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Finite-difference analysis of the stability of flow
in a curved channel wide-gap problem

M.A. ALI (BAHRAIN), V.M. SOUNDALGEKAR (THANE)
and H.S. TAKHAR (MANCHESTER)

THE FINITE-DIFFERENCE solution to an cigenvalue problem governing the stability of flow between
two concentric stationary cylinders separated by a wide gap is presented. The flow is due to a
circumferential pressure gradient and is known as the Dcan problem. Our results agree well with
the earlier results derived by using the Galerkin method. The cell-patterns and radial and tangential
velocity perturbations are shown graphically for diffcrent values of (= Ry/R;) where Ry and R;
are the radii of the inner and outer cylinders, respectively. It is observed that the flow remains
more stable when the gap width is increased. The effects of gap width on the cell pattern and the
perturbations are discussed.

1. Introduction

THE THEORETICAL and experimental investigation of the stability of viscous flow
between two concentric cylinders separated by a narrow gap was first investigated
by TavyLor [11]. He assumed that the inner cylinder is rotating and the outer one
is stationary. Subsequently, this problem was again solved by CHANDRASEKHAR
[1] using a trigonometric series method, by DiPriMA [5] employing the Galerkin
method, and by Harris and Reid (1964) using an asymptotic and numerical
method, respectively. The corresponding wide gap problem was also solved by
CHANDRASEKHAR [2], CHANDRASEKHAR and ELBERT [3], and WALOWIT et al. [12]
using the Galerkin method, and by SPARROW et al. [8] using a numerical method.
TAKHAR et al. [9, 10] showed the cell patterns etc. in the wide gap stability problem
between rotating concentric cylinders.

If the flow between two concentric stationary cylinders is due to transverse
pressure gradient, then the question arises as to how the stability of such a flow
is affected. This was first studied by DeaN [4] for a narrow gap case and the
eigenvalue problem was solved by Dean who employed a Fourier series and de-
termined the critical value of the parameter A. = 93053 at which the instability
sets in. This was later confirmed by REID [7] who again studied Dean’s problem
by solving the eigenvalue problem using a set of orthogonal functions. The cor-
responding wide gap Dean’s problem was later solved by WALowIT ef al. [12] by
using a Galerkin method, and by GissoN and Cook [6] by using a Chebychef collo-
cation method. However, in these last two papers, the cell pattern, the radial and
tangential velocity perturbations at the onset of instability are not shown graph-
ically. These graphs are important in understanding the physical phenomenon.
Hence we have again attempted to solve this wide gap Dean stability problem by
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using a finite-difference method. The results agree very well with those derived
by WALoOwIT et al. [12]. In Sec.2, the mathematical analysis is presented and in
Sec. 3, the conclusions are set out.

2. Mathematical analysis

We consider two concentric cylinders of radii 2, R, of inner and outer cylin-
ders, respectively. Let (7,6, z) be the usual cylindrical coordinates, with the z-axis
coinciding with the axis of the cylinders. If u,, ug and u, denote the components
of velocity in the increasing r, § and z-directions and p denotes the pressure, then
the steady state solutions of the Navier - Stokes equation are (Fig. 1)

2.1) u, = u, =0, ug = V(r), o pV?2r,
where p is the density.
\\ .
Ry
o z

IF1G. 1. Schematic diagram.

To study the stability, we assume that a small rotationally symmetric disturb-
ance in the #-direction is superimposed on the steady motion. Mathematically
this is represented by

(2.2) ug(r,z,t) = V(r) + v(r)e’* cos Az,

where o is the growth rate of the disturbance and X is the wave number. Usually
o is a complex quantity (o, + i0;) and the stability of the motion depends on
o. If the solution of the resultant eigenvalue problem exist such that Re(c) > 0,
then the motion is unstable and if Re(¢) < 0, then the motion is stable. It has
been observed experimentally that there occurs a new steady secondary motion
and the marginal state is said to occur at o = 0.

Substituting Eq. (2.2) in the usual Navier - Stokes equations in cylindrical polar
coordinates and linearising the equations for the disturbance velocities, we get

2
23) (DD* — A2y = %Q(l')v,
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(2.4) (DD* — A%y = %(D*V)u,

where u is the disturbance velocity in the radial direction, v is the kinematic
viscosity and 2(r) = V(r)/r. Also

(2.5) = D*=D+%.
The corresponding no-slip boundary conditions are
(2.6) u=v=Du=0
atr = Ry and r = R,.

Considering constant circumferential pressure gradient, the basic velocity is
given by

ri 1 dp [ L E
(2.7) ‘/(7) 2—%(7 1n7'+C7 +7),
where
RzlnRz— Rzlan R R Rz
2.8 C=-22 121 = 2
(28) RB- R 1{2—1e2 Ry

We now introduce the following dimensionless variables:
(2.9) r= Ry +dz, a= M\,

where
R+ Ry

d=R2—R1 and R()= 3

Here d is the gap width and Ry is the mean radius.
Again introducing

- 1 £y
(2.10) e=q=nt-n(o+s).  w=gh

Equations (2.3) and (2.4) in view of relations (2.8)—(2.10), reduce to the following
finite gap Dean stability problem:

(2.11) (DD* = a®)*u = a*P[h(z)/€]v,
(2.12) (DD* - a*)v = (D*h)u,
where

Ry 9p (1 =% — 4’ (Inn)?

V(T) = th(l), Vi = 2/)1/ 00 4(1 — 7])(1 o 772)
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_ 41 —n) 2 3 (11
- 4nz<lnn)2—<1—nz)zf{(l‘” ying + 7l 1 52>}’

Vind L
pe2(28) .
Here V,, is the average velocity, and u is replaced by (V,,d/v)'u.
The boundary conditions now reduce to
(2.14) u=v=Du=0 at z =0 and 1.

We have now to solve the eigenvalue problem defined by Eqgs. (2.11) and (2.12),
satisfying the boundary conditions (2.14). We determine P, the critical value of
P, which is the minimum value of P over all the positive real values of the wave
number a, and then the corresponding critical wave number a.. For this purpose,
we employ the finite-difference technique as follows:

We write Egs. (2.11) and (2.12) by expanding in terms of power of D as
@15)  [D*+2KD% - (3K +20%) D+ (3K - 2a*K) D
+ (2a2[\'2 — 3L+ (L4>} u = a’P(h(z)/&)v,

(2.13)  h(z)

where

216)  (D*+ KD - K- a?) v = (D*h)u,

where

By expressing the derivatives in terms of the central-differences and rearranging
them, Egs. (2.15) and (2.116) reduce to the following:

2.17)  mUisz + maUipq1 + m3U; + mqU;_y + msU;_p = /1,4(L2P(h(;zr)/f)V,-,

(2.18) C\Vig1 + CoVi + C3Vi_y = hK2(D*h)U;,
m; =1+ hl,
my = — [4 +2h K + h2(BK? + 24%) - %19(31\'3 — 2u21\')q :
2.19) m3 = 6+ 2h23K?% + 2d%) + h*(2d* K — 2K + o), d
' my = — [4 —2hK + h2(LK? + 24%) + %/9(3 K® = 2a21\')— ,

ms = 1—hk,

Ci =1+ %h[(, Cy = =2 - W3 (K% + d?), C3y=1- %h,]\".

Here the suffix ¢ stands for the pivoted point under consideration. The step-length
h = 1/N where N is the number of intervals into which the range (0, 1) is divided.
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The boundary conditions (2.14) can now be written as
(220) U0=V0=UN=V =V U_1 =U1, UN+1=UN—1-

The Egs. (2.17) and (2.18), taking account of (2.19), can be expressed in matrix
notation as

R PB,V,
h2B,U.

(2.21) AT
(2.22) AV

Here the coefficient matrices A;, A, By and B, and the column matrices U, V
are of order n X n, where n = N — 1.
We now express Eqs. (2.21) and (2.22) in the following form

(2.23) (C - AT =0,

where A = h®P, and the matrix C is given by
i
(2.24) C=[m A7 B Ar

The solution is obtained as follows:

The matrix C is first reduced to the upper Heissenberg form. The eigenvalues
and eigenvectors are then calculated using the QR algorithm. Hence for given
wave number a, the corresponding P is the lowest value of A obtained from
(2.23). The computations are repeated for different values of « until the minimum
value P. and the corresponding a. are well-defined. The eigenvectors U and the
corresponding V" are then computed for A = P. and normalised to unity. We then
use the values of U to draw the cell-patterns. Throughout the computations, we
have assumed h = 1/100.

Critical values of (V,d/v)(d/ Ry)V? = (P/2)!/?
and the corresponding
values of a. for different values of 7.

n ac | (P/D)'? P/2)'?
WALOWIT et al.
095 | 3.98 36.32 36.26
0.9 4.01 36.80 36.79
0.8 4.08 37.89 37.88
0.7 4.15 39.21 39.19
0.6 4.22 40.85 40.79
0.5 4.29 42.89 42.79
0.4 4.37 45.51 45.18
0.3 4.45 49.02 48.75
0.2 4.56 54.0 53.60
0.1 4.73 61.50 60.92

http://rcin.org.pl
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The cell patterns are shown in Figs. 2—4 for different values of n and z(= z/d),
and the radial and tangential velocity perturbations at the onset of instability are
shown in Figs.5 and 6, respectively. It is observed that an increaase in the gap
width leads to an increase in the value of critical wave number a. and the flow
also remains more stable as the values of (P/2)!/? increase.

0.332]
0.3 4

0.2

-0.1 4

-0.24

-0.3
-0.332

T T T T
0 0.2 0.4 0.6 0.8 X 1.0
FIG. 2. The cell pattern at the onsct of instability = 0.1, ¢ = u(z)cosaz.

0.366
0.3 4 \
0.2 4 \ 0.05
0.2
0.1 .
b4
0 .
-0.1-
-0.2-
-0.3
-0.366 . , . . i : : : : .
0 0.2 0.4 0.6 08 x 1.0

F1G. 3. The cell pattern at the onset of instability n = 0.5, ¢ = u(z)cosaz.
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F1G. 4. The cell pattern at the onset of instability 4 = 0.95, ¥ = u(z)cosaz.

0.8 -
u(x)
0.6 -

0.4 +

0.2 A

0 T T T T T
-0.14 0.2 0.4 0.6 0.8 X 1.0

FIG. 5. The radial velocity perturbation «(z) at the onsct of instability.

[9]
http://rcin.org.pl
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From Figs.2-4, we also observe that as the gap width decreases, the cells
become elongated. From Fig. 5 we observe that the radial velocity perturbation is
maximum in a narrow gap region and increases with the decreasing gap width near
the inner cylinder. Again from Fig. 6 it is observed that near the inner cylinder,
the tangential velocity perturbation increases as the gap width increases, whereas
in the central region, it decreases with increasing the gap width.

1.0 -

0.8 -

0.6 -
v(x)

0.4 A

0.2 4

-0.2

-0.4-

F1G. 6. The tangential velocity perturbation v(x) at the onset of instability.

3. Conclusions

Our results obtained by the finite-difference method agree very well with those
of WaLowiIT et al. [12]. The method is also quite simple compared with other
earlier methods as the NAG library subroutines are available for use.
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Experimental evaluation of the influence of stress state type
on creep characteristics of copper at 523 K

Z.L. KOWALEWSKI (WARSZAWA)

RESULTS OF the experimental programme concerning creep process of M1E copper manufactured
according to Polish Standards are presented. Creep tests were carricd out in the plane stress state
at elevated temperature equal to 523 K. It has been found that for creep process conducted at
the same effective stress, the type of stress state plays a significant role. The variations in lifctime
obtained for uni-axial tension and pure torsion tests exceeded one order of magnitude, in spite of
initial isotropy of the material in the sense of basic mechanical propertics obtained from monotonic
tension investigations.

1. Introduction

THE VAST MAJORITY oOf the creep-to-rupture investigations have been carried out
under uni-axial stress states [1, 2, 3, 4]. Results of such tests have been sub-
sequently used to determine material constants existing in different theoretical
models with the objective to reflect precisely the creep behaviour of the material
considered. These models are often generalized into multi-axial stress states un-
der the assumption of isotropy of the body examined [5, 6, 7, 8]. In practice,
however, the isotropic materials exist rather seldom, since the manufacturing
processes used to produce semi-finished products such as rods, tubes, sheets etc.,
induce anisotropy which cannot be often removed by any heat treatment subse-
quently applied. In some cases the material can be isotropic in the sense of plastic
parameters such as the yield limit and ultimate tensile stress, but during creep
it can exhibit anisotropic properties [9, 10]. In these situations, carring out only
uni-axial creep tests to obtain material constants for constitutive model describing
the material behaviour, may lead to significant errors.

In the paper creep results from tests under plane stress state are presented
for pure electrolytic copper (M1E) which exhibits isotropic mechanical properties
such as Young’s modulus, yield limit and tensile strength.

2. Material, specimen and testing devices

The material investigated was electrolytic copper (M1E) of 99.9% purity. It
was annealed for two hours at 673K and furnace cooled to achieve a uniform
grain size, and next it was aged at constant room temperature for five years.
Creep investigations were carried out on thin-walled tubular testpieces shown in
Fig. 1 in the biaxial creep testing machine, which makes it possible to realize plane
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stress conditions by simultaneous loading of the testpieces by an axial force and
torsional moment at elevated temperature (523 K). Details of the experimental
apparatus are presented in [11], whereas the information concerning measure-
ment technique applied - in [13].
60°
R1 R1

77

210
g N &
s o
/| -
o2 ———
|
%Y i 0
5 1
25 17 40
140

F1G. 1. Dimensions of the testpicce.

3. Experimental procedure

Experimental programme contained creep tests up to rupture for copper spec-
imens, subjected to biaxial stress state obtained by various combinations of an
axial force and torsional moment required to give three different values of effec-
tive stress (o; = 70.0; 72.5; 75.0 [MPa]) defined by the Huber-Mises condition
in the following form:

1/2 1/2
3.1) o; = <%5ij5,~j) = (02 +372) 2

where S;; — stress deviator, ¢ — axial stress, 7 — shear stress. Diagram of the
experimental programme is shown in Fig.2. Creep tests under tension, torsion
and combination of these loadings were carried out. The complex stress states
in the two-dimentional stress space (o, v/37) correspond to the points located on
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Vit

\“"
6

F1G. 2. Scheme of the creep tests programme.

the rectilinear path of slope ©, = 45° with respect to the o stress axis. The angle
©, was determined from the relation

3.2) O, = arctan (@) .

Prior to creep test, each specimen was heated uniformly at the test temperature
(523 K) for 24 hours. Creep investigations were carried out until rupture of the
testpieces was achieved, giving as a consequence the whole creep characteristics.
All creep tests were performed at stress levels which were lower than the value
of yield point of the material at 523K (Rp2 = 76 [MPa]). Thus, the total strain
has been expressed as a sum of the elastic and creep strain components in the
form:

(3.3) Eij = 65;) + E?;),

where strain components with the superscripts e and ¢ denote elastic and creep
strain, respectively.

4. Creep tests results and their discussion

The creep curves up to rupture for copper are presented in Figs. 3, 4, 5. Creep
characteristics obtained under effective stress equal to o; = 70.0 [MPa] for stress
states, which correspond to uniaxial tension, combination of tension and torsion,
and pure torsion are shown in Fig. 3. Creep curves obtained for the same types of
stress states under effective stress equal to o; = 72.5 [MPa] and o; = 75.0 [MPa]



16 Z.L.. KOWALEWSKI

are plotted in Fig.4 and Fig.5, respectively. The vertical axes in Figs.3, 4, S
correspond to the effective creep strain defined by the well known relation in the
following form:

x 2 " o 1/2 1
64 0= (300) =2+ (3)

where ¢ and v denote axial and shear strain, respectively, and the horizontal axes
correspond to the time.

20¢
i pure copper
3 | 6 =70 MPa, T=523 K 3
S5t
[ =g -
s T
s -
wo
& 0+t
gl 2
S !
§ 5F 1-6;=0°
5 | 2- 8,-45°
i 3- 8,=90°
AAAAAAAAA | 1 TR B A4 B B S S S S Y
0 200 800 1200 time [h]

F1G. 3. Creep curves at the effective stress o; = 70.0 MPa.

207 5
- pure copper
N 6, =725 MPa, T-523K
< s
g r
IS L
|
5
g w0} 5
5
L [
3 5t 1- 6,200
s 2-8,-45°
3-8,-90°
0 T200 400 600 800  mO0 timelhl

FIG. 4. Creep curves at the effective stress o; = 72.5 MPa.

The creep characteristics obtained at the same effective stress but under dif-
ferent stress states exhibit drastic differences for all the stress levels considered.
In all cases the shortest lifetimes and, moreover, the lowest ductility have been
achieved for tensioned testpieces. The opposite effect was observed for testpieces
subjected to pure torsion. It has to be emphasized that differences in creep curves
due to different loading types applied are considerable, and they are discussed
shortly in the following sections.
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20
pure copper 3
6; =750MPa , T=523 K

15+

effective creep strain (%]
3

! 1 - 6, =0°
2- 9,450
3-8,-90°

0o 200 w0 600 time A

F1G. 5. Creep curves at the effective stress o; = 75.0 MPa.

4.1. Primary creep period

The difference between the creep curves already appears at the primary creep
period in which strain rate gradually decreases. Variations of these curves can
be identified in the form of a plot showing duration of primary creep versus

280

240

200

160

120

duration of primary creep [(h]

80

0 6 =750MPa

& 6 =725MPa ?
O  6;=700 MPa /
T-523 K /

/
;7

/) /

s/
/// /f

/
s /]
/O//// /
/
s 7y
~
/
7 ////
P-4
~ //
%/// copper

4.5 8 [degl] 90

F1G. 6. Duration of primary creep period as a function of the angle defining the type of stress state.

http://rcin.org.pl
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the angle of ©, which defines the type of stress state, Fig. 6. As it is shown, the
minimum creep rate has been achieved in the shortest time period during tension
creep tests while in the longest time at pure torsion creep tests. The ratio of the
primary creep durations at pure torsion and uni-axial tension showed tendency
to increase with the increasing stress level. It was equal 5.2 for o; = 70.0 [MPa]
and 10.7 for o; = 75.0 [MPa]. Marked decrease of the primary creep duration
with the increase of stress level has been obtained for each type of stress state
defined by the angle ©,.

4.2, Secondary creep period

The difference in mutual location of the creep curves during primary creep
period is also observed in the secondary creep. It can be studied by comparison of
the times to tertiary creep period as a function of the stress state type, Fig. 7 for
all the tests carried out. The longest times to tertiary creep under the same stress

1400 +
o 6 =750 MPa
& 6 =725 MPa
1200 +
O 6;:700 MPa
T-523 K
1000 /O
S /
~
o 800+ /
2,
N - /
b v /
Qo
2 00 v /
» Y /
o
-~ p/ /
E 400 + s / /j
= 7 # /
d g <
200t~ _ - -
~
— o~ copper
— —
il
0 25 6, [deg] %0

F1G. 7. Time to tertiary creep period as a function of the angle defining the type of stress state.

level considered were obtained at pure torsion creep tests; shorter values of this
time were achieved at complex stress states being a combination of tension and
torsion and the shortest ones at uni-axial tension creep tests. The sum of primary
and secondary creep periods obtained at tension test referred to the same sum
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obtained for creep tests, either at combination of tension and torsion (0, = 45°)
or at pure torsion (0, = 90°), gives the best evaluation of the degree of creep
curves variations depending on the stress state. In the case of o; = 70.0[MPa]
these ratios equal 2.8, 5.9, respectively, while in the case of o; = 75.0[MPa]: 3.6,
12.9, respectively, and they are shown to exhibit a tendency to increase with the
increasing stress level.

The next parameter which characterises the creep process in its secondary
period is the steady creep strain rate achieved at the end of primary creep and
held during the entire secondary period. Variations of this parameter as functions
of @, are presented in Fig. 8. The greatest value of steady creep strain rate for
the chosen stress level was obtained in the tension creep test, but the lowest — in

o
-
700\ copper
\
90t \
\ o 6, =750 MPa
sot '\ & 6;:=725 MPa
\ 0 6 :700 MPa
oF \
“ T=523 K
o \
X 601 \
3 \
3 &4
i 50% \
\ \
wf \ \\
\
\ AN
0f N
b N
N
20Qx_ N N
~ a_ N
. e - ~ S, \ﬂ
10 ~-_ T3
1 1
0 45 6, [degl] 90

F1G. 8. Minimum effective creep strain rate as a function of the angle defining the type
of stress state.

pure torsion creep test. Such difference expressed as the ratio of the strain rates
at tension and torsion was 8.1 for o; = 75 [MPa] and 2.3 for o; = 70 [MPa].
From these results it may be seen that the tested material is more sensitive to the
stress variations under tension, since the ratio of the effective steady creep rates
obtained in tension tests at stress levels o; = 75 [MPa] and o; = 70 [MPa] was
5.7, whereas in the case of torsion tests it was only 1.6. It is interesting to note
that, taking into consideration the particular stress state type in the logarithmic
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diagram log éfc)= f(log(a})), all the effective steady creep rates can be located
on a straight line, Fig. 9. It suggests that the creep deformation process for the

tog (£/)
[1/h1

107+

10

0°

6, =0°
/45°
/ >/90°
— 1 1
70 75 80 log(6) (MPa)

F1G. 9. Logarithmic diagram of the minimum effective creep strain rate versus effective stress.

loading type taken into account is controlled by the special creep deformation
mechanism which seems to be different at tension, different at torsion and also
different at the combinations of these loading components. This result is not
surprising, since it confirms the experimental data previously obtained for this
material at higher temperature (573 K) [10, 12]. Detailed results concerning the
secondary creep period are presented in Table 1.

Table 1. Creep tests results for copper.

o = 70.0 [MPa) o =725 [MPa] o, = 75.0 [MPa]
0,=0°|0,=45°|0,=90°|0,=0°|0,=45°|0,=90°|@,=0°|0,=45°|©0,=90°
£9%10-5 [1/h)| 184 | 85 80 | 51.0 | 166 | 102 | 1050 | 412 | 13.0
£x10-5[1/h] | 184 | 6.1 - | s10 | 127 —~ 1050 310 | -
yx10°5[/m) | - | 102 | 139 | - | 185 | 177 | - | 470 | 225
tr [h] 254 | 700 | 1560 | 101 | 391 | 1187 | 47 | 175 | 799
t [h] 50 90 260 | 25 65 200 | 15 45 160
tu [h] 170 | 480 | 1000 | 70 | 255 | 760 | 35 | 125 | 450
) (%] 6.8 8.6 175 | 73 9.3 181 | 67 | 106 | 19.0
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Notation in the Table 1: égc) — minimum effective creep strain rate, ¢ — mini-
mum axial creep strain rate, ¥ — minimum shear creep strain rate, {gr — time to
rupture, ¢y — duration of primary creep period, t; — time to tertiary creep, 550) ~
creep strain at rupture.

4.3. Tertiary creep period

The increase of strain rate characterises the tertiary period of the creep pro-
cess, at the end of which rupture of the specimen tested occurs after the time
period tg (time to rupture). Such development of the phenomenon in this per-
iod is connected with the increase of structure degradation velocity of a material
which is manifested by the development of voids and microcracks existing mainly
at the grain boundaries. The material continuity is disturbed by the propagation
of microcracks and due to other structural defects, what in consequence leads to
the reduction of stiffness, and finally to rupture.

Time-to-rupture is the parameter which reflects the whole creep process. Vari-
ation of this parameter as a function of the stress state type is presented in Fig. 10.

1600
I P
0 6,=750 MPa /
1400 /
fay 67 =725 MPa
I O 6 =700 MPa //
1200 t 7;
T=523 K /
L / /
< 1000F / /
e | /]
s / /
2 800t
s / /T
g B }{ / /
= 600} / / /
/ #
1 e / /
200} / / /
/ % /
s/
- / /
s Ve
200 P /E/
- - - E sl copper
0 5 8, [deg] )

FIG. 10. Time to creep rupture as a function of the angle defining the type of stress state.
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It is shown that the longest lifetimes under the same effective stress considered
were obtained at creep under pure torsion, while the shortest ones — at uni-axial
tension. Using the same data analysis procedure as in the time to tertiary creep
period considerations, namely, for the same effective stress level dividing the life-
times obtained from tests at combination of loadings (@, = 45°) and at pure
torsion (@, = 90°) by the value of time-to-rupture at tension, the following val-
ues of these proportions have been calculated: 2.8; 6.1 in case of o; = 70.0 [MPa],
and 3.7; 17.0 in case of o; = 75.0 [MPa], respectively.

The differences in creep properties of copper depending on the stress state
type are also visible by comparing the effective creep strains obtained at the
specimen rupture versus angle ©,, Fig. 11. The lowest effective creep strains were
obtained at uni-axial tension creep tests, the greatest ones at pure torsion creep
tests, Table 1.

200 +
o 6 =750 MPa
180 + Py ;=725 MPa /f
O 6; =700 MPa
160 | / /]
r-523 K /

3 s
:\_ MO r / //
2 / //
p= |
] 120} /s /
N ‘g /
2 / / /
I g
o 80} P
»g’ T - =
ﬁ —— —
2
= 60 +

40+

<0 copper

0 5 o, ldeg] 90

F1G. 11. Effective creep strain as a function of the angle defining the type of stress state.

