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Subsonic flutter calculation of an aircraft with nonlinear 
control system based on center-manifold reduction 

J. GRZ~DZINSKJ (WARSZAWA) 

TI-LE PAPER PRESENTS a method of calculation of limit cycle subsonic flutter osci llat ions caused by 
structural nonlincaritics. Numerical examples assume the nonlinearities to be concentrated in the 
hinges of the aircraft control surfaces. Since nonlinear flutte r is essentially the Hopf bifurca tion, 
these osci llations tend asymptotically to a certain two-dimensiona l attracting subspace called the 
center manifold. Consequently, a n asymptotic motion of the e ntire aircraft in the neighbourhood of 
bifurcation point is fully described by only two equations. T he method of center-ma nifold reductio n 
consists in a nonlinear change of coordinates, and transforms the i11itial multi-dime nsional nonlinear 
integro-differentia l flutter equation into a system of two nonlinear ordinary differential equations 
of the first order, having phase-shift symmetry. Under the assumption that the nonlinear term 
has a formal power series expansion wi th respect to generalized coordinates (mul ti-va riable Taylor 
series), the transformation can be also expressed in the form of a powe r series, and the limit cycle 
a mplitude and frequency can be easily calculated. 

1. Introduction 

D EFORMATIONS of an a ircraft structure under aerodynamic loads during flight are 
responsible for occurrence of self-excited oscil lations, called flutter. These often 
destructive oscilla tions are driven by the transfer of energy from the air stream 
to the aircraft structure. The most widely used linear flutter analysis is focused 
o n the particular critical value of flight velocity, above which the steady motion 
of an a ircraft becomes unstable. Al l velocities below this po int are considered to 
be safe in the sense tha t any imposed disturbances decay asymptotically in time, 
regardless of their initial magnitude. Th is is no more true if either the flow or 
the structure characteristics are nonlinear. It is known that in a nonl inear case, 
sufficiently high initial disturbance (e.g. a gust) can trigger self-excited oscillations 
even below the critical flutter velocity. Since th e flutter p henomenon must be 
completely prevented from occurring within the flight envelope, nonlinear flutter 
analysis is also of great practical importance. 

In the unsteady subso nic motion, the aerodynam ic forces depend on the history 
of motion as a result of shedding of the vortex wake behind an aircraft. Conse
quently, the aerodynamic operator, relating the unsteady aerodynamic forces to 
the deflection of an aircraft structure (generalized coordinates), is always of the 
form of the convolution integral. T hus, in a time domain, the flutte r equation 
is an integro-differential equation (sometimes with infinite delay). This property 
is the main source of difficult ies in nonli near approach , contrary to other aero
elastic systems described by o rdinary differential equations (e.g. supersonic or 
panel flutt er). 



http://rcin.org.pl

4 J. GRZI~OZ INS I\1 

It is well known from the theory of dynamical systems (1] that their quali
tative behaviour is essentially the same, no matter what physical background they 
originate from. Therefore, if the steady solution, such as a horizontal flight of 
an aircraft, bifurcates into the finite amplitude oscillations then the limit cycle 
attractor appears in the phase space of the system and the Hopf bifurcation 
takes place. Since the point of interest is an asymptotic motion of an a ircraft, it 
is sufficient to determine only the limit cycle amplitude and frequency for a given 
velocity in the neighbourhood of the bifurcation point. In the paper, methods of 
the local bifurca tio n theory are applied thus restricting the validity of analysis to 
some finite in terval of velocity. 

Hopf bifurcation is two-dimensional what means that limit cycle oscillations 
are oescribed by only two generalized coordinates, no matter how many de
grees of freedom are used in order to describe the original aeroelastic system. A 
two-dimensional subspace conta ining these asymptotic osci llations is called the 
center manifo ld. Thus, as fa r as an asymptotic analysis is concerned, it is possible 
to obtain the limit cycle for an entire aircraft from only two differential equations. 
Calculation procedure for an aeroelastic system of N degrees of freedom goes 
through the followi ng steps [2] : 

• R eplacement of the initial N flutter equations of the second o rder by a 
system of 2N no nlinear integro-differential equations of the first order (all the 
methods of the bifurcation theory apply to the first order equations). 

• Determinatio n of the bifurcatio n point (cri tical flutter velocity) by solving 
the completely linearized flutter eq uation. 

• Unfolding of the aeroelastic system by expanding all functions into power 
series with respect to velocity U, and also considering the velocity being tem
porarily an additional variable - this increases the total number of equatio ns by 
one, and is done in o rder to work on an interval in velocity space in the vicinity 
of a bifurcatio n point. 

• Projection of the aeroelastic system onto the appropriate center manifold 
by means of nonlinear transformation of variables, which transfo rms the initial 
(2N + 1 )-dimensional system of integro-differen tial equ at ions in to a two-dimen
sional system of o rdinary diiTerential equ ations of the first orde r. 

• Normalization of the reduced system by applying the so-called near-identity 
change of coordinates, resul ting in a much simpler system of equations with 
rotational symmetry. 

• Calculation of the limit cycle amplitude and frequency for a given flight 
velocity - if all non linear terms are expanded into multi-variable Taylor series, 
then the limit cycle parameters are determined by roots of certain polynom ials 
with real coefficients. 

It is worth noting here that projection on to the center man ifo ld preserves all 
information about asymptotic behaviour of the complete initial system and does 
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no t introduce any simplify ing assumptions. Numerical algorithm for the above 
scheme worked out for systems with many degrees of freedom is given in Ref. [3], 
and Ref. [4] presents the full nonlinear analysis for a single two-dimensional 
airfo il. 

