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Dynamics of turbulent helium 11, 
limits of the Vinen model 

T . LIPNIACKI (WARSZAWA) 

T HE DYNAM ICS of superfiuid helium is considered within the framework of the Vinen 
model. According to Vinen equation, counterfiow (the relative velocity of the two 
helium components) gives rise to quantum turbulence. The mutual fr iction force , ex
erted on the vortex tangle by the normal component, couples it with the superfiuid 
component. The system of 3 ordinary equations is numerically solved to calculate 
the characteristic entrainment t ime in which the counterflow ceases. For t he typical 
velocities of order 1 cmjs, t he entrainment t ime is found to be much smaller than 
the vorticity diffusion time for the length scale of 1 cm. It suggests that in the typ
ical spin-up experiments the quantum turbulence plays a key role coupling t he two 
components. Unfortunately the Vinen model applied to spin-up turned out to be in
consistent; the vortex line density calcu lated from the superfluid component vorticity 
was found to be much larger than that predicted by t he Vinen equation. 

1. Introduction 

T HE LANDAU'S two-fluid theory [1] has proved to be indispensable for under
standing of the peculiar flow properties of 4He below the >.-point. In t he two-fluid 
theory He II (superfluid 4He) is a sum of the Bose condensate (superfluid com
ponent) and t he gas of thermal excitation (normal component). Densit ies of su
perfluid and normal components (25 , en respectively, are temperature-dependent 
and satisfy 

(1.1 ) e = en+ f2s, 

where e denotes the total mass density of the liquid. 
The theory was later improved by ONSAGER [2] and FEYNMAN [3] who 

found t hat Landau's assumption of rotationless flow of the superfluid compo
nent was violated on one-dimensional singularities called now quantum vortices. 
T he circulation of the superfluid velocity about these lines remains constant, 
"' = h/ mHe = 9.97 · 10- 4 cm2 /s, where h is Planck's constant, and mHe is the 
mass of helium atom. T he interact ion between the vor t ices and the elementary 
excitation couples the normal and superfluid components. Within the limits of 
that de facto three-fluid theory, two main models were proposed: 

1) the VINEN model [4] which describes helium in the state of a superfluid 
turbulence, when the quantum vortices form an irregular tangle, and 

2) the Hall - Vinen - Bekarevich - Khalatnikov [5] (HVBK) model concerning 
the case when moving vortices form a regular pattern of parallel orientation 
(superfl.uid laminar flow). 
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When the magnitude of relative velocity Vns = IVn- Vs I gets sufficiently large, 
superfluid laminar flow develops into superfluid turbulent flow. It significantly 
restricts the usage of the HVBK model. 

The easiest way of generating a sizable Vns is to seal one end of the channel 
and place a heater there. The normal fluid produced by the heater flows out of the 
channel with an average velocity V,1 proportional to the heat input to the channel. 
The normal fluid moving away from the heater is replaced by a superfluid flowing 
in the opposite direction, the superfluid velocity Vs being determined by the 
condition of zero mass transport es Vs +en Vn = 0. 

Because there is a variety of observations on superfluid turbulence caused by 
heat flows in a counterflow channel, the Vinen model has been usually connected 
with the problems of the heat t ransport. In fact not only the heat transfer may 
cause the counterflow. 

For example the viscous forces in a rotating cylinder or a moving channel may 
give rise to the difference in the components velocities. The calculations show 
that even the relative velocity of order 1 cm/s may cause the quantum turbulence 
strong enough to influence the dynamics of the two components. 

To study this problem in more detail, we recall basic facts of the Vinen model 
according to the approach developed by SCHWARZ [6, 7]. We use the modified 
vortex-line-length density Lm 

(1.2) 

where L is the total line-length density (i.e. the length of vortices per unit of vol
ume) . (!

11
- C£11) is a coefficient describing vortex tangle anisotropy and is equal 

to 2/3 for isotropic tangle. The modified density was introduced by Schwarz as 
a quantity which can be directly measured in thermal-counterfl.ow experiments. 

The time evolut ion of the modified vortex-line-length density is governed by 
Vinen-type equation 

(1.3) dLm = I (v. £3/2 _ _f!_L2) 
dt a lm ns m m ' 

C£m 

where Itm, CLm are temperature-dependent dimensionless coefficients, a is the 
friction coefficient, and {3 is defined by 

(1.4) {3 = ~ ln ( c ) 
471' ao < s" > 

where "' is the quantum of circulation, c is a constant of order one, < s" > 
is the average curvature of the vortices in the tangle and ao := 1.3 ·10- 8 cm is 
the effective core radius of a quantized vortex. Although {3 has the logarithmic 
dependence on the tangle density s ince < s" > increases as the tangle density in
creases, it can usually be treated as a constant. For the typical tangle densities we 
can replace everywhere {3 by "-· T he values of the dimensionless parameters used 
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in that paper, based on numerical simulations by ScHWARZ [6] (from G EURST 

and B EELEN [8]), are presented in the Table 1. T he t hermal excitation (phonons 
and rotons) exerts the force on the quantized vortices of a vortex tangle, what 
gives rise to the friction force between t he two components. The density of t hat 
force is F ns 

(1.5) 

Table 1. Values of dimensionless parameters [8] and kinematic viscosity Vn [cm2 /s] . 

Temp. 1.07 1.26 1.62 2.01 2. 15 

l2n/e 0.013 0. 039 0.174 0.576 0.886 

a 0.010 0.030 0.100 0.300 1.00 

111 - cL I 1 0.70 0.72 0.71 0. 77 0.85 

l lm 0.51 0.52 0.54 0. 52 0.39 

CL m 0.031 0.062 0.11 0.19 0.26 

CJ 0.061 0. 12 0.20 0.36 0.67 

Vn 1.5 . 10- 2 3.0 . 10- 3 5.1. 10- 4 1.8. 10- 4 1.7. 10- 4 

In incompressible approximation div Vn = div Vs = 0, t he dynamical equa
tions are [9] 

(1.6) 

where 

(1.7) p Qnf..L 
Pn= ---

Qn Qs 

and p , vn, f..L are pressure, kinematic viscosity of the normal component and 
chemical potent ial, correspondingly. 

We illustrate t he applications of Vinen model solving 3 simple problems. 

2. Thermal-counterflow 

The switched on heater power gives rise to a counterflow of the prescribed 
velocity Vns (the inert ia forces a re neglected). According to Eq. (1.3), the coun
terflow makes the vortex line-length density to start growing from the initial 
value L 0 to the asymptotic one L f 

(2.1) LJ = c~m r v;s. 
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Then at the given time, the heater power is switched off (Vns = 0) and the vortex 
line-length density sharply decreases. The solution Lm(t ) to equation (1.3 ) is 
shown in the Fig. 1. The characteristic tangle production time Tprod in which the 
vortex line-density reaches half of its asymptotic value is 

(2.2) Tprod = 

L tf2 

I dl 

( £ 3/ 2 K. 2 ) Lo o11m Vns m - --Lm 
C£m 

2 

12.0 
,....,. 
~ 
8 
0 

M 8.0 
0 ...... 

E 
--l 

4.0 

Time [s] 

FIG . 1. Rise and decrease of vortex tangle density. At the time t = 0 heater power is 
switched on causing the thermal-counterflow of value 1 cmj s, then at the time t = 8 s 

heater power is switched off and the vortex line-length density sharply decreases. 
Temp. = 1.62° K. 

The tangle production time is inversely proportional to the root of the ini tial 
vortex line-density, which can be small if the helium was left in peace for a 
long time, but even after very long time some remnant vort ices are present. The 
minimum line-density observed value was 10 cm- 2 , while the typical value for 
the superfluid turbulence is 103 "' 107 [cm- 2] . 

3. Entrainment Problem (1) 

Here we restrict ourselves to the case in which the component velocities and 
the line-length density are only time-dependent. Let us assume that in the ini
tial state the normal component is moving with the uniform velocity Vo , while 
the superfluid component remains at rest. The initial line-length density Lo is 
assumed to be small when compared to the asymptotic value Lt for the steady 
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counterftow Vns = Vo. The system is described by the set of 3 ordinary equations 

dVn {?5 KaLm(Vn- Vs) 

dt l?n 

(3.1) 
dVs dt = KaLm(Vn- V5 ), 

dLm _ ( 3/2 K 2 ) -d- - altm IVn - VsiLm - - Lm . 
t CLm 

To rewrite t he equations in t he dimensionless form we introduce new variables 

(3.2) Vn 
Vn = Vo, 

where Lt is the asymptotic value for the steady counterftow Vns = Vo g1ven 
in Eq. (2. 1). 

Then we have 

dvn 1 l(vn - Vs)Os 
= 

dt Tns On 
dv5 1 
-d = r:y:;-Lm(Vn- Vs), 

t .J.ns 
(3.3) 

dl = _!_z3/2 (lv - v I - z1 /2) 
dt Tt n s ' 

where Tns, Tt are the characteristic times defined as follows: 

(3.4) 
rp - 1 -2 v;-2 
.J. ns = Ka C Lm 0 > 

rp - 1 - 1 v;- 21 
.J.I = Ka C Lm 0 I m · 

T1 is the characteristic time scale of line density changes (when the density is of 
order L 1) and should not be confused with Tprod which is the time scale for the 
line-length density growth from a small initial value. 

Introducing the new time r = t/Tt we obtain 

dvn l(vn - Vs)Os 
- = -CJ 
dr On 

(3.5) 
dv5 d; = ql(vn- Vs), 

:! = [3
/
2 (lvn - Vsl-11

/
2
), 

where 

Tz CLm 
CJ = - = --

Tns Izm 
(3.6) 

is the dimensionless temperature-dependent parameter. 
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The problem can be fur ther reduced to the set of two equations 

(3.7) 

with Vns = Vn- V8 and C = CJ( Qn + Q8 ) / Qn · Multiplying Eq. (3.7)1 by Vns one 
can see that v~s is not growing, so Vns may not change the sign. It is enough to 
consider the case Vns 2: 0 since the case Vns ::; 0 is identical. The points (l = 0, 
Vns - arbitrary) are invariant points to t he set of Eq. (3. 7). Although the case 
l = 0 is unphysical since some remnant vortices are always present , it may be still 
interesting to see if the manifold l = 0 is stable. Since dl / dT > 0 for 0 < l < v~8 
all the points (l = 0, Vns > 0) are unstable. The point (l = 0, Vns = 0) is stable, 
moreover all trajectories starting from points (l j. 0) tend to it. To prove the 
last fact it is enough to solve the following equations re_sult ing from Eq. (3. 7) 

(3.8) _!!!__ = K (-l- -zl/2) , 
dVns Vns 

with K = 1/ C . Its solution is 

(3.9) l = ( )K Vns + C 
(

K ( )(1 - K/ 2) ) 
2 

Vns K _ 2 0 

Now from Eq. (3.7)1 we see that for positive l, Vns tends to zero, and from 
Eq. (3 .9) that l tends to zero with Vns tending to zero. The last solution can be 
put into Eq. (3.7)1 and then the equation is integrated. 

The solutions to Eqs. (3 .5) for 3 various temperatures and Vo = 1 cm / s, Lo = 
100 cm - 2 are presented in Figs. 2 - 4. One can see that due to the initial relative 
velocity, the vortex line-length density grows up. Then the friction force (Fns ) 

makes the relative velocity decrease and may not sustain the vortex tangle, so the 
vortex line density decreases. The characteristic time Tent in which the relative 
velocity Vns is reduced e t imes from its initial value to Vo / e, decreases with 
increasing temperature. It is also worth to notice that since 

(3.10) 

hence 

(3.11) 
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FIG. 2. Numerical solutions for the entrainment problem equations with the initial 
values Vo = 1 cm/s, £ 0 = lOO cm- 2 . Temp.= 1.26° K. 
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FIG. 4. Numerical solutions for the entrainment problem equations with the init ial 
values Vo = lcmjs, Lo = lOOcm-2 . Temp.= 2.01° K. 

4. Entrainment problem (2) 

Another interesting problem arises when the normal component velocity V5 is 
fixed in time (for example by strong viscous forces) . Then the problem reduces 
to the set of two equations 

dv5 -;;;;: = CJl(1 - V 5 ), 

:~ = z3/2 (11 - Vsl - zl/2). 
(4.1) 

Putting Vns = 1- v 5 we get the same equations as (3.7) but with C =Cf. Now, 
for the same temperature the entrainment time (Tend is longer. The difference 
between Tent and Tent is especially great for low temperatures when f2s » f2n · 

The solution to Eqs. ( 4.1) is given in Fig. 5, while Table 2 presents times Tent and 
Tent, and gives values of L f for the thermal-counterfiow problem. 
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FIG. 5. Numerical solutions for the entrainment problem (2) equations with the initial 
values V0 = l cm/s, L0 = lOOcm- 2 . Temp = 1.62° K. 

When considering the hydrodynamics of superfluid helium it is important to 
compare the entrainment times Tent and Tent with the characteristic vorticity 
diffusion time scale 

(4.2) 

where Vn = 1Jn / f2n is the viscosity of the normal component and Ro is the charac
teristic length . In Table 2 the entrainment and the diffusion characteristic time 
scales are compared for various temperatures. When the characteristic relative 
velocity Vns = 1 cm/ sand the characteristic size of a helium container Ro = 1 cm, 
the diffusion time is much longer t han the entrainment time, especially in a higher 
temperature. Whereas in very low temperatures, when the normal component is 
less abundant but more viscous , the two time scales are comparable. 

For higher velocities and larger containers the Td / Tent ratio is even greater . 
It means that in the larger scale motions, helium II will behave almost like a 
classical fluid with the overall viscosity v = 1Jn / (2 . In the finer scale however , 
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Table 2. Characteristic times [s] (T ent and T ent - numerical results 
for La = 100 cm- 2

) and the asymptotic line density [cm- 2 ] . 

All values are given for Vo, Vns = 1 cm/s, w = 1/ s, Ro = 1 cm, 
while appropriate scaling is given in last column. 

Temp. 1.07 1.26 1.62 2.01 

T ent 11.5 8.0 4.3 1.60 -
T ent 310 35 6.3 1.70 

T, 6.4 1.04 0.17 0.034 

Tns 104 8.8 0.84 0.092 

T prod 39 12.8 3.7 1.28 

Td 67 330 1960 5550 
-
Td 5150 8540 11260 9640 

q 0.64 37.8 530 4340 

2. 15 

0.63 

0.63 

0.010 

0.015 

0.51 

5880 

6640 

11530 

L! 9.5 . 102 3.7 . 103 1.2 . 104 3.6 . 104 6.8. 104 

T . LIPN IACKI 

scaling 

,...., v - 2 

,...., v-2 
,...., v - 2 

,...., v - 2 

,...., v - 1 
,...., R2 

,...., R2 

,...., R4w2 

,...., v 2 

when the diffusion time is shorter and the smaller velocity may not susta in the 
quantum turbulence, the two components may move separa tely. 

To see the problem in more detail we analyse the spin-up process focusing on 
the intermedia te scale V rv 1 cm js, R rv 1 cm. In the finer scale the Vinen (and 
any other continuum model) cannot be applied , just because few vortices are 
expected , and the spacing between the vortices is comparable with the length 
scale. 

5. Analysis of the spin-up in an infinitely long cylinder 

We consider here the problem of a spin-up in an infinitely long circular cylin
der being impulsively subjected to spinning about its axis of rotation. T he case 
of a finite cylinder is much more complicated because usually the spin-up pro
cess is dominated by a secondary flow which t ransports the vorticity from t he 
boundaries to the center of the cylinder. The secondary flow arises because the 
fluid at the cylinder ends rotat es with the velocity of the wall, and therefore is 
subject to centrifugal forces which drive it outwards. 

In an infinitely long cylinder , the velocity is purely azimuthal and the spin-up 
of a classical fluid is described by linear equation 

(5.1) 

where v is the kinematic viscosity. 
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In our case of two fluids , the component velocities Vn(r, t ), V5 (r, t) and line 
length-density Lm(r, t) satisfy the set of 3 differential equations 

dVn _ LlV: _ l?sK:O'Lm(Vn - Vs) 
dt 

- 1/n n , 
l?n 

(5.2) 
dVs dt = K:O'Lm(Vn- V5 ) , 

dLm _ ( 3/ 2 11: 2 ) -d- - a ilm IVn- VsiLm - -Lm , 
t 4m 

where 

(5.3) LlV: = a2
Vn !_ (Vn) 

n a 2 + a , r r r 

and Vn = rJn / l?n is the kinematic viscosity of the normal component. Let us 
assume that at time t = 0 the cylinder of radius Ro starts to spin about its axis 
of symmetry with the constant angular velocity w. The corresponding initial and 
boundary condit ions are 

(5.4) 

Vn(r, 0) = 0, Vn(Ro, t ) = w 

V5 (r, 0) = 0 

Lm(r, 0) = Lo 

for r < Ro , t > 0, 

for r :::; Ro , 
for r :::; Ro. 

Again, to rewrite the equations in the dimensionless form we introduce the 
new variables 

(5.5) 
Vn 

Vn = Vo, 
L m 

l =-, 
Lt 

where Vo 
Vns = Vo 

wR0 and L 1 is the asymptotic value for the steady counterflow 

(5 .6) 

Then we have 

dvn = Vn L1Vn - _1_ l(vn- Vs)l?s , 
dt Tns l?n 
dv5 1 
-d = -l(vn- V 5 ), 

t Tns 
(5. 7) 

dl = 2._z3/2 (lv - v I - zl /2) 
dt Tl n 5 

' 

where Tns, Tl are the characteristic times defined as earlier (3.4). Now, let 
~ = r / Ro . 
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Introducing the new time variable r = t /Td , where 

(5.8) 

is the characteristic diffusion time scale, we obtain 

(5.9) 

where 

(5.10) 

and 

(5.11) 
Tt C£m 

CJ = - = -
Tns ltm 

is defined as before. 
We should notice that while c1 depends on temperature only, parameter q 

depends on the "experimental conditions" i.e. on the angular velocity and the 
radius of the cylinder. 

When q » 1 i.e. when there is a strong coupling between the components, 
the fluid behaves like a classical one sat isfying Eq. (5.1) with the overall viscosity 
v = Tin / (2. The velocity profile for t he classical fluid with the viscosity equal 
to the overall helium viscosity at T = 1.62° K are reproduced as a reference in 
Fig. 6. 

The numerical solutions to the set of Eqs. (5.9) obtained for Ro = 1 cm, 
w = 1/s for 3 various temperatures are presented in Figs. 7 - 10. 

Figures 7 - 9 a , b show the velocity profiles of the normal and superfl.uid com
ponents for various temperatures. The line-length density profiles are given in 
Fig. 10. Figures 7 - 9 c show the scaled angular momentum mn, m 5 of the two 
components as a function of time. 

(5.12) 
Ms 

m s= M , 
S f 
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0.4 

0 .2 
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0.0 0. 2 0.4 0.6 0.8 1.0 

r/Ro 

FIG. 6. Evolut ion of velocity profiles. Classical fluid with viscosity equal to overall 
viscosity of helium II at 1.62° K. 

where the index f means the assymptotic value. Figures 7- 9 d compare the t ime 
evolutions of the total angular momentum for t he superfluid and t he classical 
fluid having the same overall viscosity. One can see that for higher temperatures, 
the total angular momentum of the fluid grows almost as fast as in t he classical 
case. 

Table 3. Values of spin-up time T spin for heliwn 11 and 
for classical fluid Tspin with the same overall viscosity. 
Tn and T. are spin-up times for normal and superfluid 
components, r espectively. 

Temp. 1.26 1.62 2.01 

T spin 450s 590 s 510s 
-

T sp in 820s 830s 480s 

T. 840 s 910s 720 s 

Tn 340s 510s 880s 

Let us define the spin-up time as a time in which the angular momentum of 
the fluid reaches 2/ 3 of its final value. Table 3 compares the spin-up time of the 
two component fluid with the spin-up time of the classical fluid with the same 
overall viscosity. The spin-up times of normal and superfluid components are 
also given for better reference. 
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6. Conclusions 

The presented mechanism of the spin-up process, based on the Vinen model, 
can be summed up as follows. When the cylinder starts moving, it drags the 
normal viscous component of helium II. Then according to Vinen equation (1.3), 
relative velocity of the two components gives rise to quantum t urbulence. The 
mutual frict ion force caused by the turbulence couples t he components, and 
the superfl.uid star ts spinning. After a sufficiently long t ime both components 
will rotate as a rigid body (with the same velocities) and t he turbulent vortex 
line-length density will decrease (according to Vinen equation) to zero. This 
cannot be of course satisfied , because t he spinning superfl.uid component has to 
contain vort ices. Their minimum length density £ 11 (in the case when they are 
parallel) is 

(6.1) 
w 

£ 11 = ~-

In the considered case the final value of £11 is 2000/cm2 Moreover one can see 
in Fig. 10 t hat the turbulent line-length density is much smaller than the "parallel 
vortex" line-length density calcula ted from superfluid velocity profiles. On the 
one hand, the large density of parallel vort ices is due to the fact t hat mutual 
friction force makes t he superfluid velocity profiles very steep. On the other hand , 
the Vinen equation (1.3) does not explain how such number of vortices may arise. 

It can be clearly seen now that the Vinen model (in the present shape) cannot 
describe the turbulent flow which arises in t he spinning cylinder. However , the 
first 3 examples show t hat the spin-up process is dominated by quickly arising 
t urbulence. It points t hat the more accurate model should be rather based on 
the Vinen model than on the HVBH one (the analysis of spin-up in the HBVK 
model may be found in [10]). 

T he modified model should be related to the following facts : 

1. The parallel vortices cannot decay unless the net superfl.uid vorticity change. 
Hence the second term in Vinen Equation has to be modified. The production 
of turbulent vortices due to t he counterfl.ow (first term in Vinen Equation) may 
be also influenced be an array of parallel vor tices. 

2. When the superfl.uid is dragged by normal component and starts spinning, 
t he "turbulent vortices" have to change into locally parallel vortices. T his means 
the negative source of turbulent vortices. 

3. The Magnus force acting on the vortex tangle wi th a net vorticity makes 
that the vortex tangle moves across t he counterfl.ow; in the considered case inward 
the cylinder. 

P inning is the other important fenomena which may significant ly influence the 
spin-up process. Quantum vortices pinned to the vessel boundaries may transfer 
the angular momentum direct ly from the cylinder to the superfl.uid component 
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(see [11]). This may be especially impor tant in low temperatures when the normal 
component is less abundant. 

Coming back to the entrainment and spin-up problem, we recall that the en
trainment time scale Tent "' V0-

2 , where Vo is characteristic counterfl.ow velocity. 
This means that in experiments with larger velocities, the dynamics of helium II 
should be closer to the dynamics of classical flu id with t he same overall viscosity. 
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Application of the Fourier cosine series 
to the approximation of solutions to initial 
non-Dirichlet boundary-value problems 

Z. TUREK (WARSZAWA) 

T HE PAPER deals with an application of the Fourier cosine series to the determination 
of an approximate solution to some one-dimensional initial boundary-value problems. 
With the new approach one can approximate solutions of many equations of engi
neering and physics, without solving the eigenvalue problems. It has been found out 
that the new method can successfully be used for linear partial differential equations 
with non-Dirichlet boundary conditions. The heat equation and the wave equation 
with constant coefficients have been solved using the method described. The solu
tions have been compared to those obtained by means of the method of seperation 
of variables. The numerical results show that the new solutions approximate well 
the classical solutions. For the heat equation, even the boundary conditions at the 
initial instant of time are satisfied. This does not occur, however , in the case of the 
wave equation, since the initial displacement of the rod does not satisfy prescribed 
boundary condit ions. 

1. Introduction 

THERE ARE some useful methods of solving linear initial boundary-value prob
lems of partial differential equations. One of them is the method of seperation of 
variables, called the Fourier method [1]. It consists first in finding solutions of the 
corresponding eigenvalue problem for functions of spatial variables and next, in 
solving the set of decoupled ordinary differential equations for funct ions of time 
variable only. Finally the solution to the boundary-value problem is represented 
by an infinite series of these functions. 

In [5] presenting the solution of the heat conduction equation it has been 
shown, that the solution to the problem can be represented , with an arbitrary 
accuracy, by the Fourier cosine series whose spatial components do not satisfy the 
boundary conditions given. In [6] the approach was applied to many other differ
ential equations, both ordinary and partial. Many initial and boundary-value 
problems of linear and nonlinear ordinary differential equations were solved . 
Many cases with variable parameters were treated with this method as well. 

In the present paper we prove that the Fourier cosine series is the "weak" 
solution to t he heat conduction problem and to the wave equation, which is 
the solution to the so-called Integro-Differential-Boundary Equations (IDBE) [5] 
derived for the corresponding equation. The Fourier coefficients are calculated 
from the corresponding Infinite Set of Ordinary Differential Equations (ISODE) 
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using the Runge- Kutta method. The way how to get the IDBE and ISODE is 
shown in Secs. 3 and 4 of the paper, as well as in [5, 6] . 

In this paper, using the Fourier cosine series we solve two initial boundary
value problems with non-Dirichlet boundary conditions without solving the eigen
value problems. The new approach has been applied to the equation describing 
t he heat conduction subject to non-Dirichlet boundary conditions, and for the 
wave equation describing the vibrations of a rod also subject to non-Dirichlet 
boundary conditions. Solving the corresponding ISODE truncated at Na = 10 
for t he heat equation and at N a = 15 for the wave equation, a satisfactory ap
proximation of the solutions obtained by means of the method of seperation of 
variables (called classical solutions) , truncated at Ne = 5 for the heat equation 
and at Ne = 10 for the wave equation, have been achieved. Analysis of the bound
ary conditions has shown that for the heat conduction equation with prescribed 
initial condition, the boundary conditions at t = 0 are satisfied with an error de
creasing as the number of components of the Fourier cosine series Na increases. 
Analysing the boundary conditions of the wave equation for a given initial dis
placement of the rod, we have derived formulas for the boundary conditions at 
t = 0. They are expressed as convergent series of the Fourier cosine coefficients 
ck(O) but they do not tend to zero , which means that the new method of solu
tion does not satisfy the prescribed boundary conditions at t = 0. The classical 
solution to the wave equation (derived by the method of separation of variables) 
is a generalized solution [2] and does not satisfy the prescribed boundary con
ditions either , since t he initial condition uo for the problem does not satisfy the 
boundary conditions given [2]. 

2. Description of the method 

Let us consider two second-order linear partial differential equations of the 
form: 

(2.1) 
au - P a2 u - R au - QU = o £ ( ) (o L) (o t ) 
8t 8x2 8x or X' t E ' X ' e ' 

82U - p82U - R8U - QU = 0 c ( ) (0 L ) (0 t ) 
8t2 8x2 8x LOr x' t E ' x ' e ' 

with the boundary conditions 

au 
aU + {3 Bx = 0 

au 
1 u + 6 ax = o 

for x = 0, 
(2.2) 

for x = L 

fort E [0, te), and the initial conditions 

au 
(2.3) U(x , 0) = uo(x) , a;(x, 0) = vo(x), for x E [0, L] . 
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P , Q, R in (2.1) are constants or functions oft only, a , (3, 1 and fJ in (2 .2) 
are constants and uo and vo in (2.3) are given functions of x E [0, L]. 

We assume that 

(2.4) (38 f:. 0. 

Let <Pn with n = 0, 1, 2, .. . , denote functions of one space variable which form an 
orthogonal set on .C2 [0, L] and let </J~ = -J.L;<Pn for each n, where the double prime 
denotes the second derivative. Upon multiplying (2.1) by <Pn and integrating over 
the interval (0, L), we see that 

di IL IL 82U IL 8U 
(2.5) dti U(x , t)<Pn(x) dx - P Bx2 (x , t)<Pn(x) dx - R Bx (x, t)f/Jn(x) dx 

0 0 0 

L 

- Q I U(x, t)<Pn(x) dx = 0, 
0 

where i = 1 corresponds to Eq. (2. 1)1 and i = 2 corresponds to Eq. (2. 1)2 . Putting 
the following 

L L 

I au \L I I Bx (x , t)f/Jn(x ) dx = <Pn(x)U(x, t) 
0 

- U(x, t)<Pn(x) dx , 
0 0 

L 

I a
2u au \L I \L Bx2 (x, t)f/Jn(x) dx = <Pn(x) Bx (x, t) 

0 
- <Pn(x)U(x, t) 

0 
0 

L 

-J.L~ I U(x, t)<Pn(x) dx 
0 

into (2.5) , we obtain the Integro-Differential-Boundary Equations [5] for the 
problems 

(2.6) 

. L L 

::i I U(x,t)f/Jn(x)dx + (PJ.l~ - Q) I U(x,t)f/Jn(x)dx 
0 0 

L 

+RI U(x, t)<jJ~(x) dx = Fn, 
0 

Fn := U(O, t) (P<P~(O) + (p~ - R) </Jn(O)) 

- U ( L, t) ( P </J~ ( L) + ( P J -R) <Pn ( L)) , n = 0, 1, 2, . . .. 
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On the right-hand side of Fn boundary conditions (2.2) have been taken into 
account. The functions Fn do not describe the case with Dirichlet boundary 
conditions. They are valid only for (38 =f. 0 (non-Dirichlet boundary conditions). 

3. "Weak" solutions to some boundary value problems 

Let us consider the IDBE (2.6) with R = 0 

di IL 2 IL dti U(x, t)cfJn(x)dx + (PJ.Ln - Q) U(x, t)cfJn(x) dx = Fn, 
0 0 

(3.1) Fn = U(O,t) (c/J~(O) + ~c/Jn(O)) P 

- U(L, t) ( cp~(L) + Jc/Jn(L)) P, n = 0, 1, 2, .. . , 

and introduce 

DEFINITION. A function 

u( · , ·) : [0, LJ x [0, te) ---+ R 

is a "weak" solution to the boundary-value problem (2.1)1 , (2.2) or (2.1)2, (2 .2) 
(for R = 0) with initial conditions (2.3)1 or (2.3) , respectively, if it satisfies the 
IDBE (3.1), that is the function u is a solution to 

. L L 

!!_,I u(x, t)c/Jn(x) dx + (P J.L~ - Q) I u(x , t)c/Jn(x) dx = Fn , 
dt' 

0 0 

(3.2) Fn = u(O, t) ( c/J~(O) + ~c/Jn(O)) P 

- u(L, t) ( cp~(L) + J c/Jn(L)) P, n = 0, 1, 2, .. . , 

with i = 1 for the heat equation and i = 2 for the wave equation. 

This definition differs from the definition known from the literature [3]; that 
is why we put it in quotes and name it "weak" . 

Now we shall prove the following 

PROPOSITION . The "weak" solution to the boundary-value problem (2.1)1 , 
(2.2) or (2.1)2 , (2.2) (for R = 0) with initial conditions (2.3)1 or (2.3), respect
ively, can be represented by the Fourier cosine series 

(3.3) U (X, t) "-' Co ~ t) + f Cn ( t) COS ( n; X) , 
n = l 

whose coefficients satisfy an Infinite Set of Ordinary Differential Equations 
(ISODE) : 
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~ 2 
dtiCn + (PJ.L~- Q)cn = LFn, 

(3.4) 
Fn = ( u(O, t)~ - u(L, t)J( -1t) P, 

L 

en(O) = ~ I uo(x) cos (n; x) dx 
0 

L 

cn(O) = ~I vo(x) cos (7 x) dx 
0 

n = 0, 1, 2, ... , 

where J.Ln = mriL. 

for i = 1, 2, 

for i = 2 only, 

639 

P r o o f. Let u(x, t ) represented by (3.3) be the solution to (3.2). For this 
representation, 4Yn = cos( mrx I L) for n = 0, 1, 2, ... , constitute the orthogonal 
bases in £ 2 [0, L], with J.Ln = mr I L and the Fourier cosine series coefficients of 
the solution (3.3) can be calculated from 

L 

(3.5) en(t) =~I u(x, t) cos (n; x) dx, n = 0, 1,2, .... 

0 

If we now multiply (3.2}1 by 21 L then we simply come to ISO DEs (3.4}1,2 for 
coefficients en . The initial conditions (3.4)3,4 for the ISODEs follow from (3.5). 

4. Main results 

We shall consider two initial boundary value problems with non-Dirichlet 
boundary conditions: 

• the heat conduction problem 

(4.1) for (x, t) E (0, L) x (0, te) 

with boundary conditions 

au- BiU = o for X= 0, 
(4.2) ax 

au + BiU = o for x=L 
8x 

for t E [0, te) , where Bi is the Biot number, 
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and the initial condition 

( 4.3) U(x, 0) = uo(x), for x E [0, L], 

and 

• the problem of vibration of a rod 

( 4.4) for (x, t) E (0, L ) x (0, te) 

with the boundary conditions 

( 4.5) 

au = 0 ax 
au 
8x + gU = 0 

fortE [0, te) , where g is constant, 
and the initial conditions 

for x = 0, 

for x = L 

(4.6) U(x , 0) = uo(x), 
au 
Bt(x , 0) = vo(x ), for x E [0, LJ . 

4.1. The heat conduction problem 

The corresponding ISODE for the problem is the following one: 

Z. T URBK 

ck + f.J-~Ck + 
2~i (coy) [1 + ( - 1)k] + f Cn(t)[1 + ( - 1)k( - lt]) = 0, 

(4.7) n = l 
L 

ck(O) = ~ J uo(x) cos ( ~ x) dx, k = 0, 1, 2, . . . . 
0 

The calculations were carried out for uo(x) = 1+sin[27r(x- L/ 4)/L], L = 1 with 
the Biot number Bi = 0.185. The solution 

N a 

( 4.8) Ua(x, t) ~ co(t) / 2 + L ck (t) cos(k1rx/ L ) 
k= l 

for Na = 10 and its spatial derivatives for Na = 30 evaluated for some time 
instants for every section of the layer , are presented in Figs. 1 and 2, respectively. 
The new results have been compared to the corresponding results of the classical 
solution 

00 

(4.9) Uc(x, t) = L ak exp( - wk t) 1j;k(x ), 
k= l 
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U(x, I) 
t=O.O 

0.2 0.4 0.6 0.8 1 
F IG. 1. Solution of the heat equation for some values of I, for new solut ion (4.8) and 

for classical solut ion (4.9) (they cannot be distinguished). 

t=O.Ol 

F IG. 2 . Spatial derivative of the solution of the heat equation for some values of I. 

where Ne= 5 components of the series (4.9) were taken , and 

are the eigenfunctions of the problem ( 4.1) - ( 4.3) , with eigenvalues calculated 
from the equation 

w 2 - Bi2 

ctg(wL ) = 2w Bi ' 
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and 
L 

ak =I uo(x )'!f;k(x ) dx/ ll '!f;k(x)ll2 . 

0 

From the figures presented one can see that the new solution and the classical 
solution cannot be distinguished even at the boundaries. This shows how the 
new solution converges well to the classical one. The spatial derivative of the 
new solution calculated for Na = 30 does not approximate so well the spatial 
derivative of the classical solution as it happens in the case of the solutions 
themselves. This is true especially at the boundaries. The error is the largest for 
t = 0. One can show, however, that the error at t = 0 tends to 0 as the number 
Na increases (see Fig. 3). 

. .. .. 
0.1 

0 .05 

.. .. g;(o, t)- Bi U(O, t ) 

······· ········· ·············· ····•··························· 
~----~--~----~--~----~--~----~N. 

-0.05 

-0.1 

10 2 0 

.... ··········· 

3 0 40 50 60 7 0 

······························ ············· 
····· ... ····· z~ (L , l ) + Bi U(L , l ) 

FIG. 3. Boundary conditions for the heat conduction at t = 0 according to the new 
approach. 

