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Preface

Polish Solid Mechanics Conferences have a long tradition going back to the first
conference in 1953 at Karpacz. At the beginning, those conferences were of the
summer school type, lasted 2 weeks and concentrated on classical problems of
elasticity and structural mechanics. Until 1969 all conferences were organised
by the late Professor Wactaw Olszak. Afterwards, they turned into Polish Solid
Mechanics Conferences held every year, and later every other year. Polish Solid
Mechanics Conferences have always been organised by the Institute of Funda-
mental Technological Research of the Polish Academy of Sciences in co-operation
with the Committee of Mechanics of the Academy of Sciences.

30th Polish Solid Mechanics Conference held in Zakopane, September 5-9,
1994, was organised by the Centre of Mechanics of the Institute of Fundamental
Technological Research. Among 255 participants there were 147 scientists from
Polish universities and research institutions and 78 participants from other coun-
tries. The conference scientific program included 11 invited general lectures, 4
seciional lectures, 113 oral presentations and 72 contributions presented during
a poster session.

The main subject of the Conference concentrated on mechanics of materials
anc on the structural mechanics. Specific topics of the sessions were as follows:

» foundations of mechanics,

» mechanics of phase transformations,

» strain localisation and instability,

+ mechanics of porous media and composites,

+ fracture mechanics, damage and fatigue,

+ inelastic materials and structures,

¢ dynamics of solids and structures,

¢ structural mechanics and optimisation,

+ numerical methods.

The Conference provided the forum for presentation of new scientific results
and ideas in all major areas of contemporary mechanics of solids and structures.
The participants have enriched the Conference with excellent scientific contribu-
tions and with stimulating discussions during various sessions. High level of the
presented papers and friendly atmosphere created by the participants certainly
coniributed to the success of the conference.

Though no conference proceedings volume was planned, all participants were
encouraged to submit their contributions as full-length papers for publication in
the Archives of Mechanics or Engineering Transactions. This proposal has evoked
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a great response and resulted in submission of more than 60 papers. A great
majority of them, after a regular reviewing procedure, have been accepted for
publication and they are now printed in this and the forthcoming issues of the

journal.

March 1995

W. K. Nowacki
Conference Chairman
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Unconventional approach to linear elasticity (*)

J. RYCHLEWSKI (WARSZAWA)
In memoriam Jack Pipkin

A CONCISE OVERVIEW of a series of papers following [9] has been presented; their principal feature
consists in spectral decomposition of the stiffness and compliance tensors: the stiffness tensor is
determined by six stiffness moduli and six mutually orthogonal stress-strain states, called proper
elastic states. Numerous consequences of such a description have been analyzed.

1. Introduction

OVER TEN YEARS ago I became attracted by the idea of describing elastic and
plastic anisotropy in an unconventional manner, i.e. by means of eigenvalues and
eigenelements of tensors of the fourth order. I was enchanted by the freshness
of the idea even more so because it concerned an area both vital and seemingly
totally exploited. After the first statements were send to print [9, 10, 11], it occured
to me, however, that such a simple and reccuring idea, strongly connected with
the classical 19th century theory of quadratic forms, could not have possibly been
overlooked by the old masters.

I was right. Among the volumes of the Jagiellonian University in Krakow
I soon found the work of William Thomson [2] - to become Lord Kelvin —
with quite a clear exposition of the heart of the idea. Fortunately, I was able
to add an appropriate remark in the proof of my first paper on the subject.
Continuing the search, I realized that Kelvin gave a concise summary of his results
in Encyclopaedia Britannica [3]. His work was reviewed — unfortunately without
proper undestanding — by TODHUNTER and PEARSON [4] and ... was completely
forgotten in the years to come. Nevertheless, the very idea of applying eigenvalues
and eigenelements of elasticity tensors has sporadically occurred here and there.
Of the recent results T came across K.S. ALEKSANDROV [5], P. ANGLES d’AURIAC
[6] and most important A.C. PrpkiN [7]. This list can surely be expanded. Taking
the risk of roughly assessing the number of important publications on classical
elasticity to be ~ 10°, I would rather leave all further investigations in the matter
to professional historians. As far as I know, the results of paper [10] have not
been preceded.

(*) General Lecture at 30-th Polish Solid Mechanics Conference (Zakopane, Sept. 5-9, 1994); see also
J. RYCHLEWSKI, Anisotropy and proper states of materials, submitted to the Proc. of the IUTAM Symposium on
Anisotropy, Nonhomogeneity and Nonlinearity in Solid Mechanics, Nottingham, August, 29-th September, 3,
1994.
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The possibilities created by the research on proper states have been studied
in a series of papers [12-17]. In the recent years Kelvin’s idea has been inde-
pendently rediscovered over again by MEHRABADI and CowiN [18] and developed
and applied in papers [19-32].

This presentation is a concise overview of all these results.

2. The underlying idea

We are thus discussing the truly classical materials, in which the infinitesimal
strain € causes the stress o according to Hooke's law

o=S-¢, e=C.o,

where S is the stiffness tensor and C is the compliance tensor, CoS = So C = 1.
Let us assume that stresses are bounded by the limit condition of Mises type

oc-H.o <1,

where H is the limit tensor.

In the entire solid body mechanics, it is difficult to find a simpler and a better
known, as well as a more widely applied law than Hooke’s law. From the point
of view of general theory of materials, this is merely a noteworthy special case of
constitutive equation. From the point of view of applicability, it is quite the oppo-
site: the range of Hooke’s law has no match. The thing consists in the unrivalled
physical universality of Hooke’s law. In an appropriate range of stresses, nearly
all solid materials — say steel, quartz, glass, rubber, bones and skin, are subject to
it, although the physical mechanism of its functioning is completely different for
alloy, cristal, supercooled liquid, polymer or biological tissue.

This might sound quite shocking, yet ... one should not assume that all the
essential characteristics of elasticity tensors have been described long ago. Let us
quote two preliminary examples.

The components S;;x; in an accidental basis do not constitute, of course, ma-
terial constants. Thus: do the two samples, described by S;;i and S, jikin represent
the same or two different materials? We do not have a general answer ('), because
we do not have a functional basis of invariants for the fourth order tensors (the
more so, neither do we have an integrity basis). It is only clear that the variety of
the distinct materials is a manifold of 21 — 3 = 18 dimensions. A global continu-
ous functional basis of 39 polynomials invariants for some large submanifold was
presented recently by J.P. BOEHLER, A.A. KiriLLov and E.T. ONaT [35]. To this
problem we shall return in Sec. 4.

(*) NovozuiLov's proposal [33, 34] of applying the so-called principal directions of anisotropy is not general
enough.
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Let us take another example. The classsification of elastic bodies according to
symmetry perfectly done by Love and Voigt, is the lesser in value, the lesser the
symmetry.

According to what characteristics one should thus distinguish two materials which
have no symmetry? This question is even more important since the number of
materials of optimum controlled anisotropy will increase (e.g. in composites),
whereas the symmetry is speedily being lost with the increase in complication of
the structure.

Let us consider the extremum of the stored elastic energy E(€) on unit sphere
in the strain-stress space

E(w) = ext, w-w=1

Because of o = dF/Je, the Lagrange condition takes the following form: for
each € = ew in the energy extremum direction w

o = \w(e)e.

Storeq e,

unit sphere

I1G. 1.

We call each energy extremum direction w a proper elastic state of the material
under consideration. The factor A, (e) will be called stiffness modulus for the
proper elastic state w.

In the case of linear elasticity we have 2/'(e) = €.S-.€ and the necessary
condition for local extremum of stored energy takes the form: € = w, where

S-w=J\w, w.-w=1.

For each strain in direction w, € = ew, the corresponding stress 0 = S-€ is in
direct proportion to the strain

But this is a perfectly adequate formulation of the anagram in whose form Robert
Hooke gracefully announced his law

cetiinosssttuw

giving the solution after two years: ut tensio sic vis [1].
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In an exactly identical manner we can examine the limit stress intensity (o)
of a material with a limit condition (o) < 1,

¢y(o‘) = ext, o.0=1.

For the Mises criterion ¢(0) = o -H.o we obtain the necessary condition of
local extremum of limit stress intensity in the form o = p, where

1
H.p= PP L

/

For each stress in direction p, o = sp, the limit condition takes the form
g.-0< Xz_

Each solution p will be called the proper limit state of the material under consider-
ation. The parameter y will be called the limit of elasticity corresponding to di-
rection w.
The proper elastic states w and the proper limit states p can be quite different.
This is my starting point on the grounds of mechanics. The next step belongs
to pure mathematics.

3. Mathematical treatment

Mathematical treatment of the presented idea is a well-known part of classical
linear algebra.

Let us denote by £ the Euclidean 3-dimensional space with a scalar product
xy. The set of symmetric second order tensors S = sym £ ® £ is (among others) a
linear space of dimension dim S = 3%2—3 = 6 with scalar product o - (3. Assuming
that the stresses are related to a unit, we may consider S as a strain-stress space.
Elasticity tensor S € 7 = symS ® S can be considered as (among others) a sym-
metric linear operator, o« — S-a, o -S-3 =3.S. o mapping the strain-stress
space S into itself. Identically one can consider tensor H, although it appears
as a quadratic form o -H.o. The necessary extremum conditions S-w = A\w,
H.p = p/x? define the eigenvalues A, x? and eigenelements (here being ten-
sors) w, p of those operators. The situation is described by classical theorem on
the spectral decomposition of symmetric linear operator in a space with a scalar
product (see e.g. [36]). When formulated with an adequate precision it assumes,
in relation to tensor S, the following form:

THEOREM. For each stiffness tensor S there exists exactly one orthogonal decom-
position of the strain-stress space

(*) S=P1s...0P, r <6,
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P; L Pj for @ # j, and exactly one sequence of stiffness moduli Ay < ... < A, such
that
S=\Pi+...+ )P,

where Py, ... P, are orthogonal projectors which map the space S onto subspace
Ps, ..., Py, respectively, Fig.?2.

7

FiG. 2.
The sequence Py, . . ., P, constitutes proper orthogonal decomposition of the unit
operator 1, 1.-w = w,
Pk’ k= la
I1=P+...+ P, P.oP =
! ‘°‘{m k# L

The meaning of the presented proper subspaces of tensor S is quite clear: sub-
space Pj contains all proper elastic states, corresponding to stiffness modulus
Ak

o=S.e =\ iff € € Py, k=1,...,r.

Decomposing the stresses and strains into the parts in proper subspaces o =
Pk’U, Er = Pk-e,

o=0;+...+0,, o0, =0 for k # 7,
eE=¢€ +...+¢€,, €p-€; =0 for k # 7,

we see that Hooke’s law o = S. € can be written in an equivalent form of » < 6
proportionalities of these parts of stress and strain

o = \€gq, e g, = \E,.
Spectral decomposition of the compliance tensor has the form

1 1
=P +...+ —P,
A Af

with the same projectors Py, ..., P,.
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The presented spectral decomposition of stiffness tensor S (and compliance
tensor C) I dare call the main structural formula of linear elasticity.
Identically, we obtain the spectral decomposition of limit tensor H.

4. Elastic constants

For an extremely complex material we have r = 6, thus the proper subspaces
are straight lines P with projectors P = w @ w, and the spectral decomposition
has the form

(+*) S= MW@ wr+ ...+ Ayjwyr ® Wy,

where wr, ..., wyy is the orthonormal basis in the stress-strain space, Wy - Wy =
dkr, K,L=1,...,VL

It is convenient to assume that in this formula the moduli Ax can coincide.
Then, from the formula (**) we can obtain each of the possible spectral decom-
positions (x).

It was Kelvin himself who presented the elastic energy in the form

2E(€) =€.S.e = /\[C% tage et /\v[(f%/[ 3
where e = € - Wy is the extent of strain in direction wy

€ =ewr+ ...+ eyiWyr.

I suggested in [9] the stiffness moduli Ay,. .., Ay to be called Kelvin moduli and
I dare have the hope that this name shall be commonly accepted (as it does
in [22]).

It is evident that
Ar20, s oAvr>0

and these are the only limitations imposed by thermodynamics on the stiffness
tensor S.

The variety of stiffness tensors can, therefore, be locally and continuously
described by 21 parameters which constitute the following, quite independent
groups: 6 Kelvin moduli Ay, ..., \yy defining the global stiffness, 12 invariants
describing the orthonormal basis wy, ..., wy which T propose to call elasticity
distributors, and 3 orientation angles placing the tensor S against the laboratory,
e.g. Euler’s angles of the proper basis of a selected tensor wy,

( 6 + 12 ) + 3 = 21.
Kelvin elasticity orientation
moduli  distributors angles

The Kelvin moduli and elasticity distributors constitute a local functional basis of
(6 + 12) = 18 invariants on appropriate open neighbourhood of any extremely
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complex stiffness tensor. The submanifold of extremely complex stiffness tensors
is a dense set in manifold of all stiffness tensors.

For details see KELVIN [2], ANGLES d’AURIAC [6], PIPKIN [7], RYCHLEWSKI [8,
9], CowiN, MEHRABADI and SADEGH [21] and others.

5. Proper states and the symmetry of elastic materials

For an expert on anisotropy, especially for one involved in the physics of crys-
tals, the difference between anisotropic materials comes down to the description
of their spatial symmetry.

I strongly oppose that point of view. Nevertheless, symmetry is of a great
importance and we have to refer to classical results, wandering for decades in an
unaltered form from one textbook to another.

From the uniqueness of spectral decomposition immediately follows the main
theorem on elastic symmetry:

THEOREM. The group O(S) of rotational symmetry (%) of the stiffness tensor S is a
symmetry group of orthogonal decomposition of stress-strain space S = P1+...+P,,
which corresponds to S.

Since the symmetry of the subspace P is identical with the symmetry of its
orthogonal projector P, then the theorem can be expressed as follows: for any
rotation Q € O

Q+S=S iff Q+«P, =P, ...,Q+P, =P,

(one of the projectors may be omitted), [9].

The mechanical problem of presenting all types of the elastic symmetry comes
down to the description of types of symmetry of all possible orthogonal decompo-
sitions S = Py + ...+ P, of the space of the second order tensors. While solving
this purely mathematical problem, one might make use of the fairly known Her-
mann’s theorem: if a tensor of the order p has a symmetry axis of the order
q > r, then it is symmetrical to each rotation around this axis [37]. The above
outlined procedure leads to the well-known types of elastic symmetry as well as
to all proper states corresponding to them.

From these considerations, it is particularly evident that the division of linearly
elastic materials into types of symmetry has, in principle, nothing in common with
crystallography. The true causes are the properties of Euclidean tensors of the
fourth order and therefore, exclusively the linearity of Hooke’s law. For instance, the
presence of rotation axes of the fifth order in linear elastic materials is excluded
by Hermann’s theorem (which belongs to pure mathematics), since 5 > 4, but
not by the translation symmetries of crystalline lattices.

(?) Since we are considering here only the tensors of even orders, we may limit ourselves only to the group
of rotations O.
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Let us limit ourselves to presenting only two examples: the simplest and the
most intricate one.

Isotropy, O(S) = O. The only isotropic decomposition of the strain-stress space
has the form
S=PaD, 6=1+5,

where P is a straight line of spherical tensors, and D is a 5-dimensional deviator
space. Therefore the spectral decomposition of stiffness tensor of an isotropic
material has a general form

S= /\pPp + /\’DP”D,

where the projectors are Pp = 1l ®1L,Pp=1- 11 ® 1 and Kelvin’s moduli are

equal to: Ap = 3K = 2u + 3\, Ap = 2u, where A, are Lamé’s constants.
Decomposing each tensor o = ap + aup into the hydrostatic part oop € P and
the deviatoric part aup € D, we write Hooke’s law in its classical form

op = 3Kep, gp = 2;LED.
In a general formula we have A\j = Ap, A= ... = Ay = Ap.
Thus, for isotropy we have
T R 0 ) + 0 = 2.
Kelvin elasticity orientation

moduli  distributors angles

Trigonal symmetry. The decomposition of strain-stress space, invariant under the
group of rotations around versor k by angles 27 /3, 47 /3 has the form

S=(K10K)D (L1 L), 6=>01+1)+2+2),

where straight lines Ky, K, and planes £, £, are not unique, but plane K; & K,
and 4-dimensional subspace £; @ £, are unique. The decomposition is described
by proper elastic states

sink 0 0
i wi~c| 0 sink 0 A
0 0 V2cosk
cosk 0 0
Kyt wp ~ ¢ 0 cosk 0 ,

0 0 —2sink

0 cosp sinp cos p 0 0
Ly : wip~c|cosp O 0 |, Wy ~ ¢ 0 —cosp sinp |,

sink 0 0 0 sinp 0
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0 —sinp cosp —sinp 0 0
Ly wy ~c| —sinp 0 0o |, Wy ~ ¢ 0 sinp cosp |,

cos p 0 0 0 «cosp O

where &, p are elasticity distributors, ¢ = 1/v/2.
Stiffness tensor has the form

S = MK (k) + M Ka(k) + ALy (p) + ALa(p),

where
K; = wi® wi, K; = wpi ® wyr,
L) = wm ® win + wiv@rv, L; = wy @ wy + Wy ® Wyr.
We have here
4 + 2 ) + 2 = 8.
Kelvin elasticity orientation
moduli  distributors angles

For k = p = &9, tgr? = V2, \3 = )4 the trigonal material turns into a
material of cubic symmetry.