All of the macroscopic creep parameters discussed up to now prove the
anisotropy of the copper tested under creep conditions which possessed isotropic
properties at monotonic loading in the sense of Young’s modulus, yield limit, etc.
The reason of such behaviour may by connected, to a certain degree, with the type
of deformation, since the material during creep may be controlled by different
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deformation mechanisms, the activation of which depends on the selected type
of stress state. It seems that this conclusion can be also confirmed by the shapes
of the specimen cross-section in places where rupture occurred. In case of creep
tension tests, the failure line was perpendicular to the main specimen axis; in case
of the complex stress states this line was inclined by angles equal 15 — 20°, meas-
ured with respect to the line perpendicular to the main specimen axis, whereas
for testpieces subjected to pure torsion these angles were approximatelly equal
to 30 — 45°, Fig. 12.

|

L

15-20° > 30-45°

| |
5 5

[ M1 \/M
P P1

I'IG. 12. Variations of the testpicce failure line during creep at different types of stress state.

On the other hand, however, it has to be noted that the comparison of creep
test results obtained at uni-axial tension with those achieved at pure torsion be-
comes complicated, since it is difficult to maintain a constant stress during the
tension tests. These situations often exist in tests conducted on standard creep
testing machines, where stress level variations are caused by the reduction of
specimen cross-section area during the deformation process. An error in stress
level selected for investigation of the material is relatively small when the ax-
ial deformations are smaller than 10%. However, the value of strain obtained
at the creep process is often much greater. It depends either on the materials
tested or on certain conditions of tests. Relatively large creep deformations have
been observed in superplastic materials and in materials examined at high stress
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levels exceeding their yield limit. In order to compare the creep results from ten-
sion tests with those at torsion, it is required to apply in creep testing machines
such devices which will be capable of compensating the changes of the specimen
cross-section and, consequently, to maintain the required constant stress level.
Such creep machines are known especially in case of uni-axial tension [14, 15].
Creep devices in which loadings are applied in more than one direction require
further engineering studies.

The entire creep strains of copper tested for all uni-axial tension creep experi-
ments did not exceed 7.5%. The change of the specimen cross-sectional area was
uniform at the whole gauge length and relatively small. It means that all spec-
imens failed without significant necking and, moreover, the variations of stress
level did not exceed 2 [MPa]. Knowing this value, all data at tension creep tests,
i.e. those obtained at 70.0; 72.5, and 75.0 [MPa], can be treated as obtained under
increased stress levels which correspond to the maximum error resulted from the
variations of specimen cross-sectional area, i.e. at 72.0; 74.5 and 77.0 [MPa]. Simi-
lar procedure has been applied to reconsider the experimental data from creep
tests carried out at the biaxial stress state, for which also small reductions of
the specimen cross-section area were observed. These reductions induced certain
increase of the stress level, not greater, however, than 1 [MPa] at failure.

log(6;)
[MPal
B5=45°

800 0,-0° \ 0,.=90°

775 T

750

725

700

' AN

10° 10' 10° 10° 10° log(t,) [h]

F1G. 13. Logarithmic relation between effective stress and time to creep rupture.

Results for the three types of stress states are presented in Fig. 13 in the form
of logarithmic diagrams of the effective stress versus time to rupture. Data points
for the chosen type of stress state are located, with relatively high accuracy, on
the straight lines which have different location and orientation. Assuming as a
reference point the line representing pure torsion results, the remaining straight
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lines are shifted and rotated. For both cases of the stress state types where changes
in stress level exist, i.e. in uniaxial tension and combination of tension and torsion,
the recalculated results which correspond to the same tests as those previously
described are drawn in dashed lines. They reflect global variation of the stress
level due to reduction of specimen cross-sectional area, measured after the tests
are completed. It is shown that these corrections do not change qualitatively the
fact of significant differences in creep results for the stress state types considered
at the same effective stress.

5. Conclusions

The results of creep experiments, performed on pure copper subjected to
different stress state types in the two-dimensional stress space (o, v/37) at 523K,
have been presented.

For the material tested the parameters which characterise creep such process
as duration of primary creep period, steady creep rate, time to rupture and duc-
tility were the functions of the type of stress state. In spite of isotropy of the basic
strength properties (yield limit, tensile strength, etc.), the investigations show a
strong anisotropic character of the material behaviour during creep. Uni-axial
tension was the most dangerous loading type, taking into account lifetime of the
material at the same effective stress.

Although the creep curves determined by uniaxial tests provide information
about the reological properties of the material, they cannot be generalized to
complex stress states. In order to obtain reliable results which could be used
to verify the constitutive models required to describe material behaviour under
multi-axial loadings, the investigations at complex stress states are necessary.

The differences in creep curves observed for the material tested at the same
effective stress but for different stress state types, are connected with the defor-
mation mechanisms. Depending on the type of stress state, different mechanism
controls the creep deformation process of copper. In the investigations it was
manifested by the failure line of the specimen, the shape of which was strongly
sensitive to the type of stress applied.
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Rayleigh’s integral and effective conductivity
of the square array of cylinders

V.V. MITYUSHEV (SLUPSK)

AN EXACT FORMULA for the effective conductivity of a composite with circular inclusions has been
derived. The formula is based on the rigorous definition and calculation of Rayleigh’s integral and
on the accurate solution of the R -linear problem for a circular domain.

1. Introduction

THE DETERMINATION oOf the effective conductivity A, of a two-phase composite
material consisting of cylindrical particles of one material embedded in a con-
tinuous medium of another material has been a subject of many investigations.
If the volume fraction v of the inclusions is very small, the interactions between
particles may be ignored. This assumption implies the famous Clausius - Mossotti
(also known as the Maxwell - Garnett) approximation [1]

Ae 1+ po
A 1—pv’

(1.1)

where A is the conductivity of the matrix, A; is the conductivity of the inclusions,
p = (A1—=A)/(A+A). JEFFREY [2], BATCHELOR and O’BRIEN [3], SANGANI and YAO
[4, 5] studied statistically homogeneous materials to evaluate A\.. MCPHEDRAN,
MILTON, PERRINS, POLADIAN, MCKENZIE [6 - 11] evaluated A, of the square array
of cylinders to improve the formula (1.1). The last authors have been inspired
by a classical paper of Lord RAYLEIGH [12]. They obtained an infinite set of lin-
ear algebraic equations for the multipole coefficients, which can either be trun-
cated to give various low-order formulae, or solved numerically on a computer.
FELDERHOF, FORD and CoHEN [20] derive a cluster expansion for A.. BERGMAN
and DuNN [21] studied analytical properties of A, and proposed an efficient
method to calculate A.. All previous methods use an infinite set of linear al-
gebraic equations or integral equation, and lead to approximate formulae for A..
In the present paper we continue to study the square array of cylinders. Applying
the exact formula of the paper [13], we write an exact formula for A..

In order to calculate A., we have to investigate the conditionally convergent
Rayleigh’s sum

. - 1

=1
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where as j runs from 1 to oo, (x;,y;) runs over all cylinder centers, except that
at the origin. The sum S is related to the integral

/ Re (ll(lJ //( 2 2)2(117(13/,

having a singularity at the origin. Rayleigh calculated /; by summation over a
“needle”-shaped region, infinitely more extended along the z-axis than along the
y-axis. This method of integration is based on physical assumptions. It leads to
the equality I, = . In the present paper we propose a rigorous definition of the
integral I,. This definition differs from the classical definition of v.p. integral [15].

2. Definition of the integral I,

Let.us consider a domain  with the piecewise smooth boundary 0¢. Let the
function Q(z, y) be defined in the closure G. Our study is based on the following
fundamental

GREEN'S THEOREM. Let Q(z,y) be continuously differentiable in G except the
point (zg,yo) € G, where the derivative Q [z is represented in the form 0Q /dx =
f(z,y)/r. Here, v = ((z — 20)* + (v — yo)?)V/2 [(,y) is continuous in Gi. Then

(2.1) // ——drdy = /Q dy.

aG

In the left-hand part of (2.1) the integral is understood as an improper integral,

ie.
//—(hdu/ —llm// ———dzrlJ

G\U.

where U. is a neighbourhood of the point (zg, yo), for instance, U. := {(z,y) €
R2:r < ¢}. Let us note that (2.1) is valid for each function (z,y) continuous
in G and having the derivative dQ)/0z from the Lebesgue space L(().

So we have no problem with an improper integral with a weak singularity. Now
let us study a singular integral. At first, let us consider the well-known singular
integral [15]

(2.2) — v.p. / Re (l.l dy = v.p. // (1J2 _: 12)2(11' dy

= 1%// (12+J2)2([L(1J,

U\U.
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where U := {(z,y) € R?: 22+ y% < 1}. The v.p. integral (2.2) exists because the
integrand is represented in the form

e CY))
2 + 22 2

2_ .2
= & . o
where r2 = 22 + 2, f(z,y) = % and the following condition
T y

o sin @ — cos? §
/ f(x,y)do = / S0 —Cos up=0

sinZ6 + cos? 6
aU. 0

takes place. Here 2 = rcosé, y = rsinf, 0U. is the boundary of U.. Let us
calculate the integral (2.2)

]

Let us calculate the following integral

1 2rn
" e dy = hm—//(sm 6 — cos6)do = 0.

T
2.3 / (l = /:u(lt =T.
(2.3) PR y
aUu alU
Scea( i ) v that Green’s relation (2.1) is not
n = , One can se€c d reen s relation . 1S NO
oz \a2 + y? (@ + y?)*

valid for the v.p. integral (2.2). That is why v.p. integral doesn’t correspond to
our approach.

Let us consider the function u(z,y) harmonic in U except for the origin,
where u(z,y) has a singularity of second order. Hence, the function u(z,y) is
represented in the form

u(z,y) = f() in U,

where z = x + iy, f(z) is analytic in U.
DEFINITION

(2.4) // u(z,y)de dy := llm //Re(~ +£§(~) )(11 dy,

where the last integral is defined as an improper one with weak singularity.
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Let us consider the integral

1//'2“"211 Re ~dx d
= W((E(.y:—/ e;(.’l?('y
@) i
= - llm //Re m(*_—)(ll (ly

= _eh—%//Z <(~ 79 (2—1—€)> da dy.

Applying Green’s theorem to the last integral we obtain

.1 €
I-——llm/zReln (l_j——— EI%Z_SRe(ln(l_;)
au au
€ 1
—In (1 + j>)(1y = /Rej(ly = /:L'(ly =T.
- au U

Comparing with (2.3) we conclude that Green’s theorem is valid for the integral /.
In the present paper we don’t intend to study the general integral (2.4). At-
tention is paid to calculation of the Rayleigh’s integral /.
Let us calculate the following integral

y? —a? 1
// (22 + ,2)2(“([!/ = —/ Re g(l.z' dy,
U,

where U, = {(z,y) € R?: 22 + y* < 12}. We have
Jr = —/ Re—(lL(lJ—//Re—([L(lJ,
Ky
where the annulus &', = U,\U. Using Green’s theorem let us calculate
1 1 2 )
//Re —drdy = — / Re-dy = — / cos” 6 do + /COS 0do = 0.
K, N ok, aU, 3U

Therefore, the integral J, doesn’t depend on 7 and J, = [ = 7.
Only just now we are prepared to define and calculate the Rayleigh integral

I : llm // Re ———dz dy,
2 (x 1J)2
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where D, := {¢ + iy € C : |z + iy| > ¢}. Let us make the change of variables

@ y
T+ 1y u_;2+y2’ U_$2+y2'

u— 10 =

The Jacobian is equal to —(u? + v2)~2. Hence
R le dy = Re lud Jie =
// e(l+lJ)2(l(y // (u+10)2““U e =T,
l/e

where Uy := {u+1iv € C : |u+iv| < 1/e}. So we have proved that the
Rayleigh integral I, = lirr}) Jije = 7.

If the sum 5, is defined as a limit of the Riemann sum of the improper integral

//Re 2| 4|d1‘ dy = / Re )(11 dy,

l/s

then 52 llm A = 12 =T.

3. Boundary value problem for a circular domain

Let us consider a multiply connected bounded domain D in the complex plane

C of the complex variable z = « + ¢y. Let the circumferences 0Dy := {t € C,
[t—ar| = 7} (K = 0,1,...,n) generate the boundary of the domain D, the circum-
ference 0 Dy envelopes the remaining circumferences, Dy:={z € C, |z — ay| <7}

(k=1,2,..,n), Dg:= {2 € C, |z— ap| > ro}. Suppose that the domains D and
Dy are occupied by isotropic materials with different conductivities A and A,
respectively. The state of the media is described by the differential equations:

¢ _ . _[Xe in D, _
V=0 "—{/\ke in D, €T Ve

where u is a potential, j is a current and e is a gradient. The function u(z)
is harmonic in D and Dy, and it is continuously differentiable in D and Dy
(k = 1,2,...,n). If the contact between D and Dy is perfect then the potential u

and the currentJ are continuous in the circle ¢ := {z € C, |z — ao| < ro}:

(3.1) =y, A=A, k=120, u=f indDy,

where I is the normal derivative, [ is the given Holder continuous function.
n
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We shall use the results of the paper [13], where the problem (3.1) has been
solved in analytical form for unbounded domain D (JDy is absent), and of the
papers [17, 18], where the Dirichlet problem for the domain D has been solved
too.

The condition (1.1) is equivalent to the following R -linear problem [13]:

(32) d)(f) = ¢)k(t) — Pk ¢k([), Il — (lkl = Tk, k=1,2,..,n,

where py := (Ax — AN)(Ax + A), |pr] < 1. The last condition (3.1) can be written
in the form [19]

(3.3) ¢(1) = ¢o(t) = go(t) + f7(1), |t —aol = ro.

Here, the unknown harmonic and analytic functions are related by the identities
u(z) = Re ¢(2), ur(z) = 2M(A + A\x)"'Re ¢4 (2). The auxiliary unknown function
¢o(z) is analytic in Dy. The function

o= [ 2

. ¢
Tl 2 =T
E)D(,

is analytic in Dy, vanishes at infinity and satisfies the boundary condition
Ref~(t) = f(1),  |t—agl = ro.

So, the original problem (3.1) can be written in the following form:

(B4 o) = k() — pr () + fi(0), U= @] =, :=0,1,..,n,

where fi.(t) = 0for k =1,2,....n;5 po = 1, fo(t) = f~(1).

In the next section we shall see that we need only the derivatives ¢}.(z) to
define the effective conductivity. It is easy to modify the conclusions of [13, 16 — 18]
and to prove the following

THEOREM 3.1. The functions ¢;(z) of the problem (3.4) satisfy the relations

4 = O+ Y o (RED) = X 2 puis (i) + -

k=0 kl=U k=0
ky#k ki #k  ky#ky
[e.0) n n n 1 /
= Z Z Z o Z pkl/)kz"'pknz(_])ul+ ('Q:"Lfk'”(:;'n"'kl)> ’
m=0 k=0 ky=0 Ky =0

ky#k  ky#ky km#kp,
|z —ap| <re, k=1,2,...,n.

Here, € is the operator of complex conjugation, =} := r2/(z — ax)+ay is inversion
with respect to the circumference |2 — ayx| = re. 25 0= GE k)i
is the sequence of inversions with respect to the circumferences with numbers
k1, ka, ..., k. There are no equal neighbour numbers in the sequence £y, by, ..., k.
The series converges absolutely and uniformly in the domains indicated.
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In our case the series takes the form

4 =)= 3 o (4G + S S puse (9Giw) -

k=1 k=0 kp=1

kl;u. *1?"‘ “29”‘1
[o'e) n n n " !
= Z Z Z Z Piy Pl Pl (1) ('q'"g(a*i,,,...kl)) ’
m=0 k=0 k=0 km =1

ky#k  ky#ky km#k,, 1
|z —ap| <re, k=1,2,..,nm,

where g(z) := f=(z5), 9(ap) = f~(o0) = 0. In the particular case when p; = p
for k = 1,2, ..., n, the last series becomes

65 HH=d@-rY GG P Y S (sGiw) -

ky=1 kp=0  ky=1
ky#k ky#k  ky#ky

4. Effective conductivity

Let us define the value

x ()
Af(n) = —,
(e)
where (e) = J + Z iy (j) = AJ + Z Ay, Jp = // %(IL dy,
k=1 k=1

Dy

0 . . L
J = // T::dx dy. If the inclusions Dy generate a statistically homogeneous and

isotropic structure, then for rp — oc (n — oc) the value AZ(n) tends to the ef-
fective conductivity A.. By virtue of the mean value of a harmonic function we
have

// —(h dy = Wlk()—((lk) mr2Re ¢f(ar) 2A(\ + Ap) 7L

Using Green’s theorem and conditions (3.1), let us transform the next integral

// (ll(ly—/fl(lJ—Z/U/\(/{/—- /fdJ—Zh

k= 1<JDk aG
Hence,
A (n) " 5, Red)(a)
X - =14+ 2n TPy —————
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where P = / Fdy. Tf pp = pand i = r for all &, then (4.1) becomes
aG

Al(n 2mr2p & ,
(4.2) T) =1+ —PE)—ZReq)'k(uk).
k=1

The effective conductivity A. doesn’t depend on the boundary function f. Let us
take f(z,y) = ¢ — Reqy, then Py = 7rr% and ¢(z) = z — ap. The relation (4.2)
implies the equality

X (n)
A

l n
=14+ 2vp— > Red.(a;),
Ip”kgl e ¢ (ax)

where v := 2(7-/7-0)2. According to (3.5) we obtain the series

k=1
AT
(71) =1+ Z 2 m,m tm(”)
m=1
Ai(n) =1, Aps1(n) = Z Re By(n),
(4.3) " k=0
Bi(n) := Z Z Z Re ( "o ro
n' ky=0  ky=0 k=1 ) — dy, ((1,;\.)2l — Uy

ky#k  kyFk| Kk #k 1

2
7
X — 2 , m=1,2,....
T *
g [(ak)knl—l-'-kl - (Ik”']

The formula (4.3) is accurate. It can be applied to any regular structure to cal-
culate the effective conductivity. In the present paper we consider the square
array of cylinders with centers «, which are placed at the points with integer
coordinates.

There are two possibilities to study the infinite square array. In the first one
ro is fixed, n — oo, r = ro(v/n)!/? — 0. In the second one r is fixed, n — oo,
ro = r(n/v)}/? — co. In both the cases the volume fraction v is fixed. Let us use
the second approach. The first way leads to the same result. Using (4.3) when
n — oo, we have

)‘E - m, m
3 =1+ Z 20" 0™ AL 41

m=1
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. 1 .
where Ay = 1, A, 41 := lim A, 1(n) = Re lim — " Bi(n) = Re lim Bi(n),
n—oo n—oo N —n n—00

because By(n) doesn’t depend on k. So we may assume «; = 0. Hence,

11
4.4 A,.+1 = Re —
(4.4) . Z ¥ Z = %)2
1
_Z m+1 27 m = ]727 ceey
km E [0 m 1. ;‘l (l’km]
where Z Z . Let P(z) be the function of Weierstrass for which [22]
ke ks=0
k”‘ks 1

1 (ee]
P(z)- =5 = Z(Zn —1)8,, 22D,
~ n=2

11 . .
where Sy, = Y = Let us introduce the function

k k
1 1 11 1 1 1
PG ==Y = S e Y -
1(2) WXk: (z — ax)? ﬂ; a2 ﬂ'Zk: <(:— ai)? (1%)

—l+—<P()———>

for |z] < r and Pi(z) = Pi(z — ai) for |z — ax| < r. The definition of P;(z)

corresponds to the Rayleigh sum 5, = E /_2 = 7. Along similar lines let us
a
Yk
introduce the functions

Ps+1(2) = Z (~ s *)

- (lk)

= PORE) + 15 s (RED - Pan)

The last sum converges absolutely because

1 1
Py(z) — Ps(ay) = ’a ( ) ,
z— ay

z = ap

where F(z ) is bounded for |z —a| > r. So, the following equality A,,+; = P,,,(0),
=1,2,..., correctly defines the infinite sum (4.4).
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If the radius r is sufficiently small, then we may assume that 07 ,  , —ax =
g, , — G, =: .¢5+1ka. In that case

s

r 11 / 1
At 7 Z(lk Z 21)2 =1 m=1,2,....
l 1 km m
Therefore i 1+ i 20 v™ 1+ g0 This is the Clausi Mossotti
— ) v = — 3 ausius — - .
Y P 1= po ausius C i ap

m=1
proximation (1.1).
The accurate formula (4.4) implies

Az = —Z
k1

Ay =1+ —Z(Zn — 1)53,740 D,

P

n=<

Ag =1+ —Z(zn ~1)53,r0=1,

n=2

(Lkl

Since r < 0.5, the formulae A3 ~ 1 + 3.01840:* + 12.84563,12, Ay ~ 1 +
6.03680r% + 25.69126112 are quite accurate. The numerical values of 5, are
calculated in the paper [7].

5. Conclusions

1. A rigorous definition of Rayleigh’s integral has been proposed.
2. An exact formula for A, has been written for each structure. Square array
of cylinders has been considered in particular.
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Crack interaction in brittle anisotropic materials

W.K. BINIENDA (AKRON)

METHODOLOGY and rigorous solution formulation for stress intensity factors (SIF) and strain energy
release rates (SERR) of a multi-cracked plate, with fully interacting cracks, subjected to a far-ficld
arbitrary stress state is presented. The fundamental perturbation problem is derived, and the steps
needed to formulate the system of singular integral equations, whose solution gives rise to the
evaluation of the SIF, are identified. Parametric studies are conducted for two, three and four
crack problems. Accuracy, sensitivity and characteristics of the modcl is demonstrated.

1. Introduction

CoNSIDER MULTIPLE cracks embedded in an infinite anisotropic plate (Fig.1a).
The plate is under a far-field stress denoted by %, (in particular 0% y, o}-y, and
0%, where (X,Y) is the global coordinate system), and the cracks are defined
in their local frames (z;,y;) (Fig. 1b). The origin of each local frame is defined
by the position vector r;, and the orientation of the local frame with respect to
the global frame is defined by the angle ;. Each crack is symmetrically situated
within its own coordinate system and is 2a; long, as shown in Fig. 1b. The material
is described by the four independent elastic constants, i.e. £, Err, G, and
v, ., where (L, 7)) is the material coordinate system rotated by the angle {2 with
respect to (X,Y).

The general solution formulation can be outlined in four basic steps. The
first step is to derive the local stress equations for each crack in its respective
local coordinate system. This derivation is achieved by defining the fundamental
problem; that is a single crack in an infinite anisotropic plane (Fig.1b). The
fundamental problem is then decomposed into two subproblems: the problem of
the undamaged plate containing an imaginary crack (Fig. 1c) and the perturbation
problem (Fig.1d) of a plate with a single crack subjected to the appropriate
crack-surface tractions, which are found from the solution of the complementary
undamaged problem. The analysis of the perturbation problem leads to singular
stresses that govern local crack tip behaviour.

The second step is to formulate the total perturbation stress field for each
crack, which includes the interaction of all cracks by means of summation of the
transformed local stresses of all other cracks. In the third step of the formu-
lation, the total stress equations are normalized. A set of Cauchy-type singular
integral equations, expressed in terms of unknown auxiliary functions, is obtained
by subjecting the total perturbation stress equations to the crack-surface traction
field at each crack location. The fourth and final step of the formulation is to
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&7

F1G. 1. Multi-cracked plate gcometry and method of solution, a) multicracked plate,
b) fundamental problem for j-th crack, ¢) undamaged plate, d) perturbation problem.

express the SIF in terms of the discrete auxiliary functions, /1,;(7,), evaluated at
each crack tip. These discrete auxiliary functions are obtained through the imple-
mentation of the Lobatto-Chebyshev collocation technique. Finally, the Strain
Energy Release Rate (SERR) will be calculated in terms of SIF.

2. Local stress formulation

Consider the fundamental problem (Fig. 1b), which is defined as a single crack
in an infinite anisotropic plate, whose solution can be obtained by decomposing
it into an undamaged problem (Fig. 1c) and a perturbation problem (Fig. 1d).
The essence of this decomposition is that the traction forces applied along the
crack surface in the perturbation problem are opposite to the obtained stress field
of the undamaged plate at the particular location of the imaginary crack. As a
result, this undamaged traction field can be defined in terms of the normal (p;)
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CRACK INTERACTION IN BRITTLE ANISOTROPIC MATERIALS 41

and shear (q¢;) stress components along the imaginary crack surface:

(2.1) pi(x;) = 0y,y;(2;,0),

(2.2) ¢;(x;) = Oz,y, (25 10),

where

(2.3) Ty, v, (x;,0) = O'E]\' v sin? w; + cr?.—,,- cos? p; — a_({' y sin2¢;,
Txx — 0?")"

(2.4) Griy (23:0) = = 3 sin2¢; + 0%y cos2¢;.
The mixed boundary conditions for the perturbation part of the fundamental

problem (Fig. 1d) are expressed in terms of stresses
(25) (ry;y, = _pf(l’]) and UIJ.’!J = _({J(/IJ)

along the crack surface (i.e., y; = 0 and —«¢; < 2; < q;), and in terms of
continuity of displacements

(2.6) vt =~ and ut = u”

outside of the crack (i.e., y; = 0 and |2,| > «;). Here + indicates the value
of displacement at a point approached from the positive side of the plate, (i.e.,
y > 0), whereas — indicates the same point approached from the negative side
of the plate, (i.e., y < 0).