2. Flutter equation 

Displacements of an a ircraft during unsteady motion are described by the 
M -dimensional vector of physical coordinates u(t) being functions of time t . In 
the steady motion with undeflected structure all coordinates are equal to zero, 
u(t) = 0. Usually, for a conventional aircraft structure, the number NI cannot 
be less than a few hundreds. This is too many even for the classical (linear) 
flutter analysis. The routine procedure saves much of the computing time by using 
modal coordinates in order to reduce the total number of equations. Such an 
approach assumes the vector of physical coordinates u( t) as a linear combination 
of natural vibration modes with coefficients forming new generalized coordinates. 
It is sufficient for the fl utter analysis to set the number of modal coordinates to 
nearly twenty. Modal coordinates can also be used in nonlinear approach without 
any changes [5]. It means that no attempt is made to generalize the natura l modes 
for nonl inear structures but the same linear modes are appl ied. 

In the absence of external aerodynamic forces and under the assumption that 
the problem has been ful ly linearized, the natural frequencies Wj and modes <I> j 
(j = 1, 2 .. , N; j .:::; JH) can be calculated from the eigenvalue problem: 

(2.1) 

where M and K are mass and stiffness matrices, respectively. The set of eigen
functions of E q. (2.1) is assumed to describe non linear limit cycle oscillations with 
sufficient accuracy. The vector q(L) of modal coordinates is defined by the relation 

(2.2) u(t) = <I> q(L) , 

and in the absence of the structural damping forces, satisfies the equa tion of 
motion [6]: 

(2.3) q (L) + Kwq(L) + k(q) = FA (q) , 

where F .1 ( q) is the vector of generalized unsteady aerodynamic forces. The matrix 
<I> is buil t out of eigenvectors of E q. (2.1). The diagonal generalized stiffness 
matrix K...., is composed of squares of the natural frequencies wJ (j = 1, 2, .. . , N ). 

A lthough the source of the non linear term k( q) can be either aerodynamics 
or the aircraft structure, it is assumed here that only the structure is nonlinear. 
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At present, the only general method of describing the center manifold is based 
on multi-variable Taylor series [7]. In what follows, it is also assumed that the 
nonlinear term k( q) is of the form of a power series of non linear coordinates 
q. For structural nonlinearities such an expansion can be easily obtained. Let f5 
be a m -dimensional vector of nonlinear forces corresponding to the vector of 
displacements 5 in a finite number of structure points: 

(2.4) fs =2:Kj 5j, 
">2 1_ 

where K J are diagonal matrices of known numbers, and the symbo l 5] means 
that each vector componen t is raised to the power of j separately. In practical 
calculations, the number of terms of E q. (2.4) remains finite. In particular, the 
vector fs can include no nlinear springs present in the structure and modeling 
an aircraft control system. On the other hand, Eq. (2.4) can also describe th e 
properly discretized distributed nonlinearities. 

For a given structure it is always possible to find a rectangular matrix R of 
o rder m x NI relating the m-dimensional displacement vector 5 to the NI physical 
coordinates u: 

(2.5) 5 = Ru . 

After using Eqs. (2.4) and (2.5), the vector k( q) of nonlinear generalized forces 
can be written as: 

(2.6) 

The aim is to find the critical flutter speed for the Eq. (2.3) and also the limit 
cycle amplitude and frequency in the neighbourhood of the critical poin t. 

Since the aeroelastic system is nonlinear, it is no t possible to assume any given 
form of the motion during the limit cycle oscillations. Therefore, unsteady aero
dynamic forces must be written in a general form valid for an arbitrary motion : 

(2.7) 
eU2 o b 

FA(q) = -
2
- j g(-T)q (t +UT ) clT, 

- oo 

where U a nd (! denote the flow velocity and density, respectively, and b stands 
fo r the characteristic length. E lements of the matrix g are response functio ns 
corresponding to the impulsive changes of generalized coordinates q . F inally, 
the equatio n of motion (2.3) takes the form of an integro-differential equatio n 
co ntaining an integral of convolution type. 

The classical linearized flutter analysis assumes oscillatory motio n of an air
craft: 

(2.8) q(t ) = q est' 
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where the complex coefficient 

(2.9) s = 1 + -iw 

includes circular frequency w and damping factor I · For such a motion the vector 
of unsteady aerodynamic forces is given by the simple linear relation 

(2. 10) 

where 

(2. 11) 
V2 oo 

A(s ; U) = ~ j g(T )e-~T dT 
0 

is called the aerodynamic matrix. The only case for which it is possible to calculate 
the aerodynamic matrix analytically (in terms of Bessel functions) is a thin airfoil 
in an incompressible flow [8]. More complex aerodynamic models rely entirely 
on numerical methods. There are many of them in the literature (a list of the 
most important o nes can be found in [9]), all suited for direct calculation of the 
aerodynamic matrix, mostly fo r pure harmonic motion ( 1 = 0), without evaluating 
the response matrix g. Although the present method does no t assume a harmonic 
motion, it does not require the knowledge of the response matrix either. 

Local bifurcatio n theory of dynamical systems [7] has been developed for the 
first-order equations. By introducing a 2N -dimensional vector of new coordi
nates y(t ): 

(2.12) { 
q(t) } 

y(t) = q(t ) ' 

the first-order flu tter equation is obtained: 

0 

(2.13) y(i ) = Du y(l) + j Gu ( - 8; U)y(t + 8)d8 + fu (y) , 
- oo 

where square matrices of order 2N, Du, Gu, and the nonlinear term fu (Y) are 
given by: 

Gu( - 8; V ) = [gV3 (O V-) 

0
1, 

- g - -8 o 
2b b 

fu (Y) = { -~q)} , 
with k( q) given by E q. (2.6). For osciJlatory motion (2.8), the linearized flutter 
equation reduces to the eigenvalue problem 

(2.14) 
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Loss of stability occurs when damping drops to zero (/ = 0 in Eq. (2.9)) and 
the flu tter boundary is determined by the real negative eigenvalue of Eq. (2.14) 

(2.15) 

corresponding to the critical flutter velocity U = U0 . 