4.2. Vibrations of a rod 

For the vibrations of a rod we solved the following ISODE 

. . 2 ( )k2g (co(t) ~ ( )( )n) 0 Ck +J.LkCk + -1 L -2- + ~ Cn t - 1 = ' 

(4.10) 

L 

q(O) = ~I uo(x) cos ( k; x) dx , 
0 

L 

ck(O) = ~I vo(x) cos ( k{ x) dx, 
0 

k = 0, 1, 2, .. . . 

The calculations were carried out for uo(x) = a(x - L), vo(x) 0, g 2, 
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a = - 0.01. The solution 

N0 = 15 

( 4.11) Ua(x, t) ~ co(t)/2 + L ck(t) cos(krrx/ L ) 
k= l 

for some time instants for every cross-section of the rod is presented in Fig. 4, 
but the solution for chosen cross-sections of the rod in the given time period are 
shown in Fig. 5. The new results have been compared with the classical solutions 

U( X ' t ) 
0.0 1 

0.0075 

0.005 

0.0025 

-0.0025 

-0.005 

-0 0075 

new 

- --------- classical 

t=3 

FIG. 4. Solution of the wave equation for some values oft. 

of the problem (4.4)-(4.6), 

00 

(4.12) Uc(x, t) = L[ak cos(wk t) + bk sin(wk t)] cos(wkx), 
k= l 

with Ne = 10 components of the series ( 4.12) taken , and with eigenvalues calcu
lated from the equation 

and 

w tan(wL)= g 

L 

ak = I uo(x) cos(wkx) dx / I I cos(wkx) 112 , 

0 

L 

bk = 2_ I vo(x) cos(wkx) dx/11 cos(wkx)ll 2 = 0. 
Wk 

0 

From Figs. 4 and 5 one can see that the new solution approximates well the 
classical solution, although the curves are quite complicated. 
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a) U(x , t) 

0.0 1 

0.0075 

0.005 

0.0025 

-0.0025 

-0.005 

-0.0075 

b) U(x, t ) 

0.004 

0.002 

-0.002 

-0.004 

-0.006 

----new 
------------ classical 

F IG . 5. Solution of the wave equation for some values of x. 

From the boundary condit ions of the problem considered, using Theorem 6 
from [6], one can derive the following formulas for the boundary conditions at 
t = 0: 

00 

a + :L ck(O) = 0 for x = 0, 

(4.13) 
k= l 

a - g a
2
L + f: [ck(O) + g ck(O)] ( - 1)k = 0 

k= l 

for x = L , 

where 
16a 00 1 

ck(o) := 71'2 j; (2k)2 - (2j - 1)2 , k = 1,2, 
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and 
4aL 

q(O) = - (2k- 1)2?T2 , k = 1, 2, .... 

The left-hand sides of ( 4.13) are covergent series but they do not equal 0. Their 
value is a for both x = 0 and x = L. Therefore the boundary conditions for this 
init ial condition are not satisfied in t he new approach. The conditions are not 
satisfied in the classical approach as well, as t he classical solut ion (4.12), for this 
initial condition u 0 is in a generalized form [2]. 

5. Remarks 

The results obtained in the paper have revealed that the new method can 
succesfully be used for the solution to other boundary value problems with 
non-Dirichlet boundary condit ions. The experience gained also shows that the 
new approach can be used for other boundary conditions (e.g. Dirichlet condi
tions) [6] and for other BVPs that cannot be solved by the method of seperation 
of variables (e.g. boundary value problems with mixed derivatives). 
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Rigorous bounds on the asymptotic expansions 
of effective transport coefficients of two-phase media 

S. TOKARZEWSKI, A. GALKA (WARSZAWA) 
and G. STARUSHENKO (DNEPROPETROVSK) 

THE FUNDAMENTAL inequalit ies for two-point Pade approximants corresponding to 
two asymptotic expansions of the effective transport coefficients >... (x)/>11 , x = 
>..2/ >..1 - 1 have been derived, where >..1 and >..2 denote t he transport moduli of the 
composite components. The inequalities achieved constitute the new bounds on the 
values of ;,.(x)/>..1 - the best with respect to the given number of coefficients of the 
asymptotic expansions of >...(x)/>..1 at x = 0 and x = oo. For the particular cases, 
our two-point Pade bounds reduce to the classical estimations of Ae (x )/ >..1 available 
in literature [7, 9, 17, 24]. 

1. Introduction 

PREDICTION of the macroscopic behaviour of a composite from the known physi
cal and geometrical properties of the components is one of the basic problems 
of mechanics of inhomogeneous media. Most of the papers which have appeared 
in recent years dealt with the estimations of the effective transport coefficients 
>-e(x), x = >-2/ >.1 - 1 such as thermal and electrical conductivities, magnetic 
permeability, diffusion coefficient, filtration coefficients and many others. Here 
>.1 and >.2 denote the moduli of the components of an investigated composite, cf. 
[6, 7, 9, 17, 23, 24]. 

WIENER [34] derived optimal bounds on >-e(x) with prescribed volume frac
tions. These bounds are known as the arithmetic and harmonic mean bounds . 
For isotropic materials H ASHIN and SHTRIKMAN [17] improved Wiener 's bounds 
using variational principles. BERGMAN [4, 5, 6] introduced a method for obtain
ing bounds on >-e ( x), which does not rely on variational principles. Instead it 
exploits the properties of the effective parameters being analytic functions of the 
components moduli. The method of Bergman was studied in more detail and 
applied to several physical problems by MILTON [23, 24]. A rigorous justification 
of Bergman's approach was given by GOLDEN and PAPANICOLAOU [14] . Recently 
special continued fraction techniques for evaluation of the bounds on >-e ( x) have 
been used by BERGMAN [7] for three-dimensional, and CLARK and MILTON [9] 
- for two-dimensional systems. Both MILTON [24] and BERGMAN [7] have incor
porated into the bounds the power expansion of >-e(x) at x = 0 and the discrete 
values of >-e(x ) given by >-e(xl), >-e(X2) , ... , >-e(XI< ) only. 

The present paper incorporates into bounds on >-e(x) two formal power ex
pansions of >-e(x) available at x = 0 and x = oo. That incorporation problem has 
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been studied recently in the contexts of the estimation of Stieltjes functions [11, 
25, 27, 28] and t he bounds on the effective conductivity of regular composites 
[26, 29 - 32]. However, the estimations derived in [11 , 28, 29] are valid for x > 0 
only. Consequent ly they are not the best possible bounds on >-e(x). 

The main aim of this paper is to establish new bounds on real-valued moduli 
>-e(x) of two-phase media, the best with respect to the available coefficients of 
the power expansions of >-e(x ) at x = 0 and x = oo. 

This paper is organized as follows: In Sec. 2 we introduce the basic definit ions, 
notations and assumptions dealing with a St ieltjes function x fl (x) and two-point 
Pade approximants of the types 2PAs and 2PAs constructed for x fl (x) . In 
Sec. 3 we recall the relevant results for one-point Pade approximants. In Sec. 4 
we propose special continued fraction representations for 2P As and 2P As. The 
fundamental inequalities for 2P As and 2P As to x h ( x) have been derived in 
Sec. 5 and 6. In Sec. 7 the effective conductivity of a square array of cylinders 
has been investigated in terms of low order 2P As and 2P As bounds. The results 
achieved are summarized in Sec. 8. 

2. Preliminaries 

Let us consider the effective conductivity Ae(x) of a two-phase medium for 
the case, where t he conductivity coefficients >.1 and >.2 of both components are 
real, x = (>.2/ >. I) - 1. The bulk conductivity Ae(x) is defined by t he linear 

-t 

relationship between the volume-averaged gradient temperature <VT> and the 
volume-averaged heat flux < q > 

-t 

(2.1) < q >= Ae(x) <V T > . 

For t he sake of simplicity, the averaging is performed over the unit cell of 
a periodic composite, where T denotes the temperature. In general, Ae is a 
second-rank symmetric tensor , even when >.1 and >.2 are both scalars. Our study 
will be focused upon one of t he diagonal values of Ae denoted by >-e. The re
maining diagonals can be studied analogously. 

The analytic proper t ies of the bulk conductivity coefficient >-e( >-1 , >.2) were 
examined by B ERGMAN in [4]. He noticed that >-e(>-1, >.2) / >.1 = >-e(1, >.2/ >.1) is 
an analytical function in the complex plane except on the negative par t of the real 
axis. GOLDEN and PAPANICOLAOU [14] rigorously proved that Ae(x), X= h - 1, 
h = >.2/ >.1 has a St ieltjes-integral representation of the type: 

(2 .2) 

1 

>-e(x) _ 1 = x fl (x) = x j d11(u), 
>.1 1 + xu 

0 

- l <x<oo. 

For composites consisting of non-touching inclusions of modulus >.2 embedded in 
a matrix material of modulus >.1, the function x fl (x) obeys the following physical 
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restriction, cf. [4- 7], 

(2.3) lim X h (X) ~ - 1. 
x~-1+ 

The spectrum -n(u) appearing in (2.2) is a real, bounded and non-decreasing 
function defined on 0 ::::; u ::::; 1. Consider the power expansion of x h ( x) at x = 0, 
cf. (2.2), 

(2.4) 

Here the coefficients 

(2.5) 

00 

xfi(x) = 2: c~l1 )xn. 
n = l 

1 

c~1 ) = (- 1)n+1 I un- 1 d-n(u) 

0 

are real and finite. Note that on account of (2.2), the power series (2.4) has a 
radius of convergence at least equal 1. The power series expansion of x h ( x) at 
x = oo takes the form, cf. (2.2), 

00 

(2.6) xh(x) = 2: C~1)sn, 
n =O 

where the moments 

(2.7) 
1 

c~l) = ( - 1)n I u - 1- n d-n (u), 

0 

s = 1/x, 

n = 0, 1, 2, ... 

are assumed to be finite for any fixed n . Two-point Pade approximants of the 
type [k/M] and [k/M] to series (2.4) and (2.6) are given by the following rational 
functions 

(2.8) 

(2.9) 

alkx + a2kx2 + · · · + aMkXM 

[k/M] = 1 + blkx + b2kx2 + · · · + bMkXM ' 

alkX + · · · + a(M+ <lok)kX(M+Ook) 
[ k I M] = --=---------'---""=----:-:--

1 + blkx + · · · + bMkXM 
Ook = 

Consider the power expansions of (2.8) and (2.9) at x = 0: 

00 00 

(2.10) [k/M] = 2: CnkXn, [k/M] = 2: CnkXn, 
n = 1 n = l 

{ 
1, 

0, 

if k = 0, 

if k > 0. 
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and at x = oo 

00 00 

(2.11) [kiM] = L CnkSn , [kiM] = L CnkSn , s = 1l x . 
n = O n =O 

Now we are in a position to introduce the definitions of two-point Pade approxi
mants of the types 2P As and 2P As to x h ( x) : 

DEFINITION 1. The rational function [kl M] given by (2.8) is a 2P As {two
point Pade approximant) to xh(x), if 

(2.12) 

and 

(2.13) 

for n = 1, 2, .. . , p , p = 2M - k 

for n = 0, 1, ... , k - 2, (1) 
c(k- 1)k = ck- 1· 

Note that for k = 0 and k = 2M, the rational functions [ k I M] stand for one-point 
Pade approximants (1PAs), cf. [1, 2]. 0 

DEFINITION 2. The rational function [kl M] given by (2 .9) is a 2PAs to 
xh(x), if 

(2 .14) 

and 

(2.15) 

for n = 1, 2, .. . ,p, p = 2M - k , 

- (1) 
Cnk = Cn 

[kiMJ = - 1 

for n=0,1 , .. . ,k - 2, 

for x = -1. 0 

Throughout this paper the parameter p (0 ::; p ::; 2M) will denote a number 
of the available coefficients of the power series (2 .4), while k (0 ::; k ::; 2M) -
a number of relations given by (2.13) if we deal with [k i M ], or by (2.15) if we 
study [kiM]. The parameters p , k and M are interrelated by p + k = 2M. 

3. One-point Pade approximants 

We start our discussion by recalling some results for one-point Pade approxi
mants [OI M] to xh (x ), indispensable for our further investigations. Those results 
may be summarized as follows: 

1. [0 I M] has the continued fraction representation of the type S [1- 3] 

(3.1) [OIM] = xe1 xe2 

1 + 1 + .. . + 1 + 1 
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2. The coefficients of the continued fraction (3 .1) are positive 

(3.2) en > 0, n=1, 2, ... ,2M. 

3. For x > - 1 the Pade approximants [0/ M] to power series (2.4) converge 
to the Stieltjes function (2.2) , cf. [1 , Th.16.2] 

(3.3) lim [0/ M] = xfl(x). 
M -too 

4. If x /j ( x ) is a Stieltjes function 

(3.4) 

1 

xf ·(x) =x I d''tj(u) , 
J 1 + xu 

0 

then the function x fi+ 1 ( x) is also a Stieltjes function 

(3.5) 

provided t hat 

(3.6) 

1 

f ( ) I dri+1(u) 
X j+1 X =X , 

1 + xu 
0 

/j (O) 
/j(x) = 1 + xfj+1(x)' 

cf. [1, Lemma 15.3] and [1, p. 235]. If the expansion of xfj(x) at x = oo is given by 

00 

(3.7) xfj(x) = L C~/l(1/xt, cUJ > o 0 , 

n = O 

then on account of (3.6) , the expansion of x f j+1(x) , also at x = oo , takes the 
form 

00 

(3.8) X/j+1(x) = cU+1)x + L c!;+2)(1/xt, 
n = O 

Consequently we have the following relations 

(3.9) 

where 

(3.10) 

1 

! · 2 (x) = I drj+2(u) 
J+ 1 + xu 

0 

C (j+1) = /j(O) > 0 
cUl . 

0 
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is a Stieltjes function. The relations (3 . 7) - (3.10) permit us to formulate the 
following remark: 

R EMARK 1. If x /j ( x) is a Stieltjes function 

(3 .11) 
1 00 

x f ·(x) =X I drj (u) = " cU)sn 
J • 1 + xu L

0 
n ' 

0 n = 

s = 1/x, 

then x / j+2 ( x) is also a St ieltjes function 

(3. 12) 

provided that 

(3 .13) 

1 

f ( ) I dr i+2(u) 
X j+2 X = X , 

1 + xu 
0 

C (j+1) = / j(O) 
cUl . 

0 

Note t hat by inserting x = 1/ s into (3.4) we obtain the identity 

(3.14) 

1 00 

x f ·(x) = s- 1 I drj (u) = <p ·(s) =I d/3j( r ), 
J S + U J 1 + ST 

0 1 

where 

(3.15) 

D 

R EMARK 2. If x f j(x) is a Stieltjes function with respect to a variable x , then 
<pj(s) = x f j(x) is a Stieltjes function with respect to s , provided x = 1/ s , cf. 
(3.14) - (3.15). D 

The fractional transformations (3.6) and (3.13) and the identity (3.14) will 
be used for the construction of a specia l continued fraction representations for 
Pade approximants [k/ M] and [k/ M ], cf. (2.8) - (2.15). 

4. Continued fractions for 2P As and 2P As 

Let us apply the fractional transformation (3.13) to x fi (x) k t imes. T hus we 
obtain a T -continued fract ion to x fi(x) , cf. [15, 20], 

( 4.1) f ( ) 
_ xG1 xG3 xG2k- 1 

X 1 X - · 
1 +xG2 + 1 +xG4 + . . . + 1 +xG2k +xh k+ 1(x) 
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Here the parameters Gn are uniquely determined by the initial k coefficients of 
a power series (2.4) and (2.6). On account of Remark 2, for s = 1/ x we have 
xhk+I(x) = <p2k+l(s) , where xh k+l (x) and <p2k+l(s) are Stieltjes functions. By 
employing the transformation (3.6) (p - k) times to the function xhk+1(x), if 
p > k and (k- p) times to <p2k+l(s) , if k > p we arrive at 

{ 

X92k+l X92k+2 X9p+k 
1 + 1 + ... + 1 + x fp+k+l(x) ' 

xhk+l(x) = d2p+1 d2p+2 d2p+3 dp+k 

1 + x + 1 + ... +x +xtp+k+1(x)' 

(4.2) 
k "2. p. 

Note that functions /p+k+1(x) and tp+k+l(x) appearing in (4.2) are also Stielt
jes functions of the type (2.2). The substitution of (4.2) into (4.1) yields the 
continued fraction representations for Pade approximants [k/M], [2M- pjM] 

[k/M] = 
xG1 xG2k- l X92k+l X92M 

1 + x G2 + + 1 + xG2k + 1 + . . . + 1 

(4.3) [2M -pjM] = 
xG1 xG2p-1 d2p+l d2p+2 

1 + x G2 + + 1 + xG2p + 1 + X 
d2p+3 d2M 

+ 1 + . . . + X 

and [k/ M], [2M - pjM] 

(4.4) 

[k / M] = xG1 . . . xG2k- 1 
1 + xG2 + + 1 + xG2k + 

X92M 
+ .. . + 1 + 

[2M - pjM] = xGl xG2p- 1 d2p+l d2p+2 
+ X 1 + x G2 + + 1 + xG2p + 1 

d2M 
+ ... + X + 

On account of Def. 2, V2M+l and T2M+l satisfy the relations 

(4.5) 

xG2k- l 

+ 1 + xG2k + 
X92M 

+ ... + 1 

xV2M+l = _1 + 1 , 

xG2p-1 d2p+l d2p+2 d2M 

+ 1 + xG2p + 1 + X + ... + X 

xT2M+l = _ 1 + 1 , 

if X= -1, 

if X= - 1. 
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For k > 0 the parameters p, k, M are interrelated by 

( 4.6) p+k = 2M, 0 < k < 2M, 0 < p < 2M. 

The coefficients Gn (n = 1, 2, ... , 2k), 92k+j (j = 1, 2, ... ,p - k), V2M+b d2k+j 
(j = 1, 2, .. . , k- p) and T2M+l appearing in (4.3) - (4.4) are positive, i.e., 

Gn > 0, n = 1, 2, ... , 2k; 

(4.7) 
92k+j > 0, j = 1, 2, ... ,p- k ~ 0; v2M+l > o, 

Gn > 0, n = 1, 2, ... , 2p; 

d2k+j > 0, j=1,2, ... , k-p ~ O ; T2M+l > 0. 

Now we are in a position to study the convergence of [k iM] (k fixed) and [2M 
piM] (p fixed) to xh(x), when M goes to infinity. Due to nonzero radius of 
convergence of the power expansion (4.2) we infer, cf. [2, Th. 16.2], 

lim X92k+l X92k+2 X92M 
-1 <X< 00, 

(4.8) 
M--+oo 1 + 1 + ... + - 1- = xhk+l(x), 

d2p+l d2p+2 d2p+3 d2M lim - = xhk+l(x), - 1 <X< 00 . 
M--+oo 1 + X + 1 + .. . + X 

Consequently the relation ( 4.1) yields 

(4.9) lim [kiM] = lim [2M- piM] = xfi(x) , 
M--+oo M--+oo 

- 1 <X< 00. 

From (4.3) and (4.4), it follows: Ik7MJ = [kiM], if V2M+1 = 0; [kiM] 
[k - 1IM - 1], if V2M+1 = oo; [2M - pi M] = [2M - pi M], if T2M+l = 0; 
[2M- piM] = [2M- p- 1IM- 1hM-p-1, if T2M+l = oo. For x E (O,oo) 
[kiM] and [2M - pi M] are monotonic functions of the parameters V2M+l ~ 0 
and T2M+1 ~ 0, respectively. Hence for fixed x E (0, oo), [k iM ] takes values 
within [kiM] and [k- 1IM - 1], while [2M - piM] within [2M- pi M] and 
[2M- p - 1IM- 1]. On account of that and due to (4.9) we obtain 

(4.10) lim [k i M] = lim [2M- pi M] = xfl(x) , 
M--+oo M--+oo 

0 <X< 00. 

The Pade approximants [ k I M] and [2M - pI M] are analytical functions for - 1 < 
x < oo (their poles lie on the real axis at -oo < x $ - 1 only). Hence the 
convergence relations given by (4.10) holds for - 1 < x $ 0 as well. Consequently 
we can write 

(4.11) lim [kiM] = lim [2M - piM] = xfi(x) , 
M--+oo M--+oo 

-1 <X< 00. 

REMARK 3. For fixed k (k = 0, .. . , 2M) the approximants [ki M] and Ik7MJ, 
while for fixed p (p = 0, ... , 2M) the approximants [2M- pi M] and [2M- pi M] 
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converge to the Stieltjes function xh(x) for - 1 < x < oo, as M goes to infinity, 
cf. (4.9), (4.10) and (4.11). 0 

In the next section the properties of the convergence of [ k /M], [ k /M], [2M -
p /M], and [2M - p j MhM -p will be investigated. To this end the continued frac
tions (4.3) and (4.4), the restrictions (2.3) and (4.7) , and the convergence rela
tions (4.9) - (4.11) will be used. 

5. Two-point Pade bounds on xfi(x) 

For simultaneous representation of the sequences [ k /M], [M + T /M], [2M -
p jM] {[k/M], [M + riM], [2M- pjM]} it is convenient to introduce the nota
tion [IM / M] {[IM/M]}, where IM = k, M+ r, 2M- p. Now we are prepared 
to formulate the fundamental theorem establishing 2P As and 2P As bounds on 
xh (x) = >..e(x)/ >..1 - 1, cf. (2.2): 

THEOREM 1. For IM = k, M +r, 2M -p (0 :S IM :S 2M, M ~ lrl) the Pade 
approximants [I M I M] and [I M I M] (cf. Defs. 1 and 2)) to the power expansions 
ofxh(x) at x = 0 and x = oo (cf. (2.4) and (2.6)) obey the following inequalities, 
where xh(x) stands for the limit of[IM/M] and [IM / M], as M tends to infinity: 

(i) If -1 < x < 0 then 

(5.1) [IM / M] - [IM+I/M + 1] > 0, 

(5 .2) 

(5.3) 

[IM/M]- [IM+I/M + 1] < 0, 

[IM/M] > xfi(x) > [IM/M]. 

( ii) If 0 < x < oo then 

(5.4) ( - 1)1M+I [IM+IIM + 1]- ( -1)1M [IM /M] > 0, 

(5 .5) ( - 1)1M+I [IM+IfM + 1] - ( -1)1M [IM /M] < 0, 

(5.6) ( - 1)1M [IM/M] < ( - 1)1M xfi(x) < ( -1)IM.,-[I_M_,_/M-.,.]. 

The inequalities (5.1) - (5.2) and (5.4) - (5.5) have a consequence that the bounds 
[I M/ M] {[I M/ M]} are the best with respect to the given coefficients p of the 
power series (2.4) and terms k of the power expansion (2.6) , and that the use of 
additional input data (higher p and k) improves the bounds on x h ( x). 

P r o o f. As an example, the inequality (5.2) , IM = 2M- p will be proved 
only. The remaining inequalities one can prove in a similar manner. Let us start 
from the continued fractions ( 4.3) 

[2M- p jM] = xG1 xTzM+I 

1 + xGz + ... + 1 
(5.7) 

xG1 dzM+I d2M+2 xTzM+J 
[2M + 2 - p jM + 1] = 

1 + xGz + ... + 1 + X + 1 
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Of interest is the difference J(x) given by (see (5 .7)) 

(5.8) J(x ) = d 2M+1 d2M+2 
1 + X + 

xT2M+3 
1 

On the basis of ( 4. 5) and ( 4. 7) we have 

(5.9) 

if X = - 1, 

if - 1 < X< 00 . 

The relations (5.9), the restrictions (4.7) and the recurrence formula for t he 
continued fractions (5.7) lead immediately to the inequality (5.2), I M = 2M 
p. The remaining inequalities, namely (5.1), (5.2) , I M = k , M+ r / M , (5 .4) 
and (5.5), can be proved analogously. The relations (5.3) and (5.6) are direct 
consequence of (4.9), (4.11), (5.1) - (5.2) and (5.4) - (5.5) . 

Now we are prepared to prove that, with respect to a given number of co
efficients of power series (2.4) and (2 .6), the 2P As and 2P As provide the best 
estimations for xfi(x). Assume that [ki/MI] {[k2/M2]} is determined by PI {P2} 
coefficients of (2.4) and ki {k2} coefficients of (2.6), where PI + ki = 2MI , 
P2 + k2 = 2M2, PI ~ P2 and k1 ~ k2. Of interest is the following scheme of 
transition of [ki/M I] to [k2/M2]: 

where MI ~ M' ~ M 2. By applying_ the inequalities (5.1) - (5.3) and (5.4) - (5.6) 
successively to the above transit ion scheme, we arrive at 

(5.10) 

Analogously we obtain 

(5.11) 

From (5.10) - (5.11) , it follows tha t for P2 2: p1 and k2 > ki t he estimations 
[k2/M2], [k2/M2] of x fi( x ) are better than [ki/MI], [ki/MI]· 0 
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For a better understanding of Th. 1 it is convenient to arrange Pade approx
imants [ k / M] and [ k j M] in the following triangular array 

0/3 

0/ 2 1/ 3 

0/ 1 1/2 2/ 3 

(5.12) 0/ 0 1/ 1 2/2 3/ 3 

2/ 1 3/ 2 4/ 3 

4/ 2 5/ 3 

6/3 

called 2P As-table if k / M = [ k /M], or 2P As-table, if k / M = [ k /M] . The se
quence M/M is named the main row. Besides M/M one finds the sequences 
M+ rjM, k jM and 2M - pfM constituting the r-th rows, the diagonals go
ing up and the diagonals going down. Note that the sequences 0/ M and 1/M 
represent the classical Milton's estimations of xfi(x), cf. [24], while 0/1 are the 
well known Hashin - Shtrikman bounds on x fi ( x), cf. [1 7]. The remaining bounds 
appearing in (5.12) are new. 

6. General power expansions of x h ( x) 

The most general input data for evaluation of the 2PAs and 2PAs to xfi(x) 
are given by: 

00 

xfi(x) = L c~1)xn, 
(6 .1) 

n = l 

00 

xfi(x) = :L c~~s~, S 11 = 1/ (x- v). 
n=O 

Here v is an arbitrary, non-negative number. Since (6.1)1 coincides with (2.4) , 
of interest is the expansion (6.1)2 only. From (2.6) and (6.1)2 we have 

(6.2) 

00 00 

xfi(x) = :L c~l ) sn = :L c~~s~ , 
n=O n=O 

1 
s = - , 

X 

1 
Sv=--, 

x-v 

s 
Sv = --. 

1 - sv 

Equality (6.2) provides the following recurrence formulae interrelating the coef

ficients C~1 ) and Ck~: 

(6.3) c(l ) - c(l) 
0 - Ov ' 

c(ll - c{ll 
1 - 111 , 
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n 

(6.4) " vn-k Akc(ll 
L..J n kv • n = 2, 3, ... , 
k=1 

where 

r if k = 1, 

(6.5) Ak = Ak-1 + Ak if k = 2, 3, ... , n- 1, n n-1 n - 1' 

1, if k = n . 

From (6.3)- (6 .5) it follows: 

R EMARK 4. Any power expansions of xfi(x) at x = 0 and x = oo given by 
(6.1) , (v > 0) can a lways be reduced to the standard ones (6.1), (v = 0), cf. (2.4) 
and (2 .6) . It means that 2PAs and 2PAs to power series (6.1), (v 2: 0) do not 
depend on v. 

7. Physical example 

Y2 

r<J------ --

y, 

FIG. 1. Unit cell for a square array of cylinders. 

In this section we evaluate low order Pade bounds [k/ M] and [k/ M] on the 
effective conductivity >..e(x )/ >..1 of a composite material consisting of equally-sized 
cylinders embedded in an infinite matrix, cf. Fig. 1. To this end we set: <P = 1re2 

- volume fraction of inclusions, e - the radius of cylinders, >..1, >..2 conductivity 
of the matrix and inclusions, x = (>..2/>..1)- 1 - normalized physical properties 
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of the composite components. Two coefficients of the expansion of >..e(x)l>..1 at 
x = 0 are reported in [4], 

>-e(x) (1) (1) 2 3 
X fi (X) = ~ - 1 = c1 X + c2 X + 0 ( X ) , 

ci1) = cp = nrl , c~1) = ~ = - 0.5cp(1 - cp) , 
(7.1) 

while at x = oo in [22] 

x fi( x) = >.e(x) - 1 = cdl) + C~I).!_ + 0 (.!.) 2' 
A1 X X 

(7.2) C~1) = A = [n(w- 1)- 1], 

cp) = B = - 2nw(w - 1) ln(w) , w = J n I ( 1r - 4c/J) . 

Low order 2PAs and 2PAs bounds corresponding to (7.1) and (7.2) are given by: 

(7.3) 

where 

(7.4) 

(7.5) 

[OI O] = 1, 

[OI 1
] = 1 + 0.5~~- cp)x ' 

cpx 
[111] = 1 + (c/JI A)x ' 

(A2 I B )x 
[2/ 1] = -1 - (AIB)x ' 

[OIO] = x, 

cpx + 0.5cpx2 

[OI1] = 1 + x - 0.5cpx ' 

-- cpx 
[111] = 1 + (1 - cp)x ' 

-- Ax 
[211] = 1 +A+ X ' 

G1x + G1G4x2 

[
2
1
2
] = 1 + (G2 + G3 + G4)x + G2G4x2 ' 

[2l 2] = G1x + G1(G4 + Vs)x
2 

1 + (G2 + G3 + G4 + Vs)x + G2(G4 + Vs)x2 ' 

cp 
G1 = cp, G2 = A , 

cp2 +A~ A 
G4 = A2 + cpB cp ' 

For cp = 0.7853 2P As and 2P As given by (7.3) are depicted in Figs. 2 and 3. It 
follows that for x > 0 the upper Pade estimation 1 + [212] of >-e(x) l >.l provides 
the significant improvement over the upper Hashin - Shtrikman bound 1 + [0 I 1]. 
Moreover, for x -7 oo the P ade bound 1 + [212] takes fin ite values, while the 
Hashin - Shtrikman bound 1 + [011] goes to infinity. We have to add that in our 
previous papers the only 2P As bounds on x fi ( x) have been invest igated [28, 
29]. The two-point Pade bounds of the type 2PAs , used in this paper , are new. 
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8. Conclusions 

The main result of this paper, formulated as Th. 1 establishes, in terms of 
two-point Pade approximants 2P As and 2P As, t he new bounds on the real
valued moduli >..e(x)l>..1 of two-phase media. T he bounds achieved are the best 
possible with respect to the given number of coefficients of the power expansions 
of Ae ( x) I >..1 at x = 0 and x = oo. Moreover , for x > 0 they provide a significant 
improvement over the corresponding ones reported in the literature, cf. [24]. 

If the orientation of the principal axis of a composite does not depend on 
the properties of components, 2P As and 2P As can be used for estimation of 
the principal values of a second-rank tensors, i.e. for bounding the anisotropic 
transport coefficients. 

For a power expansion of Ae ( x) I >.. 1 available at x = 0 only, 2P As and 2P As 
to >..e(x)l >..1 reduce to the classical bounds on Ae(x)l >..1 originally derived by 
MILTON in [24]. 

The 2PAs and 2PAs bounds on >..e(x) l >..1 can be improved by incorporating 
the additional information about the composite such as the Keller identity for 
two-dimensional system or the Schulgasser inequality for three-dimensional ones, 
cf. [7] and [9]. The Keller 's and Schulgasser 's restrictions and t heir influence on 
the Pade bounds on Ae ( x) I >..1 will be investigated in a separate paper. 
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Decay and continuous dependence estimates 
for harmonic vibrations of micropolar 
elastic cylinders 

M. ARON (PLYMOUTH) and S. CHIRJTA (IASI) 

A PRINCIPLE OF SAINT-VENANT-TYPE is established for a right cylinder composed 
of an anisotropic, linear, homogeneous micropolar elastic solid and subjected to har
monic loading on one of its ends. The amplitude of the harmonic vibrations of this 
cylinder is also shown to depend continuously on the prescribed data. 

1. Introduction 

FoR CYLINDRICAL DOMAINS, the Saint-Venant principle in linear micropolar 
elastostatics was established by BERGLUND [1] and CHIRITA and ARON [2] (see 
also [3]). By adapting certain ideas originally due to TOUPIN [4], these authors 
have shown that certain global measures of the displacements which depend upon 
the distance from the loaded end of the cylinder , decay exponentially with that 
distance. 

More recently, certain aspects of the dynamical version of the Saint-Venant 
principle have been investigated within the framework of the theory of linear 
elasticity. In particular, FLAVIN and K NOPS [5], FLAVIN, KNOPS and PAYNE 
[6] and K NOPS [7] have considered the Saint-Venant principle for the harmonic 
vibrations of linearly elastic cylinders subjected to harmonic type loadings on 
one of their ends. 

In this paper we deal with the Saint-Venant principle for the harmonic vibra
tions of right cylinders composed of an anisotropic, linear, homogeneous microp
olar elastic solid. Following [5 - 7] we show that when one end of the cylinder 
is subjected to prescribed harmonic tractions, and provided that the prescribed 
frequency of vibrat ions is strictly less than a certain critical frequency, the energy 
E(z) stored in a part of the cylinder that lies above a cross-section which is at 
the distance z from the loaded end , decays faster than a certain exponentially 
decreasing function of z . The critical frequency depends upon the characteristics 
of the material and upon the geometry of the body. Additionally, we establish 
here an estimate for t he total energy of the considered cylinder which implies 
that the amplitude of vibrations depends continuously on t he prescribed data 
and which , when coupled with the Saint-Venant-type estimate mentioned above, 
provides us with a more explicit description of the way in which E(z) decays 
as a function of z. Other continuous dependence results in micropolar elast icity 
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have been obtained previously by ARON [8] who considered the case of physically 
nonlinear micropolar elastostatics. 

2. Preliminaries 

Consider a body B composed of a homogeneous anisotropic micropolar linear 
elastic material (1 ). The motion of a particle which belongs to such a body is 
described by the displacement vector field u and the microrotation vector field c,p . 
In what follows we will be employing a six-dimensional vector field U defined by 

(2.1) U = (u, j c,p), j = const, j > 0, 

where j is the square root of the smallest eigenvalue of the microinertia tensor j . 
The microinertia tensor is assumed to be symmetric and positive definite [9] . As 
usual, the inner product in the six-dimensional vector space is defined by 

(2.2) U ·V = u ·v · + J'2tn ·· 1•· - ' ' .,.., 'f/1 ' i = 1, 2, 3, 

where Ui, vi, <pi, '1/Ji are the components of the vectors u, v, c,p, ,P, respectively, 
with respect to a Cartesian system of coordinates Ox1x2x3 and where the sum
mation convention over repeated indices has been adopted. In view of (2.2), the 
magnitude of the vector field V = ( v, j,P) is given by 

(2.3) 

The theory of micropolar elasticity employs two strain tensors, er 6 and "-rs, 

which are defined by 

(2.4) "-rs (U) = '-Ps,r , r , s = 1, 2, 3, 

where csrk denotes the well-known alternating symbol and a comma followed by 
r stands for the partial differentiation with respect to Xr· These are related to 
the stress tensor tk1 and couple stress tensor mkl by the equations 

(2.5) 
tki (U) = aklrs ers(U) + bklrs "-rs(U) , 

ffiki(U) = brskl ers(U) + Cklrs "-rs(U), 
k,l,r,s = 1,2,3, 

where aklrs etc. are material constants which satisfy 

(2.6) Cklrs = Crskl · 

(')The theory of linear micropolar elasticity was introduced by ERINGEN in (9). 
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Accordingly, t he strain energy density corresponding to U is given by 

(2.7) 

and in what follows we shall assume that this quadratic form is positive definite. 
Following IESAN [3] we label the nine independent index combinations ( r s) 

or (kl) by capital Greek letters r, Ll, etc. so that the constitut ive equations can 
be written as 

(2.8) 

t r(U) = ar,1e,1(U) + br<1K,1(U) , 

mr(U) = b,1re,1(U) + cr<1K,1(U), 
r , .1 = 1, 2, ... , 9. 

