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Preface

The Journal Archives of Mechanics, published bimonthly, has appeared for
more than 40 years and is edited by the Institute of Fundamental Technologi-
cal Research of the Polish Academy of Sciences. The scope of the Journal covers
mechanics and physics of continuous media, theoretical and experimental mechanics
of solids and fluids, engineering structures, thermodynamics, analytical and compu-
tational methods in mechanics.

The Editorial Committee invited the Scientific Committee of the XXXI Polish
Solid Mechanics Conference — SolMec'96 organized in Mierki, September 9-14,
1996, by the Institute of Fundamental Technological Research and Committee of
Mechanics of the Polish Academy of Sciences, to encourage all authors of oral and
poster presentations at the SolMec'96 Conference to publish their contributions
in special issues of the Archives of Mechanics and Engineering Transactions.

The present issue of Archives of Mechanics is the first special issue of the
Journal (the second one will appear in two months) and contains the submitted
and reviewed contributions of a more basic orientation.

The first special issue of the other journal, namely Engineering Transactions
has been printed simultaneously and it contains the contributions with a more
engineering character.

The number of papers presented at the XXXI Polish Solid Mechanics Con-
ference exceeded 200, including almost 90 papers from abroad. The conference
took place at the Holiday Resort Centre KORMORAN in Mierki, approximately
25 km south of Olsztyn and 200 km north of Warsaw, located in a beautiful forest
on a bank of the scenic Pluszne Lake.

The program of the conference included the invited opening, 15 general and
closing lectures, as well as almost 200 contributed papers presented as lectures or
at the poster sessions. They were arranged according to the subject considered.

The main topics of the Conference were arranged as follows:

e mechanics and thermodynamics of solids with microstructure,

¢ dynamics of solids and structures,

¢ plasticity, damage and fracture mechanics,

o mathematical and computer methods in mechanics and engineering sciences,

o experimental methods in mechanics,

e contact and interface problems in mechanics,

¢ environmental mechanics,

¢ porous media.
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Special attention of the organizers and participants coming to the Confer-
ence from several academic and research centers all over the world was paid to
problems of environmental mechanics. The Organizing Committee of the Con-
ference, together with Professors Schrefler from Padova and Professor Kleiber
and Dr. Gajl from Warsaw, organized a TEMPUS - sponsored Intensive Course
on Environmental Mechanics during the SolMec'96 Conference.

During the Conference an INTERNET Session was organized with the help
of COMP Ltd. Warszawa, Poland and after the Conference on the WWW — page
of the Book of Abstracts will be still reachable under the address:

http://www.ippt.gov.pl/~solmec96.

As announced during the Conference the contributions of participants who
submit their papers in an electronic form are and will be included in the SolMec’96
electronic proceedings book under the same address on the INTERNET.

The Conference hosted 238 scientists from 20 countries, including: Austria,
Belgium, Czech, Finland, France, German, Great Britain, Greece, Hungary, Italy,
Japan, Russia, Spain, Swiss, Turkey, Republic of South Africa, Romania, Ukraine,
US.A.

Some of the scientists coming from Russia obtained financial support towards
their travel expenses from the International Science Foundation and from the
Organizing Committee towards a reduction of the registration fees and their
living expenses.

All German participants and some Polish ones obtained financial support to
reduce the registration fees from the Stiftung fiir deutsch — polnische Zusammen-
arbeit. Moreover, the Stiftung will support the publishing of a special Proceedings
volume dedicated to “Problems of Environmental and Damage Mechanics”.

Warszawa, February 1997

Witold Kosinski
Conference Chairman
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Crack in an anisotropic medium

A.V.BALUEVA and S.V. KUZNETSOV (MOSCOW)

A NUMERICAL method for the 3D problem of cracks in anisotropic media is developed, based on the
variational approach to the crack opening problem. Properties of the pseudo-differential operator
of the crack equilibrium problem are considered. Numerical examples are presented.

1. Introduction

SorutioN of the 3D problem of a plane crack in anisotropic medium is not simple
in view of the absence of effective algorithms for determination of fundamental
solutions of the equilibrium equations.

Presumably the first integro-differential equation for the plane crack in aniso-
tropic medium was constructed in [1, 2] by means of the Fourier and Radon
transforms. The main difficulty in that approach lies in the necessity of construct-
ing several auxiliary solutions to the problem of determination of the root of
elliptic polynomials in three variables. In fact, in the case of arbitrary anisotropy,
the latter problem can be solved only numerically. That does not allow us to ob-
tain qualitative and quantitative results for cracks, which are known for isotropic
case [3, 4].

The method developed for solution of the 3D problem for a plane crack of
arbitrary shape in anisotropic medium is based on the construction of the elliptic
pseudo-differential operator (p.d.o.) and application of the Goldstein-Klein-
Eskin variational method [5] for a numerical solution.

2. Basic operators

Anisotropic elastic medium is considered, for which Lamé’s equations of equi-
librium can be written in the form

(2.1) A(0)u(x) = —div,C---V,u(x) =0,

where A is the matrix differential operator of the equilibrium equations, C is a

fourth-order elasticity tensor, assumed to be strongly elliptic, while the medium

itself is assumed to be hyperelastic, and u is the displacement vector field.
Application of the integral Fourier transform

9" = [ 9 exp(-2rix-) de
R3
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to (2.1) yields the matrix operator A

(2.2) ANE) = @m)’¢-C €.
As it follows from (2.2), operator A" is strongly elliptic, positive definite of degree

2 and analytic in F5.
Now, formal identity following from the definition of the fundamental solution

23) ANE)ENE) = 1,

where E" is the fundamental solution, and I is a unit (diagonal) matrix, enables
us to write E* in the form

(2.4) E"(§) = A (§)/ det A" (§),

where Ag is the cofactor of A”. This formula shows that operator E" is also
strongly elliptic, positive definite of degree —2 and E* € C=(R*\ 0, R* ® R%).
The inverse Fourier transform applied to the formula (2.4) leads to
ProrosiTionN 1. Fundamental solution of the equilibrium equations (2.1) is
positive definite of degree —1 and E € C®(R3\ 0, R* @ R®).

REMARK 1. It should be noted that, while for some specific groups of elastic
symmetry the Fourier inversion of the formula (2.4) can be performed analytically,
in the general case of elastic anisotropy it can be done only numerically [6].

3. Representation of solution

The displacement field produced by a crack is represented by the double-layer
potential

G u() = [ b()- TG, v,)E(x - ¥)dy'
n

where b is the crack opening, T is the operator of surface tractions, dy’ is the
Lebesgue measure on the /I,-plane, and §2 C I], is the bounded plane region
occupied by the crack at the [],-plane.

Surface tractions acting at the [/,-plane are determined by the limits (evalu-
ated in non-tangential direction)

(2) ) = lim TG, -ve) [ &) TG, v )EC - Y)dy', X € IT,.
2

These limits are correctly determined according to the Lyapunov-Tauber the-
orem for elastic potentials [7].
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Application of the Fourier transform to (3.2) gives the amplitude [9] of the
corresponding pseudo-differential operator
(3.3) G"(¢) = (27)’ry - C-- - QENE) @€+ -Cruy.

Properties of the amplitude (3.3) and the associated principal symbol were
investigated in [7, 8] where it was proved that condition of strong ellipticity for the
elasticity tensor C ensures strong ellipticity for the amplitude (3.3) and principal
symbol.

Reduction of the amplitude (3.3) to the II,-plane gives the principal symbol
we are looking for, which depends on ¢’ € ], variables alone:

(3.4) G(¢') = (2r)2F.P. / GM(€) de”,

where ¢ € R3, & = Pr ¢, £ = Pr,(£) so £ = € + "v. In (3.4) F.P. stands for
the Finite Part of the diconvergent improper integral.

4. Regularization technique

To evaluate integral in (3.4) we observe that the integrand in (3.4) has an
obvious asymptotic property due to (2.4)
(4.1) IGMEI = O, €] — oo

Moreover, the limit of the integrand when |£”| — oo can be easily obtained from
(3.4) using Eqs. (2.3) and (2.4), that is

4.2 v ¢ lim G*¢)=v-C.v
42 o i, 6O = :Cov
Now, from Egs.(4.1) and (4.2) it follows that
(4.3) IG*©€) = v-C-v|l = O(E"™Y), €' = o0.

Analysis of the expressions (4.2) and (4.3) shows that the asymptotic terms of
the highest order O(|£”|~1), |¢”| — oo are odd functions of £”. So, the improper
integral in (3.3) exists in the Principal Value sense at any £’ # 0:

(4.4) G(¢') = P.V. / (GMNE) — v+ Cv) dE".

Taking into account oddness (with respect to £”-variable) of the highest asymp-
totic expression in (4.3), the integral in (4.4) can be finally rewritten in the fol-
lowing form, which can be more convenient in computations

(= o]
¢5) @)= [ [6'©-6"O-w-Cold’, € #o0.

—00



248 A.V. BALUEVA AND S.V. KUZNETSOV

5. Properties and structure of the operator G~

Proof of the following proposition can be found in [7, 8]:

PROPOSITION 2. a) Operator G~ is symmetric; b) G~ is positive definite of
degree 1 with respect to |¢'|; ¢) symbol G~ is strongly elliptic; d) work produced
by the surface loadings to € H_;/5(f?, R3) acting on the crack faces

(5.1) /to-bd:c’>0
2
is positive, where H_; /, is the Hormander functional space; e) quadratic functional
(52) F(b) = / b~(£)-G™(¢')-b7(¢") d¢’
i,

representing the elastic energy is coercive in Hormander’s space H 5.
] 1/2

CoroLLARY 1. Normal loading on the crack surface ty = pv, p > 0 pro-
duces crack opening and increases the crack volume, independently of the elastic
anisotropy.

COROLLARY 2. Variational problem

. 1 i ! ~.'"~ !
63) it [EF(b)—l(b)], I(b) = ! e Bl n/ 15 Fde

has a unique solution provided V is a closed subspace in Hj ({2, R%).

REMARK 1. Tt should be noted that for an anisotropic medium, normal load-
ing of the crack surface can also produce components of displacement lying in
the crack plane (together with necessarily present normal components, due to
Corollary 1).

ProrosiTION 3. If anisotropic material possesses a plane of elastic symmetry
and the crack lies in it, then G™ may be represented in the form

(5.4) G () =€)+ pv v,

where g; is a tensor with components lying in the //,-plane: v+g; = 0, g;+v = 0,
and ¢»(¢’) is a scalar-valued function.

Proof At first we remark that if v is the unit normal to the plane of
elastic symmetry, then the fourth-order elasticity tensor C can have only an even
number of indices corresponding to the v-direction. Otherwise it would not satisfy
the symmetry condition. Now it becomes obvious that term v« C-v in (4.3), (4.4)
does not contain mixed indices, that is referring to  and in the //,-plane.
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Similar considerations based on the decomposition (5.4), show that both op-
erators A" and E” consist of odd or even components with respect to {”-variable,
provided these components have, respectively, odd or even number of indices cor-
responding to the v-direction. Analysis of the formula (3.3) with the preceding
remark yields the conclusion that the mixed components of G" are odd functions
of the ¢"-variable. This, together with (4.3), completes the proof.

REMARK 2. When the crack lies in the plane of elastic symmetry, then in
contrast to the general case noted in the Remark 1, normal loading produces
only normal components of the crack opening. The preceding proposition shows
that the inverse statement is also true.

6. Construction of the p.d.o.

Fourier inversion in the //,-plane of the operator G~ which gives the p.d.o. of
the crack theory, can be done by the method similar to the multipolar expansion
method [6].

Let the operator G~ be expanded into harmonic series on the unit circle
g 4,

3" G exp(ing)
Gy =
=)  &=lcosp, &=|¢|sing.

Matrix coefficients G,, in Eq.(6.1) are determined by integration along the circle
S (at || = 1):

(6.1)

2
(6.2) G, =7"" f G (p)exp(ing) de .
0

REMARK 3. In the expansion (6.1) are presented harmonic functions of even
order only. That is due to positive definiteness of the operator G™.

Now the inverse Fourier transform of (6.1) can be obtained by Bochner’s
inversion formula which leads to an operator with weak singularity. This gives
the p.d.o. we are looking for

Y "Gy exp(ing)
G(¥) = (2r) 22 , A,
(63) il |
X = (z;,2), z, = |X| cos e, zp = [¥/|sinep.

Remark 3 shows that formula (6.3) defines a weakly singular operator with the
zero imaginary part.
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7. Numerical method
The variational equation relating the crack closure to the surface tractions
may be written in the form
W(b) - l(b) =0,

(7.1)
W)= [ b-G-bdz’, l(b)= [ tg-bdz',
s e

where W is the quadratic functional defining the energy necessary for the crack
opening. The condition of vanishing of the gradient of expression (7.1) leads to
the Euler equation

Vi [W(b) - I(b)] = 0,

which coincides with (3.2). Equation (7.1) may be represented by means of the
integral Fourier transform and Parseval’s identity in the form

(12) JE@-6€@)-b€)de' = [ 6@ 107€) e
V¥ ; 7

where I is the plane of the crack (2. We will find the Fourier-transform of the
crack opening in the series form [10]

(7.3) 5 = 3 bmgm (),

where @, € H, /2 are the coordinates, and the unknown vectorial coefficients b,,
are defined from the condition of minimization of the quadratic functional (7.1).
It gives the linear system enabling the determination of b,, [10]:

04 T [ n@FHOCEE = [ M),
™o il
or in a coordinate form

05) Tt [ @ @@ = [ H ) de'
= 11 1

where indices «,  run from 1 to 3.

8. Example of numerical calculation

A crystal of MgAl,O4 (spinel) was taken for model calculations with the fol-
lowing anisotropy coefficients:
Cin =1,  Cnun=0548, (3 =0.548,
Con =1, Cn;3=0548, Cyux=1,
Ci212 = U332 = Cha13 = 0.548,
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which correspond to the cubic crystal. The crack is placed in one of the main
symmetry planes, and the crack is subjected to the normal loading.

F'iG. 1. Opening of a crack of elliptical form. The semi-axes ratio 1 : 1.

FiaG. 2. Opening of a crack of elliptical form. The semi-axes ratio 2 : 1.

Two examples of a circular crack and an elliptical crack with semiaxes ratio
1 : 2 were calculated. The computer results showed that in case of this loading
and crack position in the cubic crystal, only normal crack opening occurs (the
tangential displacement jumps are equal to zero), what is also in a good agreement
with the theoretical results. The cracks openings are represented graphically in
Fig.1 and 2.
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Symmetric boundary integral formulations
of transient heat conduction:
saddle-point theorems for BE analysis and BE-FE coupling

Dedicated to the memory
of Professor Gaetano Fichera

A. CARINI (BRESCIA), M. DILIGENTI (PARMA)
and G.MAIER (MILANO)

THE LINEAR PROBLEM of transient heat conduction over a bounded time interval in a homogeneous
domain with boundary conditions for temperature and flux is formulated in terms of boundary
integral equations with an integral operator which is shown to be symmetric with respect to a bilin-
ear form (convolutive in time). This form generates a functional characterizing the solution by its
stationarity. Making recourse to a suitable integral transform and to another special bilinear form,
it is shown that the boundary solution over the unbounded time interval 0 < t < oo, is character-
ized by a saddle-point property with separation of variables. Separation means that the solution
corresponds to a maximum with respect to the time history of temperatures on the Neumann
boundary, and by a minimum with respect to the time history of fluxes on the Dirichlet boundary.
Subsequently a domain decomposition is assumed in view of coupled BE-FE discretization and a
variational basis to such heterogeneous multifield modelling is provided.

1. Introduction

IN THE LAST FEW YEARS a growing portion of the literature concerning boundary
integral equation (BIE) apprpaches and boundary element methods (BEMs) is
devoted to symmetric formulations and relevant solution procedures.

The traditional formulation rests on Somigliana’s identity (generated by “static”
sources) and on its space-discrete version achieved by field modelling and node-
wise collocation. As for diffusion problems, representative contributions are those
due to R1zzo and SHippy [1], SHAW [2], TANAKA and TANAKA [3], ROURES and
ALARCON [4], PiINA and FERNANDEZ [S], while a comprehensive survey can be
found in SHARP and CrRouCH [6]. In this now popular context, key operators turn
out to be nonsymmetric (or non-selfadjoint). Symmetry can be conferred to these
operators by suitably adopting as boundary sources both static (or intensive or
single layer) and kinematic (or extensive or double layer) discontinuities and, after
modelling, by enforcing two suitably chosen BIEs in a Galerkin weighted-residual
sense, which implies double integrations. Thus, among various consequences, vari-
ational characterizations can be given to the solution of boundary-value problems
and of their BE-discretized versions in elasticity and in potential problems such
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as steady-state heat conduction, Darcy filtration, Saint-Venant torsion analyses
and their analogues (see e.g.: [7, 8, 9]).

Parallel results have been established in incremental plasticity for both the
rate problem and the finite-step problem, by recourse to domain distributions of
concentrated strain sources (and relevant additional terms in the two BIEs) and
to a third integral equation for stresses over potentially yielding portions of the
domain (see e.g. [10, 11, 12, 13, 14]).

No attempt is made here to survey the numerous contributions to the the-
oretical foundations and to related computational aspect (in primis double in-
tegrations of hypersingular integrands and computer implementations) of the
Galerkin-symmetric BEM in linear and nonlinear boundary-value problems. Two
recent books [15] and [16] provide fairly abundant information and references
(updated to 1991 and 1995, respectively).

As for initial-value boundary-value problems, much less attention has been at-
tracted so far by their symmetric Galerkin BIE formulations and consequent solu-
tion properties and BE techniques. These formulations and properties have been
established making use of time-dependent discontinuity sources of two kinds, in a
way basically similar to the one adopted for boundary-value problems. Thus the
BIE analysis of transient heat conduction (diffusion) [17], elastodynamics [18],
viscoelasticity [19] and elastic-plastic dynamics [20] have been conferred symme-
try in space and time (with respect to a time-convolutive bilinear form) over the
finite time-interval of interest. As a consequence, variational saddle-point char-
acterizations of the time response of the system to a given history of external
actions, have been established in all the mechanical contexts listed above.

The present paper is intended to provide a further contribution to the the-
oretical foundations of the symmetric, variational BIE-BE methods for time-
dependent problems with reference to linear transient heat conduction.

First the diffusion problem with mixed boundary conditions is formulated in
the context of the “direct” approaches by means of BIEs using boundary sources
of two kinds, like in an earlier paper by the authors in the context of “indirect”
approaches [17]. The integral operator arising from the set of the above BIEs is
shown to be symmetric (self-adjoint) with respect to a suitably devised bilinear
form. This is defined as usual in the space variables; as for the time variable,
the bilinear form is generated by means of the Laplace transforms of the two
functions involved and by integrating, with respect to the transform parameter s
over the unbounded interval 0 < s < oo, the product of the two functions and a
suitable weight function.

As a consequence of the symmetry achieved in the above sense, the time his-
tory of the unknown boundary temperatures and fluxes over the unbounded time
interval turns out to be characterized by a saddle-point property with separation
of the two kinds of variables; namely, by a minimum with respect to the tempera-
ture field (extensive, kinematic variables) and by a maximum with respect to the
heat flux field (intensive, static variables).
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In contrast to the present saddle-point theorem, the min-max property pre-
sented earlier by the authors did not exhibit the above separation of variables.
However, it had been proved over any bounded time interval, instead of over
0 <t < o~ only. The path of reasoning leading to the present min-max the-
orem is inspired by the ones followed by GURTIN [21], TonTI [22], RAFALSKI [23,
24] and Reiss and Hauc [25], in order to arrive at variational principles for
initial/boundary value problems formulated by partial differential equations.

Domain decomposition for coupling of BEM and FEM (Finite Element
Method) has been a topic of active research since years (see e.g. [26]). The pur-
pose is to employ each method in the subdomain where its peculiarities can be
exploited at best for the numerical solution of the problem. Galerkin symmetric
BEM turns out to be especially suitable to BE-FE coupled solutions, as shown by
Horzer [27], PoLizzotTo and Zito [28]. For the present time-dependent (tran-
sient) heat transfer problem, a contribution to heterogeneous modelling in the
above sense is provided by the variational approach developed herein in Sec. 5.

2. Governing equation, Green functions and their properties
2.1. The linear diffusion problem

The thermally isotropic material considered herein is characterized by the fol-
lowing constant parameters: thermal conductivity £ (measured e.g. in the units:
Jsec 'm~1K~1); specific heat v (JK~'kg™'); density o (kgm™?). The heat con-
duction in a homogeneous body obtained by filling with the above material the
open bounded domain {2 of a space with d dimensions (R¢, with d = 1, 2 or 3) is
governed by Fourier’s and energy conservation laws. These laws combined lead
to the classical equation (see e.g. [29]):

AM(x,t)

(2.1) =

av20(x, t) = %Q(x,t) in 2xT.
y
Here o = kv !p~! is the diffusivity coefficient of the material (in m?sec™!);
V? means Laplace operator; # denotes temperature (in Kelvin degrees K); x is
the d-vector of space coordinates x; in a Cartesian reference system; ¢ denotes
time and 7' = [0, 7] the time interval over which the phenomenon is to be studied;
() represents the (given) density of heat supply rate [i.e. the production of heat
per unit volume and time (Jm~3sec™1)].
The initial and boundary conditions are:

(2.2) A(x,0) = Ay(x) in 2,
(2.3) O(x,t) = O(x, 1) on IyxT,
(2.4) q(x,t) = —kg%(x,i) =q(x,t) on [, xT,

(25) q(x,t) = [0(x,t) — 0] c on [.xT.
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Equation (2.4); defines the heat flux ¢ (Jm2sec™!) in direction n; n is the
outward unit normal to the boundary I" = [, U [, U I, (I, I, and I being
disjoint parts of I") and is supposed to be umquely deﬁned everywhere; 0, 0
and ¢ are given functions; the convection coefficient ¢ (Jsec™! m~2K~1) and the
far-field temperature 6, (in K) are known parameters.

For the sake of formal simplicity, the present study will assume /. = 0, but
its results can easily be extended to Cauchy (convective) condition (2.5). The less
easy extension to non-homogeneous, multidomain problems can be carried out
according to the line of thought pointed out in [18]. Thermally anisotropic media
are implicitly covered with recourse to the relevant fundamental solutions.

