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Numerical simulation of an inviscid transonic flow
through a channel with a leap

P. LISEWSKI (WARSZAWA)

A TWO-DIMENSIONAL inviscid transonic channel flow of a perfect gas is considered.
The gas of relatively high pressure, flows into a channel through a converging nozzle.
The channel geometry is characterised by a discontinuity of cross-section at the noz-
zle outlet. A fast, explicit differential algorithm based on a two-step Lax-Wendroff
scheme is used to solve the set of Euler equations. Results of calculations are com-
pared with the visualised flow and with the measured pressure distributions. The
computed steady-state flow field agrees well with measurements.

Notations

a speed of sound,
e total energy per unit mass,
G flux vectors,
H  channel height,
J  Jacobian determinant,
k  specific heats ratio,
L channel length,
po  stagnation pressure at the nozzle inlet,
Pout  pressure in a large volume at the outlet of the channel,
R+ right running Riemann invariant,
R—  left running Riemann invariant,
t time,
uw  velocity component in = direction,
v velocity component in y direction,
v stagnation temperature at the nozzle inlet,
U flow variable vector,
x,y coordinates in physical plane,
Al  distance between two nodes in physical plane,
At time step,
An  distance between two nodes in 7 direction,
A¢  distance between two nodes in € direction,
&, coordinates in computational plane,
o  density,
¢ ratio of the nozzle exit height to channel height.
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808 P. LISEWsKI

1. Introduction

TRANSONIC FLOWS through channels with abrupt changes of cross-section can
be found in practice in reducing valves or industrial installations. The structure
of the flow field depends on the geometry of the channel and on the difference of
pressures in the areas situated at the channel inlet and outlet. If the cross-section
of the channel changes sharply and the pressure difference is high enough, shock
waves may occur in the flow. Determining such flows field seems to be important
from practical point of view.

Contemporary techniques of solving transonic flow problems can be grouped
generally in two categories. The first contains methods that use central differ-
ence approximation applied to spatial derivatives. One can find here both ex-
plicit and implicit algorithms of different order of accuracy in time and space.
Lax - Wendroff and Beam-Warming approaches are the most popular in this
group. The second family of numerical methods for transonic aerodynamics con-
tains the so-called “upwind” schemes. Their nature is closer to physics as they
distinguish directions of the propagation of information in the flow. Different
approaches of Godunov-type methods can be found in this category.

In the present work, a central difference method based on two-step Lax-Wend-
roff scheme has been chosen to solve two-dimensional inviscid transonic flow.
This method is believed to be simpler to implement as compared with upwind
schemes. It requires less arithmetic operations per time step than the explicit
upwind algorithms. Hence, it is less time-consuming.

2. Problem description

A two-dimensional, inviscid flow of continuous medium is assumed. The gas
flows through a two-dimensional (plane) channel shown schematically in Fig. 1.
The first part of the channel consists of a converging nozzle and the second part
is a duct of constant cross-section. Air flows into the channel from a large volume
characterised by constant stagnation pressure (pg) and temperature (75). At the
channel outlet air flows into the surroundings where constant pressure (poy) is
assumed. The flow starts after breaking a diaphragm placed at the nozzle inlet.

h | H - P

L

F'1G. 1. Shape of the channel.
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NUMERICAL SIMULATION OF AN INVISCID TRANSONIC FLOW 809

Air is treated as a perfect gas. A limiting case of steady-state solution is of
interest.

3. Mathematical formulation

The inviscid unsteady two-dimensional flow without body forces and heat
transfer is described in differential conservative form by Euler equations, i.e.
the continuity, momentum and energy equations. This set of equations can be
written in a vector form:

ou 9JF 0G
(3.2) ot dx Oy
The vectors are:
Y ou eV
2
u w” =+ p uv
oV ouv ouv” +p
oe u(ge + p) v(oe + p)
The total energy per unit mass is expressed by
- p } 2 2
e_——(k—l)g+2(u +’U).

By knowing the initial and boundary conditions, Eq. (3.1) can be integrated
to provide the inviscid solution at a later time. Since the steady flow can be
considered as a special case of unsteady flow, the steady-state solution can also
be obtained from unsteady Euler equations as an asymptotic case.

For flows in complex geometries it is advantageous to transform the set of
Eqs. (3.1) to the generalised, curvilinear coordinate system. General relations be-
tween the coordinates in the computational plane of reference and in the physical
plane of reference are:

(3.3) £ =¢(z,y), n=n(z,y).

After the transformation has been applied, Eq. (3.1) preserves its strong conser-
vation form:

» U oF o6,
! at e g
where “new” flow variable vector and “new” flux vectors are:
w U = &R+ &G —= nF+mG
(3.5) O=w, E=iiT, .
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810 P. LISEWSKI

The Jacobian of the transformation is given by

1

(3.6) J =&y — &y = ERTE
LeYn — Tnle

The metrics are:
BT L=ypd  G=-zpd, me=-yed, my =l

4. Numerical method

As the aim of this work is to investigate transonic channel flow, it is necessary
to use a method that captures well the shock waves occurring in the flow. As
mentioned in the introduction, a modified two-step differential scheme based on
Lax ~ Wendroff - Richtmyer formulation [1, 3] is used to solve the set of equations
(3.1) in the computational plane of reference. The formulation applied in the
current work is described below.

During the first step, the values at the intermediate time level are calculated:

+1/2 ) = —
(4.1) Lijiy == (ﬁ?-f-l.j T U?,j 1 U?+1/2,j+1/2 * U?+l/2,j~1/2)

i+1/2j = 7
—_n —} ]. At = —~n
REWY (Fi+l,j = Fi,j) ~ 3 Ay (Gi+l/2,j+l/2 = Gi+1/2,j—1/2)'

New values of the flow variable vector U are obtained from the final step:

42) U'=T

?,j B 2_; (—n+1/2 —n+1/2 ) At (—n+l/‘2 TR )

Fivi; —Fisij2; Ay \Gidg+172 ~ Gij-1p2

The flux vector F based on middle nodes is calculated as follows (the flux vector
G is calculated similarly):

—n —n == T
—n F (Ui+l,j + Uit je1 + Uijn + Um’)

Fz+l/2,j+1/2 - 4
(4.3) F?‘l+1/2~ _ F(ﬁrfrlﬂ‘).
141725 i+1/2,3
The described algorithm differs from the Ritchmyer’s version [1, 3]. Its main
advantage is that averaging of flow variables, necessary to calculate the flux
vectors at points located between nodes (see (4.1)), takes place only on the basic
time level. Values obtained from the intermediate step (4.1) having no physical
meaning, serve only for further calculations.
The described integration method is of second-order accuracy in space and
time. As it is an explicit method, the maximal time step is limited by the stability
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NUMERICAL SIMULATION OF AN INVISCID TRANSONIC FLOW 811

criteria (CFL number). In the present work the size of time step is obtained from
the condition

At < min (Al/\/a- ( u? + v? +a)) :

The method chosen, applied to transonic flow problems, requires artificial
damping in order to minimise oscillations produced around the captured shocks.
The effect of artificial viscosity has been introduced by adding the third, smooth-
ing step in which the solution obtained from the Lax - Wendroff final step (4.2)

is corrected proportionally to the second spatial derivative, separately for £ and
n directions.

5. The physical plane of reference

Because of the symmetry of the steady-state flow, the physical plane of ref-
erence can consist only of one half of a real channel. The shape of this area
is shown in Fig. 2. It contains two subregions: the first one, corresponding to a
converging nozzle and the second, corresponding to the part of the channel of
constant cross-section. These two subregions are connected at the nozzle outlet.

0.50

i i
-
>

0.00 T T T T T

o=

Fic. 2. Physical plane of reference.

6. Numerical implementation of boundary conditions

At the inlet boundary, a quasi-one-dimensional boundary condition is ap-
plied. Stagnation pressure py and temperature Ty are imposed. These values are
assumed to be constant over the channel width at the inlet. The energy equation
and the Riemann invariant R— (calculated from the interior of the flow field)
are used to find static parameters at the nozzle inlet. The value of R— is found
with the method of characteristics, assuming linear interpolation of flow variables
between nodes.

At the outlet boundary similar treatment is made. Subsonic and supersonic
cases are considered separately. At the subsonic outlet, the only variable to be
imposed is static pressure.

In the supersonic outflow, no information from outside is coming upstream. In
this case both Riemann invariants along suitable characteristics, combined with
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812 P. LISEWSKI

the value of entropy along the streamline, are used to calculate flow variables at
the channel outlet.

Rigid walls are modelled by superimposing the layer of fictitious nodes placed
behind the walls.

At the near axis boundary the symmetry condition is applied.

At the nozzle exit, the exchange of information between two computational
subdomains is assured.

7. Sample calculation of the flow field

The calculated steady-state flow field in the wide part of the channel is shown
in Fig. 3. The gas flows from the left to the right. The figure presents pressure
contours obtained for ¢ = 0.3 L/H = 5.33 (L = 160 mm) and poy /po = 0.132.

05 T - e ,

T =

x/H
F1G. 3. Calculated steady-state solution (pressure contours).

Figure 4 shows the interferogram obtained from flow visualisation for identical
conditions. Results of SzUMOWSKI and MEIER work [4] have been used.

9" as’}j)

x/H

F1a. 4. Interferogram showing transonic channel flow.

As seen in Fig. 3 and Fig. 4, oblique shocks appearing in the flow are captured
in the calculation accurately. The calculated structure of the flow agrees well
with that observed in the real flow. The effect of a “double” wave seen in the
interferogram, where the first shock is reflected from the wall, is a result of shock
boundary layer interaction. Hence, it cannot be obtained from the inviscid model.
The first shock seen in the interferogram, is relatively strong and produces a small



NUMERICAL SIMULATION OF AN INVISCID TRANSONIC FLOW

813

separation “bubble”. The shock is reflected from the boundary of the separation
area rather than from the wall.

a)

0.3

4.0

6.0

b)

03

0.1

p/Po
<-— sz
\\.

0.0 +
0.0

2.0

4.0

x/H x/H

6.0

x/H
I'1G. 5. a. Calculated pressure along the wall (solid line) and the axis (dashed line).
b. Pressure along the channel wall: calculated (solid line) and measured (dashed line).
c. Pressure along the channel axis: calculated (solid line) and measured (dashed line).

Figures 5a, b, ¢ show pressure distributions (non-dimensionalized with the
inlet stagnation pressure) along the wall and the channel axis. Calculated values
(Fig.5a) are compared with the measured ones for the wall (Fig.5b) and the
axis (Fig. 5 ¢). Experimental data for the chosen case is provided by SZuMOWSKI
and MEIER [4].
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814 P. LISEWSKI

The calculated pressure distributions confirm the tendency of the shocks to
become weaker along the channel. The decrease of shock amplitude is related
to the increase of the entropy along the channel length. The largest differences
between the calculated and measured pressures are seen for the wall distribution
in the region where the supersonic stream hits the wall for the first time.

8. Conclusions

The presented numerical results are in good agreement with experiment. The
calculated steady-state flow field properly reflects the presence and positions of
oblique shocks occurring in the flow as well as their amplitudes. It is noticed that
satisfactory results are obtained with relatively simple modelling of boundary
conditions. It can be concluded that the selected numerical method based on
two-step Lax — Wendroff algorithm can be effectively used for predicting transonic
imviscid channel flows.
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The velocity of the fluid due to the many-sphere
Oseen hydrodynamic interactions

I. PIENKOWSKA (WARSZAWA)

WE CONSIDER the velocity field, generated in the incompressible, viscous fluid due
to the hydrodynamic interactions between a finite number of solid spheres. The
particular properties of the velocity field, due to the convective inertia of the fluid,
are examined. The inertia effects are taken into account up to the contributions of
the order of 0(Re).

1. Introduction

THE PRESENT PAPER concerns the hydrodynamic interactions of a finite number
of solid spheres at small, but finite sphere Reynolds number Re. In the previous
paper [1] we have investigated the effects of the hydrodynamic interactions on
the friction relations between the spheres. In this paper the respective velocity
field of the fluid is studied. In particular, some properties of the velocity field,
not to be expected on the basis of the Stokes equation, will be analysed. The
analysis is performed in the framework of the Oseen equation of motion of an
incompressible fluid. The inertia of the fluid is evaluated up to the contributions
of the order of O(Re), where Re = a|U|/v (a — the radius of the sphere, U —
the uniform velocity of the fluid at infinity, U = (U, 6, ) in spherical polar
coordinates, v — the kinematic viscosity).

Under the condition of vanishingly small Re, the velocity field, generated by
the many-sphere hydrodynamic interactions, has been recently considered by
DuRrLOrFsKY, BRADY and Bossis [12] and by PHILLIPS [13]. In the paper [12],
devoted to the dynamic simulation of hydrodynamically interacting particles, it
has been shown that the velocity field may be expressed in terms of the propa-
gators, acting on the forces, torques and stresslets, exerted by the particles on
the fluid ((2.13), (2.14) in [12]). That representation of the velocity profile is
the basis of the dynamic simulation of hydrodynamically interacting spheres in
a quiescent second-order fluid, developed in the paper [13], to account for the
non-Newtonian behaviour.

The influence of the inertia of the fluid on the hydrodynamic interactions of a
cluster of spheres moving in the fluid at small Re has been recently examined both
theoretically and experimentally by KUMAGAI [2]. The author has extended the
conventional reflection method of the description of the interactions, developed
for the Stokes flow regime, to the case of the Oseen flow regime. His numerical
results, concerning the inertia effects in the free-fall motion of spheres, show a
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816 I. PIENKOWSKA

good agreement with the experimental results. Earlier approaches to the analysis
of the nonlinear effects have been quoted in [1].

In the present paper, we use the multiple scattering approach [3] to the analy-
sis of the hydrodynamic interactions and the velocity field. Starting from the
integral formulation for the Oseen flow, the interactions and the velocity field
are expressed in terms of the following parameters:

(i) ¢ = a/R, describing the dependence of the interactions on the radial
distribution of the spheres (R is a typical distance between the centres of two
spheres),

(i1) k = a/ Py, giving the dependence of the velocity field on the radial distance
between the centre of the k-th sphere and the point r in the fluid,

(iii) RU /v, P, U /v — characterizing the regime of the interactions (the role of
the convective inertia effects).
Here we consider the regime specified by the following conditions:

g <1, k<1, RUfu <1, PU/v < 1.

It means, we regard the intermediate sphere spacing and the velocity field in
the region near to the assemblage of the spheres. The spheres are held fixed.
No lubrication behaviour is included. The hydrodynamic interactions and the
velocity profile are regarded up to a given order with respect to ¢ and . The
0(Re) convective inertia effects are taken into account.

2. Governing equations

The presence of the spheres in the fluid is accounted through the induced
forces f;, j = 1,..., N, distributed on the surfaces of the spheres. In an external
Cartesian coordinate system, the centres and the surfaces of the spheres are
given, respectively, by R?, and R;. The fluid velocity v(r) and pressure p(r)
satisfy the Oseen [8] and continuity equations:

N
0U-Tv - utw + Vp = Y [ a6 - Ri(2)]5(2),
=1

2.1
(2.1) V=0

where p and p are the density and the dynamic viscosity of the fluid, 6[r—R;(f2;)]
indicate the positions of the surfaces of the spheres, R; = Rg +r;. In the local
spherical polar coordinates r; = (a, {2;) = (a,6;, ;). Inside the volumes of the
spheres, the respective stress tensors P(r;) satisfy

(2.2) V-P(r;) =0, Irj| < a.
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THE VELOCITY OF THE FLUID 817

On the surfaces of the spheres, we impose the no-slip boundary conditions:
(2.3) R;(%2) =v(R;(2)),  R;(%5) =0,
where Rj(ﬂj) denotes the velocity of the j-th sphere.

The velocity field in the considered system can be presented in the following
form of the convolution integral:

N
(2.4) vir) = U+ [d'Te-r)- Y [ae [ - Ry(2))] 69,
j=1

where T(r —r') is the free-space Green tensor.
Its space-Fourier transform reads [4]:

[ d%k exp(ik-r)(1 - kk)
(2:5) S f (2m)3 p(k?+iv-1U0-k)’

where k = k/[k|, k(k, x,7) in spherical polar coordinates.

The second term on the r.h.s. of (2.4) describes the disturbance of the uniform
fluid velocity U due to the hydrodynamic interactions of the spheres. To perform
the integrations over the surfaces of the spheres, appearing in this term, we ex-
pand the induced forces f;, exp(ik-Py) and exp(ik-r;) in terms of the normalized
surface spherical harmonics Y} [5]:

1
(2.6) fj(r;) = T ;fj,zmyzm(ﬂj)a 120, |m|<li,

exp(ik-Py) = 4 > ' j1(Pek) Y™ Oar, me) Y, ™ (X, m),
(27) - O 1.l m —-m
exp(ik-r;) = 4r Y _i' j'(ak)Y™(6;,8;)Y; ™(x,n),

Ilm

where j; is the spherical Bessel function, P = R{ —r = (P, xk, 7x) in spherical
polar coordinates. Finally, we arrive at the following representation

N
(2.8) v(r) =U+ > > C*™(Py)-fi1ym, ,

k=1 lama

giving the velocity field in terms of the (lm2) components of the induced forces
fi.. The second order tensors C'2™2(P}) are called the velocity field tensor. They
are introduced to examine the disturbance of the velocity field U due to the
hydrodynamic interactions of the k-th sphere in the presence of the N —1 other
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818 I. PIENKOWSKA

spheres. For further consideration, the tensors are written down in the following
form:

(2.9) G (P, = % GBIV e,

lam:;

where

il @k (1-kk
(210) cPm = e k2( WAI)J Vi Y, iz (ak) jig (Pek).
We note that the properties of the velocity field tensors follow the properties
of the Green tensor T(r). In the description of the velocity profile, the role
of the velocity tensors is similar to the role of the propagators, introduced by
DURLOFSKY, BRADY and Bossis [12]. In what follows, the dependence of the
tensors on the parameters £ and Re will be discussed.

3. Properties of tensors szmj(ﬂ)

lamo

lom2(Pg) can be presented in

It is shown in the Appendix that the tensors C
the following form (A.7):

[3m

(31) Clomn = Sl Z ﬁm(lg,l,’g)l"l?{—zm_lﬂ

Z R(ZQ, ma, m4)R(13, —1mg, _mS)le;“‘dl;ms

mg,mMms

1
2
./d { ma,ms \/-71' Z Omz+my,ms Kone B(2; mﬁ,"l?)dm?Pm?(g)

0 mg,mrz

- P (E) P, ™ (E) I (Pral) Kg(Prag),

where the signs {£} refer to the cases ly+13 = 2n, lo+I3 = 2n+1, respectively, the
quantity B, (l2,13), depending on Py, is given by the formula (A.3), the quantities
R(l;, m;,m;) describe the rotation of the coordinate system, the functions Yy
are written down in the form:

Y*lnl = dgn BTH 6177’130,

I, K are the modified Bessel functions, a=U/v, 2 =max(ly+2m+1/2,13+1/2),
o=min(ly +2m+1/2, I3+ 1/2).

We note the appearance of the parameter P,U/v (in the arguments of the
modified Bessel functions), characterizing the regime of the disturbances of the
velocity field U. The above formula is valid for arbitrary values of that parameter.
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THE VELOCITY OF THE FLUID 819

In what follows we are going to discuss the properties of the above tensors in the
range Py U/v < 1, referring to the weak inertia effects in the velocity profile. In
this range, the products of the modified Bessel functions behave as follows:

1

F-p+1 z
(3.2) Is(Pkcré)K@(Pkaf):(‘) 9 FF(Q)

— = (Pag)letim=bl
2 (2+1)( kat) N

From (3.2) it follows that for the case considered we have two kinds of the velocity
field tensors:

(1) the Stokes velocity field tensors (disregarding the role of the inertia of the
fluid);

(i1) the 0(Re) Oseen velocity field tensors (taking into account the weak inertia
effects).

We see that the leading order contributions to the velocity tensors, which do
not depend on Re, are equal to

o9}
(33)  Cpmi=4rd Bulla,ls) > R(lz,my,ma)R(ls, —ms, —ms)dp*d; ™
m=0

mg,ms :

1
2 /27 my pmy
. fd£ |:§5m4,ms - .1._5_ Z 5m7+m4,m5K7n5R(23mﬁymT)dz 7P2 l(f)}
0

e - 1 Z—p+1 (5
< BRI ) (5) % :

The integrals over the associated Legendre functions are different from zero for
the following sets of the indices /; [6]:

(34) 1,'2 = 13 and lg = 13 - 2.

Hence the leading order contributions to the considered tensors are characterized
by the following parameters:

(1) m = 07 12 . l3)

(35) "
(ll) m = 1, 12=l3—2,

The tensors exhibit the characteristic dependence on the inverse powers of the
distances P.:

la+1
(1) they are of the leading order of (%) :
(3.6) e

[5+3
(ii) the tensors with m=1 contain the contributions of the order of (—) .
ke
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820 1. PIENKOWSKA

For example, the velocity tensors of low indices assume the following form:
(i) diagonal with respect to I; (m = 0):

1
3.7 CH(Py) = ——=I;
(37) BPO) = 5T
(ii) off-diagonal with respect to l; (m = 1):
\/§ g %%
3.8 e (= et = (—) K., .
(3.8) 2mq (Pk) = 2 I P, s

The leading order contributions to the velocity tensors, given by (3.3), will be
used to describe the velocity field past N spheres, provided the inertial effects
are negligible.

In the considered range P.U/v < 1 the second group of the velocity tensors,
being of our interest, are the tensors of the order of 0(Re). It follows from (3.2)
that they are equal to

(3.9)  CPM2=24mi Y Bmlla,l3) D R(la, ma, ma)R(l3, —ma, —ms)d} *d; ™

lams
m=0 mgq,ms
1
2 27 i et
/dé Eém,;,ms - E Z 6m7+mg,m5Km5R(2}7n6:m7)d2 P2 (é)
0 me,my7
1 z—po+1 F(é)
« PIH(E) poiths ~ —_— 1 .
PP (5)  praoggat+

Taking again into account the properties of the integrals over £ we deduce that
the tensors, belonging in that group, are characterized by the following sets of
their indices:

(l) m = 0, 13212—1)
(3.10) (i) mell §e=til
(ii1) m= 1,2, I3 =1l +3.

It follows from (3.9) that the above tensors are built up of the contributions of
the following orders with respect to (a/Py):

lo
lam a \-
Clszm;; ¥ (Fk) ’
ls lo+2
a a
3.11 cpme o~ (—) , (—) ;
( ) la+1ms3 Pk P]\:

l la+2 la+4
Clzmz o (i) ’ ((_L) (i) X
l2+43ms Pk ! P]\: Pk
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THE VELOCITY OF THE FLUID 821

Here we list, for example, a few low indices 0(Re) tensors, for the particular case
of U(0,0,1):

(i)l;}:lz—l, m:O,

(3.12) Cclm(p) = —ﬁ(—l)(mrmz"/z{ém,o
(i) ls =l +1, m=0, 1,'
(313)  Cif,(Py) = 6\/1;_—:@(—1)(—’“3*?”““/2{ — g 0
I8 jﬁmi:_zdm,ms(—l)(m““me)/2 (Tzﬁ *:Tls ;) Kmﬁ} +0 ((%)2);

(iii) ls=0L+3, m=1, 2,

\/gRe : 2 3 1 a 2
3.14 gl (P = ——— b) K (—) y
( ) 3m3( k) 56\/%0.# mz m3,mg mg —mg 0 m6+0 Pk

g=—2

I lg I3

here the Wi 3-7 bols
where the Wigner 3-5 symbols (ml s

) are given by the formula (3.7.11)

from [6].
In view of the properties of the Bessel functions I, and Ky, the contri-
butions linear in Re appear also in the series expansion of the tensor 088 with

respect to PU/v. It follows from (A.8) that the tensor CJ)(P;) can be presented
in the following form:

(3.15) CH(P)=Cr+Ci+...,

where Cj, denote the Stokes contributions (3.7), C}, are the 0(Re) contributions,
equal to:

Re :

3.16 s S
( ) i 16vbmap - = o

R(2,m¢,0)Kp, ,
and the quantity R(2,mg,0) is defined by (A.4).

We note that the leading order contributions to C{%, (P), C3,. (Px) and Cj
are independent of P;. In the paper [7] we have discussed an analogous lack
of |R;x| in the leading order contributions to the mutual interaction tensors
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822 [. PIENKOWSKA

Ti2m2 (Rj) (Rji = RY - RY, the formula (4.20) in [7]). The above contributions
to the velocity tensors, acting on the component f} op of the induced forces, give
rise to the Pj-independent terms in the expression (2.8) for the velocity field.

That type of the independence has been reported, for example, in the paper by
PROUDMAN and PEARSON [14], concerning the flow past one sphere. The authors
have considered the velocity field in the framework of the Navier - Stokes equa-
tions, applying the method of the matched asymptotic expansions. The above
contributions to the velocity field, being proportional to Re, vanish at the Stokes
conditions.

4. The components f;,, .., of the induced forces

The hydrodynamic interactions between the spheres are treated as the multi-
ple scattering events, describing the scattering of the disturbances of the velocity
field due to the presence of the spheres. The approach leads to the following for-
mula, providing the representation for the components f;,,,, in terms of the
relative velocity of the fluid with respect to the spheres V; ;,,:

— l ml
(4'1) ]hml Z Thz"; J i lemz Z ZTzizf TI:::S(OI») Vk Jamy
lama k#j lim;
! l lsms lgme
+30 3 S TEma(Rk)- Time (k) Tiome (R, ) Tyme (O )+ Vi tormg — -+ - |

k#£7 k#ky limg

where i = 2,3,4,5, 6,

. v.. U =0
(-- 1,dm — 0, 121 .

Ti{:iz(o ) and Tf“;:;(Rjk) are respectively the inverse self- and mutual interac-
tion tensors; their properties have been analysed in the author’s previous paper
(1], under the assumption Rj;U/v < 1. For example, we list below a few hydro-
dynamic interaction tensors with the lowest indices, including the contributions
up to O(Re):

(1) self-interaction tensors:
T88(OJ) =T, +T} Fonn g

where

T, = S [_311e(31—i11‘1)];

I’
67 pa 7 6wpa | 16
(i) inverse self-interaction tensors:

(4.3) T(0;) =T; + T +... ,
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where

- - 3 55
e 1_ K5 - ;
T; = 6rpal, T} = 6mpa [IGRe (31 UU)] ,
(111) mutual-interactions tensors:

ng(Rjk) =T + T}k R

where
2a% 71 o

Tjk — 7871',uRjk 1+ e]kejk + R2 (gl — ejkejkﬂ 5

. Ry
€jr = ;

! IR ;|

Re s

1 _

B (31-0T) + ; O o T ZTOO S 0+ e
TOO lmas O(Re)v TOO 3ms ™ (Re)v ij/V <1l

The first contributions to the above tensors describe the Stokes interactions,
the second terms, respectively, the 0(Re) Oseen interactions. Taking into account
the properties of the tensors Tg":l”, the formula (4.1) yields the series expansion
of the fj;,,, with respect to o and Re. For example, the components f; oo are

equal to:

(1) for the case of the flow past one sphere:
(44) fj,goz—[i‘j+i‘}+”.] 'U:fj+f]1+

where f; denotes the Stokes drag force, fjl ~ the 0(Re) Oseen force;
(11) for the case of the low past N spheres:

(4.5) fj00 = —Tg0(0; ){1 -2

T(R0) T0) + 3 TR ma’?n(ok)}
kit ]

+> > Tool 00, TR By TR (0))

k#j 1#k

-3 3y ng(Rjk)'ng(Ok)'ng(Rkl)‘ng(ol)‘ng(Rln)‘ng(on)} U

k#j Ik n#l

+ZZT1W hn(RJR) TOO(OR) U L
k#j m

where, taking into account (4.3), the Stokes f; and the 0(Re) f] contributions
can be separated. The above expression is written down up to the terms of the
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824 I. PIENKOWSKA

order of 0(c?) in inverse sphere spacing. In that approximation, the four body
effects enter the formula (4.5). Hence, to analyse that range of the interactions,
a pairwise additivity assumption cannot be used. The more detailed discussion
of the properties of f; ;,, can be found in the paper [1].

5. The velocity field in the range Re < 1, (Re/k) < 1

It follows from (2.8) that the velocity field can be presented as the sum of the
contributions, generated by each sphere in the presence of (N—1) other spheres. In
view of the properties of the velocity tensors, the contributions exhibit different
features in the regions near to and far from the assemblage of the spheres. The
velocity of the fluid in the region, characterized by P,U/v < 1, assumes the form
of the sum of the Stokes (linear in U) and the Oseen (quadratic with respect to
U) terms.

Within the considered approximation (i.e. including the contributions up to
0(x?)), the Stokes terms can be expressed by means of the four Stokes velocity

00 (00 Im2 (lm P
tensors (Cpp, Comy» Cimes Came), whereas the description of the O(Re) terms
requires, in addition, the tensors C93,., C30, e, Cé”mli and C}lzz. Below we

continue the list of the relevant tensors (comp. (3.7), (3.8), (3.12), (3.13), (3.14)):
(i) the Stokes velocity tensors:

a

1
6/man (Fk
T 2 me - i) 4
+ \/; Z 5m2+m6,m3(_1)( i (mﬁ mao _m3) Kms}’

2
2
(5.1) Clmz(Pk) - ) (_1)(m2—m3—}m2|—\m3|)/2 {_g(_l)maémz.ma

1m3

m6:—2
V3 a'y? s
5.2 P = e T (_) _1)(mz—ma—|mz|—|ms])/2 5
( ) 3m3( k) Sma‘u B ( ) m;gg my+me,ms

4
<[ me=lmely/2 ( @ 3 B ) K., +0 ((i) ) :
mg my —m3 By

(i) the O(Re) velocity tensors (for the case of U/(0,0,1)):

(5.3) Clm v2Re (a

Pi=a— [

D i il V3 9
: Y S e ma (—1)(malmal) 2 {__
( ) 5 e 6Tn2+ 6, 3( )

) (_1)(m2—m3*[m2|—|m3\)/2 {(5m2,m3

mao —MM3 0 4\/?

1 2 3 N B B | a)’
.(mz —ms3 me)-+ﬁ (mz —m3 mG)}Kms}-kO((H) )’
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(G4)  Cim(p,) = VIR (“

— ) (=1)(m2—ms—|ma|~|ms]}/2§y"s
60 /_671"0,;1 Pk)( ) Z 6+ma2,m3

meg

3
» [—1)me~lms|}/2 ( 4 £ € ) K 410 (( g ) )
meg Mo —1N3 Pk

The Stokes and the 0(Re) contributions to the velocity field are expressed in
terms of the listed velocity tensors, acting on the respective components of the
induced forces. The components are the results of the many-sphere hydrody-
namic, non-additive interactions. Up to the contributions of the order of 0(c?),
the non-additive interactions of three and four spheres enter the description of
the velocity of the fluid. In Table 1 we have written down the admissible (from

Table 1. The velocity field (v(r) — U, cf. (2.8)) near to N spheres (PU/v < 1),
including terms up to 0(x?) and 0(¢?), j = 1,..., N.

Oseen contributions

Z Cl.yo. :
K? = chlm3ylm3 gy

Z Z C3m3Ym3 'fj

ZC-YOD-fJ- ZC Y-
K Z Il F Z Z o:3 W8 S 23
i :
Z Z Céﬁnz YO J,1ma

ma

¥ 3 i tum

j mzm3

Z Z Cimgyma fj,lmg

J ma2,Mm3

Stokes contributions

> D Gy fiam,

J m2,ms

2 : z : 1 m
C 1!.2Y3 a'j‘lfnz

j ma2,ma

Z Y, Ol Yk

ms

Z Z Com Y3 -
Z Z Cim¥™ Bz,

j ma2,m3

D0 Y O fiam,

j me2,m3
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826 1. PIENKOWSKA

the point of view of the properties of the velocity tensors and of the components
f; 1m) sequences of the hydrodynamic interactions.

We note the following qualitative properties of the velocity profile, due to the
inertia of the fluid:

(i) the velocity exhibits the stronger, than under the Stokes conditions, de-
pendence on the non-additivity of the interactions (at the Stokes regime the
non-additive interactions of three spheres enter);

(ii) the components f; oo generate the contributions to the velocity field start-
ing from the terms of the order of 0(x°) (at the Stokes regime, respectively, from
the terms of 0(k!));

(iii) the components f; 1,, generate the analogous contributions, starting from
the terms of the order of 0(k!) (at the Stokes conditions, respectively, from the
terms of 0(k?));

(iv) there appear the contributions, expressed in terms of the functions Y™
and Y3", which describe the lack of the fore-aft symmetry.

We note that for the particular case of one sphere, the tensor C; and Cg?ns,
acting on the component f; = —6mpaU, give the classical Stokes velocity profile.
To our knowledge, the description of the velocity field past N spheres, involv-
ing the Oseen hydrodynamic interactions between more than two spheres, is at
present not available in the literature. Summing up, in the present paper it has
been investigated to what extent the weak convective inertia of the fluid increases
the role of the hydrodynamic interactions and modifies the symmetry properties
of the generated velocity field.

Appendix. Series expansion of the tensors C2? with respect to P.U/v

iaﬂ’lg

The tensors Clzml’(Pk) describe the effect of the component fi j,.m,, of the
force, induced on the surface of the k-th sphere, on the velocity field of the fluid.
The tensors Cf;:g;(PL) concern the respective radial properties. To examine these
properties, we start with the integration over |k| in the expression (2.10). To this
end we use the properties of the Bessel functions J; /5, expressed by the formula
(7) on the page 45, and by the formula (7) on the page 99 of [9], and we apply

the expansion of 1 — kk in terms of ¥™ [5]:

12 21 &
(Al) 1-— kk = g[ = _5 Z KmGYQmG}
me=—2

where
l)

3
Ki) = eze, +e.e;F 'ieye: oS iezey s

(—eges —ey e, + 26,8, ),

=
5
I

eze; — eyey T iezey T i€yey .

http://rcin.org.pl



THE VELOCITY OF THE FLUID 827

As a result, we obtain the following expression:

s L, 2 o & ol -
(A2) O = Zﬁm(zg,z,g)fcmk -y 2 Kme¥3| YUY
m=0 meg=—2
- k—iPaf 5 =
Y el TR m (K) 1 +1/2(k),
/ 2 + (Peat)? la+1/2+42 (k) z3+1/2( )
where
.#2413 a la+1
A3 (o, 13) = —
(A3)  Bm(lls) San (Pk>

1 1
i, (=1)"(2l —2n+1) (l2+§+2m)F(12+—+m>

(L)Y 2

3 1
n=0 n!(2l, —n+ H)!I" (12 —n+ 5) i (—lg +n+ 5) m!

F b+ ok mmgly — oy I % +1-(a)2(a)2
4m,22m‘,2n2,2n2,2pk,2pk )

Fy is the hypergeometric series,

a=Uly, U=U/U  E=cos(U,k), k=Pk.

To perform the k integration, we apply a rotation of the coordinate system by
the linear transformation, k = A -y, letting the new axis 3 coincide with U. Then,
taking into account the properties of the functions ¥;™:

(A.4) Y(k)= 3" R(l,q,n)Y"(3),

[n|<l

and using the formula (6.577) from [10], we obtain:

(A5)  Cm =+ Bullals) / 40, {...}il 2=t L Pag) K (Peat)

m=0 £50
+Y Bulla ls) / d0,{... )il 2=l (Poale)) K 5(Pua€]),
m=0
£<0

where (+) refers to the cases I +l3 = 2n, and (—) — to the cases ls +13 = 2n +1,
I; and K; denote the modified Bessel functions, z = max(ly+1/2+2m, [3+1/2),
0 =min(ly +1/2 +2m, l3 + 1/2), and the expression in the parentheses reads:

(AG) {} — Z R(lg,nzg,m4)R(13,—m3,—m5){21

3
m4,Mms

2 mry [~ ma (-~ —ms ¢~
—\/% > KmeR(2,mg,m7)-Y; 7(9)}1’324(9)}/13 (9)-

me,mr7
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Carrying out the integrations over the meridional angle, we arrive at:

lamsa

o0
(A7) O™ = 3dw 3 Bl g st 2m—tel
m

+ Y R(ly,ma, m4)R(l3, —m3, —ms)d}r*d;, "™

mgq,ms
1
2 2r my7 pm7
/d£ '3“(5m4,m5“ _1‘5" Z 5m7+m4,m5KmeR(21m6am7)d2 Pz (6)
me,my

0
- P P ™ () I (Pral) K ( Pral),

where the coeflicients dj* read:

==l | |/2\/ n(l +m)!

