenomena in the water-satu-
rated subsoil. For example, pore pressures are generated as a result of ground
motions leading to a progressive weakening of saturated soil, and to soil’s lique-
faction in the extreme case. The phenomena of pore pressure generation and
liquefaction, caused by the passage of surface waves, seem to be the main rea-
sons which initiate slides.

The aim of the present paper is to study the behaviour of water-saturated
half-space subjected to the passage of both harmonic in time and transient Ray-
leigh waves. Saturated sand is treated as a two-phase mixture, with the solid grains
as one constituent and the pore water as the second one. The phenomenon of
pore pressure generation in such a mixture is described within the framework
of the theory originally developed by MORLAND and Sawicki [18, 19], cf. some
further modifications of that theory, SAwICKI [24], MORLAND et al. [20].

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,
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In the case of surface waves harmonic in time, the plane strain problem has
been transformed into the one-dimensional problem in space by applying the
method of LySMER [14]. In the case of transient surface waves the solution is
built on the basis of the solution for the time-harmonic case by applying the Fast
Fourier Transform technique.

Numerical results show the history of pore pressure generation, development
of liquefaction zones and changes of displacement amplitudes within the sandy
subsoil. An effect of pore pressure dissipation is also taken into account.

The results obtained indicate that the surface waves may lead to the pore
pressure generation in a saturated subsoil, and subsequently to liquefaction. The
other original feature of the present paper seems to be a presentation of a rela-
tively simple method of dealing with the problem of surface waves propagated
over a half-space, in which such phenomena as pore pressure generation and
liquefaction occur.

2. Wave motions and liquefaction

Mechanics of fluid-saturated granular media has been studied in various
branches of science and engineering, including geophysics and civil engineering,
depending on the objectives of investigations. Particular attention, especially in
recent years, has been devoted to the mechanics of saturated soils in which,
under certain conditions, the phenomena of pore pressure generation and soil’s
liquefaction take place. Several, both empirical and theoretical, models for soils
have been developed and applied to various problems of practical importance.
Extensive reviews of existing literature can be found in ZIENKIEWICZ et al. [32],
FINN [7], MARTIN and SEED [16], ISHIHARA and TOWHATA [12].

Pore pressure generation in saturated soils, and subsequent liquefaction, is
caused mainly by cyclic loads, although the same phenomena can arise under
monotonic loading, cf. MARTIN et al. [15]. An extensive research has been de-
voted to study the behaviour of fluid-saturated sand layers subjected to earth-
quake-induced motions. The most elementary model for predicting earthquake
effects is the one-dimensional wave propagation problem for such a layer sub-
jected to a cyclic horizontal acceleration at its base, ISHIHARA and TOWHATA [12],
ZIENKIEWICZ et al. [32], SAwicKI and MORLAND [23]. The primary source of the
layer motion is the upward shear wave propagation from the underlying vibrating
rock. Elaborated models allow the prediction of pore pressure generation in the
soil column and the development of liquefaction zones.

The model of upwards shear wave propagation is a simplification of a complex
loading situation during earthquakes. It is known that the major part of energy
released during earthquakes is transmitted in the form of surface waves propa-
gating in the Earth’s crust, cf. EWING et al. [6], ACHENBACH [1], GAZETAS and
YIEGIAN [10]. The surface waves are also generated by underground and surface
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explosions (cf. DAs [5]. Thus, when studying the influence of seismic loads on
pore pressures in saturated sands it is necessary to take into account some effects
caused by surface waves.

The authors of this paper have not found in available literature any study
devoted to the influence of surface waves on pore pressure generation in a satu-
rated subsoil and soil’s liquefaction. It is thus hoped that the present paper will
contribute a little to this important problem.

The importance of blast-induced liquefaction was recognized by geotechnical
engineers long time ago. KUMMENEJE and EIDE [13] report about some Norwe-
gian investigations on blasting tests performed in order to study the influence
of explosions on settlements and changes in soil strength, as well as liquefac-
tion. It seems that from that time no significant progress in understanding the
phenomena associated with the influence of wave motions on soil’s liquefaction
has been achieved, cf. a reference search by RAWLINGs [22]. In the opinion of
FrAGAszy and Voss [8], there was no generally accepted theory to explain the
blast-induced liquefaction mechanism, or to predict the occurrence and effects of
that phenomenon.

The above opinion is supported by more recent investigations. For example,
Raju and GupeHus [21] describe a field experiment performed in the Lausitz re-
gion of Germany, but they even do not attempt to propose any theoretical model
of the phenomena observed. Another paper of VEYERA and CHARLIE [30] deals
with the laboratory study of compressional liquefaction. They present a new ex-
perimental apparatus that has been developed to study the behaviour of saturated
soils subjected to compressional stress-wave loading. Their results indicate that it
is possible to liquefy sand under such conditions. However, they do not propose
any theoretical description of the problem, cf. VEYERA and CHARLIE [30].

explosion

air pressure

air slap induced motion )
crater region surface wave motion
(ground roll )

F1G. 1. Regions of ground’s motion due to explosion, after Stuber and Kok [28].

STUDER and Kok [28] present some considerations about the influence of ex-
plosions on the ground liquefaction. According to their opinion, there is hardly
any experience in liquefaction as a result of a non-contained explosion. They sug-
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gest that the uncommonly flat craterforms after several nuclear-weapon experi-
ments performed in the Pacific could be explained by liquefaction phenomena,
although there are no detailed observations and measurement results available
because that phenomenon was not found to be of interest in the past. Studer and
Kok have distinguished some regions within a subsoil in which different phenom-
ena caused by a non-contained explosion occur (cf. Fig. 1).

It is seen from Fig. 1 that at some distance from the source of explosion the
surface wave motion of the ground dominates. Such a long-distance effects are
of interest to civil engineers and will be considered in this paper.

3. Formulation of the problem

The plane strain problem of the motion of water-saturated sand half-space
is studied. The motions of the subsoil are generated by Rayleigh surface waves
propagating in the z direction (Fig.2). The analysis is carried out for both har-
monic in time and transient waves.

—_—

__y___-__

ground water (ab!e

water -saturated

. sand half-space . . .|. . . ™\ surface wave

z

FIG. 2. Coordinate system (plane strain problem).

In the problem considered we deal with loads which act in a relatively short
period of time, ranging from a fraction of a second in the case of blasts, to few
seconds in the case of earthquakes. Moreover, the phenomena of our interest,
as pore pressure generation and liquefaction, occur only in saturated sands char-
acterized by a rather low permeability. Accordingly, one can assume that the
relative motion between the soil grains and the pore fluid is negligibly small, and,
hence, the following relation can be written:

(3.1) w=u =u,

where u denotes the displacement vector, and the respective superscripts distin-
guish either the soil skeleton (s) or the pore fluid (f). The assumption of com-
mon displacement field u of both constituents of the two-phase medium allows
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for adopting a simplified model of saturated soil, corresponding to the so-called
“undrained conditions”. Such a model leads to a rather simple description of the
phenomenon of pore pressure generation. The relative motion of both phases
is caused by the phenomenon of filtration which depends on real time. The in-
fluence of filtration on pore pressure generation depends on both the duration
of the applied loads and the subsoil’s permeability. That influence will be taken
into account in a numerical procedure applied in order to solve a boundary value
problem. It is assumed that within each step of computations the subsoil prop-
erties do not change and the assumption of undrained conditions is valid. In the
next step of computation the state of excess pore pressures is “frozen”, and as-
sumed as an initial condition for the problem of pore pressure dissipation. Then
the dissipation problem is solved giving an initial state for subsequent step of
computation of excess pore pressure, cf. SAwicki and SwipziNski [26]. The equa-
tions of motion of saturated sand, treated as a single-phase medium, are of the
following form (ACHENBACH, [1]):

0%u;

o2’

where o;; denotes the total stress tensor, p is the soil density, g; are the compo-
nents of the external body force density, and ¢ denotes time.

The total stress in the two-phase medium is a sum of partial stresses in re-
spective constituents:

(3.2) oij; togi=p

(3.3) oij =0 + ol
with of; and aifj denoting the stress tensor components in the soil skeleton and
pore fluid, respectively. The non-viscous liquid does not carry shearing stresses,
so we can express the fluid stress tensor components by

(3.4) 0{]- = —6ij-n-Epf,

where §;; is the Kronecker delta, n denotes the volume porosity and “p/ stands
for the intrinsic pore pressure. The behaviour of the saturated soil depends to
great extent upon the so-called effective stresses o7}, defined by the equation

(35) Gll-j =0 + (51']‘-Epf.

In this paper we have adopted the solid mechanics sign convention, i.e. positive
values of the stress tensor components o;; mean tension, while positive fluid
pressures £p/ mean compression.

The soil mass density p is related to the respecive intrinsic skeleton and pore
fluid densities p* and Fp/ by the formula:

(3.6) o=0-n)Fp*+nFpl.
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When analysing the deformation of the soil it is useful to distinguish two
kinds of it. The first one includes reversible (elastic) changes of dynamic origin,
generated by propagating wave; and the second kind includes both static (elastic
due to the own weight of soil) and irreversible (inelastic related to the sand
compaction) variations. Thus, it is convenient to decompose the displacement,
strain and stress fields as follows:

ui=u§+u{,

(37) € = 65 + e{j §

1

b e R
gij = 05 +U,j,

with the strain tensor components e;; defined by:

1
(38) €ij = z (u,',j + ’u,j,,‘),

and the superscripts R and I referring to the reversible and irreversible parts of
relevant quantity. Decomposition of the stress tensor, and consequent decompo-
sition of the equation of motion, have been introduced for the sake of simplicity.
Note that the irreversible part of the stress tensor is caused by the gravity and
remains constant during the analysed processes of pore pressure generation and
dissipation.

Substitution of Eq.(3.7) into Egs. (3.2), under the assumption that the time
derivatives of irreversible parts of displacements u/ are small in comparison with
the reversible (dynamic) ones, leads to the following two equations:

9%l
FRE, o 1
(3.9) %55 = @5
for reversible, and

(3.10) ai’j,]’ +0g:=0

for irreversible variations. Eq. (3.9) governs the motions of subsoil due to dynamic
loads, while Eq.(3.10) describes the stress state due to static loads.

It is assumed that the motions of the subsoil are excited by the passage of
Rayleigh surface waves. Harmonic in time and transient waves are studied. Since
the solution for a wave of arbitrary time dependence will be built on the basis of
time-harmonic solution by applying the Fourier superposition method, we confine
our attention to the variations harmonic in time, which can be expressed in the
following form:

= U; exp (iwt),
E;; exp (iwt),

uR
(3.11) eR
R
]

0‘..

= T;; exp (iwt),
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with U;, E;; and T;; being the amplitudes of respective functions. Assuming the
surface wave to propagate in the positive z direction, the general solution of
Eq.(3.9), describing the soil displacements generated by the wave, can be ex-
pressed by the formulae:

u

A(2) exp [i(wt — kz)],
B(z) exp [i(wt — kz))],

where «® and uf denote the horizontal and vertical displacements of the subsoil,
respectively, & is the wavenumber of the surface wave, w is the angular frequency
of oscillations, and i = v/—1 is the imaginary unit. The functions A(z) and B(z)
are to be determined from the boundary conditions, which at the free surface
(z = 0) are of the form

(3.13) ol (2,0,t) = of (2,0,1) = 0.

In addition, the functions uf and uf, together with their first space derivatives,
should vanish for infinite values of depth 2.

As concerns the transient wave motion, the elastic changes in the subsoil
are determined by employing the solution for the waves harmonic in time. In
the present work the transient wave is defined by a function describing the time
variation of o, at the free surface. This function is expanded in the Fourier series
and the corresponding free surface displacement amplitude is determined for each
stress harmonic. These displacement amplitudes are then used to normalise each
component wave, and, finally, a superposition of all harmonic modes is carried
out in order to describe the transient wave pattern. In this analysis the discrete
Fourier series are applied, and all calculations are performed by means of the
Fast Fourier Transform.

In order to determine the displacement, strain and stress fields in the soil due
to the Rayleigh wave passage, it is necessary to supplement Egs.(3.9) with the
appropriate stress-strain relations. In the present investigation we have assumed
that, within the range of strains analysed (less than 10~3), the elastic response of
the soil to the applied loads is governed by the Hooke’s law

(3.14) oft = \éijefl + Gell,

(3.12)

u

N3 8

with A and G denoting Lamé’s elastic constants. Both elastic parameters are
assumed to be stress-dependent (they vary during the process of pore pressure
generation). Amongst many factors influencing the elastic properties of soils, the
most significant role is played by the magnitude of the effective stress in the
soil skeleton. In the literature of the subject most attention has been paid to the
shear modulus G. In the present analysis we adopt one of the simplest approaches
being, however, in good agreement with the results of experimental tests (SILVER
and SEED [27]; HARDIN and DRNEVICH [11]), i.e.

(3.15) G = Gy + G1/7,
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where G and G are constants which should be determined empirically, and p’
(which has to be substituted into (3.14) in units 10° Pa) denotes the mean effective
pressure in the soil:

(3.16) o = ~30k~ ",

where the first term on RHS denotes the mean total pressure due to static loads.
No experimental data regarding the influence of the stress level on Lamé’s con-
stant A have been available so far. Therefore we have assumed this quantity to
vary in such a way that the Poisson’s ratio » remains constant throughout the
whole deformation process (such an approximation is widely applied in geome-
chanics). Consequently, there is

2v
N s /
3.17) Alp) = T G(p").
Irreversible strains consist of two parts:

The static part of the strain tensor e}; represents the settlement of the subsoil
due to its own weight. The strains ef;, together with the stresses o}, can be easily
determined by using standard methods of the classical soil mechanics.

The tensor ¢f;, appearing in Eq. (3.18), represents inelastic strains developing
in the soil due to the shearing. In order to determine these strains we make use of
the model formulated by MORLAND [17] and MORLAND et al. [20], which is an ex-
tension of the earlier developed compaction theory of granular media (MORLAND
and SAwicki [18, 19]). In the model adopted the compaction, meant as a de-
crease in sand volume due to irreversible rearrangement of a granular structure,
is governed by an evolutionary law. That law describes the rate of compaction as
a function of the current inelastic strain state (compaction) and a certain scalar
measure of the current deviatoric state. Following MORLAND [17], the constitutive
equation describing the soil compaction is adopted in the following form:

d c
(3.19) = a-R(¢°)-S(J),
d§
where e¢ denotes compaction (e¢ = —ef;), and e¢ > 0 means volume decrease.