2.2. Green functions

Consider (and denote by (2.,) the space R? embedding (2 and filled with the
same material as (2. The response of (2., to a source represented by a (pulse)
unit heat supply, concentrated in & (load or source point) at the instant 7, is
described by the classical formula (see e.g. [29]):

2
2.6 Gloo(x, £ — 1 5D for ¢ >
( y ) 99("? ’ T) Yo [47I'CY(t T)]dfz or ¢t 27,
where r = ||x — &|| = [(zi — &)z — £)]V2 with ¢ = 1, ..., d, denoting by || +|| the
Euclidean norm. The Green function or kernel (2.6) is the fundamental solution
to Eq.(2.1), in the sense that it solves Eq.(2.1), when one sets in it Q(x,t) =
Q6(x - §)d(t — ) (6 being Dirac distribution and () = 1) and assumes 6 — 0
for ||x|| — oo as boundary condition (i.e. # = 0 on [) in three-dimensional
situations.

It is worth noting that the heat-lmpulse source which gives rise to the tem-
perature field (2.6), can be interpreted as a unit flux discontinuity across /',
concentrated in § and 7. In order to make this circumstance explicit, denote by
£" a point not belonging to 2 U I (i.e. internal to {2, — 2 U I') and infinitely
close to £ € I" and by I'* the set of all £*. Similarly, denote by £~ and I'~
the obvious counterparts defined for points belonging to (2. The unit normal,
indicated by v in § and n in x, is assumed as outward with respect to 2 and
common to /" and I'~, but in £ the normal is v* = —v (outward with respect
to {2, — §2). By means of this notation, the above source can be described in the
alternate form:

27) Aqé(z—£)6(t - 1),
where
2.7) Ag=—q (Q-,t)—q(£+,t) =1, z,§ el i, red.

Here Aq denotes the jump of the heat flux across /' in § and 6(z — §) is the
Dirac distribution defined over I" (no longer over {2).
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Other kernels, all defined for ¢ > 7, are derived below for later use by taking
derivatives of the two-point function (g4, Eq.(2.6), in the direction n of the
outward normal to /" defined in the field or receiver point x or/and in the direction
v of the outward normal in the load point §. Whenever useful to remind of
these normals in the expression of a kernel (&, their symbols will show up in the
argument or will be replaced by / to mark their absence.

oG
(2.8) G (x,&n, /st—7) =k axaie "
k ' -
= a7y @~ )nGe (&t - 1),
29)  Go (x,&;/,vit—7) = -k?w
€i
-k
T 2a(t-1) (zi — &) viGos (%, &1 — 7)),
aG aG
(2.10) Gy (x,&;m,058t —7) = _kﬁ—g—g”i = axfzq n;

B k# 1
T 2a(t-1) |20 -T1) (

T = &) (Tr = & YV — 10 | Gop (%, 858 — 7).

Physically interpreted, Eq.(2.8) represents the flux response in the field point
x and direction n at instant ¢ to the heat impulse acting on {2, in load point
§ at instant 7. Kernels (2.9) and (2.10) represent the temperature at x and ¢
and, respectively, the flux at x in direction n at time ¢, which are generated in
2., by a “double layer” source consisting of a unit discontinuity of temperature
across a surface through € of normal v, concentrated in space and time. This
(concentrated) temperature discontinuity source can be formally described by a
counterpart to Eq.(2.7), making recourse to the same Dirac distributions 6, Af
denoting a jump of temperature across /':

(2.11) Abb(z—E)o(t - 1),
where
(2.11") Ab=-0("t)+0(E,t)=1, =z&el, trel

2.3. Properties of kernels

The Green functions (2.6), (2.8), (2.9) and (2.10), all defined over {2, and for
t > 7 (causality condition), for x — € and ¢ — 7 exhibit singularities which de-
pend on the ratio »/(t — 7) when both r and (¢ — 7) tend to zero. However, it can
be shown (see Appendix A) that the usual singularities of the (time-independent)
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Green functions for the stationary conduction are exhibited by the Laplace trans-
forms of these functions; namely, in three-dimensional situations (d = 3):
L(Ge) = O™Y),  L(Gey) = O(r~2),

2.12
R L(Gg) = O(r72),  L(Gy) =0¢3).

In Eq.(2.12) £ means Laplace transform
(2.13) L(3(t), s) = /c‘” (t) dt,
0

s being the transformation parameter and ¢ any £-transformable function.

The following reciprocity relationships among the above kernels hold at any
time in space for x # § and can be readily justified by inspection of the relevant
formulae, Eqs. (2.6), (2.8), (2.9) and (2.10):

(2.14) Gog (%, &3t —7) = Gog (€, x5t — 1),
(2.15) Geo (X, &0, /5t —7) = Goy (§, % /,m5t - 7),
(2.16) G (X, &sn,05t —7) = Gy (€, x50, M58 — 7).

The positive definiteness of £((745) and the negative (semi)definiteness of £((,)
formally mean that:

2.17) / / L(Aq(x: 1), 8) L(Goa(x, £; 1), 8) L(Ag(E; ), s)dT dT" > 0
bl
VAq # 0,

(2.18) / / L(A01), 5) L(Gog(x, £:0,v; 1), 8) L(ABE; 1), s)dT dT < 0
I"F

VAD.

These properties are proved in Appendix B.

In view of the O(r~3) singularity (“hypersingularity”) of the Laplace trans-
form of kernel (+,,, Eq.(2.10), the double integral (2.18) acquires a meaning
only if special interpretations and computational provisions are adopted. These
are extensively dealt with in the recent literature see e.g. [30, 31, 32 and 33];
therefore they will not be discussed here. An investigation and implementation
of hypersingular integrals occurring in elastostatics are presented in [8].

It seems appropriate to mention here also the following features of the basic
Green’s function, Eq.(2.6), in three-dimensional situations, see e.g. [29]:

(2.19) lim Gog =0, lim Ggo =0, lim Gy = 6(x - €).
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3. Symmetric boundary integral equations and first variational formulation

In order to simplify notation and formal developments, the following pro-
visions will be adopted henceforth. (i) Only Dirichlet Eq.(2.3) and Neumann
Eq. (2.4) boundary conditions will be considered (i.e. . = 0). (ii) The differen-
tials d§ (and dx) henceforth will mean dI" or df2 when the integration variables
are the coordinates of the source point § (and of the receiver point x, respect-
ively), as the integration domain indicated near the integral symbol will remove
any ambiguity. (iii) The convolutive integration with respect to time 7 will be
denoted by an asterisk, namely [ v(t — 7)¢'(7) d7 = 1(t)  1'(t), where 1 and
1’ are any time functions.

3.1. Two governing boundary integral equations

Consider the time history of the temperature field (x,t) in {2 (as a part of
12.,) due to the following causes acting on (2. discontinuities of flux Aq(§, 7)
and of temperature A#(E, 7), distributed along the boundary I'; heat supply
Q(&,t) in the domain §2; temperature initial condition fo(€, 0) in the domain {2
and §y(&,0) = 0 outside (2, i.e. in 2o — (2 U I"). Obviously, the last two data
define the initial temperature discontinuity A¢(£) across [ at 7 = 0.

Using the kernels (Ggs and (g, as influence functions of {2, and superposing
effects, we can give 0(x, t) the following representation:

G 006 = [ Cualx,&0)+ A& dE + [ Ganlx, &/ i)+ AB(E; 1) o
¥ 17
+ [ Guax, &)+ Q&1 + 7o [ Goolx, & OF0(€) .
P} n

The last integral containing the initial temperature fly can be justified by the path
of reasoning expounded in [6].

A similar integral representation is given below to the flux ¢(x;¢) in {2 (as a
part of {2..), taking the derivatives of Eq.(3.1) with respect to x in direction n
and multiplying this derivative by —k:

(2) gt = [ G (&, /i1) « Ag &) o8
r
4 [Go & v+ A0E;0) dE + [Goalx,Eim /50)+ Q6,1 dE
r n

+ ’YQ/an (x,&;n, /;1) 0o (&) dE .
2

Choosing a “direct” rather than an “indirect” approach, we identify now the
discontinuity sources as jumps across /' between actual quantities in the domain
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{2 and their counterparts in an unheated constant-temperature exterior (2., —
(20U I'). Namely, we set for any ¢ € T":

g€*,1) =0 on I, q€™,t) = 4€,) only,
(3.3) g€ ,t)=q&,t) only, OE*,1)=0 on I,
0(€~,t) = 6(€,t) on I}y, 0= ,t) = 0(€,t) onl}.

Now, keeping in mind Egs. (2.7);, (2.11); and (3.3), let us enforce Eq.(3.1) in
points x~ € {2 infinitely close to the Dirichlet boundary /7, and identify the tem-
perature in these points with the boundary data 6(x;t) assigned there. Similarly,
we write Eq. (3.2) in points x~ € {2 close to Neumann boundary [, identify the
heat flux in these points with the assigned boundary data g(x;t). Thus Eqgs.(3.1)
and (3.2) yield:

for xe Iy
G4 [ Gl &)+ a&i ) d& — [ Gaglx &ivit) » 0&: 1) & = Jo(xi)
i Z
for xe Tl
(3 [ Gl &imt) @) de~ [ Golx Gimvit)s0&; 1) d& = ~[01),
i A
having set:
36  foxt)=-00s0) + / Gaa (%, &)+ Q (&, 1) d
+wf0w@ €:1) Jo(&) d& - fGMX£Ww@tM€
j G, 503 1)O(E; 1) dE
BN fix= 00 - [Gu & Q&0 dt
’
~7e [ Goo (e Gmit) Do ©) & + [ Goo (ximit) + 4, 1)
: A

- [ G x &m0 1) .
Iy
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It is worth stressing that the singular integrals which intervene in Egs. (3.4) and
(3.5) must be interpreted in a suitable sense (in Cauchy and Hadamard sense for
kernels (G4, and (79 and for the “hypersingular” one (7,,, respectively). Also the
existence and computability of integrals involving (,, set special continuity re-
quirements on functions ¢ and on interpolations to employ in its modelling. The
analytical and numerical integrations in the presence of singularity and hypersin-
gularity will not be discussed here. They are the object of the recent literature
cited in Sec.2 (and mostly concerning basically similar elastostatic and elastody-
namic problems).

The boundary integral equations (3.4) and (3.5) govern the time histories,
over the time interval 7', of the unknown boundary fields ¢(§;7) on [}, 6(§, )
on [,. Thermal quantities which will actually occur elsewhere in the body con-
sidered will be recovered by quadratures from the boundary solution through the
representation formulae (3.1) and (3.2) collocated at any point x and instant ¢ of
interest, account being taken of Eqs. (2.7);, (2.11), and (3.3).

Therefore, the integral boundary equations (3.4) and (3.5) can be regarded
as an alternative formulation of the original initial/boundary value problem, Egs.
(2.1)-(2.4). What follows is intended to point out some peculiar and hopefully
computationally useful consequences of the above nonconventional “direct” BIE
formulation (3.4)-(3.7) of linear transient heat conduction.

3.2. Symmetry and boundary variational theorem

It is convenient for subsequent developments to re-write the boundary integral
equations (3.4) and (3.5) using a compact (operatorial) notation:

(3.8) Ly=1f
In Eq.(3.8) y and f are vectors which gather boundary unknown functions and

data, respectively:

(3.9) E{Q(E;t)} on Iy xT, fE{fg(x;zf)} en Iy xT,

0;t))] on I, xT, [, (x1) on [y xT,

q

and L represents the linear integral operator:

/Gaa*[']df. —/Geq*[-]da on Iy xT,

(3.10) L
quo*[ /qu*[]dﬁ on [ xT.
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A bilinear form over [’ x T', convolutive in time, is defined as follows, y and y~
being two functions over [" x T' (superscript 1" denoting transpose):

t
(3.11) <y,y >= //yT(x;t'~ 1)y (x; 1) dx dt.
ro

With reference to this notion, the two theorems stated below have been estab-
lished in [16].

ProrosiTiON 1. The integral operator L, Eq. (3.10), of the governing boundary
equations (3.8) is symmetric with respect to the bilinear form (3.11) convolutive
in time; namely, the following equality holds for any vector of functions defined
on ' x T" according to Eq.(3.9);:

(3.12) <Lyy >=<Ly,y> V yy"

ProposITION 2. The time histories of boundary fields [flux ¢(x;t) on I x T'
and temperature 0(x;t) on I, x T'] which solve the diffusion problem in the direct
boundary formulation (3.4) - (3.5), are characterized (as a sufficient and necessary
condition) by the stationarity of the quadratic functional:

(13 Flaben),0t) =5 <Lyy> - <fy>

= %jj (x;f—t)ijga(X,E;t—'r)q(ﬁ;‘r) d§ dr dx dt
0 I 0 Iy
- %-O/tlj (x;i—t)jI{Ggq(x,ﬁ;t—T)H(ﬂ;‘r) d€ dr dx dt
%j/ o(x; t-—t)/qug(x £:1— r)q(E;7) dE dr dxdt
0 7 07
%j/ (x;{—t)j/qu(x,ﬁ;twT)H(&;T) d§ dr dx dt
0 Iy 0 I,
Oj/ E—t)fg(x;i)dxdt-Ofr{ﬂ(x;t—t)fq(x;t)dxdt.

REMARKS

A. The above boundary statements have been established in [17], starting from
earlier work by GURTIN [21] and TonTI [22] on variational principles for linear
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non-self-adjoint operators. The proof of Proposition 1 is based on the reciprocity
properties (2.14)-(2.16) and the time-convolutive nature of the bilinear form
(3.11). This proof is relegated to Appendix C. Proposition 2 follows from Propo-
sition 1 through a customery path of reasoning which is outlined below. Through
differentiation, and using the above symmetry (3.12), we may write:

1
(3.14) 6F=<Ly,c5y>—<f,6y>+§<L6y,6y>.
The first variation in (3.14) can be rewritten as 6 F' = < Ly — f, §y > and this
shows that indeed, the circumstance 6(VF' = 0 for any dy is a sufficient and
necessary condition for Ly = f, i.e. for solving problem (3.4) and (3.5) in the
boundary unknowns &, ¢ over the time 7.

o : 1 . :
B. The second variation in Eq.(3.14), i.e. SOF = 3 < Léy, 0y >, is not in

general a sign-definite quadratic form. Therefore, the variational property stated
by Proposition 2 corresponds to a saddle-point, not to an extremum of functional
F'. However, the saddle-point for /' cannot be proved to represent an extremum
point of F' with respect to ¢ and ¢, separately. This remark motivates our search
for stronger statements which led to the results expounded in the next Section.

C. The discretization in space and time, resting on the variational basis pro-
vided in what precedes, has been preliminarily discussed in [17] and implemented
in [34] (with numerical integrations in space and analytical in time). Possible cor-
relation between time interval and typical element length might be required in
order to ensure the desired computational futures (primarily algorithmic stabil-
ity). Issues of this kind, however, are beyond our present purposes.

4, Symmetry with respect to a bilinear form and a saddle-point theorem with
variable separation

4.1. A further bilinear form and relevant variational theorem

Let W(s) indicate an assigned function of the Laplace transform parameter s
(interpreted as time). This “weight function” will be suitably chosen later within
a broad class of alternatives, under the condition expressed below in (4.4), that
it should be nonnegative everywhere, and not identically zero.

Taking over a concept put forward and used by RaAraLski [23, 24] and REiss
and HauG [25] in linear initial-value problems, we introduce the following new
bilinear form, denoted by the symbol < -, - > involving the Laplace transforms
of boundary field histories (y and y*) and defined over /" x T, denoting by 7.
an unbounded from above time interval, namely 0 < ¢ < oc:

@) <ny = [ [WELE, L0 07, 0)] dsdx
I 0
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or, more concisely:

(4.2) LYY »= _///g(t + 7)y(x; t)y" (x; 7) dt d7 dx
roo
having set:
4.3) gt +7) = / W (s)e~(t+7s ds
0

under the conditions:
(4.4) W(s) > 0, Wi(s) # 0.

On the basis of the new bilinear form (4.1) or (4.2), two further properties are
stated below, as Propositions 3 and 4, which parallel Propositions 1 and 2, re-
spectively.

ProrosiTiON 3. The linear boundary operator L, Eq. (3.10), is symmetric with
respect to the bilinear form (4.2); namely, the following equality holds for any pair
of functions y and y* defined by Eq. (3.9); over the time-unbounded set /" x T:

(4.5) KLyy>»=<Ly,y>», Vyy.

PROPOSITION 4. A time-history of flux ¢(x;¢) on [, and temperature 0(x;1)
on [, both defined over the unbounded time interval 7., represent the actual
boundary response of the body to the external input, if and only if they make the
following quadratic functional stationary:

<Ly, y>» - <f,y>

B =

(4.6)  Fr(g(x;1),0(x;1)) =

-/
2

]
_lf
2

Ty

_11{
/

g€t +ma06n) [ Gos (x, &)+ q &:1) dt d dE dx
Iy

g(t +n)a0) [ Gy (% &:1) + 0 €31 dt d o dx
Fq

(3]

gt + 1007 [ Gao (% &51) + ¢ €31 de d d
I'y

-+

o g O3 0\8 o\g

=

gt +mO0GT) [ Guy (x,&0)+ 0 (€:1) dt dn dE dx
I



SYMMETRIC BOUNDARY INTEGRAL FORMULATIONS 265

I - /

o0 o0

/9(!’ + vj)fg(x;t)q(x;n)dt dn dx

0
] gt + ), )00 7) dt dy dx.
0

Our formal proof of Proposition 3, still resting on the reciprocity relationships
(2.14)-(2.16), implies rather lengthy manipulations and, hence, is confined to
Appendix D. Proposition 4 is a straightforward consequence of Proposition 3,
through the same familiar argument which led from Propositions 1 to 2 and,
hence, its proof will not be duplicated here. The present task, pursued below, is
to strengthen Proposition 4 into a stronger statement, a purpose which was not
possible to achieve for Proposition 2.

4.2. A saddle-point theorem, extremum for flux and temperature, separately

The two quadratic forms, one in flux ¢ and the other in temperature 6, con-
tained in functional F', Eq.(3.13), turn out to be not defined in sign in general.
On the contrary, the two quadratic forms in functional /'*, Eq. (4.6), which repre-
sent the counterparts to those in Eq. (3.13), do exhibit sign-definiteness as shown
below.

ProrosiTioN 5. The following sign-definiteness properties hold for the quadra-
tic forms associated with Green functions (g9 and G, respectively, in func-
tional F™™:

(4.7) /779(t+ﬂ)Q(X;U)/jGaa (x,&t-7)q(&;7) drdf dndtdx >0,
00

re rg 0

Vg # 0,
00 00 t

(4.8) ///g(t + n)@(x;n)//qu x,&;t—7)0(&;7) drdE dndtdx <0,
00 Iy 0

vo.

The latter inequality can be strengthened into a strict inequality (< 0,V 8 # 0, i.e.
negative definiteness instead of semi-definiteness), if I, splits {2, into disjoint
parts.

Proof. Using Eq.(4.3) and the Laplace transform

o

(4.9) L(¥(t), ) = j e=*ly(t) dt,

0
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the quadratic form (4.7) can be given the following alternative expression:

@10) [ [ [WLoat), 9LGanlx & 0, )L (& 1), ) ds dx e,

Iolyg O

Let us combine the expression in (4.10), with the positive definiteness prop-
erty (2.17) of kernel (vg9, and with the assumed nonnegativeness of W (s). This
straightforwardly leads to the desired conclusion (4.7).

A proof of property (4.8) follows the same path of reasoning starting from
kernel property (2.18) and, hence, is omitted here for brevity.

PROPOSITION 6. (Saddle-point theorem) Let G(x; 1) over Iy x T, and O(x;t)
over I, x T, represent the boundary solution of the diffusion problem in its
integral formulation (3.4)-(3.5), and let the uncapped symbols denote any pair
of fields (flux ¢ and temperature ¢) defined there. Then the following inequalities
hold:

~

(4.11) F*(4,0) < F* (3,0) < F* (q,0),

where the equality signs hold if and only if ¢ = § and § = 0,

Proof Compute the varied functional /'*, Eq.(4.6), after a perturbation
66, 64 around the solution and gather the first-order and second-order terms in
W F* and 6@ F*, respectively. The addend 6V F'* which contains the first-order
terms vanishes because of the variational property Proposition 4. As for §(2) F'*
which collects the second-order terms we notice that setting 6§ = 0, this addend
is negative for any &0 # 0 by virtue of Eq.(4.8). This justifies the former of
inequalities (4.11) for infinitesimal perturbations around the solution (i.e. in the
small). However, in view of the quadratic nature of the functional, the inequality
must be fulfilled also in the large. The latter inequality (4.11) is achieved by similar

argumentation setting 60 = 0 and making use of Eq. (4.7).

5. Coupling

Let the domain §2 be subdivided into two disjoint complementary open subdo-
mains 27" and (28, separated by interface I'C (so that I'C = ¥ n (25, denoting
by bars that boundaries are included). The present purpose is to establish a unified
variational basis for approximate solutions of the initial-boundary-value problem
in point by means of two discretization procedures simultaneously, namely by a fi-
nite element method in 2F and a symmetric Galerkin boundary element method
in 22, To this coupling (or “multifield modelling”) purpose, we rewrite below,
suitably adjusted, two “strong” formulations of the transient heat conduction
problem over 2% and 25,
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For the former subdomain (2% let the problem be formulated in terms of
partial derivative equations and boundary conditions. Denoting by [ qF and I}
the Neumann and Dirichlet boundary, respectively, and being understood that all
equations hold over the unbounded time interval 7., the initial-boundary value
problem, after the domain decomposition in point, can be formulated as follows.

_dqf F_ ()GF . AF
(5.1) Je; +Q T in 27,
(5.2) o = kpf? in 2F,

F

(5.3) P = —%?; in 2F,
(5.4) nig’ = ¢ on I,
(5.5) 6F = 6F on I'f,
(5.6) 0" (x,0) = OF in 2%,

For the latter subdomain {27 let the same problem be governed by the boundary
integral equations of the symmetric kind developed in Secs.2 and 3. These are
rewritten below by referring to points x € " (no longer /'~) and, therefore, by
making explicit certain consequences of the singularities in the integrands. In
fact, integrals concerning the strongly singular kernels Gy, and (g4, give rise to
Cauchy principal parts (marked by f in what follows) and “free terms”. Similarly,
integrals involving the hypersingular kernel (7, lead to Hadamard finite parts
(marked by #) and “free terms”. In the above free terms the coefficient, say /3,
depends on the geometry of surface " in a neighbourhood of field point x with
£ = 1/2 in smooth points as assumed herein.