For p — 0 we obtain a general form of transverse isotropic material with proper
elastic states shown in Fig. 3.
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The types of decomposition of space S, as well as the number of Kelvin’s
moduli, elasticity distributors and orientation angles for all types of symmetry are
given in Table 1. I found it while preparing the paper [9] and the most important
results were included in [8, 9]. They were later defined independently (and in
a slightly different manner) in [18, 22, 32]. In S. SutcLIFre's paper [32] Kelvin’s
moduli and proper states were presented for various crystals: copper, beryl, cobalt,
magnesium, pentearythritol, tin, indium, Q-quartz, tourmaline, topaz, gallium,
gypsum and copper sulfate CuSOy4 - SH;0.

Table 1.
Blastic snmetry Spectral‘ decomposition Kclvin. 'e‘las.ticity orientation
of strain-stress space moduli | distributors angles

isotropy 1+5 2 0 0
cubic 1+2+3 3 0 3
transverse isotropy 1+1)+2+2 4 1 2
4-fold symmetry axis A+1)+1+1+2 5 1 3
3-fold symmetry axis A+1)+2+2) 4 2 3
orthotropy 1+1+1)+1+1+1 6 3 3
one symmetry plane | (1+1+1+1)+(1+1) 6 7 3
full anisotropy I1+1+1+1+1+1 6 12 3

All that has been said here about the symmetry of tensor S refers — mutatis
mutandis — to the limit tensor H.

6. On the optimum design of anisotropy

Let us repeat that the stiffness tensor S in a most general situation is described
by the formula:
S= MW@ wr+ ...+ Ayviwyr ® Wy

with 6 + 12 invariant parameters and 3 orientation angles.
While the stiffness tensor is given, moduli A and the proper states w are avail-
able through standard analytical procedures and ready-made computer programs,

S — (A, Av W, ..., Wyy).
My view of the essence and usefulness of spectral decomposition is completely
different: the sequence (Ar,...,Avi; wi,...,wyr) should be treated as a set of

decision parameters, defining linearly elastic material

(/\[,..../\v[; w[,...,le)—"S-
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Taking any non-negative parameters Ar,...,Ayy and any orthonormal bases
wr,..., Wy in a stress-strain space we obtain a certain, theoretically possible,
linearly elastic material. Its characteristics are as follows:

TeS = Sijij = M+ ...+ Avr,
S-S = SijuSiju = /\% + ...+ /\%,[ R
1 _ (tl'w[)z + + ([l'wv[)2

T ¥ yremt
1 _ (nwn)? . (nwn)? ’
E(n) /\1 /\v[
_v(m,n) _ (mwim)(nwjn) . g (mwyrm)(nwyyn)
E(n) AL Avi ’
1 _ (mwin)? 4 (mwyn)?
4G(m, n) /\[ o /\v[ ’

where TrS/6 is mean stiffness modulus, S-S global stiffness, K=! = 1.C-1 the
bulk modulus, E(n) Young’s modulus in direction n, v(n, m) Poisson ratio in di-
rection m under stretch in direction n, GG(n,m), nm = 0 is shear modulus in the
plane defined by n, m.

In conventional language, S ~ S;;x1, we have an amorphic set of S;;x compo-
nents in an accidental base. In the proposed language we have decision variables
(A, w), which have quite a clear formal status (eigenvalues and eigenelements)
and a fairly good physical meaning (stiffness moduli and directions of energy
extrema).

Identically, decision variables which shape the limit properties may be taken
in the form

(Ay- s Ave o1, - -5 pvi) — H

7. On types of elastic bodies. A particular role of pure shears

Spectral decompositions open completely new possibilities of comparing elas-
tic materials, not connected with their symmetry at all. Among others, they can
be distinguished according to the Kelvin moduli, to the types of proper states and
to the orthonormal systems which they form.

Particularly interesting are here the pure shears defined by trt = 0, detT = 0,
Fig. 4. One can show that, for example, an elastic material is isotropic iff each pure
shear is its proper state. The equality of stiffness moduli for all pure shears is here
the result, not the assumption. Similarly by pure shears one may define elastic
orthotropy or transverse isotropy.

The question arises: do there exist materials of the form

S=AM@1+2(uT1@ T+ ...+ lsTs ® Ts),
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FiG. 4.

where p; # p; for ¢« # j and all proper states different from the hydrostatic
state, Ty, ..., Ts are pure shears? In other words: do there exist in 5-dimensional
deviator space D C sym £ ® £, orthonormal bases consisting of pure shears only?

A positive answer to that was found by BLinowskr and RycHLEWsKI [38] (3).
The presented class of bases is a 2-parameter one. Here is an example for direct

verification of equations tr7; = 0,detT; =0, 7;-7,; =0,7,5=1,...,5
1 v2 0 0 S0 0 40
o L (N | AR g | S Ty 0 0 V2|,
0 0 0 0 V2 0
T3 I~ g 2\/§ 0 0 ) T4 e 6 \/g \/§ O )
/10 0 0 g O s
Ts ~ | =5 V3 0

8. Plane states, plates and shells, [39]

For a quick orientation and to form an intuition in the presented approach,
let us examine the simplest case, that is when we deal only with plane tensors,

dim& = 2, dimp=2"=1=3, dim7 =3*-3=6.

The results will be applicable to plates and shells.

The space of symmetric plane tensors a will be presented as an orthogonal
sum

S=PaD, 3=1+2,

(®) Josef Matoulek from Prague took part in search of such bases.
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where straight line P consists of plane isotropic tensors and plane D consists of
pure shears, & = ap + ap,

S = Aiwp ® Wr + Apwyr @ Wi + AW @ Wi,

where wp, wyr, wyr is an orthonormal basis in S, Wy -wy, = dxr, K, L = LILIIL
It will be convenient to represent the plane tensors of the second order in the
following form
w = r(cos x1 + sin yd(?)),

10 cos v sin 9
~ 9 ~ .
! (O 1)’ div) (sim‘) —cosﬁ)

Since space S is here 3-dimensional, we enjoy the privilege of illustrating all our
considerations by nice pictures, Fig. 5.

where

P
w,

Fic. 5.

A particular role is played by pure shears. 6-dimensional manifolod of stiffness
tensors can be divided into disjoint types:

A - no pure shear is a proper state,

B - exactly one pure shear is a proper state,

C - exactly two pure shears are proper states,

D - each pure shear is a proper state.

TypPE A. (Fig.6). Proper basis w is here in a general position and touches
neither the plane D nor the straight line P.
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i

Wy

FiG. 6.

Stiffness tensor of this type is described by (3 + 2) + 1 = 6 independent
parameters: stiffness moduli Af, Air, A, distributors i, x11, orientation angle 9.
The remaining parameters i, Y11, Y1ir result from the orthogonality conditions

tgxr tgxL + cos(Vx —J) = 0, K,L=1T1,1I.

Type B. (Fig. 7). If exactly one proper state is a pure shear, say wyyy € D, then
XI=HLXu=7/2—-x xm=0,%=79,0y=9+m, =19+ 31/2

FiG. 7.

Stiffness tensor of this type is described by (3 + 1) + 1 = S independent
parameters: moduli Ap, Aqr, Ay, stiffness distributor y, orientation angle 4.
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Type C (Fig. 8). If exactly two proper states are pure shears, say wyr, wyyf € D,
then v1 = 7/2, yu = xm = 0, dip = J, dip = Y+ 7 /2. Stiffness tensor of this type
is described by (3) + 1 = 4 independent parameters: stiffness moduli Ar, Ay, Ay,
orientation angle .

P

FiG. 8.

Tyre D. If each pure shear T € D is a proper state, then, according to Fig. 5,
the isotropic tensor 1/v/2 is a proper state as well. Therefore

S = ApPp + ApPp,

1 1
p=-1®1 =1-21®1.
Pp 210 ) Pp =1 5 ®

Quite unexpectedly, the obtained classification of plane stiffness tensors with
regard to the types of proper states is, at the same time, their complete classifi-
cation with regard to symmetry: Type A — full anisotropy, Type B « symmetry
of a rectangle, Type C — symmetry of a square, Type D « isotropy. Climbing
the steps of increasing symmetry is accompanied by the increase in the number
of pure shears occuring as proper states.

All that we have presented here applies to plane limit tensors H.

9. Locked strains and unsupported stresses, [40, 41]
The language of proper states is an adequate one to describe linearly elastic

materials with constraints or/and looses. As to constraints, it was PIpKIN [7] who
was the first, as far as I know, who noticed that (see also [8, 9]).



164 J. RYCHLEWSKI

1. Let us first examine a material with such an internal structure (strong fibers
or sheets, etc.) that it hinders some modes of strains so strongly that one may
regard them as negligibly small,

o#0 but e=0.

We call some stress o reactive when it does not cause any strain C.o = 0.
The set of all reactive stresses is the kernel of the operator Ker C. Each strain €
that is admissible in the material under consideration is orthogonal to this kernel,
€ 1 KerC, because of w:€e = w.C.0 =0-C.w = 0 for each w € KerC. We
call the kernel P. = Ker C the space of locked strains and reactive stresses. Its
orthogonal complement P, will be called the space of admissible strain and active
stresses.

Thus the material with such restrains on strains is described as follows:

S = P. ® P.
1 1
admissible strains locked strains and
and active stresses reactive stresses

€E=¢,+0, o=0,+0,, o, i1s free.

Hooke’s law connects admissible strain with active stress
Ea = Ca " O'a,

where C, is an invertible operator that maps P, onto itself.
This situation exactly corresponds to the proper states approach because the
kernel P. consists of proper states with zero compliance modulus. This corre-

sponds to limit transition A — co in C = ... + XP + ... stiffening the material

up to rigidity with respect to the strains belonging to P = ImP.

PrpkiIN [7] examined in detail a particular case dim P, = 1, dim P, = 5, that
is when the constraints have the form € - w = 0 for some tensor w. When w =1
this means incompressibility, when w = k ® k — fiber inextensibility.

2. In exactly the same way, one can examine a situation where the structure of
material enables some modes of strain to appear under negligibly small stresses,

e#0 but o=0.

We call some strain € loose when it occurs without any stresses, S-€ = 0.
Each stress o that is admissible in the material under consideration is orthogonal
to all loose strains, o L KerS because of w.0 = w-S.e = e.S-w = 0 for
all w € KerS. We call the kernel P; = KerS the space of loose strains and
unsupported stresses. Its orthogonal complement P, will be called the space of
active strains and stresses.
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Thus we have

S= Pa & 7)17
o=0,+0, € =¢g, +g, g; 1is free.
This corresponds to limit transition A = 0in S=...+ AP+ ....

3. Finally, one cannot neglect such a possibility when some modes of strains
are locked and some others are loose

og#0 but e=0,
e#0 but o=0.

In this case we have

locked strains and
reactive stresses

1
S = P. @ P @ Py
| |
active stresses loose strains and
and strains unsupported stresses

o=0,+0,+0, o, Iisfree,
e =¢€,+0+¢, g; 1is free.

Hooke’s law takes the form
€= Ca * 0(17 Gu . Sa €, )

where C,, S, map active space P, onto itself.
As far as I know the theory of bodies made of such materials has not been
developed, of course apart from the classical incompressible inviscid fluids, when

Lg:tpc@,])h 7)(:=7)7 PI=D7

o=0,¢cP, €e=¢ €D.

The stresses are reactive and hydrostatic, the strains are loose and purely distor-
tional. Strains are not connected with stresses at all.
The model of material with locked strains was used in the description of

multidirectional composites with families of inextensible fibers, RyCHLEWsKI and
X1a0 HENG [17].

Let us examine s families of fibers directed along unit vectors kg, . . ., ks. Con-
straints have the forme.®m =...=¢. 7, =0, ®; = ki ® ky,...,®; = ks ® k.
Locked strain space has the form P, = lin (1, .., ;).

http://rcin.org.pl
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Sufficiently large or/and properly directed system of fibers can entirely lock
the material, S = P,. The following, purely kinematic theorem was proved:

A system of inextensible fibers does not entirely lock the material only in 8 cases, as

shown in Fig. 9; the dimensions of active strain spaces for these cases are as follows:
dimP,=5,4,3,23 21, 1.

In the Cases 1, 2, 3, 4 the number of fibers passing through a point is s =
1,2, 3, 4, respectively, and no three fibers belong to one plane. In the Cases S we
have at least 3 fibers and they all belong to one plane and lock it. In the Case 6
s> 4.In Case 7 s > 5 and a least 3 fibers lock a plane, and then at least two
fibers lock another one. In Case 8 s > S and all fibers belong to an elliptical
cone and lock it.

It is not difficult to establish the stiffness tensor for each case. For example,
in the case of isotropic matrix and Case 6 of the system of fibers, we have

2cos?
S= (/\m + 2//,) W] ¥ w; + 2/1())2 ® Wwo,
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where 6 is the slope angle shown in Fig. 10, A, i are Lamé’s moduli of the matrix
and wy, w, are proper states given in [17].

524

locked plane

r
|

fibres
— e

I1G. 10.

10. Safe stresses, energy-orthogonal stresses

All that has been said about elasticity tensors passes — mutatis mutandis —
onto the limit tensor H, describing the range of elastic behaviour o -H.o < 1.
Spectral decomposition has the form

H=-1—2R1+...+%Rk, 1\736,

X1 X%
where the sequence Ry, ..., Ry is an orthogonal decomposition of the unit op-
erator, and the sequence i, ..., yx is constituted by respective elasticity limits.
The limit condition takes the form
0,-0 G0y
1°01 , Ok Ok

- <
x? X3

— )

where 0; =R;.0, ie.o =0,+...+0,, 0,.0; =0 for: # j. It describes the
inside of a 6-dimensional ellipsoid in the stress space. If y; — oo, then R; = ImR;
becomes the subspace of safe stresses, S = Ry & Ryns, Fig. 11.

For isotropic material (see p.5)
gp-0Op Op-0Op

2 2
Xp XD
If yp — oo, then we obtain the classical Maxwell - Huber - Mises - Hencky condi-
tion:

o-H.o=

op:-0p < \%

http://rcin.org.pl
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unsafe stresses

safe stresses
75-—. (oo}

FiG. 11.

Since op - op/4p is the distortion energy, this condition limits this energy. As
Maxwell wrote in a letter to KeELvIN (1856) “I have strong reasons for believing
that when op - 0p/4u (our notation, J.R.) reaches a certain limit, then the ele-
ment will begin to give way”. HUBER (1904) and HeENcCKY (1924) recreated this
point of view independently (see [10]).

The energy is the most universal physical notion. The idea, that the stored
elastic energy, if properly calculated, is an appropriate measure of the hazard of
the material giving way appears attractive indeed. A question arises here: does
the Mises condition o - H.o < 1 have any energy interpretation for any anisotropic
material?

This question was posed in 1956 by my professors W. OLszak and W. UrBa-
Nowskl. The customary idea of the exceptional character of hydrostatic stress and
dilatational strain precluded the finding of a general answer [42, 43]. T arrived at
it only 27 years later using the proper states approach [10].

The crucial point of this answer lies in yet another idea. Two states of stress
o and B I called energy-orthogonal if one of them does not work on the strain
caused by the other, i.e. when a-C-B = 0. The energy orthogonality will be

denoted by o L .

Afterwards, pure mathematics comes into play. The mapping (o,3) — o - C -3
= .C.ais a symmetric and positive definite bilinear form on stress-strain space
S and it can be regarded as a new energy scalar product

aeB=a-C-0.

But, then space S with new scalar product also obeys the general spectral theory! ¢
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Applying it we introduce energy proper states and energy proper values

Hex = px, XX =1,

where He is the symmetric linear operator acting according to the formula Hew =
H.(C.-w) = (HoC).w. As a result we obtain the following theorem:

THEOREM. For each linearly elastic material, described by the compliance tensor
C and the limit tensor H, there is exactly one energy orthogonal decomposition of the
stress space
S=H1d...%H, 1 <6,

Hi L M, for i # j, and only one sequence of energy limits of elasticity y1 < ... < 7,
such that
oc-H.o = —1~01-C-01 +...+ lcrl-C-cr,,
g "
where
o=0;+...+ 0, o; € H;, 1=1,...,1

(As a matter of fact this is a certain form of the classical theorem on simultaneous
transforming into the diagonal form of two quadratic forms, one of which is
positive definite).

But 2E(o) = o . C. o is twice the stored elastic energy of stress o. Therefore
the Olszak - Urbanowski problem has the unique solution:

The Mises limit criterion bounds the weighted sum of stored elastic energies cor-

responding to uniquely defined, energy-orthogonal parts of stress
1E(o)+ +1E(0')<1
—UL ..+ —r(o;) < 1.
7 : Bl

If the energy limit of elasticity v; tends to infinity, 7; — oo, then the space
‘H consists of safe stresses.

The notion of energy orthogonality was examined later by THEOCARIS and
PHILIPPIDES [28, 29].

ConNLUDING REMARK. Polishing a few new faces of a precious stone discovered
by Robert Hooke was my great honor and pleasure.