The governing equations for the preceding two-dimensional anisotropic plate
problem can be expressed in terms of the Airy stress function /;(x;, ;) as

27) or o otr e
(2. et " 93y 72(’).1‘2(')‘(/2 Bovoyd ~ oyt
where
_ 202() _ 21)12 + bge o 2[)16 _ b1y .
28) =gt gy Lt BETEr WS
and
by = aqy COSd(Q — @)+ Qayy + agg) sinz(i? - ) COS?'(.Q - )
+apy sin4(Q - ),
bay = agp cos* (2 — &) + (2ayz + agg) sin?(2 — ) cos* (2 — )

(2.9) + ayy sin?(2 - @),
bip = ap+ (all + a3y — 2ay7 — “66) sinz(Q = 5.’?) COSz(.Q — L,:),

bes = age + (a1 + axpy — 2a12 — aep) sinz(.Q - ) COSz(.Q - ©),
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(2.9)

b = [(ng sin?(2 — ¢) — ay cos? (2 — )
[cont.]
1 .
+5(2a12 + ags) cos 22 - )| sin2(2 - ),
bas = [cos’(2 - ) - sin®(2 — )
1 .
~ 52z + ags) cos2(2 ?)] sin2(2 = ),
where
1 1 —Pys 1
ap = Ik ax = Erp’ apy = B, o6 = Gir

Consequently, Frp, E7p, Gpr and v, are four independent material constants
used for the plate characterization as a fiber-reinforced composite in material
coordinate system L — T

A rigorous solution for this stress function can be obtained by employing the
Fourier transformation. Assume the stress function to be expressed as:

(2.10) F(z,y) =

7] -

m=1

o0 4

™ Y PanlYs —IST L] ..
T 5 Cummerioa
&0

then, upon substitution into (2.7), the characteristic equation is obtained that has
four complex roots in the following form

(2.11) ry = a+ b, rp = ¢+ id, ry = —a + ib, rg = —c+ id,
where a,c > 0.
The Airy stress function must also satisfy the physical requirement that the

stress function is finite throughout the domain of the plate. Therefore, the fol-
lowing form of Fj(z;,y;) can be used for the upper half-plane (for y > 0)

(2.12) Fle,y*) = 2% / [Crelibsatsby 4 Coelida=cleby] g=isr g,
and for the lower half-plane (for y < 0)

1 7 : S
(2.13) Flz,y7) = = f {('3(0’)-*“'5')%/+(,'4(,(“f~»+‘l‘*l)- e~ 5% s,
T
— Q0

which are automatically bounded at infinity. Note: constants '; for j = 1,2.3,
and 4 are functions of the Fourier variable s and are determined by using the local
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stress continuity conditions at the boundaries between the half-planes (y = 0) and
by using the perturbation boundary conditions subsequent to the determination
of the total stresses at each crack location.

The stresses are calculated at the upper and lower half-plane by using the
second derivatives of the stress functions [10]. Therefore, the stresses for the
upper half-plane are:

214) o)

17 ,
3 / [Cl(—a|sl “+ ib.s)ze(lbs—ﬂsl)y
-0

+Co(—cls| + 1'(1,'5)26("”5—C|S|)y] eI .

(215) G-f";’) = 72_‘”_ ] 82 [Cle(Lbs—u|S|)y e Cvzf_(ztis—c|s])y] e~ (s,
17 |

(2.16) ag) b / 18 [C'l(—(1|5| + ibs)c(ws_”l”l)”
T

— O

+Co(—c|s| + JT(IS)('(‘-"[S_Cl"’Dy] e~ g

and for the lower half-plane are:

o0

[ [Cstals) + ibsypettssabsbs

1

2r

217 o)

—_

+Cy(cls| + i(/.s)zr,"(“'[”clsl)y] e ds,

(2]8) (=) ___1_ / §2 [C3C(ib.9+u|.s|)y + (_'4E(irls+(r|s!)g] e isT ds.

Tyy" = T
=y 1 T . o . ihs+als|)h
(2.19) Uﬁ.y) =5 [ 18 [(-3(u|,s| + rb.s)c( +als)y

+Cy(c|s| + -irl.s)c(i{15+°|"|)y] e~ % ds.

The continuity conditions for local stresses, o,, and o,.,, are identically satis-
fied, giving

(2.20) Ci+Cr=C3+Cy4
and

(2.21) Ci(bs + ta|s|]) + Ca(ds + ic|s]) = C3(bs — ials|) + Cy(ds — ic

),

S

respectively.
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The solution of Egs.(2.20) and (2.21) for '3 and (4 in terms of 'y and
can be written in the following form:

C3 = 51C1 + 5207,
(2.22)
Cq = 53C1 + 5,4C7,
where
g = [s|(a + ¢)+ i(d —b)s
P |s|(c —a) +i(d —b)s’
g, = 2¢|s|
D o S . bl
sl(c —a) + i(d — b)s
(2.23) |sl(c — ) + i(d - b)
G = _ 2als|
3 |s|(c —a) +i(d —b)s’
} |s|(a + ¢) —i(d = b)s
,54 = —

|s|(c —a) + i(d = b)s
The strains are calculated using generalized Hooke’s law. Then normal strains are:

Exz = b110zs + by30yy + b15opy,
(2.24)

Eyy = 012022 + bpaoy, + brs0sy.

Using the Egs. (2.24), the strains for upper and lower half-planes can be ob-
tained. Then, using strain-displacement relations [10], the displacement, alsc for
the upper and lower half-plane, are obtained:

u(e,y) = /E,,.J. da,
(2.25)
(e, y) = /Ew dy.

To obtain the singular integral equations, the following auxiliary functions are
introduced,

(2.26) fi(x) = %[rﬁ(.x:.(}) — u~(x,0)],
(2.27) f2(2) = Oi—i_[t,‘+(.1:,0) — v (2,0)].

Expressions for the unknown constants 'y and ('; can be determined in terms
of the above auxiliary functions, knowing that fi(¢) and f3(!) are nonzero >nly
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within the crack region (i.e., —a < t < a). Therefore,

j Dafi(t) = Dafo() ist

) o=
(2.28) = D1 D4 — D3 D5
. [ Dsfi() = Din() st

(2.29) e B s
where

Dy = 2als|[|s|(a + ¢) + i(d — b)s]byy,

Dy = 2¢|s|[|s|(a + ¢) + i(d — b)s]b,
(2.30)

Da = 24 |s[s[s(d — b) —i(a + )]s |] )

. (a2 + bD)(c|s| + ids) bz
Dy = 5 l8ls[=s(d — b) — ifa + <)|-‘*|]b22

(2 + d®)(als| + ibs)

Similarly, C'3 and (4 can also be expressed in terms of the auxiliary functions
using (2.22) with (2.28) and (2.29).

Substituting expressions for the constants C’; into the local stress equations
results in the formulation of the set of double integral equations with respect to
the Fourier variables s (—o0 < s < o) and  (—a < ¢ < «). Integrating with
respect to s will give a set of singular integral equations with respect to ¢, which
are valid for any j-th crack within its own local coordinate system (i, y;):

[l)
1 77 ) G 7
gl = = -Gy oy 92 ) g
(231) TjJJ 273— / _f.l'l(tj)b“(go + jt"_(lj)blz(g(].‘ (“.I’
—H]
1 [l) (2
(232) o, = 50 [ [p e + | .
7!1_’
!lJ
~ 1 (
(233) L = 5o f e == Q" -+l o 96 -|
where
@39 Qo =ac|(a+ P+ G- D[t - 2,07+ 201, - 2))y; + (@@ + )
X [(ZJ- — )+ 2d(t; — )y + (F+ 112)3]2-] :
(235) Qi = Ryt — ;) +y; [/l’z(f.f' — &) + yiRally — ;) + yflh] :
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where

Ry = a®be + Ve + 2abc? + 2d%cd + actd + ad’,
Ry = a*c + 2d%0%c + be + 20362 + 2ab** + 2d% + ac®

+2a%bed + 2b3ed + 2abc*d + 2d%cd® + 2acid® 4 2abd® + ad®,
Ry = a?bc® + 0P + 2abe* + 2acd + 4aP0%ed + 2b%cd + a3ctd

+ab?cd + a?bed? + Ved? + 4ab2d® + B3P + ab®d® + 2abd?
Ry = (a® + b¥)(* + d¥)(@®c + b%c + ac® + ad®);

@36) Qa2 =Rs{(t; — 2, Re + y; [Ro(t; — 2, = y; Rs(t; — 2,) + 12 Ro] },
where

Rs = (a® + b?)(c? + d?),

Re = (uzc + b2 + act + m[z),
R7 = a%be + bPc + 20%cd + ac*d + 2abd® + ad3,
Rg = At + ab** + a2 = VA3 = 2d%bed = 203

—2abc®d — a3d? = ab®d® + a*ed® = bPed? - 2abd3,
Ry = (a® + bH)(* + d*)(be + ad);

(237) Q3= Rult; -2 +y, [-"(fj — @) Ry + ity — w) R+ yi s
where

Rig = be + ad,

Ri = (a® = b¥)c = 20d(a + ¢) + a(c? = d?),

Riz = b + a3d + ab®d + bed?® + 2bd(be + ad),

Ry = ((L2 + 02)(62 + ([2)(rf, 4+ ¢);

(2.38) Q4= R5{(f.j —:l.‘j)31314+ yj[RlS(fj —.‘l'j)z + yj(lj - :l.‘j)]f15+ yf[f”] }

where
R14 =a+ec,
Ris = 2ab + be + ad + 2ced,
Rig = @ + ab® + 2d%c + 2ac® + A + 2abd + 2bed + cd?,
Ry = 2abc? + b3 + a3d + ab®d + 2d%cd + bed?;
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(239) Qs = Ris(t; — ;) + [lflg(f-j — ;) = yi(t; = x;)Rao + y} R ,

where
Rig = c(a® + %) + a(c® + d?),
Rig = 2bc + b3 + 26%cd + actd + 2abd® + ad?,
Ry = a* + ab®c? + d®¢ — b*e3 — 2d%bed — 203 ed

—2abc*d — aPd? — ab*d® + a*ed? — bred? — 2abd?;

(240) QG = R5{(l‘1 — TL‘J‘)Sﬁ'zl + Yy, [Rzz(fj —.’L'J')2 + yj(tj —:1:_,‘)1323 + yf[ﬂlg,]},

where
Ry = ad + be,
Ry = —d’c + b — ac* + ad® + 2abd + 2bed,
Roy = b + &3d + ab®d + 20%¢d + 2abd® + bed?.

Note that the isotropic case can be obtained by substitution b = ¢ = 0 and
a =c¢= ],giving R] = 133 = H7 = Hg = ]{10 = ]{]2 = 1315 = /1’17 b ]\’19 .
1?21 = ]1’23 = 0, [?5 =1, 134 = R() = ”5 = R]] = ll)|3 = ]{'14 = ng = Rz() .
— Ry =2, and Ry = R = 6. The parameters (Q; then become:

(241) QF = a[(; -2 + 4]

(2.42) Q™ = 29; [3(t; — 2, + yj]

(2.43) QS =2 — ) [, — 2,0 = Y]

(2.44) QS = 2, [(t; - 2,)* - y;] :

(2.45) $ =205 — ) [ — ) + 347
(2.46) Q5™ = 21— ) [(1; - ;)" = 4] = ™,
(2.47) QP = <245 (L - 2,0 - 2] = QF.

and the stresses are reduced to the isotropic stress formulas derived in [2].

This completes the formulation of the fundamental problem (or local stress
state) for the j-th crack. Henceforth, the formulation of the multiple crack prob-
lem will be considered.
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3. Total stress formulation

The total stress state ,(o7.) for the p-th crack is defined as the local stress state
of the p-th crack (o?.) plus the contribution to that stress state of all remaining
cracks. This may be represented mathematically as

n—1
(31) PU;FZ(IP‘ y]-’) = (Tf:(.'l,‘,[), !/p) + Z Urjz [:l',i(’l'].’! yp)« yj(:l'.})! .‘/p)]

for p = 1,...,n. Here standard tensor transformation is incorporated, o/, =
BirPmz0tm, and B, 3., are the direction cosines between the (2;, y;) and (z,,y,)
coordinate axes with j identifying the remaining cracks. Note: This statement does
not imply that the concept of superposition has been invoked, since the stress
perturbation boundary conditions (see Egs. (2.5)) have not yet been utilized to
determine the unknown auxiliary functions.

For functional compatibility within Eq. (3.1), coordinate transformations must
be simultaneously applied to all remaining (j-th) crack coordinate variables. As a
result, the dominant part (i.e., the first term of Eq.(3.1)) possesses a singularity,
whereas the regular terms within the summation lose their original singularities
and yet still contribute to the total stress state, as one might expect.

The singular terms of the singular integral equations are obtained from the
first term of Eq. (3.1) applied for shear, o,,, and normal stress, o,,, by replacing
subscript j by p in Egs.(2.33) and (2.32), respectively, and evaluating them at
yp, = 0. Finally, the variables x and t are normalized using x, = a,§ and t, = «a,r,
where the £ and 7 are defined between —1 and 1. Therefore,

(3.2) o0, =1 / M”ff’ D)y gy m) fﬂ ) 4,
pYr 71'_1 Ep 6,)‘
1 -
1 Al f) (TJ) f, ( )
o =2 p(1) JpI\'p) 0(2) Jp2\Tp)
(3.3) o) = ”_/1 R e (8

where F,, and I, are material related coefficients (superscript p stands for p-th
local coordinate system), proportional to local z-direction stiffness (denoted by
superscript 1) or local y-direction stiffness (denoted by superscript 2), with respect
to the local crack coordinate system. Consequently, they will be called Modified
Stiffness Parameters (MSP). The MSP are:

["(“2 + bz) 4 a(c2 + ([2)}
Zee [+ o F + 0 Pl o

(3-5) E®) = (a + b2)(c? + d¥)(ad + be)
| VT dacflat P+ @b

(3.4) Ef) =
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1) _ (be + ad)
(3.6) Egy 2ac [(a + )2 + (b - d)?] by’
2 2\ .2 2
@ @+ )+ )+ o)
3.7) E{) =

2ac[(a + )+ (b= d)?] by~

For the isotropic and orthotropic cases I'}l(vzy) = Ef,L) = (), and for isotropic case
the remaining MSP become:
E
o) = p?) = =
(3.8) By =k = 7
The regular terms of the singular integral equations are obtained by transform-
ing the remaining stresses into the local p-th crack coordinate system simulta-
neously with coordinate transformation. The coordinate transformation between
the (z;,y;) and (z,,y,) systems is determined from the following geometric re-
lationship (see Fig.2):

(3.9) rix + T;C080; — y;Sinp; = rpx + T, C08@, — Yp SiN @y,
(3.10) riy +xising; + y;Ccosp; = 1y + xpsin o, + Y, COS @y,

where r;y, r;y are the rectangular components of the j-th crack position vector
referred to the global coordinate system X — Y, and ¢; is the angle of rotation
between the global and local systems.

Y
X, COS{p, - ¥p SINPp

X, SIN P, + Y, COS P,

& /’.p x; sintp; +y, cos

Yi

=

Xj COS% ¥ s:nyaj

©p 7 8]

X

F'1G. 2. Geometric relations between a pair of cracks and their local variables.

One component of the regular part of the total stress is obtained by transfor-
mation of the stresses from the j-th crack local coordinate system into the p-th
crack local coordinate system,

‘s _ . X . 5 .2
Ofye = = (UJ(:JJL - Ugf)y,) sinfcosf + ol (cus 6 — sin H) ,
(3:11) . - , i " .
Oy, = O, SiN"0 + o)) cos™ 0 — 207, sindcosd
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simultaneously with the coordinate transformation and the substitution y, = 0.
Therefore, we can obtain from Eqgs. (3.9) and (3.10)

x; = p +a,c080,
(3.12) ! g
y; = p2+a,sinb,

where 6 = ¢, — ¢;, and (p1, p2) is the vector connecting the centers of the j-th
with p-th cracks expressed in j-th coordinate system:

(3.13) p1 = (rpy = mjy)sing; + (rpx — rx) cosgj,
p2 = (rpy = 1jy)€ospj — (rpx — rjx)sing;.

The regular, normalized form of the parameters @; for « = 0,1,...,6 is ob-
tained using the coordinate normalization z, = a,£ and t; = q;7, in addition to

the coordinate transformation, to produce the parameters Q®:
3.14) QS =ac[(a+ )P+ (b - ) (0,7 = p1 = a,€ cos6)?
+20(a;m — p1 — ap€cos)(p2 + a,sinf) + (a® + 1) (p2 + a,€sin 9)2]
X [(u_,'r — p1 — ayf cos (9)2 + 2d(a;m — py — ay€cosB)(pr + a,€sinf)

*i-(r2 + rlz)(])z + a,€ sin ())2] ;

(3.15) Q(lng) = Ri(a;7 — p1 — ap€cos 0y + (p2 + a,& sin )
X [Ifz(ajr — p1 — a,€cos 9)2 + (p2 + a,&sinb) R3(a;7 — p1 — a,E cos )

+(py + € sin0)7 Ity

(3.16) Qg_mg) = {((LJ’T —p1 — ap€cos8)’ Re + (p2 + ¢, sinb)
X [[(7((zjr — P — ap€ cosb)? — (py + aésin)Rg(a; 7 — py — ay€cosb)

+(py + a,& sin ) 139] } Bs,
(reg) _ . - \3 # @l
(3.17) Q3% = Ryo(a;7 = p1 — £ cos )’ + (p2 + @, € sinf)
X [—(aj'r — p1 — ap€ cos 02 Ry + (p2 + a,Esin0)(a;7 — py — ap€cos ) iy

+(])2 + a, sin ())2 /fg] i
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(3.18) gr(:g) = {((le — p1 — ap€ COS())3 R4+ (p2 + a,€sin 0)
X [R15(r1,jr —p1— @€ cos#)? + (py + a,Esinf)(a; 7 — p; — a,Ecos )R 6

+(in + a,€sin 6) Ryg) } s,

(3.19) Qgrcg) = Rig(a;m — p1 — a,é cos 0)° + (p2 + ay sinf)
¥ [lflg(ajT — p1 — a,€cos 6)2 — (2 + qpésin@)(a;7 — p1 — @€ cos ) Ry

+ (2 + a,€sin )2 Ry

(3.20) Qgcg) = {(a]-'r — p1 — a,€ cos0) Ry + (py + a,&sin B)
X [Rzz(ajr —p1 — apé C089)2 + (p2 + ap€sin0)(a;7 — p1 — @ cosO) Ro3
+(i2 + a,€sin 0) Rus) } Rs.

So the regular normalized component of the shear stress becomes:

1 1

(3.21) ol = / kery f,1(t;) dr; + f kerp [12(1,) 7,
= o
where
a; 1 . o)\ .
(3.22) k€r1 = i —Tg) [— (Q(lm&) - le'(.[,)) siné cosd
b11Qy
+Q(5r°g) (cos2 0 — sin® b’)] .

(3.23)  kery = oL . [— (( L= Qf{”g)) sin § cos 6

27 bQf®
+Qg°g) (c:os2 6 — sin? 9)] .

The regular normalized normal stress component is:

(3.24) o f kers f1(t;) dr; + / kerg f(t;) d,
where
(3.25)  ker; = L [Q('Cg) sin2 6 + Q¥ cos?# — 2Q1¥ sin 6 cos H]
‘ 2r 3, O(rcg) 1 3 5 ’
e O (reg) o 2 (reg) 24 e o .
(326)  kery = 52 ., Q(ng) Q5 sin? 0 + QY9 cos? 0 — 24" sin fcos 9] .
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The total stresses (¢, and o7,) for n cracks can be written in the following
form:

1 1 1
327) .ol /kerlf”dr + /kerzflzrlr P /ker,f(,,_m dr

, B
fn2 P

T r—§& ’

/l\ﬁrzf(n 12dr + £ / f"

(328) "Uz‘y jk€r3f11(lT + fker4f12([1'+ gin T /ker3f(”_l)1([-r
- = =]

E , E |
+ / ker4f(n_1)2 dr + - i dr + =2 / Ju2 dr
T T—¢ s T—£
-1 -1 -1
The formulation of this system of singular integral equations is complete once
the single-valued conditions for the auxiliary functions, f;,, are chosen. In the
case of straight cracks, this single-valuedness condition [8] is:

1
(3.29) f () dr =0,

-1
where j stands for the j-th crack and 5 takes on the value of 1 or 2.

4. Solution for the stress intensity factors

The integral equations obtained are of the Cauchy type; thus, for sharp cracks
the stresses and strains will have a square-root singularity and the classical defi-
nition of SIF may be used (see [1, 4, 5, 6]). Therefore, the Modes I and II SIF
for the j-th crack are

(4.1) () = lim [2(6 = D] {7, (€. 0}
(42) k(1) = lim 266 - ]2 {07, (6.0}
(43) KH-1) = lim [-200+ 617 {jo7, (€. 0)}
(44) (-1 = lim [-201 + )] {joL, (6.0},

where the normal and shear stresses, Eqgs. (3.27) and (3.28), are used.
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It is well known [8] that the auxiliary functions (/) can be expressed as a
product of the unknown bounded functions (//') and the known singular weight
functions w:

(4.5) f(r) = H(r)w(r).

The singular weight function w for a sharp crack is
~1/2

(4.6) w(r) = (T2 - 1) : .

Erp0GAN [8] found, for example, that in the case of a Cauchy-type singular
integral equations, Eqs. (3.27) and (3.28), the dominant part can be expressed in
terms of the function /I evaluated at the tips of the j-th crack:

11 f:d I
: T lﬂ
4.7 —/ U = (-1 T+ 1) V2 (D —= (- 1)"V2+0(r
@ o) 7=t ) D56 =) "),
where 7 is 1 or 2 and O(r) is the higher order term, which in subsequent cal-
culations is neglected. The substitution of Egs. (4.7) for the dominant parts (the
last term in Egs. (3.27) and (3.28)) of the normal and shear components of the
total stresses in Egs. (4.1)—(4.4), and subsequent evaluation of the limits at the
crack tips, results in redefining the STF (normalized with respect to /a7 and o7,),
expressed in terms of the functions /I7,;:

(4.8) K1) = (ESOG) + EPI,(1) Jaj fay,
(4.9) k(1) = (BAVIL (1) + BP (1)) fay/a,
(4.10) F(=1) = (EVI1,(=1) + EiD1,(-1)) NOT
(4.11) Ki(=1) = (B (=1) + EXD Iy (-1) s /ar.

The Lobatto - Chebyshev collocation integration technique is known to provide
excellent results when dealing with Cauchy-type singular integral equations, and
so it was used. The unknown function //,; is determined at a discrete set of points
T1, T2, - .., Tm called abscissas. In this way, each integral equation is reduced to
a set of algebraic equations with unknowns 1,,;(m), I1,,;(72), ..., H,;(7.), which
are the discrete values of the functions /1,;; hence its name, a discrete auxiliary
function. It should be noted, that #I; and I1;; are proportional, respectively, to
shear and normal difference of displacement at the crack tips,

(4.12) Au~ I, Av ~ 1.

Consequently, the /7,; can be used as a measure of the crack opening displace-
ment rate at the crack tip.
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Each of the singular integral equations subjected to the stress boundary con-
ditions (Eqs.(2.5)), is replaced by m — 1 algebraic equations with 2nm unknown
parameters (see [2]). In the Lobatto - Chebyshev method, the abscissas are cal-
culated according to

(4.13) Ty = cos‘— for r=1,..,m,

with the corresponding weights given by

(4.14)  w = w, = 2(7+_1) and  w, = 7‘117T—1 for r=2,3,...,m—1;

the collocation points are then found by using the formula

2z = Dr

(4.15) £, = cos T—

for z=1,2,....m—1.

In order to have the complete system of 2nm algebraic equations, the single-
valuedness conditions Egs. (3.29) are also expressed by using the collocation tech-
nique:

m

(4.16) > Hyi(m)w, = 0.
r=1

Thus, the resulting system of algebraic equations can be written in the form
(4.17) [A}{H} = {R},

where [A] is a fully populated 2nm x 2nm matrix of coefficients, and {R} is the
loading function vector.

The unknown parameter vector {//} can be determined through inversion of
the [A] matrix; thus,

(4.18) {11} = [A]"Y{R},

although only the appropriate values (i.e., /f,,;(+1)) are used to calculate the SIF
for the j-th crack (see Eqgs.(4.8)-(4.11)).

Automatic generation of the associated FORTRAN code for the evaluation of
Eq. (4.18) completes the development of the solution for any multi-crack problem.
This FORTRAN program was utilized to obtain the following results, which are
compared with results obtained by other methods existing in the literature.
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5. Strain energy release rate

From the fracture point of view, perhaps the most important physical quan-
tity is the Strain Energy Release Rate (SERR), usually denoted by a symbol ¢.
CHEREPANOV in [3] discussed the generalized formula for SERR for anisotropic
material.

a+da
/ {oyy(@,0)[v(z — da,0%) — v(z — da,07)]

a

L
51  G=3

+0.y(z,0)[u(z — da,0%) — u(z — da,07)]} da.

Using the roots of the characteristic equation in terms of the real components
(11), it can be shown that:

T [,2(a + c)(ac = bd) + (b + d)(ad + bc)

2 =1
(5.2) ¢ 7 |1 (ac — bd)? + (ad + be)?

by + k3(a + )by | .

In the case of isotropic material one may substitute « = ¢ = 1, b = d = 0 and
1. I .
by = by = = into (5.2). Consequently, well known fracture mechanics relation-
ship is recovered.