P™(&) are the associated Legendre functions [cf. [6], formulae (2.5.17) and
(2.5.18)].

Taking into account the properties of P/"(£), we can accomplish the integra-
tion with the help of the formula 1.11.3.2 from [11]:

1
(A8) [ dEBPag)Ky(Pat)

7 (Prex/2)*~2

2singr |(A+z—o+ )2+ 1) (—p+1)

> A+E—-g+1 F—-8+1 E—-§+2

3474 9 ) 2 ) 5 ’

§ o A+Z—p+3 :

z4+1, —o+1, z—0+1, 2—29_; (Pka)z]
(Pra/2)te

A+Z2+0+)IE+ 1)+ 1)

F A+F+g+1 F+p+l z2+4+2

3474 9 ) ) ) 9 ’
A+Z+0+3

g+, 0-+1, 2 '+1,—15§g—ﬂ(ﬁafﬂ,

where the parameter A depends on the P/™(¢) involved, and the following condi-
tion should be fulfilled:
A+zZ4+p> -1
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The last integration leads to the representation of the velocity field tensors in
terms of the linear combinations of the 3 Fy functions. That representation is valid
for the arbitrary values of Re. We are going to examine the particular regime of
the hydrodynamic interactions, which is described by the velocity tensors, having
arguments Pra < 1.
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Transverse Stokes flow through a square array of cylinders

A. ZACHARA (WARSZAWA)

THE WORK PRESENTS results of calculations of the transverse Stokes flow through
a square array of cylinders. The new functional basis has been derived and the
solution is sought in the form of series expansions in this basis, the terms of which are
given explicitly as functions of the volume fraction ¢. The presented method enabled
us to evaluate the expression for the drag force of high accuracy using symbolic
computations.

1. Introduction

SLow FLOW of a viscous fluid through an array of cylinders is observed in
many technical applications such as heat exchangers, fibre filters and bundles
of man-made fibres in spinning processes. In this paper we shall study the flow
through a square array of cylinders in a direction transverse to the cylinder axes.
This problem was first studied in 1959 by HAPPEL who calculated the Stokes
flow, taking into account the periodic structure of the array with the aid of a
so-called free surface model [1-2]. As a result, he got an expression for the drag
force F' exerted by the fluid on a unit length of a cylinder. The drag force was
a function of the volume fraction ¢ of cylinders for a given mean velocity U of
the fluid. The volume fraction ¢ is defined as

71'(1’2
1.1 = s
(1.1) =y

where @’ is the cylinder radius and A is the cross-sectional area of the array per
single cylinder. In the case of a square area it takes the form

(1.2) A=

[ being the distance between the cylinder axes.

The expression for the drag force F' may be presented in the following general
form which involves approximations of various order

13 F 1
' WU K(p)'
where
1
y Elal) = — (n)
(1.4) K(e) = 5= [In(1/¢) + T (p)]
(1.5) T™W(p) = Y o',
1=0

and y is the dynamic viscosity of the fluid.
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832 A. ZACHARA

The approximation of HAPPEL [1-2] was rather rough and the results obtained
were of a reasonable accuracy merely for very dilute arrays (¢ < 1). At the same
time, an alternative approach to the investigation of a viscous fluid flow through
periodic arrays of particles was proposed by HASIMOTO [3]. Using Fourier series
expansions, he obtained spatially periodic fundamental solutions of the Stokes
flow for arrays of spheres as well as of cylinders. Lattice sums which appeared
in this method were calculated using rapidly converging Evald’s technique. He
introduced then two functions S; and S; with the aid of which it was possible
to construct the infinite system of algebraic equations, in which one of unknown
quantities was the drag force. After truncation the system was solved and the
expression for K(¢) (1.4) has been obtained with the accuracy of O(y). The
method of Hasimoto was then developed by SANGANI and Acrivos [4] who
obtained the expression for K(p) to O(y®). It is also worth to mention the
paper of DRUMMOND and TAHIR [5]. They calculated K(¢) using the method
of singularities, matching a solution outside a cylinder to a sum of solutions
inside each cylinder in an infinite array. The obtained expression for K (y) was
determined with the accuracy up to O(p?).

SANGANI and ACRIVOS [6] made also numerical calculations of a Stokes flow
past a periodic array of cylinders and evaluated the drag force F' in a wide
range 0.05 < ¢ < 0.75. The results [6] may then be treated as reference data for
analytical approximations.

The expressions derived for the drag force may be used to calculate filtration
flow through the array of cylindrical rods, treated as a porous medium [7]. It can
be shown that the force F' is related to the mean pressure gradient exerted on
the fluid in the array of cylinders [1-2]

F dp’
(1.6) ===

Inserting (1.6) to (1.3) we obtain the relation

'
(1.7) U = —ﬂK(go)d-—pm
7 dx

which has the form of a linear Darcy equation, where K(y) (1.4) plays the role
of a permeability coefficient [7].

These results, together with the results for the parallel case [1-2], were applied
by SZANIAWSKI and ZACHARA [8, 9] for calculation of filtration flow through a
bundle of man-made fibers in a formation processes. It allowed them to obtain
velocity and pressure distribution inside the bundle of fibers.

In the present paper, the approach of Hasimoto as well as of Sangani and
Acrivos has been modified. A new functional basis has been derived. It allowed
to derive explicit expressions for matrix components of the infinite system of
equations and its solution could be obtained using symbolic computations [10].
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The system was truncated and as an example, the coefficient K () was calculated
with the accuracy of O(°). This procedure can be easily extended to solutions
of higher accuracy.

2. Governing equations

We consider the slow flow of a viscous fluid through a square array of cylin-
ders, each of them of radius a’. They are infinitely long, so the problem may be
treated as two-dimensional. With respect to the periodicity of the array, we shall
limit ourselves to a unit cell which is repeated throughout the system (Fig.1).
The dimension of a unit cell is [. To describe the problem, we shall use both
the Cartesian (2, z5) and cylindrical (r’,8) coordinate systems. Position of the
cylinder axes in the plane z}z} are given by the vector

(2.1) n = l(nla(l) +nga(2)), iy, e =0, L 2, v

where a(;) and a(y) are basic unit vectors in z and z% direction, respectively. We
assume that the fluid flows in z} direction with the mean velocity U. According
to the assumption that the Reynolds number is very small, the flow may be
described by the Stokes equations which are given below in a non-dimensional
form

2.
(2.2) 0%u; = dp ’
o0z} or;
Buk =
(2.3) e 0,

F1G. 1. Unit cell of a square array of cylinders.
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834 A. ZACHARA

where u; is the velocity component of the fluid and p; is the pressure. The co-
ordinates have been non-dimesionalized with [ and velocity components with U.
The non-dimensional pressure p is determined as

_ P
-

P

The velocity field must satisfy the periodicity conditions and the no-slip bound-
ary condition at the cylinder surface

u(r + n) = u(r),

(2.4)

u(a,d) = 0.
Following the approach of HASIMOTO [3] and SANGANI and ACRIVOS [4], we first
consider the Stokes flow through the periodic system where cylindrical particles
have been replaced with singular multipole force distributions located at their
axes. In this case, the Stokes equations may be presented in the following form:

62'01‘ 3(}
Bmkazk == B_SLL i FL %(5(1‘ — n),
(2.5)
9 _ g
oz ,

where §(r — n) is Dirac’s delta function, while v; and ¢ are velocity component
and pressure, respectively. The components F; are F} = F, Fy = 0.

The non-dimensional drag force F acting on a unit length of the cylinder is
determined by

F.‘
U

The symbol {n} at the sign }_ in (2.5); denotes summation in the directions z;
and zs to infinity,

F

ni=—00 nNa=—

HasimoTo [3] found the periodic fundamental solution of Eq. (2.5) in the form

= 5

(2.6) v; = Updyy — e 1:5151'1 a D:lrlazﬂii}
| aq 1 62'51

9 e Y dar .

(~.7) Bz F |: din + 47 Ox10z;
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The functions S; and Sy which are periodic throughout the lattice are as fol-
lows [11]:

1 exp[—27i(n-r)]
2 = — N
(2.8) Sh - > mE :
{n}
1 —rexp[—2ni(n-r)]
2.0 =l
(29) i P

where ¢ is an imaginary unit and the prime (') over the summation symbol
indicates that the term |n| = 0 is excluded.
They are solutions of the equations

(2.10) V28, = —4x lz §(r —n) — 1} :
{n}
(2.11) Vs = 8,

what may be proved by the finite Fourier transforms.

Now we choose the unit cell of the array, indicated by the point n = 0 at its
centre. The functions S; and Sy (2.8)—-(2.9) are here calculated using the Evald
summation [3] and expanded in planar harmonics near r = 0. The corresponding
expressions are as follows

(s o}
(2.12) Sy = —2Inr — Cp + mr? +2 z Ar™ cosmd
m=4
1, r2
(2.13) Sy = =7 (l—lnw)—CgZ
nrd =
bt Z [Am/(z(m +1))r? + Bm] ™ cosmé
m=4
where

r=(af +23)'/?,

0 = tan~}(zqa/z1).

Both the functions (2.12)—(2.13) fulfil Eqgs. (2.10), (2.11) in the unit cell n = 0
where the Dirac’s delta 6(0) corresponds to the properties of Inr and its deriva-
tives at 7 = 0. The function S; is simply related to the Wigner potential and
the first non-vanishing coefficients A, are evaluated in [12]. With respect to the
symmetry of the square array, the coeflicients A, and By, are different from zero
only for m which are multiples of 4. The method of evaluation and numerical
values of A4,,, B,, and Cj are given in the Appendix 1.
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The importance of these results exceeds the frames of the fluid dynamics
since 5] is equivalent to the electrostatic potential in a periodic system of charge
particles embedded in a neutralizing uniform background [12]. It is worth to note
that this background corresponds to the mean pressure gradient which is able to
balance the drag of the cylinders in the flow. The approach of Hasimoto was also
successfully applied to the calculation of the effective conductivity of composite
materials of a regular structure [13-16].

The fundamental solution (2.6) is a starting point to construct a general
solution of Egs. (2.2)—(2.3) where velocity components u; and us defined for
r > a satisfy the no-slip boundary condition on the cylinder surface r = a with
the required accuracy. To this end, following [3] and [4], we add to the solution
(2.6) the even derivatives of v; and S; multiplied by unknown coefficients. This
operation satisfies the symmetry conditions of the periodic flow through the array
and leads to the following expressions for the velocity components u; and us:

)| 0252 3251
(2.14) (T 0) 0 — E [G (Sl — —B:L‘% ) +- H_BSE% 5
s 09?8, 05,
24105 0 G —-H
( ) ) = { Oz 0z 31:18352]’

where G and H are differential operators

o0 6211
G = Z P 5\ a..2n
(2.16)
H Z Qn 2Tl )
n=>0 23
and
(2.17) Us=1+Qy;

We perform differentiation of Sy(r,8) and Sa(r,8), Egs. (2.12)-(2.13), with re-
spect to x; and x2 in (2.14)—(2.16) using operators

i . i 'sm9 %)

ory . ar r 00’
(2.18)

0 g0 b0

dry Y r 00

To calculate the coefficients P, and Q,, we make use of the no-slip boundary
condition on the surface of the cylinder (2.4);. Thus we have

(2.19) uy(a,8) =0, us(a,f) =0
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Hence Egs. (2.14)-(2.19) lead to the system of algebraic equations for the coef-
ficients P, and Q,. If we compare (2.6), (2.14) and (2.16); we can see that the
force F' exerted by the fluid on the cylinder is equal to the coefficient Py,

(2.20) F =Py,
and from (1.3) we have

(2.21) K(p)=1/P,.

3. The basis functions

It is useful to define and derive the basis functions which may help to carry
out calculations of the coefficients P, and @, in an efficient and tractable way.
These functions, which appear in (2.14) and (2.15) are

025, 9%S,
3:1 =8 — U2 = —=,
(3:1) 51 ox? ' s
6252 6251
2 /s 2 =
(3 ) 613181‘2 ’ ¥ (9.’)31(9272 ’

where S and S; are determined by (2.12) and (2.13). Performing differentiation

of Sy and Sy with the use of operators (2.18), we get expressions for the function
(3.1) and (3.2) given below

. 1 1 2 ar® 1 2
(33)  U'n8) =3 [lnl/'r - CO] + 5 + (2 - 7r*) cos 26
o0 [oe]
+ Y AnEn(r,0) = > (m+2)Dpo(r)En(r,0),
m=0 m=0
, 2c0s20 & 2
(34) U(n@)=2r+-2Z 42y AmuM Ep(r,8),
m=0 !
(35)  V(r6) = —3(2 — 7r?)sin20 — 3 (m + 2) Do (r) Eun(r, 6),
m=1
2311129 = (m

(3.6) VZ%r6) = )'F (r,8).

-2 Z Am+2

The auxiliary functions which appear in (3.3) - (3.6) are defined as follows:

. 1

(37) Dmn("‘) == EAm+2n+2T2 + (m = 1)-Bm—!-Zn-i-2 3
(3.8) En(r,0) = r™cosmb,

(3.9) Fop(r,0) = r™sinmé .
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The even derivatives of the basis functions which appear in the operators (2.16)

are denoted by the following symbols

aQnUl
1 _
Un = 6:02” '
(3.10) i)
1 8 "V 2
ST =T

wheren =1, 2, 3,....

After differentiation of the basis functions (3.3) -

sions for their derivatives (3.10) which are

U? =

a2n U2
aIZn !
a?n V2

2n ?
Ozy

(3.6), we obtain the expres-

(3.11) U= génl - 27"% [(2n)! cos 2(n + 1) — 2(n — 1)(2n — 1)! cos 2nb]
(m + 2n + 2)!
- Z Tl)!Dmn(T)Em("'-g)
o0
2n)!
—(n-1) Z Am+2nm—rﬂ}j‘m(r,9), for n>1,
m!
m=0
while
iy =u,
2(2n + 1)!
(3.12) U2 = 2m8n0 + —%J% cos2(n + 1)8
00 I
+2 Z Am+2n+2(1’n—+2—7+—2)'Em(r,9) for n>0,
A m!
! = + 2n)!
(3.13) Vi = (22221 [sin2nf —sin2(n + 1)0] — n Z Am+QHWFm(T,8)
" m=1 i
+ 2n + 2)!
= Z (mm i ] L (8]  dor n>1,
while Vgt = V1,
2(2 1)!
(3.14) V7= -(T%L—)smz(n +1)0

00
~ Z Am+2n+2

m=1

(m + 2n + 2)!
m!

Fn(r,60) for n > 0.
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4. Calculation of the drag force

The drag force F' (2.20) can be calculated from the system of Egs. (2.19)
where the velocity components u; and uy are determined by (2.14) and (2.15).
The differential operators G and H (2.16) act on the functions (3.3) - (3.6). The
system of equations (2.19) may thus be written

(4.1) GU! + HU? = 4xU,,
(4.2) GV -HV? = 0.

Using (2.16) - (2.18) we present Egs. (4.1) - (4.2) in the form

(4.3) i [P,-Uil + Q; (U% - 47r(5,-0)] = 4,
=0
1=0

The basis functions (3.3) —(3.6) and their derivatives (3.11) - (3.14) may be pre-
sented in a form of cos 2i6 and sin 2i6 expansions whose coefficients are elements
of a matrix Z,,. Thus we have the following expansions of U} and V¥,

UN(a,0) =3 (4m6i08n00k2 + Z2is1,2n+k) cOS 246,
(4.5) =0 N
an:(a7 9) - —(—'1)k Z ZZi,2n+k sin 2160 ’

=1

where k=1and 2,2 =0, 1, 2, 3....

Now we insert the basis function expansions (4.5) to Eqs. (4.3)-(4.4) and
collect terms of Eq.(4.3) containing cos2if and terms of Eq.(4.4) containing
sin2i6. Then, after some rearrangement we present Eqgs. (4.3) - (4.4) in the fol-
lowing form:

oo oo
(4.6) Z Z Zait1,Xj) cos 2 = 4m,
i=0 j=1
o0 o0
(4.7) ZZ Z;;X;)sin2i0 = 0.
y= 9=

Here X; are unknown quantities related to P; and @Q;
(4.8) Xony1 = Py, Xons2 = Qn,

while the coefficients Z;; are known elements of the matrix evaluated from the
basis functions (3.3) —(3.6) and their derivatives (3.11) —(3.14). The details are
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given in the Appendix 2. Thus we can transform Eqs. (4.6), (4.7) to the infinite
system of algebraic equations where X; are unknown components of the vector
X and Z;; are known elements of the matrix Z,

(4.9) ZX = 4r1,

where I is a column vector whose first component is 1 and all other components
are equal to zero.

We can see from (4.8) and (2.20) that the drag force F is equal to X;. For
calculation of X it is useful to separate from the matrix Z;; the logarithmic
term included in U'(a, ) (3.3), which we denote by Kj

(4.10) Ki=ll/a®=Cs.

Thus we can present the elements of the matrix Z in the form
1
(4.11) Zig = '2“K0¢51i51j + Wi,

while the elements of the matrix W are given in the Appendix 2.
The unknown X; can be written formally as

B 4n|Z5|
1Z]
where the superscript S denotes a submatrix of the original matrix, correspond-

ing to its first element (1,1).
It follows from (4.11) that

(4.12) X,

(4.13) 18] = %KUIZSI + W],
and
(4.14) 75 =wS.
Inserting (4.13) - (4.14) to (4.12) we get

8w
(415) Xi= s
where
(4.16) B=2/",

while Y] is the first component of the vector Y which is the solution of the
equation

(4.17) WY =1.
According to (2.21), (4.8) and (4.15) we have

1 1
4.1 K = — = —(K, i
(419 (0)= 5 = g= (Ko + )
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5. Results

The infinite system of equations (4.17) was truncated to five equations and
solved with matrix elements W;; taken from the Appendix 2. The solution Y,
which is the subject of our interest, has been obtained with the accuracy of
O(a'?). Inserting Y] to (4.16) we get the following expression

2
(5.1) 8= v = Gha® + Ot + ha® +Cu® + Gs6',
1

where the coefficients C,, have the following numerical values:

¢ =27,
7r2
Cy = — 7+11525§ ,
(5.2) Cs; = —1536 A4 By,
Cy = 576w AgBg — 52042,
Cs = 384w A3,

Numerical values of Cp, A4 and By are given in the Appendix 1.

The expressions (5.2);_3 are completely equivalent to those used by SANGANI
and AcrIvos [4] who calculated B to O(a®). The expression (5.2); cannot be
directly compared with the corresponding one of DRUMMOND and TAHIR (5]
since they used a different calculation method than ours, and these expressions
are of a quite different form. We shall come back to this question later and
compare the numerical values of the coefficients with the literature data.

It is however more convenient to express the force F' as a function of the
volume fraction ¢ (1.1) which is related to the non-dimensional radius a as

(5.3) @ = ma’.

Inserting (5.3) into (5.1) and then combining (5.1), (4.10) and (4.18), we obtain
the expression for K (¢) presented in Sec. 1 (1.4), where T(™ (¢) is a power func-
tion expansion in ¢ (1.5). The drag force is related to K (y) according to (1.3)

1
5.4 F=—.
- K(©)
The initial coefficient of the expansion T is
(5.5) To =Inm — Cy = —1.47633597.

The other coefficients are related to the coefficients C; of (5.1) using expres-
sion (5.3)

(5.6) Ti=—.
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Table 1.

i T

—-1.47633597
2.00000000
—1.77428264
4.07770444
—4.84227403
2.44662267

UL W= O

The numerical values of all these coefficients Ty — T5 are collected in Table 1.
We can now compare the numerical values of the coefficients from Table 1
with the values obtained by the previous authors [4] and [5]. The coefficients of
SANGANI and ACRIVOS [4], calculated up to four decimal places in frames of the
approximation to O(¢?), i.e. for i = 3, are equivalent to the corresponding values
from Table 1. The coefficients of DRUMMOND and TAHIR (5] (i = 4) are equal
to those from Table 1 up to nine decimal places, although they were evaluated
by different procedures, as it was previously indicated. It seems to confirm the
conclusion that both the procedures are equivalent, and calculations in [5] and
in the present paper were carried out correctly. The coefficient T5 is a new value

F
10*

T T T I

o
T

—
S
mmenn
v ~
=

10°

/

]() 1 s 1 2 1 K 1 " I " |— n 1
0.0 0.1 02 0.3 0.4 05 0.6

T
\
(88}

7

FiG. 2. The non-dimensional drag force F' vs. the volume fraction ¢. Comparison of
the numerical reference data of SANGANT and Acrivos (6], (line 1) with various
approximations. Line 2 — Sangani and Acrivos to O(¢?) [4], line 3 — Drummond

and Tahir to O(p*) [5], line 4 — the present results to O(¢”).
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obtained in the frames of the present approximation corresponding to O(y®). The
results of [4] and [5] were collected and presented in the monograph of P. ADLER
[7]. The literature data concerning approximations of higher order than that of
DRUMMOND and TAHIR, of O(¢?), are not known to the author.

We calculated the drag force F'(¢) from (5.4) for approximations of various
order using coeflicients from Table 1. The results are presented in Fig. 2. The
results of SANGANI and ACRIVOS [6] are here included as the reference data. They
were obtained by numerical integration of the Stokes equations in a range of ¢
from 0.05 up to 0.75. It is almost the full range of p since the maximum value of ¢,
which corresponds the case of touching cylinders, is pmax = m/4 = 0.785398... .
We can see how the accuracy of calculations increases with the order of approxi-
mation. The expression (5.4) with the series expansion T3) () estimates the drag
force within the error of about 2% at ¢ = 0.2. This error is kept with T4 () at
¢ = 0.3 and with T®) () at ¢ = 0.4. For ¢ > 0.4 all these expressions diverge
and a new formula of better accuracy is needed.

6. Conclusions

A new functional basis derived in this paper enabled us to obtain expressions
for matrix elements W;; (see Appendix 2). The matrix is involved in Eq. (4.17)
which is subjected to truncation of a chosen order, and its solution enters the
formula (4.15) for a drag force. The explicit form of the expressions W;; makes
the calculations very tractable and allows to derive the solution using symbolic
computations of Mathematica [10]. This procedure was here applied to the system
of five equations and the results obtained to O(¢®) were of higher accuracy than
the results of the previous authors. Extension of these calculations for larger
systems of equations is straightforward.

Appendix 1

We present below numerical values of the first non-vanishing coefficients A,
and B,, as well as the constant Cp, which appear in (2.12) and (2.13). The
coefficients were evaluated from the expressions derived in [4] and adopted here
for the square array.

T
(ALY A= 52D o) S (), 0)m-1 S
] {n}

+ 3" B (Inl,0) So(rlnla) |
{n}
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(A1.2) B, = M la—(mm ZEm(|n"9)¢m—2 (ﬂzlz)

41,51
27 iml o

+3 Em(In|, 6) %(wlnl"a)] )
{n}

(A1.3) Co=v+In(r/a) +a— Z@-l(r|n|2/a) - aZ@o(ﬂ|n|2a)
{n} {n}
We used here the following notation:

[e.o]

8,(a) = [ et

1
is the incomplete gamma function. In particular we have

&_1(z) = ~EBi(~z) = —y — Ina + Z

nn‘

where v = 0.5772156649... is the Euler constant. The functions @,(z) of higher
rank can be obtained from the recurrence formula

2P, =e T +vd,_;.

Arguments of the functions can be calculated by taking |n| = (n} + n3)"/2, a
modulus of the vector n =n'/l, (2.1),

g - Arctan (na/ny), ng #0,
~ | m—sgn(n)w/2, n1=0.

The parameter o which appears in (Al.1) - (Al.3) is a moderate constant
involved in Evald’s summation method, and is of a very small influence on the
final result of calculations.

The constants evaluated from (A1.1) - (A1.3) are as follows:

Ay = 0.7878030005, As = 0.5319716294,
A1p = 0.3282374177, A = 0.2509809396,

By = —1.044856181 1071, Bg = —4.031710210 1072,
Bis = —1.469973805 1072, Bis = —8.399042320 1073,

Co = 2.6210658523.

The coefficients A,, are related to the Rayleigh sums Sy,

Am:%a
m
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which were evaluated up to five decimal places and presented in [16]. Numerical
values of the coefficients B,,, as far as it is known to the present author, were
not presented in literature except the coefficient By [4], the value of which given
there is however not correct.

Appendix 2

In this section the expressions are presented which enable us to calculate
elements Wi; of the matrix W. They have been derived from Egs. (4.11), (4.5),
and (3.11) - (3.14). The expressions W;; are different for odd and even subscripts
j corresponding to the matrix columns. To simplify the form of expression for
odd j, we exclude here elements of the first column (j = 1).

Matrix elements W;; for j = 1:

7ra2

(A2.1) Wi = Téu + %(2 — 7ma?)(di3 — 0iz) + Ai_1a* !
— i+ 1) [%Aiﬂa? + iB,-H] a1
~E+2 B-Ama2 + (i + 1)32“] a'.

Matrix elements W;; for other odd subscripts j =3, 5, 7,...:

—1)!
(A2.2) Wi = géi16j3 + (J ) (6i,j+2 - 5,"]4,1 = 5,’1]',1)

a1
N _2325{-1_ 2ty G- gzgi_+1])‘!— D! iy pai?
- % [%Ai+j+la2 +(i+ l)B“'j“] o

Matrix elements W;; for even subscripts j = 2, 4, 6,...:

.. 2(j —1)!
(A23) Wi = —2mdndj + T(5i,j+1 — i)

2(i 4 j — 1)!
(i —1)!

2(i + j)!

Aiﬂ-_la’*l + 3
(A

AHja"
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A yield-vertex modification of two-surface models
of metal plasticity

H. PETRYK (WARSZAWA) and K. THERMANN (DORTMUND)

A PHENOMENOLOGICAL MODEL of elastoplastic behaviour of metal polycrystals is
proposed which combines the features of micromechanical models with the classical
flow theory of plasticity. The standard equation of a smooth loading surface describes
here an outer limit surface which is never reached. The actual inner yield surface
possesses a vertex at the current loading point, interpreted as the point of intersection
of active yield surfaces for plastic flow mechanisms at a micro-level. The incremental
response of the material at the vertex is defined in terms of the position of the current
stress relative to the outer surface. In the computational version of the model, the
effects of partial unloading and of physical and constraint hardening are represented
by separate constitutive functions.

1. Introduction

THE CLASSICAL FLOW THEORY of time-independent plasticity is based on the
assumption of a smooth yield surface and of a flow rule that prescribes the direc-
tion of the plastic part of strain-rate in the current state. On the contrary, micro-
mechanical models of elastoplastic polycrystals invariably predict (cf. [1-4]) the
formation of a vertex on the yield surface at the current loading point, as well
as the existence of a whole range of admissible plastic strain-rate directions, the
actual one being dependent on the current stress-rate.

Accordingly, two separate classes of time-independent phenomenological con-
stitutive models for polycrystalline metals in the plastic range have been pro-
posed: of the classical type and of the corner (or vertex) type. The former have
a simpler structure in the incremental form and can in principle be constructed
using the accumulated knowledge of experimental yield surfaces, while the latter
are closer to micromechanical predictions and are expected to simulate better
the material response after an abrupt change of the direction of straining. In cal-
culations, the J; corner theory of plasticity formulated in [5] was most frequently
used among relatively few phenomenological corner models proposed so far for
metal polycrystals [6—14].

The purpose of this paper is to develop a phenomenological model of elasto-
plastic behaviour of metal polycrystals which combines the features of the above
two classes of constitutive description. A given model of the classical type is
modified in order to improve the consistency with general conclusions drawn
from a micromechanical analysis [3]. Accordingly, the classical smooth yield sur-
face plays here the role of an outer extremal (limit or target) surface which is
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never reached, while the related inner yield surface (a boundary of the actual
elastic domain) possesses a vertex at the current loading point. The extremal
surface may be interpreted as a locus of asymptotic stress states approached
when physical hardening is imagined to be suspended [3]. A considerable simpli-
fication in the proposed computational model, and also the difference in relation
to the previous corner theories, is that the incremental response of the material
is defined in terms of the position of the current stress point with respect to
the eztremal surface, independently of evolution of the latter, e.g. according to
an isotropic/kinematic hardening law. In turn, the fundamental distinction from
plasticity models with two or more loading surfaces [15-18] is that the inner
surface is here no longer smooth. The derivation of the incremental law at the
vertex of the inner yield surface also appears to be novel. In the first approxi-
mation, the simplest assumption of mutually independent internal mechanisms
of plastic deformation at a micro-level has been explored.

2. Two-surface model of plasticity with a vertex
on the inner yield surface

The small-strain formulation is given first; an extension to a geometrically
exact description at finite strain will be given in Sec. 4. The standard yield con-
dition of the Huber - Mises type:

(2.1)

all
|
tould

Bl

= (30"~ @)’ - a))l/z

is adopted here as an equation of the eztremal surface in the sense of HILL [3]. o
denotes the Cauchy stress(!), o’ its deviator, a denotes the deviatoric backstress
and k is the yield shear stress. a and k can vary with the plastic deformation
according to prescribed rules which are left arbitrary here. (2.1) can be replaced
by a more general equation of a smooth surface without changing the remaining
part of this section. However, the specifications in the next section are only given
for the form (2.1).

Contrary to classical elastoplasticity, the surface (2.1) is not allowed to be
reached, and plastic deformation can take place when the current stress lies
inside the surface (2.1). During plastic flow, the current stress point @ constitutes
a vertex on the inner yield surface which is a boundary of the current elastic
domain (Fig. 1a). The vertex is interpreted as an intersection point of individual
smooth yield surfaces (transformed to the macroscopic stress space) for a large
or infinite number of internal plastic deformation mechanisms at a micro-level,

(') In the standard symbolic notation employed, bold-face letters denote second- or
fourth-order tensors, a dot between two tensor symbols denotes full contraction, a tensor prod-
uct is denoted by ®, and |&| = (o-¢)'/? denotes a norm of the stress-rate. Throughout the
paper, only symmetric second-order tensors are used.
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cf. [3]. Such a mechanism can be identified, for instance, with crystallographic
slipping on some system in some grain in a polycrystalline aggregate. We restrict
ourselves to examining the case when the matrix of hardening moduli, which
represents mutual interactions between the mechanisms either within the same
grain or in different grains, is symmetric and positive definite. A well known
consequence is that the fourth-order tensor of macroscopic plastic compliances,
denoted below by MP, is diagonally symmetric and at least positive semi-definite.

a) extremal surface b)

subspace S a

yield surface

partial

ot unloading

elastic elastic

unloading fully

active
loading

F1G. 1. (a) Two-surface model of plasticity where the inner yield surface has a vertex
at the current loading point and the outer extremal surface is smooth. (b) Overall
structure of the incremental plastic constitutive law at the yield-vertex, within
a two-dimensional subspace S.

As long as unloading is absent or partial so that the elastic domain is not
penetrated, a phenomenological constitutive relationship at the vertex may be
defined without specifying the entire form of the elastic domain but merely the
directions tangent to the corner of the elastic domain at ¢’. In a given state of the
material, a macroscopic plastic strain-rate €” is assumed to be a single-valued,
positively homogeneous of degree one, continuous and (except at & = 0) at least
piecewise-continuously differentiable function of a macroscopic stress-rate . It is
emphasized that a dot over a symbol denotes the forward rate. We will examine
that function restricted to a two-dimensional subspace § of the Euclidean space
of symmetric second-order tensors, and denote by ég the orthogonal projection
Ps-€” of €” on §(?). By the Euler theorem, the homogeneous incremental plastic
law can be written down as

. _— de’
e’ = MP(0).0, MP = i.,
(2.2) do
el = MR(d).0o, ME = PsMPPg, if ¢€8§.

The diagonal symmetry of MP implies that M% is a diagonally symmetric
operator within §. From the spectral decomposition theorem for fourth-order

(*) If (a,b) with a-b = 0, |a| = |b| =1 is an orthonormal basis in S then Ps = a®a+b®b.
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diagonally symmetric tensors (cf. [19]), we obtain that M%, henceforth assumed
to be positive definite, has the following representation

(2 3) Mg = Mlal ®a + Mnau @ ap,
a,a; €S, a-a, =0, la,| = la,| =1,

with principal directions a,, a,, and positive principal compliances M, M.
Let o0g # 0 define a distinctive direction within &, and 8 denote an angle of
inclination of a nonzero o to oy,

d’-a() 6’0
ag = —F— =
oo

(2.4) cosff=——,
o]

The considerations below are limited to o € S lying on one side of oy where
B € [0, x]; the other side can be examined analogously.

Each quantity in (2.3) depends in general on 3. An admissible function M%(53),
if discontinuous, must ensure the continuity of €3(d), and at every differentia-
bility point it must satisfy the additional condition

M
43 co=10

obtained by differentiation of (2.2). On substituting (2.3), the condition (2.5) is
easily transformed to

(2.5)

dM, _ (dB, X
(l) G) ﬁ cos ﬁI = ( dﬁ ) (M[ ]LI“) Slnﬁl )
= dM,, . . [dpB, : , )
5 sinf, = (Tﬁ - ) (M; — M,,)cos B, ,

where £, is an angle between o and a, with

o-a
, sin f3, :‘T‘”.

o-a

o
From (2.3) we also find that [, is connected with an angle «; between €l and a,
through

1

(2.7) cos f3; =

M
(2.8) tan o = fv_flxl tan 3, .

It can be seen that if one scalar function from the triple {M,(3), M, (3), 3,(8)}
defining M%(3) is prescribed then the two other have to satisfy two differential
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equations (2.6), with appropriate boundary conditions. That restriction is related
to the existence of a stress-rate potential ¥P(g),

H P

(29) €P= daia PP = %e“’-& and 0P = %&-M{;-d if ¢es,
whicli 1s a consequence of the diagonal symmetry of MP. If more than one scalar
constitutive function in a subspace § is assumed, as in [12, 14], then the poten-
tiality property is generally lost.

Further considerations are restricted to the case 0 < 8, < 7/2 illustrated
in Fig.1b. Moreover, we will assume that M, |, = M, — M,, > 0 and that
0 < df3, /dp < 1. Then (2.6) holds if and only if either

dg dM dM.
2.10 —1 =1 —t = L = )
(2.10) - "
or
j_ﬁ =1E8TE (0,00),
(2.11) g o IM
df)’l = —rM,_,tanp, dﬁ” =—rM,_ cotf, .
I I

In the former case M%(8) = const. In the second case, the following differential
equation for M| _|, is obtained:

dM
(2.12) —# = 2rM,_, cot 28, .
I

This defines a class of constitutive relationships corresponding to different func-
tions r(/3,). A particular solution

(2.13) M,_,, = 2M sin" 24,

is obtained for r independent of 3,, with M > 0 being a positive integration
constant.

Suppose that there exists a stress-rate o codirectional with the principal
direction of MP(a) associated with the mazimum principal plastic compliance;
in particular, ¢ is then codirectional with €”(&g). To cover all directions in the
stress-rate space, it suffices to consider the two-dimensional subspaces S that
contain o as the common distinctive stress-rate used to determine the angle
from (2.4). If M% varies continuously with 3 then from (2.10) and (2.11) it follows
that the principal plastic compliances M, (3) , M, (/3) are non-increasing functions
which attain maximum values at 3 = 3, = 0. If (2.10) holds for 3 < f3y, say, then
that interval of 3 can be identified with the angular range of fully active loading
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in the current state, while an interval of validity of (2.11), ) < 3 < (3. say,
can be identified with the transitory range of partial unloading, cf. [3]. We shall
assume that (—o) lies within the current elastic unloading cone corresponding
to B. < B < m, cf Fig.1b.

To derive a constitutive function in the transitory range rather than to de-
fine it arbitrarily, we propose the following simplifying procedure. The effect of
physical hardening within the grains in a polycrystalline aggregate is included
into a hardening rule for the eztremal surface, e.g. into an evolution rule for
a and k in (2.1). The interaction (in the stress-space formulation) between
micro-mechanisms of plastic deformation in different grains is imagined to be
represented, at least partially, by variations of M inside the extremal surface (see
below). Finally, a phenomenological relationship between the plastic strain-rate
and stress-rate at the vertex on the inner yield surface, which includes the effect
of partial unloading, is constructed as for mutually independent mechanisms of
plastic deformation. For comparison, in the well-known theories of BATDORF
and BUDIANSKY [1] or KOITER [6], the effects of interaction between the plas-
tic deformation mechanisms were fully neglected, while here they are taken into
account in an indirect manner.