NotatioN. With respect to well-known Cartesian index notation we have
a®P < a;;Bu, a-PB < a;fij, 1 & 6,
Aot = Ajjpeap, a-A-B < AP,

1
AoB — AjjpBpgii, Dijre = 5(0ikbj1 + 6:bk;j),
2
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Q*(a®ﬁ)=Q*a®Q*Bv Q*QHQinjqapq’
Q+xA«~ Qinijerlsqurs-

Paper supported by Grant KBN 3 P 404 027 05.
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Integral equations of thermoelasticity and thermoconductivity
for cracked isotropic or anisotropic multiply connected bodies
with reinforcement (*)

D. BARDZOKAS (ATHENS) and G. EXADAKTYLOS (CHANIA)

BY APPLYING the complex functions theory and the theory of singular integral equations, a gen-
eral method has been developed for the solution of plane thermoconductivity and thermoelasticity
problems for isotropic or anisotropic multiply connected bodies with cracks, containing also rec-
tilinear and curvilinear stringers. The proposed gencral method can be applied effectively for the
study of many difficult problems of engineering applications such as the interaction of weakened
regions (cracks, holes) of a material with linear or curvilinear stringers under the influence of
stress and thermal fields. Furthermore, based on the above method, the behaviour of existing sin-
gularities in these fields can be examined. Two specific examples are analyzed, one concerning an
infinite cracked isotropic plate with holes and straight and curvilinear thin strip inclusions, and
another concerning an infinite cracked orthotropic plate with a straight stringer. The method may
be extended to solve a wide category of problems encountered in praxis.

1. Introduction

DURING THEIR SERVICE life, engineering structures are subjected not only to static
and dynamic loads, but usually they are also affected by the presence of thermal
fields. Thermal influences may sometimes alter the physico-mechanical proper-
ties of the materials and consequently, they may affect their strength properties
and the resistance of the structure to loads. In the general case, the resulting
expansions (contractions) are not occuring freely in the continuous medium. In-
stead, they produce thermal stresses which, in combination with the mechanical
ones (due to external loading), can contribute to the initiation and propagation
of cracks. In spite of the relatively large information about the various rupture
phenomena occurring in these cases, their mechanisms which are complicated in
nature have not been completely investigated as yet and demand the interdisci-
plinary cooperation of researchers from various scientific branches.

Even if the failure mechanism cannot, in many cases, be completely described
only by the propagation of cracks in materials, the investigation of the conditions
which trigger the initiation of a crack or a crack system from the pre-existing
defects in the material (cracks, inclusions, cavities, welded joints etc.) is of great
theoretical and practical importance. For this reason, the present investigation
is concerned with the study of the stress-deformation state of a body under the
influence of mechanical and thermal fields of forces, in the regions where sin-
gularities or stress concentrators exist, by using the complex functions method

() Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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and the theory of singular integral equations [1, 2, 3]. The methodology applied
is based on the theory of linear elasticity and thermoelasticity of the anisotropic
medium and is an extension of a previous work [4], since it includes the effects
of curvilinear (in the form of circular arcs) thin strip inclusions and holes.

The present development of this general method permits one to use it effec-
tively for studying the interaction between various types of defects in an isotropic
or anisotropic material and reinforcements, in the presence of mechanical and
thermal fields of forces, and furthermore to extend it for solving many important
problems of engineering practice.

2. Fundamental equations of plane problems in thermoconductivity
and thermoelasticity

For the formulation of the mathematical theory of the strength of isotropic or
anisotropic bodies characterized by defects in the form of cracks, holes, inclusions
etc., under the influence of mechanical and thermal fields of forces, the model of
the linear thermoelastic body is used [4]. A general theory of this model assumes
that:

a) the strain components are infinitesimal;

b) the relationships between various components of stresses and strains are
given by the generalized linear Hooke’s law, and

c) the elastic and thermal properties of the body are, in general, different in
different directions, but they are independent of the temperature and stress.

Furthermore, it is assumed that at any point of an anisotropic body, a plane
of elastic and thermal symmetry exists. Also, it is assumed that the temperature
T(z,y, z,t) in an anisotropic body is a continuous function of spatial coordinates
z,y, z and time ¢; and that this holds also for the first differential coefficient with
respect to ¢ and for the first and second differential coefficients with respect to
z,y and z. The body is referred to a Cartesian or curvilinear coordinate system
with unit vectors i, j and k. Accordingly, an elementary surface characterized by
a normal vector n which contains a random point of the body is considered. At
the point under consideration, the thermoconductivity vector Ky, which refers to
the elementary surface with normal vector n is defined by

(21) K, = a1k11i + arkpj + askssk,

where k;; (i = 1,3) are the coefficients of thermal conductivity, and «a; are the
direction cosines between the vector n and the unit vectors i, j and k. The surfaces
where the thermal conductivity vector K,, coincides with the normal vector n are
called principal surfaces of thermal conductivity, whereas the directions normal
to them are called principal directions of thermal conductivity. Accordingly, the
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density of the thermal flux ¢, across the elementary surface with normal direction
n is defined as

(2.2) qn = —(Ky-grad 7).

The surface which is crossed by the thermal flux of maximum density is called
principal surface of thermal flux, and the direction perpendicular to it is called
principal direction of thermal flux at the point under consideration.

In the case where the axes of the reference system coincide with the princi-
pal directions of the thermal conductivity, the thermal field is described by the
following differential equation

0*T 0°T 92T oT
(2.3) k115l7 + kzzwz‘ + k335;2— 5 e Q,

where ¢ is the specific heat of the body, p expresses its density, and @ is the
quantity of heat which is radiated from the unit volume per unit of time.

In order to find the solution of the partial differential equation (2.3) in space
and time domains, the initial and boundary conditions should be known a pri-
ori. The boundary or surface conditions of thermal conductivity encountered in
practice are [5]:

i. Boundary conditions of the first kind, when the values of temperature are
given at all points of the surface of the body,

(2.4) T = fi(z,y, z,t).

ii. Boundary conditions of the second kind, when the values of density of the
thermal flux are given at all points of the surface of the body,

(2.5) Kp-gradT = fo(z,y, 2,1).

iii. Boundary conditions of the third kind, called also “radiation boundary con-
ditions”, when the conditions of thermal exchange with the surrounding medium
(of temperature 7p) are given at all points of the surface of the body,

(2.6) K, -grad T = AT — Tp),

where A is the coefficient of surface heat transfer.

In the sequel, the fundamental equations of thermoelasticity will be given. For
this purpose let us consider a cylindrical body with the generatrix of its lateral
surface perpendicular to the plane of the Cartesian coordinate system, and its
end faces being thermally insulated. Further it is assumed that the temperature
at any point of the body depends on the spatial coordinates z,y, and that the
body is characterized by linear thermal anisotropy, such that at any point one
of the principal directions of thermal conductivity is perpendicular to the plane
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20y. If the body is homogeneous and it does not contain any thermal source,
then Eq.(2.3) takes the form

9T 9T 0T

(27) /\HW + 2/\12@5 ~+ /\ZZW = 0,

where

Al = ki cos?a + ko sin? a,
(2.8) Ay = kypsin?a + kypcos?a,
/\12 = (kll = kzz) sin acosa,
with a being the angle between the Oz-axis and one of the principal directions

of thermal conductivity, and the quantities k;;, A;; (¢,7 = 1,2) are constant.
The general solution of Eq.(2.7) is given in the form [6]:

(2.9) T = F(Z3) 5 F(Z3) = 2Re F(z3),

where the overbar denotes complex conjugate, Re denotes the real part of what
follows and F(z3) is an analytic function of the complex variable z3. Parameter
w3 is one of the roots of the characteristic equation

(2.10) Aaap? + 2 1o + Ay =0,
where "
e e :(k11k) ’
An2

with ¢ denoting the usual imaginary unit.
The thermal flux as a function of F'(z3) is expressed by a function of 3, 5,
which are the direction cosines between the normal vector n and the element ds

orT aT aT aT
(211) K, -gradT = (/\11%— o g /\ua—y) £ + (z\lza—x + Azz—a—y) Ba.
By virtue of Eq.(2.9), relationship (2.11) assumes the following form:
(2.12) Kn-gradT = AJF'(z3) + ATF'(23),
where (’ = i), and
dz;

AT = (M2 + p3An2) (=62 + p3Br).

Basing on relationships (2.9) and (2.12), we can find the temperature and the
thermal flux at any point of the body, if the mathematical form of the thermal
potential F(z3) is a priori known.
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Atany point of a homogeneous and anisotropic body under a plane strain
state,, there exists a plane of elastic symmetry which is perpendicular to O z-axis
and ccincides with one of the principal directions of thermal conductivity. The
generdized Hooke’s law in this case takes the form

€x = 110z + apoy + a130, + a7y + P17,
€y = 120, + a0y + a30, + axTyy + BT,
(213) Yoy = 160z + 260y + 360 + ag6Tzy — 2P661
£, = a130; + 30y + azzo, + 36Ty + ﬂ33T = 0,
Yy = AaaTy, + ag4575; = 0,

Vez = 45Ty + A55T¢, = 0,
or alternatively

€z = 1105 + €120y + 16Ty + 1T,
(2.14) Ey = €1205 + c00y + c26Ty + a2T,
VYzy

C160z + €260y + Ce6Tzy — 2a67T,

where a;;, ¢;; express the elasticity coefficients and are related by

(2.15) o S oy = —e Yl 38,
ass

In the sequel 3;; are the coefficients which give the strain tensor components
of a body element free form external tractions, due to a temperature change of
one degree. For these coefficients the following relationships hold true:

@ = Bi—Pu-2i=1, 2
(2.15") b

asg
ag = PBes + ﬂ”Tz.s'

Under the condition that coefficients ¢;;, a;, A;; remain constant and independent
of the variations of the stress components and the temperature of the body, the
relationships giving the stresses and displacements as a function of the complex
potentials ®(z;), ¥(z2) and I'(z3) are the following [6]:

0r = 2Re (13 (1) + 130 (20) + nops F(23)|
oy = 2Re[®(z1) + ¥(22) + noF'(23)],
(2.16) Toy = —2Re[u1®(21) + p2¥(22) + nopsF(23)],
u = 2Re[p1¢(21) + p2(22) + p.v(23)],
v = 2Re[q1¢(21) + @9(22) + ¢.9¥(23)],
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where
e 2 :
P = cupy + cr2 — cief,

M55 ciaft + e — coept ;=12
i

and

P = ay + no(cr1p — cei3 + c12),
pap. = az + no(enp3 — caes + ),
217) no = —(a1id + 2aep3 + a2)/Aus),
A(pz) = en(ps — p)(p3 — p2)(p3 — Fn)(ps — 12),
B(z1) = ¢'(z1), V() =9¥'(22), F(23) = ¥'(23)-
For the transversely isotropic body, Hooke’s law in plane strain conditions takes
the following simplified form

il v
Ex = £~ an ]”a + T,
v 1 v,
€y .= ——’U;,; 3 —‘Uy = —’:—'Uz + 1811/11,
(2.18) F . 1%
€, = —1”(01 +(ry)+ 70 + (33T =0,
1

71:y = C Try ’
ry

and for the generally isotropic body,
1

Ep = f(”* —vay) + aT,
1
(2.19) £y = E(Oy —vo,) + aT,
1
e Z:,Try-

In the above relations the coefficients /31, and f333 are, respectively, the thermal
coefficients of linear expansion on the plane of isotropy (parallel to the plane
z0y), and along the direction perpendicular to the plane of isotropy.

The relationships for the derivation of the stress tensor and displacement
vector components are simplified as follows:

op + 0, = 2[P(z) + ¢(2)] = 2Re P(z),
(0y — 0z) + 2ityy = 2[Z0'(2) + ¥(2)] ,

2u(u + iv) = kp(z) — 28(z) — (z) + 3 / f(2)dz,
I'(z,y) = Re [(z),

(2.20)
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where for the case of transversely isotropic body

14 2E (1—1/_21/2)
T 1+v\ B E)
(a) (plane strain case),

2F
B = m(ﬁn + v.f33),

33— _ 2Epqn .
(b) Al pea B = T4 (generalized plane stress case),
and for the isotropic body
(c) k=3-4p, B =akE, (plane strain case),
-4
(d) K= S , g = ol (generalized plane stress case).

1+v T 14

In the case where at the point (2, yp) inside the orthotropic medium a thermal
source of power qq exists, the complex potentials in the region enclosing this point
take the form

@(z1) = ap(z1 — t1)In(zy = ty),
(2.21) ¥(22) = By(z2 — t2) In(z; — t2),
P(23) = mo(z3 — t3)In(z3 — 13),

where

q0
471'\/ /»'11/622 ’

t; = 29+ pyo, J =13

my =

and the coefficients ag, 3 are given from the following relations:

’ m — njty " m — njy
g = ——" 3 0= T,
H1 — K2 H1 — K12

Im[m(p1 + 12) = mpupz — mAo/en] =0,

Im [mpapg + npypa(a + p2) — mo(arps — Ao(us — pu1 — p2))/en] = 0,
with
_ (a1 143 + 2agp3 + az)

Ao = — —
(3 — ) (s — 1i2)
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For the case of the transversely isotropic or generally isotropic medium, the
corresponding complex potentials take the following form:

&(2) = Agln(z — z),
(2.22) B(z) = - 20%
z— 2z
F(z) = moln(z — zp),

where
Bmg 90

G T N e

Recapitulating, the solution of the plane problem of steady state thermoelas-
ticity is derived in two consecutive stages. In the first stage the steady thermal
field T'(z, y) is derived statisfying one of the boundary conditions (2.4)-(2.6) and
the differential thermoelasticity equation (2.7) for the anisotropic medium, or the
Laplace equation

PT(z,y) , °T(2,9) _
0;7:2 (?y2 &)

(2.23)

for the isotropic medium. The second stage refers to the derivation of the stress
tensor and displacement vector components by using relations (2.16) or (2.20).

3. Thermal contact conditions between two bodies

At the first stage of the solution of the thermoelastic problem for bodies
with thin inclusions and cracks it is of great importance to describe correctly
the phenomenon of thermal conductivity along the lips of the crack and the
contact interfaces of the thin inclusion with the body. This is achieved by properly
choosing the representative computational model of thermal contact between
the bodies characterized by different elastic and thermal constants. Following
PoDpSTRIGACH'S [7] approach to the formulation of the model which describes the
condition of thermal contact, it is assumed that the contact surfaces are separated
by a thin interlayer (inclusion) with the same thermo-physical parameters (Fig. 1).
If these parameters are assumed to be constant and the thickness of the interlayer
tends to zero, it takes the form of a physical separating surface of the two bodies,
and the corresponding boundary conditions on this surface correspond to the real
contact condition of the two bodies.

The thermoconductivity equation of the embedded layer (isotropic inclusion)
referred to the curvilinear coordinate system (n, s) is the following:

it 7
(3:1) on? g 0s2 0.
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Z

F1G. 1. Contact of two infinite elastic bodics, with the contact region to be represented
by a thin inclusion characterized by the same thermophysical propertics as those
of the two bodies.

On the separating surfaces n = +h of the isotropic inclusion and the anisotropic
medium, the following conditions of thermal contact are satisfied

(32) T.(s,+h) = T%,
aTC [t :t
(3.3) ~Agcin = Tn

where A is the coefficient of thermal conductivity of the inclusion,
TE = ~(Ky-gradT)*

and 7%, T* express the limiting values of the temperature and the thermal flux
along the boundary n = +h of the anisotropic medium.
Then the following integral representations are introduced:

h
et o A
3.4) T = ﬁ/TC dn,
<k
h
(3.5) T = i/1 ndn
1 ¢ T 242 ) i

—h

Multiplying relationship (3.1) by 1/2h and integrating with respect to n in the
range (—h, k) and by virtue of the relations (3.2) and (3.3), the following equation
is derived:

T

(3.6) e

+ (T: = ,rn—) = 07
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where

As = 2Ah.
Furthermore, multiplying (3.1) by 3n/2h2 and integrating with respect to n in the
range (—h, h) we get

‘)21‘:* % " o

(3.7 A5~ +3NTF+T7)-6)0(T*-T7)=0
where

An = A/2h.
In order to derive the expressions for the quantities 7%, 7* with respect to
the limiting values of the temperature 7% of the anisotropic body, we use the
operational expression of the solution of (3.1), which can be written as follows:

0*T. 2 I

(3.8) I T.=0 (1 52 ) -
By considering condition (3.2), the expression (3.8) gives the following solution;

A Ty [T ey
(3.9) T. = 7 T cospn + g v sin pn.
By virtue of (3.9), relationships (3.4) and (3.5) become

+ s

> = Tz—f,T—tgph,,

(3.10) o

L3 3 b (o e
T = Z—piﬁ(T + T7)(1 — phctgph).

Substituting the values of 7* and 7* found from (3.10) into relations (3.6) and
(3.7), respectively, and for h — 0, we get the following relations:

2
/\s'a'a—i(T+ +T7)+2[(Ky-gradT)* — (K, -gradT)"] =0,
2
(3.11) /\s%(T+ ~T7)+6[(Ky-gradT)* + (K, -grad T")”]

122, (Tt -T")=0

The above relations represent the conditions of “non-ideal thermal contact” at the
surface of the anisotropic medium. In the case of the isotropic medium, relations

(3.11) are simpliﬁed as follows,
()]
n
(3.12) 82
sl T = 0=y 6A" [(f)r)

(T+ +T) + 20" [(‘”)
7y (%%)_} — 120, -T7) =0
T ),

an
where \* is the coefficient of thermal conductivity of the isotropic medium.
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In the case when instead of a thin inclusion we have a crack, the values of
As and A, characterize its thermal conductivity in the longitudinal and transverse
directions, respectively. Depending on thermal conductivity we distinguish three
categories of cracks:

a) a thermally conducting crack for Ay # 0, A,, # 0;

b) a longitudinally thermally insulating crack for A, = 0, A,, # 0;

c) a thermally insulating crack for A\; = A, = 0.