(5.3) 0s0) = /1 [+ 3]

6. Numerical applications
(i) Two crack interaction

In order to validate the results obtained using the code, the well-known prob-
lem of two parallel interacting cracks is considered here. The plate with cracks
of length 2a and the fiber direction 2 = 22°, is subjected to a normal stress field
(o%y) as shown in the inserts of Fig.3. In this figure, SIF does not depend on
the rate of anisotropy ratio I,/ Frr. Mode-I SIF are exactly the same as the
SIF from [9] and [7] at both the inner and outer crack tips, and Mode-II SIF are
zero for this configuration.

The shear crack opening as represented by /1, (see (4.12)) is only zero for
the ratio of anisotropy Ep /Lt =1 (i.e. isotropic case). Even small anisotropy
ErL/Err > 1 produces the shear displacement. This increase is very significant
only for 1 < Epp/Ery < S and it becomes constant for £/ L > 15. One may
say that the two collinear cracks configuration always produces Mode-I crack tip
local stress field and Mixed-mode local displacement.

Figure 4 shows the variation of MSP with respect to ratio of anisotropy. One
may find the isotropic values of MSP as given in (3.8) for Lrr/Err = 1. Tt also
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F1G. 3. Discrete auxiliary functions and SIF for two collinear cracks versus rate of anisotropy
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F1G. 4. Modified stiffness parameters for two collinear cracks versus rate of anisotropy change.
may be noted that the rise of anisotropy ratio significantly increases Ei-ly), Eﬁ,)
and Ezﬂ,), while Eﬁ,) is almost constant and that Eg) = E;(,},) for all range of

Err/ErT.
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From the fracture mechanics point of view, cracks propagate driven by the
total SERR, shown for the collinear cracks configuration in Fig.5. Clearly, the
maximum SERR occur for the isotropic case, for both the inner and outer crack
tips. For anisotropic cases, they are rapidly reduced to almost 50% of the isotropic
case within the range 1 < Ep/Err < 15, and finally they reach a plateau for
ELL/ETT > 15.

10 \ T ‘ T
o GT (outer) Q=220 ]
gk \ —-—GT (ipner) | L ----- |
N 2 2
o F \ N Q01
i S~ .
v 6F .
e T —
@ e
NF S
bS]
! _
<
2 -
0 5 10 5 20 25 30 35 £, /€,

Fi1G. 5. Total SERR for two collinear cracks versus rate of anisotropy change.

Let us consider now an anisotropic material having ratio Fpr/Err = 40 for
the same collinear crack configuration, and change the fiber angle 2. It is shown
in Fig. 6 that SIF are still unchanged having only nonzero components. Discrete
auxiliary functions show that the crack shear opening displacements are zero only
for the orthotopic cases, i.e., £2 = 0°, 90°. Otherwise both openings are not zero.
The local shear opening displacements maxima are at 2 = 22° and 68°, while the
local nonzero minimum for the shear opening displacement is at 2 = 45°. The
normal opening displacements are the largest at {2 = 30° but almost the same as
for 0 < 2 < 40, and are significantly reduced for the remaining range, to reach
the value equivalent to 30% of the maximum normal opening.

In Figure 7 the variation of the MSP are shown as a function of the fiber

orientation (2. It may be noticed that the curve representing Lily) is symmetrical,

with respect to the line 2 = 45°, to the curve representing Ef,‘},). The remaining
MSP are again equal to each other and zero for orthotopic cases. Consequently,

EQJ and Ef,i) must be related to bjg and byg (see Eq.(2.9)).
Since

~(2) — (1
(6.1) E® =EQ
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F1G. 6. Discrete auxiliary function and SIF for two collinear cracks versus fiber angle for the

ratio of anisotropy = 40.

we can substitute (3.5) and (3.6) into the (6.1) and solve for by, to get:

(6.2)

by = by (u.z + (;2) ((’2 + (l?') .

or in terms of the roots of the characteristic equation one may show that

b-
(63) rreryry = 2

1)”
In case of the orthotopic material b = d = 0, and (6.3) reduces to well-known

mathematical relation in the following form:

Er

]L"]‘T

(1262 =

(6.4)

Upon substitution (6.2) into (3.7) and using the Eq.

[1(]) = g® (((L

(3.4), we can find that

+b)+a(( +(1')

(6.5)

v (@ +0)

Equation (6.5) can be reduced to orthotopic case for

b = d = 0. Further, using

(6.4) together with the orthotopic form of (6.5), it may be shown that:

g

F sy
— =ac =
Yy Jb=d=0

(6.6)
ES
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I'1G. 7. Modified stifftness parameters for two collincar cracks versus fiber angle for the ratio of
anisotropy = 40.

Finally, using the Eq.(6.6) and the observation of Fig.7, we may conclude that
for the general anisotropic case E!}) is proportional to the square root of the
effective Young’s modulus in the local z-direction, and l-jﬁ,’ is proportional to the
square root of the effective Young’s modulus in the local y-direction.

Total SERR in terms of the fiber angle {2 is shown in Fig. 8. SERR are maxi-
mum at 2 = 0°, and minimum at 2 = 90° for both the inner and outer crack
tips. The other two important angles are {2 = 12°, where the SERR arrive at
their local minimum, and {2 = 42°, where the SERR reach their local maximum.

Figure 9 shows the variation of the SIF and opening of displacements for two
cracks that are not collinear. The convenient parameter that can be controlled
is the angle between the horizontal axis and the line connecting inner crack
tips, i.e., the angle a, (see insert in Fig.9). When a = 0°, the previous case of
collinear cracks is obtained. The constant parameters are: the distance between
inner crack tips, 0.1 - a;, the ratio of anisotropy Iy /Lo = 40, and the fiber
angle {2 = 45°. As a result of the change of the crack configuration, SIF are not
constant anymore for the inner crack tips. Mode-II SIF is zero only for o = 0°
and 90°, and it becomes maximum at a = {2 = 45°. Mode-I of SIF monotonically
increases with the angle a for the inner crack tip. SIF for the outer crack tips
are not significantly influenced and they are the same as the collinear crack
configuration.

It is also interesting to analyze the Discrete Auxiliary Functions, /1 and I1.
The shear term of the inner crack tip is zero only for @ = 40°, and it is larger
for the case of a = 90° than for the collinear crack configuration. Normal crack
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opening displacements are the largest also for a = 90°. Since change of the
angle a does not change the material properties in the local coordinate system,
therefore MPD can be found in Fig. 7 for the fiber orientation 2 = 45°.

The combined effect of the SIF and local displacement is captured by SERR,
shown in the Fig.10. The shape of the Gt resembles in parts the shapes of &}
and H,, for the inner crack tips. The maximum of SERR is, however, reached
for @ = 70°, at the inner crack tips. The outer crack tip SERR is slightly affected
by change of the angle «, and reaches its maximum for a = 90°.

%k L
[ ( S, s =
el |7 o7 s ,
& ot = |
th;{ = - -
o " i
& 8 - — GT (outer) ]
3 — - — GT (inner)
[y
s
2f ]
0 0 20 30 40 50 60 70 80 %

@ [degrees]

I'1G. 10. Total SERR for two parallel cracks versus crack tip angle. Fiber angle is 45 degrees and
ratio of anisotropy is 40.

(ii) Three crack interaction

Consider anisotropic plate with ratio of anisotropy £/ Err = 40 and three
parallel cracks, as shown in the insert of Fig.11. Two cracks on the right are
always symmetric to each other with respect to the horizontal line, that coincides
with the crack ab. The distance between the inner crack tips be and be are always
identical and for the first study it is kept constant bc = be = 0.1a;. As a parameter
for the first study, consider the change of the fiber angle 2. Mode-I SIF for the
tips b, ¢ and e are shown in Fig.11. As one may note, ki(b) curve resembles
inverted parabola with the maximum for 2 = 45°. SIF at the tip b is the largest
for the whole range of 2, because of the magnification influence of the remaining
two crack that are situated in front of the crack «b. The SIF for the cracks cd
and ef are smaller because of the shielding effect of the cracks above or below.
SIF at the tips ¢ and e are identical within the first part of the range of the
fiber angle, i.e., 0 < §2 < 25, while they start to differ from each other in a
symmetrical manner within the remaining part of the range of the fiber angle.
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F1G. 11. Mode-I normalized SIF for the three parallel cracks versus fiber angle for ratio of
anisotropy 40.

Evidently, the singular stresses are stronger transmitted along the fibers than in
any other direction, because k;(¢) is larger than £;(c).

Mode-II of SIF are shown in Fig.12. Here, the absolute value of k;(b) is
always close to zero and exactly zero for the orthotopic conditions, i.e., £2 = 0, 90
degrees. The absolute value of Mode-II SIF at tip ¢ is the largest with the local
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FiG. 12. Mode-II normalized SIF for the three parallel cracks versus fiber angle for ratio of
anisotropy 40.
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maximum for 2 = 25°, because of the directional stress tunneling effect. Tt is
also interesting to note, that the absolute values if k7 are identical for crack tips ¢
and e under orthotopic conditions, but the values for 2 = 0 are more than twice
as large as for 2 = 90.

We can also analyze the crack opening displacements at the inner crack tips
using Fig. 13. Tt may be noted that shear opening displacement is zero for crack
tip b and very close to zero for crack tips ¢ and e. The only other case of zero
Aw is for the crack tip e at 2 = 22° All crack opening displacements reach
their local maxima within the middle range of the fiber angle. Normal opening
displacements are almost constant for the 0° < §2 < 45°, and they become much
smaller for 45° < 2 < 90°.
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== = = o= H2(b)
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f —‘-\7 ——-=H2(c)
R .. — —-Hi(e)
T 501 8 ——e=H2e) |

discrete auxiliary functions

Q [degrees)

['1G. 13. Discrete auxiliary functions for the three parallel cracks versus fiber angle for ratio of
anisotropy 40.

Variation of the SERR for this study is shown in Fig. 14. SERR combines all
the above characteristics for each crack tip in one convenient parameter, that
shows strong dependence on the fiber angle (2. Local maxima for each curve are
located at 2 = 45° where SERR for crack tip 0 is the largest and followed by the
maximum for SERR of the crack tip e. It may be concluded that the easiest crack
propagation can take place for the fiber angle 2 = 45°, for which fibers connect
crack tips b and e. Henceforth, as a result of a physical crack propagation, one
may anticipate the connection between crack «b and ¢f and, consequently, the
zigzag crack development.

In Figure 15 the variations of the SERR are shown for the case of 2 =
45°, when the middle left crack slides between two parallel cracks. When the
parameters DIST are zero, tip b is on the same vertical line which connects
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normalized SERR

I'1G. 14. Total SERR for the three paral
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F1G. 15. Total SERR for the three paral
anisotropy 40

tips ¢ and e. When the crack ab is

lel cracks versus crack shift distance DIST for ratio of
and fiber angle 45 degrees.

away from the parallel cracks, the parameter

DIST > 0, and when tip b is between cracks cd and ¢ f, the parameter DIST < 0.
It can be noticed, that the magnifying trend for SERR takes place, when crack tip
b come closer to the vertical line connecting tips ¢ and e. When DIST becomes
negative, all inner tips become strongly shielded, so that SERR sharply drops to

almost zero.
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(iii) Horizontal notch interaction with three microcracks

Consider now the plate with ratio of anisotropy Ey/Err = 40, that contains
large horizontal notch of the length 2e; and three radially oriented microcracks
of the length a; = a3 = a4 = 0.1ay, as shown in the insert of the Fig. 16. Let us
constrain the fiber angle to be 2 = 15°, and vary the inner tip distance between
the notch tip b and the microcracks tips ¢, e and g. Figure 16 shows the amplifying
effect of the cloud of microcracks interaction, that becomes noticeable for the
tip distance less than 0.1a¢;. The SERR is the largest for the notch tip b until
the tip distance is about 0.04a;, when SERR for the microcrack inclined at 45°
drastically increase exceeding all other curves.
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I1G. 16. Total SERR for the horizontal notch and three microcracks versus the normalized crack
tip distance for the fiber angle = 15 degrees and for the ratio of anisotropy 40.

Finally, the rate of anisotropy can be studied, as shown in the Fig. 17. It is
assumed that the fiber angle and tip distance are constant, i.e., 2 = 15° and
the tip distance 0.005¢,, while the rate of anisotropy 211,/ 't is changed. When
the material is isotropic, i.e., Ir/Epr = 1, the SERR at the notch tip b is
much larger than for the remaining microcrack inner tips. Even small change of
the anisotropy rate significantly influences the value of SERR for all the cracks.
When Err/Err > 18, the SERR for the inclined microcrack tip becomes the
largest. Since the crack having the highest SERR propagates first, the kink crack
will be generated after 45 degrees crack connects with the notch.
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Fi1G. 17. Total SERR for the horizontal notch and three microcracks versus the ratio of
anisotropy for the fiber angle = 15 degrees.

7. Concluding remarks

A rigorous formulation has been presented and validated for calculating the
SIF and SERR of a multi-cracked anisotropic medium. The size, orientation,
and distribution of all cracks were considered to be independent parameters of
the solution. With this capability, numerous parametric studies could easily be
performed to analyze the contribution of each parameter to the local stress field
as well as the characteristics of the damage progression in a material.

The accuracy of the results was examined and parametric studies were con-
ducted. The problem of two interacting cracks for various cases of anisotropy
shown that off-axis reinforcement can produce highly mixed-mode crack propa-
gation, even for the Mode-I type of crack geometry. The small change of the ratio
of anisotropy, i.e. 0 < Epp/Eprr < 5, can highly influence SERR and the crack
opening displacements that reach a plateau for £/ Err > 15. Therefore, even
slightly anisotropic materials should be analyzed using full anisotropic approach.

Variation of MSP has been presented for various ratios of anisotropy and

various fiber directions. It was concluded that £'}) and I-J_f,i) are proportional to
square roots of the effective Young’s modulus in = and y-directions, respectively.
The other two MSP are identical, i.e., 1;53] and I:';(,},), and related to byg and byg,
so they vanish for the orthotropic and isotropic cases.

The discrete auxiliary functions were shown to be related to the crack open-
ing displacements Au and Aw. It was shown, that there are cases, found for the
off-axis fiber orientation, when Mode-I local stress field is produced by Mixed-
Mode local deformations, and Mode-I normal deformation produces Mixed-

Mode local stress field.
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Total SERR was shown to be the most complete fracture parameter, that can
be used for crack propagation and crack path predictions. The interaction effects
were demonstrated for all fracture parameters. The amplification of SERR and/or
SIF takes place when cracks are located in front of the main crack, and reduction
of SERR or SIF takes place upon shielding of crack by other cracks located above
and/or below.

The stress tunneling effect was discovered to play a significant role in the
crack interaction mechanisms. Stresses are channeled along the fiber direction,
and may cause non-symmetric interaction even for symmetric crack configuration.
The model was shown to be capable of solving various crack problems with high
computational speed and accuracy.
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Reflection of a moving shock wave;

boundary conditions for Monte-Carlo
and continuum descriptions

K. KANTIEM, A. KOZEOWSKI
and Z.A. WALENTA (WARSZAWA)

THE PAPER contains the results of the shock tube experiments, Direct Simulation Monte-Carlo
calculations, and continuum model calculations based on Navier - Stokes equations for the problem
of reflection of a moving shock wave from a wedge. Comparison of these results makes it possible
to draw some conclusions concerning the conditions at the reflecting surface.

1. Introduction

REFLECTIONS OF shock waves have been investigated by the scientists for more
than a hundred years. The first paper on that subject was presented by ERNST
MacH in 1878 [1]. Still, not all aspects of the phenomenon seem to be fully
understood even now.

There are two basic types of the shock reflection. During the “regular” one the
incident and reflected shocks meet at the reflecting surface. During the “irregular”
reflection, the shocks meet at some distance above the surface, and from this point
the third shock emerges. This shock is commonly called the “Mach stem” and
the point where the three shocks meet — the “triple point”.

The shock waves are usually produced in supersonic wind tunnels (stationary
shocks) and in shock tubes (moving shocks). In the present paper we will deal
with reflections of the moving shocks from stationary wedges, placed inside a
shock tube.

Very roughly speaking, if the wedge angle is sufficiently large, the moving shock
wave reflects from it regularly. For small wedge angles the irregular reflection
occurs (Fig. 1a,b).

Irregular reflection of a moving, plane shock wave at a wedge was initially
considered to be a self-similar phenomenon. The picture was supposed to be
always the same, provided that it was scaled with the distance between the leading
edge and the incident shock. The triple point was supposed to move along a
straight line, starting at the wedge tip.

The first suggestion on the possible lack of self-similarity in the neighbourhood
of the leading edge was given in 1980 by HENDERSON and SIEGENTHALER [2]. Tt
was confirmed later by a number of experimentalists (WALENTA 1980 [3], 1983
[4], ScumiDT 1985 [S], DEWEY er al. 1991 [6]). Presently it seems to have been
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F1G. 1. Reflection of a moving shock wave: a) regular, b) irrcgular,

established, that the triple point is generated very close to the leading edge, and
begins to move along the line nearly parallel to the reflecting surface. This line
then gradually steepens, tending asymptotically to a straight line, inclined at a
certain angle to the wedge surface [7].

The length of the curved part of the triple point trajectory is of the order of
some hundreds mean free paths of the gas particles. It is therefore invisible with
the usual optical methods (shadowgraph, schlieren). That was the reason why
lack of self-similarity in this area was recognized so late.

In the present study we show some experimentally obtained flow pictures for
reflection of the shock wave from a wedge in the area, where the phenomenon is
non-self-similar. These pictures are then compared with the computational results
obtained by Direct Simulation Monte-Carlo (DSMC) technique and with the
use of the Navier - Stokes equations (continuum model calculations). Adjusting
conditions at the reflecting wall, we were able to produce flow pictures very close
to the experimental ones. This method provided us with some insight into the
phenomena occurring at the wall surface.

2. Experiment
2.1. Experimental setup

The results presented here were obtained in a low-density shock tube (250 mm
I. D., 17 meters long) at the Institute of Fundamental Technological Research in
Warsaw. The primary shock wave was reflected from a wedge, placed inside the
test section of the tube. To maintain the planarity of the flow, the wedge was
placed between two plates, extending 75 centimeters upstream of the test section
(Fig. 2).

The measurements were performed with the standard, electron beam attenu-
ation technique. The beam was parallel to the wedge surface and perpendicular
to the tube axis. Its position with respect to the wedge could be varied. In a single
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laser beams electron beam

I'1G. 2. Test section of the shock tube (with shock reflecting wedge).

run the density history at one point above the wedge was registered. To obtain the
picture of the whole density field, a number of runs at the same flow conditions
and different positions of the beam had to be done. The reference time instant,
necessary for superposition of the results, was obtained in each run from a laser
differential interferometer, placed at a fixed position in front of the wedge.

The scatter of the shock speeds, +2.5 percent of the mean value, seemed
sufficiently small to produce meaningful results with the described method.

2.2. Conditions of experiment

Conditions of experiment were chosen to match the specific requirements of
the problem:
e The noble gas — Argon — was used for all the tests.

¢ The shock Mach number Ms was equal to 2.80 £ 0.08.
¢ The initial pressure was equal to 7.33 Pa.
¢ The initial temperature, equal to the room temperature, was 298 + 3K,

For such conditions the mean free path of the gas atoms was equal to about
0.95mm and the maximum slope shock thickness 3.75 mm.

The wedges used for the experiments were made of aluminum. The one for
the irregular reflection was symmetric, with half-angle 25 degrees. Fig.3 shows
the details of positioning the electron beam with respect to the wedge.

The wedge for regular reflection was asymmetric, with angle 60 degrees (Fig. 4).
In this case it was sufficient to place the electron beam at three distances behind
the leading edge only.

It should be pointed out here, that the smallest possible distance between the
beam and the solid surface was about 2.4 mm. Therefore no information on gas
density closer to the wedge could be obtained from the experiment (as indicated
in Figs.7 and 11, where the constant density lines end somewhere above the
wedge surface).
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F'1G. 3. Positions of the clectron beam with respect to the wedge in the case of irregular
reflection.

60°

F1G. 4. Shock reflecting wedge in the case of regular reflection.

2.3. Accuracy

The possible inaccuracy of the position of the electron beam with respect to
the wedge was estimated to be about 0.1 mm in both directions. The inaccuracy
of the measurement of density was about +5 percent of the current value. The
resulting inaccuracies of the positions of the constant density lines in the pictures
of the flow field (Figs. 7, 11) were equal to about one half of the distances between
the neighbouring lines shown in the pictures.

3. Direct simulation Monte-Carlo calculations

For the DSMC calculations the standard procedure according to Birp [§]
was employed. Simulations of the particle collisions were performed using the
ballot-box scheme, as proposed by Yanitskil [9]. Interactions of the particles

http://rcin.org.pl



REFLECTION OF A MOVING SHOCK WAVE 73

with physical boundaries were simulated utilizing the concept of accommodation
coefficient according to MaxweLL [10]. For gas particles the Bird’s Variable Hard
Sphere (VHS) model [11] was employed.

The calculations were done for both the regular and irregular reflections. The
physical space was divided into a matrix of rectangular cells (Fig. 5) containing, in
the case of the regular reflection, 80 columns and 50 rows. All cells had the same
dimensions: 0.5 in the direction of the wave propagation and A in the direction
perpendicular to it (A is the mean free path in the undisturbed gas). The total
number of the model particles was equal to 9000.
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I'1G. 5. Cell pattern for DSMC calculations.

For the irregular reflection the numbers of columns and rows were equal to
110 and 36, respectively. The dimensions of the cells were 0.5\ and 0.8333),
respectively. The total number of the model particles was equal to 10000(}).

The results were averaged over 500 to 1500 calculation runs. They were sub-
sequently smoothed following the procedure suggested by HoNMA er al. [13].

4, Continuum model calculations

For continuum model calculations the two-dimensional, time-dependent Nav-
ier - Stokes equations [14] were employed. The gas (Argon) was assumed to be
perfect, with constant adiabatic exponent and coeflicients of viscosity and thermal
conductivity proportional to temperature.

The calculations were carried out with the two-step, second order MAcCor-
MACK difference scheme [15]. The scheme was considered on a rectangular mesh
in the (7,7) plane. The 7, § coordinates were nondimensionalized with the mean
free path of the gas particles. The computational domain was bounded by the wall
(positioned on the z-axis) and three artificial boundaries, creating a rectangle, as
shown in Fig. 6. The position of the incident shock wave, before encountering the
wall, is shown in the same figure. The initial structure of the incident shock was
assumed to be identical with Taylor’s solution for weak shocks [16].

Three kinds of boundary conditions at the reflecting wall were considered:

1) adiabatic, slip wall (no energy and tangential momentum exchange between
the gas and the wall),

(*) The authors arce indebted to Prof. V.V, Serikov for allowing them to make use of his original computer
program [12].
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F1G. 6. Computational domain for continuum model.

2) isothermal, no-slip wall (gas temperature and velocity at the wall equal to
those of the wall),
3) “intermediate” conditions:

Ugw — Ui = P(uy — i),
Tyw —Ti = B(Tw — T),

gw

where wug,, T,, — tangential velocity and temperature of the gas at the wall,

respectively, u,,, T, — velocity and temperature of the wall, u;, T; - tangential

velocity and temperature of the gas inside the flow, near the wall (about one
mean free path from the wall).

The values of the coeflicient / remain in the range between 0 and 1. The case

of 3 = 0 corresponds to adiabatic, slip wall, 5 = 1 — to isothermal, no-slip wall.

5. Results

The results presented here consist of the pictures of constant density contours
for the region above the wedge and the diagrams of gas temperature and velocity
components at the wedge surface.

The non-dimensional density is expressed as

PP
P2~ P
where p is the current density value, p; and po are the values in front and behind
the incident shock, respectively.
Similarly, the non-dimensional temperature:
— _ T-T
T = —rl
I 1
the tangential velocity component (parallel to the surface):
u

U= —

uy
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(as the velocity in front of the incident shock equals zero), and the normal velocity
component (perpendicular to the surface):
_ v
= —.
()]
The values of the non-dimensional density, corresponding to the contours
shown for irregular reflection, are equal to: 0.1,0.3,0.5,0.7,0.9,1.1,1.2,1.3,. ..,
while for regular reflection the values are: 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,.. ..

5.1. Irregular reflection

Figures 7a,b shows two diagrams of the constant density lines, obtained ex-
perimentally for the flow conditions specified in the paragraph 2.2. The distances
from the leading edge to the centerline of the incident shock, as measured along
the shock tube axis, were equal to about 32 and 72 mean free paths, respectively.
This corresponds to about 35 and 80 mean free paths along the wedge surface.

a)

.. o/
=]

)\

>|x

IF16. 7. Constant density contours for irregular reflection, obtained experimentally; a) incident
shock 35 mean free paths behind the leading edge, b) incident shock 80 mcean free paths behind
the leading edge, (note different scales of the pictures).

Figures 8a, b, c shows similar diagrams calculated with the described DSMC
procedure for the same flow conditions. The hard sphere model of molecular
collisions (the limiting case of the VHS model) was applied. The values of the
accommodation coefficient were assumed equal to 0.0, 0.5 and 1.0, respectively.
The diagram, calculated for the accommodation coeflicient equal to 0.5 seems to
be closest to the experiment (Fig.7a). The visible discrepancies stay within the
estimated uncertainty of the results.
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FIG. 8. Constant density contours for irregular reflection, obtained from DSMC calculations

(incident shock 35 mean free paths behind the leading edge); a) for accommodation coefficient
o = 0.0, b) for accommodation cocfficient o = 0.5, ¢) for accommodation cocfficient o = 1.0.

