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Preface

The Editorial Committee of Archives of Mechanics invited the Scientific Com-
mittee of the XXXI Polish Solid Mechanics Conference — SolMec'96 organized
in Mierki, September 9-14, 1996, by the Institute of Fundamental Technological
Research and Committee of Mechanics of the Polish Academy of Sciences, to
encourage all authors of oral and poster presentations at the SolMec'96 Confer-
ence to publish their contributions in special issues of the Archives of Mechanics
and Engineering Transactions.

The present issue of Archives of Mechanics is the second special issue of the
Journal (the first one has appeared in the previous month, i.e. Vol. 49, No 2) and
contains the submitted and reviewed contributions of a more basic orientation.

The first special issue of the other journal, namely Engineering Transactions
has been printed simultaneously and it contains the contributions of a more
engineering character.

Warszawa, April 1997

Witold Kosiriski
Conference Chairman
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Duality based solution of contact problem
with Coulomb friction

Z. DOSTAL and V.VONDRAK (OSTRAVA)

NUMERICAL SOLUTION of quasi-variational inequalities that describe the equilibrium of elastic bodies
in contact with friction is presented. The problem is first reduced to a sequence of well conditioned
problems with given friction that are reformulated by means of duality as quadratic programming
problems with box constraints. Then the algorithm for the solution of quadratic programming
problems with proportioning and projections is applied to the solution of the resulting contact
problem with Coulomb friction. The characteristic feature of this active set-based algorithm is
that it accepts approximate solutions of auxiliary problems and that it is able to drop and add
many constraints whenever the active set is changed. The results of our numerical experiments
indicate that the algorithms presented are efficient. The algorithm may prove to be useful in
parallel implementation.

1. Introduction

THE DUAL SCHUR complement domain decomposition method introduced recently
by FARHAT and Roux [5] turned out to be an efficient algorithm for parallel
solution of self-adjoint elliptic partial differential equations. Recently, we have
combined this method with our results [2] on quadratic programming with simple
bounds, in order to develop an efficient algorithm for the solution of variational
inequalities that describe the conditions of equilibrium of a system of elastic
bodies in frictionless contact [3]. The results of [2] turned out to be closely related
to the results of FRIEDLANDER and MARTINEZ [7] and were further extended in [4].

In this paper, we extend this approach to the solution of unilateral contact
problems of linear elasticity with Coulomb friction. The main feature of our new
algorithm for the solution of coercive problems is that it accepts approximate
solutions of auxiliary minimization problems, that it is able to drop and add
many constraints whenever the active set is changed, and that it treats the bodies
independently of each other, so that parallel implementation is possible. The
application of the duality theory to a discrete problem may be considered as
an implementation of the reciprocal formulation of [8]. The performance of the
algorithm is demonstrated on the solution of a model problem.

2. Discretized contact problem with given friction

We shall start our exposition from the discretized contact problem. Suppose
that K is the stiffness matrix of the order n resulting from the finite element
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discretization of a system of elastic bodies {2, ..., 2, with enhanced bilateral
boundary conditions. With suitable numbering of nodes, we can achieve that
K = diag(Ky,... K;), where each K; denotes a band matrix which may be
identified with the stiffness matrix of the body {2;. We assume that K is positive
definite.

Let m denote the number of nodes in contact. The linearized conditions of
contact with given friction are supposed to be defined by the m x n matrices
N = (n;), T = (Li;), by the m x m non-negative diagonal matrix I' = diag(7;),
and by the m-vector ¢ = (¢;). The rows n;- of N are vectors defined by unit outer
normals that enable us to evaluate the change of the normal distance ¢; > 0
between two potential contact surfaces. The formula for the displacement x is
n;«X. The matrix N is sparse as non-zero entries of n;- may be only in positions
of nodal variables which correspond to the nodes involved in some constraint.
The diagonal entries 7y; of the diagonal matrix I' define what we can call nodal
given friction that corresponds to a couple of points in contact. In analogy to n;-,
the row vectors ¢;- of the matrix T are defined by the tangential vectors in these
contact points. The matrix T is also sparse. We shall use T for evaluation of the
tangential part of the relative displacement of the contact surfaces.

With these notations, solution of the discretized contact problem with given
friction amounts to the solution of the problem

(2.1) min max f(x, j),

XEC peM

where
f(x, 1) = %xTKx—bTx-t-uTI'Tx, M= {,u‘ lp| < 1} and C = {x’ Nx < c},

In the last equation and in what follows, all the vector inequalities should be
read pointwise. Similarly, |¢| denotes a vector with entries p;. More details about
formulation and discretization of contact problems with friction may be found in
Refs. [8, 9].

3. Reciprocal formulation

First observe that

(3.1) min max f(x, ) = min max max L(x, 1, M),

where
(32 L) = fix p) + XT(Nx—¢)
= %xTKx ~bTx + pITTx + AT(Nx —¢).
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For fixed i and A, the Lagrange function (3.2) is strictly convex in the first vari-
able, and the gradient argument shows that any minimizer of L(-, u, A) satisfies

(3.3) Kx—b+T/T Ty + N\ = 0.

This equation has a solution for any b, T, T, i, N, A because the matrix K is
positive definite. Simple computation shows that (3.3) is equivalent to

(3.4) x=K"! (b-T'T" - N"}).

After substituting (3.4) into the Lagrange function (3.2) and after some simpli-
fications that exploit the structure of the matrices, we get for fixed 1 and A the
problem to find

1 N[N oy fad et A + o (NK'b—c¢
(3.5) :Plzlﬂi(A " )(FT)K (N 17T7) h ~(\ ) sy
The latter is the quadratic programming problem

(3.6) min /(2),

where

F(z) %zTQz—zTh, z=(2), Q (I,NT)K‘I(NT,TTI‘T),

NK b—c¢ A
d S= = A>0 <153,
(rrca) o s={e= (3)] 220 msa)

We shall consider here the problem (3.6) with a general choice of S = {z|1 <
z < u}. The only solution z of this problem satisfies the Kuhn-Tucker contact
conditions

(3.7)

4. Proportioning

ri =0 for [ <z <u,
(4.1) rm =0 for z =1,
7"-+ =0 for Z; = U;,
where r = Qz — h, 77 = min{r;,0} and r;* = max{r;,0}. Let us recall that the
active set A(z) = {i| z; = ; V zi = u;} and the free set F(z) = {i| l; < z; < u;}.
The chopped gradient (3(z) and reduced gradient p(z) are defined by
wi(z) = ri(z) for 1€ F(z) and wi(z) =0 for i€ A(z),
(4.2) fi(z) =0 for 1€ F(z),
Bi(x) =r; for z =1 and fi(z) =7} for z =wu;.
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Hence the conditions (4.1) are equivalent to p(z) = ((z) = o, so that z is the
solution of our problem iff the projected gradient v(z) = (5(z) + p(z) = o.

The algorithm that we proposed in [2] is a modification of the Polyak algorithm
that controls the precision of the solution of auxiliary problems by the norm of
violation of the Kuhn-Tucker contact condition in each iteration. If for G > 0
the inequality ||3(z')|lc < G|l(z)|]2 holds, we shall call z proportional. The

algorithm explores the face W, = {y| yi = liory, =u; fori e I} with a given
active set [ as long as the iterations are proportional. If z' is not proportional, we
generate z'*! by means of decrease direction d* = —(3(z') in a process that we call
proportioning and we continue by exploring the new face defined by 7 = A(z'*1).
The class of algorithms driven by proportioning may be defined as follows.

ALGORITHM GPS (General proportioning scheme).

Let 2% € S and GG > 0 be given. For k > 0, choose z**! by the following rules:

(i) If z' is not proportional, define z'*! by proportioning.

(ii) If z* is proportional, choose feasible z**! so that F'(z**1) < F'(zF) and 2*!
satisfies at least one of the conditions A(z*) C A(z"*!), z'*! is not proportional,
or z*! minimizes F'(£) subject to £ € Wy, I = A(z").

The symbol C denotes proper subset. The basic theoretical results have been
proved in [2].

THEOREM. Let z" denote an infinite sequence generated by algorithm GPS with
given 20 let S = {z| 1 < z < u}, and let I'(z) denote a strictly convex quadratic
function. Then the following statements are true:

(i) zF converges to the solution 7 of (3.6).

(i1) If the problem (3.6) is not degenerate, then there is k such that 7 = z

(i) If G > /K(Q), where Kk(Q) is the spectral condition number of Q, then
there is k such that 7 = z*.

Step (ii) of algorithm GPS may be implemented by means of the conjugate
gradient method. The implementations differ in stopping rules for the solution
of auxiliary problems and in application of projectors. In the following numerical
experiments, we used so-called monotone proportioning [2] which, starting from
v! = z*, generates the conjugate gradient iterations for minimization of (3.6) on
current face until F'(Pvit!) > F'(Pv'), where P denotes the projection to S. If
the conjugate gradient iterations are interrupted on this condition, then a new
iteration is defined by z"*1 = Pv* or by some backtracking strategy. More details
may be found in [2].

k

5. Solution of the friction problem

Now assume that the given friction ~; is given by v, = @;|1*(x)|, ¢ = 1, ..., m,
where @ = (&;) is the vector of friction coefficients and T* = (7*(x)) is the vector
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of normal stresses on the contact surface that correspond to the displacement x.
Denoting by x(7) the solution of the contact problem (2.1) with given friction
v = () and by T"(x(y)) the corresponding normal stress, the solution of the
contact problem with friction amounts to finding the fixed point of the mapping
¥ ;v — T*(x(7)). Existence results of the fixed point for sufficiently small friction
coeflicients may be found in 8, 12]. Hence we can find the solution of the contact
problem with friction by

initial ~?,
(5.1) -
7 ="
Notice that A corresponds to the normal stress T™ and the vector I'zz corresponds
to the tangential stress T* on the contact interface.

6. Numerical experiments

We have tested our algorithm on a problem of contact of two bodies of Fig. 1
that was discretized by a grid with 169 nodes, so that the discretized problem had
338 primal and 42 dual unknowns, respectively. The problem was solved for two

00000000 Q000U UUY,
0

F1c. 1. Test problem.

combinations of elastic constants with the friction coefficient @ = 0.3. We used
the value (¢ = 1, so that we interrupted the conjugate gradient iterations when
the chopped gradient began to dominate the reduced gradient. Relative precision
of the solution was 103. The solution turned out to be quite sensitive to the
relative precision ¢ of the solution of the inner problems with given friction. The
performance of the algorithm for various ¢ is given in Table 1 (Fig.2, 3). The
number of the conjugate gradient iterations seems to be relatively low, which
also indicates that the distribution of the spectrum of the Hessian of F'(z) is
favourable. Indeed, Fig. 4 shows that there are very few eigenvalues in both ends
of the spectrum. This observations extend the experimental results reported by
F.-X. Roux [14] for the dual Schur complement. All numerical experiments were
carried out in Mathworks Matlab with PDE Toolbox.
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Table 1. Performance of the algorithm.

Problem 1 (E; = 10° MPa, E; = 10° MPa) | Problem 1 (E; = 10* MPa, E; = 10° MPa)
iterations iterations
number number of inner number number of inner
of outer (cg steps) of outer (cg steps)
e=le=5|e=1e-6|c=1e-7 e=1le=5|e=1le—6|c=1e-7
1 28 29 38 1 58 67 75
2 28 36 55 2 84 108 142
3 4 10 15 3 2 9 13
4 3 1 6
63 76 114 144 184 230
12 16
- = 14
12
£ 10
6 8
6
4
4
2 ] 2 []
M 1.1 1 0 ol
4 3 2 a1 0 1 2 0 8 6 -4 2 0 2
1st iteration 2nd iteration
16 - 15
14
12
0 10
8
B s
4
z ]
o LI ﬂ i 0 i
8 7 6 5 4 3 2 1 0 1 2 87 6 5 43 2-1 0 1 2

3rd iteration

7. Comments and conclusions

4th iteration
F1G. 4. Distribution of the spectrum of the Hessian.

We applied a variant of our new algorithm [2] for the solution of quadratic
programming problems with simple bounds to the solution of static coercive con-
tact problem of elasticity with Coulomb friction in reciprocal formulation. A new
feature of the presented algorithm is the adaptive precision control of the solu-
tion of auxiliary problems and application of projections, so that both the contact
and slip interfaces may be identified in a small number of iterations. Theoretical
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results are reported that grant the convergence of the algorithm. The algorithm
also demonstrates the usefulness of the duality theory for practical computation.

Both theoretical results and results of numerical experiments indicate that
there are problems which may be solved very efficiently by the algorithm pre-
sented. If applied to the solution of a contact problem that involves several bod-
ies, then the algorithm may be considered as Neumann - Neumann type domain
decomposition algorithm which may be useful in parallel environment. Using
the results [4], the algorithm may be extended to the solution of semicoercive
problems.
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On the convexity of the Goldenblat-Kopnov yield condition

A. GANCZARSKI and J. LENCZOWSKI (KRAKOW)

THE PRESENT PAPER is aimed at the formulation of sufficient conditions of convexity for the
Goldenblat-Kopnov yield condition. The essence of the proposed approach consists in the transpo-
sition of convexity of hypersurface from the six-dimensional stress space to the three-dimensional
space of the principal stresses, and in the presentation of a surface in the Haigh-Westergaard stress
space.

1. Introduction

WHEN THE CLASSICAL FLOW THEORY of plasticity is used, the yield surface is often
assumed to have the form of a potential representation, from which the strain
rates are derived. The second Drucker stability postulate implies that the consti-
tutive equations are always of the Green (hyperelastic) type. Hence, the strain en-
ergy and the complementary energy functions are always positive definite, whereas
the corresponding surfaces defined in strain and stress spaces, respectively, are
convex (see CHEN and HAN [3], also Zyczkowski [21]). For perfectly plastic ma-
terials, yielding itself implies failure, so the yield stress is also the limit strength.
Therefore, for the failure surfaces a similar problem of convexity exists.

Obviously, the above requirements are also imposed on the flow theory of
plastic anisotropic materials, as well as the anisotropic failure conditions.

2. The Goldenblat-Kopnov yield condition

Certain generalization of the Burzyfski yield condition to the case of aniso-
tropy has been proposed by GoLpeNBLAT and Kopnov [5]:

(2.1) (IL;;05)" + (Wij0i00)° + (Wijkimn0ijOx0Omn)” + ... =1,

where «, /3, are arbitrary numbers; nevertheless, only few combinations of them
have a practical sense. When the most frequent case of « = § =1, v = 0
is assumed, the yield condition (2.1) reduces to the Burzynski paraboloid yield
condition (see ZYCzKOWSKI [21]):

(2.2) ijrioijon + 05 =1,

where the fourth-order tensor as well as the second-order tensor of plastic moduli
satisfy the symmetry conditions II;;;;, = Ilz;; = Il = I, and II; = 11,
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respectively. Consequently, 21+6 of such components are independent. In case
of the orthogonal anisotropy (called orthotropy), a further reduction of the num-
ber of independent moduli is possible. Choosing the reference coordinate frame
coinciding with the principal axes of orthotropy, the fourth-order tensor becomes
independent of the mean stress and simultaneously, the second-order tensor be-
comes independent of the shear stresses (see THEOCARIS [19]). Moreover, 9 terms
associated with normal and shear stress products, as well as products of two shear
stresses of different indices vanish, and the following 9+3 terms remain:

2 2 2 2 2
(2.3)  Innoyy + ooy, + azaz03; + 41101207, + 4112323033
2
+ 4113131073 + 2111120011022 + 219233022033 + 211331103301
+ Iyo1 + Ilppogp + 133033 = 1.

The material under consideration requires 9+3 tests: simple tension 7;, simple
compression C; along each axis of orthotropy, and simple shear Y;; along each
plane of orthotropy (z, 7 = 1, 2, 3); for orthotropic materials when the coordinate
system coincides with the material symmetry directions, plastic shear stresses
along reverse directions on the same plane do not differ: Y, = Y7 = Yj;
(see THEOCARIS [19]). Replacing the index notation by the engineering notation,
Eq.(2.3) takes more friendly form:

2.4 a10—022+a203—012+a3%—0 2+a4‘r2,+a57'iT
v y Yz

+ a7’ + aj0, + ago, + ago, = 1,
6J_y 8Vy

where the new plastic moduli are defined as follows (see SOCHA and SzCZEPIN-
SKI [18]):

S G 1 i1 1
“Ta\T,c, T T.C. T T.C, ) T 2\T.C. T T.C. " T,C, )
1 1 1 1 1 1
2.5 e + — -_—— - —_—
(22) a5 =3 (TICL. T,C, T:C'z)’ G g
Lo le e g apime bl ot S L e
R YR LT TR

The plastic moduli ay, a, ..., ag are linear combinations of the components of
fourth-order tensor II,;; (see LEMAITRE and CHABOCHE [12], also MALININ and
Rzysko [14]) and second-order tensor II;;:

Iy = ap + as, o0 = ay + ay, II3333 = a; + as,
2.6) II1122 = —ay, 33 = —ay, II3311 = —as,
212 = as/4, 303 = as/4, 3131 = ag/4,

Iy = ag, IIy; = ao, II33 = ay.
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The function (2.4), being a special case of the yield condition presented
by Pariseau [15], can describe materials with different tensile and compres-
sive strengths. RaLsTon [16] employed Eq.(2.4) to crushing failure analysis of
column-grained ice which exhibits orthotropy and sensitivity to hydrostatic pres-
sure. However, if the yield stresses in tension are equal to that in compression
(isosensitive material), 7, = C, = X, =C, =Y, T, =C, = Z, the
coefficients a7, ag, ag vanish, so the linear terms in Eq (2. 4) dlsappear

@7 ai(o, — 0.)? + ay(o, — 0.)? + az(o. — 0,)* + ayrjz
+ (LSTZZI + aﬁrﬁy =1,

whereas the coefficients a1, a,, a3 take the classical form of Hill’s yield condition
(see HiLL [6] also JACKSON et al. [9]):

1/1 1 1 1/1 1 1
(}Z“LW_F)’ “2=§(?+TX7_E)*
171 011
o = E(X—HW"z‘z)-
The classical Hill yield condition (2.7), consisting of the quadratic stress func-
tions, that generalizes the Huber- Mises yield condition, has failed to account
for the so-called “anomalous behaviour” of some commercial aluminum alloy and

steel sheets. Therefore, a special case of the Hill generalized yield conditions has
been developed (see HiLL [7]):

ap
(2.8)

(2.9) aploy —o.|" + azlo, — 0 |" + azloy — oy|" + ag |7y

|771
+ as |7 |™ + ag|Tey|" =1,

where the exponent m is equal to 6 or 8. The yield condition (2.9) is a general-
ization of the Hersey - Davis yield condition for m = 2 (and for m = 4), or the
Tresca - Guest yield condition in the limiting case m — oo.

3. Convexity conditions

Although the yield function defined by Eq.(2.9) has been mathematically ver-
ified, and its convexity has been proved in case of the planar anisotropy in the
principal stress space if and only if m > 1 and ay, as, a3, ... are positive constant
coefficients (see BARLAT and Lian [1], also CHu [4]), in case of the general or-
thogonal anisotropy in the six-dimensional stress space and in the presence of
terms associated with hydrostatic pressure, convexity of the yield surface (2.4) is
not obvious.

Let us try to formulate convexity conditions for the yield functions (2.4) and
(2.9). The yield condition (2.4) is defined in the six-dimensional stress space, and
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if we can transform it to the three-dimensional space of the principal stresses,
we will get rid of terms associated with second power of the shear stresses. How-
ever, it should be noted that for anisotropic materials, the yield condition is
established in a certain reference coordinate system which is fixed with respect
to the orientation of the material anisotropy. We cannot change the reference
coordinate without changing the form of the yield condition. Moreover, the co-
efficients aj, az, as, ..., ag are not components of any tensor so they are not sub-
jected to transformation rules of tensors. To avoid these inconveniences, first, we
have to recover a tensor form of the yield condition expressing the coefficients
ai, ay, as, ..., ag by components of the fourth-order tensor II;;;; and components
of the second-order tensor II;; of Eq.(2.6). Next, appropriate transformations
from the directions of material orthotropy to the directions of principal stresses
are done:

! b -
(31) tjkl = Hmnrpnimnjnnkrnlp 5 H,] . Hmnnimnjn )

where n;; are direction cosines of the transformation.

Such a transformation is strictly associated with an important problem of the
transposition of convexity from one space to another. SAvir [17] proved such a
transposition from the nine-dimensional stress space (in particular case, from the
six-dimensional stress space) to the three-dimensional space of principal stresses,
whereas LipPMANN [13] from the three-dimensional space to the six-dimensional
space.

When the new transformed coefficients af, a}, a5, ..., ag are calculated from
IT};; and IT}; by means of Eq.(2.6), the yield condition (2.4) referring to the
principal stress axes takes a simplified form:

3.2 d (01 — 02)% + b (02 — 03)* + &4 (03 — 01)° + dhos + akoy + ahoy = 1.
1 2 3 7 8 9

Last step is the geometric representation of the surface (3.2) in the Haigh -
Westergaard stress space, where the three principal stresses (o, 03, 03) are re-
placed by the Haigh - Westergaard coordinates (£, p, #) (see Appendix B):

o1 £ cos 6
(3.3) o) o £ +\/§g cos(f — 27 /3)

o3 V3 £ cos(d + 2m /3)

Substitution of (3.3) into (3.2) when the classical trigonometric identities are used,
provides the formula for the surface radius:

\f VB2 + 12AC - B
3 4A J

(3.4) e(0,6) =
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where
A = a/sin®0 + absin?(0 + 7 /3) + ajsin®(0 - 7 /3),
(3.5) B = ajcos0 + agcos(f — 27 /3) + agcos(f + 27 /3),

£ / !
C=1-—==(d5+ag+ag).
\/3( 7 8 9)
In case of independence of the hydrostatic pressure of the generalized Hill yield

condition (2.9) when m # 2, we have to set A = fl, B =0, C =1, and instead
of Eq.(3.4), the surface radius is found from the formula

1 1
3.6 0)=—=—F
(3.6) o(9) 7 %
=1 !
V2 ’{/(5’1 sin™ 0 + absin™ (0 + 7 /3) + a}sin™ (0 — 7/3)

In case when the material isotropy (¢} = a) = aj = 1/ 203) and m = 2 are
assumed, Eq.(3.6) reduces to the classical Huber - Mises yield condition:

(3.7 0= \/gag = const.

Quadratic form containing linear terms of the yield condition (3.2) repre-
sents an elliptic paraboloid with a symmetry axis parallel to the hydrostatic axis,
whereas the open end of the paraboloid is usually oriented towards the direction
of hydrostatic compression (see THEOCARIS [19]). It is clear that only one of the
coefficients ay, az, az in Egs. (2.5) can be negative (see HiLL [6]). Therefore, the
loss of convexity consists in that an elliptic paraboloid may become at most an
imaginary elliptic paraboloid, or in other words, a hyperbolic paraboloid. Conse-
quently, the conditions of convexity of the yield surface are formulated as follows:
the radius o(0,¢) must be a real and positive number; Egs. (3.4), (3.5) yield

(3.8) 0(0,6) >0 v 0,¢,

and

(3.9) Imp=0 <+ 5<L(1+BZ).

T ah +ag+oag 12A

In case of the generalized Hill yield surface, Eq.(3.6) represents an elliptical
cylinder or at most a hyperbolic cylinder for which both conditions (3.8) and
(3.9) (e(/) >0 V¥ 0, and Imp = 0) are equivalent to each other, and lead to
the following inequality:

(3.10) A =d)sin™0 + a5sin™ (0 + 7/3) + aysin™ (0 — 7/3) > 0, v 0.
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4. Examples
4.1. Convexity of Hill’s yield surfaces for the brass sheet 122

Most of anisotropic materials used in practice fulfil the convexity conditions
(3.8) through (3.10), however there are few of them which do not.

Let us check convexity of the yield conditions which are independent of the
hydrostatic pressure, namely (2.7) and its generalized form (2.9). MALININ and
Rzysko in [14] give plastic properties for a brass sheet of Russian commercial
symbol 1.22, 0.8 mm thick: 0¢, = X = 120MPa, 0, = Y = 105MPa, 0y, = Z =
950 MPa. Authors do not mention the shear yield stresses.

The difficulty in experimental defining the off-diagonal components of the
fourth-order tensor resulted in a series of publications. Complicated tests were
suggested, nevertheless they did not give the explicit form of the respective yield
criterion. Therefore, several researchers used the simplifying assumption, when
the small off-diagonal components (when compared to the diagonal ones) may
be disregarded. This prediction, however, satisfactorily fits the experimental data
only for two-dimensional loading models. On the other hand, off-axis biaxial tests
indicate that vanishing of the off-diagonal components of the fourth-order tensor
may lead to unreliable results.

Hence, the following ad hoc extensions of the classical definitions are intro-

duced in the present paper: To;; = Y;; = 1/00i00;/3 for m = 2, and 70;; = Y35 =
/50:00;/2 for m = 6,8. In case of material isotropy og; = 0o; = 0p We get

values 79 = 0o/v/3 (Huber- Mises) or 79 = 0g/2 (Tresca- Guest), respectively.
Eventually, the complete material data are shown in Table 1.

Table 1. Yield stresses of brass L22 [14].

m | X [MPa] | ¥ [MPa] | Z [MPa] | Y., [MPa] | Y:. [MPa] | Yi, [MPa]
2 120 105 950 182 194 64.8
Gor8 | 120 105 950 157 168 56.1

The Hill’s yield condition (2.7) applied to the brass L22 represents an elliptic
cylinder in the Haigh - Westergaard stress space. It turns out that semi-axes of the
ellipse strongly depend on the direction cosines of the transformation Eq. (3.1).
It has been seen from Table 1 that the direction of dominant material orthotropy
is oriented parallel to the z axis of the coordinate system, whereas the plane
2y exhibits slight orthotropy. Hence, the material is nearly transversely isotropic.
Moreover, the material exhibits the group of symmetry which satisfies periodicity
of at least one octant. Both coordinate systems associated with the directions of
material orthotropy and the directions of principal stresses were linked, for con-
venience, by the Euler angles (i, ¥, ¥) (see Appendix A). The complete analysis
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requires to check the yield condition versus all Euler angles in one octant, how-
ever it takes a lot of CPU time and memory. To avoid this inconvenience, the
authors suggest to take advantage of the plane orthotropy mentioned above, and
to check the yield condition for the pair of angles ¢, ; the third angle ¢ is not
essential, and may be disregarded within the following range: 0 < ¢ < 90° and
0 < <90°.

Let us follow the evolution of the yield condition in a simple case, when
only one of the Euler angles, say 7/, is subject to change, whereas two other are
kept constant. When ¥ = 45° we get the ellipse of moderate semi-axes ratio,
about 1:3, each change of ¥, either decrease or increase, increases this ratio.
Consequently, the ellipse is subjected to rotation and, simultaneously, becomes,
step by step, longer and more oblate. Finally, for ¢ = 0° or = 90°, one of the
semi-axes goes to infinity and the yield condition presents a hyperbolic cylinder
(Fig. 1). As it was mentioned before, it is convenient to map the convexity of yield
condition versus the pair of Euler angles: 0 < ¢ < 90° and 0 < 9 < 90°, taken
as a two-dimensional domain. The obtained map (Fig.2) confirms the assumed
group of the material symmetry; moreover, the higher-order symmetry of 45°
versus angle ¢ is observed. The yield condition is convex in almost whole domain
except for narrow zones around its corners.

[GPa]
08

0.4

_0'8 ! 1 1
08 -0.4 0 0.4 0.8 [GPa]
F16. 1. Evolution of Hill’s yield surface versus ¢-Euler angle: A —0°, B — 15°, C - 30°,
D —45° E —60°, F —75° and G — 90°, for brass L22 [14].

In case of the generalized Hill yield condition (2.9) describing plastic behaviour
of the brass 122, the yield surface (m = 8) is a prism of the semi-hexagonal
cross-section with oval corners (Fig. 3). The loss of convexity resembles the previ-
ous case, each decrease or increase of 1 versus the value 22° makes the hexagon
more deformed until it becomes open.
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8 8

zones where Hill’s yield
surface is not convex

8 8 &8 8 8

0 10 20 30 40 50 60 70 80 90

¢

F1G. 2. Convexity map of Hill’s yield surface versus ¢, ¥ Euler angles for brass 122 [14].

o

[GPa]
0.8

08 s ] s I 1 I L
08 04 0 0.4 0.8 [GPa]

F1G. 3. Evolution of generalized Hill’s yield surface (m = 8) versus 7-Euler angle:
A—18°, B —20°,C —22°, D —24° and E — 26°, for brass L22 [14].

The convexity map is shown in Fig.4. The area where the yield condition is
convex has been significantly decreased when compared with the case m = 2 (see
Fig. 2). Zones neighbouring the corners where the yield condition is not convex
have increased significantly: two of them which refer to the angle v = 0° lie
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80
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zones where
60 generalized Hill's
50 yield surface
is not convex
D 40
30
20
10
0
0 10 20 30 40 50 60 70 80 90
b
Fi1c. 4. Convexity map of generalized Hill’s yield surface versus ¢, ¥ Euler angles for brass
L.22 [14].

around the axis of symmetry ¢ = 45° and consequently, only a very narrow zone
remains convex; moreover, two zones referring to the angle ¥ = 90° have joined
together and the yield condition has lost convexity in the whole range of p. Two
additional zones of nonconvexity, each of them oval in shape, have appeared for
moderate values of ¥ = 45°.

4.2. Convexity of the Goldenblat—Kopnov yield surface (2.4) applied as failure criterion
for the carbon woven roving-epoxy resin composite

Next example deals with checking the convexity of the function containing
terms associated with the hydrostatic pressure (2.4), applied as the anisotropic
failure condition of a composite. THEOCARIS [19] and Wu [20] cite the experi-
mental data for the composite with the reinforcement of a carbon woven roving,
for which the material data are presented in Table 2 (1).

Table 2. Anisotropic failure stresses of the carbon woven roving-epoxy resin composite [19, 20].

Failure stresses [MPa]
T Cx Ty Cy T. C, p Yia Yay

1065.93 615.01 1065.93 615.01 42.40 143.20 21.20 21.20 532.96

(*) Hoa [8] recommends to take Y, for woven roving as 0.5 of 7;. This value coincides with the tensile
strength of woven roving tested at 45°.
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The failure condition (2.4) used for the carbon woven roving-epoxy resin com-
posite, for the Euler angles ¢ = 45°, ¥ = 45° forms an elliptic paraboloid, the

axis of which coincides with the direction of the hydrostatic compression (Fig. 5).
If we change ¢ or ¥, the previously mentioned rotation of the ellipses and simul-

taneous loss of convexity of the surface is observed.