In plane thermoconductivity problems of cracked bodies with inclusions, the
temperature field 7'(z, y) is expressed as follows:

(313) T(I‘a :’/) = TO('T’ y) + T*(177 y)’

where Ty(z, y) is the known thermal field induced to the continuous medium, and
T.(z,y) — the perturbed thermal field due to the presence of defects in the body.

Depending on the thermal contact conditions at the boundaries of the crack
and the thin inclusion, we have the following three relationships:

G14) T¥ = 750 - T
(3.15) (Ky -grad T.)* = Q% (1) — (K, - grad Ty),
02 = e -, OZTO
/\s@(Tj +T7)+2[Ky-gradT.)*" — (Kp-gradT.)"] = —2/\587’

92
(3.16) A, ,‘)2(T*+ —T7)+ 6 [(Kn-grad 7.)* + (K, - grad 7.)"]
S

—12\, (T} - T]) = —12(K,, - grad Tp),

where the quantities f*(¢) and Q*(t) express the known temperatures and ther-
mal fluxes along the boundaries of the crack or the thin inclusion.

Finally, in the case of plane thin inclusions inside an anisotropic body we have
the following ideal thermal contact conditions which must be satisfied along their
interfaces

T+
(K, -grad T)*

T

) (Kp-grad T')~

or, alternatively, for the isotropic body
T =T,
(3.17") ) OT\ * - OT -
(@) = (&)

where \;, A\* are the thermoconductivity coefficients of the inclusion and the
body, respectively.
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4. Integro-differential equations of the plane thermoconductivity and
thermoelasticity problem for the infinite cracked isotropic plate
with holes and reinforcements

The method which is applied to the solution of the problem, consists in the
formulation of a system of singular integro-differential equations similar to the
method used in [1, 8—11]. An infinite isotropic plate S containing M internal
curvilinear cracks /; (j = 1, M), N thin strip inclusions (stringers) L; (j =
1,N =1, n| + n}) with n/ being the number of straight stringers, whereas n} is
the number of curvilinear (circular arcs) stringers, and L holes v, (j = 1, L), is
considered (Fig.2). The plate is subjected to a biaxial state of stresses (N, V)
at infinity and is under the influence of a homogeneous thermal flow ¢.,. Besides
these loading conditions, concentrated forces P; + :(); are acting at the points
z3 (j = 1,k;), moments M; at the points 23* (j = 1,k3), and k3 thermal sources
of powers g; at the points a; (j = 1,k3) on the plane of the plate.

F1G. 2. Infinite isotropic thin plate containing A curvilincar cracks, N (= n; + nz) thin strip
inclusions and L holes, which is subjected at infinity to a biaxial state of stress (Ny + N;) and
to a homogencous thermal flow go..

In order to simplify somewhat the problem it is assumed that the only defor-
mation, which can be sustained by the straight stringers, is directed along their
longitudinal axis and furthermore, both the straight and the curvilinear stringers
have zero bending stiffness.
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Depending on the nature of thermal contact at the boundaries /;, L; and 7,
we formulate the thermal boundary conditions known from the previous section,

(4.1) T:=fF-To, j=T1n, telj,

+ -
4.2) A" <0T*> = :hQJi - /\*%, J=(n1 + 1,01 + ny), te L,

on on
? . o\t . ror\ "
i -1y ven [(2e) 4 (2]
4.3) - 120\,(TF -T7) = -12,\*%,
an
% ClrorN\tT oroTNT] L 9T,
/\SES—E(T* FE) 28 [( (?n) B (071) ] = =24, 0s? "’

j=Mm+np+1, N+ M+ L), te L3;,

where t is the complex coordinate of a point on the contour.

The above relationships form the basis for the solution of the thermoconduc-
tivity problem and for the determination of the thermal field in the plate. Along
the hole boundaries one of the first two thermal conditions can be applied.

The thermal potential F'(z) [T'(z,y) = 2Re F'(z)] of the steady thermal field
T'(z,y) is expressed as follows:

k3

(4.4) F(z) = %se—iﬁo = In(z — a,) + F.(),

2/\*

where F,(z) is given as

T 1 )T
(4.5) F()_sz/f()+ %()

T—2Z

ny+ny (1)
1 * K —1a 1 (,9] (T)
+ | Z 3 / [(r)e™ In(r — z)dr + 7 id‘r
J=ny+1 L;J Lt
N+M+L (1) (2)
1 P + “P
o+ — 2T g
. Z 27 my——
J=ny+ny+1 LB.]

and represents the thermal potential which expresses the perturbed thermal field

with (cp(l) + ip; 2)) being the densities along the crack, stringer, and hole bound-
aries.
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The quantities f7(7) and f>*(¢) are expressed as

HOES [ff(r) SAOR

[0 = —5 [QF 0 + ()]

Substituting in (4.1)—(4.3) the limiting values (4.4) of the thermal potential, the
following system of integro-differential equations is obtained:

(2) ny (2)
1 [ &2(r) (7))
46)  2Re —/_k—, + / d
(4.6) - ARV e
Ll‘k J#k 4
nyt+ny (1) N+M+L (1)+, (2)
sy L a0, Ty e,
. T . T—1 T—1
g=ny+1 L ,1—ul+nz+1

=[5+ f7 () - 2Re 21:% ﬁfth)(lr
=t Ly

ny+ny

1 % —ia (oo, —;
+ Z i / f,/' (r)e " In(r — t)dr + 71(; Bo

7=ny+1 l ]

+Z“/\ ll’l(/—{ll)} telLj, k=1,ny;

=1

ny+ny ()'
@7 Refan| L [ 7 ”“)(T) Z 50,
ul

T T—t
I 1 +1
“2k Ed k

7 1 « (2
o2 (T) NH+M+L 4 [3’(: )(T) + “PF,- )(T)]
E oy dr
)

Jj=ny+na+l1 I+

+Z/

3
_ k3
_ Qi(’) - QL- (1) dag(t); I~ —igy, _ 1 1
= 2Re e tag(t) 5 ¢ z_: L
ny f (7_) nl-\‘-:n f,.*(T)(..mJ(r)
Z / 2(/T + / - dr| |,
T (=1 i Hrz T —

te L3, /;= ny + 1, ny + ny;
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() - '(2) 2iag(t)
£ + k
(4.8)1 Re wk(.ﬂ’)(ﬁ““‘(!) _]_ / P (T) 1Py (T) dr = E—

T T—1 T
[‘
“3k

"(1) . "(2) N+M+L () s (@)
p + ST) e
X / i (1) i () dr| + Z ! /(’/‘7 () 15 ( )dr

T-= 1 J=np+ns+l 7ri T == t
L;k }#kﬁ LJ_’
¢ iy (t) @, "(1 )(T) + Ip](2)(7_) mo | ip’(Z)
/ dr| + Z — / I dr
(r=1) —~ i) 11t
=1 Ll‘]

_C,ziak(z) / w;’(z)(r) . ni:nz 1 99;(1)(7_) ) (iag(t)

T T—1 _ ) T—1 T
L* 7=n+1 L*
1 13

l’(l)
0. T A* . , ’

X / e ({)dr + = [ OO + ipP )]
T =1 s

.
1‘2,

A‘] . -
‘ O =i/’ - j 1 e2iak(t)
= -2R (s /“'k(t) l\’_ S~ _ 5 B
e [wi(s)e > € ; T T

L —a;

1 f (7-) 21'(1*(1)
st

2 ) T—1 T
=t py
,, n1+nz e—1a,(7) e2iax(t)
x/ ()(l + /f"() dr — —
- i —t T

L* 1= /L1+1
Iy

=

< [ (@@ + @) e )

.
1’2]

l(l 2 l‘ll, ’ " . " 2
@8y Re{wi(9)e W [pV0) +igP@) = F O (D0 + i P(1))

* () = (2)
+6_)‘/\__€iuk(!) i / P (7')+';Pk (r) dr
& 7 r—1
L‘
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78! .2 "
(4.8), . “%*L i/ eV + i@ (r) . 21: 1
[cont.] B T T—1 ~ 119
J=np+ng+l L* j=
1#k 3
() ny+ny (1)
10 (1 A
T — . T T—1
L* 1=ny1+1 L*
1; 2
An (0 (1) . (2) _ 1A ian(ty [ 9o _—igo
~125" (¢ +iPW) ¢ = ~127Re | e

k3 ny ! %
_ q; 1 B i i fj (r)
J_Z_:Zr/\*t—aj) 12 (Z—j ) T—1 dr

t e L3, k=ny+n+1, N+ M+ L.

Here
wi(8) = ai(s) = —iar(t)a)(t).

Besides the thermal boundary condition (4.1)-(4.3) on the crack, stringer and
hole boundaries, the following mechanical boundary conditions are also given
[8, 9]:

1. The normal and shear stresses applied along the boundaries [, of the crack,
as well as on the boundaries of the hole v; are known,

(4.9) (oF - iati)|1 . k=T,
k
(4.10) (on — im)|%, j=1,L

2a. Along the boundary of the straight stringer L the following relations hold
true:

 _ duf  duy
Op = Oy, &0 = = >
day. duy

(4.11)

+ R - - /
u, +iuy =u, +wy on Li, k=11,

where z; denotes the abcissa referred to the local coordinate system 2405 yx
positioned at the mid-point of the stringer L.

http://rcin.org.pl



INTEGRAL EQUATIONS OF THERMOELASTICITY AND THERMOCONDUCTIVITY ... 189

By virtue of the condition of equilibrium and Hooke’s law for the case of
generalized plane stress, relationships (4.11) take the form

PRy gk
(4.12) th [(U: —io) — (o, — iat')] + F—Ei—ie’o"m (CARR N

—(1+v)o}] =0, t € Ly, k=1,n],

where ¢ is the complex coordinate of a point on Ly, h is the thickness of the plate,
E®), §() express the modulus of elasticity and cross-sectional area, respectively,
of the stringer Ly, and 6; denotes the angle formed by the positive directions of
stringer’s axis Oz and Ox axis; £, v express the modulus of elasticity and Poisson’s
ratio, respectively, of the plate.

3. Furthermore, along the curvilinear (circular arc) boundary of the stringer
% (k =n{ + 1, N), the following relationships are satisfied:

T(6
lgk) + h(an - U”) =0,
1 dT(6) _
(4.13) T ag oo =0
.
uy +iu =y +dug, f0= d(% N d(%’

which lead to the following relationship, if Hooke’s law in generalized plane stress
conditions is considered:

(4.14) E Rh [(0’ —0,)— z(at -0, )J — pR)gk) [1 - (1‘. - 77‘Lkeibk> %]
dty,

x [(o7 +0) = (1 +v)oy] =0,

where 7'(f) is the circumferential component of the force which acts along the
line in the middle plane of the stringer, and in generalized plane stress conditions
are given by the formula

(415) T(()) - E(k)S(k)E‘B" ’

with £3" being the circumferential component of strain along the line in the middle
plane of the stringer

. 1
(4.16) " = =(os —vay).

Also, (c£,0F, oF) express the normal, shear and circumferential components
of the stress tensor, respectively, and the relation ¢ = mye** + t; transforms
the points ¢, = R, referred to the local coordinate system of the curvilinear
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stringer, with centre of curvature at Oy and radius of curvature Ry, to the global
coordinate system, with b, denoting the angle between the lines 00; and Ox and
my; 00y is the intercentre distance.

For the description of the boundary conditions (4.9) - (4.14), the complex po-
tentials ¢o(z) and ¥y(z) are defined as follows:

k3

Pi+iQ; 1 3 G
(17)  #o(s) = I~ Z 2r(1+K) 2 -2} iy ; 2rA* Inz —aj) + #(2),
(P, —1iQ;) 1 (P +iQ5) 1
4.18 Yo(z)=1"+ J d ~
( ) (=) ]Z=:1 27r(1 +K) z- z3 27(1+K) (z- z;)z
B —
M; I} q; a9 _ W (:),

271' (z- "")2 1+k s 2TA* z — a;

where | |
I'=-(N;+ N I"=——(N; - N
4( 1 2)3 2(1 1 2)7

N
o) ¢(:)=Zzﬂ/m,(r), +Zzlm/(;z,_(r) +27f5”4>1

v

with G1;(t), G2;(t), G'3,(t) denoting the densities on /;, L; and v;, respectively.
By virtue of the boundary conditions (4.9)-(4.11) and (4.13), as well as for-
mulae (2.20), we find the following integral representation for ¥ (z):

N 1

(T Gh;(1) TG (T
G2y #E=), 2r1/m—(~)' 2]Wi/_lL~)(l?_2ln (r lJ(~)2

: z T — =z
=1

L L

N VR

Z K Ghj(r) — 1 TG,
— —— s —_— [
+. 27ri/ T—z i 27') (T— z)2
J=1 L,
L

1 ra(m) 1%(/3_1(7) _ 1 pTG(0)
+Z %%T—:m—_%’i. T—z . 27'1 (7'— )2

=1 R R

where

q;() = (of —oy)—i(a} —o7),  tel;,  j=1,M,
ai;(t) = (o0 —ioy), ten;, j=1.L.
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The combination of boundary conditions (4.9) and (4.12), with relationships (2.20)
and Plemelj formulae [1] for the integral representations of ¢(z), ¥(z) and F.(2),
gives the following system of singular equations:

em ! _
(4.21) l_/——“(T)dr /C'“(T)
™ T—1 T T=—=1
Ik Ik
de |1 (:“(T)— /

_ / 1

Al ﬂi/ T—1 27'1 (r - (“‘(T)(T
Uy

+§: 1/(:1,,-(T)1 1 (,U(T)_

T T—1 - T T —1

i I I

17k
|1 (,1,(T)1 2 2 / G]J(T)(IT
d|mi) (=0 mi) (-
) LY LT PGP
= ! T—1 7'i Tt
= [/] l‘]
di Goy() — | /
S _E/ T —1 (r - GZJ(T)(IT
=)
'(:’3/'(7') 1 m_
+ ———d
z_: 7‘1% r—t 7 fT"'[
s
dt 1 ('3/(T)
T ;f T— 1 S i %( G3J(T)(IT

i .

[ Ik

— /rllk(lsy)" :ﬁ:j — / (/IA(T) dr + Z 7—’/ (/17(T) dr + Z — % (:})ETt) ]
=1,M,

L€ ly,

f'(t;)b'(r:) 0,

(4.22) th [(k + 1)Gor(t) + Boa(D)] + :——17—1'(‘
d 3—-v-r(1+v) ,
X i Re > ('2k(1) —
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+
2mi T—1

(4.22) 1-v [ Gu(r ) dt | k / Gor(T) —
[cont.] 2 T—1 A s )— 2ri dr
Lk Lk

27rz/ (= sz(T)dH 35— / "’2‘“)7 + Z / G;zj_(rt) i

L,

n‘k
_(1+u)% b /sz(r)— 271'1/(1' G'Zk(‘r)dr

2ri T—1

LB [ eu() +§’: 1—'1//02]-(7)(#

21rz T—1 r—t
£ ¥k L;j
dt | & GZJ(T)_
£ e g et i) RO
1 V)(lt 27”./ g 27”/(7_ 02 G'ZJ(T)(IT
L,
B [ #24(T) 8 e
0 1 dr + Z = / J dr
2ri) T —1t « | i r—t
L, ;#k ly
A GIJ(T) o
++)= | o= [ L7 +——/( Gl:(T)dT
IJ
2 Gy;(r ) 1 [ Cs0) —
Z f E—dr+({l+v )— —.fJ—dT
i 271 T—1
5 /] Y5
+o— f s t)2G3J(T)d-r = Ap(t,D), tely, k=Ta.

Here

A, ) = (o +0;)—i(o] +07) - 2(F+1‘+£l_t.l“>

dt
k . . ' o
+Zl: 2Rer+sz 1 dt [P +iQ;) 1 P, +iQ; t—2;
ST A i @ w0+ n) -5 w04k (-5
ka
: dt A/Ij 1 &3
_l;ET(t—z;*)Z 1+ Z I:Reln(t (LJ)+_Jt_t_aJ] ’
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E<k>5<k> e Lo | dt M 01;(r)
) = et e | [

L *
1 (Ilj(T)— 3 +ZQJ l
+].§7ri}£7'—tdr +Z(l_ )7r(1+n)t
= i

__<,<(P iQ) 1 . Pi+iQ 2—2)
2r(1+ k) t—27 2r(1+k) (t—27)?

dt M; 1
¥ Zdt 2r (t—2"2 (1 +n)227r/\*

[2(1 _ v)Int - a;) + dz : ] .
Analysis of the boundary conditions (4.10), (4.14) on the one hand, and (4.9),
(4.13) on the other hand, leads to the conclusion that they are analogous. This
fact gives the opportunity for the other two categories of integro-differential
equations on the curvilinear thin inclusions L7 (j = n} + 1, N) and on the holes
v; (G = 1, L) to be obtained in a similar manner. This has not been done in this
paper by reason of economy of space.
Finally, the system of integro-differential equations (4.21), (4.22) is supple-
mented with the conditions for singlevaluedness of the displacement along [
(k = (1, M)),

1 T
(4.23) / Gu(t)dt = -~ / OLL
Ik lk

p / =
T s e1(t) dt, t € ly, k=(1,M).