Under that assumption, the range of fully active loading becomes a prolon-
gation of the elastic unloading range, so that 8y = = — f3.. Both ranges suffer a
right-hand discontinuous change in time if &, the current right-hand rate of stress,
induces partial unloading. Then, & constitutes one limiting ray of the new angu-
lar range of fully active loading(®), while the second limiting ray of that range is
regarded as varying continuously in time. The key simplifying assumption is that
a, () corresponding to any direction of loading (total or partial) within S always
bisects the right-hand limit (in time) of the angular range of elastic unloading.
It follows that in the range of partial unloading, a, rotates continuously with
increasing (3 so that (cf. (2.13))

(2.14) r=1, M, , =2Msin243,,
with a parameter M independent of 3,. It may be noted that (2.14) gives d(M, +
M,,)/dB, = —4M. To obtain a smooth transition to elastic unloading, we assume

that M, tends to zero as 3 — (.. On using the condition of continuity of 65( o),
we obtam the following solution to (2.11) in the transition range:

il
Belfofd Be=m—fo, B=zn—fetB)=5(+H)
M, = (m — 28, +sin23,)M, M, = (z — 26, —sin28,)M

1

(2.15)

(*) Fully active loading means that each plastic deformation mechanism that is potentially
active (i.e. stressed to its yield point in the current state) is actually active. After partial un-
loading, some of previously potentially active mechanisms become inactive, so that the angular
range of fully active loading increases discontinuously. For infinitely many mechanisms, g cor-
responding to partial unloading will generally induce neutral loading for some mechanism(s),
i.e. will constitute the limiting ray as stated above; cf. also [20].
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and in the range of fully active loading:

B € [0, Bo], B, =
jMI — (‘n’ = 2,60 + sin 2[30)—.[\71;, MII =

IB)

(2.16) _
(m — 208y —sin205y) M.

For convenience, the basic relationship between M,;, M, and §y or 3, for fully
or partially active loading, respectively, is visualized in Fig. 2.

06 T T T T
05F ~~ M -
04} s Gl 1
g
s
0.3} My " ~
02 4
L

N

0.1 SO

+

0.0 :
40° 50° 60° 70° 80° 90°

Bo or By

F1G. 2. Principal plastic compliance ratio, M, /M,, as a function of g, for fully active
loading or of (3, after partial unloading. Broken lines show the respective variations
of the principal plastic compliances scaled down by 5M.

From elementary geometry it follows that ég makes an angle (7 — 3, — ;)
or (m — By — ;) in the range of partially or fully active loading, respectively,
with the limiting ray of the elastic unloading range in the respective subspace
S, cf. Fig. 1b. It can be checked by using (2.8), (2.15) and (2.16) that this angle
decreases monotonically from (3. to 7/2 as [ increases from zero to (.. Hence,
ég lies within the range generated by the outward normals to the limiting rays
of the elastic unloading range in §, in agreement with the generalized normality
rule at a yield-surface vertex.

Once the elastic unloading cone in o-space has been specified in the current
state, then the elastic unloading range within each S is known along with its
internal angle 23y, external angle 23, and outward bisector ag. Finally, the con-
stitutive relationship between €” and & is fully determined, after substituting
(2.15) and (2.16) into (2.3) and next into (2.9), by the geometry of the current
elastic unloading cone and by the scalar parameter M dependent on the material
state and on S. Of course, when performing the partial differentiation in (2.9),
the dependence of the parameters M and 3y on the subspace S must be taken
into account in general. That dependence is absent from the simplest version of
the model discussed in the next section.
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3. A simple computational version of the model

Suppose first that the current state of the material has been reached by
proportional loading from a virgin unstressed state with o = 0; this condi-
tion will later be relaxed. Under the usual assumption of an incompressible and
pressure-insensitive plastic flow, the following specifications (cf. Fig. 3) are made
in the incremental constitutive law from Sec. 2:

(i) The deviatoric stress-rate space and its two-dimensional subspace S’ are
substituted in place of o —space and S.

(i1) The elastic unloading cone has a symmetry axis codirectional with (&' —
a), and 3 is defined by (2.4) with

o —a

3.1 ag=———.

(3.1) A Py

(iii) The parameters 3y and M are independent of S’ and depend on the
placement of ¢’ relative to the extremal surface.

extremal surface

Fi1G. 3. Construction of the elastic unloading cone in the computational version
of the two-surface model.

The relationship between the plastic strain-rate and stress-rate at the vertex
o’ on the inner yield surface becomes fully defined by two state-dependent scalar
parameters 3y and M being functions of the current values of &, k and ¢’. In
the potential form, the incremental plastic constitutive law is given by

5 yP 1 ,
(3.2) ¥ = 8—., wP = ~F(B)a',
oo 2
(33) F(@) =M
7w — 2/ + sin 23y cos 23 for 0 < 3 < Sy (total loading),
m—(8+ Fo) + % sin2(3 + Bo) for By < B <7 — [y (partial unloading),
0 for m — Gy < B8 < 7 (total unloading).
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In an explicit form, it reads(?)

&P = M(A(B)|6" jag + B(B)s"),
A(B) = 2cosBsin23, }
B = 71— 208 —sin28,
) = sin®(3 + B)/sin g3,
=7 — (B + Bo) — sinfysin(B + Fo)/sin 8

for B < fo,

(3.4)  A(
B(p

=

}fol‘ Bo<pB<m— [y,

o

A=0,
B =0 for m—Gp<B<m.

This can be complemented by the standard equation for the elastic part of
strain-rate, viz.

(3.5) E=¢€"4+€e%, €°=M°co,
with M? being the compliance tensor of the linear theory of isotropic elasticity.

Finally, specification of the parameters 3y and M and of evolution equations
for & and o completes the set of constitutive equations of the model. The evo-
lution rule for the extremal surface is left arbitrary here since the equations are
proposed as a refinement of a given model of the classical type. By and M are
assumed to depend on the relative distance of the current deviatoric stress o’
from the extremal surface. For instance, they can be expressed in terms of the
ratio 7/k as

. fegif R T
(3.6) Py = arcsin % , }:" € (sinfBy™,1), B™ = const € (g, ﬂ') !
T
il 2 7/ 260 — sin 2ﬁ0

(3.7) M(Bo) = x(Bo) =

E 1= x(Bo)/x(m — Brax)’ ’
where "™ is a material constant and E is the elastic Young modulus. In
comparison with the standard elastoplastic model, that specification of the yield-
vertex modification requires only one additional material constant S**. Formula
(3.6) means that generators of the elastic unloading cone are tangent to a sphere
with centre o and radius kv/2 sin B2 in o’-space, cf. Fig. 3. During proportional
loading in the range 7 /k < sin ™%, we substitute M = 0 with 3y undefined. On
the other hand, the inner sphere shown in Fig. 3 by a broken line is only used to

sin ,130

(*) A closer inspection of Eq. (3.4) shows a resemblance to the equation obtained in [9] in a
different way and without considering its potential form. The present equation is more general
since M is a function of state rather than a constant. The distinction is essential since constant
M would be inconsistent with the existence of a fixed unattainable extremal surface when
physical hardening within the grains is suspended. To have consistency, 1/M must tend to zero
when a fixed extremal surface is approached.
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define the current elastic unloading cone at o’ and need not be identified with
the boundary of the current elastic domain.

The function (3.7) has been chosen to fit approximately the tensile stress/
plastic strain curves calculated for micromechanical models of a polycrystal [4];
the approximation will further be discussed in the next section. Of course, one
could also take another function M in place of (3.7) to obtain a better fit of
micromechanical results. The,present choice was influenced by the convenient
possibility of determining analytically the plastic strain under proportional load-
ing from the unstressed virgin state if the extremal surface is fixed. From (3.6)
with fixed k£ and from (2.16) we obtain the interesting formula

(3.8) Mg (M“ )
i M

On using (3.6) and the definition of x in (3.7), the plastic strain under propor-
tional loading is thus given by

T X
(3.9) oF = ag\/éfMI = aokﬁsinﬁg‘“fﬁdx.
0 0

This motivates the use of M expressed in terms of y. The form (3.7); is one of
the simplest which ensure M — oo as 7 approaches a fixed k; after integration
it yields

p = Zk\/_ max 2 max 1
L (GO~ S B T S Gt — )

with 3y determined from (3.6) for a fixed extremal surface.
In turn, from (3.9), (3.6) and the definition of x we obtain

(3.11) e? = M, o' if M = const.

This is precisely the formula of the classical deformation theory of plasticity
where the proportionality factor between the plastic strain and stress devia;cors,
being a function of |o’|, serves as the principal plastic compliance for g or-
thogonal to @’. In view of a fixed relationship between M, and |o'| implied by
(2.16) and (2.6), the variant of the deformation theory obtained here for fully
active loading at constant M is very special and, moreover, inconsistent with
the assumption of a fixed extremal surface. The possibility to satisfy Eq. (3.11)
approzimately for the extremal surface subject to a power hardening law will be
discussed in Sec. 5.

The assumption (ii) above, and hence the final specification of the incremental
plastic constitutive law, cannot be regarded as appropriate for all stress-rates in
all states, e.g. in the current state just after partial unloading. Fortunately, to
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calculate the material response along some loading path, it usually suffices to
know the function ép(d') only in the vicinity of the actual stress-rate direction.
For a class of non-proportional loading paths, the actual plastic strain-rate and
plastic compliances can be calculated from (3.3), or directly from (3.4) and (2.15)
or (2.16), respectively, still by using the specifications (i) (iii) in the following
cases:

(A) for every stress-rate in any state P reached from a virgin state o’ = 0,
o = 0 along a plastic straining path without unloading (i.e. with 3 < f; in the
range 7/k > sin 31'**, except in the current state Py itself);

(B) along any path starting from a state P4 and such that ¢’ and o are being
contained in a fixed two-dimensional deviatoric subspace and 3 is preserving its
sense, nondecreasing (but possibly discontinuous) in time and satisfying 3 < £ ;

(C) along any straight path in the deviatoric stress space starting from Py
and satisfying 8 < f;;

(D) along any smooth path of a sufficiently small curvature in the deviatoric
stress space, starting from Pa and satisfying 3 < ..

This can be inferred from the assumptions under which the equations of the
computational model have been derived. The common condition in the above
list is that no elastic unloading takes place so that the current stress does not
leave the vertex on the inner yield surface. This condition could be weakened
by allowing for elastic unloading not followed by reloading, and also for certain
cases of reloading. The restriction on the path curvature in point (D) is impre-
cise since it is difficult to specify the circumstances in which the influence of
partial unloading on the actual tangent compliances along a curved path may
still be neglected. A curvature of the order 1/k may perhaps be regarded as being
“sufficiently small” in this respect.

4. Extension to finite strain

The extension of the constitutive equations from the preceding sections to
plastic strain of arbitrary magnitude can be done in the following way, regarded
nowadays as standard. With the volume changes assumed to be purely elas-
tic and small, o is replaced by the Kirchhoff stress T = Jo where J is the
current-to-reference volume ratio, while the stress-rate o is replaced by T, the
Zaremba - Jaumann flux (corotational with the material spin) of T. An exact
elastic constitutive law can be defined as an isotropic linear relationship be-
tween the back-rotated Kirchhoff stress and logarithmic elastic strain relative
to an unstressed state. Accordingly, the elastic compliances of the linear theory
of isotropic elasticity undergo a slight modification, cf. [21]. € is identified with
the Eulerian strain-rate D while its plastic part DP is defined by (3.5) and deter-
mined from (3.2) or (3.4) after making the substitutions indicated. A finite strain
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problem can be analysed in the usual step-by-step manner if, in every traversed
state, D as an invertible function of T is specified at least in the vicinity of the
actual incremental solution.

Questions resulting from the multiplicative decomposition of the deformation
gradient and concerning the effect of plastic rotations on the kinematic hardening
law need not be addressed here since they do not affect the proposed modification
of a given classical plasticity model.

5. Illustrative examples

Figures 4 - 7 illustrate the model behaviour during proportional loading from
an unstressed virgin state, by the representative example of uniaxial tension.
The tensile stress o is scaled down by oy = kg\/3, the initial tensile yield stress
in the absence of the yield-vertex modification, i.e. for the classical model. The
tensile plastic strain £P is normalized by the elastic critical strain og/E. Fig-
ure 4 shows how the stress varies with the plastic strain for the classical model
(the horizontal line) and for "** = 105°, 120°, 130° and 139.2° when the ex-
tremal surface is kept fixed. This case corresponds to perfect plasticity within
the grains of a polycrystal, where the increase of the macroscopic stress is due
to “constraint hardening”. The curves can be compared with the results given
in [4] for micromechanical models of a polycrystal. The lowest curve in Fig. 4 for
sin B = sin 139.2° ~ 1/1.53 corresponds to an upper bound of the constraint
hardening effect (cf. [3, 4]) and, after suitable rescaling, fits approximately the
results obtained from the Kroner - Budiansky - Wu self-consistent model. Fitting
the results obtained in [4] for Hill’s self-consistent model, regarded as more accu-
rate, would require a somewhat smaller value of "**. Identification of an optimal

L1 T T T

1
1 2 3 1
E“}‘;/U[)
I'1G. 4. Non-dimensional stress vs. plastic strain in uniaxial tension for a fixed
extremal surface and for different values of FI'**.
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value of 3I"®* is not straightforward since the yield-surface corner angle in a phe-
nomenological model should be interpreted as an effective angle obtained when
an unspecified plastic strain due to some internal mechanisms is neglected. For
otherwise, the assumption of the existence of a finite elastic domain at advanced
plastic deformation could be questioned; cf. the remark in [4], p. 271.

a) 1.5 T T T

classical law

L0} 7
1 ’~_\ i ﬁrl_nd.\' = 190.2°
. 120°
0.5 i
0.0 1 1 1
(() ) 10 15 20
EE/TU
b) 15 : ] :
, classical law
lO ’ N ﬂ‘l'n‘dx — 13920 -
T
To 120
0.5 i
. L L
O'UU 5] 10 15 20

EE/TU
Fi1c. 5. Uniaxial Kirchhoff stress 7 as a function of logarithmic strain e for the
extremal surface subject to an isotropic, (a) linear 7 = kv/3 = 79 + 0.02EeP, or
(b) power hardening law 7 = 7y (1 + ePE /1) %, for different values of 52",

The results in Fig. 5 correspond to the extremal surface being not fixed but
subject to an isotropic linear or power hardening law. The finite strain version
described in Sec. 4 has been employed, with 7y as the uniaxial Kirchhoff stress on
the initial extremal surface and 7 = (e — €P)E. It can be seen that the uniaxial
stress-strain curve for the classical law is closely approximated by the curves
for the present model when the plastic strain becomes only a few times greater
than the elastic strain. However, the difference is no longer fully negligible even
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for larger strains, especially for linear hardening with a constant modulus A
(equal to 0.02E in Fig.5a). The reason is that an asymptotic value 3§° of Gy
is now somewhat greater than (7 — S2*). It can be found from the condition
dfBy/deP = 0 which leads to the relationship

2
3

While the yield-vertex modification of a stress-strain curve for proportional
loading at advanced plastic strain may be regarded as insignificant, the corre-
sponding difference in the incremental constitutive law is substantial. This is
illustrated in Fig. 6 where plots of the effective tangent shear modulus vs. load-
ing angle after tensile prestrain are presented for different values of F***. The
plots correspond to a fixed extremal surface in the small strain formulation, and
the amount of plastic prestrain for each value of F7*** corresponds to the same
relative distance to the extremal surface, defined by (1 — 7/k)/(1 — sin g®*) =
(1 —1.3/1.53)/(1 — 1/1.53) to allow comparison with the similar Fig.6 in [4].
The calculated effective tangent shear modulus in the total loading range tends
at f"® — /2 to the elastic shear modulus G, i.e. to the value obtained for the
flow theory of plasticity.

12 T T B T T
classical flow theory

(5.1) sin B8° — ShM, (f5°) sin B = 0.

1.0

0.8
— 0.6

04F B = 139.2° 1

0() | 1 | | =1
0° 30°  60° 90° 120° 150° 180°
B = arctan(v/3 |612]/511)
Fic. 6. Effective tangent shear modulus G, = ¢12/2¢;, as a function of the
incremental loading angle 3 after tensile prestrain corresponding to a given
relative distance (see the text) to a fixed extremal surface. G = E/2(1 + v)
is the elastic shear modulus with v = 0.3.

The difference between the incremental characteristics for the present and
classical models is also illustrated in Fig. 7. Plots of the principal plastic com-
pliance ratio M, /M, vs. strain in uniaxial tension are shown for g"** = 120°
and 135° while for the classical plasticity law the ratio is identically zero. Solid
lines correspond to a linear isotropic, broken lines to a power-type isotropic, and
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dotted lines to a linear kinematic hardening law for the extremal surface. The
material parameters for the isotropic hardening correspond to Figs.5a and 5b,
and the kinematic hardening law is specified by o = (2/3)(0.01E)DP. It can be
seen that the value of M, /M, is only slightly influenced by the type of hard-
ening, and also by the amount of strain beyond a certain initial stage. On the
other hand, the ratio depends strongly on the value of g"**. This is, of course,
not surprising since this ratio depends only on gy as illustrated in Fig. 2. Figure
7 may thus be treated as another illustration of the conclusion that during pro-
portional loading at advanced plastic deformation, when the current hardening
modulus is much smaller than E, the value of 5, = 7 — [y is close to 3*** and
hence almost constant.

0.25 T T 1 T

max __ QRO
B = 135

0.20

p 015
M,

0.10 N =
ﬁélmx — 1200
0.05 ~
OOO 1 1 A 1
0 10 20 30 40 50

BE/’T“

Fi1G. 7. Variation of principal plastic compliance ratio M,, /M, with logarithmic strain
in uniaxial tension for the extremal surface subject to a linear isotropic :
power-type isotropic - - _ and linear kinematic ....... hardening law for two values

of A" Isotropic hardening parameters as in Fig. 5, kinematic hardening law
a = (2/3)(0.01E)DP.

A stabilized value of the ratio of the principal plastic compliances resembles
the well-known property of the deformation theory of plasticity obeying a power
hardening law. In the small-strain formulation with the elastic strain neglected,
M, /M, under proportional loading becomes then equal to the tangent-to-secant
modulus ratio, and hence to the constant power exponent. The present model
can approzimate such behaviour provided [M®* is appropriately selected, with
the help of the relationship visualized in Fig. 2, to give the required value of the
compliance ratio. The power hardening exponent corresponding to "% equal
to 120 or 135° can be directly read off as a stabilized ordinate in Fig. 7.

It is beyond the scope of this paper to simulate the material response for
various paths of non-proportional loading, which is expected to be strongly in-
fluenced by the choice of an isotropic/kinematic hardening rule for the extremal
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surface. We recall that the proposed yield-vertex modification does not restrict
the freedom in selecting such a hardening rule that fits experimental data for a
specified material.

6. Concluding remarks

A modification of the family of classical models for plastically deforming
metals has been obtained with the help of general conclusions drawn from mi-
cromechanical analysis of an elastic-plastic polycrystal. In comparison with the
standard equations of the flow theory of plasticity, the proposed model in its
simplest computational version involves only one additional material constant
which defines the maximal sharpness of the corner at the current loading point
on the inner yield surface. A smooth loading surface of the standard form has
been used as an outer “extremal” surface [3], not attainable during plastic flow.
With the yield-vertex effect included, the high (elastic) stiffness of the classical
elastic-plastic model against an abrupt change of the straining direction has been
relaxed. This offers a perspective of more adequate modelling of the material be-
haviour under non-proportional loading, and of arriving at more realistic results
in bifurcation and instability studies, still using a typical isotropic/kinematic
hardening law for the outer loading surface.
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Symmetrization of systems of conservation equations
and the converse to the condition of Friedrichs and Lax

W. LARECKI (WARSZAWA)

THE RESULT OF FRIEDRICHS AND LAX [Proc. Nat. Acad. Sci. U.S.A., 68, 8, 1686-1688,
1971] concluding that if the system of conservation equations implies the additional
conservation equation (balance of entropy) then it can be symmetrized by premulti-
plication by the Hessian matrix of the entropy, is well known. Basic ingredients of the
proof of the converse to this result can be found in the paper by BoiLLat [C.R. Acad.
Sci. Paris, 278 A, 909-914 1974], however this converse has not been explicitly for-
mulated there and, as a consequence, it seems to be overlooked. Therefore, an explicit
formulation and the detailed proof of the converse to the condition of Friedrichs and
Lax is given in this paper. Due to this result, the restrictions imposed on the system
of conservation equations by consistency with the additional conservation equations
can be alternatively derived from requirement that it admits Hessian matrix as a
symmetrizer while the corresponding entropies can be determined by direct integra-
tion of the admissible Hessian symmetrizers. As an illustrative example, the system of
conservation equations given in [DoMANskI, JABLONSKI and K0SINSKI, Arch. Mech.,
48, 541-550, 1996] is analysed. It is shown that this system can be brought into
equivalent symmetric hyperbolic form without appealing to the existence of the ad-
ditional conservation equation and the whole family of symmetric symmetrizers is
determined. Then, the condition that the system admits the additional conservation
equation reduces to the requirement that the family of symmetric symmetrizers con-
tains at least one Hessian matrix. This requirement is, in turn, equivalent to the
integrability condition for the overdetermined system of second order partial differ-
ential equations for the scalar entropy function. Finally, the family of entropies is
obtained as a result of integration of this system.

1. Introduction

IN (1], FRIEDRICHS AND LAX have shown that if the system of N conservation
equations implies the additional conservation equation (usually called balance of
“entropy”), then premultiplication (left multiplication) of this system by Hes-
sian matrix of “entropy” (matrix of second-order partial derivatives) makes it
symmetric.

In the paper [2] by DOMANSKI, JABLONSKI and KOSINSKI, this result has
been explicitly quoted as a means for symmetrization of considered particular
system of conservation equations, but the employed procedure of symmetrization
and interpretation of the results should be rather referred to the converse to the
result of FRIEDRICHS and LAX [1]. Clearly, in [2], it has been required from the
system of conservation equations to be symmetrizable (by premultiplication) by

http://rcin.org.pl



866 W. LARECKI

prescribed Hessian matrix. As a result of this requirement, the algebraic relation
between the entries of the prescribed Hessian matrix and the entries of the ma-
trices corresponding to the considered system of conservation equations (written
in a matrix form) has been obtained. This relation has been called “symmetriz-
ability condition” for the considered system of conservation equations. Since the
system of conservation equations treated in [2] implies the additional conserva-
tion (balance of entropy) and prescribed Hessian matrix corresponds precisely to
one of the entropies admitted by this system, the “symmetrizability condition”,
of course, corresponds to “the model compatibility condition which, on the other
hand, can be obtained from the second law of thermodynamics”, as it has been
concluded in [2].

Apparently, the procedure performed in [2] in nothing else but checking that
the converse to the well known result of FRIEDRICHS and LAX [1] is true for the
particular system of conservation equations. Unfortunately, this aspect of the
performed calculations has not been noticed in [2].

The converse to the result of FRIEDRICHS and LaAX [1], of course, holds for
the general case of the system of conservation equations and its proof can be
easily deduced from the paper by BOILLAT [3]. Since this result has not been
explicitly formulated in [3] as a separate “theorem”, contrary to the condition of
Friedrichs and Lax, it seems to be overlooked (for example, [2, 6]).

The objective of this note is to formulate explicitly this converse and to
demonstrate its complete detailed proof, mostly for pedagogical reasons, as well
as to show how this result can be directly applied in practice for derivation of the
condition that the system of conservation equations implies the additional con-
servation equation, and then to determine the “entropies” that can be assigned
to this system. It should be emphasised that the crucial points of the reasoning
employed in the proof presented here have been found in [3] and, therefore, the
converse to the condition of Friedrichs and Lax should be attributed to Boillat.
The original method proposed here, consisting in application of this converse for
derivation of the restrictions on systems of conservation equations imposed by
consistency with the additional conservation equation (balance of “entropy”),
can be considered as an alternative to the method of Lagrange - Liu multipliers
(5] developed in the framework of extended thermodynamics. In this alterna-
tive approach, the restrictions on the system of conservation equations as well
as the “entropies” are obtained directly, without use of the auxiliary fields of
Lagrange — Liu multipliers.

In Sec. 2, we demonstrate that if the system of N conservation equations has a
symmetrizer which is the Hessian matriz of a certain function of the unknowns
then this system of conservation equations implies the additional conservation
equation, in which this function of the unknowns is a “density”. The result of
FRIEDRICHS and LAX [1] together with the converse leads to the following nec-
essary and sufficient condition for the system of N conservation equations to be
symmetrizable (by premultiplication) by a Hessian matrix: The system of N con-
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servation equations is symmetrizable (by premultiplication) by a Hessian matriz
iff it implies the additional conservation equation.

Therefore, the conditions imposed on the system of N conservation equa-
tions by the requirement that it implies the additional conservation equation
(for example, thermodynamic restrictions implied by consistency with the bal-
ance of entropy) can be obtained by requiring that the system admits symmetric
symmetrizer which is a Hessian matrix. The respective procedure can be ac-
complished in the following five steps: 1) to rewrite the system of conservation
equations in a matrix form, 2) to derive the condition on the entries of the respec-
tive matrices (necessary and sufficient), that those matrices have common left
symmetric symmetrizers, 3) to determine the family of common left symmetric
symmetrizers (the entries of such family of matrices are related to the entries of
the matrices corresponding to the considered system of conservation equations),
4) to derive the condition on this family of symmetrizers that it contains at least
one Hessian matrix (this condition corresponds to the condition that the system
of (1/2)N(N + 1) second-order partial differential equations for entropy function
is integrable), 5) finally, to calculate the entropies admitted by the considered
system of (1/2)N(N + 1) equations for entropy.

In Sec. 3, the example of application of this complex procedure is presented.
In this example, we use the system of conservation equations considered in [2]
because of its particular simplicity. Since this system is consistent with the ad-
ditional conservation equation (balance of entropy) without any restrictions on
the functions of dependent variables involved in it, the respective matrices admit
common left symmetric symmetrizers without any additional relations between
their entries. The family of the respective symmetrizers is derived and the step
2) of the above procedure is not needed in this case. To this end, we note that
the equivalence result (existence of entropy and symmetrizability by Hessian
matrices) together with the described procedure of application enables one to
employ the methods of matrix analysis in studying the properties of systems of
conservation equations endowed with entropies.

2. Converse to the condition of Friedrichs and Lax

We consider a quasilinear system of IV conservation equations for N unknowns
in normal (Cauchy) form

(2.1) du+ 8fi(u) =blu), i=1,2,..,m
with the corresponding matrix form

(2.2) dyu+ A'(u)du = b(u),
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where
= [ul(t (k2]

£ () = [ K(t SV o
(2.3) bT(w) = [0 (u¥(t, 7)), .., b (K (2, 2%)]

Al(u) = Vufi(u) = [A’K ] = [%}

i=12.,n, KLM=1,2,.,N,
and ) ]
Bi=g, Bi=pg.

The usual summation convention over repeated upper and lower indices is un-
derstood and () denotes a transpose.

For the system (2.1), (2.2), (2.3), we consider the following additional conser-
vation equation

(2.4) dth%u + 8;h'u = o (u).

For the clarity and completeness, we recall the well-known results of FRIEDRICHS
and LAX [1]. In [1], FRIEDRICHS and LAX formulated the staterment which can
be expressed in the following way:

The conservation equation (2.4) “follows from” (is implied by or is a conse-
quence of, in other words) the system of N conservation equations (2.1) if and

only if

ORO(uM) Bf (uM)  Bhi(uM)
2. = =2
( 5) 8uJ 6uR auR ) 2 11 ? 7m1
(M) ;o M
W‘b ('EL )—O’(U ), J,M,R—I,Q,...,n

(2.6)

The term “follows from” (is implied by or is a consequence of, in other words),
used in this statement, is understood in a sense that there are N functions
1;(u™), not all identically zero, such that conservation equation (2.4) is a com-
bination of N equations of (2.1) multiplied by respective I;(u™); namely, the
equality

(27) 8 (uM) + Bkt (M) — o (uM) = 1y (uM) [0’ + 6 (W) — b ()]

holds for all functions u*(¢,z') (in the domain of such functions). With this
interpretation, the following “proof” justifies this statement.
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Assume that (2.4) “follows from” (2.1). Then, the following identity is implied
by (2.7):

OhO (uM) ohi(uM A {uM
(28) W— = l_](uM) atUJ + %‘ e L](UM)% ai’U,R
+ [’ (M) - a(uM)] =0
which holds for all functions uM(t,z"). Since in (2.8) the values of uM(t,z?),
du’ (t,2') and d;ult(t, z') can be taken arbitrarily at each point (¢, z?), the terms

in square brackets must vanish and, as a consequence, we obtain the following
system of identities:

aho M
29) 1) = 28,
] uM iJ uM
(2.10) %—) = lJ(uM)afT(R),
(2.11) o(uM) = 1 (™) (uM).

Substituting (2.9) into (2.10) and (2.11) we obtain (2.5), (2.6). Conversely, as-
sume that (2.5), (2.6) hold. Multiplying both sides of (2.1) by row vector com-
posed of Oh%(u™)/0u’ we obtain the following conservation equation

OhO (uM)
ou’

On°(uM) af (uM)
ou’ oult

which, in view of (2.5), (2.6), corresponds to (2.4).
Therefore, the equality (2.7) is satisfied for

0/, M
c’)iuR - Oh” (u )bJ(uR)

5
(2.12) ou’

Gtu" +

M) - ahO(U‘M) .

Ly(u )

Then, the following condition was proved in [1]:

If the system (2.1) implies the additional conservation equation (2.4) then
the system (2.2) premultiplied (left-multiplied) by the Hessian matriz of h°(u) is
symmetric.

It was also mentioned in [1] that this symmetric system is equivalent to (2.1)
if the Hessian matrix of h%(u) is non-singular, and it is symmetric hyperbolic if
h%(u) is convex (Hessian of h%(u) is positive definite).

The proof of this condition given in [1] is based on differentiation of (2.10)
with respect to the components of u, which yields

aEhi(uM) - ahO(UM) 32fiJ(UM) B 82h0(uM) aniJ(uM)

(2.13) uf oul ou’ ouFoult — ouPou’ dulft
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The left-hand side of (2.13) is symmetric in the indices P, R, so is the right-hand
side. Tt therefore follows from (2.3); that Hessian matrix of h%(u) is the left
symmetrizer of the matrices A*(u).
The converse to this condition can be formulated as the following implication:
If the system of N conservation equations (2.1) has a left symmetrizer which
is a Hessian matriz of a certain function h°(u) then the system (2.1) implies the
additional conservation equation (2.4) with h'(u) and o(u) given by (2.5), (2.6).

Proof Assume that there exists function h%(u), such that Hessian matrix
of h%(u) is the left symmetrizer of the matrices A*(u) given by (2.3)4. Then,
32h0(uM) afiQ(uM) B BEhO(uM) afiS(uM)

3:34) ouf ou? ul  Aulous P

Let us denote

: Oh%(uM) 8fi3 (uM)
i o My .
(215) h.R('U. ) = aus auR G
For each ¢, functions hlﬁ(uM ) can be interpreted as components of the row vector
h'” (u) which, according to (2.3)4, (2.15), is given by the equation
(2.16) hiT (uM) =17 (u)A' (u), i=1,2..,n,

where 17 (u™) is a row vector with components [9h°(u™)]/ou®.
Differentiation of (2.15) with respect to u¥ yields

thé(uM) = 5’2h0(uM) afiS(uM) | ahO(uM) BZfiS(uM)
e  uQou’ aulk | oud JuRouk
and it follows from (2.14), (2.15), (2.17) that

(2.17)

A Ahig(uM)  Bhi(uM) .
(2.18) 350 - o =12 .. m,

what means that the matrix representing gradient of h' (with respect to u) is
symimetric.
Equalities (2.18) are necessary and sufficient for the following 1 — forms to be

closed
(2.19) @2 = bt du’,

and, for u from an open convex domain (without loss of generality, it can be
assumed that in (2.1) the domain of u is an open convex set in RN), it is exact
(see, for example [4]). Hence, there exist functions h'(u™) such that

(2.20) 7 = dh?,
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and therefore

‘ ahi(uM)
¢ ? M

Substituting (2.21) into (2.15) we obtain (2.5). Then, multiplying both sides
of the system (2.1) by the row vector composed of dh%(u™)/du’ and taking
into account (2.5) (implied by (2.21), (2.15)), we finally obtain the following
conservation equation

_ OhO (uM)

0 ¢ 0 1
(2.22) Ouh () + O,h () = =5

b (uM).

Hence, the system (2.1) implies the additional conservation equation with the

right-hand side term

M) - BhO(uM) bJ(UM’).
du’

The following observation given in [3] is a direct consequence of the condition
of Friedrichs and Lax and its converse:

o(u

The system (2.1), (2.2) of N conservation equations implies the additional
conservation equation (2.4) (with hi(u) and o(u) given by (2.5), (2.6), respect-
ively) iff there exists a function h°(u) such that its Hessian matriz is the common
left symmetrizer of the matrices (2.3)4.

The necessary and sufficient condition corresponding to this observation but
expressed in the framework of geometrical (coordinate-free) description of the
systems of conservation equations (affine transformations of independent vari-
ables and dependent variables interpreted as local coordinate system on the
manifold) is given by PIEKARSKI [6].

3. Example of application of the converse to the condition
of Friedrichs and Lax

In the Introduction, we have briefly described the details of the general pro-
cedure of determination of the conditions that the system of conservation equa-
tions is consistent with the additional conservation equation, based on the conse-
quences of the converse to the result of Friedrichs and Lax. In order to illustrate
this procedure, we have chosen here, as an example, the system of conservation
equations from [2] because of its extreme structural simplicity and because, in
2], the respective calculations related to verification of the converse to the re-
sult of Friedrichs and Lax are given in explicit form. Moreover, this system of
conservation equations is consistent with the balance of entropy and therefore
it admits symmetric symmetrizers. Hence, the procedure considerably simplifies
due to those facts and reduces to determination of the family of symmetric left
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symmetrizers of the system, to exploitation of the condition that this family
contains Hessian matrices and, finally, to integration of the respective system of
second-order partial differential equations in order to obtain the entropies.

3.1. System of conservation equations considered in [2]

In [2], the following particular case of N = 5 conservation equations (2.2) in
i = 3 spatial dimensions has been considered

(3.1) o’ (t,2) = [e(t,2%), ¢"(¢,2%), ¢(t, 2°), ¢* (8, 2'), B(t, )]

[o’(e)g! a(e) 0007

file) 0 000

0 0 000/,

0 0 000

L O 0 000

o'(e)g? 0 ae) 007

0 0 0 00

(3-2) A’(u)=| file) 0 0 00],

B 0 B 0D

L. O 0 0O 00]

ra'(e)g® 00 ale) 07

0 00 0 O
Al(u) = 0 00 0

file) 00 O

0 0

0
( 0
L 00 0
dafe) df1(e)

al(e) = de ) f{(e) = 7)

(33)  bl(w) =[or, £(8)a", BB, BB, file) + f2(B)] .

The system of conservation equations (2.2), (3.1), (3.2), (3.3) corresponds to the
phenomenological model of a rigid conductor of heat with internal state variable
3 (called “semi-empirical temperature”). In this model, e is the internal energy
density, ¢; (1 = 1,2,3) are the components of gradient of (—/), or is the heat
source density and a(e), fi(e) are constitutive functions.

In [2], the condition

. . i
(3.4) H(u)Ai(u):[H(u)A"(u)] . i=1,2,..,n,
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has been imposed on the matrices (3.2) for prescribed postulated matrix H(u)

H(u) = diag [773(8)7 ¢, C, €1, 02],

d2
ng(e) - ;7%56) bl Cly C2 - ConStv

(3.5)

which, in fact, is a Hessian matriz of the following function R® of the arguments
e, @ b,

; 1 T |
(36) Bo(u) = k(e q", B) = me(e) + Ser19i9" + oo
As a consequence of this condition, the relation between a(e), fi(e) and n.(e)
has been obtained

(3.7) c1fi(e) = ale)n; (e),

and called “symmetrizability condition” for the system (2.2), (3.1), (3.2), (3.3).

In view of the observation given in Sec.2, the “symmetrizability condition”
(3.7) is nothing else but the condition that the system (2.1), (3.1), (3.2), (3.3)
implies the balance of entropy (2.4) for the entropy (3.6).

In the following, we show how the condition (3.7) and the family of entropies
containing, as a special case, the function (3.6) can be obtained from the require-
ment that the family of common symmetric left symmetrizers of the matrices
(3.2) admits Hessian matrices, in other words, by selecting Hessians from this
family.