The variable ¢ is a time-independent loading parameter, which is increasing as
shearing takes place, but remains constant during purely isotropic straining. This
variable, representing the accumulating deviatoric strain, is defined by

(320) d¢ = ”%dé,‘j (lé,’j ;
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where é;; is a deviatoric part of the strain tensor,
. 1
(3.21) dé;; = de;; — 3 0i; degy .
The parameter o, entering Eq. (3.19), is a material constant (0 < a < v/3), and
R and S are material functions. These functions have been determined experi-

mentally from an oedometric test. After MORLAND et al. [20], the model functions
R and S have been assumed in the following forms:

N
R(e°) = exp {— > Tn(ec)"} )

(3.22) b o
SCh) =1+ s, (V30)",
n=1
where
(3.23) Ji= %éu €ij

denotes the second deviatoric strain invariant. The polynomial coefficients r,, and
sn, appearing in Egs. (3.22), were calculated by correlating the experimental data
with the assumed polynomial curves used for the construction of the material
functions R and S (for details see MORLAND et al., [20]).

The above constitutive relations can be applied for both monotonic and cyclic
loads. However, in the case of cyclic (not necessarily time-harmonic) motions of
the subsoil, the analysis can be considerably simplified by applying an approach,
denoted as an engineering compaction theory, formulated by Sawickr [24]. In
this approach the behaviour of the compacting sand is averaged over each cycle
of loading, and the interest is restricted to the mean trend only, i.e. the local
oscillations imposed on this trend are excluded from the analysis. Therefore the
constitutive relation governing the sand compaction has the form:

(3.24) 9P e DyiJyexpl—Dad),
dN

where & is a measure of compaction, defined by

(3.25) ¢ = ¢,

and N is a number of cycles (treated as a continuous variable), and J, is the
second invariant of the deviatoric part of strain amplitudes tensor E;;:

~

(3.26) Jy = Eij'Eij 3

[N



566 A. SAwickl AND R. STAROSZCZYK

with

(327) E,‘j - E,‘j i %5,‘j Ekk 3
The parameters D; and D, are material constants for a given sand, and can be
determined experimentally (cf. SAwicki [24]).

The constitutive relations (3.19) and (3.24) describe the behaviour of dry sands,
or saturated ones in free draining conditions, in which the pore water can easily
flow through porous soil skeleton. When, however, the saturated sand is subjected
to shearing in either no draining or partially draining conditions, rearrangements
in the soil structure are resisted by the pore water and, consequently, pore fluid
pressures are generated. The phenomena of compaction in free draining condi-
tions, and pore pressure generation in undrained conditions, can be quantitatively
related to each other by the following formula, deduced on the empirical basis
by MARTIN et al. [15]:

ds 1 dec
(3.28) _f = EE
for monotonic, and

ds 1 dec
e iN "k dN

for cyclic loads, with s denoting the generated pore pressure and « being the soil
skeleton compressibility.

In the problem considered a free drainage of the pore water across the upper
surface of the saturated half-space can occur, resulting in dissipation of the gen-
erated pore pressures. A method of dealing with the problem of pore pressure
dissipation was briefly described at the beginning of this Chapter. The equation
governing this process, assuming incompressibility of pore fluid, is of the following
form (VERRUUT [31]):

as_ 2
_a—t_ﬁvs’

where the coefficient 3 is defined by

(3.30)

_ ks
(3.31) 8= Eg—fri ,

and V2 denoting the Laplace operator. The filtration equation (3.30) should be
solved with the boundary conditions

(3.32) s(zy hyy t) =0
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and

. 0Os

(3.33) z&rgo 5 0,
where h,, is the depth of ground water table (see Fig.1). Equation (3.32) means
that the pore fluid can freely move through the surface z = h,,, while Eq. (3.33)
means that no pore fluid motion takes place at the infinite depth z.

Simultaneous solution of the set of three differential equations: (3.19) or
(3.24), (3.28) or (3.29) and (3.30) enables the calculation of current values of
generated pore pressures s due to the wave-induced loads. The increase of pore
pressures leads to redistribution of the total stresses between the soil skeleton
and the pore fluid and, due to decrease in the mean effective stress p/, to progres-
sive weakening of the soil (cf. Eq.(3.15) and (3.17)). Denoting by pj, the initial
(static) mean effective pressure, and assuming that at the beginning of dynamic
loading s = 0, the changes in the mean effective pressures during the dynamic
loading process can be described by the relation

(3.34) P ==

When the mean effective stress p’ = 0, the shear modulus G reaches its minimum,
residual value Gj. At this moment the soil resistance to relative motions of the
skeleton grains becomes negligibly small and the soil is said to be liquefied (for
Gy — 0 the saturated sand behaves macroscopically like a liquid).

The constitutive relations describing the behaviour of liquefied soil have not
been available yet, so we have assumed in this study that since the onset of
liquefaction the mechanical properties of the medium do not change (i.e. they
are described by residual values of Lamé’s constants).

4. Remarks on numerical solution to the problem

The problem has been solved by applying an incremental step-by-step in time
method and the finite element method in space variables. The semi-infinite do-
main has been replaced by a layer of finite depth # (see Fig.3). A rectangular
finite elements grid has been imposed on this layer. The discrete model consists
of a system of n sublayers, each of constant elastic properties for a given time
step. The thickness b; of each sublayer can be different, while a horizontal spacing
a is assumed to be constant throughout the discrete system.

The plane, harmonic in time, wave propagation problem has been transformed
to the one-dimensional in space problem by employing the method formulated
by LysMmER [14]. This method is based on the following formulae, relating the
displacement amplitudes at the neighbouring nodes, situated at the same depth z:

Uz — a,z) = Uz, z)exp(ika),
(1) i ) = Ui(z, z) exp(ika)
Ul(z + a,z) = U(z, z) exp(—ika),
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FiG. 3. Discrete model of the problem.

with | = z, z, for amplitudes of horizontal and vertical displacements, respect-
ively. By applying Eq.(4.1) we are able to express the displacement amplitudes
at any nodal point of the same depth 2 by means of the amplitude at one chosen
node (zg, z). Hence, the wave pattern in the whole layer is completely described
by displacement amplitudes at the nodes situated along the chosen line z = 2.
In effect, we deal with the one-dimensional problem, with sublayer stiffness and
inertia matrices describing the properties of the discrete system. The elements
of these matrices depend on elastic constants G; and A;, mass density p;, the
wavenumber k, and the mesh sizes a and b;. In order to achieve a better ap-
proximation of the continuous medium by the discrete system we assume the
horizontal spacing a to be infinitesimally small. That is, we calculate the so-called
limit sublayer stiffness and mass matrices. Then, by assembling all the sublayer
matrices into global ones, we arrive at the generalised eigenvalue problem, with
complex-valued stiffness matrix and real, tri-diagonal inertia matrix. Next, by per-
forming some matrix manipulations, the eigenvalue problem is reduced first — to
the one in real variables, and then — to the standard eigenproblem for a real and
symmetric matrix. By solving this problem, we obtain a set of eigenvectors, from
which we choose the one corresponding to the lowest eigenvalue (the remaining
vectors are omitted, because of considering the layer of finite depth instead of
the half-space). The fundamental, Rayleigh wave mode, is then normalised with
respect to the chosen wave parameter, e.g. free surface displacement or acceler-
ation amplitude, the total wave energy, etc. Having determined the surface wave
mode (which describes the displacements within the vertical profile of the soil
layer), we are able to determine current strain and stress fields, and, hence, devi-
atoric invariants J; or J,, appearing in the constitutive relations (3.19) and (3.24).
Next, solving simultaneously the differential equations (3.19) or (3.24), (3.28) or
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(3.29) and (3.30), we can calculate current values of the generated excess pore
pressures s, effective pressures p’ and, finally, the modified values of elastic con-
stant: G and A. The whole procedure is repeated for each step of calculations
until the prescribed number of cycles (or the time) are reached.

5. Numerical results

Some numerical computations have been performed for both the time-har-
monic and transient surface waves. The material parameters, describing the sand
compaction, were determined experimentally by Sawickr and SwipziNski [25] —
for the case of cyclic, and MORLAND et al. [20] - for the case of monotonic loading.
The parameters for different sands have been used in the two cases considered.
The surface waves parameters, used in the computations, have been chosen on
the basis of data published in STUDER and Kok [28]. In both cases the ground
water table was assumed to lie 2m below the free surface of the subsoil. The
thickness of the soil layer in the FEM model is H# = 200 m. The model consists
of 40 discrete sublayers, the upper 20 ones of thickness 2m each.

5.1. Waves harmonic in time

The calculations have been carried out for material parameters corresponding
to the medium dense Ottawa sand: Go = 10MPa, G; = 70 MPa, Poisson’s ratio
v = 0.25, earth pressure coefficient g = 0.5 (needed to calculate the pressure
due to the own weight of the soil), the intrinsic sand density ¥p* = 2650kg/m?3,
initial porosity n = 0.4, the compaction parameters D, = 1740 and D, = 115.
It has been assumed that the motion of the subsoil is induced by the Rayleigh
wave of angular frequency w = 12.57s~! (wave period 7' = 0.5s), and the initial
horizontal acceleration amplitude at the free surface equal to 0.1g (0.91 m/s?).

Figure 4 displays the time history of pore pressure generation within the upper
50m (filtration coefficient k; = 10~%m/s). One can see that the excess pore
pressures are generated most rapidly in the two regions: near the free surface of
the sand deposit and at the depth of about 30 m. Consequently, two liquefaction
zones develop (see also Fig.5). The first one appears at the instant N = 10.6
(t = 5.3s) under the ground water table, where the soil is the weakest (the
latter because of small values of static effective pressures, which considerably
influence both Lamé’s constants). The second zone of liquefied soil appears at
N = 27.6 (t = 13.8s), at the depth of about 24 m, where the magnitudes of
generated pressures are much greater (in this region the shear stress amplitudes
produced by the Rayleigh wave reach maximum values). The second liquefaction
zone spreads out very quickly, and after the time of 1.7s the two regions of
liquefied soil merge. From that moment (¢ > 31s), the process of pore pressure
generation develops at much smaller rate and affects the relatively small domain
that lies directly under the zone of the already liquefied soil.
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Figure 5 illustrates the influence of soil permeability on the rate and range
of the liquefaction process. It is seen that the liquefaction due to seismic loads
can develop not only in soils characterised by low permeability, but also in sands
considered as highly permeable. For the numerical data applied, the phenomenon
of liquefaction develops even for the filtration coefficient as high as k; = 10~3 m/s.

Only very permeable sands (k; S 5x10~3mys), are not susceptible to liquefaction
(the phenomena of pore pressure generation and dissipation balance each other).
On the other hand, it follows from Fig.5 that all sands characterised by the
filtration coefficient &y < 10~ m/s behave similarly and can be regarded (at least
when considering seismic loads) as practically impermeable.

normalised vertical displacement amplitudes

depth (m]
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F1G. 6. Changes in vertical displacement amplitudes with increasing number of cycles N
of surface waves.

The variations in displacement field in the subsoil as a function of the number
of cycles N are shown in Figs. 6 and 7. For the sake of convenience, the vertical
and horizontal amplitudes plotted in these figures are normalised with respect
to the initial free surface vertical displacement amplitude. The most consider-
able changes in displacement field occur in the period preceding the onset of
the second (deeper) zone of liquefaction. The formation of the first, near-free
surface liquefaction zone, affects the wave pattern in a relatively small degree.
Only the weakening (due to increasing pore pressures) of deeper layers of the
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F1G. 7. Changes in horizontal displacement amplitudes with increasing number of cycles N
of surface waves.

subsoil leads to significant increase in displacement amplitudes. For instance, at
the free surface, the maximum vertical displacement amplitudes are almost 2.8
times greater than the initial ones; as concerns horizontal motions, the increase
in amplitudes is less dramatic — it does not exceed the value of 1.6.

5.2. Transient wave

The following parameters, corresponding to the loose Leighton Buzzard sand,
have been used in computations: Gy = 8.25MPa, G; = 50 MPa, Poisson’s ra-
tio v = 0.25, the initial porosity n = 0.40, the skeleton intrinsic mass density
Egs = 2650kg/m3, the filtration coefficient k; = 10~*m/s. The material func-
tions, describing the compaction of sand, have been assumed after MORLAND et
al. [20]. It has been assumed that the motions of the subsoil have been induced
by the surface wave which produces, at a chosen point of the free surface, the
horizontal stress distribution of a triangular shape in temporal domain (cf. Fig. 8).
The total duration od excitement is T = 0.1s, with the maximum value of the
stress o™ = 1(0° Pa reached at the instant ¢y = 0.02s.

Figure 8 illustrates the development of liquefaction zone (dotted area) during
the passage of the surface wave (¢ < 0.1s), and subsequent resolidification of
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F1G. 8. Development of liquefaction (¢ < 0.1s) and resolidification (¢ > 0.1s) in saturated sand
deposit due to transient surface wave.

the soil deposit after the passage of the wave (¢ > 0.1s). It is seen that the
liquefaction zone spreads out monotonically from the near-ground water table
region towards deeper layers of the subsoil. The process of liquefaction develops
almost entirely during the first loading phase (¢ < 0.02s). During the unloading
phase the liquefaction zone increases its range as well. For comparison, in the
same figure the range of liquefaction for smaller maximum stress level (¢M& =
5 x 10*Pa) is depicted with a dashed line. After the passage of the wave the
phenomenon of pore pressure generation stops, and the process of dissipation
of pore pressures starts. Consequently the soil begins to resolidificate. For the
value of k;y = 10~*m/s this process takes only about 20s due to a high sand
permeability; but for less permeable soils this period can be measured in days or
weeks.

Finally, Fig. 9 shows the histories of pore pressure generation (a) and dissipa-
tion (b). As it follows from the plots, the most rapid increase in the generated
pore pressures occurs in the loading phase (¢ < 20ms), while during the unload-
ing the rate of excess pore pressure increase falls down significantly. In Fig. 9b
the changes in pore pressures distribution due to their dissipation are displayed
for 0.1 s < ¢t < 1000s. One can notice that during the first period the excess
pore pressures decrease only in the upper part of the layer, while in its lower
part (directly under the liquefied zone) an increase is observed. Only after some

period of time (¢ > 500s), a uniform decrease in pore pressures throughout the
whole sand deposit takes place.
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6. Conclusions

An original method of dealing with the problem of surface waves propagation
over a half-space, in which such phenomena as pore pressure generation and
liquefaction occur, is presented in this paper. The method is based on the con-
stitutive theory of saturated granular materials that takes into account the above
mentioned phenomena, and a numerical algorithm based on the Finite Element
Method. Numerical computations, performed for real data, show that the surface
waves propagating over a saturated subsoil may lead to the pore pressure gener-
ation and the subsequent ground’s liquefaction indeed, as it has been observed
in practice.