Iy
Representations of the densities G'1(t), Gax(t), G3x(t) on the cracks, stringers
and holes, respectively, assume the following forms:

(t
Gu(t) = ({1:_()

(f) o S—”lk(t) t € lk, k= 1,]”,

, _ (o —o7) 5 _ TNV
424)  Gat) = “H— 1+~4,92k(t), t=cLp, k=1,N,

Gat) = B 4 g0 - -

1+ kK

Sp3k(t) t€7k7 k= 17La
where

21
1+« (lf

g1x(t) = [(U"L(’) —um (1) + i () —v= ()],
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210 d .
g3lt) = 1+—/h T () + i ().

The system of equations (4.21)-(4.22), in combination with the integro-differential
equations (4.6)—(4.8) and the appropriate conditions for equilibrium of the tem-
perature factor, permits one to describe completely in quantitative terms the
stress and thermal fields in the cracked, partially non-homogeneous, and multiply
connected infinite isotropic plate.

5. Integro-differential equations of the plane thermoelasticity problem
for the infinite cracked orthotropic plate with reinforcements

Let us consider an infinite orthotropic plate which is under the action of a
mechanical and thermal field. The body contains an internal curvilinear crack ¢
and a straight stringer L, and is subjected to the stresses 07°, o.°, 7.7, as well as
to the homogeneous thermal flow ¢, at an angle 3, with respect to Oz-axis, at
infinity. Also, a concentrated force (\\" +¢}") and a moment A/, are acting at the
points z*, z**, respectively, while a thermal source of power ¢q is located at the
point «*. Furthermore, it is assumed that the direction of reinforcement coincides
with one of the principal elasticity axes Ox (Fig. 3).

NENERNEEY

y

—
stringer L l X
—

B e —

R RN

F1G. 3. Infinite orthotropic thin platec under the influcnce of stress and thermal ficlds,
containing a curvilincar crack and a straight stringer.

Depending on the type of thermal contact along the boundaries of the crack ¢
and along the stringer L, one of the three thermal surface conditions expressed by
the relationships (3.14) - (3.16), is possible. Additionally, the mechanical boundary
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conditions along the lips of the crack ( and the stringer [ are analogous to those
of the isotropic medium (4.9) and (4.11), whereas relation (4.12), in the case of
the orthotropic body, takes the form [11]

(5.1) th [((r: - icrt+) = (o, —io] )] + 1555 ;l’ [Lll of - 2—’;0:{] = 0.

The complex potentials ®y(z), ¥Yo(z2), I'(z3) which describe the mechanical
boundary conditions on ( and L, by considering also relationships (2.21), are
given in the following form [11]:
CnX + CpY ,Mo 1
n =& "8r (=1 — )2
+(10 [1+In(z; — a])] + ¢(21),
CyX - CpY iﬂ 1
n-& 81 (22— &7)?
+()6 [1 + ln(~2 — (15)] + !I’(:z),
(cos 3y + ji3 sin f3g)z3
>+ I
2/ k11koy Tmps (z3),
where the constants C'1y, C'12, Ca1, Cpo, I', 1" are determined from the relation-
ships

(5.2)  @o(z) =1 +

(53)  W(n)=1"+

(5.4) F(z3) = mg[1 + In(z3 — a3)] +

v,
1 M2t tn g ; .

Cn = 2 2)
(= ) — F1)<1 = —>
Oy = 1 fafty + fiyya + mqu
/ 27 _
(1 — p2)(p — /11)(1 )
1 Mttt s 1
Cy = — =,
2ri _
(12 — p1)(p2 — ,,,2)(1 - —)
12

271 _ T ’
i s — g Y — ltz)( - ’—’)

(e = 1 jufly g F Vs
2

H2
r-T=0,
W0+ BT + 30+ i3l = ol
r+r+1"+71"=a"°,
il +ml + "+l = =17y
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whereas

(55) @(31) — 27”/ 9’( 1) 27”/ J(Tl) dr mn,

T — 21
4

56) ()= e "(72) +2m/ ) 4,

21 T — 2
L,

L T 2
(5.7 Fuz)= 7 / ';_;1_( 2 dry + m//uz(n)e“”'(“)ln(m — 23)dr3

1 :“21(7-3) / 1a2(73)
+E/ Pa— dr3 + =— [ p2a(m)e” In(m3 — 23) dr3.
)

Depending on the type of thermal contact on ¢ and I, we select the cor-
responding condition from relationships (3.14)-(3.16), where we substitute the
limiting values of F(z). From this operation, a system of integro-differential equa-
tions with respect to p11(t), p12(), p21(t), pu(t) is derived. Basing on this sys-
tem, the determination of the thermal field 7'(z,y) of the cracked anisotropic
plate reinforced by stringers is possible. This system is analogous to the system
(4.6) - (4.8) of the isotropic medium.

By taking into consideration the mechanical boundary conditions (4.9) and
(5.1) on ¢ and L, respectively, as well as the limiting values of ®y(z;), ¥y(22),
Fy(z3), and after some algebraic manipulations analogous to those presented in
[11], we formulate the following system of singular integro-differential equations:

(5.8) S —'l_tz el /__g(rl) dn +/——QP(T1) dr

T (lt T — tl T — tl
4 1
- dh / (1(7'1) +/ o(n) () o—
T dt Tl—fl T1—[1
(4] L
_\diz |1 //121(T3) /
+ — T )— | — 3+ — 1@2(m3) In(r3 — t3)d
no(ks — F2) 4 | — p— p22(73)e” (r3 — t3) dr3
14 &)
K 11( 3) 3+ —//le(r3)( 1ai{7a) In(r3 — t3)drm3
7‘1[ T3 —
/3

dis 1//121(73)

—no(ii3 = Fa) 5, | — o, —//'22(T3)C fa1(r3) In(r3 — t3)dr3

3 t3

http://rcin.org.pl



INTEGRAL EQUATIONS OF THERMOELASTICITY AND THERMOCONDUCTIVITY ... 197

+
[cont.] T

L3

(5.8) L “1(?)1 o / ja(rs)e— @ In(rs — t3) dry
T3 — 13

_H2 = dh —Ez/ 9(r1) dry + P —Ez/ 9(n) -—
T dt | py — iy ; T — 1 Mo — iy ; T — 1o
1 1

ngt3= iy [ k21(m3) drs + n0ﬁ3 — fia / 121(73) i

Nz—/tz T3 — 13 Nz—/_tz T3 — 13

=P [ (1) o Pij - qu/ o(r) p

— — 1 —
P2 — quzL T — 1 7292 — P2q> ; T — 1
1 1

_ P=<q2 — P24 / f11(73)

P 7 drs + 22~ P2 uu(Ta)d—T3
Pat2 — P22
L3

T — 12 P22 — PzﬁzL T — 1
3

- ity 1 1q"(r)—q (1)
= ot (1) + z—i—z—/——z oyt ts € 0,0, 0y, s:
q () q () At i TZ_tZ ar, s 01502, 3E y L1542, L3,

P1G2 — P20 P1q2 — p2q1 | dity-
5.9 th [ 1—p)+ (1 —dpp)———+(1- —————] ty
G9) ( )+ P292 — P22 ( )pzqz Paq2) di FTRaCY

Piga — pady | Aty
[(1_w1)+(1_” VU il Y TR L Pz(h]fl )

D292 — P2q2 P2G2 — P22l dt
: - P« — Pag _\Px2 — 2G| dl3
+ng [ 1—du3)+ (1 —qp)———+(1 - 'Z/LZ)T:I —p11(3)
( )+ D212 — P22 P22 — P2g2] dt
P2 — D20~ P02 — P2q. di3
4 (1= i) + (1 = i) TRy (1 - 2 22|
’ D202 — P22 P2G2 — P22l dt
FoSy d ) — Drqy dt Gy — iy
422020 @ B, + By P192 — P21 dly JrB,4]1ﬂ12 22(11 1 o(t1)
4 dt Pada — 12y dlz P22 — P2 diy
— diy DGy — dty
By 4+ By P12 — P2 ¢ aty + 1}4])1 12 — P24y ¢ atyp (il)
Data — P2y dta P20 — Pag2 diy
)T — Ty dl ety — s diz
Bs + Bg + Ds 7_)(/2—7’22_3+7_)L_]’_2(_L‘__§
P22 — P2a dly  Daga — P2y dip
P2 — p2q= A3 | D2 — g, di3
+ By ('ﬁ —t p11(3)
P20 — P22 Aty p2a — a2 dty
B Ty — D T
B o(m1) ar — 22 (Tl) 4 B3| M7~ Patn e(m1) dr
T T —1 ™) T1— tl T\ Daa —paga ) T — 1
Ly L, Ly
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(3.9) 4+ 12— i / @(11) &+ P02 — D2dx [ 111(73) dr

[cont.] 7292 — 7’2721 T — {2 P22 — PzﬁzL T — 1
/1 1

+l)d]2*1)2(/*//111(T3)E _ By 7)1(12—1’2(11/ e(m)

P22 —1q2) T2 i \ P24 — D212
Ls L

T2—12

P h - 1_)271 / _w(TQ s
P2q2 — szlzL T2— 12
1

4 P02 = P24 / /m(Tg) drs + P2 — P20 / f11(73) drs

MG — 22 ) T2— 12 7202 — 292
Lj Ls

T2 — 12

v | L / ) oy b [ e in(ry — ) drs
w3

Tl T3—l3
Ls

1 [p 1 :
+— / M dry + —.//‘22(T3)C_m2(r3) In(r3 — t3) dr3
) 13-13 @y

L3 Ls

_B6 1 // 11(T3) l— + _//le(T3)€ ml("’3)m
T2 — 13 iy
L3 ’

L2 1 /IL21(7'3) d73 + — //122(7'3)( 12(m3) In(r3 — t3) dr3

T T3 — 1
pTh

21 /Mdﬁ _ —?/ﬁdﬂ _ B3 ﬁz/ J(Tl)
T T — 1 T T1 — 11 T | j — iy T — ,2
1 £y é’

LT / 9(r1) T+ g2 / /tzl(T3)dT3

2 =i ) T2 =12 /12—#2 T3 — I3

4 f3

- , — By |71, — _
P bl / #21(73) Py NN R Nl / _g(TQ a

fp —Jin J T3 — 13 Tl |Jip— p2 ) T2 — 12
L St / E (le dry + ngl3 =12 / 1121(73) —— Trs + ngl3 =12
iy — j12 4 Ty — 1p Jlo — 12 ; T3 — (3 o — H2

3 3
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= A(1,1) - E(fo &

- (),

(5.9) « / /lzl(TE) T a . _
dt | mi(pa — fip) J T — 1

[cont.] T3 — 13

3

at(t) — g (1
/1 (r)—a=( ) : t,ty,ta,t3 € L, Ly, Ly, L3,
7r1(,412 — 12) T2 - 12

where
: _ dt -
g () = —i(1 = im) [*(O) + i (1 + i) [*(0),
() = ot +ict - ! {2Re [(1 + A+ (4 3 A + ng(1 + /t%)AB]
(lt [

(1+ 1;11)2/\” + (1 + 1;12) Az + no(1 + 1/13) Az

+(1 + i) A+ (1 + i) A + no(1 + i) f‘13}}’

CuX +CpY My 1

Agz=T+ e 87‘ s )2 + ag[1 + In(ty — a})],
1
CuX = CV M 1 .
A12 = r’+—gﬁ:§2——— 87[(-) ([2_.6 )2 +1)6[] +ln(12—(12)],
) 2
Az = mo[1 +In(t3 — a3)],
FoSoy d S S B
A1) = _OTO (;—/ {131,121 + Byday + ByAy + Baidgs + Bs Ay + 136/123} :
Ay = A — 1, Ap = Ap-1", Az = Ags,
It
B = 11 [2—*— 2/1 -1+ 1//1)—~ - (1- 1/11)( 1}
. dt
2 fa i G a - S,
oy
1 11
By = [2+ 53— (1+ 1/12)— ={1- /12)( 2]
Vy (1[2
~ 1+ 1/12)— + (1 - 1/12) ,
“y
Bs = ;O [2 + 2/1 —(1+ 1/13)—— - (1- 1/13)(“%}

B noly
L,
B2 = Fl, /34 = F}. B6 = ﬁ5.

[+ i) 2+ (= i) 2]
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The systems (5.8) and (5.9) must be completed by the condition of singlevalued-
ness of displacements along the lips of the crack ¢, which is expressed as follows:

(5.10) kn+mo—uu+mam‘ﬁ?—@fw@ﬁ?‘“]/«nwn
K2 = Jip fia —

12
1

L 2 _
[(])1 +iqy) — (P2 + 12 )/ — —, (P2 + ’(12)_ - Zz] /g(tl)dh

1

i — M3 2
2 _ (B + i) ] /#2103)‘“3
2 iz — 112

3

. N
“ﬂm+w%m+m%_

+ng [(P +1q,) - (P2 + “12) T 7, (P + "12) z] //tzl(ta)d—fs
4
P tig + P2+"12 D — =] «
pr—— /[q ) -~ O dt = Z=—0 /[q @ — a0 d.

The system of equations (5.8) — (5.10) combined with the integro-differential equa-
tions of thermoconductivity, which are obtained from the conditions (3.14)-
(3.16), can fully describe the stress and thermal fields of the problem under
consideration.

In the case when the direction of the stringer does not coincide with any of
the principal axes and it is located on the plane of the elastic symmetry of the
plate, the relationship (5.1) takes the following form

: d |1 vy

(5.11) th [(O’ —i0,") — (o] — o] )} + FoSo— 7l [—(r+— FO’ + a0t | =0.
From the above condition a singular integral equation is derived along the stringer
L which is analogous to (5.9). The new elastic constants appearing in (5.11)
are derived from the relations which give the elastic constants with respect to
two mutually orthogonal systems, when the principal coordinate system has been
rotated around its origin through some angle [11]. From the above remark, it is
evident that the problem can be extended to the case of a finite number of cracks
and straight, as well as curvilinear stringers of random orientation, concentrated
forces, moments, and thermal sources, with the only restriction that the stringers
and cracks do not mutually intersect each other.

Furthermore, the important geomechanical problem of a circular hole (drill
hole, wellbore, tunnel etc.) reinforced fully or partially along its perimeter by a
stringer, inside a cracked either isotropic or anisotropic geomaterial, under the
influence of stress and thermal (geothermal, due to the presence of nuclear waste
etc.) fields can be examined by the above method.

http://rcin.org.pl



INTEGRAL EQUATIONS OF THERMOELASTICITY AND THERMOCONDUCTIVITY ... 201

6. Concluding remarks

Basing on the method of complex functions and the theory of singular inte-
gral equations, a general method was proposed for solving plane thermoelasticity
and thermoconductivity problems for cracked, isotropic or anisotropic, multiply
connected bodies with linear and curvilinear stringers.

Many important engineering problems can be solved by the above general
method, such as the body with a partially of fully supported hole and periodic
linear and circularly symmetric arrays of cracks, stringers, inclusions etc., as well
as other plane elastic problems of a generic geometry which may be encountered
in actual engineering applications. It is obvious that the important aspect of pre-
diction of the behaviour of a body under the influence of existing singularities
inside the mechanical and thermal fields of forces can be considered by using the
proposed method.

Furthermore, the principles and procedures of the method can be effectively
applied to extend it to a large category of problems, such as bodies with inclusions
and bodies in contact containing or not a system of cracks.
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Determination of finite plastic deformations
in single crystals (*)

A. BERTRAM and M. KRASKA (BERLIN)

TuEe concerT of finite inclastic or plastic deformations, based on the assumption of isomorphic
elastic ranges, leads to a nonsymmetric sccond order tensor-variable, called inelastic transformation,
that plays the role which is usually attributed to some “plastic deformation”. Its evolution law can
be either isotropic or anisotropic, rate-independent or rate-dependent, etc., and thus it leaves the
material class rather general. The theory is specificd (1) within the context of classical isotropic
plasticity and (2) within crystal plasticity. For the latter case, the Schmid law induces a flow potential,
which determines the directions of the inclastic transformation. The (uniaxial) constitutive law or
relation on the level of slip-systems can be viscous, plastic, viscoplastic, or other. Computations of
finite crystal deformations show interesting effects due to anisotropy.

1. Introduction

SINCE THE PIONEERING WORKS of Green/Naghdi, Mandel, Lee, and others three
decades ago, a tremendous number of papers in the field of finite plasticity has
been published. But, as NAGHDI [14] remarks in his critical review on the state
of this subject, the constitutive theory is still in its primitive stages and has not
been fully understood, even in its basic concepts. There has been a long and
intensive dispute on the different approaches, and it has not yet come to an end.
For example, the decomposition of the strains into elastic and plastic ones is an
important constituent of most of these theories. But in what we will present, such
a decomposition, as well as the existence of an unloaded placement, turn out to
be unnecessary.