3.2. Family of the symmetric left symmetrizers of the matrices (3.2)

The term “symmetrizability condition” used in [2] to denote the condition
(3.7) (which, in fact, is the condition of consistency with the entropy balance
(2.4) for entropy (3.6)) seems to be particularly inadequate in view of the fact
that the matrices (3.2) have a family of common left symmetric symmetrizers
(for arbitrary a(e), fi(e))

_ o ale) ale) ale)
(3.8) P~ dhing [X’ Xfitey X XA

parametrized by two arbitrary functions x(e, ¢*, 3), M, ¢*, 5)-
To see this, one can simply verify by inspection that

. . i
(3.9) S(u)A'(u) = [S(wA'(w)] , =123,
holds for A*(u) given by (3.2) and S(u) given by (3.8). The family of matrices

(3.8) represents all symmetric solutions S(u) (S(u) = ST(u)) of the system of
three matrix equations (3.9) with the matrices A'(u) given by (3.2).
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The fact that the matrices (3.2) have common symmetric left symmetrizers
and the family of those symmetrizers takes the form (3.8), is a consequence of
a very specific structure of the set of matrices (3.2); namely, except the first
entry on the main diagonal, they can be obtained one from the other simply by
permuting the respective rows and columns (similarity transformations by the
respective permutation matrices).

Thus, the system (2.2), (3.1), (3.2), (3.3) considered in [2] can be symmetrized
without appealing to the fact that it admits the additional conservation equation
and, as it follows from (3.8), it admits a more general class of symmetrizers than
that obtained in [2]. By choosing x(e,¢',3) > 0 and M(e, ¢*,3) > 0 for all e, ¢',
f (from the respective domain), positive definite symmetrizers can be obtained
from the family (3.8) provided that either a(e) > 0 and f{(e) > 0 or a(e) < 0 and
file) < 0. Hence, the only conditions on a(e) and f;(e) that ensure symmetric
hyperbolicity of symmetric systems obtained by premultiplication of (2.2), (3.2)
by S(u) from (3.1) with x > 0, A > 0 is either a(e) < 0, fi(e) < 0 or a(e) > 0,
fi(e) > 0.

3.3. Condition of consistency with balance of entropy and the family of entropies

The condition that the system (2.2), (3.1), (3.2), (3.3) is symmetrizable by
Hessian matrix of a certain entropy function h%(e, ¢, 3) is equivalent to the con-
dition that at least one of the matrices S(u) of the family (3.8) is the Hessian of
h%(e, ¢, 3). This condition is, therefore, the integrability condition of the follow-

ing system of 15 second-order partial differential equations for h%(e, ¢, 3).

9%h0 i
%ﬁ' 5 X(eaq sﬁ)a
9210
g;izo, l:].,g,g,
edq
aZhO
dedp
§450 . ofe)
3.10 —— = x(e,q", ) y o 1=1,2,3,
bR 52 fi(e)
9?h0
aqlaq] :O, i,j:112331 1#]-
210
;gﬁ:o, §=128
q
a?nd i
W = )\(evq 7/[3)
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It can be easily verified that the system (3.10) is integrable iff

x(e, ¢, 8) = x(e),

(3.11) Me,q',8) = Ae),
Y cx(e) = = cons
X(e)f{(e) = i, g = comsk.

With the conditions (3.11), the system (3.10) can be integrated and its solutions
(entropies) take the following form:

(312) B (e,d', ) = hi(e) + seqa’ + 3(B),
where
wle) = d2Z§2(€) . hgu(e) . cf{(e) Y
a(e)
(3.13)
N dzh’%(e) on
Ale) = @ "M (e),

and R (e), hg(b’) are arbitrary C?(R) functions, and ¢ is an arbitrary real con-
stant. Identifying h?(e) with n.(e) and ¢ with ¢; and taking into account (3.13),
we recognize the condition (3.7) in integrability conditions (3.11); 3 and notice
that the function (3.6) corresponding to prescribed symmetrizer (3.5) is a par-
ticular entropy (3.12) corresponding to hg (B) = (1/2)ca 32

It follows from Sec. 2 of [2] that the original system of field equations corre-
sponding to the considered model of a rigid conductor of heat is the system of
two partial differential equations of the first order with respect to the temper-
ature @, and of the second order with respect to 3, and that the second law
of thermodynamics (entropy inequality) implies the entropy associated to this
system of the form [2. Eq. (2.5)]

(3.14) 7(0,8) = n3(0) — 2elVAR, -~ const.

It is assumed in [2] that internal energy e is the inevitable function of @, so the
original system of field equations can be equivalently expressed as the system
of two partial differential equations for e and  (first order with respect to e
and second order with respect to 3), and, according to (3.14), the corresponding
entropy must be of the form

(3.15) 2e, V5) = nele) — 5el VL.

The system of five conservation equations (2.2), (3.1), (3.2), (3.3) has been ob-
tained in [2] from the original system of two field equations expressed in terms
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of e, 3, supplemented by the additional three equations obtained through spa-
tial differentiation of one suitably chosen member of this original system. For
such system of five equations, the variable q has been introduced through the
substitution

(3.16) q=-Vg.

With the substitution (3.16), the entropy (3.15) corresponding to the original
system of field equations expressed in terms of e, # (implied by the entropy
inequality) takes the form

(317) (e,a) = 7e(e) — yelal’,

while the system (2.2), (3.1), (3.2), (3.3) admits the family of entropies (3.12)
implied by the balance of entropy (entropy inequality replaced by the corre-
sponding balance law). The entropy (3.17) is a particular member of the family
(3.12) corresponding to hg(8) = 0.

Hence, the entropy (3.17) obtained from thermodynamic restrictions imposed
on the original second order system of field equations cannot be employed for
symmetrization of the corresponding first order system of conservation equations
(2.2), (3.1), (3.2), (3.3) since, when treated as a function of e, ¢', 3, it will lead
to the singular Hessian matrix.
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Asymptotic analysis of propagation of a signal
with finite rise time in a dispersive, lossy medium

A. CIARKOWSKI (WARSZAWA)

PROPAGATION of an electromagnetic high frequency modulated signal with a finite
rise time through a dispersive medium described by the Lorentz model is considered.
Asymptotic approximations, based on uniform asymptotic methods, are found for
the Sommerfeld and Brillouin precursors, and for the steady state contribution to
the propagated field.

1. Introduction

THIS PAPER is concerned with the analysis of propagation of a plane electromag-
netic wave in a linear dispersive medium with absorption. The medium occupying
the half-space z > 0 is described by the Lorentz (single resonance) model, other-
wise it is homogeneous and isotropic. The wave propagating in the z direction
has a finite rise time on the medium interface z = 0. Fundamental works on an
electromagnetic signal evolution as it propagates through a dispersive medium
are due to SOMMERFELD [1] and BRILLOUIN (2, 3]. On the grounds of asymp-
totic considerations, the authors showed that the main change in the form of
an electromagnetic signal propagating in a dispersive medium takes place at the
initial stage of propagation, at higher penetration depths the pulse form being
almost unchanged. They revealed that two different precursors contribute to the
signal. The precursors took their names from the names of the aforementioned
authors. Those early results are not, however, fully satisfactory. They were ob-
tained with classical (non-uniform) asymptotics and as such, they break down
at some space-time points in the field.

Recently, significant research in this area has been done by OUGHSTUN and
SHERMAN, see [4-10], based on the use of modern (uniform) asymptotic tech-
niques. In those works the classical results have been reexamined and enriched
by removing the obstacles characteristic of non-uniform asymptotic methods,
and by providing deeper insight into the dynamics of propagation of waves of
various forms. The works by Oughstun and Sherman gave motivation for this
paper which depends strongly on basic results obtained in those works.

In the analysis of a signal evolution in dispersive media, asymptotic techniques
are particularly appealing for their ability to generate results readily interpreted
in physical terms. It is worth mentioning, however, that alternative approach
may here be used. It consists in the examination of interaction of various spec-
tral components of the incident signal with the medium, and then summing up
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the results. Such an approach was successfully used by BLASHAK and FRANZEN
in [12]. The authors studied pulse propagation in dispersive media described by
both the Lorentz and Debye models. By assuming oblique incidence of the in-
coming signal on the media interface they were able, among others, to determine
propagation directions of both precursors.

In this paper we examine, using uniform asymptotic apparatus, the propa-
gation of an electromagnetic signal with finite rise time in a dispersive lossy
medium described by the Lorentz model. The signal is zero for ¢ < 0 and is
hyperbolic tangent modulated for ¢ > 0. Here and throughout ¢ stands for time.
In [8] the hyperbolic tangent was used as the signal envelope for time ranging
from minus to plus infinity, i.e. the signal was switched on at t —+ —oco. As a
consequence, the wave studied here differs in form from that used in [8] and is
more realistic as a model for possible applications.

The problem studied here is of much interest from both the applications
and scientific point of view. The renewed interest in dispersion phenomena was
recently stimulated by investigation concerning interaction of electromagnetic
fields with organ tissue. Dispersion is also important in many instances of prop-
agation of electromagnetic high-frequency fields through dielectric media, since
all dielectrics are less or more dispersive. On the other hand, thorough inves-
tigation of the problem on asymptotic grounds requires application of modern
asymptotic techniques, which can be employed to evaluate contour integrals with
such special cases as coalescent saddle points, saddle points tending to infinity
or interacting saddle points with poles in the integrands.

2. Plane wave description in the dispersive medium

Consider the problem of an electromagnetic plane wave propagation in a
linear, homogeneous and isotropic medium whose dispersive properties are de-
scribed by the Lorentz model of resonance polarization. The complex index of
refraction in the medium is given by the following, frequency-dependent function

/2
b2 !

l) f—t —_—— -

(2.1) oo (1 w? — Wi+ 2ic5w) '

where b* = 47rNez/m, N, e and M standing, respectively, for the number of
electrons per unit volume, electron charge and its mass, d is a damping constant
and wy is a characteristic frequency. It is assumed that the medium occupies
the half-space z > 0 and that the wave propagates perpendicularly to the plane
z = 0 in the direction of increasing z. Arbitrary component of the wave itself or
of a corresponding Hertz vector can be represented in the medium by the scalar
function

(2.2) Alz, ) = %ff(w) s [%qﬁ(w,@)] i
J
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Here, the complex phase function ¢(w, 6) is given by

(2.3) d(w,8) = ig [l:(w)z - wt] = iw[n(w) — 6],
where
(2.4) -

z

is a dimensionless parameter that characterizes a space-time point (z, t) in the
field. The function f(w) is a temporal Fourier spectrum of the initial pulse f(¢) =
A(0,t) at the plane z = 0. The contour C is the line w = w'+1a, a being a constant
greater than the abscissa of absolute convergence ([13]) for f(t) and ' ranges
from negative to positive infinity.

If the incident signal is a sine wave of fixed real frequency w, with its envelope
described by a real function u(f) that vanishes for ¢t < 0, i.e.

| o t <0,
(2.5) ) = {u(t)sin(wct) t>0,

then (2.2) can be represented in the alternative form

(2.6) A(z,t) = % Re {i 700'&(“; — we) exp Ed)(w, 9)} du} ,

ia— 00

where @(w) is the Laplace transform of u(t).

It can be proved that if A(0,t) is zero for ¢ < 0 and if the model of the
material dispersion is casual, then the field A(z,t) vanishes for all 0 = ct/z < 1,
with z > 0. Therefore, with these conditions fulfilled one can restrict the study
to the case 6 > 1.

In this paper we specify the envelope of the incident pulse to be a product of
a unit step function and a hyperbolic tangent function, i.e.

{0 t <0,

27 t) =
(2.7) up(t) tanh 3t t >0,

where the parameter 5 > 0 determines the rapidity of the pulse growth.
In order to find its Laplace transform we take advantage of ([16])
0o 5 1
(2.8) fw—?—q—fd:c:—B (“—’) Rep>0, ¢>0,
1 e~ 7 \q
0
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where B(-) is the beta function. The latter function is defined by the psi func-
tion as

(2.9) B(I):%[’f’ (xerl) —w(ﬁ-)]

and alternatively can be expressed in terms of the series

(2.10) B(z) = i (1}
' T+ k-’
k=0

It follows that the Laplace transform of u(t) is

1 w i
211 7 = —RBil === =
(2.11) Gl 63( Qﬁ) L, mw>0, f>0
or, by (2.10),

B L 1

(2.12) Bp(w) = = 2z(w+w w+4iﬁ+...).

One can see from this formula that in the limit as 8 — oo the function
tends to i/w, which is the Laplace transform of the Heaviside unit step function,
corresponding to the pulse with zero rise time.

With (2.11) used in (2.6) A(z,t) specifies to

(2.13)  A(z,t) = %Re {2_700[%3 (_i(wz—ﬁwc)) — _lw] o Z6(w0) dw} .

a—00

This integral formula describes the dynamics of propagation of the initial signal
with envelope given by (2.7), oscillating with angular frequency we.

3. Asymptotic analysis

As seen from (2.13), construction of an asymptotic approximation to A(z,t)
in the mature dispersion regime, i.e. as z — oo, is closely related to asymptotic
evaluation of the integral describing the field. In general, asymptotic behavior of
an integral depends strongly on analytic properties of its integrand [14]. There-
fore our first step is to establish all the critical points of the integral in (2.13) in
the complex w plane which contribute to the asymptotic expansion of A(z,t). The
critical points associated with the phase function ¢(w,f) are the saddle points.
The first derivative (and possibly higher derivatives) of the phase function with
respect to the variable of integration vanishes at those points. In the present case
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the phase ¢(w,0) is an analytic function in the complex w plane except along
the branch cuts ' w_ and wiw!,, where

Wi = E(w] - 61" -8,

(3.1)
wi = t(wd — )2 _ s

are the branch points of n(w) and w? = w? + b%. The requirement ¢',(w,8) = 0

leads to the equation

(3.2) n(w) +wn'(w) —6 =0,
or

2
bPw(w + i6)
3.3 2 — WP+ 2idw + ————
3:3) wroers zm+uﬂ~-w(";+2idw

= 0*(w® — wi + 2idw)(w® — Wi + 2idw).

This equation determines exact locations of the relevant saddle-points. It
does not seem possible to solve (3.3) exactly. However, from numeric investiga-
tion of ¢(w,#) it follows that there are two kinds of saddle-points: the distant
and the near saddle-points. Each kind contains at most two points. The distant
saddle-points, to be denoted by SPth, are located symmetrically about the ima-
ginary axis in the lower w half-plane. As 6 varies from 1 to co they move in the
region |w| > wi, and take the limiting values +oo — 2id for # = 1 and W/, for
f — oo. The near saddle-points, denoted by SPIiJ, vary in the region w < |wg|.
As 6 increases from 1 to 0y, they approach each other along the imaginary w-axis
and meet at § = 6 to produce one saddle-point of the second order. Next, as 6
varies from 6, to oo, there are two first-order saddle points which detach from the
imaginary axis and tend symmetrically about this axis to w = w4 (see Fig.1).

Equation (3.3) was being solved approximately to find analytic description of
the location of the saddle-points. Apparently the best approximation obtained
so far is due to OUGHSTUN and SHERMAN (see [4]). According to their results,
the distant saddle-point locations are given by

(3.4) wept = +£(6) — id[1 + n(6)],

where

62 -1

_ 821+ B /(62 - 1)
10

9192 1/2
5w=(%—ﬁ+b9) ,
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Im o

5 pdR

112 12
1 -5'] (wy =87 (@) -087)

172 -
(] -8%) (@,

Fic. 1. Trajectories followed by the saddle-points SP; and SPﬁ in the complex
w-plane as # varies from 1 to co.

The locations of near saddle-points are described by

i [£lv@) - S|, 1<0<a,

- 26
(3.6) Wepk =4 —iz_, 6=2061,
2
£(0) —i30((0), 0> 61,
where
2792 2 2 2 3, 5 5242
62 — 62 + 3ab? Jw} 82 — 6% + 3ab? [wi ’
o 3(6% — 65 + 2b% [wp)
4-1) 1) = 2(02 — 93 “+ 3ab2/w§) '
d=le o (42
N 3w§w% 1 '
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The special values of 6 are

6o = n(0) = (1 + b%/wj)"/?,
26212

Bow? (3aw? — 462)

As seen from (2.12), the amplitude factor under integral sign in (2.13) is a
meromorphic function with infinite number of simple poles at

(3.9) w=—i2kB+w:, k=012....

Adjacent poles are equally separated by the quantity i23. If 3 — oo, only the
pole at w = w, is of importance.

Having established the critical points of the integral in (2.6), one can set
about the asymptotic evaluation of A(z,t). The first step is to change the original
contour of integration to a new one, to be denoted by P(#), which is chosen such
that it passes through the saddle points along a path consisting of paths of
descent between adjacent saddle points (see Fig. 2a, b). It was shown in [4] that
such a change is possible (in the case of 1 < 8 < 8; the lower saddle point is not
included because of the branch cut wyw! that makes the contour deformation
to the contour through that point forbidden). By using this procedure, together
with the Cauchy theorem, it follows that A(z,¢) can be represented as

(3.8)
61 == 90 +

(3.10) A(z,t) = I(z,6) — Re[2imr A(9)],

where

(3.11) ZRe; {Lu‘g(w = wc)ec"’("’“’)}
w=wp | 27

is the sum of the residues at the poles that were intercepted in the course of
contour deformation, and

(3.12) I(z,0) = iRe i f tg(w — we) exp Lqﬁ(w 9)} dw

27
P(8)

The problem thus reduces to the asymptotic evaluation of the integral I(z,6) as
z tends to infinity.

Results obtained with classical asymptotic methods, often referred to as
non-uniform, fail for some special configurations of the critical points in the
complex w-plane (comp. [5]). In the present context these configurations are:
(1) the pair of the distant saddle points tend to infinity, (ii) the near simple
saddle points coalesce into one saddle point of the second order, and, (iii) the
contour P(#) crosses a pole of iig(w — w,) as @ evolves. The first and the second
case occur when 6 is close, respectively, to 1 and to # = 6,. In order to obtain
asymptotic representation of A(z,t) which remains valid for all & > 1 including
all three cases, uniform asymptotic techniques will here be used.
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3.1. Asymptotic representation of the Sommerfeld precursor

First, consider the contribution to the asymptotic expansion of A(z,t) which
is due to the pair of the distant saddle points SPg. These points are dominant ()
over the near saddle points in the interval 1 < 8 < 8g5p < 01, where fsp is given
by (see [4])

(313) 658 %’90 =

45282 __[2762b2(90—-1)2]1/3

36w 46pw
62b2 1/2 1/3
PR T
" 270,(60 — 1)@}} B

x {
520? BON (i
M+ = -1
2790(90 = 1)w0

For € close to 1 the distant saddle points tend symmetrically about the imaginary
axis to +oo and transform in the limit as # = 1 into a saddle point of infinite
order. Classical asymptotic methods fail to describe such a situation; instead,
a uniform asymptotic approach is here required. Procedure appropriate for this
case was proposed by BLEISTEIN and HANDELSMAN [14]. It was adapted by
OUGHSTUN and SHERMAN to integrals of the form of (3.12) to yield [5]

| £(0) b2 /2 1/2
(3.14)  As(z,t) ~ 2= {9 M Em e n(9)]2}

. (1/2)6%(1 — n(8)]
¢ éxp (ﬁaz {[1 +n(0)](6 — 1) + €2(6) + 621 — n(9)? })

xRe{exp(—igu)[uuu@P$wd{aa)+«3/aaq1_4ﬂan}
+ (1) a(wgpo — we){€(0) - (3/2)di[1 — n(6)]})

z b?/2
o (25(9) {9 GO O })

+ exp (=13 ) (alwsg ~ wHEE@) + (/2081 = n(O)])
— (1) i(wgp- — w){E(0) — (3/2)8i[1 — n(6)]})

- b?/2
X Jy41 (56(9) {9 BRI () F EI R ) })} }

(') A critical point is dominant over other critical points if Re [¢(w, #)] at this point attains
its maximum value, thus making the point least attenuated.
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as z — oo, where J, is a Bessel function of the first kind. The parameter v
determines the behavior of the amplitude function at infinity (@ behaves like
w™0+Y) a5 |w| = o0).

In the Bleistein and Handelsman method it is assumed that the amplitude
factor in the integrand has a convergent Laurent series expansion in some neigh-
borhood of infinity. In the case considered here this condition is not satisfied as
the function @(w — w,) has poles along the line w = —i2k3 + w,.. Those poles,
however, do not affect the procedure of asymptotic expansion construction. It
is so because the amplitude function is regular in the region which is the in-
tersection of the region |w| > R for some positive R, and a domain where all
deformed integration contours appear. Apart from the line where 4(w — w,) has
pole singularities, this function behaves like

(3:15) t(w — we) ~ ~§5 + Qw™?),

so that v = 1. As a result, the asymptotic expansion of Ag(z,t), as z — oo, for
the signal envelope given by (2.7), becomes

. &) /2 -
(316)  As(zt) ~ 75- {9 I ag T 82[1 — n(6)]? }

Z )62[1 — n(8)]
X exp (—52 {[1 +7(6)](6 - 1) + & (19€2+ 5£11 —nr()(t? }

x Im [(fig(wgps — we){£(6) + (3/2)3i[1 — n(6)]}
+ dig(wgp= — we){€(8) — (3/2)di[1 ~ n(6)]})

z b%/2
xJ;(Ef(Q){B~l+£2()+621an })

g (.ag(wspg — we){&(0) + (3/2)8i[1 — n(6)]}
~ (wsp —w)E(®) — (3/2)5i(1 — (6)]})

Z b2/2
x Ja (56(6){9”52(9) +62[1 — n(6))? })}

where
(B.L7T) ﬁﬁ(""’spg — We)

o Lp (RO e bl (0 i

B 2i3 +£(8) — we — 6i[1 + n(0)]
This expansion is uniform with respect to 8 > 1. It represents the Sommerfeld

precursor, for it is related to the pair of distant saddle points which are dominant
for small €, and hence for small t.
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3.2. Asymptotic representation of the Brillouin precursor

We now consider the contribution to the asymptotic expansion of A(z,t) due
to the near saddle points SPﬁ Their contribution is descriptive of the Brillouin
precursor and dominates over the Sommerfeld precursor as € > Ogg. If 0 ap-
proaches ¢, then the near saddle points coalesce and produce one saddle point
of the second order. Since classical asymptotic methods fail to describe the field
A(z,t) in this case, a uniform approach should then be used. Such an approach
was first proposed by CHESTER, FRIEDMAN and URSELL [17]. It is also derivable
by using BLEISTEIN and HANDELSMAN theory [14], and was adapted by OUGH-
STUN and SHERMAN [5] to integrals of the form of (3.12). Here, we employ the
latter result.

Since there are two different descriptions of the locations of the near saddle
points, depending on whether 1 < 6 < 8 or 8 > 61, (comp. (3.6)), the asymptotic
procedure is to be carried out for each of these cases separately. First, consider
the case 1 < @ < 6,. Using the Oughstun and Sherman result one obtains

N 1/3
(318)  Ap(zt) ~ exp [an(e)] (% (f) Bedlilialwar, —w)bild)

2/3
+ lg(usp, w0 H}Ax[;al( I(Z) }

1 o\ 2/3
_W(;) Re {i[ug(wsp, — we)lhi(0)]

> 2/3
—iip(wsp, — we)[ha(6) [ AL [lal(m\ z) D

N 2 b
ag(f) = -6 (54(0)(9 — o) + —WS{W(@)PMC(@) -1]

as z — o0, where

b2

(3.19) ay = [¢(0)| (% {0 O + —

< [Jalv(6) + ad®c*(e) - 26%(0) })m *

- 26pw? ’ 3
hvl,Z(g) = ({ 30zbz|’</)(9)| o 2(5[1 — O’C(GH} W’(HH {5(9 - 90)

2 q 1/6
+ %wg [Galuo) + as"c2(6) - 26°(6)] })

http://rcin.org.pl



888 A. CIARKOWSKI

and Ai is the Airy function. The plus sign in (3.19)3 corresponds to the index 1
and the minus sign corresponds to the index 2. The functions tig(wgpt —we) are
N

given by
(3.20) tg(wsp, , — We)
2
1 +|y(6)| - §5C(9) + twe 1

8 28 £ (0)] ~ 200(6) + v

Since the argument of the Airy function and its derivative is real and nonnegative
for 8 < 6, the Brillouin precursor is described by nonoscillating function in this
domain.

In the case of # > 6; the asymptotic description of the Brillouin precursor
takes on the form

1 fe

. 1/3
(3.21)  Ap(z,t) ~exp [=ag(8)| [ 5 (=) Re{ilap(wgps —we)h*(6)]
C 2 \z N

&% 58
+ @alespy, —wo)lb @}A [—lal(e)l (2) ]

i c\ 2/3 )
T (@)1 (‘) Re [ig(wgpy —we)|h™ (6)]

2\ 2/3
~ gy, —wolh (B)ALY [—m(an ) D

as z — 0o, where
2

a0(6) = 6 (34(9)%) + {11 - ag(@)w(0)

3 Bows
& ;3 62¢%(8) [% al(6) - 1] }) ,

b2
B 290&)3

< {300 - ac(O) + aw%e)})]m,

1. 2000t PPy s, B
h=(0) = Hzmbw(a)} [_5“1’(9)] (99" T

< {35%0O12 - ag(6)] + aw%e)})}w -

(3.22) a}“ = l-%iw(e) (9 — 6
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Here,
(3.23) ﬂﬁ(wspﬁ — we)

1 [Fi0) ~ 500) +iwe 1
3 28

Fi(6) — 200(6) + i

Since the argument of the Airy function and its derivative is real and nonpositive
for 6 > 6, the Brillouin precursor is oscillating in this domain.

It can be shown that the formulas (3.18) and (3.21) represent a continuous
function of 8. Moreover, these formulas provide a smooth transition in algebraic
order of z, as the argument of the Airy function and its derivative tends to zero.
Indeed, the algebraic order of z~1/3Ai[—|ay (8)|(z/c)?/3] and 2z~ 2/3 AV [—|ay (6)]
-(z/¢)?/3] is 2~1/2 while the order of both Ai(0) and Ai®)(0) is 0(1). Hence, the
resultant field is of the order of z~1/2 when the near saddle points are separated,
and of the order of z~!/% if they coalesce into one saddle point of the second
order. This agrees with known results obtainable with non-uniform asymptotic
approach.

The Brillouin precursor is insignificant for € close to 1, but becomes of impor-
tance at # > fgp, when it begins to dominate over the Sommerfeld precursor. In
particular, at 8 = 6 it suffers no exponential attenuation.

3.3. Interaction of pole singularity with the saddle point

As 6 increases from 1 to oo, singular points associated with the spectral func-
tion tig(wgpt — w) are intercepted while the contour P(f) evolves and their
N

contribution is represented by the function A(6), as defined by (3.11). This con-
tribution introduces a clearly discontinuous term on the rhs of (3.10), while the
lhs is a continuous function of . Thus the problem at hand is to find asymptotic
evaluation of I(z,6) such, that the rhs of (3.10) is also continuous and equal
asymptotically to A(z,1).

A suitable tool, appropriate for this task, is that proposed by Bleistein and
Handelsman. Their method allows for asymptotic evaluation of a contour integral
with simple saddle point coalescing on an algebraic singularity of the integrand,
[14]. In case the singularity is a simple pole, their procedure is equivalent to
the VAN DER WAERDEN method, [18]. General results for this case have been
adopted to integrals considered here by OUGHSTUN and SHERMAN [5] and will
be employed in this paper.

Here, it is assumed that [ is large enough so that only one pole, equal to
W = w,, is crossed by the contour P(6). Additionally, the carrier frequency w,
is assumed to lie above the dielectric absorption band, i.e. w, > (W} — SRR,
but otherwise is finite. Under these assumptions the pole at w = w. interacts
with the distant saddle point SP;}. According to the results obtained in [5],
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the asymptotic approximation to A(z,t) depends on the value of A(8), which is
defined as

1/2
(3.2 A(6) = [dlwgpy 0) — 6(we6)] -

As 6 increases from 1 to oo, the saddle point S P} moves leftwards in the complex
6 plane, and the path P(6) through that point crosses the pole at 8 = 6,. With
the help of the Bleistein and Handelsman method and its Oughstun and Sherman
adaptation, the following asymptotic contribution to A(z,t) is obtained. If 1 <
6 < 6, then the distance between the origin and the intersection of P(6) with
the real w axis is larger than the distance between the origin and the pole,
Im[A(8)] > 0, and

(3.25)  Ad(z,t) ~ zi {—m erfe [—m(a) (g)l/zl exp Ed;(w,,,e)]

b ) o]

as z — oo. If # = 6, i.e. the path P(6) crosses the simple pole singularity at
w = we, then Im[A(0)] =0, A(f) # 0, and

Bl {_m erfc [~iA(8) (2)1/2} exp EQS(%,@S)]

27

i A(195) (?)1/2 e Ec’)(wspg’BS)]} + Re {i exp Eqﬁ(wpﬁs)] }

as z — oo. In the remaining case, i.e. when 6 > 6, or equivalently, when the
distance between the origin and the intersection of P(f) with the real w axis is
smaller than the distance between the origin and the pole, one has Im[A(8)] < 0,
and

(3.26) Ae(

I

™

+ats () oo 2ty 1] | + e o 20000}

(3.27)  Ad(zt) ~ 2i {m el [m(e) (%)1/2] e [§¢,(wp,9)]

as z — 00.
Here,
. 2 7 2
(3.28) erfc (£) = m/exp(—y ) dy.
£
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In (3.25) through (3.27) we have taken advantage of

(3.29) uli_}mwc[(w - we)(w — we)] =1,

and of (3.12). The asymptotic expansion of A.(z,t), as given by (3.25)-(3.27), is
a continuous function of €, and hence yields a uniform asymptotic contribution
to A(z,t). As noted in 5], if the absolute value of the argument in erfc function
is large enough, then this function can be replaced in (3.25)-(3.27) by its asymp-
totic representation, thus leading to the non-uniform asymptotic approximation
to A.(z,t). It then follows that for the pole and the distant saddle point bounded
away and z large, (3.25) introduces asymptotically no modification to the field;
it is important only in the case of moderate values of the erfc argument. On the
other hand, if the absolute value of this argument in (3.27) is large, A.(z,t) con-
tribution to the field is, as expected, due to the residue of u(w — w,) at w = w,.
Note, that A.(z,t) is independent of 3, and is the same as in the case of unit
step envelope function [5].

To collect the results of the previous sections we note that contributions
stemming from various critical points of an integral appear in the asymptotic
expansion of the integral in the form of uncoupled components (comp. [14, 5, 19]).
Accordingly, the asymptotic approximation to A(z,t) is the sum consisting of the
Sommerfeld and the Brillouin precursors, and the steady state contribution due
to the pole singularity, i.e.

(3.30) A(z,1) ~ As(z,t) + Ap(z,t) + Ac(z,t)

as z — 00,

4. Conclusion

The propagation of an electromagnetic signal in a dispersive medium de-
scribed by the Lorentz model has been considered. The initial signal was chosen
to be a sine wave of high real frequency modulated with the envelope described
by the product of hyperbolic tangent and unit step function. A uniform asymp-
totic expansion of the propagating pulse in the medium in the mature regime
was obtained with the help of modern asymptotic techniques.

Although the asymptotic representation for the field A(z,t) was obtained
under the restriction that the carrier frequency lies above the medium absorption
band, a similar reasoning can be applied if this frequency occurs below that band.
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On the description of the consolidation phenomenon
by means of a two-component continuum

W. KEMPA (ESSEN)

THE PURPOSE of the present paper is the consistent formulation of the initial-
boundary value problem for the consolidation phenomenon within the frame of a
new two-component continuum model. The new class of models of two-component
continua characterized by the balance equation for porosity is presented. The ini-
tial-boundary value problem with regard to the physical features of the consolida-
tion is formulated. Some additional constitutive relations for the boundary quan-
tities are proposed. Bearing in mind these constitutive relations, an example of a
one-dimensional structure is calculated. The results of the numerical simulation are
the basis for the parameter study of some constants of the model.

1. Introduction

THE HISTORY of development of the mathematical description of the consoli-
dation phenomenon goes back to the twenties of this century. At this time von
Terzaghi has derived the consolidation equation under strongly simplifying as-
sumptions and presented it in his work [1]. The most important assumption was
that the influence of the inertia forces has been neglected in his investigations.
The consequences of this assumption are that the disturbance propagates in the
domain with infinite speed what does not agree with the reality. This equation
is the basis of consolidation calculation within the scope of soil mechanics up to
the present time.

The development of the mixture theories and, especially, of the porous media
theories based on the principles of the continuum mechanics has allowed to de-
scribe this phenomenon on the macroscopical level in mathematically exact and
physically more accurate way.

The most of the existing macroscopic models of this sort are based on the
model of multicomponent continuum with the so-called incompressible compo-
nents that have been introduced by BOWEN [2]. From the point of view of con-
tinuum mechanics these models differ from each other only in the choice of con-
stitutive relations. However, the model of BOWEN and its different modifications
cause serious mathematical problems, particularly in their numerical treatment
because the number of the governing equations and the number of the unknown
fields are not equal.
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One of the consequences of this fact is that the consistent formulation of
the boundary value problem for most models of this type is not possible. The
existing numerical calculations could be obtained only with additional conditions
on the boundary. These conditions are justified neither from the mathematical
nor from the physical point of view. HUTTER, JOHNK and SVENDSEN show in
their work [3] an example of such a model yielding results only in one of the
limit cases namely only then if solely one of the constituting components exists!
We shall not discuss the problems connected with the construction of the class
of Bowen-like models, nevertheless it can be easily proved that most of these
models are mathematically not consistent.

Moreover, there exist also models proposed in the works [4, 5, 6 and 7] based
on the concept of the so-called equilibrated forces. The system of the governing
equations in such models is closed with an additional equation which is motivated
by the information won from the microscopic level of observation. However, the
identification of the microscopic quantities is not obvious and it causes some
problems.

A detailed overview of the existing porous media models and the discussion of
some new tendencies in the theories of porous media can be found in the paper
by DE BOER [8].

The class of models which is the basis for the formulation of the initial-
boundary value problem and for the numerical calculation in this work is the new
one. It has been developed by WILMANSKI and presented first in the paper [9].

The system of governing equations of this model includes the balance equation
for porosity. This equation allows the macroscopical description of the properties
of the semimicroscopical level of observation. Due to the fact that the porosity
1s a scalar variable, only one of the properties of the semimicroscopic domain,
namely the volume contribution of the pores, can be reflected on the macroscopic
level in this way. The physical motivation for this equation and its derivation can
be taken from the work [10] of WILMANSKI.

The aim of this work is the formulation of the initial-boundary value problem
for the consolidation phenomenon and the numerical parameter study of some
model constants appearing in the class of models presented in the paper [9]. In
the second section, a simplified model constituting the basis for our calculation
is described. Then, we go over to the main part of this paper. We formulate the
initial-boundary value problem for the simplified model in a consistent way. The
fourth section is devoted to the description of the methods enabling the calcu-
lation of a simple one-dimensional example. Finally, the work is closed with the
discussion of the numerical results and completed with the concluding remarks.

2. Basic concepts

The thermodynamical behaviour of a two-component continuum constituting
of materially homogeneous components, a solid and a fluid one, can be described
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generally in a similar way as the behaviour of a mixture of two immiscible fluids,
by using the spatial description for the fluid and the material description for the
solid through the following set of unknown fields

(2.1) {of ,vr} x {0, x50} .

The only difference between a two-component porous medium and a mixture
of two immiscible fluids is the occurence of the variable n standing for the porosity
which apears in the set (2.1). The quantities pf and p° describe the macroscopical
partial mass densities of the fluid (current) and of the solid (initial), respectively.
The motion of the solid component is described by the function ¥ and the
kinematics of the fluid is defined by the Eulerian description by the velocity
field v,.

In order to avoid the difficulties in the formulation of the boundary value
problem we choose after WILMANSKI [11] the Lagrangean uniform description
for both components. In such a case we have for a homogeneous solid without
mass exchange between components

(2.2) o° = const .

Then, the kinematic behaviour of the fluid is determined by the so-called La-
grangean fluid velocity X', which has been derived in [11].
The set (2.1) of the unknown fields takes now the form

(23) f = {vax,}?HXS’n})

where p¥ is the mass density of the fluid referred to the reference configuration
of the solid.

Due to the Lagrangean uniform description for both components, the func-
tions of the set f have the same domain, i.e. they are functions of the material
points X of the skeleton and of the time t.