It should be mentioned at this point, that a number of calculations have been
performed for various conditions at the wall, including those with different values
of the momentum and energy accommodation coefficients, as well as those as-
suming finite time of resting of the particles at the surface. No better agreement
with experiment was achieved.

To see the influence of the intermolecular potential the calculations were
repeated for the “softest” limit of the VHS model. The difference was nearly
invisible, manifesting itself only with very slight increase of the thickness of the
incident shock.

Figure 9 shows the diagrams of the gas temperature, and also tangential and
normal velocities at the reflecting surface, as calculated for the accommodation
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coefficient 0.5. Appreciable tangential velocity slip and temperature jump at the
wall can be seen close to the shock wave, decreasing gradually at larger distances
from it. It seems peculiar, that in the area of maximum gradients inside the shock

wave even the normal velocity has some finite value, being directed towards the
wall.

10
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['1G. 9. Gas temperature and velocity components at the surface from DSMC calculations for
irregular reflection and accommodation coefficient o = 0.5 (incident shock 35 mean free paths
behind the leading edge).

The continuum calculations of the problem were performed for several values
of the coefficient J (see Sec.4). Figure 10 shows the constant density lines for
f = 0.2 and the distance of about 80 mean free paths from the leading edge to
¥
}\1

40r

20

0 20 40 60 80 x

['1G. 10. Constant density contours for irregular reflection, obtained from continuum calculations
(incident shock 80 mean free paths behind the leading edge).

the centerline of the incident shock, as measured along the wedge surface. The

agreement between Fig. 10 and the experimentally obtained Fig.7b seems to be
at least satisfactory. The difference between the line patterns in the vicinity of
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the reflecting wall may be due to constant value of the coefficient 4 assumed
for calculation. Tt seems conceivable that 4 should probably vary along the re-
flecting surface, as might be concluded when inspecting Fig. 9, based on DSMC
calculations.

5.2, Regular reflection

Figure 11 shows the diagram of the constant density lines, obtained experi-
mentally for the same set of the flow conditions. The distance from the leading
edge to the centerline of the incident shock, measured this time along the wedge
surface, was equal to about 84 mean free paths. It should be pointed out, how-
ever, that the measurements performed at three distances from the leading edge,
equal to 51, 84 and 178 mean free paths, respectively, gave (within experimen-
tal accuracy) the same picture of the neighbourhood of the reflection point. It
was therefore safe to assume, that this picture did not change appreciably with
increasing distance from the leading edge, and comparison could be done with
calculations made for distances selected arbitrarily.

7z 7 7§ 7 7 7 77777 77

FiG. 11. Constant density contours for regular reflection, obtained experimentally.

Figure 12 shows the diagram of constant density lines, calculated with the
DSMC procedure for the accommodation coefficient equal to 0.3 and the dis-
tance from the leading edge to the centerline of the incident shock about 40
mean free paths. This result is closest to the experimental one, shown in Fig. 11.
For the regular reflection, however, the discrepancy between the results for differ-
ent accommodation coefficients is much less pronounced than for the previously
described irregular case.
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F'1G. 12. Constant density contours for regular reflection, obtained from DSMC calculations for
accommodation cocfficient a = 0.3.

Figure 13 shows the calculated diagrams of the gas temperature, and tangential

and normal velocities at the surface, corresponding to the conditions of Fig. 12.
It is quite similar to the Fig. 9, made for the irregular reflection.
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FiG. 13. Gas temperature and velocity components at the surface from DSMC calculations, for
regular reflection and accommodation cocfficient a = 0.3.

The continuum

calculations were performed, as before, for several values of

the coefficient 3. Figure 14 shows the result for 4 = 0.3. Tts agreement with
experiment is indeed very good. This time the value of the coefficient 3 may be
safely assumed to be constant, as only relatively small part of the wall, just behind
the shock, can influence the flow pattern visible in Fig. 14. This follows from the
fact that the flow behind the reflected shock is supersonic with respect to the
reflection point, and therefore no signals from the wall can travel “upstream”.

'_\\\\\

\ 0\/
10 20 30 _’;_

I'1G. 14. Constant density contours for regular refiection, obtained from continuum calculations.

6. Conclusions

1. The Direct Simulation Monte-Carlo technique seems to be adequate for cal-
culation of the shock reflection process in its initial stage, when the incident shock
is close to the leading wedge and the whole problem is far from self-similarity.
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2. The hard-sphere model of intermolecular potential seems to be sufficient
for moderately strong shocks.

3. One, single accommodation coefficient, according to Maxwell, seems to be
sufficient to describe the interactions of the particles with the reflecting surface.
The optimum value of this coefficient, in the described experiments, stayed within
range from 0.3 to 0.5.

4. Continuum model calculations can produce meaningful results, even in
relatively close neighbourhood of the leading edge, provided that suitable velocity
slip and temperature jump at the wall are assumed.
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Dissipation of configurational forces
in defective elastic solids (*)

G.A. MAUGIN (PARIS) and C. TRIMARCO (PISA)

THE NoTioN of material force originating from Eshelby's mechanics provides an expression for
the configurational forces which drive several types of “defects” in otherwise homogeneous non-
linear elastic bodies. The classes of defects examined include straight cracks, cavitics, dislocations,
disclinations, and coherent interfaces. The latter represent progressing phase-transition fronts. The
method consists in evaluating the clementary dissipation in an irreversible progress of the defects,
“en block” on the material manifold. This is compared to a recent energetic approach of Dascalu
and Maugin who bascd on the use of generalized functions.

1. Introduction

CoNFIGURATIONAL forces are those fictitious forces which act on the defects and
thus radically differ from physical (Newtonian) forces which act on the mass el-
ements. In d’Alembert’s vision of virtual work, they are the “forces” that are
associated with virtual displacements of defects (one could say, lattice sites in a
crystal) rather than of physical points. As such, it makes no sense a priori to
speak of their possible dissipation as they are conceptually related to the no-
tion of material inhomogeneity (lack of invariance of material properties under
rigid displacement of the lattice sites) and, outside a set of singular points (in
effect, the points of extension of defects) we assume a thermodynamically recov-
erable behaviour. In other words, material inhomogeneities (the fact that physical
properties change with material point) may have no relation to dissipation (see
MAUGIN [21]). But the material bodies of interest may present singularities in the
field solution. These singularities, in elasticity, account for elastic defects among
which we can identify notches, (macro) cracks, dislocations (microcracks), cav-
ities, disclinations, and elastic-phase transition fronts (the latter being the fact
that one phase is viewed as a defect by the other phase). These singularities
are related to the singular solutions in an otherwise nondissipative medium (as
a matter of fact, a dissipative medium would have a natural tendency to make
the solution less singular). But with a movement or progress of the “defect”, the
problem may present a global irreversibility, or dissipation, as energy is expended
in this movement or progress. If the said defect progresses with uniform (we
later say, “en bloc”) rate of expansion, then the resulting global dissipation can be
expressed in the traditional bilinear form of a product of a “force” (here a global

(") This paper of a somewhat review nature was intended to celebrate Paul M. NaGHD!s scventicth an-
niversary. It is dedicated to the memory of Paul.
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82 G.A. MAuGIN AND C. TRIMARCO

configurational one) and a generalized “velocity”. This can be exploited, just as
for viscosity, plasticity and fracture, to devise criteria of progress of the defect,
the Griffith criterion being for macrocracks an example of such popular criteria.

In this work, by computing the elementary global dissipation in the possible
irreversible progress of a variety of elastic defects, directly on the material manifold
of finite-strain solid mechanics (and not in physical space), we deduce straightfor-
wardly the corresponding expression of the rate of global dissipation in terms of
the Eshelby stress or its “moments”. The necessary (brief) elements of kinematics
and deformation theory of solids are recalled in Sec. 2. The notion of elastic defect
is made more precise in Sec. 3. Section 4 presents as the first and most classical
example the quasi-static progress of a straight-through crack. Section 5 indicates
how an essentially similar derivation applies to dislocations, expanding spherical
cavities, and disclinations. In Sec. 6, we consider the quasi-static steady progress
of a coherent phase-transition front in an elastic body. The expanding cavity may
be considered anew as a special case of this. The general irreversible thermody-
namics of global configurational forces is outlined in Sec. 7. Brief indications to
treat the fully dynamical cases are provided in Sec.8. Conclusions and prospects
are listed in Sec. 9.

The work essentially builds on original ideas of EsHELBY [9, 10], RoGuLa [27],
HiLL [14] and CHEREPANOV [4], and previous work by MAUGIN and TRIMARCO
[24, 25] - also the synthesis by MauGIN [21]. Wherever this applies, comparisons
are made with the work of Bupiansky and RICE [3], GUNTHER [12], KNOWLES
and STERNBERG [16], FREUND (1972), HERRMANN [13], for fracture and conser-
vation laws, with EsHELBY [10], HiLL [14] and others for phase-transiton fronts
(MaroMED and Rumanov [17]; TruskiNOvsky [32,33]), and DascaLu and
MAUGIN [6, 7] for another type of approach to the same problem. Most of the
proofs given are only sketchy in order to keep the paper within reasonable bounds.

2. Elements of kinematics

In what follows we need very few elements of kinematics and deformation
theory. We consider two essentially equivalent descriptions, at least when all
fields are smooth enough. These we call the direct-motion and inverse-motion
descriptions (e.g., in MAUGIN [21]). Let K, be the actual (or current) configuration
of the solid body B. The latter is made of material points X which are referred to
a position X of components X, k' = 1,2, 3, in a reference configuration K . The
direct motion of B is the time-parametrized mapping of X € M3, where M3 is
called the material manifold, onto E3, the physical Euclidean space of Newtonian
physics, such that

Ix _ x

2, = x(X, ), F:= —| =Vgny, : . ,
21) x = \(X.0). 5|, = VR0 VT gl
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with the invertibility condition

(2.2) Jr =detF >0 always (i.e., V).

Thus we can also define the inverse motion

ox~!
at

t X

2.3 X = ! T o o
3 = x"(x,1), F = £ =Vx™, V:=

We let the reader check by use of the chain rule of differentiation that F and F~!
on the one hand, and v and V on the other hand, are related by

(2.4) FF!=1, F7IF = 1,
and
(2.5) v=-F.V, V=-F'l.v

Thus F is the direct-motion gradient, and F~! is the inverse-motion gradient —
which is none other than the inverse of F. We call v and V the physical and material
velocity fields, respectively. More generally, a tensorial field with components in
E3 is called physical, while a tensorial field with components on M? is called
material. E3, by its very structure, does not distinguish between covariant and
contravariant quantities (in other words, the natural inner product is effected
with the Kronecker symbol), but M3 does.
We also need the relation (7" = transposition)

(2.6) F=1,+ (Viu),

where u(X, ) is the displacement field and 1, is the so-called shifter, and the
definitions of finite strains

(2.7) c=F.F, Cl=rF'.FH7=@©)",
and

1 1
(2.8) Ei= 5(C - 1p), E" i= 5(1n -C™).

The matter density p(x, t) at time ¢ at the image point x of X is related, at all
regular points, to the matter density py in Kr by the continuity equation

(2.9) p(x, 1) = po(X)J 5t

By this we mean that pgy is at most a function of X. More generally, we say
that the body is materially inhomogeneous when its properties depend explicitly
on the material point X through X. The usual formulation of nonlinear con-
tinuum mechanics makes use of fields which are functions of space-time variables
(X, t). But these fields may be expressed in, or “projected” on, or “convected to”
(else, “pulled back” or “pushed forward”, to) E3 or M3, In the present case a
strict material representation with fields canonically projected onto M?, but still
functions of (X,t) is the most appropriate one (notice that no fields are called
Lagrangian). This is all we need in so far as kinematics is concerned.
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3. Elastic defects

To start with we consider the case of a nonlinear (hyper) elastic solid body B in
the material description. It occupies the regular domain £ of M3 with boundary
052. We denote by C' a subset of B3\ (note that E3 = ®&3), that is the set
of points occupied by the elastic defect. We call S the set of extension points of
the elastic defect when the latter progresses. To fix ideas, for a straight-through
crack such as in Fig. 1, C' is made of the cut X' occupying the surface [0,/] x R

%

N

an
I'1G. 1. Straight-through crack.

(considering the body as infinite in the direction orthogonal to the figure’s plane),
while S is made of only one point, the tip of the crack (in fact a line, as both the
body and S extend to infinity in the orthogonal direction). The situation would
be the same for a dislocation or disclination. For a spherical cavity such as in
Fig. 2, C is the whole spherical volume of radius [ while S is the spherical surface
of radius /. Finally, in the case of a phase-transition front in Fig. 3, the set ' is
the whole material on one side of X' and § is V' itself. In the last case the defect

a0

F1G. 2. Spherical cavity. F1G. 3. Coherent phase-transition front.
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is nothing but the growth of one phase at the expense of the other phase. It is
important to notice that defects may have the same dimension as the body (this is
the case of the cavity and the phase-transition) or a dimension less than that of
the body (case of the crack, case of dislocations and disclinations). In fact, in IE3,
we may have only points, lines, and walls as defects from the topological point of
view (KLEMAN [15]). From the classical analytical point of view, elastic defects are
defined by the fact that smooth solutions of elasticity fail at the set of extension
points of such defects, while the elastic solution behaves regularly outside (even
though the “outside” may be void of matter). This definition is checked by all
elastic defects introduced so far, but some defects are simpler to study than others
(the straight-through crack in so-called Mode III in particular — cf. MauGIN [20],
Chapter 7).

The problem on which we want to focus the attention is the kinetics of the
progress of elastic defects. To proceed to these kinetic laws, we must evaluate the
dissipation growth in the irreversible progress of the said defect. This dissipation
will be expressible as the product of a “force” and a “velocity”, which are con-
jugate in the sense of thermodynamics, and then we shall almost be done. The
“force” in question is, as we know, the so-called force on an elastic singularity
in the sense of EsHELBY [9]. This is not a force in the Newtonian style (where
“forces” act on elements of matter, i.e., mass) but in the Eshelbian style (i.e.,
fictitious forces that act on defects). For us, however, they are true material forces
(cf. MauGIN [21]), i.e., the mechanical quantities dual to infinitesimal changes of
position X on the material manifold M3, But as inhomogeneity properties relate
to an explicit dependence on X, they are also conceptually inhomogeneity forces,
so that Eshelbian forces, material forces, inhomogeneity forces, and forces on elastic
singularities are used as synonymous.

If the material elastic body was materially inhomogeneous, it would have an
energy density per unit volume in K of the form W (F; X), where the explicit
dependence upon X is emphasized. Here we consider only intrinsically homo-
geneous elastic solids for which this, in one phase of the material, reduces to

(3.1) W = TW(F),

in the absence or neglect of thermal properties. Thus “elastic inhomogeneities”
are only of the above-introduced singularity type; they do not appear through the
energy density (see, however, the generalized-function approach in DAscaLu and
MAUGIN [6].

4. Quasi-static progress of a straight-through crack

As the first simple example we consider the problem in Fig. 1, admitting that
if the crack progresses at all, the two faces of the crack cannot solder back by
themselves so that there occurs a global dissipation, although the material itself
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does not admit a dissipative behaviour at any regular point. Ignoring inertial ef-
fects (so-called quasi-statics), we try to evaluate the increment of global dissipation
in an elementary progress of the crack. Dissipation, if it occurs at all, will be the
difference between the elementary global work developed by applied tractions
(there are no body forces) and the elementary consumption of elastic energy from
the body. Let T be the applied tractions at 942. Calling & the dissipation, we
have thus the following variational formulation

4.1) 56 = / T¢ . 6x x dA — bx f W (F)dV,
an LP]

where we emphasize that 2 = (/) and [ = [(t), where [ is the length of the
crack at time {. The variation introduced in the right-hand side in (4.1) must
be understood as a material variation (cf. MAUGIN and TRIMARCO [24]), ie., a
variation at fixed X, defined by

: ox(X,t,e
(4.2) Pegge 2kt

f)E e=0 '

which presents the convenience to commute with both V (and material-volume
integration), and @/t (the latter is unimportant in our quasi-static approxima-
tion). Notice that with dead loading, Eq. (4.1) can also be written as

(4.3) b = —6P,

where P is the total potential energy of the body. Thus, formally at least,
6 9}

(4.4) 0P = 46—[16[ = Fol, F=—-6P/él,

where §P/4l denotes the functional derivative of the potential energy, since P
depends on [ through the domain of integration 2.
With N the unit outward normal to df2 in h'p, Eq.(4.1) reads

(4.5) 6b = f (N T)- bxxdA — bx / W(F)dV,
a0 o)

where T is the first Piola - Kirchhoff stress.

One must pay special attention to the evaluation to the second contribution
in Eq. (4.5) as the domain of integration evolves with the quasi-static extension of
the crack. Taking account of the fact that no tractions are acting along the “lips”
of the crack, £* and X', and isolating the region V- around the crack tip (line),
we in fact have directly

(4.6) 5X/W do = bx / Wav +]W(N oy
2 2>vp r
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and

4.7) ox / WdVv = f (6xW)dV, ox(dV) = 0,
Ve, 2-Vr V. 2-Vp

with

(48) 6xW = (OW/OF) - 6x(Vrx) = T+ Va(x),

where we have introduced the first Piola - Kirchhoff stress T by its constitutive
equation

(4.9) T = 9W/0F,

and accounted for the fact that there is a flux through the boundary I' of Vi as
Vi moves with the crack tip into the material. The variation 6,y is defined from
Eq. (2.3) by [compare to (4.2)]

_oxTHx, t,e)

¥ 2
£
Je -

(4.10) By !
and it is checked that it is related to 6x y by [cf. MAUGIN and TRIMARCO [25];
compare to Eq. (2.5)]

(4.11) sxx+F-61=0.

Accounting now for the equilibrium equations (the symbolism [..] denotes the
jump of its enclosure)

(4.12) diveT=0, N-[T]=0,

at all regular points in £2, and across ', respectively, we find that Eq. (4.1), up to
an integrated term that goes to zero with Vp, takes on the form

(4.13) 6b = /(m-l b -N)dI,
/

where b is the mixed (fully material) stress tensor defined by
(4.14) b:=WIlg-F.T.

This is the quasi-static version of the so-called Eshelby “energy-momentum” tensor
(EsHELBY [10]). By the way, if we do multiply Eq.(4.12); to the left by FT, and
integrate the result by parts, while accounting for (4.9), we do find that, at all,
regular points in §2, there holds the additional equilibrium law:

(4.15) divgh = 0.
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As we know from our general study, this is but the quasi-static version of the
balance law of pseudomomentum, which is the expression of the balance of linear
momentum after canonical projection onto M3 (MAUGIN and TRIMARCO [24]).
There is thus an intimate relationship between Eq.(4.15) valid at all regular
points in §2 and expression (4.13) which gives the “dynamical flux” of b through
the cylinder-like surface encircling the tip (line) of the crack. In particular, as
sxx " is a virtual variation, we can take it as an “en bloc” (i.e., rigid-body-motion
like) virtual (inverse) motion of the region V around the tip, e.g., since the
eventual progress of the crack is supposed to take place in the direction of the
crack itself,

(4.16) &' = Ejél,

where E; is a unit material vector along the crack direction (here X;). The ele-
mentary dissipation (4.13) then takes on the sought form

(417) od = _F([)(ql. .7:(1) = /E] +b- N(l[‘,
I

where F ;) is a global material force. Per unit time, this result can also be written
as

(418) ¢ = (;—'[, G = }ﬁ(l),

where (' is traditionally called the energy-release rate (cf. MAuGIN [20], Chapter 7).
Obviously, the 7 of Eq. (4.4) is none other than ;). The reader will have noticed
that we did not make /" shrink to the crack tip A, for there is no need to do that.
This follows from the fact that the obtained integral is contour-independent (as
easily checked) about A. As a matter of fact, Eq.(4.17); is none other than the
J-integral of Eshelby, Cherepanov and Rice; in particular, in small strains where
the behaviour of the stress is O(1/,/r) about A in the plane of Fig. 1, we have

(4.19) }imO/N .T.E;dl =0,
T
so that with Eq.(2.6) and N; = N - E{, we obtain

Ju
4.20 lim ;= lim Jp, = / (”"N —-N-T. —) 1,
(hezb) rop”(h = Py i ‘ I ox,) "

from the definition of b.
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S. The case of cavities and disclinations

We shall not examine the case of (translation) dislocations which, conceptually,
is very much similar to that of straight-through cracks. The reason for this is that
if in Fig. 1 the tip A of the crack is viewed as the point where the dislocation line
pierces the plane of the figure, the cut X' may be considered as being introduced
to make the displacement field of the elastic dislocation solution single-valued.
The essential difference, however, is that the singularity order of the elastic sol-
ution in the neighbourhood of A is different from that of the crack solution
and the resulting analysis is a little bit more involved as shown by DAscALU and
MAUGIN [6].

Of particular interest is the case of the spherical cavity in Fig. 2. Formula (4.13)
which does not specify the type of defect is still valid. Then the Art of the Matter
resides in the selection of the virtual increment é,y~!. For a spherical cavity in
uniform expansion, centered at Xg, we select

(5.1) s = (X - Xo),

where 7 is an infinitesimally small ( < 1) constant independent of point X. We
can also center the coordinate system at the cavity so that Xy disappears from the
formulation. Considering this case and passing to time derivatives by replacing 7
(which becomes homogeneous to a reciprocal time) by the rate of expansion [/,
we find that Eq. (4.13) provides the following result:

(5.2) b = M(/I),
where
(5.3) M= ](x ‘b - N)dA.

It is readily checked in two dimensions (where C becomes the inside of the circle
of radius {(t) and § the circle of radius (7)), that M is none other than the
path-independent integral of KnowLES and STERNBERG [16]. If we return to the

original meaning of b, ie.

(5.4) b= /Td vdA - ;—i/wm dv,
50 “a
we see that we have somewhat parodied in a different language the proof pre-
sented by Bupiansky and RicEe [3].
As we have already considered rigid translations and uniform expansions for
6xx~1, it remains to examine the case of a rigid-body rotation, still in material

space. To that purpose, we envisage a virtual inverse-motion variation such as

(5.5) bxx 1 = (X - Xg) x w,
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where ¢ is an infinitesimally small (¢ < 1) parameter, and the axial (material)
vector w represents a finite uniform (Vgw = 0) rotation that is centered at Xg.
Formula (4.13) then delivers the expression

(5.6) 56 = ew - {/(b-N)x(X—XO)dF}.
r

In the limit as we pass to time derivatives and cw is replaced by E_ ¢, where E,
is a unit vector along the rotation axis and ¢ is the rate of rotation, we obtain a
rate of dissipation given by

(5.7) ¢ = L&,

where

(5.8) L:= / {(b-N) x (X - X)) - B, dI"
J

In general L, depends on time through E, (t). However, we easily verify in two
dimensions, with E_, orthogonal to the plane of the figure, that L,, is constant and
that it is none other than the L-integral of GUNTHER [12]. We have thus exhausted
the apparent possibilities of choice for é,x~'. Note that uniform expansion has
no equivalent in physical space. It remains to identify the class of material defects
to which Eq.(5.7) applies. If in Fig.1 we consider A as the point at which a
straight disclination line (disclinations are “rotation” dislocations which present
a defect of closure in the rotation angle of a triad transported in a circuit around
the line) pierces the plane, and the cut X' is introduced to render the solution
single-valued, then we see that our result (5.7) is applicable to such disclinations.

6. Coherent phase-transition front

We consider now the case illustrated in Fig.3, where, as mentioned before,
the set of defect points is the matter on one side of the regular surface Y, say
in the material region V' ~, and this grows in the region V', the set of extension
points being Y. Obviously then, the elastic material may not even be the same
on both sides of ¥ (it is the same but up to a material symmetry which respects
some matching conditions at ¥’ (cf. GRINFELD [11]), hence the name of coherent
phase-transition fronts). Let V' = V¥ U V=, We envisage the possibility that the
growth of V'~ at the expense of V'* occurs with a dissipation (but not necessarily).
Thus, again, we have to consider the infinitesimal variation

(6.1) 56 = /(N . T) - 6x xdA — bx/”"(F) dv,
J

ov
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where, indeed,

(6.2) W(F)dV = | WHF)dV + [ W (F)dV,
V[ V/+ V]—

as the two elastic phases may be regarded as essentially different materials. We
can borrow some results from the analysis of Sec. 4. In particular, assuming that it
is V~ that progresses into V', applying a transport theorem such as in Eq. (4.6),
we can write

63)  éx / WE(F)dV = / SxWE dV — ] WE(NE . 6,XE)dY,
- V % (fixed) v+

where we note that Ny = N~ = —N*, so we can write the second contribution
to Eq.(6.1) as

(6.4) 6x/1'i’(F)dV = / SxW(F)dV + /N\ . H ox~ ](1_,,
Vv Vv+uv-—

where [4] := A* — A~ if AT are the uniform limits of A in approaching ¥
along it normal on both sides of ¥ (i.e., [] is the classical jump of continuum
physics). The last term in Eqgs.(6.3) and (6.4) is akin to that found in some
variational formulations (MAuGIN and TriMARrCO [25]). Now in computing the
first contribution to Eq. (6.4) we have

(6.5) / sxWE(F)dV = — / (diveT) - 6x x + f (N-T)- éx \dA
V+uv- av-L

/ [T éxx]dE,
where the jump term comes from the application of the divergence theorem in

both V* and V'~ and the gluing back of the two resulting terms. Now we have
the equilibrium equations

divgTf =0 in VE, T =9w*/oF,

6.6
(68) N.-T=T¢ at 9V -%
and
6.7) N-[T]=0 across Y.