Mechanisms of development of liquefaction zones in the subsoil are illustrated
by numerical examples, as well as some detailed conclusions are drawn. The main
conclusion which follows from the present paper is that the method proposed
can serve as a theoretical tool in the analysis of pore pressure generation and
subsequent liquefaction of a subsoil subjected to the passage of surface waves.
Further work, both theoretical and experimental, is necessary in order to develop
more precise methods of dealing with the problems analysed in this paper.
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Shear band localization in saturated porous media (*)

B.A. SCHREFLER, C.E. MAJORANA
and L. SANAVIA (PADOVA)

A COMPUTATIONAL ANALYSIS of dynamic strain localization in multiphase solids is presented in this
paper. The governing equations are obtained by means of averaging theories based on spatial aver-
aging operators. Continuum wave propagation is used for the study of localization. The directions
of localization are obtained by means of an eigenvalue analysis of the acoustic tensor. The inves-
tigation of the development of localized bands is carried out by means of a finite element code.
The influence on localization of coupling between the constituents is studied. Several examples are

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,

shown.
Notation
s solid phase,
f  fluid phase,
g gaseous phase,
! liquid phase,
a solid acceleration,
a’  fluid acceleration,
b body force vector,
B acoustic tensor,
¢ acceleration wave speed,
C, specific moisture content,
Cr tangential constitutive tensor,
D Eulerian strain rate tensor,
d/dt material time derivative with respect to the moving solid,
e void ratio,
fi  affos,
fri 0f[/0Xi,
g gravity acceleration,
E deformation tensor,
F deformation gradient tensor,
G dynamic seepage matrix,
H permeability matrix,
I identity matrix 3 x 3,
K, solid grain bulk modulus,
Kt overall skeleton bulk modulus,
K; fluid phase bulk modulus,
k- liquid phase relative permeability,
ka:  absolute permeability tensor,
ki = katkr g;ty permeability tensor,
Kr tangential stiffness tensor,
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initial stress tensor,

velocity gradient tensor,
mass matrix,

1110007,

gas pressure,

water pressure,

equivalent force vector,
coupled matrix,

average relative water velocity,
average relative gas velocity,
rotation tensor,
compressibility matrix,
water saturation,

gas saturation,

time variable,

surface traction tensor,
solid displacements,

right stretch tensor,

solid velocity,

fluid velocity,

relative velocity,

left stretch tensor,

spin tensor,

Biot’s coefficient,
Newmark’s parameters,
linear elastic strain tensor,
material rotation rate tensor,
normal jump of the spatial velocity gradient,
liquid dynamic viscosity,
porous medium density,
solid grain density,

water density,

gas density,

Cauchy stress tensor,
Jaumann stress rate tensor,
effective stress tensor,

¢  porosity.
Variable with overbar refers to the nodal values.
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1. Introduction

GEOMATERIALS EXHIBIT, both in laboratory experiments and in field situations
strain accumulations in well defined narrow zones. In such shear bands, material
behaviour is inelastic, while the remaining zones are elastic, with infinitesimal
strains. The triggering mechanisms for the formation of shear bands are inho-
mogeneities in the material and stress concentrations. Typical examples can be
found in brittle geomaterials such as concrete and rocks, where progressive dam-
age produces strain softening, or in soil as for instance in case of slope instability
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or foundation failure. When the frictional properties of the material are more
critical than the cohesive properties, we have Mode II (shear banding) dominated
processes which may be simulated by plasticity models.

The analysis of strain localization is of importance in engineering practice be-
cause localization is a precursor to failure. In this work we present the theoretical
framework of localization in geomaterials and the results of the first developments
of computational investigations. Geomaterials are considered as multiphase ma-
terials in fully saturated conditions. The final aim however is to develop a model
applicable both to fully saturated and partially saturated conditions.

It will be shown that the role of the fluid in localization is fundamental, since
shear band formation preceding failure is affected by the interaction between
solids and fluids, in terms of time sequence of band formation and the way of
shear band development.

The topic of strain localization has been analysed in recent years by many
authors, in particular in connection with single-phase solids [14]. The problem
of dynamic localization in single phase solids has been investigated, e.g., by
Scuys [19]. Strain localization in multi-phase materials received less attention.
Quasi-static cases were studied by RICE [16] and Rupnickr [17] and dynamic
cases by VARDOULAKIS [22]. A finite element analysis of dynamic strain localiza-
tion of saturated porous media was first presented by LORET and PREvosT [10].

In the present paper we also use the dynamics of wave propagation [2] to
investigate localization. Loret et Prevost applied a uniform axial compressive
velocity jump along the top and bottom of a specimen, while Sluys used compres-
sive impact loading. In both cases high frequency situations are studied where
localization is initiated when the elastic loading wave hits the symmetry line (or
immediately after). Here we show that dynamic localization may also be initiated
by ramp loading which is more common in practical engineering situations. Lo-
calization starts here well after the first wave front hits the symmetry line but, as
in the above cases, no weak element is needed to trigger off the formation of a
shear band. This means that at least in fluid saturated media, propagating waves
are not negligible even if a relatively small number of low frequencies govern the
response.

The acoustic tensor is used as a search algorithm to determine the inclination
angle of the shear band and as a check of the obtained numerical solution. This
information may be used for mesh alignment. Coupling phenomena between solid
skeleton and pore fluid are investigated in detail and the influence of permeabil-
ity in fully saturated situations is pointed out. Pore pressure localization is also
shown.

Since we aim to extend the model to partially saturated conditions, we treat
the porous medium as a three-phase continuum, with the pores filled by water
and air.

The fully saturated case, dealt with here, is only a subcase of the more general
model. This model is explained next, following [12].
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2. Mechanics of porous materials
2.1. Mathematical framework

2.1.1. Kinematics. The kinematics needed in the following is briefly recalled first.

Strain behaviour is locally defined by the deformation gradient tensor F [11,
12]. The polar decomposition theorem allows to express pure straining by the
right stretch tensor U or the left stretch tensor V, while the rigid body rotation
is described by the skew-symmetric tensor R:

(2.1) Fij =zi; = Rix Uxj = Vig Ryj .

The deformation process is described by the velocity gradient tensor L, which,
referred to spatial coordinates, is given by

2.2) Lij = i = (Rim Unk + Rim Umi) (Bt Un) ™"

Its symmetric part is the Eulerian strain rate tensor D, related to pure straining
component according to:

1 1 4 .
(23) Di]' = E(LU + L]z) — ERik [Ukn (Unm)_l + (Uk:n)_1 Unm] ij )

while its skew-symmetric component is the spin tensor W. This is commonly
associated with the material rotation rate tensor ® = RRT [13] (giving the
angular velocity of the material [4]), even if it differs from it according to the
following expression:

1 i 1 .
(2.4) Wi; = 5(Lij — Lji) = RaRjk + s Rix [Ukn(Unm)_l

2 2
_(Ukn)_l Unm] R]'m .

The approach adopted here to study the overall behaviour of multiphase me-
dia is an updated Lagrangian formulation, where the reference configuration is
the last converged step. This description is properly Lagrangian only for the solid
phase, while it is Eulerian in nature for the fluids: their relative flows are of im-
portance here, hence their motion is referred to the actual configuration assumed
by the solid skeleton.

The velocity and acceleration of each fluid particle can then be written with
reference to the ones of the corresponding solid points, once the relative velocity,
v", is introduced. Assuming that kinematics variables not explicitly marked refer
to the solid phase motion, we can write:

dvf
dtl + i (vi + 975,

where d/dt is the material time derivative with respect to the moving solid.

1

(2.5) vlf =v; + v, aif =aq; +
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An average relative fluid velocity is obtained through averaging technique over
a representative volume element dV'. This velocity component is indicated by g¢;
for the liquid phase [18]:

dVy dV;
Is = . = f LR AV
(26) 'Ul ql dV de (vt )l

and by q; for the gaseous phase.

(2.7) ot =g = T8V

P = 0= G @l = 9= 0D

The averaging symbol ( ) is omitted in the following.

2.1.2. Balance equations. The macroscopic balance equations of mass and momen-
tum are also obtained by means of systematic application of averaging procedures
[7-9, 18] to the relevant balance equations of the constituents at microscopic
level. The ensuing macroscopic balance equations coincide under appropriate as-
sumptions with those of the classical mixture theories, integrated by the concept
of volume fractions [6].

In the following, deviatoric stress components are not considered in fluids and
compressive pore pressure is defined as positive. At the macroscopic level, the
effects due to deviatoric stress components are accounted for through Darcy’s
law, by viscous drag forces exerted on the solid phase. Isothermal conditions and
no phase changes are assumed and the phases are immiscible and chemically
non-reacting.

The linear momentum balance equation for the whole mixture may be locally
written in its Eulerian form [12] as:

(2.8) ob; + 0;;/; — pa; — ¢£’f(“if - a;)
dvir T
= 0b; + 0j;/; — 0a; — 05 [¢_dt + ‘ljj (”i/j + ”i/j)] =0.

When this local condition is written for one phase alone, a specific term must be
introduced to take into account the mechanical interactions occurring at the real
interfaces with the other phases. These surfaces differ, in fact, from the boundary
of the representative volume element over which the quantities are averaged. The
external momentum supply represents the dissipative part of fluid-solid exchange,

(2.9) 87 = posral — ¢y — dosbi.

The mass conservation equation is introduced in its local form for the mixture
water plus solid:

(2.10) vi/i+(l_¢)dgs+2@+f§+qi/i

q:
+ T
0, dt o dt S dt S ng(gl)/l 0,
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and for the mixture gas plus solid:

(A—g)do, ddo, . & d(1-8) .
o B Tl A5 & @-9

50
+W(Qg)/z =

According to the updated Lagrangian formulation applied, the convective
components of acceleration must be considered only for the relative velocity of the
fluids. Effective stress with the correction for multiphase flow, where saturations
are used as weights, and with the further correction [24] for the deformability of
the grains (with @ = 1 — K7/Kg5), is now introduced in the linear momentum
balance equation. The equilibrium condition for the whole mixture can be written
in its weak form as virtual velocity equation:

(2.12) V/ [0 ~ abij(Sp + (1= S)py)] DijaV - / fividA - V/ obiv; dV
_V/g%v,— dV+V/¢> [9:5 2 <¢S) + 0,1 - 8)= (¢(1qi S))] o dV
+V/¢ [quj (%)H i (¢(1—q—5—)>/j oty

The weak form of the continuity equations is obtained by integrating over the
porous media volume the local conditions weighted with functions ép,, which
have continuity up to their first derivatives and satisfy the boundary conditions.
The equation for water plus solid becomes [12]:

(2.13) /6p1 {aSvi,,- +Cup, + Clgi)g + [(l—c_ilg—s—)(pl - pg) + d)] S } dv
|4

+ /51’1(11' (Q;)/i dv + /(61’1)/1'(11' dv + /5P1qmi dA =0
I
v v A

and for the mixture gas plus solid:

. . [C :
e [, {a(l _ 8)0i; + Cagdy + Clady — [%(})g —p) ¢] 5 } v
|4

g

+/6pgqi (gs)ﬁdV + /(5pg)/iqidV + /5pgqini dA =0
|4 |4 A

(see Appendix for the coefficients Cyy, i, and Cyp).
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2.13. Constitutive relationships. A hypoelastic constitutive relationship is here ado-
pted. When dealing with large deformation effects, involving also large rotations,
care must be taken in the material frame invariance of the law itself. This can
be obtained by expressing the constitutive law as a function of objective fields,
which here are chosen as the objective Eulerian strain rate D (Eq. (2.3)) and the
associated objective stress rate measure defined by Jaumann [12], which is related
to the Cauchy stress rate by the non-objective spin tensor, W (Eq. (2.4) through:

Js . .. _R:
(2.15) 05 = 0ij — 0iuWip — 0mjWim = 0 0ij
with RO','J' = 0k ij + Ujkwik .

The constitutive law taking into account the modified effective stress principle
mentioned above can thus be written in incremental form as:

(2.16) Gij = CijuDii — abij (Spy + (1= 8)p,) + Réy;.

The Jaumann stress rate tensor can be properly used as a co-rotational measure
associated with D in an updated Lagrangian approach with the strain increments
kept small enough in each step of the analysis. In this hypothesis not only D gives
a suitable description of the strain rate, but also W is an accurate approximation
of the local angular velocity. This approach can also be used for elasto-plastic
analyses, and leads to a good approximation in the hypothesis of small elastic
components of deformation [12].

As far as the fluid phases are concerned, the constitutive equation governing
the momentum exchange among different phases can be expressed as a function
of average relative velocity, q/, once its frame invariance is proved. The latter
variable depends on volume fractions, which are objective being scalar, and on
the relative velocity, v", which is also frame indifferent [12].

A thermodynamically consistent constitutive equation is then introduced for
the dissipative part of fluid-solid exchange of momentum, which is related to fluid
relative average velocity through the resistivity tensor R/

(2.17) S = ¢pRlq; .

This relationship leads in fully saturated conditions to the generalised Darcy’s
law, which can be written in the following form:

(2.18) ¢ = (kat)ij [—(Pl)/j + oi(b; - “;‘)} :

For partially saturated conditions, the absolute permeability tensor k,; must be
multiplied by the relative permeability k,;, given as function of p; [18]. A similar
relationship has to be written for the gas phase.
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The symmetric tensor k,;, when the permeability is distributed in an anisotropic
way, is updated according to k,; = RTkyR.

In finite deformations this permeability tensor should be further updated if it
is assumed to be a function of void ratio e, defined as the ratio between the void
volume over the solid one. Being e, in the initial configuration,

= dVOI e dVO - d‘/os — ¢o

G ST T, gby  1—g

we have in the actual configuration

c g ol _ av dv, dv; e -1
(220) E == i——_d) = d—‘/s 1= dVO dVOS dVs 1= J(l CO)JS .

Using an updated Lagrangian approach with time step increments small enough
to have in each of them only a negligible contribution from the second order
strain component, volume strain is satisfactorily approximated by the trace of the
linear strain tensor. The current void ratio can then be evaluated by neglecting
the specific contribution of proper grain deformation to the overall volume strain,
which leads to

(2.21) e=(1+e)1+tre)—1=¢, +(1+e,)tre.

2.1.4. Simplified governing equations. The numerical formulation actually implemented
is developed assuming the gas phase at atmospheric pressure (p, = 0).

Convective components of pressure and fluid density variation, which are seen
to be not significant, are neglected and air density is assumed to be zero. In this
case the mass balance of the mixture gas plus solid gives only the air flow and
needs not to be considered.

Another simplification arises when acceleration frequencies are low, as is the
case in earthquake motion: all the terms involving the relative component of fluid
acceleration can then be ignored [24], being:

d (g ) ( gi )

dt <¢5 \eS),;
This allows for reducing the primary variables to solid displacements and fluid
pressure, and the final system to be solved consists of the momentum balance

condition for the whole mixture and the continuity equation for the mixture water
plus solid:

(2.22) < |agl.

(2.23) /O'Z-D]'i dV — aéijSp[Dji dV—/f,'vi dA—/gb,"U,‘ dV—/Q i)ivi dV = 0,
|4 |4 A Vv |4
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(2.24) / . (aSvi,,' + % ;3,) v
v
kr
+ /(5})1)/,- {(kal),’j”—; [_(Pl)/j + Ql(b]' - aj)] } dV + /6p1q,-n,- dA =0,
| A

where, in the hypothesis of an isotropic medium, Darcy’s law has been introduced
in its generalised form.