The material points X of the skeleton belong to the domain B(X € B) of the
three-dimensional differentiable manifold. In this work we identify the domain B
with a chosen configuration of the skeleton with the positions X of the material
points X at the instant of time ¢ = tg. Then, the current position of a material
point X of the solid is defined in the following way

(2.4) %= Wl X L), x € By, B, :=xs(B,t) CR?}, teTcR}

where B; is the actual configuration.

If the set f of mappings is the solution of an appriopriate initial-boundary
value problem for the set of field equations then isothermal processes taking place
in the above continuum can be defined in the following way
(2.5) /\ (X, t) = (07, XL, x,n) € VB,

xeB, teT

where V® is the eight-dimensional vector space of the values of the fields.
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The fields (2.3) should be determined through the system of partial differ-
ential equations following from the balance equations. In the case of the linear
model, considered in this work, we do not have to distinguish between the ma-
terial (Lagrangean) and Fulerian description of motion [11]. We can also use the
displacement vector us instead of the function of motion x . Consequently, the
set of unknown fields for such a case can be chosen in the following manner

(2.6) Fo= {gf,nA,vF,us}, n®:=n-ng,

where ng is the constant equilibrium value of the porosity.
The corresponding field equations follow from the balance laws. For the elastic
skeleton and the ideal fluid, they have the form

a@t
ot
no n®
—— + 7divve = ——,

(2.7) ot T
s 0%ug
3t2

+ div(gf ve) = 0,

— 7w — 0°bs = 0,

du
+g, grad vpve — divTF+7'rw—gbe:0, w:=vF——ﬁ

Qt (';?t 3

Bt

where the partial stress tensors Tg and T, satisfy the following constitutive
relations

Ts = TE 4-p't], TS = AS(Es-I)I + 2u°Eg,
T = I___ 1ntI = ___1 ( t ), int - _L A
F Pa Pa po + F n or p Yo Nﬂ

The above relations contain the following material constants depending on the
equilibrium porosity ng

(2.9) C:={X%p°,s", 7N, 7,90}

As shown in the earlier papers on the subject (e.g. [9, 12]), they can be found
for many materials by means of dynamical experiments.

Otherwise, the tensor Es in (2.8) denotes the Green— St. Venant deformation
tensor for small deformations

1
(2.10) Es = 3 [grad us + (gradus)T]

and pf denotes the reference value of the fluid mass density corresponding to
the pressure pf.
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3. The consistent formulation of the initial-boundary value problem
for consolidation

The consolidation phenomenon as a special kind of physical processes is al-
ready well known. During such processes, which take place in multicomponent
continua, one or more components flow out of the domain of the multicomponent
continuum due to the action of the external load. Consequently, the concept of
free surface must be accounted for by the calculation of the consolidation phe-
nomena. In contrast to the one-component materials, in which the free surface
problems appear only then if wave propagation, phase changes, plastic defor-
mation and some other problems of the change of material structure are being
treated, the free surface in the multicomponent continua appears already if the
free boundary is permeable.

If we assume that the boundary surface is material with respect to the solid
boundary 0B, i.e. we identify the boundary of the treated continuum with the
boundary of the skeleton then it is singular as well as non-material for the out-
flowing component. This fact is then reflected in the relation
(3.1) ¢ = Vslya
where ¢ is the velocity of the free boundary.

Further, we shall assume that the boundary surface is ideal, i.e. it does not
possess any intrinsic structure. We denote such a boundary surface as S.

In order to describe this surface we have to formulate the balance equations
on the ideal surface S. We do not need to derive these conditions because their
derivation is standard and it has been found by WILMANSKI in his work [11].
If we write the governing equations (2.7) in the integral form and extend them
to hold in the limit on the singular surfaces then we obtain the following local
dynamic compatibility conditions:

¢ for the solid component
(32) [TS} n = U’
¢ for the fluid component

(3.3) lof (ve = vs)] n =0,

(3.4) [Tr]n = [0/ (Ve — vs) mnvg],
e for the porosity

(3:5) [No(ve —vs)] 'n =0,
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where Ny is a constant and the square brackets denote the difference of the limit
values between the positive and the negative sides of the surface S, i.e.

(3.6) [] = ()T = ()

and the internal side of the boundary has been chosen as the negative one. It is
convenient to introduce the following definition

(3.7) m” = of (vp — vs)-n.

The relation (3.7) represents namely the mass flux of the fluid component through
the boundary surface S per time unit and area unit. The physical meaning of the
flow continuity through the non-material surface for the fluid is that the fluid
component does not stick to this surface.

In contrast to the relation (3.4), the relation (3.2) is identical with the classi-
cal Poisson condition. The relation (3.4) shows that the contact force in the fluid
is not continuous. We will see in the sequel that this fact has a great influence on
the formulation of the boundary value problem because such an inhomogeneous
dynamic compatibility condition indicates the existence of the free surface. The
compatibility condition (3.5) for the porosity does not influence the formulation
of the boundary value problem in the simplified case considered in this work.
Therefore we skip it in our consideration. Finally it should be mentioned that
the mass conservation law for the skeleton does not appear as a dynamic com-
patibility condition because it is identically fulfilled.

We can now pass over to the formulation of the boundary value problem. Since
we have to formulate the boundary quantity neither for the mass conservation law
(2.7)1 nor for the equation for porosity (2.7)s, the mathematical structure of the
governing equations (2.7) requires only the formulation of two vector quantities
on the boundary. We can see that in the case of the chosen simplified model, the
balance equation for porosity transforms to the evolution equation (2.7)s.

For this reason, we shall treat in the sequel only both the balance equations
of momentum. First, we integrate the relations (2.7)3 and (2.7)4 over the do-
main B and obtain, after using the compatibility conditions (3.2), (3.4) and the
definition (3.7),

i PN
f (QS at; — W — gsbs) dv = ft;r da ,

B o8

(3.8) / (Qf s + of grad veve + Tw — gbe) dv

J ot
= [ [t;f —mf" (v}_L —v;) -nn] da.
aB
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In this transformation we have employed the following relation

(3.9) v —v, = (v;f-n~v;-n)n
resulting from the fact that the partial fluid stress tensor contains only the
spherical part.

The analysis of the relations (3.8) leads to the conclusion that due to the
outflow of the fluid component, two vector and two scalar boundary quantities
for two-component continua described by similar equations as the relations (2.7)
must be specified on the boundary. These are in our case

(3.10) R = {t:,tj‘:,m}?-k,v;»n}.

It should also be mentioned that the treatment of one-component continua
does not require the formulation of an additional scalar quantity until we have
to solve a problem with the non-material surface such as, for instance, the wave
propagation problems. This fact has been illustrated in the paper [13] in the
discussion of an example of propagation of surface waves.

Next, we formulate the set of boundary quantities (3.10) in accordance with
the physics of the consolidation phenomenon. Before we do so, the class of bound-
aries which can appear in the consolidation problem must be defined.

f' |
v Yy

[F'1G. 1. The class of boundaries by consolidation — a possibility.

In Fig. 1 we show schematically these possible classes of boundary conditions
on the boundary 9B (= @By + 9By + dB3) of the body B. Namely

e JB; - loaded and permeable free boundary,
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e 0By - loaded and impermeable boundary,
e 0B; — impermeable fixed boundary.

By the definition of the boundary quantities the physical features of consoli-
dation must be taken into consideration. As we have already mentioned, the
consolidation process will be characterized through the outflow of one or more
fluid components outside from the domain of the multicomponent continuum due
to the action of the external load. One of the consequences of the outflow process
is the existence of the free surface, whose description, as we have shown already,
requires an additional scalar quantity prescribed on the boundary. Moreover, the
acting external load cannot be a priori divided into separate parts acting on the
fluid and on the solid, respectively, because it does not happen in the reality.

According to this, we add up the partial loads t7 and t} in the following
constitutive way

(3.11) =t et

where the index “ext” indicates the whole external acting load. If we make the
above assumption we cannot use the set (3.10) in the formulation of the bound-
ary value problem because we are missing one vector quantity. However, this
additional vector quantity can be defined on the boundary in accordance with
the physical features of the consolidation phenomenon.

The outflow of the fluid component through the boundary of the domain
of the multicomponent continuum means that the velocity difference w on the
boundary is not equal to zero. So we choose this vector quantity as the missing
second vector boundary relation. It can be also written in the form

(3.12) wh=wn+wl,

where w| has the meaning of the velocity difference, perpedicular to the unit
outward normal vector n. For all components of the vector w we must propose
constitutive relations. Before we pass over to the formulation of the boundary
quantities, we want to replace the scalar quantity (v, -n) by gf’+ by means of
the definition (3.7) in the following way

7o + 1 1

(3.13) ¥y —¥p ) n=m" (— = ﬁ) :
=} P

With (3.13) the right-hand side of the relation (3.8); transforms to

(3.14) [()du = / {t; ~ (m'ﬁ)z (in_ - Q;_) n] da.

B B

It has been shown in the paper [13] that the second term of the surface
integral can be neglected in consolidation problems because the value of the
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acting force normal to the boundary is much greater than the value of the second
term, the so-called flow force. However, this force must be taken into account
in cases characterized through the rapid outflow processes such as combustion.
This problem is nonlinear, even if the operator is linear because the nonlinearity
results from the nonlinear boundary condition.

The above considerations show that the set (3.10) must be replaced by the
following one

(3.15) R = {teXt,w+,mF+,Qf+}.

For the last three quantities the constitutive realtions must be formulated.
We begin with the vector quantity w*. We assume after WILMANSKI ([11]) that
the outflowing fluid cannot slip along the boundary. Therefore, we obtain for
both components which are perpedicular to the normal vector

(3.16) wl =0.

In the case of an ideal fluid, this result can be obtained indepedently as a
mathematical consequence of the material properties.

The component in the direction of the normal unit vector can be directly
formulated from the relation (3.7) using the definition (2.7)s

F+
+_Mm

Ft
ot

(3:17) w

We see, that the normal component of one of the two vector boundary quan-
tities is determined by the remaining scalar boundary quantities. One can also
observe that the vector boundary quantity (3.12) is an inhomogeneous one. This
is an additional characteristic property of the multicomponent continua. For the
mass flux of the fluid component we assume the following constitutive relation

(3.18) mF = (PF" \33 —n7|pp PA) :

A similar relation has been proposed for the consolidation phenomenon by
RUNESSON in his Ph.D. Thesis [14]. However, relations of this form are also well
known in other fields of physics (e.g. heat transfer through thin walls). Some
indications of the difficulties connected with the formulation of the boundary
value problem can be also found in the papers [20-23].

We see, that the mass flux of the fluid is determined by the partial pressure of
the fluid and by one more external quantity, namely the atmospheric pressure p*,
weighted, according to Dalton’s law, with the porosity. The coefficient 3 describes
the physical properties of the boundary and has, due to this interpretation, the
meaning of surface permeability. We shall show in the parameter study in the
Sec. 5, how great is the influence of the value of this coeflicient on the value of the
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mass transport through the boundary. For the purpose of this work we assume

that the properties of the boundary are independent of the time and piecewise

homogeneous. We obtain then

d 0
B_,

— =0 = 3 = const.

313 ot dx

We shall assume for the second scalar boundary quantity that the fluid mass
density on the exterior of the boundary is constant, i.e.

(3.20) oF " = const .

We see that the relations (3.11) = (3.12), (3.16) <+ (3.18) and (3.20) determine
the quantities included in the set R'. Summarizing the above analysis we obtain
the following relations for the whole boundary (see Fig. 1):

¢ loaded and permeable free boundary

‘ text # 0,
mF’
wt = n,
(3.21) A of"

x€dB1 | Ft _ 3 (pp— _ npr> ,

ot
pf = const,

e loaded and impermeable boundary

text # 0,
+
m¥
wh = ——n,
(3.22) A o
X€GBE mF+ —_ O,
gf+ = const ,
¢ impermeable fixed boundary
vi =0,
(3.23) A { rl
xedB3 = 0’

where the boundary quantities can take the forms defined above.

Let us mention that the conditions (3.21) and (3.22) are the so-called mixed
or Robbin’s boundary conditions and the conditions (3.23) are the well known
essential or Dirichlet’s boundary conditions. In the case of a fixed boundary we
can accept another possible definition of the boundary quantities since we need
only two from the three existing kinematic quantities.
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Due to the choice of the second vector quantity, namely the velocity difference
w, the system of the governing equations (2.7) must be transformed in a suitable
way because the velocity difference w does not belong to the set (2.6) of the
unknown fields. There are two ways of transforming the governing equations.
The first one is the extension of the set of fields and of the equations through
the relation (2.7)5. The second one is the variable transformation

(3.24) {Qf,nA,vF,us} — {Qf,nA,VF,w}.

We have decided to go the first way because it is technically easier to handle.
Let us notice that the boundary value problem for the additional equation does
not need to be formulated since the relation (2.7); belongs to the class of the
evolution equations. The set of the unknown fields (2.6) takes now the form

(3.25) Fl= {gf,nA,vp,uS,w} .

Finally, we formulate the initial value problem for the above set of unknown
fields. We choose

(ot (x,t)];—o = 0§ (x),
nﬂ(x,t)L:O =1
(326) /\ uS(xvt)h:() = 01
xEB
ve(x,t)],_ = 0,
w(x,t)|;—g =0,

where the function pg(x) is the one-dimensional static solution of the balance
law of momentum for fluid. If we introduce the coordinates shown in the Fig. 2 a,
we obtain then the following distribution of the initial fluid mass density

(3.27) 0 = 0" (2,t = 0) = ojg [1 + " 0jpg(h — )]

with ¢ as the value of the gravity acceleration.
With the last assertion we have closed the formulation of the initial-boundary
value problem and now we pass over to the treatment of the numerical example.

4. Numerical simulation

In the present section we proceed to construct the weak formulation with
respect to the already mentioned physical features of the consolidation.

The numerical simulation will be carried by the finite element method. We
shall treat a simple one-dimensional example shown below in the Fig. 2 a. In this
case the set (3.25) of unknown fields takes the following form

(4.1) Fl .= {gf,na,us,vl‘“,w}.
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a) q=10'N b)

2| —

h=4.0m 0 X

z 2

z

v Ie" i CIT v

FiG. 2. a. The one-dimensional domain. b. Three-nodal continuum element.

For the purpose of the space discretization we use the finite element method
and proceed in the following way. We identify a finite number G of points in
the whole one-dimensional domain D, shown in the Fig.2a, and these shall be
called nodal points. The whole domain will be divided in the standard way
into F subdomains (finite elements) connected at nodes on their boundaries.
The functions which form the set F'! will be approximated locally over each
finite element by continuous functions, the so-called trial functions, which are
uniquely defined in terms of the values of the functions (or also their derivatives)
at the nodal points belonging to each element. Furthermore, we make use of
isoparametric elements by which the approximation of the element coordinates
and of the functions appears by applying the same interpolation functions.

In accordance with the chosen one-dimensional domain, we use for the dis-
cretization three-nodal elements (see Fig.2b) with the well known quadratic
linearly independent trial functions

1 1
P = 5(1—7")—2—,(1—1"2);
(42) ‘P2 — 1_T2:
1 1,
Py = 5(1+7)—§(1—T),
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where the relation » = (2/1)z — 1 to calculate the natural coordinates holds true.
We construct then the approximating functions £ for all unknown fields in the
following manner

(4.3) =

The most important property of the above relations is the fact that they fulfil
each boundary condition for the chosen finite element because the trial function
takes the value one on the node it is defined for, and vanishes identically on the
other nodes of the element.

It is clear that the approximating functions do not fulfil exactly the set of the
governing equations. If we insert the relations (4.3) into the governing equations
they shall not be satisfied. There remains the error ¢ which is also called the
residuum. In order to minimize the residuum ¢, the undetermined parameters Ej
must be properly chosen. Let us mention that the above form (4.3) of the ap-
proximating functions is the conventional one in which the parameters fj depend
on time and the trial functions (4.2) are functions of the space variable.

For the optimization of the approximating functions (4.3) the Galerkin method
has been chosen. In the same way as by the application of other weighted resid-
ual methods, the arising errors will be projected one after another on the test
functions, which are in the case of the Galerkin method the same as the trial

functions ¢;. We obtain then for each equation an orthogonality condition of the
form

(4.4) /\ (,98) = /a,oz- dv = 0.

i={1,2,3} B

Using this procedure, the errors £; will be minimized in the averaging sense
because the limited number of the trial functions spans only a finite-dimensional
subspace of the space of exact solutions.

The use of the Galerkin method does not allow to define the essential bound-
ary conditions. Therefore, we define in the sequel the coefficients which have the
sense of the arbitrary increments of the prescribed kinematic boundary quan-
tities. These arbitrary increments vanish identically for the prescribed value of
the corresponding quantity and are undetermined if the quantity is unknown.
Due to the relation (3.23), such arbitrary increments must be defined in our
one-dimensional case for »* and for w.

If we now apply the orthogonality conditions (4.4) to each of the govern-
ing equations (2.7) using the definition of the scalar product, we obtain in the
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one-dimensional case the following equations:

1
dgf | def av*
=1
s wr al
(EC R T
~1
1
ovF ow 9% _
(4.5) /\ /{QS—.@*QSEHE—?—ﬂerQSQ}wdr = ik

i i=1,2,3

- pé . ; : ; "
where 5 and ¢ are the arbitrary increments described above, and the following
definitions have been used

-5
&% = (A5 + 2,&15)i EW.. 3 “Fna,
9z N7
(4.6) o
P en YO .reA
5F _h—(pgﬁ-ﬁ—*:ln(—f) NTgfn )

Let us mention that, due to prescribed distribution of the initial partial fluid mass
density (see (3.27)), the influence of the gravity force on the fluid component has
already been accounted for. In such a case the gravity force does not appear in
the relation (4.5).

If we prescribe the natural boundary condition on the boundary I (see
Fig.2a) and neglect (as mentioned in the Sec. 3) the nonlinear boundary contri-
butions, then, bearing in mind the structure of the unspecified boundary quan-
tities, the dynamic compatibility conditions (3.2)(3.4) and the definition (3.7),
we obtain from the equation (4.5)4

1

b s
(4.7) /{[pz 8; +éf8v P rw 5“+&*‘8U +8(U ! )} dr

0z 0z 0z
-1
55" textﬁ)‘-d )
r'=riy+r;
i 0
where the relations t***|. = —q for the top element and o7 = 0 for the
) 2
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bottom element hold. To simplify the notation the following definition

3
(4.8) 5 =Y

1=1

has been introduced.

Replacing Eq. (4.5)4 by the relation (4.7) and integrating the system of Egs.
(4.5) over the treated one-dimensional domain we obtain a nonlinear system of
algebraic equations which can be written in the following matrix form

(4.9) Di+Ku=R,

where D is the so-called damping matrix, K the so-called stiffness matrix, u
and 0 denote the process vector and its time derivative, respectively, and R
denotes the load vector. We skip here the presentation of their explicit form. The
solution of the system of nonlinear equations can be obtained by means of the
Newton — Raphson method and the time integration by means of the Newmark
method. Since the Newmark method is an implicit one, the relation (4.9) will be
solved for the time t + At. The matrix equation (4.9) takes then the form

(4.10) tHOtDtHALy 4 HHOtKEEAL, _ tHALR

The linearization of the above relation by means of the Newton - Raphson method
leads to

t+AL N tHAL
(4.11) o]

. t+At e t+ A8 t+ A\t t+At
Pl 4 RIS A = MR = B OF,

(e=1) (v) O
where the index ¢ denotes the number of the iteration step, EZL_Al;F is the internal
force vector corresponding to the stresses, and Au and Au denote the increments
of the process vector and of its time derivative, respectively.

For the approximation of the increment of the time derivative of the process
vector, the following linearized Newmark ansatz will be used

(4.12) HOA = ——

Substitution of the above relation into Eq. (4.11) yields

t+ Aty t+ AL __ t+ AL t+AL
(4.13) KT Du="TAR - TOF,

with the following definition of the so-called effective stiffness matrix

(4.14) oty 0 tpat

t+A
(L—I)K T a At 1) 1

t
K.

D+ )
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Furthermore, we choose for the constants o and ¢ the values 0.25 and 0.50,
respectively. In this case the Newmark method is identical with the constant
average acceleration method.

With the solution of Eq. (4.13) the process vector at the time ¢t + At and for
the iteration step ¢ can be determined from the relation

t+At t4A t+At
(4.15) WY = T () Au.

If a chosen breaking off criterion is fulfilled, the value H%’;u is simultaneously
the initial value of the process vector for the next time step.

5. Parameter study and concluding remarks

The purpose of this section is to study the constants of the chosen simplified
model. We present here the qualitative comparison of the results obtained in this
work with the classical results of the consolidation theory as well as we study
the influence of variation the material constants on the quantitative results. The
values of the following constants: A%, u¥, N and 7 have been taken from the
work [15] of WILMANSKI. He has determined of values for these constants by
means of the wave analysis using the experimental data quoted in the book [16]
of BOURBIE, Coussy and ZINSZNER. For the Massillon sandstone with empty
pores and the porosity ng = 0.23 he obtained the following values:

A5 = 10.766 x 107 Pa,

u’ = 6.144 x 10" Pa,

N = 1.986 x 1072sm™2,
T = 3.699 x 107%s.

(5.1)

The remaining quantities of the set (2.9) of the model constants are ¥, 7, v
and the additional constant .

Let us treat a two-component material constituted by the solid component
whose properties are described by the constants (5.1) and which is fully saturated
with water. Simultaneously, we assume the effective compressibility of water

(5.2) k" =0452x 107" Pa?.

The permeability coefficient 7 has been investigating of CHAMSAZ in his
dissertation [17] and it takes the value 2.602 x 107°Pam™?s for the Massil-
lon sandstone. For this order of magnitude of # CHAMSAZ obtains the value
w ~ 0.14mh™! for the velocity difference which is a realistic one in the consoli-
dation processes. Using the above value 7, the order of magnitude of the surface
permeability 4 has been investigated in the paper [13]. It has been shown that
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we can assume its value to be ~ 1.0 x 1078 sm~!. Both coefficients # and 3 will
be varied in the following parameter study.
Finally let us assume for the last constant

(5.3) Yo =ng=0.23.
This assumption can be motivated by the analysis of the limits of the present

model. We shall skip these considerations in this paper. We assume the remaining
constants to be

0° = 1000.0kgm *,
oy = 230.0kgm ™3,
g = 10.0ms™?,
4 = 100000.0N

(5.4)

i~
I

and define the integration constant as follows
(5.5) pg = ngp® = 230000 N.

The above values of constants reflect the order of magnitude of the real
constants which should be obtained by the proper averaging procedure. Such
procedures are being presently investigated(!). We shall not discuss this very
important problem here.

As we have already mentioned, the character of the numerical simulation
will be characterized by the parameter study. The parameters which have been
chosen to be variable are:

e the number of elements: 10 or 30,

o the value of the permeability coefficient 7 = 2.602x10%+2.602x10'® Pam s,

o the value of the surface permeability 3 = 1076 = 107 kg~ 'm?s.

For the numerical simulation we have developed the finite element program
LFEP which has been written using the macro-language of the program system
MAPLE V2. Although the capacity of this program is limited, it is large enough
for our purposes.

We begin with the variation of the permeability coefficient 7. Figure 3 shows
how the permeability coefficient influences the growth and the relaxation of the
partial fluid pressure. Due to the well known fact that the whole load will be
carried at the beginning of the consolidation process only through the fluid com-
ponent, the partial pressure p” increases quickly and then in the second step
relaxes from the fluid component to the solid one. This fact shall be illustrated
later. The speed of this process depends also on the value of the source of momen-
tum p which is proportional to the difference velocity w through the coefficient 7.

(*) One of such procedures can be found for example by SHAFIRO and KAacHANOV [18].
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The Fig. 3 shows the relaxation behaviour of the partial fluid pressure for three
different values of 7 for a chosen depth and for a chosen value of 3. It is easy to
see the characteristic excess of the partial pressure of the fluid component which
has also been observed in experiments, and which is called the Mandel - Cryer
effect. The different maximum values can be attributed to the inertia effects
which have been neglected in the classical consolidation theory.

864006 T=2602x10"
6e+006
pF(Nm?)
\
I %
4e+006 1}, _ ,
| ~., T=2.602x 10
\
oy
I\ m=2602x10° e
4006 4t 0, T
v e
X g
\
e ~
0 S
0 50 100 150 200 250

t[s]
Fic. 3. Partial fluid pressure p” vs. time: 10 elements, 3 = 107°%, z = 1.80m.

In the next figure it is shown how the value of the permeability coeflicient
influences the values of the partial fluid pressure as a function of the depth of
the chosen structure.

Let us remind that the variable z is measured from the bottom of the struc-
ture, i.e., for instance, the point z = 4.0m in Fig. 4 corresponds to the loaded
boundary.

We see that for the chosen time step ¢ = 100s the highest value of the pressure
p" appears at the bottom of the structure for the smallest coeflicient 7, i.e. then,
if the permeability is high. In such a case the friction force acting as the source
of momentum between the components is the lowest one, and the external load
will be quickly distributed through the whole structure down to its bottom.

Figure 5 illustrates the relaxation behaviour of the partial fluid pressure p* as
a function of depth and chosen time steps for the fixed values of @ = 2.602 x 10°
and 5 = 1075 As we can see, the partial fluid pressure decreases for increasing
time. This relaxation behaviour has been also observed in the Fig. 3. We return
to this property in the sequel, where it shall be shown how the acting external
load relaxes from the fluid to the solid component.
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F1G. 4. Partial fluid pressure p* vs. depth; 10 elements, 3 = 107°, ¢ = 100s.
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Fic. 5. Partial fluid pressure p” vs. depth for chosen time steps; 10 elements,
7 =2.602 % 10%, 3 =10"°.
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In the Fig. 6 we can observe a similar behaviour as that in the Fig. 3, however,
for another parameter of the function, namely the depth. The surface permeabil-
ity has been chosen to be 3 = 107%. We see that for the bottom of the structure
(z = 0.00m) the partial fluid pressure reaches its maximum. The same value of
the pressure can be taken from the figures for ¢ equal 20s. Due to the velocity
of the propagating waves, the exact course of the function p¥(¢) can be reached
only for very small time steps. This unfortunately exceeds the capacity of our
program.

184007 +

8e+006 +

6e+006 +

pFINm?

4e+006 -

2e+006 -

0 100 200 300 400
t[s]

FiG. 6. Partial fluid pressure p” vs. time for chosen depths; 10 elements,
7 =2.602 x 10°% 8 = 10-%.

Iigure 7 illustrates the relaxation behaviour discussed above for different
values of the permeability 7. The value of the fluid pressure increases and reaches
ist maximum after a short time. We have explained this behaviour by the analysis
of Fig. 3. It is clear that at the beginning of the consolidation process nearly the
whole external load shall be carried through the fluid component. In contrast
to the classical simple theory of von Terzaghi, a part of the load is also carried
through the solid component. As we have already mentioned, the difference in
the results between these models is caused by the fact that von Terzagh: has
neglected the acceleration terms, i.e. the influence of the inertial forces in his
model. Nevertheless, the courses of the figure coincide very well with the results
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obtained in experiments, where the fluid pressure relaxes to its initial value and
finally, at the end of the consolidation process the solid component carries the
whole external load.

S
1e+007 :
S - - - - - —

i, p, B
ks _-;\ ........... Sl i - L

Mo T — .

' £ — ;

g \ Fl e D

A

6e+006 1 /

: \ T=2602x10°

! p _

l >\ = s ‘[‘[:2602)‘109
4e+006 | B R N e m=2602x 10" S

'I / \ p ------

YR e e
\ ----------------
- S
.......... -
- ] ‘ ‘ -. | pF
NN ‘ ‘
0 100 o - ]
t[s]

F1G. 7. Time relaxation between the fluid and the solid pressure for z = 1.80m;
10 elements, 7 = 2.602 x 10%, g = 1075,

In the next figure we present the courses of the functions of the hydraulic
gradient ¢ = dp”/dz for the chosen points of the structure having in this case
the depth of h = 12m. The graphs of the Fig. 8 correspond qualitatively to the
curves appearing in the literature [17, 19] in the range of short times. Neither
the quantitative comparison nor the asymptotic behaviour for large time could
be carried through, due to the limited efficiency of the present numerical code. It
should be also borne in mind that the classical curves for the hydraulic gradient
have been obtained for the semi-infinite medium and not for the layer of the
finite thickness which is the subject of this work. It means that we can expect
considerable deviations in the boundary regions. These deviations are also due to
the novel formulation of the inhomogeneous outflow condition. For this reason we
present in Fig. 8 the results for the middle region of the layer. This point shall be
discussed again in the forthcoming paper on the two-dimensional consolidation
problem.
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FiG. 8. Hydraulic gradient vs. time for chosen depths; 30 elements, 7 = 2.602 x 107,
#=1075.

We pass over to the last two figures. The former shows the courses of the
time-dependent outflow of the fluid component through the free boundary as
the function of the surface permeability 3. It is clear that for low values of this
coefficient, the mass transport of the fluid through the boundary is very low. This
fact confirms the physical meaning of the coefficient [ as the surface permeability.
It has been anticipated earlier in this work. We can also see that for the range
107 = 10~% of the values of the surface permeability the courses of the function
m¥(t) are approximately the same. It seems that these values determine a kind
of the asymptote for the magnitude of the surface permeability, of the treated
simplified model. Moreover, we see in this figure, due to the relation (5.18), the
same effect of the excess of the m”(t)-function which we have observed in the
Fig. 3 for the partial fluid pressure.

The latter figure shows the time-depedence of the solid displacement for two
chosen points of the structure presented in the Fig.2a. Both courses of these
functions reproduce the assumption of the linear behaviour of the solid compo-
nent. In other words, in the case of z = 3.80 m the maximum strain amounts
approximately to four per cent, what should be expected in the linear case.
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F1G. 9. Mass transport m” of the fluid through the boundary vs. time; 10 elements,
7 = 2.602 x 10°.

The numerical results presented in this section show that the new class of
models developed by WILMANSKI, in particular the chosen simplified model de-
scribed in Sec. 2, agree not only with the well known results obtained by ap-
plication of the classical model of von Terzaghi but also with the phenomena
observed in experiments. By means of this model one can simulate the phenom-
ena taking place in the two-component continua. However, we have only focused
on the qualitative comparison of the results. The adaptation of the constants of
this model as well as their calculation from the point of view of their effective
values was not the topic of this paper. Nevertheless the presented results make
it clear that it is worthwhile to develop an efficient finite element program to
calculate two-dimensional structures with nonlinearities. This is the subject of
the current research.

Another important issue of this work was the consistent formulation of the
initial-boundary value problem for the consolidation phenomenon. The most im-
portant part of this topic was the analysis of the boundary value problem on
the free boundary and the formulation of the inhomogeneous boundary condi-
tion on it, as well as the formulation of additional boundary quantities for the
free surface. We shall present an overview of the existing and possible types of
boundaries in two-component continua in a forthcoming paper.
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F1G. 10. Displacement u* vs. time for two chosen points; 10 elements, 3 = 107,
7 = 2.602 x 10°,
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to various climatic scenarios
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A REVIEW 1S GIVEN of the theory of cold ice sheets in the so-called shallow ice approxi-
mation, and a literature survey is performed of its application in ice sheet modelling
of the large ice shields, such as Greenland, Antarctica and other, historical, ice sheets.
As model applications, steady state and time-dependent computations are performed
for the Greenland Ice Sheet using an ice sheet model on the basis of the 3-D shal-
low ice equations of a viscous, heat-conducting incompressible fluid. The interaction
with the solid earth is through a heat-conducting homogeneous isotropic rigid solid
subjected to geothermal heat. The climate driving is effected through a prescribed
atmospheric surface temperature and accumulation rate function. Computations are
performed for the ice-thickness distribution to steady driving conditions when exter-
nal and internal parameters are varied. It is shown that the sliding coefficient and the
amplitude of the annual temperature variation are particularly critical. Finally, the
evolution of the basal temperature distribution at Dye 3, Summit and Camp Century
through idealized scenarios of the ice age(s) is computed; these computations show
that the basal temperature regime depends critically on the thermal inertia of the
bedrock and the magnitude of the ice fluidity. Our computations with various climate
state scenarios demonstrate how well the model reproduces the measured flow data
in Greenland and indicates how it must be extended to accomodate the polythermal
structure of the ice and to include longitudinal stretching effects.

1. Introduction

FIRST AD-HOC DESCRIPTIONS of the distributions of velocity, temperature and
evolution of the geometry of ice sheets are largely due to NYE [138- 151, 153],
GLEN [48, 65|, LLIBOUTRY [107-116], WEERTMAN [178 - 187] and others; how-
ever, while these works contain the essential ingredients of the theoretical formu-
lation and systematic development of a mathematical boundary value problem,
rational deduction of the latter had to await the works of FOWLER [37 - 40,
41-46), HUTTER [66 - 72, 78, 79, 61 -63] and MORLAND [131~-137].
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920 R. CaLov aAnD K. HUTTER

Computational results are presented here on the flow, temperature and ge-
ometry of the Greenland Ice Sheet in response to various climate scenarios using
an ice sheet model that is based on the Shallow Ice Approximation [25, 26]. The
growth and retreat of inland ice masses is governed by the snowfall onto the sur-
face, the melting and calving of the ice close to and at the outer ice boundaries.
Owing to its own weight, the ice deforms with velocities of typically 100 ma ™!
causing a transport of ice towards the ice sheet boundaries where the ice melts
and calves. This process, in turn, is influenced by the temperature distribution
within the ice, implying a delicate balance between the thermal and mechanical
regimes that are established by the climate input and the geothermal conditions
of the substrate. The thermomechanically coupled ice dynamics together with
the mass flux due to snowfall and mass loss in the vicinity of ice boundaries
determine the thickness distribution of a particular ice sheet.

The deformation of an ice sheet and the variation of its temperature distribu-
tion depends to a large extent on its thermomechanical constitutive modelling.
Here, we treat ice as a rheologically nonlinear, thermally coupled, viscous fluid,
L.e., we assume its fluidity (inverse viscosity) to be temperature-dependent, the
latter according to a power law with exponent n = 3, the former essentially fol-
lowing an Arrhenius-type relationship. When the temperature reaches the melt-
ing point, it is held at pressure melting without accounting energetically for the
water production. This body is subject to driving mechanisms from the outside
world that are imposed on the ice sheet via its surrounding boundaries. At its
bottom we account for the presence of a heat-conducting rigid solid of 4 km thick-
ness. At the free surface, the climate input is effected by the prescription of the
mean annual atmospheric temperature and accumulation rate fuctions; the lat-
ter expresses the rate of mass added and subtracted according to the amount of
snowfall and melting of surface ice, respectively. At the base, a relatively complex
viscous-type sliding law is implemented and a thermodynamic jump condition of
heat flow provides the connection with the heat-conducting lithosphere. As for
the former, the no-slip condition applies where the basal ice is below the pressure
melting point, but a power law relationship between shear traction and sliding
velocity is imposed when the basal ice is at the pressure melting point. At the
lower boundary of the rigid substrate the geothermal heat flow is prescribed.

By using standard climate driving functions (constant climate and idealized
interglacial variations) for the surface temperature and mass balance, we study
the reaction of the Greenland Ice Sheet to (i) variations in the parameterization
of the driving functions, (ii) the viscous-type basal sliding law, (iii) the apparent
viscosity (fluidity) of the ice and (iv) the role played by the thermal inertia of
the rock bed. In particular it is shown that the amplitude of the annual variation
of the surface temperature and the drag coefficient of the basal sliding law are
critical for climate stability of large ice sheets.

Furthermore, using several reasonable climate scenarios for the past, and nu-
merical values for the material and climate parameters appropriate for Green-
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LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 921

land, it is shown that, while the temperate patches at the base always existed,
the locations of Dye 3, Camp Century and Summit were always cold.

2. The model

A review is presented of the governing equations of ice sheet dynamics: how
they emerge from first principles of continuum thermodynamics, how the equa-
tions have been simplified by an asymptotic analysis that is based on a shal-
lowness assumption, and what mathematical-numerical difficulties arise in using
this shallow ice approximation (SIA). The intention is to present to the reader
an up-to-date state-of-the-art which is fairly complete; as far as the current lit-
erature goes, we cannot claim, however, that the cited literature is exhaustive.