The cri tical bifurcation point of the first order equation (2.13) is defined by 
the eigenvalues of its linear part corresponding to fu (y) = 0. It can be shown (7, 
10] that also in the presence of convolution integral within the linear part, the 
eigenfunctions have the fo rm 

y(t) = yest, 

where s is given by (2.9). The resulting eigenvalue problem is: 

(2.] 6) 

It fo llows from comparison with (2.14) that at the flutter boundary, the charac
teristic matrix of linearized first-order flutter equation has a pair of complex-con
jugate, pure imaginary eigenvalues s = ±iw0 . 

The eigenvalue problem (2.16) of the linearized flutter analysis can be derived 
in a more formal way by applying the Laplace transform, which replaces the 
convolution in tegral in Eq. (2.13) by the product of two functions. In nonlinear 
approach there are two possible ways: either the application of La place transform 
in frequency domain or solution of the problem in time domain. The first method 
is suitable for handling convolution integrals but faces more difficulties due to 
nonlinear terms. On the other hand, working in time domain shifts the whole 
problem to proper treatment of the convolution integral. The present paper uses 
the time-domain method. 

The qual itative changes in a behaviour of the nonlinear dynamical system are 
always indicated by the purely imaginary (or zero) eigenvalues of the linearized 
operator of the governing equation. For the nonlinear flutter equation (2.13) th is 
operator is of the form: 

0 

£y(l) =Du y(t ) + j Gu ( - 8; U )y(l + fJ)dfJ. 
- 00 

Since the operator [. maps a space of continuous functions onto the Euclidean 
space, then the eigenvalue problem Dp = Alp cannot be posed directly. Instead, 
an extension of £ is made in order to map a space of conti nuous functions onto 
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itself. An extended operator is the following [10, 11] : 

d~.p(8) 

d8 
for - 00 < 8 < 0, 

(2.17) Lu ~.p(8) = o 
Du ~.p(O) + J Gu ( -T; U)~.p(T)dT ' for 8 = 0, 

-oo 

and the flutter equation takes the form: 

(2.18) dyt(8) _ L 8 + { o, 
d8 - UYt( ) f(yt(O)), 

where the following notation has been introduced: 

Yt(8) = y("t + 8). 

for - 00 < 8 < 0, 

for 8 = 0, 

9 

Now, the eigenvalue problem Lulp = Alp can be formulated. First, the form of 
the eigenfunction is determined ( -00 < 8 < 0): 

d~.p(8) = ), (8) 
d8 lp 

and next the eigenproblem for the Euclidean vector ~.p(O) is posed 

(2.] 9) Du<p(O) + Cl Gu ( -r; U)e'' dr) <p(O) = !.<p(O). 

As can be seen, both e igenvalue problems (2.16) and (2.19) are identical. There
fo re, since at criticality there is a pair of pure imaginary eigenvalues, flutter 
instab ility is the Hopf bifurcation [10] . 

3. Center-manifold reduction 

If any bifurcation occurs in a dynamical system, then the phase space splits in 
general into three manifolds: stable - generated by eigenvalues with Re (.A) < 0, 
unstable -generated by eigenvalues with Re (.A) > 0, and center manifold, cor
responding to Re (.A) = 0 [12] . Center manifold is invariant, locaJly attracting 
and asymptotically stable. Moreover, it is of finite dimensions - for the Hopf 
bifurcation it is two-dimensional. It means that in the space of all solutions' to 
Eq. (2.18), bifurcating solution tends asymptotically to a two-dimensional attract
ing subspace. The asymptotic solution (limit cycle oscillations) satisfies a cer
tain system of two nonlinear ordinary differential eq uations of the first order, 
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which can be derived from the integro-differential equation (2.18), written for 
many degrees of freedom. This procedure of obtaining a low-dimensional system 
of equations from the initial multi-dimensional system is called center-manifold 
reduction. 

There are two problems associated with the center-manifold reduction. Since 
the aim is to calculate asymptotic limit cycle oscillations for a general form of 
the nonlinear term fu (y), this term is assumed to have a formal power series 
expansion with respect to generalized coordinates y. Consequently, the method 
of center-manifold reduction is also based on such expansions. The second prob
lem concerns the way the velocity U should be treated in. The critical flutter 
conditions correspond to a certain critical value of the velocity U = U0 , which 
in turn determines the existence of purely imaginary eigenvalues of Eq. (2.19) 
and the center manifold, as well. At this critical branch point the amplitude of 
oscillations tends to zero and, in order to obtain the finite amplitude limit cycle 
oscillations, the value of velocity must be different from the critical one. Unfor
tunately, if U -::j:. U0 , the characteristic matrix of Eq. (2.19) no longer possesses 
pure imaginary eigenvalues and the center manifold simply does not exist. On 
the other hand, the existence of the center manifold has been proven in a cer
tain neighbourhood of equilibrium solutio n Yo(t), corresponding to U = Uo, in 
the space of solutions y(t ) [10]. For that reason, the center-manifotd reduction 
usually applies to the so-called suspended systems. Suspended aeroelastic system 
is derived from Eq. (2.13) by introducing the difference 

(3 .1) u = U - Uo 

as an additional variable satisfying the equation it = 0. The 2 + 1-dimensio nal 
vector of new generalized coordinates is the following: 

(3.2) 
{ 

q(l) } 
x(t ) = q~) , 

and satisfi es the equation 

0 

(3 .3) x(t) = Dx(t ) + j G(-G;u)x(t + G) dG + f(x) 
- oo 

where square matrices of order 2 + 1. D, G, and the nonlinear term f(x) are 
given by 

G(-G;u) = I g(Uo + u)3 0(- Uo + ue\ 
26 g b ) 

0 

0 0 

0 0 , 

0 0 
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Since the matrix G( - 8; u ) now includes the independent variable u instead 
of the bifurcation parameter U, the integral in Eq. (3 .3) is no longer linear with 
respect to x. In what fo llows, the matrix G is replaced by the Taylor series 

(3.4) 
= 1 diG( -8· 0) . 