The incremental solution of our problem can be obtained once the incremental
form of the constitutive equation is given:

(2.25) d(f,’j = Cijlekl dt — a6,~]~S dp + dRO','j

together with the saturation relationships

ds
(2.26) p= Sy S = S(m), ke = kn(p), Cs = ¢d_p1 )
and the initial

(2.27) u; = U, Ui = o, P=Ppo,

and the boundary conditions are introduced:

a) imposed displacements u; =%; on I, for ¢t >0,
(2.28) b) imposed tractions t;, = f_, on I} for t >0,
c¢) imposed pressures m=p on I, fort>0,
d) imposed flows ¢i=¢q on I, for t>0.

2.1.5. Spatial and time discretization. For a quantitative solution, Egs. (2.23) and
(2.24) are discretised in space by finite elements using Galerkin’s procedure, and
in time by Newmark’s scheme [26]. The unknown field variables are expressed in
the whole domain by global shape function matrices, N and N,, as functions of
nodal value vectors u and p;:

(2.29) u=Ng, p=Np.

In the updated Lagrangian approach adopted, the strain operator, B,, which
relates the strain rate vector with the vector of nodal velocities, is referred to the
last known configuration

(2.30) D=B,v.

Once the coupling matrix Q, the mass matrix M and the external load vector f*
are introduced (see Appendix), the equilibrium equation (2.23) can be written as

(2.31) /BoTa"dV _ QP + M ii=f*.
%4
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The continuity Eq. (2.24) becomes:
(2.32) Hp, +Gu+QTu +Sp, =17,

where H is the permeability matrix, G the dynamic seepage matrix, S the com-
pressibility matrix and f? the flow vector (see Appendix). Since the effect of
the dynamic seepage forcing term is negligible [23], the coupled system at time
tn41 IS

Mn lﬁn-i—l +Fn I_Qn lﬁn = 11: )
2.33) + + +1Pn+1 +1

Qn+lﬁn+1 + Hn+l§n+l +* Sn+1ﬁn+l = f1zz)+l ’

where P, is the equivalent nodal force vector. The Newmark scheme adopted
for time integration, with the lowest allowable order for each variable, permits to
write the variables and their derivatives at ¢, as functions of their values at ¢,,:

Wpsl = Uint Up AL + B1ATGAL = WL, + fiAi, At
{ 1, At? A, At?
(234) w4 = U, + U, At + S 3 + p2 "2 =ul,, +

ﬁn-f-l = r)-n + i.inAt + QAﬁnAt = ﬁr’:+l * OAﬁnAL

ByAt, At?
2 b

where ﬁ:H, u?, , and p?,, are predicted values from known parameters at
time t,.

Insertion of Egs. (2.34) into (2.33) allows the coupled system to be written in
the form

(235) W:—;-l T Mn+1A u, +Pry1 — Qn+19At‘Aﬁn 3 F11:+1. =0,
vP, = QI p1AtAw, +H,10AtAD, + S,414p, —FF, = 0.

At the beginning of each time step P,,; must be evaluated by integration of
the constitutive law, the stress field at the previous step being known. Relative
permeability and specific capacity (Eq.(2.26)) must be updated as well as void
ratio and absolute permeability.

The nonlinear coupled system (2.35) is solved by an iterative procedure. If
a Newton-Raphson scheme is adopted to linearize the problem, the Jacobian

matrix of transformation, J, at the :-th-iteration is:

o ovt
o(aw) 0(ap) | (M+ ikepar —Qoat
(2.36) J=8_W = = g e
’ 0% |p=z, owr owr

Q7 3, At HOAt + S

o(ai) o(ap)
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The tangent stiffness matrix in Eq. (2.36) has been derived in [12] as

237) dP= / [BTTB, + GT5G, | duav = (K +K,)du = Kr d.
Vv

K7 is the sum of two terms: the matrix K, correspondigg to the linear elastic

stiffness matrix, but referred to the constitutive matrix C, modified by Cauchy
stresses at time t, as:

(2.38) C=C-oy+0p=C-oy

and the initial stress matrix K,, respectively equal to:

(2.39) K=/BOTEBOdV, Ka=/G,T8G, av.
|4 \%4

Since the matrix o4, lacks in symmetry (see Appendix), Kr is also not symmetric,
but this fact is usually negligible [13].

The system to be solved can then be written in the following form, which is
symmetric provided the tangent stiffness matrix itself is symmetric:

M + 1KTﬁzAtz —QO AL o —yu
2 u
(2.40) o ( . ) = o
-QToAt ——(HOAt+S) ) \Ap ~57
B 1

Since the Newton - Raphson method requires the Jacobian matrix to be evalu-
ated and inverted at each iteration, also other modified schemes are used to
achieve convergence with less computational effort. In particular, the use of se-
cant updates, like Davidon’s and Broyden - Fletcher - Goldfarb - Shanno’s (BFGS)
methods are found advantageous in nonlinear analyses.

3. Dynamic localization theory in saturated porous solids

The finite strain localization theory is here based on the analysis of wave
propagation in continuous solids. The first fundamental investigations on this
subject are due to Duhem and Hadamard (1903). A presentation of the theory
in general form and systematic literature references can be found in TRUESDELL
and NoLL [20], TRUESDELL and ToupIN [21] and in CHEN [2].

Let X' be the wave front (here considered as a Riemannian manifold in motion,
through which the acceleration and the velocity gradient can be discontinuous
functions); n is the normal directed outward from the above manifold. Denoting

3.1) n* = grad x'
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the normal jump of the spatial velocity gradient of the :-phase along this manifold
(i = s, 1), Hadarmard’s compatibility conditions can be written as

il = X (. i
(3.2) ||E = (nen+ner),
(3.3) || = —en,
where E' is the deformation tensor of the i-phase, ||...|| denotes the jump of

the quantity inside the symbol, ¢ represents the velocity of the manifold X' with
respect to the material frame of the analysed solid and ® is, as usual, the dyadic
or tensor product. Consequently, momentum equilibrium equations impose the
condition

(34) 16%1-n = o'cy'
Expressing the constitutive relationship in incremental form, LORET and PREVOST

have shown in [10] that for the saturated case, c2, squares of the wave propagation
velocities coincide with the eigenvalues of the acoustic tensor B, expressed by:

B*s le
(3-5) B= ((le)T Bl ) 2
1 K y s : 1 1-¢ .
where B" = — — > 0 is a positive scalar quantity, B* = ——Kmisa
l 2
o' ¢ Vot ¢

1 ; gh.
vector and B** = —n.A**.n is a second order tensor containing the tensor of the

solid moduli.

The hyperbolicity condition of the problem, implying an effective wave propa-
gation, requires real values of the propagation velocity c. Consequently the eigen-
values of the tensor B must be real and positive. B inherits the symmetry prop-
erties of the solid moduli tensor and is hence symmetric for associative plasticity.
In this case the eigenvalues are real and loss of hyperbolicity occurs in form of
a stationary wave. In [10] it has been shown that the loss of hyperbolicity cannot
occur for a positive plastic modulus. In case of non-associative plasticity B is no
longer symmetric and loss of hyperbolicity may occur in form of flutter instability
[10], where two square wave speeds become complex conjugate. In the following
we assume associative plasticity and monitor the loss of hyperbolicity checking
the sign of det B in the Gauss points.

Developing the determinant of B matrix, it can be observed that the global
result is related to the evolution of the constitutive parameters of the solid skele-
ton and the analysis of strain localization is reduced to the study of the sign of
n-A’*s.n [10].
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In the two-dimensional case, ny = cosd, n, = sin? hold; if one poses z =
tan 9, the following expression is obtained

detB(n) = P(z) = asz? + a3z + az2? + a1z + ag;

hence conditions for the onset of finite strain localization is transformed into
a problem of searching the roots of a fourth degree polynomial or to find its
minima by studying their signs (to find physically meaningful solutions).

4. Numerical examples

The two-dimensional domain of fully saturated porous material is discretised
by means of isoparametric triangular or quadrilateral finite elements. Linear finite
elements have been chosen because of their computational efficiency in nonlinear
analysis and their low distortional characteristics.

The finite elements used for discretising the problem have not been intention-
ally oriented along particular lines (unbiased mesh).

The performed analyses show in particular:

i) the necessity of softening in the constitutive law (associative plasticity) to
have shear band formation,

il) the influence of permeability on band growth,

iii) particular patterns of stresses, pressures and strains with respect to the
corresponding ones in hardening plasticity or elasticity,

iv) a weak mesh dependence of the results.

4.1. Quadrilateral sample

The onset and growth of localized bands in a soil sample of rectangular shape
made of saturated material of dimensions 25 x 35m are analysed (Fig.1). The
sample is subject to axial compression by means of uniformly distributed loads
both on the upper and lower surfaces, as also indicated in Fig. 1.

The solid and fluid domains are not subject to any initial stress state (hence
gravitational effects or hydrostatic pressures are not accounted for). In the fluid
discretization the top and bottom surfaces are considered impermeable.

In the considered model, homogeneous and isotropic solid and fluid phases
are taken into account. The constitutive relationship of the solid skeleton is of
Mohr-Coulomb type, with a linear displacement-strain relationship.

It can be noted that plastic strains are concentrated in narrow bands of finite
amplitude where high strain gradients occur (Fig. 2). In Fig.3 localization direc-
tions are shown as found with the procedure based on the analysis of the acoustic
tensor.

Figure 4 shows that in case of plasticity with hardening no band formation
appears.
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FIG. 2. Effective plastic strain at ¢ = 0.375s with a permeability of 0.25 m/s.

[590]



LOCALIZATION DIRECTIONS
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FIG. 3. Localization directions which follow from the analysis of the acoustic tensor.
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FI1G. 5. Comparison between total axial strains vs. time in a Gauss point close to the centre, in
the linear elastic case and in plasticity with softening.
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F1G. 6. Comparison between pressures vs. time in the central node in the linear elastic case and
in plasticity with softening.

The time transients of strains (Fig. 5) and pressures (Fig. 6) are characterized
by a wave form, with a marked regularity up to the onset of the shear band
formation (¢ < 0.3s), since the plastic effect is yet limited. Plastic strain shows
a different pattern, characterized by a plateau (Fig. 7). For t > 0.3 s loss of peri-
odicity can be noted in Fig.5, as well as a sudden development of pore water
tractions (Fig. 6).
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It should be noted that the material properties for the Mohr-Coulomb model
chosen are those of a sand which dilates because of shear. The shear band has
hence higher porosity, which implies transient flow into it. In the example, water
cannot flow fast enough, hence pore water traction develops in the shear band
as can be clearly seen in Figs. 6 and 10.

4.2. Influence of permeability

The permeability affects the degree of coupling between the two phases and
presents a significant role in the development of localization. The lower is its
value, the higher is the part of the load increment assumed by water and the
slower is the transfer to the solid skeleton. Hence coupling effects increase as the
permeability decreases.
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F1G. 9. Effective plastic strains at ¢t = 0.375s with a permeability of 0.25F — 10m/s.

In localization this implies the variation of the plastic strain levels (Fig. 7), the
change of band dimension (compare Figs.2 and 8) up to the disappearance of
their formation (Fig. 9). For a permeability of 0.25F —03 m/s, pore water pressure
localization develops as shown in Fig. 10. As noted previously, we have pore water
tractions in the shear band. For a permeability value of 0.25m/s, no such pore
pressure localization has been observed.
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F1G. 10. Nodal pressures at ¢t = 0.375s with a permeability of 0.25F — 03 m/s.

4.3. Dependence on spatial discretization

Using in a single phase material a rate or gradient-independent material
model, the localization is strongly dependent on the chosen discretization, and
the numerical solution cannot have a physical meaning. This is connected with
the presence of a softening branch in the constitutive relationship, responsible
for the loss of hyperbolicity in the equations of motion. The wave propagation
disappears because either a wave with zero velocity or two waves with imaginary
velocities (stationary jump) appear. Such statement can be easily demonstrated

in the one-dimensional case, where the wave velocity is equal to £/ Dep/0, Dep

being the elastoplastic modulus (negative in the softening branch). Hence the sys-
tem of differential equations becomes ill-posed, i.e. is strongly dependent on the
initial and boundary conditions. The absence of a scale parameter in the consti-
tutive law leads to the dependence of the band width on the element dimension.
Such an internal length scale may be introduced either by using a model with
polar constituents, see e.g. PASTOR et al. [15], gradient-dependent plasticity [6] or
rate-dependent plasticity.

The tests carried out with program Swandyne [23, 12] have shown that for a
multiphase material the situation is not so dramatic, because of the natural pres-
ence of a Laplacian (Egs. (2.10) and (2.18)). The use of rate-dependent plasticity,
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e.g. of the model of Duvaut-Lions [5], improves the performance only slightly.
This topic will however be further pursued.
S. Conclusions

This paper shows early results of a research in progress on localization in two
or three-phase geomaterials. The possibility of initiation of shear band formation
using ramp loading has been shown in fully saturated conditions. The influence
of permeability on shear band formation has been investigated in some detail.
Many questions are still open, especially as far as partially saturated conditions
are concerned. The numerical tool presented in this paper is however a good
starting point to solve these problems with some degree of confidence.
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Appendix
coupling matrix Q = /BZSm N, dV,
mass matrix M = /NZ[Q,(] - @)+ 01pSIN, dV,
v
permeability matrix H = /(VNP)T k;VN, dV,
dynamic seepage matrix G = / (VN,,)T kioiN, dV,
compressibility matrix S = / NT ! N, dV,
external load vector f* = /Nf[gs(l — @) + 016S]bdV + /thdA,
1%
P — T e g
flow vector fP = /(VN,,) kijobdV — /Npq ndA,
A

v
equivalent force vector P = / Blo" dV,
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Misfit dislocations and anisotropic coarsening
in superalloys (*)

J.L. VALLES, D.J. ARRELL and J. BRESSERS (PETTEN)

THE HIGH TEMPERATURE coarsening of the hardening precipitates in single crystal nickel-base super-
alloys is analysed in the light of the interfacial dislocation networks which develop to relieve the
lattice mismatch. A criterion based on the ratio of interfacial energies in the principal directions
is applied to the prediction of anisotropy in the microstructural morphology under different stress
and temperature conditions. The new criterion is shown to represent a clear improvement with
respect to previous approaches. The range of stress-temperature prediction diagrams constructed
for a number of real alloys shows good agreement with experimental behaviour. The prediction
diagrams are also used to illustrate how the ratio of elastic moduli and the intrinsic lattice mismatch
are the two relevant parameters in governing the evolution of the morphology.

1. Introduction

THE EXCELLENT high temperature structural properties of nickel-base superalloys
rely on their special two-phase microstructure, consisting of ordered v’ cuboidal
precipitates in a 4 matrix. The 4’ particles, whose faces are aligned with the
{100} axes of the v phase, act as precipitation-hardening agents via dislocation
pinning and Orowan loop formation. For applications such as turbine blades,
single crystals of superalloys are grown, in which the mechanical properties are
further enhanced by the removal of grain boundary-based failure mechanisms.
Precipitate morphology in these alloys is known to exhibit anisotropy under ap-
plied loads at elevated temperatures. Under uniaxially applied stresses, needles
parallel to the load axis or plates perpendicular to it have been identified experi-
mentally. This phenomenon, known as anisotropic coarsening or more commonly
rafting, is the subject of much interest, since it appears to have a significant effect
on the high temperature mechanical properties.