2.1. Field equations

The ice in large ice masses (Fig. 1) is generally polythermal, i.e., the ice mass
consists of disjoint regions in which the ice is either cold (i.e., its temperature is
below the melting point) or temperate (i.e., it is at the pressure melting point),
but except for a few very recent cases [5, 7, 45, 68, 74, 75, 76, 47, 49-56],
theoretical formulations are restricted to cold ice. For such a case the continuum
mechanical postulate “ice is an incompressible heat-conducting nonlinear viscous

z |
b
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ice sheet%
h
L=t
/ 77>
rock layer
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G

Fra. 1. Model variables with the coordinate system for the ice sheet and the
lithosphere layer.
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922 R. CaLov AND K. HUTTER

fluid” yields the following balance laws of mass, momentum and energy as well
as constitutive relations:

divv = 0,
ov = —gradp + dive + og,
0¢ = —divq + tr(a'D),

T
i /cp(:f)df -
0

q = —x(T)grad T,
D = sym(gradv) = EA(T")f (I, )a’,

in which v, o, p, o', g, €, q, ¢,, x1 are, respectively, the velocity vector, ice
density, pressure, Cauchy stress deviator (i.e., tr(c’) = 0, where tr(-) is the
trace operator), specific gravity, internal energy, heat flux vector, specific heat
(at constant pressure) and heat conductivity. Furthermore,

il
22) T =T A(T') = Age (——Q—) » = str(e”
(2.2) + ap, (T") 0 exp BTy +77) I 2tr(0' ),

where T is the homologous temperature, a the Clausius- Clapeyron constant,
A a temperature-dependent rate factor, f(Z,) the fluidity withn =3 and E a
so-called enhancement factor. The power law fluidity has been introduced into
glaciology by NYE [141] and GLEN [48] but should be replaced by a finite viscosity
law because of its singular behaviour at small stretchings (HUTTER [71] and
MORLAND [134]) when n > 1. For its experimental justification, see [8, 24, 29, 33,
34, 106, 168]. The enhancement factor F accounts for the apparent different flow
properties of Holocene and Pleistocene ice [28, 29, 31]. Up to today E = E(N)
is assumed to be a function of age with values E = 1, for Holocene, and E = 3,

for Pleistocene ice, and 2 satisfies the differential equation(!) A = 1. A4g is a
constant, () the activation energy of ice, R the gas constant and 7y = 273.15 K
the melting temperature at normal pressure (10° Pa). Numerical values are given
in Table 1.

The above model (2.1), (2.2) is standard except for the occurrence of E. From
a thermodynamic point of view, this variable has the meaning of an internal vari-
able and was first introduced into a theoretical model by HUTTER and VULLIET
[77]. Glaciologists are generally unaware of this and use it as a fudge factor. More
important than this is the fact that the above fluid model is necessarily isotropic
and thus cannot describe stress-induced anisotropies evident in specimens from
boreholes [27, 49, 117, 130, 174, 175].

(') An initial distribution of % and the values of A of any ice particle at the time when it is
formed must be prescribed. Since ice is accumulated at the free surface, this essentially amounts
to prescribing A(tg), to < t on those parts of the free surface where snow is accumulating.
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[LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 923

Table 1. Physical constants used in ice sheet models.

Earth’s acceleration g 9.81ms—?
Density Ice p 0.9-10° kg m ™!
Heat conduction Ice 2.0 Wm=YEK~?
Rock xg 3 WK
Thermal diffusivity Ice 1.15-107% m?s~!
Rock kg 1.5 - 107% m2s™!
Specific heat of ice C, 2009 J kg 'K?!
Clausius—Clapeyron constant a 7.42-1075 K(kPa)™!
Latent heat of fusion for ice L 335-10% J kg !
Geothermal heat flow ¢ 42.1073 Wm™?
Power law exponent n 3
(Gas constant R 8314 Jmol"*K—!
Rate factor Ag T =10°C B3%102a— P~
T'<-10°C 13x107%a"1Pa=?
Activation energy @ T' > -10°C 139 kJ mol~*
T'<-10°C 60 kJmol™

This thermomechanical model for the ice is coupled to the heat conduction
equation of a rigid substratum

(2.3) QCRTR = div(xgrgradTg) = xpATR

(R for rock), the evolution equations for the ice thickness h = hy — hy,

h
dh
(2.4) E—FVH-VH:I)s#—bb, VH=/VHdZ
hy

as well as bed sinking

(2.5) -

L T
Bt Tl

hy — ho + ﬁh).
Qa

In (2.3) Tg and yg are the temperature and heat conductivity of the rock;
radio-active heating of the rock is ignored, so as are the contributions due to
internal stresses and dissipation. In this sense, the substratum is rigid; however,
motions due to bedrock sinking are incorporated in the convective terms (con-
tained in TH) and described by (2.5). In Eq. (2.4) vy and Vg are the horizontal
velocity components of the ice and its horizontally integrated flux, respectively,
and Viy = (dz,dy). Furthermore, by and b, are the accumulation/ablation and
basal melting rate functions, respectively; since basal melting is small, by, is often
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ignored. Formally, (2.4) is a vertically integrated mass balance. Finally, (2.5) is
a relaxation-type relationship for the vertical position of the basal boundary of
the ice; it models the bed adjustment with the relaxation time 7 = 3 + 5 x 10% a;
hp 1s the relaxed, undisturbed bed topography and g, the density of the astheno-
sphere.

Other models of bedrock sinking have also been used, e.g. a diffusion equation
(2.6) %}% = Do (hy — ho + wa),

where D, = 0.5 x 108 m?a~! is the asthenosphere diffusivity, Ay the two-dimen-
sional Laplacian and w, the deflection of the constant thickness lithosphere for
which the plate equation

DAAwg = q — OmWa,

. 0
h’ 1f - + hs g ha
(2.7) 0g o !
qg= 0
org(hg —h), f ——+hg>h
OR

is solved, where D is the bending rigidity of the lithosphere (10% Nm), or the
density of the mantle (3300 kgm~3) and hy; = is a constant, see [82, 176]. Mod-
els which treat the lithosphere as thermoviscoelastic and the asthenosphere as
nonlinearly viscous have also been proposed, TURCOTTE and SCHUBERT [176],
but so far not implemented in ice sheet models.

If in the solution of the above equations the ice temperature at any point
should reach values above the melting point, it is set back to T = T, and
the energy equation is disregarded in these points. Regions where T' = T)ys are
defined as temperate. Thus the thermal processes are not accounted for in these
regions, by e.g. calculating the production of water via dissipation and latent
heat of fusion, what makes the model approximate.

2.2. Boundary conditions

Boundary conditions that close the equations to a complete boundary value
problem must be formulated at the free surface, the ice-bedrock interface, the
lower boundary of the rock bed and the ice margins.

At the free surface z = hy(z,y,t), we assume stress-free conditions and pre-
scribe the surface temperature and the accumulation ablation rate function,

(2.8) T = Ty(z,y,1), by = bs(z,y,1),

where examples for this climate driving are given in [25, 26, 36, 59, 154, 155, 162].
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LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 925

At the ice-bedrock interface z = hy(x,y,t) continuity of temperature and the
energy jump conditions must be fulfilled. This implies

or _ oty

2.9 A _
(2.9) Xg =XR 5 T=Tg
when the base is cold, and
1 T T
(210) b= (x?—~XR8—R+r*v”), T = Ty = Tie,
0wl n on

when it is temperate. In the above, n(n) indicates the unit vector (direction)
normal to and directed into the ground, L the latent heat of fusion, T* -v|| the
frictional heat due to sliding of the ice sole over the bedrock and T* = (o —
p*1)n denoting the tangential tractions and v the jump in tangential velocity.
In general, the lithosphere velocity is ignored, so v = —(v—(v-n))n|ice. Common
sliding laws are

{C(|T*|,p*)‘r* =clr*|™ 1 p* e, if T =Ty,
Mt =
H 0, if T <Ty,

according to [112, 137, 178, 182, 183, 185, 187] and with appropriate choices for
¢, m and [, see [25, 26).

At the lower boundary of the rock z = hy(z,y), we simply prescribe the
thermal Neumann condition

(2.11)

Tr
0z

where G (= 42 mW m~2) (see, however, also [55, 83, 177]) is the geothermal heat
flow.

As long as the ice margin stays on the continent, we let it freely evolve,
either advancing or retreating, depending on whether there is net mass addition
or subtraction. When the ice margin reaches the ocean then all mass flowing
through that margin position is treated as calving and is lost to the ice sheet. This
mechanism is interrupted only when the ice is retreating again at sheet positions
distant from the ocean. This is a simplified marginal condition as the formation
of ice shelves is ignored. It could be incorporated, see e.g. [9, 58, 60, 83, 84, 85],
(121 -124], if an ice shelf model is adjoined.

2.3. Shallow ice approximation

Ice sheets are long and wide but generally shallow. This suggests to introduce
a scaling of the equations of the preceding section such that the aspect ratio
¢ = [H]/[L] <« 1, in which [H] and [L] are a typical depth and horizontal
distance, explicitly enters the equations, and perturbation methods in the small
parameter ¢ can be used. The lowest order equations of this scheme have been
coined the shallow ice approximation [71].
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2.3.1. Introduction of scales. In the Cartesian coodinate system x, y (horizontal),
z (vertical) we now choose the following scalings:

fs, k] = {[L]x*, [Lly*, [H]2", %t} ,

{w,v,w,b5,b5} = {[UJ", [Uo", [W]w", [W]b, [W]b },

(213) {Pu U,E?UL,UlzaT:ny:TmzaTzz}

L i
= [egH){p", %0, 520; o el

Ty
T = Tp + [AT|T*,
! [D] * */ * *
A(T)f(Ily) = WA (T7)f*(I50)
where [L], [H], (U], (W], [AT], [D], [o] are length and velocity scales and scales for
the temperature range, stretching and typical material stresses. The quantities
in brackets are typical values of the variables arising in ice sheets and those with
an asterisk are dimensionless and necessarily varying in the range O((—1,1)),
if the bracketed terms are appropriately selected; for typical values see Table 2.
The principal assumption of the shallow ice approximation is that

(2.14) [H]/[L] = [W]/[U] =e <1,

*
ETSCZ‘\ETIz}s

anticipated in (2.13) in which several terms are weighted with € and €?, respec-
tively. This delicate balance introduced here by hindsight, is not obvious and
constitutes the essential step towards a formal perturbation procedure obtained
independently by HUTTER [67 - 72] and MORLAND [133, 134].

Table 2. Typical scales of ice sheets.

(L] = 10° — 10° m, 0] & 10° Pa,

[H] = 10% — 10% m, [0] =~ 10 kgm™?,

[U] = 10 - 10* ma™! [¢) ® 10 ms™2,

W] =1-10ma™! [x/(ec)] ~ 11.15-107% m?s !
D)= la

With (2.13) and (2.14) the balance laws of mass, momentum and energy and
the constitutive relations of stress take the forms
du* 3 av” " ow*
dz* oyt  0z*
F ou* dp* 00}
2.15 - =——— e +ef—L + £,
(2.15) e ot* oz ¢ Bzt ¢ dy* i
* * * oy kil *
Fov _ o0 O, 200
e dt* dz*  Oy* dy* Ozt

=0,

9 BT;y orx

http://rcin.org.pl



LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 927

(2.15) ow* o |8ry, 01y, ap* 00

o] o € oz oy [ 8z T€ B
dT* 2 * * * * a (9T* * * * ok
= D{e e (GVHT) + (X* - )}+£2A (T*)f* ()%,

au* Qaw*

5 +€ B = 26AY(T*)f*(Iy)T

Tz
ov* o Ow™ P .
o+ € = 24T (L),
as well as
au# * * * */
At =GA (T )f (EO")U:C )
A*
= QAT (L)
(2.16) s
w * * * *
= QAT (L)Y
au* av* * * * *
ay* + Or* 2GA (T )f (HG’)T:cy

in which

1
I, = [QQH]52 {T;zz + T;zz +é [5 (U;’z i 02’2) + 7t 2] }

Y LY
= [ogH]EI",
_ 7] __€ _ o] _ W]/[H]
BT TS Ems ST AT o
_bal 1 A _ glH]
~ pc, WH' €= SsDa’ = cp[AT]

F is the Froude number, Sy the ratio of deviatoric stress to overburden pressure,
Dp aratio of mean vertical stretching normalising strain-rate magnitude and 4
the energy ratio of gravitational energy to internal thermal energy. ¢ has the
meaning of a dimensionless shear viscosity, while & measures energy dissipation.
Moreover, for Glen’s power law, when (2.2)y is used,

A* !
= €XD < — ,
AT
RTo —[T ]T*
(2.18) 0 L
f* = Sﬂ-*(nfl)/z S = [01(6[99}‘{]) )

Ay
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We also have separated the constitutive relations (2.16) from the remaining equa-
tions (2.15) because in the lowest order approximation they will not be needed.
Similarly, equations (2.3) - (2.12) would also have to be nondimensionalized; how-
ever, to motivate the shallow ice approximation, they are not needed.

2.3.2. The limiting theory. Using the scales collected in Table 2 and the definitions
(2.17), (2.18) it is seen that ¢ = O(1072 + 1073), F = O(10~®) while G, D and
& are between O(1) and @(107%). Thus F is much smaller than any one of
the other dimensionless parameters arising in (2.15) and (2.16), suggesting the
Stokes flow limit # — 0, F/e — 0. The so emerging equations could now be

solved by a perturbation expa.nsion ¢ = 307, e¥®, for all independent fields
" = {u”,v*, w*,p*,03,0,,0%, Tays Tyzs Tay, T }; however, the shallow ice approxi-

mation restricts consideration to the lowest order terms (v = 0), corresponding
to the simultaneous limits

(2.19) F -0, Fle =0, e —0.

Returning back to the dimensional notation, equations (2.15) then reduce to

ow

Vg vy + — = 0,
0z
Op | 0Tz
_8_3;+ 0z =
gp N B;yz _o
(2.20) g o2
9 _
62 - 991
dir 9 ( T , "
= 3. (n5 ) +2BAT)()7,
vy

—= = 2BA(T"f(rH)7
g (T)f(r%)
in which vy = (u,v), Vg = (028y) and T = (732, 7y.). These are seven equations
for the seven unknowns vy, w, p, T and 7. They comprise the field equations of
the shallow ice approximation.

It turns out that a similar scale analysis for the heat equation in the rock
vields

. d OTg
(2.21) Tp= o (NRE) )

while the evolution equations for the free surface (2.4) and the bed (2.5) remain
unchanged. Alternatively, the reduced boundary conditions become:

e at the free surface z = hy(z,y,t)

(222) p=0, Tz = Tyz = 0, Ts = TS(E,y,t), bs = bs(l‘,y,f);
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e at the ice bedrock interface z = hy(z,y,t)
o7 TR

— = T=T
X, = XR 5 R
VH:()

&~

cold ice,

(2.23)

1 or JdTg
by = — — Xp—=—F+ 7" T=Tr=T
b 0wl (Xé‘z XR 52 +7 U), R M,

vi = clt[™ pTl,

temperate ice;

e at the lower boundary of the rock: z =

i
(2.24) XRB—E = -G.
0z

The distinctive features of the shallow ice approximation are the following three
points (1)—(iii):

(i) The vertical momentum balance reduces to the cryostatic force balance
between vertical pressure gradient and the gravity force. (ii) The horizontal mo-
mentum balance comprises force balances between the horizontal pressure gradi-
ent and the corresponding vertical gradient of the shear stresses. Together with
the boundary conditions (2.22); 93, these equations can be integrated to yield
the stress fields

p($=yazat) = Qg(hs(.’E, y’t) - 2)1
T = Qg(hs(xa%t) = ~)VHhs($:yat)a

which depend on geometry but not on material properties. Provided the tem-
perature distribution is known, (2.20); 67 together with (2.25) imply (through
integration)

va(z,y,2,t) = vE(hs) + C (2,1, || Virhsl|) Virhs,

(2.25)

C(z,t,[[Vhs|]) = —QQQ/EA(T}(Z'))f(Tg(Z')) (hs — 2')d2',
hy

> .4
w(z,y,2,8) = wlhy) — [ Vi vi(z,y,2) d7,
hy,

(2'26) T('T!yazat)z (Qg(hs(mayit) - Z)HVHhS‘i)z’

I

hy(z,y,t)® | Ohglz,y,t)?
uvﬂhsn=( ot) Belny ))*
\ 0 (cold ice),
VH( b) - -—c(ggh)m_l”VHhs”VHhS (temper&te iCe),

w(hy) = vi(hy) - Vihy .
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It follows that the velocity field within the ice shield can be computed by mere
quadratures (if the temperature field and the geometry are prescribed). The
formulas (2.25); and (2.26), ¢, however, also imply the following important facts
of the shallow ice approximation, which can be tested by observation and thus
may be used as evidence whether the approximation is applicable in a particular
case:

e The horizontal shear stress vector points in the direction of steepest descent
of the free surface. It is zero parallel to the level lines.

e At any given position in the horizontal plane, the horizontal velocity vector
vy does not change direction with depth. Its direction at all depths is that of
the steepest descent of the surface topography.

e A dome or a trough is the location of vanishing horizontal velocity.

These properties were first recognized by HUTTER [71].

(iii) The heat equation shows that, whereas heat advection is significant in all
spatial directions, conduction is dominant in the vertical direction. This means
that the heat equation is parabolic only with regard to the vertical coordinate,
but has been hyperbolized in the horizontal directions. For very thick ice sheets(?)
vertical thermal diffusion is small (D < 1) and dissipation large (£ = O(1)) so
that thermal diffusion essentially operates only in a near-basal boundary layer.
For very thin ice sheets D = O(1) and £ < 1, so vertical convection of heat is
significant over the entire depth but dissipation is small. In ice sheet modelling
through ice ages both situations must be expected, leaving no room for further
simplifications.

This limiting equation set has been used by virtually all numerical mod-
ellers who deal in one way or another with the deformation and distribution of
temperature in ice sheets. Isothermal plane and axisymmetric [134, 135] flows,
thermomechanically uncoupled cases with prescribed temperature [136] and the
full plane [35, 61, 62, 78, 102] and axisymmetric [79] coupled cases were ana-
lysed before the full three-dimensional theory was numerically implemented in
FD-programs [16, 17, 18, 80, 90, 91]. With them the steady-state response of
Greenland, Antarctica and other ice sheets were studied, but also their re-
sponse to climate variations, including complete interglacial cycles [19-23, 59,
81, 82, 84, 86, 87, 88, 89, 103, 105, 125, 129, 158, 188]. Historical and hy-
pothetical ice sheets were also studied [4, 85, 99]. Presently, the physical as
well as theoretical weaknesses of this limiting model are recognized; the theory
has been extended e.g. to handle polythermal ice [7, 47, 50-56, 68, 71], but
the shallow ice approximation is also extended to overcome its mathematical
shortcomings.

(*) Compare the definitions of D and £ in (2.17).
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2.4. Limitations of the shallow ice approximation

These occur because the shallow ice approximation is, as an asymptotic the-
ory, not uniformly valid in the entire domain over which the ice extends. Regions
of its fallacy are near-margin zones and the vicinity of ice domes and ice divides.
Both can be revealed by scrutinizing the ice-thickness-evolution equation (2.4),
which upon using (2.5) and (2.26) takes the form

oh 1
50 = Vi (Deg¥irh) + b+ by = - (1 = ho+ 1)
ot T Oa
(2.27)
1
- 'DSQAHI’),S + (VHDSg)'VHhs + bs + by — — (h,b — hg + ﬁh) 3
m Oa
where

Dsg(hSa hb, HVHhs”) = 'Ds(hs; hb: ]|VHhs”) £h Dg(th h’ba “VHhs”)
= c(eg)™ ! (hs — ko)™ || Virhs |

Rs
+ 298 [ ATE)IHE) e - 2)* ds
(2.28) By

L™ ¢(0g)™H (hy — o)™ 1 | Vg

h.-
+ 2(gg)”E||VHhS||”"1/A(T’(z))(hs _ )ty

hh

in which (2.5) has been used and (2.28), is valid for a power law fluid. Dy, is a
diffusivity with D and D, due to sliding and gliding, respectively, and formally
Dy = 0 for a cold base. Equation (2.27) is a parabolic advection-diffusion equation
for hy. For A(T') as defined in (2.2) and for a positive-definite creep response
function f(z) (> 0 for z > 0, = 0 for z = 0), or for n > 1 (i.e. Newtonian or
pseudoplastic behaviour) the integrals in (2.27) are bounded. The exact margin
behaviour depends on the values of m, [ and n and could be analysed as shown in
[62]. We are satisfied here with a restricted analysis that discloses the difficulties
and refer the reader to [44, 71].

2.4.1. Near margin behaviour. The behaviour of Dy, D, and their gradients in
the neighbourhood of the margin as hy; — h; depends on the exact functional
forms of A, f, on the exponents m, [ (and n), as well as on the functional forms
of by and by in the vicinity of the margin. This behaviour can be extracted from
a local analysis and it turns out that, when hy(z, y,t) — hy(z,y,t) as the margin
is approached, ||Vijhs|| usually becomes unbounded. A finite marginal slope is
only obtained (i) at a cold margin (Ds = 0) when Newtonian behaviour at small
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strain rates is permitted (i.e., for a power law with n = 1), and (ii) when sliding
is permitted close to the margin if m = 1. None of these cases is usually assumed
— one uses Glen’s flow law with n = 3 and m = 3, | = 2 - and so computed
margin slopes must be infinite. The detailed analysis of this for plane flow is given
e.g. in (44, 62, 71, 134]. Morland and co-workers request the sliding law to be
such that finite slope profiles at the margin are obtained in which case uniform
validity of the shallow ice approximation is guaranteed, [62, 135, 136, 137]. In
numerical implementations of all other authors except [78, 173], the singular
marginal behaviour is assumed to be local, not affecting the solution away from
it a great deal. All the more, the mesh size is usually considerably larger than
the marginal boundary layer is thick; in other words, the numerics determine a
finite marginal slope and thus regularize the margin by effectively introducing a
mesh-dependent sliding law. Thus, this passive boundary layer does not seem to
be a real problem.

2.4.2. Large surface curvature at ice divides. Consider next the vicinity of a dome
which is characterized by Vyhs; = 0. Thus, according to (2.25) and (2.26)

vy =0, =0, 72 =0 (at dome).

Let us choose the Cartesian coordinate system with origin at the dome. It then
follows from (2.26) locally, i.e., at (z,y) =0

(2.29)  Vy-vy = —{C(Qg)"‘_l(hs — ha) [

+ 209Ef(0) / A(T'(2))(hs — 2) dz}AHh,

ha

and from (2.4)

oh hs
(230) E + i Vy-vy dz = by + by,

b
Combining (2.29) and (2.30) yields
oh

(2.31) i Doy H = b + by (at dome),

where D, = D;+D,, is defined in (2.28) and D, is obtained from D, by replacing
f(72) by f(0) (which for Glen’s flow law equals zero). In steady state (2.31) can
be used to evaluate the mean surface curvature at the ice divide,

(2.32) Dyhy = —— (at dome),

http://rcin.org.pl



LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 933

which explains why the shallow ice approximation may fail close to divides. In-
deed, at a cold divide Dy = 0 and otherwise Dy = 0 unless m = 1. Furthermore,
when f(0) = 0, Dy, = 0 as well, implying that Aphsgome = o0 in this case, in
violation with the shallowness assumption. Since basal sliding cannot be guaran-
teed at a dome, regularization of the kinematic surface equation at least requires
a finite viscosity flow law (f(0) # 0). However, even with this incorporated, very
large surface curvatures must be expected at a divide.

As was done for the margin regions, numerical integration can be performed
and the divide zone formally regularized through discretization, however obser-
vations indicate that near-divide velocities and temperatures are not accurate in
general.

In attempts to date the ice from ice cores in connection with isotope com-
position studies [1, 2, 3, 11, 12, 13, 93-101, 118, 119, 120, 157, 169-172], the
necessity of incorporation of “longitudinal stresses” was recognized, but compu-
tations [28 - 31, 160, 161, 163, 166, 167] employ streamline models and steady
state with diverging flow properties taken into account by a fudge factor. In
short, the computational suggestions are ad hoc, not in conformity with a proper
scaling, and not appropriate to the three-dimensional situation. First attempts
at a systematic use of higher order terms in the perturbation expansion are due
to BLATTER [6] and MANGENEY et al. [126 - 128]. Equations (2.15) and (2.16),
however, clearly indicate how the shallow ice approximation can be improved
either by formal perturbation expansion or iteration. This analysis is presently
under way in a dissertation at TH Darmstadt.

3. Application of the model to the Greenland Ice Sheet

The above SIA equations have been computationally solved by using finite
difference techniques by Bupp et al. [16, 17, 20], CALOV and HUTTER (25, 26],
HUYBRECHTS et al. [80-89, 103] and FABRE et al. [36]. These programs are
formidable undertakings; we shall not discuss their peculiarities. We present some
computational results obtained with our model, the intention being to highlight
the geophysical implications rather than to expose the numerical complexities.

Ice sheet dynamics is governed by external and internal parameters; the first
contribute to their driving, the second affect their response. The most impor-
tant external driving parameters are furnished by the implemented atmospheric
model of which a very simple version will be presented. Other less direct exter-
nal “forcings” are the interaction of the ice sheet with the solid earth through
the geothermal heat, the bedrock sinking and through the handling of the calv-
ing mechanism at ocean boundaries. Internal parameters relate to the material
behaviour, here most conspicuously expressed by the enhancement factor, the
sliding law at the ice-bed interface and the dissipation associated with it.
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We shall in this section describe these couplings and present some parameter
studies using the Greenland Ice Sheet as a test case. Then simplified climate
scenarios will be applied and, finally, a comparison of the computed with the
measured velocity transect — the so-called EGIG line — will be made. These com-
parisons will not only delineate the difficulties that one encounters when trying
to identify phenomenological parameters of such a large geophysical system, but
equally demonstrate the sheer impossibility of achieving an objective comparison.

3.1. Simplified model-atmosphere

In the model, the atmospheric surface temperature will be prescribed in the
form
(3.1) Ta(z,y,t) = Ta(z, y)loc + Tn(t),
where T,(z,y)|10c 1s the present local distribution of the mean atmospheric tem-
perature, and Tp(t) describes the long periodic climate changes. For Green-
land, data of the local temperature was collected by OHMURA [154] and very
well fit by the linear relation T,|ioc = Yo + agyp + vhs, Y9 = 55.76 [°C], ap =
—0.8471 [°C°North™!], v = =8 [°Ckm™!], in which ¢ is latitude and h, surface
height above sea level. Tp(t) is the climate driving and will be selected according
to which climate scenario is modelled.

The accumulation-ablation-rate fuction

(3.2) by=S-M ma™!, ice equivalent]

is divided into snowfall S and melting M. The present-day annual mean of the
snowfall is represented as a polysurface deduced from data reported by OHMURA
and REEH [155]; the annual mean snowfall at earlier times is modelled accord-
ing to
Tp(t) . Tmin

S(t) = Smin + (Stoday - Smin)m s
(3.3) i g ! toda

Smin = 0.5 Stoday Tp™ = -10°C, To e =0,
This assumes that the snowfall was half as large at the climate minimum as it
1s today.

To parameterize the melting, we employ BRAITHWAITE’S [10] “positive degree

day” formula

62 ( Pma.xY )

3.4 M="max (0¥, — —S§

(34) > (o

with
YTa TA S Ta s

2y = Z(T arccos (—2'—)+\/T2—T3) Ty €T < Ty

T “ ' T4 4 & “ '
O _TA 2 Ta ]
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B/ =09, By = 2.6 [m water equivalent a=' °C~1],
Vo= 08, Pla= 08,

which accounts for the percolation and re-freezing of melt-water and superim-
posed ice, respectively. T, is the mean annual air temperature and 7'4 its seasonal
amplitude. For a detailed explanation, see CALOV and HUTTER [26].

3.2. Handling of the model ice margin

As long as the ice margin stays on the continent we let it freely evolve, ei-
ther advancing or retreating, depending on whether there is net mass addition
or subtraction. When the ice margin reaches the ocean, then all mass flowing
through that margin position is treated as calving and is lost to the ice sheet.
This mechanism is interrupted only when the ice is retreating again at sheet
positions distant from the ocean.

In the simulations described below, the sea level will be held constant; however
in more realistic modelling it should be a function of time.

3.3. Computations of ice thickness distribution under steady driving conditions

3.3.1. Variation of the amplitude of the annual temperature. We present here the
results of computations of the steady-state geometry of the Greenland Ice Sheet
subject to various external time-independent driving conditions. The model is in-
tegrated subject to various parameterizations, using today’s ice thickness distribu
tion and temperature distribution it obtains for today’s thermal equilibrium as
initial conditions. Computations are continued until the ice thickness and the ice
margins as well as the temperature distribution no longer change. This happens
at approximately 50 000 model years. In the standard run we use as geothermal
heat G = 42 mW m 2, as enhancement factor £ = 3, and as seasonal air temper-
ature amplitude Ty = 14°C. Figure 2 a displays the level lines of the free surface
and the ice margins obtained when also the no-slip condition is imposed on the
entire basal surface. When compared to the observed present surface topography
(see CaLOV and HUTTER [26]), the ice extends too far to the North and does not
extend enough in the South. Moreover, the computed Summit height is about
600 m too high.

If we enlarge or lower the amplitude of the annual temperature variation by
7°C, to T4 = 21°C (Fig.2b) and T4 = 7°C (Fig. 2¢), it is seen that the former
results in a substantial ice sheet reduction while the changes in the latter scenario
are far less dramatic. This non-symmetry in the behaviour is due to the boundary
conditions at the ice-ocean margin: free evolution for ice retreat but full calving
for advance.

[

3.3.2. Variation of the sliding parameter. By incorporating a sliding condition
along the ice-bedrock interface, reduced ice thickness (close to reality) can be
modelled; this is simply because ice flows more easily toward the margins. At
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a positive feedback margin slopes will be less steep and there is an increased
ablation zone.
We shall use the sliding law

(3.5) VH(hb) = —CMhHVHh5||2VHhs -

in which h is the ice thickness and h; the surface height a.s.l. ¥V is the hori-
zontal gradient operator, vy the horizontal velocity and cps a coeflicient with
dimension a~!.

Computations were performed for steady state using now a latitude-dependent
amplitude of annual temperature T4 = a + by, a = —23°C, b = 0.55°C North™!,
and implementing sliding everywhere according to (3.5) with ¢jr = (2; 6; 10) x
10*a~!, and frictional heat due to sliding ignored, Figs. 3 a, b, c. Tt is seen that
increasing the sliding coefficient causes a lowering of the North- and South domes
of about 200 m, compare Fig. 3a with Fig. 3 b. The results for ¢j; = 10 x 10*a™!
(Fig. 3¢) are obviously very unrealistic, but they demonstrate how catastrophi-
cally an ice sheet can develop when sufficient sliding is provided. The ice sheet
has been split into essentially two parts with an ice-free 800 km wide zone in
Middle-Greenland. The South cap exists, because it sits on high elevated ground
but equally also because of the large snow accumulation rate there. If the fric-
tional basal heat were incorporated, the two caps in Fig.3c¢ would be even
smaller; however, rebound of the substratum is a negative feedback and both
may approximately balance.

Scenarios with sliding restricted to the basal melting zones, and frictional
heat as well as bedrock sinking incorporated are analysed by WEIs et al. [188].

3.3.3. Variation of other parameters. We have also varied the snow melting par-
ameters (31, (32 and the geothermal heat. While these also have some definite in-
fluences upon the steady-state geometry of an ice sheet, their variation about the
most realistic values has indicated less dramatic sensitivity than with variations
of the amplitude of the mean annual temperature 74 or the sliding coeflicient
cy. However, variations in the geothermal heat flow changes the temperature
distribution close to the base considerably.

3.4. Basal temperature evolution through the ice age

3.4.1. Glacial climate cycles. The external driving surface temperature T'p is con-
structed from the data of the Vostok ice core, Antarctica (BARNOLA et al. [1]),

by selecting upper and lower bounds, Fig. 4,
ThL(t) climate I,
TpH(t) climate II,

respectively. These idealized cycles are prolonged by one period into the past
in order that the model can be spun-up to appropriate initial conditions at the
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end of the Illinoian Ice Age. The idealized climates I and II reproduce the steep
warming from the climate minima to the interglacials very well, but model the
slower decay from the Eemian Interglacial to the Wisconsin minimum relatively
poorly. We thus expect different results for the two.

I
0 50 100 150
Age (kyr BP)

F1G. 4. Vostok dD-temperatures as taken from BARNOLA et al. [1] from present to
160 ka BP together with the model climate scenarios (I) and (II) that describe an
approximate upper and lower bound to the Vostok data. Circles indicate points
with abrupt climate changes or at climate maxima and minima, respectively.

Computional results are presented for the following scenarios:

e [ or II: Response of the Greenland Ice Sheet under standard conditions (i.e.,
E=1G=42mWm2, no-slip) to the external climates I and II, respectively,
while ignoring the thermal response of the substrate.

e [-S: Same as I, but now the response of the substrate is taken into account.

e [-S-E=3: Same as I-S, but now the enhancement factor of Wisconsinan ice
1s applied throughout.

In the first set of computations the ice thickness distribution will be held
constant, the intention being to isolate the thermal response of the system
substrate-inland ice. If the evolution of the geometry were varied, it would be
very difficult to find the primary cause for the particular behaviour.

3.4.2. Basal temperatures at Dye 3, Summit and Camp Century. We discuss here
the time series of temperature at the base which follow from computations ac-
cording to the above idealized climate scenarios. The time series should not be
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regarded as giving a realistic temperature distribution through 275 ka, but they
disclose very significant behaviour that could not so well be identified with more
realistic scenarios. The bore-hole positions are significant because extensive iso-
tope studies have been performed (HANSEN and LANGWAY [57], DANSGAARD et
al. [32], JOHNSEN et al. [92]). For these analyses it is of interest to know (i) how
basal-temperature peaks lag behind the driving peaks, and (ii) whether the basal
ice at these positions has at any time been at melting. Keeping the ice geom-
etry fixed puts the results on the safe side in this regard, i.e., makes the base
somewhat warmer.

For Dye 3, Summit and Camp Century time series are presented for the
driving surface temperature (climate I), the homologous basal temperature of
scenarios I, I-S and I-S-E=3, and the deviation of the geothermal heat flow
into the ice from the “equilibrium” value Geq = 42 mW m~2 of scenarios I-S and
I-S-E=3. The sytem is driven by two ice age cycles as illustrated in Fig. 4, lasting
from 275 ka BP to present.

a. Dye 3. Scenario I, computed without taking the thermal response of the
rock bed into account and by using £ = 1 (Fig.5b) shows that both maxima
and minima of the homologous temperature at the base occur 11.6 ka, 6.5 ka and
3.2 ka, respectively, after the corresponding maxima of the driving time series
T,(t). The second of the two phase lags of the minimum is smaller than the first
because the temperature rise to the Holocene is faster than that to the Eemian
Interglacial. The graph also shows that no spin-up is needed for this scenario,
because the two maxima of the basal temperatures are the same. Today’s basal
temperatures are by 0.5°C lower than the present equilibrium temperature would
be. Whereas the deviation of the basal homologous temperature from its corre-
sponding equilibrium value is largest at the last Interglacial (at about 135 ka
BP), this deviation is smallest at the climatic minimum.

If the thermal inertia of the rock bed is included (Fig. 5¢), the present homol-
ogous basal temperature is 1.69°C below the corresponding equilibrium value.
The deviation from the equilibrium value at all times where it is calculated is
here larger than for scenario I. The model is not completely spun-up after one
cycle because the relative maximum at 110.2 ka BP is larger than that at 237.8 ka
BP: The rock layer adds additional thermal inertia to the system. Furthermore,
whereas the phase shifts of the minima (6.5 and 3.2 ka) are exactly the same
as those of scenario I, those of the maxima are roughly doubled. Interesting to
note is the temporal variation of the heat flow into the ice from the rock bed.
Panel e) shows the deviation of this flow from its value at the lower boundary,
Geq = 42 mW m 2. This heat flow is either larger or smaller than its equilibrium
value by up to 21%. The present value is by 4mW m ™2 smaller than Gy, and
the tendency is falling. Also interesting is that the phase shifts of the maxima
(and minima) differ from those of the temperatures. This is the manifestation of
nonlinear effects.
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Computations for a I-S-E=3 scenario, see Fig.5d, f, show that, because the
ice is softer in this case, cold ice will be transported downward faster than with
E = 1. Basal temperatures are now colder (by approximately 2°C), and phase
shifts of the maximum basal temperatures shorter than for £ = 1 (20.3 ka,
18.9 ka) while those of the minima remain the same. The variation of the heat
flow through the ice-rock interface is also slightly enhanced. Thus the softness of
the ice has a significant effect on the thermal regime of the Greenland Ice Sheet
through time.