G(-8;u)=G(- 8;0) +2:: -:- . ' uJ 
j =l J ! duJ 

It is also assumed that the multi-variable power series expansion for the non
linear function f(x) at the right-hand side of Eq. (3.3) is known: 

(3.5) 

where 

f(x) = :2:: ~fvx"', 
v>2 V. 

Xv = { "~"'I . -.."'2 ••• X"'2N+ I} ..._ l '' ' 2 · 2N+ l > 

2N+ l 

:2:: 1/j = ll , 

j= l 

//j 2:: 0 . 

The number of components of the vector x"' and also the number of columns 
of each matrix f, changes from one term to another and equals the number 
c,,2N+I of compositions of v into 2JV + 1 parts 

(3.6) 
( 

t/ + 2N) 
Cv,2N+ 1 = I/_ l · 

The elements of matrices f, can be easily calculated from Eq. (2.6). Substitu
tion of series (3.4) into Eq. (3.3) yields the integro-diffe rential equation valid in 
a certain neighbourhood of the critical bifurcation point: 

0 

(3. 7) x(t) = D x(t ) + j G( -8; O)x(t + 8) d8 + h(x), 
- oo 

where h(x) equals 

(3.8) 
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with x'fJ = { xT ·xi2 
.. ·xiW;J}, and always TJ = "!2N +l + 1 ( x 2N+ I = u) which 

2N 

implies that L "li = 1. Equation (3.7) will be reduced on the center manifold. 
j =l 

The linear spectrum of Eq. (3.7) includes one eigenvalue with zero real part 
more than the previous spectrum of the non-suspended system (2.13). Hence the 
center manifold corresponding to Eq. (3.7) is larger than that of Eq. (2.13) and 
has the dimension of three. 

Since the center manifold is tangent to the linear subspace spanned by eigen
vectors If> , corresponding to the bifurcating eigenvalues of the extended linear 
operator £ 0 derived from Eq. (3.7) 

(3.9) £o<t>(8) = 

d<t>(G) 
df) 

0 

D <t>(O) + J G( -T; O)<t> (T) dT) 
-oo 

for - oo < f) < 0 

for f) = 0 , 

then it is co nvenient to introduce the three-dimensional vector z(t) of center
manifo ld coord inates as fo llows: 

(3.10) 
3 

Xt(G) = L Zj (i)<t> j (fJ) + w(fJ , t) , 
j =l 

with the yet unknown function w( f) , t) satisfying the conditions: 

(3.11) w( fJ , t) = w( fJ , z( l)) , w(fJ , 0) = 0 
dw(fJ, 0) = 

0 dz · 

The above conditions, besides tangency, refl ect invariant properties of the center 
manifo ld. 

In o rder to restrict the aeroelastic system to the center manifold, the projection 
operator P must be determined, satisfying relatio ns 

(3.12) 
Pxt(G) = z(t), 

Pw(fJ , z(t)) = 0. 

The projection procedure is based on the so-called o uter product [10, 11 ), 
associated with the extended linear operator £o: 

0 7) 

(3.13) (x*, x) = x*T(O)x(O) - j j x*T(~ - ry)G(-ry;u)x(Od~ d17 , 
-00 0 
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with two continuous functions x(O and x*(ry) defined over intervals - oc < ~ < 0 
and 0 > 17 > , respectively. The adjoint operator is defined in a standard way 
by the relation: 

(x*, fox) = (£0x*, x) . 

The eigenvalues and eigenvectors of two eigenproblems fo e.;:> = >.c.p and £0 '4> = 
>.·,p satisfy the equalities ).* = "X, (~k' c.p1) = bkl· By using E qs. (3.9) - (3.13), the 
simp le set of three nonlinear fi rst-order ordinary differential equations describing 
asympto tic motion on the center manifold is obtained [10]: 

-T 
(3 .14) i = A z + 'l' (O)ho , 

where A denotes the diago nal matrix of eigenvalues iwo, - iwo, 0, and the matrix 
W is composed of the corresponding eigenfunctions ,Pi (j = 1, 2, 3). The (2N + 
1)-dimensional vector funct ion w(8, z(t )) defines essentially the center manifold 
and the projection operator as well. It satisfi es the integro-differential equation: 

3 -1 - 2:: ~i (O)h0c.pi (8), for - oc < 8 < 0, 

(3.15) w- l ow = j =l 

3 T 
- L ~j (O)hol.f>j (O) + ho, for 8 = 0 

j = l 

and also the orthogonali ty conditions, which have not yet been implicitly. imposed: 

(~1 , w) = 0, j = 1, 2, 3. 

Both equations (3.14) and (3.15) are coupled by the right-hand side nonlinear 
term: 

ho = h(x, (O)) = h ( ~ z; (t )<p; (O) + w(z, 0)) . 

Although the assumption (3.5) describing the nonlinear term by multi-variable 
power series has not been used so far, it seems to be rather necessary in order 
to solve the system of Eqs. (3 .14) and (3.15). In what fo llows, also the function w 
is expanded into such a series 

1 
(3. 16) w(z, 8) = L 1w,,. (8)z~" (t ) . 

1"~2 f.l · 

In terms of power series, the Eq. (3.15) takes the form 

(3.17) L -; (w1,(8 )A ,, - f ow,, (8 )) z~" 
··~2 f.l . 

{ 

0, 

= L -;rv(8 )z
11 + ~ 2_h v 

v>2 11 . L_- I Ov Z ' 
- v> 2 /1 . 

for -oc < 8 < 0, 

for 8 = 0, 
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where 
3 

(A J.L)H = L ).. _i {l j, 
j = l 

k = 1, 2, ... , CJ.,,2N +h 

and the first right-hand series of (3.17) is given by 

J. GRZI;;DZrNSI<l 

The method of recursive calculations of coefficients of equations (3.14) and (3.17) 
is described in details in Ref. [3] . It is worth noting here that calculations can be 
carried out up to the desired order of approximation. 