For xeIp

(5.7) /Gyg(x 1)+ ¢P (& t)d€+/Ggg(x 1)+ qC (1) dt
fGeq(xaut)*BB(at)da fGeq(xaut)wC(at)da 2,

for xe€ I‘qB

(58) - ][ G (. E3m5 1) * P (€;1) dE — ][ G (%, Em;t) % ¢° (E31) df
r2 re

+ f Goq (5, E;m,v5 1) « 65 (€;1) dE+ quq (x, & m,v;1) « 09 (&;1) dE =
FqB e
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for xe I'¢

69) [ Gua&+q" G+ [ GG q” €D dE
rp re
_ ][ Goq (x,&;1; 1) = 0B (&;1) d& - ][ Gy (x, & v51) * 0° (&;1) dE + ~]2~(}(' = ‘/_'{f" ,
]’B I.'l'

for xe I'¢

(5.10) —][ Gao (x.E;m;0) + ¢B (€51) dE —][ Gao (x, E;m; ) * ¢© (€51) dE
ry e
' B v C 1 c rc
+ j(qu (x, & m,v; )07 (€; 1) dﬁ+f Gg (x, &m w5 )0 (§51) d€~ 5¢° = f7.
rse ré

On the interface between the two subdomains, the continuity conditions concern
flux and temperature, namely:

(5.11) nigF +¢® =0 on I'Y,
(5.12) ¥ -9° =0 on I°C.

In the BIEs, Egs. (5.7), (5.8), (5.9) and (5.10), the terms containing data only are,
respectively:

613) 7 =507 [ Goo (&) &:0) d
rp
+][ Gio (x, £5v3 1) 08 (&;1) dE + j Goo (x, £:1) + QB (£ 1) dE
s nB

0 [ Go (. &:0) 05 (€) d,
nB

G19) TP = 3050+ f Gos (o Esmt) 7 (€50) o
iy
- f Goq (x, €50, v58) 65 (&;1) d —][ Goo (x, &5 m; 1) = QP (&:1) d€
r? 08

- 79][ Gao (x,€;m; ) 08 (&) dE,
.QB
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5.15)  f¢ _—/Ggg(x 1) % 5 (& 1)d£+][63q(x&vt)*05(£ £y dt

/ihuxeo QB@fﬁﬁ+79/C%M&€09(Qd&

(516) 7 = [ Goo e &m0nd® §1) - F Gy (e Emvs1)o 05 &:1) d
s B

- ][ Gao (x,E;m50) + QF (£ 1) dE - 79][ G (x,&;m;1) 08 (&) dE.
0B 2B

The equations (5.1)—(5.3) concerning 27, Eqs. (5.4), (5.5) concerning its bound-
ary not in common with 27 and the initial conditions (5.6) can be given, respect-
ively, the following compact operatorial formulations (in matrix notation):

~k 1 0 Pi 0
(5‘17) I: 1 0 8(')/611 :| |:(1,F] = |: 0 i N1y1 = hl,
0 —0(-)/0z; —ye(d(+)/0t)] L OF —QF
0 —ni|[¢f] _[-nib] on If 3
oo [ e
(5.19) —700F(x,0)= —700f  on 2F for t=0 — Nay; = hs.

Similarly the BIE’s (5.7)-(5.10) which concern 27 and its boundary will be
expressed in the more compact forms:

[ LGue [l - f Gu sl +1/2 ] G s
~§ G s LR =1/2 # Ge [ —fﬂw*[wt

- [ Goos[1de ~f Goyl-]dk f Gao +[1d&
h —Ij(:: Gao *[-]d§ rai Glag # [+ dE —FJ‘; Gao*[+]dE

S ARIOL B
ch fg l on [10
+£ 6018 || o] o o
, = ~ Nays = hy.
"fcﬂq*[ -1d§ qP 2 on I[P ik

+§qu*[]d£ 6% 2 on FqB
iy

L _ LJg
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Finally, the interface conditions on I'® Eq.(5.11) and (5.12) are rewritten (two
times) for convenience as follows.

0 -n;0mn; ] [gqFf

1| n; 010 9F
-21) 210 1 0-1{[¢%| "

n,’OlO HC

— Nsys = hs.

<
=T = i = i o=

Consistently with the above adopted compact notation, let us gather the (scalar)
variables in the vector y/ = [pf 7,0, ¢%. 8¢, qB,HB] (superscript 7" denoting
transpose), the data in vector

h” = [n], b, ks, h], h{]
= [O’O»—QFv —n,ﬂ-,(j, —A/gégl:fgv.ﬁ;ca‘fBBa -qBaO’OvO»O]

and the operators into the matrix

(5.22) N

i
Z
w

where the barred symbols have the following meaning: N; = [N;,0,0,0,0],N; =
[03 N2,0,0,0, 0]’ ﬁ:‘l = [07 0, N3a 0,0,0, 0]: —N—4 = [0, 0,0, N4]1 ﬁ5 == [01 Ns, 0, 0]
Now, denoting by y and y’ two vectors of fields which belong to the domain of
the above defined operator N (y,y’ € D(N)), a bilinear form associated to this
operator N can be generated as follows, according to the pattern adopted in
Sec. 4, Egs. (4.1)-(4.4), on the basis of operator L:

(523) < Nyy>»

= [ [ot+n] [Nn@F %i()d2 + [ Moy o) dr
00 nF I'F

+ [ New@I %@ dl + [ Nsys@) () dl’  dedr
rec

I'B1re

+ [ [ o0 Ways(1v(r) d2 dr.

0 nF
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In ful analogy with Eq. (4.6), we construct the quadratic functional:

1
(524 f(pf‘s tiaon qcagcquaGB) = i < Nysy > - h1y>>

oo 00 1'
= ] g(t + 1) —;—/—’yg 896(1&) 0F () df2 - aq, (t)BF(T)dQ
00 nF

HF
-5 [ et oins [ o / -l (10

_ %f” 0F (1) gF () dT + 2/71,,(11 () 6F (rydI + / QF (t) 0F () d12

ry ry

+ / nbF () gF (1) dI - / G 0F (rydI | dtdr

ry

_ % f a(t) / Yo 0F (1) (67(0) - 20§ de2 e
0 nF

* 779(t+7) %/ /Gae*qc(t)qc('r)d&dx
00

e e

. %/][ng*ﬂc(t)q (T)d€ dx + = //GGB*QBU)Q (7) d dx

rere 161‘

i % /][ Glag % 0B (1) ¢C(7) d& dx — % /][ Glag % 47 (1) 89 (7) dE dx

rerp rere
+ %][ %qu £ 0° (1) 6° (7) dt dx — % f][ G g5 (1) 6° () dE dx
rere rerp
1 ; 1
+ = g * 0B(t)0° (7)dE dx + = Gag * q° () P (1) dt dx
zliré 2]:9[; I:l'
1 1 y
5 [ fGur Py dedxt s [ [ GaraPOaP ) dx
rere rp rg

F Gy e 0P Py didx =5 [ f Goo s €007 () dt

rErp rsre
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00 L formoma- L[ fGeforons

FBFB

2][j[Gq*()B(t)HB(T)dﬁdx—/fg (t)¢° (r) dx

ERTP

- f_f,f“(t,)ac(r)dx-/fgf(t)qﬂ(r)dx_/f;*(t)eB(r)dx gt dr
e rP rs

o0 00 1
+ gt +7) |5 | nig; (t)BC (T)dx + = HF(t) qC(T) dx| dtdr.
iy, Y

rc
At this stage, the following two statements can be formulated.

ProrosiTiON 7. The operator N, Eq.(5.22), (which is both differential and
boundary-integral), is symmetric with respect to the bilinear form (5.23).

ProposiTiON 8. In the body (2 subdivided into subdomains 22 and 2F, and
over the unbounded time 0 < ¢ < oo, flux ¢®(x, ) on I and I'°, temperature
#8(x,t) on I'P and I'C, temperature 65 (x,t) in 27, flux ¢F'(x,¢) in 2F and

temperature gradlent pF(x,t) also in 2 represent the actual response of the
body to a given time history of external actions, if and only if they make stationary
the above functional 7, Eq. (5.24).

The proof of statement 7 for the present coupled formulation can be given
following a rather lengthy path of reasoning similar to that adopted in Sec. 4 and
Appendix D and, hence, will not be expounded here for brevity. It is worth noting
that the operator symmetry disrupted by the coefficient 1/2 and —1/2 of the free
terms in Eq.(5.20) is recovered in the operator of the coupled problem (if there
is no interface I'“ decomposing the domain {2, those coefficients show up only
in terms of data as seen in the preceding Sections).

REMARKS

A. In the expression (5.24) of the functional F the first addend, denoted
henceforth by symbol A;, contains the product of the temperature field 6F and
its time derivative, over the finite element subdomain (2. It is easy and com-
putationally useful to transform A; into the sum of two quadratic terms in 6%
alone. In fact we may write a sequence of alternative formulations for A;:

1
(5.25) Ar=3
0F

00 0o AnF
[ [rewisye-es» %BF(T)&S dt dr df2
00
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(5.2 .1 fw /W(g) / 5 2020 4y [ o7 ryar s

[cont.]

0
oo

/ ]OW(S) [ 0F (0) + S]oe"" Br(t)dtfe—sr 6F (r) dr
gF 0 ; J

3

dsdf?

Nl*—‘

gt +7) / ~o OF (1) 0F (r) dS2 dr dt
QF

B =

17 ,
= [ g@) [ yobF(t)0F(0)d2dt.
20/ nl

The first of the above expressions of A; has been achieved through Eq.(4.3), the
second by rearranging the integrations, the third through an integration by parts
over 0 <t < oo, the fourth by setting:

(5.26) gt+7)= js W(s)e (t+7)s ds,
0

B. The functional F defined by Eq. (5.24) is a multifield functional in the sense
that over the subdomam 2F it depends on temperature 07, its gradient 6% /0
and heat flux g7, which represent independent unknowns on the subdomain 2
and, as such, can independently be modelled over 2F as a finite element dis-
cretization. Alternatively, Eqs. (5.2) and (5.3) can be a priori enforced, so that F
reduces to a functional of temperature only over 27 x T, besides of tempera-
ture and flux on I'? x T, and I' x T, respectively. The former case, (multifield
functional F) might be desirable in order to construct parametric variational prin-
ciples with possible computational benefits, as pointed out by FeLippa [35] in the
context of the finite element methods.

C. Operator N for the coupled problem turns out to be symmetric also with re-
spect to the bilinear form (3.11) convolutive in time i.e. < Ny,y > =< Ny, y >,
besides with respect to the new bilinear form (4.2)-(4.4), ie. € Ny,y > =
< Ny',y >, as stated by Proposition 7.

6. Closing remarks

With reference to the transient heat conduction in a homogeneous body as a
typical linear initial-boundary-value problem, what precedes presented the results
outlined and commented below as conclusions.

(a) A formulation in terms of boundary integral equations, constructed by
means of single and double layer sources, in such way that the boundary inte-
gral operator is symmetric with respect to a bilinear form convolutive in time
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over the boundary and a finite time interval. The reciprocity properties of the
time-dependent Green functions for the thermally homogeneous space were cru-
cial to establish this circumstance.

(b) A variational characterization, corresponding to a saddle point, for the
solution of the boundary problem formulated over a bounded time 7., as outlined
at (a).

(c) A further, different saddle point characterization of the boundary solution
over the unbounded time interval 7., which is shown to represent a minimum
with respect to the temperature and a maximum with respect to the flux, sep-
arately. This variational property and the variable separation in it have been
achieved by generating another special bilinear form in the Laplace transforms
of the boundary variable fields, and by using the sign-definiteness (proved in Ap-
pendix B) of the Laplace transforms of the two Green functions for temperature
and heat flux due to discontinuities (concentrated in space and time) of flux and
temperature, respectively.

(d) An extension of the variational theorem (c), preserving the variable sep-
aration, in order to cover cases where transient heat conduction is governed
in a subdomain by the symmetric system of boundary (and now interface too)
integral equations, and in the complementary subdomain by the original partial
differential equations (Fourier and conservation laws) and the relevant mixed
(Dirichlet and Neumann) boundary conditions. The computational potentialities
and applications of the results expounded in this paper and summarized above,
are regarded to be beyond the present purposes and will be discussed elsewhere.
However, the following remarks may envisage possible developments towards the
use of these results in numerical solution methods.

(e) The variational approach mentioned at (b) and developed in Sec.3, by
modelling in space and time (either simultaneously or separately) the boundary
fields over a time interval 7', leads to a boundary element algebraic linear equation
system endowed with symmetric coefficient matrix (the same is attainable from
result (a) by means of a Galerkin weighted-residual approximate enforcement of
the integral equations). Both the computational benefits of such symmetry and
the difficulties of the hypersingular integrals are fairly well understood in the
recent BEM literature, though with reference to physically different problems,
see e.g. [8, 9, 14, 15, 16, 30, 31, 32, 33].

(f) The boundary element discretization based on the saddle-point theorem de-
rived in Sec.4 and above mentioned at (c) preserves symmetry in the resulting al-
gebraic equations and appears to be computationally promising for short-duration
transient analysis, in view of the use of field modelling by means of shape func-
tions with exponential, asymptotical decay in time, as pointed out in a forthcoming
paper.

(g) The uselfulness, in terms of computing cost-effectiveness of large-size
analyses, of multifields (or heterogeneous) models when approximating initial-
boundary-value problems over complex domain, has been demonstrated by a
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growing literature in various contexts, see e.g. [36]. This fact motivates the vari-
ational approach (d) developed in Sec.5 in view of a domain decomposition for
BE-FE coupling motivated like in other contexts [26, 27, 28]. However, further
work is required to assess the expected computational merits of result (d) from
this standpoint (account taken of the present more stringent continuity require-
ments on the temperature field, compared to those in traditional BEMs). Another
issue worth being pursued elsewhere concerns parametric variational principles in
the sense of FELIPPA [35], which might be generated in the symmetric BE context,
with possible computational advantages.

Appendix A

With reference to Sec. 2.3 on the properties of the time-dependent Green’s
functions for heat conduction in isotropic space {2, the statement given there on
their singularities is corroborated here below by formal developments concerning
kernel (g alone for brevity. In two-dimensional situations (d = 2), Eq.(2.6)
specializes to:

T e
(A.l) Ggg = 47r(¥lfe dat,

The Laplace transform of kernel (A.1) reads:

(A.2) ﬁ(Gag) = a \'0 (r\/\/a_)

Here s is the transformation paremeter, v denotes Euler constant (y = 0.577...)
and K represents the modified zero-order Bessel function, namely, z being its
argument (see [37])

122 1 GZZ)Z
(A3 Ko(e) = - [log(5) +] ) + = +(1+453) .
lz2)3
+(1+%+%) ?3!)2 + ...,
where
LS P T
(A.4) Ip(z) =1+ j' 2 + <Zzz) + (122) %

ang - @) @3n?
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From Eqgs. (A.2) - (A.4) it turns out that the only singular term in £((Gyp) is log r:

(A.5) log (%) = log (\/E) + logr.

In three-dimensional problems (d = 3), Eq.(2.6) becomes:

1 r?
A.6 Gog = ————€ " %at.
A0) 00 [47rat]3/ 2

The Laplace transform of kernel (A.6) reads:

(A7) ﬁ% (;) K,

where it can be noticed that the only singular factor is 7!

Appendix B. A proof of sign semi-definiteness for the Laplace transforms
of kernels Gy and G,

If Laplace integral transform (4.9) is applied to both its sides, the diffusion
equation (2.1) becomes (s denoting the transform parameter):

(B.1) aV2L(0) = sL(0) — 0(x, 0) — %c(Q).

On the boundary I, interpreted as a surface in the space {2, consider a distribu-
tion of temperature discontinuities A = —0* + 6~ and another one of heat flux
jumps Ag = —¢* — ¢~, according to Egs.(2.11); and (2.7),, respectively. By
virtue of the Gauss lemma and of equation (B.1) in the transform space, keeping
in mind that the above sources are now the only external actions on {2, we
write:

®2 [ E(B‘)aﬁa(z_)dl“ = | c(a—)a%(i_)n; dr
= =

AL (B)

-/ (5(6215’”“* )dﬂ = / 200 2L0) 4y 4 / L(9)a D an
7 ' : &

/ 0£(9) aL(”) do+ 2 / L(6)L(B) dS2 > 0.
n

dz; Oz,
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Similarly, denoting by (2* the exterior domain, 2* = {2, — ({2 U I'), we obtain
an inequality over ['*:

(B.3) /L(9+)a£(6+)dr - ]£(9+)ac(9+) +dr

_ / (E(e)agg)) it

()23,‘
n.
_ 8[3(6) 0L(0)
= - / Tt e - / L)L) R < 0.
Q' n.
a6
Fourier’s law, ¢; = —k—=— 920 formulated at x* and x~ in the Laplace transform
space with £ =1 and n* :— —n = —n~, yields:
oL(o- B oL+
(B.4) ) ety B m e

By adding inequality (B.2) to inequality (B.3) reversed in sign and, subsequently,
by using Egs. (B.4), we obtain:

(B.5) /L(B )Mw dar + f£(0+)6£(0+)df

- ]ﬁ(@*)ﬁ(q‘)dl + /L‘(@*)z(q*)dr <0,
r- r+

Now, like in Sec.3 for the symmetric BIE formulation, let the sources Ag be
confined to the portion 'y of I, the sources Af to [',. In terms of their Laplace
transforms this means that:

L(Aq) = -L(q%) - £(q7)
- it S

(B.7)

L(AB) = —£(9+)+£(¢9‘)} i

—L(¢") = L(g7) = £(9)
As a consequence of Egs. (B.6) and (B.7), the inequality (B.5) becomes:
®8) [ L@L@ )+ [ L@@l + [ Lo dr

ry Iy Iy

- f LOHL(Q)dl = — / LOL(Ag)dI + / L(AG)L(g)dT < 0.
X I I
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In view of the definitions and mechanical interpretations of the Green functions
Gigg and (4, in Sec. 2, Eq.(B.8) can be re-written in the form:

(B.9) - / / L(AQ)L (Gos) L(Ag)dl dT’
Iy I'p
+ / / LOA)L (Gg) L(AOY AT dT < 0,
F‘l Fq
Since the source fields are arbitrary (so that £(Ag¢) = 0 and £(Af) = 0 are

feasible choices), Eq. (B.9) yields the two inequalities which embody the sign-
semidefiniteness of the two kernels in Laplace transform space:

/ / L(AQL (Goo) L(AQ A dl >0 ¥ Aq,

Iy I'p

] ] LIABL (Go) L(AG) AT <0 YAD  q.e.d.
o

(B.10)

Appendix C. A proof of the symmetry of the boundary integral operator
with respect to a time-convolutive bilinear form over /" x 1" (Proposition 1)

In order to prove Eq.(3.12), let us write the bilinear form (3.11), in terms of y
according to Eq.(3.9); and of y* interpreted as the integral transform of another
field y’ through operator (3.10):

(Cl) <Lyy>
-/

t

//Ggg(x,ﬁ;t—'r)q(ﬁ;r) dt€ dr| ¢’ (x;1 —t) dxdi

0 1%

ol —

o
-

o~ .
ol —

f/G@q(x,ﬁ;t—T)H(ﬁ;T) dt dr| ¢ (x;1 —t) dxdt
| 0

<3

-

//Gqﬂ(x’ﬁ;t—T)CI(ﬁ;T) d€ dr | 0’ (x;f —t) dxdt

0 1
t
0

|
e
pel g

>

+

D\n. (=]

/

q

/G’qq (x,&;t —7)0(E;7) dEdT | 0 (x; T — t) dxdt.
I

q
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Let s change the integration order and use the Heaviside function H(t — 7)
(=0for7>t; =1for7 < 1)

€2 /j [ 4@ Gon &5t - 1) (T - 1) dx
00

I'g Ty

= ffﬂ(ﬁ;T)Goq x &t —7)q (xf—1t) d§ dx

7

= //q(E;T)qu (x, &t —7)0 (x;T —t) d dx

F;. Iy

- /jH(E;T)qu(x,ﬁ;t—T)B’(x;f—t) dt dx| H (t — ) dr dt.
Pyl

q9°9

Now take into account the kernel reciprocity properties, Eqgs. (2.14) - (2.16), and
adop: for convenience new time variables c =t -7, s =t - t:

(C.3) jj //q(ﬁ;f——U)GQQ(X,E;U*—S)QI(X;S) dt dx
00

I'g I'p
—f/H(ﬁ;f—a)Geq(x,ﬁ;o—S)q’(x;S) d§ dx
Iy Iy

—//q(&;f—a)qu(x,&;o—s)e'(x;s) df dx
f Iy

+ //B(ﬁ;t-—U)qu(x,f_;o—s)ﬂ'(x;s)dﬁdx H (o — s) dods.
)

By re-arranging Eq.(C.3), using again symbol ¢ instead of o and 7 instead of
s, and, finally, by interpreting the role of the Heaviside function in terms of
integration intervals, an expression is achieved from which the symmetry property
to prove clearly emerges:

(C.4) jf j/Ggg(x,ﬁ;t—r)q’(x;r)dﬁd’r q(&;f—1t) dE dt

0TIy [0 T%

—j/ j/GGq(X,E;t—T)q’(x;T)dxdr 0(€;1—t) dt dt

01y (01,
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//qu ;8 — 7)0 (s 7) dxdr | g (€1 1) dE dt
0 I,

L 6 J

(C.4)

i
[cont.] a _/
0

o DAY

s
O Sy
P LS

f/qu (x,&;t —7)0' (x;7) dxdr| 6 (&;F - t) dE dt
01,

=< Ly, y> q. e. d.

Appendix D. A proof of the symmetry of the boundary integral operator
with respect to a new bilinear form over /' x T, (Proposition 3)

A path of reasoning similar to that in Appendix C can be followed here again
with reference to the bilinear form defined by Eq.(4.2) in order to prove the
symmetry property expressed by Eq.(4.5), with the same interpretation of y, y’
and L as in Appendix C.