Calculations were also performed for scenario II (without a rock layer and
for E = 1), but are not shown here. When compared with the results obtained
with scenario I it is seen that the faster approach from the Eemian Interglacial
to the Wisconsinan minimum is also visible in the temporal distribution of the
basal temperature: The base is generally colder than for scenario I, but the
maxima and minima of the homologous temperatures and their phase shifts are
not very much different from those of scenario I, and, in particular, the present
basal temperature is practically the same. The steep warming of the climate at
the end of the last Ice Age seems to hide the detailed variations of the climate
during the Ice Age.

b. Summit. Let us compare the results for this location with depth h ~ 3200 m
(Fig.6) with those of Dye 3, h = 2000 m. Again the phase shifts between the
maxima of the homologous temperature are larger than those of the minima
(Fig.6b, ¢, d). For scenario 1 one glacial cycle is enough to obtain the spun-up
temperature distribution. Phase shifts of the maxima of the homologous basal
temperature are far larger for scenario I-S than for scenario I. And for softer
ice, E = 3, the basal temperature and phase shifts are generally smaller than
for the corresponding computations with £ = 1. The heat flow into the ice
roughly agrees with the equilibrium value 42 mW m~? but the tendency is falling.
All phase shifts for Summit are larger than for Dye 3, and the corresponding
amplitudes are smaller, both effects that are largely due to the larger thickness
of the ice at “Summit”.

¢. Camp Century. Because the ice at Camp Century with its 1.4 km thickness
is thinnest in comparison to the previous bore hole sites, it is expected that the
corresponding phase shifts are smallest and the amplitudes largest, see Fig. 7.
Whereas this is indeed so for the amplitudes, the phase shifts for Camp Century
are in almost all scenarios and cases as large as (or even larger than) for Dye 3.
Note that the phase shift for the first minimum in scenario I-S is larger than
for Dye 3. A possible explanation could be that the model is still in the process
of spin-up. On the other hand, the result indicates that thickness cannot be
the only quantity that is responsible for the delay of basal processes from their
climate forcing. Diffusion, advection and dissipation equally contribute. Among
the three locations, the temporal variation of the heat flow into the ice deviates
most from the equilibrium heat flow, and the present value is smaller than the

2

equilibrium value by an amount of 6 -8 mWm =,
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3.5. Comparison with the data

In this section we compare the ice-sheet-surface velocities that were measured

along the EGIG (International Glaciological Greenland Expedition) traverse [64,
25].

3.5.1. The velocity data along the EGIG traverse. The EGIG traverse is the best
known measuring traverse in Greenland and crosses Greenland approximately
at the 70° N latitude from West to East (see Fig.8). For our comparison, those
measuring points listed in HOFMANN [64] with an approximate distance of 40 km
will be considered, which corresponds to our numerical horizontal grid resolution.
During the EGIG expedition the free surface velocity

(3.7) vl (hs) = IVE™ (hs)| = [0 (hs)ex + vy (hs ey

and the polar angle @™ between the vectors e, and v};*® were measured.
Figure 8 displays the measured EGIG velocities (i.e. horizontal projections) as
arrows at positions P1 to P17 along with the level lines of the free surface
topography. These velocities decrease from 109.71ma~! at position P1 in the
West to a minimum of 3.54 ma~! at position P 14 in the center and increase again
to 12.46ma~! at position P 17 in the East. Qualitatively, this is in conformity
with the shallow ice approximation, which states that the horizontal velocities are
pointing in the direction of steepest descent (i.e., orthogonally to the level lines)
and are proportional to (0hs/da)", where o is the distance measured along the
direction of steepest descent and n = 3 is the exponent in Glen’s power law. Thus
the velocities grow with increasing surface slope, corresponding to a reduction
of the distance between the level lines, as shown.

3.5.2. Comparison of measured with computed EGIG-velocities using computations
with fixed surface geometry. Table 3 summarizes the comparison of the mea-
sured and computed surface velocities along the EGIG traverse at points P 1 to
P17 as obtained with climate scenario I-S. This scenario drives the ice sheet
evolution with an upper bound of the Vostok temperature data as explained in
Sec. 3.4.1. The thermal inertia of a 4 km thick solid rock layer is accounted for
and the no-slip condition at the ice-bedrock interface is applied. The enhance-
ment factor in the flow law is F = 1 (i.e. Holocene ice conditions are applied
throughout), and the geothermal heat is G = 42 x 1073 W m~2. Columns 1, 2
and 3 of Table 3 list, respectively, the measuring point, the modulus of the hori-

zontal components of the free surface velocity v}**(hy) and its polar angle @™

as inferred from the measurements. The corresponding quantities v}2°¢(hs) and
©™°4d are obtained from the computation and listed in Columns 4 and 5. In

addition, Table 3 contains in columns 6 and 7 the relative deviations

’U}‘;eas(hs) . U?_}Od(hs)
Vi (hs)

(3.8) AA,(hs) = % 100 in %

http://rcin.org.pl



(-3

=)

-,
%

90 80" 70" 80" 30° 40" 30* 20° |0
a) z v o et e s e s e

b)

n

W o s

v u{i‘__;n{T' PR ;ul'v - T Fe T3] . 8% i'a;". T
F1G. 8. Present surface topography of the Greenland Ice Sheet with the
EGIG-traverse (a). The deep borehole positions are also indicated by a triangle
(Dye 3), an asterisk (Summit) and a diamond (Camp Century). Measured velocity
vectors at positions P 1 to P 17 along the EGIG-traverse (b) where the comparison

with computational velocies is performed, see Tables 3 to 5.

(946)

http://rcin.org.pl



LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 0947

of the measured and modelled EGIG-velocities, and the absolute deviations
(3_9) AO = @meas _ Qmod
of the modelled from the measured polar angle.

Table 3. Comparison between measured and modelled EGIG-velocities as obtained for
conditions of scenario I-S. Columns 1 to 7 list the position, measured surface speeds in
ma~ ', their polar angle in °, the modelled surface speeds and their polar angles and

the relative error of the speeds in % and the absolute error in orientation as defined
in (3.8) and (3.9).

Posi.  ofe(hy) @™ ]  umed(n,) @™ []  AA(h) A []
tion [ma'] [ma™!] (%]

Pl 109.71 203.14 24.42 196.88 349 6.26
P2 88.28 206.34 26.75 200.33 230 6.01
P3 70.71 209.91 23.91 201.45 196 8.46
P4 59.07 213.35 22.32 201.94 165 11.41
P5 47.75 202.40 17.06 203.82 180 —1.42
P6 39.96 202.17 13.60 199.39 194 2.78
PT 31.40 200.60 11.59 202.18 171 —1.58
P8 25.67 197.76 9.56 202.02 169 —4.26
P9 18.76 194.73 6.93 200.83 171 —6.10
P 10 13.38 189.73 4.99 200.55 168 —10.82
B 9.88 182.79 3.50 200.03 182 —17.24
P12 6.99 172.80 2.21 196.36 216 —23.56
P 13 4.21 144.46 0.71 190.05 493 —45.59
P 14 3.54 95.56 0.24 39.42 1375 56.14
P 15 4.83 62.10 1.29 24.64 274 37.46
P16 7.58 44.47 2.87 22.89 164 21.58
P17 12.46 33.73 4.50 17.42 177 16.31

Today’s EGIG velocities of scenario I-S are all smaller than those of the mea-
surements. This must certainly be in part due to the reduced deformability of
the model ice with E = 1 that corresponds to Holocene conditions. In spite of
this, a discussion of the results from scenario I-S reveals useful insight. Quali-
tatively, the EGIG velocities of scenario I-S show the right dependence on the
position along the EGIG traverse. The relative minimum of the modelled vel-
ocities arises at position P14, as in the observations. The computed velocities
grow from position P 14 in both directions towards the ice margins in the West
and the East. Overall the relative deviation AA,(hs) of the modelled from the
observed EGIG-velocities is rather large. At position P 1, AA,(h;) = 349%; at
P8 it has a low of AA,(hs) = 169% and at position P 14 it is as large as 1375%
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(note that if AA.(hy) were normalized with v}**(hy), this value would be 95%;
so the discrepancy is highly exaggerated). The best agreement of the modulus
of the velocity is reached at P16 with AA,(hs) = 164%. The dependence of
the relative velocity deviations AA,(hs) on the position of the EGIG-traverse
is conspicuously correlated with the free surface height. The latter assumes at
P14 a relative maximum. In addition, in the vicinity of P 14, the gradient of the
free surface is rather small. Therefore, there are two explanations for the large
deviations of the measured from the computed velocities at P 13, P 14 and P 15.
First, the shallow-ice approximation is an invalid approximation in the vicin-
ity of a dome or ice divide and fails at the ice divide when a power flow law
is used [44, 78, 71, 133, 159, 161, 173]. Second, small slopes of the free surface
means that the numerical determination of these slopes from the height distribu-
tion requires the difference between two nearly equal numbers with consequent
round-off error, and in turn the propagation of large errors in the evaluation of
the velocities.

Overall, the differences A© of the modelled and measured polar angles are
not particularly large; this comes as no surprise, because in scenario I-S the
smoothed surface topography is prescribed and held fixed during integration.
This smoothed topography nearly agrees with the original topography provided
by the data. Particularly small values of |A@| arise at P5, P6, P7 and, not
surprisingly, the largest values of |A®| occur close to the ice divide at P14
(A@ = 56.14°).

The EGIG-velocities, modelled with scenario I-S-E=3 - the computation
equivalent to I-S but with an enhancement factor E = 3 — show the same qual-
itative behaviour as do those that were compared for scenario I-S. One would
expect roughly a tripling of the modelled velocities; however, because of the ther-
momechanical coupling, the enlargement of the velocities is somewhat smaller
because the basal ice is also colder. The modelled velocities along the EGIG
traverse are now larger by a factor between 1.4 and 1.9., and the relative devi-
ations AA, (hy) are smaller than for scenario I-S; in fact AA,(hs) generally lies
below 100% except at P 1, P12 — P 15, with a maximum of 941% at P 14. The
differences in the polar angles, |A@|, remain essentially the same.

We conclude that whereas the enhanced apparent fluidity of the Pleistocene
ice has moved the modelled velocities along the EGIG-traverse towards the ob-
served values, the adjustment is not sufficient.

3.5.3. Comparison of measured with computed EGIG-velocities using computations
with freely evolving surface geometry. Besides the above fixed domain simulations
with the prescribed topography inferred from the data, computations were also
performed with a freely evolving upper surface that is subject to prescribed snow-
fall and surface melting. The idea was to adjust certain free model parameters
such that the modelled ice surface topographies would agree as far as possible
with the observed surface topography. Such a procedure seems to be more appro-
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priate anyhow, because the original topographic data needed smoothing in order
that the computed velocities would not oscillate unrealistically. The reason for
this was not numerical instability but lack of precision in the measured surface
heights. In what follows, we shall describe results from two computations with
free ice thickness, but with today’s climatic conditions at the free surface held
constant; thus, contrary to the preceding computations, the ice-age-temperature
varlations are not accounted for.

In the first computation we employ the following conditions: E' = 3 and basal
sliding throughout (i.e. at both temperate and cold basal points) with the fric-
tional heat accounted for. The free surface geometry now differs from that of the
measurements, but the horizontal surface velocities along the EGIG-traverse can
still be evaluated. Table 4 compares the measured EGIG-velocities (speeds and
polar angles) with those of the model at the positions P 1 to P 17. In addition to
the previous Table 3 it contains in column 4 the modelled basal speeds, v}“{"d(hb)l
This allows a direct comparison of the contributions of sliding and gliding (due to
creep deformation over the depth). Overall, the EGIG-velocities v}3°4(hs) agree
better with the measured EGIG-speeds than in the computations of scenario
I-S-E=3. However, the polar angles now deviate more from the measured values
because the free surface is free to evolve.

At position P 1, v%°4(hy) is now larger than v§®S(h,), a fact that is ex-
pressed by the negative sign in the relative deviation AA,(hs) = —8.5%, which
for scenario I-S-E=3 was as large as 138%. This increase of the EGIG velocities
at P 1 is, however, only in parts due to the sliding that is incorporated in this
computation. The sliding velocity v%°4(h) at P 1 with its 22.97ma"! is only
about 20% of the modelled EGIG-velocities there. The increase of the computed
EGIG-velocity at P 1 can be traced back in this case to the change of surface
topography. At positions P 2 to P 7 the relative deviations |AA.(hy)| are of the
order of 5%, in excellent agreement with the observations. Somewhat striking is
the large value AA,(hs) = 234.5% at position P 12. It is at this location, where
the computed surface height assumes its maximum along the EGIG-traverse. In
the scenarios I-S and I-S-E=3 this role was played by position P 14, and AA,(hy)
reached a maximum in this location for these scenarios. Here it is, however, no
longer appropriate to attribute the large deviations to accidental errors in the
ice topography, because the latter is now determined by computations. It is ev-
ident that the model is not ideally capable of reproducing regions with small
free surface slopes close to domes, obviously a demonstration of the nonunifor-
mity of the validity of the shallow ice approximation. At P 14 - P17, AA,(hs)
is approximately —50%; the computed EGIG-velocities are too large in these
positions.

At P13 and P 14 the difference of the polar angle as obtained from observa-
tions and computations is larger than 180°, but, of course, its complement to
360° is then smaller than 180° and precisely indicates the error in the orienta-
tion of the velocity. It also comes as no surprise that the maximum errors of the
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orientation arise where the surface speeds are smallest. Overall, the agreement of
the orientations of the computed velocieties along the EGIG-profile with those
of the observations is fair.

Table 4. Same as in Table 3, but now as obtained under conditions for which the free sur-
face has been freely evolving for 50 000 years under steady driving conditions. Columns
are the same as in Table 3, except that column 4 has been added which lists the modelled
basal ice speed in ma~!. At P13 and P 14 both, the polar angle and its complement to
360° are listed. For details see also caption to Table 3.

Posic ug(h) O™ [ vped(h) upd(h) O™ ] AA(h) A6 []
tion  [ma!] [ma=!'] [ma™) (%]

P11 109.71 203.14 22.97 119.91 193.32 -8.5 9.82
P2 88.28 206.34 15.07 86.44 200.96 2.1 5.38
P3 70.71 209.91 11.49 67.21 204.63 5.2 5.28
P4 59.07 213.35 9.54 56.02 207.23 5.4 6.12
P5 47.75 202.40 7.96 45.81 207.83 4.2 —5.43
P 6 39.96 202.17 6.83 37.18 205.42 7.5 -3.25
P7 31.40 200.60 5.58 29.92 206.35 5.0 -5.75
P8 25.67 197.76 4.23 23.20 208.70 10.7 —10.94
P9 18.76 194.73 3.01 16.27 210.96 15.3 -16.23
P 10 13.38 189.73 2.06 10.45 215.04 28.0 —25.31
P11 9.88 182.79 1.26 6.05 221.02 63.3 —38.23
P12 6.99 172.80 0.45 2.09 239.75 234.5 —66.95
P13 4.21 144.46 0.71 3.39 346.43 24.2 -201.97
P13 158.03"
P 14 3.54 95.56 1.52 7.31 358.30 -51.6 —262.74
P14 97.26*
P15 4.83 62.10 2.76 11.99 4.07 -59.7 58.03
P 16 7.58 44.47 4.44 18.06 8.28 —58.0 36.19
P17 12.46 33.73 6.06 24.91 9.96 -50.0 23.77

In the next computation the model conditions are the same as above except
that sliding is now restricted to the temperate basal regions; the comparison
between the modelled and measured EGIG-velocities is given in Table 5. The
relative deviations |A A, (hs)| of the measured from the modelled EGIG-velocities
are now in all positions less than 100% with a maximum of 71.9% at P 17 and a
minimum of 0.2% at P 2. Over most of the EGIG-traverse the computed surface
velocities are larger than those observed, the reason being that at the positions
where this happens (P 5-P 14) the free surface heights are too large. Because of
the restricted sliding in this, as opposed to the previous, computation, less ice is
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transported to the margin. Notice also the values of the basal velocities v/3°%(hy)
in Column 4 of Table 5 which differ from zero only at the positions P 1 to P 3.
At these positions, the ice thicknesses of the two computations are very similar,
implying that the deviations |[AA,(hs)| are relatively small. This is exactly the
other way around at positions P 16 and P 17. Here, A A, (h,) have opposite signs,
a fact that is likely due to the small surface slopes.

Table 5. Same as in Table 4 but now for sliding arising only at temperate basal spots.
In P14-P 17 both the polar angle and its complement to 360° are listed. For details,
see also caption to Table 3.

Posi- uf™(h,) O™ ] vi(h) vjd(h) O™ Ad,(h) A6 [
tion [ma~!] [ma™?] [ma~!] [%]

P1 109.71 203.14 26.48 135.45 191.82 —19.0 11,32
B2 88.28 206.34 15.39 88.41 203.03 -0.2 3.31
P3 70.71 209.91 2.90 63.81 211.24 10.8 —-1.33
P4 59.07 213.35 0.00 52.89 216.96 11.7 -3.61
P 5 47.75 202.40 0.00 50.00 209.73 —-4.5 —-7.33
P 6 39.96 202.17 0.00 44.39 203.64 —10.0 —1.47
P7 31.40 200.60 0.00 38.30 206.02 —18.0 —5.42
P8 25.67 197.76 0.00 30.12 210.13 —14.8 —12.37
P9 18.76 194.73 0.00 21.88 213.51 -14.3 —18.78
P 10 13.38 189.73 0.00 15.68 217.12 —14.7 —-27.39
P11 9.88 182.79 0.00 11.64 224.58 —15.1 —41.79
P 12 6.99 172.80 0.00 8.07 233.51 —134 —60.71
P13 4.21 144.46 0.00 5.39 256.08 -21.9 -111.62
P 14 3.54 95.56 0.00 4.71 279.11 —24.8 —183.55
P 14 176.45*
P 15 4.83 62.10 0.00 4.47 300.86 8.1 -—238.76
P15 121.24*
P16 7.58 44 .47 0.00 5.01 331.49 51.3 —287.02
P 16 72.98*
P 17 12.46 33.73 0.00 7.25 350.48 71.9 -—-316.75
P17 43.25*

The orientations of the computed EGIG-velocities at P1 to P8 are fairly
well reproduced; however, the differences |[A@| are now somewhat larger. At
P 14, there arises an almost perfect inversion (A@ = 176.45%). This result is not
surprising since position P 14 is where the surface height along the EGIG-traverse
reaches its maximum. The agreement of the orientation of the surface velocities
at P 15 to P 17 is also worse than in the previous computation, probably because
the North dome has moved towards the NE.
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To compare the last two computations objectively, we have calculated the
means i
—_— 1 |AA(hg);
@10)  [AAG) = ZelAdb)l
over all 17 positions and found the results of Table 6. Accordingly, the moduli of
the surface velocities are better reproduced in the second computation, and their
orientations are in better agreement in the first. Because we regard the speeds as
more significant, the conditions of the second computation are probably closer

to reality.

— Y |A6);
A = l—ll i

Table 6. Mean values of the moduli of the relative deviations A A, (hy)
and the absolute deviations A@ for the seventeen selected points along
the EGIG-traverse (see Eqs. (3.8) and (3.9)) for the steady-state com-
putations with sliding overall (a) and that with sliding restricted to
the temperate basal spots (b).

|AA,(hs)] (%] A6 [7]
a 37.2 33.6
b 19.1 42.4

4. Concluding remarks and outlook

For the Greenland Ice Sheet and probably all large ice sheets, the equilibrium
temperature distribution is an unrealistic concept to estimate the temperature
distribution for present climatic conditions. This statement holds true for all
times through the last glacial cycle except perhaps the climatic minimum at
16 ka BP. The present temperature distribution in the Greenland Ice Sheet is
affected by the last glacial cycle (Wisconsinan Ice Age), and to some extent the
[linoian Ice Age, as well as by the thermal inertia of the uppermost part of the
rock bed. The temporal variation of the surface (air) temperature contributes
significantly to the temporal and spatial distribution of the heat flow across the
ice-rock interface, as it may vary from 33 to 43 mW m™2

By using various scenarios it was shown (but is not demonstrated here) that
some parts of the basal area — probably rather small — were and are temperate,
but that the locations where ice cores were drilled were probably never temper-
ate. This statement holds even when the free surface is varied along with the
climate driving, because the base can only become colder in this instance. Fur-
thermore, the exact temporal variation of the homologous temperature at the
base of “Dye 3", “Summit” and “Camp Century” depends on the mechanical
and thermal properties of the ice, the thermal response of the rigid rock bed and
the climate driving force through the surface temperature through time.

These inferences are drawn by using a restricted number of scenarios. The cli-
mate driving temperature was drastically simplified from the Vostok data. The

http://rcin.org.pl



LARGE SCALE MOTION AND TEMPERATURE DISTRIBUTIONS 953

rock bed was assumed to be rigid and so the deformation of the lithosphere and
the astenosphere were ignored, and the free-surface geometry was held fixed.
These effects were thought to be of negligible influence, and in any case a de-
scription is possible only on the basis of unreliable data.

This review explained the theory upon which the thermomechanical processes
of land-based ice sheets are based, and how this theory is reduced by a scaling
analysis to the so-called shallow ice approximation. This turned out to be the
lowest order outer solution of a matched asymptotic perturbation scheme valid
except in a near margin boundary layer and in the vicinity of ice divides(®).
Numerical solution of the governing equations are nevertheless generally con-
structed through the entire ice sheet on the premise that the two inner regions
are passive. While this seems to be correct for the near-margin layer, compar-
ison of computed velocities along the EGIG-profile (and obtained with various
computational scenarios) with the measured ones indicates that this is not so
for the ice divide region. This conclusion is justified because deviations of the
computed and measured velocities are systematically larger close to the divide
than elsewhere.

Of course, authors of papers on ice divide analysis are aware of this fact
(6, 28~ 31, 44, 73, 78, 133, 166, 173], but no attempt has so far been made to
construct near-ice-divide solutions of the full Stokes equations. BLATTER [6] has
made a first attempt towards that end, but the works of DAHL-JENSEN [28 - 31],
REEH [160-163] and R1Tz [164 - 167] and associates, intended to achieve this and
known under the terms “longitudinal stress” or “longitudinal stretching effects”
[15, 67, 151] cannot, in general, be systematically extended to embrace eventually
the full Stokes equations. The scaling analysis of this article shows how it should
be done, either by a formal perturbation or — and numerically more efficiently -
by iteration; we are presently doing this.

Ice shield analyses need other, equally important amendments. The consti-
tutive model of this article is that of a fluid and therefore necessarily isotropic.
However, ice at depth is strongly anisotropic [27], while at formation from sin-
tered snow in the surface layer it is isotropic. This stress-induced transition has
only recently been incorporated into the first models [49, 131, 174, 175]. Their in-
corporation into ice sheet analyses and, in particular, the construction of reduced
model equations by implementing the shallowness assumption is still ahead of us.
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Steady non-uniform extensional motions
as applied to kinematic description
of polymer fibre formation

S. ZAHORSKI (WARSZAWA)

IT 1s sHOwWN that the concept of steady non-uniform extensional motions (NUEM)
can be used for kinematic description of polymer fibre formation, taking into account
the variable geometry and shearing effects. To this end, pretty general, materially
non-uniform constitutive equations, depending on temperature distributions, struc-
ture formations, etc., are applied and the linearized perturbation procedure is de-
veloped. Especially simple expressions describing the additional velocity fields are
obtained for the first order approximation.

1. Introduction

IN OUR PREVIOUS PAPERS [1, 2], we discussed the concept of steady non-uniform
extensional motions (called briefly NUEM) of materially non-uniform (non-ho-
mogeneous) fluids and solids. We also mentioned possible applicability of the
above concept to various fibre-forming processes and certain flows realized in
extensometers. An example of application to the case of cold drawing of polymer
fibres was presented in [3].

In this paper, we use the concept of steady NUEM to describe many realis-
tic fibre-forming processes, assuming that the fundamental motions are quasi-
elongational and the shearing effects, resulting from the axial variability of fibre
geometry, are taken into account. A motivation for the present description arises
from the following requirements.

1. We want to apply relatively general constitutive equations describing vari-
ous fundamental quasi-elongational motions. An assumption of particular rhe-
ological models, frequently made for description of fibre-forming processes, is
not necessary. Such an approach to the problem enables effective application
either of experimental data or numerical results calculated for simpler models
(Newtonian, Maxwellian, etc.).

2. Material properties of fibres in the processes considered essentially depend
on temperature distributions, crystallization effects, structure orientation etc.
(cf. [4]). The concept of steady NUEM of materially non-uniform materials re-
places, in some sense, arbitrary distributions of mechanical properties varying
from position to position in media which are homogeneous in reality. Moreover,
there exists some possibility of smooth transitions from viscous to elastic mate-
rials or from fluid-like to solid-like behaviour.
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3. We try to apply a consequent linearization process throught the corre-
sponding perturbation procedure. To this end, an asssumption of thin-thread
(layer) approximation, usually satisfied in fibre processing, is very useful.

The concept considered generalizes, to some extent, that of steady flows with
dominating extension (briefly called FDE) developed previously in [5] and applied
to melt-spinning processes in [6]. We must emphasize, however, that the concept
of steady FDE does not satisfy the requirement 1 and 3. The requirement 2
remains valid only for the properly defined viscosity function.

In Sec. 2 the general quasi-elongational motions and the corresponding con-
stitutive equations are considered. Section 3 is entirely devoted to tae addi-
tional superposed motions describing the variability of fibre geometry and the re-
lated shearing effects. Moreover, we introduce the auxiliary concept of thin-tread
(layer) approximation. The continuity conditions in local and global forms are
discussed in Sec. 4. Sections 5 and 6 contain the equilibrium equations and the
boundary conditions presented for the first and second order approximations. In
Sec. 7 the corresponding solutions of the previously derived governing ejuations
are obtained for viscoelastic isotropic materials. Certain particular cases are dis-
cussed in greater detail. The main results are quoted in Sec. 8 in a form of final
remarks.

2. Quasi-elongational motions treated as steady non-uniform extensional
motions (NUEM)

Consider the isochoric, quasi-elongational motion for which the defarmation
gradient at the current time ¢, relative to a configuration at time 0, s of the
diagonal form in cylindrical coordinates:

E B 8
(2.1) FX,t)]=| 0 AY2 o], detF =1,
0 0 A

where the non-uniform stretch ratio A(X,t) depends on time ¢ as well & on the
position X of a particle in the reference configuration k at time 0. We use the
following definitions:

(2.2) A=V/Vy, e=ln)

where ¢ is the Hencky measure of strain; V and Vj denote the variable axial
velocity and the velocity at the exit (feeding velocity), respectively. Tle above
quasi-elongational motion is consistent with the definition of NUEM infroduced
in [2].
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On the basis of Eq. (2.1), the velocity gradient (strain rate) can be written as

==Y 0 0
(2'3) [L(Xat)] = [F F_l] = _,;_V' ol
0 0 V!

where V' denotes the axial component of the velocity gradient and the primes
denote derivatives with respect to the axial coordinate z.

Equations (2.1) and (2.3) lead to the following forms of the left Cauchy — Green
deformation tensor B and the first Rivlin- Ericksen kinematic tensor Ay (cf. [7]):

oy o
A o00 14 -
(24) B =FF)=[0 xt o|=]{0 ¢ 0
g A V2
0 0 vz
A 0 o_
A -V’ 0 0
(25) AX =] 2 o|=]0 -v o],
A ; 0 0o 2V
2_
L 9 8 &7

respectively. In the above expressions we have used the relations:
(2.6) A=V, é=V

where the dots denote differentiation with respect to time.

For steady NUEM the gradient L as well as the kinematic tensor A; do not
depend on time. Thus, according to our previous considerations [2], the constitu-
tive equations of materially non-uniform, simple, locally isotropic materials can
be expressed in the form:

(2.7) T(X,t) = h(A,(X), B(X, t), o(X); X),

where T is the non-uniform stress tensor, and h denotes the non-uniform isotropic
function, depending on the reference configuration k. In the case of incompress-
ible materials T should be replaced by the extra-stress tensor Tp and the de-
pendence on the scalar density p should be disregarded. The question whether
Eq. (2.7) describes a fluid or solid can be answered having known the correspond-
ing isotropy (internal symmetry) group (cf. [7]).
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For steady quasi-elongational motions, describing the majority of fibre form-
ing processes, in which material properties depend solely on the coordinate z,
there exists a unique correspondence between the material Z (in the reference
configuration k) and the spatial coordinate z. In particular, we may assume that

(2.8) z2=—2, z=Vi, Z = Vyt.

Thus, Eq. (2.7) can be written in the particular form:
(2.9) T(z) = k(V'(2),V(2), o(2); 2),

where k is the tensor function of the indicated scalar arguments. If necessary,
the pars of arguments ', A or ¢, € can be used instead of V', V.

For our present purposes the way of reasoning leading to the constitutive
equation (2.7) has not been presented with all details (to this end cf. [1, 2]); the
simplified Eq. (2.9) can also be taken as a constitutive postulate. Therefore, we
assume that the stress (or extra-stress) components in the motions considered
depend on the velocity gradient V', the velocity V', the density ¢ and the coor-
dinate z characterizing an explicit dependence of the material properties on the
position along the axis.

Since for axisymmetric, quasi-elongational motions only normal components
of stresses are meaningful, we can also write

Tll = T22 = O"l(V,,V, Q,Z),
T% = g3(V',V, 0;2),
TR = g

T3 _ 7l = g3 — gy = a(V',V,0;2).

(2.10)

3. Additional motion and shearing effects

In the motions considered, the inclination of fibre surface is usually a small
quantizy, i.e. R' = 0(¢), ¢ = Rg/L < 1, where R, Ry and L denote the outer
radius of the filament, the outer radius at the exit (or the orifice radius) and the
total length, respectively.

In what follows, we assume that some small additional velocity field, viz.

(3.1) w(r, z) = 0(e)

is superposed on the fundamental, quasi-elongational motion described by the
axial velocity V(z). Under the above assumption all the quantities relevant for
the motions considered undergo some small linear increments denoted by A. We

have, in particular,

(3.2) L* =L+ AL, F* =F + AF, etc.
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For the deformation gradients, velocity gradients, deformation tensors and
kinematic tensors, we obtain the following matrices:

F_l Vo 0 U
2 vz? RN
0
[AF} = 0 **5 W'{U 0 §
v
I 0 O V—OZ'UJ
(3.3)
] 0 (VO)UZ -
V2 > 1% Vo
0
[AB] = 0 —Ww 0 ,
v 1/2
(-—9) “ 0 21211)
1% Vo Vs
and
ou Ju ou du  Jw
== ke D E g B
or g Oz ar (L 0z i ar
Jw ow Ju  Ow Jw
= okl TR LT g 97—
ar D 0z 8z+ ar 0z

where u and w denote the radial and axial components of the additional velocity
w, respectively. In the above formulae we have used the simple relations:
w 1 ow Vo

35 AA=—, AN=——, Al=-—w
( ) VQ V() 82 V2

The constitutive equations (2.10), after taking into account the increments
resulting from the additional velocity field (3.1), can be presented in the following
general form, linear with respect to u and w:

doy doy Ow  Jdoy Jdu
T*ll — P A —_—
Nty e e T B 0T %5
do doy Ow  do u
*22 1 1 1
= L bl Wik 8 s
T" =t gretar g, T et P

dos das dw

(90’3
3.6 = r = +5-A
Ju  Jw
T*IS — (_ _) ;
1 0z ¥ or e
T*33 _ prll _ g+ﬁw+8_a@+6_a‘&g_a%

ov oV 9z 0o or’
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where a, 3, v and n are new, additional material functions, depending on the
same arguments as o, e.g.

(3.7) n=n(V',V,e;z2).

The functions 7, @ and 3 have dimension of viscosity (Ns/m?), while v, charac-
terizing the shearing deformations of a material, has dimension of shear modulus
divided by velocity (Ns/m?).

It is worth noting that the representations of constitutive equations in the
form (3.6) can also be obtained in a different way. An application of linear per-
turbation procedure to the Rivlin- Ericksen constitutive equations (cf. [7]), in-
volving 8 material functions (a;, 7 = 1,...,8), leads to exactly the same result.

The next step in our perturbation procedure is connected with the so-called
thin-thread (layer) approximation (cf. [6]). To this end, we assume again that
€ = Ry/L is a small quantity. Introducing the following dimensionless variables
marked with overbars:

(3.8) r=TRy, 2 =2l w = Uw, u = eUm,

where the characteristic velocity U = V'(0) Ry, or U = V! .. Ry, we arrive at the

max
following increments:

[ Vo_ u T/—O 12
——w 0 E=r | ==
V& Vo \ V
Vo__
(3.9) [AB] = 0 —T/Tzw 0 :
) (E)Uz zw
| Vo \V V§ |
; i 0w ,0u
“ ' & .
(310) {AAl] —— - 0 s 62—% (;— R—O
¥ L2 ki
| 5= + € e 0 626E

Since by assumption, the axial component w of the additional velocity field
is of order ¢, the radial component u under a thin-thread approximation is of
order £2. This fact is taken into account when dealing with various terms in the
corresponding governing equations (Sec. 5).

4. Continuity conditions

So far, we have not discussed any continuity conditions, assuming tacitly that
they are satisfied in a local as well as in a global sense.
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In the local form the continuity condition, valid for the fundamental, quasi-
elongational motion, viz.

(4.1) 0+ odivV =0,

implies that p = const, if divV = 0 and the motion is steady (dg/dt = 0). The
same equation for quantities involving the corresponding increments (V* = V4w,
0" = o+ Ap) amounts to

(4.2) VaaAQ + odivw = 0,
and after integration to
10 ow
4 =—[ £ — | dz
(43) Be=- [ £ (5t + G2 ) e+ OO,

where C'(r) is an arbitrary function of » only.

Since for our thin-thread approximation the radial components u are of order
of magnitude less than the axial components w, we may use the approximate
formula:

e ow
V 0z

On the other hand, in the global form the mass output W in a fundamental
motion must be constant along the filament, viz.

(4.5) W = prR?*V = const.

Taking into account the corresponding mass output with small increments w and
Ap, we arrive at

(4.4) Ap=— —dz + C(r).

R
(4.6) 27 f(V + w)(o + Ap)rdr = const,
0
what leads to
R R
(4.7) V/Agrdr+gfwrdr:0.
0 0

If the additional velocity field is such that the second integral is identically
equal to zero (cf. Sec.6), the radial distribution of the density increment Ap is
determined only by the vanishing first integral (4.7).

Another implication of the condition (4,5) are the following formulae:

R 1V’ 1d
4. — = e 1 =—=—1InV,
(4.8) 7 57 or 5 = 5 3, 1P

expressing useful relations between the fibre radius and the fundamental veloc-
ity V.
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5. Equations of equilibrium

For axisymmetric deformations the inertialess equations of equilibrium, ex-
pressed in cylindrical coordinates, viz.

" e E(T*n _T22) 4 oL o

(51) 67‘ 1 (92
aT*13 + IT*IB " BT*SS .
ar r 9z

after taking into account Egs. (3.6), lead to

% + ﬂ (aalz + B c'?_ -+ 00109AQ) 2 (na—w) + i (aa—u)

or or \ oV oV’ 0z 0z ar ar ar
1 du 15, ou d
9 = S | oS =
(5.2) + ( g ) 3 (na )+ 5, (14 =0,
60'3 d 603 303 6w 803
9z +5(8_VW+WE+—0—AQ)

+l£(r a_w)+g(@)+n6u+13(T)_0
ror\ "or ar \" oz vy08z ror w =5

Differentiating the first Eq. (5.2) with respect to z and the second one with
respect to r, and subtracting (this procedure also eliminates the hydrostatic
pressure, if necessary), we arrive at

o Torlror\Vor) " \" V" "oV 8z B -
9?2

92 dw a [y 0 9
-5 ("5r) * 5 L 5] ~ 5t - o ( )
SRR () 2 e
oz lr \ or ' r aroz \' 0z
d (1 du a2 ou ~
Tor (1_5) _@(7 Bz)

The corresponding analysis of orders of magnitude determined by the powers
of € leads, after integration with respect to r, to the following governing equation:

(5.4)

d ( E?w) d ( i do ow dw 30A ) c d )
a_ a —1 + _— =Ur—vy— ,
Tor " ar v avi a: ot T or
where only terms up to o> have been retained and C' is an integration constant.
In the above equations as well as in our further considerations the symbol d/dz
denotes the total derivative with respect to z.
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Let us assume, in agreement with Eq. (3.1), that the additional velocity field
can be written as

(5.5) w=cw; + 2wy .

Under the above assumption the governing equations resulting from Eq. (5.4)
take the following forms:

" d dwy - i do
(5.6) 5, (T‘W) = Cyr T

for the first order approximation with respect to ¢, and

, a ( dw\ . d (do do dw, do 0
67 g (1) =0 =z (7o + v e+ age) <10

for the second order approximation containing terms of order £2.