From a quite formal point of view, the center-manifold reduction is equivalent 
to the appropriate nonlinear change of coordinates given in the form of a series, 
linking (3.10) and (3 .16): 

(3 .18) 

where the vector z(t) of new coordinates has only three components. The matrices 
w~-' (8) of order (2 N + 1) x cJ.1 ,3' where cJ.,,3 denotes the number of compositions of 
p into 3 parts (3.6), are composed of continuous functions defined in the interval 
8 E ( -oo, 0]. The algorithm of center-manifold reduction provides the way of 
calculating these functions and also the method of simultaneous derivation of the 
first-order ordinary differential equation describing the limit cycle oscillations in 
terms of new variables z: 

(3.19) 

where A denotes, as before, the diagonal matrix of eigenvalues iwo, -iw0 , 0, 
and dJ., are rectangular matrices built out of the already known complex num
bers. The way in which the suspended system has been introduced implies that 
::3 = tt and also z3(t ) = 0, which means that an asymptotic motion is essentially 
two-dimensional. The third variable 'l.l acts once again as a parameter, while the 
suspended system serves as a convenient tool for deriving the series expansion 
with respect to it. 

The next important conclusion drawn from the algorithm of center-manifold 
reduction says that there is no need to know the response functions forming 
elements of the matrix G( - 8; 0). This is because the columns wJ.Lk (8), k = 
1, 2, .. . , cJ.,,2N+ l , p ~ 1, of each matrix w1. (8) of the series (3.16), can be only of 
the elementary form [3]: 

W (e) - w~ e jes0 J.Lk - J.Lk , 
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with integer j 2 0, and s being an imaginary number. Consequently, all inte
gra ls invo lving the response functions within the algorithm can be carried out as 
follows: 

(3.20) 

- oo 

where 1· 2 0, and the only non-zero block of the matrix 

r 

0 0 0] 
A(s; Uo ) = A(s ; Uo ) 0 0 

0 0 0 

is the aerodynamic matrix A(s ; U) given by Eq. (2.11) and calculated for a pure 
harmonic motion and the critical velocity U0 . 

Since Eq. (3.19) is an ordinary differential equation, it can be easily trans
formed to the so-called Poincare no rmal form either by the Lie transforms [7] o r 
by recursive change of coordinates [13] . Both methods introduce new variables 
( (t ) related to z(l) by the near- identity transformation 

(3 .21) z(l) = ( (t) + L ~bv('' (t). 
v>2 V. 

This transformation retains the form of Eq. (3.19) also with respect to new 
coordinates ( (l). The calculation of elements of matrices bv requires to make as 
many coefficients dJ.L equal to zero as possible . The simplification achieved lies 
in the phase-shift symmetry introduced by the transformation (3.21). The no rmal 
form of Hopf bifurcation in polar coordinates 1·, (): 

(3.22) 

may be written as [2]: 

(3.23) 

;. ~ ,. ( -y(u ) + E, a;(u )r2
; ) , 

00 

iJ = w(u ) + L bj (u)T2·i, 
j= l 

where 1 (u) ± iw(u) is the pair of complex-conjugate eigenvalues (J(O) = 0 , 
u..~ (O) = u...·o). All functions 1(u), w(u), aj (u), bj (u) are real and have the form of 
power series expansions with respect to 'l.L. In practical calculations, Eqs. (3.23) 
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are implemented up to some finite order n (j ::; n ). Therefore, the amplitude 
rH of the limit cycle oscillations satisfies an algebraic equation obtained from 
Eq. (3.23)1 by setting i· = 0: 

n 

(3.24) ~ z· 1 (u) + L. aj (u)rrf = 0. 
j =l 

For any given u, the left-hand side of Eq. (3.24) is of the form of a polynomial 
in T ff. Hence all possible limit cycle amplitudes are determined by the real positive 
roots of this polynomial. Since limit cycle oscillations ( 1 = ( H (t ) o n the center 
manifold are purely harmonic [10]: 

(3.25) 

then for each amplitude T H the corresponding frequency W H is calculated from 

(3.26) 

The sequence of transformations of variables given by Eqs. (3.22), (3.21), 
(3.18), (3.2), (2.12) and (2.2) yields the final limit cycle oscillations of physi
cal variables u(t). Since two of these transformations are nonlinear, the physical 
variables do no t oscillate harmonically in time, contrary to the center-manifold 
variab les ( (t). 

Flutter analysis of an aircraft imposes a number of requirements not satisfi ed 
by solutions of the Hopf bifurcation for functional differential equations, available 
in the literature. First of all, it is not sufficient to take into account on ly the highest 
order term of (3.24), which gives the characteristic square-root growth of the limit 
cycle amplitude 

T fi = ffu, 
where 

(3 .27) 
(3 _ 1 d1 (0) 

- - a 1(0) dU' 

because the region of validity of this approximation is too close to the bifurcation 
point to be of practical importance. An example of such a limited analysis is 
included in [10] and has given a good starting point for Lhe present method. 
A two-term approximation, however not using the center-manifold reduction, is 
given in [14] , but because of the very special method of solutio n of the problem, 
it cannot be directly extended to the arbitrary number of terms and to systems 
with many degrees of freedom. 
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4. Numerical examples 

All numerical examples presented in this sectio n assume that the nonlinearities 
are concentrated in the points of connection between the lifting and control 
surfaces of an aircraft, producing nonlinear restoring moments when the control 
surfaces perform rotation about the hinge lines. It is also assumed that each hinge 
momen t Ms is a cubic function of the local angle of rotation 8 

( 4.1) 

where l \ 0 is a standard linear spring constant, and the coefficient c describes 
the strength of nonlinearity. The last assumption means that there is o nly one 
non-zero matrix K2 in Eq. (2.4). 