(D.1) < Ly,y >

= j]ofg(t+n)q'(x;n)/]aaa(x,e;t—r)q(e;r) dr d§ di dt dx
I Iy 0

-/

Iy

g(t+ n)q’(x;n)/jcgq (x, &5t — YO (&) dr b iy bt dx

-]

“~g ©—3 °©

g(t+1n)8 (x n)//qu(x £t —7)q(&;7) dr d§ dndt dx

Ig

y

q

0
/g(t+n)@’(x;n)//qu(x,ﬁ;t—T)G(&;T) dr d§ dn dt dx.
0

I, 0

o3 o

Let us now take into account again the definition (4.2) and invert the integration
sequence, to obtain:

®» [/ / W(s) / ~1' (x7m) dn / Gy (x,£51) dt

IgIe O

X /e‘”q(ﬁ;v’) dr ds d§ dx
0
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o [ Jrof e eonntns

Ly Ty 0

f =570 (&;7) dr ds df dx

///W(S)/ 0" (x; ) dv/ =G (x, £ 1) dt

rids 0
X fe_STq (&;7) dr ds d€ dx
0
+ [ [ [we [enown dn [eG, x &0 d
% 0 0

% fe‘“(?(ﬁ;r) dr ds d§ dx.
0

The reciprocity properties (2.14)-(2.16) of the Green functions in point lead to
a final expression which evidences the new symmetry of operator L, as stated by
Proposition 3:

(D.3) /775] t+n)g(x;n) / j Goo (x,&;t —7)q' (§; ) d7 d§ dn dt dx
I'y 0

o

g(t+n)o(x; n)]]G'gq x,&:t— 1) (§;7) dr d§ dn di dx

Iy 0

/1]

o 0

- /779@+n)q(x;n)f/qu(xf_;t_T)e'(g;r) dr dt dy dt dx
I, 00 f 0

i

t
g(t+n)6’(x;n)]/qu (x,&;t —1)0' (§;7) dr d§ dn dt dx
=< Lly,y> e €
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On hyperbolic heat conduction

K. FRISCHMUTH (ROSTOCK) and V.A. CIMMELLI (POTENZA)

IN A PREVIOUS PAPER [5], numerical solutions of initial-boundary value problems for the seni-empir-
ical model of heat conduction were compared with available experimental results. In [6] the model
was modified by introducing more realistic approximations of the constitutive functions, basing on
measured specific heat, heat conductivities and second sound speeds for NaF at low temperatures
(10...20° K). In the present paper we suggest a method to choose the free parameters entering
the constitutive functions by minimizing an error functional, measuring the differences between the
theoretical and experimental heat pulses.

1. Introduction

IN A SERIES OF PAPERS [1, 2, 3], KosiNski and co-workers introduced a model based
on thermodynamics with internal state variables, describing heat conduction at
low temperatures. Such a hyperbolic model avoids the paradox of infinite thermal
wave speed. According to Kosinski’s point of view the absolute temperature, as
a concept of thermodynamical equilibrium, is not appropriate to describe the
thermal evolution of systems far from equilibrium, such as dielectric crystals at
low temperatures (bismuth and sodium fluoride) in which thermal waves, called
second sound, can be detected. The introduction of a non-equilibrium tempera-
ture as an internal state variable is the main idea of his approach. A kinetic
equation describes the evolution of that non-equilibrium temperature with time.
CimmEeLLI and KosiNskl call such a variable semi-empirical temperature scale, [1].

The new model contains three physical material functions: heat conductivity,
specific heat and thermal relaxation time, which can be determined by experi-
ments. The mentioned parameter functions enter the constitutive equations for
the heat flux, internal energy and the right-hand side of the kinetic equation.

On the background of the existing experimental data it is reasonable to re-
strict our considerations to the 1D case. For certain choices of physical parame-
ters, length of the specimen, initial temperatures and initial thermal increments
at one side of the specimen, the model equations have been solved numerically,
cf. FrRiscHMuTH and CIMMELLL, [5], and the results are in good accordance with
the experimental data. However, some of the parameters used in the model were
choosen by hand. Hence it seems to be of some interest to try to find an ob-
jective procedure for the choice of all unknown parameters which minimizes the
difference between theoretical and experimental results. To this end we define
a functional, called error functional, measuring the degree of deviation between
theoretical and experimental heat pulses.
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Finally, we minimize the above error functional by an appropriate choice of
the free constitutive parameters. Note that the evaluation of the error functional
for a given set of parameters requires the solution of an initial boundary value
problem for a hyperbolic system of balance laws. Previously, [6], the comparison
between theoretical results and measured heat pulses was based only on the wave
speed which was taken as the characteristic speed for the theoretical solutions.

2. The direct problem

In order to keep the paper possibly self-contained, let us shortly outline the
assumptions of the semi-empirical theory of heat conduction. First we have the
basic equation of energy balance for a rigid heat conductor (})

(1) E+divg=r.

By r we denoted heat sources and by ¢ the heat flux vector. We assume the
energy to depend only on temperature: ¢ = £(f) and thus ¢, = ¢,(0) := £'(0)(%).
Especially for NaF, we have

(2) e=¢eft/4+e10°/5,

which is a generalization of the classical Debye’s law, and which has been pro-
posed on the basis of data obtained by HARDY and JASWAL [7].

We postulate the existence of a scalar field /3, the semi-empirical temperature,
whose evolution is governed by the kinetic equation

3) B=f,p),
and define the heat flux via a Fourier-like law of the type
(4) q(:l:,t) = #avIﬂ(a%t)v

where a means the heat conductivity.

We assume further that ¢, respectively the specific heat c,, can be measured
directly [7], and that these functions should be independent of the considered
theory of heat conduction.

The functions o : R* — R* and f : R* x R — R can be approximately
determined by measuring the heat flux and the equilibrium wave speed [6], i.e.
the speed of a wave travelling into a medium where ¢ = 0. As far as that last

(*) A more realistic model should include the effects due to the anisotropy together with those related to
the elastic behaviour of the materials. Actually, bismuth and sodium fluoride possess both properties. However,
as a first approximation we will limit ourselves to consider a one-dimensional rigid heat conductor.

(*) For convenience, we refer all quantities to volume measures and not to mass, following the experimental
papers [8, 7]. Specifically, in the 1-D case, all quantities are referred to the unit of length.
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function is concerned, satisfactory numerical fits of experimental data were given
by CoLEMANN and NEUMANN [4] and by CimmeLLI and FriscumuTH [6](3).

For practical purposes it is necessary to replace R by a small temperature
range R = [0pnin, max] Which is covered by experiments and where the hyperbolic
effects are relevant. We choose Oy = 10 and 0. = 20(%), bearing in mind the
available data for NaF.

3. Heat pulse experiments

We consider a 1-D NaF specimen, occupying the domain W = [0, L] € R.
Typical values of L are about 1cm. Moreover, we suppose that on the left-hand
boundary of W, a heat pulse of the form

5) 0L(t) = 09 + AO(H(t — tg) ~ H(t — to— Ab)),

with /1 some appropriate Heaviside-like function, is applied. Inside the specimen,
the following equations hold

(6) c,,é + divg = r,

(™) q=—aVp,

®) B =10.5).

On the right-hand side, Neumann or mixed type boundary conditions of the type
©) n = —a(0)B,: = —p(0 — o)

are assumed to hold. Their meaning is rather clear: p = 0 represents thermal
insulation, i.e. pure Neumann conditions, while p > 0 corresponds to a more
realistic interface condition.

We assume that either the heat source r vanishes uniformly — which corre-
sponds to an ideally insulated lateral surface of the specimen — or rather impose
an analogous interface condition of the type(°)

(10) r=r(0)=-7(0 - b),

with 7 > 0. By solving the initial value-boundary problem given by (5)-(10), we
can define a transition functional such that

(11) GLHH,. =:9(L7.)

(®) In our opinion the experimental calculation of «, the most crucial physical parameter, is not com-
pletely satisfactory since often the equations of the underlying theory are already used in the experiment for
transforming the measured electrical quantities into the caloric ones.

(*) Through this paper, all temperatures are in K, all lengths in cm, times in jls and masscs in g.

(®) Note that here we are neglecting the dependence on z in the constitutive functions. Furthermore, a
realistic r should contain a term representing the mechanical work due to velocity and stress fields. Of course,
in our simplification to a rigid heat conductor, these effects are disregarded in our considerations.
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i.e. giving the measured pulse on the right-hand side as a result of the transmitted
impulse applied on the left-hand side. Obviously, the transition causes a delay
and a change in shape and amplitude of the wave. Further, it depends on the
physical setup which is determined by the parameters: 6y — temperature of the
environment, [ — length of the specimen, m — energy losses under way, p — right
boundary condition, together with the constitutive functions ¢,, o and f. Now
we want to compare the theoretical transition functional with the experimental
results. Some additional difficulties arise from the scaling of the experimental
data. Indeed, in [7, 8] only the arrival time of the pulse was of interest so that
the electrical signals have been measured but not calibrated. As a consequence,
we cannot give the experimental transition operator absolutely but only up to an
affine transformation. In what follows we consider a theoretical result 8, to be
in accordance with a measured output pulse 0, if there exist two coefficients Ay
and A; such that

(12) Ao+ MO, =0, .

Otherwise we consider the term
(13) ¥ = min f [Ao + MO.(t) - 0,.(1)) dt
Ay 1

as a measure of the deviation between theory and experimental data.

4. The error functional

In the previous section we have described a mathematical method to compare
numerical solutions of the model equations with the experimental data, for given
fixed conditions of the conductor and the experimental setup. These conditions
are described by three different types of quantities:

(a) some constants, which are well known (e.g. L, o, €1);

(b) some parameters, varying in a certain range but which are well documented
in the experiments (e.g. the temperature ¢y of the environment, coinciding with
the temperature of the unperturbed initial state);

(c) some physical quantities to be determined under minimization of the error
(eg. o, f, p, ™, AD, Al).

After fixing all the well known quantities let us introduce two denotations:

u, representing the collection of all unknown quantities;

v, representing the collection of the variable quantities.

Then, according to he previous section, we have the quantity

(14) ¥ = P(u,v)
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as a measure of the model error. Finally, we introduce the functional

(15) U="U(u)= /¢(u,v) dv
Vv

as a measure of the global performance of the considered model over the range
V of the variable experimental conditions. For practical purposes we can choose
V to be finite and calculate the integral with respect to a discrete measure, i.e.
a weighted sum. Analogously, the integral definition of the local error will be
replaced by a sum of the squared errors on the time steps of the numerical
solution. According to the previous considerations we can state the following
identification problem:

Choose the unknown parameters u of the model in such a way that the global
error functional

(16) W =W(u) = jzp(u,v)dv = / min ][)‘0 + M (l) — 0,(1)] dt do
v po
attains a minimum over the domain of all feasable parameters w.

5. A reduced problem and its numerical realization

The minimization problem, such as stated in the previous section, is still too
general and difficult to solve, so that some further simplifications seem to be
necessary.

Till now, the unknown parameters in the above “least squares” problem con-
tain still the functional parameters o and f, ie. scalar functions on R, resp.
R x R. Bearing in mind that our experimental evidence is rather very limited
(IV] = 10), a reduction of the problem is imperative.

To this end we use — as the first attempt — a very restrictive approach — hoping
that a more refined version will be prepared in the near future. First, we use
a thermodynamical argument in order to replace one function on R x R by
two functions on R. Then we postulate a certain compatibility to the classical
case, assuming 3 = 0 at relaxed states, and a = «. Finally, we need hence just

to identify one scalar function f (because f, = fi, f(6,8) = f1(0) — fr(B))
which in turn is approximated by a linear spline f; with the coefficients s =

(s1,...,8q2) € R.

Hence, for the numerical realization, the unknown parameter « is substituted
by the spline coefficients s. In order to avoid more notations, we still denote the
functionals by ¥ and &:

a7 U(s) = Z P(s,v).

veV
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In this case the variable parameter is identified with the temperature 6j. So we
have

Omax
(18) Us)= Y. (s, 00).
0= "0Omin

The results of our optimization are shown in Fig.1 in form of a comparison
between theoretical and measured pulses at 15 K.
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FiG. 1. Theoretical and measured pulses at 15 K.

6. Conclusions

We solved an inverse problem arising in semi-empirical heat conduction the-
ory, in order to find the optimal values of physical parameters characterizing the
model. The first results, obtained in this paper, seem to be encouraging. How-
ever, it is obvious that there is still some considerable model error. More refined
numerical techniques should allow us to avoid some of the additional simplifica-
tions of Sec.5, and thus to reduce the remaining error. This will be the subject
of a forthcoming paper.
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Nonlinear transport equation and macroscopic properties
of microheterogeneous media

A. GAXKA, J.J.TELEGA and S.TOKARZEWSKI (WARSZAWA)

THE AM of this paper is a study of the quasi-linear transport equation, for instance the stationary
heat equation. For periodically microheterogeneous media, asymptotic homogenization has been
performed with the local problem formulated as a minimization problem. The Hashin-Shtrikman
type bounds and Golden-Papanicolaou integral representation theorem have been extended. In the
case of layered composites, exact analytical formula for the effective coefficients have been derived.
The possibility of applying Padé approximants and the Ritz method has been shown. Specific cases
and examples have also been examined.

1. Introduction

THE NONLINEAR Eq. (2.1) below is here called a nonlinear transport equation. It
is obvious that from the physical point of view, the study of such an equation is
very important. Typical examples are the stationary heat conduction and a non-
linear dielectric. The small parameter ¢ > 0 characterizes a microstructure of the
material. We have thus to deal with composite materials. Performing homogeniza-
tion or passing with ¢ to zero one obtains the homogenized (effective) coefficients
af; (1,7 = 1,2,3). Of our main interest will be the periodic homogenization, cf.
[1, 2]. We shall also extend to the nonlinear problem studied, the results due
to GoLDEN and PapanicoLaou [20] on the integral representation of the effec-
tive coefficients in the linear case when a;;(y,w)(y € R} we {2) are stationary
matrix-valued random fields; here (§2, 7, P) is a probability space. Such an ex-
tension is possible since in the local problem the macroscopic field u(?), say the
macroscopic temperature 7' = u(%) in the case of the heat conduction, plays the
role of a parameter only. It is thus also possible to exploit the Hashin - Shtrikman
variational principles and bounds, elaborated for the linear transport equation.
Extensive literature is concerned with the linear conductivity i.e. when the co-
efficients «;; do not depend on the solution u*. The reader may refer to [1-21]
for more details on the results achieved so far. In contrast to the linear case,
there seems to exist only a few papers on the homogenization of the quasi-linear
Eq.(2.1), cf. [22-25]. Those papers are purely theoretical and provide no exam-
ples of applications to composite materials. Also, the problem of the estimation
of the effective coefficients has been left open, though a particular case has been
studied by MiTyusHev [26]. However, the definition of the effective conductivity
used by this author is different from the formula obtained by homogenization.
We observe that af; depend on u(®), where u(9) is a weak limit of u* when ¢ — 0.
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For instance, in the case of the heat conduction, «;; depend on the macroscopic
temperature 7'. Such a dependence is in general a nonlinear one, even then when
in each of phases constituting the composite a; depend linearly on T'; specific
examples are provided in Secs. 5, 6 and 7 of our paper. A nonlinear dependence
of the conductivities on the temperature is of vital importance not only in the
study of engineering materials and structures [27, 28], but also for modelling the
behaviour of biological tissues [29, 30].

The determination of the effective coefficients «f; is of interest not only for
undeformable bodies; such a problem arises quite naturally as an independent
problem in the study of thermo- and piezo-electric composites [31, 32] and in
thermodiffusion [33].

The objective of this paper is to study the quasi-linear heat equation (2.1) and
provide some applications. Brief description of the contents of the paper reveals
very well our aim. In Sec.2 the method of two-scale asymptotic expansions is
used in order to derive in a rather simple manner the homogenized coefficients
a$;(u); in the case of heat conduction u(®) = T'. The formulation of the lo-
cal problem in the form of a minimization problem, in which the macroscopic
field u® (for instance 7') plays the role of a parameter is also delivered. In
Sec. 3 variational principles and bounds of the Hashin - Shtrikman type are given.
Section 4 deals with a straightforward extension of the GOLDEN - PAPANICOLAOU
[19] representation theorem to the investigated quasi-linear problem. This the-
orem provides an integral representation of the effective coefficients af;(u(")
for two-component composites made of isotropic materials. In Sec.5 analytical
formulae for the homogenized coefficients of layered composites are derived.
Section 6 reveals a possibility of an application of the Ritz method to the deter-
mination of local functions. A specific two-dimensional problem is also given. In
the last section it is shown how to apply the powerful tool of Padé approximants
to finding bounds on the effective coefficients.

2. Homogenization of quasi-linear heat equation with periodic coefficients

Let V C R be a bounded regular domain and I" = 9V its boundary. We
introduce a parameter ¢ = [/L, where [, L are typical length scales associated
with microinhomogeneities and the region V, respectively.

We shall study the quasi-linear transport equation

————8(3:_ (afj(x,u‘)—gf) = f in V,
2.1) ' !
ulr=0 on [

where a;;(z, u) = a;; E, u® |, z € V. By Y we denote the so-called basic cell [1,
€
2], for instance Y = (0, Y])x (0, Y2)x (0, Y3). For the sake of simplicity we assume
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that a;; = aj;, 7,7 = 1,2,3. As usual, we apply the summation convention. The
material coefficients a;;(y, r) are Y -periodic in the first argument. More precisely,

aij : (y,7) = a;;(y,r),
RPxR — R

are assumed to satisfy the following conditions:
(i) For each r € R, y — a;;(y, r) are mesurable and Y -periodic functions.
(i) There exists a constant o > 0 such that for every r € R, ie. y € ¥ and
for all z»] =1,2,3, la,j(y,?“)l <
(iii) There exists a constant k& > 0 such that

lai;(y,m1) — aij(y,m2)| < k|ry —ra,

forall y € R® and r, 7, € R.
(iv) There exists g > 0 such that

aij(y, r)é; > aolél?,
forall ¢ € R? and r € R.

. . T
We note that for a fixed ¢ > 0 the material functions af;(z,7) = a;; (-6—, r)

are c¢Y -periodic in x € V. After passage to the limit as ¢ — 0, the homogenized
coefficients «f; will be obtained.

2.1. Method of two-scale asymptotic expansions

According to this method we make the following assumption (ansatz), cf. [1, 2]
(2.2) ut(z) = vz, y) + euM(z, ) + 2 uP(z,y) + - -,

where ¥y = z/¢, and the functions u@(z, +), uW(z,+), u®(z,+), etc. are
Y -periodic. Then we may write

. 0
ai; (Y, u'® + eu® + 2@ + .. ) = a4;;(y, u' ) + Eu(l)%a(y(’%_)
u

da;i(y,u@) 1 0?a;;(y,u®
+¢? (u(z)(ﬂf,y)—%ty—(rl * E(U(l)(ff,y))z-%o)—-l) e,

It is tacitly assumed that all derivatives appearing in the procedure of asymptotic

homogenization make sense. We recall that for a function f(x,y), where y = z /¢,
" - ; 1 :

the differentiation operator d/dz; should be replaced by E t= 3 According

to the method of asymptotic expansions we compare the terms associated with
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the same power of ¢. Proceeding similarly as in the linear case we successively
obtain:
-2

i (au(y, Oz, ) 2 y))

This equation will be satisfied provided that u(O) does not depend on the local
variable y, ie. ul® = u©(z). This statement holds true under the assumption
that the coefficients a;;(+,u®(z, +)) are Y -periodic.

&
o ( . o ouN(z,y) | OuO()\) _
(o0 (250 2D )

1

&0 (after integration over Y)

(1) 0)
= (er [ 4ty u® ))(a" ot + a“awf“) dy) = -f(@),

where Sy
Wz vy = 2L k) O
u(z,y) 9z, X (y, u™).
The local functions y*)(y, u(®) are solutions to the local problem
d ax®(y, u®)
. P Oy ZAa_ >~ / . =
(2.3) & (a,_,(y, u'™) ( " + bix 0.

Let us introduce the space of Y -periodic functions defined by

(24) Hp(Y)= {qS € H'(Y)|¢ assumes equal values

at the opposite faces of Y}.

The weak (variational) formulation of Eq. (2.3) reads: find y(*)(+, u(®) € Hper(Y)
such that

a/\,(k)(y’ U(O)) dv(y)
54 (V] Y Agam g ; 2y =
(2.5) / [au(y,u )( " + bk B dy =0,

i
Y

for each v € Hper(Y'). Then the homogenized equation has the following form

2.6) —di( o550 2 )) =
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where the homogenized (effective) coefficients are given by
1 0]
&7 afu™) = o / i, u®) + ags(y, u®) 2|y,
iy Ay

In the case of the heat conduction u®) = T, where T is the macroscopic tem-
perature.

Both in (2.5) and (2.6) the transport coefficients satisfy only the earlier spec-
ified conditions (i) - (iv). We observe that in the local problem (2.5) u(® plays
the role of a parameter. This simple, but crucial observation means that (2.5) is
equivalent to a convex minimization problem:

Find
1 v ov
0 =i . = (0) : :
W™ E) mf{2|Ylyfa”(y,u )<3yg + E,) (ayj + E]) dy |

vE Hpe,(Y)}

(Ploc)

provided that a,; = a;;; here E; = 0u®/dz;. A solution T € Hpe(Y) exists and
is unique up to a constant c(u(?). Due to linearity of ¥ with respect to E = (E)
we may write

(2.8) oy, u®) = xP(y, uM)E; .

In contrast to the local problem (Pjyc), problem (2.1) cannot be formulated as a
minimization problem. Note also that

WO, E) = %afj(u(o))Ei E;

is the macroscopic potential. For instance, for dielectric composites the macro-
scopic displacement vector D = ([);) has the form
ow

(2.9) D; = 9E. a;(uE;,
where u(©) is the electric field, say ¢ and E; = —dp/dz; (the sign of E; in (Pio.)
is not important in the sense that one may consider either y(*) or (—y(*)).

Knowing that the local problem can be formulated as the minimization prob-
lem (P,c) we come to a very important conclusion: all the variational bound
techniques, including Hashin - Shtrikman bounds, developed for the linear trans-
port equation can be applied to the estimation of the effective coefficients (2.7).
In the next section we shall provide more details.
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2.2. Justification: G-convergence

From the mathematical point of view the results presented in the previous sub-
section are formal. Rigorous proof concerning the convergence when in Eq.(2.1)
¢ tends to zero have been given by ARToLA, DUVAUT [22] and next extended
in [23, 25] to the case of not necessarily periodic coefficients. Having in mind
applications to physical problems we have assumed that a;; = aj;. In fact, to
perform homogenization either by the asymptotic method or by the method of
H-convergence, such a symmetry is not required, cf. [22, 23]. H-convergence is
the G-convergence generalized to the case of nonsymmetric coefficients, cf. [1,
23-25] for more details. The main result of ARToLA and DuvAUT [22] is summa-
rized in the form of

THEOREM 1. Under the assumptions (i) - (iv) and
(2.10) f e L(V),
there exists a subsequence u® of u® and p > 2 such that
(2.11) u —u®@ in WyP(V) weakly,

where u(®) € I/VOI")(V) is a solution of Eq.(2.6).

REMARK 1. A weak solution of Eq.(2.1) is sought in the space H}(V). The
existence theorem provided by ArroLa and Duvaur [22] requires that
f e W=LP(V); p > 2 depends on V, a, ag and space dimension. We observe
that in [22] the coefficients a; are not necessarily symmetric.

3. Hashin-Shtrikman variational principles and bounds

The local problem (Py,) can be used for finding variational bounds on the
effective coefficients af;(u(?) similarly as in the linear case. Consider the case of
the heat conduction; then, according to our notations u® = 7. For the dielectric
coefficients af;(¢) the considerations which follow are quite similar.