Introducing the further notations 

(2.9) 
Tr = tr' 

E9+r = JKr , 

T9+r = j - 1mr , Er = er , 

Ar<1 = ar<1 , Ar(9+<1) = j -
1
br<1 , 

A (9+r) <1 = r 1
b<1r, A(9+r)(9+ <1 ) = r 2

cr<1 

we can rewrite the constitutive equations (2.8) in the form 

(2 .10) K , £ = 1, 2, ... , 18. 

We define now the tensor 

(2.11) T(U) = [trs(U), r 1mrs(U)] 

whose magnitude is 

(2.12) 

and, using the notations (2.9) , we write the strain-energy density function (2.7) as 

(2.13) K , £ = 1, 2, ... , 18, 

where AKL are the components of a symmetric and positive definite t ensor. 
According to GURTIN [10, p.197], l ESAN [3, p. 97] and MEHRABADI, C OWIN and 
HoRGAN [11], if J.L M denotes the largest characteristic value of AKL , we have 

(2.14) 

Denoting by si(U) and Qi(U) t he components of the stress and couple stress 
vectors acting on the surface 8B of B , respectively, we have 

(2.15) 

where nr are the components of the outwardly d irected unit vector normal to 8B. 
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In the absence of body forces and couples, the equations of motion are wri t
ten as 

(2.16) 
[tsi(U)],s = 12 Ui, 

[msi (U)],s + Eirs trs(U) = I2Jis 'Ps , e = const, e > 0, 

where Jis are the components of j and e is the mass-density of the body, and 
these have to be supplemented by appropriate boundary and initial conditions. 
As usual, in (2 .16), a superposed dot denotes the part ial derivative with respect 
to the time t . 

3. An energy decay estimate for the case of harmonic vibrations 

In this section B will be assumed to occupy a right cylinder of length L whose 
cross-sect ion is bounded by one or more piecewise smooth curves. The Cartesian 
system of coordinates is chosen so that the origin belongs to one of the ends and 
thus t he ends of t he cylinder lie in the planes x3 = 0 and X3 = L. An arbit rary 
cross-section of the cylinder at the distance z from X3 = 0 will be referred to as 
Sz whereas the part of the cylinder which lies above Sz will be denoted by B z. 
Clearly, our notation implies that Eo = B . 

We further assume here that 

(3.1) 
ui(x , t ) = 0, cpi (x, t) = 0, 

t E (0, oo) 

and that 

(3.2) 
si(U) = ti(x ) sin(wt) , 

qi(U) = Pi(x) sin(wt), x ESo, t E(O,oo), 

where ti and Pi are given functions on So and w > 0 is a given constant. 
Seeking solutions (to the problem given by (2.5) , (2.16), (3.1) and (3.2)) of 

the form 

(3.3) ui(x, t) = vi(x ) sin(wt ), cpi(x, t ) = '1/;i(x) sin(wt ) 

we find that the funct ions Vi and '1/;i must satisfy 

(3 .4) 

(3.5) 

[tsi(V)J.s + (]W2
Vi = 0, 

[msi(V)J.s + C:irs trs(V ) + (]W2Jis'l/;s = 0, 

vi (x ) = '1/;i (x) = 0, 

V = (vi, J'Ij;i), 

X E oB \ So, 



DECAY AND CONTI NUOUS DEPENDENCE ESTIMATES 669 

and 

(3.6) x E So , 

and, according to the theory developed by FrCHERA [12], under our assumptions 
there exists a unique solution V to the problem (3.4)- (3.6) . For the remainder of 
this section we will be discussing the decay properties of the amplitude function 
V of the harmonic vibrations U. 

We begin by introducing an auxiliary function given by 

(3.7) I(z) =-I [t3r(V)vr + ffi3r(V)7/Jr ] dA , z E [O,L] 
S, 

and note that, in view of the Cauchy - Schwarz inequality and the arithmetic
geometric mean inequality, we have the estimate 

(3.8) I(z ) :S ~a I [t3r(V) t3r(V) + r 2 m3r(V) ffi3r(V)] dA 
s, 

+ 2~ I ( VrVr + j 27/Jr7/Jr) dA, z E [0, L], 
s, 

where a is an arbitrary positive constant. On combining (3.8) and (2.14) , and 
on taking into account the meaning of the constant j, we infer that 

(3.9) z E [O,L]. 

Using (3.5) and the Divergence Theorem we also find , from (3.7) , that 

(3.10) I(L) - I(z) = - I [tsr(V)n5 Vr + m sr (V)ns 7/Jr] dE 
aB, 

=- I [(tsrVr),s + (msr7/Jr),s]dV, z E [O,L] . 
B, 

Since, by assumption , we have I(L) = 0, it follows , from (3.10) , (3.4) and 
(2.4) - (2.6) , that 

(3.11) I(z ) =I [2W(V)- t?W
2 (vrVr + Jrs7/Jr7/Js)] dV, Z E [O,L]. 

B, 

We now consider (analogously with equation (2.17) in FLAVIN and KNOPS 
[5]) 

(3. 12) w~(h, L) = inf I 2W(U) dV I I e(urUr + Jrsi.prt.ps) dV; 
R R 
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a) within the class of all right cylinders R which share the end x3 = L and 
whose lengths belong to the interval [h, L] (where his an arbitrary fixed number 
strictly less than L), and 

b) within the class of smooth vector fields U which are such that ur = 0, 
<{Jr = 0, r = 1, 2, 3, on both X3 = L and the lateral boundaries of these cylinders. 

wm/2rr therefore, represents the minimum fundamental frequency of vibration 
of cylinders described in (a) whose lateral surfaces and ends X3 = L are clamped 
and whose other ends are free. Equations (3.11) and (3.12) lead to 

(3.13) I( z ) ~ ( 1 - :~) 12W(V) dV, 
B, 

z E [0, L - h], 

which, when combined with (3.9), gives 

(3.14) ( 1- :~) 12W(V) dV :S J.L~a 12W(V) dA 
B, S, 

z E [0, L - h]. 

Following TOUPIN [4], we integrate in (3.14) from z to z + h, z E [0, L- h], and 
on making use of the notations 

z+h 

(3.15) E(z) =: 12W(V) dV, Q(z, h) = * I E(() d(, 
B, z 

we obtain 

(3.16) ( 1- :~) Q(z, h) ::; a~t I 2W(V) dV 

B(z,h) 

1 I +--
2aeh 

B(z,h) 

where B(z, h) stands for the cylindrical slice Bz \Bz+h· 

Denoting by w0(h)/2rr the lowest frequency of vibrations of the slice B(z, h) 
(whose lateral surface is clamped and whose ends are free) we have, analogously 
with (3.12) , 

(3 .17) I 2W(V) dV ~ ew5(h) I (vrVr + Jrs'Ij;r'Ij;s) dV. 

B(z,h) B(z,h) 
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Now (3.17) , together with (3.16) , leads to 

z E [0, L - h]. 

Since 

dQ 1 1 I (3.19) dz (z, h)= h [E( z +h)- E(z )] = - h 2W(V) dV 
B(z ,h) 

and 

(3.20) 

we obtain from (3 .18) the following first-order differential inequality 

(3.21) z E [0, L- h], 

which, by integration, leads to the estimate 

(3.22) Q(z, h) ~ Q(O, h) exp [ -z ( 1 - :~ ) wo(h)(JlM I {}) - 112
] , 

z E [O,L- h]. 

Since E(z ) is a non-increasing function of z we have, for all ( E [z, z + h], 

(3.23) E(z ) ~ E(() ~ E(z +h) 

which, on account of (3.15)2, gives 

(3.24) E(z ) ~ Q(z, h) ~ E(z +h), z E [0, L- h]. 

Equation (3.24) implies 

(3 .25) Q(O, h) ~ E(O) 

and thus, on account of (3.24)2 and (3.22), we have 

(3.26) E(z +h) ~ E(O) exp [ -z ( 1 - :~) wo(h)(JlM I {}) - 112
] , z E [0, L - h], 
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which can be re-written as 

(3.27) 

Inequality (3.27) shows that, in the strain-energy measure, the amplitude V 
decays exponentially as a function of z E [h, L], provided that w < Wm . As such, 
(3.27) is a Saint-Venant type inequality as originally envisaged by TOUPIN [4]. In 
the following section we will be obtaining an estimate for E(O) which, in addition 
to providing us with an explicit estimate for E(z ) in terms of the data, implies 
the continuous dependence on data of solutions to the boundary value problem 
(3.4) - (3.6). 

4. The estimate for E(O) 

Since, by (3.13), we have (see (3 .15)1) 

( 4.1) 
w2 

E(O) ~ 
2 

m 
2 
1(0), 

wm - w 
w < wm, 

we will be estimating in what follows the quantity 1(0) which, in view of (3.6) , 
can be written as 

(4.2) 1(0) =- I (trVr + Pr1/Jr) dA. 
So 

To this end, we note that the Cauchy - Schwarz inequality implies 

( 4.3) 

where we have employed the ·notation 

(4.4) D(V) := I ( VrVr + j 21/Jr1/Jr) dA. 
So 

Next, we use an appropriate re-scaling of the well-known trace theorem [12, 
p. 353] which reads 

(4.5) I WrWr ds ~ A1 I WrWr dV + A2 I Wr,~Wr,~ dV, 
CJB B B 
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where A 1 and A2 are positive constants which depend upon B and aB and 
where Wr are functions of class C1(B u aB). Accordingly, from (4.4) and (4.5) , 
we infer 

( 4.6) D (V ) ~ A1 I ( VrVr + j 21/Jr1/Jr) dV + A2 I ( Vr,sVr,s + j 2
1/Jr,s1/Jr,s) dV 

B B 

which, in view of the significance of the constant j , leads to (see (2.4)2) 

(4.7) D(V) ~ A1 I (vrVr + lrs1/Jr1/J$) dV 

B 

+ A2 l[vr,$Vr,$ + j 2 Krs(V)Krs(V)] dV. 

B 

Since v = 0 on aB\So we have the first Korn inequality 

I Vr,sVr,s dV ~ ~ A3 I ( Vr,s + Vs,r) ( Vr,s + Vs,r) dV, 

( 4.8) 
B B 

which, when combined with [8] 

(4.9) 

and (4.7) , gives 

(4.10) D(V) ~ A1 I (VrVr + lr$1/Jr1/J$) dV 

B 

+ A4 I [ers(V)er$(V) + i~~:r$(V) Kr$(V)] dV, 

B 

where 

The assumption that W is positive definite implies that there exists a positive 
constant J.Lme) so that 

(
2

) J.lm is the lowest characteristic value of AKL · See [10, p.l97]. 
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and, by denoting with wv/27r the fundamental frequency of the cylinder B whose 
entire surface, apart from its end plane So, is clamped we also have, as before, 

( 4.12) I 2W(U) dV 2 QW~ I (urUr + Jr scpr cps ) dV, 
B B 

for any smooth vector field U. Thus, from (4.3) , (4.10), (4.11) and (4.12) we find 
(see (3.15)1) 

(4.13) [ l 
1/ 2 

I(o) s (~; + ::) '
1
' E(o)1i ' £ (t,t, + r'p,p,) dA , 

which, together with ( 4.1) , gives 

(4.14) w~ ( A1 A4) I ( ._2 ) E(O) :S ( 2 _ 2 ) 2 - 2 + - trtr + J PrPr dA. 
Wm W QWv J.Lm 

So 

Inequality (4.14) expresses the fact that in the strain-energy measure, the 
solution to the boundary value problem (3.4)- (3.6) depends continuously on 
the data fat w < Wm . Continuous dependence estimates for stresses, strains 
and displacements can be obtained by combining (4.14) with (2.14) , (4.11) and 
(4.12), respectively. Finally, we note that on combining (4.14) with (3.27) we can 
obtain an explicit decay estimate for E(z ) in terms of the data prescribed on the 
boundary of the cylinder. 

Acknowledgment 

This work has been completed in Autumn 1996 when the second author visited 
the School of Mathematics and Statistics of the University of Plymouth. The 
second author gratefully acknowledges the hospitality and support extended to 
him by the School. 

References 

1. K . BERGLUND, Generalization of Saint- Venant 's principle to micropolar continua, Arch . 
Rational Mech. Anal., 64, 317- 326, 1977. 

2. S . CHIRITA and M. ARON, On Saint- Venant 's principle in m icropolar elasticity, Int. J. 
Engng. Sci., 32, 1893- 1901, 1994. 

3. D . lESAN, Saint- Venant's problem, [in:] Lecture Notes in Mathem atics, A. DOLD and 
B. ECKMANN [Eds.J, Vol. 1279, Springer-Verlag, Berlin-Heidelberg-New York 1987. 

4. R .A. TOUPIN, Saint- Venant 's principle, Arch. Rational Mech . Anal., 18, 83- 96, 1965. 
5. J .N. FLAVIN and R.J. KNOPS, Some spatial decay estimates in continuous dynamics, 

J . Elasticity, 17, 249-264, 1987. 



DECAY AND CONTINUOUS DEPENDENCE ESTIMATES 675 

6. J .N. F LAVIN , R.J. KNOPS and L .E. PAYNE, Energy bounds in dynamical problems for a 
semi-infinite elastic beam, [in:] Elasticity: Mathematical Methods and Applications. The 
Ian N . Sneddon 70th Birthday Volume, pp.101- 112, G. EASON and R .W . OGDEN [Eds.], 
Ellis Horwood, C hichester 1990. 

7. R .J. KNOPS , Spatial decay estimates in the vibrating anisotropic elastic beam, [in :] Waves 
and Stability in Continuous Media, pp. 192- 203, S . R IONERO [Ed.] , World Scientific, Sin
gapore 1991. 

8 . M. ARON, Continuous dependence results and a priori estimates in nonlinear micropolar 
elasticity, Acta Mech ., 37, 131- 136, 1980. 

9. A . C. ERINGEN, Theory of micropolar elasticity, [in:] Fractu re, H. L EIBOV ITZ [Ed.], Vol. 2, 

Academic Press, New York 1968. 

10. M.E. G u RTIN , The linear theory of elasticity, [in :] Handbuch der Physik , pp. 1- 295 , 
C. TRUESDELL [Ed.], Vol. VI a / 2 , S pr inger-Verlag, Berlin-H eidelberg-New York 1972. 

11. M . M . MEHRABADI , S .C . COWIN and C.O. HORGAN , Strain energy density bounds for linear 
anisotropic elastic materials, J. Elasticity, 30, 191- 196, 1993. 

12. G . FICHERA , Existence theorems in elasticity, [in:] Handbuch der Physik, pp. 347- 389, 
C. TRUESDELL [Ed .], Vol. VI a/2 , Springer-Verlag, Berlin-Heidelberg-New York 1972. 

SCHOOL OF MATHEMATICS AND STATISTICS 
UNIVERSITY OF PLYMOUTH, PLYMOUTH, ENGLAND 

and 

MATHEMATICAL SEMINARIUM 
UNIVERSITY OF IASI, IASI, ROMANIA. 

Received December 6, 1996. 



Arch. Mech., 4t, 4, pp . 677- 695, Warszawa 1997 

Remarks on Il'iushin's postulate 

CH. TSAKMAKIS (KARLSRUHE) 

IN ITS ORIGINAL VERSION (strong form) , the postulate of Il'iushin states that the 
integral of the stress power of an elastic-plastic material must be non-negative for 
any closed strain path. As a consequence, it has been shown that the so-called simple 
endochronic theory of plasticity violates this postulate of "material stability". The 
characteristic feature of this theory is that yield surfaces and related loading condi
tions are not involved in the governing constitutive equations. In the present paper it 
is shown, with reference to a well-established class of plasticity laws, that the strong 
form of Il'iushin 's postulate may be violated as well , if the constitutive theory is con
structed on the basis of a yield surface and related loading conditions. The question 
arises if such strain-stress relations preserve some weaker stability conditions in the 
sense of Il'iushin. It turns out that they satisfy a weaker form of Il'iushin's postu
late, in which the integral of the stress power is required to be non-negative only 
for special, so-called small cycles of deformation, as defined by Lucchesi and Silhavy. 
From a physical point of view on a phenomenological level , it seems that there is no 
experimental evidence to exclude from a general theory of plasticity such material 
behaviour which complies with the weak form of Il'iushin's postulate. Moreover, if 
the validity of the weak form of I! 'iushin 's postulate is assumed, then it is shown that 
the simple endochronic theory of plasticity is no longer in conflict with this version 
of the postulate. 

1. Introduction 

WHEN FORMULATING the framework for constitutive relations, it is convenient 
to introduce some constitutive inequalities limiting the types of the mechanical 
behaviour to be modeled. Such inequalities represent in some sense "material sta
bility" conditions (see i.e. DRUCKER [8, 9], PALMER, MAIER and DRUCKER [24], 
HILL [13, 14], WANG and TRUESDELL [30, Ch. III.7 - III.9], MARTIN [21, Sec. 2.4, 
2.5], 0GDEN (22, Sec. 6.2.8], LUBLINER [19, Sec. 3 .2], HAVNER (12, Sec. 3.6] and 
the references cited therein). In the context of a pure mechanical theory concern
ing elastic-plastic material properties, a material stability condition frequently 
assumed is the postulate of Il'iushin. In its original form (strong form) , this pos
tulate is referred to small deformations and states that the integral of the stress 
power of a material element must be non-negative in any closed strain path (see 
IL'IUSHIN [16]). As a consequence (see SANDLER [26] as well as RIVLIN [25]), the 
linear isotropic version of the so-called simple endochronic theory of plasticity 
(see VALANlS (28]) violates this postulate. This fact was a reason for the simple 
endochronic theory of plasticity to be discredited. 

The purpose of the present paper is to motivate the introduction of a weaker 
formulation of the postulate of Il'iushin and then to discuss the simple en-
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dochronic theory with respect to this weaker formulation of the postulate. Specifi
cally, in Sec. 2 we will consider a class of plasticity laws which is defined in terms 
of a yield function and the related loading conditions. These plasticity laws ex
hibit kinematic hardening only, the well-known hardening rule of ARMSTRONG 
and FREDERICK [1] included as a particular case. Also, the linear isotropic ver
sion of the simple endochronic theory of plasticity is contained as a limiting case. 
Section 3 deals with an elementary proof of the fact that well-established plas
ticity laws, included in the class defined in Sec. 2, with kinematic hardening of 
the Armstrong-Frederick type, may violate the postulate of Il 'iushin, if the ma
terial parameters do not have appropriate values. There arises then the question 
if these plasticity laws satisfy some kind of material stability in a weaker form. 

Indeed, it is proved in Sec. 4, that the material behaviour predicted by these 
plasticity laws is in agreement with a weaker form of Il'iushin's postulate, in 
which the integral of the stress power is required to be non-negative only for 
special, so-called small strain cycles, as defined by LUCCHESI and SILHAVY [20]. 
Finally, it is shown in Sec. 5 that if the weak form of Il 'iushin's postulate is 
assumed to apply in a general theory of plasticity, then the simple endochronic 
theory is no longer in conflict with this postulate. 

In the following, we use bold-face and calligraphic letters for second-order 
and fourth-order tensors, respectively. In particular, 1 represents the identity 
second-order tensor and AT denotes the transpose of A . We write tr A for the 

trace of A , AD = A - ~(tr A )1 for the deviator of A , as well as A · B = tr (ABT) 
3 

for the inner product of A and B. We denote by£ the fourth-order tensor , which 
has components 

1 2 (oij<5mn + OinOmj) ei ® em ® ej ® en 

relative to the orthonormal basis { ei} , i = 1, 2, 3, where the symbol ® denotes 
the tensor product, and Oij is the Kronecker delta. Further, if K and A are 
fourth-order and second-order tensors, respectively, represented by K = Kijklei ® 
ej ® ek ® e1 and A = Aijei ® ej, then K[A] := KijmnAmnei ® ej. For a real a, 
JaJ is the absolute value of a, while ( ) · denotes the material time derivative of 
( ), the variable time being represented by t. If nothing is said to the contrary, 
the material parameters used will take values on the real interval [0, oo). The 
deformations considered are small isothermal deformations. Since the following 
is not affected by a space dependence, an explicit reference to space will be 
dropped. All components of tensor variables are related to a Cartesian coordinate 
system. 

2. Plasticity laws with kinematic hardening 

Consider the class of plasticity models with kinematic hardening summarized 
in Table 1. 
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Table 1. A class of plasticity models with kinematic hardening. 

(2. 1) E = Ee + Ep, 

(2.2) T = 2!-LEe + A(tr Ee)l , 

(2.3) /-L, A- E lasticity constants (t-L > 0, 2/-L + 3A > 0), 

(2.4) F - yield function, 

(2.5) F(t) = F (T (t) , E,(t)) := J~ (T - E, )0 
· (T - E, )0 + a(tr[T - E,])2

- k, 

(2.6) 

(2.7) 

(2.8) 

1 
k = const , 0 < a < - , - - 2 
yield cond ition {=:::} F = 0, 

E.~ { A!f in p lastic loading, 

otherwise, 

(2.9) plastic loading F = 0 & (F)s=const > 0, 

(2. 10) 

(2.11) 

(2 .12) 

(2 .13) 

(2.14) 

(2. 15) 

(2.16) 

(2 .17) 

s = j:Ep· P [Ep], 

P = Pl £ + P2 l ® 1, 

Pl, P2 - const (Pl ~ 0, Pl + 3p2 ~ 0), 

z = gs, 

g - constitut ive function, 
N n 1 

E, := 2: Zi + 2: -Mr l , 
j = l r = l 

3 

dZ j dEp 
-=e·-- b·Z · 
dz 1 dz 1 1 ' 

ej, bj > O if 1 :s; j < N, eN >0, bN ~ O , 

(2.18) dMr = .d(tr Ep) _ b*M 
dz er dz r r , 

(2.19) e;, b; > 0 if 1 ::::; r < n, e~ > 0, b~ ~ 0. 

In these formulas, Ee and Ep denote the elastic and plastic parts in t he addi
tive decomposition of the linearized Green stra in tensor E, T is the Cauchy stress 
tensor and E, represents the variable describing kinemat ic hardening (back stress). 
The scalar factor A is to be determined from the so-called consistency equation 

F = 0. The characteristic features of these p lasticity laws are the yield function 
(2.5), (2.6) and the evolut ion equations (2 .10) - (2. 19) for the back stress. T he 
yield function (2.5) is related to the general definit ion for yield functions, given 
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by SHRIVASTAVA, MROZ and DUBEY (27] . A yield function of the form (2.5), (2.6) 
as well as the hardening rule (2.10) - (2.19) with p2 = 0, p1 = 1 and g as posi
tive continuous monotonic and bounded function of s were proposed by KORZEN 
[17, Ch.5] as a generalization of the hardening rule introduced by CHABOCHE, 
DANG VAN and CoRDIER [5]. However, it should be mentioned that relations of 
the form (2.10)- (2.19) indicate the typical structure of constitutive equations 
according to the simple endochronic theory of plasticity and were introduced by 
VALANIS (28] at first. Note in passing that g can be chosen to be a constitutive 
function of additional variables, for which then appropriate evolution equations 
are needed. Such examples are given e.g. in HAUPT, KAMLAH and TSAKMAKIS 
[11]. Aslo, it is perhaps of interest to remark that, for ~ = 0, (2.5) reduces to a 
yield function proposed earlier by Burzynski (see Zyczkowski (31 , Sec. 11], where 
the original work of Burzynski is cited) . 

There are two particular cases in the class of plasticity laws (2.1) - {2.19) , 
which will now be discussed briefly. 

2.1. Plasticity laws with kinematic hardening of the Armstrong-Frederick type 

On setting a= 0, Eq. (2.5) reduces to a v. Mises yield function with kinematic 
hardening. Hence, by (2.8), Ep becomes deviatoric. Further, we set P1 = 2/3, 
P2 = 0 and g = 1. Then, 

(2.20) ~ s = i = V 3 J'.Jp. J'.Jp , 

i.e., s reduces to the well-known plastic arc length formula. In addition, we 
assume homogeneous initial conditions, such that Mr = 0 for every r. Finally, 
if we set N = 1 and c1 = c, b1 = b, Eqs. (2 .15)- (2.19) yield the well-known 
hardening rule of ARMSTRONG and FREDERICK (1] (see also CHABOCHE (6]): 

(2.21) 

This hardening rule together with the relations (2.1)- (2.9) and a = 0 form a well 
established plasticity model, which will be discussed in Sec. 3 for one-dimensional 
loading histories. The one-dimensional relations needed for this discussion read 
as follows. Using the definitions (T)u =a, {E)u = €, (Ee)u = Ce, (Ep)u = cp, 

s = lcpl, ~(~)11 = {, E = p(3
A + 2~-') (E- elasticity modulus), we get: 

2 A+J.' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

€ = ce +cp, 
a= Ece, 

for plastic loading. 
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Thus, 

(2.27) 
dcp E 

de = E + 3c ± b~ , 
2 

where + denotes compressive loading and - tensile loading. 

2.2. The case k = 0 

Let k = 0 in Eq. (2.5). Then , from (2.5)- (2.7), 

(2.28) T = ~ , 

681 

i.e., a pure elastic range is no longer present. Roughly speaking, the yield surface 
shrinks to a point in the stress space. However, according to (2 .1), (2.2) , the 
decomposition of the total strain into elastic and plastic parts still remains valid. 
Note that k = 0 always implies plastic loading. Further, (2.8) is meaningless now, 
for a unique normal on the yield surface no longer exists. But such an equation 
is no longer needed. In other words, the plastic strain Ep is now postulated 
to depend upon the previous loading history by means of an implicitly defined 
functional. This functional is represented through the constitutive relations for 
the kinematic hardening. To be more specific, if we are given a loading history, 
then the decomposition for the strain (2.1) , the elasticity law (2.2) , the identity 
(2.28) and the kinematic hardening rule form a system of four equations for the 
determination of the four unknown(, Ee, Ep and Tor E. 

Next, we note that if J.L , A -+ oo, then Ee -+ 0 in order for the stress to remain 
finite. This means that the assumption J.L, A -+ oo implies 

(2.29) 

Now, let us integrate Eqs. (2.15) - (2.19) for homogeneous initial conditions and 
assume g to be a function of the arc lengths. Then, by (2.28) , (2.29), 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

z z 

T = J !P'(z- z) (:z E(z)) dz + t/ x(z- z) (ddz trE(z)) dz , 
0 0 
N 

!P'(z) = L c;e- biz ' 
j = l 

n 

x(z) = L c;e-b;z, 
r=l 

i = g(s)s, 

,; = VE·'P[E) . 



682 C H . T SAKMA K IS 

Equations (2.30) - (2.34) represent the linear isotropic version of the so-called 
simple endochronic theory of plasticity. This constitutive model was postulated 
by VALANIS [28] (for a brief review of the simple endochronic theory of plasticity 
see also VALANIS and LEE [29]) in order to describe plastic material properties 
without using a yield surface as well as loading conditions. It must be empha
sized that Valanis introduced this theory by replacing t he natural time t in the 
linear viscoelasticity by the arc length z defined through (2.33), (2.34). In the 
present paper, it is shown that the simple endochronic theory of plasticity can 
be interpreted as a limiting case of the class of plasticity laws represented in 
Table 1 e ). In particular, this was the reason for defining the arc lengths s and 
z as in (2.10) - (2.14), which is typical for the endochronic t heory of plasticity. 

3. The postulate of Il'iushin for arbitrary strain cycles 

For a fixed material particle, let us consider a strain cycle, which begins at 
time to and ends at time te. Such strain cycles are denoted by C[to , te] · Il'iushin's 
postulate (strong form) requires the work to be non-negative in any strain cycle: 

te 

(3.1) I (to , te) = J T(t) · E(t) dt ~ 0 for every C[to , te]· 
to 

Evidently, a strain cycle does not generally imply a cycle for other process vari
ables, if irreversible deformations are involved. To emphasize this fact , ZYCZ
KOWSKI [31 , p . 119] introduced the term quasi-cycle. However, in dealing with 
Il' iushin 's postulate, it is customary (see e.g. LUBLINER [19, p. 122]) to denote 
closed trajectories in strain space simply as strain cycles, a notion which is 
adopted in the present paper as well. 

We now proceed to examine compatibility of the plasticity laws given in 
Sec. 2.1 with the inequality (3.1 ). Especially, we will show that these plastic
ity laws can contradict inequality (3.1) for some special strain cycles, and thus 
in general. To this end, it suffices to consider one-dimensional strain-controlled 
processes involving tension and compression loading. The constitut ive rela tions 
governing the material response are given by (2 .22) - (2.27). Specifically, we con
sider strain cycles of t he form A'C'A' (see Fig.1) to which the (E, a )-paths of 
the kind ABCDE correspond. In the following, we denote by ( )P the value of 
() at the point P. 

Plastic flow first occurs during compression at point B and during tension 
at point D . We may parameterize t he ( E, a)-path e.g. by using the t ime t as 
a parameter. We denote by tA , t8 , tc , tv , tE, (tA < tn < tc < tv < tE) , the 
times belonging to the (E , a)-points A , B , C, D , E, respectively. Thus, plastic 

C) Actually, we deal only wit h t he linear isotropic version of t he simple endochronic theory 
here, but it is not difficult t o extend the above discussion to the non-isotropic case. 
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FIG . 1. Uniaxial strain cycle. To the cycle A' C' A' in the strain axis corresponds 

the (c, a)-path ABCDE. 

683 

deformations are only involved during the time intervals [tB, tc] and [tv , tE], while 
pure elastic deformations take place during the time intervals [tA, t8] and [tc, tv]· 
Since kinematic hardening is only incorporated , the strain differences between E 
and D , and between B and C, are equal: 

(3.2) 

The strain differences between A and B, and between D and C, satisfy the 
relations (see Fig. 1) 

(3.3) 

The work of the stress power for the time interval [tA, tE] is 

tE 

(3.4) IAE =I a(t) [(t) dt , 
tA 

or, by (2.22), (2.23), 

tE tE 

(3.5) IAE = E I E(t) [ (t) dt - E I Ep(t) [(t) dt. 
tA tA 
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Recalling that eA = cE, the last equation reduces to 

tE 

(3.6} I AE = - E I c p ( t) E: ( t) dt , 
tA 

or 

(3.7} IAE = 2k ( c~ - cg) - E ( J cp(t) E:(t) dt + J cp(t) E:(t) dt) , 
ts tv 

in view of the fact that cp(t) = c~ = const fortE [tA , t 8 ] and cp(t) = cg = const 
fortE [tc,tv]. Now fix tA (and therefore eA, £ 8 too) and change the integration 
variable from t to c. This is possible, since the strain c is a monotonic function 
oft fortE [t8 , tc] and t E [tv , tEJ, respectively. Further, suppose that the values 
of cp and~ are known at tA , and therefore at t8 too. Then, fort E [t8 , tcJ, the 
solutions of Eqs. (2 .22)- (2.26}, with a-~= -k and Ep < 0, define cp and~ as 
functions of the strain Ep(c) and [(c), respectively. Hence the values of cp and~ 
at tc, and therefore at tv as well, are determined as a function of x, respectively, 
where x is defined by (3.2). We may use these values as initial conditions in 
(2.22} - (2.26}, with a-~= k and E:.P > 0, to obtain cp and~ fort E [tv, tE] as 
functions of the strain €p(c; x) and [(c; x) , respectively: 

(3.8} 

Clearly, 

(3.9) 

(3.10) 

{ 
(Ep(c) , [(c)) if t E [ts, tc], 

(cp(t), ~(t)) = (= ( . ) "t( . )) .f [ J 
Cp c,X ... c,x 1 t E tv,tE . 

Then, (3. 7) can be written as 

(3.11) 

with 

(3.12) 

(3.13) 

(3.14) 

<p1(x) = 2k (c~ -Ep(£ 8 - x)) , 
c;B - x 

<p2(x ) = E I Ep (£ ) de, 
c;B 

c;A 

<p3(x) = E I €p(c; x) de . 
c: A - x 
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For our purpose it is convenient to expand IAE(x) into a Taylor's series about 
X= 0: 

with 0 denoting the usual order symbol. The derivatives of the functions in 
(3.12)- (3.14) are given by 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

eA -
dcp3(x) _ E = ( A . ) E J 8Ep(c; x) d 

dx - Cp c - X' X + ax c ' 
c A-x 

(3.21) 

Before proceeding to calculate the values of these functions for x = 0, it is first 
necessary to establish some results concerning the derivatives of the functions in 
(3.8). From (2.27) and (3.10) we obtain 

(3.22) 

(3.23) 
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Also, if cD :S c :S cE = EA , we may diffenrentiate the identity 

(3.24) 

€ -

Ep(c; x) = Ep (E8
- x) + j atp~~ ; x) du 

c; A - x 

with respect to x to obtain 

(3.25) 

This implies 

(3.26) 

the variable u in the two first terms on the right-hand side of (3.25) being replaced 
with c. Using (3.12) - (3.14), (3.16) - (3.21), as well as (3 .8) , (3.9) and (3 .26) , it 
is now straightforward to deduce that 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3 .35) 

(/)1 (0) = 0 ) 

[
d<pl(x)] = 2k [dEp(c)J , 

dx x=O de €=€ B 

[
d2 <pl(x)l = - 2k [d2Ep(c)l 

dx2 dE2 ' 
x=O €=€B 

(/)2(0) = 0) 

[
d<p2(x)] = -Ec; , 

dx x=O 

[
d
2

<p2 ~x ) l = E [dEp(c)] , 
dx x=O de €=€ B 
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Thus, by substituting (3.27) - (3.35) into (3.15) and rearranging the terms ap
propriately, I AE ( x) takes the more specific form 

(3.36) 

Now, we are in a position to show that the sign of I AE ( x) can become negative. 
To this end, suppose ~8 > 0, so that, from (3.22) , (3.23), 

(3.37) [
dfp(c) J _ [8Ep(c; x) l < 0 . 

dE c=cB oE _ A _
0 c-c , x-

Then, in view of (3.36), we recognize that there exist strain cycles wit h sufficiently 
small x, such t hat IAE(x) can be approximated by second-order terms in x. 
Further, by virtue of (3.37), IAE(x ) can become negative if k is sufficiently small 
(but in general not infinitesimally small). 

It must be noted that, as mentioned in the Introduction (Sec. 1), a negative 
work during strain cycles for the simple endochronic theory was calculated by 
SANDLER [26] and RIVLIN [25]. However , it was shown in Sec. 2.2 that consti
tutive models of the simple endochronic theory do not possess a finite elastic 
range, even not an elastic part of deformation . Roughly speaking, the quali tative 
difference between our work and the calculations of Sandler and Rivlin is that 
here we deal with plastic materials exhibiting finite elastic range. 

4. The postulate of Il'iushin for small strain cycles 

In the previous section, we have shown with reference to the well-established 
plasticity laws given in Sec. 2.1, that if the hardening parameters, and in particu
lar the yield stress, are required to be only non-negative, a physically plausible 
assumption, then inequality (3 .1) may be violated. It is then of interest to know 
if these plasticity laws satisfy some weaker forms of material stabilitye) than 
(3.1). In the following, we will show that indeed they satisfy a weaker form of 
t he postulate of Il'iushin, in which the integral of t he stress power is required to 
be non-negative only for special, so-called small strain cycles. 

We observe from Fig. 1 that during the loading segment corresponding to the 
t ime interval (t 8 , tc], the initial strain state (point A') always lies outside t he 
elastic ranges surrounded by the yield surfaces in the strain axis (strain space). 