012
0.1
—
@
008 O,
w
)
0.08 5
0
004 g
3
00z &
] 0
0¢ QQ
- \ B
<
»%b ] Q&

P, v
wc?a_bd"

F1G. 5. The Goldenblat-Kopnov failure surface (Euler angles ¢ = 45°, ¢ = 45°) for carbon
woven roving-epoxy resin composite [19, 20].

SNapsE:
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Ca]
- failure surface is not convex
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4

F'1G. 6. Convexity map of Goldenblat-Kopnov failure surface versus ¢, ¢ Euler angles for carbon
woven roving-epoxy resin composite [19, 20].
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Analyzing the map of convexity in Fig. 6, further reduction of area of convexity,
due to anisotropy of the carbon woven roving-epoxy resin composite stronger
than the brass L22, is observed. Zones of nonconvexity, around corners, have
increased, and now reach almost ¥ = 35° or 1 = 55°, respectively. However, the
central zone of oval shape guarantees convexity of the failure condition for all
angles ¢ €< 10°,50° >, ¥ €< 10°,50° >.

5. Conclusion

In the present paper, the convexity of the Goldenblat-Kopnov yield/failure
criterion is analyzed. To illustrate the yield/failure surface in the Haigh - Wester-
gaard stress space, the fourth-order II;;;; and the second-order II; ; tensors of
plastic moduli are transformed from the principal directions of material or-
thotropy to the principal stress directions. As examples of non-convex yield/failure
conditions, included or not included hydrostatic pressure effect, a commercial
brass sheet and a woven roving reinforced composite are chosen. A case of special
interest is the dependence of convexity of a yield/failure surface on the direction
cosines of transformation.

Appendix

A. Transformation of constitutive tensors to a new coordinate system

A tensor of rank four is subjected to the following rule of transformation:
(A.1) iibl = Torplimlindiellp
whereas a tensor of rank two fulfills the appropriate transformation rule:
(A.2) T}; = Tanlimlja

where for given ¢, 7, k, [, the indices m, n, r, p are to be summed from 1 to 3. The
formula (A.1) transforms the components of a tensor of rank four to new axes
according to transformation rule, however an equivalent transformation is more
convenient:

(A3) Tllj = iIv:fn'rl(jzwnan3

where actually indices m and n are to be summed from 1 to 6. In this way, a
transformation of the fourth rank tensor 7),,,., is replaced by transformation of
its representation matrix ﬁm, where symbols ¢;; are taken from Table 3 (see
LexHNITSKII [11], also BATHE [2]).

Let us consider a convenient parametrization when a new coordinate system
is obtained from the old one by rotation through Euler’s angles. The following
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Table 3. Symbols ¢;; in transformation formulas.

iti | 1 2 3 4 5 6

1 I i I lli lialy izl

2 L i 3 Inln laly laly

3 5 15 I Inls lala I3y

4 | 21l | 2nlyn | 2Uply | lale + bols | sl + il | bile + boly
S| 2y | 22l | 2sls | Il + bels | Il + lals | Bide + 20
6 | 2nln | 2haln | 2hals | laln + halys | Ll + luls | lule + el

zZ

F1G. 7. The Euler angles.

sequence of rotations is taken into account (see Fig. 7); first rotation of the initial
coordinate frame around z axis through precession angle (0 < ¢ < 2r), then
rotation around the nodal line s through nutation angle (0 < ¢ < ), and finally
rotation around 2’ axis through angle (0 < i < 2n), for which the corresponding
transformation matrices are as follows (see Karaskiewicz [10]):

cosp sing 0
(A.4) A= —sing cosp 0|,
0 0 1

http://rcin.org.pl
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1 0 0
B= 10 cos?d sinvd
0 —sind cos?

(A.4)

[cont.] ’

costyp siny 0
—siny cosy 0
0 0 1

o
Il

Hence, the matrix of direction cosines takes the form:
(A.S) li; = CBA.

In general case angles o, 1,1 are variable, but there are three basic cases.
Namely, if angles (» and v/ are constant, but angle 1) is variable, then the coordi-
nate frame is subjected to rotation around the fixed axis z'. If angles ¢ and o/ are
constant, but angle ¢ is variable, then the nodal line s is subjected to rotation
around the axis z on plane xy, and simultaneously axis 2’ describes a cone around
the z axis. If angles ¢ and v are constant, but angle ¥ is variable, then the nodal
line s is fixed and plane z'y’ changes its inclination versus plane zy.

B. Haigh-Westergaard stress space

A very convenient representation of the stress state is the Haigh - Westergaard
stress space which consists of the three principal stresses as coordinates.

Consider the straight line passing through the origin and equally inclined to
the coordinate axes (see Fig.8). Then for every point on this line, the state of
stress fulfills the equality oy = o, = o3. In other words, every point on this
line corresponds to a hydrostatic state of stress, this line is therefore named the
hydrostatic axis. Furthermore, any plane perpendicular to the hydrostatic axis is
called the deviatoric plane. Such a plane has the form:

(B.1) o1+ 09+ 03 = V3,

where ¢ is the distance from the origin to the plane measured along the hydro-
static axis. The particular plane passing through the origin (for £ = 0) is called
the m-plane or the Meldahl plane.

An arbitrary state of stresses at a given point is decomposed into the hydro-
static and the deviatoric components, respectively:

(B2) (01, 02,0'3) = (1, 1, 1)Tl'0'/3 + (s1, 52,83).

The vector representing the hydrostatic component £ = Tro/+/3 lies on the
hydrostatic axis, whereas the vector representing the deviatoric component of
length 0 = \/sy1sy + s3s3 + s3s) lies on the deviatoric plane.
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AC
1
DEVIATORIC HYDROSTATIC
PLANE S AXIS
A _f /]
3

o]
2

F1G. 8. The Haigh-Westergaard stress space.

Let us consider projections of both the deviatoric component and the coor-
dinate axes on the 7-plane (new and old unit vectors form the direction cosines

equal to 1/2/3, hence new coordinates expressed in terms of the old ones are

equal to o] = 1/2/30;):

81 = \/ggcosﬁ, 8y = \/ggcos(Zw/B - 0),
(B.3)

§3 = \/ggcos(%r/?, + 0),

where 0 > 0 > w/3; then the state of stress (0,07, 03) can be expressed by
(€, 0, 0) called the Haigh - Westergaard coordinates:

71 1 £ > cosHV
(B.4) {az}=7_§ §}+\/;g cos(6—27r/3)}.

o3 £ cos(f + 27 /3)

http://rcin.org.pl
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Viscoplastic shells
Theory and numerical analysis ()

Dedicated to Professor Franz Ziegler
on the occasion of His 60th birthday

F.G. KOLLMANN and C.SANSOUR (DARMSTADT)

THE PAPER is intended as a review of the work carried out at the institute to which the authors be-
long, regarding the theory of viscoplastic shells in both versions of small and finite strains. Within
the first version, the kinematics incorporated is assumed to be linear allowing for an additive
decomposition of the strain rate. For the axisymmetric case, a hybrid strain-based functional is
presented. Contrasting this, in the finite strain case, the shell kinematics is considered as geomet-
rically exact. Here, the shell theory itself is seven-parametric and allows for the application of a
three-dimensional constitutive law. The constitutive law used is that of Bodner & Partom which
falls within the class of unified constitutive models. The multiplicative decomposition of the defor-
mation gradient is employed, but no use is made of the so-called intermediate configuration. The
elastic constitutive law is of a logarithmic type. An enhanced strain finite element formulation is
developed and several examples of finite deformations of various shell geometries are presented.

1. Introduction

MANY TECHNICALLY important structures can be modelled as shells, i.e. as curved
bodies where one dimension, which is called the thickness, is much smaller than
its other dimensions. In some applications, the material behaviour of metal-
lic shells can be modelled by viscoplastic constitutive equations which describe
rate-dependent deformation behaviour. Despite their technical importance, not
so many publications deal with viscoplastic shells. In this paper we will present
an overview on the work carried out at the institute to which the authors belong
with regard to viscoplastic shells and their numerical analysis.

The paper will be split into two parts. In the first part we will briefly discuss
a general, but geometrically linear theory of viscoplastic shells. The viscoplastic
deformation behaviour can be governed by any of the more recently published
so-called unified models with internal variables. Furthermore, we will demon-
strate the application of the shell theory to the formulation of a family of mixed
axisymmetric Finite Shell Elements (FSE). In the second, larger part we first
will extend the constitutive viscoplastic theory to finite deformation. Then we
will present a recently developed shell theory with 7 parameters. We will address
the topics of its numerical implementation leading to very efficient FSEs. We

(*) Invited paper presented at the 31st Polish Solid Mechanics Conference in Mierki, Poland.
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will present some instructive numerical examples and give an outlook on further
research directions in this field.

There exits an almost unlimited literature on elastic shells. For reference
purposes, let us cite the papers by NAGHDI [1], VALID [2] and BerNaDOU [3].
There also exists a comprehensive literature on rate-independent elastoplastic
shells which we will not address here. However, relatively few publications deal
with viscoplastic shells. CoRMEAU [4] investigates thick elastoplastic shells using
a von Mises-type viscoplastic flow rule. He uses general linear shell kinematics
and formulates an isoparametric shell element. HuGHEs and Liu [5, 6] develop
a geometrically nonlinear degenerate shell element. They use a quite general
anisotropic viscoplastic constitutive model and solve an impressive number of
examples. PARISCH [7] starts as Hughes and Liu from three-dimensional nonlin-
ear continuum mechanics. To account for the nonlinear distribution of the stress
components across the shell thickness, he develops a layered model with piece-
wise linear distributions through the shell thickness. Effectively, his formulation
comes close to a fully three-dimensional Finite Element Method (FEM).

KoLLMANN and MUKHERJEE [8] have developed a very general geometrically
linear viscoplastic shell theory. They give their entire formulation in rate form
and start from a two-field variational principle [9] which for the purely elastic case
has been published by OpeN and ReppY [10]. Their shell theory has been used
for the formulation of an axisymmetric hybrid strain element by KoLLMANN and
BERGMANN [11]. Using the same shell theory, a family of mixed axisymmetric shell
elements has been formulated by KoLLMANN ef al. [12]. KLEIBER and KOLLMANN
[13] have extended the shell theory to damage, proposing a generalization of the
damage model by GURSON [14]. An and KoLLMANN [15] have suggested a theory
of finitely deformed viscoplastic shells.

Finally we will address the formulation of viscoplastic constitutive models.
Here we will consider only the so-called unified models with internal variables.
In such models it is assumed that in the material, inelastic strain rates evolve
at any stress level. However, for small stresses these inelastic strain rates are so
small that no macroscopically visible inelastic strain is accumulated. Considering
this feature, most of such unified models are formulated typically without the
notion of a yield surface. Almost all known viscoplastic models are formulated in
the context of small strains. Therefore, the total strain rate tensor is decomposed
additively into an elastic and an inelastic part. The mathematical model comprises
evolution equations for the inelastic strain rates. As arguments of the constitutive
functions, not only the stresses appear but also a set of suitably defined internal
variables. It is clear that in addition to the evolution of the inelastic strain rates,
also evolution equations for these internal variables have to be specified.

A very early model is due to PERZYNA [16]. Further models have been formu-
lated by BopNER and PartoM [17], CHABOCHE [18], KrREMPL and coworkers [19]
and STECK [20]. Only very few attempts have been made to generalize viscoplastic
constitutive models to finite deformation. RuBinN [21] has extended the model by
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Bodner and Partom to finite strains. Following NaGHDI and Trapp [22], he uses
a formulation in strain space. His primary variables are the right Cauchy - Green
deformation tensor and its plastic part. Therefore, Rubin gives a formulation
on the reference configuration. A formulation on the current configuration has
been proposed by NisHIGUCHI et al. [23]. They assume a priori an additive de-
composition of Almansi’s strain tensor into an elastic and an inelastic part. The
elastic part of the deformation is governed by a hypoplastic constitutive equation.
The inelastic constitutive equations are formulated with an unusual objective rate
which is an extension of the Jaumann rate. A finite element implementation and
numerical examples are presented in [24].

An important issue in finite inelasticity is the time integration of the inelastic
constitutive model. Specific considerations have to be taken to fulfill the constraint
of inelastic incompressibility. ETEROVIC and BATHE [25] and WEBER and ANAND
[26] use the exponential map for this purpose. Further, ETEROVIC and BATHE
[25] and MIEHE and STEIN [27] use a logarithmic strain measure. SiMo [28] has
systematically exploited the geometric structure of the elastoplastic problem and
thus derived compact and closed forms of the tangent operator in the continuous
and discrete cases.

2. Theory and numerical analysis of geometrically linear viscoplastic shells

In this section we first describe the essential features of the general inelastic
shell theory by KoLLMANN and MUKHERJEE [8]. Then we show the implementation
of a family of mixed axisymmetric shell elements. Next, we present the inelastic
constitutive model by BoDNER and ParTom [17]. Finally, we give some numerical
results.

2.1. Geometrically linear inelastic shell theory

In this section we give a very brief description of the underlying inelastic shell

theory [8]. A shell B is the Cartesian product of a two-dimensional surface S ¢ R?
with a closed interval [—-h/2,h/2] C R, i.e.

(2.1) B:=8x[-h/2,h/2] C R3.

The two-dimensional surface S is denoted as the shell midsurface (SMS). The
quantity % is called the shell thickness. Since in this section a geometrically linear
theory is considered, there is no distinction between the actual configuration B,
t € R and the reference configuration By (By = B; = B). We introduce curvilinear
coordinates #* on §, where Greek indices range from 1 to 2 and Latin ones from
1 to 3. For simplicity it is assumed that the shell thickness is constant on S.

On the SMS covariant and contravariant base vectors A, and A“ are intro-
duced in a standard manner. The first and second fundamental tensor on the



480 F.G. KoLLMANN AND C. SANSOUR

SMS are denoted by A and B, respectively. The determinant of the tensor B is
denoted as 5. Next, the normal unit vector A3 on S and a normal coordinate z
are introduced. The covariant base vectors of the shell space B are given as

2:2) G, = MA,,
(23) G; = As,
where

(2.4) M:=1-:B

is the shifter tensor and I denotes the unit tensor on S. The determinant of the
shifter tensor is given by

(2.5) M =1- ztrB + 2?B,

where tr denotes the trace operator.

The displacement vector u* (quantities with a star (as e.g. u*) are referred
to the shell space 5 while all unstarred quantities (as e.g. ) are defined on the
SMS B) of any point in the shell space has a representation

(2.6) v =u+zw,

where u is the displacement vector of § and w is the difference vector. In the
present paper it is presupposed that the difference vector w is independent of
the displacement vector u of the SMS.

The following component representations for the strain tensor € in the shell
space B are available [8]

M EaB = €uap + z2Kap,
(27) M503 = wcr + 2 0a

€33 = €33.

The quantities e,3, K3, Yo and p, are components of tensor and vector fields,
respectively, which are defined on S. Note that the kinematic assumption (2.6)
leads to transverse shear strains, which are linear in the normal coordinate z,
and to a transverse normal strain which is constant over the shell thickness. We
mention that completely analogous relations exist between the velocity field and
the strain rate field.

Next a general frame of the inelastic constitutive equations with internal vari-
ables is presented. Only such materials are considered which are isotropic and
homogeneous. A fundamental constitutive assumption presupposes that the total
strain rate tensor € can be decomposed additively into an elastic and inelastic
part

(2.8) E=¢
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The tensor € of the elastic strains is related to the stress rate tensor & by Hooke’s
generalized law

(2.9) 6 =2G€" + Mtré9I.

Here (' and A are the Lamé constants. The inelastic strain rate tensor € obeys
in the isothermal case an evolution equation of the following form

(2.10) e" = f(o,q"), k=1,2,...n.

Here f is a tensor-valued function of the current values of the stress tensor o and
aset ¢ k =1,2,...n of suitably selected internal variables. The internal vari-
ables are either scalars or second order tensors. For these otherwise unspecified
internal variables also evolution equations exist

(2.11) (j(k) = g™ (o, q"), k,r=1,2,...n.

Here again ¢®), k = 1,2,...n denote functions which are depending on the
corresponding internal variable ¢*) either scalar-valued or tensor-valued.

We introduce vectors (in the sense of matrix calculus) of generalized strain
rates vy and of generalized velocities v. The relation between the strain rates and
the velocities is

(2.12) A =Lob,

where L, is a generalized strain-rate velocity operator. The general representa-
tion of this operator can be found in [8].

KOLLMANN and MUKHERJEE start from a three-dimensional variational two-
field principle [9] which is formulated in velocities and strain rates. Performing the
integration over the shell thickness, this variational principle can be reduced to a
two-dimensional form. The concise version of the variational principle reads [11]

1.7 . . T . . T, .NT
/ 5_7 Doy Y= Dy Lo+ Fp v+ f

S

213) 6 { L N f)] dS} =0.

Here dS is the area element on the SMS S. Further, D, is a generalized elasticity
NT

- T
matrix for the shell, F'; a generalized load rate vector, f a generalized
vector of inelastic pseudo-force rates and L 5y a linear operator. Details of
yu

these objects can be found in [8, 11, 12]. We mention that ~ is the assumed
strain rate field while v is the velocity field. The assumed strain rate field can be
discontinuous between inter-element boundaries.
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One principal advantage of the variational principle (2.13) is that it contains
only strain rates and velocities but not stress rates. In inelastic shell analysis
assumptions such as e.g. (2.6) concerning shell kinematics are generally made.
These assumptions lead to information on the distribution of the total strain
rates over the shell thickness such as e.g. (2.7). However, unlike the analysis
of elastic shells, the distribution of the stresses over the shell thickness is not
known a priori but it changes in time and space. Therefore, this distribution is
a part of the unknown solution. It is not possible to conclude from the stress
resultants and moments, which typically evolve from any shell theory including
stresses, on the stresses in inelastic shell analysis. It has to be mentioned that
KOLLMANN et al. [12] have shown in numerical experiments that for elastic shells,
stress-like quantities such as e.g. mebrane forces and bending moments exhibit
the same order of convergence (with mesh refinements) as the radial deflection
of the SMS.

2.2. Implementation of mixed finite shell elements

We start with the discretization of the variational principle (2.13). KOLLMANN
and BERGMANN [29] have introduced different shape functions for the generalized
velocity vector v and the generalized strain rate vector =y

—~ ~

(2.14) v=Nv, -« =N+,

where a hat (7) indicates nodal values.
Then, the mixed FE model can be derived from the variational principle (2.13)
by standard procedures

(2.15) Ko +K,0=0, KI§=_F—Fy,

where the following quantities have been defined:

K,y = fﬁTDW_N—dS,
S

K, := / N'D,, L, NdS,
S

(2.16) . .
Fy := /NTchlS,
S

Fryi= [(LAN)' fyds.
)

It is possible to find an implementational scheme of the mixed model which
fits any FE-code based on the standard displacement formulation. Details of this
implementation can be found in [12].
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In the following we describe the results obtained for a conical element as orig-
inally proposed in the context of the displacement method by ZienkiEwicz and
coworkers [30] and extended to a mixed hybrid strain formulation by KoLLMANN
and BERGMANN [11]. It is important to choose approximations where the polyno-
mial order of the approximation of the strain rate field is at least equal or higher
than the approximation of the velocity field. We denote our elements by two
numbers, which are separated by the capitals PSS, where PSS indicates that the
shell theory is based on the assumption of plane stress and plane strain. The first
number indicates the polynomial degree of the shape functions for the strain rate
field, and the second one - that of the velocity field. Pursuing numerical tests for
elastic cylindrical shells it could be shown that the mixed elements (1PSS1 and
2PSS2) are completely locking free down to a thickness ratio h/R = 4.10710,
where R is the radius of the cylinder.

2.3. Model of Bodner and Partom for infinitesimal strains

BopnER and PArTOM [17] assume an additive decomposition of the total rate
of deformation tensor d = € into an elastic and a plastic part

(2.17) ¢ =€ +¢&F.

We denote the deviator of the stress tensor by devo. The flow rule takes the
form

(2.18) eP = wdevo .

HACKENBERG [31] has given the following formulation of this model which is
convenient for numerical purposes. Define the following quantities:

I3
II:= idevc cdevo = /3., ,
. 2 2
. = i) )= —J1
(2.19) ¢ ﬁ\/]zu, W,
I édevc
T2 I
Then (2.18) can be written as
(2.20) P = du.

RemARrk 1. Note that (2.20) is the standard form for associative plasticity
which is important for time integration. O

REMARK 2. We point out that in our formulation the flow function ¢ is equal
to the equivalent inelastic strain rate. m
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The parameter w in (2.19) is given as

i V3 1n+1/2\*"
The function qb takes the form
01 2 1n+1/2\*"

Here Z is an internal variable which models isotropic hardening. The following
evolution equation holds for this internal variable

(2.23) Z =292 - D¢
Zy

with initial condition

(2.24) Z} = 7.
t=ty

The quantities Dy, n, m, Zy and Z; are material parameters which have to be
determined from experiments for any material. We note that these parameters
are temperature-dependent.

For our numerical work we use parameters given by BODNER and PARTOM [17]
for a titanium alloy at room temperature. They are summarized in Table 1. For
time integration an implicit algorithm has to be applied as shown e.g. in [32].

Table 1. Material parameters for titaninm alloy.

Parameter Value Dimension
E 118000 MPa
v 0.34 -
Zy 1150 MPa
Zy 1400 MPa
D} 1-10° s
n 1 -
m 100 -

2.4. Numerical results of inelastic computation

As a test example we have computed a cylindrical shell made of the titanium
alloy. The shell has an axial length of 1000 mm, a radius of 250 mm and a thickness
of 10mm. It is closed at its ends. The shell has been discretized using 70 equally
spaced 1PSS1 elements. The loading history of the shell is depicted in Fig. 1. The
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internal pressure is increased within 1s linearly from zero to the maximal value
of 13.0 MPa. Then this pressure is held constant over the time of 9s. Finally, the
pressure drops linearly within 1s to zero. In Fig. 2 the deflection of the shell is
depicted for the following times: ¢ = 0.55s,¢ = 5s,¢ = 5.55s and ¢ = 10s.

16.0

14.0 -

Load (MPa)

1 1 1 1 1

20 4.0 6.0 8.0 10.0 12.0

Time (sec)
Fia. 1. Load-history for the cylindrical shell.

T= 0.55 sec
————— T= 5.00 sec
131 - — — T=5.55sec PN
./ .\
————— T=10.00 sec P .
. \
—_ t/ ¥
£ - \
R - \
e
[+}
£
3]
Q
< = -
o, 06+ - T
I I -
B Aty By e Koty it =
s
=
=]
<
© 03k
0.0 1 L
0.0 106.0 212.0 530.0
X (mm)

Fia. 2. Radial deflection of the cylindrical shell.
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At t = 1s the loading of the shell is completed. In the middle section a pure
membrane deformation prevails. Only at the edge in the region 350 mm < z <
400 mm bending effects can be noticed. During the hold time 1s < ¢ < 100s
considerable additional deformation due to viscoplastic effects takes place. It is
remarkable that the region of noticeable bending effects spreads into the interior
of the shell. During unloading (10s < ¢ < 11s) the elastic part of the deformation
is recovered. After unloading no additional inelastic deformation can be observed.

56

4.5

3.4

22

Inelastic Strain Invariant (10 -3)

0.0 1 - | 1
0.0 2.0 4.1 6.1 8.2 10.2

Time (sec)
F1G. 3. Recorded history of the second invariant of the inelastic strain rate at = = 408.948 mm
and r = 254.840mm.

Figure 3 shows the recorded history of the development of the second invari-
ant of the inelastic strain rate tensor at a point of the shell (z = 408.943 mm,
r = 254.840mm), where bending effects dominate. The second invariant of the
inelastic strain rate is defined as

(2.25) L(EP) := ./%ép '3

During the first second of the loading history the equivalent inelastic strain rate
is very small. Then it increases sharply with time. At the beginning of the hold
time the second invariant of the inelastic strain rate drops continuously. With
unloading it sharply drops to zero.

Finally in Fig. 4 the distribution of the axial bending stress o.. over the thick-
ness of the shell at z = 408.943mm is given.

At t = 0.55s during the loading period the distribution of the stress is linear,
i.e. the deformation is purely elastic. At the end of the loading phase ¢ = 1.0s,
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Fi1G. 4. Axial stress of the cylindrical shell.

a slight curvature of the stress distribution can be observed. During the hold time
until £ = 10s, a redistribution of the bending stress occurs and the curvature of
the stress distribution is increased. Finally after unloading at £ = 11's the residual
stress has developed. It has to be noticed that in the theory of Bodner and Partom,
neither loading or unloading conditions nor a yield surface are present.

3. Finite deformation of three-dimensional viscoplastic continua

In this section we present a concise theory of a finitely deformed elasto-vis-
coplastic continuum. Then we apply this theory for an extension of the infinites-
imal viscoplastic model by Bodner and Partom to finite deformation.

3.1. Three-dimensional elasto-viscoplastic continuum under finite deformation

After consideration of finite deformation of viscoplastic bodies we discuss in
general the elastic and viscoplastic constitutive models. Then a hyperelastic model
and a generalization of the model of Bodner and Partom presented in Sec.2.3
will be given.

3.1.1. Kinematics of finitely deformed elasto-viscoplastic bodies. A motion of the body B
is a one parameter mapping ¢, : By — B; where ¢ € R is the time and B, is the
current configuration at time ¢. For any X € By we have ¢(X) = z € B,. For any
X € B we denote the tangent spaces of the reference and current configuration
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as T'x By and TrABt, respectively, and the coordinate charts, which are taken to be
convected, by '. The deformation gradient is defined as

F:= XBO — TrBt,

(3.1) .
F=T¢=gi®le i=172933

where we have G; = X, g, = x;, G;-G’ = ¢!, g,-g’ = &!. Here, derivatives
with respect to 6 are denoted by a comma, scalar product of vectors by a dot,
and ¢7 is the Kronecker delta.
Note that the deformation gradient is a two-point tensor. Further note, that
we have suppressed in (3.1) the dependence of the deformation gradient on time.
It is convenient to introduce the right Cauchy - Green deformation tensor as

(3.2) C=F'gF,

where g is the metric tensor in the current configuration B;. Speaking in geometric
terms [33], the right-hand side of (3.2) can be interpreted as the pull-back of the
metric tensor of the current configuration to the reference configuration, i.e.
C = ¢*(g).

Next we introduce the multiplicative decomposition [34, 35, 36] of the defor-
mation gradient into an elastic and a plastic part

(3.3) F=F.F,,

where the assumed incompressibility of the inelastic deformations means that
F, € SL*(3,R), SL*(3,R) denotes the special linear group with determinant
equal one.

REMARK 3. The multiplicative decomposition (3.3) is often accepted as equiv-

alent with the introduction of an intermediate configuration 5. In contrast to this
understanding which has caused a lot of discussion in the literature, we define

(3 4 Fp = TXBO — T_\’Bo y

Fe = TXBO — T:L‘Bl .

That is, the inelastic part of the deformation gradient is a map from T'x By onto
itself. It is, accordingly, a material tensor uniquely defined by the evolution equa-
tion of an appropriately defined material plastic rate. If the constraint of plastic
incompressibility is assumed, then det F, = 1 holds; i.e. F, is an unimodular
tensor. 0

Equation (3.3) motivates the introduction of an elastic and a plastic right
Cauchy - Green deformation tensor
Ce = Fg‘g FE )

35
ol Cp:= FFp.
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The elastic right Cauchy-Green deformation tensor C. can be interpreted as
pull-back of the metric tensor g with the elastic part F. of the deformation
gradient.

The deformation gradient F is an element of the general linear group GL*(3,R)
with positive determinant. Therefore, we can attribute to its time derivative a left
and right rate

.

=1F
(3.6)

F = FL.

Both rates are mixed tensors (contravariant-covariant). They are related by means
of the equation

(3.7) L=FUF.

Geometrically Eq.(3.7) is the pull-back of the mixed velocity gradient from the
current configuration to the reference configuration, i.e. L = ¢*(1).
Since Fp, € SL*(3,R), we can again define a right rate according to

(3.8) Fp=FlL,

which proves to be more appropriate for a numerical treatment in a purely ma-
terial context. If a constitutive function is specified for the right rate L, of the
plastic part F, of the deformation gradient, then Eq. (3.8) constitutes an evolution
equation for Fy,.

3.2, Elasto-viscoplastic constitutive model

We start with general considerations where we use thermodynamical argu-
ments to formulate a general frame for the elastic part of the constitutive model.
Then we modify the elastic model for the sake of numerical efficiency. Next, the
infinitesimal model of Bodner and Partom presented in Sec.2.3 is modified and
generalized to finite strains.

3.2.1. General considerations. Let T be the Kirchhoff stress tensor. Consider the
expression of the internal power

(3.9) W=T:l,

where 1 is defined in (3.6); and the relation holds: a: b = trab’ for a, b being
second order tensors and tr denoting the trace operation. The expression is
rewritten using material tensors as

m

(3.10) W=g2:L.
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The comparison of (3.9) with (3.10) leads with the aid of (3.7) to the definition
of the material stress tensor

(3.11) E=¢"(1)=F, 7F,;T.

The tensor E is, accordingly, the mixed variant pull-back of the Kirchhoff tensor.
It coincides with Noll’s intrinsic stress tensor and some authors call it Mandel’s
stress tensor.

A common feature of unified inelastic constitutive models is the introduction
of phenomenological internal variables. We denote a typical internal variable by Z.
Assuming the existence of a free energy function according to ¢ = (Ce, Z), the
localised form of the dissipation inequality for an isothermal process takes the
form

D=T:1— ot
(312) Qrcf¢

=Z:L- et 20,
where o, is the density at the reference configuration.
Making use of the relation
VT Tep- —T - ~-TyTp-1 -T -1
(3.13) Ce —FpTL CFp1+Fp CLFPI—Fp L,CF;' —F; " CLyF;

one may derive

(3.14) % = 2CF; 1 9 AT (L-Lp) + o ad

P JCe
Insertion of (3.14) into (3.12) leads to

— — ad}(ce?Z)
615) D= (=-20mCR EEET) L

a C :Z a h C ,Z
+2«’?refCF;1—%‘Ce—)F_T Lp — Oref— q(azc__z.zz()‘
e

By defining Y as the thermodynamical force conjugate to the internal vari-
able Z
o(Ce, Z)

oz ’
and making use of standard thermodynamical arguments, from (3.15) follows the
elastic constitutive equation

(3.16) Y i= —pref

Np(Ce, Z)

IP(Ce, Z
P(Ce )F—T o ZQrengCe JC, p

|~ - -1
(3.17) & = 200 CF; ' =5 7,
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as well as the reduced local dissipation inequality
(3.18) Dy:=E:L,+Y:Z>0,

where (3.16) has been considered. Dy, is the plastic dissipation function. From
(3.18) follows an essential result that the stress tensor & and the plastic rate Ly
are conjugate variables. Observe that the tensor L, is defined in (3.8).