In this and in the next section we are interested in composite materials made by
mixing two isotropic materials with conductivities A;(7") and Ay(7"), 0 < \(T) <
A2(T), in specified proportions 6 and 6, = 1 — 6,. The conductivity of the
composite is then given by

G.1) Ay, T) = M(T)1(y) + Ao (T )ba(y),

where 1(y) and 1»(y) denote the characteristic functions of the sets where A
equals \; and A,, respectively. Then the volume fractions are

1 ]
(3.2) = 1o ! D dy, b= o f Va(y) dy.
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The local problem takes the form

- _ 1 dv v
(3.3) <a(T)E,E>—1nf{mJA(y,T)(a—%+E)(ay +E)dy|

vE Hpcr(Y)} g

where E € R® and < a*(T)E,E >= af;(T')E;E;. Hence elementary bounds on
a® readily follow, cf. [3]

(3.4) AT < a*(T) < AT,
where I = (¢;;) and

-1
65 M@ = | [O@ ) dy| = [u@) 0+ )0,
v/

66 M) = /»\(y,T)dy— (T)0y + ATz

Recall that if A and B are matrices, then A > B means that < AEE >>
< BE,E > for each E € R*.

We pass now to a brief discussion of Hashin - Shtrikman variational principles.
We follow the paper by Koun and Mictton [3], which is restricted to the linear
case.

3.1. Variational principle for bounding a°(7") from below and lower bound

Suppose that a “comparison medium” is characterized by a conductivity A°(T'),
independent of y € Y. If A°(T') is restricted to the range 0 < A°(T") < A\(T),
then A(y,T") — A°(T) > 0 and proceeding similarly to Koun and MiLTON [3], we
arrive at the variational principle of Hashin - Shtrikman type for bounding a®(7")
from below

(3.7) % < (a°(T) = \(T)DE, E >

1 _—
337”( 0,E> 5 Ay, T) - X)) o

1 e
- T <o,V,4, div,o >|dy.

Here o = (0;) is a Y-periodic vector field and |o|> = ¢;0;; moreover (V,v); =
dv[dy; and A, denotes the Laplacian with respect to y, while A;! is its inverse.
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To derive from (3.7) the Hashin - Shtrikman type lower bound, the test field
o is chosen in the form

(3.8) o(y) = Y2(y)m,

where 7) is a constant vector.
Following KonN and MiLToN [3] we finally obtain
” n " 1-6,
(M) - (TN M(T),
_ n—1 n 1
LT - M(T)  M(T)-M(T)’

(3.9 tr [(ae(T) = /\I(T)I)‘l]

where trA = A;; and n denotes the space dimension (n = 3 in the three-dimen-
sional case).

3.2. Variational principle for bounding a*(T") from above and upper bound

If A°(T') is restricted to the range Ay(7T") < A°(T") < oo, then A(y, T) — A°(T")
is negative and the Hashin -Shtrikman type variational principle for bounding
a®(T") from above has the following form

(3.10) % < (@*(T)E,E>= igfl—;;’f [< o,E> —% A, T) - 2(@)! |o)?
i

1

- 5D <e,V,A;  divyo > | dy.

Substituting

(3.11) a(y) = Pi(y)n

into (3.10) and proceeding similarly as in [3] we obtain that

T— . . Ll
(312) [T -a(T)) ]S(Az(T)-/\l(T))Hl Aa(T1)6,

_ n-—1 + 1
T (D) - A(T) (1) - A(T)

4. Two-phase isotropic composites and integral representation
of the homogenized coefficients

Boccarpo and MuRrAT [23] have studied the convergence of solutions of
Eq.(2.1) without the assumption of periodicity of the coefficients af;(+,u®); the
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symmetry of those coefficients has also not been required. Under some conditions,
it has been shown that

(4.1) a*(-,r) 2L a(-,r)  (r - fixed, ¢ — 0).

Here H denotes “H -convergence”. In the case of periodic coefficients, we obvi-
ously have a(z,r) = a°(r), where a°(r) is given by (2.7); » € R. To find a(z,r)
one needs additional information on the microstructure (we observe, that in the
general case the effective coefficients may still depend on the macroscopic variable
x € V). For instance, such an information is available for statistically homogene-
ous ergodic (S.H.E) media [34]. Stochastically periodic media are a specific case
of S.H.E. media. For more information on stochastic homogenization the reader
should refer to [19] and to the references cited therein. Our aim in this section is
not to discuss the stochastic homogenization of Eq. (2.1), which can be done by a
straightforward extension of the results due to PApaANICcOLAOU and VARADHAN [18]
as well as to GOLDEN and ParanicoLAoU [19]. Instead, we are going to continue
the study of periodic homogenization of two-phase isotropic composites. As it has
been observed by SaB [34], periodic media are a special case of S.H.E. media.
Indeed, for periodic media the probability space (f2, F, P) is defined by the basic
cel: 2 =[0,Y7) x[0,Y2) x [0,Y3) if Y = (0,Y7) x (0,Y3) x (0,Y3); F is the
Lebesgue o-algebra and P = |T1/—|dy. It means that the results obtained in [18,
19] are also valid for the case of periodic homogenization. Particularly, recalling
that in Eq.(2.7) the macroscopic field u(?) plays the role of a parameter, we can
extend the integral representation formula due to GOLDEN and PAPANICOLAOU
[19], cf. also [20, 21]. For a two-phase composite made of isotropic materials we
write

(4.2) aij(y,u®) = a(y,u)s;,

where, for a fixed u(®, a(y, u?) assumes only two values a;(u?) and ay(u(®)
with 0 < a3(u®) < ay(u®). Thus we have, cf. (3.1)

(4.3) a(y, u®) = ar (O (y) + ax(uOyba(y).
Hence we conclude that important is only the ratio
0) 0)
) - @2ut) )y = “@™)
(4.4) h(u'™) ar () (or h(u™) 2@ |

In view of Eq. (2.7) we write

#3) afj(“(o)) = al(u(()))/ [?/Jl(y) - h(u(o))zsz(y)} E](-i) dy,
7
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Ix(y, u®) + b
dy;
plicityg. Thus the effective transport coefficients are functions of h(u(?); we write
ag;(u®) = @;;(h(u®)).

Suppose now that A(u(®) is a complex variable, cf. [19]. It means that the coef-
ficients a;(u(?) and a,(u(®) are treated as complex-valued coefficients. Physically,
imaginary parts characterize dissipative properties of the composite.

From the mathematical point of view, it is then possible to apply the theorem
on the resolvent representation [19-21].

where E'J(-") ;; provided that Y = (0, 1)? (for the sake of sim-

ProposiTION 1. The function a;; is an analytic function of the complex variable
h(u®) everywhere except on the negative real axis.

Proof Foru® fixed, it is similar to the one given in [19], provided that
in the formula (4.7) of the last paper one takes P(dw) = dy, {2 = Y (more
precisely 2 = [0,1)%). O

Equation (4.5) may be written as follows

@6)  mi(h(u®) = u(“(o))) / [1(v) + h(uO)pa(y)| EL dy.
Y

Now we are in a position to state the main result of this section
THEOREM 2 (REPRESENTATION FORMULA). Let

There exist finite Borel measures y;;(dz) defined for 0 < z < 1 such that the
diagonals 11;,(dz) (no summation over 1) are positive measures satisfying

1
(s(uOy = [ _Hii(d?) e
#9) Fij(su®)) 0/ . hi=123
for all complex s(u®) outside 0 < Re s(u®) < 1, Ims(u®) =0

Proof. Fora fixed u? it is quite similar to the proof of the representation
formula given by GoLDEN and PApanicoLaou [19], where h, P(dw), s and L;
should by replaced by h(u®), dy, s(u®) and 3/dy;, respectively.

CoRrOLLARY 1. Suppose that the medium is macroscopically isotropic. Then
mij (h(u®)) = m(h(u®))s;; and

1
4.9) 1-mhE®) = Fs@®) = / ?('5%% s(u®) outside [0,1].
0
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In the literature, one can find alternative forms of the integral in the r.h.s. of the
last relation like the one we shall use in the next section, cf. also [35]

(4.10) m(h@®) - 1 = n®) (1)),
where
¢t utd
@1 Aoy = [P0y 2 aw®) -1,

/ 14 nu®)z’

is a Stieltjes function defined in the cut (—oo < 7(u(®) < —1) complex plane;
here s(u(®) = —(1/9(u®)).

Just this representation formula will be used in Sec.7 for the determination
of universal curves allowing for finding lower and upper bounds on the effective
conductivity A.(7) for an isotropic, heat conducting medium by applying Padé
approximants.

Remark 2. To the best of our knowledge, in the available literature a gen-
eralization of the very nice representation formula (4.8) to composites made of
more than two isotropic components or of anisotropic materials is still lacking.
Partial results have been presented in [20, 21] by using several complex variables.

5. Microperiodic layered composite

Layered composites are often used in engineering practice. In this section we
shall derive the explicit form of the homogenized coefficients for the lamination
in the direction y,, provided that the composite is made of two materials. More
general cases of layering can be treated similarly.

4.
7

=0

F1G. 1. Basic cell for two-phase layered composites.

Now the basic cell reduces to an interval, say (0,1). Thus the material coeffi-
cients of such a composite are specified by

(1) ]
5, y _ Ja; () iy €(0,6),
( 1) a }(yv T) {GEJZ)(T) if y € (5’ 1)
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After lengthy, though simple calculations the local functions can be found in
a closed form; they are piecewise linear, cf. [32, 33]

IxBy1, T) _ { (1= Oaemlan@] i y1€(0,f),
Iy Eaemlan(D] if y;€(1).

From Eq.(2.7) we obtain the homogenized coefficients

(5.2)

(6.3)  ay(T) =< an(y,T) > -£(1 - G)M—flﬁﬂalk(T)Mau(T)ﬂ,
where

< ap(y, T) > = EaQ(T) + (1 - aP(D),
AE,T) = &) + 1 - (D),
[ai;(T)] = a$(T) - (D).

If a{}) = 0 for i # j and a2 = 0 for i # j then the coefficients al,(T), aky(T),
a%(T') are given by

allll(T) = 1 y
o (U(T) O~ (2)(T)

G4) ay(T) = < a(T,y) >,  aly(T) =< ass(T,y) > .
If we set B
)= 3.
then Eq.(5.4), takes the form
ap (1) _ h(T')

) O~ E+ - OMT)

Consider now a particular case by assuming that layers are made of isotropic
materials while the dependence on the temperature is linear:

[+ BT) i i€ (0,0,
(5.6) win T = { e 18T it L een

Then we have

(5.7) [ai;] = ([«] +[A]1T)4:;,
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and

(5.8)  a5(T) = &; {[€on + (1 - E)az)] + TIER + (1 - OAa])
[a — a1 + T(B, - B
— 61615 — .
101580 = ) e+ (1 — Bar + TEBe+ (= D))

From the last relation we conclude that the only nontrivial homogenized coeffi-
cient is given by (the remaining effective coefficients are merely averages):

59) AT = ) + HOT + 75 s

where

a(€) = a(e) - &(1 - 5)[[@11[[13]] (6)([ﬁ]])]

G 3
bE) = B(e) - €(1 - )([/[f(g
10 = - (ﬁ 2) ([[ 1- [[ﬂ]l%)z
e = -;’—%

a=tar+(1-8ay, B=E(0i+(1-6p,
d=bar+ (-8, PB=E(Rh+(1-6b.

We note that though in both layers the conductivity coefficients depend linearly
on the temperature, yet the dependence of af, on 7' is nonlinear.

5.1. Temperature distribution in layered and homogenized composites

Let us investigate a two-phase isotropic composite consisting of n layers made
of a material with the conductivity coefficient A\\(7") = «; + ;1" and n layers
with the conductivity coefficient (1) = a; + 3,7, cf. Fig.2.

The layers with odd and even numbers have the thickness /;/n and l;/n,
respectively. Obviously, [ = [; + [, denotes the thickness of the composite. The
conductivity coefficient in the composite is thus given by

_ [ M(T) if ze€A; andqis odd,
A Ty = {Az(T) if +€A; and: is even,
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0 (1) (i-1) (i) (i+1) (-1) )
T T T . T T T T

Az

FiaG. 2. Layered composite.

where A; = (z;_1, z;); moreover

i )

2n l

—(2-1)+—l if i is odd.

if 7 is even,

i

Ty

(i-1) (@)
Denote by T (z) the temperature distribution in the interval A;; 7' and T are

temperatures at the end point of A;. The axis Oz is perpendicular to the layers.
The heat equation in the layers with odd numbers is given by

(5.10) dd

( 1+ﬂ1T($))i§F)(w)] = 0.

Similarly, in the layers with even numbers we have

(5.11) dd [(02+52T($)) £f( )] 0.

Solving Eq. (5.10) we obtain

(5.12) T (z) = T { \/1 + Zkl(Al z+ Bl)J zed; (2-odd),

where k; = 1/a; and

(1) () (=1 k () (* 1)
Ar=21T-T +27%- 13|,
I MRY.

(%) n (¥) (i=1) k () (i-1)
Bl“];':l'iT"’fcil T 1 ;T —Ilez)]-
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Similarly Eq.(5.11) yields

(5.13) T () = — [ \/1 + 2k2(A2 z+ Bz)‘ T € 4A; 1—even,

where ktz = ﬁz/ (25 and

(1) () (=1 k, (1) (i-1)
Az IZ[T T +§T2— T 2)],

O] (1) (-1 kL (z) (i=1)
B2 = %[33; T-z;1 T +—22($iT = Ziet T 2)]

Assuming continuity of the heat flux at the points z; z = 1,...,2n - 1)

(oq +AT (x,-)) 4 Py = (az BT (m,)) LT @, i odd,
(az + 2 (1:'“)(35;')) di (zi) = (al + 5 T (a: )) % (T (z;), 11— even,
we obtain

()  (i+1) . () (+1) .
A1= A, ifis odd, Ax= A; if ¢ is even.

() .
Hence we derive the recurrence formula for the determination of 7" (z = 1, ..

b ]

(0) 0]
2n — 1) provided that 7' and 7' are prescribed:

’

(' l) (t'—) (l+1) (I l)
-C+ |C?+ ? lzT +l]_ T +k112T +k‘2!1T2 , for: even,

(7)
(5.14)  T=« : —
(i-1)  (i+1) s i+
-C+ C’2+§ LT +4 T +kT? +kyy T? |, for i odd,

L L d

where !

{ 1k2 + lzkl )
In the interior of the intervals A; the temperature is given by (5.12) and (5.13).

Now we shall compare the temperature at the interfaces with the (one-dimen-
sional) homogenized solution. The homogenized equation has the form

20 =

d
Z [s@engre)] =0
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We recall that af,(7") is now specified by (5.9). Then the solution of the last

(homogenized) equation is given by

(5.15) aT+gT2+cln|T+d| = Az + B,
where
[0)
o (© W, (©
A= 1 a(T—T)+§@”—qh)+dnT+d,
T — T 2 (0]
T +d
0} .
T +d
1 ( () (t)) b ( ©, (1)2)
B= alx; T —x2oT )+ =|xiT*“=207°| +cln
Z] — X 2 ]

provided that the boundary conditions are:

(0) 0]
T(xo) =T, T(z)=T.

5.2. Example
Let us assume that

M(T)=05+2T,  M\(T) =08+ 157,

©) 0)
=10, n=S5, [TI=0'4’ T=0 T=15

In Fig. 3 the dots denote the interface temperatures calculated according to (5.14).
The continuous curve represents the temperature distribution obtained from the

solution of the homogenized problem, cf. (5.15).

T
14

12
10
8}
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6. Ritz method

The Ritz method offers a possibility of determination of local functions in an
approximate manner.

6.1. General case

We shall be looking for an approximate solution of the local problem by the
Ritz method. Accordingly, we take, cf. [32, 33]

(6.1) X"y, T) = XD (y) = 3 XD ().

Here ¢%(y), a = 1,2,...,a are prescribed Y -periodic functions and x7*(7") are
unknown constants.
The local problem (2.5) should now be satisfied for test functions of the form

(6.2) v = v0%(y)

To determine the unknown constants one has to solve the following algebraic
equations:

(6.3) x{MA® = B™,

where

A®(T) = /aij(y,TWW?j dy,
Y
Bio(T) = — ] azi(y, T)¢" dy,
X

a

, d . : b
with ¢% = ¢ For a given macroscopic temperature 7' the solution is

Oy;

X(T) = (A~H(T))w B*(T).

Here A~! is the inverse matrix of A.
We finally obtain

(6.4) agi (1) =< (aij(y, T) > +(A (TN B*(T)B*(T).
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6.2. Specific two-dimensional problem: two-phase composite

To illustrate the outlined general procedure we consider a two-phase compos-
ite material with the conductivity coefficients given by

_ /\1(T)6,'j if yeYy,
(6:3) %, T) = {/\Z(T)é.-j if yeYs.
Now y = (y1,%2), 6% = gﬁ: -
(6.6) A*YT) = M\(T)F[a,b,i,i] - [MT)]f[a, b, 1,1],
(6.7) B*(T) = [MT)]fla, j]-

Here

(960 3¢ L= [OE0E
(6.8) f[a,b,z,g]— 3 6 ——dy; dya, F[a,b,laJ]-}[ dy; Oy;

fla,il = j dydys, DD = (D) - M(D).

Consider now a pamcular case of a square inclusion as presented in Fig. 4.

NN
N

Fi1G. 4.

The base functions are assumed in the following form

’ 6y1+% if ne (_'12'1_'%):
(69) S = -0-0u it ne(-55),
\ ém—% if yle(g,%);
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¢

)

§yz+§2- if yze(

-3),

3

lef‘n Nl'—‘

\_./ S 1last

3

S—— Nl‘”\

(6.10) FPyny) = 4 ~(1- &y i yzé(

\ Eyz—g if 3/26(%,%
(6.11) &> (Y1, y2) = cos(my1)sin(2ryz),
(6.12) ¢*(y1,¥2) = cos(ryz) sin(2ry,).

Next, we calculate

-9 i we(-53),
(613) ¢,l,(y1,y2) = 1 é é 1
£ if yle(T —E)U(i’i);
(614)  ¢.,(y1, ) =0, ¢ (1, v2) = 0;
-8 i ne(-53),
5 if 2 € (—i,—§>U (i’i),
(6.16) ¢zl(yhy2) = —msin(7y;) sin(27y,),
¢, (Y1, y2) = 2w cos(myy) cos(2my,);
6.17) ¢4 (y1,¥2) = 27 cos(2myy) cos(mya),

¢%(W1,¥2) = —7 sin(27y;) sin(7ry7).

Substituting (6.13)-(6.17) into (6.8), from (6.4) we can determine the depend-
ence of the approximate value of the effective conductivity coefficient A, on the
macroscopic temperature 7'. To find such a dependence it has been assumed that

Ml

0=
Y7

= ¢2 = 0.75,

while the conductivity coefficients of the phases are given by:
a) (see Fig.5) Ay = 0.21 + 0.0057, A, = 37.25 + 0.048T,
b) (see Fig.6) Ay = 37.25 + 0.0481", A, = 0.21 + 0.0057".
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Ao WI(M°K)]

T[°C]

5.8 i } 1 } % t t 1
20 30 40 50 60 70 80 90 100

F1G. 5. The effective conductivity versus temperature; in the inclusion: A; = 0.21 + 0.0057',
in the matrix: A\; = 37.25 + 0.0487', volume ratio: 8 = 0.75.

e [W/(m °K)]

5.0

40 +

20 +

24

1.0t
SEUTS ST,
0 20 40 60 80 100

F1G. 6. The effective conductivity versus temperature; in the inclusion: Ay = 37.25 + 0.048T,
in the matrix: A = 0.21 + 0.0057, volume ratio: 8 = 0.75.

7. Bounds on the effective conductivity of two-phase composites.
Padé approximants method

In this section we shall use the formulae for finding bounds on the effective
heat conductivity A.(n(7")) by assuming that at the macroscopic scale the com-
posite is isotropic. Towards this end the method of Padé approximants is applied.
The same procedure can also be used for the determination of bounds on the
diagonal elements of the effective conductivity matrix, what follows from Theo-
rem 2. For macroscopically isotropic materials the Stieltjes integral representation
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of the effective conductivity A.(n(7))/ A2(T") is given by, cf. (4.11),

. I - 1= DAGTY = 7D / S, 0<esl

Moreover the following inequality is satisfied, cf. [19]

(7.2) (Tl)m (M) fi(n(T)) > -1.

Consider the power expansion of n(1") fi(n(1")) at n(T") = 0:

(1.3) 1DAOT) = 3 ean™(T),
n=]
where
1
(7.4) e = (1" [zl (a)
0

The one-point Padé approximants [p/M’] and [p/M"] to the effective conduc-
tivity A, (7(T))/\a(T) represented by n(T') fy(n(T)) are given by:

= 9T + agn*(T) + -+ afym?~M'(T) ' o
75 WM = T s hp@y s+ Gy M T EeD,

m _ () + agn*(T) + - - + aiyun?* ' ~M"(T)
(76) [p/M"]= 1+ 6m(T) + nXT) + -+ W™ (T)
M" = E((p + 1)/2).

Here E(w) is the entier function, i.e. the greatest natural number not exceeding
w. Observe that now [p/M’] and [p/M"] depend on the macroscopic tempera-
ture 7T'.

Consider the power expansions of [p/M'] and [p/M"] at n(T') = 0:

.7) /M]=3 @), /M= D).
n=1 n=1

DEFINITION 1. The rational functions (7.5), (7.6) are the one-point Padé approx-
imants to the Stieltjes function (7.1):

(i) of the type [p/M'}, M’ = E(p/2), if
(7.8) d=cl)  for n=12,...,p
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(ii) of the type [p/M"], M" = E((p +1)/2), if
(790 =D forn=1,2,....p, [p/M"]=-1 for y(T)=-1. 0

The parameter p appearing in this definition denotes a number of available coeffi-
cients of the power series (7.3) matched by Padé approximants [p/M’] and [p/M"].

Let us recall the basic results of the paper [38].

THEOREM 3. The one-point Padé approximants [p/M'] and [p/M"] satisfy the
following inequalities:

() If -1<n(T)<O0 then

(7.10) [p/M'] > [p + 1/M"],

(1.11) [p/M"] < [p + 1/M"],

(7.12) [p/M'] > n(T) fr(n(T")) > [p/M"].
(i) If 0 <n(T) < o then

(7.13) (=1P[p/M'] < (-1)[p + 2/M],

(7.14) (-1P[p/M"] > (-1)"[p + 2/M"],

(7.15) (=17[p/M') < (=1 n(T) H(n(T)) < (-1)°[p/M"].

Moreover

B(AD) = lim [p/M] = lim [p/M"].