C) The terms strong and weak forms of work postulate are introduced by MARTIN (21 , 

Sec. 2.4) in relation to various inequalit ies imposing restrictions on constitutive relations. 
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For example, point A' is out of the line segment C' D', which represents the 
one-dimensional elastic range assigned to the point C. Following LUCCHESI and 
SILHAVY [20] we denote strain cycles which always contain the initial strain state 
as small strain cycles. It can be seen that during a (simple closed) small strain 
cycle, generation of plastic deformation occurs only either due to compression or 
due to tension. For example, with regard to the small strain cycle corresponding 
to the strain-stress-path aBC-y (see Fig. 1), Ep(t) =f. 0 is satisfied only in the 
time interval [t8 , tc]· In this case, regardless of the value of k , we have (tA < 
tB < tc < t7 ) 

t.., t.., 

(4.1) 10 -y =I a(t)E(t)dt = -E I Ep(t)E(t)dt 

= E ( £~(£"- £") + 1 i',(£) d£ - cg(c"- £0
)) 

~ E [c0 (c0
- E8

) + cg(c8
- Ec)- cg(c0

- Ec )] 

= E(E~- cg)(c0
- E8

) > o. 

Hence, in the case of uniaxial loading, the plasticity laws given in Sec. 2.1 are 
stable in the sense of Il'iushin for all small cycles. 

In order to extend this result to the three-dimensional case, it is convenient 
to introduce the notion of small strain cycles within a general framework for 
plastic constitutive relations. Suppose that the yield surface is represented in 
strain space by an equation of the form 

(4.2) G(E, Ep , q) = 0 ) 

where q represents a set of plastic internal variables Qi , 1 :s; i :s; m , which are 
scalar-valued or components of tensors. The internal variables Qi are supposed to 
change only when plastic flow occurs . We consider strain cycles which satisfy the 
following condition. During the cyclic process, the initial strain state is always 
included within or lies on the boundary of every yield surface corresponding to 
the process. In other words, the initial strain state always lies in the intersection 
of all the elastic ranges surrounded by the yield surfaces during the process. 
Generalizing the one-dimensional definition, we denote such strain cycles as small 
cycles, and write C5 [to, te] for a small cycle which begins at time to and ends at 
time te. Then, a material is defined to satisfy the postulate of Il'iushin for small 
cycles (weak form of the postulate of Il'iushin) , if 

te 

(4.3) I(to,te) =I T(t)·E(t)dt ~ 0 for every 

to 
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In Appendix A, it is shown in a general context, that if the elasticity law is inde
pendent of the plastic deformations, then the weak form of Il 'iushin's postulate 
( 4.2) is equivalent to the two following conditions: i) the yield surface in stress 

space is convex, and ii) the plastic strain rate Ep is directed along the outward 
normal to the yield surface in stress space (normality rule). Since the plasticity 
laws of Sec. 2.1 satisfy these convexity and normality conditions , it follows that 
they satisfy ( 4.3) as well. This proves, for the three-dimensional case, stability 
in the sense of the weak form of Il'iushin's postulate for the plasticity laws given 
in Sec. 2.1. 

Until now we have introduced the stability condition ( 4.3) in relation to spe
cific constitutive models. However , from a physical point of view on a phenomeno
logical level, it seems that there is no experimental evidence to exclude from a 
general theory of plasticity such material response which is concordant with the 
stability condition (4.3). Thus, regarding inequality (3.1) as being too restrictive 
for the material response, we may assume the weaker inequality ( 4.3) as a general 
principle which is in agreement with the observed behaviour of various materials. 
Note that such an assumption is in harmony with the statement by PALMER, 
MAIER and DRUCKER [24, p. 468], that "the degree of stability to be required 
of a material or a structural element is a matter of matching the observed or 
calculated behaviour of a selected portion of the real world with a sufficiently 
simple model" . 

On the other hand, it can be seen (see e.g. Appendix A) , that if the elasticity 
law is independent of the plastic deformations, then ( 4.3) is equivalent to the 
so-called principle of maximum plastic dissipation. The latter was also derived 
from considerations of crystal plasticity by BISHOP and HILL [2) . This motivates 
from a physical point of view on a microstructural level, the use of the stability 
condition ( 4.3) in a general theory on plasticity. 

It must be emphasized that, in the framework of the assumptions made in the 
present paper , (4.3) is the isothermal version of a general dissipation postulate, 
which has been proposed by LuccHESI and SILHAVY [20) as a non-isothermal 
generalization of Il 'iushin's inequality (3.1). However, it is of interest to note 
that the condition that the cycles should be small was imposed by Lucchesi and 
Silhavy in order to make Il 'iushin 's postulate "derivable from some sufficient 
conditions (the normality rule)" . This is rather a mathematical point of view, 
while the condition of small cycles is assumed in the present work in order to 
obtain a stability condition for material response which is not too restrictive 
when modeling the observed behaviour of various materials. This is rather a 
physical point of view. 

5. Consequences for the case of vanishing elastic range 

In order to give a general treatment for the case of vanishing elastic range it is 
necessary to introduce a distance between two elements in the considered vector 
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space of second-order tensors. Since we deal with normed vector spaces, we define 
the distance between two tensors to be the norm of their difference. Further, we 
denote by b'G the supremum of the diameters of all the yield surfaces during the 
strain cycle (the diameter of a yield surface in a strain space representation is 
defined to be the supremum of the distances between two points on the yield 
surface). We assume that the yield surface is a closed hypersurface, at least in 
the space of deviatoric strain tensors. If the yield surface is a closed hypersurface 
in the space of strain tensors, then b'G should be understood to be defined in the 
space of strain tensors. Otherwise, OG should be understood to be defined in the 
space of deviatoric strain tensors. In the latter case, plastic incompressibility is 
supposed to apply as well. 

Next , suppose the yield surface to be given in a strain space representation 
as defined by (4.2) and consider the small strain cycle ABCD displayed in Fig. 3 
(see Appendix A). Let us denote by x the supremum of the distances between 
the strain points along BC and the initial yield surface G(E, Egq8

) = 0 (the 
distance between a strain point and a surface is defined to be the infimum of all 
the distances between the strain point considered and arbitrary points on the 
surface). Since ABCD is supposed to be a small cycle, the inequality 

(5.1) 

applies. The case of vanishing elastic range is equivalent to 

(5.2) 

Indeed, in view of the definition for b'G , (5.2) implies that the yield surface shrinks 
to a point (it does not degenerate to some line segment). 

Clearly, taking into account (5.1) and that x ~ 0, Eq. (5.2) implies 

(5.3) X = 0 . 

This result states that, in the case of vanishing elastic range, there are no small 
cycles, apart from the trivial cycle E = EA = E 8 = Ec = ED . That is, con
cerning materials with vanishing elastic range, only trivial cycles satisfy the 
conditions for small cycles, and hence, ( 4.3) is satisfied trivially. 

As a consequence, now we obtain compatibility between the simple endo
chronic theory of plasticity and the version ( 4.3) of Il'iushin's postulate. To see 
this, it is necessary to transform the yield condition (2.5) - (2. 7), 

into a strain space formulation. We denote by ~e the elastic strain with the 
property 
(5.5) ~ = [T]E.=~. = 2J,L.6.e + >.(tr ~e) l . 
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Using this relation, as well as the elasticity law (2.2) , and the decomposition of 
strain (2.1) , we may rewrite (5.4) as 

(5.6) G(E, a ) = 

(see.Fig.2), where 
(5.7) 

0 

3 (2J.L+3.X) - (E - a )v · (E - a )v + a 2(tr (E - a ))2 
2 2J.L 

k 
- -= 0 

2J.L ) 

FIG. 2. Schematic representation of the yield surface in strain space: M denotes the 
"center" of the yield surface while P denotes an arbitrary strain state in the elastic 

range. 

Equation (5 .6) is a representation of the yield surface in strain space for
mulation. Evidently, if k = 0, then E = a , and the yield surface shrinks to a 
point. Consequently, Il'iushin's postulate in the form ( 4.3) is satisfied trivially. 
Of course, this also applies to t he case where, in addition, 

(5.8) J.L, .X --+ oo, 

which in turn leads to the simple endochronic theory of plasticity, as shown in 
Sec. 2.2. 
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Appendix A 

There are many investigations concerning integral inequalities like that ob
tained by Il'iushin's postulate as e.g. the works ofiL' IUSHIN [16], PALMER, MAIER 
and DRUCKER [24], HILL [13, 14], HILL and RICE [15], MARTIN [21, Sec. 2.4, 2.5], 
DAFALIAS [7], PALGEN and DRUCKER [23], CASEY and TSENG [3], LUBLINER 
[19], CARROLL [4], LIN and N AGHDI [18], LUCCHESI and SILHAVY [20], HAVNER 
[12, Sec. 3.6], FOSDICK and VOLKMANN [10] . Apart from technical details , all 
these investigations utilize a common method for deriving consequences from 
the integral inequalities. This is now briefly described for the particular case 
that the elasticity law is independent of the plastic deformations, but otherwise 
a general theory with plastic internal variables q is assumed to apply. 

Suppose that the stress tensor T satisfies an elasticity law of the form T = 
T(Ee) , which possesses an inverse Ee = Ee(T), so that E = Ep + Ee(T) . We may 
use the last relation in Eq. (4.2) to obtain a representation of the yield surface 
in stress space: F(T, Ep, q) = 0. Further, it can be shown that a necessary and 
sufficient condition for the validity of (4.3), the latter being considered for pure 
elastic processes, is the existence of a scalar-valued function tJ! = ¥e(Ee) + tJ!p = 

tPe(E, Ep) + tJ!p such that the potential relation 

holds. tJ!p may depend on Ep and q. We assume that (A.1) applies during plastic 
loading as well, and consider a small strain cycle ABC D as in Fig. 3, which is 
parameterized by timet. We denote by tA , tB, tc, to, (tA < tB < tc < to) , the 
times related to the points A, B, C , D , respectively. 

FIG. 3. During the small strain cycle ABCD plastic flow occurs between Band C only. 
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The strain cycle begins and ends at E = EA = En. P lastic flow occurs 
between B and C only. It follows from ( 4.3) that 

tc -

= ~(EA Ec) - ~(EA En)- I 8llie(E(t), Ep(t)) ·E (t) dt 
e ' p e ' p 8E( t) p 

tn 

= /tc[8\Pe(EA, Ep(t)) _ 8\Pe(E(t), Ep(t)) ]·E (t)dt > O. 
8Ep(t) 8E(t) P -

tn 

We may apply Taylor 's theorem to establish the relation 

(A.3) 

Thus, dropping t8 in (A.3), we obtain as a necessary condition for ( 4.3) the 
inequality 

(A.4) 

with E denoting a strain state on the yield surface G = 0, Ep the correspond
ing plastic strain, and EA a strain state on or inside the yield surface G = 0. 
Conversely, (A.4) constitutes a sufficient condition for ( 4.3) . To see this, we take 
the integral of (A.4) along a strain cycle as shown in F ig. 3. For (A.4) to remain 
valid during this strain cycle, EA must always lie in the intersection of all the 
elastic ranges during the strain cycle, which in turn implies that the strain cycle 
ABCD must be small. Then, following the steps similar to those used in (A.2), 
it is a straightforward matter to arrive at (4.3). Note that, with equation (A.l) 
in mind, we may introduce the definition 

(A.5) 

where T A is a stress tensor on or inside the yield surface in stress space. Then, 
inequality (A.4) is equivalent to 

(A.6) 
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where T is a stress tensor on the yield surface in stress space F = 0. Inequali ty 
(A.6) is known as the principle of maximum plast ic dissipation and is equivalent 
to the following two conditions (for a proof of this fact see e.g. LUBLINER [19, 
Ch . 3.2.2]) : 

i) the yield surface F(T, Ep, q) = 0 is convex, and 

ii) Ep is normal to F(T, Ep, q) = 0 (normality rule). 
Apart from notational differences, a large part of the analysis above follows 

closely t hat given by L UBLINER [19, Ch. 3.2] . Lubliner's analysis, however , deals 
with the strong form of Il 'iushins's postulate and therefore (A.6) represents only 
a necessary condit ion for ( 4.3). Also, it must be mentioned that LUCCHESI and 
SILHAVY [20] have developed a finite plasticity theory which is based on the the
ory of materials with elastic range, and is formulated in a general mathematical 
framework. They discussed several interrelationships between inequalities of t he 
work type, including the main resul ts of the present Appendix. 
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A nonexistence theorem of small periodic traveling 
wave solutions to the generalized Boussinesq equation 

Y. CHEN (FAYETTEVILLE) 

THE GENERALIZED Boussinesq equation, u11 - Un + [f(u))n + Unn = 0, and its 
periodic traveling wave solutions are considered. Using t he transform z = x - wt , 
the equation is converted to a nonlinear ordinary differential equation with peri
odic boundary conditions. An equivalent relation between the ordinary differential 
equation and a Hammerstein-type integral equation is then established by using 
the Green 's function method . This integral equation generates compact operators in 
( c2T, 11 · 11) , a Banach space of real-valued continuous periodic functions with a given 
period 2T. We prove that for small T > 0, there exists an r > 0 such that there is no 
nontrivial solution to the integral equation in the ball B(O, r) ~ C2r - And hence, the 
generalized Boussinesq equation has no 2T-periodic traveling wave solutions having 
amplitude less than r. 

1. Introduction 

IN THE 1870's, Boussinesq derived some model equations for the propagation of 
small amplitude long wave on the surface of water [1]. These equations possess 
special traveling wave solutions called solitary waves. Boussinesq's theory was 
the first to give a satisfactory and scientific explanation of the phenomenon of 
solitary waves discovered by Scott Russell in his experimental observation of 
shallow water propagation some thirty years earlier [2]. 

The original equation due to Boussinesq is not t he only mathematical model 
for small amplitude planar long waves on the surface of shallow water. Different 
choices of the independent variables and the possibility of modifying lower order 
terms by the use of the leading order relationships can lead to a whole range 
of equations, all of which have the same formal valid ity [3]. All of these models 
possess one obvious characteristic, however, which is that they are perturbations 
of the linear wave equation that takes account of small effects of nonlinearity 
and dispersion. 

In this paper, we consider a generalized Boussinesq equation of the form 

(1.1) Utt - Uxx + [f(u)]xx + Uxxxx = 0, 

where u = u(t, x) and f (u) is a C 1 funct ion in its argument. 
We shall prove a nonexistence theorem of periodic t raveling wave solut ions to 

this equation following the idea of Lru and PAO [4], SoEWONO [5], and CHEN and 
HE [6]. Of course, this does not establish the nonexistence of periodic traveling 
wave solutions to the generalized Boussinesq equation . We merely prove t hat 
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for a given small T > 0, under certain conditions , 2T-periodic traveling wave 
solutions with small amplitude to the generalized Boussinesq equation do not 
exist . There is no doubt about the existence of periodic traveling wave solutions 
to the generalized Boussinesq equation when f(u) = un for some positive integer 
n . It is well known that the periodic cnoidal wave solutions exist and can be 
representable as infinite sums of solitons when f(u) = un and n = 1, 2 [7, 8, 9]. 

The plan of this paper is as follows. In Sec. 2, the generalized Boussinesq equa
tion is transformed to an ordinary differential equation with periodic boundary 
conditions. We then apply the Green's function method to derive a nonlinear in
tegral equation equivalent to the ordinary differential equation. The nonexistence 
of small periodic solutions to the integral equation is proved in Sec. 3. Therefore, 
the nonexistence of small 2T-periodic traveling wave solutions to the generalized 
Boussinesq equation is established. 

2. Formulation of the problem 

We start from the generalized Boussinesq equation of the form 

(2.1) Utt- Uxx + [f(u)]xx + Uxxxx = 0, 

where the function f is C1 in its argument . We are interested in the periodic 
traveling wave solutions of the form u(x, t) = U(z) = U(x- wt) , where w > 0 is 
the wave speed and z = x - wt is the characteristic variable. Substitution of the 
U(z) into Eq. (2.1) then leads to the fourth order nonlinear ordinary differential 
equation 

(2.2) U(4l(z) = CU"(z) - [f(U(z))]" , 

where C = (1 - w2 ) . To obtain periodic solutions, we impose the following 
boundary conditions 

(2 .3) n = 0, 1, 2, 3, 

where T is a preassigned positive number. To eliminate nontrivial constant solu
tions to the ordinary differential equation (2.2), another condition is introduced 

(2.4) 

2T 

j U(z ) dz = 0. 

0 

It is obvious that any solution U(z ) of the boundary value problem consisting of 
Eqs. (2.2)- (2.4) can be extended to a 2T-periodic traveling wave solution to the 
original evolution equation (2.1). 
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Integrating both sides ofEq. (2.2) with respect to z twice and using Eqs. (2.3), 
(2.4) yield 

(2.5) 

(2.6) 

where 

U"(z) - CU(z) = E- f(U (z)), 

u(n) (0) = u(n) (2T) , 

2T 

E = I f (U(z)) dz / (2T). 
0 

n = 0,1, 

Conversely, integrating both sides of Eq. (2.5) from 0 to 2T and using Eqs. (2.6) 
will give us Eq. (2.4), and direct differentiat ions of Eq.(2.5) will give us Eqs. (2.2), 
(2 .3). Therefore, we have proved the following theorem. 

THEOREM 1. Suppose C ¥ 0, a function U(z) is a 2T-periodic traveling 
wave solution to Eq. (2.1) satisfying the boundary conditions Eqs. (2.3) , (2.4) if 
and only if it is a solution to the boundary value problem consisting of Eqs. 
(2.5), (2.6) . 

From now on we only consider the two cases: 1. C > 0 and 2. C < 0 but 
- C ::j; (br/T)2 with k being any integer. Treating the right-hand side ofEq. (2 .5) 
as a forcing term and using the Green's function method [4, 10], the boundary 
value problem Eqs. (2.5), (2.6) can be converted to a nonlinear integral equation 
of the form 

(2.7) 

2T 

U(z) =I Ki(z, s) f(U(s)) ds, 
0 

'rf z E [0, 2T], 

where the kernels Ki, i = 1, 2, are defined as follows: 

1. When C > 0, we denote )q =VC, then 

(2 .8) }( ( ) 
_ cosh>.1 (T - lz- si) _ _ 1_ 

1 z , s - . , 2T' 2>.1 smh >.1T 2"'1 
'rfz, sE [0, 2T]. 

2. When C < 0 but -C ::j; (k1rjT) 2 with k being any integer, let >.2 = FC, 
then 

} :r2
(z s) = cos >.2(T- lz- si) __ 1_ (2.9) \. , 2 , 'rfz, s E [0, 2T]. 

2>.2 sin>.2T 2>.2T 

LEMMA 1. The kernels K 1 and K 2 have the following properties: 

Ki(O, s) = Ki(2T, s), 

Ki(z,2T- s) = Ki(2T- z,s ), 
2T I Ki (z,s) ds = 0, 
0 

'rfsE[0,2T], i= 1,2, 

'rfz, sE [0, 2T], i = 1, 2, 

'rfz E [0, 2T], i = 1, 2. 
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P r o o f. Straightforward computations based on the definitions of the 
K1(z, s) and K2(z, s) given in Eqs. (2.8), (2.9) . 

0 

THEOREM 2. A function U(z) is a solution of the boundary value problem 
consisting of Eqs. (2.5) , (2.6) if and only if it is a solution of the integral equa
tion (2 .7) . 

P r o o f. The "if' part can be proved by direct differentiations of Eq. (2.7) 
and the "only if' part is based on the Green's function method by treating the 
right-hand side of Eq. (2.5) as a nonhomogeneous term. 

0 

3. Nonexistence theorem 

It is seen from the Theorem 1 and 2 t hat U(z ) is a solution to the integral 
equation (2.7) if and only if it is a solution to Eq. (2.1) satisfying the bound
ary conditions Eqs. (2.3) , (2 .4) . Therefore, to show the nonexistence of small 
2T-periodic traveling wave solutions to Eq. (2.1) with the boundary conditions 
Eqs. (2.3) , (2.4) , it is sufficient to show that small solution to Eq. (2.7) does not 
exist. 

To this end we define c2T as a collection of real-valued continuous functions, 
v(z ), on [0, 2T] such that v(O) = v(2T). Equip C2r with t he sup norm 11 ·11 as 
llvll = supo<z<2rlv(z)i , for each v E C2r , then (C2r , ll · ll ) becomes a Banach 
space and llvris the amplitude of v . 

We now define the operators A , i = 1, 2, on c2T as 

(3.1) 

2T 

A v(z ) = J K i(z, s)f (v(s)) ds, 

0 

where the kernels Ki , i = 1, 2, are defined in Eqs. (2.8), (2.9). Notice that the 
operator A depends on T and Ai, i = 1, 2. 

We shall show that for any given small T > 0, there exists an r > 0 such that 
II Avll < llvll for any nontrivial function v E B (O, r ) ~ C2r , i = 1, 2. This implies 
t hat the equation A v = v has no nontrivial solution with amplit ude smaller than 
r. And hence, the nonexistence of non t rivial small solution to t he boundary value 
problem Eqs. (2.4), (2.5) is established. This, in t urn, leads to t he nonexistence 
of small 2T-periodic traveling wave solut ion U(z) to the generalized Boussinesq 
equation satisfying the boundary conditions Eqs. (2.3), (2.4). 

A consequence of Lemma 1 can be stated now. 

LEMMA 2. Let v be an element of C2T· If v(z ) = v(2T - z ) for z E [0, 2T j, 
then A v(z ) = A v(2T - z ), i = 1, 2. 
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Let r > 0 and B(O, r) be a bounded ball in C2r, we then have the following 
theorem. 

THEOREM 3. ~ : C2T ----+ C2r, i = 1, 2, is compact and ~~~vll < livli fo r 
all nontrivial v E B ( 0, r) when T is small enough, i = 1, 2. 

p r 0 0 f. First we show Ai : c2T ----+ c2T, i = 1, 2. Since it is obvious from 
Lemma 1 that ~v(O) = ~v(2T) for each V E c2T, i = 1, 2, it suffices to show 
that ~v, i = 1, 2, is continuous on [0, 2T]. 

Let V be an element in c2T, we have 

(3.2) 

(3.3) 

z 
dA1v(z) - 1 I . 
_::.._.:...~ = . smh.X1 (T- z + s)f(v(s)) ds 

dz 2smh.X1T 
0 

z 

2T 

+ . ~A TlsinhAl (T+z - s) f (v(s))ds , 
2sm 1 

z 

dA2v( z) 1 I . 
d = . AT smA2(T - z +s)f(v(s) )ds 
z 2sm 2 

0 

2T 
- 1 I + . A T sinA2(T + z - s) f (v(s)) ds . 

2sm 2 
z 

The existence of dA1 vI dz and dA2v I dz implies that both A1 v and A 2v are 
continuous on [0, 2T], and hence, we have proved~ : C2T----+ C2r, i = 1, 2. 

Let S be any bounded subset of C2r, i.e., there exists an Lo > 0 such that 
llvll ~ L0 for all v E S. Then since f is C 1 in its argument, there exists an Mo > 0 
such that 

ilf(v)il = sup if(v(z ))i ~ sup lf (w) l ~ Mo , 
O~z~2T -Lo~w~Lo 

Since sin A2T f:. 0 and 

2T 

max I IKi(z , s )i ds ~ 21 Af, 
O<z<2T 

i = 1,2, 
- - 0 

we obtain from Eqs. (3 .1) - (3 .3) 

2Mo 
ll~vll ~7 ' 

l 

TMo 
ild~vldz li ~ -, 

Ti 

Vv E S, i = 1, 2, 

Vv E S, i = 1, 2, 

Vv E S. 
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where T1 = 1 and T2 = I sin .X2Tj. Thus, ~S, i = 1, 2, is uniformly bounded 
and equi-continuous, and by the Ascoli - Arzela Theorem both A1 and A2 are 
compact operators from C2T into C2T. 

From the defini t ion of Ki, Eqs. (2.8) , (2.9), we see that for any fixed z E 
(0,2T), the graph of Ki (z,s), i = 1, 2, is just a translation of the graph of 
Ki(O, s) , i = 1, 2. Therefore, we have the following inequalities [5, 6] 

2T 2T 

(3.4) I jK 1(z, s)j ds = I IK1 (0, s)j ds :S :f ( 1- sin~~~1T) , 
0 0 
2T 2T 

(3.5) I IK2(z, s)jds = I IK2(0,s)j ds ::; :~ ci~\:T - 1). 
0 0 

It should be noticed that T is small and the right-hand sides of the above two 
inequalities (3.4), (3.5) vanish when T goes to zero. 

Let v be a nontrivial function in B (O, r). We define 

I = {v(s) : v E B(O,r) , 0 ::; s ::; 2T}. 

It is obvious that I ~ [ - 1·, r] and 0 E I , since otherwise the equation ~v = v 
has no solution in B(O, r) because of the condition Eq. (2.4) and we are done. 
Using the Mean Value Theorem, we then have 

f(v(s)) = f (O) + /'(c)v(s) , Vs E [0, 2T], 

where c = c(s) E I. Hence, since f' is continuous in its argument, there exists 
an N > 0 such that 

11 /' (c)ll ::; sup 1/'(v(s))j ::; sup 1/' (w) J::; N. 
O~ s~2T -r~w~r 

From the Lemma 1, we know 

Therefore , we have 

2T 

I Ki(z, s)f (O) ds = 0. 
0 

2T 

II A1vjj = sup IK1(z,s)j(v(s)) ds , 
O<z<2T - - 0 

2T 

= sup IK1 (z , s)[ f (O) + f'( c)v(s)] ds , 
O<z<2T - - 0 



A NONEXISTENCE THEOREM OF SMALL PERIODIC ... 

2T 

= sup I K1 (z, s)f' (c)v(s) ds , 
O<z < 2T - - 0 

2T 

~ sup I IK1 (z, s)lll f' (c)llllv(s)ll ds, 
O< z < 2T 

- - 0 

2T 

~ Nllvll sup I IK1 (z, s)l ds, 
O< z< 2T 

- - 0 

2N ( A.1T ) 
~ A.i llvll 1 - sinhA.l T ' Vv E B (O, T) . 

It can be seen that when T is small enough we shall have 

(3.6) - 1 - < 1 2N ( A.1T ) 
A.i sinhA.1T · 
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Therefore, we proved t hat when T is small enough, we shall have IIA1 vll < llvll 
for all nontrivial v E B (0, r) . Similarly, we can also prove that when T is small 
enough, 

(3.7) 

and hence, IIA2vll < llvll for all nontrivial v E B (O,r ). 
0 

By Theorem 3, we see that the equation ~v = v , i = 1, 2, has no nontriv
ial solution in B(O, r) when the inequalities (3.6), (3.7) hold. T his implies that 
Eq. (2.7) has no nont rivial solution in B(O, r) when C > 0 and 

or when C < 0 but - C/(aa2
) -:j; (br/T)2 with k being any integer and 

Therefore, we proved the following nonexistence theorem for small 2T-periodic 
t raveling wave solutions to the generalized Boussinesq equation. 

THEOREM 4. For any given small T > 0, there exist an r > 0 and N > 0 
such that llf'(v) ll ~ N when llvll ~ r. Thus to Eq. (2. 1) with the boundary 
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conditions Eqs. (2.3), (2.4), there is no 2T-periodic traveling wave solution U(z ) 
with amplitude less than r if (1) C > 0 and 

2N ( ..\1T ) 
.Xr 1

- sinh..\1T < 1' 

or (2) C < 0 but -Cj(aa2 ) ::f. (krr/T) 2 with k being any integer, and 
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A Cosserat theory for elastoviscoplastic single crystals 
at finite deformation 

S. FOREST, G. CAILLETAUD (PARIS) and R. SIEVERT (BERLIN) 

IN THIS WORK , displacement and lattice rotation are regarded as independent de
grees of freedom. They are connected only on the constitutive level and by the balance 
equations. The description of plastic deformation is based on the slip theory. Elas
tic lattice curvature and torsion are associated with couple-stresses. The continuum 
theory of dislocations has been revisited to derive the kinematics of plastic lattice 
torsion-curvature. Explicit constitutive equations and hardening rules are proposed 
to close the theory in the case of elastoviscoplasticity. The thermodynamical formu
lation of the model involves internal variables which are similar to the densities of 
statistically stored dislocations and the densities of geometrically necessary disloca
tions. Accordingly, the proposed Cosserat theory can be regarded , on the one hand, 
as the classical crystal plasticity theory complemented by latt ice curvature and tor
sion variables and, on the other hand, as the continuum theory of dislocations closed 
by the missing hardening variables and constitutive equations within the appropriate 
micropolar framework. A generalization of Mandel's elastoviscoplastic decomposition 
of strain is used especially for the torsion-curvature measure at finite deformation . 

1. Introduction 

MANDEL [1] introduced the notion of oriented microelements characterized by 
some hidden directors into the theory of elastoviscoplasticity. The epoch-making 
expression "triedre directeur" is directly taken from the Cosserat brothers' well
known work [2] . The relative rotation of neighbouring microelements may induce 
local couple stresses. To the first approximation Mandel neglects them and re
gards the single crystal and the polycrystal as a classical continuum. We propose 
here the strict treatment of the single crystal as a Cosserat continuum. 

NYE [3] noticed that after bending or torsion, a crystal contains excess dis
locations of a definite sign that give rise to lattice curvature. In a modelling of 
single crystals with more reference to dislocations, this additional deformation 
possibility should be taken into account. Furthermore KRONER [4] claimed that 
the macroscopic response of a medium to lattice curvature is the existence of 
actual Cosserat couple stresses. The couple-stresses may have the same order 
of magnitude as force-stresses under some circumstances [5, 6] . In these early 
works Kroner regards the dislocated crystal as a Cosserat medium. However, 
his theory deals with symmetric force-stresses and he suggests later that there 
may' be fundamental differences between the dislocation theory and the Cosserat 
theory [7]. 

The reason for such a misunderstanding stems from the frequent use in litera
ture of the Cosserat continuum as the medium in which single dislocations may be 
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embedded. KESSEL [8] computes the force and couple stress fields around screw 
and edge dislocations in a Cosserat continuum. In the present work we claim 
that the continuum containing a large number of dislocations in the sense of the 
continuum theory of dislocations [3], can be modelled as a Cosserat continuum. 
KRONER [9] argues that the rotation of the crystal lattice with dislocations is not 
the eigenrotation of physical particles but the rotation of a structure. This pleads 
against the constrained Cosserat theory that is usually used in the continuum 
theory of dislocations (see Sec. 3.4). As a result, in the Cosserat theory presented 
here, the rotational degrees of freedom are independent of the displacement field 
and are linked only on the constitutive level and by the balance equations. While 
the definition of the Cosserat directors involved in the continuum theory of dislo
cation is generally left unspecified, the "triedre directeur" in this work is clearly 
made of three orthogonal lattice vectors attached to each volume element in a 
released state of the crystal element. As for them, CLAUS and ERINGEN [10] also 
erect a lattice tr iad at every point of the continuum. A most interesting point in 
their work is that they resort to a micromorphic continuum. They also propose 
a phenomenological treatment of micromorphic elastoplasticity but they do not 
derive the crystallographic expressions of plastic slip and curvature nor the nec
essary constitutive equations. WOZNlAK [11 , 12] devoted great attention to t he 
structural interpretation of the additional degrees of freedom of the micromor
phic continuum and considered also bodies with lattice structure. More recently, 
LE and STUMPF [13, 14] have reformulated the continuum theory of dislocations 
in the modern language of differential geometry and they also resort to an ori
ented continuum. In order to get a closed formulation of our model including 
constitutive equations, we will focus on the Cosserat cont inuum. 

The characteristic size of the volume element must be large enough so that it 
contains a large number of dislocations and that a mean crystal orientation can 
be unambiguously defined at each time. It will finally depend on the str uctural 
application one aims at. 

In Secs. 2.1 to 2.3, the main features of the Cosserat theory at finite de
formation are recalled in order to introduce the subsequent developments in 
elastoviscoplasticity. The evolution rule for plastic curvature is derived from the 
continuum theory of dislocations in Sec. 3.3 , after recalling t he closure problem 
of the continuum theory of dislocations. Explicit constitutive equations are then 
proposed to solve this problem in Sec. 4. The notations and some classical results 
used throughout this article are explained in the Appendix. 

2. A Cosserat theory for single crystals 

2.1. Kinematics of the Cosserat continumn 

A material point M E B at time to is described by its posit ion X and its inner 
state, for an arbitrary initial placement, chosen as the reference site. At time t , 
its position is :l(;(X , t) and its inner state E.(X , t) , in a given reference frame E . If 
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(!L)i=l,3 are three orthogonal lat tice vectors in a released state at t and (!l~)i= l,3 
their init ial placement in E, then the rotation R is defined through 

(2.1) 

with 

(2 .2) E.(X , to ) = ! and Det E. = 1. 

A rotating frame E~ (M) is attached to the lattice structure at each point ME B 
and each vector and tensor variable y considered with respect to E~ will be 
denoted by ~ y . 

The rotation field g(X , t) can be replaced by the vector field ~(X , t) given by 
Eq. (A. 12) of the Appendix. The three comp onents of ~ are three degrees offree
dom of t he continuum, in addition to the three components of the displacement 
field 

(2 .3) !!(X , t) = :!(X , t )- X . 

Here, !! and cl- are regarded as independent kinematic variables which can be 
connected on the balance or const itu t ive level or by some constra int. 

The deformat ion gradient classically links the current infinitesimal materia l 
segment d:! with its initial position dX 

(2.4) 

so that 

(2.5) 

(in the absence of other indication, partial derivatives are taken with respect to 
the Xj)· 

Similarly, we compute the variation dg of microrotation along a material 
segment dX . Defining o ~ by 

(2.6) 

we derive 

(2.7) 

with 

(2.8) 
1 r = - E : (R (Rr 0 V)) . 

~ 2 ~ ~ ~ -
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The notation 8 .t means that 8 .t is not a total differential, as can be seen from 
(2.7). Contrary toE, f generally is not invertible. With respect to the local space 
frame Ed, 

(2.9) and d8 tt = dr dX - ~ _, 

where dd:! = B-T d;! and d8 (» = B-T 8 (» , and 

(2.10) 

It can be seen that the relative measures dE and df are invariant under any Eu
clidean transformation [15]. Accordingly they are natural Cosserat strains for the 
development of constitutive equations. They are called respectively the Cosserat 
deformation tensor and the wryness (or bend-twist, or torsion-curvature) tensor. 
An alternative expression of the wryness tensor is then 

(2.11) 
1 

dr = -- €: (RT (R® V')) . 
- 2 ::::. - - -

One defines next the velocity and the gyration tensor 

(2.12) v=u =u· e · - - '_, and 

which can be replaced by the associated gyration vector 

X 1 
U =-- €U - 2 ::::.-(2.13) 

since it is skew-symmetric. The time derivative of the Cosserat strains can be 
related to the gradient of the latter quantities: 

(2.14) 

(2.15) 

dt dr-1 = B-T (y ® V'c _ ! X ~) B., 
dr dr- 1 = Rr ~ 09vc R - - - - _ , 

where V'c = 
0
° ~i = r-T V' (Euclidean representation, c stands for current). 
Xi 

y ® vc - ~ is the relative velocity gradient and describes the local motion of 
the material element with respect to the microstructure. 