3.2.2. The elastic constitutive model. We assume that the elastic potential can be de-
composed additively into one part depending only on the elastic right Cauchy -
Green deformation tensor C. and the other one depending only on the internal
variable Z

(3.19) P = Ye(Ce) + Yz(Z).
Defining the logarithmic strain measure
(3.20) o:=InCe, Ce = expax

and assuming that the material is elastically isotropic, one can prove that the
relation holds
0he(Ce) _ Ohe(an)

(3.21) el et

where 1).() is the potential expressed in the logarithmic strain measure o. The
proof is given in [37]. Equation (3.17) results then in

(3.22) B = 2gmfFTMF-T.

Note that ). is an isotropic function of o.. The last equation motivates the in-
troduction of a modified logarithmic strain measure

(3.23) o= F,'aF,.

Since the following relation for the exponential map holds
(3.24) F, ' (exp )F, = expa,
Eq.(3.22) takes the form

0 (ax)

(3.25) = ZQrefﬁ“ -

[1l

REMARK 4. A comparison of (3.17) and (3.25) reveals the computational
advantages of the latter formulation. For evaluation of (3.17) the inverse of the
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tensor F;,r has to be computed. The final expression for (3.25) contains only the
derivative of the elastic potential with respect to the modified logarithmic strain
tensor oL 0

It is interesting to note that (3.24) together with (3.20), (3.2), and (3.5), lead
to a direct definition of o. The relation holds
(3.26) & = In(C;'C).

For computational simplicity a linear relation is assumed and, therefore, the
elastic constitutive model (3.25) takes its final form

(3:27) E=Ktra®l+ pdeval,
where
(3.28) o’ =In(CCh,

K is the bulk modulus and p the shear modulus.

3.2.3. Extended model of Bodner and Partom. We make now use of the form of the in-
elastic constitutive model of BoDNER and PArTOM [17]. In Sec. 3.2.1 we concluded
from (3.18) that the tensors & and L, are conjugate. A basic issue is now to put
the mentioned constitutive model into a frame which is compatible with this fact.
Essentially we have to consider the stress tensor 2 as the driving stress quantity
while the plastic rate for which an evolution equation is to be formulated is taken
to be Ly. We, therefore, derive the finite formulation of Egs. (3.19), (3.20) by the
substitutions

(3.29) gene
: P — LT.

This leads to the following set of evolution equations

(3.30) L, = 6u";
. M s
2 = (7= D)Wy,
WP = HQ;S(H,Z),

(3.31) II = \/%devE cdevE,

.
)

Here, Zy, Z1, Dy, N, M are material parameters.
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The choice of the transposed quantity in (3.20) is motivated by the updating
formula for the stress tensor which is given in Sec.4, Eq.(4.31). Moreover, the
generalization of a flow rule of the more classical von Mises type to nonsymmetric
arguments would lead to a flow rule of the form (3.30). Thus, the flow rule chosen
fits the classical models of associated viscoplasticity.

Note that by its very definition in (3.11), the tensor = is physically equivalent
to the Kirchhoff stress tensor in the sense that both have the same invariants.

4. The nonlinear shell theory

After presenting basic features of the theory of finitely deformed shells, let us
now give some details of a new shell model containing 7 parameters. Then the
reduction of the three-dimensional principle of virtual work to a shell formulation
will be presented.

4.1. Preliminaries of finite shell theory

We adopt the definition (2.1). However, we distinguish carefully between the
reference configuration By and the current configuration B,. For any X € B and
any r € B; we recall the relations for the tangent base vectors at the reference
and actual configurations

(4.1) Gi=X;, g, =7z,

The corresponding metrics at the actual and the reference configurations are
denoted by g and G, respectively. Their components are given by G;; = G;-G
and g;; = g,+g,, respectively.

As in Sec. 2, we introduce in the reference configuration the shell midsurface
as reference surface M where we again presuppose constant shell thicknes A.
Following the standards, the coordinate 13 perpendicular to M, will now be
denoted by z € [~h/2,k/2], h € R™, and the tangent vectors of 7M in the
undeformed reference configuration by A, (o = 1,2) and N, with N-A, = 0.
We denote their image at an actual configuration by a,, and a3, where in general
az-a, # 0 and |a3| # 1. Thus we have A, = G,|.=¢ and a, = g_|.=¢. Further,
A refers to the metric of the reference midsurface with covariant components
A.p = A,-Ap, a,5 are then the related components at the actual configuration.
Their contravariant counterparts are denoted as usual by A°? and a®”.

In addition to the curvilinear base vectors, we consider the fixed Cartesian
frame e; and define the quantities

(4.2) Coi = Aa-ei 5 C3; = N-ei,
to get the following relations
(4.3) A, = cie;, N = cye;, and €; = Co; A” + c3; NV,

which will be of use later on.
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By B we denote the two-dimensional curvature tensor of the undeformed refer-
ence surface with components B, = —A,+N z. We also make use of the shifter
tensor M (see Eq.(2.4)) and its determinant M (see Eq.(2.5)). The following
exact expressions hold

G, = A, +2N,=(-:B)A, = MA,

(4.4)
G* = M 'A°, G;=N.

4.2. Shell strain measures

The shell theory is based on the following fundamental assumption. We assume
that any configuration of the shell space is determined by the equation

&3 z(7,2) = 2°(9) + (= + X (I")as (),

where z¥ denotes the corresponding configuration of the midsurface. Then the
ordered triple (z°, a3, y) defines the configuration space of the shell.
The following basic features of the above assumption are pointed out:

1. The assumed shell kinematics belongs to a general class given by the relation
(¥, z) = 2°(9*) + f(2)a3(¥*) where f(z) can be an arbitrary function of z.
This class of kinematics differs entirely from that used e.g. by NAGHDI [1], where
z is expanded into a series of z.

2. The assumed shell kinematics is the simplest possible which allows for a
linear distribution of the transverse strains (shear and normal) over the shell
thickness. The constant part of transverse strains over the shell thickness is de-
scribed by a3 whereas y determines the linearly varying part. Note that fibres
perpendicular to the reference midsurface M remain straight after the deforma-
tion.

3. As a consequence, three-dimensional constitutive equations can be applied.
Accordingly, the formulation is suitable for small as well as for large strain cases
in elasticity or elasto-viscoplasticity.

4. The shell kinematics enables to circumvent the use of a rotation tensor.
Shell formulations using a rotation tensor with 5 parameters as in [38, 39, 40]
or with 6 parameters as in [41, 42, 43, 44] does not furnish directly information
about the tranversal strains in thickness direction. Such an information is ob-
tained using further constitutive assumptions such as incompressibility or plane
stress assumption. Accordingly, formulations with a rotation tensor, besides being
complicated due to the structure of the rotation group, seem to be less adequate
for the object of this paper. In addition, as previous numerical studies show, in
the present formulation the limit case of very thin shells can be achieved without
loss of accuracy.
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By (4.1) and (4.5) the tangent vectors become

aﬂ:o 2 f)ag, 2 C)\
9 = gogo TG E0 G50 T gpats

(46) = a, + (: + 32)()0'3.& + ZZX,:}GSa
g3 = (1+2zy)as.

For the deformation gradient defined in (3.1); we obtain
(47) F=g,0G" +g;0N
a, ® G + [(: + 25 )as, + zz\yaag,] @G+ (1 +2zx)a3@ N .

By defining the tangent map of the midsurface F* := F|,_
(4.8) F:=a,®A" +a3;0 N,
with a, = F'A,, a3 = FON and by defining further the tensors
b=aa®A°+2/a @N,
(4.9) 3, Xas .
c= (/\,a3.ﬂ + X',Ota:’)) @ A b

we arrive at the following expression for F:
(4.10) F=( +zb+22c)M .

Next, we introduce the displacement field u° for the SMS and the difference
vector w as
u® = 20— X°,

4,11
(@-11) w:=a3— N,

with X° being a point on the reference surface M. With (4.11), it follows from
(4.8) and (4.9) that

F=UA+u)a A"+ (N+w)oN,
(4.12) b=-B+w,3 A" +2x(N+w)o N,
c= —\B+[xyw, + xo(N+w)o A",

Making use of (4.10), the right Cauchy - Green strain tensor of the shell space
given in (3.2) takes the form

@13) €=M [FTF + 2(F'b + bTF) + 22 + Fle+ cTF)

+ 23(bTe + c'b) + z4cTc] M
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The last expression motivates the definitions

(4.14) SrE
' K := b + bTF

with the help of which we write for (4.13)
(4.15) C=MT[C+:K+..|M".

In what follows we assume that the shell is thin in the sense that only the first
two strain measures C® and K are dominant. The inclusion of all other strain
measures is of course possible but is left out for the sake of simplicity.

We consider now the following decompositions

(4.16) u’ = ue;, w = w;e; .
Then the tensors C° (4.14); and K (4.14), take the form

C® = CyyA’ @ A* + C3,A° @ N+ Co3sN@ A + CaN @ N,

(4.17)
K := KigA® © A* + K3,A° 9 N + K,sN © A” + KN @ N.

Considering (4.16), the following representations of the components in (4.17)
based on the Cartesian components (4.16) can be obtained [45]:

Cop = Aap +Coithig T Cailtip + Uil g,
Coz = C3iUj o + Coiw; + U; oW,

Cia = Cas,
Czz = 1 + 2c3,w; + ww;,
(4.18) Kaﬁ = Bo,g + C3; o Ui g+ C3; gU o T CoiWi g

+ CoiW; o+ Ui Wi g + Ui pWi o,
Kos = (C3i Wi + C3iWi o + Wiw; o) + 2X(Caiw; + C3iUj 0 + Wil; ),
K3a = Ko'31
K33 = 4X(1 + 203l‘”w1' + wiwi).

Equations (4.18) are in fact quite compact expressions, well suited for a numerical
implementation.

4.3, The principle of virtual work

Let S be the second Piola - Kirchhoff stress tensor of the shell space.
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The principle of virtual displacement in three-dimensions reads

(4.19) /%s L 6CdV — ff-éde _ /t-ézdS =0,
B B

By

where f, ¢ are the body and the surface forces, respectively, dV = M dodz
(see Naghdi [1]) and do is a surface element of the shell midsurface given by
do = VAdI' d¥?, A = det(A,z). Tractions are prescribed on the part 0B, of
the boundary dB (0B; C 9B). We further assume that the shell midsurface M
has a smooth curve M as boundary with the length parameter s. The boundary
of the shell consists of three parts: an upper, a lower, and a lateral surface. If we
denote the upper surface by dB™, the lower one by 9B~ and the lateral one by
0B° and make use of the notation M* = M|._, o, M~ = M|.__}, », and M* for

M at the lateral surface, we may write for the surface elements dS* = M *do,
dS™ = M~do and dS® = M*dz ds.
We first consider the external virtual work.

(4.20) Wext := [ f+ézdV + [ t-éxdS.
/ /

aB
With the definitions

/2
/ FMdz + M* ¢+ Mt
—h/)2
h/2
[:= ] 2fMdz + %M*t* -
—h)2
h/2
q:= / 22fMdz +
—h/2
)2
5 . / M3 dz
—h/2
h/2
/ 2t M3 dz ,
—h/2
h/2
¢ = ] 2285M%dz ,
—h/2

~
1l

h .
Eﬁ/[t,

h? h?

— Mttt — Mt
4]\/[t +4 171,

(4.21)

=
I

- )
Il
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Equation (4.20) reduces to

(4.22) OWext = / [p-&zo + ([ + xq)-daz + (q-a3)6x] do
M

+ / [ps-éa:o + (' + x¢°)-das + (qs-ag)éx} ds
IM,

as the two-dimensional form of the external power. In (4.22) it is presupposed
that on the entire upper and lower surfaces tractions are prescribed. However,
we assume that only on a part dM; of the boundary M of the SMS tractions
are prescribed.

To consider the internal virtual power we notice first that it is more appropriate
to make use of the relation

(4.23) Ss=cClz
since the inelastic constitutive model, as shown in Sec.3.2.1, is formulated in

terms of . We define first the pull-back of S under M which gives a stress tensor
defined with respect to the midsurface

(4.24) s =M"clEmMT.
ReMARK 5. Note that S° still depends on the normal coordinate z. a
Equations (3.25), (4.23) and (4.24) motivate the following definitions
+h/21 +h/2 P
n:= / =S'Ndz = / M-IC"I—ﬁM—TM dz,
2 Jo
~h/2 —h/2
(4.25) A2 "
m ;= ] M1 ZEM-TM dz
I
~h/2

with the help of which as well as with (4.22), the principle of virtual work given
in (4.19) takes the form

(4.26) / [n :6C" +m: 5K] do — f [p‘&:o + (I + xq):daz + (q-a3)6>(] do
M M

_ / {ps.&;o + (I + y¢’)-daz + (qs-a3)6x] ds = 0.
M

For given external forces, the integrals (4.21) can be expressed in almost closed
form. For very thin shells the terms xg-das, g-a3dx in (4.26) can be neglected
as being of higher order. However, in order to allow for the use of complex
constitutive laws and path-dependent behaviour (e.g. cyclic loading), the evalu-
ation of (4.25) is carried out in practical computations numerically. That is, the
constitutive equations are considered pointwise over the shell thickness.
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4.4. Numerical implementation

In this section computational issues in conjunction with a possible finite el-
ement formulation are discussed. The time integration procedure of the consti-
tutive model at hand is outlined and necessary operations of local iterations are
discussed. A closed form of the algorithmic tangent operator is presented.

4.4.1. Time integration and local iterations. We consider two consecutive times ¢,, and
t,+1 with time increment Al = t,.; — t,. Since the unimodular tensor Fy is
an element of the Lie group SL*(3,R) and the tensor L; is an element of the
corresponding Lie algebra, the exponential map can be used for time integration.
Therefore, the following update formula is considered

(4.27) Fplnt1 = Fpln exp[ALLy]

for some L, in the interval Af, the choice of which is defined by means of the
integration procedure. This algorithm preserves the condition of plastic incom-
pressibility exactly. From (4.27) follows directly the update formula for the elastic
strain measure (3.26)

(4.28) CCy'|ns1 = Clus1 exp(—AtLy)Cp ™!, exp(—AtLy).

Due to (3.30) we update the tensor Ly, as

(4.29) L, = ¢v".

Since isotropy was assumed in Sec.3.2.2, the tensors £ and &' or E and
CCp_1 are coaxial. Thus the single terms in (4.28) can be rearranged and the
logarithms can be taken to give [45]

In(C Cp™rt = In [Cr1 Gy exp(-241L7)]
(4.30) o,y = (@™ - 2aiL],
(atria])T = In Cn+le_1|n )

Next, we give the update of the stress tensor as, where (3.27) is considered
for the definition of the trial stress

(4.31) B, = E™ - p2aL],
— Etrial _ 2At(;5[.lun+1 ;
(4_32) E:trial = Ktr(ﬁ“ial)TI + [ ((-d-trial)‘r . %tr(atrial)T>

for some ¢ in the corresponding interval.
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From (3.31); and (4.31) follows
(4.33) I, = 1" 3A46.
We are now looking for the determination of ¢ in accordance with (2.23) to

(2.19)3 as well as with (4.33). We adopt the mid-point rule according to which we
have

(434) 1 = %(H,,+1 +10,) = %(H wial _ 3a14 4 T1,);
Z — Zny1— Zn
(4.35) At

7 = %(.Zn+1 TR

We insert Egs. (4.35) into (2.23) and (3.31), to obtain an explicit equation for the
determination of the internal variable 7

mAt$Z; + 2207,
mAtHc}S + 27y

(4.36) 7 =

which depends explicitly on ¢> Inserting (4.36) into (3.31)3 yields a nonlinear
equation for the determination of ¢

. 2N
e 2 1N+1[Z{,e)
(4.37) ¢ = ﬁDoexp 5N ( i ) )

where II is computed by means of (4.33). Equation (4.37) has to be solved iter-
atively by Newton’s method.

4.4.2. The algorithmic tangent operator. The algorithmic tangent operator is obtained
as the linearization of the update formula for the second Piola - Kirchhoff tensor
S with respect to the right Cauchy- Green deformation tensor. With (4.31) we
obtain

4.38 S = C @ _ 24t uv).
I

The derivative with respect to C gives

8S B (?C_l = trial _ldntrlal
(439)  F5= e E ~ 20tpu) + C o
(3¢' al—[tnal dr—!trla] 1 ()ll ar-umal
- 2At'u dHtrlal a:mal oC c” V 2Atﬂ¢C tnal aC i
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The tedious algebra given in [45] leads to the very compact and closed form

(4.40) g%- = ()T (CYHE Y, — 28t ()]

+ AUCTHTCT)® + BACTH(CTYT + By(CTH @) (€T )’

where we have introduced the following notation

I8 =I{_§'u+At'qu¢ . ﬁ2=15*3At#2H¢ ,

(4'41) . n+l ) n+1
d¢ ¢
= —2Atu? s ,

183 H (al—lma] Hn+1)

In (4.41)3
.99 M99 9z

(4.42) 8@5 _ oIl pritial -~ 9Z Hyy trial

aleial_ 1_%6_1_‘[_%0—2

oIl 9 qﬁ a7 9 05
has to be considered.
4.5. Finite element formulation

We briefly discuss the interpolation of the shell geometry and then present an
enhanced strain element.

4.5.1. Interpolation of shell geometry. The geometric quantities describing the shell
surface (the fields B.g, cai, 3, \/K) are taken exactly at every integration point.
The natural coordinates ¥ describing the shell surface are mapped onto the
bi-unit square using bilinear interpolations.

On the other hand, the Cartesian components of the kinematical fields u, w
as well as y are interpolated using the bilinear interpolation functions.

4.5.2. An enhanced strain functional. We formulate first a strain-based element. We
appeal to the enhanced strain concept in the spirit of Simo and Riral [46] applied
by them to linear problems. Accordingly, the right Cauchy - Green deformation
tensor itself is enhanced. This is in contrast with the nonlinear version of the
concept given by SimMo and ArRMERO [47] where the deformation gradient was
enhanced. Accordingly, we consider the following functional

(4.43) %/(c+ci)—15:6(c+cf)dv—/f~6mdv—ff.6zds=0,
B B aoB
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where we have

—
d

2@ref?—‘f’ = K"+ p (&7 - lea"),
da a 3
(4.44)

& = In[C,(C + CY)]

and C' is the enhanced strain field. Since C' is assumed to be independent of the
displacements, Eq.(4.43) splits into the following two equations

(4.45) %/(C+C‘)”IE:6Ca’V—/f-6udV— [ t-éuds =0,
B B By

and

(4.46) % /(C +CYIE: §CTdV = 0.
B

The choice of the interpolation functions for C' is crucial in order to arrive at
well behaving elements. Equation (4.15) motivates to restrict the incompatible
deformation tensor C' to the form C' = M~TC”M~! where C” is independent
of z. This is equivalent to an enhancement of the strains related to the shell
midsurface alone.

Equations (4.45) and (4.46) are still defined for the three-dimensional shell
body. The reduction to two dimensions is carried out in the same way as demon-
strated in Sec.4.3 (compare (4.21)). One has

/(n :6CY + m : 6K) do — / [p-ézo +(+ X'q)-633(q-a3)5_)<] do
M M
(4.47) - / [ps-5z0 + (FF + x¢*)-63 + (qsﬂ3)6x] ds =0,
AM,
/n :6CY"do = 0.
M

The contributions of the external loads are defined in (4.21) while n, m are now
defined according to

+h/2 9
o8 =i, )
n:= / M! (C + Cl) —%M_TM dz,
o
—h/2
(4.48) o
m := / M1 (c 4 Ci)_1 %M‘TM([.Z,

—h/2
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The interpolation functions for the components of the incompatible deforma-
tion C” are taken to be of the form

Ch(€,m) = C1 + Ol
Ch(é,m) = Can + Caly,
Cly(€,m) = Cs + Cn + Caty,
Ch(€,m) = Csé + Con + Cioln,
ChH(E,n) = Cné + Croby
CH(E,m) = Cizn + Craly .

The quantities ¢ and 7 are the local coordinates at the element level. Clearly, the

fields CY, ... CY; are the components of the incompatible deformation tensor C”
with respect to the natural curvilinear base system G..

The introduction of interpolation functions of the displacement fields as well
as of the enhanced strain fields in (4.47) leads to two coupled nonlinear sets of
algebraic equations. The enhanced strain field is assumed to be discontinuous
over elements and is eliminated at the element level.

Again (4.48) have to be linearized (compare Sec.4.4.2). The tangent operator
for the shell space given by (4.40) is a fourth order tensor which we denote by
H. The systematic linearization of (4.48) leads to the following expressions

f [An: 6C0 + Am : 6K] do = f (HO(AC” + ACY) + H'AK : 5C”

(4.49)

M M
(4.50) + [H'A(CY + C") + H2AK] : 6K) do,
f An: 6C% do = ] ([HO(ACO + ACY) + HIAK] ; 6(:0‘) do .
M M
The following definitions hold
+h/2
(HO)H .= / M, (M) ) MM M dz,
—h/2
+h/2
(4.51) (HL)H .= / MY MDY )M HEMTY, M dz,
—hJ2
+h/2
(H2)9H = f AMHE MY ) MDEMT), M dz.
—h/2

The integrals in (4.51) must be evaluated numerically. Further details of the
implementation are standard and hence they have been omitted.
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4.6. Numerical results

4.6.1. Comparison with experiments. In the first example the verification of the model
presented in the previous sections is compared with experiments.

AP
L
i L=52
D=8
¥
o]
D

F1G. 5. Specimen under tension. Definition of the problem.

In [17] a specimen of pure titanium of 1 mm thickness, 8 mm width and 52 mm
length (Fig.5) was subject to different straining histories. BODNER and PARTOM
used in [17] a model based on an additive decomposition of the deformation rate.
The process of adjusting the calculated stress-strain curves to the experimental
ones led in [17] to the following material parameters:

K = 1.845 x 10° N/mm’,
= 4.4 x10* N/mm?,
Zo = 1150 N/mm?,
(4.52) Z; = 1400 N/mm?,
Dy = 10000 1/sec,
N =1,
M = 100.

Two loading velocities corresponding to a crosshead velocity of S mm/min and
10 mm/min have been calculated with the model presented in this paper. It is
interesting to note that a material parameter 2, different than that calculated by
Bodner and Partom was needed to fit the experimental results.
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320.0

£=32-10-3 sec-!

256.0

192.0

Load

128.0

calculated

=i experimental
640 b

0.0 I L 1 1
0.0 0.5 09 1.4 18 23

Displacement
F1G. 6. Specimen under tension. Load-displacement curves.

In Fig. 6 the experimental results are compared with the calculated ones using
a time step of 0.5sec for a material parameter Z; = 1540N/mm?, where very
good agreement can be observed.

4.6.2. Square plate under uniform loading. In all following examples the material data

as formulated in (4.52) are used. A square plate is uniformly loaded as shown in
Fig.7.

simply supported (ss)

SS

b

F1G. 7. Plate under dead load. Definition of the problem.

>

Due to symmetry conditions, only one quarter of the plate is discretized using
32x 32 elements. The load is increased so as to result in a deformation velocity at
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the midpoint of 1 cm/sec. Using a time step of 0.5 sec, altogether 30 time steps are
calculated when the maximal loading capacity of the plate is arrived. The response
of the plate is presented in Fig. 8 where the load versus the midpoint-diplacement
is plotted. The maximal deformed configuration is given in Fig. 9.

5.4 -

43 |-

32

Load

00 L 1 1 1
0.0 6.4 128 19.2 256 320

Displacement

FiG. 8. Plate under dead load. Load-midpoint displacement curve.

NS
\\\\\-\\\‘\\::';\“_
S ey
R R
X

%24
{7
()
o 0 0%
L%
2%
%,
%,
%

L)
N0
2
0,:.:
0%
9%

o,
o::

e,
%,

-
o
0
Yo ..0
IKJ
)
% ()
e
%, "0
550
2 ﬁ,'
?
2%2%
XK
7%
4’
Z
Z

()
(7

e,
I"

0%,
XKD
5
%

(

o
()
O"

D
"0
7

>

)
%
%

NN
IR
"
ONDAY
)
g

F1G. 9. Plate under dead load. Deformed configuration.

4.6.3. Cylinder with rigid diaphragms. A cylinder with rigid diaphragms is subject to
a line load as described in Fig. 10. The length of the load segment is 88.35cm.
Only one eighth of the cylinder in modeled using 32 x 32 elements.

A loading cycle was calculated using a time step of 0.5sec where altogether
150 time steps are considered. The loading history is chosen so as to result
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rigid diaphragm

rigid diaphragm

v

R =100

h =1

L =400
— AT=0.5

F1G. 10. Pinched cylinder with rigid diaphragm. Definition of the problem.

in a linear increase of the displacement at the top of 0.25mm/sec. In Fig.11

load-displacement curves are plotted for the point at the top as well as that at

the side. A configuration of the cylinder at the maximal deformation is given in
Fig. 12.

load

78.0

62.4

46.8 -

1 1 1

0.0
-10.0 5.2 204 35.6

displacement

50.8 66.0

F1G. 11. Pinched cylinder with rigid diaphragm. Load-displacement curves.
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F1a. 12. Pinched cylinder with rigid diaphragm. Deformed configuration.

5. Conclusions

In this paper we give a thorough overview on the theory and numerical analy-
sis of viscoplastic shells. In Sec.2 we present a general theory for geometrically
linear elasto-viscoplastic shells [8]. This theory is based on a two-field varia-
tional [9] principle which contains velocities and strain rates as variables to be
varied independently. Families of mixed and hybrid strain elements are derived
for axisymmetric shells. It is crucial to choose stable approximation schemes for
the velocity and the strain rate field, respectively. Numerical experiments [12]
for elastic shells demonstrate that the mixed elements are locking free and ex-
hibit the same order of convergence for displacements and stress-like quantities
such as e.g. membrane forces and bending moments. Some numerical results are
presented for a cylindrical shell under internal pressure, where the viscoplastic
constitutive model of BoDNER and PARTOM [17] has been used.

In the major part of this paper (compare Sec.3 and Sec.4) we present a
general theory of viscoplastic shells under finite deformation and its numerical
implemetation by means of the FEM. For this purpose we first develop a gen-
eral theory of finitely deformed elasto-viscoplastic three-dimensional bodies. We
assume a hyperelastic model and based on the assumption of persisting isotropy,
we derive a very concise representation of the elastic part of the constitutive
model by introducing a logarithmic strain measure. Next, a shell theory with
seven parameters is formulated, which can account for distributions of the trans-
verse strains over the shell thickness varying linearly with the normal coordinate.
Therefore, this shell model enables the use of fully three-dimensional constitu-
tive models without using the typical “shell assumptions”. Basing on the principle
of virtual work, we formulate our shell equations. Furthermore, we discuss such
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computional issues as time integration and the computation of the algorithmic
tangent operator. Finally, an enhanced strain finite shell element is derived. Some
test examples are presented.
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On attainability of Hashin-Shtrikman bounds
by iterative hexagonal layering
Plane elasticity problems

T. LEWINSKI and A.M. OTHMAN (WARSZAWA)

THE PAPER presents a derivation of the Hashin-Shtrikman bounds for the plane elasticity problems
and for the Kirchhoff problem of plates in bending. A two-dimensional counterpart of the method
of FRANCFORT-MURAT [1] is applied. The method consists of three subsequent layerings along the
directions of vertices of a unilateral triangle.

1. Introduction

FRANCFORT AND MURAT [1] showed how to mix in space two isotropic elastic
components to obtain the stiffest possible isotropic material. The aim of the
present paper is twofold. First we consider this problem in a two-dimensional
setting, which means that both plane-stress and plane-strain elasticity problems
are comprised. Secondly we deal with the plate bending problem of Kirchhoff.

Francrort and MURAT [1] performed subsequent layerings in the directions of
vertices of a regular icosahedron and arrived at an isotropic material of extremal
properties. The present paper shows details of a similar but plane mixing process,
using layerings in the directions of vertices of a unilateral triangle.

The Hashin - Shtrikman bounds for both the problems considered are similar
due to the analogy between two-dimensional elasticity and plate bending prob-
lems. This paper shows the details of how to perform the passage between the
bounds. It turns out that such a passage is feasible, but requires a change of
the assumptions of ordering of the material phases, which makes it non-intuitive.
Thus the independent derivations of these bounds, like that presented here for
both the problems, seem indispensable, whether the analogy recalled applies here
or not.

2. Plane elasticity problem. Laminate of first rank composed of two isotropic
materials

Let us denote by A the tensor of elastic moduli for a plane-stress or plane-
strain problem. We consider two isotropic materials of moduli A, (o = 1,2)
and restrict our consideration to the ordered case: Ay > A;. These tensors are
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determined by the pairs of moduli (k,, i, ) as follows
21) A, = 2k,a; @ a; + 2uq(a; @ a3 + a3 @ a3),

where

1
a = 7—2‘(81 Qe + e @ e),

1
2.2 A = —(e; X e — ey ® ey),
(2.2) 2 \/—2-(1@’1 2 @ €2)
1
a3 = —=(eg Qe +e®e),

V2

and (e;, ey) are versors of the orthogonal Cartesian coordinate system.

Let us stack both materials to make an in-plane laminate directed along versor
n with area fractions 4,,. The tensor of effective moduli of the laminate is given by
the formula of FRANCFORT and MURAT [1], truncated here to the plane problem,
see also KOHN [3]

(2.3) 01(A2 — AR "' = (A — Ay)! — % VAN
where
(2.4) T = 02 e Rep@e, @65,
@5)  um, = % (B iatis + Basiatio b uigris + Bustign)
- kzk_;_izmnan,gngnw

with n, = n-e,. The formula (2.3) holds true if A; is non-isotropic, which will
be utilised later.