The present approach differs from the quoted ones in many aspects. First of
all, we chose stress and strain variables for the constitutive modelling which are
material ones, that is invariant under Euclidean transformations, but without us-
ing a reference placement, which often led to confusion rather than to conceptual
clarity. This intrinsic description is based on a suggestion by NoLL [15] and has
been used only by a few authors [3, 7, 10, 16], despite its clear advantages. After
introducing these variables, we will try to work out the basic features of what
is commonly understood by elastoplastic behaviour. The very basic assumption
of the present theory is that there are elastic ranges, which have equal elastic
properties. Of course, this statement requires a precise formulation. Having es-
tablished them, it turns out that most of the current theories in finite plasticity
are essentially using or complying with the same assumptions, some of them in a
rather implicit or hidden way.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,
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The notion of equal elastic properties leads to the concept of plastic isomorphism
or transformation which plays the key role in the present theory. This variable is
generally non-symmetric. For its evolution equation two examples are given. For
the first one we chose the most familiar concepts such as the Huber - Mises yield
criterion, Drucker’s postulate, and kinematic and isotropic hardening. The second
one is the slip system theory of crystal plasticity, a physically well-substantiated
theory which gives us clear interpretations of our concepts. In particular, it can
be shown that the plastic transformation can be derived from a potential in this
case, too. There is no need for artificially introducing something like a “plastic
spin”, a rather controversial concept in the literature.

When compared with the theories of multiplicative and additive decomposition
[8, 9, 11, 13], we can precisely work out their validity ranges and the limitations
by embedding them in the present framework.

A number of computational results show the ability of the present model to
describe the single crystal behaviour under large inelastic deformations. Some
interesting effects due to the anisotropy of the model can be computed and
studied in our examples.

2. Notations

I'  symmetry group of the elastic law,

x (global) placement of the body,
x, (global) reference placement of the body,
p mass density,
pr ~mass density in the reference placement,
B body manifold,

C = F*G"F right Cauchy-Green strain tensor,

C elasticity tensor,

d; slip direction,

& elastic range,

F  Euclidean point space,

e; lattice vector,

F deformation gradient,

G = K*GPK intrinsic configuration,
G Euclidean metric,
G, undistorted configuration,
K = dr  (local) placement,
Kr = dx, (local) reference placement,

K7z (local) intermediate placement,
L velocity gradient,
n' normal to the slip plane,

P, plastic transformation from & to &,
p stress power,
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S intrinsic stress tensor,
TE  Cauchy-Euler stress tensor,
TP  2nd Piola - Kirchhoff stress tensor,
Ty B tangent space in X' to the body,
V' vector space of Euclidean shifters.

Throughout this text, a superposed asterisk will denote duality, either of spaces
or of mappings. A suffix ¢ indicates time-dependence.

Let B be the body manifold, and for a material point X € B, T'x B be the
tangent space and 7'y B its dual, the cotangent space. Let £ be the Euclidean
point space and V its associated vector space of the Euclidean shifters endowed
with the Euclidean metric, i.e. a symmetric and positive definite linear mapping

(2.1) GE: Vv,

The placement of the body is a global diffeomorphic embedding in the Euclidean
space

(2.2) K: B—FE,

which may be time-dependent. The local placement at some material point X is
the tangent map or the differential of the global placement

(2.3) Ky :=di(X): TyB —V.

By means of this mapping we can push forward or pull back all local concepts
between the material and the spacial description, such as the pull-back of the
Euclidean metric

(2.4) Gy = K}GEKX : TxB—TxB,

a metric in the tangent space, which is called the (local intrinsic) configuration,
and the pull-back of the Cauchy- Euler stress tensor TE

(2.5) Sx := Ky!TEKy": T%B — TxB,

the intrinsic stresses. When it is clear from the context to which material point
these local concepts are related, we will suppress the suffix X. Note, that no
reference placement has been (and will be) used to formulate our material theory.
The intrinsic configuration (in contrast to placements) and stresses are invariant
under Euclidean transformations which may be interpreted as both the change of
observer or the superimposed rigid body motion. This property makes them most
appropriate for any constitutive modelling, as the principle of material objectivity
is identically fulfilled by any relation between them [3, 10, 15]. Moreover, they
are power conjugate variables, as the stress power can be expressed as

(2.6) p:= tr(TEL) = %tr(SG')’

with L denoting the spatial velocity gradient.
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3. Elastic ranges

Since elasticity is fundamental notion for understanding plasticity, we will first
review some basic concepts from the (finite) elasticity theory [3, 15]. An elastic
material element is characterized by an elastic law

(3.1) hx : Gx+— Sx,

which can be both linear or nonlinear. We will use such laws to describe the
behaviour of elastoplastic materials within their elastic ranges. If one wants to
compare the elastic elements at two different material points .X and Y with elastic
laws hx and hy, one needs, first of all, an identification of the tangent spaces at
these two points, i.e. a linear bijection

(32) P: TyB = T‘\'B.

We call the elastic behaviour of X and Y isomorphic, if such a material isomor-
phism P exists that the following isomorphy condition for the elastic laws holds
for all configurations

(3.3) hx(Gyx) = Phy (P*GxP)P".

Material isomorphy constitutes an equivalence relation on material elements. If
two elastic material elements are isomorphic, all their properties can be consid-
ered as being equal. That means, for example, that they necessarily belong to the
same crystal class. Moreover, material isomorphisms relate configurations which
describe the same state of the elements. If, for example, Gy is stress-free or
unloaded for hy, then the isomorphic configuration P*Gy P is stress-free for hy,
too. Or, if one configuration is undistorted, then so is any isomorphic one.

Clearly, if X' =Y, the identity in the tangent space can always be used as a
material automorphism. But in all cases, this is not the only one. The set of all
such symmetry transformations forms a group under composition, the symmetry
group of the (elastic) material

Iy:={H: TxB — TxB, linear, invertible [hxy(-) =Hhy(H -H)H"}

which is used to characterize fluids, solids etc. As we are here exclusively in-
terested in solid materials, we assume that for every elastic law there exists an
undistorted configuration G, with respect to which the symmetry group is a sub-
group of the orthogonal group. The structure of the symmetry group is used for
the classification of the 13 crystal classes, ranging from the triclinic solid to the
isotropic one, as extremes [18].

Naturally, the concepts of material isomorphy and symmetry are closely related
to one another, as will be shown by the following theorems.
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THEOREM 1. Let hy o be elastic elements with symmetry groups I ,, and P a
material isomorphism between them. Then Iy = PI'TP~1 holds.

THEOREM 2. Let hyp be elastic elements with symmetry groups I ,, and P a
material isomorphism between them. Then also HyPH, is a material isomorphism
between them for all Hy € I'y and all Hy € I.

THEOREM 3. Let hy be the elastic elements with symmetry groups I'y 5, and P
and P — the material isomorphisms between them. Then P~P is in Iy and PP~!
in I

The proofs are straightforward and can be found in [5].

All these concepts which are based on the material isomorphy can be defined
for any simple material, whether elastic or not [2, 3]. We have limited our con-
siderations to elastic materials for two reasons. First, we will use them only for
this special case, and, second, the definitions turn out to be much simpler in the
elastic case.

In the general inelastic case the stresses do not depend solely on the actual
configuration, but also on the past configurations process. This can be mathe-
matically formalized by introducing the process class, i.e. a set of configuration
processes defined on finite time intervals, and by a stress functional that assigns
to each of these processes the stresses with which the material responds at the
end of such a process. A formal structure of such a material system can be found
in detail in [2, 3, 10].

In the present context, however, we do not need such a general framework,
as we will limit our consideration to materials with elastic ranges. Such materials
are characterized by the following property: at any instant ¢ when the material
element happens to be in some configuration Gy, there exists

(i) a connected neighbourhood &, of Gy in the configuration space, and

(if) an elastic law
such that, for any continuation of the configuration process that remains in &, the
stresses are determined by /. In other words, the material behaves elastically, as
long as the deformation remains within the elastic range. £ can be determined
by a yield criterion in the configuration space, or, if the elastic law is bijective,
in the stress space as /1,(,), equivalently. If, however, the configuration process
leaves the current elastic range by hitting some yield limit, the deformation is
no longer elastic and the material changes its current elastic range. This is the
underlying assumption within most theories of plasticity.

The other common feature of these theories is the assumption, that the elastic
behaviour or the elastic stiffness is not changed by the plastic flow. In our context
this means that the elastic laws of all elastic ranges are materially isomorphic.
Or, more precisely, for any elastic ranges &, with elastic laws /i, there exists a
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material isomorphism P} such that the isomorphy condition holds in the form
(3.4) ha(+) = Pyhy(PY - PLPY".

Note that the elastic behaviour within the elastic ranges is equal, which does
not imply that the size or shape of the elastic ranges, which may be affected by
hardening or softening, is equal.

The advantage of this assumption for the modelling and identification task lies
in the following fact. The elastic behaviour in all elastic ranges is determined by
two notions, first, the elastic law of one arbitrarily chosen elastic reference range
ho and, second, the material isomorphisms P; between the reference law and the
laws h; of each of the other elastic ranges &;. In fact we can compute the stresses
at any instant by the isomorphy condition in the form

(3.5) he(Gy) = Piho(P;G,P)P; .

Note that all quantities with suffix ¢ depend on the time and have current values.
In the case of h, this means that not only the value of this function, but the
function itself depends on time. This should be taken into account if one prefers
an incremental form of the stress law:

(3.6) S, = [h(Gy)]”
= P/ ho(P;G.P,)P7 + P, /g(P;G,P,)P;
+P,dho[P, "G,P, + PGP, +P:G, PP;,

where the dhy stands for the gradient of hg, i.e. the elastic tangent tensor.

As P;, which plays the key-role in our theory, expresses the influence of the
(plastic) predeformation on the current elastic behaviour, we call it plastic transfor-
mation. It does not have the form or dimension of a deformation or configuration
and, thus, does not imply any decomposition of the deformation into elastic and
plastic parts. In general P, is fully non-symmetric, i.e. nine-dimensional. Only one
dimension can be reduced by assuming that isomorphisms are generally preserv-
ing the mass element, see [12].

The main problem left to solve is the determination of the plastic transforma-
tion. If the material is given in its initial state, we can choose the initial elastic
law as a reference, without loss of generality. That means that we can take the
identity of the tangent space as the initial value for the plastic transformation.
And as long as the material remains within the same elastic range, the plastic
transformation is constant. As soon as the material state hits the limit of the
elastic range in the form of a yield criterion, yielding or plastic flow may occur
and the plastic transformation will vary. Therefore, an evolution equation for P,
is needed and it is assumed to exist in the following incremental form

(3.7) P, =g(P, G, G, ay),
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where «; is the current vector of internal variables such as hardening parameters.
¢ may be rate-independent, as in the plastic case, or rate-dependent, as in the
viscoplastic case. The value of ¢ is expected to be zero as long as the current
configuration G, remains in the interior of the current elastic range. In this case
the incremental equation (3.6) for the stresses reduces to

(3.8) S; = P,dho[P;G, P,]P;

the usual elastic increment.

The complete constitutive model of the present theory consists of two consti-
tutive equations, namely, the elastic reference law hy and the evolution equation
of the plastic transformation (3.7).

According to Theorem 2, the plastic transformation is unique only up to the
both-sided symmetry transformations of the elastic laws. For practical purposes
it is sufficient if the evolution equation gives just one plastic transformation out
of the set of all possible ones.

4. Theories based on intermediate placements

In order to establish the relation between the current theory and those based
on the concept of intermediate or isoclinic placements, we first choose an arbitrary
reference placement «,, with tangent mapping
(4.1) Kp:=di(X) : TxB —V.
Next, we introduce the (local) intermediate placement
4.2) Kz = KgP;!.
Generally, this is not the differential of a global placement, since compatibility
cannot be assured. The plastic transformation is time-dependent and, thus, so is
the intermediate placement. The displacement from the reference placement to
the intermediate one is called “plastic deformation”
(4.3) F, := KzKy!' = KpP7 K3,
and that from the intermediate to the current one — the “elastic deformation”
(4.4) F. := KK;; = FF,! = KPK}!,

such that the multiplicative decomposition holds

(4.5) F = F.F,.
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Note that neither F. nor F, is a gradient, in general. We will next transform the
intrinsic elastic law to these variables. The Cauchy-Euler stress tensor is

(4.6) TF = KSK

Kh,(G,)K”

K P;ho(P;G,P)P;K"
KP/o(P;K*GFK P,)P; K*
F.Kpho(K;,F:G"F KK}, F:
/P Fepo(Ce) F;

with

4.7) C.:= F:GFF,,

and

(4.8) po(Ce) := pr/pPKpho(K;C.Kp)KF, .

This result corresponds to LEg's [11]. The approach with multiplicative decom-
position, if properly identified, has just been proven to be in accordance with the
principle of material objectivity; it is also applicable to anisotropic materials, and
renders isomorphy of the elastic ranges.

With the same decomposition we can also define another “plastic deformation
tensor”, such as the symmetric

(4.9) C, := F;G"F,

and the elastic one due to the additive decomposition of the total right Cauchy -
Green tensor

(4.10) C=C,+C"

according to GREEN/NAGHDI [8, 9]. Note that C,. and C¢ are not identical. If we
use the 2nd Piola - Kirchhoff stress tensor

(4.11) T = p/p, F ' TEF",
we obtain
(4.12) T = p/p F, ' Kpho(KL[G" + F, " CF;JKp)KiF, ™

=: ¢(C°, F,).

The main difference with Eq.(5.4) in GREEN/NAGHDI [8] is, first of all, that
they used a symmetric variable instead of F, which is insufficient in the general
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anisotropic case. And second, that the function ¢ of its two arguments cannot
be arbitrary but must have the specific form of (4.12) if one assumes isomorphic
elastic ranges.

When we introduced the intermediate placement by Eq.(4.2), this is by no
means unique. The reference placement Ky is arbitrary and the plastic transfor-
mation P, is only determined up to both-sided symmetry transformations (The-
orem 2). Moreover, we did not use the assumption that the intermediate place-
ment was stress-free or unloaded. What is important, however, is that for all
elastic ranges the intermediate placement leads to isomorphic configurations.
To show this we first define the configurations that correspond to the reference
placement

(4.13) G := K;GPKp,
and those that correspond to the intermediate placements
(4.14) Gy := K3,G'Ky,.

If we now evaluate the isomorphy condition (3.5) for the value G, = Gz, we
obtain

(415) hl(GZl) = P[IIO(P’;GZgPL)P’; = PthO(G[{)P: :

All intermediate placements correspond to the same configuration in the ref-
erence law and they are therefore isomorphic. Of course, the same holds if the
intermediate placements were subjected to arbitrary rotations, which do not affect
their corresponding configuration.

5. Example I. Isotropic plasticity

Let us follow the schemes of classical plasticity with a linear elastic law, a
yield criterion, normality rule, kinematic and isotropic hardening which is associ-
ated with names such as Hooke, Prandtl, Reuss, Huber, Mises, Drucker, Ziegler,
Prager, and others. If the elastic deformations are small, a linear elastic reference
law will be sufficient. We linearize the intrinsic stresses with respect to deforma-
tions near to the undistorted state Gy,

(5.1) S = 1,(G,) = C[G, — Gul.

C, is the fourth rank elasticity tensor. Note, that this law is still applicable for
finite deformations, since it is objective.

As a yield criterion we choose the Huber-Mises one, which can be reduced
to the intrinsic form

(5.2) (SG,) = 3tr (SG,)? — tr’(SG,) — 02,
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with the critical equivalent stress o, which may vary due to isotropic hardening. If
one wants to include kinematic hardening, a symmetric intrinsic back-stress R has
to be introduced into the flow rule by substituting the stress S with the difference
S —R. For the back-stress we denote an evolution equation of the Prager - Ziegler

type

(5.3) R™ = Ae(S—R),

with the material constant ¢ and a real variable A which appears in the flow rule
below. By using the elastic law we can express the stresses in the yield criterion
by the actual configuration, or, vice versa, the configuration by the stresses, if one

prefers the stress space notations.
The flow rule can be taken as the normal with respect to the yield criterion

(5.4) P, P! = \y/d(SG) if  ¥(S—-R]G) =0

and
P, =0

otherwise. This completes the model of classical plasticity.

6. Example II. Crystal Plasticity

As another example, we consider crystal plasticity based on the slip systems.
Since the early works by Taylor, Elam, Schmid and others of the twenties, we
know that plastic deformations in metal grains can be modeled by shear in slip
systems. Such a system consists of a slip plane indicated by its normal n' € 7% B
and a slip direction indicated by a tangent vector d; € T'x B. The resolved shear
stress in such a slip system (with index ¢) can be computed by

(6.1) 7= |(n', SG(d)))].

If the resolved shear stress reaches the critical Schmid stress 7;. in one or several
slip systems, the Schmid yield criterion of the form

(6.2) Y(SG,) = |(n',SG,(d)))| — Tic

is fulfilled for that particular slip system and yielding can occur in the form of a
simple shear in the active slip system

(6.3) P, Pl = —yu d; @n' = My /d(SGy),

where ;; is the shear number. Again, the increment of the plastic transformation
is normal to the yield surface, i.e. normality holds with respect to the Schmid
yield criterion as a plastic potential. If more than one slip system is active, the
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different shears can be superimposed by taking the sum over i on the right-hand
side. The shear number ;; of each slip system must be determined by an additional
constitutive equation on the slip system level, i.e. a uniaxial constitutive relation
between the shear number and the resolved shear stress. Such a law can be plastic,
viscous, or viscoplastic with or without hardening.