2.2. Forces and stresses 

In order to introduce forces and stresses and to deduce the equilibrium equa
tions, we resort to the method of virtual power developed by GERMAIN [16] in 
the case of micromorphic media. The method is readily adapted to the case of a 
Cosserat continuum. 
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The virtual motions are the velocity y and the gyration }i (or microrotation 
rate vector). The next step is to choose the form of the virtual power of a system 
of forces. Within the framework of a first gradient theory, the virtual power of 
the internal forces is a linear form of the virtual motions and their gradients. 
The principle of material frame indifference requires that this linear form should 
be invariant under any Euclidean transformation. That is why we will work with 

the objective quantities y ®\le -'!:? and }i®'Vc. The dual quantities involved 
in the linear form of the virtual power of the internal forces are denoted Q' and 
~ respectively, and are assumed to be objective tensors. For objectivity reasons 
the dual variable associated with y is zero. For any subdomain D C B 

p(i) = -I ( Q' : (y ® \le-'!:?)+~ : (}i ®\le)) dV 

that is 

"D 

= - I ( O"ij Vi,j + J.Lij ~i,j - O"ij Vij) dV 
"D 

= - I ( O"ij Vi + J.Lij ~i) . dV + I ( O"ij,j Vi + (J.Lij,j - .Eikl O"kl)~i) dV ' 
"D ,] "D 

(2.16) 'P(i} =-I ( y Q' + }i ~).!! dS +I( y. divq + }i. (div~ + 2~.)) dV 
av v 

(in this subsection the partial derivatives are taken with respect to the current 
configuration). The virtual power of external forces reads 

(2.17) P(e) = I (f. Y. + ~. }i) dS. 
"D 

The virtual power of contact forces must then be defined 

(2.18) P (c) =I (t .y+m. }i) dS. 

av 
The dual quantities of the velocity and microrotation rate in 'P(e) and P(c) have 
the dimensions of volume or surface force and moment, respectively. The principle 
of virtual power then states that 

X 
VD c B, V (y, ~) P(i) + P(e) + 'P(c) = 0. 

In particular 
X X 

V D C B, V (y, ~) / y = ~ = 0 on 81J, 

I ( y. ( div Q' +f) + }i . ( div ~ + 2 ~ +~)) dV = 0. 
"D 
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Assuming that the quantities are continuous on B, the local equilibrium equations 
follow 

(2.19) 
div~ + f = 0 , 

div~ + 2~+~ = 0. 

As a result, the principle of virtual power becomes 

V 'D c B, V (:!, ~) j ( ( ~ !! - !) . :! + (~!! - m) . ~) dV = 0, 
av 

from which the boundary conditions are deduced 

(2.20) 
an = t -- _, 

~n = m . 

~ is called the Cauchy force stress tensor and ~ the couple-stress tensor . They are 
generally not symmetric. A detailed account of Cosserat statics and dynamics 
can be found in [17]. 

2.3. Hyperelasticity 

2.3.1. Energy balance. Let £ be the internal energy per unit mass, 9 the heat flux 
vector, {! the current density. The energy balance equation reads then 

(2.21) 

(any other inner heat supply is excluded for simplicity). 
According to the thermodynamics of irreversible processes, the entropy prin

ciple is written 

(2.22) {!ry + div (~) ~ 0, 

where T denotes the temperature and 17 the entropy per unit mass. 
Introducing the free energy 1/J = £ -1] T and combining the energy and entropy 

equations, one derives the Clausius - Duhem inequality 

(2.23) 

where 

(2 .24) 
~a = RT a R - - ...... _, 

~~ = E-T~ E., 
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are rotated stress tensors with respect to the space frame E~ attached to the 
microstructure. 

A material is said to be hyperelastic if its free energy and entropy are functions 
of ~E and d!: only. The Clausius - Duhem inequality (2.23) becomes 

Since this expression is linear in ~t , ~t and T, the last inequality implies 

(2.25) 
81/J 

ry= --ar 
and 

(2.26) 

2.3.2. Linear case; isotropic elasticity. Strain and torsion-curvature are small if 
11 ~E - !11 « 1 and 11 ~!: Il l « 1, where l is a characteristic length. If, in addition, 
microrotations remain small, i.e. if ll.tll « 1, then 

B- ~ ! + ! x .t =!-f.t . 
(2.27) dF ~ 1 + u ®'V + f ~ = 1 + e, - - - - ;::::;- - -

dr ~ ~ ® 'V = 15.- . 

Furthermore, dcz ~ cz and d~ ~ ~· Accordingly, for linear elasticity, two four
rank elasticity tensors are introduced 

(2.28) 

(no coupling between strain and torsion-curvature is possible as soon as point 
symmetry is assumed, even for the less symmetric solid [18]). Some symmetry 
properties of these tensors are derived from the hyperelasticity conditions (2.26) 

(2.29) and 

Further symmetry conditions can be obtained if material symmetries are taken 
into account. The form of the Cosserat elasticity tensors for all symmetry classes 
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has been established by KESSEL [18] . In the case of isotropic elasticity, the two 
classical Lame constants >., J.L are complemented by 4 additional parameters [12] 

~ = .X!Tr~+2J.L{~}+2J.Lc}~{ , 

~ = a ! Tr ~ + 2,8 { ~} + 2')' } ~ { . 
(2.30) 

2.4. Elastoplastic Cosserat single crystals 

The works of SAWCZUK [19], LIPPMANN [20] and BESDO [21] are the first 
milestones in the plasticity theory of Cosserat continua at small strains. In the 
case of single crystals we resort to recent results in the Cosserat theory at large 
strains [22]. 

2.4.1. Strain decomposition. In single crystals, non-homogeneous plastic defor
mations may induce non-homogeneous permanent lattice rotations, which are 
associated with plastic lattice curvature. That is why elastic and plastic Cosserat 
deformations and curvatures are introduced: ur, UEP, Ure and UrP. By means of 
elastic strains, free energy can be stored without intrinsic dissipation, i.e. with
out dissipation of power of deformation. The plastic strain rates can occur only 
together with the intrinsic dissipation rate. Strain partition rules must then be 
proposed. The most general decomposition of the strains UE and U!: reads: 

(2.31) 

(2.32) 

~E = Ut(UEe, ~!:e, ~EP , ~!:P), 

~r = ~t(~Ee , ure, UEP, U!:P). 

The multiplicative decomposition proposed in [23] is adopted for the partially 
pure elastic materials under consideration, but only for the Cosserat deformation: 

(2.33) 

The expression 

(2.34) 

has to be substituted in the Clausius- Duhem inequality (2.23). This can be 
done also with the strain-functions (2.31) and (2.32) using the partial deriva
tives with respect to the elastic and plastic strain parts. At a dependence of 
the strain-functions Ut and ~t only on the corresponding elastic parts (besides 
the plastic ones) , substitution into the fundamental restriction (2.23) gives the 
hyperelastic constitutive equations in a general form [22]: 

u - 81/J . ( a ~t ) - 1 u r 
~- e aure . a~r E , 

~ - a1j; . ( a Uf ) - 1 ~ T 
~- e aure . a~r E . 

(2.35) 
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Metals are materials which can behave in the current configuration purely elas
tically. Therefore the most natural assumption is that the elastic relations still 
have the form 

(2.36) 

as in the pure hyperelastic case, see (2.26). Then, setting the special constitutive 
relations (2.36) equal to the general hyperelastic forms (2.35), one obtains con
ditions for the strain-functions (2.31) and (2.32), from which the representation 
(2.33) and a decomposition of the entire wryness tensor can be derived [22] : 

(2.37) 

An elastic-plastic decomposition of the rotation ~ [24], as of the displacement, is 
not recommendable, because these non-objective variables can not be connected 
with the quantities of energy and dissipation. Such a connection is possible only 
on the level of strains . The decomposition (2.37) has been assumed in [25]. Then 
the elastic constitutive equations (2 .36) follow necessarily. The decompositions 
(2.33) and (2.37) enable one to define at each point the released state of the 
crystal for which stresses and couple stresses are removed and plastic deformation 
and curvature only remain. This is the reason why (2.37) is more suitable for 
crystals than a purely additional decomposition [26] . 

2.4.2. Kinematics of elastoplastic Cosserat single crystals. The plastic deformation 
of single crystals is the result of slip processes on slip systems. For each slip 
system s, we define 

(2.38) 

where h $ is the Burgers vector. !$ is the unit vector normal to the slip plane. As 
a result, the plastic strain rate takes the form 

(2.39) ~tP urp-1 = L -ys ~~s . 
$E S 

'Y$ is the amount of slip for the system s. ~~$ is given by the kinematics of slip 

(2.40) 

where ~!s = ~T !$. If we go back to the Eulerian representation 
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we can split the last expression into its symmetric and skew-symmetric parts: 

(2.41) 

and 

(2.42) 

{:! ® yrc} ={B. ttf Ufe- 1 B-T} + L ..ys { *ms ® *~s} 
s ES 

}:y_ ® yrc{ - ~ B-T = }B. ut e Ufe-1 B-T{ + L ..ys} *mS ® *~S{' 
sES 

where we have noted 

(2.43) and 

Equation (2.42) clearly shows that the relative rotation rate of material lines 
with respect to the microstructure is due to the lattice rotation associated with 
slip processes, if elastic contributions are neglected. 

We would like to compare the proposed formulation with Mandel's work. We 
are working with invariant tensors written in the microstructure space frame in 
order to get rid of undetermined rotations. An equivalent method is to deal with 
the so-called isoclinic configuration introduced by TEODOSIU [27] and MANDEL 
[23]. Their description reads 

(2.44) F = EP - ..., ...., ' 

where the rotation B-isoclinic appearing in the polar decomposition of ~ links the 
isoclinic reference frame to the working space frame. As a result, comparing 
(2 .33) and (2.44) one can think of the equivalence 

(2.45) 

However, considering the respective polar decompositions 

and 

we should have then 

(2 .46) 

Regarding the elastic behaviour in the classical case, lattice vectors are ma
terial vectors with respect to the intermediate released configuration. Within 
the proposed framework this is not exactly true any more. There is an addit ional 
rotation B-e of material fibres with respect to the microstructure, that could be 
attributed to the presence of heterogeneities . Nevertheless the constitutive theory 
must be such that B-e remains a corrective term. 
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The plastic lattice curvature and torsion are due to the presence of disloca
tions with a non-vanishing resulting Burgers vector (see Sec. 3). The curvature 
planes and torsion axes are therefore related to crystallographic directions. They 
can be represented by the effect of continuous edge and screw dislocations for 
each slip system. That is why we propose the following kinematics for the plastic 
wryness 

(2 .47) 

The es are angles that measure the plastic curvature and torsion over a charac
teristic length l. Explicit forms for d~f are given in Sec. 4.1. 

2.5. Dissipation 

In the Clausius- Duhem inequality (2.23) , a contribution to the overall en
tropy production is due to the development of rotation gradients. If no hardening 
variables are introduced, the intrinsic dissipation rate is 

D = Q' (B d!'e dtP d!'p- 1 dr- 1 gr) 
+ lt (B ~re de d!'p- 1 ~!'e- 1 gr) 
+ 1-1. (B de d!' - 1 gr) . 

Taking (2.39) and (2.47) into account , 

(2.48) D = L ..ys Q' : *ps 
s ES 

+ L es lt : *QS 
s ES 

+ it : (B d_re dtP d!'p- 1 dr - 1 gr) , 

where 

(2.49) 
*ps = R dFe dp s dFe- 1 RT 

""' - - - - , 
*QS = g d!'e dQs d!'e- 1 gT . 

Three terms appear in the dissipation . The first one is the classical one: slip 
processes due to irreversible dislocation motion are dissipative. The second one 
is due to the evolution of plastic curvature and torsion. It is clear that homo
geneous lattice rotation is definitely not a dissipative process, but plastic cur
vature due to non-homogeneous lattice rotation is related to the existence of 
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accommodation dislocations and therefore must be associated with dissipation. 
This will be investigated in Sec. 4.4. The last term reveals the independence of 
the elastic curvature-torsion measure from plastic changes of the material lines in 
the intermediate configuration. This is due to the lattice concept, which means 
that the elastic behaviour, given in (2.36), is primarily not influenced by plastic 
straining. Thus , the elastic strain measures are related to lattice line-elements 
and their reference to material lines produce an additional term in the plastic 
wryness rate. However, at small elastic strains, this term vanishes. 

3. Closure of the continuum theory of dislocations 

3.1. Closure problem of the continuum theory of dislocations 

The origin of the continuum theory of dislocations goes back to Nye's epoch
making work on "Some geometrical relations in dislocated crystals" [3]. He in
troduced the dislocation density tensor~ which will be presented in Sec. 3.2 and 
he established a link between ~ and lattice curvature. KRONER [28] proposed a 
general presentation of the theory and gave the set of partial differential equa
tions to be solved in the linear static case for a given distribution of dislocations, 
and here for an infinite body 

(3.1) 
divq = 0, 

Cl,!rl~e = ~, 

where 13 = !! ® \1 = Ui,j ~i ® ~j· In this part, we use Kroner's notations for 
historic"al reasons. It must be noted that, strictly speaking, the non-objective 
quantity 13 cannot be decomposed entirely into an elastic and plastic part but the 
usual not~tions of the continuum theory of dislocations and of classical plasticity 
theory can be reconciled by the concept of isoclinic configuration as it was done in 
[29] . The continuum theory of dislocations is a way to think of dislocation theory 
as of a physical field theory. The system (3.1) enables us to find the stress-strain 
field around dislocations for some given arrangements. However such a theory 
cannot bridge the gap between the dislocation theory and plasticity theory since 
it does not predict the motion of dislocations. The dislocation distribution must 
be known at each step. In the dynamic theory of continuous distributions of 
dislocations, KRONER [28] and MURA [30, 31] introduce the dislocation flux 

tensor ¥ which is related to the plastic deformation rate ~ P by 

(3.2) 
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and we still have 

(3.3) 

For a single dislocation, the dislocation flux tensor reads 

(3.4) 

y is the dislocation velocity vector, ~ is the dislocation line vector and Q the 
Burgers vector. In this case stress and strain can be obtained provided that Q. 
and ¥ are given at each time, which is of no help to derive a plasticity theory. 
For, the continuum theory of dislocations, even in more recent review articles 
like [33], does not provide constitutive equations. As pointed out by HAHN and 
J AUNZEMIS [34] , in a complete theory of dislocations , the density and motion of 
dislocations should be derivable from the knowledge of initial conditions (and 
boundary conditions) only. This is what we call the closure problem of the con
tinuum theory of dislocations. 

Two attempts to derive the missing constitutive equations must be men
tioned . On the one hand MURA [35] showed how the von Mises yield criterion 
and Prandtl - Reuss relations can be explained in terms of the dislocation veloc
ity tensor and a so-called "gliding force". The underlying constitutive assump
tion is a linear relation between ¥ and the gliding force. According to [36] and 
[37], constitutive equations are also necessary to link plasticity and dislocation 
theories. On the other hand , HAHN and JAUNZEMIS [34] distinguish mobile dis
locations (M) from immobile ones (I) with common line and Burgers vectors. 
Aab = A/b + A~ is the number of dislocations of Burgers vector Qa and line 
vector g_b . Using a large strain formulation , (3.1) combined with (3.4) yields 

(3.5) 
a,b a 

where 
Aava '!a = LA~ g_b X yab 

b 

is normal to the slip plane. Evolution equations are proposed for A/ and A'M. 
Isotropic and kinematic hardening and a viscous stress are also introduced in the 
modelling. Climb mechanisms are not considered . 

3.2. Statistical description of dislocation distribution 

The dislocation network and dislocation sources distribution within a consid
ered single crystal volume element often is or becomes so intricate that an exact 
description of all dislocation lines and Burgers vectors must be abandoned. In
stead some overall and statistical information about the distribution may be 
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sufficient for the modelling of the plastic behaviour of the element. The only 
known attempts to develop a complete statistical theory of dislocations go back 
to ZORSKI [38] and KRONER [39] . The systematic approach comes up against 
tremendous difficulties which are still not overcome. This explains why the con
cepts reviewed in this section are only rudimentary tools which do not exhaust 
the complexity of dislocation structures. 

3.2.1. Dislocation density tensor and the continuum theory of dislocations. Within 
the framework of the continuum theory of dislocations, the characteristic size l 
of the volume element is taken large enough for the effects of the dislocations 
within it to be averaged. The distribution of dislocations is made continuous by 
letting b = llhll approach zero and increasing the number n of dislocations of 
each kind so as to keep nb constant [3]. The definition of the Burgers vector can 
be extended to continuous distributions of dislocations [27]. For that purpose 
one refers to the kinematic description proposed by MANDEL [23] making use of 
the isoclinic configuration and of the strain partition given by (2.44). In (2.44), 
~ relates the infinitesimal vectors d~ and d!. , where d~ results from the cutting 
and releasing operations of the infinitesimal current lattice vector d!. 

(3 .6) d~ = ~-l d!_ . 

It can be seen that the decomposition (2.44) actually goes back to [40] . 
Accordingly, ifS is a smooth surface containing!. in the current configuration 

and bounded by the closed line c, the true Burgers vector is defined as in [27] 

(3.7) h = f ~- l d!_ . 

c 

The application of Stokes' formula (A.l9) leads to the definition of the so-called 
true dislocation density tensor 

(3 .8) le E- l E- l n e E - l 10. Q. = - Ctg _ = _ X .:f... = - Ejkl i k ,l ~i '01 ~j 

such that 

(3.9) h = IQ.!! dS . 

s 
If the surface is infinitesimal of normal !!, dh = g!! dS is the resulting true 
Burgers vector of dislocations crossing the surface dS . It is convenient to associate 
each component CXij of the dislocation density tensor with a (super) dislocation 
characterized by its line vector ~j and its Burgers vector bi ~i (no summation). 
As a result, the diagonal components of g represent screw dislocations and the 
out-of-diagonal ones edge dislocations. For n dislocations per unit surface of 
Burgers vector h and line vector { , we have 

(3. 10) 
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3.2.2. Scalar dislocation densities and crystal plasticity. In the classical continuum 
theory of dislocations, the description of the dislocation distribution is restricted 
to the dislocation density tensor. It enables one to compute stress-strain fields 
for special distributions and even discrete dislocations for which Q. becomes the 
sum of Dirac's functions [28]. However the classical continuum theory of dislo
cations has failed to describe the elastoplast ic behaviour of single crystals. The 
main reason is that the dislocation density tensor is not the relevant variable to 
explain the hardening processes. In [34], the kinematics of plastic deformation 
are derived from the dislocation velocity tensor and correspond exactly to the 
purely mechanical description of slip processes proposed by MANDEL [23]. The 
next step is the introduction of hardening variables as in t he classical macroscopic 
plasticity theory. They are related to usual scalar dislocation densities that are 
commonly used by metal phycisists and which represent the total length of dis
location lines within a volume element. The multiplication and interaction of 
dislocations are responsible for the hardening of single crystals and the scalar 
densities are reliable measures for it. This type of description culminates with 
the work of MANDEL [23], ZARKA [41] and T EODOSIU and SIDOROFF [42]. In 
t hese theories the dislocation density tensor is not even mentioned since it is not 
t he relevant quantity any more. Constitutive equations for hardening variables 
are proposed in a more or less phenomenological way and several elementary 
dislocation interaction processes are taken into account. 

The main successes of these theories are the modelling of the tensile behaviour 
of single crystals, the lattice rotations [43] and the cyclic behaviour of single and 
polycrystals [44]. 

3.2.3. Proposed description. In this work we claim that both types of descriptions 
are required for the modelling of non-homogeneous deformation of single crystals. 
T hat is why the statistical description of dislocation distribution must contain 
at least: 

• the dislocation density tensor Q. which accounts for the resulting Burgers 
vector across any infinitesimal surface, 
and 

• scalar dislocation densities rf or the associated hardening variables, for in
stance r 5 and X 5 already used in [45]. The kinematic hardening variables x 5 are 
a measure for microscopically non-homogeneous spatial dislocation distributions 
that give rise to a vanishing resulting Burgers vector (dislocation cells .. . ). Ad
dit ional variables (densities of mobile and immobile dislocations ... ) may also be 
necessary. 

It must be noted that the dislocation density tensor and the scalar dislocation 
densities are related , respectively, to the one-point and two-point dislocation 
correlations introduced by KRONER [39]. 

The scalar dislocation densities are necessary to account for the hardening or 
softening behaviour of the material whereas the dislocation density tensor may 
play a significant role when strong lattice incompatibilities are present . 
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3.3. Link between the dislocation density tensor and the lattice torsion-curvature tmsor 

3.3.1. Classical analysis at small strains and small rotations. NYE [3] introduces 
the rotation vector ~ of the lattice and the curvature tensor 15: = ~ ® \l. At 
small strains and small rotations, the strain and rotation rate decomposJtion 
into elastic and plastic parts reads 

(3.11) 

=~+~ 
= ~e + ~e + £p + ~ . 

~ = ~ - ~e = ~ - ! x ~ represents the relative rotation of material lines ·with 
respect to the lattice. As a result , relation (3.8) becomes 

(3.12) 

In a way similar to KRONER [28], we derive 

{3.13) Cl,!rlez'e = €jk1Wik,l~i ® ~j 

= - €jkl €ikm 4>m,l ~i ® ~j 

= - fklj €kmi Kml ~i ® ~j 

= - (8ml8ij - 8il 8mj) Kml ~i ® ~j 

=t5:T -(Trt5:)! . 

Neglecting the elastic strain, one obtains the expression proposed by NYE [3] 

(3.14) 

and its reverse form 

(3.15) 
1 

K. = a.T - -(Tra.) 1. 
- - 2 - -

Keeping the elastic term 

(3.16) 

3.3.2. Analysis for the Cosserat theory. Within the framework of the Cosserat 
theory for single crystals presented in Part 2, we propose the following definition 
for the true dislocation density tensor 

(3.17) 
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We try now to link the dislocation density tensor and the wryness tensor. Equa
tion (3 .17) becomes 

(3.18) 

(the comma denotes again a derivative with respect to the reference configura
tion). Note that, 

(3.19) 

or, in components, 
R~k , l = - R~u Eukv Tvl · 

As a result, (3.17) can now be written 

(3.20) _ Ael Upe- 1 RT 1"' p - 1 10. Q- - - - im mu Ek!j Ekvu .1. vL Ll ~i 16' ~j 

= ! el + ur- 1 BT ((r~-1f - Tr(f~-1)!) 

= !el + Ur- 1 ((Uf U~-lf _ Tr(Uf U~-1)!) B-T , 

a u pe-1 
where ! el = Ejkl a lm Rkm~i ® ~j· It can be checked that equation (3.16) is 

X! 
retrieved for small strains and rotations. We define 

(3.21) 

and B. ur Q- can be interpreted as the Cosserat counterpart of the local disloca
tion density tensor introduced in the classical continuum theory of dislocations. 

Using the decomposition of the total wryness given by (2.37), the expression 
of the dislocation density tensor (3.20) becomes: 

(3.22) Q- = ! el + ur- 1 ((dre ur- lf - Tr(Ufe U~e-l)!)B.T 

+ ur- 1 ( ( Urp d~-1 f - Tr ( drp d~-1 H) B-T . 

Considering now the released state for which force and couple stresses are re
moved, as defined at the end of Sec. 2.4.1. , the remaining plastic curvature is 
related to the dislocation density tensor in the released state by: 

(3.23) 

In particular, Q. is known for a given distribution of edge and screw dislocations. 
This result motivates the definition of the kinematics of plastic curvature evolu
tion in Sec.4.1. Note that, starting from the same definition (3.17), DLUZEWSKI 

[46] considers elastic and plastic dislocation tensors which are related to the 
contributions of elastic and plastic curvatures in equation (3.22) . 
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3.4. Constrained Cosserat theories 

The work of the Cosserat brothers was almost forgotten until G UNTHER redis
covered it in 1958 [47]. Furthermore Gunther has revealed the close link between 
the Cosserat theory and the continuum t heory of dislocations which has been 
thriving since the early fifties. 

This explains why the continuum theory of dislocations has often been further 
developed within the framework of a Cosserat continuum, for instance in [48] . In 
[8] discrete screw and edge dislocations are embedded in the Cosserat continuum. 
However the physical meaning of the directors remains unclear in these works: 
are they independent lattice vectors or material vectors? How do they rotate? In 
many cases the result ing framework is that of a constrained Cosserat theory like 
in [19] . The rotation rate of the directors is then given by the skew-symmetric 
part of the overall deformation gradient 

(3.24) 
. 1 . 
~ = - -€(u ® V) . - 2.:::- -

The curvature tensor that we denote ~ in the constrained case then becomes 

(3.25) 

It is clear that because of this constraint the directors generally are not lattice 
vectors. Besides the microrotations are entirely determined by the displacement 
field, which is not the case in the theory presented in Sec. 1. Considering the 
decomposition of the deformation and bend-twist tensors into elastic and plastic 
parts, MURA [35] and many authors consider 

(3.26) 
. . e . P 

~ = ~ + ~ and 
. . e . P 
~ = ~ +~ 

with 

(3.27) and 

so that 

(3.28) 

which also implies the constraint (3.24). As for them, KossECKA and D E WIT 

[33] define 

(3.29) g T = fpkm (!3fk ,m +£klq X~m)gp ® gl 
= Cl}_rl {'Y} + ~pT - Tr~!. 
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Finally they interpret (c~rl {XP}f as the disclination density tensor . However , 
these formula are not derived -from a precise definition of the Burgers vector like 
in (3.7) or (3.17) and are therefore difficult to assess. 

The main advantage of the previous restricted Cosserat theories is t hat no 
constitut ive equations are required for the plastic curvature. But it must be noted 
tha t t he expression of the dislocation density tensor (3.16) or (3.20) involves t he 
to tal torsion-curvature tensor. As a result, nothing is known a priori about t he 
elastic and plastic rela tive contribut ions, so that consti tut ive equations wit h a 
yield criterion for the p lastic curvature may be necessary. 

However, looking at Eq. (3.22) may lead one to propose the following rela tion: 

(3 .30) 

which can be regarded as a definition for re. If we still accept the decomposition 
(2.37), [P can be deduced. In t his case, there is no need for addit ional constitutive 
equations to close t he problem. Nevertheless, it is not sure that Eq. (2.36) can 
be derived from this defi nition of the elastic wryness and , consequently, (2.37) 
does not necessarily hold. As a result , this defini tion is abandoned and Eq. (3.30) 
will not be used in the following. Instead we will stick to relations (2 .33), (2.37), 
(2.39) and (2.47), and propose constitutive equations in Sec. 4. These constitutive 
equations will allow us t o take the influence of plas tic curvature on the hardening 
of the material into account. 

3.5. Geometrically necessary dislocations and statistically stored dislocations 

According to AsHBY [49], dislocations become stored in a plastically non-ho
mogeneous solid for two reasons: dislocations are either required for the compat
ible deformation of various parts of t he specimen or they accumulate by trapping 
each other in a random way. T his gives rise on the one hand to the density f!G 

of so-called geometrically necessary dislocations and on the other hand , to t he 
density es of statistically stored dislocations. The density (!G can be computed 
approximately in some situations like plastic bending or punching. This variable 
comes directly from t he continuum theory of dislocations and corresponds to the 
components of the dislocation density tensor~· In Sec. 4 we will introduce addi
tional inner variables which are directly related to the density f!G of geometrically 
necessary dislocations for each slip system. 

In contrast , the density es belongs to the second group of variables that have 
been listed in Sec. 3.2, namely the hardening variables. However , as shown by 
Ashby in t he case of two-phase alloys, geometrically necessary dislocations may 
lead to addit ional hardening. In Sec. 4 we will t ry to model this coupling effect 
between the two types of variables that describe the dislocation distribution. 

The relative importance of ec and es depends on the amount of overall plastic 
deformation, and on the type of solicitation. Clearly r!G can dominate in the case 
of strong deformation gradients. 
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These considerations have led FLECK, MULLER, ASHBY and HUTCHINSON 
[50] to apply a so-called strain-gradient plasticity theory to the tension and 
torsion of copper wires with various diameters. The model is equivalent to a 
constrained Cosserat theory first proposed in [19]. The J2-theory is extended to 
couple stresses in a way similar to [51] . However the modelling becomes ques
tionable when applied to wires with diameters comparable to the grain size. In 
that case the constrained rotations of the model have nothing to do with local 
lattice rotations , as explained in Sec. 3.4, and the associated curvature is not a 
relevant variable. 

4. Explicit constitutive equations 

We propose a set of constitutive equations for the elastoviscoplastic deforma
tion and intrinsic curvature of metal single crystals. 

4.1. Kinematics of plastic deformation and curvattrre 

The plastic flow due to slip on various slip systems has been studied in 
Sec. 2.4.2 (Eq. (2.39)). Similarly, an expression of the plastic curvature evolu
tion has been proposed (Eq. (2.47)). An expression of ~Q5 is now derived from 
the analysis of the dislocation density tensor in Sec. 3.3.2. The scalar / 5 repre
sents the amount of slip due to the passage of dislocations of type s through the 
volume element, as for them the scalars es represent the plastic curvature due 
to dislocations trapped in the volume element of characteristic length l . When 
stresses and couple stresses are released, the elastic contributions in Eq. (3.22) 
disappear so that a direct relation between residual plastic curvature and the 
dislocation density tensor is obtained (Eq. (3.23)). We consider then that g can 
be decomposed into the contributions of edge and screw dislocations and we give 
in the following the curvature and torsion axes in the two cases. The amounts of 
curvature es will be computed using constitutive equations proposed in the next 
section. 

Curvature due to edge dislocations (..L) 

For edge dislocations, ~g = b ~m ® ~~. 
{ is the dislocation line vector and the normal to the glide plane is defined as 

(4. 1) 

The associated curvature is shown in Fig. 1, so that we take 

(4.2) 

Arrays of edge dislocations of the same type give rise to lattice curvature in the 
plane (m, h). The rotation vector ~ has the same direction as the dislocation 
line vector. 
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C!1 
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l 
FIG. 1. Curvature due to edge dislocations. 

Torsion due to screw dislocations ( 0 ) 

For a screw dislocation, ~Q. = b ~m ® ~m. 

3 

2 

FIG. 2. Curvature due to a screw dislocations, after releasing the end couples 
(from (53]). 

The associated curvature can be seen in Fig. 2, so that we take 

(4.3} 
1 

~Q 0 = - 1 - ~m ® ~m. 
- 2 - - -

725 

The sign conventions for dg 1_ and ~g 0 are such that (}J_ and 00 are positive 
in Figs . 1 and 2. As a result, screw dislocations cause lattice torsion about the 
three reference axes. KRONER [28] noticed that a planar array of crossed screw 
dislocations with perpendicular Burgers vectors produces a twist of the lattice 
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about the third direction. This is equivalent to a grain boundary of the sec
ond kind . Grain boundaries of the first kind are generated by an array of edge 
dislocations with parallel Burgers and line vectors. Note that the result ( 4.3) 
is different from that proposed in [52], which gives no torsion with respect to 
the dislocation line axis. This seems to hold only when the couple that can be 
derived from the classical stress field around a screw dislocation is not released 
[53, 32]. Our expression (3.22) is derived from an extension of the definition of 
the Burgers vector for continuously distributed dislocations. 

Lastly, we give the proposed kinematics of the plastic lattice torsion-curvature 

( 4.4) 

4.2. Generalized Schmid's law 

4.2.1. Peach and Koehler's force. KRONER [54] shows that Peach and Koehler 's 
formula giving the force on a dislocation (h, t ) due to a stress field cz applies 
also for a non-symmetric stress tensor. But it-is important to derive again the 
formula taking care of any transposition. The force f per unit length of dislocation 
is defined, for a unit length of dislocation, through 

(4.5) f . d'Jf = h . ( cz !!) dS = ( (h cz) X ~) . d'Jf ' 

where 

(4.6) 

The dislocation can move in its plane only if the component of the force in the 
glide plane 

(4.7) bT = f · (!! X ~) = C,Z : (Q ® !!) 

reaches a threshold. This is the physical meaning of Schmid's criterion. We will 
use this criterion to compute the slip rate on slip system s 

(4.8) 

where T 5 = ~ cz : ~ r s according to (4.7) , and x 5 and r 5 are internal kinematic and 
isotropic hardening variables. x 5 and r 5 represent, respectively, the back-stress 
and the yield threshold, which are supposed to describe with sufficient accuracy 
the dislocation structure with a view to modelling the hardening behaviour. 
Parameters k 5 and n 5 account for viscosity properties. 
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4.2.2. Evolution law for the viscoplastic torsion-curvature variables. We consider an 
array of edge dislocations with b. = b ~ 1 , the normal to the glide plane £ = ~ 2 
and~ = - f 3 (see Fig. 1). At small strains they produce a curvature 

( 4.9) P - n b P 
IS = -l - ~3 ® f1 =~~:31f 3 ® f 1· 

We will assume that such geometrically necessary dislocations are produced by 
local dislocation sources if the local moment /;!; = m f 3 0 f 1 (m < 0 here) is so 
high t ha t the imposed curvature cannot be accommodated elastically any longer. 

Generalizing the previous example, we propose the fo llowing expression of the 
viscoplastic curvature rate 

(4.10) 

where r~ denotes the threshold and k~ and n~ are viscosity parameters. The 
formula is to be applied successively for edge and screw dislocations belonging 
to t he same system. Equations (4.8) and (4.10) and the hardening rules of the 
next section close the theory based on mult icriteria and associat ive flow rules. 
Accordingly, this theory is part of the associat ive generalized plasticity. 

4.3. Expression of the free energy and hardening rules 

The key-point of the thermodynamical analysis of a constitutive model for a 
dissipative system is t he choice of t he relevant internal variables on which the free 
energy may depend. We propose such a formulation of the previous model in the 
linea r case for simplicity. In addition to t he observable variables: deformation, 
curvature and temperature (~ , IS , T ) or equivalently (~e , IS e , T) , the free energy 
is assumed to depend on the following internal variables: 

• the variables Q~ , which are similar to the densities of statistically stored 
dislocations, and which are defined by 

(4.11) . s I . sI l?s = 'Y ; 

• the variables l?c , which are similar to the densit ies of geometrically necessary 
dislocations, and which are defined by 

(4.12) I 
bes I 

l?c = - l- ; 

• the kinematic hardening variables a 5
. 
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We postulate then that the free energy is a quadratic form of these variables 
according to 

(4.13) 

1 
+ ro 2: l?s + 2 2: h ~r l?s is 

s ES r,s ES 

+ "' s + 1 "' hsr s r reo L.., l?c 2 L.., c l?c l?c 
sES r,sES 

+ 2: hr l?s l?c + t(r). 
r,sES 

Hardening matrices hrs and h~~ have been introduced for each population of 
dislocations following [55], but a coupling term associated with the matrix hr 
must be added. 

Assuming then that the thermodynamical forces corresponding to the vari
ables l?s, l?c and a 5

, respectively, are r 5
, r~ and x 5

, the following hardening rules 
are derived: 

Isotropic hardening 

(4.14) 

( 4.15) 

Note that, for simplicity, we have omitted to split the terms h~r l?c into h~l_ l?c.1. + 
h~0 l?c0 in order to distinguish the contributions of edge and screw dislocations. 
The same holds for the terms involving matrix hr. Furthermore, a similar ther
modynamical formulation can be worked out for nonlinear isotropic hardening 
[58]. It can be seen that a coupling between plastic deformation and curvature 
naturally arises from our choice of the free energy. The existence of additional 
hardening due to plastic curvature must be investigated experimentally. 

Kinematic hardening 

(4.16) 

We refer to [45] for the expression of the nonlinear evolution law for kinematic 
hardening: 

( 4.17) 
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4.4. Dissipation 

Introducing now the internal variables in the expression of the intrinsic dissi
pation rate derived in (2.5), one obtains 

(4.18) 

where 

(4.19) and 

The multiplication and motion of dislocations are dissipative processes. The 
three first terms in (4.18) account for dissipation due to slip activity whereas 
the remaining terms account for multiplication of geometrically necessary dislo
cations. In some cases the last terms can be neglected. But when strong lattice 
rotation gradients develop, they may well be the leading terms. 