Previous attempts to explain the rafting behaviour have concentrated on apply-
ing the theory of the elastic energy of inclusions. Recently, a novel approach has
been developed [1], in which the strain energy associated to the lattice parameter
mismatch between the 7 and 4’ phases is considered in terms of an interfacial
network of misfit dislocations. This lattice mismatch, inherent in systems with
semi-coherent precipitates, is modified anisotropically by an external load. A new
criterion based on these ideas improves the prediction of the rafting response,
also accounting for the temperature dependence. This new approach allows for
the clarification of a number of issues which were not fully understood [2]. In par-
ticular, we analyse the significance of the changes with respect to temperature of

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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the ratio of the elastic moduli of the two phases, which are shown to be more rel-
evant for the formation of a needle- or plate-type morphology than the inherent
interfacial misfit, the parameter which bas been generally used to predict rafting.

2. Prediction of precipitate morphology

Since the first reports of anisotropic coarsening over twenty years ago [3],
considerable attention has been directed towards characterising and quantifying
its effects on the mechanical properties of superalloys. Though opinions still differ
as to whether the process of rafting is beneficial or detrimental [4, 5 and 6], the
phenomenon is clearly worthy of study.

The classical method for the prediction of the direction of anisotropic coars-
ening developed by PINEAU [7], was based on the theory of the elastic energy of
inclusions. Specifically, the most energetically favourable morphology was iden-
tified, for each given set of elastic constants, within a set of shapes consisting of
spheres, infinitely long needles and infinite plates. It was assumed for simplicity
that interaction with neighbouring particles was negligible.

The approach of using discrete non-interacting particles, such as those found in
low v’ volume-fraction alloys, was also followed by KHACHATURYAN and co-workers
[8] to study more complex particle morphologies. This idea has been further ex-
tended by THOMSON and VOORHEES [9], in a consideration of the lowest energy
shape for individual non-interacting particles. Experimental and theoretical stud-
ies have shown that under certain conditions particle splitting can be favoured,
in contrast to the usual particle coalescence behaviour [10]. Some recent studies
by Johnson and co-workers have also analysed how the elastic strain energy in
the matrix can produce a driving force to bring particles closer together, which
results in the coalescence of particles. However, this has only been explored for
simplified elastically isotropic systems in the absence of external stresses [11].

Purely elastic methodologies present an obvious shortcoming in that for non-
trivial inclusion shapes it is necessary to treat the energy as a distributed field,
whose intricate description inhibits a prediction of the behaviour in real systems.
Moreover, dealing with particles with more complex shapes requires the use of
finite element methods [9, 12]. A way to circumvent these problems would be us-
ing a microstructural approach which also involves the localisation of the energy.
Ideally, the new criterion should allow for a simple incorporation into simulation
procedures to model the rafting behaviour [13].

3. Anisotropic distribution of misfit dislocations

During ageing of superalloys at elevated temperatures the elastic strain caused
by a mismatch

_ 2((l,yl = (l,y)

G- - (ay + ay)
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between the lattice parameters a-, and a., of the v and 7' phases, respectively,
is relieved by the formation of misfit dislocations. These [110](111)-type edge
dislocations form networks which transform the coherent interfaces between the
two phases into semi-coherent ones. The significance of this is that it relieves
the elastic strains present, which inhibit the growth and coalescence of the 7’
particles.

Experimental work [14] has shown that, in [001]-oriented single crystals, when
a uniaxial stress is applied there is a tetragonal distortion of both phases, such
that the lattice parameters increase in the direction of an applied tensile stress
and decrease in the perpendicular directions. This behaviour inverts under com-
pressive stresses. By calculating the number of dislocations required to relieve
the unconstrained misfit on a unit length of v — 4’ interface, we can determine
its interfacial energy. The tetragonal distortion occurs in both the matrix and the
precipitate, but since the elastic moduli of the two phases are different, their
expansions will differ, and the mismatch between the lattice parameters of the
two phases will change, and will do so anisotropically. The number of disloca-
tions required to relieve these strains will thus be unequal in those two principal
directions, due to both the direct strain along the load axis [14 and 15] and the
Poisson strain in the axes perpendicular to it, as shown schematically in Fig. 1.

& | Precipitate(y’) | Dislocation

D Matrix(y)

F1G. 1. Schematic of the anisotropy of dislocation formation under an applied tensile stress.

Thus, once the energy of a dislocation has been calculated, by determining the
number of dislocations on a given interface we can find the total energy. The value
calculated for this energy in the unstressed state is found to be in agreement with
experimentally measured y — 7’ surface energies [1]. By evaluating the interfacial
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energies in the directions parallel and perpendicular to the stress axis, one can
determine the degree of anisotropy in the interfacial energy. Since the tendency to
reduce the surface energy of the system will lead to the growth of the lower energy
surfaces at the expense of the higher ones, the value of this energy anisotropy
can be used to predict anisotropic coarsening.

4. Criterion based on the energy ratio

We can incorporate these ideas into a quantitative criterion to predict the
precipitate morphology if we consider the energy associated to the distribution
of the misfit dislocations. In order to relieve the interfacial stresses produced by
the lattice misfit at the 7 — 7’ interface, a regular distribution of non-interacting
dislocations develops, whose density is given by the difference in the number of
crystal planes per unit length in the two phases, N = |a, — a./|/|a-a.|. The total
interfacial energy (per unit length of interface and unit length of dislocation) is
then given by the product of this density multiplied by the energy per unit length
of each dislocation, Ugigoc = @-G+a2 (With G, the shear modulus proportional
to E,, the elastic modulus) and can be expressed by [1]

. a
(4.1) U = NUgisloc = K a’llav' — (LYIE7 y
,Yl

where K is a numerical constant.

When an external stress is applied along one of the principal lattice directions
of the single crystal, different strains will be produced in the v and 4’ phases,
according to their different elastic moduli. As a consequence, the misfit between
the two phases, and thus the number of dislocations required to relieve the strain
produced, will be controlled by the stress applied. If we explicitly incorporate this
dependence, along the load axis

1+0/F
0 a0$

T g B

vy

0
(4.2) UPR = K(1+o/E,)—L
(l/,y,

where a9 and ag, are the lattice parameters in the absence of an applied stress. In
contrast, the strains due to the Poisson effect will govern the stress dependence
in the perpendicular directions, giving

0

4.3) UPP = K (1 - va/Ey) -2 o - g loko) By
(L,Y,

ay, —a
ks "1+vo/E,

v .

The ratio R of these two energies can be used as a measure of the driving
force for the interfaces in one direction to grow at the expense of those in the
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other one, resulting in a reduction in the total energy of the system. This ratio
can be expressed as

aOI_a01+U/E'Y
gre (4 agflEy) | " "1+0/E,
veer (1 -vo/E,) o _aﬂl—VU/E’Y
" 1 —-ve/E,

and provides a criterion to predict the morphology in a superalloy undergoing
coarsening. In essence, when R = 1 the energies UP?™ and UP*'P are equal, and
thus there will be no interfacial energy or precipitate shape anisotropy. When
R > 1, the energy at the interfaces parallel to the stress axis exceeds that of the
perpendicular interfaces. As a result of this, there will be a tendency to reduce
the higher energy interfaces, and thus the 4’ precipitates will oblate and, for high
precipitate volume fractions, coalesce forming extended plates perpendicular to
the load axis. Conversely, when R < 1, the coalescence takes place parallel to
the stress axis, and needles develop. Since the value of R contains information
not only about the preferential coarsening direction but also on the degree of
anisotropy of the interfacial energy, a quantitative prediction of the changes in
precipitate morphology is also possible.

It is important to point out that since the material properties used to compute
R, such as the lattice parameters and the elastic moduli of the two phases, vary
with temperature, what the criterion really provides is a prediction of the rafting
behaviour for a material at a given stress and temperature.

(4.4) R=

5. Classical morphology prediction map

The classical representation used to predict the rafting morphology in a super-
alloy is a plot of the shape giving the minimum elastic energy for different con-
ditions of applied stresses and elastic moduli of the two phases. The best known
diagram produced in this way was developed by PINEAU [7], and took only three
extreme shapes into account: infinite large plates, infinitely long needles and
spheres. In Fig. 2a, the most energetically favourable of these three configurations
is plotted versus two nondimensional variables encompassing the stress level and
the elastic properties of the alloy, namely X = o/(FE,-6), the longitudinal strain
measured in units of the misfit, and Y = E.,/E,, the ratio of the elastic moduli.
A similar diagram can be constructed using the new criterion based on the energy
ratio by reformulating the expression for R in Eq.(4.4) as a function of the same
nondimensional parameters, i.e.

2+ 1+ X6

_1+4X6 2-6 1+X§/Y
(5.1) R(X,Y,v,8) = o=~ s 1-uXs

2-6 1-vXélY
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FIG. 2. a) Classical morphology prediction map based on the elastic energy criterion [7].
The symbols P, N and I represent Plate, Needle and Isotropic coarsening, respectively.
b) Morphology prediction map based on the new dislocation-based criterion. The boundaries
between the regions are at R = 0.9 and R = 1.1, and the symbols describing the regions are
as in Fig. 2a.
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A contour map of R, as given by Eq.(5.1), has been plotted in Fig.2b, using
a value of » = 0.3, the one used by Pineau, and a typical value for the lattice
mismatch (Eq.(3.1)) of § = —0.0014, which is the room temperature misfit for
superalloy SRR99 [16].

When one compares the diagrams produced using Pineau’s work (Fig. 2a) and
the new criterion (Fig. 2b), a close similarity can be observed. However, there are
some important differences. As the calculations performed in [7] were limited to
a small number of points in the diagram, some details which are apparent in the
new diagram are found to be missing in Fig.2a. Specifically, one would expect
that between the regions in which plates are predicted and those in which needles
are the most favoured structure, an intermediate region of isotropic structures
would be found. This is seen to be the case with the new criterion. A second
limitation in Pineau’s classical analysis is that there are large uncertainties in the
energy determination, due to the graphical method used. Owing to this, some
regions of the diagram could only be identified as regions in which two particle
morphologies are energetically equivalent.

The construction of the classical prediction diagram itself also exhibits certain
shortcomings. Specifically, the location of the point corresponding to the desired
data requires some calculation, and the effects of individual parameters, such as
temperature, are not easily visualised. In fact, for a specific superalloy when only
one horizontal line in the classical map is required to show the stress dependence
of the rafting behaviour at a given temperature, a complex curve may be required
in order to visualise the behaviour over a temperature range. It is important to
point out that these diagrams are plotted for specific values of material param-
eters, and thus to perform realistic predictions alloy specific maps are required.
Given these limitations, we have chosen to produce prediction maps for each
specific alloy in which R contours are plotted versus axes of applied stress and
temperature.

6. Temperature-stress maps for real superalloys

For each real superalloy, a temperature-stress map can be constructed to pre-
dict the microstructural morphology if the thermal expansion coefficient and the
temperature dependence of the elastic modulus are known for both phases. The
use of these alloy-specific diagrams clearly shows how two parameters in particu-
lar, strongly affect the rafting behaviour of superalloys. It is generally considered
that the magnitude of the inherent mismatch between the v and 4’ phases is the
most significant factor controlling the degree of rafting produced by an applied
stress. Experimental work [17, 18, 19] has shown how the degree of rafting of a
variety of alloys can be correlated with the mismatch. However, relatively little
research has been devoted to the effect that a change in the ratio of the elastic
moduli of the two phases produces. The 7' — ¢ maps considered below show that
more emphasis should be put on the study of this latter parameter.
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6.1. Superalloy NASAIR 100

The micromechanical properties of NASAIR 100 are typical of modern single
crystal superalloys, which generally have a negative value for the lattice mismatch
and a high volume fraction of 7' phase at operation temperatures. This is also
the case, for example, for MAR-M200, CMSX-6 or AMI1. At high temperatures,
the alloy NASAIR 100 has been found to exhibit plate forming behaviour during
tensile creep [2, 4] and needle formation under compressive loads.

In order to construct the temperature-stress diagram based on the R criterion,
knowledge of the temperature dependence of the material properties is required.
The plots of the lattice mismatch versus temperature and the elastic moduli versus
temperature for NASAIR 100, which we show in Figs. 3 and 4, respectively, have

366 T T T -02
.1 =
o 3641 PELEE E L
- - <
o //// /’ g
& 5 - > &
DO D e S T T Pl - =
o 362F-— T “~\/~_ g -+-04 &
& ot T T 3
S i = rh =
Q , = Y 3 S
yh - S
8 /’/ /'/
£ 60F_.- —~ 1-05
s el
Y./'/
-
r'/
1 1 1
N . T 700 1050 rel

temperature (K]

FIG. 3. Temperature dependence of lattice parameters and lattice mismatch in NASAIR 100,
after Nathal [21].

been produced using literature data [20 and 21]. In Fig. 3, the interfacial misfit is
seen to change by a relatively small amount, from —0.00386 to —0.00454, when
temperature increases from 273 K to 1273 K. In contrast, the elastic modulus of ~/,
which at low temperatures is smaller than that of the v phase (i.e. E,,/E, < 1),
shows a shallower decline with temperature, and 7' becomes stiffer than v at
approximately 850K. Thus, the change in the ratio of £.//E, from 0.83 to 1.12
over the same temperature range, as shown in Fig. 4, proves to be more significant.
This alloy is therefore a good example of why the elastic modulus ratio should be
considered to be the most significant variable in the prediction of the anisotropic
coalescence of superalloys.

The most important characteristic of the diagram in Fig. 5 is the point at which
the predicted direction of rafting inverts when temperature changes. At this point,
which corresponds to equal elastic moduli of the v and 4 phases, according to
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FIG. 5. T — o diagram for NASAIR 100 produced with contours at R = 0.9 and R = 1.1.

elasticity theory an applied stress would have no effect on the misfit between the
two phases, and thus would not produce anisotropy. In our approach, R devi-
ates slightly from one, with a change of the same order as the strain produced,
but this is not large enough to affect the isotropic morphology significantly. The
existence of this modulus ratio threshold (E, = E.,) is important in explaining
the creep behaviour of superalloys. For example, it has been reported [22] that
in CMSX-4, at some temperatures high enough for coarsening to occur at an
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appreciable rate, coarsening can occur isotropically even under applied loads. At
higher temperatures, under similar stress conditions anisotropy is detected. This
behaviour manifests itself in the diagram for NASAIR 100 in Fig.5 as the hori-
zontal boundary between isotropic and plate or needle formation. The diagram
also shows that a change in the sign of the applied stress switches the microstruc-
tural morphology from plates perpendicular to the stress axis to needles parallel
to it or vice versa.