3. Layering of second rank

Let us form the subsequent laminate by stacking the layers of material 2 with
the first-rank laminate constructed in Sec. 2, along direction of versor m = (m,)
with area fractions o, (material 2) and o (composite material of moduli Ay).
Since Eq. (2.3) holds even if the first material is anisotropic, we apply this formula
to arrive at the following implicit formula for the effective stiffness tensor Ayy:

(31) Ql(Az - Ahh)_l = (Az — Ah)—l — % ‘I'(m)
2
By combining (3.1) and (2.3) one finds
0
(3.2) a101(Ag — App) ™t = (A7 — A)) 7! - 02 g _ 920 g my
H2 H2

One can prove that Ay > Ay, hence the first term of Eq. (3.2) makes sense.
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4. Laminate of third rank

Now we stack the material obtained by the second layering with material (2),
in layers along versor p, with area fractions 3, (material of modulus Ay;) and 3,
(material of modulus A;) to obtain a laminate of moduli Ajy,. Again Ay > Ajypp
and by applying (2.3) one finds

(4.1) Bi(Az — Apnn) ' = (Ag — App) ™' - %\If“’).
On combining (4.1) and (3.2) one arrives at

(4.2) a10181(A2 — Annn) ™! = (A2 — A7 - %\I’,
(4.3) U = 0,9 4 0,0,0™ + B0,6, P

5. Hexagonal lamination

Let us choose
1 V3 1 V3
(51) n_(1?0)7 m = (—iaT)v P= (_21_7)7

hence end points of versors n, m, p are vertices of a unilateral triangle. A direct
computation yields

1
‘Pf'ff] =1-5, WI(E%Z = 3’ !pc(x]:l)ﬁ[} =0,
(5.2) s
a =2, #=1 or 2, b=k2+#2;
m 1 b m 3 9
wfll)l':Z—E’ Upm = 7~ 160
3b V3 /1 b
63 W=y A== (3-3)
gf(“ﬂ:_é(l_?ﬁ’) gp("')=1_3_b-
2221 4 2 4 )’ 1212 4 16’
1 b 1 3b
!I’f'fﬂ:gfﬁ» wg{z"z 16
® - _3 V3 (1 3
(G4 Uit = —1gb Uin = (5 - 20)
V3 b 39
g’l(?{z = 8 (1 - 5)» %(352 s Eb-
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Now we stipulate that ¥ given by Eq.(4.3) is isotropic. Conditions %37, = 0,
51’1112 =0 inId ﬁz = az/al. The condition (pllll = szzz implies Qp = 92/91.
Thus we have

3 9
Ui = b (— - —5)7 U222 = Vi1,

2 8
(5.5) 3 3 3
Voo =0 (= — Zb), Ui = — 5 b,
4 8 8

and finally we conclude that ¥ can be put in the form similar to (2.1)

(5.6) U= %92 [(1 —b)a; @ a; + (1 - —g) (a@a +a3® a3)} .

Let us compute

_1_i _[_l__3(1_b) ]
(5.7) (A2 — Ay) ,‘12‘1’ = | 2Ak 247 62| a1 @ m
1 3 b

Af=fi-fi, f=kory
and equate this expression to

(5.8) 101 81(A1 — Apn) !
a1 516, i asr ay 10y

It S ——— (2R a +a3®a;),
2(ky = knnn) e 2(p2 = HBppp) (

where .,
Apni = 2kppnay ® ay + 20y, (a2 @ a2 + a3 @ a3),

which gives

910’161 o 1 392(1 - b)

(59) kz Y Ehhh Ak 2
brenfy  _ 1 36,(1-1b/2)
M2 = Hppp  Dp [ -

Assume that the area fraction of the first material is fixed and equals m, or

(510) my = alﬁlﬁl .
We can express 0, az, 3, in terms of m; as follows

_my __m __m
(P11} b2 = 37 RT§ my’ & 3—2m;y



ON ATTAINABILITY OF HASHIN-SHTRIKMAN BOUNDS 517

and Eqgs. (5.9) assume the form

my _ 1 My
(5 12)1 kz - Ehhh k2 - kl k’2 + p2 ’
' my B 1 ma(ky + 2u2)

P2 = Fppn 2= 2pa(ke + o)

The moduli (ks , Jiys,) determined by Eq.(5.12) are just upper estimates of
Hashin and Shtrikman, see CHERKAEV and GiBIANSKI [2]. Formulae (5.12) can be
written as follows

kpp F(”Nkb ka.“Z):

Ipg = Gpe(m; p1, p2, k2); m = (my, my);

1l

(5.12),

P E means “plane elasticity problem”, the functions /' and (G pg being determined
by Eq. (5. 12)1, here ka kihn, T Epg = Huhh-

REMARK 1. The laminate of 3rd rank constructed by subsequent layerings
discussed here is the stiffest among all isotropic composites made from two given
isotropic materials with given area fractions. Let us stress that both bounds for
p and k are attained simultaneously.

REMARK 2. In a similar way one can construct the softest isotropic composite.
To this end one should mix subsequent laminates with the softest material to get

ki — Ky ki—ky kit
(5.13), e
Moy _ 1 my(ky + 241)
= py,, = g2 2pa(k o)
or
—}f’-PE = F(;ﬁ;k%klaul)a
(5.13),

&PE = GF‘E(m’ ‘llz,ﬂl,kl), m = (7712,777,1),

where hhh is replaced with P E, which indicates that the plane elasticity problem
is considered. We recognize that &, = kpg, 1, , are lower bounds of
Hashin and Shtrikman, see CHERKAEV and GIBIANSKI [2] %ese lower bounds are
attained simultaneously.

6. Kirchhoff bending problem. A rank-1 Kirchhoff’s in-plane laminate

Let us consider now a bending problem of thin transversely symmetric plates.
Given two isotropic plate materials of bending/torsion stiffness tensors D,
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a =1,2; D, — Dy > 0, we construct an in-plane laminate (we use the term lami-
nate to stress similarities with the layering construction of the previous sections;
the term ribbed plate would be more appropriate) in the n direction, n = (n1, n2),
with area fractions 6, respectively. Let e, be versors of Cartesian axes. Let us
decompose
(6.1) D, = Df‘%&ea Res e, ®es,
(62) Délll = D§222 =k, + o s DélZZ =k, — Lo s DCIIZIZ =g,
ks, o being Kelvin and Kirchhoff moduli, respectively.

Within the Kirchhoff’s framework the effective stiffness tensor D, of the
in-plane laminate considered is uniquely determined. The dispersed in the lit-

erature contributions by G. Duvaut, R.V. Kohn, A.V. Cherkaev, K.A. Lur’e,
G. Francfort, F. Murat, G. Milton, R. Lipton and L. Tartar lead to the ‘ormula

0
(63) 01(D; ~Dy) ™! = (D, — Dy~ - 2O,
(6.4) ss=ky+p, TW=n@nonen,
D; being not necessarily isotropic. A derivation of Eq.(6.3) can be ‘ound in
LipTON [4].
7. A rank-two Kirchhoff laminate

Let us envelop the rank-1 laminate around the strongest phase (2), the area
fractions of Dy, D, being «; and «ay, respectively. Thus we stack materials Dy,
D, in layers orthogonal to a versor m. To find effective stiffness tensor Dy, one
can apply (6.3) again to find

(7.1) a1(D; — th)_l = (Dy — Dh)_1 — —(fz F(m).
S2
On combining (6.3) and (7.1) one finds

0 0102 (.
(7.2) 8,01(Dy — Dp)~! = (D - D)~ - ir('ﬂ = —i‘lr( ),

the quantity f;a being the resulting area fraction of material (1).

8. A rank-three Kirchhoff’s laminate

Let us stack the materials of stiffnesses Dy;, D, together thus building an
in-plane laminate along versor p, with area fractions (31, 3, respectively. Applying
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(6.3) once again we have
(8.1) B1(Dy — Dyyp)t = (D3 = Dpy) ' — f—zzI‘(p).

On combining (8.1) with (7.2) one finds

1
(8.2) Bi01a1(Dy — Dppp) ' = (D = Dy) ! - 51‘,

(8.3) T' = 6,1'™ 4+ 0,0,T™ + 6,0, 3P,

9. Hexagonal lamination

Let us take versors n, m, p such that their vertices form an unilateral triangle.
Thus

m = —-1~n —ﬁn —1n +£n
‘ = —lv +£ —ln —-[3—77
P = 27'1 2 na, 2 2 2 1 -

We shall prove that the above choice of m and p implies isotropy of I'. Assume
for simplicity that n = (1,0), which is not a restriction. Let us compute

. 0 v3\*
I =0+ %(02 + [Faay), I = (T) 01(ay + frevy),
2
, 1 3 V3
(7:2) I = y (%) 0 (az + Bray), Iz = Eel(_Q’Z + fhevy),
3
Iy = Tz, [0 = 1—6-91(02 + o).
We stipulate
(9.3) Ia22 = 1112 = 0, I = I,
hence
(9.4) fr=azfay, 0y = 0102,

and consequently make the tensor I' isotropic

3
(9.5) I'= 192 [2a; ® a1 + (a2 ® a2 + a3 © a3)].
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Let us find now kppp, Ity involved in the representation

(9.6) Dunr = ZEhhhal ® a; + 271, (a2 @ a3 + a3 @ a3).
Since
1
(9.7) (Dz—thh)_l = —a;®a + (32@)32 +a3® 33)

2(kz — knnn) 2(p2 = fpnn)

and
(8 (D,-D) - —T
52
3 3
1 502 1 —92

4
———c—laQa + [ -
2k — k1) sa | L | 2(ma—pm)  s2

(32 Qay+azl® 23),

the formula (4.2) implies

Glalﬁl o 1 -~ 302
(9.9) ky — kunn ky — ky ky + H2 '
01a1ﬁ1 _ 1 392

po =T p2— 1 2k + p2)
Denote the resulting area fraction of phase 1 by m,. Then m; = 0,13, my =
1 — my. The previous results imply

_m _omy q — M2
(3:19) damesy @m=go my’ P= 30,
By (9.9), (9.10) we find finally
my _ 1 my
o — kppn k2— k1 ky oy’
9.11) ky — kpnn 2 — K1 2+ 2
ma 1 ma

fi2 = Tpan B2 — g1 ka4 p2)

REMARK 3. Functions Ehhh(mz), Hppn(m2) grow monotonically from £y to k;
and from i to pp, respectively, if m; varies from 0 to 1.

REMARK 4. Tt turns out that the resulting isotropic plate of stiffness Dppp
given by (9.6) with kppn, . given by (9.11) is just the stiffest possible plate
among all plates formed from phases (1) and (2) with given area fractions m,
my. Thus equations (9.11) provide the upper Hashin - Shtrikman bounds for both
k and pu.

ReEMARK 5. To find the softest plate one should envelop the homogenized
material around the softest one. In the same manner one arrives at the lower
Hashin - Shtrikman estimates for k£ and .
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10. Plane elasticity versus plate bending results

One can show a remarkable correspondence between Hashin - Shtrikman
bounds for Kirchhoff plates and plane elasticity problems. For Kirchhoff plate
model the upper Hashin - Shtrikman bounds k., 17, are solutions to the following
equations, cf. Eq.(9.11)

(10.1) Fic = F(ms by, by, o),
(10.2) g = Gk (m; 1, pa, ‘1‘2)

Index K refers to the Kirchhoff plate model; function (7 is determined by (9.11)
and function F' - defined by Eq.(5.12). Let us note that

_ -1 -1 —1\]!
F(m; ky, k2, p2) = [F (m; (k)" (k)70 (12) )] ,

(103) §
Gr(m; pa, pa, k2) = [GPE (m;(m)_l,(;tz)_la(kz)—l)] ;

which can be proved by algebraic manipulations. Thus the link between plane
elasticity bounds

F(ﬁi, kZaklwul) S kPE S F(TII; k17k23,“~’52)1

(10.4) -
Gpe(m; 2, 1, k1) < ppe < Gpe(m; i, p2, k2),

and Kirchhoff plate bounds

(10 5) F(ml k21 kla ,U']) S kf\' S F(Tn; kla k23 /12),
. G (M pa, i1, k) < pre < Gre(mg py, p, k),

can be explained as follows.

Assume that ky > ky, p11 > 2. Then the bounds for the plate moduli assume
the form

F(m;ky, ko, p2) < ke < F(m; ko, by, ),

(106 , o
) Gr(m; pa, pa, k2) < pr < Gre(mg pia, p, ky),

since m = m. Hence by (10.3) we find the bounds for the flexibilities
F (755 (k)™ (k)74 () ™) < (ki)™ < F (s (k)7 (k)™ () ™Y),
(10.7)  Gep (5 (u2) ™", ()™, (k) ™h) < (i)™
< Gpp (m; ()™, ()71, (k) ™),
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similar to elasticity bounds (10.4). We see the analogy

(108) ke e (kx)™,  wpEe (k)L ke (k) pa & (a) "
Let us stress that inequalities (10.4) are valid for

(10.9) ky > ky, o2 >y,
while inequalities (10.7) are valid if
(10.10) (k)71 > (k)7 ()7 > ()7

which is compatible with analogy (10.8).
Let us prove a correspondence between (10.4) and (10.7).
The analogy to be proved follows from the following homogenization formulae

a) the homogenized plane elasticity tensor Ay, is given by
(10.11) EO,,;»AZ’G’\“E,\H = min{<sagA°’m“£Au> |eap are kinematically admissible:
€1122 + €2211 — 261212 =0, Y -periodic and such that () = E}

(+) means averaging over periodicity cell Y; ( ) o = 0/0ya, ¥y = (Y1,92) € Y.
b) the homogenized tensor C;, of Kirchhoff’s plate flexibilities is given by

(10.12) M©P Cc’jﬁ auM A min{(m“ﬁ Capa um"“> |m°” are statically admissible:
m®? .5 =0,  Y-periodic and such that (m) = M}.

Let us denote

(10.13) en = nll, €11 = n%, €13 = —n'2.
Then
(10.14) n°f 5=0, (n°) =eqpep,Epy = Eap,
where €., =0, e13 = —e€31 = 1. Thus formula (10.11) assumes the form
(10.15)  Bop A3 E), = min{(n™ A,50xn”)
afl

[n®” o = 0; n®? are Y -periodic; (n) = fi}

where

(10.16) Avsor = €ar€ps€ro€un AWM

and A, is defined similarly. Transformation (10.16) changes indices (1,2) into
(2,1), which is unimportant if we estimate the energy by isotropic quadratic forms,
which is the case here. Hence the upper/lower estimates for strain energy (10.15)
assume the form of upper/lower estimates of complementary energy of Kirchhoff’s
plate, cf. Eq.(10.12). Therefore estimates (10.4) have formally the same form as
estimates (10.7) for the plate flexibilities. Note, however, that the applicability
ranges of both estimates are complementary.
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The influence of deformation path
on adaptation process of a solid

J. SACZUK (GDANSK)

THE DEA of a criterion of adaptation process of a body, accounting for the influence of deforma-
tion path on the material properties of the body, is proposed. A change of the deformation path,
realized either through the change of slip systems and/or by changing external loads, is analyzed
within the Finslerian description of the solid behaviour. In this continuum model no yield rule and
no intermediate configuration are assumed to exist, and the transition from micro- to macroscales
is natural. This approach makes possible the description of yielding, softening, hardening and lo-
calization of solids within the unified concept. A shakedown theorem, based on the Finslerian
continuum model, is formulated within the theory of differential inequalities. The presented the-
orem, in which a definite amount of the total strain energy comes into play, has no counterparts
in the available literature. It generalizes the classical approaches to the adaptation problems by
including arbitrary deformations and material nonlinearities.

1. Introduction

THE coMpLEXITY of inelastic behaviour of a solid is caused primarily by the fact
that its internal state is changing during the deformation process as a consequence
of glide mechanisms, twinning and other shear transformations. Understanding of
the overall deformation resistance of the material and the evolution of its internal
structure is also important in the accurate prediction of the long-term average
behaviour of structure. On the other hand, in many practical applications both the
loading and the initial state of the body are not known with a sufficient accuracy.
In these cases the knowledge of the whole evolution has only of limited interest. A
desired theory should (i) deliver good estimations of the average behaviour of the
structure and thereby correct of theoretical results compatible with experimental
ones, and (ii) predict the correct asymptotic behaviour whatever are the initial
conditions and the loading programme.

The answer to this question can to some degree, be obtained from the shake-
down theory, since the classical theory of limit analysis can sometimes give un-
safe estimates of collapse loads in certain cases (Korter [1]). For that reason
the shakedown theory provides a criterion of failure which may be considered
as a more realistic basis for design than that of the limit analysis which assumes
failure to occur when critical elastic stress is attained. Such an analysis is crucial
for the assessment of the structural behaviour under varying loads within the
range of time-independent plasticity. The problem is classically solved by analyz-
ing possible residual stress fields in the static approach (MELAN [2], KOITER [1])
or by considering possible mechanisms of plastic deformation in the kinematic
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method (KorITer [1]), under the assumptions of geometric linearity, elastic-per-
fectly plastic or linear and unlimited hardening material behaviour, the validity
of an associated flow law, etc. The extension of classical shakedown technique to
broader classes of problems including the change of temperature, (limited) hard-
ening, the influence of geometric effects are discussed by MANDEL [3], KONIG
[4], PoLizzoTTO [5], WEICHERT [6, 7], GROSS—WEEGE [8], SaAcZuK and STUMPF [9],
Saczuk [10]. The second direction in the adaptation analysis, being the general-
ization of the post-yield analysis, is known as the inadaptation analysis (CORRADI
and MAIER [11], KONIG and SiEMASzKO [12]).

The shakedown criterion characterized by the non-specified definite bound
of the plastic work (there exists an instant beyond which no additional plastic
deformations occur) has certain shortcomings. A few of them are connected with
the impossibility of estimating a (safe) number of load cycles (observed in prac-
tice), to estimate lower and upper limits of the plastic work, to take into account a
continuous change of material characteristics during its evolution. Different, even
of a catastrophic nature, bulk properties of solid deformation, like shear bands,
Liiders and Portevin-Le Chatelier bands, hardening and softening, are sensitive
to a change of deformation path both at the micro- and macro-levels (cf. KORBEL
[13]). On the other hand, the importance of this problem is connected with the
fact that the safety problem of structure subjected to variable loads is one of
the major problems of structural design. We are still at the initial stage of such
analysis.

The aim of this paper is to propose a certain innovation in the assessment
of the structural safety, according to the Finslerian modelling of solid behaviour.
A measure of adaptation, identified with the boundedness of plastic work, is of
course physically justified but is too simple in reality. It is desirable to control the
amount of energy necessary to create stable thermodynamic states of the defor-
mation process, and to know how this energy is affected by internal and external
parameters. The more correct measure seems to be the definite amount of the
total (strain) work. One should stress that the plastic (dissipative) work is not
generally easily selected as a part of the total work created during a deforma-
tion process. In our case the “plastic” work can be identified with the verticai
(internal state) component of deformation process, but not as a priori assump-
tion (cf. Sec.2). We shall try both to propose an improvement of the classical
shakedown methodology within the theory of differential inequalities (SzARSKI
[14], LaksHMIKANTHAM and LEELA [15]) and to present its justification within the
scope of the generally accepted technique to shakedown problems.

2. Qutline of a Finslerian continuum model

The objective in this section is to present the main concepts of the Finslerian
modelling of solid behaviour (Saczuk [16]) that need to be known for a thorough
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understanding of the technique adapted to the shakedown analysis. A reader who
whishes to get information beforehand concerning the whole Finsler geometry is
asked to consult RUND [17] and MatsumoTo [18] monographs. The mathematical
preliminaries on Finslerian geometry are presented in Appendix A.

2.1. General assumptions

A continuous model of inelastic behaviour of solids modelled by means of the
Finsler geometry (Saczuk [16]) is based on the following assumptions:

A.1. A material body (a continuum) 5 is assumed to be a 3-dimensional Finsler
bundle F> whose points will be called line-elements (Runp [17]).

A.2. A motion of the body B is defined by the mapping:
NiBxR—E’xE*xR,  (xy1)—X=XxVy1),

where I denotes an Euclidean space and [ is a real number space.
A.3. A time-space of events is the product £* x E? x R.
A.4. The body B is under external and internal force fields.

A.S. Laws of evolution of the body B results from a variational principle for
the first order functional describing its motion.

2.2. The motion

We sketch an approach (Saczuk [16]) which allows one to describe the irre-
versible deformation process of the solid taking place from the very beginning of
its deformation, in conformity with its real internal nature.

In this approach the body B, identified with the three-dimensional Finsler
space I3, is embedded into the product £3 x E* of Euclidean spaces and its points
are called line-elements (oriented particles) (Assumptions (A.1) and (A.2)).

The position vector in an actual configuration is defined to be

(2.1) X = X(x,),

where a diffeomorphism y : £® 5 F? — F? C E®is a deformation of the
body B. The line-element (x,y) consisting of a position vector and a direction
(or an internal variable) vector can be identified with an oriented particle of
the body B. The position vector x, identified here with the material point of the
configuration space with local coordinates (z') at the macro-level, is treated at
the micro-level as a separate continuum with coordinates (y°) at the point x. In
special cases we can consider the internal vector y as the micro-displacement, or
the deviation from the mean displacement (Konpo [19]), or the microposition
vector (WozNIAK [20]).
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The deformation gradient is defined as the direct sum of components describ-
ing the deformation process of the body (Saczuxk [16]) in the form

(2.2) F=F"+F"
In (2.2) vertical F¥ and horizontal F* parts are respectively equal to
(23) F'=vV'X=,Xjo;@Dl*, F"=vtX=,X}0;®dz",

where [ = y*/L(x,y) are components of the unit tangent vector, L(x,y) is the
fundamental function identified with the energy stored in dislocations and induced
by the deformation process, d; is the unit vector in the current configuration of
the body and ® denotes the tensor product. We shall denote further horizontal
and vertical components of any tensor T by ;7' ; and T‘ , respectively. The
h-derivatives and v-derivatives of the position vector X = X(x y) are defined as
follows (MatsumoTo [18], RunD [17])

(2.4) (FRY = W Xi = 0, X1 — 9, X 0,G + T X,
(2.5) (F*). = X} = Lo X' + AL X',

Il

where 9; = 0/0x, 8; = d/0dy" and the remaining unknowns in (2.4), (2.5) are
defined by means of components of the metric tensor

1 92L%(x,y)
(2.6) 9is(%,¥) = 5 oy
according to
b aG" oG! aG! aG!
(2.7) k= Lie = Ciug By = Yijk — ijta_yl - C;‘J‘zgy—k + Cz‘kza—yj,
(2.8) Sk w gjiF:‘k ) Fuk e Q'jlﬂlk» 2G' = ’)’}k?;’“ k7
. o
Nfc=ak61=5§(—ﬂu —[.)1{.1"
2.9 4
S RaEey 1(5‘5!:']' L 995k _ ngi)
ik ozk = OJx'  Oai
1 dgi; k i ;
Cijk = 3Byt Ciny" = Cijey? = Cijry* =0,
(2.10)

Cijx = 9iCly., Al =LC,
(211) DU

dl' + Nida*.
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2.3. Strain measures

For an orientation-preserving deformation y (f = detF > 0), the Lagrangian
strain tensor is defined by

1
(2.12) E=5(C-,

where C = FTF is the right Cauchy - Green deformation tensor. In the represen-
tation of the direct sum the relation (2.12), after using (2.2), is equivalent to

_(E" 0\ 1/Ch-1 0
Lo EY) 2\ 0 cCv-1 )
Using (2.4) and (2.5), the horizontal and vertical parts of the Cauchy - Green
strain tensor are then respectively equal to

(213)  Ch= (hXOXT + 8, XI0G™ 0, X 04G* + I T X" X

nl

O v(jA i) - 1k : ] (|lm| xi) k
= BuXU D XD GE - 0, XUGGIm I X

+ a(,XUrl;j}L).x*) gij de' @ dz*,
(2.14) V= (WX 0XT + 9uX YT, X*
+ CinCi X X™) gy DI' @ DI*,

“ml~
where () means the symmetric part with respect to the enclosed indices, the sign
| | enclosing the index is used to exclude it from the symmetrization operation,
and §;; are components of the metric tensor in the actual configuration. The
interrelated pair of measures of any deformation process (2.13) and (2.14) is
defined in the invariant way.
In the case when the internal state is neglected, i.e. y = 0, we obtain

(2.15) Ch = (WX'OXT + I I X"X*) gij da' @ dat,

CV is identically equal zero, and X and g are functions of position x only. The case
y =y, with y, being a residual or imperfection vector leads to non-singular C"
and C”. To specify the connection coefficients C, (% and '} we first have to
estimate the local internal (dislocation) structure of the solid under consideration
defining its fundamental function L (square root of the internal energy stored in
dislocations and induced by the deformation process) or its metric tensor g.
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2.4. Equilibrium equations

The equilibrium equations and boundary conditions are obtained from the
variation of the action integral (cf. Saczuk [16])

(2.16) I f[,(x,y, X, F" F*)dV,
G

where (& denotes a fixed, closed and simply-connected region in the 6-dimensional
space of (x,y), bounded by a surface d(/, and

dv = \/gdrld:cz(la:3clyldy2([y3 = \@dxdy

with g = det(g;; @ ¢;;) being the volume element. The variational derivative of
the action integral [ can be written in the form

(2.17) 51:/[1:(1);,5@ + Diby*) + Lpb2’ + L7IL); 6y + ?ax,kaxk
G
LT
i Xk(m ale_féuxi]dv,

where

218)  Di(:)=a()+ 5 L )a X", D)= éf(->+§§<38 X

are the total partial derivatives with respect to z* and ¥, and
(2.19) L= 0L - uLdG* - LI, L= LiL - LAY,

are h- and v-derivatives of the density function £, respectively.
The components of generalized body forces are defined by

ar o i g
5—(3(—*‘)_‘“’ vfk:(f)k_ma

where f" is identified with the external body force and f” can be identified with
the internal source of the exchange of momentum between dislocated states (cf.
AIFANTIS [21]).

When variations of the independent variables in 6/ are neglected, i.e. éx =0
and dy = 0, then

(2.20) wfi= ()% =

@21) 6I= / (" + Divh T)-6X" + (£ + Div' T)-6X"] dV
G

- / [6Xh-(Thn - ThéGm) + 6X'“-LT'”m] S,
a6
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where

(Divh T),
(Div® T);

Di(WTf) - 8:G9 DTy = nTiLy

(2.22) T 43
LD(,T}) - TiAL,

Il

are h- dwergence and v-divergence of T, and n;, m; are the components with
respect to ' and y* of the unit vectors normal to the boundary 0@, respectively.

One should point out that according to the connections /™ and I'*, one can
distinguish the base space approach and the fibre space approach, respectively
(cf. TAkANO [22]). The fundamental lemma of the calculus of variations applied
to (2.21) gives the field equations

(2.23) hfk + (Divh T)k =0, 1,f,q- + (Div? T)k = 0,

for all variations of X" and 6X7, or in the component forms

wfet i - aq ggi ~ Lilw =0
ot} .
v fk + Ldyk T;Allit = O,

which should be satisfied in the interior of the inelastic body. The field equations
(2.23), interrelated at the micro-level, form the equilibrium equations for both /-
and v-ingredients of the inelastic behaviour of solids.

3. Ideas of a new criterion of adaptation

The classical shakedown criterion which defines the necessary condition of
structural safety in the case of variable repeated loads is formulated as follows:

A certain domain of load variations is given and the question arises whether will
a given structure will shake down in an arbitrary sequence of the loads contained
within this domain.

One of the drawbacks of the classical shakedown theory is that a definite
bound of the plastic work is not specified in the shakedown criterion (KONIG
[23]). A definite amount of this work is at any rate of fundamental value for
an adaptation and can be used, among others, to establish a safe number of
load cycles for the structure’s life. For that reason modifications in the classical
criterion of adaptation seem to be necessary.
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3.1. Motivation

A more realistic assessment of structural safety demands to change the way
of estimation of the energy function used in the shakedown theorem, according
to the methodology of Finslerian description of solid behaviour. The source of
our idea comes from the proof of shakedown theorem (cf. GROSS—-WEEGE [8],
Saczuk and Stumpr [9]). In this proof we have to estimate the time-dependent
energy function II in the form

() = %/T-Fd\/,

where T is the first Piola - Kirchhoff stress tensor and F is the deformation gradi-
ent tensor. We analyze the time derivative of II by decomposing its right-hand
side according to the following scheme:

A = - ] S —8§)-0EPdV  + ] (T - T)-8,HFdV
1% v
l |
the convexity conditions  equilibrium conditions
| |
decreases when E? # 0 0

where § is the actual residual (second Piola - Kirchhoff) stress tensor, S is a (fic-
titious) shakedown stress tensor, E? is the residual plastic strain tensor obtained
from the multiplicative decomposition of the deformation gradient tensor, and H
is the residual displacement gradient.

The above estimation of J,II we replace by

(3.1) 8I1(t,C) < B || B11(¢, €) || +w(t, I(t, ©)),

where C is the Cauchy-Green strain tensor, 3 is a constant connected with
a safe domain of admissible strains and ¢ is a comparison function being a
maximal solution of a comparison differential problem used to estimate II. The
basic problem here is how to define the comparison function. Before that we
will introduce the notion of the maximal solution of a differential problem and
the comparison differential theorem within the theory of differential inequalities
(LAKSHMIKANTHAM and LEELA [15], Szarski [14]). Let us note that differential
inequalities are extremely important and constitute a very helpful technique in the
differential problems to formulate the uniqueness conditions for their solutions
and to make their certain estimations.

Assume that [ = [to,T) C R, 0 < tg < T is a time-interval, G C R? is an
open set in RZ.
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DEFINITION 1. Let v be a solution of a differential problem
(3.2) u' = p(t,u), u(to) = ug, tel
and v € C(G, R). Then r is said to be a maximal solution of (3.2) if
(3.3) u(t) < r(t), tel

for every solution u of (3.2) in 1.

CompaRISON THEOREM (LAKSHMIKANTHAM and LEELA [15], Vol. T)
Suppose:

1. ¢ € C(G, R) and r is the maximal solution of (3.2).

2.me C,R), (t,m(t)) € G for t € I, m(ty) < ug, and

(3.4 Dm(t) < (t, m(t)), teI\S

with D being a fixed Dini derivative and S at most a countable subset of 1. Then
(3.5) m(t) <r(t) in 1.

32. A comparison problem

A comparison function ) in (3.1) is identically equal zero in the classical case.
This takes place when the microstructure-independent equilibrium conditions for
T and T are satisfied a priori. Therefore, the equilibrium conditions, or more
strictly the equations of motion, will be used to define the comparison function .