Some conditions on the material parameters can then be derived from the 
entropy principle. Taking the flow rules (4.8) and (4.10) and the definitions (4.11) 
and (4.12) into account, Eq. (4.18) can be rewritten in the form 

( 4.20) D = L [(rs- xs) sign (-Ys) - rs + cdas2 1-Y sl 
r ES 

+ Oj_ (vj_- r~.l sign (Oj_)) + O~(vb- r~0 sign (Ob))]. 

It can be checked in this formula that the positivity of the intrinsic dissipation 
rate is ensured if c d > 0 and if the marix h~i,0 is such that r~.l ,G is always 
positive. 

5. Conclusions 

Recent advances in the mechanics of generalized continua have been used to 
develop a Cosserat theory for single crystals at finite deformation and curvature. 
The decomposition of the relative deformation gradient into an elastic and plas
tic part is multiplicative as usual, whereas the wryness tensor admits a mixed 
additive-multiplicative decomposition. We have assumed that the plastic lattice 
curvature and torsion are accommodated, respectively, by edge and screw dis
locations belonging to each slip system. The curvature and torsion angles over 
a characteristic length due to each type of dislocation are internal variables in 
addition to the cumulative amounts of slip for each slip system. Explicit con
stitutive equations have been proposed in the case of elastoviscoplasticity. An 
important consequence of the theory is that the plastic lattice curvature and 
torsion as well as the plastic spin are associated with dissipation. The produc
tion of geometrically necessary dislocations is clearly a dissipative process. There 
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is an overwhelming tendency to include these microstructural features of dislo
cated crystals into the framework of generalized continua. Since the pioneering 
work of GUNTHER (47], CLAUS and ERINGEN (10] resorted to a micromorphic 
continuum. As for them, SMYSHLA YEV and FLECK [56] prefer to develop a strain 
gradient theory of slip. However they replace this plasticity problem by a prob
lem of nonlinear elasticity at small strains. In contrast, our theory provides a set 
of kinematical and constitutive equations in elastoviscoplasticity at finite defor
mation on a physical and thermodynamical basis. Finally LACHNER et al. [57] 
have shown that polycrystals also can be regarded as Cosserat media. Homo
genization techniques should enable one to derive a polycrystal model from the 
present theory. 

Only a precise enough description of dislocation distribution within a vol
ume element can enable one to model the plastic behaviour of single crystals. 
For that purpose, the continuum theory of dislocations resorts to the dislocation 
density tensor. In contrast, macroscopic elastoplasticity theory involves harden
ing variables which are related to scalar dislocation densities. In both theories, 
the expression "dislocation density" is seen to have a very different meaning. 
The dislocation density tensor and the scalar dislocation densit ies are indepen
dent measures of the dislocation distribution. The most important advantage of 
the proposed theory is to combine both descriptions within a single constitutive 
framework. 

It must be noticed that only slip processes have been taken into account in 
the present work. Further developments are necessary to include climb processes, 
which may play a significant role during creep . 

A coupling between plastic curvature and plastic deformation has been in
troduced on the level of the hardening rule to represent t he influence of slip 
plane curvature on fur ther dislocation motion. Experimental evidence of such 
hardening effects have been provided for instance in (59]. 

It is clear that the difference between the classical theory and the Cosserat 
theory can appear only if deformation and more precisely, lattice rotation is not 
homogeneous. T he theory can therefore be applied to the prediction and the 
simulation of localized deformation modes like shear bands in single crystals. A 
theoretical analysis of such material instabilit ies is presented in [60], and AsARO 
and R ICE (61] and DUSZEK-PERZYNA and PERZYNA (62] investigate the case of 
single crystals. An analysis and numerical simulations of localization phenomena 
in single crystals are presented in [63] for the classical theory. In (58] we have 
performed a bifurcation analysis for single crystals undergoing single slip using 
the Cosserat theory. Some crucial differences with respect to t he classical case 
have been pointed out. For instance, according to the classical theory, slip bands 
and kink bands can occur for the same critical hardening modulus. This is no 
longer true for the Cosserat theory, which is strongly supported by experimental 
evidence. 
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Appendix 

Notations 

In this work, !! denotes a vector of the Euclidean space E, A a second-rank 
Euclidean tensor, and 1 (resp. ~)a third-rank tensor when operating on a vector 
(resp. a second-rank tensor). The same third-rank tensor is denoted by A when 
regarded as a 3-linear form. The tensor product of two vectors !!, h is such that , 
for all!_ E E, 

(A.l ) 
!.(!! ® h)= !_. !!Q , 

(!! 0 hh = h . ~!! , 

where the dot denotes the inner product on E. 
Let (~ 1 , ~ 2 , ~ 3 ) be a positive oriented orthonormal basis of oriented E with 

dimension 3. When written in components, the double contraction of second-rank 
tensors reads 

(A.2) 

We note f the Levi - Civita tensor 

(A.3) 

Notice the useful identity 

(A.4) 

The following result concerning third-rank tensors have been used , 

If 

(A.S) and A ijk = - Ajik , 

then 1 =g.. ~= Eijm Bmk ~i 0 ~j 0 ~k · 

The cross product is defined by 

(A.6) 

The symmetric and antisymmetric parts of tensor A are respectively denoted 
X 

{A} and } A {. There is then one and only one vector A such that, for all x, 

(A.7) 
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and 

(A.8) 
X 1 1 
A = -- f. A = -- f.kl A1 e k . - 2:::: - 2 m m-

Following TROSTEL [60], we define a cross product between a second-rank tensor 
and a vector 

(A.9) 

so that 

(A.10) 

As a result 

(A.ll) 

(~ ® Q.) X ~ = ~ ® (Q_ X ~) , 

~ X (Q_ ® ~) = (~ X Q_) ® ~ , 

X X 
}A{= 1 X A= - f. A. - - - ::;-

Any element ~ of the orthogonal group can be represented by the element ~ of 
the associated Lie group such that 

(A.l2) ~ = exp (! x ~) = exp ( -f +) . 

Concerning tensor analysis, our notations are: 

Nab la operator 

(A.13) 

gradient operator 

(A.l4) 

(A.l5) 

curl operator 

(A.16) 

(A.l7) 

Note that 

(A.18) 

\1 = ,i ~i' 

gradf = f\1 = f.i~i, 

gr~dy = !! ® \1 = Ui,j ~i ® ~j, 

curly = !! x \1 = f.ijk Uj ,k ~i, 

C"!rl! = ! X \1 = f.hjk Aij,k ~i ® ~h. 

We have made a wide use of theorem 

(A.l9) f ! l dl = - I ( C"!rl ! ) !! dS ' 
L S 

where the open surface S is bounded by the contour L. 
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THE PRESENT PAPER is an attempt to study the links between the constitutive 
pattern of the idealized behaviour of pure hysteresis and the general theory of 
demagnetisation-like processes of real materials. Modelling based on this discrete
memory pattern has been previously introduced, and used to describe rather suc
cessfully the puzzling properties of various deformable materials ranging from gran
ular media to shape memory alloys and deformable ferromagnets or ferroelectrics. 
However , one of the five basic ingredients of the pattern has not been, up to now, 
studied extensively: it has been introduced rather as an assumption, namely that of 
the general possibility to obtain recurrent recovery of a unique thermomechanical 
initial neutral state. Therefore the aim of this paper is threefold: firstly, to give some 
tensorial mechanical examples suggesting that the fifth ingredient of the pattern is 
relevant with respect to the others; secondly, to suggest the importance of a general 
study of demagnetisation-like processes, purely mechanical or not; thirdly, to suggest 
that the fifth ingredient is not only relevant on the theoretical grounds and of im
portance at the level of physical principles, but may be also justified owing to data 
from now on available. 

1. Introduction 

i. RELIANCE on physical justifications of the material discrete-memory con
cept e) is now rather soundly established in the field of nonlinear continuum 
mechanics: mainly based on results obtained from transmission electron mi
croscopy, this reliance is fully compatible with the fact that the strain notion 
is essentially of discrete-memory form [1, 2). The discrete-memory concept also 
proved to be rather effective regarding the modelling of the deformable media 

C) Owing to experimental evidences, this notion is frequently implemented in the numerical 
simulations performed in the field of multiaxial cyclic plasticity. The notion may be sketched 
through the path 01213 of Fig. 1: in order to describe this rate-independent behaviour with 
perfectly closed cycle, it is well known that it is necessary to take into account the following 
{discrete) sets of memorised states: state {0} along the path 01 ; states {0, 1} along the path 
12; states {0, 1, 2} along 21; state {0} along 13. 
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which are, at the "micro"-scale, structured and with defects [3, 4, 5, 6]. However, 
such a pattern is still more like an incipient program rather than a theory already 
expanded for the benefit of engineers. This feature arises from the fact that two 
fundamental problems are still insufficiently clarified or entirely open, namely 
the demagnetisation-like problem and the preferred reference frame problem. 

ii. Resolute endeavour is needed regarding the former , because it calls the 
whole pattern in question. In contrast, the choice among the possible solutions 
of the preferred reference frame problem is "only" decisive at the level of the defi
nitions of the discrete-memory condition and of the thermomechanical rates, and 
also taking into account the material anisotropy or the case of large deformations 
and strains (obtained through monotonic loading or through cumulative second 
order effects of ratchet type). Moreover , regarding the second problem, t he ( un
published) results obtained so far are not only encouraging but they are also 
an incentive to pursue in the direction already chosen [3], whereas no tensorial 
results were available, at the time, in the field of demagnetisation-like processes. 

iii. Dilemma is therefore removed as to the hierarchy of research priorities, 
but the demagnetisation-like problem has many facets, the one-dimensional intu
itions may act as ominous lures and any first approach, chosen tentatively, cannot 
rely on or refer to previous endeavours. To maintain the bearing of the results, 
the basic assumptions are chosen so as to focus the analysis on a special but not 
too restrictive case. Basically, the analysis is performed in the field of multiaxial 
plasticity e): t he aim is therefore to study the recovery of a relevant state under 
cyclic stress paths. The material under consideration is a rather idealised one: it 
does not undergo ageing, fatigue, damage, rate-independent hardening or viscous 
effects [5]. The main property of the material is that of elastic-plastic hysteresis 
regarding only the deviatoric part of the behaviour. Moreover , there are no cou
pling effects between deviatoric and isotropic part of the behaviour [6] . It must 
be also emphasised that there are no coupling effects between the mechanical 
behaviour and another behaviour such as that of ferrohysteresis: the study may 
be considered as purely thermomechanical and the word demagnetization is not 
used in order to be reminiscent of coupling effects (l). In fa ct this word is conve
nient to suggest briefly the process of recovery which is studied here. Moreover, 
this word is actually heuristic through a rule which is proved to be effective 
in order to perform some numerical simulations ("first loading in reverse" rule, 
introduced in § 3.3 point ii). 

To simplify the formal features of the study, the material is supposed to be 
isotropic and its limit surface to be of Hub er - von Mises type. The cons:itutive 
definit ion is given in the frame of the irrotational t riaxial kinematics associ-

C) However, it is worth noting that, owing to the analysis of [3] resulting in (3.13) to (3.16), 
the mechanical case studied here may be considered as a special ferromagnetic case. 

C) The same remark holds as to t he heuristic terminology ("polarization") introduced by 
Hill in a purely elastic study [37]. 
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ated with the extensions K1 , K2, K3 (the usual associated components of the 

stra in rate tensor D being then: K n/(1 + Kn ), n = 1, 2, 3). Moreover , the stress 
paths are performed in the deviatoric plane, so that the vanishing of the first 
invariant I(j of the Cauchy stress tensor cr (components a 11 , a 22 , a 33 ) is always 
imposed. Consequently, the graphical sketches given for illustration are basi
cally two-dimensional (in fact, the numerical simulations are obtained with a 
four-dimensional program, associated with the kinematics K 1 , K 2 , K 3, 2723 and 
implemented by imposing the vanishing of I(j and 7 23 ). 

iv . As suggested by the abstract , the aim of the paper is threefold. F irst ly, ba
sic hints are introduced regarding the theoretical ground of the demagnetisation
like problem tackled with the help of the pure hysteresis pattern. Secondly, the 
study of a mechanical example is given for illustration: this study is an op
portunity to suggest t he interest of a general approach and to point out some 
puzzling features of the demagnetisation-like process. Thirdly, some remarks are 
introduced regarding the question of experimental evidence current ly available 
in order to illuminate the enigma thereby appeared . 

2. On the theoretical gr ound of the demagnet isation-like problem 

2.1. Preliminaries on the fivefold structure of the pattern of pure hysteresis 

i. Let us take as a starting-point the usual symbolic mechanical model consist
ing of an infinite number of springs and friction sliders [3, 4, 6]. More precisely, 
the model is an ordered infinite parallel succession of couples, each couple being 
defined by a spring and a friction slider associated in series. F irst of a ll, it is 
possible to perform, in the cyclic case, a careful analysis of this entirely well
defined model devoid of hidden variables (cf. [3], § 2.2.2 and 2.2.3 , for example): 
the main result of this analysis is that the pattern is of discrete-memory form. 
Next , a thermodynamic analysis may be added (cf. [3], § 2.2.4, for example, or 
Appendix if necessary). Then, the analysis results in a radical departure from the 
classical point of view, because the reversible power n is also of discrete-memory 
form. It is worth noting that accordingly, the associated intrinsic dissipation <P 

and the disorder rate I are also of discrete memory form. Moreover the disorder 
rate plays, in a Gibbs-like balance equation, a role similar to that played by the 

entropy rate T S [7]. 

ii . The one-dimensional character of the model allows us to give easily a set 
of heuristic illustrations. Let t and tn be the current time and the inversion t ime 
of reference because it is associated with the origin of the current branch of 
cycle. T hen, along each current branch or arc of branch of cyclic evolution, the 
one-dimensional pattern is as follows: 

1. Discrete memory existence expressed as the invariance of the current (drag
ged along from tn tot > tn) Almansi and Cauchy scalars (tensors) ~c: and ~a , 
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respectively: 

(2.1) 

2. Constitutive differential-difference equations of mechanical character (where 
the "Masing rule" is expressed through the piecewise constant similarity func
tional w equal to 1 or 2), such as , for example: 

(2.2)1 
· = .!!_At = G [1- (Ll~O')c] 8Ll~t: 

0' - &t L...l RO' 0 wSo ot ' 

the associated equations of thermodynamic character being: 

(2.2)2 

II =-Pi -if.>, 

if.> = Ll ~0' Ll~t: , 

I(tn+) = 0, 

pi = -0' Ll~t:' 
if.> - C 

-Qii = 
w 

· (w-1)if.>+C 
I= , 

w 
· - Pi- if.>+ C 
E= , 

w 

where the rates E and - Qii denote the current rates of internal energy (associ
ated to the springs) and of internal intrinsic heat supply (due to the friction of 
the sliders), respectively (cf. Appendix, if necessary) . 

3. Inversion criterion giving the definition of the inversion time of reference tn: 

(2.3) if 6W < 0 V t E ]t, t + 6t] :::} t = tR, u(t) = ~0', W(t) = ~W 

through the sign of a virtual variation (6W) because (2.3)1 expresses the second 
principle of thermodynamics. In the form (2.3)1 the criterion is expressed with 
the aid of the "help function" W : 

t 

(2.4) w = : 2 J if.>(t)dt , 
tn 

which is, here, of "ln cosh" form when c = 2. Other forms are introduced later 
(§ 3.3, point iii). 

4. Algorithm A, also expressed with the aid of W , and giving w, ~u, and the 
set of still memorised variables {i{W} and {!u} (cf. [4] or [6], for example) . 
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5. Existence of the unique thermomechanical neutral state defined by: 

(2.5) 
k = 1, a= 1, n = 1, 

w(O) = 1, 

This basic state is restored by the rather well known "symmetrical" slowly de
creasing cyclic path. 

Under cyclic loading defined by a set of inversion times { t1 } and by: 

(2.6) 
L1 ~c; = c:(t)- ~c; = c:(t)- c:(tn) = ±(t- tn), 

t > tn > 0, 

the one-dimensional behaviour of pure hysteresis is obtained (Fig. 1, obtained 
with c = 0.8, and suggesting the importance of the notion of sky-line, this 
curve being continuous only if symmetrical slowly decreasing cyclic paths are 
performed) . Owing to the simple form of the stress rate definition, the useful 
integral forms are immediately obtained in the case c = 2: 

(a'/ So)2 = 1 - exp( -Go Wf S5) {:} (L1o /wSo)2 = 1- exp( - Go W / S5) , 

(2.7) W = -(S5/Go) ln [1 - (a/So)2
] {:} W = - (S5/Go) ln [1- (L1a/wSo)2

], 

W = (285/G~)lncosh[Goc:/So] {:} W = (2S5/G~)lncosh[GoL1c:/wSo] . 

2.2. From the notions of state and of U.T.N. state to the role of the fifth ingredient 

i. In the field of classical thermodynamics it is always admitted that the state 
of a physical system can be described using a Duhem set of "normal" variables: 
in short, if D = 0 and if the work of the external action vanishes during a 
temperature change, then the set is normal. The theory of linear infinitesimal 
thermoelasticity is a well known heuristic example of application (4

). In this 
section, the attention is devoted to the symbolic model and the study is restricted 
to the case of a unique constant temperature, a choice which does not mean that 
the study of temperature-dependent symbolic models cannot bring heuristic hints 
([8], § IV. 2.3). Therefore, one must pay attention to one of the assumptions 
generally not recalled, a lthough always implied : in the classical definition of the 
state, there is no interference of the internal history of the system. By contrast 
with this usual assumption, the behaviour of the model suggests that the relevant 
set of state variables must include the history. In order to define a state in the 
sense both effective and deterministic in the large (cf. [9 , 10] and point iii , below), 
it is indeed necessary to know not only the current strain, but also the current 
values of the piecewise constant functionals w, Ac:, Aa, and the current sets of 

{
4

) The aim of t he section is neither to point out the special role of the temperature, nor 
to underline that the thermoelastic case is actua lly quite misleading, owing to the difficulties 
appearing in the thermohyperelastic case (cf. (8], § II .5). 
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FIG. 1. Introduction of the sky-line notion t hrough t he one-dimensional form 
of the pattern. 

[742] 
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the discrete and ordered series of t he still memorised information {! W} , {!a}. 
Taking as a star ting point a well known, but often overlooked , graphical sketch, 
it is possible to stress the radical depar ture from the classical trend which is 
actually instilled by the discrete memory state not ion . 

ii. T his well known graphical sketch gives the set of the individual states of 
spring stra in of each couple for an imposed strain history (Fig. 2 a, where for 
sake of brevity S.S. is for spring strain reached at the current imposed stra in; 
L.S. is for limit strain of a current couple of the model; S.E. is for spring energy; 
L.E. is for limit energy). Owing to (2.7), it is clear that, moreover, t he strain 
variations L1 Ac and the energy variations by intrinsic dissipat ion, W, are equiv
alent variables along each branch or arc of branch . Consequently, an equivalent 
graphical representation is possible if individual state of energy is associated 
with an imposed energy (Fig. 2 b, where the evolution of an ordered discrete set 
of non-increasing values of W may be conventionally displayed t hrough the suc
cessive broken lines ooAO, ooABO, ooABCO, .. . , without introducing a physical 
definition of the [0, oo[ axis of the integers). The specific "constitutive proper t ies" 
(Go, So, tanh function, ln cosh function) do not play any role, and the basic fea
ture of the sta te appears: it is neither dimensional nor specific of a special reality 
(defined through parameters such as Go and functions such as tanh): it is basi
cally generic and it involves an algorithm for the comparison of non-dimensional 
values. 

T he non-dimensional character is not restrictive, for it is sufficient in order 
to express the relat ive vicinity of the plast ic limit of a couple, whatever may be 
the values of Gn and Sn: the interesting vicinity parameter of a given couple 
is the ratio Sn/Gn· T he classical definition of the sta te is extensive-intensive 
in character (S - T- pTdS; V - p- pdV/V ; c- a- adc), and, in contrast, 
the new definition is basically topologic-algorithmic in character. In the pattern, 
this character is quite explicitly involved through (2. 1), (2.3) and (2.4), but not 
clearly in (2.5). This point leads us to the question of t he definition of the unique 
thermomechanical neutral state. 

iii. Owing to the actual physical properties of the model, it is well known that 
after a fundamental slowly decreasing cyclic path , "symmetrical with respect to 
the origin", the demagnetized state is obtained: the graphical representation of 
this state is then close to the axis of abscissa (Figs. 2 c, 2 d , where for sake of 
brevity U.T.N. is for unique thermomechanical neutral state, I.H. is for indi
vidual history, F.L. is for first loading, E .L. is for effective loading, D.P. is for 
demagnetisation process, R.D.S. is for remnant discrete set) . A similar state may 
be recurrently obtained, whatever may be the loading tentatively imposed in 
order to deviate from it (cf. [3], § 2.2.5). It cannot be ident ical with the axis 
itself, for the axis is the line of state for the incipient system , exclusively: this 
unique incipient state is always impossible to recover exactly, a property in accor
dance wit h the fact that the behaviour is always entirely irreversible. Returning 
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FIG. 2. Topological representation of the current states of the couples 
of the "springs-friction sliders" model or of the energetic state involved 

in the pattern. 

[744] 
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to the physically relevant case, one notices that through a much more accurate 
demagnetisation-like process, the number of discrete information involved in the 
state is infinite: moreover, during any cyclic loading unable to fade the whole 
discrete set, the number of discrete information remains infinite (Fig. 2 d) . Any 
sufficiently accurate demagnetisation-like process actually leads to a state which 
is so close to the (unique and unrecoverable) incipient state, that it is not neces
sary, practically, to discern between them. Hence, the set of all these states may 
be reduced to a unique state, recurrently recoverable. This unique thermomechan
ical neutral state may be defined with the aid of the unique approximation (2.5) , 
provided that: 1) a sufficiently accurate demagnetised-like state exists, whatever 
t he previous history may be; 2) a general strategy is defined in order to perform 
the indefinitely accurate demagnetisation. These conditions are fulfilled by the 
symbolic model and, obviously, by the one-dimensional pattern, built as close 
to the model as it is possible. In contrast, the fulfilment of these conditions is 
a puzzling problem in the three-dimensional, tensorial case. Consequently, the 
role of the fifth ingredient of the pattern is important at the level of physical 
principles [9, 10]. 

Indeed , it is well known that , when the principle of determinism is understood 
in the classical sense supported by Painleve (1910), any pattern introducing the 
history to define the current state must be taken as a provisional pattern: any
way, it must be considered as devoid of sound significance in order to foster 
the improvement of knowledge, for: "La conception d'apres laquelle, pour prdire 
l'avenir d 'un systeme materiel, il faudrait connaitre tout son passe, est la negation 
meme de la science" [9]. In contrast , the principle of determinism was originally 
proposed with a more broad view, implying a continuous improvement of knowl
edge though involving possibly t he history together with the causality principle 
[10] . In that spirit, the intrinsic properties of the symbolic model may, for ex
ample, suggest the following: if a system is restorable and if, for different times 
of recovery, the set of initial "generalised" causes of this isolated system are the 
same up to a space translation, the same phenomena occur in the system after 
these different times, up to this space translation. Restoration is not involved in 
the case introduced by Picard (1907). Following the fundamental analysis of Pi
card, where, for the first time, the distinction is introduced between the variables 
which are "visibles" and those which are "cachees", the general equations may be 
Galilean invariant " .. . mais il n'est pas possible neanmoins de remonter le cours 
du temps". Accordingly, "Il n'est done pas impossible qu'un systeme irreversible 
puisse etre conservatif et obeisse aux lois generales de la mecanique classique" . 
Following Picard, the case where all the variables are "visibles" is fanciful, for 
it involves that the system is entirely reversible and that, consequently, it will 
be possible to stem the tide of time. The classical point of view is essentially an 
assumption ("une hypothese de non-heredite") . The caution of Picard (5 ) may 

e) The caution of Picard echoes that exhibited by Gibbs to the point of the limit of validity 
of its fundamental equation. 
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be justified through the symbolic model. This model is indeed endowed with the 
following properties: 1) the behaviour is always entirely irreversible; 2) the defi
nit ion of the state involves the past history since the last convent ional U.T .N. 
sta te obtained with the aid of an accurate demagnet isation-like process; 3) the 
behaviour is not only nearly reversible "locally" (to the right of any inversion 
at t ime t n) following the DE C ARBON analysis [11], but also "globally reversible 
from one unique thermomechanical neutral state to the following one" ; 4) from 
the very beginning of the first loading history, the exact incipient state is lost 
forever. Being restorable as accurately as required , t he model is t hen in accor
dance with the determinism in t he broad meaning of the term. In the sequel of 
this paper a fift h point is suggested: in t he tensorial, three-dimensional case, it 
is possible to introduce a generalised pattern involving a theoretical property, 
especially interesting with respect to the Painleve - Picard dilemma: if an ap
propriate set of variables is hidden on purpose, a basic classical feature of the 
behaviour (in short , an invariant form of the strain-stress behaviour) may appear 
as reversible in spite of the utter irreversibility. This puzzling behaviour happens 
during t he generalised demagnetisation-like process necessarily associated with 
the pat tern. Being entirely irreversible although apparently "reversible", the pat
tern is an example of theory where the history plays a basic role, " ... , mais clans 
des conditions plus complexes encore" , as anticipated by P icard. 

2.3. From the multiaxial pattern to the study of the demagnetisation-like problem 
in general form 

i. The sketch of the mul tiaxial pattern has been introduced previously (cf. 
[6] § 2.2 and 2.3 or [4] pp. 1186- 1189, for example) . Basically, the pattern is 
defined by introducing, in the stress space of Ilyushin type (cf. [38] or [3], § 3.5, 
for example) , surfaces (or loops) along which the intrinsic dissipation ra te P is 
annihilated and, therefore, W is constant [12, 6, 4] . Moreover, owing to (2.2), 
one considers t he stress rate defined by the differential-difference equations : 

(2.8) 
. . 1 . 

- t t I .r• 
C7 j = C7j - 3 uuj · 

The definit ion in the preferred reference frame being not studied in the present 
paper, (2.8) is given in the frame of the irrotat ional kinematics under consid era
t ion. This constitutive form leads to a simple reversible isotropic part as soo n as: 

(2.9) 
ao = >.Io , 

(34 = - J.L /(wSo )2
, 

a1 = 2J.L , a 2 = (J4M , 

M = tr (Ll ~0' D) 10 = t r (D). 

The deviatoric part and its associated invariant scalar form (similar to (2!.2)1) 
are then: 

(2.10) 
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(2.11) --=-- ( 2II .1a ) -
II .1a = 2J.L 1 - (wSo)2 M , 

If Qo = J2So is the radius of the Huber-von Mises circle, the above invariant 
form yields: 

(2.12) 
Q~ = (wQo)2 [1 - exp(- J.LW/S5)] , 

W = - (S5 / J.L) ln [ 1 - (Q.1/wQo)l 

T hese forms are similar to (2.7). The generalization of (2.9), (2.10) is obtained 
substituting to M the expression (3.6) and substituting to wS0 a scalar functional 
taking into account two requirements. The first one is that of "orientation" in 
the stress space of Ilyushin: the relative vicinity of asymptotic states must be 
defined for any current point of an unloading stress path [12, 6, 4]. The second 
requirement is that of "compatibility": during the first loading the neutral paths 
are circles centred at the origin, suggesting therefore the use of a general ba
sic assumption consisting of the similarity of neutral paths with respect to the 
measured or a priori specified yield limit [12 , 6, 4] . The formal consequences of 
this similarity hypothesis of the neutral loci is expressed t hrough the identity 
between the mechanical defini t ion and the thermodynamic definition of the neu
tral paths, whatever the W level may be. For the given (circular) shape of the 
(von Mises) yield limit , this simple identification allows, once for all, to obtain 
the scalar functional: 

(2.13) - Q.1a A 
1'4- 2J.L ' A= 2 tan(cpL10'- 'Pn), 

and the required tensorial generalisation of (2.2)1, (2.9) , (2.10) is: 

(2 .14) 

A first consequence of this generalization is that the onset of the first unloading 
gives rise to a discontinuous process obtained through t he sliding of a relevant 
set of neutral loci and giving, to the right of an inversion event, a family of loci 
without intersections (Fig. 3, where it is worth to note two points : firstly, the 
strains associated with R1 , I R and C are large with respect to So/ J.L; secondly, 
IRis an unfavourable initial state because the family of neutral loci has jumped) . 
Secondly, it is useful to notice that the discrete memory process remains founded 
on information sets regarding the current and t he previous reference states [12, 
4]. As a consequence, the generalisation of the algorithm of the pattern may be 
easily obtained making use of the set {Mcpn} and of the associated "previous 
set": 

{M'Ppn}n = {0, cp(tl), .. . }n 

and introducing the possibility of coincidence of the W levels without closing a 
cycle [12, 4]. 
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FIG. 3. Sketch suggesting the unfavourable initial residual states implemented 
in the study. 

ii. The third consequence of the above process of generalisation is to give rise 
to a sophisticated feedback between the family of loci and the imposed cyclic 
loading. Accordingly, it becomes quite impossible to follow intuitively the global 
or local features of the functional correspondence between the stress and strain 
paths in the associated Ilyushin spaces (cf. Fig. 5 a, for example): neither the 
existence of the unique thermomechanical neutral state is a priori warranted, nor 
some intuitive set of strategies may be suggested (on the basis of some energetic 
or mathematical argument) as probably successful to recover it. The birth of the 
demagnetisation-like problem proceeds from this theoretical difficulty, necessarily 
involved in the definition of the pattern. 

Moreover, it is now possible to give some hints regarding the notion of "un
favourable" remnant states. In short, such states are associated with strong ir
reversibility and weak symmetry of the family of iso-W loci. The first condition 
implies that large values of W are implemented. The second one implies that it is 
not necessary to start from a null field (stress) classical residual state: one may 
start the study of the demagnetisation-like process from the state I R (Fig. 3) 
close to R1, the "historical field" (in the sense of CoRB [13]). 
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3. A mechanical example suggesting the interest of a general study 
of the demagnetisation-like strategies 

3.1. Towards a definition of the strategy 

749 

The main qualitative features of a strategy are, for example: the vicinity of 
the resulting demagnetised state to the idealised unique thermomechanical neu
tral state; the insensitivity or the weak dependence of this vicinity wit h respect 
to the loading; the question whether preliminary constitutive tests are required 
or not; the type of control. The main quantitative features are, basically, those 
associated with the accuracy of the recurrent recovery of a series of unique ther
momechanical neutral states, lost as a result of successive loading paths which 
yield a series of successive associated residual states (Fig. 4, where the notations 
are those previously introduced in Fig. 2). If c5 « 1 denotes the vicinity param
eter , the recovery of the idealised unique thermomechanical neutral state may be 
considered as obtained when 

(3.1) or min[W/(S~ / ~t)] < €5. 

If the insensitivity noticed above is warranted, a simple example is that of 
spiral-like type: the strategy is independent of preliminary constitutive tests, 
only stress-controlled, and the stress path is continuous up to any order. Then, 
the quantitative feature is the "pitch" of the spiral-like path; more precisely, the 
set of parameters involved in the definition of the family of paths. This case is 

FIG. 4. Sketch suggesting the role of the fifth ingredient of the pattern. 
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studied below (§ 3.3). At this stage of the analysis one may limit oneself to a pro
visional definition which does not specify further the role of the variables of the 
state and of the constraints and costs: a strategy is then a family of stress paths 
allowing to obtain a series of accurate approximations of the idealised unique 
thermomechanical neutral state defined by the fifth ingredient of the pattern 
(Fig. 4). This vague definit ion will be commented upon later (§ 3.3, point viii). 

3.2. Towards t he choice of heuristic slowly decreasing cyclic stress paths 

The aim of this paragraph is fourfold. Owing to the basic assumptions previ
ously introduced (§ 1, point iii), the constitutive pattern may appear as rather 
theoretical and/or incomplete. It may be useful to counterbalance this (plausi
ble) idea by showing that the model is nevertheless able to give results similar 
to those of the experiments. Secondly, it is useful to underline that intuitive 
strategies may prove to be immediately efficient as well as plainly false. Finally, 
it is useful to compare, even briefly, the piecewise continuous and the continuous 
slowly decreasing cyclic loading paths. 

i. If one considers only simple classical mechanical paths (avoiding to imple
ment neutral paths , for example), the properties of the pattern may appear as 
rather theoretical. However, if the first monotonous radial loading is followed by 
a constant pitch spiral first unloading path , then the properties of the pattern 
appear surprisingly unusual (Fig. 5 a, where Q denotes an invariant of the devia-
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FIG. 5. Qualitative comparison between theoretical (a) and experimental (b) figures 
(stress-strain invariant diagrams are at left and st ress second invariant - "time" 

diagrams are at right) . 
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toric part of a tensor - cf. (2. 11) for example) and the interesting point is that a 
similar figure is experimentally observed in the case of traction-torsion tests on 
thin tubes (Fig . 5 b, regarding the case of copper) . 

ii. It is easy to illustrate that intuitive simple strategies may yield rather en
couraging results as well as grossly irrelevant ones. Typical examples of irrelevant 
strat egies are obtained wit h the aid of unloading paths of one-dimensional type 
and of constant pitch spiral type: the trick consists of the neutral path which is 
included in the first loading process (Fig. 6, where the conventions of representa
tion in the deviatoric planes of stress and strain are based on Cartesian axes X S 
and Y S for the stress and X E and YE for the strain: these conventions allow 
to define the values of Qu/Qo and Q~/So /J.L) . 
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FIG. 6. An example of intuitive but unsuccessful continuous process 
of "demagnet isation" . 

14. 

iii. These examples are sufficient to suggest the interest of the simultaneous 
evolution of t he intensity Qu and of the phase 'Pu of the stress deviator. Con
sequently, it is interesting to compare at least two types of S.D.C. stress paths, 
those which are piecewise radial and those which are continuous. The result may 
be summarised in mechanical form (Fig. 7, where the convention of the display is 
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that of Fig. 6) . The interest of sophisticated paths is not obvious. The simpest 
type (the spiral-like one) of continuous path being actually cyclic, it must be, 
from now on, studied further. 
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· I IS 1. ·l. n: 0. Qs l. 
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-1. n: 0. 

1.1 
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FIG. 7. Comparison between piecewise continuous and continuous processes: 
the 10 turns, constant pitch spiral-like case is relatively encouraging. 