The inequalities (7.10) — (7.12) and (7.13) — (7.15) have the consequence that
Padé approximants [p/M'] and [p/M"] form the best upper and lower bounds on
n(T) f1(n(T)) obtainable using only p coefficients of a series (7.3), and that the use
of additional coefficienis (higher p) improves the bounds. a

It is convenient to represent the Padé approximants [p/M’] and [p/M"] by
S-continued fractions, cf. [36],

gm(T ) g2n(T) gp—21(T) gp1n(T) gpn(T)’

(15 [p/M'] = # 1 + 4 1 + 1 + 1
" — gn(T) g21(T) 9p-1n(T) gon(T) Vir1n(T)
(RA%) [p/M"] : + 1 + 74 . 1 + 1 4+ 1 ’
where
gin(T) gan(T) _ _gu(T)
I = 1 & % 1+£/277(T) '

1+.--
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The coefficients ¢, (m = 1,2, ..., p) are determined by the following recurrence
relations

m=12,...,p, gn= C(lm),
n=12,...,p—m,

(1+m) _ (1+m) (m)
CO - 17 Cn (m) {ZCJ Cntl- ;}

with input data ¢, (m = 1,2,..., p) given by (7.3), cf. [41]. Also a simple recur-
rence formulae determine the coefficients V44

Vi—g
‘/J_ )
and the Padé approximants [p/M’] ([p/M"])
Q(O) = V;;+1 =0 for [p/M’L (Q(O) = n(T)Vp+1 for [p/M"])a

' T)gp-; .
(7.20) QU“)=%%%%§, i=0,1,...,p-1,

[p/M']1=QW,  ([p/M']=Q").

Relations (7.18) — (7.20) allow us to compute Padé approximants bounds on
Ae((T))/A2(T') in terms of [p/M'] and [p/M"], from power expansion given
by (7.3).

Let us pass now to an application of the Padé approximants method for
the determination of the nonlinear effective conductivity A.(7") of a composite,
which consists of the regularly spaced and equally-sized cylinders of the con-
ductivity Ap(7") embedded in a matrix material of the conductivity A\, (7). We
set: # = wp?-volume fraction, p-radius of cylinders, 7(T) = (A (T)/22(T)) —
1-nondimensional conductivity. The input data for determining the Padé bounds
given by power series, cf. (7.3),

(7.18)

(7.19) Vi=1, Vitj =

7=12,...,p

(7.21) MA@ = 3 @dP P @), e = 7d{p?,

n=1
have been computed by means of the recurrence formulae derived in [39]:

)7 dgrlt).:(smlv

k+m

n+l _ m mp
(7.22) dr. Z dy ( mk F U 5
(m+@ 1 1, & m=k
m! (Akm i 5”6(’””)2)’ bk = {0, if m# k.

Here Ay, are the coefficients of the Wigner potential evaluated in [42, 43]. The
low order Padé bounds [p/M’] and [p/M"] on A.(n(T))/ X2(T") of a square array
of cylinders are depicted in Fig. 7. According to (4.11) the obtained bounds are

(7.23)  agm = (1)
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universal, i.e., they are valid for arbitrary, continuous functions A,(7") and A; (7).
From those universal bounds one can pass to bounds on A, as a function of 7',

7{! 9} ]
8 /o

cf. Figs. 8, 9.
> : 8=0.75 ::
g == [pm'],p=t 2, 18] il
- — [pM'],p=1 2.
£ 04L
g 8=0.75
= MMM /[ 8
5 03
S
=
E e
z 0.2
-~
| =
o
[©]
g 0.1
: -
o]
22
g 0.0
.S U Lol 1
£ 10 102 107 100 100

--=- [p/M'],p=1 2,..

7 hTI=M (1) / AalT)

Lt

h{T)

Lo iaiul -

102

103

F1G. 7. Sequences of Padé approximants forming upper and lower bounds on the effective

4.5

4.3

41

38

35

3

Bounds on e, W/mCK (square array)

3.7

341

conductivity of a square array of cylinders.

---- [11/5"]- lowsr bound bt
- | — [6/37- upperbound | -~
L
ToC
0 20 40 80 80 100 120

F1G. 8. Upper and lower bounds on the effective conductivity for square array of cylinders
(epidian 53, \; = 0.21 + 0.0057"), embedded in a matrix (steel 15SNiCuMoNbS5,

Az = 37.25 + 0.048T), cf. [44].
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B

=075

[12/6"]- upper bound
— [6/3']- lowsr bound

1 1 L T’ UC]

20 30 40 50 60 70 80 90 100 110 120

F1G. 9. Upper and lower bounds on the effective conductivity of human tissues: bones with
A1 = 0.349 and muscles with A; = 0.29 + 0.29exp((0.15(T — 36.7)), cf. [29].

.

To illustrate the above procedure we have evaluated the effective conductivity
A. versus temperature 7' for the composite consisting of the steel 1SNiCuMoNbS
with A; = 37.25 + 0.0487 and epidian 53 with A; = 0.21 + 0.0057', f. Fig.8.
The next example deals with live tissues: bone with A, = 0.436 and muscles with
A1 = 0.29 + 0.29exp0.15(T — 36.7), cf. Fig.9. All conductivities are given in
[W/m°K].
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Outlooks in Saint-Venant theory
ITI. Torsion and flexure in sections of variable thickness
by formal expansions

F. dell’ ISOLA and G.C. RUTA (ROMA)

WE sTUDY the Saint-Venant shear stress fields [1] arising in a family of sections we call Bredt-like
[2, 3, 4], i.e. in a set of plane regions D, whose thickness we scale by a parameter «. For each « we
build a coordinate mapping from a fixed plane domain D onto D.. The shear stress field in D, can
be represented by a Prandtl-like stress flow function [S, 6]. This is naturally done in torsion (torsion,
[1]), while in flexure (flexion inégale, [1]) we face a gauge choice whose physical interpretation is
uncertain [6]. We then consider the Helmholtz operator in a fixed system of coordinates in D and
represent the shear stress field in a basis field which is not the covariant basis associated to any
coordinate system. Formal e-power series expansions for the shear stress field, the warping, the
resultant force and torque and the shear shape factors tensor lead to hierarchies of perturbation
problems for their coefficients. We obtain all the technical formulae at the lowest iteration steps
and their generalization at higher steps — i.e., for thicker sections. No attempt is made to apply the
methods proposed in [16] to estimate the distance between the generalized formulae we provide
and the true solutions for the Saint—Venant shear stress problem.

1. Geometry of Bredt-like sections

WE cALL Bredt-like sections all the regions included in a plane P obtained by
symmetrically thickening a curve £ € P (middle line) along its Frenet normal
with regularly varying thickness. The position vector field of the points of £ with
respect to any point o € P is given as a function of its arc length s:

(1.1)

L:={qePlg-o=r1y(s), s€[0,1]},

[ is the length of £. The Frenet orthonormal basis for the middle line is

(1.2)

= 19,5($), m(s):= — *é?rgis) = — *195(5),

I(s):= _—a‘gf)

*+ is Hodge operator in P (7 /2 rotation in the positive orientation of P); the
comma denotes a derivative with respect to the indicated variable.

We define the ¢-Bredt-like section as the collection of all the lines symmet-
rically shifted along #I(s) starting from £, the total shift 6(s) being a regular
function of s:

(1.3)

D.:={y € Ply — o =r(s, z) = ro(s) + £z6(s) * I(s),
se[0,]], zel[-1,1]}
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z is a coordinate along I(s) and ¢ is a thickness perturbation parameter. We regard
s, z as rescaled coordinates over D., [7]; Eq.(1.3) implicitly defines a coordinate
mapping from D :=[0,/] x [-1, 1] onto D..
The natural (covariant) basis associated with the coordinate system (s, z) is [8]
Or
- gi(s) = 5™ [1—e2£(5)6(s)]1(s) + €26 5(s) * 1(s),
1.4
Jr
B2(s) := 5 =cd(s) *1(s);

k(s) is the (suitably regular) curvature of the middle line. Henceforth, to lighten
the notation we will drop the dependence of the indicated functions on the co-
ordinates, when there is no risk of confusion.

The covariant components and the determinant of the metric tensor are

(15) g = (1 —ezk6)? + (€26,)?, 912 = go1 = 26255’5’

gn =8 g = gugn - (gu)* = (€6)*(1 - ezk6).
The basis dual to the natural one is given by g'-g; = &', where + stands for the
usual scalar product in the vector space V of the translations of P:

1 20 1
1 B e '8 b
5 B = T czxb’ g o(1 - ezﬁ:é)l - L

As the section has variable thickness, the coordinate system (s, z) is not, in
general, orthogonal (it is on the middle line, by construction). The Christof-
fel symbols (of second kind) associated with the coordinates s, z, according to

{ J } i=g-2, [3, 4, 8], are:
} __€z(2ké, + £,56)
o

1-ezxé

2}_2568(255 + K, 6)+f€(1— h5)+7655
11~ 8(1 —ezkb) )

{i
{

(1.7 {212} { }=0’
{21} = {12} =

{21} {122} =3(_1—6§76)'

The centroid of area b of the section is given, according to Eq.(1.3), by

| 2
[=0) [bro—F [8nxl
(1.8) b—o= "2t 1 = 0 =:bg — £%by,
P 5

-~

€

ST
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Ap, is the area of the section. In all the integrals the measure of integration is
understood.

2. The elliptic problem for the shear stress field

The shear stress field t arising in the ¢-section of a Saint - Venant cylinder is
subjected to the elliptic problem [1, 6, 9]

2.1) divt = Yk-[+(y — b)] in D,
(2.2) curlt = 2G[1 + vk« (y — 0)] in D,
(2.3) t-n=20 along 9D.,
2.4) j{t-lc = 2GAg[r + vk-(bs —0)]  VC C D..

c

In the former, Y, (7, v are the longitudinal (Young) elastic modulus, the tangential
elastic modulus and Poisson’s ratio, respectively; n is the outer unit normal to
dD.; C is a curve and l¢ is its unit tangent; S is the inner Jordan region of C,
Ag is its area and bgs its centroid; 7 is the kinematic characteristic parameter
of the torsion, representing the unit angle of twist (with respect to the point
0); k is the kinematic characteristic parameter of the flexure, representing the
(linear) variation of the curvature of the initially straight axis of the cylinder
through o. Equation (2.1) describes local balance of contact force; Eq.(2.2) is
a local compatibility condition, necessary and sufficient if the section is simply
connected; Eq.(2.3) expresses the traction-free condition of the lateral surface
of the cylinder; Eq.(2.4) is a global compatibility condition for sections with
connection higher than 1.

It is well known that in general the problem (2.1)-(2.4) has no analytical
solution in closed form, especially for sections with multiple connection. This
makes it clear that for technical applications at least approximate solutions are to
be found. So far as we know, in the literature there are no approximate formulae
providing reliable results for the shear stress arising in thick sections. The aim of
this paper is to look for such formulae, starting from a geometry of the section
in which the thickening process depends on one parameter. No attempt will be
done to estimate the error made in considering the formulae given here instead
of the true solutions. This is a complicated mathematical issue to be faced with
the methods proposed in [16].

As Eqgs.(2.1)—-(2.4) are linear in the two kinematical parameters, it is custom-
ary to divide the general problem of the shear stress field into two systems, each
depending only on one parameter.

The system depending on 7 describes the torsion:

(2.5) divt = 0 in D°,
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(2.6) curlt = 2G7 in D,

(2.7) t'n =0 along dD.,

2.8) ft-lc = 2GAst  ¥C C D..
c

Equations (2.5) - (2.7) suggest that a flow function for t may be introduced, named
after Prandtl [5]. Starting from such function, there are technical formulae provid-
ing approximate shear stress fields for thin sections with both simple and multiple
connection [10, 11, 12]; in the latter case, the formula is due to BrEpT [13].

In some previous works [2, 3, 4] the torsion problem, defined over a Bredt-like
section, has been considered: the stress flow function turns out to depend on the
thickness parameter. Once the Ansatz is made that the Prandtl function admits
a formal ¢-power series expansion, one obtains, starting from Eqgs. (2.5) -(2.8), a
hierarchy of perturbation problems. In [2, 3, 4] it has been shown that the solu-
tions of this hierarchy provide all the known approximate formulae at the lowest
steps (i.e., when the section is thin), plus their generalization at the following
steps (when the section becomes thick).

The system depending on k describes the flexure:

(2.9) divt = Yk-[*(y — b)] in D,

(2.10) curlt = 2Gvk+(y — 0) in D?,

(2.11) ten =0 along JD.,

(2.12) ft-lc = 2GAsvk-(bs —0) ¥C C D..
C

In this case there is a technical formula, based on the integral counterpart of
Eq.(2.9), due to Jouravski [10, 11, 12]; it provides a mean value for the shear
stress component along £, which is an accurate estimate of that component when
the section is thin.

Let t,, t,» be the field solutions of Egs. (2.9) -(2.12) associated with any two
arbitrarily chosen points o, o' € P. The field t, — t, satisfies the system

(2.13) div(t, — t,) = 0 in D2,
(2.14) curl (t, — t,;) = 2Gvk- (0’ — o) in D,
(2.15) (t, —t,)n =0 ' along 0D, ,
(2.16) f(to —t)-lc = 2GAsvk-(o'=0) VCCD,.

C

If we let 7:=vk+(0' — 0) (both sides of this definition have the same physi-
cal dimensions), Egs. (2.13)-(2.16) describe a torsion problem whose kinematic
characteristic parameter is 7. That is to say, the choice of the origin o adds
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a torsional solution to the system of equations which describe the flexure. We
are so free to choose a particular origin to simplify the search for a solution of
Egs. (2.9)-(2.12).

Let us choose o = b; it may be proven [6] that the field

217) t= g{@ +2)[x(y - D) @ (y — b)] - (1 - 20)[(y - b) ® +(y — DI}k,

defined on the whole plane P D D,, is a particular solution of Egs. (2.9) - (2.10).
It turns out that

(2.18) /*E-ncfi-lc = 2GAsvk-(bs - b) VC C D,
C C

and the divergence and the curl of the field t — t vanish. As a consequence, it is
reasonable to look for a generalized stress flow function.

This can be easily done for simply connected sections and for sections whose
symmetry group is that of the rectangle. In fact, (i) in simply connected sections
the global compatibility condition, Eq.(2.12), is implied by the local condition
Eq.(2.10), (ii) in sections with two axes of symmetry it is bs = b. In both cases,
Egs. (2.9) - (2.10), (2.12), (2.17) - (2.18) affirm the existence of a generalized stress
flow function ¥ : D, — R [6]. Indeed, let Q C D, be aregion and M := 9Q\JD,;
we have

(2.19) 0=/div(t—i)= /(t—i)-nag= }(*(t-i)-lag
a9Q

Q aQ

=}(*(t—i)-lM:>t=i~*(W’),
M

V being the spatial gradient operator in 7. For simply connected sections and
for sections with double connection and two axes of symmetry it is then possible
to build perturbation hierarchies similar to those obtained in [2, 3, 4] for torsion,
and their iteration solution provides the known Jouravski formula at the lowest
step and its generalization at higher steps [6].

Unfortunately, this procedure faces a serious empasse in the case of non-
symmetrical sections with multiple connection. Indeed, Eq. (2.12) implies the exis-
tence of stress sources in the lacunae with given flow across all the closed lines M.
Now, there are infinitely many divergence-free stress fields which are gradients of
Prandtl-like functions and whose flow coincides with that given by Eq. (2.18), so
that we are to face a gauge choice whose physical meaning is rather uncertain [6].

It is then clear that, in order to provide a perturbation technique valid for all
Bredt-like sections, we must change our point of view and abandon the method
of the generalized stress flow function. The simpler idea is then to look for a
perturbation method to be applied directly to the shear stress field t.
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3. The Helmholtz operator in the Bredt basis field

The ¢ parameter in (1.3) magnifies the thickness of sections with the same
“shape”. We look for a hierarchy of perturbation problems for t in ¢, whose
solution at each step should provide generalized approximate formulae for the
shear stress field of thick sections. On this purpose, we will write the Helmholtz
operator in Egs. (2.1)-(2.4) in the coordinate system (s, 2) in D as a function of
the thickness parameter ¢.

We define the Bredt basis field B in D, as:

(3.1) B:(s,z)— I(s), #I(s);
the components of its Lie bracket [14] in (s, z) are

K zZK0

)

(3.2) 1, «1]; = (1—675)2’ [1, 1], = _5_(1—675)2 .

As the Lie bracket of B is not, in general, the zero vector field, B is not, in

general, the covariant natural basis associated with any coordinate system [15].
We do not represent the shear stress in the natural basis of the (s, z) coordi-

nate system, but in the Bredt basis, as it is usually done in the applications:

(3.3) t=tlg +t%g =tig' +t)g? =t 0+, «L

According to (3.3), we find the relations between contravariant and Bredt com-
ponents of the shear stress:

ts tz 1 255

1 _ e o D
3% = T eanb i o(1 - zneé)ts '

Because of Egs. (3.3)-(3.4), the divergence operator is written as [8]
(3.5) divt=(w)i=t1+{ 1 }tj+t2+{ z}tf
. 7 i _] 1 32 _] 2

_ tas Kt Laz
T 1—eczkb 1-—czké €6

The same expression is obtained for Bredt-like sections with constant thickness,
i.e., when the coordinates s, z are orthogonal at each point [14]. That is to say, the
divergence operator expressed in terms of i,, {, does not change its form also
when the section has variable thickness and (s, z) becomes a non-orthogonal
coordinate system. This is somehow physically reasonable, as the divergence op-
erator is more linked to the variation of the field along the middle line than
to that along the thickness. This also justifies the success of the approximate
formulae for the shear stress of thin sections.
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The covariant components of the shear stress may be found in terms of the
Bredt components by ¢; = g;;1/, once Eq.(3.3) is given:

(3.6) t1 = (1 —ezrbd)t; + €26 4t5, t, = eét,.

We use Eq.(3.6) to calculate the curl operator and express it in terms of the
Bredt components:

. tz,s—{ljz}t,—tl_ﬂ{z]l}g
(3.7 curlt = ﬁ (Vita — Vaty) = £6(1 = e2r0)
tZ,s - tl,z tz,s ts 2 K'ts Zé,stz,z
- ed(1 — ezkd) T 1_czkb €6 l —ezkb  6(1 — ezké)’

Equation (3.7) differs only in the fourth term from the expression obtained for
sections with constant thickness [14]. The additional term is proportional to the
derivative of the z-component of the field with respect to z and to the variation
of the thickness along L. This is physically reasonable, as the curl operator is
linked with the variation of the field along the thickness.

The gradient of a scalar function w in terms of the coordinates s, z is given by

ow bw,—ezdw, W,
2 S S W2 ]+ %4 *];

ow
(3.8) Vw= g + 5~ FiPL Teb(1 — ezk0) £d

ds

Eq.(3.8) reduces to the expression of the gradient of a scalar function in an
orthogonal system of coordinates [14] if we let ¢ ; = 0.

4. Formal expansions for the shear stress

As the thickness parameter describes a geometrical feature of the section, it is
reasonable to let t be a function of ¢ as well as of s, z. We propose the following
formal series expansion for t [7]:

N
(4.1) t(s,z6) = Y €"tu(s, 2) + o(e™),
n=0

where o(c") stands for terms of order higher than . Similar formal expansions
hold for both components of the shear stress field with respect to the Bredt basis.

If we substitute Egs. (4.1), (3.5) and (3.7) into Egs. (2.5)-(2.8), (2.9)- (2.12),
we now obtain two hierarchies of perturbation problems for the shear stress.
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The first hierarchy describes the case of torsion:

N
20{€n+16[tsn.s - K’(tzn + thn.z)] + Snt’«’“’Z}

4.2) eé(1 — ezkd) =
N
Z {5n+1[6tzn,s + K‘S(tsn 7 Zt.m.z) - 36,stzn,z] - Entsn,z}
n=0 = 2
(4.3) eb(1 — ezkd) L
N
(44) S,
n=0
N
45) S § et = 2Gr An(lr - o)
n=0,=9

The other hierarchy describes the case of flexure:

N
z {5n+l5[tm,s = K(tzn + thn.z)] + Ent"‘”’Z}
n=0
(4.6) eb(1 - ezkd)

= Yk (sig — £261 + £°by),

N
> {€n+l[6tzﬂ,s + &O(tsn + Zlen,z) — 35.stzn.z] —€Mnz }

n=0
*7) 5(1 —c2r9)
= 2Gvk-(rg + €26 x1),
N
(4.8) 3 e"ten =0,
=0
N
(4.9) 3 f e, = 2Gvk- Ar(br — 0).
n=0 2=0

In Egs.(4.2)-(4.9) the terms of order higher than ¢V have been dropped; in
Eq. (4.6) Ty :=rg — by; the outer normal vector n in Eqgs. (4.4), (4.8) is evaluated
in the following Egs. (4.10), (4.13), (4.14); in Egs. (4.5), (4.9) R is the inner Jordan
region (if any) enclosed by £ (2 = 0) and by, is its centroid.

If the section has double connection, we will call it closed, referring to its
middle line, which is homotopic to a circumference. In this case, there are two
different connected elements which compose the boundary of the section. The
outer vector field normal to the boundary is given by

(410) m|,=_y = —eb 01— (1 +crd)x1, N,y = —ed,d+ (1 —cKd)=*1,
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so that the boundary conditions for closed sections are, dropping the terms o(™),

(4.11) S ston + Kbt op) + €M op|.ag = 0,

(4.12) "6 4ton + KOt ) + M nl,=1 = 0.

N
> le
n=0
N

M
n=0

If the section is simply connected, we will call it open, always referring to its
middle line, now homotopic to a segment. The boundary is composed by a unique
connected element, divided into four regular components. The outer vector field
normal to the boundary is represented by

(4.13) n|,-o = -1, n.-_; = —ed,0—(1+erd)xl,
(4.14) nj,=; =1, nl,=y = —eb 01+ (1-¢ekd)«l,

so that the boundary conditions for open sections are, always dropping the terms
o(eM),

N
(4.15) Y €™ sn]s=0 = 0,
n=0
N
(4.16) S 1™ (B ston + K6tp) + €M on)i=1 =0,
n=0
N
(4.17) I [ P e
=0
N
(4.18) S 1= €™ (B stan + Kbtn) + €7tplomg = 0.
n=0

In the next sections we will look for the solution of the hierarchies of pertur-
bation problems (4.2)-(4.9), with the appropriate substitution of the boundary
conditions (4.11)-(4.12), (4.15)—(4.18), both for closed and open sections.

As the structure of both hierarchies is the same, the only difference being
brought in by the right-hand sides in Eqgs. (4.2)-(4.3), (4.6)-(4.7), we obtain
(see next section) the same recursive structure for the coefficients in Eq. (4.1), no
matter if we study torsion or flexure.