Since each nonlinear analysis is essentially an extension of the corresponding 
linearized problem, it is impossible to calculate th e limjt cycle parameters for an 
aircraft without having a suitable co mputer program for the linear flutter analy
sis. The standard o utput of such program includes critical flutter velocity U0 , the 
corresponding frequency w0 and the flutter mode in the form of a right eigenvec
tor q of Eq. (2.14). For a nonlinear flutter analysis the following additional data 
shou ld be supplied: 

• e lements of the aerodynamic matrix (2.11) corresponding to the flutter po int, 
• a set of derivatives (3.20) of the aerodynamic matrix corresponding to the 

flutter velocity and calcu lated for s = ±iwo, ±2iwo, ±3iwo ... up to the desired 
o rder of approximation, 

• elements of the matrix R (2.5) defining locations of no nlinear springs within 
th e a ircraft structure. 

Since the aerodynamic matrix is essentially a function of nondimensional vari 
able p = wb j (T, the derivatives of the aerodynamic matrix with respect to vari 
ables .s and L r can be easily evaluated if the corresponding derivatives with respect 
to p are known. For the n -th order of approximation of the Eqs. (3.23), the high
est derivative are of order 2n.- 1. Altho ugh some simpler unsteady aerodynamic 
models allow fo r an analytical calculatio n of derivatives (e.g. strip theory), it seems 
that in general, the only efficient way is numerical differentiation. This is because 
in most cases the aerodynamic matrix is known only nu merically (i.e. as a set of 
numbers) . It has been found that satisfactory results, especially for higher-order 
derivatives, gives a simp le integration scheme based on the Cauchy integral in 
the complex p-plane: 

where ou (p) denotes an element of the aerodynamic matrix. Integration nodes 
::,. a re placed o n a smal l circle C with an origin in the point p. All values of 
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argument p of the derivatives appearing in center-manifold reduction are purely 
imaginary numbers, hence the standard numerical methods for calculation of the 
aerodynamic matrix can be applied. 

The number of degrees of freedom of an aircraft may cause some computa
tional problems since the amount of numerical work required grows very fast. For 
an aircraft with only six degrees of freedom (modal coordinates) and four-term 
center-manifold approximation (n = 4 in Eqs. (3.24) and (3.26)), the number of 
components of the last, 9-th vector x'7 in Eq. (3.8) equals 293930. Therefore, it 
is very important to select only the most significant natural modes out of all the 
modes included in the flutter mode, in order to save both the computer time and 
memory. Since the center manifold is tangent to the linear subspace spanned by 
two complex-conjugate eigenvectors of the linear operator (2.17), such a selection 
is done in the same way as in the conventional linear flutter analysis. 

Sample calculations of the limit cycle amplitude and frequency were made for 
the aileron and flap flutter of two gliders. All hinge springs of the control surfaces 
were assumed to produce hardening cubic nonlinearities. The number of physical 
degrees of freedom used to calculate the natural modes was equal to nearly 
200. Six modal coordinates were taken into account, including two or three rigid 
modes. The first glider revealed symmetric and also antisymmetric flap-aileron 
flutter at velocities 187 km/h and 178 km/h, respectively. Similar antisymmetric 
flutter at 225 km/h occurred for the second glider. 

I 
\._ 

0. 40 ... n=l 
--- n = 2 
-- n =3 
- n =4 .. :.:. ;,_· .. . 

0. 3 0 """'-~:::_-......,_-~~:_---- ~-,--·< ·f--~--- . . -. _ --. . .. -. . . -. . . ·f--~-- . . . -. . . -. -+----1 -+- n = S 

0. 20~-----+------+-~~~-~- - ~- ------~ 

· "-~ 
0. 10 ~----+-----~-----+--~~~ 

0. 00~~--~--~--~~~--~----~ 
0. 92 0. 9 4 0. 96 

U/Uo 

0. 98 1 0 00 

F IG. 1. Amplitude of ccnter-manifold Hopf limit c:ycle (symmetric flutter). 

Both gliders had one nonlinear aileron hinge spring with c = 50 (4.1). Results 
of calculations for the first glider are presented in Figs. 1 - 8. F igures 9 - 12 con
cern the second glider. Symbol n in all figures denotes the number of terms of the 
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F'rG. 2. Frequency of center-manifold Hopf limi t cycle (symmetric flutter). 

0. 05 
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F IG . 3. Flap limit cycle amplitude (symmetric flutter). 

!9 

series (3 .24) and (3.26). As the final results of calculations, the Hopf limit cycle 
amplitude ·r·H (3 .24), normalized with respect to J73 (3.27), and frequency Wf1 /wo 
(3 .26) are plotted against the nondimensional velocity U / Uo . There is a sequence 
of five approximations in each chart, corresponding to n = 1, 2, 3, 4, 5. Note that 
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FIG. 4. Aileron limit cycle amplitude (symmetric fl utter) . 

0 . 40 ----::- ' ······· ... 
~"'- ·· .. 

""'~... ·. I ..................... . 

0 30 ~~~~~~~~~-~~.~~ ~. --~-----1 
. --~· ~~, 

0. 2 0 r-----+-----+-----~~"\~· ... -... ~ 
... n =1 

-- - n=2 
0 . 1 0 1------1 -- n =3 f-----+-------r----)\..-1 

- n = 4 
-+- n=S 

0. 00 ~----~--~--~--~------~~ 
0. 80 0 . 85 0. 9 0 

U/ Uo 

0. 95 1. 00 

F IG. 5. Ampli tude of centcr-manifo ld Hopf limit cycle (antisymmetric flutter) . 

n -th order approximation of a center-manifold limit cycle requires 2n + 1 terms 
in the power series expansio n (3.18). 

Once the center manifold limit cycle parameters are known, it is possible to 
calculate the physical deflections of a glider during oscillations. Only two of them 
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are plo tted: local hinge-line ro ta tion of flap 5 p and aileron 5 A . Both correspond 
to the locatio n of no nlinear springs and are measured in radians. Because physi
cal coordinates do no t oscillate harmonically in time (though in a very similar 
manner), the amp li tude of oscillations is not well-defined. Therefore, 5 F and 5 A 
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F IG. 8. Aileron limit cycle amplitude (antisymmetric flutter). 

denote maximum values of the rotation angle reached during a single period. In 
all figures the unstable limit cycles appear in the vicinity of the corresponding 
bifurcation points. 