6.2. Superalloy SRR99

The diagram for this superalloy (Fig.6) has been included here in order to
show that the R criterion is subtle enough to predict that alloys with broadly
similar microstructural responses to external stresses will behave in ways that
are noticeably different. In the figure, the isotropic region is predicted to be at
a higher temperature than for NASAIR 100, and also to extend over a smaller
range. Since values for the elastic moduli of the y and 4’ phases were not avail-
able, in order to construct the diagram, the temperature dependence of NASAIR
100 was extrapolated using the elastic modulus for bulk SRR99 [23]. Whilst this
method only provides an approximate prediction, the correlation with experimen-
tal data is found to be very good. This can be appreciated in Fig.7, where we
superimpose our prediction for the plate-isotropic boundary onto a summary of
the experimental rafting responses found in literature [S5, 16, 17, 24].
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FIG. 6. T — o diagram for SRR99 produced with contours at R = 0.9 and R = 1.1.

6.3. Superalloy CMSX-2

The second factor controlling the rafting behaviour of superalloys is the in-
herent misfit between the two phases, though its significance varies strongly from
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one alloy to another. Several alloys, including CMSX-2, have a positive misfit at
low temperatures and a negative one at high temperatures [25 and 26]. Thus,
their behaviour follows that of NASAIR 100 (Fig. 5) and SRR99 (Fig. 6) at high
temperatures, but deviates markedly at low temperatures, where a second inver-
sion in the rafting behaviour takes place when the sign of the misfit changes.
The temperature at which the mismatch becomes zero depends on the external
stresses, as can be seen in Fig. 8, where the inversion point is found to increase in
temperature when the applied stress becomes less compressive or more tensile. In
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CMSX-2, this second inversion takes place at temperatures which are too low for
diffusion to be significant, and thus this cannot be confirmed by experimentation.
However, in principle this may occur at higher temperatures for other alloys.

6.4. Model binary alloy

We have also studied a model binary alloy with a composition of Ni-15 at.% Al
[27], which in contrast to the alloys discussed above, exhibits both a positive misfit
and an elastic modulus ratio that is always larger than one. The corresponding
diagram, which is distinctly different to the previous ones, is shown in Fig.9. As
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F1G.9. T — o diagram for the model binary alloy Ni-15at.% Al produced with contours
at R=09and R =1.1.

would be expected from the positive lattice misfit, the diagram predicts that need-
les form under tensile stresses and plates are produced under compressive ones.
What is more interesting is the fact that there is no region in which the elastic
moduli converge to the same value, and thus there is no minimum temperature
at which anisotropy ceases to be thermodynamically possible. Consequently, in
contrast with the materials discussed above, the minimum temperature for rafting
to occur is entirely controlled by kinetics. This is in agreement with experimental
evidence [27] showing anisotropic coalescence in this alloy at temperatures as low
as 1023K (750° C), a temperature at which only isotropic coalescence is found
in most modern superalloys [22]. The ability to predict the disparate behaviour
of the materials discussed above is clear evidence of the wide applicability of the
dislocation-based criterion.
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7. Outlook

The inherent simplicity of the R based criterion facilitates its incorporation
into a lattice model, where Monte Carlo conserved dynamics is able to simulate
the evolution of coalescence processes in superalloys [13]. In this way, the evolu-
tion of the ¥ — 4/ microstructure has been simulated under a wide range of tem-
peratures and applied tensile and compressive stresses. These simulations have
reproduced the behaviour found experimentally regarding aspect ratios and other
relevant properties, and have allowed us to determine a relationship between the
simulation time, temperature and stress parameters and the experimental ones.
The lattice model can be further refined by explicitly incorporating the kinetic
effects associated with diffusion through the dislocation cores. Thus, the criterion
based on the anisotropy of the distribution of misfit dislocations is shown to be
useful not only to construct prediction maps but also to simulate the evolution
of the coarsening morphology.

We envisage further development in different directions. Firstly, we intend to
extend the criterion by producing a three-dimensional formulation. This will al-
low us to model the effects of multiaxial stress systems on the rafting behaviour.
One application which is of particular interest within the framework of our re-
search program is the effect of coating-induced stresses on the microstructural
morphology. Our final aim is to be able to use these micromechanical simulations
to determine stress histories in a material exposed to complex temperature and
stress cycles, such as those occurring under thermomechanical fatigue (TMF).

8. Conclusions

The anisotropy in the distribution of interfacial dislocations has been shown
to provide a better criterion for prediction of precipitate morphology in single
crystal nickel-base superalloys under load and at elevated temperatures than is
currently possible using classical elasticity-based methods.

Contour plots of the interfacial energy ratio R, which has been reformulated
as a function of the nondimensional parameters involved in Pineau’s classical
prediction map, provide the most favourable morphology for the different stress
and temperature conditions. These temperature-stress diagrams have been proven
to be more informative than the classical prediction map, and have allowed direct
comparison with experimental morphologies.

To illustrate the effects of the individual nondimensional parameters we have
constructed T-o diagrams for a range of real alloys, which show markedly different
characteristics. Using these diagrams we have shown that the ratio of the elastic
moduli is the most significant parameter, due to its temperature dependence,
which in the commercial alloys considered led to an inversion in microstructural
morphology. The sign of the lattice mismatch is shown to be important, but its
magnitude is found to be of less significance.
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Finite deformation analysis of motion
of granular material in a silo (*)

Z. WIECKOWSKI (£6DZ) and M. KLISINSKI (LULEA)

MOTION OF a granular material during silo discharging is analysed in the paper. The mechanical
behaviour of the granular material is described using the model of elastic-perfectly plastic solid
with the yield condition of the Drucker-Prager type. The phenomenon of friction between the
stored material and silo walls is taken into account — the Coulomb model of friction is utilized
in the analysis. The large displacement, large strain problem is described using the updated La-
grangian formulation, and solved with the help of the finite element method. The plane strain and
axisymmetric problems are investigated.

1. Introduction

THE MAIN AIMs of the analysis of motion of granular materials in silos are to deter-
mine the loads acting on the silo walls during the different stages of its operation,
and flow pattern during discharging the silo. Three stages of the operation pro-
cess are interesting from the engineering point of view: filling the silo, storing the
material, and discharging the silo.

In the past, it used to be a common practice to decouple the theoretical predic-
tions of stresses and deformations within the bulk material, although it is obvious
that such an approach means the disregarding of constitutive equations. The ex-
isting design rules employ semi-empirical expressions for the stress distribution,
such as those suggested by WALTERS [1] and ENSTAD [2]. Velocity distribution can
be obtained for simple geometries using idealized constitutive assumptions, as
described by JENIKE and SHIELD [3].

Recently, significant improvements have been made in formulating the fun-
damental governing equations based on continuum mechanics. The appropriate
relations are used to describe the behaviour of the bulk material. The resulting
initial-boundary value problems are solved using numerical techniques, in par-
ticular the finite element method. It should be emphasised that the important
pioneering work has been carried out by EiBL, RomMBACH and HAUSSLER (see e.g.
[4-5D).

Two approaches have been used to describe the motion of the material inside
a silo. In the first approach, the granular material is treated as the non-classical
fluid [4-7], whereas in the second one, the material is treated as the solid body
[7]. Two different ways of description of motion are used in these two approaches:
the Eulerian description, and the Lagrangian one, respectively.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,
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This work concerns the solid approach to the modelling of motion of a granular
material in a silo. The material behaviour is described by the elastic-plastic model.
The paper contains the formulation of the problem being under consideration,
the description of the method used to solve the problem, and some numerical
results.

2. Setting of the problem

Let us consider a time interval I = [0, T], where T > 0. Let £2¢ C R3 denote
the region occupied by the body at time ¢ € I, the boundary 92" of which consists
of three parts I';, I';, and I'; such that

TIUTIuTE=0R, Tinli=Tinlj=Tjnl;=0.

Although two-dimensional problems are solved in the paper, the general
3-dimensional case is considered throughout this section.

2.1. Boundary conditions

We assume that the displacements are known on the boundary part It

(2.1) u; = U} on I},
“and that for the second boundary part I'! the following relation is satisfied
(2.2) ofing =1 on I,

where o, is the tensor of Cauchy stresses, n' is the unit vector outwardly normal

to the boundary 92¢, t; is the given Cauchy stress vector. It is assumed that,
on the part I'f, the contact boundary conditions exist, governed by the Coulomb
friction law. Let gn denote the following distance function

on() = (Pl — i) mi,

where x € I't, PTv is the operator of projection onto the surface I, of obstacle
body (silo wall) defined as follows

(23) IPP()—x|| < lly-x||  Vyé€ L,

n is the unit vector inwardly normal to the surface I, with the beginning at the
point P/w(x). In (2.3), ||-|| denotes the Euclidean norm of vector ||z|| = |/z;2;.

The frictional contact conditions can be described by the following set of
relations (e.g. [8])

gy >0, on <0, wyon =0,

2.4
24) f(on, o7) <0, wrior; <0,
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where the Coulomb friction condition is applied
(25) f(on,o1) = —plon| + |lo7]| <0,

on and o7 denote the normal and tangential components of the Cauchy stress
vector, respectively, on = o;;n;n;, or; = ok;nk (6;; — n;n;), p is the friction
coefficient, ux and ur are the normal and tangential components of the relative
displacement between the closest points of two bodies

(P () = uie)) m,
uri = (i (P 0) = u;()) (65 = mimy).

The variational formulation of the contact problem for deformable bodies
leads to the implicit variational inequality, some terms of which are non-differen-
tiable functionals (see e.g. [8-9]), what makes the problem difficult to solve. To
overcome these troubles, the penalty regularization method can be used for the
frictional constraints (2.4), (2.5) (e.g. [10]).

In the regularized form of the friction law, the relation between the normal
components of the force rate and the relative velocity has the form

UN

26) 6N={“W&N if gy >0,

0 if gy <O.

The tangential component of the relative velocity (slip) is expressed as the sum

of two parts 7 and 7, called elastic and inelastic, which satisfy the constitutive
relations similar to the elastic-plastic relations [11, 12]

(2.7) iL Ti = 'l'L g‘z + {l.!rl y

. 1. i .
(2.8) i Uy =— A a1

. A0,
cT BUT,'

where ¢y and cr are the penalty parameters.
It should be noted that the surfaces I'!, I'}, and I'; vary in time. This means
that the boundary conditions of type (2.2)
a;in;=0 on I,
are valid for the part of the body surface 2! located below the outlet of a silo,
and for the upper free surface, the points of which are candidates to be in contact
with a wall of the silo.
For points located on a symmetry axis (if it exists), the following boundary
conditions are applied
unN = O, or = 0

which correspond to the bilateral boundary conditions for a smooth wall.
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2.2. Equation of virtual work

Let V¢, be the set of kinematically admissible fields of displacements, which
means that every u; € V{ satisfies the displacement boundary conditions (2.1),
and is a sufficiently regular field on 2! so that all the mathematical operations
used have sense. Using the kinematic and static variables referred to the config-
uration §2!, we can write the principle of virtual work as follows (e.g. [15])

2.9) / ol 6t dat = / ot (fi— i) bu; da* + / 1t 6u; dst + / ot;n; bu; ds',
ot ot It I

s 1 ;
where o; is the Cauchy stress tensor, €t: = = (9u;/0z% + Ou;/0z) is the tensor
J y 1) 2 J J 1

of small strains, f! and t! are the body and surface forces, respectively, referred
to the configuration 2!, p! is the mass density of the material measured in the
configuration £2¢, dz* and ds! are the volume and surface elements, respectively.
The relation (2.9) is fulfilled for every éu; € V{, where V| denotes the space
of displacements fields satisfying the homogeneous boundary conditions éu; = 0
I

2.3. Constitutive relations

The elastic-plastic material model with the Drucker-Prager yield condition,
and the non-associated flow rule is applied to describe the behaviour of the bulk
material. It is assumed that the plastic strains have zero dilatation, that is to say,
the material is plastically incompressible [6].

Let B denote the convex set of plastically admissible stresses B = {o;; :
f(oij) < 0}, where the Drucker-Prager yield condition is used for the Cauchy
stress tensor

(2.10) f(oij) = ¢ + mp.

In (2.10), m = 18sin/(9 — sin?¢) is the number depending on the angle of
; du - 43 NG it

internal friction ¢, p = 3 %ii> and ¢ = 5 $ijSij are stress invariants, where s;;

denotes the deviatoric part of the stress tensor, s;; = 0;; — pd;j.
The constitutive relations have the following form:

(2.11) dij = df; + dfj,
(2.12) gi; = Cijudgy,

: dg .

A f i) =0,
(2.13) d?j o 301’]‘ 1 f(U ]) 0

0 it flou;) <0,
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where A > 0, and g is the plastic potential defined here by the relation g = ¢. The
notation used in (2.11)—(2.13) is as follows: d;; = % (uqj; + u;;)is the tensor of

deformation rate, d; and df’j are its elastic and plastic parts, respectively,

v . . .
(2.14) 0ij= 045 — Ojk Wkj — Ojk Wk

. . 1. " .
is the Jaumann stress rate tensor, w,; = > (u;i — ui;) denotes the spin tensor,

2 ; "
Ciju = (K - 3#) 0ij bx1 + p(bik 651 + 6;1 651) is the tensor of elastic constants,

where k and p are the bulk and shear moduli, respectively.

The constitutive model of a granular material, used in the paper, is simple, and
such important effects like plastic hardening and dependence of elastic constants
on the current stress state is not taken into account. It should be treated as_
the first step in the analysis of silo discharging. More accurate material models
like that known from literature, the elastic-plastic model of LADE [13], and the
generalized hypoelastic model proposed by Korymsas [14] must be studied.

2.4. Initial conditions
The following initial conditions are applied: u;(0) = u$, u;(0) = 0, 0;;(0) =
o3;, where uf is the static deformation of the bulk material caused by the gravity

forces, and of; denotes the corresponding field of stresses.

3. Finite element solution

The solution of the problem can be found, using the incremental pro-
cedure with the updated Lagrangian approach, for finite number of time instants
ty, 12yeeey tny-o s IN(0 <ty <ty <...<ty, <...<ty =T). Assuming that
the solution of the problem is known for the time ¢ = ¢,,, the equation of virtual
work can be written for the instant ¢ + At = ¢,,4 as follows (e.g. [15]):

(3.1) / AR, dat = / SO i) buy dat
nt ot
+ / tf+4t6ui dstt4t 4 / a;-fm n; bu; dsttat,
I_‘a!_+At F}+At

where u; = ui*At = ul+ Au;, SEFAY = SL+CLyy AEw, Sij and E;; are the second

Piola-Kirchhoff stress and the Green - Lagrange strain tensors, respectively, both
measured in the configuration (2¢.
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3.1. Finite element discretization

Using the Galerkin approximation for the increment of displacements
Au=N(x)U,

where N is the matrix of interpolation functions of class C%(£2t), and U is the
vector of degrees of freedom, we can obtain, from the equation of virtual work
(3.1), the following set of nonlinear differential equations

(3.2) M U +Fi+at = Ry ae,

where M is the mass matrix, F is the vector of nodal internal forces, and R is the
vector of nodal external and nodal contact forces. The problem of finite defor-
mations has been formulated following [16]. The 3- and 6-node, isoparametric,
triangular elements have been used in both the plane strain and axisymmetric
problems.