Our comparison problem will be defined by differential equations, deduced

from the equations of motion in the continuum with microstructure (cf. Egs.
(2.23))

OT; G OT} i 1

(36) P0 hVE = hjk + ()"Lz - dyz dyj o Rl TR
. . (r)Tz i AJ
(3.7) po vVk = ofr + L Z)yf - Tinia

where , v, and , v, are components of macro- and micro-velocity. The remaining
unknowns were defined in Sec. 2. The first equation describes the macro-motion
of the body (in the configuration space), while the second one its micro-motion
(in the internal state space), or briefly 2-motion and v-motion.

For clarity, the above partial differential equations are reduced to the scalar
differential equations of the form

(38) 5" = i, o),
(39) 8" = (e, v")
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using an Euclidean norm || a ||= /(a-a) under the following assumptions. If body
forces f* and f¥ are neglected and classical equilibrium conditions J;7} = 0 and

8'2-T,§ = () are satisfied inside the body, then the right-hand sides in (3.6) and (3.7)
lead to the following identifications:

(3.10) L M

where y = \/ (y1)? + (y2)? + (y3)? is the Euclidean distance in the internal state
space. The identification used in (3.10) is due to the following form of L:

P 2xiy!
LA(x,y) = g:i(x,Y)y'y’ = Ty(yl)z + 222(y?) + 223()>

This assumed relation, identified here with the internal energy stored in disloca-
tions, is proportional to the square of the microposition vector.
According to equations (3.8) and (3.9) one can write the admissible functions
in the form
h 1 vV

'l/)h - vy wl' —

z oy’ oy
and, then, their solutions under homogeneous initial conditions are respectively
equal

L t
(3.11) v" = exp (y—z‘) g v” = exp (—) .

3.3, Method of solution

The language of the theory of differential inequalities (LAKSHMIKANTHAM and
LEELA [15], SzARski [14]) is used to provide a general definition of “adaptation”
of structures. Within this methodology it is sufficient to assume:

1. There exist (experimental or other) time-dependent comparison functions
)" and 1) defined in a certain domain {2 of the strain-time space.

2. The estimation (3.1) takes place at any instant of time .

Then, according to the comparison theorem (cf. Szarski [14], Chap. 7, LAKSH-
MIKANTHAM and LegLA [15], Chap.9) one can make the following estimations

(3.12) (¢, Cchy < rh(),
(3.13) II°(¢,C%) < r*(1),

where r" and r¥ are the maximal solutions (see Definition 1) of the differential
problems induced by " and 1?, respectively, i.e. at the given time interval the



THE INFLUENCE OF DEFORMATION PATH 535

energy function is estimated by known a priori time-dependent functions. In this
case we have to find the time-dependent comparison functions ¢ and 1", instead
of a time-independent residual stress field postulated by the classical shakedown
criterion (MELAN [2], KorTeRr [1]). The condition (3.1) is the asymptotic estimation
of the rate of energy function. Moreover, the energy function IT = IT" + 11" is the
position-direction dependent function. It should be emphasized that the variable
t can here mean either the time or a monotonically-increasing loading parameter.
The presented explanation allows us to propose

DEFINITION 2. It is said that the structure will shake down over any programme
of loading if the total energy created during its deformation satisfies (3.12) and (3.13)

at any time interval of that programme.

Note that the classical shakedown demands only boundedness of the total
plastic work in the limit as the time approaches infinity. To define the plastic
energy for defining a criterion of adaptation, one has to decompose the total
strain tensor into elastic and plastic parts. In the classical approach it is generally
realized within the multiplicative decomposition of the deformation gradient using
the unstressed intermediate configuration concept, while in the Finslerian one
the additive decomposition is given by definition. The shortcoming of such the
additive decomposition lies in that a common sense of elastic and plastic part of
the deformation is slightly changed. It is due to the fact that any deformation
process cannot be strictly decomposed into elastic and plastic parts [16]. For
simplicity, one can consider the state of strain in the structure that does not
vary with position in it. Then the deformation gradient F is a function of the
microposition vector y. Summarizing the quoted explanations we assume:

1. The total (strain) energy is defined as a time-dependent energy function

H(&,é)z/(T’“C"+T“-C“)dV’,
J

where the Cauchy-Green strain tensors C" and CV are defined by (2.13) and
(2.14), and appropriate stress tensors from (2.23), for given " and f?, respectively.

2. We also establish by calculation or using experimental results the safe do-
main {2, required to any individual shakedown problem, and the comparison
functions 1" and )v.

3.4, Algorithm

The above explanation can be arranged in the following algorithm.
Fori=1,n
(z,1) Calculate the strain state of the body for a given loading programme

and an assumed internal state, or basing on experimental data connected with
internal state of its material;
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(1,2) Define the strain energy function;

(z,3) Define the function of a comparison problem;

(z,4) Find the maximal solution of the comparison problem;

(z,5) Verify the conditions of adaptation (see Shakedown Theorem).

The steps from (i,2) to (i,5) are changed according to a demand. The index ¢
can symbolize a number of states which are relevant for a prediction of the safe
domain in the space of admissible strains. In general, an optimization technique
is necessary to define the safe domain of adaptation for the given structure.

4. A proposition of the shakedown theorem

Under the preparation of Sec.3 we come to the following theorem

SHAKEDOWN THEOREM:

(i) Suppose that r*(t,ty, v}) and r*(t,to,vy) are the maximal solutions of the
scalar differential problems

@1) " = Pht, o) = pi IDWAT+ £ [,  vh(to) = vf =l C¢ |l
0
. ]- .
(#2) 3" =)= DV THE L, ) = =G

(i) Suppose that the energy function I1(t, C) = 11" + IIY possesses continuous
partial derivatives 0,11 and 011 on

@43) 2={¢t0C): ta<t<to+aq, C =|Cll< a- Bt -to)}.

(iii) The following inequalities are satisfied on §2:

(4.4) AII" < B BcnIlP(t, CH) || + (¢, T, CHY),
(4.5) AIIY < B || Oc.II°(t, CY) || + ¥¥(t, II° (¢, CY)).
Then,

(4.6) IT* (to, C*) < v§,

4.7) IT"(tp, C") < vg

for C' < [3 implies

(4.8) 1" (¢, CM) < ri(t, 1o, vd),

(4.9) IT°(t, C") < r(t, to, vg),

i.e. the body shakes down under the given loading programme.
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REMARK 1. The inequalities (4.6) and (4.7) define initial conditions for the
strain state. In fact, they can be neglected as in the classical shakedown theorem,
if we shall remember that strains in reality are not arbitrary quantities, but have
always definite values. These conditions mean simply that an analyzed initial strain
state is inside the domain 2.

Proof of the Shakedown Theorem is analogous to the proof of Theorem 9.2.1
in LAKSHMIKANTHAM and LEELA [15]. In this proof, in the spirit of the Comparison
Theorem, we have to estimate the function

(4.10) m(t)y= _ max II(t,C),
IICll <= B(t—ta)

which satisfies the differential inequality (3.4), using the extremal solutions
rh(e,to, || C& ||) and r¥(+, to, || € ||) of the corresponding differential equations
(4.1) and (4.2) under conditions (4.6) and (4.7), respectively.

There are two observations which we would like to make with respect to the
presented technique. In the first place, the presented idea of new criterion of
adaptation can be treated as an example, and its extension to more complicated
cases is also possible (cf. LAKSHMIKANTHAM and LEELA [15]). For a more detailed
and rigorous discussion of the generalized cases the reader is referred to the
cited literature. The second observation is that the fundamental conditions used
in Shakedown Theorem depend on a particular internal strain distribution. This
information is of fundamental importance since the mechanical response of the
solid like softening, hardening, localization is only changed by the history of
deformation and the applied load system (Basinskr and JACKSON [24]).

5. Conclusions

The importance of shakedown theorems depends on proving that if the struc-
ture shakes down under some particular programme of loading, it will shake down
under any loading programme. The proposed shakedown theorem can be used to
predict the behaviour of structures based on the properties of the energy function
and its internal energy distribution. As final conclusions one may cite:

1. It generalizes the classical approaches (MELAN [2], KOITER [1], CORRADI
and MAIER [11], KONIG and Siemaszko [12]) by including arbitrary deformations
and material nonlinearities.

2. Tt is based on the consistent continuum theory of solid behaviour which
allows one to describe, among others, the specific internal structure of the ma-
terial, the influence of initial deformations or imperfections of the deformation
process within the unified concept.

3. It can be used to estimate a safe number of load cycles for the real or
predicted structure’s life.
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4. Tt can be used to estimate lower and upper limits of the total (or plastic
under certain conditions) work in the given time interval.

A. Appendix. Basic notions in Finslerian geometry

In this appendix we give the mathematical preliminaries on Finslerian ge-
ometry (RUND [17], MATsumoOTO [18]), especially on the definitions of connec-
tions, absolute differential and covariant derivatives.

A Finslerian (generalized metric) geometry is a natural generalization of a
Riemannian one and of which a metric tensor depends both on the position and
on the direction. Following BUsEMANN [25] the Finsler space is a metric, finitely
compact (i.e. every bounded, infinite sequence of points in a metric space con-
tains a converging subsequence) and locally Minkowskian space. The anisotropic
character (the Minkowskian metric is not symmetric in general) of this geometry
is expressed completely by the physically useful concept of indicatrix. Therefore,
common inelastic solid behaviours like anisotropy and hysteresis loop are mod-
elled easily within this geometry. The major obstacle encountered in the practical
application of this geometry is caused by its complexity and a difficulty of using
its concepts to define mechanical counterparts.

The subject is described in the monographs of Runp [17], Asanov [26],
MatsumoTO [18], ABATE and PATRIZIO [27], ANTONELLI and MIRON [28] where
additional bibliography can be found. In this appendix we shall use the notation
employed mainly in [18] and [17] without further comments.

A.l. Basic concepts

We consider an n-dimensional differentiable manifold M (cf. CHOQUET-BRU-
HAT et al. [29, Ch.1II], WesTeNHOLTZ [30, Parts II and V]) as the space for mod-
elling of a solid behaviour. Let 7, M be the tangent space of M at a point x,
and T'(M) be the set of all tangent vectors parameterized by M. The mapping
(projection) 7, : T'(M) — M is defined by 7(y) = x fory € T, M. Let L(M)
be the linear frame bundle of the manifold M. The projection 7, : L{M}) — M
is given by (x,z) — z, where a frame z at a point x of M is by definition a base
z = {z;}1,..» of the tangent vector space 1T, M.

The Finsler bundle F'(M) of M is, by definition [18], the principal bundle

"1L(M ) over T'(M) induced from the frame bundle L(M) by the projection
7, of the tangent bundle 7'(M). This construction is represented by the following
commutatwe diagram

(v;2) € F(M) = L(M) > (x,2)
™ L l 7rL
xy) e T(M) = M 35 (x)
where 7, 7, and 7, 7, are projections.
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To introduce a Finsler connection F'[” it is worth reminding that a (nonlinear)
connection N on M is a distribution y € T(M) + N, in the 1'(M) satisfying
T, = Ny & T}, namely, the tangent space 7', at every point y of T'(M) is the
dlrect sum of N and the vertical subspace T;

A vertical connection 'V is a distribution u € F'(M) — I'? in the F'(M) such
that the restriction /™ |, of I'” of the subbundle F'(x) of F(M) over the fibre

1(7:) over every point x € M is an ordinary connecuon m F(z). In turn, the
honzontal connection [ is a distribution u € F (M) in (M) satisfying

(A1) T, FIM)=Tte e T, F(M),
(A.2) =T

ug
where T, F'(M)" is the vertical subspace of the tangent space 7', F'(M) and 7, is
a right translation of F'(M) by g € GGL(n, R). Other equivalent ways leading to
the Finsler connection have been discussed by Marsumoro [18].
The h-part I'" of the Finsler connection F'I" = (I'", '*) is spanned by the
h-basic vector field B"(v), v € V, V - a vector space, of the form (Marsu-
MOTO [31])

- d 0 -0
h = g0 k
(A.3) B"(v) = z\v (aati - N/ g7 " A ng_azg) g

atapoint u = (z*,y', z.) and for v = (v®), where (', ', z}) are local coordinates
on F'(M) induced from local coordinates (z') on M. The connection coefficients
F’ are defined by FJ" = (” N7, following RuND [17] they will be denoted
by F
The v-part IV of the Finsler connection F'I" = (™", I'") is spanned by the
v-basic vector field BV(v), ve V, of the form (Marsumoto [31])

d G,
(A4) BU(v) = ziv° (0 - (JMO%)

where functions C'] .(x, y) are connection parameters of the vertical connection /™.
The h- and v-covariant derivatives of an arbitrary Finsler tensor field K [18]

are defined, within the bundle theory, by

(A5) V'K (v) = B*v)-K,

(A.6) VYK (v) = BY(v)- K,

for any v € V. The components of V*( ) and V¥( ') are usually distinguished by
”” and 7 | 7, respectively (cf. (A.17) and (A.18)).
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The torsion tensor fields T!, R, C!, P!, 8! (T! and C! are often denoted by
T and C, respectively, cf. RUND [17]) and the curvature tensor fields R?, P?, §?
of a Finsler connection F'/" are introduced by the structure equations

[B"(1),B"(2)] = B"(T'(1,2)) + B"(R'(1,2)) + Z(R*(1,2)),
(A7) [B"(1),B"(2)] = B*(C'(1,2)) + BY(P'(1,2)) + Z(P*(1,2)),
[B¥(1),B¥(2)] = B¥(S'(1,2)) + Z(8*(1,2)),
where vy, v, € V are present by their indices 1, 2 only. Here Z(A) is the funda-
mental vector field on F'(M) corresponding to the element A of the Lie algebra

of GL(n, R).
The torsion and curvature tensors are called as follows:

T! is (h)h-torsion, R! is (v)h-torsion, R? is h-curvature,
C! is (h)hv-torsion, P! is (v)hv-torsion, P? is hv-curvature,
S! is (v)v-torsion, §? is v-curvature.

DErFINITION A.1. A Finsler connection F'I' of a Finsler space F(M) with a
fundamental function L is the Cartan connection if:

(i) Vig =0and T! = 0,

(i) VVg = 0 and S' = 0;

(i) The deflection tensor field D = V"y is given.

In practice D = 0. This condition means that nonlinear connection coefficients
N} are defined by horizontal connection coefficients I as Ni= TNy

The triplet F'I" = (F};, Ni,C},) is known as the Finsler connection. Before
determining the Finsler connection F'I" one has to introduce the Finsler metric.
In this geometry the differentiable manifold M is equipped with a line element
ds = L(x, dx), where the function L, homogeneous of degree one in dx, is called
the fundamental function of the Finsler space. Its geometric significance results
from the fact that in each tangent space T, M of M the function L(x,y) defines
the (n — 1)-dimensional hypersurface,

(A.8) L(x,y) =1,

called the indicatrix, where x is assumed to be fixed. The concept of the indica-
trix (Yasupa [32], MatsumoTo [33], WATANABE [34]), as developed by modern
geometry, provides a precise explanation of the main geometric properties of a
given manifold. The definition (A.8) represents a sphere in the Riemannian case.
Physically, one can construct the fundamental function L using a relation

(A9) L(x,y) = yW(x,y),
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where the function W, homogeneous of the second degree with respect to y, can
be interpreted as a stored energy in dislocations and induced by the deformation
process. One should stress that the geometric structure of a yield surface in
elasto-plasticity falls under the general concept of indicatrix of the Finsler space.
The most evident analogy between the indicatrix and the classical yield surface is
that they both are closed convex hypersurfaces in the 6-dimensional spaces. The
first one is in the 6-dimensional (z,y)-space of the Finsler bundle, the second
one is in the 6-dimensional x-space of symmetric stress or strain tensors (the
stress or strain space). The further analogies are not so evident due to their
different geometro-physical meanings. For example, the indicatrix can represent
an abstract model of internal structure of the given solid, while the yield surface
has a sense of the surface separating an elastic region from a plastic one. In
other words, the indicatrix is the fundamental geometric object of underlying
(physical) space for any solid, while the yield surface is a certain auxiliary notion
of criterion type used to distinguish between loading and unloading criteria. In
Finslerian approach such a distinction can be superfluous.

The function L = L(x,y) satisfies, by assumptions, the following two condi-
tions:

(i) The function L is at least of class C'* with respect to x;

(ii) The function L is positive homogeneous of degree one with respect to y.

The homogeneity condition (ii) plays an important role in the Finsler geome-
try. The application of the Euler theorem on homogeneous functions to L? gives

(A.10) LA(x,y) = gi; (%, )y'y’,
where

1 '. "
(A.11) gi;(x,y) = EﬂidjLz(x,y)

is the Finslerian metric tensor.

For example, the Riemannian space as a special case of the Finsler space
demands

ds? = g;;(z)dz'dz? = L*(x, dx),

where the metric tensor is defined by

1 922
(A.12) 95 = 5 S50

Using the relation y; = ¢;;(x,y)y’, from (A.10) we obtain y; = L(;;h—L. Then
the unit tangent vector

.= Yi = '.- = (:: /
(A.13) =1 ) 9:L(x,y) = gi; (x, y)I.
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The definition (A.11) (cf. Definition A.1) allows us to define, among others,
connection coefficients (A.20)-(A.23) as functions of L only. For example, the
so-called Cartan torsion tensor is then defined from

1 « s e
(A14) Cigex,¥) = 70:0; 04 L3(x,y),
The remaining torsion tensors, curvature tensors, Cartan structure equations are
discussed by Runp [17], MaTtsuMoTo [18].
A.2. Covariant derivatives

The definitions of covariant derivatives (A.5) and (A.6) restricted to the Cartan
connection (Definition A.1) can be introduced as follows. Consider an (x, y)-de-
pendent tensor T = T(x,y), then the absolute differential and covariant deriva-
tives are defined by

(A.15) DT} = T}da’ + T}}; DI,

or, in the absolute tensor notation, by

(A.16) DT = VT® dz* + VT ® DI,
where

(A.17) T}, = 8T} - 8;G'8,T} + I}iT! - Ity
(A.18) T} = LO;Ti + AJT} — ALT?

are h-derivative and v-derivative, respectively, and
(A.19) Dl =dI' + F;kykdyj

is the absolute differential of the unit tangent vector (A.13). To define the re-
maining quantities in (A.17) and (A.18) one has to use Definition A.1 (RunD
[17], MaTtsumoro [18]). In this case they are given as follows:

" aG" aG" aG! aG'
(A20) TP = Lk - Cjkla—yi = Yijk — C!cjla—yi - Cz‘ﬂW + Cz’kl@ ,
(A.21) Ge=gald,  Tge=galhy?, 26 = vhy'yh,

" aG! . : 1 /dg;; gk Ogri
| - - [ — Il i ) JE t
(A2) 86 = S = Thy' = I, = (&Ek + axi)’
1 O ' i
Cijk = 3 af,fi o Cury® = Oy’ = Cijny* = 0,

(A.23) ; ;
Cijk = gjlcfka Ay = LCj;.
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In particular,

(A24) XE = 0;X*% - 9,Gm 0, X" + I[7FX™,

Ld; X* + AL X

(A25) Xk

for a contravariant vector field X = X(x,y), and

(A.26) f|j = ajf— éijékf,
(A27) fli = Ld;f

for a scalar field f = f(x,y).
Instead of using (A.5) and (A.6) to define the absolute differential and co-
variant derivatives, one can apply the linear mapping

(A28) Vx: TF(]W) — TF(M), Y — VxY

for any X, Y € T'F'(M). To obtain a desirable result we can proceed as follows.
In Finsler spaces all quantities are depend both on the position vector (x) and
the direction vector (y). If we define coordinate transformations by

~a — fa(.. -a oz . oz -
(A.29) = fYx), ] B"Ny . rank [axi] =n
and, if there exist the quantities /V}'(x, y) which transform under (A.29) according
to the rule
oz , 0z° oz

(‘3“1:3'0:6"3’( ozk Aj Oz JNb’

then one can define the covariant differential operator by

6 8 N 8 : i’-
(ASO) "5—"1:"’ = W*—Nk"azﬁ' or (s};—()k—dez.
The quantities NV} in the light of Definition A.1 are equal to ékGi. It is important
to note that the basis (J;, 81) with respect to the coordinate transformation
(A.29), does not transform as a vector, while the basis (6;, d;) has the desired

property (cf. Comi¢ [35]). The dual basis to (§;, J;) is denoted by (dz*, Dy'),
where . . .
Dy' = dy' + Nidz*.

Any vector field X in 7' F'(M) can be represented in the basis (¢;, (:)z-) in the
following form

(A31) X=X"+X"= X6+ X9,,
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where we call X" = X§; the horizontal vector field, and X” = X“0, the vertical
vector field. Generalization to more complex geometric object is straightforward.

Under this preparation, if we take X' = da2' and X* = Dy® in DT = VxT,
the relation (A.16) can be alternatively written as

DT =V;T@ds'+V, T® Dyt

Analogously to the Riemannian geometry, the Cartan covariant derivatives
are defined to be metric, i.e.

(A.32) gir; =0,  gicl;=0.
In addition
(A33) E=yf=L;=0, Llj=y;, yl;=L6, wili=Lg;.

The identities (A.32) and (A.33) show that the metric tensor g, the metric
function I, and the tangent vectors y' and [' can be treated as constants for the
h-derivative. In the case of v-derivative this is true only for the metric tensor g;.
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Transformation thermomechanics of R-phase
in TiNi shape memory alloys (*)

K. TANAKA, F.NISHIMURA, H.KATO (HINO/TOKYO)
and S. MIYAZAKI (TSUKUBA)

THERMOMECHANICAL BEHAVIOUR in TiNi shape memory alloys after the R-phase transformation
is formulated from the continuum mechanical point of view based on two metallurgical processes
progressing simultaneously: the lattice distortion in the R-phase and the variants reorientation
of the twinned R-phase variants. The start and evolution of both processes are assumed to be
governed by conditions similar to the yield condition and the associated consistency condition in
plasticity. The evolution equations are derived by solving a conditional extremum problem derived
from the dissipation inequality. Uniaxial behaviour is discussed under several thermomechanical
load conditions. The simulation of the recovery stress induced during constraint heating presents
a clear coupled effect of the two metallurgical processes.

1. Introduction

THE R-PHASE TRANSFORMATION occurs in TiNi shape memory alloys in a certain
temperature range just prior to the martensitic transformation [1-4]. The rhom-
bohedral phase is produced from the parent B2 phase during the transformation.
The stress-strain curve changes its form from apparent plasticity to pseudoelas-
ticity depending on the test temperature; the former is the shape memory effect
exhibiting the recoverable deformation, whereas in the latter, the stress-induced
pseudoelasticity is associated with the stress-induced forward and reverse trans-
formations. In almost all cases, the pseudoelasticity is observed in a relatively
narrow temperature range without showing any large hysteresis. This is the rea-
son why the R-phase transformation is preferably used in shape memory devices
requiring a sensitive response to the input.

Metallurgy tells us that the R-phase transformation starts during thermo-
mechanical loading when a transformation start condition is satisfied, and fin-
ishes when a transformation finish condition is fulfilled, forming the twin-re-
lated R-phase variants. The twinned structure is self-accommodated under the
stress-free state and is preferred by the applied stress, as in the case of the
martensitic transformation. The lattice distortion in the R-phase and/or the vari-
ants reorientation of the twinned variants then follow in the subsequent thermo-
mechanical loading. The transformation start/finish condition was determined on

(*) Part of the paper has been reported at the 31st Polish Solid Mechanics Conference: SolMec 96 (Mierki,
July 10-14, 1996).
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the stress-temperature plane, both in the R-phase forward and reverse transfor-
mations. The shift and change in the stress-strain or strain-temperature hysteresis
loop have rarely been observed during cyclic mechanical or thermal loading be-
cause the strain induced by the R-phase transformation is small, less than one
tenth of that induced by the martensitic transformation.

Investigations should be carried out from the continuum mechanical point of
view to predict as rigorously as possible the elongation and force induced in the
shape memory devices during the actual operations. In fact a few studies have
been carried out according to the models of R-phase transformation. So far the
models employed are all taken from the study of martensitic transformations,
meaning that the volume fraction of the R-phase is regarded as an internal vari-
able to measure the extent of R-phase transformation, and the transformation
kinetics is characterized as an evolution equation [5-8]. It should, however, be
clearly noted that the case is true only during the R-phase transformation. When
the thermomechanical load path crosses the R-phase transformation finish line in
the stress-temperature space, the strain observed in the subsequent loading is at-
tributed to the temperature-dependence of the lattice constants of the R-phase; in
other words, to the lattice distortion in the R-phase and the variants reorientation
of the R-phase twinned variants formed in the progress of the preceding R-phase
transformation [2, 3]. MiYAZAKI et al. [4] measured in the sputter-deposited Ti-Ni
thin films that, in the cooling process under constant applied stress, about two
times larger amount of strain is further induced after the R-phase transforma-
tion, and proved that the strain is due both to the lattice distortion in the R-phase
and the variants reorientation of the twinned R-phase variants. The growth of the
strain is misunderstood in the Refs. [5-8] to be the response in the R-phase trans-
formation. Theoretical descriptions carried out so far on the thermomechanical
behaviour of the R-phase are, therefore (although some qualitative/quantitative
coincidence is observed between the prediction and the experimental observa-
tions), not acceptable. A new theoretical framework should be established fully
based on the results of metallurgical study.

In this paper, the thermomechanical behaviour of the R-phase in TiNi shape
memory alloys is discussed from the macroscopic point of view, not during the
R-phase transformation but after it, in order to emphasize that the alloy re-
sponse after the R-phase transformation plays an important role in the design
of the shape memory alloy devices. The two types of the microscopic structural
changes, the lattice distortion in the R-phase and the variants reorientation of
the twinned R-phase variants, are regarded to be responsible for the macroscopic
thermomechanical behaviour of the alloys. A unified macroscopic theory is con-
structed by solving a conditional extremum problem subject to the conditions
of these microscopic fundamental processes. Constitutive equations, thermome-
chanical and calorimetric, are derived together with the evolution equations for
the lattice distortion in the R-phase and the variants reorientation. The uniaxial
case is discussed numerically referring to the experimental observations.
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2. Metallurgy in R-phase transformation and subsequent thermomechanical
process

The metallurgical study [1-3, 9, 10] has clearly revealed that the unit cell of
the R-phase is created from the parent B2 cell by elongating the lattice along any
one of the <111> directions, as shown in Fig. 1a. The length of the three axes
remains unchanged during this R-phase transformation while the rhombohedral
angle « (cf. Fig.1b) changes. Upon cooling under constant applied stress, the
nucleation of the R-phase starts at a critical temperature which strongly depends
on the applied stress. In a narrow temperature region, of the order of less than
10K, the R-phase transformation progresses, inducing the transformation strain.
The rhombohedral angle « decreases sharply.

a) b)
a110]g9

C'I_H]]Bz “OO]d

...........................

b(010]g5

Fic. 1. R-phase transformation in unit cell.

Then the lattice distortion follows in the R-phase. Its extent can be measured
by means of the rhombohedral angle o, which depends solely on the temperature
T in the TiNi alloy [3, 4, 11, 12];

(2.1) a = o(T).

Some macroscopic deformation may also be induced due directly to the change
in . The main source of the macroscopic deformation is, however, the variants
reorientation occurring in the self-accommodated twinned variants through the
migration of the twin boundaries [2]. In the coalescence process, the thermally-
induced R-phase variants convert to the stress-preferred variants by twinning de-
formation process, leading finally to a single variant crystal. This variants reori-
entation process results in a macroscopic deformation till the value of the strain
reaches a maximum recoverable strain which has been “stored” in the alloy during
the self-accommodation process [2].

The R-phase formed in the alloy during cooling transforms back to the origi-
nal parent phase in the subsequent heating process just after the lattice constants
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of the R-phase become close to those of the parent B2 phase. The reverse trans-
formation takes place by being associated with a very small strain change as
the first-order transformation [13], as in the case of the forward transformation,
at the reverse transformation temperature which also depends on the applied
stress. Thus, the R-phase transformation has a hysteresis although it is very small
corresponding to the small strain change, meaning that Eq.(2.1) has different
functional forms on cooling and heating, respectively. However, again the major
part of the recovery strain upon heating appears as a function of temperature in
the second-order transformation manner until the reverse transformation takes
place in the first-order transformation manner.

A

Thermomechanical
unloading

b3

Stress

£ Thermomechanical
/ p loading

Temperature T

Y

F1G. 2. R-phase forward and reverse transformation lines (schematic).

Explaining the situation in the stress (L) — temperature (7') plane in Fig. 2,
the R-phase transformation starts when the thermomechanical loading path meets
the transformation start line at the hollow circle in the figure, and finishes on the
transformation finish line at the solid circle. The R-phase transformation zone
bounded by the transformation start/finish (solid) lines is narrow. The lattice
distortion and the variants reorientation processes go on in the R-phase in the
subsequent thermomechanical loading. During thermomechanical unloading, the
R-phase reverse transformation starts on the R-phase reverse transformation line
at the hollow box in the figure, and finishes on the R-phase reverse transforma-
tion line at the solid box. The R-phase reverse transformation zone, bounded by
the reverse transformation start/finish (broken) lines, is also narrow. The present
discussion takes notice of the alloy behaviour when the load state (X, 7") is on
the left side of either the R-phase finish line (solid arrow) in the loading process
or the R-phase reverse transformation start line (broken arrow) in the unload-
ing process. The width of these two lines was measured to be very narrow, less
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than 5K, corresponding to the small strain change associated with the R-phase
transformation. The lines are called in the following discussion the R-phase trans-
formation line and the R-phase reverse transformation line, respectively.

a b)
& I
Re| ~- "ReEisranss w e o
TrRr TRR TR TRr
Tempcrature Temperature
c)
:
7]
ZRF _________ .
TRr TRy TRr TRr
Temperature Temperature

I'1G. 3. Transformation lines (schematic).