Therefore, collecting nonvanishing contributions from Egs. (6.4) and (6.5), we
obtain that

(6.8) 50 = —/N; [ Wea T + T x| dx
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At this point we follow HiLL [14] — although this author does not use the same
language and formalism (see also RortBURD [28]) — by selecting the virtual vari-
ations in direct and inverse motions in the most realistic way. We cannot control
the direct motion which, therefore, can suffer a jump in its first variation. But the
situation is different for the inverse motion as, for a coherent phase transformation,
we have continuity in the displacement of lattice sites, or, in continuous terms,
continuity of the material displacement velocity, i.e. V. In variational terms this
translates to the continuity of the variation é, y~!. Consequently, in taking the
jump of the general relation (4.11) at X, for a coherent interface, we obtain

(6.9) [ox x] = —[F] - &xx 7"
On account of the fact that
(610) [Ng-T-éxx]=—[Ng-T-F-é&y"]
= _[N.‘J -T- F] ‘ (5,‘\‘7] = _<NE N T/\/ : [F] ° 6xx_l
since ((A) = %(A+ + A‘))
(6.11) [AB] = (A)[B] + [Al(B) = (N[ B]

for A continuous across Y, we can rewrite our final result as

(6.12) bb = ffr b 1dE,

where the material force fx, with support Y, is defined as
(6.13) fr := —Nx - [W(F)1r — (T) - F] = —Nx - [b],

where the last relation is easily verified on account of (6.7). Obviously, F, just like
v (direct motion), is discontinuous at a coherent front. The Maxwell - Hadamard
representation of the jump of F is given by

(6.14) [F]=f@Ny,  f=[F]-Ng,

where fis a vector field in 3. Obviously, then, [F] - §,y~! = f(N - 6,\~"). Passing
to time derivatives instead of infinitesimal variations, we can rewrite Eq. (6.12) as

(6.15) b = /fgvg 4z,
where Vy is the scalar normal speed of the front (this is equal to the normal
(material) speed of each phase), and

(6.16) fs = -Ng - [b]-Ng = -[IW(E)] + (Ng - T) - £
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We let the reader check that this is also equivalent to the formula (tr = trace)
(6.16") fe=-H, H = [W(F) — tr ((T) - F)]

which suggests a resemblance of the function within square brackets to the Gibbs
enthalpy at fluid phase transitions (compare, Bowen [2]). Expressions such as
(6.16) have been proposed by other authors with a view to treating the progress
of damaged zones and the property of delamination (Dems and MROZ [8]; PRADEIL-
LES — DuvAL and Storz [26]). The first of Egs. (6.16’) may be viewed as a surface
balance equation between the Hugoniot—Gibbs (our coinage) field quantity H -
a configurational force, per se — which is known once we know the fields on both
faces of Y, and the constitutive material force fx which is responsible for the
dissipation at Y. The elementary rate of dissipation per unit area of X' is

(6.17) ¢ = fxVrx,

which is again in the traditional bilinear form of conventional irreversible thermo-
dynamics.

Particular case. Obviously, we may also verify that an expanding spherical cavity
centered at the origin of X coordinates, is also a special type of coherent phase
transition front, as in that case there is no matter on the side V'~ (vacuum), and
so with Vg = X . Nu(l/(), we recover the result of Sec.5. As a matter of fact,
with an internal surface S free of tractions, the dissipation then reduces to

(6.18) b= M/, M =fll"+(x - Ng) dA,

S

so that we can also write (X - Ns = r the radius).

(6.19) S(S() = B3I/, [ = V)W EUD)),

where V(C) = 4n(3/3 is the volume of the spherical cavity. We see that [ is
none other than the energy of the sphere of radius [ (which is actually a vacuum)
equipped with a density equal to that of the elastic material. It is as if the ex-
pansion of the cavity swallowed an elastic energy rate. This is indeed dissipation.
In other words, the expense of energy, although apparently distributed at the set
of extension points S (integral over §), is in fact distributed over the whole set
of points of the defect C, the cavity itself. This is the same result as in the recent
analysis of DascaLu and MAUGIN [6] based on local balance equations expressed
by means of generalized functions.
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7. Irreversible thermodynamics

All expressions so far obtained for the dissipation, i.e,. Eqs. (4.18), (5.2), (5.7)
and (6.17), during the quasi-static progress of the relevant elastic defects, are per
force, non-negative. They are all in the traditional bilinear form. Three essential
types of behaviours can be envisaged depending on whether: (i) the thermody-
namical force involved is bounded (i.e., is constrained to remain in a closed set
which here is a closed convex one, because all thermodynamic forces met here
are scalars — and a segment of R is obviously convex) or not, and (ii) the dis-
sipative phenomenon studied exhibits a characteristic time or not. As we know
from plasticity and fracture (cf. MAUGIN [20], to whom we refer the reader for
details), if the “force” is restrained to a convex set and no characteristic time is
exhibited, the corresponding dissipation is only homogeneous of degree one in the
corresponding “velocity”, and the behaviour is said to be of the “plastic” type; if
the “force” is not restrained and there is a characteristic time, the behaviour is
said to be of the “viscous” type (or “relaxation” type) and the dissipation potential
is homogeneous of degree fwo in the velocity; finally, if there exist simultaneously
a closed convex set for the “force” and a characteristic time, then we say that the
behaviour is of the “viscoplastic” type.

For instance, in the case of the straight-through crack, Griffith’s criterion of
progress is such that (cf. MAUGIN [20], Chapter 7):

(7.1) ie N(G), D =IndC(G), C(G)=[0,G]€eR,

for materials that fracture in the brittle regime. Here D™ is the pseudo-potential of
dissipation, which happens to be the so-called indicator function of the convex set
C'. The latter is just a segment of the real line with maximum energy release rate
G.. N, indicates the “cone” of outward unit normals to (. The first of Eq.(7.1)
tells that there is possible dissipation and progress of the crack (but not necessarily)
only when ( has reached the critical value (7., which is indeed a swface energy
of cohesion type in Griffith’s original proposal. Similar criteria of progress can
be devised for the expanding cavity, or for dislocations of the “displacement type”
(dislocations per se), and of the “rotation type” (then called disclinations) on the
basis of (4.18) or (5.7). The critical force then is the Peach - Koehler force.

Of greater originality is the case of the coherent phase-transition front. First,
it is possible that no dissipation occurs at all in the present purely mechanical
approach when, for Vx nonzero, the “force” vanishes identically, i.e.,

(7.2) foi=—[W(F)—-(Ng+T)-F.Nxg]=—-[W(F)—tr ((T) - F)] = 0.

One can show that such a relation exactly corresponds to the Hugoniot relation
that shock waves have to satisfy in elastic solids (cf. MAUGIN, POUGET et al, [23],
p.171), when thermal effects are discarded. For phase transitions, Eq.(7.2) ac-
counts for the classical Maxwell rule (cf. GRINDFELD [11], TRUSKINOVSKY [33]). If
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fx does not vanish, then we have dissipation, and the force fy may be called
the thermodynamical driving force (compare to ABEYARATNE and KNOWLES [1]), of
the front, as to have nonzero dissipation we have to write a relationship between
fx and Vyx. The relationship may be of the “viscous”, “plastic”, or “viscoplastic”
type. The most relevant case is the “plastic” type, for which there exists a critical
f% such that |fx| < f5, no progress, while for |fx| = f there is a possible
progress, and by analogy with Eq. (7.1) we can write the relationship

(7.3) Ve € N(fx), D" =IndC(fg), C(Fr)=][0,[5].

The very interesting study of TRUSKINOWSKY [32] is an attempt at sustaining (7.3)
on the basis of a smooth but sharp transition between the two phases — when
viscosity, dispersion and temperature effects are taken into account. In general
we can write the first of (7.3) as

_opr
S afy

(7.3 Ve

where the degree of homogeneity of the pseudo-potential of dissipation D* de-
pends on the behaviour. The first work to try to give the velocity of a transi-
tion front was by MALOMED and RuMANov [17]. The same idea transpires in
CHEREPANOV [4]. Note that the critical fr is in fact an energy per unit volume
(see the definition of fy) and f¢ is a critical volume energy W..

Using the last remark it is salient to return to the case of a cavity if the
latter progresses according to a criterion “a la Griffith”, but with a critical volume
energy (and nor a critical surface energy, contrary to some authors, e.g., StH and
Liesowirz [30]). If there is expansion of the cavity in these conditions, it means
that the criterion is reached at the set of extension points S (Fig.2). DAscaLu
and MauGiN [6] were then able to formulate a distributional (i.e., in the sense of
generalized functions or distributions) balance law of energy for the system “elastic
body plus elastic defect”. In the quasi-static regime and a steady progress of the
defect, they have for the case of a cavity

(7.4) DA{W + W H (I — 1)} = Divp(T - v) + T¢ . v8(002),

where D, and Divg are distributional derivatives with respect to time and the Xs,
6(012) is the delta generalized function with support 62, and H is the radial
Heaviside function (of the spherical cavity, indeed). Equation (7.4) valid at all
points of E3 includes the natural boundary condition at d£2, and the criterion
of expansion at 8. It is a conservation equation which tells that the energy of the
system “solid plus defect” is conserved. But the “energy rate” of the defect is none
other than the dissipation in total agreement with the present derivation.
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8. Accounting for inertia. Remark

In the absence of distributed material inhomogeneities, at all regular points
in the body, the fully dynamical balances of physical momentum Eq.(4.12), and
pseudomomentum (4.15) are given by (cf. MAuGIN [19])

d .
(81) Wp < — d.lV]{T = 0,
and
d .
(8.2) 2p| —divgb = 0,
ot X

where p = pov(X, t), while the pseudo-momentum covariant, material vector P is
defined by

(8.3) P:=-F .p=—p)Fl .v=p,C-V,
and the dynamical Eshelby stress is given by
(8.4) =—(Llg +F'-T),

where £ is none other than the Lagrangian density per unit volume of K g:

1 1
(8.5) = Epovz —W(F) = 3pV - €V~ W(F).
In Eqgs. (8.3) and (8.5), V is the material velocity defined in Eq. (2.3); and C is the
Green finite-strain tensor defined in (2.7). The latter acts as deformed metric on
M3 (as shown by the last of (8.3)). Applying the objectivity requirement, we can
also introduce an energy VW (); and (8.4) takes on the following explicit form:

(8.6) b= (W(ra) - %pov il V) 1-C.S, S =0W/OE,

where S is the second Piola-Kirchhofl stress tensor (a material contravariant
symmetric tensor on M?3),

As b already intervened as a flux in all computations of the elementary dis-
sipation in Secs. 4 through 6, it is sensible to imagine, on the basis of standard
theorems of transport of continuum mechanics (Reynolds), that in the fully dynam-
ical case the role of b is replaced by that of an effective Eshelby stress

(8.7) b :=b+ PV,

where V is the material velocity of the extension points of the defect. This was indeed
proved by MAUGIN [22] in the case of cracks in dynamical fracture in both elasticity
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and electroelasticity (where P has a non-mechanical component as well). The last
term in (8.7) is important because it provides the necessary term which, at the
set of defect points S, where V = V in the first order of approximation (DASCALU
and MAUGIN [5]), helps either to pass from the Lagrangian density present in b
to the Hamiltonian density to be found in the expression of the energy-release
rate in dynamical brittle fracture, or to show that inertia disappears altogether
from the driving force acting on a coherent phase-transition front (cf. TRIMARCO
and MAUGIN [31]), even in the full dynamics of thermoelastic conductors.

9. Conclusions and prospects

The general philosophy to be extracted from the present type of approach is
that the material manifold is the true arena of all phenomena related to dis-
tributed or abrupt material inhomogeneities, elastic singularities being material
inhomogeneities in their own right as they do exhibit “forces” (configurational
forces) and “dissipation” (of these “forces”) in displacement fields, or velocities,
or progress rates which are true material fields, per se. The approach is quite gen-
eral and suited to all types of elastic defects with various “dimensions”. We have
at hand all the basic equations to establish the corresponding generalizations to
electroelasticity (see already DascaLu and MAUGIN [7]) and magnetoelasticity. The
general expressions of Eshelby stresses in these cases were given by one of the
author (MAUGIN [19] - also [21], Chapter 8) and all what is required for these
extensions is to be found in existing volumes (MAUGIN [18], MAUGIN, POUGET
et al. [23]). In some works, especially those involving jumps such as with inter-
faces at equilibrium, what we called the Eshelby stress, is sometimes referred to
the “chemical potential” tensor, without attributing it to Eshelby (BowenN [2],
RortBurD [28]; GRINFELD [11]). But it must be emphasized that the Eshelby
stress or, more generally, the canonical stress tensor is a general concept of field
theory (cf. MauGIN [21]) whose field of application cannot be reduced to mixtures
and interfaces only.

What is perhaps more original is that for ferroelectrics and ferromagnetics,
some of the results can also be applied in the case of rigid bodies. For instance, a
magnetic domain wall is a defect(') in the spatial arrangement of magnetic spins.
In a quasi-static movement it may generate a dissipation (this is what happens
during magnetic hysteresis at a microscopic scale where the wall moves in a
landscape of energy barriers due to lattice defects) in agreement with standard
formulas such as (6.15)-(6.17) on the condition to replace the direct-motion
gradient by the magnetization gradient. The criterion of progress of the wall may
be of the viscoplastic type or of the more singular, plastic type, the magnetic field

(') Traditionally this is considcred as a mwo-dimensional (or planar) defect by physicis (cf. Ki.EMAaN [15]). But
in the above-exposed view it is truly a three-dimensional defeet (it is similar to the phase-transition front, which
is what it is!) and it is its set of extension points which is planar and constitutes the (in some mathematical limit)
zero-thickness wall.
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playing the role previously played by stress; such behaviours were indeed exhibited
from a microscopic model in SABIR and MAUGIN [29] in relation with Néel’s model
of irreversible magnetization processes. We leave such fruitful developments to
future works. These works will also include thermal effects, especially for the
phase-transition case where they cannot be ignored.
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Propagation of an effective shear stress as a solitary wave
and possibility of non-crystallographic slip in polycrystals

A. PAWELEK (KRAKOW), S. PILECKI (WARSZAWA)
and Z.JASIENSKI (KRAKOW)

THE NONLINEAR solitary waves in a system of a moving dislocation group are reported. It is shown
that the propagation of the mobile dislocations can be described by the solitary wave solution
of the nonlinear partial differential equation which is a well-known one in hydrodynamics, heat
conductivity or diffusion. In this way the shape of the nonlinear dislocation density wave has
the Taylor shock wave profile which propagates as a step front. Some experimental data on the
formation of the dislocation patterns during plastic deformation (especially shear bands) are also
briefly analysed in terms of sclf-organization processes. The results obtained in this paper are
discussed in the context of the concept of the so-called “plaston” which is applicd to the proposed
explanation of the nature of the shear band formation and propagation through grain boundaries
in polycrystalline mectals.

1. Introduction

DESCRIPTION OF the dynamic equilibrium between the process of dislocation dif-
fusion, multiplication and annihilation, as well as of the formation of disloca-
tion structure during various kinds of plastic deformation of crystals in terms of
self-organization, bifurcation and/or dislocation cooperative processes, becomes
more and more attractive for physicists and mechanicians [e.g. 1 —7]. On the other
hand, it has been pointed out [6, 7] that also the soliton processes — being, in
general, the consequence of the equilibrium between the nonlinearity and energy
dissipation or medium dispersion — may also play a very important role leading
to the formation of well-organized dislocation patterns.

The soliton nature of a single dislocation is quite well reported [e.g. 8-18].
However, to our knowledge, no attempt has been made to describe the behaviour
of a moving group of coplanar dislocations in terms of soliton processes. The
dynamics of a coplanar group of dislocations resulting in a formation of a single
slip line at a microscopic level is the first basic element in a hierarchy of the
organization processes responsible for the formation of macroscopic Liiders bands
(LB), Portevin - LeChatelier bands (PLB) and shear (slip) bands (SB) in deformed
crystals. It also creates a skeleton for the formation of a dislocation substructure
(patterning). Therefore, the soliton-like behaviour of a moving dislocation group
deduced in other papers [6, 7] on the basis of nonlinear ordinary differential
equation, as well as some experimental arguments, which we present briefly in
Sec. 2, justify the aim of this paper. Tt is to search the nonlinear partial differential
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equation which would describe the space-time evolution of the shear stress or
dislocation density exactly in terms of soliton processes.

2. Experimental background

The space-time organization of dislocations within the slip bands during LB
and PLB propagation or into shear bands, observed at high strains, is the very
first requirement for strain localization resulting in a macroscopic instability of
plastic flow [e.g. 19-22]. The organization processes originate at the microscopic
level, where dislocations form single slip lines. At the mesoscopic level the slip
lines cluster into slip bands, and finally, at the macroscopic level, the latter form
well-organized bands of LB or PLB type. A similar organization of dislocations
occurs during secondary straining (change of deformation path) characteristic
of coarse slip, or during formation of microshear bands at high strains, e.g. in
channel-die testing. In this case shear bands observed at a macroscopic level
represent organized objects composed of a family of microshear bands, Fig. 1.

FiG. 1. The structure of macroshcar band built up of a family of microshcar bands [24].

On the other hand, one intriguing dynamic behaviour of a moving dislocation
group is the formation of a macroshear band, which often corresponds to the
early stage of the necking, e.g. as in the case of deformed polycrystalline stainless
steel, Fig.2 [24]. One can see that the micro-necking is a consequence of the
localization of strain along the long and very thick zone propagating, perhaps,
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£=20

FiG. 2. Transcrystalline propagation of the shear bands (scen within the neck) through many
grains in stainless steel [24].

in a transcrystalline way through many grains (here the grain size is equal to
about 30 pm). This experimental observation suggests that in this case there is no
essential change in the direction of the passage of plastic zone from one grain to
the other. Many other experimental observations [5, 23, 26] also suggest the pos-
sibility of a transcrystalline passage of the plastic zone through grain boundaries.
If it is so, then we suppose that the dynamic and nonlinear processes involved in
the space-time organization of the shear band, would be explained on the basis
of the solitary wave behaviour of a system of moving dislocations.

3. Theory

Starting up from the equation of continuity for a coplanar array of moving
dislocations (generated e.g. by the Frank-Read source and distributed continu-
ously), let us consider the dynamics of a group of moving dislocations emitted
from a source in terms of a, recently very popular, concept of the dislocation flux
which would obey the equation formally similar to the diffusion or heat transfer.
In a one-dimensional space we may define the dislocation flux

(3.1) J(z,t) = p(z, ) v(x,t)
which satisfies the equation of continuity
dp(x, 1)y _ 0dJ(z,1)

o dr
where p(z,t) is the linear density and v(z,t) is the dislocation velocity [see e.g.
27, 28]. The general problem to be solved is the determination of the dislocation
flux J(z, t) during plastic flow and especially during its localization. However, we

restrict our treatment to the one-dimensional case, i.e. we consider a dislocation
flux only in one direction corresponding to the one active slip system.

3-2)
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It is well-known from diffusion theory (e.g. [29]) that the most common factor
giving rise to directed movements (i.e. diffusion flux of matter) is the gradient of
chemical potential dy/0dz. Chemical potential of i-th component is [29]

oG
. - (29)
(3:4) a Oni/ p Ty, itk

or

(3.4) G = Zui"i»

where G is a free enthalpy of a system consisting of & components and n; is
a number of elements of :-th component of a system. For example, chemical
potential of vacancies is therefore equal to the free enthalpy per one vacancy.
One can also use the so-called macroscopic chemical potential [e.g. 30]

oG
(35) = (anu)p.'f

taking for & free enthalpy of the whole system, and for n, — total number of
atoms in the system. Macroscopic potential has a phenomenological character
and has nothing to do with the real microscopic structure of a solid. In the case
of external load acting on a solid, the chemical potential is modified [30, 31]

JF ,
(36) e = (U_I),‘>U,T.n;,— B ” ’

where [ is a free energy, W = oV is a work per component element, o is stress
and V4 is an activation volume.

Equations (3.3), (3.5) or (3.6) cannot describe the chemical potential of dislo-
cations in the usual thermodynamic sense as it is possible in the case of vacancies,
since the dislocations are not thermodynamically stable, i.e. there is no equilib-
rium state for total dislocation density in any crystal.

The essence of our approach consists in the fact that these equations may
be applied only to the mobile dislocations, because the motion of dislocations
through the crystal is a thermally activated process in a wide range of tempera-
tures and strain rates. In the case of fcc-crystals, the velocity of dislocations is
controlled by the process of the intersection of gliding dislocations in active slip
planes with the forest dislocations from inactive slip systems. The process is by
nature thermally activated. In this way Eqgs. (3.3), (3.5) or (3.6) are of physical
meaning when quantity i is just the free enthalpy of activation for this process
(commonly called the activation energy; see Fig.3). Figure 3 illustrates a process
of thermally activated motion of dislocation through the crystal. The parameters
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F1G. 3. A schematic illustration of the mechanism of thermally controlled dislocation motion in
fec-crystals.

describing this process are the quantities involved in the Arrhenius type of equa-

tion for strain rate ¢= bpv

o G
(3.7) £=Ep exp (_ﬁ>
or dislocation velocity

G
/ = ) —_——
3.7 v = vy exp ( k']’) i
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where G = G* — (r — 1,)V or G = Gy — 7V and G* is the free enthalpy of
activation for zero applied stress (7 = 0), 7, is the internal stress, 7* = 7 — 71, is
the effective stress, V' = bLa™ is the activation volume, a* is the activation leagth,
Go = G* + 1,bLa, where a is the activation length at zero stress (0 < a* <), L
is the distance between the obstacles (forest dislocations), b is the magnitude of
the Burgers vector and vy and ég= bpvg are the constants (for more details see
also [13-16, 22, 39]).

Moreover, the Eq.(3.7) involves implicitly the space-time dependent flow
stress 7(z,t), [or effective shear stress 7*(z, )], and thus it is equivalent to the
commonly accepted power relationship between the stress and dislocation vzloc-
ity, v(z, t), which may be written in the following form

(3.8) o(e,) = v [£22]

where vy, 79, m are the constants (v = vg at 7 = 79), and m = Jdlnv/JdIn~* =
*V/kT. Furthermore, from Fig. 3 it follows that the displacement of dislocition
over the very short distance Az < «¢* = 23 — 27 (in comparison to the dis:ance
passed by dislocation during running time, i.e. when Az > a) is of a diffision
character, and the chemical potential p for dislocation activation may bz ex-
pressed by the free enthalpy of activation per dislocation unit length if this unit
is assumed to be equal to the average distance L between the forest dislocations

3.9) po= % = % - 7ha”,
or simply (L = 1)
(3.10) o= pg — Tha”,

where 1o = Go/L = G™/L+ 7,ba = constant at a given strain rate ¢, tempenture
T and structure (influencing 7,).

The role of thermal activation in a dislocation motion is very important from
the macroscopic point of view. Namely, poor gliding of dislocations in a slip flane,
i.e. the motion of dislocations between the obstacles, is of a very non-diflusive
character (a possible thermal activation of very small Peierls barriers in fcc-crstals
may be completely neglected), and occurs due to only mechanical applied force
br(z,t). However, the time of this motion (running time) is considerably less than
the time during which the dislocation must wait for thermal activation (wuiting
time). The velocity of dislocations and thus the motion of all active dislocitions
through the crystal, understood as a macroscopic process, is so essentially con-
trolled by thermal activation processes that this movement is indeed of diflision
character from a macroscopic point of view. This is not a paradoxical statenent
with regard to the relation between the running and waiting time.
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Besides, from Fig. 3 it follows that for 7 = 0 (i.e. when diffusive displacement
of dislocation, Az < a, is potentially equal to a maximum value a = 2 — ;)

(3.11) Gz <z))=G"+1,bla= Gy

whereas, for a given particular process, when 7 # 0 and 0 < ¢ < a, the me-
chanical force increases up to its maximum value F' = 7b (per unit length of
dislocation). Thus the diffusion displacement of the dislocation from the distance
z, (27 <z < z3), to the distance z + Az, (2] < 2 + Az < 23 and Az < a*),
requires the energy

(3.12) AG =Gz + Az) - G(z) = —-ArblLz — 0L Az,
or the change of chemical potential of activated dislocation
(3.13) Ap = p(z + Az) — p(z) = —Arbr — TbAz.

In this way we may relate the generalized thermodynamic force, understood as a
gradient of chemical potential of dislocation activation, grad j, to the mechanical
force, 7b, acting on a dislocation unit length L in a given process

JdinTt
dInz

(3.14) grad p = %ﬁ = —7b [1 +
&

In further consideration we apply other analogies to the diffusion theory. Mak-
ing use of the macroscopic chemical potential (e.g. Eq.(3.5)), we get for the flux
of activated dislocations the formulae of the form proposed by ONSAGER (sece

e.g. [32])

du
3.1 J=M—
(3.15) e
where M = —Bp is the dislocation mobility in the range of diffusion displace-

ment, 0 < Az < ¢, and B = D/ET is the mobility according to Einstein (see
e.g. [33]) where the quantity D plays the role of the diffusion coefficient for the
thermally activated process of the “diffusion” motion of dislocations through the
forest dislocations. Consequently, we may relate the gradient of chemical po-
tential p to the gradient of concentration, i.e. the density of mobile dislocations
which are undergoing thermal activation

kT Op
3.16 —grad p ———~ kTIn —| = ——
where pg is a constant for a given deformation process, and constitutes the charac-
teristic value of the density of mobile dislocations to which the mobile dislocation
density p(z,t) tends in any process of plastic flow. We should like to emphasize
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here again, using the Egs. (3.14), (3.15) and (3.16), that the basic conclusion from
our diffusion-like approach to the macroscopic motion of dislocations in a real
crystal, is that the maximal mechanical force required for this motion is closely
related to the gradient of chemical potential for dislocation activation which, in
turn, is proportional to the gradient of mobile dislocation density. In other words,
the gradient of chemical potential for dislocation activation, determined by the
formulae (3.14), decides on the macroscopic motion of dislocation through the
real crystal.