In particular, there are common features of the two hierarchies which are
worth remarking:

a. Each step can be solved within an unknown function of the coordinate s,
which is determined only by solving the local balance equation, together with the
boundary conditions, at the next step. This is a very well known possible feature
of perturbation series [7].
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b. Both for closed and open sections, the structure of the perturbation prob-
lem is the same but for two different boundary conditions. Anyway, in the case of
open sections, we cannot force a system of second order to fulfill four indepen-
dent boundary conditions. This is another well known phenomenon of perturba-
tion procedures, when being in presence of a boundary layer (in this case, in a
neighbourhood of the “short” sides of the section [2, 3, 4, 7]). We should provide
two different expansions, called outer and inner [7], and then match them; but for
the aim of this paper we will content ourselves with the outer expansion, valid
outside the region of the boundary layer.

4.1. Shear stress coefficients in torsion

We will first give the solutions of the first steps of our perturbation series
in the case of simply connected (open) sections. We remind that the following
coefficients are those of the outer formal series expansion for the shear stress.
It is

(4.19) t = 0,
(4.20) t; = —(2GTzH),

421) t=0Gr { [(1 i % [6(&62),51 14 66,,(z2 - 3)+ I} .
0

Equation (4.19) is a known result, though never explicitly affirmed in the litera-
ture: when the thickness vanishes, the only solution of the torsion problem is
the zero field. Equation (4.20) is the result usually provided in the literature for
thin sections, sometimes attributed to Kelvin [2, 3, 4, 10, 11, 12]; Eq.(4.21) is the
generalization of this formula when the section becomes thicker.

Equation (4.19) verifies all the boundary conditions; Eq.(4.20) verifies the
boundary conditions at the “short” sides of the section as a mean over the thick-
ness; Eq.(4.21) verifies only the boundary conditions at the “long” sides of the
sections. This implies that, even if at the lowest step of the hierarchy the zero
field is a suitable solution also near the “short” sides, at the successive iteration
steps a boundary layer in that region arises, named after Kelvin. We will provide
in Sec. 6.1 a measure of this effect, the same as that presented in the literature.

In the case of sections with double connection (closed) we have

AR

1
¢ =
!5

z[6(Ktso — 2GTI + 6 5 * 1],

(4.22) to = 2Gr—E 1 =:1,,

(4.23) t
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2

(4.24) L= l::zh'.(sz(ﬁfsg -2GT) - zzé,stso + %56‘3%0 + 1] 1

o

+ {5&3 [(:2 + Dkt + (22 - 3)GTJ - %5zﬁ.sf50} 1.

Equation (4.22) is the well known Bredt formula [2, 3, 4, 10, 11, 12, 13]; Egs.
(4.23)-(4.24) provide its generalization when the section is thicker. In Eq. (4.24)
L5, is an unknown function of s alone, to be determined by solving the next step
of the perturbation procedure.

We remark that for closed section we have a non-vanishing ty: this is physically
grounded, because the stress flow runs along all the closed lines which fill the
section; on the contrary, in open section the condition that the shear stress flow
be zero necessarily implies that the shear stress must also be zero at the lowest
step of the hierarchy.

If we let 6 ; = 0 (6 = constant along £) in the Egs. (4.19)-(4.22), we recover
all the results provided in [2] for sections with constant thickness.

4.2. Shear stress coefficients in flexure

As it has been done in the case of torsion, we will begin providing the solutions
of the first steps of our perturbation procedure for open sections; these are also
in this case the coefficients of an outer formal expansion. It is

f(s * l.'o
(4.25) to = Yk. 2 1=ty
(4.26) t; = z[6(kts0 — 2G VK Tl + 8 5 * 1],
(4.27) t = { [zzézﬁ(ﬁtsg - 2Guk-r0) — Gk * I}

# 2 - 2
+ ?[6(5,51530),3—6,350] 1+ 86,4 (2 + Dty0

22

+ 22_3G,/k-r0 = _1(52 Kst_90+k'(l+yl‘l*l-'0)] * 1.
(-3 —La

Equation (4.25) is the known Jouravski formula and it may be found in all the
textbooks on strength of materials [10, 11, 12]: the integral in t4y is the first
moment of area of the part of the section enclosed by the values 0 and s of the
arc length of the middle line. Jouravski formula in the literature is written in terms
of the resultant shear stress; it is easy, though, to recognize the same expression
once having remembered the linear relationship between the kinematic parameter
k and the resultant shear stress q [1, 6, 9]. We will discuss this in Sec. 6.2, where
we calculate the coefficients of a formal expansion for the resultant shear stress.
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The component along I of Eq.(4.26) is another known formula. In the lit-
erature it is sometimes found by means of heuristic and graphic deduction and
it is said, also on heuristic grounds, that its magnitude is small if compared with
that provided by Jouravski formula. From the point of view of our technique, this
result is clearly interpreted as a higher order effect in terms of the perturbation
parameter.

The components along 1 of Eq. (4.26) and Eq. (4.27) are not found in the litera-
ture, so far as we know. They are the first generalization of Jouravski formula
for open sections which become thick.

Exactly as we have found in the case of torsion, Eq.(4.25) verifies all the
boundary conditions; Eq. (4.26) verifies the boundary conditions at the “short”
sides of the section as a mean over the thickness; Eq.(4.27) verifies only the
boundary conditions at the “long” sides of the sections. That is, also in flexure
a boundary layer near the ‘short’ sides arises, a measure of which we provide in
Sec. 6.2.

In the case of sections with double connection (closed) we have

f{(&kl—'o)
428) =K. /(6*:"0)— . (bR‘O) 1=:1,0l,
5 1
0 $ = 5f
73 5

4.29) ) = 2{6[Kls — 2Gvkero]l + (8,4t:0) *1},
(4.30) t = {— [6(8,5t50),5 — 8:ts0] + 2262 K20 — Gk (rg + +1)] + fsz}l

+ {55,, (22 + Dstoo + (2% - 3)Grk-ro)
+(1 - z%)6? " f0 4 k. -(G1+ Yn*rg)J }

Equation (4.28) is the Jouravski formula for thin closed section, which in the
literature is found by an application of Volterra distorsions and the principle of
virtual power [11, 12]. The second addend in ¢, is sometimes called “torsion in
“the section as a whole”, because it has the same form of a Bredt field in the torsion
of a thin closed section [2, 3, 4, 10, 11, 12, 13]; on the basis of our procedure, this
similarity is more strict, as both come from the integral condition of compatibility,
Eq.(2.4) [2, 3, 4]. Equations (4.29)—(4.30) provide a generalization of Jouravski
formula for closed sections when the section is thicker. In Eq.(4.30) i,; is an
unknown function of s alone, determined in an implicit form by solving the next
step of the procedure.
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5. Formal expansions for the warping

There is the following relationship between the shear stress field and the
warping w of a section of a Saint - Venant cylinder [1, 6, 9]:

(5.1) t=GW + Vw).
In Eq.(5.1) ¥ is a known function, given by
(5.2) V=7xr+v{(r®sr)+[+(y - b) @r}k;

it expresses the variation along the axis of the cylinder of the displacement of its

substantial points in the plane of its sections. In Eq. (5.2) we dropped the addends

which expressed a rigid contribution and used the definition (a @ b)c:= (a-c)b.

The warping is then directly linked with the solution of the elliptic problem

(2.1)-(2.4), and it is natural to try to integrate Eq.(5.1) to find its expression.
We assume that the following formal expansion holds:

N
(5.3) w(s, z;€) = Z e"wy, (s, 2) + o(eM).
n=0

Equation (5.3), substituted into Eqgs. (3.8), (5.1)-(5.2), leads to a hierarchy of
perturbation problems for the coefficients of the formal expansion of the warping.
Due to the linearity of the problem in the two kinematical parameters, it is
suggestive to split the hierarchy into two ones.

The first hierarchy describes the warping in torsion:

N
(54) 3 [ (Ewn, — 26 50 ) + €7(1 — e2KE)wn: ¥1]
n=0
N
¥ (1 - ezrd)ot,
n=0

= e - Teb [*l’g —e26(k * 19 + 1) + 222664 .

The second hierarchy describes the warping in flexure:

N
(5.5) Z [5”“(61:),1,3 — 26 qwp N+ "1 — e2K0)w,, ; *
n=0

1
N
S e™(1 - ezkb)ot,
_ n=0

B G
—V{sym(rg @ *1g) — *bg @ g + £26[sym(x1 @ *rg — r @ 1) — (x¥by ® *1)]
+ EX[26%ym(s1 @ 1) — (xby @ 1o)] + €326(xby @ 1) K,

where sym stands for the symmetric part of the indicated tensor.

]
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In both Egs. (5.4)-(5.5) we have dropped the terms of order higher than V.
The two hierarchies have the same structure, and the only difference is brought
in by the right-hand sides, just like in the problems of determining the coefficients
of the formal expansion of the shear stress. It is important to remark that the
structure of the hierarchies decouples the system of partial differential equations
into a system of ordinary equations, which significantly simplifies all the calcula-
tion. In the following we will give the results of the first coefficients of the formal
expansions for the warping, dropping the constant values of integration which
will only imply an (inessential) rigid contribution.

5.1. Warping coefficients in torsion

We provide at first the results for open sections, for which we have

(5.6) we = —272(s),
(5.7) wy = —72z6rp-1.

In Eq. (5.6) §2(s) is the area of the inner Jordan region of the curve composed by
the position vectors r(0), r(s) and the arc 0, s of £ (sectorial area). Equation (5.6)
is a formula which is found in the literature in the framework of the so-called
Vlasov theory of thin-walled beams [11]. Equation (5.7) coincides with a funda-
mental assumption of the aforementioned theory: it states that for thicker sections
the warping will be a linear function of the coordinate along the thickness. Vlasov
does not consider a Saint - Venant cylinder, but regards a thin-walled beam as a
shell and postulates that the section of the shell (which we have interpreted as
the section of a Saint-Venant cylinder) is not affected by any deformation in
its own plane. In Vlasov theory Eq.(5.6) is a consequence of the introduction
of Kirchhoff-type internal constraints given by Eq.(5.7). From the point of view
of our perturbation approach, this result is naturally obtained solving the lowest
step of the hierarchy, which corresponds to thin sections. Moreover, our pro-
cedure shows that Kirchhoff-type constraints seem to be naturally satisfied by
Saint - Venant displacement fields.
For closed sections we have

I
]
3

(5.8) wo

(5.9) wy = —7126ry-1.

Equation (5.8) gives again the warping according to the law of the sectorial area;
this also is a known result for thin sections, based on Vlasov’s theory. The addi-
tional term present in Eq.(5.8) with respect to Eq.(5.6) takes into account the
necessity for the warping function to be periodical along the middle line.
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Equation (5.9) affirms that the first higher order correction to the warping of
thin sections is the same as that for open sections. This is physically reasonable
because the behaviour of the warping along the thickness does not have to depend
on the section being open or closed.

The same results presented in Egs. (5.6)-(5.9) were obtained also in [2, 3,
4] by means of the Prandtl stress flow function. It is worth remarking that in
[2] we obtained the same equations dealing with Bredt-like sections of constant
thickness: that is, at the first two steps of the iteration procedure, the coefficients
of the formal expansion for the warping are not affected by the variable thickness.

5.2. Warping coefficients in flexure

In the case of flexure we have

1 S s
(610)  wo= 5 [t vk [lsym(r® 1)~ xo © o]l
0 0

(.11)  wy = —vzb {[sym (rp @ +19) — +bg @ ro]k-~ (1) + 2k-/ rg} .
0

Equation (5.10) is the warping for thin sections, according to the interpretation
of the thickness perturbation parameter; Eq.(5.11) is its generalization. As in the
case of torsion, the first order coefficient of the formal expansion of the warping
is a linear function of the z-coordinate.

We remark that the structure of the solution is the same both for open and
closed sections, the difference being brought in only by the different expression
of Z55. This behaviour could be seen also in the expressions of the warping co-
efficients of the torsion. So far as we know, such a general formulation for the
warping cannot be found in the literature.

6. Formal expansions for the resultant force and torque and for the shear shape
factors

In Saint-Venant cylinders the kinematic characteristic parameters on which
the general solution of the problem depends are linearly related to the resultant
actions (force and torque) which act on the basis of the cylinder. This is of great
relevance from the point of view of the applications, because it makes it possible
to project the results obtained in the three-dimensional Saint-Venant theory
onto the one-dimensional beam theory. In this way, the stiffness of a beam is
a global property which results from an integral defined over the section of a
Saint - Venant cylinder. So, it is rather important to check if our perturbation
procedure is able to provide good approximate results also for the resultant force
and torque.
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In the case of torsion, there is only one non-vanishing resultant action, which
is the resultant torque due to the shear stress distribution:

(6.1) T:= /[*(y — )] -,
D.

where Z is any point in P, chosen as reduction pole for the torque. It is convenient
(but unnecessary, of course) to put & = o, so that the lever arm of the torque
distribution is just the position vector of the places of the section, for which we
have an ¢-dependent expression, Eq.(1.3).

Also for the torque we obtain

N 11 N
6.2) T(e) =3 T, = / [ Vit - ez 3 e,
n=0 0 n=0

-1

where, as usual, we have dropped the terms o(¢"). On the basis of the results
obtained in Sec.4.1, we will calculate the coefficients of the formal expansion of
the resultant torque and, as a consequence, the torsional rigidity (simply defined
as the ratio of the torque and the unit angle of twist).

In the case of flexure, the peculiar resultant action is the shearing force:

(6.3) q:= / t,
D,

as a matter of fact, the resultant torque of the shear stress distribution is an effect
of the choice of the origin of the plane P, Egs. (2.13) - (2.16), and vanishes when
the so-called shear centre, or centre of flexure [9, 10, 11, 12] is chosen as origin.
For q we obtain

N 11 N
(6.4) 1© =Y ca=[[viXen,
n=0 210 n=0

always dropping the terms o(c™).

There is also another expression for q, given by the theory of Saint-Venant
[1, 6, 9]:

(6.5) q = Y «Jk,
(66) 3= [lw-bosu- b
D.

where J; is a tensor of inertia of the section with respect to its céutroid. Substi-
tuting the expression of the position vector of the places of the section, Eq.(1.3),
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into Egs. (6.5), (6.6) it is found that J, is a polynomial function of the thickness
parameter:

l i
6.7) Jo=2 / b(xig ® *ig) + gsi‘ / 8@ 1+ sym (i @ «l)]
0 0
=: eJp1 + 3 Jp3.

According to Egs. (6.5) - (6.7), then, the resultant shearing force may be written as
(6.8) q=Y +(cly + )k =:cq; + £°q3.

In Sec. 6.2 we will compare the results obtained by substituting the coefficients of
the shear stress given in Sec.4.2 in Eq.(6.4) with the result given by Egs. (6.5)—(6.8).

In the technical literature the symmetric tensor K of the shear shape factors
is introduced, according to the following equivalence in power:

1 a _1 fq,. Kl = ,
(6.9) s0-Kga— = ZGDf(: ) = q Kq_AD,D/(t 0.

An ¢-formal power series expansion holds also for K, as, from Eq.(6.9), we easily
obtain the following expression:

N N N
(6.10) ( Z E"qn) . ( Z e"K,, Z E"qn)
n=0

n=0 n=0

in the former, we have dropped the terms o(c").
6.1. Resultant torque coefficients in torsion

As previously done, we will first give the results for open sections, for which
we have found only an outer expansion of the shear stress distribution:

T1=T2=07

(6.11) Ty,

l s
(6.12) T3 gGT f { [ / nézé,s} (*ro-1) — 4626 ,(ro-1) + 63(1 + *ro-,d)}.

0 0

Equation (6.11) expresses a known result, which is not clearly affirmed in the
literature, though: the resultant torque in the torsion of an open section of a
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Saint - Venant cylinder appears only with the third power of the thickness. From
the point of view of our technique, this is a natural result of the perturbation
method.

Equation (6.12) is the generalization of another known result, that is to say,
the so-called Kelvin formula for the resultant torque of thin sections. So far as we
know, in the literature there is no general formula like Eq. (6.12). All the results
given in the literature for each particular open section may be found starting
from Eq.(6.12): this is particularly evident in the case of sections with constant
thickness, for which we immediately recover the expressions given in [2, 3] and
in the technical literature [10, 11, 12].

For instance, from Eq. (6.12) one obtains the exact resultant torque in the case
of a semicircular section with constant thickness. In this case, the boundary layer
effect, named after Kelvin, vanishes because of geometrical effects, and the outer
expansion of the shear stress provides a very good approximation of the global
effects of the actual distribution.

This does not happen in the case of rectangular sections, for which we obtain
from Eq. (6.12)

3
(6.13) g, SECEPL
6

which is only one half of the actual resultant torque. The outer expansion of t
loses information on the actual stress distribution near the short edges of the
rectangle. The portion of resultant torque missing in Eq.(6.13) is a measure of
the boundary layer (Kelvin) effect, and was already obtained in some previous
works [2, 3, 4, 6].

‘We remark, though, that, if we start studying the torsion from a formal expan-
sion of the Prandtl stress flow function, as was done in [2, 3, 4, 6], we obtain the
exact result for the resultant torque. This is reasonable, because Prandtl function
is in some sense a primitive for the shear stress (see Sec.2), that is to say, it is
richer in information. Thus, if we calculate the resultant torque as the integral
of Prandtl function over the section [1, 6, 9, 12], we are able to recover also the
global contribution of the boundary layer (but not its actual local behaviour).

In the case of closed sections we obtain

AZ
(6.15) Ty = 4GT—_71?-,

$ 2%
(6.16) Ty = 0.

Equation (6.14) is a known result, though never explicitly affirmed in the litera-
ture: the resultant torque must vanish when the thickness of the section fades.
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Equation (6.15) is another well known result, that is to say, Bredt formula [10,
11, 12, 13]; the same expression was obtained also starting from Prandtl stress
flow function in [2, 3, 4]. Equation (6.16) is a new result which affirms that the
first generalization of Bredt formula has to be searched at orders higher than two
in the thickness parameter: this is a justification of the validity of Bredt formula
in all the applications.

6.2. Resultant force and shear shape factors coefficients in flexure

For both open and closed sections we obtain

(6.17) q = 0,
(6.18) q = Y+ Juk,
(619) q2 = 0.

As usual, Eq.(6.17) affirms that the resultant action must be zero for fading
thickness. The most interesting result is represented by Egs. (6.18)-(6.19): they
show that, no matter if we use Eq.(6.4) or Egs. (6.5) - (6.8), we obtain the same
results. We remark also that the resultant shearing force, as a global result, does
not take into account the section being open or closed, and the different forms of
Jouravski formula in the two cases, Egs. (4.25), (4.28). Equations (6.17)—(6.19)
imply that Kelvin effect in flexure is at least a third order effect in . Such a
phenomenon has been studied in [6] in the case of open Bredt-like sections
with constant thickness. In [6] the flexure is studied starting from a generalized
stress flow function; there it is shown that such a function verifies all boundary
conditions up to the second order in an e-formal expansion - i.e., a boundary
effect arises only starting from the third order in ¢.

Equations (6.18) - (6.19) confirm that, even if Jouravski formula was originally
obtained in a heuristic way, its validity is really great for all the applications.
Indeed it is simple to use and provides good global approximate results. We also
think that, as we have been able to find and rationally justify these results, our
generalization perturbation technique is meaningful.

As for the coefficients of the formal expansion of the shear shape factors
tensor (6.10), we obtain

l l

620)  ar-Koar =4 [ [ 8(ato-to),

0 0
(6.21) q-Kiq=0 = K; =0,
! !
(622) qi-Kyq = 4/6/ [(ztg'tz +t 't1)6 - 22562“ 'tﬂ] ,
0 o0

It is easy and meaningful to calculate the coefficient given by Eq. (6.20) at least
for simply connected (open) sections, using Eqgs. (4.25) and (6.18). If we make
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use of an orthonormal basis whose elements are directed along the principal axes
of inertia of the section, it is

A i L ol
Ap iz 2] 0 Jundnzn ] 6
(6.23) Ko = —~ ; ;
1 [ 5155 1 52
Jaundnzn 0 ?1:0/—5—

Sy, S are the first moments of area with respect to the 1 and 2 directions as
functions of the s coordinate.

So far as we know, Eq.(6.23) is not given in the literature; usually only one
of the components of the main diagonal is calculated [11, 12], and coincides with
that given in Eq. (6.23).

7. Applications

We will at first consider the torsion of an isosceles trapezium whose height is
! and whose bases are 2h;, 2h,. We let the s coordinate run along the height;
as the s coordinate line is a portion of a straight line, its curvature vanishes. An
orthonormal basis (e, ez) is given whose first element is parallel to the height of
the trapezium,

rp =se;, 0<s<!l = l=ge,

é(s)

(7.1) by By

l

hl + (hz — h]); = 6'3 =

Obviously, if h; = 0 the section reduces to an isosceles triangle and if h; = h;,
the trapezium degenerates into a rectangle.

Let us determine, as a meaningful example, the first nonvanishing term of the
resultant torque coefficient given according to Eq.(6.12):

I}
I3 _4 [, 2 =4 2 3
(7.2) E_gof(a - 46%8 gm0+ 1) = 31 | by (A +hh2+h)——h

If hy ~ h;, we obtain once again the same result provided by Eq.(6.13), which
was to be expected, as we have used only an outer expansion for t. If hy =
(isosceles triangle), it is

13

(7.3) et —(2h )l
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In [11] we found that the value for T3/GT is [(2h1)*!]/6; then Eq.(7.3) overes-
timates the actual torsional rigidity. The difference between the value given by
Eq.(7.3) and that in [11] is a measure of Kelvin effect for isosceles triangles: it
is less relevant than that for the rectangle, as the vertex of the triangle is a stag-
nation point for the shear stress flow and its contribution to the resultant torque
is negligible. The result given in [3] was obtained by using Prandtl stress flow
function. We remarked in the last section that Prandtl function provides more
accurate results because, at least at the lowest steps of a perturbation hierarchy,
it is not affected by a boundary layer effect as it happens for the formal expansion
for t used in this paper.

As a second application of our method, let us consider the flexure of an
isosceles triangie of height [ and basis 2h; as for the trapezium studied before,
the s coordinate runs along the height and the curvature x of the middle line
(which coincides with the height) vanishes. Let us assume that the kinematical
parameter k is orthogonal (the resultant shearing force is parallel, Egs. (6.5),
(6.6)) to the height, as it is usually done in the literature. An orthonormal basis
(e1, e2) is given whose first element is parallel to the height of the triangle,

rp=s¢;, 0<s<l = l=e,

(7.4)
6(s)=l;-(l—s) = 6s=—£;—'.
It is known from elementary geometry that
75 TR fo = f)
(7.5) —o—bg—-3-e1 > Fo=|s-z)e.