3.2. Solution of dynamic problem

To solve the dynamic problem (3.2), the methods of Newmark and Wilson
have been implemented [16]. Assuming that the solution of the system is known
for the time ¢, the unknown variables and their time derivatives are approximated
for the instant ¢t + © At using the following relations

ijt+@At = fjt + O At ((1 - 6) ijt +6 Ut+94t> 3

(3.3)
Ut+@At = Ut + OAt 05 + (6 A[)z <(% == O) ﬁt +a ijt-f-@dt) ’
1 1
where © =1,0<6<1,0<a < 3 for the Newmark method, and © > 1, 6§ = >

= ~16- for the Wilson method. After using the relations (3.3), the system (3.2)
can be rewritten as the following set of nonlinear algebraic equations

1
m)—z MUt+@At & Ft+9dt
1

T T

(U, +0 At U, + (0 Al)? <%—a) ﬁt),

which has been solved using the iterational method of the Newton-Raphson

type.
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3.3. Time-integration of constitutive relations

Using the forward-Euler rule of integration to the relation (2.14), we can write

1
t+At ty = Y., toe t .
v (0 7" —05) =0ij + 0 Wij + 0jp Wiy

and obtain stresses at time ¢ + At as the projection of elastic (trial) stresses

(3.4) Ufj = O’fj + Cijkl Acp + Ufk Awkj + U]t‘k Awgi

where Ae;; = Atd;j, Aw;; = At w,j, onto the set of plastically admissible
stresses B [6]

€ 1+ AL == ~€
o;; € B = a%; =05,
(S
mp
+ - €
0ii <0 = gl = peé;; — o ;s

0; > 0= Uffdt = 0.

afj¢3:>

For small gradients of displacements, it follows from the relation [15]

alj o Oz 95
dt ~ 9af 9zt ™

that the tensor Ac;;, occuring in (3.4), can be approximated by the Green-La-
grange strain tensor, Ac;; = Ejj.

3.4. Solution of contact problem

The problem of contact boundary conditions has been solved using the concept
of contact elements described in [12]. In the two-dimensional case considered
here, the geometry of the contact element consists of a node and a straight
segment of the boundary of an obstacle body. In the two-dimensional case, the
element tangent matrix K% and the element vector of contact forces R$ are
represented, in the local coordinate system (n,t) (where n and t are the unit
vectors, normal and tangential to the line I, respectively), as follows:

0 . .
K¢ = [C(])V CT] in case of stick,
CN 0 ) .
K¢ = [_“CN sign (g4 1) O] in case of slip,

t+ At
qN }

LAt

RS =
d [‘11
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when the contact takes place (gn < 0), and K§ = 0, R$ = 0 otherwise, where

a4t = gy — enAup,
62 = g - er(Aur + Asign(g>),
0 if f(gN 4%, 45) <0,

Ad=4¢ 1 ; )
s (—M lgiH 41 + ¢5 sign(gh+4! ) otherwise,
cT

q%' = th L CTAUT,
Aupy and Aug are the normal and tangential increments of nodal displacements.

4. Mesh rezoning

During the deformation process, elements become distorted so significantly
that the mesh rezoning is necessary. The element mesh is regenerated when the
following condition is violated at any integration point within a silo

b 2
1) \/ (B2522) + (B < g,

where ER* is the given number, E,3 (a, 8 = 1,2) is the Green - Lagrange strain
tensor measuring the deformation of the element at an integration point relevant
to the transformation from the reference to real element.

The nodal variables, like velocities, related to the new element mesh, are
calculated using the interpolation formula

v(zp,yp) = N(p,1P) Ve,

where N(ép, np) are the values of shape functions calculated for reference co-
ordinates of the element (belonging to the old mesh), in which the new node is
located, v, is the vector of nodal values of the old element.

The state variables, like stresses and mass density, defined at integration
points, are transformed from the old mesh to the new one, using the collocation
method. The method is applied to the reference space of the old element. For
example, the new values of stress components are calculated using the formula

PT(flanl) v
aij(€p,np) = PT(Ep,np) | PT(C2m) | o),

where P(¢,7) = [1 &n £29% &n ... ]T is the polynomial basis, o;; is the vector of
stress values at integration points of an element.
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Mapping from an old mesh to a new one violates the consistency of the fields.
It means that stresses do not satisfy the plastic yield condition, boundary tractions
do not satisfy the friction condition, and the equations of motion are not fulfilled.
Numerical experiences show that the largest inconsistency appears in the relatively
thin layer located along the part of the boundary of the body where the contact
boundary conditions exist. To avoid large inconsistency of the state fields, a certain
procedure of recovery of consistency is required.

5. Overall algorithm

The numerical procedure, used to solve the considered dynamic problem is
outlined below.

1. Read the following initial values obtained from the static solution: coordi-
nates of nodes, values of stresses, and the determinant of deformation gradient
at integration points from a disk file.

2. Calculate nodal values of gravity forces R, and reactions of silo walls.

3. Calculate accelerations from Eq. (3.2) (written for ¢t = 0) if ¢t = 0, or read
them from a disk file, otherwise.

4. Loop over all time steps.
5. Initiate displacements
US?@At =,
6. Calculate the auxiliary matrix A dependent on the quantities corresponding
to the previous time step ¢

hom = (g 0 (1) ).

7. Loop over iterations (set k := 1)

8. Assemble the stiffness, and mass matrices: K; and M.

9. Calculate the nodal internal forces F‘gi—@l)m.

10. Add the contribution of contact forces to the global matrices K;, and
Fisohe

11. Calculate the inertial forces

1
(k=1) _ (k-1)
D _M<A’+_a(6 t)2Ut+9At)'

12. Calculate the improvement of displacements solving the system of linear
algebraic equations

k— — -
K, AU® = F*V = Riro - FKD), - DD,
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13. Update displacements

k . k-1 k—
U$+)@At W U$+E)£t + Ay,

14. Check if some nodes have left the silo walls or have moved from one
segment of the wall to the other. If so, modify the boundary conditions for these
nodes.

15. Check the accuracy of the solution. If
|AUW
k -—
U D0l
go to 17.

16. End of loop over iterations (set k := k + 1, and go to 8).

17. Check if mesh-rezoning is necessary using the criterion (4.1). If so, generate
the new mesh, evaluate the new data for nodes and integration points, and restart
the calculation process from the beginning. If the criterion (4.1) is satisfied, go
to 18. The criterion (4.1) is checked only at integration points located currently
inside the silo. If the criterion has not been checked for any point, it means that
all the integration points are found below the silo outlet, and the calculations
may be stopped.

18. Evaluate accelerations, velocities, and displacements for the instant ¢ + At
using the equations

Uirar = Uy +§(Uz+@m - Uy),

o 1
Utroar = a (0 A2 (O Al)2

Ot+At = Ut + At ((1 ) ijt +0 ﬁt+At) )

Uiroat + A¢,

Ut+At Ut + At i)t + (_/_\f)z ((% - CY) ijt +a ijt-f-At) .

19. Update stresses, and values of the determinant of deformation gradient at
integration points.

20. Update reactions for contact nodes.

21. Update coordinates of nodes

Xi+ar=Xi + Uy .

22. End of loop over time steps.
23. Save the solution on a disk file if required.
24. Stop the calculation process.
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6. Numerical results
6.1. Plane strain problem — smooth walls

Let us consider a silo of the shape presented in Fig. 1. The dimensions are
measured in metres. The plane strain problem is considered in the example.
Calculations have been made for three variants of material data specified in
Tab. 1. The problem has been solved assuming frictionless bilateral constraints on
the silo walls.

—4-
—_—
9]
—
o
V)
—
Pk
(¥,
e

F1G. 1. Example of a silo — plane strain problem.

Table 1. Exemplary material data — plane strain problem.

material variant

constant | unit I II III
0 kgm?® | 1500 1500 1500
E Pa [1-10° 1-10° 2.10°
v 0.3 0.3 0.3
@ ° 25 35 25

The maximum size of an element has been set as 0.2 m, for which the mesh
consisting of 923 nodes and 432 6-node triangular elements has been generated
initially. Because of the symmetry of the problem, half of the region is discretised.
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Deformation at time: 4s

Deformation at time: 2s
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Deformation at time: 11s Deformation at time: 13 s

Deformation attime: 9s
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F1G. 2. Deformation process — plane strain problem.

[628]
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The problem has been solved with the accuracy of 0.005 in the static case,
and 0.01 in the dynamic one, using the modified Newton-Raphson algorithm,
where the matrix of finite element equations is recalculated for the first and
second iterations. The dynamic problem has been solved using the Newmark
method with the parameters § = 0.5, a = 0.25, and time increments 0.005s at
the beginning of the process and 0.02 s later on. In the dynamic analysis, EJ3* = 1
has been used as the limit for admissible element distortion.

The number of mesh-rezonings needed for each variant of data is shown in
Tab.2. The times of discharging processes and times of computer calculations
performed on the work-station Sun IPX (40 MHz) with Sparc Power up (Weitek
80 MHz) are also shown in the table.

Table 2. Main results of calculations — plane strain problem.

variant I 1I 111
number of mesh rezonings 4 6 S
time of discharging [s] 11.35 14.36 13.05
time of calculation [h:mm:ss] | 1:52:00 2:18:02 2:06:03

Some states of deformation for the variant IT of material data are shown in
Fig. 2.

6.2. Axisymmetric problem — walls with friction

The axisymmetric problem of discharging the silo, presented in Fig. 3, is con-
sidered in the second example. The only conical part of the silo is filled with a
bulk material. Calculations have been made for three variants of material data
specified in Tab.3, where ¢ denotes the internal friction angle, and ¢,, is the
angle of friction between a bulk material and a silo wall.

Table 3. Exemplary material data — axisymmetric problem.

material variant
constant | unit I 1I 111
0 kgm® | 1500 1500 1500
E Pa 1-100 1.10% 1-10°
v 0.3 03 0.3
©® ¢ 25 25 25
Pw L 20 10 0

The maximum size of an element has been set at 0.1 m, but the size of elements
located near the silo wall has been reduced to 0.05m. Under these conditions,
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[ 065 | 0.7 | 065,

| I I I

F1G. 3. Example of a silo — axisymmetric problem.

the mesh consisting of 1478 nodes and 701 6-node triangular elements has been
generated.

The problem has been solved to within the accuracy of 0.005 in the static
case, and 0.01 in the dynamic one, using the Newton-Raphson algorithm with
an unsymmetric matrix of finite element equations. The dynamic problem has
been solved using the Newmark method with the parameters § = 0.5, a = 0.25,
and time increments 0.0025s at the beginning of the process and 0.01s later
on. The whole process of discharging the silo has been analysed with the same
element mesh.

The duration of discharging processes and times of computer calculations
performed on the computer mentioned above are shown in Table 4.

Table 4. Main results of calculations — axisymmetric problem.

variant I II 111

time of discharging [s] 6.53 4.54 3.75
time of calculation [h:mm:ss] | 4:12:40  3:06:11  2:45:02

The discharging process is illustrated in Fig. 4, for the value of friction angle
¢w = 20°. The distribution of the wall tractions is shown in Fig.5 for the same
value of friction angle. The diagrams of normal and tangential stresses are drawn
in thick and thin lines, respectively.

Large values of the boundary tractions, near the silo outlet, can be observed
in the last figure, for some instants, when the discharging process is developed.
It seems that they are determined inaccurately. This is caused by the significant
distortion of elements, which is the largest in the neighbourhood of the outlet.
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Deformation at time:

Deformation attime: 0.0s
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Deformation at time: 4.0s
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F1G. 4. Deformation process — axisymmetric problem.
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Reactions at time: 0.0 s Reactions at time: 1.0's Reactions at time: 2.0s
sig-max » 9700 Ps  teu-max = 3530 Ps tig-mex = 16250 Py teu-max = 5914 Py sig-max = 60834 Ps  tau-mex = 22142 Ps

Reactions at time: 3.0's Reactions at time: 4.0 s Reactions at time: 5.5 s
sig-mex = 64328 Ps  tau-max = 23414 Pa sig-max = 7360 Ps  tau-mex = 2679 Pa sig-mex = 19160 Ps  teu-max = 6973 Ps

/

FIG. 5. Wall tractions - axisymmetric problem.
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On the description of consolidation processes
in saturated reinforced subsoils (*)

M. WOZNIAK (LODZ)

IN THIS PAPER, a certain averaged model of periodically reinforced saturated porous media is pro-
posed. The characteristic feature of this model is that it describes the effect of the microstructure
length on the macro-behaviour of the medium. It is shown that in nonstationary processes this
effect plays an important role and cannot be neglected.

1. Introduction

THIs PAPER DEALS with consolidation processes in periodically reinforced fully
saturated subsoils, in which the maximum length of the unit cell is much smaller
than the minimum characteristic length of the region occupied by the medium
under consideration. As it is known, a periodic material structure of this kind is
usually modelled by a certain homogeneous equivalent medium, the properties
of which are called the effective moduli. These moduli describe in an averaged
manner the periodic inhomogeneous material structure of the body, [1-4].

In this paper it will be shown that in nonstationary processes the afore-
mentioned effective moduli models can lead to incorrect results, since they ne-
glect the influence of the size of the unit cell on the dynamic behaviour of the
medium. To this end we propose a refined averaged model of a periodically re-
inforced subsoil which describes the microstructure length scale effect on the
consolidation process. The proposed approach takes into account a procedure
used in micro-elastodynamics of composites leading to what is called the refined
macro-dynamics of periodic structures, [5, 6]. The obtained results are similar
to those derived from the averaged formulation of nonstationary problems for
stratified porous media, [7]. For the sake of simplicity, the basis of our investiga-
tions is the simplified linear consolidation theory for fully saturated linear-elastic
porous media, [8-10]. A more general approach is reserved for a separate study.

Notations

The subscripts ¢, j, k, [ run over 1, 2, 3 and are related to the orthogonal
Cartesian coordinate system Ozjz,z3 in the physical space. The non-tensorial
superscripts a, b, ...and A, B, ...runover 1, ..., nand 1, ..., N, respectively.
Summation convention holds for all kinds of the aforementioned indices. The

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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region occupied by the periodically reinforced saturated porous medium in its
initial configuration is denoted by 2. The unit cell of the periodic structure under
consideration is given by V = (0,1;) x (0, [3) x (0, 3). The value [ = [(1})? + (I2)® +
(13)4]'/2 is referred to as the microstructure length parameter, and is assumed to
be sufficiently small as compared to the minimum characteristic length of (2.
The points in the physical space are denoted by x = (z1,22,23) and ¢ is the
time coordinate ¢ € [0,t;). For an arbitrary V -periodic integrable function f we
introduce the averaging operator (f)

(f) 11213 /f(x)dv dv = dzdzydzs.