In almost every chart there is an additional line taken from Ref. [17], and 
denoted HB, describing the amplitude of limit cycle oscillations calculated by the 
harmonic balance method [15], by using the continuation subroutines package 
[J 6]. Harmonic balance method replaces each nonlinear restoring force by the 
first term of its Fourier transform. If there is only one nonlinear force present in a 
system, then for any given limit cycle amplitude the linearized flutter equation can 
be solved for the corresponding flight velocity. Multiple nonlinearities result in 
greater complexity of calculations, because the amplitudes of aircraft de fl ections 
at concentration points are not known prior to the calculations, but the ir ratios 
are determined by the resulting flutter mode. 

There is a very good agreement between the resul ts of the present method 
and the harmonic balance method, in a range of a few percent below the linear 
flutter velocity U0. However, beyond this interval a qualitative discrepancy of the 
results of both methods are observed, and also the power series derived by the 
present method are not convergent anymore. 

It was impossible to establish the real behaviour of limit cycle oscillations of 
the gliders because neither the flight tests nor direct numerical integration of 
the nonlinear flutter equatio n were performed. Nevertheless, it is important that 
the limit cycle oscillatio ns are detected below the linear flutter velocity despite 
the fact that their amplitude is uncertain. These oscillations can be initiated by a 
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sufficiently high disturbance, the magnitude of which is known from the presented 
resul ts of calcu lations and which is given by the unstab le branch of amplitude 
curves (the part of plots between the bifurcation point and the turning po int in 
Figs. 11 and 12). 
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F IG . 12. Aileron limit cycle amplitude (antisymmctric flutter) . 

5. Concluding remarks 

The discrepancy between the present method and the harmonic balance 
method in a region located not very close to the bifurcation point is not an 
unexpected result. The harmonic balance method assumes pure harmonic oscil
lations of a structure, that may not be satisfied, and also treats nonlinear springs 
in a simplified manner. The method of center-manifold reduction is a method 



http://rcin.org.pl

SUBSON lC FLUTTER CALCULATION OF AN AIRCRAFT 25 

of local validity and, afterwards, is based on asympto tic series expansio ns, the 
usefulness of which cannot be expected in a wide range of velocity. Nevertheless, 
there is a good agreement between these two methods locally. H ence, the main 
advantage of the center-manifold reduction lies in a possibili ty of extension of this 
method to such aeroelastic systems for which harmonic balance method canno t 
be handled easily (e.g. multip le co ncentrated no nlinearities), and to systems fo r 
which the direct nu merical in tegratio n method cannot be used in a su fficiently 
effective way. 

The method of center-manifo ld reduction does not limit the number of de
grees of freedom. The problem of treatment of higher degree of freedom systems 
affects o nly the efficiency of calculatio ns. The method itself (and the correspo nd
ing computer code as well) can be applied to any number of degrees of freedom 
"as it is". However, the hardware used may bound this number significantly if 
there is not enough RAM available. It has been fo und that the computer direct 
access memory is the bottle-neck of the calculatio ns. The reason is that the main 
series (3.18) is not a series of numbers bu t rather a series of functions. These 
funct ions are described by a rapidly growing number of parameters, when the 
number of terms increases, and moreover, all of them must be stored in memory 
during the entire computation p rocess. O n the o ther ha nd, not very high number 
of terms is sufficient to determine the behaviour of the aeroelastic system under 
co nsiderat ions in the neighbourhood of a bifurcation point. 

T he method of center manifold reduction is an asymptotic and local method 
(i.e. looking near a single point) and, therefore, is not sui ted for treatment of more 
complex global bifurcations o r transition to chaot ic oscillations. Such osci llations 
appear also in aeroelastic syste ms. 
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Lagrange's equations for holonomic systems with rigid bodies 

A. MORRO (GENOYA) 

A IIOLONOMIC SYSTEM is considered which consists of rigid bodies and material points. Any rigid 
body is regarded as a continuous system and its positio n is described by the so-called angular vectors. 
Starting from the characterization of the constraints and using some identities for the angular 
vectors, the motion of the holonomic system is shown to be governed by the usual Lagrange's 
equations. The essential role of the angular vectors is emphasized through comparison with a 
previous approach. 

1. Introduction 

A RIGLD BODY is a system with a number of degrees of freedom not greater than 6. 
Nevertheless, treatments of analytical mechanics deal only with material points 
and hence rigid bodies are modelled as a set of material points though such 
points are not characterized operatively. The results are then deemed to apply 
fo r continuous bodies by merely replacing the summation over the particles by a 
volume in tegratio n, with the point mass becoming a mass density (cf. [1-5]). 

Quite naturally, instead, a rigid body might be viewed as a continuous body 
whose mechanical state in space is characterized by the position of a point and 
the ori entation of a rigidly attached triple of non-coplanar axes. This view is 
customary in conn ection with the kinematics of rigid body motion and Euler's 
equations of motion where angular vectors are used to describe the position of 
the body (cf. [6- 8]). 

The standard approach of analytical mechanics can be modified so that both 
the material points and the rigid bodies are incorporated and, moreover, rigid 
bodies are considered systematically as continuo us bodies with the correspond
ing number of degrees of freedom. It is the purpose of this note to derive the 
eq uations of motion from the characterization of the constraints. The system S' 
under consideration is holonomic and consists of N material points and B rigid 
bodies. The approach is based on the use of angular vectors [9] . As a result, the 
motion of the system is shown to be governed by the usua l form of Lagrange's 
eq uations. 

To the author's knowledge, the literature shows o ne previous approach to 
Lagrange's equatio ns, where the rigid body was viewed as a continuum [J 0]. 
An immediate comparison emph asizes the conceptua l d ifficulty that arises if the 
angular vectors are not involved. 
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2. Angular vectors and characterization of the constraints 

Let P be any point of a rigid body, G the center of gravity, and w the angular 
velocity. The velocities vp and Vc of P and G are related by 

Vp = Vc + W X (P- G). 