3.3. Towards the study of demagnetisation-like process in the special case 
of the spiral-like S.D.C. stress paths of slow-fast type 

The numerical integrations are performed restricting to n = 10 the number 
of turns of the demagnetisation-like paths. Each turn of any spiral-like stress 
path is a 32-sides regular polyhedron, each side being described by 200 steps. 
From one point to the following one, the integration is obtained with the aid of 
a Runge - Kutta - Merson algorithm allowing an imposed accuracy provided that 
the number of subdivisions of a step remains smaller than 20. Owing to these 
numerical conditions, the integration can be performed "in a relevant way" even 



F ROM MATERIA L DISCR ETE MEMORY PATTERNS 753 

when the state of stress is "very near" the Hub er - von Mises limit surface, t hat 
is to say such as the d ifference 1 - QuI Q0 is as small as 10- 7 . 

i. The parameter of the unfavourable residual sta te is defined as follows. 
F irstly, a radia l first loading up to Qu sufficiently close to Q0 to warrant a 
dissipated energy to be very much larger t han S6 I J..L (W = nw · S6 I J..L , nw » 1), is 
performed. The parameter nw may be used to compare the subsequent numeri
cal simulation imposing similar initial st ate of strain. Secondly, the radial first 
loading is followed by the small unloading of the first step of the integration , 
setting the iso-W circles in the most unfavourable non-symmetric state (point 
I R of Fig. 3) . 

ii. The simple strategy under consideration is spiral-like and of the slow-fast 
type to be understood as follows: the imposed variation of the deviatoric radius 
Q is defined by following the course of the first loading in reverse. The rate of the 
phase is defined by introducing a scalar parameter n t.p. The associated formulas 
are given below (point iii). 

iii. As suggested by (2.11) and (2.2)1 , the relative stress intensity and the 
reverse rule are obtained, with w = 1, starting from 

Qc,dQLl = 2J..L (1 - (gJc) Mdt , 

(3. 2) M dt = QLlQD dt = QLl dQc , 

w = 1, dW = 
2~ . 
w 

Convenient values of c are 213, 1, 2. Owing to the reverse rule, the associated 
imposed S.D .C. stress paths are defined as follows . Let us introduce two parame
ters Cr and ~, Cr playing the role of the constitutive parameter c and ~ being a 
"vicinity" parameter of the order of 10- 7

. For Cr = c 2, and if HFR is for the 
historical field of Corb used as reference state, the associated relative stress Xn 

and the S.D .C . loading path definition are: 

QHF R ( ( - J..LnWCr ))l fcr 
x n = Oo = (1 - 0 1 - exp Qij , 

(3.3) Qspirai(I.fJu) = Qo t anh(k$ (27rn - I.{Ju ) ) , 

21l'nk$ = - ln -- = tanh (xn) 1 (1 + xn) - 1 

2 1 - Xn 

and for Cr = c1 (= 1), one obtains the same form regarding Xn , but the definition 
of Qspiral is: 

(3.4) Qspiral ( I.{Ju) = Qo {1 - exp [ k s (27rn - I.{Ju )]), 21l'nk8 = ln(1 - Xn) · 
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In the case of Cr = eo (= 2/ 3), only an approximate definition of the S .D.C. 
stress path is available. It is obtained by neglecting the terms which are not of 
the ln(1- Q/ Qo) form. For Q close to Qo this approximation results in the same 
form of the definition of xR, because a factor 5 - 4(Q j Q0 )213 is close to 1. Hence: 

( ( 
- 3nwJ.L) 3/2) 

x R = ( 1 - 0 1 - exp 58 . 

A simple form may be used to define a function QspiraJ which is close to the exact 
solution of: 

when Q17 is close to Q0 . The form: 

(3.5) Qspirat(cp) = Qo ( 1 - exp ((27rn - cp) k5 )
3

) , ( 1/ 3) 21rnk5 = ln 1 - x n , 

is simple and similar to that of the previous "exponential" case defined by (3.4) . 

iv. The numerical integration is performed with the following set of parame
ters: So= 200 MPa, f..L = 75 GPa, c = Ci (i = 0, 1, 2, Ci = 2/3, 1, 2 for example). A 
typical result is given under the usual mechanical form (Fig. 8, where the conven
tion of the display is that of Fig. 6) and also under thermodynamic form (Fig. 9, 
where the discontinuities of the sky-lines are pointed out by the arrows, and 
where the strain measure Q~ad - cf. [4], equations ( 44) to ( 49) - is obtained by 
integration of a rate - <Pj Q17 - which is of radial type in the Ilyushin space). One 
notices the following points: first, t he number of inversion points is much greater 
than in the cases sketched in Fig. 7; secondly, the continuity and convexity of the 
W and I sky-lines are made conspicuous ; thirdly, the spiral-like response in the 
strain space is of a lmost constant pitch type; fourthly, the unfavourable remnant 
st ate is not actually highly unfavourable, for the init ial remnant strain (of the 
order of 510- 3 ) remains of the order of magnitude of S0 / 2J.L. 

- I. xs I. 

( 0) 
· I. Xf I. 

(b) Q 1.1 
e ( c ) 

FIG. 8. An example of slow-fast spiral-like strategy. 



• 

• 
E 

E 

t 

J <Ddt 
0 

0. 
Q~ad 

500. 0. 
Q~ad 

100. 

Q~ad 
100 

l 

0. 

f 

~ 
I 

t . 

I I dt 
0 

Q~ad 
100 

• 

0 
Q~ad 

100 

10 

0. 0. 

Q~ad 
100 

/ 
rad 100· 

Oe 

I= 
R• 
fi dt 
0 

Pext 

Te 

IJ. 

·~ 

0. 
Q~ad 

0. 

FIG. 9. Thermomechanics associated with the cyclic evolution introduced 
through Fig. 8. 
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v. A set of numerical simulations has been performed in order to study the 
role of increasingly large remnant strains with respect to the accuracy of the 
recovery of the U.T.N. state . The values of nw was: 8, 12, 16 for c = c2 ; 12, 24, 
32 for c = c1; 24, 32, 48 for c = eo . The last set is introduced (Fig. 10, where 
Qc/ 4 is of the order of the elongation Kin percent, and where it is possib'e to 
verify that the behaviour is similar to that of Fig. 5 a through the enlargement 
of the location pointed out by the symbol *) . One notices the following p oints: 
firstly, the recovering of the remnant strain is more difficult to obtain for large 
c (convenient in the case of "hard" ferromagnetic materials) as well as for large 
residual strains; the strain response is coarsely similar to a constant pitch s~iral 
when the demagnetisation-like process is not too bad, and the first turn ts of 
importance for it is not well centred if the imposed stress state gets away too 
quickly from the limit Huber - von Mises circle; the W sky-line is strongly dis
continuous when the recovery is only roughly performed; the lack of recove7 is 
not associated with the breaking through the transition range; even when the 
relative recovery is very weak because the absolute recovery is constant, the final 
strain state remains on the first loading path obtained in the strain space. 

vi. The purpose of the present paragraph is temporarily neglected in order to 
suggest without delay that the special results obtained above (as encouraging as 
they may be) do not necessarily warrant further success: the generalisation to 
the five (six)-dimensional case is still an open problem. Even if one relays on the 
previous analysis, it is indeed once more impossible to foresee the existence of the 
unique thermomechanical neutral state and the feature of a simple strategy: the 
origin of the difficulty is not associated with the appearance of a cumbersome 
formalism. Let O'n (n = 1, ... , 6) denote the components of the Cauchy stress 
tensor 0' in the preferred reference frame. The associated Ilyushin deviatoric 
representation ( Q, <pd ,(h , 82 , 83 ) of the deviator 0' is defined by: 

(2) 1/ 2 ( 271') 
0'2 = q 3 cos <pd - 3 ' 

Q 
O'n+3 = J2 cos en' n = 1, 2, 3. 

Owing to the Huber- von Mises assumption, the yield surface is an hypersphere of 
the Ilyushin space and, by hypothesis, the neutral surfaces are also hyperspheres. 
This is the origin of the difficulty regarding the demagnetisation-like problem: 
the discontinuous feedback process between the "sliding of the neutral spheres" 
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and t he imposed cyclic loading may be, a priori, infinitely more sophisticated 
than in the simplest deviatoric situation studied above. In this simple situa;ion, 
the ratio of the circumferencial path to the radial path was large in order to go 
along the yield circle "for a long time": the question is now to warrant tr.at a 
four-dimensional path is able to go along "for a long 4-time" and in a relevant 
way. The point is more puzzling than the cumbersome character of the fo:mal 
features, already briefly suggested elsewhere [3]. 

It is worth noting that one of the main interests of the present digre£sion 
is also to point out the puzzling problem of the physical interpretation of t he 
Cauchy stress tensor , a problem which is made conspicuous through the intnnsic 
dissipation form: 

of discrete memory type through the scalar functionals r , 'Y4, 04n ( n = 1, ~, 3). 
The first term of the right-hand is related to the possible isotropic-devia~oric 

coupling effects, and t he bracket suggests the distinction "(Q, <p)spirat" vtrsus 
"(B)cyclic", and the special interest of shear tests and of approaches similar to that 
introduced by LODGE regarding shear flows [39] . Consequently, a strategy a priori 
interesting is that of (11-cyclic)-(<p-spiral-like) wrapping type (Fig. 11 a, where t he 
deviatoric plane of Ilyushin is equatorial and where t he initial point 0 plays a role 

(a) (b) 

FIG. 11. Sket ch of the multiaxial demagnetisation through the (Bcyclic - 'Pspirai ) 

wrapping. 
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similar to that of I R in Fig. 3) . It can be generalized under the "3-wrapping" 
form (curves of the five-dimensional Ilyushin space yielded through three simul
taneous wrappings of symmetric slowly decreasing cyclic type, as sketched in 
Fig. 11 b). This strategy is interesting as soon as the preferred reference frame 
problem is considered because a cyclic process must be imposed on the shear 
stress components through a symmetric slowly decreasing cyclic path starting 
from the interval [emin, 7r- emin] and leading to the 7r /2 value, so as to recover 
this frame [3]. 

vii. Let us now return to the problem of the Unique Thermomechanical Neu
tral state, underlining the relationship between the state of disorder and the 
state of dissipated energy. 

The effective evolution E(So, J.L, c) is to be understood as a series of couples 
of individual history (demagnetisation-like) processes through a relevant slowly 
decreasing cyclic paths. Each individual history is a sequence of two paths, the 
first loading and the effective loading path, and each demagnetisation leads to 
an approximate unique thermomechanical neutral state (Fig. 4) . In the simple 
tensorial case studied above, the situation is not so clear as in the one-dimensional 
case. When CT tends towards zero, each successive disorder-order outburst tends 
also towards zero by definition of the pattern, and the external control does 
not introduce variations of disorder during the evolution from one individual 
history to the next one. In spite of the fact that no mathemat ical proof has been 
provided, the result obtained above leads to the conclusion that a necessary 
condition to recover a fading strain Ll ~c is the continuity of the W sky-line 
during a demagnetisation-like process. However , the unique thermomechanical 
neutral state is no more defined through the simple scalar form of differences 
Wk - Wk+l: the evolution of the centres of the iso-W circles (Fig. 3) is now 
associated with the W sky-line continuity. For very large W never reached, the 
location of the centers is the axis . For the largest values actually reached and 
involved at the beginning of the demagnetisation-like process , the jumps of the 
centers are small and the short shaking leads quickly to the final positions of the 
centres: by contrast, the jumps of the centers are large and the required shaking 
lengthened for the small values of W leading also, but with "delay" (not viscous 
delay), to the final positions of the associated centres. The approximate unique 
thermomechanical neutral state is associated with the set of the final positions 
of the centres of iso-W circles. The geometry of this set is not studied. Even in 
the spiral-like simple case, the numerical investigation is cumbersome: to study, 
for example, a conjecture of helix-like geometry with envelope of fading radius, 
it must involve a very large number of inversion points. 

viii. Among the results obtained through numerical evidences it is worth 
to note the following points: the approximate unique thermomechanical neutral 
state may be obtained through a spiral-like slowly decreasing cyclic loading path 
in the stress (field) Ilyushin space (reduced to a plane in the case under consider-
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ation) and the pattern is therefore deterministic in the broad sense of t he term; 
during a slowly decreasing cyclic loading path of demagnetisation , the behaviour 
exhibits a mechanical feature which looks like that of the reversible type in spite 
of the fact that the process is entirely irreversible (cf. point v); the first load
ing behaviour and the feature of the demagnetisation-like process are associated 
(cf. point v) in a way which is a generalisation of the one-dimensional property, 
namely: the apexes of the symmetric cycles are on the first loading curve ; the 
first loading appears as the generic form of the basic demagnetisation-like fea
ture (cf. point ii) which is necessary in order to obtain t he recurrent recovery 
of the line of the evolution E( So , J.t , c): in short, ontogenesis recurs philogenesis; 
regarding the dissipated energy, the main part of an evolution consists of the 
demagnetisation-like processes . By contrast , regarding the total variation of in
ternal energy, the main part of the evolution consists of the individual histories. 
Moreover, cyclic disorder-order outbursts are permanent . 

4. Remarks on experimental evidence supporting the notion of idealised 
systems entirely irreversible although rejuvenating 

4.1. Plastic hysteresis and the mesoscale problem 

i. Both at the elementary microscale (dislocation pinning effect, Frank - Read 
source effect ) and at the usual macroscale (push-pull , traction-torsion and shear 
tests at constant temperature and low "constant" strain rate ) it is now clear that 
the behaviour of polycrystal-like materials is of pure hysteresis type when the 
rates of all "hardening" or "softening" effects simultaneously fade temporarily 
or finally [14, 15, 16] . It is also worth noting that the genuine nature of granular 
media behaviour is directly taken into account with the aid of the pattern of pure 
hysteresis extended to the case of isotropic and deviatoric coupling effects [ 6] . 

ii. However , the situation may appear as quite puzzling at the scale of the 
mesoscale substructures of the material point (walls, veins and microbands of 
various types, and labyrinths). This scale is that of the "natural intermediate 
level of milli-structure" introduced by KRUMHANSL [40]. For nearly 30 years 
it has been possible to observe such mesostructures, especially in t he case of 
fatigue tests [17, 18, 19, 20]. The microanalysis has been generally performed 
in the null stress, residual strain state. Accordingly, given the current stage of 
results , to introduce a basic assumpt ion of pure hysteresis type, namely the 
actual possibility of cyclic steady annihilation and creation of the mesostructures 
periodically converted one into another, is neither intuitive nor evident, in spite 
of the impressive number of available references [21]. Moreover, the consequences 
of a demagnetisation-like process have never been studied, involving possibly a 
basic gap in the experimental approach. 
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iii. The question of mesoscale structures may be provisionally revisited bring
ing toget her , from now on , the fields of plastic hysteresis and the field of ferro
hysteresis. Such an attempt follows the analysis given by Friedel in his preface 
to the summer school at Y RAVALS [22] : "Si ces dislocations sont retenues dans 
les cristaux, c'est par une friction solide qui les y bloque et qu'il faut surmonter 
pour les propager et les multiplier : sauf dans le cas extreme du fluage de Nabarro 
pur, la plast icite des cristaux a necessairement ce caractere hysteret ique violent 
qui la rapproche des phenomenes d 'aimantation des corps ferromagntiques; tout 
indique qu 'il en est de meme de la p lasticite a froid des amorphes." 

4.2. Ferrohysteresis as the current genuine heuristic case 

i. It is well known that , at macroscale, the behaviour of ferromagnets is com
patible with t he pure hysteresis pattern and tha t the accuracy and t he repeat a
bility of the demagnet isation-like process is of basic technological importance 
[23]: a similar situation exists regarding micro-devices implying high information 
densit ies [24]. 

ii. It is also possible to underline a rather relevant compatibility a t the mi
croscale level (cf. for example, [3 , 25, 26, 24]). However , a comprehensive study 
is both out of the range of this paper and beyond the competence of the authors. 
The aim is "only" to underline an important experimental result , extremely dif
ficult to obtain in the arena of mechanical tes ts: during a cyclic loading of fatigue 
type, field-controlled on the interval [0, H ], t he microstructural pattern is cyclic, 
periodically restored [25, 26], as recalled by the sketch (Fig. 12, where the in
terpretation of the imperfect recovery attracts our attent ion to the analysis of 
RAYLE IGH [27]). 

iii. However , the afore-mentioned restoration is not perfect. In spite of the 
"structural stability" of the sample (thin layer of a single crystal endowed with 
an ini t ial lat tice of bubbles), a "loss of memory" [25] is observed when many 
field cycles are applied . One notices also t hat no demagnetisation-like process is 
implemented in order to study t he possib le restora tion of the initial lattice of 
bubbles. Moreover, the result is obtained by implementing a process which is ba
sically one-dimensional and infinitely more simple than the processes which may 
be involved in three-dimensional mechanical samples submitted to multiaxial 
loading. One may also add that t he coupled fields effects are not encompassed in 
the investigation [28, 29, 30]. Nevertheless , the special result under consideration 
may be remembered as sufficient in order to clarify the enigma of "restoration 
at all relevant scales" and associated appearance of reversibility yielded by an 
entirely irreversible system . Invariant material defect allows material discrete 
memory, Neel relationship between reversibility and irreversibility, and exchange 
of various forms of energy, including, at the ordinary point of a branch of cycle, 
that associated with disorder . 
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M M 

0 H H 0 H 
(a) (c) 

F IG. 12. Evolution of a bubble lattice (from Figs. l , 2 and 3 of [26]) : a) first loading; 
b) fatigue-like effective loading with almost recovered labyrinth and cellular patterns 
associated with null field and maximum field, respectively; c) however, the cellular 

pattern is not perfectly recoverable whatever may be t he number of cycles. 

5. Concluding remarks 

i. One encouraging result has been obtained (§ 3.3 point v), suggesting what 
may be, perhaps, the simplest strategy available to tackle the demagnetisation
like problem. However, neither the isotropic six-dimensional "general" case, nor 
the role of the preferred reference frame, nor even the problem of the anisotropic 
cases have been studied comprehensively enough. Neither were they exemplified 
through any special results: the general pattern of pure hysteresis remains in
sufficiently investigated regarding these basic theoretical features. Accordingly, 
the study of the features which are of outstanding interest for engineers, such as 
hardening, "viscous" effects [32] or coupled fields effects, is still rather untimely. 
But it is worth noting that the implementation of the current pure hysteresis 
pat tern in fini te element approaches is from now on, relevant in order to prepare 
for the numerical simulation of t he six-dimensional pattern and of the general 
kinematics in the coming years [33, 34, 35]. 
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ii. In its current state, the pat tern of pure hysteresis is, from now on, heuris
tic when some part icular insight is needed at the level of fundamental micro
scopic processes involving the notion of d islocation [3, 14, 15, 16]. Accordingly, 
if a general phenomenological t heory may be introduced under t he five (or 
six)-dimensional form (§ 3.3, point vi), most likely it will not be entirely in
complete in the sense of B UNGE [31], especially regarding the problem of the 
(basically t hree-dimensional) second order effects, of t he generalised ratchet type. 

iii. The present provisional study of demagnetisation-like mechanical pro
cesses may be t ransposed to the case of ferrohyst eresis (cf. Footnote 2). It is 
worth noting that the discrete memory pattern is then useful in order to avoid , 
from time to time, the drawbacks init iated through t he implementat ion of basic 
classical concept s. For example, the "anomalous" effect int roduced in [36] may 
be immediately recognised as normal in the frame of the discrete memory pat
tern: t he increase of magnetisation along the path going from H1 to H2 (Fig. 1 
of [36] is indeed a standard hysteresis behaviour [3]. 

Appendix. Two basic rates - those of internal energy and of internal 
intrinsic heat supply-involved by the symbolic model 

i. If g"(e) de denotes the rigidity coefficient for the couples having t heir limit 
strain values between e and e + de, and if c is the current external strain imposed 
during the first monotonic loading, then the resulting stress for the couples whose 
limit value is not reached is: 

00 

a1 = I cg" (e) de. 
E: 

For the other couples for which the friction slider move, the resulting stress is: 

The total stress is: 

a = Goc - g(c) = S(c), 

The internal power is then: 

00 

a2 = I eg" (e) de. 
E: 

00 

Go = I g"(e) de = g'(oo), 
0 

g" = - a" :::: 0. 

Pi = -a1i - a2i = -ai = - (Goc- g(c))i = -S(c)i . 

The mechanical behaviour is described in terms of the function g(e) such as: 

g(O) = 0, g'(O) = g'(oo)- Go= 0, g"(O) = g"(oo) = 0. 

The curvature rule is: g" is not negative on R+, the interval of definition of g. 
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ii. By definition of s1 and s2 , the basic rates are: 

E = c:a(c:) = C7E - (e7i - c:a ) = - Pi + Qii, 

-Qii (c: ) = (72i = e7(c: )i - c:a(c:) 

in the first loading case and, in the cyclic case: 

00 I L1c:g"(e) de + 

.dc/2 

.dc/2 

I 2eg"(e) de 
0 

= 2 [Go ~c: - g ( ~c: )] = 2S ( ~c: ) , 
. ( t t f) t t f) t 

-2Qii £1 Re) = £1 R(7 at £1 n€- £1 Re at £1 R(7 ' 

. ( t ) ( t ) f) t t f) t 2E £1 RC: = C7 + RC7 at £1 RC: + £1 RC: at £1 RC7 · 

The generic description of the cyclic properties is then (2.2)2. 
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The shock wave structure by model equations of capillarity 

K. PIECHOR {WARSZAWA) 

I N THIS PAPER we investigate the influence of the capillarity terms on the shock 
wave structure. To this end we compare the shock structures derived from the 
viscosity-capillarity model and from the Navier- Stokes equations, i.e . t he viscos
ity model. Let A and£ characterize the values of the capillarity and viscosity effects, 
respectively. First, we prove that if the ratio A/£2 « 1 then the viscosity-capillarity 
and viscosity shock structures differs but only a little. Secondly, if A/£2 » 1 then 
the viscosity-capi llarity shock waves are oscillatory, whereas the viscosity waves are 
never such. Thirdly, to investigate the intermediate case of A/£2 

:::;; 1 we study nu
merically so-called impending shock splitt ing. This effect consists in that the shock 
profile has two inflection points, under suitably chosen data, instead of one, what is 
usual. Our calculations show that the capillarity, if strong enough , kills this effect 
totally. 

1. Introduction 

As IT IS WELL KNOWN, the Navier - Stokes equations with the van der Waals 
equation of state rule out certain experimentally observed phase boundaries. To 
circumvent this difficulty, SLEMROD [1] for van der Waals fluids and TRUSKI
NOVSKY [2] for elastic bars introduced higher order gradients to the disper
sive equations basing on the Korteweg's theory of capillarity. Consequently, the 
viscosity-capillarity equations were used mainly to study various problems con
cerning phase transitions. 

The aim of this paper is an investigation of the influence of the capillar
ity effects on the shock wave structure. To our knowledge this topic is almost 
untouched. Exceptions are the papers by AFFOUF and CAFLISCH [3], and by 
ABEYARATNE and KNOWLES [4] where some results concerning our problem can 
be found. 

We start with the capillarity equations deduced from a kinetic four-velocity 
model of the Enskog - Vlasov equation [5], and look for solut ions in the form of 
t ravelling waves. 

We define the shock wave as a plane travelling wave which is supersonic with 
respect to the sound speed in the equilibrium state ahead of it and subsonic with 
respect to that behind it. 

We distinguish between viscosity and viscosity-capillarity shock waves. The 
shock wave is , by definition, a viscosity wave if its structure is described by 
t he Navier - Stokes equations, and it is a viscosity-capillarity one if its structure 
is described by the capillarity equations, i. e. the Navier- Stokes equations with 
additional terms representing capillarity forces. 
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In Sec. 2 we present equations which we use to describe shock wave structures, 
and show that the viscosity-capillarity shocks can be oscillatory, provided that 
the capillarity coefficient is sufficiently large, whereas the viscosity shocks have 
monotone profiles. 

In Sec. 3 we discuss the problem of so-called impending shock splitting. Roughly 
speaking, the question is that within t he Navier - Stokes equations with a non
convex equation of state like the van der Waals one, one can choose such state 
after the wave and its speed that the shock profile has two inflection points in
stead of one, what is usual [7]. In this section we reconsider this problem, but 
within the framework of the capillarity equations. Numerically we show that if 
the capillarity coefficient is very small, then the viscosity-capillarity shock wave 
profiles differ but a little from t he corresponding viscosity ones. However, our 
calculations show that the increase of the capillarity coefficient kills the effect of 
the impending shock splitting, so it should be treated as an artefact introduced 
by the Navier - Stokes equations. 

In Sec. 4 we show how to extend these results to other scalar equations of 
travelling waves. 

We complete the paper with Sec. 5, where we prove rigorously that if the 
capillarity coefficient is small enough, then the viscosity and capillarity shock 
wave profiles differ by a lit t le only. 

2. The model equations of capillarity and the travelling waves 

The model equations of capillarity we consider in this paper consist of the 
following system of two partial differential equations [5] 

(2.1) 

(2.2) 

In (2.1) , (2.2), t > 0 is the time, x E IR is the Lagrangian mass coordinate, u 
is the velocity, w is the specific volume, pis the pressure, and f: J..L is t he coefficient 
of viscosity. 

The pressure formula reads 

(2.3) 
1 - u2 a 

p = p(w, u) = 2(w- b) - w 2 ' 

where a and b are positive constants; a is the ratio of the mean value of the 
potential of the attractive intermolecular forces to the mean kinetic energy of 
molecules, and b can be taken to be equal to unity. 
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Next , c: > 0 is a parameter , and J.L = J.L(w, u) is given by 

(2.4) 
w 

Q(w) = --b. 
w -

Finally, A > 0 is another parameter, the term proportional to it represents 
the capillarity forces. Therefore A is called the capillarity coefficient. 

We consider Eqs. (2.1), (2.2) in the domain 'D defined by [6] 

(2.5) 1) = { (w, u) : w > b, u2 < 1 - ;b , ;b < 1} . 

For (w,u) E 1J , the mass density 1/ w does not exceed the close-packing 
density 1/ b, and the pressure pis positive (also the viscosity J.L is strictly positive) . 

Two simplified versions of our equations, namely the first one with c: = 0, 
A = 0, and the second one with c: > 0 but A = 0, are called the Euler and 
N a vier - Stokes model equations of hydrodynamics, respectively. They were ana
lyzed in [6]. 

A travelling wave solution to (2.1), (2.2) is a solution of the form 

(2.6) (w, u)(x , t) = (w , u)(z), 
x- st 

z= -- ElR, 
€ 

where s = const is the wave-speed, such that 

(2.7) 

(2.8) 

(2.9) 

(2. 10) 

lim (w, u)(z) = (wt, Ut), 
z~-oo 

lim ( W, u) ( z ) = ( Wr, Ur), 
z~oo 

lim (w',u')(z) = (0, 0) , 
z~±oo 

lim (w",u")(z) = (0,0) , 
z~±oo 

where the dash 1 denotes differentiation with respect to z. 
Usually, the left-hand equilibrium state (wt, Ut) is treated as given, and the 

right-hand state ( Wr , Ur) has to be determined. However, we proceed in a different 
way. Namely, we introduce the notions of the states before and after the wave: 

the state before the wave is defined by 

(2.11) 
for s > 0, 

for s < 0, 

and the state after the wave is by definition 

(2 .12) ( ) _ { (wt,ut) 
Wa, Ua - ( ) w,u 

for s > 0, 

for s < 0. 

The case of s = 0 is not considered in this paper. 
We take the state after the wave as given. 
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Now, we act in a very standard way. Namely, we substitute (2.6) into Eqs . (2.1), 
(2.2), perform one integration with respect to z, and use the limit conditions 
(2.7) - (2.10). Having done that we find that the states before and after t he wave 
are related algebraically 

(2.13) 
SWb + Ub = SWa + Ua , 

- sub + p(wb, ub) = - SUa + p(wa , ua) · 

These relations are called t he Rankine - Hugoniot conditions and were in detail 
analyzed in [6] . 

Next , we find the velocity u. It is given by 

(2.14) u = Ua - s(w- Wa), 

where w is a solution of the following limit value problem 

(2.15) o? [:s w" - : 6 w'
2

] + SJ.L (w)w' + f (w) = 0, 

where a = A ft: 2
, and 

(2.16) 

(2.17) 

J.L = J.L(w) = J.L(w) = J.L (w , Ua - s(w - wa)) > 0, 

f (w) = s2(w- Wa) + p(w, Ua - s(w - Wa)) - p(wa , ua) , 

subject to the conditions 

lim w(z ) = { Wa for s > 0, 
(2.18) 

for s < 0, z-+-oo Wb 

(2.19) lim w(z) = { Wb for s > 0, 
z-+oo Wa for s < 0, 

(2.20) lim w'(z) = 0, lim w"(z)=O. 
z-+±oo z-+±oo 

These condit ions must be supplemented by Eqs. (2.13), which we write in t he 
form 

(2.21) f(wa) = 0, 

We take the following two assumptions: 

Al. T he equation j(w) = 0 has no solu t ions between Wa and wb· 
A2. The following inequalities hold true 

(2.22) 

(2 .23) 

f'(wa) < 0, 

f ' (wb) > 0. 
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Explicitly (2.22) and (2.23) are equivalent to 

(2.24) 

and 

(2.25) 

respectively. 
The characteristic speeds (sound speeds) C± ( w , u) are defined as the real 

solutions of (cf. [6]) 

(2.26) c
2

- sp~(w , u) + p~(w, u) = 0. 

Hence, (2.24) is equivalent to 

(2.27) 

what means that the wave is subsonic with respect to the state after it. 
Next , we notice t hat (2.25) is equivalent to 

(2.28) or 

i .e. the wave is supersonic with respect to the state ahead of it. 
The solution of (2. 15)- (2.21) with f (w) satisfying A1 and A2 is called the 

viscosity-capillarity shock wave, and the graph of the solution is called the shock 
wave structure or profile. 

The aim of this paper is to compare the viscosity-capillarity shock waves to 
t he viscosity ones, which are solutions of 

(2 .29) SJ.L(w )w' + f (w) = 0, 

with J.L (w) and f (w) given by (2. 16), (2. 17), respectively, and satisfying the limit 
conditions (2. 18) , (2. 19) , and (2.20)1 . We assume also that Eqs. (2.21) and A1 , 
A2 hold true. 

The first observations concerning the differences between the two descriptions 
can b e derived from the analysis of the points of equilibrium. This is a standard 
procedure. We linearize equations (2.15) or (2.29) around, say, w = Wa , and find 
that the characteristic exponents satisfy 

(2 .30) a-; ,\~+ SJ.L(wa )Aa + /'(wa) = 0, 
Wa 

if Eq. (2.15) is concerned , or 

(2.31) 

for the case of Eq. (2.29) . 
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Thanks to (2.22) , Eq. (2.30) has two real solutions >.;;- < 0 < >.~. Of course, 
the solution to (2.31) is always real. 

If we perform the linearization around w = wb, then t he characteristic expo
nents, this t ime labelled with the subscript b, will satisfy an equation similar to 
(2.30) (respectively (2.31)). But this time, owing to (2.23) t he characteristic ex
ponents in the viscosity-capillarity case can be complex if a is sufficiently large. 
The characteristic exponent in the viscosity case is always real. 

Thus we obtain 

O BSERVATION 1. 

If a is sufficiently large, then the viscosity-capillarity shock wave structure 
is oscillatory in the downstream part of its profile. The viscosity shock wave 
structure is always monotonic. 

1 .4~---------------------------------------------------------, 

V 
Wr = 8.31 

1.2 

-74 -54 -34 -14 6 26 46 66 

FIG. 1. Normalized oscillating shock st ructures , a = lOO. 

The graphs of oscillatory shock waves are presented in Fig. 1 (see als.:> [3]) . 
Experimentally, oscillatory shock waves were observed in [11]. 

3. The impending shock splitting 

The notion of impending shock splitting was introduced by C RAME:l and 
CRICKENBERGER [7] to denote such shock structures which are monotom, but 
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have two inflection points instead of one, what is usual. If t he impending shock 
wave occurs t hen, roughly speaking, the shock profile consists of two domains 
where rapid, shock-like changes take place, separated by a region in which t he 
profile is quite flat. 

Cram er and Crickenberger used the nonisothermal N a vier - Stokes equations 
with a realistic equation of state, but they ignored capillarity forces. The profiles 
with an impend ing shock splitting are presented in Fig. 10 of their paper [7]. 

Later, using our model equations of van der Waals fluids with capillarity 
effects neglected we obtained quit e similar results [6]. 

For the sake of completeness of our arguments we give a series of shock pro
files exhibiting the impending shock wave split ting (see Fig. 2) . Of course, they 
resemble the quoted results of [6] and [7]. 

p 

w 2 
w b 

FIG. 2. Schematic diagram of t he pressure and the Rayleigh radii. 

w ' 
b 

w 

We explain briefly how to obtain such results (see also [7]) . First, we ignore 
the capillarity terms, i.e. we set a = 0 in Eq. (2.15). Consequently, we consider 
the problem consisting of Eq. (2.29) subject to (2 .18), (2.19), and (2.20)1 . We 
start from the simpler case of isothermal gas with the pressure p given by 

(3.1) 
T a 

p(w) = - - - - , 
w - b w2 

where T = const is the dimensionless temperature. 
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If T is such that 

(3.2) 1 a T 81 a 
4 b < < 256 b) 

then the pressure is positive for w > b, but the graph of p( w) in the w - p plane 
is a concave or even nonmonotonic curve. Under (3.2) , the curve p = p(w) has 
two points of inflection, say, at w = w• and at w = w•• , such that b < w• < w••. 

Let us take the the state after the wave w0 such that b < Wa < w•, and let 
s > 0 be such that the Rayleigh radius r( w) = - s2 ( w - wa) + p( wa) is tangent to 
p = p(w ) at w = w, w• < w < w•• . Now, we take a sequence {sn} of speeds such 
that Sn+l > Sn > 0, n = 1, 2, ... , and lim Sn = s (see Fig. 2). Then the Rayleigh 

n -+oo 

radii rn = - s;(w- wa) + p(wa) lie above the graph of p = p(w) for w between 

w = Wa and w = w~n), where w = w~n) is the w-coordinate of the other point 
of intersection of p = p(w) with p = rn(w) . This guarantees that, for any n , the 

functions fn(w ) = p(w)- rn(w) are negative for w between Wa and w~n) . Hence, 
our limit value problems have unique solutions. However, for sufficiently large n , 
the Rayleigh radii are almost tangent to the graph of p = p( w), but lying above 
it . Therefore , for sufficiently large n , the function fn(w) can be arbitrarily close 
to zero in a vicinity of w = w . Consequently, in this vicinity the derivative of 
w = w(z ) with respect to z is close to zero. This means that the graphs of the 
solutions in the z - p plane become flatter and flatter , as n tends to infinity. 

In our case, when the pressure depends not only on w but on u as well, the 
situation is more difficult. This is due to the fact that, when considering the shock 
wave problem, we have to consider p(w, u) along the Hugoniot locus (cf. [6]) what 
results in that the profiles of p(w, u) depend on s as well. So they change when 
changing s, but the Rayleigh radii remain unchanged. Luckily, by regrouping the 
parameters present in our problem we can reduce it to a form which resembles 
the isothermal case, and consequently we can use the construction described 
above. 

Indeed, as it follows from (2.14) we can write 

(3.3) U = Ua - S ( W - b) , 

where 

(3.4) Ua = Ua + s(wa- b) = const . 

Next, (2.3), (2.17) and the above yield 

(3.5) f(w) = p(w)- p(wa) + s2 (w - Wa), 

where 

(3.6) -( ) Ta a pw = ---- , 
w- b w2 
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with 

(3.7) 

and 

(3.8) 

1 -2 - u 
Ta = T = const , 

Formula (3.6) resembles (3.1) if we identify Ta with T . 
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When preparing the graphs presented in Figs. 1 and 3 - 7, we kept Wa and Ta 
fixed and changed s. Consequently we changed u11 , i.e. we took U a = u0 (s) , in 
agreement with (3.4) and (3 .7). 

V rrr r 
0.9 w ,. -7.89 -

fl+ ----- •w, - 6 .3'1 

o.e 
11-+---- w, - 6 . 1 9 

w , -8.03 
0.7 

0 ,6 

'! 
0,<5 

1 
0.4 

0.3 

w, -7.69 

0 , 2 

1-H----- w, - e .oa 

0., ""'r - 6 . 31 

w , -6. 19 

0 ~-~~-~~------~~--~--~--~ 
- 200 _,00 0 

FIG. 3. Normalized shock structures for o = 0. 

Next , we reconsidered the shock wave structure problem using Eq. (2.15) and 
the same values of T0 , Wa, and Sn . Let us notice that the Rankine- Hugoniot 
condit ions (2.13) are the same in the viscosity and in the capillarity-viscosity 
case. 