A series of extensive experimental study on the R-phase transformation in TiNi
shape memory alloys [1-4] has revealed the conditions of the lattice distortion in
the R-phase and of the variants reorientation of the R-phase variants to undergo
the uniaxial thermomechanical loading. The results are summarized schematically
in Fig. 3 on the applied stress-temperature plane (see BARRETT [14] and BRINSON
et al. [15] for similar sketch for the martensitic transformation). The R-phase
transformation finishes when the thermomechanical load state (7', Y) reaches
the R-phase transformation line, the thick straight lines starting from the point
(Try, £'r,) in Fig. 3a. The lattice distortion in the R-phase progresses when the
thermomechanical load point is inside the shaded region shown in Fig.3a and

moves with 7" < 0. The upper section of the R-phase transformation line has a
very high value in slope ¢, of nearly ¢ &~ 10 MPa/K, whereas the lower section
is temperature-independent. The reverse lattice distortion, on the other hand,
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occurs in the shaded region sketched in Fig.3b when the load state moves with

T > 0. Another straight line intersecting the horizontal axis at (1'r,,,0), almost
parallel to the upper section of the R-phase transformation line, is the R-phase re-
verse transformation line at which the reverse transformation starts with an asso-
ciated small strain recovery. The R-phase reverse transformation line might have
a critical stress as in the case of the R-phase transformation line, meaning that
the section of the line below the critical stress might be temperature-independent.
Since no definite experimental data is available so far with respect to this point,
the straight line in Fig. 3 b is employed here as the R-phase reverse transformation
line.

The variants reorientation of the R-phase variants progresses by twinning
only when the R-phase variants exist in the alloy and the load state is either
in the shaded region in Fig. 3 ¢ during cooling or in the shaded region in Fig.3d
during heating. The variants reorientation start line, the lower boundary of the
region, exhibits a clear temperature-dependence since, firstly, the mobility of the
twin boundaries becomes lower with the decreasing strain due to twinning, and
secondly, the process is essentially a thermal activation process. The temperature-
dependence is almost linear. The process completes on the variants reorientation
finish line, the upper boundary of the region, which is almost parallel to the start
line. A preferred variant is formed inside the alloy depending on the applied
stress. A comment: there exists no definite experimental proof which shows that
the variants reorientation start line intersects with the R-phase transformation
line at the point (Tr,, ¥'r,). The point of intersection is in fact expected to be
below, but not far from, the point. In this study the situation illustrated in Fig.3 ¢
is assumed for simplicity with the understanding that the sketch must be not very
far from the actual situation.

3. State variables during lattice distortion and variants reorientation

Let us consider the thermomechanical behaviour in a shape memory alloy
which, after having finished the R-phase transformation, is in the process of both
the lattice distortion in the R-phase and the crystal reorientation under thermal
and/or mechanical loading.

The extent of the lattice distortion in the R-phase can, as explained in the
preceding section, be described in an appropriate representative volume of the
alloy by means of a value o of the rhombohedral angle defined in Eq.(2.1)
[4]. A twinned structure is produced in the variants as a result of the R-phase
transformation. In most cases the deformation associated with the R-phase trans-
formation is averaged to be null from the macroscopic point of view since the
self-accommodation process goes on during the R-phase transformation. The in-
ternal twinned structure is formed during the process so that a certain amount of
strain, the recoverable strain, is induced in the subsequent variants reorientation
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process. In this study, the self-accommodation is understood to be a phenomenon
in which the possibility to produce a certain amount of recoverable strain, 7,
say, is stored in the variants. The strain is induced as a macroscopic deformation
during the subsequent thermomechanical loading. Under the presence of load,
however, the self-accommodation is not realized but a different crystallographic
structure is attained depending on the stress state to minimize the free energy
of the alloy. The same amount of recoverable strain is, nevertheless, “stored”
in the alloy to be induced macroscopically in the subsequent thermomechanical
processes. The recoverable strain Q7 is assumed to be simply governed by the
equation

(3.1) Q* =0 a,
where the material coefficient tensor €27, is determined by means of the thermo-
mechanical state at the instant of R-phase transformation.

Upon loading, the twinned structure in the alloy changes through the variants
reorientation, inducing a macroscopic deformation [2]. The extent of the process
on the microscopic structural level can be characterized by a set of scalar variables
which represent the volume fractions of the pairs of martensite twin and of one
variant comprising a twin pair [16-19].

By averaging these variables over a representative volume in the alloy, one
can introduce the macroscopic variables ((j,(s,...), say, which represent the
microscopic alloy structure. The evolution equations of these internal variables
estimate the change in the microscopic alloy structure.

In the present study, for the sake of simplicity, two internal variables («, ()
are chosen to characterize the lattice distortion in the R-phase and the vari-
ants reorientation processes, leaving a generalization of the theory for the next
study. LEcLERCO and LEXCELLENT [19] have developed a generalized theory of
shape memory alloys by introducing the volume fractions of the thermal-induced
martensite and of the oriented martensite variants which corresponds to the
present (, and suggested that the theory could be applied to transformation ther-
momechanics of the R-phase, too. It can be applied if the lattice distortion is
taken into account in addition.

It should be noted that hereafter, for the sake of theoretical convenience, the
internal variable o is understood to be the angle 7 /2 — « with the rhombohedral
angle « illustrated in Fig.1b. It takes, therefore, a value in [0, (7/2)), whereas
the variable ( is normalized to have a value in [0,1].

When the lattice distortion and/or the crystal reorientation take place, a
macroscopic irreversible strain tensor E* is induced, which is also employed here
as another internal variable.

Let us propose that the Green strain tensor E can be additively decomposed
in the rate form,

(3.2) E=E +E",



554 K. TaNnakA, F. Nisumura, H. KATO AND S. MIYAZAKI

where E° stands for the elastic component while E* is the irreversible component
due to the lattice distortion in the R-phase and the variants reorientation [19].
For the irreversible strain E*, the following kinematical relation is assumed:

(3.3) E* = E(e, (32, T)d + 2°C,

representing an additive decomposition into the terms due to the lattice distortion
in the R-phase and to the variants reorientation, where ¥ and 7" denote the stress
tensor and the temperature, respectively. The second term on the right-hand side
clearly states that, assuming €2 be constant during the process, 2 can be read
as the macroscopic strain at the completion of the variants reorientation process.
This is the reason why £~ is called the recoverable strain. The first term covers the
case in which the lattice distortion process might directly produce a macroscopic
deformation, very likely under the stressed state.

4, Unified thermomechanical theory of lattice distortion in R-phase and variants
reorientation

In order to construct a unified theory of the lattice distortion in the R-phase
and variants reorientation in shape memory alloys, let us start from the energy
balance and the Clausius - Duhem inequality [20, 21];

@41)  oU-o:L+divg— g0 =0, gﬁ—%+div(%)20,

where, here and henceforth, the variables have the following physical significance:
0, 0o — densities in the current and reference configurations, respectively, U/ — in-
ternal energy density, o — Cauchy stress tensor, L = F.F-! - velocity gradient
with F being the deformation gradient, q — heat flux, o — heat production term,
n — entropy density.

Throughout this study the notation div stands for the divergence with respect
to the Eulerian coordinate, while Grad is the gradient with respect to the La-
grangean coordinate, respectively.

Following standard continuum thermodynamics, one can reach the relations

w oo
_90625 n= 8T’

D= IX’IQ. + Il'zé — %Q-GradT >0,

EC

(4.2)

where

(4.3) W=!I’(E,T;a,(,E")=U—nT—QLE:E“"
0
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represents the Gibbs free energy, and the second Piola - Kirchhoff stress tensor 3,
the material heat flux Q and the thermodynamic forces A’y and K, are defined by

P %F—I.U.F-T’ Q= DF-l.q,
0

: o o

(4.4) K, = 05 + (2 - QOW) ‘Ey,
. o o

]12 = —9055‘*‘ (2— QOW) .

Equations (4.2); » govern the reversible thermomechanical process of the ma-
terial, from which one can derive the thermomechanical and calorimetric consti-
tutive equations in rate form if the elastic process is reasonably assumed to be
not influenced by the irreversible processes [20, 22]:

EE=S:§.}+9T, 7}=g:2.',+TcT,
(4.5) ¢o
S = — (92‘.[/ Q=_ 6297 L 20 8%&
= 5SS S TegseT T T aree

where S stands for the elastic compliance tensor while @ and ¢ correspond to the
thermoelastic tensor and the specific heat, respectively.

Later consideration is limited to the case of the processes in which the fol-
lowing dissipation inequality holds:

(4.6) D= K&+ Kyl >0,

and the thermomechanical constitutive equation is solely discussed.

5. Evolution equations in irreversible processes

The thermomechanical study on the R-phase transformation carried out so far
in metallurgy [1-3] allows one to assume that, as in plasticity with the yield condi-
tion, the lattice distortion in the R-phase occurs only under a thermomechanical
restriction

(5.1) f=fCT;K,Kya,()=0 and [ =0.

Figures 3 a and b actually provide a uniaxial picture of this condition in TiNi shape
memory alloy. It is worthwhile to note that the time ¢ is included in Eq.(5.1) as
an implicit parameter through the state variables, which reflects the fact that the
lattice distortion process is diffusionless.

The variants reorientation is activated under the condition that a twinned
structure has already been formed in the alloy, being independent of whether the
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lattice distortion in the R-phase progresses or not, and produces a correspond-
ing macroscopic deformation [2, 3]. It is natural to assume that the process is
governed by a thermomechanical condition

(52) g = g(sz: I(]a ]"2; CY,C) =0 and g' = Oa

which is a mathematical rephrase of the actual situation illustrated in Figs. 3¢, d.

The transformation start condition and the associated consistency condition
during the process of transformation have been discussed in the Refs. [17-19, 21]
in the case of martensitic transformations. PATOOR et al. [18] have pointed out,
from the micromechanical point of view, that the transformation condition should
include the third invariant of the deviatoric stress tensor as one of the variables, in
addition to the von Mises-type second variant of the deviatoric stress tensor. The
shift of the transformation lines, which represents the consistency conditions, have
experimentally been investigated in an Fe-based shape memory alloy [23, 24].

The requirement of the second law of thermodynamics (4.6) can be re-read
as a conditional extremum problem of

(5.3) D=D—-Af-jg=Kd+Kil-Af-jg

with the Lagrange multipliers A and ft [25-27]. The usual procedure yields the
final formulae

. 0f (of
©4) & 81’+”8—K—1’ (=23, a

which represent the evolution equations for the internal variables o and (.

For the sake of compact presentation of the theory, the generalized thermo-
dynamic force K = ([}, K3) is introduced, and an appropriate inner product *
is defined for the quantities relating to K, i.e., for example,

@f oK _ df 0K, W af 0K,
9K * Ja (‘31\'1 do 0K, da '

The Lagrange multipliers introduced in Eq.(5.3) can be determined from the
consistency conditions, Egs. (5.1); and (5.2),:

F- (%) 2(3—%%%)1
a5 = ;K(ai. aKa 3§)aa+£§§+§i (?91:)( b
5’=(a§+ai az) E*(ag“‘Lalg( a:r)
(G ok GEr o) -0
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The result reads as

(s ) 05 )
’\‘A( TR M 6[1 aleT =
) :
"‘A(W\'IZE‘@[Z ) %44 d]\l Zr - T>T=

Ay = A(-gcfe + fegx)s Ar =A(-gcfr + fch)
Zy, = A(gafs — fagx), Zr = A(gafr — fagr),

_of 9K Of of , 9f 0K

GO fs=gkramta TTartaktar
B (9_g+ dg IK dg N dg JK
=Tk s T ar T okt ar

_af 0K af af oK of

Je= 3 *3a 90 T TF*ac Tac

(?g JK dg Og JK  Jg

9« = 9K *da T 9a> T aK ¢ T ac
4 —1 _ O0f 0Jg B af dyg
AT = fage = febo A= 0K, 0K, 0K, 0Ky’

and the evolution equations of the internal variables « and ( are given by
(5.7) b=Ag:S+ArT, (=2p:3%+ 27

Equation (5.7); governs the progress of the lattice distortion in the R-phase,
whereas Eq.(5.7); — the progress of variants reorientation. Equation (5.7) state
that both processes are rate-independent, or diffusionless according to the termi-
nology in metallurgy.

The irreversible strain rate E* due to the lattice distortion and the variants
reorientation can be obtained from Egs. (5.7) and (3.4) to be

(5.8) E* = (E.®As + Q" ©Zs): 3 + (ELAr + Z0) T,

which, together with Egs.(3.2) and (4.5);, finally leads to the following thermo-
mechanical constitutive equation in rate form:

5.9) E=(S+E. QAn+Q 0Zg): S+ @O +EAr + Q7)1

The dissipation inequality (4.6) delivers

(5.10) D=X(K*g—-}’;)+,}(1< gf() 0,
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which states that the lattice distortion in the R-phase and the variants reorienta-
tion progress when

(5.11) A>0 and >0

hold, respectively, under the situation in which the conditions

of dg
(5.12) Ktz 20,  Krop

always hold. The condition (5.11) can be used, like the loading condition in
conventional plasticity, to judge whether the process starts, continues or stops

>0

during an applied thermomechanical loading (T, i).

6. Analysis of uniaxial behaviour
6.1. Fundamental uniaxial relations

Although the experimental results shown in Fig.3 could be summarized to
give an explicit form of the functions f and ¢ introduced in Egs. (5.1) and (5.2),
here in this study the uniaxial analysis on the behaviour in TiNi shape memory
alloy is carried out starting directly from Fig. 3, leaving the construction of a fully
closed description of the phenomena to the next study. The uniaxial version of
the relations developed so far and the additional assumptions are as follows: The
progress of the lattice distortion in the R-phase is independent of the applied
stress L' and is governed by

(6.1) & =ArT  with A = au(Ago— @),

where a. and Apg are the constant material parameters. The evolution equation
(6.1) is solved to give a direct form

(6.2) a = Arg [1 —expac(Th, -1 ,] ;

where T is the temperature on the R- -phase transformation start line (see the
experlmental observation by Mrvazakt et al. [4]). When X' < Yg,, T} = Tk,
as is seen in Fig.3 a.

The variants reorientation, characterized uniaxially by

(6.3) £ S 2.8 2T,

is assumed, following the experimental observation [3], to have an explicit form

(6.4) 0 (): + b'j’) ,
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where b > 0 and Zy denote the constant material parameters. Integrating
Eq.(6.4) and taking into account the fact that the point (1'%,,Xr,) is on the
start line (¢ = 0), one has

(6.5) (=1-expZs[b(Tr, - T)+ (Xr, - ).

The variants reorientation start line in Fig.3c is given by inserting ( = 0 into
Eq.(6.6) as

(6.6) X =Xpp — (T ~Thry),

which reveals that —b stands for the slope of the variants reorientation start line
in the X’ — T plane. On the contrary, if ( = 0.99 is assumed to be the completion
of the variants reorientation, the variants reorientation finish line is expressed by

(6.7) £ =Yn, —b(T —Tr,)+ (n100)/Zy .

The iso-( lines are parallel to the variants reorientation start/finish lines, and to
each other.

In order that ( can move in the interval [0, 1] when the thermomechanical
load is in the shaded region in Fig. 3 c, the conditions

6.8)  (In100)/Zs > X - Sp, +b(T ~Tr,)>0 and Zg >0,
must be satisfied. The forward process, g > (), occurs only when

(6.9) Y+0T >0

holds. The relation well explains the experimental observation that no variants

reorientation progresses in the isostatic cooling processes (L = 0 and 7" < 0).
The recoverable strain §2* in the variants is assumed to be formed during the
lattice distortion process according to

(6.10) 2= 24,

where (27 is a constant material parameter. Equation (6.10) states, therefore,
nothing other than a linear relation

(6.11) 2=

The uniaxial macroscopic strain due both to the lattice distortion in the
R-phase and the crystal reorientation is given by

(6.12) B =E1é+02°C,
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where the material parameter £, is proposed to be expressed as

(6.13) Ey=FE(

(&3
with a constant material parameter £, and (; denotes the value of the extent
of variants reorientation at the point where the thermomechanical loading path

crosses the R-phase transformation line. The final expression for £* in Eq. (6.12)
is now given by

(6.14) E*=EYWCd+2al.

It should be noted that & and g’ in Eq.(6.14) are linearly connected to Y and T

as can be understood from Egs. (6.1) and (6.4). So is E*, too.
The uniaxial constitutive equation is now obtained from Egs. (3.3), (4.5); and
(6.14) in rate form as

(6.15) E=5Y+0O0T+ E*.
6.2. Cooling under free stress followed by isothermal loading

On the first cooling run down to 7; under ¥ = 0, the lattice distortion in
the R-phase starts at 7y,. in Fig.3a. The angle o has a value determined from
Eq.(6.3) at 7}, and the recovery strain “stored” in the alloy is estimated by

(6.16) 2= Qo =25 Ao [1 - expac(T, - T)] .

Since no variants reorientation progresses during this constant stress loading be-
low Yp, (cf. Fig.3c¢), it means, since ( = 0, that no macroscopic strain is
induced in the process;

(6.17) E

isostatic

= ().

In the subsequent isothermal loading the variants reorientation progresses
from the start line on. The strain can, therefore, be calculated by means of
Eqgs. (6.5), (6.12) and (6.16) as

¢ x
6.18) B =/(2;;adg = Q;Q/ES exp Zs [0(Tr, - T) + (Zk, — £)]d%,
0 Ets

where in the first equation the upper limit { is given by Eq. (6.5) with 7" = T},
whereas in the second equation Y, denotes the variants reorientation start stress
at Ty; i.e.,
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When the specimen is loaded up to a stress value higher than the variants
reorientation finish line (cf. Fig.3c), the macroscopic strain observed after the
second isothermal run reads from Eq. (6.18) as

(6-20) itsothermal = ‘Q; a.
The total strain observed after the whole process is, therefore, estimated by
(6-21) E:l;ax = Egostatic + Ei;othermal = 'Q; ATO [1 — €Xp G’C(TRF - T)]s

which is measured as the residual strain after the full elastic unloading. The

temperature-dependence of £}, given in Eq.(6.21) (cf. Fig.4) explains well the
experimental observations [2].
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F1G. 4. Temperature dependence of recovery strain (schematic).

6.3. Cooling under constant applied stress

The isostatic cooling under a constant applied stress 1 does, as explained
above in relation to Eq.(6.17), not drive the variants reorientation in the ther-
mally-induced R-phase twinned structure. The macroscopic strain observed at the
end of the cooling down to 7 is, therefore, calculated from Eq.(6.14) by

(6.22) E*=FE,W( o
— b .
— E;OATO [1 — €Xp ZS' (; - 1) (E* — Y‘RF)jI [1 — €Xp a. (TRF - T)] .
when the upper section of the R-phase transformation line is expressed by

(6.23) Y = ERF + C(T — THF)
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with the slope ¢ > 0 of the line, therefore, when

(6.24) Tk, = Try + (X" = Xp.)/c.
Ao I
* » "
= h u% EQO ...............................
il i
3|
| 2 a
i :
« =
g B
= a
B 3 -
RF

Temperature T Applied stress

F1G. 5. Transformation strain during cooling (schematic).

Figure Sa shows a schematic plot of the transformation strain £~ vs. the
temperature 7' with the applied stress X* as a parameter. The curve shifts to
the higher strain and higher temperature sides with the larger applied stress. The
later shift stems simply from the positive slope of the R-phase transformation
line, while the former shift comes from the stress-dependence of the amplitude
E*(: in Eq.(6.22). The amplitude gradually tends to a limit value with L™ as
illustrated in Fig.5b. So does the strain-temperature curve.

6.4. Cooling/heating under constant applied stress

Suppose the cooling stops at a lower limit temperature 7; and a heating process
follows, always under a constant stress L. In order to take into account the
hysteretic behaviour in « during the process, the reverse lattice distortion in the
R-phase is assumed to be governed not by Eq.(6.1) but by

(6.25) & = ap(Ago — )T,
with a different material parameter ;. Equation (6.25) is solved to give
(626) a=q + (ATO - a()[l — exp (Lh(Tz - T)]

with ¢y, the value of « at 7). Since the R-phase inverse transformation finishes
at the thermomechanical load state (T}, 2) on the R-phase reverse transfor-
mation line (cf. Fig.3b) expressed by

(6.27) Y=ol -Try), Th,=Try+E"/c,
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the parameter a; introduced in Eq.(6.25) can be estimated from a set of the
material parameters by

1, Aro
T[ - T;{R ATO — '

(6.28) ap =

The macroscopic strain observed in the heating process is, by taking Eq. (6.14)
into account, given by

¢
(6.29) = B (Cla+ /angs da + /Q;a dc,

where the first term stands for the strain at the start of heating, cf. Eq.(6.22),
while the second integral with respect to ( works only at the temperature range
between the R-phase transformation line and the R-phase reverse transformation
line, ie., between 7% and T7; , in which the forward reorientation occurs.

The total macroscopic strain after a cycle of thermal loading under constant
applied stress, Ty . — T) — T}, , is calculated to be

T‘

(6.30) B = 125 | {ar+ (Apo— a)[1 = expap(Ti - T)]}
73,

x(1 - () Zsbexp [Zsb(T, - T)| dT,

which is expected to be a small value since according to the experiments, the width
of the R-phase transformation line and the R-phase reverse transformation line
is narrow; T — T ~ SK.

6.5. Thermomechanical process

Let us estimate the macroscopic strain developed during a thermomechanical
loading sketched in Fig. 6 by the points 1 to 6, which is composed of the consecu-
tive processes; cooling down to 7; under stress-free state (1 — 2), isothermal
loading up to X* at T} (2 — 3), isostatic cooling down to 7} under X~ (3 — 4)
and isostatic heating up to 7 under L* (4 — 3 — 5 — 6). The macroscopic
strain induced in each of the processes is already calculated,;

The cooling process (1 — 2): No strain observed.

The isothermal loading up to Y™ (2 — 3): Eq.(6.20).

The process of cooling down to 7} (3 — 4) under constant applied stress:
Eq.(6.22).

The process of heating up to 7, (4 — 3 — 5 — 6) under constant applied
stress: Eq. (6.30).
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Stress

Temperature

F1G. 6. Thermomechanical processes.

6.6. Recovery stress during heating

The simulation in the preceding subsections shows that a shrinkage strain
is observed during heating along any kind of thermomechanical path. A tensile
stress is, therefore, induced in the specimen when the strain is constrained during
heating. The stress is called the recovery stress and plays an important role of the
driving force in the shape memory devices. Change in stress under the condition
of the constrained strain is incrementally governed by

(6.31) 0=Sd¥X +QdT + dE*,

which is derived from Eq.(6.15). The essential thing is, therefore, to calculate
the increment of transformation strain d £* along a prescribed thermomechanical
loading path, which is already performed by means of Eq.(6.14) together with
Eqgs. (6.4) and (6.25). If the result is combined with Eq.(6.31), one obtains

(6.32) dX=- [S + 8¢ Zs25a(1 - C)]'1
x [0 + ba E3oC an(Aro - 0) + &b Zx 2zl - Q)] dT,

which determines the stress increment dX' due to prescribed temperature incre-
ment d7'. The indicators 6; and 4, have the following meaning:

5 = 1 when the crystal reorientation progresses,
¢t~ lo otherwise,

5 = { 1 when the reverse lattice distortion in the R-phase progresses,
. =

0 otherwise.
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From the practical point of view, the recovery stress induced during heating
after the following two thermomechanical paths is important to be investigated:
the process in which the residual strain is constrained at the point 2 in Fig. 6
after the successive thermomechanical preloading of the cooling (1 — 2), loading
(2 — 3) and unloading (3 — 2); and the process in which the total strain is
constrained at the point 3 after the successive thermomechanical preloading of
the cooling (1 — 2) and loading (2 — 3). The simulated results will be given in
the next section.

7. Numerical illustrations

Uniaxial behaviours explained in Sec. 6 are simulated in this section with the
use of the value of the material parameters tabulated in Table 1, which are partly
determined from the data of a TiNi alloy [2], the transformation lines of which are
illustrated in Fig. 7. The thermal strain is neglected in the following simulation.

Table 1. Material parameters.

S ac b c Z 5 Try | Tre | Ere | Ao | 22, | Ea,
1/MPa | 1/K | MPa/K | MPa/K | 1/MPa | K | K | MPa
5x107° | —0.026 0.163 12 0.0132 | 300 | 310 10 1.2 | 0.01 | 0.01
200
o
[aW)
=
W 100
195
(7]
O
=
w
0

220 260 300 340
Temperature T, K

Fi1G. 7. Transformation lines.

Figure 8 shows the stress-strain curves observed during each isothermal load-
ing and unloading at 7} in the successive cooling-loading-unloading processes
(1 = 2 — 3 — 2 in Fig. 6). It should be noted that the strain induced in this pro-
cess is due only to the variants reorientation (cf. Sec. 6.2). The ferroelastic curves
exhibit, under the temperature range of T; < T'r, = 300K, the same response as
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T,=300K 280 260 240
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0 0.008 0.016
Strain E

F1G. 8. Stress-strain curves.

the shape memory effect in the martensitic transformation. The strain amplitude,
the recovery strain £, at each temperature is plotted in Fig.9, which corre-
sponds to the schematic illustration in Fig. 4 and represents well the experimental
observation [2]. Figure 10 is a plot of the transformation strain /2~ observed when
the applied stress at the state 3 in Fig. 6 is X*. The results show firstly that, for
the higher stress and higher temperature, the transformation strain converges at
the earlier stage to a limit curve which corresponds to the curve in Fig.9. It is
a rephrase of the fact that the variants reorientation finishes when the generic
point reaches the variants reorientation finish line in Fig.3¢, d. Secondly, the
lower intersection of the iso-Y* curve with the horizontal line represents the
point on the variants reorientation start line in Fig.3c, d at which the variants
reorientation starts and the transformation strain starts being induced.

0.012

*
Emax
|

0.006 —

Recovery strain

0 | | |
220 240 260 280 300 320

Test temperature Ty, K

F1G. 9. Temperature dependence of recovery strain.

Figure 11 illustrates the development of the transformation strain £~ in the
isostatic cooling processes (6 — 5 — 3 — 4 in Fig. 6) down to 7; = 220K under
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F1G. 10. Stress and temperature dependence of recovery strain.
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I'1G. 11. Change in transformation strain during cooling under constant applied stress.

a constant applied stress L*. As explained in Sec. 6.3, the strain is induced only
by the forward lattice distortion in the R-phase. Two points have to be noted: the
transformation strain increases with X* and converges to a limit curve at each
temperature level. Secondly, the temperature of the strain to start being induced
increases with the applied stress, which is due to nothing other than the fact that
the R-phase transformation line has a positive inclination as shown in Fig. 3 a.
Under the cooling/heating processes (6 — 5 — 3 — 4 — 3 — 5 — 6 in Fig. 6)
down to 7} = 220K under a constant applied stress L*, the strain induced in the
cooling process, which has already been calculated above, fully recovers in the
subsequent heating process as given in Fig. 12. The strain vanishes on the R-phase
reverse transformation line (cf. Fig.3 b), meaning at different temperatures. The
change in transformation strain stems from the reverse lattice distortion process
in the R-phase. The variants reorientation progresses in the heating process only
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F1c. 12. Change in transformation strain during heating under constant applied stress.

in a narrow region between the R-phase transformation line and the R-phase
reverse transformation line, which has no notable effect on the results. The change
in transformation strain during the whole cooling/heating process is plotted in
Fig. 13 in the case of 7} = 220K under X* = 20 MPa. The transformation strain
increases in the cooling process and recovers fully in the subsequent heating
process. A hysteresis is observed due to the fact that the R-phase transformation
line and the R-phase reverse transformation line are different.

0.008

T, =220 K

0.004

—  X*=20MPa

Transformation strain E*

0 | | |
220 240 260 280 300 320

Temperatwre T, K

F1G. 13. Strain hysteresis during cooling/heating under constant applied stress.

When the specimen is heated after a cooling-loading-unloading process (1 —
2 — 3 — 2 in Fig.6), with the residual strain at the state 2 constrained, a pos-
itive recovery stress is induced, which is plotted in Fig. 14 for the cases of the
isothermal loading to ¥* at 7, = 220K. The variants reorientation progresses
up to an extent (* when Y™ is in the variants reorientation zone in Fig.3 ¢ dur-
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ing isothermal loading. During heating, a negative increase of the transformation
strain first progresses due to the reverse lattice distortion in the R-phase. A
positive increase of the recovery stress is, therefore, observed at this stage as
shown in the figure. When the generic point (7', Y'r) reaches the (* line, the
variants reorientation starts progressing from the extent (* on. The process in-
duces a positive strain increase, resulting in a decrease of the stress. From this
moment on, two metallurgical progresses occur simultaneously. The reverse lat-
tice distortion in the R-phase increases the recovery stress, whereas the variatns
reorientation decreases the recovery stress. The case is typically observed in the
figure for the cases of L' = 25, 30 and 35 MPa. When L* is large, the variants
reorientation almost finishes during the first isothermal loading. No decrease in
recovery stress is, therefore, observed in the subsequent heating process (cf. the
case of U = 80MPa). When Y~ is lower than the variants reorientation start
line, neither the residual strain nor the recovery stress is produced.

3 2 80
E 200 "
= Residual strain 35
o 150 + constrained
(2
B 130
§ 100
s 0= ¥ *=25MPa
<
5
o 0

220 260 300 340

Temperature T, K

FiG. 14. Recovery stress under residual strain constrained.

The maximum recovery stress X'r max is reached on the R-phase reverse trans-
formation line, which is plotted in Fig. 15 versus the test temperature 7} with the
applied stress L as a parameter. The intersections of the iso-2* curves and the
horizontal axis are on the variants reorientation start line.

When the specimen is heated after a cooling-loading process (1 — 2 — 3
in Fig. 6), with the total strain constrained at the state 3 (7;, L'*), the recovery
stress starts increasing from the initial value Y* as given in Fig.16. The two
metallurgical processes occur simultaneously when the start point is in the variants
reorientation zone, as in the case of the constrained residual strain (Fig. 14). The
variants reorientation process finishes when the generic point reaches the finish
line on each iso-Y* curve. The remaining process progresses only due to the
reverse lattice distortion in the R-phase. A slower increase in the strain for the
lower value of X is a point to be noted when comparing the simulated results
with the experimental data.
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1
i
(=)

. |
2" =80 MPa Residual strain
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__—40
150 = 135
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100
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50 —/ 25
20
0 | / L v )1
180 220 260 300
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F1G. 15. Maximum recovery stress under residual strain constrained.

& 300 T * =80 MPa
=

] Total strain

o constrained 40
A 200

. T,=220K

§ 30
g 100

S 25
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o 20
% 0

220 260 300 340
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F1G. 16. Recovery stress under total strain constrained.

8. Concluding remarks

The metallurgical observations have clearly revealed in the TiNi shape memory
alloys that the R-phase transformation starts on a R-phase transformation start
line in the stress-temperature plane and finishes on the other line, the R-phase
transformation finish line. The same is true for the R-phase reverse transforma-
tion being represented by the R-phase reverse transformation start/finish lines.
The processes which have mistakenly been understood as the R-phase transfor-
mation in the mechanical formulations carried out so far, include the processes
“after” the R-phase transformation, the lattice distortion in the R-phase variants
and the variants reorientation of the R-phase variants by twinning.