Using Egs. (3.15) and (3.16) we get for thermally activated motion of disloca-
tions the following formulae analogous to that for heat conduction or diffusion
processes

09 1)
Jdx

(3.17) J(z,1) =

and finally, using Eq. (3.2), we get the evolution equation for density of activated
dislocations which is analogous to the Fourier law of heat transfer or to the
second Fick law of diffusion

dp(a,t) _ 1)02/)(.1', 1)
ot o

(3.18)

This equation is the simplest version of the equation discussed earlier by PILECKI
[1, 34-38], and later also by AiranTiS with co-workers [2-4, 40-42], i.e the
Eq. (3.18) is related to the “poor extracted” case of dislocation motion where the
terms responsible for both the multiplication (~ to p) and annihilation (~ to P2
or p?) of dislocations are here neglected.

In order to determine the flux of activated dislocations, J(x, 1) = p(x. t)v(x, 1),
it is necessary to find the evolution equation for dislocation velocity ©(r.t), or
evolution equation for stress (2, ¢), since the relation between these quantities is
known (Eq. (3.8)). For this purpose we use the Egs. (3.1) and (3.17); however, in
view of the fact that for any deformation process we have a spectrum of activation
energies, we should replace therefore the dislocation flux, J = puv, by the average
value which may be assumed simply as J = pv/2. Thus, Eq. (3.17) may be written
in the new form

JIER l)

(3.19) —p(1 Do(e.t) = =D

The most important consequence of our basic conclusion is that the Eq. (3.19)
has a form of the Cole - Hopf transformation known in mathematical theory of

soliton (see e.g. [43]),

(3.20) v(a,t) = -21)%,
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where it is assumed that p, = dp/dz. This transformation maps solutions of the
heat transfer type equation (3.18) onto solutions of the Burgers equation which
may be written in the following form:

du(x,t) dv(z, 1) d*v(x,t) _
(3:21) Y + o(z,t) 9% D 922 - 0
or simply in the form
(3.22) vy + vy — Dvge = 0,

where (and hereafter) v, = dv/0t, v, = Jv/dz and v,, = 0*v/Jx?. (One can see
that the assumption on the average dislocation flux (Eq.(3.19)) is not necessary
since without this assumption we get also Eq.(3.22) in which the coefficient D
will be replaced by D/2). In this way the Eq. (3.20) represents, at the same time,
one of the possible physical interpretations of the pure mathematical Cole - Hopf
transformation.

Using Eqgs. (3.8) and (3.18) we get the general evolution equation for effective
shear stress (for simplicity we write 7 instead of 77)

(3.23) n+ Cr™r,— Dim - 1r"'t2 = D1y = 0,

where constant ¢’ = vg/7, ™. The general solutions to Eq. (3.23) are not known
as yet. At present the problem is open and too diflicult to be solved generally
since this equation — in spite of being the nonlinear partial differential equation
having, maybe, the solitary wave solutions — is not known in the mathematical
theory of soliton. However, it will be considered in further works. Here we restrict
ourselves to the simple case where m = 1, i.e. to the case of linear stress-velocity
relation which is also often experimentally observed, for instance in copper, silver
or aluminum. In this case Eq.(3.23) is also the BURGERS equation [44]

(3.24) T+ 1. — D't =0,

if we replace in Eq.(3.24) = by Cz, where now ' = b3 and new coefficient
D* = D/b*B2. Tt should be emphasized here that the case m = 1 is equivalent to
the assumption that the second term in the right-hand side of Eq.(3.14) may be
neglected, i.e. the case in which the generalized thermodynamic force, —grad p,
is just almost equal to the average maximal mechanical force, b7/2 (here we
replace 7 by 7/2 since the spectrum of activation energy implies the similar
spectrum of maximal mechanical forces for the same deformation process at a
given temperature and strain rate). It is so because the Eq.(3.24) may then be
obtained directly from Egs. (3.14), (3.16) and (3.22) by using the new Cole - Hopf
transformation 7 = (—=2&7T/b)p./p which is equivalent to the transformation
(3.20) just if v = bBT.
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One of the analytical, well-known solutions to the Eq.(3.24) or (3.22) is cf the
solitary wave-type, the form of which is the Taylor shock profile given by (see e.g
[10, 44]

(3.25) 7(z,t) = aD |1 — tanh %(z — Dat)|,

where 2aD = 7, is the shear stress at z — —o0, and a7 /2 = w is the velocty of
propagation of the step-like front of localized shear stress within a narrow region
of the z-space (Fig. 4). It is very interesting and necessary to emphasize here that
the equation similar to Eq.(3.8) has been derived in a completely differen: way
by WEERTMAN and FALLANSBEE [48]. The solution of their equation, again juite
similar to that given by (3.9), describes the propagation of the shock-type profile
of the elastic-plastic wave of steady-state finite amplitude.

T

effective shear stress

slip direction x

IIG. 4. Step-like front of the solitary wave impulse of cffective shear stress.

In agreement with the above considerations, we can now treat the motion of
a group of dislocations as a nonlinear wave process, i.e each local propagtion
of the dislocation group inside the crystal (induced e.g. due to the Frank-Read
source operation in the simplest case, or in a more general case - relat:d to
the slip and/or shear band propagation) may be treated as a shear stress wave
impulse (hereafter called simply SSW impulse) being, at the same time, df the
solitary wave character, very similar to the propagation of the Taylor shock pofile
described analytically by the formulae (3.9). Therefore, below in Sec. 4, we vould
like to discuss (qualitatively) the formation and propagation of the shear bards in
terms of the solitary wave processes as a specific interaction of the SSW indulse
with a grain boundary.

4, Discussion

The motion of the dislocation group has been considered in terms of both
shear stress and mobile dislocation density wave representations, and the soiton-
like behaviour of this motion has been deduced from the numerical solutims of
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the nonlinear ordinary differential equation [6, 7]. Now we shall use the analytical
solution of the nonlinear partial differential equation, obtained in the previous
section, to show that the classical pile-up formation may be graphically shown
also in terms of the propagation of SSW which swells against an obstacle (like
the back-water), producing high-amplitude shear stress gradient at the head of
dislocation group, as schematically shown in Fig. 5. Thus we may say that in this
classical case the transition of a slip through the grain boundary occurs usually in
the crystalographic way by the generation of a new SSW impulse corresponding
to the long-range slip (Fig. 6). However, we try here to modify a simple model of
the transcrystalline shear band propagation through grain boundaries, formulated
originally in [47], i.e. we discuss this model in terms of solitary wave processes as
a specific interaction of the nonlinear SSW with the grain boundary.

Vg

F
F
F
o
F
%

N\

9\ u 1 L 4 1L 1L 1 1 1 11liriuy
sodfce obstacle

s

FI1G. 5. Dislocation pile-up formation as a process of the interaction of the solitary wave with an
obstacle, illustrated schematically: a) in terms of shear stress wave (SSW) impulse, and b) in
terms of shear stress gradient

A modified model, proposed below (Fig.7), is based on three important el-
ements.

The first is related to the fact that during the very short time, dynamic impact
of the SSW onto the grain boundary (corresponding to the early stage of the shear
band formation), the very sharp-step Taylor shock wave is formed leading to the
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FIG. 6. Transition of the slip through a grain boundary in the usual crystallographic way.

creation of a new step at the grain boundary surface. In the case of edge-oriented
dislocations, the nature of this step (Fig. 7a) is such, that it may be considered
as a region of highly enhanced atom density similar to a “crowdion-like” ob-
ject. Consequently, a region of enhanced atom density followed by a region of
reduced atom density, i.e. the region of submicrocrack (perhaps like an “anti-
crowdion” object in a one-dimensional approximation), is formed in an adjacent
grain (Fig. 7a). Hence the creation and the propagation of both these regions
may constitute the second stage of formation of the shear band (Fig. 7b). (In a
one-dimensional approximation this propagation is, perhaps, like the propaga-
tion of bound “crowdion-anticrowdion” pair, which may be able to transport the
energy and momentum without the change in primary direction.)

The second important element of the model is a criterion for the formation
and propagation of the shear band (including both stages of its formation). This
criterion should decide on the critical velocity, v., (mean velocity of the moving
dislocation group is assumed here as equal to the velocity, w, of the propagation
of SSW) above which the creation of the “crowdion-like” objects is possible. The
critical velocity, v., in the first simple approximation [47] may be written in the
following form

Ve o, p 0T

(4.1) c dl oz’

where ¢ is the sound velocity, y is the shear modulus, d is the thickness of the
shear band and dr/dx is the shear stress gradient at the head of the dislocation
group.

The third element of the model is related to the possible changes in crystallo-
graphic orientations of the grains due to the deformation process. Recently it has
been suggested that the texture softening effect is one of the important factors
determining the angle of shear band propagation. The texture changes are also
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F1G. 7. A simple soliton model of the transcrystallographic transition of the plastic zone (shear
band) through the grain boundary: a) creation of the regions of both highly diminished
(submicrocrack) and enhanced atom density, and b) propagation of these regions results mainly

in a homogenecous nucleation of dislocations.

visibly correlated with the macroscopic localization of strain at the onset of shear

band formation, and not only in polycrystalline materials (e.g. [45]) but also in
single crystals (e.g. [46]). Hence, we suppose that the long-range transcrystalline
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propagation of the shear band through many grains is stimulated by this local
change in grain orientations what is schematically illustrated in Fig. 8.
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F1G. 8. A schematic illustration of the amplification of the shear stress wave impulse by
stimulating effect of the change in grain orientation.

The possibility of creation and transcrystalline propagation of the shear band
introduces a quite new physical quality from the point of view of plastic defor-
mation mechanisms, especially in polycrystalline materials. Namely, the crystalo-
graphic transfer of the slip (Fig. 6) occurs always when the velocity, w, of the SSW
propagation is considerably less than the critical value v., (w < v.), and then the
“crowdion-like” objects are not created, i.e. the shear band is not formed.

Instead, in the case of shear band formation, the sharpness of the SSW (or
amplitude of the shear stress gradient) increases very fast since w > v, and there
is no time for the long-range slip to occur. The “crowdion-like” objects are then
formed (Fig. 7a) and the process of plastic zone transition is rather highly nondis-
sipative. Then relaxation processes by long-distance slips are not preferred due
to very high velocity (maybe close to the speed of sound) of the “crowdion-like”
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objects propagation, and only a homogeneous nucleation of dislocations in a thin
zone (of the order of the magnitude of the shear band thickness d) of a submicro-
crack region is favored (Fig.7b). However, the possibility of the long-distanced
crystallographic slips successively returns due to the stimulating effects of the
changes in slip plane orientations in course of the deformation process.

5. Conclusions

The simple soliton model of the shear band formation presented in this paper
and its transcrystallographic propagation through many grain boundaries may
explain two important, experimentally observed facts:

i. The thickness of the shear band is very small (d = 0.1 pm) due to the homo-
geneous nucleation of dislocations in the very thin region of the submicrocrack
created during formation of the shear band.

ii. The distance of the shear band propagation is very long (running through
many grains) due to the highly nondissipative soliton behaviour of the shear
stress wave impulse, and due to the stimulation of shearing by the local grain
reorientations resulting from the amplification of the amplitude of this impulse.
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Existence theorems for elliptic partial differential equations
of reaction-diffusion type

B. KAZMIERCZAK (WARSZAWA)

WE ANALYZE the relation between “invariant rectangles” theorems and the method of sub- and
supersolutions used in existence proofs for reaction-diffusion equations. We prove that these meth-
ods are in a sense equivalent.

1. Introduction

REACTION-DIFFUSION systems of equations are widely used to describe a variety of
phenomena in chemistry, physics, biology, medicine, etc.

One of the methods to prove the existence of solutions to the reaction-diffusion
systems of equations is based on invariant rectangles (or generally invariant re-
gions) theorems [1, 2-5]. Another method utilizes the notion of sub- and super-
solution pairs [6, 7].

The main objective of this work is to show that these methods are in a sense
equivalent. “In a sense” means that we can use one of these theorems in the proof
of the other one (see the proof of Theorem 1). To be consise, we will confine
ourselves only to elliptic equations, since in the parabolic case a proof can be
repeated without significant changes.

2. “Invariant” regions theorems

The above notion originates from parabolic initial boundary-value problem
theory (see e.g. [2, 3, 5, 8]). It suggests that if certain conditions are satisfied and
initial and boundary values lie in a certain convex region in the space of dependent
variables, then there exists a solution to the considered problem having its values
in this region for all times, for which the solution exists.

In case of elliptic second order quasilinear systems of equations, the corre-
sponding theorems guarantee the existence of a solution if the boundary values
can be extended to functions, whose values lie in such a region [4, 6, 9].

Below, we will be considering the following system of elliptic equations:

(2.1) L w)u; = Filds Wis oo Yy O 5 5+ 5.0%m) for x € 12,
together with the Dirichlet-type boundary conditions:

(2.2) ui(z) = ¢i(x) for =€ 052,
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where i =1,...,m > 1and u := (uy,...,u,). For simplicity of notation we have
set Ju; := Vu,. We assume that:
H1. 2 is a bounded open region comprised in R™, n > 1, with its » boundary

of C** class. For i € {1,...,m} the function ¢; € C“Q(.Q) where {2 denotes
the closure of 2. g

H2. L; are of the form
Li(z,u) = ai_j(m,u)(')ki)j ,

where aj;(z,u) are symmetric with respect to k,j. For all i = 1,...,m and all
u € R™ the operators are uniformly elliptic in {2, and the coeflicients ay;(z, u)
are of C'! class. g

H3. f:= (fi,-- s fo) : R XR™ x R™ — R™ are of C* class (with some
a > 0) on evexy compact subset of 2 x R™ x ™",

Let Y := H(a,,b) with a;,b; € R, a; < b;.

H4. ¢ := (¢1,...,<;’>m). -3 u

HS5. For any bounded open subset W € B™ and any C%(f2,2™) solution of
the problem (2.1), (2.2) with its values lying in the closure of W, there exist a real
positive number (2, ¢, W) such that |[Ju(2)|| < I'7]
denotes the norm of du(z) in B™™, ||u(z)| is the norm of u(z) in R™. g

REMARK. There are a lot of papers concerning a priori estimates for problems
of the type (2.1), (2. 2) In [10] HS is proved, when all L; are the same, the
functions f; are of C! class and such that |f;(z,u,p)| < ((u)(]|p,[|2 + o(“p||2))
for all z € 2, where p € R™™. Also, when L; are different but ay; = aj;(z)

and |fi(z, u,p)| < e(b(@)pll? with b(p) = o ((in|[lp||[)~"), one can prove HS5
almost straightforwardly only by the use of classical ADN estimates for linear
equations [11]. g

DEFINITION 1. Let W denote an open, bounded and convex subset in R™. Then
by an outer normal vector at w € QW we mean any unit vector n(u) such that

n(u) - (U—-u)<0

forallU e W. g
The following result may be called an elliptic version of the invariant rectangles
theorem.

ProposITION 1. Let assumptions H1-HS be fulfilled. Let Q@ = 5(12, ¢, X).
Let us assume that for every u € 9.X there exist an outer normal vector n(u) =
(n1(u), ..., ny,(u)) such that

(23) n(u) ‘ f(zv “7])) >0
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for all z € £ and all p € R™ such that ||p|| < Q and Y p;jni(u) = 0. Then

t=1
problem (2.1), (2.2) has a solution u : 2 — ¥ and u € C?>*"(2), 7 € (0,a).
Moreover, if (2.3) is strengthened to n(u) « f(z,u,p) >0, then 7 = a. g
ReMARK. If L; = ay,;(z,u) independently of i, then this theorem can be
strengthened. Namely X' may be any open, bounded and convex set of R™. g

The proof of Proposition 1 is almost the same as the proof of Theorem 8
p-270 in [4]. (We have only to be more careful as the coefficients of L; depend
on u;.) However, for convenience of the reader we give it in the Appendix.

3. Sub- and supersolution method
For a single second order elliptic differential equation of the form

L(z)u = f(z,u) in 2,
u(z) = ¢(x) on 012,

this method simply says that, if we have a pair of functions y and Y such that
y(z) < Y(z) for z € 2, y(x) < ¢(z) < Y(x) for z € 902, L(x)y > f(z,y) and
L(z)Y < f(z,Y) in £2, then a solution to the above problem exists and it can be
constructed by successive approximations (see e.g. [12]).

In case of systems the problem is more complicated. To achieve the same result
we have either to change the definition of sub- and supersolution, or to assume
certain monotonicity conditions. For example, for the systems of the form:

(3.1) Li(z)u; = (Lij(;l,‘)()kf)_j'lli = fi(z,uy,. .., uy) for =z € §2,
(3.2) u;(z) = ¢i(x) for z € 012,

the following simple theorem holds.

ProrosiTioN 2. Let Iil and H2 be fulfilled. Let y = (y1,....ym) : 2 — R™
and Y = (¥7,...,Y,): 2 — R™ be such that for all + € {1,...,m} the following
conditions are satisfied:

a. y(z) < Y (2) (componentwise) for x € 12,

b. L;(2)y:(2) < f(z,y(z)), Li(z)Y:i(z) < f(z,Y (z)),

c. yi(z) < ¢:(2) < Yi(z) for z €12

Let us also assume that

d. fin, (z,u) >0
for all z € 2 and all 5 # . Then there exists a solution u to problem (3.1), (3.2)
such that y;(z) < ui(z) < Yi(z) forz € 2. g

The proof of this theorem may use a sequence of successive approximations
(as in the case of one equation) or topological arguments (as in [9]).
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In [6] the similar theorem is proved, when f; depends on du,. Below, we will
prove the corresponding theorem for the case of system (2.1), (2.2). Besides, we
will show that it is a consequence of Proposition 1. This is the main result of this
work.

Now, we will complete the necessary assumptions.

H6. For i € {1,...,m} let there exist pairs of functions y;(z) and Y;(z) of
class C2*2(£2) such that y,(z) < Yi(z) for z € 2, yi(z) < ¢i(x) < Yi(z) for

z € 002. Let W, = [](ci,d.), with ¢;,d; € R, ¢; < d; be such that the values of
i=1
y; and Y; are comprised in (¢;,d;). g
H7.Let ¥ = n(2,¢,W,) and let for all 7 € {1,...,m}
Eils 05 oo 2 )y sos50en i) 2 Fill®s 1015 woos 0L oomy i D15 =009 OY (2 )y wrs P )i
Ll(l‘7 u‘lv Gih | "i(‘r)v bt | Tl?il))’i(dr) S fl(Ts ’”]w $02.9 }’t(l)v ey, u'ms p].v AR (.)}’z("r)v L | p?n)a

for all z € 2, all u,, v € {1,...,m}, v # i, satisfying the inequalities y, () <
w, <Y, (z)and all |p|| < V. g

THEOREM 1. Let assumptions H1-H7 be fulfilled. Then there exists a C**7(12),
T € (0,0) solution (ui(x),...,u,(x)) to system (2.1), (2.2) such that y;(x) <
ui(z) <Yi(x) forz € 2. g

Proof. Letuschange the dependent variables u; — u]:
(3.3) w; = w Y+ (1 — u])y:.

Then,
3.4) Li(z,w)u; = L (x,w)u; + (1 —u))L(x,u)y; + u; Li(z,u)Y;,

where v
Li(z,u) = (Yi — yi)Li(x,u) + 2¢j, (2, w) {0k (Yi — %)} 0; -
Thus, system (2.1), (2.2) can be written as
(3:35) Li(z, u(u ul = [(Vi(z) - yi(@)] S22, u",0u")  for z € 0,
(3.6)  wi*+(2) = [6(x) — (@] [(YVi(x) — yi(2)] "' := p(z)  for z € a0,
where i =1,...,m,
fi(z,u™,0u™) = —2(ij(1', u(u™)) {0k (Yi —yi)} Oju; — (1 — u])Li(x, u(u™))y
—u; Li(z, u(u*))Y; + fi (z,u1(u}), ..., wm(uy, ), Qui(uy), ..., 0uy,(dur,))
and, according to (3.3),
u;(u) = i Y; + (1 —ul)y;,
3.7) Y A = )
duj(uj) = Y;0ui + y;0(1 — uj) + «;0Y; + (1 - u})dy; .
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Let us consider an open rectangle A in the u*-space, whose vertices have the
coordinates equal to 0 or 1.

Now, we can determine a unit (though nonunique) vector field »*(«*) on
04 satisfying the conditions of Definition 1, and thus being a field of vectors
normal to 04 at every point of it. Namely, if «* belongs to an open wall I,y; :=
(t], s s amibe=As 1 bigidy s ens fm) or [—lz(fle .o .,t,‘_l.O,[iJrl, 33 .,1,”) with []‘ c (0. 1),
then let n*(u*) = n; or n*(u*) = —n;, where n; denotes a unit vector directed
along the i-th axis. For all the other «* there exists the smallest ¢ € {1,...,m}
such that v belongs to the intersection of the closures of the walls /,; and I~
i <7, x,X € {—1,+1}. Then, let n(u*) := xn;(u). If we set £ = A, then for
such an outer normal vector field and system (3.5), (3.6), assumptions H1-HS5
are fulfilled with respect to the variables v* and p.

Especially, according to the assumption corresponding to HS, we can find
a priori estimates for du*, i.e. [|[du|| < 5y(£2, p, A).

Now we will check the condition (2.3). We have n(u*) = +n;, where n; is
a unit vector directed along the i-th axis. Let us suppose that n(u*) = n, for
some u* € dA. Then uf = 1 and n(u™) - f~(x,u*, p*) for p* € B"™ such that
[|ou*|| < n(f2,p, A) and p7 = 0 is equal to

—u; Li(z,Yi(2))Yi(2) + f; (1 uitY1(a) + (1 — up)yi(x),.... Yi(z),. ..,
wp Yo (@) + (1 = w3y (), 8%, OV, P )

The a priori estimates |[0u*|| < y(£2,p, A) = Q* are equivalent, according to (3.7),
to the estimates ||du|| < n(2,¢, W) and ||p*|| < @~ is equivalent to ||p|| < V.

Thus according to H7, the above expression is nonnegative for all z € 12, all
u,, v € {1,...,m}, v # i, satisfying the inequalities y,(v) < u, < Y, () and all
lip]| < ¥. Thus the condition (2.3) is fulfilled. In the same way we can prove that
this condition remains valid for n(«*) = —n,;. The theorem is proved. g

REMARKS. If the inequalities satisfied by £; in H7 are strict, then in H6 we
can demand only y;(2) < Yi(z). This follows from the fact that in this case we
can change the functions y; and Y; to functions j; and Y; (for example by adding
constants of sufficiently small absolute value), so that §; < Y; and H7 is fulfilled
(for y; and }A’,)

It is worthwile to note that in principle the methods used in the proofs of
Proposition 1 and Theorem 1 can be applied to the systems of the form

Lz e, g iig = Jil, s oz o W ONR 5 5 50000853 );

if only an appropriate a priori estimate can be given (as in HS5). g

In the above proof we have used only Proposition 1. On the other hand, by
setting y;(x) = a; and Y;(z) = b; we can obtain Proposition 1 from Theorem 1.
In this sense we can say that these two methods are equivalent.
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In the case of parabolic system we can prove a theorem analogous to The-
orem 1 using the same method. Now, instead of Proposition 1 we can use The-
orem 1 in [2]. This theorem concerns systems of the kind

—ui + Li(z,w)u; = fi(z,vq,...Un,0uy,...,0u,) for z €,
ui(z) = ¢i(x) for z € 912,
u;(z,0) = up(z) for z € £2.

This theorem asserts that if the conditions of Proposition 1 are satisfied for all
t € [0,T], T > 0, the conclusion of Proposition 1 holds also, for at least ¢ € [0,7].

Appendix. Proof of Proposition 1

First we will assume that n(w) - f(z,u,p) > 0. By fixing u in afkj(.r. i) we can
formally solve the system (2.1), (2.2) to obtain the relation

(A1) u = N(u):= R(u) o F(u),

where F(u)(z) := [fi(z,u(z), 0u(2)), ..., fu(z,u(2), du(x))]. According to the
linear theory of elliptic operators, AV'(u) is a well-determined operator acting
from C!(2) to C'(£2). Moreover, it is completely continuous. Let £ denote the
real Banach space of C''(2) functions, i.e.

£:={v:0-R", veC'®}
with the natural norm

lolle = llvllcygy = sup [[o(@)l] + sup [|dv(z)]].
€N TEQ

According to H3 for u satisfying (2.1), (2.2) and such that u(z) € ¥ for z € 12,
we have sup [|du(x)|| < Q. Let us define a bounded open subset of £:
Tes?