6. Boundary conditions

The governing equations (5.6), (5.7) are the second order partial differential
equations which can be integrated with respect to r. To this end, at least two
boundary conditions for the additional motions are necessary.

Because of Eq. (4.5) and the boundary conditions satisfied at the exit (feeding
velocity) and the end of filament (take-up velocity, cf. [4]):

(6.1) V(0) =W, V(L)=V.,

respectively, it is reasonable to assume that the additional velocity field only
modifies the uniform velocity profile resulting from the fundamental motion.
This means that we assume

R
(6.2) [w'r dr = 0.
0

The above assumption can be justified a posterior: by the fact that the solutions
for wy (cf. Sec. 7) are proportional to R'. Usually this latter quantity is small but
finite at the exit and tends to zero for z = L (cf. [4]).

On the free surface of the fibre all the forces acting have to be mutually
balanced. Neglecting surface-tension effects, we arrive at the following condition
(cf. [6]), earlier derived by KASE [8]:

(6.3) R (T*as _ T*“) = T*m]r:R.

r=R

http://rcin.org.pl
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Introducing the corresponding stresses from Eqgs. (3.6), we obtain

Jdo do dw Jdo ow Ou
6.4 R’ e A = o e = Uir=R -
(6.4) o+ 8Vw+ 3 Ba 4 90 QL_R 77(37" F 62>r:R+71’\ R

Bearing in mind Eq. (5.5), we can write the following conditions:

duwn

! — =
(6.5) R'o=n ~

r=R

for the first order approximation, and

+ yui |1‘:R y
r=R

do do dw; Oo Odws
| = i WU W
6.6} F\ov™* 57 5 T a0 } 2= 1 ar

for the second order approximation, respectively.

7. Solutions for isotropic viscoelastic materials

The governing equation (5.6) together with the boundary conditions (6.2)
and (6.5) leads to the solution

/ 2
(7.1) wy o P (7‘2—R—) ,

depending on the fibre geometry (R'/R = d/dz(In R)) as well as on two material
functions o and 7.

Integrating the expression for u, resulting from the continuity condition (4.2),
we arrive at

o R
2 i | A —~ = — [ = =% =R )
(7.2) 0 dz./ i 8d~ (17 R( )

where we have taken into account Eq. (7.1) and the requirement that uy|,~¢0 = 0.
Moreover, we have

o<

R
d
(7.3) Ullp=p = — E/Agr dr =0,
0

where Eq. (4.7) has been used.
The second order governing equation (5.7) together with the boundary con-
ditions (6.2) and (6.6) leads to the following expression, more complex than that
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for the first approximation:

9o o R 100 [d (o R\] .o R? i
74 = gBR v =G E)| e
(74)  w=<RR {BVn2R+n8V’ [dz (77 )}+2’7 R2}(T 2)

R

1 do o R 0o d (o R 4 2 9 4

- L _9

32ndz{6V77R Bde(n )}(’" Rer® + 3RY)
e
4n

1 R 9o g JE d o _o\[ 2 R

L 5 —2R%? + ZRY).
" 32, dz (nR)(T T3

The solutions (7.1) and (7.4) are valid for isotropic viscoelastic materials (flu-
ids or solids) described by the constitutive equations of the type (2.10) and (3.6)
with three material functions o, 7, v and the variable temperature-dependent
increment of the density Ap. For purely inviscid or viscous materials, we may
disregard in Eq. (7.4) all the terms containing partial derivatives with respect to
V' or V, respectively.

For the frequently applied case of viscous, generalized Newtonian fluids, for
which

do
75 —_— o ! —
(7.5) oy — 0 o=d&V,  y=0,

we arrive at

8.8 f o HE
(7.6) wl—iVR(r —),

and at

9 d R, sz Rz
7‘. — ! ! 2 ! 2
( 7) wo _8 RR {'—'z ([’ —') + 2V = } (r —_ _2 )

/
e e [n(% (V’%)] (r* - 2R** + 3R")

iE@A TZ_R_Z_
2 R 0Op 2

A realistic shape of the additional velocity profiles can easily be predicted,

assuming that the outer radius R(z) of the filament may be approximated by
the exponential function:

1
R(z) = Ryexp(—2zb), b -7 In —2—2‘ = const.
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In such a case: R'/R = —b, and the velocity profiles (7.1) or (7.6) are proportional
only to a/n or V', respectively. It is well known from the experiments (cf. [4])
that V' takes small values for z = 0, increases rapidly reaching a maximum for
2z =0.15+ 0.3L, and tends to zero for = = L. It may be expected that possible
o /n profiles along the fibre axis are of the character similar to V.

8. Final remarks

The linearized perturbation procedure developed in the paper enables deter-
mination of the realistic velocity fields taking into account the variable geometry
of the elongated fibres as well as the appropriate shearing effects.

To this end some information on the material behaviour in steady quasi-elon-
gational motions is necessary either on the basis of experimental data (measured
radii, stresses, forces, etc.) or using various numerical results calculated for par-
ticular models of fluids or solids. The constitutive equations used in the paper are
sufficiently general; the corresponding material functions (normal stresses, viscos-
ity, etc.) all depend on the strain, strain rate (velocity gradient), variable density
and explicitly on the axial coordinate. The latter dependence replaces distribu-
tions of temperature, crystallization effects, structure formation, etc. There ex-
ists a possibility for simultaneous description of fluid-like or solid-like behaviour
along the same fibre-line.

The solutions corresponding to the first order approximation depend on two
material functions only: the normal stress and viscosity functions, and the radius
variable along the thread.

The additional velocity fields are simply expressed in the case of viscous,
generalized Newtonian fluids. Then, a knowledge of such kinematic quantities as
the variable radius and the velocity gradient is entirely sufficient.

An example of numerical and experimental results which could, in principle,
be used in determining the additional velocity fields and the relevant shearing
effects may be found in the paper by PAPANASTASIOU et al. [10]. They applied
the so-called PSM model and the Newtonian model to calculate the properties of
polypropylene, polystyrene and PET and to compare the results with available
experiments.
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Development of flow and heat transfer on a wedge
with a magnetic field

M. KUMARI (BANGALORE)

THE DEVELOPMENT of the flow and heat transfer of an incompressible laminar viscous
electrically conducting fluid on a stationary infinite wedge with an applied magnetic
field has been studied when the fluid in the external stream is set into motion im-
pulsively and at the same time, the surface temperature is suddenly raised from its
ambient temperature. The effects of the induced magnetic field, viscous dissipation
and Ohmic heating have been taken into account. The mathematical problem has
been formulated in such a way that at time ¢ = 0, it reduces to Rayleigh type of
equation and as time t — oo, it tends to Falkner—Skan type of equation. The scale of
time has been chosen such that the traditional infinite region of integration becomes
finite which considerably reduces the computational time. The singular parabolic
partial differential equations governing the flow have been solved numerically using
an implicit finite difference scheme. There is a smooth transition from the Rayleigh
solution at £ = 0 (t* = 0) to Falkner—Skan type of solution at £ =1 (t° — oo when
the steady state is reached). The surface shear stress and the surface heat transfer
increase or decrease with time when the pressure gradient parameter is greater or
less than a certain value. However, the z component of the induced magnetic field
at the surface decreases as time increases.

1. Introduction

FLUID DYNAMIC PHENOMENA involving unsteady boundary layers are of great
theoretical and practical interest. Much of the work that has been done in this
area is related to external aerodynamics. However, there are also several appli-
cations in biofluid dynamics, hydronautics and manufacturing. Excellent review
papers on the unsteady boundary layers have been contributed by STUART [1],
RILEY [2], TELIONIS [3] and McCROSKEY [4].

When the external stream is impulsively set into motion at time ¢ = 0 with
uniform velocity along the plane of symmetry of the stationary infinite wedge,
the inviscid flow over the wedge is developed instantaneously. But the viscous
flow within the boundary layer develops slowly and it reaches a steady flow
only after a certain period of time. The development of the boundary layer
with time takes place in two stages. For small time, the flow is dominated by
the viscous and pressure gradient forces and the unsteady acceleration. The
convective acceleration plays only a minor role in the flow development. On
the other hand, for large time the flow is dominated by the viscous forces, the
pressure gradient and the convective acceleration. During this phase the unsteady
acceleration plays only a minor role in the flow development. For ¢ = 0, the flow
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1s governed by the Rayleigh equation and for ¢t — oo it is governed by the
Falkner - Skan equation. This change in the character of the flow manifests itself
mathematically as a change in character of the equations which describe the fluid
motion.

STEWARTSON [5] first studied the impulsive motion over a flat plate and
found that for ¢ > 1, the flow undergoes a transition from Rayleigh flow to
Blasius flow. He [5] noted certain difficulties in the mathematical formulation
of the problem (i.e., the transition from the Rayleigh flow to Blasius flow is
not smooth) and related it to the physics of the flow. Since then several authors
[6 —11] have studied this problem using different methods. SMITH [12] has studied
the analogous wedge problem and encountered the same difficulties which arise
in the case of the flat plate. In order to overcome this difficulty, WILLIAMS and
RHYNE [13] have formulated the problem of impulsive motion over a wedge in
a new set of scaled coordinates which includes both the short time solution
(Rayleigh solution) and long time solution (Falkner - Skan solution) and there
is a smooth transition from Rayleigh solution to Falkner - Skan solution. In the
above studies, the effect of the magnetic field was not considered. INGEAM [14]
has studied the effect of the magnetic field on the flow past an impulsively started
semi-infinite plate.

The present investigation considers the development of boundary layer flow
and heat transfer with time of an electrically conducting fluid over a stationary
infinite wedge with a magnetic field when the fluid in the external stream is set
into motion impulsively and at the same time the temperature of the wall is
suddenly raised from that of the surrounding fluid. The effects of the induced
magnetic field, viscous dissipation and Ohmic heating have been included in the
analysis. The mathematical problem has been formulated in such a way that for
time t = 0, it reduces to Rayleigh type of equations and for ¢ — oo it reduces
to Falkner-Skan type of equation. The scale of time has been selected such
that the traditional infinite region of integration becomes finite which consider-
ably reduces the computational time. The singular parabolic partial diferential
equations governing the flow have been solved numerically using an implicit finite
difference scheme. The particular cases of the present results have been ccmpared
with those of HALL [6], DENNIS [7], WATKINS [9], INGHAM [10, 14], TADROS and
KIRKHOPE [11], WILLIAMS and RHYNE [13], NATH [16] and WATANABE [17].

2. Problem formulation

We assume that for ¢ < 0, an infinite wedge lies in the (z,y) plane vith the
leading edge at @ = y = 0 in the ambient fluid. The wall T, is assumed to have
the same temperature as that of the surrounding fluid (i.e., Ty = T) which
is electrically conducting. A magnetic field Hy is applied in the z dire:tion at
large distance from the surface of the wedge. At time ¢ = 0, the external stiream
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y UpHy T _

-
-

Fi1G. 1. Coordinate system.

away from the wedge is impulsively set into motion with velocity Uy parallel
to the surface of the wedge (Fig.1). At the same time the temperature of the
wall is raised to Ty, from T, the temperature of the surrounding fluid. The
effects of the induced magnetic field, viscous dissipation and Ohmic heating
have been included in the analysis but the Hall effect has been neglected. It
is assumed that there is no applied voltage which implies the absence of an
electric field (E = 0). The electrical currents flowing in the fluid give rise to an
induced magnetic field which would exist if the fluid were an electrical insulator.
It has been assumed that the normal component of the induced magnetic field
H, vanishes at the wall and the parallel component H; approaches its given
value Hj at the edge of the boundary layer [15]. The free stream temperature
is constant. The solution for small time is described by the Rayleigh’s type of
equation. For t — oo, the steady-state equations as given by GRIBBEN [15] and
NATH [16] are obtained. Under the above assumptions, the boundary layer and
Maxwell’s equations governing the unsteady flow can be expressed as [14 - 17]

(2.0 Uy + vy = 0,
(2.2) (Hi)a + (Ha)y = 0,
{(2.3) g + wug + vuy = —o (p + poHZE/2), + Viyy

+(po/0) [Hi(H1)e + Ha(Hr )y,
(2.4) (Hyp)e +u(Hy)z + 'U(Hl)y - Hyjug — H2U~'y = al(Hl)yyv

(2.5) T; + uly + T, = vPr Ty, + (u/cp)uz + (oc,0) "L [(Hi)y)?,
where

(26) —0 M p+ poHE/2)z = Us(Us)x — (1o/0)Ho(Ho)z ,

B Up=Uz™, Hy = Hz™, Pr=wja.
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The boundary conditions for ¢ > 0 are given by

u(z; 0,1) = v(z,0,2) = Hslx,0,8) =0,
(2.7) 0Hy(x,0,t)/8y = 0, Tz, 0. 8) = Tyis
U(.’,C,OO,t-{)) = U()(CC), Hl(I,OO,t) — HU(I)7 T(IL‘,OO,t) . TDO

The initial conditions at ¢t = ¢y (< 0) are expressed in the form
(28) u(x,y,tg) =O, Hl(l‘,y,to) = HO, T(:l,',y,to) =Too

Here z and y are the distances along and perpendicular to the surface, re-
spectively; w and v are the velocity components along the z and y directions,
respectively; H; and Hs are the components of the induced magnetic field along
the « and y directions, respectively; Uy and Hy are the velocity and the applied
magnetic field in the x direction, respectively; p is the pressure; Pr is the Prandtl
number; 7' is the temperature; o and v are the density and kinematic viscosity,
respectively; po is the magnetic permeability; o and «; are, respectively, the ther-
mal diffusivity and magnetic diffusivity; U and H are the velocity and magnetic
field in the free stream, respectively; m is the index in the power-law variation
of velocity, wall temperature and applied magnetic field; the subscripts ¢, z and
y denote derivatives with respect to t, r and y, respectively; and the subscripts
w and oo denote conditions at the wall and in the free stream, respectively.

In order to reduce the number of independent variables from three to two in
Eqgs. (2.1)-(2.5) and to reduce these equations to dimensionless form, we apply
the following transformations:

= (Ufn)Palm DR 2y ¢ =1 - exp(~Upt/x),
t' =Upt/z, u=1vy, v=—%,, Hi=¢y, Hy=—¢z,
Y(z,y,t) = (Un)22tPD2 2 56 ), Ee = U?/[ep(Tuo ~ Too)),
(29)  ¢(z,y,t) = (Hw/U)/2 02 e12(¢ ),
T(z,y,t) = Too + (Tw = Te0)0(&,m), S = poH?/(eU?),
T~ = g = T8 A=v/ay, a; = (poo) ™2,
u=Uz"f'(§n), Hi=Hz"g(n),
B =2m/(m+1), m> -1,
to Egs. (2.1) - (2.5) and we find that Eqgs. (2.1) and (2.2) are identically satisfied
and Egs. (2.3) - (2.5) reduce to
(210)  f"427 M (m+1)E+ (1 -m)(1 - &) (1 - )] ff”
+mE(L = f7) + 27 "n(1 = ) F" + (1 - m)é(1 — €) In(1 ~ €) f"(Df /%)
—EmS(1—g¢*) =27 [(m+ 1)+ (1 —m)(1 — €)In(1 - £)] Sgg”
= {1-¢[1+1- )1n(1— )f'1(9f'/0€)
+ S(1—-m)é(1 —€)In(1 - €)g'(8g' /9€),
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(2.11) A" 27 mADE(fg" — fg)+2 7 H(1-m)(1-¢)]
2711 = &)ng" + (1 - m)&(1 — &) In(1 — £)g"(9f /B€)
— (L —=m)é(1 =€) In(1 - £)f"(9g/0¢)
= £1-¢&)[1+ (1 -m)ln(1l—¢€)f'] 9g'/0¢
— (1 -m)é(1 - &) In(1 - €)g'(8f'/9¢€),

(2.12)  Prlg" 4+ 27 [(m + 1) + (1 —m)(1 — &) In(1 - €)] £6'
—2mSf'0+ 271 (1= )’ + (1 — m)E(1 — €) In(1 — £)6'(f /9€)
+ B [(f")? + (S/M(g")] = €0 - ) [1+ (1 = m) In(1 - £)/"] (96/95).

The boundary conditions are given by

f(f,o) = f’(fvo) = g(f’ﬂ) = 9”(6‘10) =0, 9(6’0) =1,
f’(f,OO) = g’(g,OO) =1, 9(5,00) = 0

Here ¢ and 7 are the transformed and dimensionless independent variables; t*
1s the dimensionless time; ¥ and ¢ are the dimensional fluid and magnetic stream
functions, respectively; f' is the dimensionless velocity; ¢' is the dimensionless
component of the induced magnetic field; f and g are the dimensionless fluid and
magnetic stream functions, respectively; 6 is the dimensionless temperature; S is
the dimensionless magnetic parameter; 3 is the pressure gradient parameter; Ec
is the Eckert number; o is the electrical conductivity; A is the magnetic Prandtl
number; T, is the value of Ty, at x = 0; and prime denotes derivative with
respect to n.

Equations (2.11) —(2.13) are partial differential equations, but for £ = 0 and
¢ = 1 they reduce to ordinary differential equations. For £ = 0, the equations are

)In(1-&)(fg"— f"9)
)
)

:/‘n-h‘v

(2.13)

(214) fll! + 2 T’flf = 0
(2.15) Alg" +27ng" =0,
(2.16) Pr1e" + 2708’ + Be [(f) + (S/M)(g") =0

For £ = 1, the equations are given by
(217) " 4+2 Y m A+ 1)f " +m(1 - f7) - mS(1 - ¢”°)
- 271 m+1)Sgg" =0,
(2.18) /\_igm + 271(771 4 1)(fgll fHQ) — 0
(2.19)  Pr 0" +2 1 (m + 1)f0' — 2mf'8 + Ec [(f” +(S/N)(g") }
The boundary conditions for (2.14) - (2.19) are expressed as
0) = f'(0) = ¢(0) = ¢"(0) =0, 6(0) = 1,
(2.20) /f( ) f,( ) =9(0) =g7(0) (0)
fl(0) = g'(c0) =1,  6(c0) =0.
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It may be remarked that Eq.(2.10) for S = 0 reduces to that of WILLIAMS
and RHYNE [13]. Equations (2.10) and (2.11) for m = 0 are essentally the
same as those of INGHAM [14]. Also, Eq.(2.10) for m = S = 0 is tae same
as that of HALL [6], DENNIS [7], WATKINS [9], INGHAM [10] and TAD20S and
KIRKHOPE [11]. When ¢ = 1, the self-similar equations (2.17) and (2.18 are the
same as those of NATH [16] if we apply the following transformations

-8,  f)=@2-P"hm), B<2
2-/)"2q(m),  B=2m/(m+]1).

n
(2.21)
g(n)
Also, for S = Ec = 0 and for constant wall temperature case (the term mf'0 =

0), Egs.(2.17) and (2.19) reduce to those of WATANABE [17] if we apply the
transformations

n=12/(m+ 1), f(n)=12/(m+ D" fi(m),
0(n) = 61(m)-

Il

(2.22)

3. Analytical solution

Equations (2.14) — (2.16) under boundary conditions (2.20) admit cloed-form
solution. The solution of Eq. (2.14) under conditions (2.20) is expressed as

(3.1) f=mnerf (7/2) + (1) /2 [exp(~1/4) — 1],

hence

(35)  f=erf(n/2), f'=(m) " exp(—n*/4),  f"(0)=(m)/2
Equation (2.15) is integrated once to yield the equation

(3.3) X lg"+27ing' —271g =0,

where the constant of integration is zero by virtue of the conditions g(0) =
¢"(0) = 0. Equation (2.22) under conditions (2.20) has the solution of the

form [14]:

(3.4) g=1.

Equation (2.16) under conditions (2.20) for Pr = 1 yields the followng solu-
tion:

(3.5) 0 = erfc (n/2) + (Ec/2) exf (n/2) erfc (n/2).
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Hence
(3.6) 8 = —Ec (r) "2 exp(—n?/4) erf (n/2) + () "V2(Ec — 1) exp(—n?/4),
(3.7) 6'(0) = (27'Ec — 1)(m) " 1/2.

Also, Eq.(2.16) under conditions (2.20) for Ec = 0 has the solution of the
form (3.7)

(3.8) 6 = erfc (Pr'/?y/2).
Hence
(3.9) 9 = —(Pr/n)? exp(—Prn?/4),  6'(0) = —(Pr/m)Y/2.

4. Numerical solution

It may be noted that Egs.(2.10) and (2.11) are coupled nonlinear partial
differential equations of parabolic type, whereas Eq. (2.12) is an uncoupled linear
parabolic partial differential equation. Equations (2.10) —(2.12) under boundary
conditions (2.13) and initial conditions (2.14) - (2.16) can be solved numerically.
Equations (2.10) - (2.12) can be rewritten as

02w, oW, W, AL IWy
(4.1) 8772 + ay o + as Wi + a3 —an + agWy + a5 = ag—— D¢ +ar—— af
0*Ws oW, oW, OWs oW,
2 -1 -
(4.2) ’)\ o2 + ay an + ag an ag ¢ + ag B '
dW- 171%% oW
(4.3) Prl=2 +ap—— +awoWs + auWi + a1sWe = ag——,
an? an ¢
where

= f'=2aflan, Wa=g =0dg/0n, W3=86,
ar = [27Mm + 1)E + 271 - m)(1 - €)In(1 - §)] f
+27 (1 = &) + (1 = m)E(1 - €) In(1 — £)(8f/9¢),
ay = —mEf’,
as = = 2711+ m)¢+27 (1 - m)(1 - &) In(1 - €)] g,
aqg = EmSyq', as = mé(1 —£),
(44) as=E1-6[1+(1-m)in(l-&)f],
a7 = S(1—m)&(1 — &) In(1 - €)g’,
as = — [27m+ DE+27 (1 - m)(1 - )1 - )] g
—(1 - m)é(1 — €) In(1 — £)(09/3¢),

ag = —(1 —m)&(1 — &) In(1 - &)¢’
app = —2mSf’, a11 = Ec f", a1z = Ec(S/A)g"
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The boundary conditions (2.20) can be expressed as

Wi(,0) = f(£,0) = W3(£,0) = g(£,0) =0,  W;3(£,0) =1,

(45)
Wl(f,OO) = W2(§1OO) = 11 W3(§’OO) =0.

It may be remarked that ag which is the coefficient of dW;/9¢, i = 1,2,3
in Egs. (4.1) - (4.3) will be positive when £ < 1 —exp[(m — 1)7'] as f' > 0
(0 < f<1)in (0 < n < 7). However ag becomes negative for some 7 when
¢ > 1—exp[(m—1)"']. When ag is positive, Eqgs. (4.1) - (4.3) are parabolic partial
differential equations and well-posed. Equations (4.1) - (4.3) under initial condi-
tions given by Egs. (2.14) - (2.16) and boundary conditions (4.5) can be solved
by using an implicit finite-difference scheme. When ag < 0, the problem is no
longer well-posed and the forward integration method fails [13]. Such equations
are called singular parabolic partial differential equations [10]. Physically, the
change in the sign of ag is attributed to the change in the direction of flow of
information as explained in [13].

In order to overcome the difficulty mentioned above, in the finite-difference
scheme we have used either forward or backward differences in £ direction consis-
tent with the direction of the flow of information. In the n direction, we have used
the central difference scheme. This solution technique is based on the technique
used by CARTER [18] and the detailed description of this technique is given by
WiLLIAMS and RHYNE [13]. Hence it is not presented here. Figure 2 shows the
computational region and the behaviour of the coefficient ag.

Neo a2
8
= =
2 2
El e
—_— O
E 36 > O a
n 8 &
& 8
= ag = “2
-':—,0 i
=
& G
0 =
0 £ 1 - exp[-(1-m)-'] 1.0

F1G. 2. Schematic representation of computational region.

We have also studied the effect of step sizes Ay and A¢ and the edge of the
boundary layer represented by 1. on the solution in order to optimize them.
Consequently, the step sizes An = 0.05, A¢ = 0.01 and 7o, = 10 have been used
for the computation.
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5. Results and discussion

In order to verify the analysis and to check the accuracy of the present method,
we have compared our dimensionless surface shear stress parameter (f”(£,0))
for S = 0 (no magnetic field) with that of WILLIAMS and RHYNE [13] and for
S =m = 0 (flat plate case without magnetic field) with that of HALL [6], DEN-
NIS [7], WATKINS [9], INGHAM [10], TADROS and KIRKHOPE [11] and WILLIAMS
and RHYNE [13]. Also, we have compared our dimensionless surface shear stress
parameter (f"(t*,0)) and the z-component of the induced magnetic field on the
surface (g'(t*,0)) for m = 0 (flat plate case) with those of INGHAM [14]. For
¢ = 1, we have compared the surface shear stress (f”(0)) and the z-component
of the induced magnetic field (¢'(0)) with those of NATH [16]. For £ =1, S =0,
Pr = 0.73 we have compared the surface shear stress (f”(0)) and the surface heat
transfer (—6'(0)) with those of WATANABE [17]. In all the cases the results are
found to be in excellent agreement. Hence for the sake of brevity, the compari-
son 1s not shown here. It may be noted that for direct comparison with NATH
[16] we have to multiply the shear stress parameter f"(0) by (2 — 3)'/? where
B =2m/(m + 1) and with WATANABE [17], we have to multiply f”(0) and 6'(0)
by [2/(m + 1)]V/2.

We have obtained the solution of (4.1) - (4.3) for the pressure gradient par-
ameter m(3) in the range m; < m < 1 (#; < 3 < 1) and for several values of
the magnetic parameter S (0.125 < S < 0.75).

The solution for m = 1 (8 = 1) is of interest because for this case ag, which
is the coefficient of dW;/9¢, i = 1,2,3, in (4.1) - (4.3), is positive for all £ < 1.
In this case, it takes an infinite time for a signal from the line z = 0 to reach
any point r downstream. The flow develops under the influence of the unsteady
acceleration, the viscous forces and magnetic field and the imposed pressure
gradient. This type of flow has been discussed in detail by STEWARTSON [19].

For m; < m < 1 (m; <0), ag changes sign between £ =0 and ¢ = 1 (Fig. 2).
The region where ag < 0 represents the region where the flow at a given = station
is affected by conditions at & = 0. The case m = m; (m; < 0) represents the
unsteady development of the incipient separation profile [13]. m; = —0.0842,
—0.0773, —0.0667 and —0.0508 for S = 0.125, 0.25, 0.50 and 0.75.

The variation of the surface shear stress (f"(£,0)), the 2 component of the
induced magnetic field at the surface (g'(£,0)) and the heat transfer at the sur-
face (—6'(¢,0)) with the dimensionless time ¢ for various values of the pressure
gradient parameter m and the magnetic parameter S are shown in Figs.3-8.
From the results it is evident that there is a smooth transition from the Rayleigh
solution at £ = 0 (i.e., at t* = 0) to the Falkner-Skan type of solution at { =1
(i.e., as t* — oo when the steady-state is reached). For the pressure gradient pa-
rameter m > my, which depends on the magnetic parameter S, the surface shear
stress (f"(£,0)) increases when ¢ increases from zero to 1, but for m < mg it
decreases. On the other hand, the z component of the induced magnetic field at
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F1G. 3. Variation of the surface shear stress f'(&,0) with £ for § = 0.125 &nd 0.25.
— §=0.125 —--—, § =0.25.
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g
F1G. 4. Variation of the surface shear stress f'(£,0) with £ for S = 0.5 ard 0.75.
— 8= 05 — ===, §=10.75

the wall (g'(£,0)) and the surface heat transfer (—8'(£,0)) decrease for all values
of m and S when ¢ increases from zero to 1 except for m = 1 and S < 0.125
when —6'(¢,0) slightly increases with €. For m =1, § = 0.5, Pr = 0.73 f"(&,0)
increases by about 68% when £ increases from zero to 1, but ¢'(§,0) and —€'(&,0)
decrease by about 28% and 21%, respectively. For m = 0.3333 f"(&,0), ¢'(£,0)
and —€'(¢,0) decrease, respectively, by about 2.3%, 41% and 40% as { increases
from zero to 1. Also for all £, the shear stress, the # component of the induced
magnetic field and the heat transfer (f”(£,0), ¢'(£,0), —6'(£,0)) deaeases as
the magnetic parameter S increases. For example, when § = 0.5, m = 0.3333,
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F1a. 5. Variation of the z-component of the induced magnetic field ¢'(£,0) with & for
S =0.125 and 0.25. —, §=0.125; - - --, § =0.25.
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F1G. 6. Variation of the z-component of the induced magnetic field ¢'(£,0) with & for
§=0.5and0.75. —, 5=05; ----, 5 =0.75.

Pr = 0.73, f"(£,0), ¢'(£,0) and —6'(£,0) decrease by about 29%, 17% and 22%,
respectively, as S increases from 0.125 to 0.75. For a given value of £ (£ > 0), S
and Pr, f"(£,0), ¢’(£,0) and —6'(£,0) decreases as the pressure gradient parame-
ter m decreases from 1 to —0.0408. The percentage reduction in f"(£,0), ¢'(&,0)
and —¢'(€,0) for ¢ = S = 0.5, Pr = 0.73 is about 54, 14 and 21, respectively,
as m decreases from 1 to —0.0408. Finally it may be remarked that the effect
of variation of m or S on f"(£,0), g'(¢,0) and —8'(¢,0) is most pronounced for
¢ =1 (i.e., when the steady state is attained).
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F1G. 7. Variation of the heat transfer parameter at the surface —6'(¢,0) with ¢ for
S =0.125 and 0.25, Pr = 0.73, Ec = 0.1. ——, § =0.125; — — — -, § = 0.25.
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F1G. 8. Variation of the heat transfer parameter at the surface —'(£,0) with ¢ for
S=0.5and 0.75, Pr=0.73, Ec=01. —, §=05;, ——--,5=0.75.

The physical problem considered here depends on the magnetic field H, elec-
trical conductivity ¢ and thermal diffusivity a. These parameters enter the
dimensionless equations (2.10) - (2.12) as magnetic parameter a (which is the
square of the ratio of the Alfven speed to the free stream velocity), magnetic
Prandt]l number o (which is the ratio of the viscous to magnetic diffusivities),
and the fluid Prandtl number Pr (which is the ratio of the kinematic viscosity to
the thermal diffusivity), respectively. Here, we qualitatively discuss the effects of
these parameters (S, A, Pr) on our problem.
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At the start of the motion (i.e., at £ = 0), the flow is independent of the
magnetic parameter S and the magnetic Prandtl number A, and the effect of these
parameters increases with £. For fixed values of A and Pr, the viscous, magnetic
and thermal boundary layers continue to thicken and the surface shear stress
(f"(€,0)), z-component of the induced magnetic field on the surface (g'(¢,0))
and the surface heat transfer (—6'(£,0)) decrease as the magnetic parameter
S increases until at S = 1 the entire flow is plugged (i.e., f,g,6 all tend to
zero as S — 1). This is due to the induced current which produces a magnetic
counter-field that annuls the entire flow field. Similar trend has been observed
by GLAUERT [20], TAN and WANG [21] and DAs [22] for the flat plate case.

The effect of the magnetic Prandtl number A\ on the flow field is significant.
For zero electrical conductivity A = 0 and the problem reduces to the classical
boundary layer case. For infinite electrical conductivity, A — oo. For this case
the magnetic lines of forces are frozen into the fluid and no interaction between
the magnetic field and flow field takes place. For small A, the viscous boundary
layer is much thinner than the magnetic boundary layer, and for large A it is
the other way around. The surface shear stress (f"”(&,0)), z-component of the
induced magnetic field (¢'(£,0)) at the surface and the surface heat transfer
(—6'(£,0)) decrease with increasing magnetic Prandtl number .

The fluid Prandtl number Pr affects only the thermal field. For small Pr
(Pr < 1), the thermal boundary layer is thicker than the viscous boundary layer,
and for large Pr (Pr > 1) the thermal boundary layer is much thinner than
the viscous boundary layer, consequently, the surface heat transfer (—6'(¢,0))
increases with Pr.

6. Conclusions

It is evident from the results that there is a smooth transition from the
Rayleigh solution at &€ = 0 (t* = 0) to the Falkner-Skan type of solution at
¢ =1 (t* = oo when the steady state is reached). The surface shear stress and
the surface heat transfer parameters increase or decrease with time when the
pressure gradient parameter is greater or less than a certain value. However,
the z-component of the induced magnetic field at the surface decreases as time
increases whatever may be the value of the pressure gradient parameter. The
surface shear stress, the z-component of the induced magnetic field at the sur-
face and the surface heat transfer decrease as the pressure gradient parameter
decreases or the magnetic parameter or the magnetic Prandtl number increases.
However, the effect is more pronounced for large times.
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Scope of the Workshop

The aim of the meeting is evaluation of needs and potential applications of smart
structure concept in mechanical and civil engineering i.e. determination of regional (Cen-
tral/East Europe, European Union, USA&Canada) priority problems, transfer of tech-
nology & information between the regions, between Academia and Industry and between
researchers from different scientific areas. Multi-disciplinary interaction of topics like:
active and hybrid control of structures, vibration isolation, sensors, actuators, smart
materials, structural identification and damage monitoring in mechanical and civil en-
gineering applications will be discussed.

Scientific Program

e The following Key Lectures given by members of the ARW Scientific Committee
will be presented:

P. Ballardini, ISMES, Bergamo, Italy — to be announced

Ken P. Chong, NSF, U.S.A. — Smart Structures Research in the U.S.

P. Destuynder, St.Cyr L'Ecole, France — On the Application of Piezo-electric Devices
for Improving the Aerodynamic Properties of an Aurfoil

G. Farkas, Technical University of Budapest, Hungary — Supervision, Maintenance
and Renovation of Reinforced and Prestressed Bridges

J. Holnicki-Szulc, IFTR, Warsaw, Poland - Adaptive Structures

A. Jarosevic, Comenius University, Bratislava, Slovakia — Magnetoelastic Method of
Stress Measurement in Steel

L. Jezequel, Ecol Central de Lyon, Ecully, France - to be announced

G.C. Lee, State University of New York at Buffalo, U.S.A. — Development of a Bridge
Monitoring System

J. Rodellar, Universitat Politechnica de Catalunya, Barcelona, Spain — Control The-
ory Sources in Actwe Control of Structures

T.T. Soong, State University of New York at Buffalo, U.S.A. — Full-scale Structural
Applications of Intelligent Protective Systems in North America

Ming L. Wang, University of Illinois at Chicago, U.S.A. — Advanced Monitoring
System for Large Structures

e Sessions with oral presentations selected from the Call for Papers

e and Panel Discussions will be organized.

Official Language

English will be used for lectures, presentations and publishing proceedings.
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Location

The Workshop will be held in the Conference Center in Pultusk (historical castle
in the vicinity of Warsaw) with transportation arranged directly from the international
Warsaw airport and also from the center of the city. Accompanying guest program
(tourist trips, tennis courts, horse riding, rowing boats) is being planned.

Proceedings

Presentations at the Workshop are expected to be accompanied by a full paper which
will be due in camera-ready format at the Workshop days. These papers will be reviewed
and those accepted will be included, together with conclusions from panel discussions
in the Proceedings published in the NATO Science Series. Further details regarding
submission of camera-ready papers will be provided with the notification of acceptance
for the Workshop. The extended version of selected papers will be published in the
Journal of Structural Control.

Registration

No registration fee is planned. Partial support for the living costs in Pultusk (includ-
ing banquet and social events) will be available.

Organizing Committee

Prof. J. Holnicki-Szulc ~ Co-Chairman, Institute of Fundamental Technological

Research
Prof. J. Rodellar Co-Chairman, Universitat Politecnica de Catalunya
Prof. G. Kawiecki * University of Tennessee
Mr. P. Kotakowski Secretary, Institute of Fundamental Technological Research

Collaborating Institutions

¢ NATO

¢ National Science Foundation, U.S.

e European Panel of the Association for the Control of Structures

e National Research Committee, Poland

e Institute of Fundamental Technological Research, Polish Academy of Sciences,
Warsaw

¢ Applied Research Group — Epsilon Ltd., Poland

Address for Correspondence
Prof. Jan Holnicki-Szule, Smart Structures Group
Institute of Fundamental Technological Research, Polish Academy of Sciences
gwiqtokrzyska 21, 00-049 Warsaw, Poland
Fax: (48) 22 826 98 15
Tel: (48) 22 826 12 81 ext. 355
E-mail: smart98@Qippt.gov.pl

Information about the Workshop is also available through the Internet:
www.ippt.gov.pl/~pkolak/smart98.html

http://rcin.org.pl