The theoretical framework established in this paper on the thermomechan-
ics of R-phase transformation is based on this metallurgical understanding. The
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uniaxial governing equations are reduced from the general formulation in order
to simulate the alloy behaviour under several thermomechanical load processes.
The validity of the theory can be well proved by carrying out the experiments on
the recovery stress explained in Figs. 14 and 15, which show a clear coupled effect
of the lattice distortion in the R-phase and the variants reorientation. This is a
task of the next study.
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A new method of finding strong approximation
to solutions to some IBVPs

Z. TUREK (WARSZAWA)

IT HAS BEEN PROVED that every solution to a 1D initial boundary value problem (IBVP) represented
by a uniformly convergent series in some domain can be approximated by a Fourier cosine series.
The new series is also uniformly convergent in that domain. The strong approximation to the
heat-conduction problem subject to any boundary conditions with the application of the Fourier
cosine series is found. It is the Fourier cosine series approximation to the exact solution to the
problem under consideration. Its coefficients form an infinite set of ordinary differential equations
(ISODE). Numerical results presented for heat conduction problems show - in comparison with
solutions derived by the method of seperation of variables — that relatively small number of terms
of the Cosine Series approximate very well the exact solutions.

1. Introduction

IN [6] A New METHOD of finding approximate solutions to the heat conduction
equation in one dimension subject to mixed boundary conditions has been pre-
sented. From the results obtained we could see that the solution to the problem
derived by the Fourier cosine series approximated well the solution to the same
problem derived by the method of seperation of variables. The boundary con-
ditions for the problem were not satisfied. Paper [7], however, applies the new
method to a certain class of partial differential equations of engineering and
physics subject to non-Dirichlet boundary conditions, considering the problem of
boundary conditions as well. In that paper we solved two initial boundary-value
problems with non-Dirichlet boundary conditions without solving the eigenvalue
problems. The new approach was applied to the equation describing the heat
conduction subject to non-Dirichlet boundary conditions and the vibrations of
a rod also subject to non-Dirichlet boundary conditions. The numerical results
showed that the new solutions also approximated well the solutions derived by
the method of seperation of variables. For the heat equation, however, even the
boundary conditions at the initial instant of time were satisfied. Analysing the
boundary conditions of the vibrating rod for a given initial displacement of the
rod we came to the conditions on the Fourier cosine coefficients at { = (). They
were expressed as convergent series of the Fourier cosine coefficients mentioned
above. They did not tend to zero which meant that the new method solution
did not satisfy the prescribed boundary conditions even at ¢+ = (. The classical
method of solution did not satisfy the prescribed boundary conditions either since
the initial condition for the problem did not satisfy the given boundary conditions.
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The aim of the present paper is to give mathematical grounds to the new
method. So it has first been proved that every solution to a one-dimensional
IBVP represented by a uniformly convergent series in [0, L] x [0, ¢.) can be ap-
proximated by the Fourier cosine series which is uniformly convergent in that
domain. It has been proved that the Fourier cosine series is a strong approxi-
mation to the problem under consideration, which is a solution to the so-called
integro-differential-boundary equations (IDBE) [6, 7]. It has been found out that
solutions to the corresponding ISODE form the Fourier cosine coefficients for the
strong solution (satisfying given equations and conditions) of the heat-conduction
problem (this is why we call our approximation strong approximation). In the pa-
per we present the new approach to the heat conduction problem for all kinds
of homogeneous boundary conditions. But the method can be applied to other
boundary-value problems as well [5].

2. Fourier cosine series representation for a certain function
of two variables

In this section we are going to show a Fourier cosine series representation for
a function of two variables which is a sum of a uniformly convergent series. To
this end we need some results concerning a Fourier cosine representation for a
function of one variable.

LemMA 1 [4]. Every function X, continuous in the interval [0, L] whose
derivative X' is piecewise continuous in that interval can be expressed by a uni-
formly convergent series

, nmTT
b4 )— > +Z% cos 7

in that interval, where

L
2 n7r
2.1) Y = ]ig[ EX@)dz,  n=0,12,

Proof Let X bean even extension of X. Then X is an even cortinuous
function whose derivative X is piecewise continuous on [—L, L]. The Fourier
coefficients for X are

o S =
2.2) %=E/ﬂ@m m_;gx i L
B
1 X' . [nm T L
o= /X (:t:)smT;vda:- —H X (x)sin (Tz> dx =: __wnﬁ”

t‘i
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and

L
1 — . nNTT
= Z{X(r)sm 7 dz =0,

R : ] =t
as the function X is even. The Fourier Coefficients /3, for the derivative X of
the function X exist since X is piecewise continuous and the series

2.3) S 2
n=1

is convergent. Let us now consider the formula
2 2
2L |6, L
(16al =) = g2 -2l (1) 5,
nm nmw nm

from which we have

Libnl 152, (L)2 (n=1,2..).

nm nmw

The right-hand side of the above inequality consists of the elements of a conver-
gent series. Then the series
i |ﬂn

is convergent and so is the series

(2.4) Z lcal

n=1

As the series in (2.4) is convergent, then the series

o0
o nwTI
— + Cp, COS

is absolutely and uniformly convergent and its sum is X (z) [1]. But the function
X is an even extension of X and coincides with X in the fundamental interval,

then
I

2

=7 / ((z) cos =
0

So the Lemma has been proved. O

diII = Tn -

L
1 — nrra:
Z/L.X(at)cos 7
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Now we will use a known result [1] concerning the uniform convergence of
an infinite series whose terms are products of functions of a certain class. This
results in verifying formal solutions to boundary value problems represented in
the following form:

o0

(2.5) Z (@) Tu().

Abel’s test for uniform convergence [1]

The series (2.5) converges uniformly with respect to the two variables = and
t together in a region D of the @ — ¢ plane provided that

a) the series
Z AXI'(CC)
i=1

converges uniformly with respect to z for all  such that (z,?) is in D, and
b) the functions 7; are uniformly bounded and monotonic with respect to ¢
(: =1,2,...) for all ¢ such that (z,?) is in D. O
In establishing the way for the Fourier cosine series representation of the
series in (2.5) we will mostly depend on the important fact stated in the following
lemma which is an extension of Lemma 1 for a function with a parameter £.

LEMMA 2. Any continuous function
u(+,t):[0,L] - R

piecewise C! in [0, L] for every ¢ € [0,1.) can be represented by the Fourier
cosine series

(2.6) CO(t) + Z ,l(t)cos

n=1
that is uniformly convergent in [0, 7] for ali ¢ € [0, {.) with coefficients

L

k7] co(t) = Iz/u(l‘,t)cos TH[T(L‘ dz.
) 0 4
The proof of this fact is exactly the same as that of Lemma 1. a

The fundamental fact leading to the Fourier cosine representation for the
series (2.5) is expressed by the following theorem.

THEOREM 1. Let X; satisfy, for each 1 = 0,1,2,... the conditions stated in
Lemma 1 and additionally let X; and T; satisfy for each i = 0,1,2, ... the conditions
of the Abel’s test for uniform convergence.
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If the sum S(x,t) of the series (2.5) satisfies the conditions stated in Lemma 2
in D := [0, L] x [0,1.), then the series

2.8) E(Lt)+§:c(t)cosn7”c
® 2 n=l n

with the coefficients

(2.9) () =Y yuTi(t) n=0,1,2.,

where ~y,; are defined by (2.1) for X = X, converges uniformly to the sum S(x,t)
of the series (2.5) in D.

P ro o f. Notice that
> 2 & f nwT
et = YT = 73 / cos "L X (@) Ti(t) d.
=1 =17
Using the theorem on integration term by term [2] we come to

L L
2 n7r 2 nTIT
= — = — S(z .
en(t) Lo/ S Xu(2)Ti(t) d L/cos 5, tydz,
0

=1

for n = 0,1,2,..... These coefficients are Fourier cosine series coefficients for
the sum S(z, 1) of the series (2.5). So the series (2.8) is the Fourier cosine series
for the sum S(x, t) which satisfies the conditions of Lemma 2, and that ends the
proof of the theorem. O

3. A new approach to strong approximation to a solution
to the heat conduction equation

o0
From Theorem 1 we know that every series . X;(2)7i(t) uniformly conver-
=1
gent in [0, L] x [0,¢.) whose sum S(z,?) satisfies the conditions of Lemma 2,
can be represented by a Fourier cosine series that is uniformly convergent in
that domain. This means that every solution u(z,¢) to an IBVP represented by a
series satisfying the conditions mentioned above can be expanded in the cosine
series

(3.1) u(z,t) = CO(t) + Z en(t) cos 2 E

n=1
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with
(3.2) en(t) =D i Tilt),
i=1
where
5 L
Tni = F Yi(a:)cosnzxdx

0

with X;(z) being eigenfunctions of the problem under consideration and T;(%)
satisfying the corresponding uncoupled infinite set of ordinary differential equa-
tions.

The above representation will have a practical application if we find a method
of calculating Fourier coefficients other than those presented by (3.2). Such a
method exists, however, and has been described in [5, 6, 7]. The method leads
first to the IDBE and then to the ISODE for the problem. The corresponding
IDBE and ISODE are derived for each boundary-value problem separately. In the
present paper we are going to demonstrate the approach for the heat conduction
problem.

3.1. IDBE and ISODE for the heat conduction problem with non-Dirichlet
boundary conditions

Let us consider the equation

(3.3) %—(tj - % =0 for (z,t)e (0,L)x (0,t.),
subject to the boundary conditions
a—U—hU=O for =z =0,
(3.4) gg[
a_'£+gU=O for z=1,
for all ¢ € [0,%.], and the initial condition
(3.5) U(z,0) = Up(x),

for all z € [0, L], where h and g are constants. The IDBE for the problem is the
following one [6, 7]:

L L
d nwe 2 nTIT
EO/U(I’t)COS 7 do:+an0/U(a:,t)cos 7 dr = F,,
F,=-hU(,t) - gU(L,t)(-1)", anp=mn/L, n=0,1,2,...

(3.6)
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Before we find the ISODE let us introduce a notion

DEFINITION. A function
U(e,+):[0,L]x[0,t.) = R

is a strong approximation to a solution to the initial boundary-value problem (3.3) —
(3.5) if it satisfies the IDBE in (3.6), i.e. U satisfies almost everywhere the following
infinite set of integro-differential boundary equations

d/l(lt)os I

Fo= —hU(0,1)~ gU(L, t)(~1)"
forn =0,1,2,.... o

The corresponding ISODE for the problem in (3.3)-(3.5) appears in the
following lemma which we give without a proof.

LemmA 3. Any function U(-, +) : [0, L] x [0, %) — R satisfying the conditions

stated in Lemma 2 is a strong approximation to a solution to the IBV problem
(3.3)-(3.5) and can be represented by the series

"Tdr = E, .,

T iz + 2 /U(z t)cos
3.7

(3.8) Uz, t) = CO(t)+ch

with ¢, computed from the so-called ISODE for the problem (3.3)-(3.5) in the
following form

. 2
Cp + azcn = —Gn,

(3.9) G —~~[h+ g9(= 1)"]*26::[1”9( D,

en(0) = % / Uo(z) cos 72 da
0

forn = 0,1,2,... and (G, were derived from F), using the boundary conditions
in (3.4) o

Solutions to the ISODE in (3.9) follow from the following theorem.
THEOREM 2. If the series

(3.10) Uz, t) = iXi(x)T,-(t)
=1
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is a solution to (3.3) — (3.5) derived by the method of seperation of variables, then

(3.11) ealt) = > yTi(t), n=0,1,2,..
with
2 L
i = 7 [ osTTEX(@)da
0

being solutions to the ISODE (3.9).

P roof. We have to consider two cases; n # 0 and n = 0.
In the first case (for n # 0) let us consider the second term at the left-hand
side of (3.9)

(o]

(3.12) alc, = a2 Z’YmTi = Zai’)’ngTi,
i=1

=1

Using now the expression for v, and integrating twice by parts we get for each
term in (3.12) the following expression

nmTe

(.13)  odyuT; = Tad% / cos T X (2)da

-= 2 GX(D)TA(=1)" + hX(O)T] — Tiymi -

In the above formula we have used the boundary conditions (3.4) and the fact

that X7 + w?X; = 0 and 7T; + w?T; = 0, where w; is the i-th eigenvalue for the
problem (3.3)-(3.5).

As the terms of (3.13) contain terms of the series (3.10), we can add up both
sides of (3.13), to get

o0 2 o0 . 00 oo
ol Yo ywili = = |91 L XdDT: +h Y XOT | = 5 T
=1 1=1 =1 1=1
or using the fact that

iXi(L)T i(t) = U(L, 1), iX,-(O)T,-(t) = U(0,1), i Ti() i = En
il i=1 i=1

we have

Q23 3uiTi = 2 [gU(L, (1) + hUO, D] = én.
1=1
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Now we can exploit the above formula at the left-hand side of (3.9),
én+aic, = Cn+ g’ym i = Cn— %[QU(L, H(=1)" + hU(0,1)] - ¢,

= —% [g(](L,t)(—1)n + hU(O,t)] = %Gn

and that ends the proof for n # 0.
In the second case (for n = 0), Eq.(3.9); has the form

é(} o EGO

Consider the left-hand side of the above equation. Proceeding in the same way
as for n # 0 we get

L
. o0 2 o0
L=é= g o1 = —-L—;T}(t)gfwf)(i(m)drc

tﬂlm

L
2 — -
- EZIT,-(t)/){,- (z)dz =
1= 0

-] LIOWND) + hXO)

2
A 2 [U(L, 1)+ hU(0, )] = 7 Go
and that ends the proof for n = 0.

We also have to prove the initial condition (3.9)3 to be true. Consider Eq.(3.11)
for t = 0. Then

=1

- L
en(0) = %Z/cosfﬂ Xi(2)Ti(0) dz
=170

B~
o~

L & L
/ E {(2)T3(0) dx = / Up(x) cos %d;ﬂ
0 0

which agrees with (3.9)s. o
3.2. ISODE for the heat conduction problem with any boundary conditions
This time we consider the heat conduction equation

oU U

(3:14) 9~ 0ar T

for (x,t)€ (0,L)x (0,t,),
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subject to the boundary conditions

ﬂg—U+aU=O for = =0,
(3.15) a;
6%+7U=0 for =z =1,

for all ¢ € [0, ¢.], and the initial condition
(3.16) U(z,0) = Up(z),
for all z € [0, L] where «, 3,7, ¢ are constants satisfying the conditions
o+ B2 #0, Y2+ 82 #0.
This time the boundary conditions in (3.15) describe also the Dirichlet boundary
conditions for the heat equation (3.14).

The IDBE for the heat conduction equation with these boundary conditions
are the following:

L I
d nT ) nw
— ‘ /(2 =
th)/U(;z:,t)cos 7 d3:+an0/6(1,t)cos 7 de = Z,,
o Z, = Wiz, 1) cos BT2[F =0,1,2
n = a—f(.l‘, )COST|O’ n=012,...

Although the functions Z,, in (3.17) are defined by the boundary values of spatial
derivative of the function U(z, t) and, in general, case cannot be expressed by the
given boundary conditions, we can also find an infinite set of ordinary differential
equations for the coefficients ¢,,. In this case the ISODE is in the form

én + e, = %Hn(t),

(3.18) o

cn(0) = %/U@(SC)COS l}t—xdm, n=0,1,2,...,
0

where after exploiting the cosine series representation for the first derivative [5]
in the function Z,, we get [, instead of Z,

(1) 0
(3.19) Ha(t) = 2 [-1)" = 11+ Y 60 [ - 1]
k=1
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with
2 = g
(1) = 7 e [~ -~ 1]
(3.20) =
jrx . kra
Nk = —ak/cost sin 7 dz.
0

We can also prove that ¢, are Fourier cosine coefficients for the function U
which is the Fourier cosine approximation to a strong solution to (3.14), (3.15).
Theorem 2 is also valid for this case.

4. Some applications of the new approach

In [6] we have solved the heat conduction problem for mixed boundary con-
ditions (3.4). In [7] we have solved two IBVPs with non-Dirichlet type boundary
conditions for the heat equation and for the wave equation. Now we solve the
heat conduction problem for other boundary conditions (including also Dirichlet
ones) using the new method. Generally we solve

U U _
gt 02

subject to the boundary conditions

(4.1) 0 for (z,t)€ (0,L)x(0,t.),

J
ﬁ%+aU=O for = =0,

aou
- ] = o
68;r +4U =0 for z =1,

for all ¢ € [0,¢.] and initial condition

(4.2)

(4.3) U(z,0) = Up(z),
for all = € [0, L] where
2+ 3 #£0, Ar+82#0.

In further calculations Uy(z) = 1+sin[27(z—L/4)/L], L = 1 for all the examples
and Bi = 0.185. The corresponding approximate solutions

Na
(4.4) Uz, t) = Cozi) + 3 cx(t)cos kzx
k=1
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for N, terms of the series (4.4) we compare to the corresponding classical solu-
tions of the problem (4.1)-(4.3),

(4.5) Uz, t) = i ay exp(—w? (),
k=1

for N, terms of the series (4.5), where

L
ari= [ UnGaybu(e)da/[u)]%s
0

Yr(z) and wy are eigenfunctions and eigenvalues, respectively, calculated from a
corresponding IBVP. We compute the corresponding ISODE using the Runge -
Kutta method.

The form of the ISODE depends on the type of boundary conditions involved.
In the case of non-Dirichlet boundary conditons (i.e. 6 # 0), the function Z,
(3.17) can be expressed by the boundary values of the function U itself (e.g.
(3.6)) and consequently, by a single series in terms of the coefficients of U (e.g.
(3.9)). The simplest case in this class is when o? + 42 = 0 where the new method
solution agrees with the classical one. In this case the functions cos[(nmz)/L]
are eigenfunctions of the heat equation and the ISODE reduces to the infinite
uncoupled set of ordinary differential equations for the time components of the
Fourier series known from the method of seperation of variables. Other examples
are presented in Figs.1-2.

oU ol
== ) 1] = = _— = z =0,
7 Bil 0 for =z =0, (o 0 for z=0
9/
?—U-=0 for = =1. i+BiU=U for z=1
oz oz
u(x,t) u(x,t)
1.15 1.15
1.1 1.1
1.05 1.05
X X
095 0.95
0.9 0.9
0.85 0.85

FiG. 1. Temperature field for some values of ¢ for N, = 10 due to the new solution and
for N. = S due to the classical solution (they cannot be distnguished).
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ol/
(,)_L~BiU=0 for =0
dz
J
£+BEU=O for =1
ox

u(x,t)

1.1}

1.05¢}

0.95¢
0.9

0.85¢

Fia. 2. Temperature field for some values of ¢ for N, = 10 due to the new solution and
for N. =5 due to the classical solution (they cannot be distnguished).

= = [ .
U=0 for =0, U _Biv =0 for z=0,
au . dz
E+B|U=O for z = L. U =0 for & L
u(x,t) u(x,t)
2 t=0.0 >
=0.0
1.5 =0.03 1.5
1 ) 1
0.5 —_— classical 0.5 classical
_________ — P——
X x
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

F1G. 3. Temperature field for some values of ¢ for N, = 15 due to the new solution and
for N. = 10 due to the classical solution.

For Dirichlet-type boundary conditions (i.e. 36 = 0), the function Z,, in (3.17)
is expressed by a double series (3.19). In this class we consider three examples
of boundary conditions. For each IBVP we solve the corresponding ISODE and
numerical results are drawn in Figs.3-4.

From the figures presented it will be seen how closely the new solutions ap-
proach the classical solutions right through the interval.
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U=1 for = =
u(x,t)
2| t=0.0
t=0.01
1.5
t=0.03
t=0.05
1 L
0.5} —_— classical
--------- new
X
0.2 0.4 0.6 0.8 1

F1G. 4. Temperature field for some values of ¢ for N. = 15 due to the new solution and
for N. = 10 due to the classical solution.

5. Conclusions

From the mathematical considerations presented in the paper we conclude
that the Fourier cosine series can be applied to many initial-boundary value prob-
lems without solving eigen-value problems. Computing relatively small number
of terms of the cosine series, the new solutions called strong approximations ap-
proach very closely the exact solutions right through the interval. Since the new
solutions are Fourier cosine series approximations to the exact solutions of such
problems, the boundary conditions in general cannot be satisfied.
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A gradient theory of finite viscoelasticity

K.C. VALANIS (VANCOUVER)

IN THIS PAPER we present a gradient theory of finite viscoelasticity. The theory is founded on the
concept of internal fields, in conjunction with a variational principle and the dissipation inequality.
The internal variables, which in local theories obey local evolution equations, have been replaced
by internal fields and their gradients, which arise from physical processes that involve non-affine
deformation. At variance with the local theory, these fields obey “internal” field equations and
appropriate boundary and initial conditions. As a result, uniform boundary tractions give rise to
inhomogeneous strain fields. This phenomenon is illustrated in one dimension, where it is shown
that the creep function, normally a function of time only, is a function of space as well as time,
even though the material domain is phenomenologically homogeneous.

1. Introduction

WE BEGIN with the experimental observation that macroscopically uniform ma-
terial domains, under uniform surface tractions, develop localized, i.e., non-uni-
form deformation fields — contrary to predictions of “local” theories. There are
other issues such as “regularization” whereby ill-posed boundary and/or initial
value problems are rectified by the introduction of gradients in the constitutive
parameters. Such issues are less clear and are often due to the inadequacy of the
constitutive theories, rather than the material behaviour itself.

Phenomenological theories with higher gradients in mass density began with
the work of Van der Waal. More recently we have witnessed the development of
elasticity (hyperelasticity) theories with higher deformation gradients. We men-
tion the papers of TouriN [1, 2], MINDLIN [3, 4] and GREEN and RivLIN [5] as
characteristic of that era. It is not our purpose to discuss these theories in detail
except to say that a more precise formulation of the constitutive response of an
elastic material was sought, in the light of the perceived long-range interaction ef-
fects, particularly when strong spatial variations in the boundary tractions and/or
displacements were present.

In the present paper, the phenomenon of localization of macroscopic defor-
mation was a motivating force for the development of continuum theories with
(higher) gradients in the constitutive variables. Their recent advocacy, AIFANTIS
[6-8], is due mainly to finer and more convincing experiments, pointing to the
need for including gradients of these variables in a constitutive equation.

Other contributions in this area were forthcoming. We note the work of
VARDOULAKIS and ATFANTIS [9] and VArRDOULAKIS and FRANTZISKONIS [10] in the
area of plasticity, where higher order plastic deformation gradients were intro-
duced. The field is still in its infancy with a large scope for development.
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Our object, in this paper, is to develop a gradient theory of viscoelasticity using
the notion of internal fields under isothermal conditions. The condition of uniform
temperature allows for the developmemt of the theory in a strictly mechanical set-
ting without a need for entropy arguments, even though such arguments have been
used before, successfully, in the context of local theories. See VALANIS [11-13]
and CoLEMAN and GURTIN [14].

2. Physical foundations

The basic premise of continuum mechanics is that the deformation of a ma-
terial region is given mathematically by a one-to-one and on-to mapping:

(2.1) T —y

in the usual notation. Both frames = and y are Euclidean or reducible to Eu-
clidean by a coordinate transformation. More importantly, the deformation of a
neighbourhood in z, this being a “sphere” of radius ||dz|| < 6, where parallel
bars denote the Euclidean norm and ¢ is a suitably small number, is given by
Eq.(2.1):

(22) d% = ch dl‘&w

where the deformation gradient F;, (dy;/dz®) is non-singular and constant
within the neighbourhood. More precisely, no matter how heterogeneous the
deformation is, a sufficiently small 6 can be found such that || F,dz?|| is of or-
der 4. A fundamental topological consequence of the above assertions, in terms
of the motion of discrete particles within a neighbourhood, is that the order of
disposition of the particles is invariant under deformation. Thus, a material line
contains always the same particles and in an order that remains unchanged with
deformation.

Furthermore, neighbourhoods that are disjoint sets of particles before defor-
mation, remain disjoint after deformation, i.e., no particle “diffusion” is allowed
and particle membership of the initial material neighbourhood is conserved in
the course of deformation. In short, the deformation of a neighbourhood given
by Eq.(2.2) is affine. However, the basic physical characteristic of inelastic defor-
mation is the non-affine motion of the particles either through the mechanism of
slip, dislocation motion or particle migration.

2.1. Non-affine deformation

We consider a neighbourhood N undergoing non-affine deformation. In this
case, at least one particle which, before deformation, occupied a position F in
N, now occupies a position P’ not in N. Note that this position P’ cannot be
described by Eq.(2.2). If a sufficiently large number of particles leave their orig-
inal neighbourhoods, one may regard these as constituting a “migratory phase”,
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ideally a continuous material sub-domain of particles whose material coordinates
are no longer z® but p™ (2, t). The functions p/ are posited to be continuous
and differentiable in #® and ¢; furthermore Det(dp™ /dx®) # 0. We call p'* (z®),
or p(z) for short, the “migration map”.

To avoid repetition, lower Latin suffixes will denote vector (tensor) compo-
nents in the y-frame, upper Latin suffixes in the p-frame and upper Greek —
those in the x-frame. Furthermore any such suffixes following a comma, will
denote partial differentiation with respect to the corresponding coordinate.

Consider now the deformation of a domain whose particles initially at z°,
occupy points y; in a Euclidean spatial frame. Further, let a subset of these
particles, previously referred to as the migratory phase, occupy positions p™ (2, 1)
in the material reference frame. The deformation gradient of the affine phase,
i.e. the phase of particles that have not migrated, is dy;/dz®, symbolically y., the
suffix  denoting differentiation, while the deformation gradient of the migratory
phase is dy;/dp" or y,. In a more general setting, n migratory phases could
exist, each with a different migration map p”(z).

RemMaRrk. The particles that constitute the affine as well as the other phases,
are indistinguishable in the deformed configuration y. Their only signature lies in
the description of their motion relative to the z-frame. The motion of the ones
that deform affinely is given by the map = — y, while the motion of those in a
migratory phase is given by the map p” — y. Thus the position y in the deformed
configurations pertains to all particles, irrespective of phase, and similarly the
traction on the surface of the deformed domain bears on all the particles of a
neighbourhood of the deformed surface. The same argument applies in the case
of body forces (inertia forces included).

2.2. The free energy density

The physics that underlies the migration process is very complex. Here we
shall consider two simple, yet realistic models of this process with a view to
obtaining equations that are reasonably tractable. Because viscoelasticity applies
most naturally to polymeric materials, we shall consider models that pertain to
such materials.

MonbEL (z). This is an assembly of polymer networks that are not elastically in-
teractive with each other. However they impede each other’s motion in a resistive
sense, so that they are viscously interactive. Initially, particles of the networks are
identified by the material coordinate z“. In the course of deformation however,
the networks drift relative to each other, thus constituting migratory motion in
the sense discussed above. Thus each network is a phase and the particles within
the phase ineract between themselves elastically. We may thus posit a cross-linked
reference network that deforms affinely, relative to which the other phases (net-
works) suffer migratory motion. It is clear that in this model the (Helmholtz)
free energy density 1> of the whole is the sum of the free energy densities )" of
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its parts (r = 0,1,...,n), where ¢/ pertains to the affine phase. The following
equations, therefore, are applied

0 = 2yia),
(23) " = P (i) = Py g,

b =Yy,
0

where, in Eq. (2.3), the chain rule of differentiation was used. Implicit in Egs. (2.3)
and (2.4) is the stipulation that the interactive forces among particles are of short
range. A general statement of Eq. (2.3); is Eq.(2.4):

(2.4) Y=Yz, Yp"), r=12,...,n.

Of interest is the case where the phase drifts relative to the initial configu-
ration but maintains an elastic, albeit weak, connection with that configuration.
If this connection is modelled by means of an elastic spring, then there will be
an additional contribution to i by virtue of the term (p — §*,2%), ie., the
difference in position of the phase at time ¢ and at time zero. Thus now:

2.4 th = Pl 0 2% x5 9 = 65 o2™)
or
(2.4 Y = P(Yz; Tp; P — T).

MobeEL (#2). This model is more complex and it represents a different physical
situation. Initially, all the networks are cross-linked and elastically interactive, so
that the material consists of one single cross-linked network udergoing affine
deformation. Thus, initially,

(2.5) P = Y(Yia)-

Since, however, the bonds have strength of statistical variability, one may conceive
a situation where at some critical free energy level 1) = 1), one phase, say r = 1,
will become elastically detached, so that subsequently,

(2.5) P = P Wia) + ¥ Wik D)

and the domain consists of one affine and one migratory phase. We note paren-
thetically that 1)*, at the transition point, need not be equal to ;) because of
the loss of elastic energy associated with the fracture of cross-links connecting
the migratory to the affine phase.
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In a similar fashion, when an energy level vy is reached such that {* = 9y,
another phase becomes elastically detached so that two migratory phases are
operative. Now:

(25 =97+ P ir ) + P2 ®).

Thus, the difference between the first and second models is that, in the latter,
the migratory phases are not present ab initio and the onset of a migratory phase is
delayed until the free energy density of the affine phase has reached a “threshold”
value, in a manner reminiscent of a yield surface in plasticity. Other models are,
of course, also possible.

3. A variational principle

We begin with an integral form of a principle which is of purely mechanical
character, in that it avoids questions of entropy and temperature under conditions
of irreversibility (even though the question of existence of entropy was dealt with
by VaLanis [11, 12], in an earlier work). Furthermore, it is simple and leads to
direct results. The principle is in the form of the global statement that applies to

a dissipative continuous medium, in this case one with n migratory phases. If ¥
is the (virtual) rate of change of the stored energy ¥ (Helmholtz free enrgy in
thermodynamics) of such a medium in its reference configuration z, with domain
V' and surface S, then

3.1) W = S/ Tiv; dS + vf foidV - J Ddv,

where v; is a virtual velocity field, 7} are the surface tractions and f; are the body
forces (including inertial forces), and D) is the internal dissipation density, which
is always non-negative, i.e.,

(3.2) D <0.

The internal dissipation density [) is due to the rate of work of the internal
forces (), acting on the migratory velocity fields v”, where:

(3.3) ol = ph o= apt/ot|,.
Thus

(3-4) D=3 Qu*>0,
where

ZQL’UL = ZQY)U(I;), r=12,...,n.
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Hence, to summarize,

= [ T,v;dS vidV — Lav.
3.5) ¥ S/Tvdmvffvdv VjQLv v

The physical foundations of this principle are given in Appendix II.