O:= {’U €f: veN =%, sup|dv(@)] <Q+ l}.
rENR

REMARK. Now, let us note that by a proper translation in the u-space we can
assume that 0 € Y. This translation does not affect the value of constant Q. g

According to the above Remark we can make use of the following Leray -
Schauder’s Continuation Theorem (see [4, 13]).

LeEmMMA. Let & be a real Banach space and O its bounded open neighbourhood
of 0in £. Let ' : O — & be a completely continuous operator such that for all
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A€ (0,1) and u € 00O, u # AN (u). Then the equation v = N(u) has a solution
u € O. B
Suppose to the contrary that there exist A € (0,1) and u € 9O such that

(A2) u = AN (u) := AR(u) o F(u).
Then, u must be a solution of the problem:

(A.3) Li(z, wui(z,t) = Afi(z, w1,y .. U, Oup, . .., Othyy) for z € 12,

(A.4) ui(z) = Agi(x) for z €012,

i = 1,...,m. Let us note that the boundary of O consists of functions v : 2-%
which, at least at one point in {2, achieve a value comprised in ¥, and of

functions v such that sup ||0v(2)|| = Q + 1. However, due to the assumptions of
zefl
Proposition 1 the second group of functions is empty. Thus, if v € 9O satisfies

(A.2), then there exists ( € 2 such that u(¢) € L. On the other hand, as X' is
open and convex, A¢(z) € X forz € 2 and A € (0,1). So, ¢ € 2. Let us consider
the function r(z) := n(u(())(u(z) — u(¢)), where n(u(¢)) is an outer normal at
the point u({) € 9. We have r(¢) = 0 and r(x) < 0 for x € {2 (see Definition 1).
Due to assumptions of Proposition 1 it follows that n(u(¢)) - f(¢, u(¢), du(¢)) > 0
and that there exists an index h € {1,...,m} such that n(u(()) + u(¢) = un(C).
Thus we have:

(AS) LG u(O)r(Q) = Lu(C, u(@))un(C) = Au(C, u(C), du(())
= An - f(C, u((), du(C)) > 0.

It follows that there exists a ball B with its center at ¢, B C {2, such that
Lp(z,u(z))up(z) = Afr(z, u(z), du(z)) > 0 for z € B.

From the maximum principle it follows that u,, () = 0 for x € B. Consequently
Li(C,u(())ur(¢) = 0 which is a contradiction to inequality (A.5). According to
the Lemma we obtain a solution to the problem (2.1), (2.2) belonging to the class
Cz+a(§)‘

Now, let us suppose that the inequality n(u) - f(z,u,p) > 0 is not fulfilled.
Let us replace f; by fi. = (fi + cu;), ¢ > 0, at the right-hand sides of the system
(2.1). Then, if 0 € X (see above Remark), assumptions of Proposition 1 will imply
that n(u) - fo(z,u,p) > 0 everywhere on 9 L. For ¢, := (k)~!, k € N4, we obtain
a sequence of C““(Q) solutions to the problems

Li(z,w)uic(z,t) = fic(x, 10y Une, Qtiey ooy Qi) for z € 2,
uie(z) = ¢i(z) for z € 052

Due to the compact embedding of C?** in C**7 for any 7 € (0, ), we can
choose a subsequence converging to some function v in C'>*7(1?) being a solution
to the problem (2.1), (2.2). The proof of Proposition 1 is now complete.
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Wave pulses in two-dimensional randomly stratified
elastic media

Z. KOTULSKI (WARSZAWA)

IN THE PAPER the propagation of the planar wave pulses in a two-dimensional randomly stratified
elastic medium is considered. Two cases: the plane and anti-plane deformations are studied. The
problem is described by means of the transition matrix mcthod. In both the cases the transition
matrices are obtained and the equations for the wave ficlds reflected from and transmitted through
the randomly stratificd elastic slab are derived. Finally, the law of large numbers for the product
of random matrices is applied to obtain the effective material constants needed for the description
of the elastic wave pulsc in the homogenized medium.

1. Introduction

ELASTIC WAVE propagation in stratified media has been widely studied in the
literature [4, 10, 11] in the context of mechanical and geotechnical applications.
Also some elements of structures are segmented in such a way, that they can
be considered as stratified waveguides (see e.g. [S]). Among various methods of
the analysis of the waves in the stratified media, the transition matrix method
is one of the most effective ones. The method, introduced for the investigation
of the harmonic surface waves in deterministic stratified media [17, 21, 24] has
been applied in the cases of planar volume harmonic waves in elastic media [6,
7], harmonic elastic waves generated by space-distributed sources [8] and waves
in stochastic stratified media [2, 25]. The transition matrix method has been also
adopted for the investigation of the propagation of wave pulses in segmented
elements of structures, both deterministic [1, 18] and stochastic [15, 16].

In this paper we consider the wave pulses in a two-dimensional elastic stratified
medium. The results obtained are a generalization of the results obtained in paper
[15], where a one-dimensional medium was considered. On the other hand, this
paper extends the model of two-dimensional harmonic waves, considered in [12,
13, 14], on the non-stationary phenomenon of wave pulses.

The schedule of the paper is the following. In Sec. 2 the fundamental equations
and notation used through the paper are introduced. In the following sections we
give the elastic wave equation for the planar elastic wave pulse and derive the ex-
pressions for the transition matrices for the anti-plane (Sec.3) and plane (Sec. 4)
state of deformation. Section S contains the wave equation in a layered medium
written in the transfer matrix language. The main result of the paper is contained
in Sec. 6, where, by applying the law of large numbers for the product of random
matrices, we obtain the effective material parameters for the homogenized elastic
medium. Section 7 summarizes the results of the paper.
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2. The governing equations in homogeneous medium

Consider a non-harmonic linear elastic wave propagating in the homogeneous
isotropic medium. In such a case the equations of motion of the medium consti-
tute the following system of partial differential equations (cf. [19]):

32
(2.1} gaz-n,- =05,

i = 1,2,3, where o;; is the stress tensor, defined as
(22) Ti; = 1t (u,-_j + uj-’i) + ,\uk,ké,j

(double indices denote summation from 1 to 3). In the above equations A and u
are the elastic Lamé constants and p is density of the medium.

Let us assume that the elastic medium has a discontinuity surface (plane). We
introduce such a system of independent variables that this plane is perpendicular
to the z-axis (z;-axis) of coordinates. At the discontinuity plane (being the in-
terface between two homogeneous and isotropic materials) the wave field must
satisfy two following continuity conditions (see [9]): continuity of the displacement
vector u and continuity of the traction vector t.

3. The anti-plane state of deformation

Consider the simplest two-dimensional problem of elastic wave propagation
of the transversal, horizontally polarized plane wave. We assume that the dis-
placement of the medium has the following form:

(3.1) u= (0,0, ‘u(.'l.'l,:rz,{))’r,

that is, it is perpendicular to the plane zy, z;. In such a case the elements of the
stress tensor are:

o1 =013 = 01 =0 =033 =0,
du
3.2 013 =031 = j—0
(32) 13 31 =} 7.
Jdu
a =03 = U—.
23 32 = 7o
Substituting these particular stress tensor components into the system of equa-
tions (2.1) we obtain a single non-trivial governing equation:

0%u 9%u 9%y

— tu— =p—.
0:2 " o2 T Y

(3.3) 1
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Using the given form of the stress tensor (3.2), we obtain the coordinates of the
traction vector in the following form:

(34) T =1 =0,

(35) . du

T3 =0 = e

3 13 =} Oy

From the formulae (3.2) and (3.5) we can obtain the system of equations for two
mechanical fields » and 7, remaining continuous at a discontinuity plane:

Jdu 1
(3.6) (.)—11 = ;T,
or 0*u 9*u

To solve the system of Egs. (3.6)—(3.7) in a non-stationary case, we calculate its
Fourier transform with respect to time ¢ and spatial variable z, (the correspond-
ing transformation variables are w and Fk, respectively). We obtain the system
of equations for the transformed functions u and 7 in the following form (we
replaced z; with z):

du 1.
(38) E = I—LT 3
d? _ 2 2\ ~
(3.9) o= (,uk - ow )u.
In the matrix form the system of Egs. (3.8)-(3.9) can be written as
d _ ~
(3.10) pel e M u,
where, by definition,
N 0 1
(3.11) = [‘T’] and M= M(w) = 7

pk? — pw? 0

To solve the wave problem described by Eq. (3.10), we complete it with the fol-
lowing boundary condition:

(3.12) §(0, k, w) = fig(k, w) = lao("’“)] ,

?O(k,w)

representing jointly the incident wave pulse reaching the plane x = 0 and the
pulse reflected from it. Then the value at z = L of the solution of the wave
equation (3.10), satisfying boundary condition (3.12), can be represented as

(3.13) u(L, k,w) = T(L)ug(k,w),
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where

(3.14) T(L) = exp{M(w)L}

is the transition matrix through the layer of thickness I, for the elastic wave in

anti-plane state of deformation. Construction of the transition matrix requires

the knowledge of the eigenvalues of the system matrix M of the wave equation

(3.10). Solving the characteristic equation

(3.15)  det {M — pId} = det ! | =0 (K- ew?/u) =0,
pk? — pw?  —p

we obtain the following eigenvalues of the system matrix:

(3.16) pr=p=+\k—-ow?u, pr=-p=-/kT-pw?/u.

According to the following Lagrange interpolation formula (see [23]):
M — poId — pld
( expipnry + M1

P1— P2 -
we obtain the explicit expression for the transition matrix exp{M(w)L} in the
following form:

(3-17) exp{ML} = exp{p2L},

. shpl

L

(3.18) T(L) = exp{ML} = ¢ pup
pupshpl, chpl

where ch and sh are, respectively, the hyperbolic cosine and sine functions.

4. The plane state of deformation

In the second possible form of planar wave the displacement vector is

i
4.1) u= (ul(.‘rl,mz, t), up(zy, g, t), O)
Then the stress tensor has the following elements:
g
4.2) 13 = 033 = 031 = 03, = 0,
(4.3) o= (A + 2 )b ')“2,
()12
(')ul 0(12)
4.4 = = + —),
(44 7 = on = (G4 5
(4.5) oy = (/\ + 2/&)@ + /\#
ry
duy (?uz)
4.6 = A
( ) ((?ll ().1:2 4
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and the traction vector has the following coordinates:

duy IATE)
(4 7) T a1l ( + 2;1)(_)1:1 + )\0172 s
B B duy  Oua
(48) T = 021 = U (5;; + 0—11) §

(4.9) 3 = 0.

In this particular case, the non-trivial governing equations (2.1) can be written
as:

an *uy  0m

S R
(411) oy O A On  4p(d+p) P
: Jzq e 012 (A + 2u) Oz (A + 2p) (9;1?% .

From Egs. (4.7), (4.8) for the traction vector we obtain the pair of equations
connecting stresses and displacements,

0“1 1 A a‘ltz
4 gu _ - dua
el Jxy (A + 2[[)T1 (A +2u) 037

Jduy 1 duy
4.1 — = -7 —.
(1) dzy i & Jdxy

Equations (4.10)-(4.13) describe completely the wave pulse in elastic media in
the plane state of deformation.

After the Fourier transformation with respect to time ¢ and spatial variable 3,
the system of equations (4.10)—(4.13) becomes the following system of ordinary
differential equations (also in this case z; = z):

l.’“
(4.14) == (/\%ﬂ—)ﬁ - ika__;\Tmaz,
(4.15) W = L ik,
(4.16) % = —w?oiiy — ik,
wm gt (P )R

It is seen that the wave process depends on the following five material parameters
(similarly to the stationary harmonic case — see [14]):

A
(418) a = m,
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o Au(A+p)
(4.19) b= O+ 2u)
1
(420) K = (/\—4'—2/15 5
1
@21) =

and density p.
Using the above symbols, we can rewrite the system (4.14)—(4.17) in the ab-
stract matrix form analogous to (3.10) where, by definition,

U 0 —ika k0
~ | us _ | -k 0 0 n

(4.22) U=l M=|_2 0 0 —ik
i) 0 4k*p—-w?p —ika 0

To find the transition operator (matrix) for the system of equations we must
know the eigenvalues of the matrix M. Solving the characteristic equation:

(4.23) det(M — pld) = p* + p? (wzg(n' + 1) + 2k (o — 2;’)’))))

+w4mmz — wik?p ((127) + 45k + r.') + k4 (uz + 4,-'3:{) =0

and substituting the definitions of the parameters, we obtain

(4.24) Prasa = £/2024) — w2y £ W23 V2,

where the parameters A;, A; and Az are defined by

(4.25) Ay =28y —a =1,
(4.26) ly & iRy = gt
’ B = E U—Q,u(/\+2;1)’
A+
42 Ay = o(k—n) = po—— b
(4.27) 5= ok =) = 05 h s
In an explicit form, the eigenvalues are
2 Y
(4.28) pp=t-FE_22
va
E2(A\ + 2p) — w2p
(4.29) P4 == \/ ( ) .
' VA +2u
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The transition matrix for the wave in the plane state of deformation can be
calculated according to the Lagrange interpolation formula, analogous to (3.17),
(see [23]). The elements of the transition matrix have the following form:

2 ) k2
chp L + (1 - _,uz_) chpsL,
w2

24k
4.30)  Tu(L) =L

u)ZQ

i(WPo — 2uk®kshp L 2 VK2 — w20/ (A + 240 ke shps L

S % ’
VR = wio/pwlo we

k%shpy L k2 —w2o/(A + 2u)shpsL
(432)  Ti(l) = : Y . ,

v k2 — wlp/uw?p g

ik |
(433)  Tu(l) = - (chpL - chpsl),

2i\/k? —w?o/upkshp L (w20 — 2uk2)k shpa L
@34 Ty = et L

w2 i
wee \/kz— 2o/(N + 2p)w?p

(431)  Tp(L) = —

21k 2uk?
(435)  Tp(l)= (1 == )chplL + B chpsL,
wep wep

itk
. )y = ——(chp L - .
(4 36) T23([) uzg (C P1 ch ])3[ ) R

k2 —w2p/pshp L k2sh
0 3l
(437)  Tu(l)=- = + ,
woe \/kz —w2o/(A + 2w
4\/m“2k25h mik w?o — 2uk?)shps L
(438)  Ta(l)= . 0
=g \/1\72 —wio/(A+ 2p)w?p

24k?
(4.39 Ts(L) =201 - ku(chpsL — chpy L),
w?o

k2 24k
(4.40)  T(L) = z’uTch mlL+ (1 = —”2—) chpsL,
wep wep

ZimzkshpL i(2p — 2k s
(4.41)  Ta(l) = [upkshpL i(w20 = 2uk)kshpsl

wio \/kz —w2o/(A + 2p)wp ,
2)uk?
(4.42) Ty(L)=2i|1- o ku(chpsL — chpy L),
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(w20 — 2uk?)?sh pi L " 4\/"'2 —w?o/(A + 2p) Pk*shp3 L

V2 ’
Vi — w2/ w?e

i(w?o — 2ukHkshp L 21’\/’62 —w20/(A + 2u) pk shps L

2 ]
VA2 —wo/uwto ol

2pk? 2uk?
(4.45) Tas(L) = (1 =ty ) chpy L + w_z,QCth'

(443) T42(1/) —

(444) Ta(L) = -

5. Elastic waves in layered media

The transition matrices obtained in Sec.4 enable us to describe the transition
of the two-dimensional elastic wave through a multi-layered medium. In such a
case, knowing the transition matrices through individual layers, we can obtain
the transition matrix through the whole stratified medium as a product of the
matrices.

The transition matrix T(-) enables us to express the wave field u,

U]
~_[u iy
(5.1) u= [?} or =

)

=)
Il

at any point 2 = L € R in a homogeneous medium, provided the boundary
condition ug = u(0) at « = 0 is known in the form (3.13).

Consider at the moment the multi-layered medium (slab) built of N layers of
elastic materials, with thicknesses A;, j = 1,2,..., N. Assume that the stratified

medium is surrounded by the homogeneous elastic environment, at = < 0 and
N

z>L= Z Aj. Since the wave field u must be continuous at the interfaces of
Jj=1

the layers in the stratified medium, we can express the wave, generated by some

boundary conditions Uy at = 0, after it reaches the point L, in the form

(5.2) u(L) = Tn(AN)TN 1 (An_1) ... T2(A2)T1(A1)up,
or, in a more convex form, by
) N
(53) u(z) = J] T,(4,)u,
j=1

where U is the vector describing the incident and reflected wave, u(L) is the
vector of the transmitted wave, T;(-) is the transition matrix through j-th layer,
for j = 1,2,..., N, depending on the material parameters of the layer.
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In the above equation all the material properties of the multi-layered medium
are completely described by the 4 x 4 matrix 7, being the product of the transi-
tion matrices through the individual layers and interpreted as a transition matrix
through the slab built of N layers of homogeneous elastic materials,

N
(54) T= HTJ‘(;\J').

g=1

Let us remark that vector ug describes jointly the (Fourier transforms of)

incident wave pulse (going to the right), and all the reflected pulses leaving the
slab (going to the left), generated by all the reflections at the interfaces of the
layers, measured at the plane = = 0. Similarly, u(L) represents the transmitted
pulses, generated by all the reflections and transmissions at the internal interfaces
of the layers, measured at the plane = = L.

6. The limiting case — homogenization

Assume that the slab is built of 2A" layers with thicknesses [1(7), (), ...,
lag (), where li(y), i = 1,2,..., 2K are random variables. In the above v € I
is an elementary event and (I', 7, P) is the complete probabilistic space. As-
sume additionally that the material parameters of the layers and their thick-
nesses (02,-1(7), A2j—1(7)s p2;-1(7), l2;-1(7)s 02;(7), A2;(7)s w2;(7). 12;(7))
are, as the vector random variables, independent and identically distributed for
J=1,2,..., k. Moreover, we assume that the thicknesses of the layers have the
following particular property:

_ (L2j=1(y) L2;(v)
(6.1) (10 lai() = (Z5E2 22,
forj = 1,2,..., K, are independent, identically distributed two-dimensional ran-
dom variables with the given mean values:
(6.2) Ellyam) =L  E{ly()} = I~

In this particular case the periodically repeated segments of the bar are built
of the couples of the elements with lengths l5;,_1(v),2;(y), s = 1,2,..., K. For
such segments the transition matrices M, (y) are the products of the pairs of the
transition matrices through the individual layers,

(6.3) M;(7) = Tyl (PN T25(2;(7)), 7 =1,2,... K,

and the Eq. (5.3) for the Fourier transform of the amplitudes takes the following
form 2K = N):

.
(6.4) (L) = [T M;(7) %o,

i=1
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N
where L = L(y) = Z (7))
j=1

To study the asymptotic behaviour of the randomized equation for the ampli-
tudes of the waves, we apply the law of large numbers for the products of random
matrices obtained in [3]. This theorem can be written in the following form.

Consider the sequence of the products of real random matrices

K
(6.5) Pr(7) = [ M k(7).

j=1

It is assumed that for K tending to infinity the matrices M j; can be represented by

1 .
(66) MJ_I\'(’)/) =Id+ FBJ"]\'(’W/) + RJ(]\ ,’7),

where B; - (v) for j = 1,2,..., I are independent, identically distributed random
matrices, integrable with respect to probability measure P and |R;(K,7)| = o( K~ 1)
for large K. Under these conditions, the law of large numbers holds true and

(6.7) Jim Pre() = exp (B {B;x(1)),

in the sense of convergence in distribution of all the vectors obtained by multiplication
of the random matrix by an arbitrary deterministic vector.

The presented method makes it possible to obtain the effective transition
matrices in both cases of the anti-plane (Sec.3) and the plane (Sec.4) state of
deformation. Let us begin the considerations from the more complicated, second
example.

To analyze the limiting case of Eq. (6.4) when A" tends to infinity, we expand, at
the beginning, the transition matrix defined in (4.30)-(4.45) under the assumption
(6.1) on the thickness of the layers, with respect to the powers of 1/4":

1 0 00
(L;N_ 101 00
(6:8) TJ(?)‘ 0010
00 0 1
0 —i/\‘(}'j K; 0
ﬁ —ik 0 0 .T)J' LJ'
Th | v 0 0 —ik +0(7F)'

0 4/{2,"3]'—“120]‘ —‘ikﬂ'j 0

Multiplying the matrix T (L), corresponding to the transition matrices with odd
indices by T(L) — with even indices, we obtain, that the matrices B; required
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in formula (6.7) are defined as (we have changed the numeration of the random
variables being the material parameters and the thicknesses of the layers accord-
ing to the following rule: by;_; = b}, by, = bj2 for any parameter (b is «, 3, Kk, 1,0
or L)and j = 1,2,..., K, so the parameters with identical superscripts — 1 or 2
— have identical distributions):

[ 0 —ik ((.1} L} + a?Lf)
—ik (L1+13) 0
(6.9) BJ‘ = -
2 171
2 (o)1) + 2313) ¢
2(al71 212) _ 2 (ol 272
_ 0 4k2 (BILY + p2L%) — w? (o] L] + 0313
H}L} + Nijz 0 ]
0 7)} L} + nfLJz
0 —ik (L} + L2)
—ik ((1}1,} + (,rJZ-Lf) 0 |

The common average value of the matrices B; is

[ 0 —ik E(a}L}+a2L?)
—ik E(L}+ L?) 0
(6.10) E{B;}=
—w2E(o} L} + 02L3) 0
! 0 ARREBIL + B2 LY~ P E(ol L} + 0212
E(}L} + k212 0 l
0 E(r/j] Lj' + 1‘]}1,}
0 —ikE(L+ 1Y) |
—thE(alL) + a2L?) 0 |

where in the above formulae the parameters and the thicknesses are random
variables with distributions identical for all couples of layers.

The matrix e£{B:} is of the form analogous to (4.30)—(4.45) where, instead of
the parameters a(7), 3(7), (), o(y), (7). p1(7), p3(7), being random variables,
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one has the effective constant parameters aff, 3eff xeff peff pefl peff el defined
as

off _ E{al(ML'() + a?()LA)}

(6.11) a 7
E{B(:)L'() + B)L) )
eff _
(6.]2) /B - L b
E&l(y)L1 k2(y)L?
- w_ EFo (7)L+ ™) (v)},
E{n'0)L'G) + P |
eff _
(6.14) = 7 ;
E{o'(L'() + 0*() 21}
eff
(6.15) ot = : ,
where
L Al a A2
(616) o = m, y = m,
L 4O+ ) 2 _ WP+
— Ty T T
1 1 2 _ 1
(6.18) “E0T T Rrany
1 1
(6.19) 0= ik = pik
(6.20) L = B4 I?
and
(6.21) p% = \f22 - w2Ag £ 02A8T VT

with the parameters AST and A§T which are defined as:

Aeft 4 3 eff
'ucff(/\cff + 2“cﬁ') ?
cﬁ') — eff ’\Cﬁ g ’ucﬂ'

=e ﬂ_cff(/\cﬁ + zucff) ’

Similarly in the case of anti-plane deformation, the transition matrix through
the individual layer (3.18) can be written in the form (6.6),

1
: : 0 & :
(6.24) T, (L) = [10] 4+ L LAY
J I\ O 1 ]\ 2. 2 1\
pk= —ow* 0

(6.22) Agﬁ = gcff(Ncﬂ’ i UCﬁ) = e

(6.23) A = S
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The matrix B; is, in the case of the anti-plane wave pulses, of the form
0
(RO ) +iEML3)) k2= (o' () E (1) + (1))
1 L2
L (), L)

p() o pc(y)
0

(625) BJ' =

By averaging the matrix B; we can see that the effective transition matrix depends
now on three parameters: x°f and o°ff, defined in (6.14), (6.15), and on the
additional parameter /lCﬁ, defined as:

o E{ o)L + oo}
- L

The transition matrix has the form analogous to (3.18) with suitable effective
parameters, where

(6.26) ut

(6.27) P = \Jh2 — oo et

As a conclusion of the above considerations we can say that the elastic homo-
genized medium (obtained by the homogenization procedure from a randomly
stratified medium) conducting wave pulses is completely described by six param-
eters: o gl ol el e and p¢ff, defined in (6.11)—(6.15) and (6.26).

7. Closing remarks

In the paper we have considered the model of stratified medium, that is the
slab built of a number of isotropic, homogeneous elastic layers. Such a medium,
globally, is both anisotropic and nonhomogeneous. After the presented averaging
procedure, it becomes homogeneous but remains anisotropic (locally and globally
transversally isotropic). The elastic properties of such a medium are described by
a tensor, whose 5 elements are independent (see [22]). However, as we have seen
from the considerations of the previous sections, to describe the elastic waves
in the case of the plane state of deformation we need four elastic constants,
while in the anti-plane state only two elastic constants are necessary (one of
them — different than in the plane state). This statement remains valid both in
the dynamic nonstationary case, studied in this paper, and in the stationary one
(see [14]).

The above considerations were performed analytically. Solution of the equa-
tions, that is calculation of the resulting waves (reflected and transmitted) gener-
ated by some incident pulse needs numerical calculations. The most effective way
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of doing this is calculating the inverse Fourier transform using the Fast Fourier
Transform algorithm (see [20]). Effective results in this field require precise spec-
ification of the incident pulse (that is, its shape, caused by the form of the source
generating the disturbance).

Let us finally remark that the model of stratified medium considered in this
paper is an idealization of a real physical medium. Therefore it neglects many
effects observed in nature (like dissipation of energy or dispersion of waves in
layered media) and needs some modifications. However, the improvement of the
model of two-dimensional stratified medium is connected with the growth of the
dimension of the system of the corresponding partial differential equations and
is connected with numerical difficulties.
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