The remaining notations related to the direct description of the periodic inhomo-
geneous medium under consideration are:
u; displacements from the initial configuration,
sij stresses,
s; boundary tractions,
b; body forces,
o mass density,
Cijx elastic moduli,
p excess of a pore fluid pressure,
¢; pore fluid discharge,
g fluid outflow across the boundary,
B fluid compressibility modulus,
n  porosity,
k;; permeability moduli,
e pore fluid dilatational strain,
n; unit normal outward to the boundary 02 of the region 2.
The components of the heterogeneous medium under consideration (saturated
soil and reinforcement) are assumed to be homogeneous and isotropic; hence

: 2 \
Ciju = [I\' (x) — §G(x)] 5ij6kl+G(X)(5ik6jl+5i15jk), o = o(x), kij; = 6i;k,

where the compression modulus K (x), shear modulus G(x), mass density p(x) are
V -periodic functions assuming positive constant values in the saturated soil and
in the reinforcement, and & is a constant soil permeability coefficient. Moreover,
by ¢ = ((x), x € £2, we denote a V -periodic function defined by: ((x) = 1 if the
point x is occupied by the saturated soil (in the initial state of the medium), and
¢(x) = 0 otherwise.

2. Physical foundations

In order to describe the behaviour of the reinforced subsoil we apply the
simplified consolidation theory, [8-10]. We introduce, for the time being, the
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inertial terms due to the motion of the reinforcement and the soil, neglecting the
inertial effects related to the outflow of the pore liquid which is supposed to be
very slow. We also assume perfect bonding between the reinforcement and the
soil. Under the aforementioned restrictions, the balance laws proposed in [9, 10]
can be written in the form of conditions

/Sijﬁui,j dv = fs,ﬁu,' da + /g(b,'— ﬁ,-)éui dv,

(21) n an N
/q,-ép,,~ dv = f gbpda + /(Cﬁi,i —ne)dpdv,
n on n

together with the known constitutive relations, [9, 10]:

sij = Cijrug,ny + 6i;Cp,

(22) ¢ = Ckijp;,
e = (Pp.
If there are no constraint conditions imposed on displacements u; = u;(x,t)

and the pore pressure excess p = p(x,t), then Egs.(2.1), (2.2) lead to a system
of partial differential equations for u; and p with highly oscillating (piecewise
constant) coefficients. As it is known, this system is inconvenient in applications
to the analysis of special problems. This is why Eqgs. (2.1), (2.2) will be used here
only as a starting point for the modelling procedure, leading to certain averaged
models of the medium under consideration.

3. Modelling approach

The modelling approach will be based on the concepts of a regular macro-field
and that of micro-shape functions, [5, 6]. The system of V-periodic, sufficiently
regular linear independent real-valued functions h%, @ = 1,...,n can be taken
as the micro-shape function system if: (h*) = 0, h%(x) € O(l), h*;(x) € O(1),
a=1,...,n. We also assume that (ph®) = 0, (CH#) = 0. In the sequel we shall
introduce two systems: h%, a =1,...,nand HA, A =1,..., N. At the same time
it is assumed that for every point z( such that V(xg) = xo + V' C 2, linear combi-
nations c%h%(x) and C4 HA(x), x € V(xg), (Where c%, C4 are arbitrary constants)
describe the disturbances in displacements and in pressure, respectively, caused
by the inhomogeneity of the medium. Moreover, a sufficiently regular field de-
fined on {2 will be called macro-field if the increments of this field and all its
derivatives within an arbitrary but fixed cell V(xq), V(xg) C {2 can be neglected
from the computational viewpoint. Let Ar be the known calculation accuracy of
values of a certain function F. Hence, the continuous field F(x), x € (2, will be
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called the macro-field (related to the known unit cell V' and the accuracy param-
eter Ap) if |x' — x”| < [ implies |F(x") — F(x")| < Ar for every x',x" € 2. If
similar conditions hold also for all derivatives of F, then I is called the regu-
lar macro-field. For the details the reader is referred to [5, 6]. Generalizing the
approach proposed in [7] we introduce three modelling hypotheses:

MACRO-CONSTRAINT HYPOTHESIS

In the periodically reinforced saturated medium under consideration, the dis-
tribution of displacements u;(x, t) and of the pore pressure p(x, t) can be expected
to be of the form

ui(x,t) = Ui(x,t) + h*(x)V; *(x, 1),

Aol
Lo p(x,t) = C)[P(x,t) + HAX)RA(x,1)], x€ 2, tel0,t)),

where U;(-,t), V; °(,t), P(-,t), RA(-, 1), for every t € [0,s) are arbitrary regular
macro-fields constituting the new basic unknowns, and h®, H4 are systems of the
micro-shape functions which have to be assumed a priori in every problem under
consideration.

Fields U; and P are called macro-displacement and macro-pore pressure ex-
cess fields, respectively. According to the sense of the micro-shape functions and
bearing in mind that the macro-fields are approximately constant in every cell
V(xg), V(xg) C £2, it can be seen that the terms h*V?, and HAR" describe
possible oscillations of the displacements and of the pore pressure, respectively,
caused by periodic inhomogeneity of the medium. Hence, the unknown fields
Ve, R4 will be called inhomogeneity internal variables or correctors, cf. [5-7].

MACRO-BALANCE HYPOTHESIS

The balance equations (2.1) are assumed to hold for every

dui(x) = U (x) + h*(x)6V*.(x),

(3.2)

ép(x) = 6P(x) + HA(x)é RA(x), X € 12,

where 6U;, §V4,, 6P, 6 R” are arbitrary linearly independent regular macro-fields.
The meaning of the aforementioned hypothesis is implied by the form of the

constraint conditions (3.1).

MACRO-APPROXIMATION ASSUMPTION

In the balance equations obtained by combining Egs. (2.1), (2.2), (3.1) and
(3.2), terms O(\f) are neglected as compared to terms F'(x) for an arbitrary
macro-field F.
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This assumption is strictly related to the meaning of a regular macro-field.
The micro-structure parameter [ is not treated here as a small parameter and all
terms O(!) will be retained.

Substituting the right-hand sides of Egs.(3.1) into (2.2) and then substitut-
ing the obtained form of constitutive equations into the balance conditions (2.1),
taking into account Egs. (3.2), and using the Macro-Approximation Assumption,
after rather lengthy manipulations we arrive at the variational condition involv-
ing exclusively certain averaged constants and macro-fields. Since 6U;, 6 P, 6V @,,
6RA are linearly independent fields, we arrive finally at the system of partial
differential equations for macro-displacements U;, macro-pore pressure excess P
and inhomogeneity internal variables (correctors) V¢, R4. The obtained results
represent what will be called the micro-structural model of the reinforced satu-
rated subsoil under consideration. The governing equations of this model will be
presented in the subsequent section.

4. Micro-structural model

The micro-structural model of the medium under consideration is governed
by the Macro-Balance Equations which hold in §2 for every t € [0,)

Si;.; — (0) Ui +(0)b; = 0,
(Qh“hb) f}bi + 5% =0,
()P - Qii— () U ii =0,
nB(CHAHBYR® + Q4 = o,

4.1)

where S;;, %, Q; and Q4 are determined by the following Macro-Constitutive
Equations:

Sii = (Cijrt) Uiy + (Cijrh® )V + 6:5(C) P,

(4.2) 5% = (Cijuh® ;) Urg + (Cijuah® jh° )V
' Qi = kij(C)P; + kij(CHY)RA,
Q" = kij(CHY)Pi + kij(CHAHB,)RP.

At the same time, on the boundary 012 for every t € [0,t;), under extra as-
sumptions éu; = §U;, 6p = ¢ P, the following natural macro-boundary conditions
hold:

(4.3) Sijn; = si, Qin; = q.

Combining Egs. (4.1), (4.2) we obtain the system of 4+ 3n + N equations for
the basic unknowns U;, P, V4, RA. This is a system of differential equations
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with constant coefficients representing the computational model of the period-
ically reinforced saturated elastic subsoil. It has to be emphasized that equations
for the extra unknowns V¢, R4 are ordinary differential equations involving
exclusively time-derivatives of these unknowns and hence, they are independent
of the boundary conditions. Moreover, for homogeneous medium (Cjxh®;) =
Cijri(h®;) = 0, (CHA;) = ((H#%;) = 0, and under homogeneous initial conditions
for V2,, R4 we obtain that V*, = 0, R4 = 0 for every x € 2, t € [0,¢/). That
is why the extra unknown fields V¢;, R4 were called the inhomogeneity internal
variables. The characteristic feature of the obtained micro-structural model of
reinforced saturated subsoils is that it takes into account the effect of the size of
the unit cell on the global behaviour of the medium. This effect is described by
terms: (phoh®) V., (CHAHB) RB in Egs. (4.1) which are of the order of /2, [ being
the microstructure length parameter defined in Sec. 1. In stationary processes the
aforementioned terms are equal to zero and hence, the steady-state behaviour of
the medium is independent of the scale of the microstructure in the framework
of the proposed model. Similar conclusions were also formulated in [7] where
the micro-structural model of saturated multilayered media was investigated.

It has to be emphasized that for the micro-structural model, all terms involving
the micro-structure lenght parameter [ are retained. On the other hand, for the
effective modulus model given below, all terms of the order ! will be neglected.

5. Effective modulus model

Scaling the microstructure down, by neglecting terms involving (ph®ht) and
(CHAHB) in Egs.(4.1) we obtain that $% = 0 and Q* = 0. Using Egs.(4.2)
we arrive at the two independent systems of linear algebraic equations for V¢,
and R4:

(Cijuth® jhE YV = —(Cijih® ;) Uky,
ki (CHY HB)RP = —ki(CH;) P
It can be shown that the linear transformations R3*—R3" and RN~ RV given by
(Cijkihe ;h® ) and ki;(CH# H?B,), respectively, are invertible. Hence, denoting by
D, EAP the appropriate inverse transformations we obtain
Ve = —D%;(Citimh’ k) Uim ,

R = —EAPkij(CHT;)P;
Thus, after introducing the notations
CMiikt = (Cijut) = (Cijmnh® ) Dy (Corith® 1),

(5.1)
ke = kij(C) — ki(CHA) EABkj(CHB)
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we obtain the system of equations
Sij . Ceﬂ,‘jklUk,l + 5ij<C>Pa
Q= k8, p;.

177 ,)

(5.2)

Eqs (5.2) together with the macro-balance equations (4.1); 3:
Sizg = (0) Ui +(o)bi = 0,
ﬂ(C)P Qtz_(C) 11_0

and the natural macro-boundary conditions (4.3), represent the asymptotic ap-
proximation ! — 0 of the micro-structural model of the medium under consider-
ation. Material constants C°f ., . k. in Eqs. (5.2) are called the effective mod-
uli and hence, Egs. (5.2), (5.3) describe what will be called the effective modulus
model of the reinforced saturated medium under investigation. It has to be em-
phasized that in the general asymptotic homogenization approach, the effective
moduli in Egs. (5.2) can be calculated by special procedures; in this sense formu-
lae (5.1) represent only certain approximations of the effective moduli, depending
on a choice of micro-shape functions. Obviously, this model neglects the effect of
the microstructure length parameter [ on the macro-behaviour of the medium.

(5.3)

6. Evaluation of the scale length effects

In this section it will be shown that in non-stationary problems the effective
modulus model, governed by Egs. (5.2), (5.3), (4.3), can lead to incorrect results
and hence, we have to take the micro-structural model as a basis of our investiga-
tions. To this end we consider a reinforced soil layer bounded by planes z; = £+ L.
For the sake of simplicity it is assumed that the reinforcement of the layer can
be treated as periodic in z;-axis direction and constant in directions of z,- and
z3-coordinate axes. In this case we shall introduce only one micro-shape func-
tion h = h(x;), setting h! = h, H' = h and n = N = 1. This function can
be assumed in the form h = [sin(27z,/l), where micro-structure length param-
eter [ satisfies the condition ! < L. In this case there exist four inhomogeneity
internal variables which will be denoted by: V; = Vli, R = R!. We shall also
neglect body forces b; in equations of motion. Let the layer under consideration
have the impervious boundaries subjected to the normal constant compressive
forces. Hence, the natural macro-boundary conditions have the form S;; = s,
S12 = S13 = 0, Q1 = 0 and holds for z; = +L, (z3,23) € R? and ¢ € [0,1y),
where s = const. The initial conditions (for ¢t = 0) will be assumed in the, form:
Ul—cwl,Uz—U3—OU—OP—PoandV Vi=0, R =0, where ¢
and P, are constants (initial conditions for V; and R can be imposed only in the
framework of the microstructural model).



642 M. WOZNIAK

The aforementioned boundary and initial conditions, together with Egs. (4.1),
(4.2), represent the boundary-value problem for functions U;, P, V;, R, considered
in the framework of the micro-structural model. Let us define

2 _ (Cuur)?)(C) + 18(Ci1u)) — nB(Cuuih,)?
(e(R)?)({¢) + nB(Crn1)) :

(O)Po — 9),

K

6.1
i _ (Cunh,)

K =
3 (C1n)

where it can be shown that k2 > 0. The approximate solution to this problem,
satisfying the first of Egs. (4.1) (for ¢ = 1 and b; = 0) in the averaged form

L
/ (51]',]' b (g) Ul) dl‘l = 0,
-L

is given by
- _OP-s  18(Cuuby K.
i) (Can) ' (Q) +uB(Cru) e
6.2) Ux(x,t) = Us(x,t) =0,
g i) B b
P(x,t) = Py RET) n2[1 cos(kt)],

te[0,t5), =z €[-L,L]

At the same time, the inhomogeneity internal variables are
I,,
Vit 1) = [l —cos(r)l,  Va(x,1) = Va(x, 1) =0,

R(x,t) =0, t €[0,ty).

In the framework of the effective modulus model we obtain

(63) Ul(x’t) = _@6.2%_-:_8. : U2(x,t) = Us(x,t) =0, P(X,t) = P.
1111

In this case the inhomogeneity internal variables do not enter the system of
governing equations.

Comparing Egs.(6.2) and (6.3) it can be easily seen that the effective mod-
ulus model is not capable of describing time-dependent oscillations in macro-
displacements and macro-pore pressure caused by the inhomogeneity of the
medium under consideration. This phenomenon is strictly related to the size
of the microstructure (the value of the microstructure length parameter /) which
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is described by the term (p(h)?) € O(I?) included in the definition of the con-
stant % in Egs. (6.1). The final conclusion is that in nonstationary problems of
reinforced saturated subsoils, the effect of the size microstructure length on the
behaviour of the medium cannot be neglected and hence, the effective modulus
models can lead to incorrect results. The microstructural model, proposed in this
contribution, can be applied to describe this effect.
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