Equation (3.5) is a statement of the fact that, for all admissible virtual velocity
fields v; and v’, at constant T}, f; and Q;, the virtual rate of change of the free
energy of a region is equal to the virtual rate of work done by the external body
as well as surface forces, minus the virtual dissipation due to the virtual rate of
work done by the internal forces Q).

With regard to the admissibility of the velocity fields v; and v”, we point out
that while v; are completely arbitrary, v must satisfy the dissipation inequality:

(3.6) Qrvl >0, if |[of] >0, [|QL||>0

for all 7, double bars denoting norms, i.e., ||Jvz||> = vy oL, so that equality (3.5)
may be written in terms of the Ineq. (3.7)

3.7) < S/ Tiv; dS + J foo; dV

for all arbitrary virtual velocities v;, and vE, subject to the constraint that in V/,
Q vt > 0, with the proviso that the equality sign applies only in the case when
|QLl| = 0 and/or ||vE| = 0.

We complete the variational statement by stipulating that for all v}, these
being velocity vectors associated with virtual rigid body motion,

(3.8) =0, |l =0.

This is a constitutive statement. The fact, as we shall show, that this is also a
statement of (dynamic) equilibrium, raises philosophical questions as to whether
equilibrium is an independent law, or a form of constitutive law, (common to
all materials whose constitution is determined by the dependence of the free
energy density on the displacement and internal field gradients), that rests on the
stipulation that, under condition of (virtual) rigid body motion, the free energy
is invariant and the dissipation is zero, since in fact [[v”|| = 0.

For the purposes of the analysis we introduce, in the variational principle, the
Helmbholtz free energy density ¢, per unit undeformed volume, such that:

(3.9) = [dV
/
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assuming short-range interaction among particles. We thus have a variational
principle in terms of the following inequality:

(3.10) pdV < [ TowidS + [ fv;dV,
where 1) = (O] 0t),.

4. Field equations in the presence of internal fields

We begin with the generic Eq.(2.4),, i.e.,

4.1) ¥ = Y¥ie P* a3 q™),
where p* , is the inverse of z“ g, i.e.,
(4.2) e kp" 5= 6%
and ¢& = pi — 6K,

Thus

(4.3) "L = (a¢/ayi,a)vi.u + (81:[’/8}"1{.0)(”]{ at ad’/aq[{ UK»

where

(4.4) ol = 0¢k 0t = ap" /0t
(4.5) v o = (0p" a/0):

Hence

(4.6) b = Pvia + POK0R o+ Prot,
where

“.7) P = 0P [Oyia, POk = 0P[R, Pr = 0¢p[0g".
We now use Eq.(4.5) in the variational inequality (3.10) to find:

(4.8) (W% i + PP Lok p)dV < [ Tiv;dS + [ fividV.
/ JRmi

The left-hand side of Eq.(4.8) is now recast in surface and volume integrals
with the aid of the Green - Gauss theorem, and Eq. (4.9) is thereby obtained:

(4.9) /(d)“ina - Ti)v; dS — / () o + fi] vidV
s |4

+ [ ¥PrngotdS — [ |(@PL),s —vr| vt dV <0.
‘5/ Lngv V/[ L).s3 L]



596 K.C. VALANIS

Discussion. Before we proceed with the consequences of Eq.(2.4) we note
that, generally, on a part of the surface .S, namely S, tractions are applied,
while on its complement Sy displacements or velocities V; are applied instead.
Therefore, on St the virtual velocities v; are arbitrary while on Sy these are
zero. With regard to the boundary conditions of the migrating phases (and fol-
lowing the discussion at the end of Appendix II), the surface S is the sum of
the sub-surface Sy on which the velocities of the phases are unknown and thus
the virtual velocities are arbitrary, and the sub-surface Sp, which is impenetrable
to phase migration, and on which the migratory velocities V* = 0. No other
physical situation is possible (see discussion at the end of Appendix II). Thus on
So the virtual velocities v are arbitrary while on Sp:

(4.10) pK = 6K jz°

and the virtual velocities vZ are zero. In the interior both v; and v’ are arbitrary
except that v” are admissible only if they satisfy the dissipation inequality.

With the above discussion in mind, let a set of admissible v” in V' be pre-
scribed, in the sense of Ineq. (2.1). The virtual velocity fields v; on S, v; in V
and v” on Sy, can be independently and arbitrarily prescribed. Thus setting these
equal to zero, and noting that v; are zero on Sy and vl are zero on Sp, one
finds in view of Ineq. (4.9), that

(4.11) / ((¥PL)5 — O /Dg"] v dV > 0.

|4

Now keeping v; in V' and V! on S null, one may prescribe v; on S7 in a manner
that violates Ineq. (4.9), if the bracket under the surface integral does not vanish.
Thus

(4.]2) ¢’Qg71.(v = T, on ST,
(4.13) v; =V, on Sy,

where V; are known functions of time and the surface coordinates. Repeating the
same argument for the other integrals one finds that

(4.14) W)+ fi=0 inV
and
(4.15) WPng=0 on Sy, vE=0 on Sp.

DiscussioN. Equation (4.14) replicates the equation of motion in continuum
mechanics when internal fields are absent. Here we show that the equation applies
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in the presence of internal fields. Therefore if f; contain inertia forces, as in the
dynamic case, then

(416) fi =g — go(?zy,-(w",t)/ﬂtz,

where g; are body forces other than inertia forces and gy is the reference density
of the domain. We point out that to obtain Eq.(4.14) in the presence of inertia
forces, we choose a virtual velocity field which is accelerationless, ie. V; is a
function of x“ only and independent of time.

REMARK. As noted above, the physics of the problem is such that tractions
are prescribed on S7 (< S) with full kinematic freedom of the particles on the
surface, while the deformation of the surface Sy (Sy < ) is prescribed by means
of a relation:

(4.17) y® =y 5 (%, 1),

where y;° and 25 denote the coordinates of the particles on the deformed and
undeformed surface, respectively. In the former case Eq.(4.12) applies. In the
latter case v; are prescribed on the surface since

(4.18) v; = V; = (0y;° | 0t),
and Eq.(4.13) applies. With regard to the migratory boundary conditions, the

surface velocities V'~ are arbitrary on Sy while V'~ are zero on Sp.

5. Internal equations of motion

We begin by noting that Eqgs.(4.11), (4.12) and (4.13) in conjunction with
Egs.(3.5) and (3.9) lead to the following relation for the dissipative forces ()1,

(5.1) /{('d"BL),ﬁ — O /dq" - QL} vl dV = 0.
A

Since this equation must be true for all arbitrary (including infinitesimal) domains,
the local form of Eq.(5.1) results:

(5.2) (P05 —3v/9g" = Qu}o" = 0.

Equation (5.2), however, cannot be satisfied for all admissible fields v’ (see
Appendix I), unless:

(5.3) WPL)s - 0v/0q" - QL =

Equation (5.3) is the equation of internal equilibrium that relates the dissipative

force (), to the divergence of the bi-vector 'zj.vf.
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At this point we recall Ineq. (3.6), i.e., Qrv” > 0, which is a constraint or
a requirement of positive dissipation in the presence of non-affine deformation.
The constraint demands that 7, and V' should be related, otherwise they could
be prescribed independently and in a manner that would violate the inequality.
The most obvious relation is a linear one of the form:

(5.4) Qx = bxro®,
where by, is a covariant “viscosity tensor”. Equation (5.4) is a statement to the
effect that the dissipative (resistive) force is a linear and homogeneous function
of the migratory velocity of a phase.

Equations (5.3) and (5.4) combine to give Eq.(5.5),
(5.5) PP s — O [9gK = bt
which is the equation for the motion of the particles in a migratory phase.

The initial conditions

The initial conditions are obtained from the presumption that the material is
in a quiescent state at ¢ = 0. Thus

(5.6) yi(z*,0) = §;oz°, ¢ (z*,0)=0,
(5.7) vi(z®,0) = 0.

At this point we summarize the equations pertinent to the motion of the domain,
reference being made to the individual phases » = 1,2, ..., n.

Summary of equations

InV
(5.8) 1 = (By:/0z*; Op™ [ 0z4; g%),
(5.9) (W% + gi = 000%yi(z®, 1)/ 01,
(5.10) Vi 5 — YK = bgrot.
On St
(5.11); g = T
On Sy
(5.11), y;S = y;5(x%s,t) or v;=V,.
On Sy
(5.11)3 PPrng = 0.
On Sp
(5.11)4 vl =0.

The initial conditions are such as in Egs. (5.6) and (5.7).
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5.1. Invariance under rigid body motion

We restate the two conditions stated previously, to be satisfied under condi-
tions of (virtual) rigid body motion:

(5.12) =0, |vY=0.

These conditions are fundamental in putting further restrictions on the form of
) and in identifying physically certain constitutive constraints.
To show this we employ Eq.(3.5), i.e.,

= Vi i - L
(5.13) 0 S/Tv dS+S/f % V/QLU dv

which in the presence of rigid body motion then becomes:

(5.14) S/ Tovi dS + V/ froidV = 0.

(i) Rigid body translation
In this case v; are constant in V. Thus, in view of Eq.(5.14),

(5.15) vi{SjTidS+indV} = 0.

A set of three linearly independent vectors v; can be found for which Eq.(5.15)
must hold. This is possible iff

(5.16) !Ti ds +Jf, dv = 0.

Using the classical argument of applying Eq. (5.16) to a tetrahedron of vanishing
dimensions in the undeformed domain, one finds that

(517) T“ina = Ti,

where the tractions 7; are calculated in the xz-frame and pertain to the unde-
formed area. We recognize 7'%; as the First Piola - Kirchhoff stress tensor. Fur-
thermore, in the light of Eqgs. (4.13) and (5.17),

(5.18) Te; = ;.

If we transform the domain of integration in Eq. (5.14) to that of the deformed
configuration and apply the same procedures, we find that

(519) Tij n; = T-’,

i
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where T;; is the Cauchy stress and the traction 77, where 7; = Det(y: )1},
are calculated in the y-frame and pertain to the deformed area. The following
tangent transformations apply:

(5.20) Na = Yiali, T = JTjj2° 5, JTiy =Ty

(it) Rigid body rotation

Here, the virtual velocity v; is caused by a virfual angular velocity {2; brought
about by rotation of the spatial frame of reference y,. Therefore there are no
induced centrifugal forces as there would be, had {2; been actual, i.e., an angular
velocity of the domain itself. Thus ¥ does indeed remain invariant in the presence
of a virtual angular velocity field (2;.

We now begin Eq. (5.21):
(5.21) vi = €ijkf2; Yk,
where e is the permutation tensor and {2; is an arbitrary angular velocity vector,
brought about by rotation of the frame of reference y;. Again, transforming the

domain of integration in Eq.(5.14) to that of the deformed configuration and
applying classical arguments we find that:

(5.22) Iy =15,
Thus, in view of Egs. (5.18), (5.20); and (5.22):
(523) @baiyj‘cr = d’ajyi,a

Eq.(5.23) is a restriction on the functional form of 1.
Further Invariance Considerations. We recall Eq. (5.8):

(5.24) Y = Y(iai P 0).

Virtual rigid body rotation leaves 1 as well as z® ;") invariant. However, y; .
is a bi-vector and represents in fact the three vectors: v, 1; 2 ¥:3. A clasical
theorem in continuum mechanics (see for instance ERINGEN [17]), is that a scalar
function 1) of three vectors a, remains invariant under rotation of the frame of
reference iff it is a function of the inner products a,-a, and the determinant
|a;,|. Furthermore, if ¢ is centro-symmetric, i.e., invariant under reflection of the
frame of reference, as it must be since the choice of the spatial reference frame
is arbitrary, then ) must be an even function of |a;|, since |a;.| changes sign
upon reflection.

It follows, therefore, that a necessary and sufficient condition that ¢» be in-
variant under rigid body rotation and reflection of the spatial frame of reference
y; is that

(5.25) P = P(Cap; P* 03 4%),

where C, is the Right Cauchy-Green tensor y,.” y,.. One can verify that condi-
tion (5.23) is now trivially satisfied.
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5.2. Conditions of material isotropy

In strictly affine deformations, the mathematical definition of material isotropy
is invariance of a constitutive equation, or property, under rotation and inversion
of the material frame of reference z“. In the present case, however, the situation
is more complex and lends the theory a wider scope for material characterization.
For instance, a migratory phase may be isotropic initially but may evolve into an
anisotropic state as migration proceeds. We thus distinguish between two distinct
possibilities:

(1) Isotropy in the initial state whereby ) is invariant under rotation and inversion
of the material frame x°

(ii) Isotropy of phase “r” in the migrated state in which event 1) remains invariant
under rotation and inversion of the frame p™ ()

We note that in (ii) we have introduced a formal, rigorous definition of
“strain-induced anisotropy” in phase 7, a lack of invariance if 1) under rotation
and inversion of the frame p” ()

Restrictions on 1

(i) Isotropy in the initial state

This means invariance of ¥ under rotation (and inversion) of the material
frame =®. We begin with Eq. (5.25) which we write in the form:

(5'26) Y = I‘Z’(Caﬁ;xalx';qix‘)'

In the case 1) is an isotropic function of the tensor C,z, and the three vectors
2%k a=1,2,3. Thus

(5-27) ¥ = Yl : Ckr; Grrigh),

where O = Copr® k2P 1; G = 8apz® x2P 1, and I, are the three principal
invariants of C,z.

(ii) Isotropy in the initial state and migratory phase 1

In this case @ is an isotropic function of G 'E,\I)L, Crp ™ and ¢* but a general

function of the tensors G'gr ("), C w1 and ¢, r = 2,3, ... n. In other words, if
a phase remains isotropic during its migratory motion then > will be an isotropic
function of G'x-1, C'z and ¢ of that particular phase.

Thus, more generally, specific material symmetries in the initial configuration
involve invariance under appropriate rotations of frame x, while evolving symmernes
in a specific phase r involve invariance under appropriate rotations of frame p™* (r)-
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5.3. Linearization of the field equations

We complete this section by giving the linearized form of the field equations
and boundary conditions (5.8)—(5.11)4. The basis of the linearization scheme is
the premise of small deformation in the sense that:

(5.28) Yi = 6ia™ + nu;,
(5.29) p" = 8% a™ + ng",

where 7 is a small real number. Equations (5.28) and (5.29) are then substituted in
Egs. (5.8)~(5.11)4, terms in 7 are retained, while terms in 52 and higher order are
neglected. Subsequently 7 is set equal to unity. Furthrmore since, ultimately, all
equations are referred to the reference frame z, following the analysis all indices
are replaced by small Latin letters. Note, parenthetically, that since the frame p
now collapses onto the frame x, there cannot be any evolution of anisotropy of
phase, if the phase is initially isotropic.
Thus, beginning with the relations:

(5.30) pra =65, + 9%,

(5.31) Cag = 50,/5 + 27]Eaﬁ s

(5.32) Ckr = k1 + 2nekr — 2nqkL
(5.33) Grr = 0kxrL — 299KkL,

where ¢, is the strain tensor while 2¢x 1, = ¢x 1 + ¢1.,x, the following equations
result for all r:

InV
(5.34) = Plei 407, 4
or
(5.35) ¥ = P4, 4:7)
if the domain is initially isotropic. Also
(5.36) (D)0 [); + gi = %02,

(5.37) (/04,7 ;) ; — 0 )0g" = b;;(3¢; /Ot (r not summed).
On St

(5.38), (0 ) du; n; = Ty
on Sy

(5.38), (/3¢ yn; = 0;
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on S5,

(5.39), u; = Us;
on Sp

(5.39)2 g = 0.

Initial conditions

(5.40) wi(z,0) = (0)z,0)=0;  ¢(z,0)=0.

6. A worked example

To illustrate the ramifications of the non-local theory, we present in this sec-
tion a worked example of simple quasi-static shearing in one dimension. Let a
half-space be infinite in directions = and z and semi-infinite in direction y. The
material domain is in a quiescent state when, at time ¢ = 0, a shearing traction
To(t) is applied in direction z on the surface y = 0. Let

(6.1) i = (1/2)Au? + Buyq, + (1/2)C¢,

where v, = du/d,, ¢, = dq/0,, i.e., a subscript denotes differentiation. The
pertinent boundary conditions then are: At y = 0, T' = Ty(t); 0v/dq, = 0
At y = oo, all variables are bounded. At ¢t = 0, u = ¢ = 0. The equilibrium
condition, Eq. (5.27), gives:

(6.2) (0] duy), = 0
while the equation of motion for the internal variable ¢ is given by Eq. (6.3):
(6.3) (0¢/0qy)y = bq:.

In view of Eq.(6.2), the shear stress 7'(= d1/du,) is uniform in the domain as
in the local theory. However this is not true of the strain. Eqgs.(6.2) and (6.3)
combine to give the following (diffusion) equation for ¢:

(6.4) Cl(]yy =bq,

where '} = C' — B%/A. We have solved Eq. (6.4) by the usual Laplace Transform
technique and obtained the following expression for the shear strain ~y

(6.5) y = f J(z:t — 7)(OTo/dr) dr.
0
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Note that memory function J(y,t) plays the role of a creep function except that
now, at variance with local theory, it is a function of x as well as ¢. Equation (6.6)
gives the analytical form of J, found from the solution

(6.6) J(y, )= AT {H(t) + (B2 /ACy)erfe [y/at'/?)| }

where a®> = b/C. In Fig.1 we show the dependence of v on time at various
y-stations when 7 has the form of a Heaviside step function, in which event
v(y,t) = J(y,t). Evidently the strain “diffuses” into the half-space as time in-
creases.

decreasing y

F1G. 1. Shear strain versus time for different values of y.

7. Postscript on plasticity

Previously, VaLanis [15, 16], we have developed the constitutive equations of
plasticity and viscoplasticity, in the context of the local theory of thermodynam-
ics of internal variables, by introducing the concept of “intrinsic time” z, and
substituting z for ¢ in the equations of evolution of these variables. The theory
developed here may be extended to materials that are strain-rate indifferent, or
partially indifferent, by the use of a similar procedure, whereby z premultiplies
the left-hand side of the equations of motion of the internal fields. Eq. (5.10) will
now read

(7.1) z {wﬁ’mr) ~ @b,\-m} =0\ v(y (r not summed).

The precise nature of Z will be discussed in future studies.
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Appendix I

The task is to prove that if
(1.1) (Qr + YLt =0

for all admissible v, where ¢/, = (¢” 1) s, then

(12) (Qr +1r) =0.

As discussed in Sec. 2, v” is admissible if

(1.3) Qrvl >0, Yt <o

for all [|QL|| # O, ||¥] # 0, ||v”| # 0. Otherwise v* are arbitrary.

Proof. If ¢y and ¢/, are collinear and either of the same sign or unequal,
the proof is trivial. Let ()7, = a1y, where a # —1. Then in view of Eq.(1.2)
Y;8q; = 0. However, the constraints 1 v’ = 0 and ¥»;,v < 0, cannot be satisfied
simultaneously if [[1)| # 0. Thus, in this case, @ = —1 and @, + ¢, = 0.

If 1, and 17, are not collinear then there exists a vector 57, normal to the
plane of the vectors @1, and ¥, (QrBY = 0, ¢ B* = 0), such that the scalar
product p = eEMNQ4ppr By > 0. The three vectors Q) ¥, and By, are linearly
linearly independent. We now introduce two vectors: R”, normal to the plane of
1, and By, and PL normal to the plane of ()1, and By, ie.,

(1.4) RL = eLMN oy vk s pL = eLMNQMBN'

It may now be shown that all vectors v’ of the form:

(1.5) vl = aRY + P + yBE,

where o and [ are positive scalars and v in non-negative, are admissible. In fact
(L6) Quol =ap, Yol = -fp

thus satisfying inequalities (1.3).
Three vectors v”, are then constructed as in Eq.(1.7),

(1.7 svl, = a, R; + 3, P; + v, B;

where o, > 0, 8, > 0, v, > 0. These vectors are admissible and, furthermore
linearly independent if v; = 1, v, = 0, 43 = 0, and the determinant condition (1.8)
is satisfied

(L.8)

ap Q3
B P

Since one can always find positive scalars such that a3, — azf; # 0, condition
(I.1) now demands that the vector ({; + ;) be orthogonal to three linearly
independent vectors. This is not possible if the said vector is different from zero.

Thus QL = —Y/)]_,.

0.
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Appendix II

Variational principle

Physical foundations

To derive Eq.(3.1) we begin with the observation that, actually, the rate of
(virtual) work W s done by the surface tractions is

(I1.1) Ws = /ZTi(T)Ui(T)dS7
S

where T(") are the surface tractions on the phases of the domain and v(") are the
corresponding (virtual) velocities of the phases, i.e.,

(I1.2) v = Ay (0" (1), 1)/ 01
More precisely, and since p/ are migration maps given by the relation
(I1.3) PE = pf (2, 1)

and omitting the index  on the right-hand side of (I1.4), for simplicity of notation,
the phase velocity v,(") is given by Eq. (IL4):

(L4) v, = oy (2%, 1),1)/0t|, = (Dy; /| Op™)Op™ |0t + Dyi/Ot|,.

Quite clearly dp™(,,/0t[.(= v, is the migratory velocity of phase r while
Ayi(p™ (1), 1)/ 0], (= vi{)y,) is the velocity of the phase relative to the present
reference configuration p. Thus:

(IL5) v = 9y Op" (" oy + i),

Equation (I1.5) is merely the rule of addition of velocities.
In a similar manner the rate of (virtual) work W done by the body forces is

(IL6) W)y = / S £00,0 4y,
v T

Thus, the statement that the rate of change of the free energy of a domain is
equal to the rate of work done by the applied surface and body forces minus the
rate of dissipation (all rates being virtual), has the analytical form of Eq. (I1.7)

@y b= [Yrw0ds+ [ 0w - [Day.
s 7 4 1
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It is a posited premise in continuum mechanics that the forces that constitute
a surface traction are shared equally by all particles of the neighbourhood. With
the above in mind, let ng, n,...,n,, be the particle densities of the phases (at
the surface) such that 5~ n, = 1. It then follows that

(I1.8) T =n,T, T=>TO.
In a similar manner,
(IL9) fO=nf, £=3 10

where n, are now the particle densities in V' (if different from .5). Substituting
equations (I1.8); and (I1.9); in Eq.(I1.7) we recover Eq. (I1.6) of the text, i.e.

(IL.10) 0 = / TovidS + / froidV — f Dav,
S 1% 1%

where

(IL.11) vi= Y 0,0

i.e. v; is the mean, number-averaged (virtual) velocity and is equal to the one that
would be calculated from the first principles, in the case if the (virtual) velocities
of the phase were not equal.

The superscript  of the function 7,0 on the right-hand side of Eq.(IL.2)
signifies the fact that the deformation of the phases is not compatible, in the
sense that, after deformation, each phase r occupies a point ;") in the spatial
system, not necessarily the same as ;" *1), say, or any other y;(™), for that matter.

Thus, to be precise, the free energy density ©»" in model (i) in the Sec.2.
Physical Foundations, should be given by Eq. (11.12)

(I1.12) ) =y /0p* (,)), T not summed.

But then the theory would be too complex, and mathematically and physically in-
tractable. In this simpler physical approach the deformation gradient dy.")/dp™ )

has been replaced in Eq.(I1.12) by the mean deformation gradient dy;/dp™ .

where

yi — Z N, yi(r)-
Thus
(I1.13) v; = 0Yi[ O] = an ;")

as in Eq. (II.11), assuming n, to be constant.
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Discussion of boundary conditions

When the boundary conditions were discussed in the text, the question was
posed whether a diffusive velocity v’ (,), of a phase r, could be prescribed at the
boundary. This is experimentally not feasible — since at the boundary, separate
motions of the phases cannot be distinguished experimentally — unless, of course,
'vL(T) = 0 for all r. This is achievable physically by making the pertaining part of
the boundary impenetrable to particle migration. In this case,

(11.14) pX ) = 8.5 2

for all r. Thus

(IIlS) 'UK(T) = apK(q)/éth = O,
and in view of Eq. (IL5),

(I1.16) v = ;.

Thus, either the diffusive velocities v/, of the migrating phases are not
prescribable on the boundary, or if they are, then they all identically vanish.

A footnote on dissipation

In reference to Eq. (IL.5), quite clearly the dissipative velocity is the non-affine,
migratory velocity v”. Thus when resistance to such motion exists, through a
resistive force (), then the rate of dissipation is the rate of work done by the
dissipative forces, i.e., Qrv’.

We make the statement of “when resistance exists” so as to open the door
to the possibility of elastic non-affine deformation. This, in principle, could be
achieved through breaking of bonds but without resistance to subsequent motion.
In this event 1) would be zero. This case is merely a sub-case of the theory already
presented. The relevant equations are obtained by setting the right-hand side of
Eq.(5.10) equal to zero.

One thus obtains a theory of non-local elasticity without the need for higher
gradients of deformation, by introducing the concept of internal fields.

References

R.A. TouriN, Elastic materials with couple stress, Arch. Rat. Mech. Analysis, 11, 119-132, 1962.
R.A. Tourin, Theories of elasticity with couple stress, Arch. Rat. Mech. Analysis, 17, 85-112, 1964.
R.D. MINDLIN, Micro-structure in linear elasticity, Arch. Rat. Mech. Analysis, 16, 51-78, 1964.

R.D. MINDLIN, Second gradient of strain and surface tension in linear elasticity, Int.J. Solids and Structures,
1, 417438, 1965.

Lol o A



A GRADIENT THEORY OF FINITE VISCOELASTICITY 609

A.E. GREEN and R.S. RivLiN, Multipolar continuum mechanics, Arch. Rat. Mech. Analysis, 17, 113-1471,
1965.

. E.C. AIANTIS, Remarks on media with microstructure, Int.J. Eng. Science, 22, 961-968, 1984.

7. E.G. AIBANTIS, On the microstructural origin of certain inealastic models, J.Eng. Mat. Technology, 106,

10.

11.
12.

13.

17.

326-330, 1984,

E.C. AIFANTIS, On the structure of single slip and its implications for inelasticity: Physical basis and modelling
of finite deformations of aggregates, J. GITTUS et al. [Eds.], pp. 283-324, Elsevier, London 1986.

I. VarDouLAKss and E.C. AIFaNTIS, A gradient flow theory of plasticity for granular materials, Acta Mechan-
ica, 87, 197-214, 1991.

I. VARDOULAKIS and G. FRANTZISKONIS, Micro-structure in kinematic-hardening plasticity, European J.
Mech., 11, 467-486, 1992.

K.C. VALANIS, Irreversibility and existence of entropy, J.Non-linear Mechanics, 6, 337-360, 1971.

K.C. VALANIS, Partial integrability as a basis of existence of entropy in irreversible systems, ZAMM, 63, 73-80,
1993.

K.C. VALANIS, The viscoelastic potential and its thermodynamic foundations, Iowa State University Report
52, 1967, J. Math. Physics, 47, 267-276, 1968.

. B. CoLEMAN and M. GURTIN, Thermodynamics of intemal state variables, J. Chem. Physics, 47, 599-613,

1967.

. K.C. VALANIS, A theory of viscoplasticity without a yield surface, Arch. Mech., 23, 517-533, 1971.
16.

K.C. VALANIS, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the en-
dochronic theory, Arch. Mech., 32, 171-191, 1990.

C.A. ERINGEN, Mechanics of continua, John Wiley & Sons, New York 1967.

ENDOCHRONICS, VANCOUVER, USA.

Received January 7, 1997.



DIRECTIONS FOR THE AUTHORS

The journal ARCHIVES OF MECHANICS (ARCHIWUM MECHANIKI STOSOWANE]) deals with the
printing of original papers which should not appear in other periodicals.

As a rule, the volume of a paper should not exceed 40 000 typographic signs, that is about 20 type-written
pages, format: 210 x 297 mm, leaded. The papers should be submitted in two copies. They must be set in
accordance with the norms established by the Editorial Office. Special importance is attached to the following
directions:

1. The title of the paper should be as short as possible.

2. The text should be preceded by a brief introduction; it is also desirable that a list of notations used in
the paper should be given.

3. The formula number consists of two figures: the first represents the section number and the other
the formula number in that section. Thus the division into subsections does not influence the numbering of
formulae. Only such formulae should be numbered to which the author refers throughout the paper, and also
the resulting formulae. The formula number should be written on the left-hand side of the formula; round
brackets are necessary to avoid any misunderstanding. For instance, if the author refers to the third formula
of the set (2.1), a subscript should be added to denote the formula, viz. (2.1)3.

4. All the notations should be written very distincly. Special care must be taken to write small and capital
letters as precisely as possible. Semi-bold type should be underlined in black pencil. Explanations should be
given on the margin of the manuscript in case of special type face.

5. It has been established to denote vectors by semi-bold type. Trigonometric functions are denoted by sin,
cos, tg and ctg, inverse functions — by arcsin, arc cos, arctg and arcctg; hyperbolic functions are denoted by
sh, ch, th and cth, inverse functions — by Arsh, Arch, Arth and Arcth.

6. Figures in square brackets denote reference titles. Items appearing in the reference list should include
the initials of the first name of the author and his surname, also the full title of the paper (in the language of
the original paper); moreover;

a) In the case of books, the publisher’s name, the place and year of publication should be given, e.g,
5. S. Ziemba, Vibration analysis, PWN, Warszawa 1970,

b) In the case of a periodical, the full title of the periodical, consecutive volume number, current issue
number, pp. from ... to ..., year of publication should be mentioned; the annual volume number must
be marked in black pencil so as to distinguish it from the current issue number, e.g.,
6. M. Sokotowski, A thermoelastic problem for a swip with discontinuous boundary conditions, Arch.
Mech., 13, 3, 337-354, 1961.

7. The authors should enclose a summary of the paper. The volume of the summary is to be about 100
words.

8. The authors are kindly requested to enclose the figures prepared on diskettes (format PCX, BitMap or
PostScript).

Upon receipt of the paper, the Editorial Office forwards it to the reviewer. His opinion is the basis for the
Editorial Committee to determine whether the paper can be accepted for publication or not.

The printing of the paper completed, the author receives 10 copies of reprints free of charge. The authors
wishing to get more copies should advise the Editorial Office accordingly, not later than the date of obtaining
the galley proofs.

The papers submitted for publication in the journal should be written in
English. No royalty is paid to the authors.

Please send us, in addition to the typescript, the same text prepared on a
diskette (floppy disk) 3 1/2” or 5 1/4” as an ASCII file, in Dos or Unix format.
EDITORIAL COMMITTEE

ARCHIVES OF MECHANICS
(ARCHIWUM MECHANIKI STOSOWANEIJ)