In F igs. 1 and 3- 7 the normalized specific volume V defined by 

V= (w - wl )/(wr - W!) 

is shown for a = 100, 0, 0.5, 1.0, 5.0, and 10.0. 
Now, let us take a greater value of a , i.e. a = 1 (Fig. 5). We see that the 

impending shock split ting is still observable, but the overall shock thickness has 
decreased by the factor of 4. 
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FIG. 4. Normalized shock structures for a = 0.5. 
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If we increase the value of a even more to, a = 5 and a = 10 like in Figs . 6 and 
7, respectively, then it turns out that the splitting disappears. If we continue to 
increase the value of the capillarity coefficient, then the shock wave can become 
oscillatory without any splitting (cf. the previous section and Fig. 1). 

4. Generalization of these results 

We show below that our equation (2.15) for plane travelling waves can be 
put into a more general and standard scheme, and simplified at the same time. 
We have not done this up to now because we used Eq. (2.15) for our calculations 
described in the previous section. 

We consider a more general problem than that of (2.15) - (2.20), namely we 
take 

(4.1) a [A(w)w" + B(w)w'
2
] + SJ.L(w; Wa, s)w' + f(w ; Wa , s) = 0, 

subject to the limit conditions (2.18)- (2.20). 
Here, a > 0 is a parameter, A(w) and B(w) are given continuous functions 

of w > b, where b can be such as previously or any other fixed real number; 
s is the wave speed, and Wa > b is a fixed quantity. Next, the source function 
f ( w; Wa, s) and the viscosity coefficient J.L( w; Wa, s) are given smooth functions of 
their arguments such that 

i) J.L( w; Wa, s) is strictly positive, i.e. there is a positive constant J.Lo such that 
for any w , Wa > 0 and any admissible value of s 

(4.2) 

ii) for any admissible value of s 

(4.3) f(wa;wa , s) = 0; 

iii) there exists Wb > b, Wb i= Wa such that 

( 4.4) 

i.e. Wb = wb(w0 , s). 
Finally, A ( w) is assumed to be strictly positive as well, that is there exists a 

positive constant, say Ao , such that 

(4.5) A(w) ~ A0 > 0 , 

for w > b. 
Let 

(4.6) 
B(() 

[ 
w l D(w) = exp 1 A(() d( , 
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and let us define the transformation 
w 

ID(() d( 

(4.7) W-+ U(w) = w_.:..:~:.....b __ _ 

ID(() d( 
W a 

Since D > 0, then U~ > 0 and this transformation is invertible; i.e. there is a 
twice differentiable function U --+ w(U) such that 

(4.8) w(O) = Wa and w(1) = wb. 

By applying the transformation (4.7) to Eq. (4.1) , the latter reduces to 

(4.9) aU" + sM(U) U' + F(U) = 0, 

where 

( 4.10) M(U ) = f.l(w(U) ;w0 , s) 
A(w(U)) ' 

and 

(4.11) 
D(w(U)) 

F(U) = F(U; W0 , s) = wb f(w(U) ; W0 , s). 

A(w(U)) ID(() d( 
W a 

The limit conditions (2.18) - (2.20) become 

( 4.12) lim U(z ) = { 
0 

z~-oo 1 

(4.13) lim U(z ) = { 
1 

z ~oo 0 

(4.14) lim U'(z ) = 0, 
z~±oo 

Equations (4.2), (4.3) take the form: 

for any Wa > b, Wb > b, and s 

(4.15) 

there is Wb = wb(wa, s) > b such t hat 

( 4.16) 

for s > 0, 

for s < 0, 

for s > 0, 

for 8 < 0, 

lim U"(z)=O. 
z~±oo 
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The limit value problem of the type (4.9), (4.12) - (4.14) along with (4.15), 
( 4.16) was considered in many papers on the isothermal travelling waves solutions 
to conservation principles (an extensive list of references is given in [6]). Also, 
a similar problem arises in the analysis of travelling waves in reaction-diffusion 
systems . The difference between the conservation principles and t he reaction
diffusion ones is that the source term F (U) in the latter case does not depend 
on the wave speed s and that (4.16) holds for any w0 , wb and/ or eventually 
other parameters. So, in this case there is nothing like the Rankine - Hugoniot 
conditions (see [8] and the references therein) . 

In the case of our original equation (2 .15) 

B(w) = 5/w6 = ~A~(w). 

Hence, as the function D(w) we take D(w) = w- 512 . Therefore 

- 3/ 2 -3/ 2 w -wa 
U(w) = - 3/ 2 - 3/ 2 · 

wb - Wa 

( 4.17) 

The inverse to it w = w(U) is then 

( 4.18) 

Now, we establish the equivalence between the limit value problems (4.1) -
(4.3) subject to conditions (2.18) - (2.20) and that of (4.9), (4.12)- (4.16) . 

First, due to (4.5) - (4.7) and (4 .10) , (4.11) we have immediately 

PROPOSITION 1. 

i) M(U) > 0 if and only if f.L (w) > 0; 
ii) F(U) > 0 ( < 0) if and only if (wb - wa)f (w) > 0 ( < 0); 
iii) F(Uo) = 0 if and only if f(wo) = 0, where Uo = U(wo). 
We have also 

PROPOSITION 2. 

The singular point (w, 0) of Eq. (4.1) in the plane of (w, w' ) is of t he same 
type as the singular point (U, 0) of Eq. ( 4.9) in the (U, U')-plane. 

P r o o f. To perform the classification of a singular point of a dynamic 
system we consider the asymptotic behaviour of its solutions as z --+ - X> or, 
respectively, z --+ oo. 

To this end we linearize, first , Eq. (4.1) around (w, 0) and obtain a linear, 
second order differential equation whose characteristic equation reads 

(4.19) aA(w).\2 + Sf.L(w).\ + J'(w) = 0. 
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The similar procedure yields in the case of Eq. (4.9) 

( 4.20) aA2 + sM(U)A + F&(U ) = 0. 

But from ( 4.6), ( 4. 11) we have 

F&(U) = D(w~)) [B(w(U)) - A~ (w(U))] f(w (U) ) ~~ 
A2 (w(U)) ID(() d( 

Wa 

D(w(U)) !' ( (U)) dw + Wb w w dU. 

A(w(U)) ID(() d( 
W a 

But, as it follows from ( 4. 7) 

D(w(U)) dw = 1. 
Wb dU 
ID(() d( 

W a 

Therefore 

(4_21) F' (U) = B (w(U)) - A:U(w(U)) !( (U)) f~(w(U)) 
u A2(w(U)) w + A(w(U)) . 

Consequently 

( 4.22) F' (U) = f~(w) 
u A(w) · 

Using (4.10) and (4.22) in Eq. (4.20) we see immediately that it coincides with 
Eq. (4.19). The proof is complete. 

As we assume that neither A(w) nor B(w) depend on a, we can apply trans
formation (4.6) , (4.7) to the viscosity shock wave problem (2.29) , (2.18) , (2.19) , 
and (2 .20)1 . This problem changes to 

( 4.23) sM(U ; Wa, Wb, s )U' + F(U ; Wa , wb , s) = 0, 

and the limit conditions (4.12), (4.13), and (4.14)1. Here M and Fare the same 
as previously. Also, we assume that (4.15) and (4.16) hold. 

Finally, (2 .22) and (2.23) take the form 

(4.24) 
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We transfer to here the terminology of the previous section, and the waves 
described by Eq. (4.9) are called the viscosity-capillarity waves, whereas those 
described by Eq. ( 4.23) are called the viscosity waves . 

i) The oscillating viscosity-capillarity waves 

Setting in Eq. (4.20), U = Ua and using (4.24) we see that the point (Ua , O) is 
the saddle in the (U, U')-plane. The similar analysis for U = Ub shows that the 
characteristic exponents at this state of equilibrium can have nonzero imaginary 
parts, so the waves can be oscillatory downstream. Similarly as previously, the 
viscosity shock waves are never oscillatory, what follows from Eq. (4.23) and 
assumption (4.24). 

ii) The impending shock splitting 

Let there exist Wa = Wa 1 Wb = Wb, s = s such that 

F(1; Wa, Wb, s) = 0, 

and let there be U that 0 < U < 1, and 

We take sequences w~n) -7 Wa
1 
w~n) -7 Wa

1 
s(n) -7 s as n -7 oo, such that 

F(1· w(n) w(n) s(n)) = 0 
I a I b I I 

F(U· w(n) w(n) s(n)) ..J. 0 for 0 < U < 1 
' a ' b ' -r · 

The shock profiles obtained from Eq. (4.9) for such values of the parameters and 
sufficiently large n will exhibit the impending shock splitting (cf. Proposition 1) . 

4.1. The numerical procedure 

In order to solve numerically the limit value problem of the type (2.15) and 
(2.18) - (2.20) we reduce first Eq. (2.15) to the form ( 4.9) by means of the trans
formation ( 4.17), ( 4.18) . We have to distinguish two cases: the first one concerns 
large values of a, whereas the second - the small ones. In the first case, the 
classical fourth-order Runge - Kutta method works well. In the second case, a 
is a small singular parameter since it multiplies the highest derivative of the 
equation. Owing to that, the problem becomes numerically stiff and an implicit 
scheme has to be used. In the case of Eq. (4.9) the problem is relatively simple. 
Namely, with the substitution 

(4.25) U' = V(U) 

we reduce our problem to 

(4.26) dV = _ F(U) _ !_M(U), 
dU aV a 



THE SHOCK WAVE STRUCTURE BY MODEL EQUATIONS OF CAPILLARITY 783 

with the boundary conditions 

( 4.27) V(U = 0) = 0, V(U = 1) = 0. 

We decided upon the so-called trapezoidal rule [10], which consists in the follow
ing. Let us consider the generic initial value problem 

y' = cjJ(x, y), 

subject to the initial condition 

y(O) = xo . 

The numerical scheme is 

( 4.28) 

where h is the step. 
In our case x = U , y = V , and cjJ is the right-hand side of Eq. (4 .26) . The 

numerical scheme yields, in our case, an algebraic quadratic equation for Vn+l 
whose solution provides a recursive relation between this quantity and Un , Un+l, 
and Vn. 

We start the iteration process from a point (Uo, V0 ) close to (0,0) (the latter 
is a saddle in the (U, V)-plane) and continue the calculations until we reach a 
small vicinity of the point (1,0) (which is the stable node in the same plane). 
In this way we obtain the function V(U), i.e. the right-hand side of Eq. ( 4.25). 
Integrating it in the standard way we find U = U(z ). Finally we use (4.18) and 
obtain w = w(z ). 

5. The case of small a 

In this section we prove that the viscosity-capillarity and viscosity shock pro
files do not differ much, provided that a is sufficiently small. 

We assume in this section that Wa, w b, and s are such that Eq. ( 4.16) is 
satisfied . First, we take the following 

DEFINITION 

For i = 0, 1, 2, 3 

IIYIIi =sup (iy(z)i + iy'(z) i + ··· + IY(i)(z)i), 
zEIR 

and 
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Also let for i = 0, 1 

B? = {yE Bi : y( z) ~ 0 as izi ~ oo} 

and 

Bg={yEB2 : y(O)=O and y(z)----*0 as lz l ~oo} . 
THEOREM. 

a) Let the function M(U) satisfy 

i) M(U) E C2
(( -o,1 + o)) for some positive o, 

ii) M(U) 2: Mo > 0 for U E ( -o, 1 + o) , 
where M 0 is a constant. 

(3) Let the function F(U) satisfy 

i) F(U) E C2 (( -o, 1 + o)) for the same o as previously, 
ii) F(O) = 0, F(1) = 0, 
iii) F(U) < 0 for U E (0, 1), 
iv) F&(O) < 0, F&(1) > 0. 

Then 

1. Equation (4.21) has a unique solution Uo(z) E 8 1 satisfying the limit con
ditions (4.12) , (4.13) and the initial condition U0(0) = 1/ 2; 

2. Equation (4.9) has a unique solution U(z) E 82 satisfying the same limit 
conditions and the initial condition U(O) = 1/ 2, provided that a is sufficiently 
small; 

3. There is a constant C > 0, independent of a , such that 

(5.1) IIU(z) - Uo(z)III < aC, 

for a sufficiently small. 
Only Part 3 of the assertions of the Theorem needs a proof; Parts 1 and 2 are 

presented for sake of completeness of the theses and can be easily proved by the 
phase plane analysis, even without the assumption that a is small (see [8] for 
the case of reaction-diffusion systems, and [9] for the case of conservation laws) . 

The following observation collects some properties of Uo(z) which will be used 
in the proof of Part 3 of the Theorem. 

OBSERVATION 2. Under the assumptions on M(U) and F(U) taken in the 
Theorem, 

(5.2) sU'(z) > 0 for z E JR, 

(5.3) 
u0'(z) 
Uo(z) E Bl, 
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and 

(5.4) 

where 

(5.5) 

{ 

_ F&(O) 
_ sM(O) 

IL - - F&(l) 

sM(l) 

{ 

_ F&( l) 
sM(l) 

~~:+ = _ F&(O) 

sM(O) 

as z ~ -oo, 

as z ~ oo, 

for s > 0, 

for s < 0, 

for s > 0, 

for s < 0. 

The proof is immediate, hence it is omitted. 
Now, we make the substitution in Eq. (4.9) 

(5.6) U = Uo +h. 

785 

To prove Parts 2 and 3 of the Theorem it is sufficient to show that the equation 
for h resulting from Eq. (4.9) has a solution in Bg , and that 

(5. 7) llhlh < o:C 

for some positive constant C independent of o: , the latter being sufficiently small. 
To this end we write the equation for h in the form 

(5.8) 
U,fl 

o:h11 + sM(Uo)h' - sM(Uo) U~ h = -o:Ug- G(h) , 

where G : B? ~ Bi- l , i = 1, 2, is a nonlinear differential operator defined by 

G(h) = s [M(Uo +h)- M(Uo)] h' + s [M(Uo +h)- M(Uo)- M&(Uo)h] U~ 

+ [F(Uo +h) - F(Uo)- F&(Uo)h] . 

The linear differential operator generated by the left-hand side of Eq. (5.8) we 
denote by La, i.e. 

(5.9) 
U,fl 

Lah = o:h" + sM(Uo)h'- sM(Uo) U~ h. 
0 
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Hence, according to this scheme we have to show first , that £ 0 has the inverse 
L - 1 8 o 8 o 

(i : 0 -t 2• 

LEMMA. For sufficiently small positive a , the linear operator £ 0 has t he in
verse £;;1 : B8 -t Bg and, when treated as an operator from B8 into B~ , is 
bounded, i.e. for every g E B8 there is a positive constant , say C , such that 

(5.10) 

P r o o f. We rewrite the equation L0 h = g in the form 

(5.11) [ U"] [ U" (U") 1

] ah" + sM(Uo) - a U~ h'- sM(Uo) U~ + a U~ h 

(
U" )' 

= g - u~ h = 9 

or 

a [h
1

- ~f hr + sM (Uo) [h
1

- ~f h] = g. 

Integrating this linear equation we get 

(5.12) 

where V is a linear integral operator V : B8 -t B~ defined by 

z 

aq~z ) I q(()g(() d( , if s > 0, 

(5.13) V g = -oo 
-oo 

- aq~z) I q(()g(() d(, if s < 0, 
z 

and 

(5 .14) q(z} = exp [ ;; l M (Uo(()) d( ] · 

The operator V : B8 -t B~ is bounded. First , let us notice that if lim g( z ) = 0, 
lzl-4 oo 

then lim (Vg)(z ) = 0. To prove this use the de l'Hospital rule. 
lz l-4oo 

Secondly, there is a constant C > 0, independent of a , such that 

~5.15) IIV9IIo ~ Cll9llo · 
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Indeed , let s > 0. We have obviously 

IV91 :S ll~lo j exp [ - ~ j M (Uo(r )) dr] d(. 
-oo ( 

Now, making use of Assumption (a)(ii) of the Theorem we obtain 

Hence, (5. 15) is proved. The case of s < 0 is treated in a similar way. Now we 
proceed to Eq. (5.12). Its solution is 

(5.16) 

z 

h(z) = rJ'(z) I (Vg)(() d( 
o U'(() . 

0 0 

Of course, h(O) = 0. Next, making use of Observation 2 we check easily that 
h(±oo) = 0. So, h(z) as given by (5.16) is an element of Bg , indeed. 

From (5.16) the estimate follows 

z 

ih(z)l :S IIV9IIo U~(z ) I u~fo 
0 0 

It follows from Observation 2 that there is a constant , say C1 > 0, such that 

Of course, C1 does not depend on a , because Uo(z ) is independent of a . 
Hence, the following estimate holds true 

(5.17) lih(z)ll :S CIIIV9IIo · 

Next, making use of Eq. (5.12) , Observation 2, and (5.17) we conclude that 
there is a constant C2 , independent of a such that 

llh'(z)llo :S C2IIV§IIo · 

Therefore, there is a constant C3 > 0, independent of a, such that 

(5.18) 
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Equation (5.16) is an integro-differential equation equivalent to (5.12), and thus 
to Lo:h = g. Explicitly, this equation is of the form 

(5.19) 
1 z (Vg)(() 1 z [v(~fh)' (( )l _ 

h(z) = U0 (z) I U' (() d( - aU0(z) I U' ( ) d( = T (h) . 
0 0 0 0 ( 

To solve this equation we apply the method of successive approximations 
setting 

(5.20) 
ho = T (O), 

hk+t = T (hk ), k = 0, 1, 2, .... 

By induction we show that, for sufficiently small a , there is a constant C > 0, 
independent of a , such that 

(5 .21) k = 0, 1, 2, .... 

Next , we check easily that for small a the following is true: 

i.e. for small a , T (h) is a contraction mapping from Br into it self. T hus, the 
sequence defined by (5.20) is convergent in Br, its limit, as k tends to oo, h(z) 
satisfies Eq. (5 .19), and it is the unique solution. But, any solut ion of Eq. (5.19) 
in Br is also its solution in Bg. Hence, the limit function h(z) is also the unique 
solution of this equation in Bg. Consequently, it is the unique solution to the 
equation Lo:h = g. Moreover, since (5.21) holds for every k , it holds also for the 
limit of the sequence. It means that h(z) satisfies 

llh!lt :S Cllgllo , 

and this is (5.10). The proof is complete. 

P r o o f of the Theorem. Solving Eq. (5.8) in Bg we get 

(5.22) k = 0, 1, 2, .. . 

with ho = 0. 
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The operator G(h) has the following two properties: 

i) G(O) = 0, 

789 

ii) for every c > 0, there is 6(c) > 0 such that, if llh1JI1 ~ 6(c), llh2ll ~ 6(c), 
then IIG(hl) - G(h2)ll1 ~ cllh1 - h2ll1· 

Using them and the Lemma we show easily that there is a constant C > 0, 
independent of a, such that 

(5.23) k=0,1,2, .. . , 

and that the sequence { hk} is convergent as k -7 oo, to the limit h(z) E B?. This 
limit function is the unique solution of Eq. (5.8) in B? , so it is its unique solution 
in Bg. Additionally, the limit h(z ) satisfies llhlh ~ aC, with the constant C 
being the same as in ( 5. 23) , provided that a is sufficiently small. The proof of 
the Theorem is complete. 
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Dynamic response of a fluid-saturated 
elastic porous solid 

S. BREUER (ESSEN) 

IN T HIS PAPER, the field equations governing the dynamic response of a fluid-satu
rated elastic porous media are analyzed and built up for the study of the consolida
tion problem and the one-dimensional wave propagation. The two constituents are 
assumed to be incompressible. A one-dimensional numerical solution is derived by 
means of the standard Galerkin procedure and t he finite element method. As a result 
of the incompressibility, there is only one independent dilatational wave propagating 
in the solid and the fluid phase. This work can provide further understanding of the 
wave propagation in porous materials, not only in view of the propagation speed , 
but also with respect to the development of the amplitudes. 

1. Introduction 

A FLUID-SATURATED POROUS MEDIUM is a portion of space occupied partly by a 
solid phase (solid skeleton) and partly by a void space filled with fluid , e.g. water. 
The mechanical behaviour of such a medium is governed mainly by the interac
tion of the solid skeleton with the fluid . This interaction occurs in quasi-static 
problems, like foundations, but is particularly strong in dynamic problems, for 
example earthquakes. In contrast to wave propagation in one-component bodies, 
t he wave propagation in a porous medium has special characteristics. As usual, 
we have two different kinds of waves, the compression (longitudinal) wave and 
the shear (transversal) wave. But in a porous medium with compressible con
stituents, the compression wave has two different velocities, a fast Pl wave and 
a slow P2 wave. In this contribution , however, the constituents are assumed to 
be incompressible and as a result of this assumption, the Pl velocity is infinite. 

The two-phase behaviour of a fluid-saturated porous medium can only be 
predicted quantitatively by elaborate numerical computation, which fortunately 
is possible today due to the development of powerful computers. 

Many computat ions done in the field of dynamics of porous media have made 
use of BlOT's theory [1], because Biot's theory leads to quite good results for 
linear elastic problems. But as t his theory has not been developed from the basic 
equations of mechanics, its further development causes many problems. 

In this investigation, the calculation of the dynamic response of a fluid-satu
rated elastic porous solid is based upon the macroscopic porous media theory 
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(TPM - Theory of Porous Media) , which is defined as the mixture theory re
stricted by the volume fraction concept. Readers interested in details of this 
theory are referred to the papers of de BOER [8], BLUHM [2], BLUHM and DE 

BOER [3], EHLERS [10] and BOWEN [4, 5] . In order to simplify the problem, ther
mal effects and exchanges of mass between the constituents are excluded, and 
single constituents are treated as incompressible. 

In Sec. 2 the governing equations of the above mentioned theory are discussed 
and the field equations and constitutive relations are taken into account. In the 
third section these equations are built up for the numerical computation. The 
finite element method is used for the discretisation of the basic equations and 
the time integration is done by the Newmark method. In Sec. 4 the dynamic 
consolidation problem of a one-dimensional elastic porous body and the wave 
propagation in this medium is investigated. Solutions obtained by the finite ele
ment method are compared with the existing analytical solutions based on the 
same theory. This paper ends with some concluding remarks in Sec. 5. 

2. Governing equations 

2.1. Kinematics and the concept of volwne fraction 

Considering the kinematics of the fluid-saturated porous medium, which is 
an immiscible mixture of the constituents tp0 with particles X 0 (a = S : solid 
phase, a = F : fluid phase), it is assumed that at any timet each spatial point is 
simultaneously occupied by the particles X 5 and X F. These particles X 0 proceed 
from different reference positions X 0 at time t = to. Thus, each constituent is 
assigned its own independent motion function X0 , from which the velocity x~, 
the acceleration x~ and the deformation gradient F 0 can be calculated: 

F0 = Grad0 Xa, 

where Grad0 means the derivative with respect to X 0 . The volume fractions 

are defined as the local ratios of the constituent volumes v0 with respect to the 
bulk volume v of the control space Bs , which is shaped by the solid skeleton 

With the aid of the volume fractions 

V = I dv = t V
0 

= I t dv
0 

= I t n° dv, 
Bs o=l Bs o=l Bs o=l 
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we get the volume fract ion condition 

(2.1) 

The volume fraction condit ion (2.1) plays an important role as a constraint in 
the constitutive theory of porous media, see DE BoER [8] or BLUHM and DE 
BOER [3]. 

Each of the constituents cp0 has a real density Q0 R , which is defined as the 
mass of cp0 per unit of v0

. With the aid of the volume fraction concept , these 
properties can be "smeared" over the control space and we obtain t he partial 
density 

2.2. Field equations 

Excluding mass exchanges and t hermal effects, the mechanical behavior of a 
fluid-saturated porous solid is described in BLUHM [2] and EHLERS [10] by the 
balance equation of mass for each single constituent 

(2 .2) ( 0)1 0 d . I 0 Q 0 + Q 1V X 0 = , 

the balance equation of moment um 

(2.3) 

and the volume fraction condition that changes for a binary mixture into the 
saturation condition 

(2.4) 

In these equations T0 is the partial Cauchy stress tensor, b the external acceler
ation, and s0 the interaction force of the constituents. In addition, "div" is the 
divergence opera tor and the symbol ( ... )~ denotes the material time derivative 
with respect to the trajectory of cp0

. 

As the sum of the interaction forces must vanish, we obtain for a binary 
mixture 

The balance equation of moment of momentum leads, excluding any moment of 
momentum supply, to a symmetric stress tensor 
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2.3. Constitutive relations 

Since the number of unknown fields (Ta, xa, sa) is larger than the number of 
field equations, we have to introduce constitutive relations for Ta, sa and the 
density eaR. As both constituents are incompressible, we have 

eaR = constant. 

With this assumption, the volume fractions can be calculated from the balance 
equations of mass (2.2) and with the aid of the deformation gradient, one obtains 

where nao describes the initial porosity of r.pa. 
The constitutive relations for the solid and fluid stress tensor Ta and for the 

interaction force sa (a = S, F) consist of two terms, where the former, as a result 
of the saturation condition, is proportional to the pore pressure p, while the lat ter 
represents the extra quantities, index ( ... )E , determined by the deformation: 

Ta = - napi+T£, 

sF = pgradnF + s~. 

The partial effective stress tensor of the fluid can be neglected: 

T~ ~ o , 

and the partial effective stress tensor of the solid can be expressed by the law of 
SIMO and PISTER [12]: 

T~ = -
1
- (1-/Bs + [>-5 ln(det Fs)- J..L5 ] 1) , 

det Fs 

where >.5 and J..Ls are t he Lame constants of the solid material and Bs = Fs FI 
is the left Cauchy - Green tensor. 

The interaction between the fluid and solid constituents, caused by the mo
tions, can be described by the extra supply term of momentum 

with w F = ( x'p - x$) being the seepage velocity, IF R the real specific weight of 
the fluid and kF the Darcy permeability parameter. 
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3. Numerical solution concept 

3.1. Solution strategy 

An effective way to solve the system of equations and to match the problem to 
the boundary and initial conditions consists in combining the balance equations 
of momentum (2.3) of both constituents 

(3. 1) div (Ts + TF) + (rl + t/)b - r/x~ 
- {}F [(wp + x$)$ + grad (wp + x$) wp) = 0 

as well as the balance equation of momentum of the fluid , 

The remaining equations and unknowns can be substituted by a combination of 
the balance equations of mass (2 .2) together with the saturation condition (2.4) . 
Considering the incompressibility of both constituents, we get : 

(3.3) 

In these equations the fluid velocity x'p is replaced by x'p = wp + x$, for a 
better fit to the boundary conditions. For example, at an undrained boundary it 
causes less problems to prescribe wp = 0, i.e., x$ = x'p . 

3.2. Weak formulation 

For numerical computations, a standard Galerkin procedure was chosen. 
Therefore, each of the basic equations (3 .1) , (3 .2), (3.3) has to be multiplied 
by a weighting function. For Eq. (3.1) , a virtual solid displacement lis is chosen . 
The volume integral of a divergence can be transformed, see DE BoER [7], into 
a surface integral 

I { (T~ - pI)· grad lis + es x~ ·lis 
B 

+ {}F [(wp + x$)$ + grad (wp + x$)wp) ·lis} dv 

=I t·fis da + l(es +eF)b·fisdv , 
A B 

where t is the stress vector on the surface of the mixture, including the stress on 
the solid and the stress on the fluid . 
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For Eq. (3.2), a virtual seepage velocity wp was taken into account and the 
volume integral was transformed into a surface integral 

I{( · - ) "fFR nF - FR [ 1 1 
-pdtv wp + kf wp ·wp + (! (wp + xs)s 

B . 

+ grad(wp +x~)wp] ·wp}dv =-I pwp·nda +I (!FRb ·wpdv. 

A B 

Equation (3.3) represents the saturation condition together with the mass bal
ance equations, and it has been multiplied by a virtual pressure p 

I div ( nF wp + x~) pdv = 0. 

B 

3.3. Solution algorithm 

From the weak formulation, one gets 3 scalar equations with the unknown 
functions (us , wp,p). For the discretisation of the problem, the unknown func
tions (us, wp,p), as well as their time derivatives and the corresponding weight
ing functions (iis, wp,p) are approximated by linear shape functions. Since the 
values of the weight functions are not specified, the coefficient multiplied by the 
value of the weight function must vanish. Now, the 3 scalar equations of the 
weak formulation are split into n equations, where n is the number of unknowns 
at each node, multiplied by the number of nodes per element. Thus, the dis
cretisation of the problem leads to a system of n equations with the unknowns 
(us, u5, u~, wp , w'p,p). The matrix of the coefficients multiplied by the value of 
the discrete unknowns are denoted by M, D , K. M means the mass matrix and 
is connected with the second time derivative of the unknowns. D represents the 
damping matrix and is coupled with the first time derivative of the unknowns, 
and at last K denotes the stiffness matrix and is connected with the unknowns. 
The index M, F or K in Eq. (3.4) means, that these coefficients come from the 
balance equation of mixture (M), the balance equation of fluid (F) or from the 
saturation condition (K). The second index represents the kind of unknowns, 
1 stands for the motion of solid, 2 for the motion of fluid and 3 for the pressure. 
F determines the load vector of the mixture (M) and of the fluid (F) . Equation 
(3.4) shows the problem after the discretisation in the form of a matrix equation. 
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The Newmark method was chosen for the time integration and with the help of 
the result of the last time step, the problem can be converted into a n x n matrix 
with an update of the load vector. 

4. Examples 

4.1. Consolidation problem 

Taking the linear theory into account, DE BOER et al. [9] presented an ana
lytical solution for an infinite halfspace using the Laplace transformation. Thus 
there is an excellent example for the comparison of the analytical and the nu
merical solution. In order to model the half-space via the finite element method, 
a column of 10 m depth and 2m2 surface was taken into account. The solution 
was calculated for a very short time, so that no signal of the rigid boundary in 
10 m depth could influence the solution. The upper boundary of the column is 
perfectly drained and loaded in the first case by a sine load ( q): 

q1(t) = 3sin(wt) [kmN2] , w = 75 s-1
, 

and in another case by a step load ( q): 

q2(t) = 3 [ kmN2 ] . 

The other boundaries are undrained and rigid, see Fig. 1. The material par
ameters are taken from [9] as: 

J.Ls = 5583 kNj m2, 

{}SR = 2000 kg/ m3 , 

ng5 = 0.67, 

>.8 = 8375 kN/ m2, 

{}FR = 1000 kgjm3 , 

kf = 0.01 mfs. 

As expected, the displacement-time behaviour starts with a large time-gradi
ent, which decreases with passing time. We can compare this behaviour with a 
strong damped vibration-system, which has in fact the same structure after the 
dicretisation. 

Figure 2 shows the surface displacement under both the loads. It shows a 
good agreement between the analytical and the numerical solution. In the case 
of the sine load, there is no visible difference between both the solutions. 

In the example mentioned above, the external acceleration was neglected. 
Thus the calculation has started when the settlement under its own weight is 
finished. An interesting point is to show the settlement under its own weight, 
without an external load. This result is to be seen in Fig. 3. 
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FIG. 2. Comparison between an analytical and a numerical solution. 

We can see that at the begining, the weight of the whole column: 

j (e8 + eF) b dv = 167 kN [e1], 

V 

is causing the pore pressure. With the passage of time, the effective stress in the 
solid increases to - 67kN/m2 , and the pore pressure it decreases to 100kN/m2

, 
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FIG. 3. Pore pressure and effective stress under its own weight. 

which is the exact pore pressure of a water column of 10 m depth, 

10 I QFRbdx = 100kN/ m2
. 

0 

799 

• 

The part of the weight entering the solid is exactly the weight of the solid minus 
the uplift: I n 5(QSR- QFR)bdv = 67kN. 

V 

In the case of a linear theory we can neglect the external acceleration; only 
in the case, when we are intrested in the absolute value of the pore pressure, 
displacement or stress, we have to add the initial values. 
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4.2. One-dimensional wave propagation 

The second example is the one-dimensional wave propagation in the same 
structure as shown in the first example, where only t he Darcy parameter has 
changed: kf = 10 mj s. 

4.2.1. Step load. In the first case the column was once again loaded with the 
Heaviside function, but with a different amplitude: q3(t ) = 100 kN (see Fig. 1). 

According to BlOT'S theory [1], with two compressible constituents there are 
two longit udinal waves in a porous medium. One wave is transmitted through 
the fluid (P1-wave) and the other is t ransmitted through the elastic structure of 
the solid skeleton (P2-wave), see [11]. These two waves are coupled through the 
coupling effect produced by motions of the solid and fluid . In this article both 
constituents are incompressible, thus the speed of the wave transmitted through 
the fluid (P1-wave) is infinite. 

This is illustrated by Fig. 4, where the pore pressure versus t ime is shown. 
The pore pressure at the bottom of the column changes directly from the static 
value of 100 kN j m2 up to the static value plus t he external load per m2 . This 
is according to the statement of TERZAGHI [13], where he found out that the 
whole external load is firstly carried by the water body and then, while water 
is flowing out, the solid skeleton is going to take the external load. In Fig. 4 
there are some oscillations in the pressure, which result from the big jump in 
the pressure. Furthermore, the diagram shows when the disturbance is reflected 
from the bottom or the top of the column. If we observe Fig. 4 in detail, we can 
see that the pressure at the bottom is 100 kN/m2 (st atic value) + 100 kN/ m2 

(external load) = 200 kN / m2 . In 2 m depth (this point in the Fig. 4 is called top), 
the value is 20kNj m2 (static value) + 100kN/ m2 (external load)= 120kN/ m2

. 
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We see, that the information about the external load is transmitted with an 
infinite velocity through the incompressible fluid . The pore pressure at t he top 
soon decreases to t he static value of 20 kN j m 2 as t he solid skeleton takes up 
the external load. But it takes time t ill the disturbance travelling in the solid 
skeleton reaches the bottom of the column. This happens at t = 0.1 s, when the 
pore pressure decreases to the static value (100kNj m2 ). 
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FIG. 5. Solid displacement and seepage velocity versus time. 

In comparison with Fig. 5, where the solid displacement and the seepage vel
ocity are shown, it can be observed that at time 0.1 s the P2-wave (transmitted 
by t he elastic structure) hits the rigid bottom of the column and is reflected. 
This is coupled with a change in the pore pressure and t he seepage velocity. At 
the time-instant 0.2 s, the P2-wave reaches the unfixed top of the column and the 
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sign of the disturbance changes , see [6, 14]. At the time-instant 0.3 s the P2-wave 
hits the rigid bottom again, and at time 0.4 s one period of this procedue is 
closed. 

4.2.2. Impulse load. Another good example to show the coupling between solid 
displacement and pore pressure is to load the column with an impulse load: 

{ 
100 sin(314.16/s t) kN 

!4(t) = 0 
for 0 < t < 0.01 s, 

for t > 0.01 s. 

The dynamic response at time 0.02 s of the column, as described above, is shown 
in the Fig. 6, where the solid strain and the pore pressure are exhibited v~rsus 
the length of the column. The top is at x = 10 m and the bottom at x = 0 n. 
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FIG. 6. Solid strain and pore pressure versus time. 
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The line in the pore pressure diagram from 100 to 0 [kN/ m2 ] is the static 
solution for the pore pressure under its own weight. We can see a disturbance 
travelling with the speed of the P2 wave in the pore pressure as well as in the 
solid strain. 

5. Concluding remarks 

The dynamic response of an incompressible fluid-saturated porous media is 
studied. The calculation via the finite element method is based upon the incom
pressible porous media model of DE BOER [8] and BLUHM [2] . The first appli
cation of this theory in this paper is the numerical solution of the consolidation 
problem. This numerical solution in comparison with the existing analytical so
lution shows a good agreement. In the second application the propagation of 
longitudinal waves is studied. According to Biot's theory (Biot treated com
pressible constituents) , there are two longitudinal waves: a Pl wave transmitted 
by the pore fluid and a P2 wave transmitted by the elastic structure. This paper 
shows that the speed of the Pl wave, transmitted in the incompressible pore 
fluid, is infinite and only the P2 wave, transmitted by the elastic structure, can 
be observed in porous media with incompressible constituents. 
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