Besides, the coordinates s, z run along the principal axes of inertia of the domain,
so that (see Eq.(6.7))

(e 0N _(J O _ AP
(7.6) Jb—(o J,,)“(O Jbl)’ Jn =g

The coefficients of the formal expansion of the shear stress fields are, with respect
to (1, *1) = (e, e;), (see Eqs. (4.25)-(4.27))

6
(1.7) t = h—;(l — s)ey =108,
(7.8) ty

]

36,3t30e2 3

2
(7.9) t, G%(2u —i (? - zz) e,

Egs.(7.7)-(7.8) are known in literature [10, 11, 12]; the first one represents the
Jouravski mean shear stress field, and the second is orthogonal to the direction
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of the first. In the literature it is said, on heuristic grounds, that the field given
by Eq.(7.8) is of small magnitude if compared with the Jouravski field. Our
procedure gives a rational justification of this result, since Eq.(7.8) is simply a
coefficient of higher order in a formal expansion of t. Equation (7.9), so far as
we know, is a new result, providing an estimate of the shear stress field in thick
isosceles triangles.

8. Conclusions

In this paper we have presented a rational procedure of formal expansion of
the shear stress field for a Saint - Venant cylinder, using techniques from differen-
tial geometry. The class of domains which we are able to describe is large enough
to embrace many of the sections used in typical technological applications. We
are able to obtain a general formulation of the elliptic problem both for torsion
and flexure. The results we find cover all the known technical formulae given
in the literature at the first steps of the formal expansion, that is to say, when
the section is thin. We are also able to provide new approximate formulae which
seem to be meaningful.

Further investigations should be addressed to the numerical testing of the new
approximate expressions and to an attempt to regularize the procedure, which
we know to supply — in the present form — diverging series [17]. Finally, it may
be mathematically interesting, using the methods developed in [16], to estimate
the distance between the generalized Jouravski formulae we provide and the true
solutions to Saint- Venant shear stress problem.

References

1. A. CLEBSCH, Théorie de [’élasticité des corps solides (Traduite par MM. Barré de Saint—Venant et Flamant,
avec des Notes étendues de M. Barré de Saint-Venant), Dunod, Paris 1883 [Reprinted by Johnson Reprint
Corporation, New York 1966).

2. F.pewc’Isora and G.C. Ruta, Qutlooks in Saint—Venant theory. I. Formal expansions for torsion of Bredt-like
sections, Arch. Mech., 46, 6, 1005-1027, 1994.

3. F. DELLUTSOLA and L. ROSA, Outlooks in Saint-Venant theory. II. Torsional rigidity, shear stress, “and all that”
in the torsion of cylinders with sections of variable thickness, Arch. Mech., 48, 4, 753-763, 1996.

4. F. peLL’TsoLa and L. Rosa, An extension of Kelvin and Bredt formulas, Math. and Mech. of Solids, 1, 2,
243-250, 1996.

5. L. PRANDTL, Zur Torsion von Prismatischen Stiben, Phys. Zeits., 4, 758, 1903.

6. G.C. Ruta, Espansioni formali per il problema di Saint-Venant, Ph.D. Thesis, University of Roma “La
Sapienza”, 1996.

7. A.H. NAYFEH, Perturbation methods, John Wiley and Sons, New York 1973,

8. L.E. MALVERN, Introduction to the mechanics of a continuous medium, Prentice- Hall, Englewood Cliffs,
N.J. 1969. :
9. B.M. FRAEUS DE VEUBEKE, A course in elasticity, Springer-Verlag, New York 1979.
10. V.I. FEODOSYEV, Strength of materials [in Russian], MIR, Moskva 1968 [Italian translation: Resistenza de:
materiali, Editori Riuniti, Roma 1977].
11. A. GIELSVIK, The theory of thin-walled bars, John Wiley and Sons, New York 1981.



OUTLOOKS IN SAINT-VENANT THEORY. 11 343

12, C. GAvARINL, Lezioni di Scienza delle Costruzioni, 3rd ed., Masson ed. ESA, Milano 1996.

13. R. BREDT, Kritische Bemerkungen zur Elastizitit, Zeits. Ver. Deutsch. Ing., 40, 785-816, 1896.

14. V.I. ARNOLD, Mathematical methods of classical mechanics [in Russian), MIR, Moskva 1979 [Italian trans-
lation: Metodi matematici della meccanica classica, Editori Riuniti, Roma 1992].

15. B. Scuurz, Geometrical methods of mathematical physics, Cambridge University Press, 1990.

16. L. WHEELER and C.O. HORGAN, Upper and lower bounds for the shear stress in the Saint-Venant theory of
flexure, J. Elasticity, 6, 4, 383-403, Noordhoff, Leyden 1976.

17. K. FrISCHMUTH, M. HANLER and F. DELUISOLA, Numerical methods versus asymptotic expansion for torsion
of hollow elastic beams, preprint 95/20 Fachbereich Mathematik der Universitit Rostock 1995.

DIPARTIMENTO DI INGEGNERIA STRUTTURALE E GEQTECNICA,
and

DOTTORATO DI RICERCA IN MECCANICA TEORICA E APPLICATA
UNIVERSITA DI ROMA “J A SAPIENZA”, FACOLTA D'INGEGNERIA,
via Eudossiana 18, I-00184 Roma, Italia

e-mail: isola@scilla.ing.uniromal.it

e-mail: ruta@scilla.ing.uniromal.it

Received January 17, 1997.



Arch. Mech,, 49, 2, pp. 345-358, Warszawa 1997

Transport properties of finite and infinite composite materials
and Rayleigh’s sum

V. MITYUSHEV (SLUPSK)

THE TRANSPORT properties of a regular array of cylinders embedded in a homogeneous matrix
material have been studied by the following method. Let us bound a part of the infinite material
by a closed curve ~. Knowing the transport properties of this finite amount of material, we can
evaluate the transport properties of the infinite material when ~ tends to infinity. This method
allows us to justify the method of Lord RAYLEIGH [1] for rectangular arrays of cylinders. Moreover,
it is shown that in order to improve the Clausius—Mossotti approximation for a rectangular array,
it is necessary to evaluate Rayleigh's sum.

1. Introduction

A REGULAR array of cylinders is embedded in a homogeneous matrix material.
The transport properties of this composite material can be studied by two ap-
proaches. The first approach is based on studying a boundary value problem in
a cell representing a regular structure. A highly developed theory is used in this
approach, from general investigations of homogenization to computation of the
effective conductivity of the special composite materials. Results of this study are
due to Lord RAYLEIGH [1], BERGMAN and DuUNN [22] Koropzigs [9], MANTEUFEL
and ToDpREAS [10], MCPHEDRAN et al. [4 7], MITYUSHEV (8, 11, 23], PERRINS ef al.
[2], PoLaDIAN ef al. [3], SANGANI and ACRIvOs [21] and many others. The previous
results concern mainly isotropic homogenized materials: the square and hexag-
onal arrays of cylinders. Exceptions are [1, 11, 23], where general anisotropic
homogenized materials are considered by analytical methods. Using the method
of collocations, Koropzies [9] computed also the effective conductivity in a fixed
direction for the special arrays including anisotropic regular structures.

The present paper presents the direct approach which is based on the following
idea. Let us bound a part of the infinite material body by a closed curve 7
(Fig. 1). Suppose that we can study the transport properties of this finite composite
material bounded by 7. Let the curve v tend to infinity. We set up the hypothesis
that the limit transport properties coincide with the transport properties of regular
infinite material bodies. Anyway, it follows from the theory of homogenization.
Therefore evaluating the limits, we can get the values in question for the infinite
material.

We shall investigate the limit properties in the simplest case of circular cylin-
ders packed in a rectangular array. However, following [23] it is easy to transfer
the results to arbitrary arrays of parallelograms. The sides of the rectangle will be
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F1a. 1. Infinite rectangular array of circular cylinders and finite material bounded by 7.
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denoted by o and /3, and the radius of the cylinders by r. Assume that # = a1,
hence the area of the rectangle is equal to 1. We shall also assume that the state
of the media is described by the two-dimensional Laplace equation. If the vol-
ume fraction of the cylinders is very small, then the effective conductivity can be
evaluated by the Clausius - Mossotti formula (see Sec. 4, formula (4.5)). In order
to improve this formula for the rectangular array of cylinders, Lord RAYLEIGH [1]
introduced the absolutely divergent sum

1 1
Sy Z (mya + 1myp3)?’

where m; and m; run over all integers except m; = my = 0 (i> = —1). The
sum .5, is conditionally convergent. Its value is dependent upon the shape of the
exterior boundary of the pairs (71, m;) which tends to infinity. The sum 53 can

be expressed by the integral
S= ([ Ldzd
1= [[ e
R

where z = z + 1y. Lord RAYLEIGH [1] proposed to calculate S; by summation
over a “needle-shaped” region, infinitely more extended along the z-axis than
along the y-axis (Fig. 2). In this case

2n? [ & . 1
: S = Sy(a?) = = in~2(imra~?) + - |.
(1.1) 2 2(a”) (Z sin~“(tmma”") 6)

m=1

Let us note that S;(1) = 7. Applying the theory of generalized functions MiTYu-
SHEV [8] obtained the same result: S5(1) = 7. Since the sum 5, is conditionally
convergent, we can get any value for .5; changing the shape of the exterior bound-
ary. Using the effects of polarization, MCPHEDRAN et al. [7], PERRINS et al. [2]
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Fia. 2. Rayleigh’s method of summation:
+h +h

e ; a'.tdy dedy
Sy = han;) sll’n(:am—/ (/ f) e zy)z It is assumed that // T =0.

—h =h

proposed an explanation of this strange fact. In the present paper this fact has
been explained completely.

At the beginning we consider two problems corresponding to infinite and
finite material bodies separately. Then we shall compare the limiting effective
conductivity of finite body and the effective conductivity of infinite body.

Let us assume the following independent variables. We shall write 2 = = + 1y
if we consider a point inside the domain, and ¢ = x +:y if we consider a boundary
point. Throughout the paper z and ¢ are complex, = and y are real numbers.

2. Finite material body

Let (& be a simply connected domain in the complex plane C := {z = z + 1y}
with the Lyapunov boundary . Let us introduce the points a,, a3, ...,a, € GNE
in the complex plane C, where £ := {m o + imya~!, m; and m, are integers}.
Consider mutually disjoint circles Dy := {z € <C, |z —ax] < r} (kK =1,2,...,n)

contained within the domain (&. Suppose that U Dy and D := G\ U=y Dy are
=1

occupied by two isotropic materials with conductlvltles A1 and A, respectively. In
order to determine the transport properties of (7, we find the potentials u(z, y),
uy(z,y), u(z,y), ..., un(z,y) which are harmonic in the respective domains D,
Dy, Dy, ..., D,, continuously differentiable in the closures of these domains with
the boundary conditions

_ Bu _ 3uk
u = Uk, Aa_n — )\1%
(2.1) on 9D, := {t eC, |[t—akl = r}, k=12 0

u=f on 7,
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where d/0n is a normal derivative, f is a given continuous function. We shall
study the transport properties in the z-direction. Hence, we may take f(t) =
Ret = z. It is convenient to make the change

AL+ A
Uk(z,y) := 12)\ ur(z,y), k=120

Then the problem (2.1) takes the form

0 d
22) u=(Q1-poU, % =1+ 9)_5%’5 on 0Dy, u=f on 7,

where g := (A; — A)/(A1 + A).

General theory of the problem (2.2) is based on integral equations constructed
by GakHov [13], MikHAILOV [14]. The problem (2.2) has been solved in an analytic
form by MityusHEv [15, 16].

Let us consider certain auxiliary problems. The Dirichlet problem V = f on
0D for the function V(z,y) harmonic in the domain D has the unique solution

V(z) = V(z,y) = /fg—ids =:S5f(z,y) = Sf(2), z=z+iy€eD,
aD

where g is Green’s function of the domain D. The operator S : f — V transforms
a continuously differentiable function into a function harmonic in ) and continu-
ously differentiable in D if dD is a smooth curve. Let us consider the domain
Dy :={z € C, |z—-ai >r} (k=1,2,..,n). We shall use the operators
Sk corresponding to D, and the operator S, corresponding to G. If V(z) is
harmonic in Dy, then

SV (z) = V(zp), zeD;, k=12,..n,

where points z} := r?/(z — ax) + a and z are symmetric with respect to the
circumference |t — ax| = r. Let us consider the next auxiliary boundary value
problem

Uy _ 0S, U
2 i

=h on 7,

for the function Uy(z) harmonic in C\G and vanishing at infinity.

LemMma (MiTyusHev [18]). Let h be a function continuously differentiable
on 7. Then the boundary value problem (2.3) has a unique solution continuously
differentiable in C\~.
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If the function u(z,y) from (2.2) is known, then using the above lemma,
introduce the function Uy(z) with h = du/dn — dz/0n. Let us consider the
function

U(z)+ 0 Y Un(z}) + SyUp(2) -z, |z—ax| <7, k=1,2,..,n,
e
P(z) = \Vo(2) + 0 ) Um(z), z€C\G,
m 1
u()+gZUm(z )+ S,Up(2) - z e D,
m=1

harmonic in C\dD. Using the boundary conditions (2.2) and (2.3), calculate the
jumps of @ on JD; and ~

ST() - D (t) = u(t) + oUr(t) - Ur(t) =0, tedDy, k=12,..,n,
ST (t)- P () = u®) + S, Up(t) -2 - Up(t) =0 on 7.

Here @*(t) := lim s @(z), @~ (t) := lim o &@(z). Along the same lines
z€ z€Dy

oo~ 0%~ du 0 O0Ux

St - o F—(0) = 50 + 05~ (Ui(t)) - 5E)
() (t) (1+g)a[k(t)=0, tedD., k=1,2,..,n,
since 5 o
5 (Uk(tD)) = — 5 5(t) on OD;.
Taking into account (2.3), we calculate
oo d9- du dS [0 Oz 0U0
S-S =5 ) - F W) -5 -5 =0 on .

The function &(z) is harmonic in C\GD and ¢+ = &, 8¢+ /On = 0d~ [dn
on dD. According to the theorem of harmonic (analytic) continuation and Liou-
ville’s theorem we conclude that @#(z) = ¢ = const. From the definition of @(z)
we obtain the formulae

Uk(Z) = —QEU'm(Z;)—S—y(JQ(Z)'F.T'f'C, |z—ak|§r, k=1121'-')n3

m=1
m#k

U(z) = =0 Y Un(z}) +¢, z€C\G.
m=k
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From the last equality we determine S, Uy(z) and substitute it in the previous
equalities. As a result, we have the following system of functional equations

24)  Ui2) = -2 | X [Un(z) - SyUntr)(2)| + oS Ur(ti)(2) + =,
i
|z —ag| <1, k=1,2,..,n,

for Ux(2) (k = 1,2,...,n). Each harmonic function in a simply connected do-
main is the real part of an analytic function, which is uniquely determined with
accuracy to an additive imaginary constant. Hence there exists such a function
¢x(2) analytic in |z — ax| < r that Re ¢x(z) = Ui(z). Let us introduce the oper-
ator 17" which transforms a function ¢,,(z) analytic in G in the following way.
At the beginning calculate Re ¢,,,(1;,) = U,,(t},) on ~. Further on, by applying
S., we obtain a harmonic function which is the real part of the analytic function
T ¢m(z). Actually in the last step we used the Schwarz operator of (7 studied
by MIKHLIN [17]. We do not determine a pure imaginary constant in 77" ¢,.(2)
because it does not affect the final result. So the system (2.4) is reduced to the
following system of functional equations

b(z) = —0 Y [Bm(em) — T 6m(2)] + 0TE(2) + 2,
iy
lz—ar| <1, k=1,2,..,n.
Let us differentiate this system and obtain

n 2
@5) ¢;(z>=gz[( ") )+ V(2

= + oV di(2) + 1,

m=1
myk

lz—ar|<r, k=1,2,..,n,

where V¢! (z) := (17" $m)'(2). The operator V™ is correctly defined because
MIKHLIN [17] has proved that 77" is an integral operator.

THEOREM 1 (MITYUSHEV [15, 16, 18, 23]). The system of functional equations
(2.5) for the functions ¢.(z) analytic in |z — ax| < r and continuous in |z —ag| < r
(k = 1,2,...,n) has a unique solution. That solution can be found by the method
of successive approximations converging uniformly in |z —ax| < r (k = 1,2,...,n).

This theorem has the following important consequence.

THEOREM 2. The function %(ak) = Re ¢} (ax) is analytic in the unit disc
lo| < 1 with respect to the variable p:

Re ¢/ (ax) = i Ap(k,n)o?,

p=1
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where

n 5 2
Ag(k.ny=1,  Ayk,n)=Re |3 {( ’ ) + V" 1(ay)

m=1 Ak — am

m#k

+ V:\’k l(ak) :

3. Infinite material

A rectangular array of circular cylinders of conductivity A; is embedded in a
matrix of conductivity A. Let us study the transport properties of the composite
material in the z-direction. So we have the following problem in the cell Qg :=
{(z,y) € R —a/2 < z < a2, -1/(2a) < y < 1/(2a)}: find the potentials
wi(z,y) and w(z,y) harmonic in Q := {(z,y) € R%, 22+ y2 < +?} and Q :=
(o\ @, respectively, continuously differentiable in the closures of these domains
with the boundary conditions

2

(3.1) w = wy, A= = Aj==— on the circumference 2 + y2 = 7,

(3.2) w(z + a,y) = w(z,y) + a, w(z,y + o l) = w(z,y).

If A\; = A then w = w; = z, and the current j = —gradz = (-1, 0).

References to papers with effective solutions of the problem (3.1), (3.2) are
given in Sec. 1.

The problem (3.1), (3.2) is equivalent to the following boundary R-value prob-
lem

(3.3) B(t) = gi(t) — o) - t, |t =T,

where the unknown functions ¢(z) and ¢,(z) are analytic in DD and D, respect-
ively, continuously differentiable in the closures of these domains. The function
¢(z) is quasi-periodic:

Pz +a)+iy = ¢(2) = (2 + ia‘l) + 17,

where ; and -, are real constants. The harmonic and analytic functions are
related by the identities w(z, y) = Re (¢(2)+2), wi(z, y)(A+A1)/2A = Re ¢1(z).
The first condition (3.1) coincides with the real part of (3.3). The second condition
(3.1) complies with the imaginary part of (3.3) differentiated along the tangential
vector.

We assume that p is a small parameter. A method of perturbation consists in
finding a solution of the problem (3.3) in the form of the following expansions:

#(z) = ¢°%2) + p8'(2) + ..., 01(2) = () + 09l (2) + ... .
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By substituting these expansions in the boundary condition (3.3) and collecting
terms with equal powers of o™, we obtain a cascade of the problems. The number

zero problem is
Sty =) -t, |tl=r

The first one is o
PU(t) = $l(t) - $2t),  |t| =

Since the solution of the zero problem has the form ¢{(z) = z, the first problem
becomes

1 1 r?
s =ely-,  l=r
The last equality means that ¢!(z) is analytically continued into 1 < |z| < r.
Hence, the function ¢!(z) is analytic and quasi-periodic in Qg\{z = 0}:
(3.4) Az + a) +iv] = ¢l(2) = ¢z +ia"l) +17].

It has a pole at the point z = 0. The residue of #!(z) at z = 0 is equal to (-r?).
It follows from the theory of elliptic functions that

3.5) ¢'(z) = r¥(Az - ((2)),

where A is a constant, ( is the Weierstrass function [19]. The relation (3.4) implies
the equalities

Re [¢!(z + @) - ¢'(2)] = Re [¢'(z +ia™") - ¢'(2)] = 0.

Substituting (3.5) into the last relations we obtain that aRe A = 7y, ImA = 0,
where 7, := 2((a/2) is a real number, hence A = a~!7,. So we arrive at the
following asymptotic representations

$1(2) = z + or® [a7'mz = (((2) ~ 1/2)] + o), @ 00,
and ’
(3.6) $1(0) = 1+ gr¥a~'y +0(0),  as 0 — 0.

Let us consider the system (2.5). Let R = Ryh(6) be the equation of the curve
7 in the polar coordinates (R, ), Ry is a positive constant. We shall say that v
tends to infinity (y — oc) with a fixed shape if in the equation R = Ryh(f) the
value Ry tends to infinity (iy — oo). Let us fix k(). If we fix the shape of
in such a way that the operators V" disappear in the limit n — oo, then the
limiting system for infinite materials becomes

’ T 2—T_
6D =X ( )w(_a)ﬂ, el <.

Z— Qm z i
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The sum )’ means that the term ag = 0 is missing. The unknown function
m
P(z) = 71;“.1,310 ¢).(2). It is analytic in |z| < r, continuous in |z| < r and periodic:

Y(2) = ¥(z + ay) for each a;, € E = {mja +imya~'}, m; and m, are integers.
The infinite sum in (3.7) is understood in the following sense

+’1’_(0—)('P(2)—%+52),

where S, is an undetermined quantity, and

o= () 4]

is the Weierstrass function [19]. If ¢(z) = 1and 2 = 0 in (3.8) then §_, & = 5.

Using the method of successive approximations we conclude from (3. 7) that

(39) Y0O)=1+ grzz a— +0(p) =1+ or®S, + o(p), as p— 0.

m

So we have the following quantities: ¢}(0) from the problem for infinite material
and ¢(0) as the limit of ¢ (ax) with the special shape of ~. Since we assume that
#,(0) = ¥(0), then we conclude from (3.6) and (3.9) that S; := o~!n, for this
special shape of +. It follows from the theory of elliptic functions [19] that 57 can
be written in the form (1.1). This justifies the formula of Lord Rayleigh (1.1).

Let us show that the system of functional equations (3.7) is a continuous form
of the infinite algebraic system of the method of Rayleigh. Introduce now the
Taylor series for the function (z) inside the circle 2 < r

Then
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The function S;(z, ) is understood in the following sense: Sy(z, @) := P(z) —
lz + S5, If z = 0 then S5(0, @) = 5,. Substituting all series in (3.7) we arrive
4

at an infinite system of linear algebraic equations. The real parts of this system
coincide with the infinite system of Lord RAYLEIGH [1], MCPHEDRAN et al. [4-7],
PERRINS et al. [2], PoLADIAN et al. [3] for a = 1. We will show it only for the
number zero equation. Substituting z = 0 into (3.7) we obtain

Yo =0 Prr?**S2(0,1) + 1,
k=0

where
T |
Sk42(0,1) = PR

If we replace ;. by .
Br+1 = (k + 1)or2**DRe gy,

then we obtain the first equat