The elastic law h; of single crystals will generally be anisotropic with respect
to the lattice directions [4]. If we describe these directions by lattice vectors, i.e.
tangent vectors e; € 7'y I3 that momentarily coincide with the lattice directions,
and the lattice planes by covectors ¢/ € 7% B3, then one can show by means of
the isomorphy condition (3.5) that the plastic transformation transforms these
vectors from the elastic reference law into the current one. The same holds for
the slip system (co-)vectors, since they can be expressed as a linear combina-
tion of the lattice (co-)vectors. By this transformation rule the concept of plastic
transformation, which was introduced in a rather general and abstract way, gains
a clear physical interpretation.

7. Computational results

The material model discussed above has been implemented into a finite el-
ement code for the simulation of large inelastic deformations on face-centred cubic
single crystals. For simplicity, constant strain tetrahedron elements are used. The
FE mesh consists of cubes, each of them containig five tetrahedrons. There are
two different ways to assemble a cube from tetrahedrons. In order to minimize the
mesh-induced anisotropy, the two cube segmentations alternate in each direction.

The elastic and inelastic constitutive relations account for the cubic anisotropy.
The inelastic behaviour is modelled by the theory of slip systems with the 12
octahedral {111}(110) slip systems of the fcc single crystal. On the slip system
level we use a viscoplastic constitutive relation between the crystallographic glide
and the resolved shear stress. Combined with the lattice elasticity, this leads to
a Bingham-type behaviour. The relation is characterized by the critical resolved
shear stress 7y and the viscosity 7). For 7 approaching 0 we intend to model plastic
behaviour. For 7y = 0 the material is linear viscous (Fig. 1).

We distinguish self- and latent hardening as well as isotropic and kinematic
hardening [1, 19]. However, for simplicity, hardening has been neglected in the
present paper. A detailed study of the hardening dependence is projected for
forthcoming papers. Some aspects can be found in [6].

The integration of the inelastic transformation is done by an explicit Euler
scheme. Thus one has to adjust properly the time-step length, preventing insta-
bilities. Inelastic incompressibility is guaranteed by enforcing the condition of the
plastic transformation to be unimodular (detP = 1) after each increment.

Special attention has been paid to the effects of lattice rotation. The behaviour
of single crystals shows strong dependence on the initial lattice orientation relative
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I'1G. 1. Inclastic constitutive law on slip system level.

to the imposed deformation. If a process is accompanied by lattice rotations, this
strongly affects the response of the specimen.

Most common FE postprocessors do not provide convenient tools for lattice
visualization. So the following method has been used: Brick elements, represent-
ing the local cubic lattice, are added to the displacement plots. The edges of the
bricks are parallel to the lattice vectors and proportional in length to the (de-
formed) lattice constants. Thus, the brick elements, plotted for selected points,
show the orientation of the lattice and the elastic deformation which determine

the stresses (Fig. 2, 6-9).

F1G. 2. Simple shear with different initial orientations. Deformation and lattice orientation for
shear numbers 0, 2, 4, 6, and 8.
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The lattice rotation dependence of the material behaviour can be demon-
strated by elastic-viscoplastic simple shear simulations. Figure 2 gives some
examples for the lattice rotation in simple shear, up to an amount of 8. The
corresponding normalized shear stresses are given in Fig. 3. Starting from differ-
ent initial orientations, three main modes can be observed:

e The lattice remains in the initial position. The shear stress is constant (a).

o The lattice rotates steadily. The shear stress oscillates (c).

¢ The lattice converges to a stable position after an initial rotation (b, d). The
shear also converges.

6,./t,

23 K 5 i~ o~
AN dN / \\ /! K
25 A\Y L V]
N —F T —
AR I/ | v /
2\W VAR S R
20 = \ / / \ / N /
= NN \ / \ /
r N / 7 7
15 :‘—~““\/\.:7‘ “/ \V
: a) (011) (100]
1
v r ————| b)(013) [100]
T 001) (1001
osf --- | croont
L —-—=- | d)(001) (110]
L. . 1 S R S | 11 1 U W G W S S
0 2 4 6 8 10

shear number k

I'1G. 3. Normalized shear stress versus shear number, corresponding to Fig. 2. Initial orientations
arc indicated by (global shear planc) [global shear direction] relative to the crystallographic axes.

Figure 4 gives a detailed picture of the initial phase of case (c). One can ob-
serve opposite directions of lattice spin and material spin. The stress oscillation

7 A 7
S/ 7 A

[ | J /o 77777 N < /'_7
» / g/ AN\ <>
s / 7/ / // //

I'1G. 4. Global deformation and lattice orientation (bold) for shear numbers
0, 0.5, 1.0, and 1.5 (casc (c) of Fig.2). Notice: opposite dircction of material and lattice spin.
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corresponds to the change of the slip system position relative to the global coordi-
nate system via their Schmid factors. The normalized resolved shear stress of the
12 octahedral slip systems versus the amount of shear is plotted in Fig. 5. One can
observe three groups (each of four slip systems), switching between three levels
of shear stress: large positive, around zero and large negative.

1 — —
05 \ a3 b2 c3 d2 / \
o (BT J |\
s I\ /[ N\
i \ /
[) 2 4 6 8 10
1 P — ——— .
05 / A\ / \
:9 ] K //J \\
- T r‘
s Y,
1 ] :
0 2 4 ] 8 10
——
1
sHw s/ \ /
0 / \ r/
s [ N
4 / \ )
| — \— —
0 2 4 6 8 10
shear number k
plane (1 (mn arny ai
direction | {011) | (107) | (1101 | qor1) | (T01) | (1707 | qo11y | 1100y | rriey | foi1y | 1oy | (o)
system al a2 a3 bl b2 b3 cl [ c3 dl d2 d3

FIG. 5. Normalized resolved shear stress versus global shear number (case (¢) of Fig. 2).
Slip system labels corresponding to [17].

The influence of different constitutive laws on the relation between material
deformation and lattice rotation is demonstrated in the tensile test. Figures 6 -9
show simulations of tensile tests up to 50% extension with identical initial orien-
tation, boundary conditions, and elastic response. The values of the inelastic
parameters are given in the following table:

displacement plot Fig. 6 Fig. 7 Fig.8 Fig.9
Critical shear stress 7y [GPa] 00 0 1 1
Viscosity n [GPas] - 500 500 50
simulates elasticity | viscoclasticity | viscoplasticity | plasticity

Figure 6 was calculated elastically. The following features can be observed:
¢ S-shape bending of the specimen axis,

e shear straining of the central region,

o lattice deformation being identical to material deformation.
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FIG. 6. Tensile test. Elastic simulation.
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I"1G. 7. Tensile test. Visco-clastic simulation.
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I'1G. 8. Tensile test. Elasto-viscoplastic simulation.
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['1G. 9. Tensile test. Elasto-plastic simulation.
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The first two features are typical for tensile tests on asymmetrically oriented
anisotropic specimens, the latter holds generally for elastic deformations.

Figure 7 is the result of a viscoelastic simulation. The inhomogeneity of the
deformation is stronger than in the elastic case. The lattice deformation is not
visible, only rotations towards the tensile axis can be observed. The cross-sections
rotate in the same sense as the lattice.

If we set 79 to 1 GPa (Fig.8), the behaviour slightly changes. The final lat-
tice orientation is closer to the tensile axis than in the previous case. Also, the
stiffening effect of the boundary conditions can be observed.

Approaching the ideal plastic behaviour (Fig.9), the deformation concen-
trates in the central part of the specimen. No imperfection has been used, the
necking-like behaviour is due to the inelastic incompressibility (reduction of
the net cross-section) and the boundary conditions. A significant difference to
Figs. 6—8 is that the directions of lattice and material spin are opposite to Fig. 9.
This is the same effect as in Fig. 4 (simple shear).

8. Conclusions

Based on the assumption of isomorphic elastic ranges, the concept of a plastic
transformation is derived in a natural way. This quantity describes the effect of
yielding to the elastic laws within the elastic ranges, and enables us to transform
the current elastic law to a time-independent reference law by the isomorphy
condition. The complete model is constituted by only two laws, (i) the elastic
reference law hg and (ii) by the evolution equation for the plastic transformation
¢ which is usually given by a flow rule.

This flow rule, however, can be rather complicated. It can be time-independent
(plastic) or time-dependent (viscoplastic), isotropic or anisotropic, with any type
of hardening or softening, etc.

The elastic reference law is not limited to small elastic deformations. It can be
linear or nonlinear and will fulfill the principle of material objectivity identically,
as it is formulated in the intrinsic variables. The same holds for the whole model.

A decomposition into elastic and plastic deformations has not been made
and is unnecessary. If the material deforms within one elastic range, one could
call the deformations (purely) elastic. If yielding occurs, the total deformation is
considered as inelastic.

The key role in our theory is played by the plastic transformation, a fully
non-symmetric quantity, which cannot be interpreted as a deformation. There
is neither the need nor advantage to decompose this quantity or its rate into
symmetric and skew-symmetric parts. It can be shown, however, that the skew-
symmetric part of P, P! does not contribute to the stress power and thus may
be related to the “plastic spin” in other theories.
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We would like to emphasize that the implementation of this model into an

FEM-code was done using the intrinsic variables.
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The elastic constants of a material containing
spherical coated holes (*)

E. HERVE and O. PELLEGRINI (PALAISEAU)

FIRST WE DERIVE the clastic strain and stress ficlds in an infinitc medium consisting of an n-layered
isotropic spherical inclusion, embedded in a matrix subjected to uniform stress or strain conditions
at infinity, and where the inncrmost phase of the composite inclusion is a pore. The solution
of this problem is then used for the expression of a Generalized Self-Consistent Scheme and
the calculation of Hashin-Shtrikman type bounds of isotropic Generalized Composite Spheres
Asscmblages. Finally, comparison between experimental results and predictions of the models are
given by means of a forced resonance vibration technique.

1. Introduction

WITH THE INCREASE of light-weight structures in any industrial branch, estimates
of the overall effective elastic properties of elastic solids which contain voids
become of considerable interest. Different micro-mechanics models can be used
to predict the overall elastic moduli of such composites: Self-consistent ones (HiLL
[1], Bupiansky [2], or variational ones (HASHIN - SHTRIKMAN [3]). In order to study
the elastic behaviour of two-phase matrix-inclusion composites, MACKENSIE [4]
and CHRISTENSEN and Lo [5] have proposed generalized Self-Consistent Schemes.
In those approaches the inclusion (void in [4]) is surrounded by a matrix shell
which in turn is surrounded by the effective (bounded in [4] and infinite in [5])
medium. HasHIN [6] has defined composite spheres assemblages (C.S.A) and
has derived bounds for those assemblages. HERVE, StoLz and Zaour [7] have
improved the bounding of isotropic C.S.A.’s.

The present work is intended to provide models to predict the behaviour of
multiply coated hole-filled materials with a matrix-inclusion-type geometry, and
extends the work of HERVE and Zaoui [8] on n-layered inclusion-based modelling
in the case when the innermost phase is a void.

2. n-layered spherical inclusion

This section is concerned with the derivation of the elastic strain and stress
fields in an infinite medium consisting of an n-layered spherical inclusion, sur-
rounded by a matrix subjected to uniform stress or strain conditions at infinity.

Each phase is homogeneous, linearly elastic and isotropic. In addition, perfect
bonding is assumed at the interfaces.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994,
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224 I. HERVE AND O. PELLEGRINI

The layers are numbered, beginning with the innermost phase (Fig. 1) which
is numbered 1 and represents a void. Let phase (i) lie within the shell limited
by the spheres with the radii R;_;, and R; and let (p;, v;, ;) be respectively
the shear modulus, Poisson’s ratio and bulk modulus of phase (i) (here ¢ €
[1,n+ 1], Ry = 0, R,+1 — o0). The configuration under study is referred to a
Cartesian coordinate system zz,z3 (with the unit vectors ey, e;, e3). We use a
spherical (r, 8, ¢) coordinate system with the origin at the center of the composite
sphere.

phase n+1

- -~

FI1G. 1. The n-layered inclusion embedded in an infinite matrix.

The approach used in this paper is similar to the one developed by HERVE
and Zaouir in [8], except that here the innermost phase is void. Making use of
isotropy and spherical symmetry of the structure, the general solution may be
obtained from the solution of two elementary problems: hydrostatic pressure and
simple shear applied at infinity.

2.1. Hydrostatic pressure

The following system of tractions is applied to the boundary of the body in
the stress approach:

g
(2.1) T = 2o,
3
where o is a constant and n is the unit outward normal.

In the displacement approach the boundary displacements are taken in the
form:

(22) w=re,

where 6 is a constant and e, is the first unit vector of the spherical coordinate
system.
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In both approaches, the problem has spherical symmetry and thus is one-
dimensional. It is easy to show that the following displacement component field
u, satisfies the single equibrium equation:

(2.3) ul) = Fir + % ,

where F; and G; are constants and ¢ € [2,n + 1]. The corresponding stresses are
found to be:

a§;>=3kF-ﬂ :
T

1 1 2 T
2.4) ofi = oby =3kF + Ha,
oty = 1) = oy =

The perfect bonding at the interface r = Ry requires the continuity of the stress
vectors and of the displacement field. These conditions may be written in the
form:

(2.5) Je(Re)Vie = Jee1(Ri)Virr,
where Vi = (A, Bi), k € [2,n] and J;(7) is the following matrix:
1
" 2
(2.6) Nry=| 4,
i -
-— 3K
”

The system of Egs.(2.5) is solved for V,.; by means of the “transfer matri-
ces” N(¥)

2.7 Vier = NOV
where
(2.8) N® = 321 (ROT(R),
3K, + 4 ! ( )
\ L Lis —= L — [}
(2'9) N = 1 k Fk+1 R%. Hk+1 — Mk

3K je1 + 4k
Vi1 F 4t 3(Kp+1 — Kp)RY  3Kjqq + 4uy

Therefore one gets

2
(2.10) Vi = [[ N0V, = QY.
j=k

http://rcin.org.pl
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At the interface » = R, the stress vector vanishes, so that

L 3KBER3
(2.11) (Iz '—-4—/1—;—
From (2.10) and (2.11) we find
| 3NRY
12) Fan = (o + 228 00) 1,

Thus all the coefficients Ay, B; may be derived as

o 4,0 + 3K, R3Q ”1,
k= n+1s
420\ + 3K, R3Q\

2.13
&1 4,087 + 3K, R3Q% Y
Gk = ! (n) -Fn+1 ) ke [27 n + 1]’
4p2(211 + 3/\213%(212

where

F,i1 = 5—1—0_0— in the stress approach,

‘71

(2.14) ) !

F,q = ?O in the displacement approach.

2.2. Simple shear

In the displacement approach the boundary displacements are chosen in the
form

(2.15) 'u? =y, ug = —vay, ug =
The traction system:
(2.16) 10 =y, ) = —rny, =0

is applied to the boundary in the stress approach. In phase (i), the displacement
field u has the form (from Love [9] and CHRISTENSEN and Lo [5]):

- 6v; Ci  S5—4y D;
() — A Vi 3 el 1_ 2 0 4
uy; ( Lir — T Bir’ + 3 it 20 12 ) sin“(#) cos(2¢),
4 ! "i
(2.17) ug) = (Air - ;/' 2’/ Bir3 — 2(4 + 2D >sm(9) cos(#) cos(2¢),
— 2v; r
@ T —du 5 G D
wy = — (.»117 T Bir® — 274— + 2] sin(#) sin(2¢),
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where A;, B;,C;, D; are constants (i € [2,n + 1]), B,.4+; vanishes (r — oo) and
An+1 is determined by the boundary conditions at infinity. The perfect bonding
at r = R requires the continuity of o,,, 0,4, 0,4, u,, ug, uy but only four of
these conditions are independent. They may be expressed in the form:

(218) Lk(Rk)Wk = Lk+1(Rk)Wk+1 " k€ [2, 7),],
where the matrix L;(») is defined by

61/1' 3 i 5- 4l/i 1

11— 21/,~7 r4 1-2u; 12
L T4y 2 2
11— 2y RE r2
2.19 () = :
( ) Ji(r) R1Z 2 12 vi—5
I JE7 e — TP —
e 1z 21/,-/ ' psh ez 2u; 3
. 7+ 21/1‘ 2 8 1+ I

12 B T s

The system of Eqs. (2.18) is solved for W4 by means of the “transfer matrices”
M)

(2.20) Wit = MOW,
where
M® = L1 (Re)Li(Re),

Ch R%(3by. — Tey)
3 5(1 = 2u)
0 (1 = 2vp41)b
@2 MW=__ 1 71 =20
5(1 = vg4q) R}y, R](2ax + 147a})
2 T 70(1 = 2u)
RS
_g(l == 2”k+1)("k Rz 7(1 2(121/—“'"'211/):)" R’k
120, 4(fi — 27ay,)
R 15(1 — 20 23
2001 = 2vp41) s, 1200.(1 = 2v141)
N 7R] 70 =21
dy; RZ[105(1 = vji1) + 1204(7 = 1004 41) — Tei] |
7 35(1 — 2uy)
0 e, (1 =2v41)
3(1 — 2uw)
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with

ar = (7+5u)(7 - 101/“1)“&— — (7= 100 )(T + Svis1),
k+1

be = 4(7 — 100;) + (7 + Svp) L2
Hk+1

k= (7= 5vps1) + 2(8 — Svpar) -2
Hi+1

di = (7 + 5Vk+l) + 4(7

er = 2(4 = Suy) + (7 = 5u) P
Hik+1

fr = (4 = SuR)(T = Svis1) — (4 = Svp1)(T — Swp) L5
Hik+1
ap = 'Uk — 1.
Hk+1

Consequently, we have

(2.23)

2
Wi = [[MOW, = POw, .
1=k

At the interface » = R; the traction vanishes, so that

(2.24)

21 25 2(7 - 51,)

A —) 4+ —
2= 50-2) "2 Y 50 “2mm3)
_1(7+5%) ,, 3 1
€2 = a2 P2 sA 2y

Since B, +1 = 0, we get from (2.23) (with £ = n):

(2.25)

An+1
Ay = f3 = ,
PMg+ POy + PPs + P
_ An+l
83 = P(n)ﬂ + ])(") P(")ﬁ + P(”) ’
11 13 14
_ An+l
= sy PO+ P4 P
11 127 13 14
D2 — An+1

PP+ POy + P64+ P
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with:
A = 84RTPSY + 20(1 = 20) RIPSY + (7 + 5) RIOPYY)
- 252R1OP{) — 420 R8PS + 40(1 — 2i)(7 — Svp) R3PS
5(1 = 2my)R3A
2.26) 2(7 = 5v2)(7 + 5v,)RIOPSY)
' 51 -2n)R3A ’
_ 87— Sm)PSY — 12R{P5 +20(1 - 20y R P3Y
A b
5 = ~81(7 —5m)(7 + Svp) + 126] RIPSY —20(7 + 5u2)(1 — 20) RIOPSY

20(1 — 2i) A

_240(1 - 21) R Py
20(1 — 20p)A

Consequently, all the coefficients A;, B;, C;, D; are given in terms of D, 1 by

p
An+1 =1 v .

(227) W= — - - —~P(-D , i€2,n+1],

P8+ Py + PRs + P (15
where

A1 = in the stress approach,
2“n+1

(228) o

ntl = in the displacement approach.

From (2.3), (2.13) and (2.14) and from (2.17), (2.27) and (2.28), the displacement
field u() may be calculated for uniform strain or stress conditions at infinity.

2.3. Average strains and stresses

From these solutions, the average strain and stress fields in each phase are
easily calculated. The same method as the one developed by HERVE and ZAour
[8] is used. When uniform strain conditions are prescribed at infinity

7
(2.29) €0 = 301 + e,
the average strain tensor in phase (k) is given by
—  F. 6 1 21 R - Ry,
2.30 ek = — T+ Ap — — Bi | e.
( ) Fn+1 3 An+l ( : 5 (1 - 21/’\‘)(1?;2' - Ri—l) ’ ’
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This average strain may also be calculated in the whole n-layered inclusion

(2.31) €=§1+a= <1+ Gt >"’0 44— 50,41 Dny )eo'

Dp4 (142
1"11+1R3'1 E ( 31— 21/n+1 An+1R?~L

Correspondingly, when uniform stress conditions are prescribed at infinity:

(2.32) oo = ?1 +50,

the average stress tensor in phase (k) is given by

K Fy, C_TQI

2, g = E A
( 33) g I"71+1Fn+1 3

1 21 R -R_,
— A= — = By | so,
2,“'71+1An+1 ( : 5 (l - 2”‘»)(”% - R‘Z—-l) ' ’

and the average stress in the whole n-layered inclusion is

I[+5= ( - 4'llrz+1f;’11+1 ) @
3 31\71+Il‘n+11{i 3

+ (1 _ 27_ 51/n+1 Dn+1 ) S0 -
51— 20p41 Apei I

(234) ©=

These solutions may be used to derive bounds for generalized Hashin’s assem-
blages (cf. Sec. 3). They can also be used when I\, 4 and j,,4+1 denote the effective
moduli of a composite material according to the (n + 1) phase model defined in
Sec. 4.

3. Variational approach

In order to represent the situation of an isotropic two-phase material, consist-
ing of a matrix in which perfectly spherical inclusions are embedded, HASHIN [6]
has proposed a particular assemblage made of two-phase similar spheres. In the
following, we consider generalized Hashin’s assemblages where the basic com-
posite spheres of the assemblage are of the n-layered-type described in Sec. 2.
So the whole body is composed of such composite spheres of any size, including
infinitesimal ones, so as to fill up the whole space. It is a particular case of the
media studied by StoLz and Zaour [10] which are decomposed into represen-
tative morphological patterns. An application of the general method presented
in [10] has already been examined by HERVE, StoLz and ZAoui [7] in order to
give “bounds” of the elastic overall characteristics of Hashin’s isotropic composite
spheres assemblage.

http://rcin.org.pl
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Condder here an isotropic distribution of phases (\) composed of N\ “mor-
phological” identical composite spherical patterns 5\, with the center X ;. Let
this set of families be referred to as the representative volume element consid-
ered asan infinite medium under homogeneous strain boundary conditions. In
this paricular case, making use of the general method presented in [10], the
Hashin-shtrikman functional /1.5

1 1
(1) HSE.eEV)=JE:Co:E+ 5 Y NiE: /6c0(.7;) - eM(2) dw
A Sy

provide: bounds for the quadratic form 1/2 < € : ¢: € >, when é¢o(z) = ¢(2)-Cp
is positve or negative definite at each point (Cy denotes the elastic stiffness
tensor o the reference medium), and €}/ is the solution of the following integral
equatior:

(3.2) eV (r) + /I‘O(,I:, 2"} 1 beo(x) : e (@) du' = g
ASA

The Green operator I'%(x, 27) is obtained by differentiation of the Green tensor
(G) of he reference medium subjected to homogeneous strain (E) conditions at
infinity:

92
. % (x,2)) = - ¢ 39 (2, 2D -
(3.3) ik, ') O.l_-]_(.):ll,?('lk(l ) (i) (ki)

el is defined as the average strain over the homologous points (z + X)) of the
patterns S\x. All the translated patterns of the S\, at the origin constitute the
sphere £\. We can get ¢ by the following average conditions:

(3.4) E=Y ¢ / eV (2) dew |
A ’\S/\

where ¢, denotes the volume fraction of phase A. The solution of Eq.(3.2) rep-
resents tie solution of the problem of a composite spherical inhomogeneity em-
bedded n an infinite homogeneous matrix subjected to the strain ¢¢ at infinity.
In this particular case of assemblage, and by taking into account the fact that the
average strain does not depend on the size of the similar composite n-layered
spheres »), the Hashin -Shtrikman functional may be written as

) ] n 1 ’
o IS =sE: C;:eM = _E:< C;: €M
(3.5) =3 ;,I,C el = sE:< CivEll >,

http://rcin.org.pl
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where f; is the volume fraction of the phase of shell (i) in the n-layered composite
sphere and C; are its elastic moduli. € may be expressed in the form:

Efw = Ez = Ai . €p,
(3.6)

€

(alJ+bIK) g9 = ajey + b;‘%l,

with

3.7) I=J+K, Kijn = %6,-1-4%1 , Iijk = %(51%51'1 + 6:0k),
and where a} and b are derived by means of Eq.(2.30). We get from (3.4)
(3.8) E=<t >=<A'5:8;

and finally,

(39) Hs = %EZ( C; A >< A,’>_1:E.

Hashin - Shtrikman-type bounds (u*!! and K*!) are then given, according to
(3.9), (3.6) and (2.30) by

(3.10) P =< praf ><af >, K =< Kb »< b7 5~
or making use of (2.31), (2.34) and (2.27), by
9K + 8ug PV + Py + P36 + P
- 3 n n n n
Suols PYs + Py + P66+ PG
6K + 129 PPB + PSPy + PP6 + P
3 n n n n
Suols PSS+ PPy + P8 + P
(3.12) F¥ = g-H =g

@11 =y

1+

where g = ppy1 = SUpi=1,n(#i); Ko = Kn41 = sup,_,,(K;) for the upper
bound (replace Sup by 0 for the lower bound). Note the coincidence of K +!/
and K~!! with the (n+1)-phase model estimate (4.5).

In order to bound the effective elastic moduli of such assemblages, Hashin’s
approach [6] can be applied. The basic concept of this method is to use the sol-
utions for such a n-layered spherical sphere, submitted to a hydrostatic pressure
or to a simple shear loading, as admissible fields for the principles of minimum
potential and minimum complementary energy. These Voigt-Reuss-type bounds
(u*! and K*!) can also be derived by using (3.11), with j and K tending to
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infinity for the upper bounds, and to zero for the lower bounds. Therefore p~!
and p~!! coincide.

An application of this treatement has been made for simple porous spheres
assemblage. In that case all the bounds of the bulk modulus coincide with (4.6)
and the recurrence relation (3.11) may be expressed in the form

(3.13) B =14 cnir),
12

with y9 = po/p2 and

b= 15(v; — 1)
= . ,
7T —5vy + 2¢(4 — S51n) — 126¢(1 — ¢3)2A’
(3.14) 2 ( 2) ( )
/1, = 1 — 70

7+ 50 [1— c3(1 = 70) + 430(7 — 100)]

where index 2 stands for the matrix and ¢ denotes the porosity. It is worth noting
that, in this particular case, /! coincide with the classical Hashin - Shtrikman’s
upper bound.

4. A (n+1)-phase model

Let us consider now that the composite n-layered inclusion under study is
embedded in an unknown isotropic infinite matrix of the equivalent homogeneous
medium. HERVE and Zaoui [11] have shown that CHRISTENSEN and Lo’s energy
condition [S5] defined for the three-phase model, applied to the more general case
where the composite inclusion is an inhomogeneous elastic ellipsoidal inclusion, is
equivalent to the requirement that the average strain in the composite inclusion be
the same as the macroscopic strain imposed to the composite medium at infinity
(€ = €¢). The present n-phase composite sphere is a particular case of such an
inclusion. So this strain condition is used to determine the effective moduli A
and p of an isotropic composite material defined by this “(n+1)-phase model”.

4.1. Bulk modulus

Consider just the problem of pure dilatation at infinity. The above-mentioned
condition (€ = g) becomes in that case

(4.1) g =46,
and fron (2.31) it reduces to

(4.2) Grar =0.
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K and p contributes only to the matrix N (") so that relation (2.10) may be written
in the form

2
(4.3) Vi1 = N® JT NOV, = N Q=D

Jj=n—1

In (4.3) we may substitute the expression (2.9) for N with p,4+; = p and
K,4+1 = I so that (7,4 is given by

F n— & n—
@) G = g (B0 - RORQE™ + 61 + 400087}
N o .
+2 Qifl {308 = KDBQG™ + BK + 41,)Q% ”}} :

where (2.11) has been used. The effective bulk modulus A" is then

15

(4.5) K=,

where

o, =3K, k3 [4,12(3‘” D4 31,RIQ0" ”] 441, [4,12(3‘” D4 3, m3Q0 ‘)},
iy = 3{13 [42Q17" + 302 m3Q1 V] + 4008 ™ + 3mR3Q5 7V}

If n = 2 this equation yields

(4 6) K = 4}12/\'2(1 — (‘)
' iy + 3Nyc

where ¢ = (Ry/23)? is the volume fraction of the pore. If n = 3 (4.5) reduces to

(4.7) N =Hh3+ ﬂ
i’

where

H3 = 43Ky + dp3)(Wy — K3)R3 — — Ky RI(BN3 + 413)(3N3 + 4y12),
R3R3
14 = 4/17_]2 (Bhy + 4p3) + 12p(N5 — 1\2)1?2 + 1241, 1183{3 (13 — 12)
2
+3I\'2R%(3]\'3 + 4415) .
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4.2. Shear modulus

Consider the case of a prescribed state of simple shear deformation at infinity:
the requirement that the average strain of the n-layered composite sphere should
be the same as the macroscopic strain imposed at infinity leads, making use of
(2.31), to

(4.8) Dyi1 = 0.

Equation (4.8) gives the condition for determining the effective shear modulus
it = ji,,+1. The same procedure can be followed to determine the shear modulus.
K and p contributes only to the matrix M(Y, so that we can write W, ;1 in the
form:

2
(4.9) Wi = POW, = MW T MOW,; = MOIPC-Dw, |
1=n—1

By substituting the expression (2.22) for M("), the condition B, 4+, = 0 is equiv-
alent to

b?l n= n+= 5 n= v n—
(410) —7(1_—2”)‘ [])2(1 1)[12 + ])2(2 1)[}2 + 1’2(3 1)62 + P2(4 1)02}
20_'” n— n— n— 4 n—
~o [P A+ PGBy + PTG+ PV D))
12a,

(n=1) (n—1) (n—1) (n—1) _
TI0 = 203 (PP A+ PGV B+ PGV + PV D, =0,

and the condition D, 41 = 0, to

@11) =S 3120 [PV Ay + PRV By + PETVC + PGV D,
#2005 [P0 Ay + PV By + PTVC + PV D))
+2e, [PV Ay + PRV By + PV Cy 4 P TVDy) = 0.

Finally, making use of (2.24), the solution of the system made of (4.10) and (4.11)
leads to a second order equation for

(4.12) A (/’[—’)2 + B (/’1—‘> +C =0
with:
A =51=20,)R [1(Dy. N,) =213 f2(D,i, N,)+ 44 = 50,) fa(D,, Ny,
B =501-2v,)Rfi(De = D,, N. = N,) + 21 f»(D,, — D., N, — N,)
(4.13) +2f4[2(4 = 50,) D + (7 = 50,)D,, 2(4 — Svp)Ne + (7= 5v,)N,]
Y= 5120, R fi(De, N+ 21R3 fo(De, N +2(7=50,) fa(De, No);
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N, = 47 =100, R f,(1,0) + 20(1 — 2v,,) f3(1,0) + 12R2 f4(1,0),
Ne = (7+ 5v,)R] f(1,0) — 20(1 — 211,) f3(1,0) — 12R} f4(1,0),

(4.14)

S

u = 4(7 = 100,) R f2(0, —1) + 20(1 — 217,) f3(0, —1) + 12R2 f4(0, —1),
De = (7+ 50,)R] f2(0,—1) — 20(1 — 21,,) f3(0, —=1) — 12R2 f4(0, - 1).

fi denotes the following function:

(415  fi(w,y) = PTV [84R} + 8(7 — Sup)y| +20(1 - 202 PG
+PGV (7 + SRl — 12R3y| + 20(1 - 20) Ry PGV .

If n =2 A, B and C are given by:

A =2(4 = 50)(T + Sp)cd — 2513 — T)e3 — 252¢3
+50(7 — 1205 + 8v3)c + 4(7 — 101,)(7 — 51),
(4.16) = —(7+ 50)(1 — 51)c3 + 503 — 7)c3 + 504c3
+1501,(12 — 3)c + 3(15v, — T)(7 — Sv2),
C = (5vy — )T + 5v5)c3 — 25(3 — 7)c3 — 25263
—25(w% — T)e — (7 + 5)(T - 51).
It is worth noting that the foregoing results for & (4.5) and for p (4.12) have also

been derived by considering that, in the (n+1)-phase model proposed by HERVE
and Zaoui [8], the bulk and shear moduli of the innermost phase tend to zero.

18 T T T T —~T

HHmor | Voigt & Reuss-type bounds /1

sl T Hucng & Gibson's results
' —-—— generalizea self- consistent scheme

------ Hashin & Shtrikman-type bounds ,/ 1

o 02 0. 06 08

0

Yonere

F1G. 2. Normalized shear modulus (s/ ptmat) of @ composite made of hollow spheres in a matrix
versus the volume fraction of hollow spheres (phase 1 pore, v; = v3 = 0.3, p2/pu3 = 10,
Ri/Ry = 0.9).
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Figure 2 shows comparison between all these different bounds and estimates in
the case of a composite made of hollow spheres in a matrix. The approximation
proposed by HUANG and GiBsON [12] consists in replacing the reference medium
by the matrix and is valid for low void volume fraction only.

5. Experimental method

The dynamic properties of the spherical inclusion-type material are measured
on rod-specimens using a forced resonant vibration technique. The forced reso-
nant vibration measurement technique consists in applying a sinusoidal longitudi-
nal or torsional inertial force at one end of the rod-specimen with a piezoelectric
ceramic transducer. The vibration can be picked up by an equivalent sensing el-
ement attached at the other end of the rod. The transducer induces a longitudinal
or a torsional force into the rod (cf. Fig. 3 for the different types of transducers).

Transducer for torsional Transducer for longitudi-
excitation: nal excitation:

piezo-electrical ceramic:
- PZr 26 or 27

additianal
2 12.7 [mm] direction of the applied electrical field  metal mass
2ri= 7.6/m[ — direction of polarisation of the piezo-  m=0.5[g] 1=3mm
=10 [mm)] electrical ceramic

['1G. 3. The piczoelectric transducers.

The phase angle between the sending and sensing transducer signal is mea-
sured with a lock-in amplifier built in a closed loop control circuit. In order to get
a constant phase angle of 7 /2, corresponding to the definition of resonance, the
lock-in amplifier’s phase sensitivity detector signal is integrated in a controller and
fed back appropriately into the function generator (Fig.4). This feedback loop
provides an accurate measurement of the resonant frequency of +1 Hz within a
frequency range of 5 to 150 kHz for the given specimens and the given setup.

Measurements of the longitudinal and torsional modes of the rods lead to a
complete determination of the dynamic elastic or viscoelastic constants of the
present isotropic material. In order to decrease a possible frequency-dependence
of the properties of the specimens, comparative measurements are used. The
results of the filled specimens are normalized by the ones of the unfilled speci-
mens. The normalization renders the values comparable to theoretical re