The time-dependent velocity field vp(t) = v(P, t) is then characterized by the 

two time-dependent vectors vc (t) and w(t) . 1Wo pairs v~) ' wC1) and v~) , wC2l 
determine .the corresponding fields 

v~) = v~) + W(l ) X (P - G'), v~) = v~) + wC2) x (P -G). 

A field of virtual velocity v is defined to be the difference of any pair of velocity 
fields. Analogously, a virtual angular velocity w is defined to be the difference 
of any pair of angular velocities. Hence, letting v = vC1) - v(2), w = wC1) - wC2) 

we have 

(2.1) V p = V G + 'tV X ( p - G). 

The vectors w and w are now related to the generalized coordinates. 
Let {eh} be the unit vectors of a Cartesian set of axes fixed in the rigid body, 

h = 1, 2, 3. For greater generality we Jet 

where q = q(t) is a set of generalized (or Lagrangian) coordinates for the body. 
By definition, the angular velocity is given by 

where a superposed dot denotes the (total) time derivative dj dt ; the sum over 
repeated indices is understood. Define the angular vectors 0 1, O t as 

We have 

whence 

(2.2) 
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Let Ut;1
>}, Ut.~2) } be th e sets of generalized velocities associated with v~ ), v~) . 

. • (1) • (2) 
Lettrng '7.i = q.i - q1 we have 

(2.3) w = n i'TJ.i . 

. 
For later use we need the expression of the time derivative n j . Letting 

n = n •e JP J p 

and 

we obtain 

and 
eh,k q k + eh,t = fl kX e hqk + fl tX eh = WXeJt . 

Substitution and some rearrangement yield 

1 . ) 1 
2 Epht (e h,jk qk + e h,.it • e, + 

2
cphte h,j • w x e1 

0 1 1 1 
Dq.i 2 Epht w x eh · et - 2.Ephl w x eh · et,j + 2.Ephl eh,j • w x et 

()~ 1 1 = aqj - 2_ (epX eit ) ·e,(w x eh) ·(0jX et) + 2_(epXeh)•et(0jX eh)·(WXet) 

OWp J 1 = f.Jqj-
2

(w x eh)· [Oj x (epx eh)] + 
2

cn jx eh) · [w x (epx eh)] 

Dwp 1 1 
Oqj - 2 (w x eh) · r2Jhep + 2cn.i x e~t ) · wh ep . 

Accordingly we have 
• f.Jw 

[2 jp = :::~ P + 0 j X W • ep . 
u qj 

Hence the time differentiation of 0 j = n .iPeP yields 

• f.Jw 
n i = f) pep . 

. qj 
{2.4) 

Let <P; be the force of constraint at any point i of S, namely, at any material 
po int or at any point of the rigid bodies. Denote by V; the virtual velocity of 
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the point i and let A be the set of labels for the constrained points. Hence we 
characterize the constraints by assuming that 

(2.5) 

for every set of virtual velocities {v i} compatible with the constraints. 
For formal convenience we separate the values of i pertaining to the material 

points from those pertaining to rigid bodies; we label by a = 1, .. , N the material 
points, and by the pair b f3b , b = 1, ... , B, f3b = 1, .. . , 6, we denote the constrained 
points of the 8 rigid bodies. Denote by R;; and M~b the total constraint force 
and the total constraint torque acting on the body b, i.e. 

R[; = L <l>bth ) 
b,{h 

M~b = L:CPb/3b - Gb ) X <l>&/3b . 
b,/3b 

The total applied force R~ and the total applied torque M~b are defined anal
ogously by replacing the constraint forces with the applied forces. By means of 
(2.1) we have 

L <l>b/3b •Vbf3b = L <l>b!3b •Vcb + L <l>b!3b • W b X (Pb/3b- Gb ) = Ri; •Vcb + M~b • W b · 
b,/3b b,(3b b./3b 

For any body b, the balance of linear mo mentum, Pb, and of angular momen
tum, L &, is written as 

The equa tion o f motion for any material point a is given in the fo rm 

where f.la is the mass, a 0 - the acceleration, Fa- - the applied fo rce. Substitution 
enables us to write the conditio n (2.5) in the form 

(2.6) L(fto ao - Fo) ·V a + L(Pb - Rb) ·V eo + L(Lb- M~b ) · w b = 0. 
u b b 

3. Lagrange's equations 

Let now q = ( q1, ... , qn) be the set of generalized coordinates for the whole 
holo nomic system. Substitution of (2.3) into (2.6) yields 
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The arb itrariness of the n -tuple ry1, ... , 'r/n implies that 

(3.1) j = 1, ... , n , 

where 

"' aPe. "' · 8Gb · b 
Tj = L f.l oaa · -.- + LPb· -- + LLb'Oj, 

0 a qj b o q.i b 
(3 .2) 

"' a Pa "' 8Gb "' b Qj = LFa · -- + LRb· -.- + LMb· 0 1 . 
a· o q.i b oq1 b 

(3.3) 

It is natural to view Tj (Qj) as the j -th component of the generalized inertia 
force (generalized fo rce). 

To find a convenient form of T j we observe that, for any material point P of 
mass f.l, by means of the known identities, we have 

In the same manner, since P = m vc , we have 

. ao ao d a 1 2 a 1 2 
p. -.- - = rn.a G • -. - = - -,--7HVG - -. --·m vG. 

aqh oqh dt oqh 2 o qh 2 

Let I be the inertia tensor of a body, relative to the corresponding center of 
gravity. Hence L = I w. We now use (2.2) and (2.4) to obtain 

• d(I w) () w d [ awl d a w 
L · 0 1t = --· - .- = - (I w) · - .- - (I w) · - - .-

dl oqh dt aqh cLt oqh 

= :!_ [~ w·Iw] - (Iw)· dOh = :!_ [~w-Iw] - _§__ [~w-Iw] . 
eLL 2 cLt dt 2 oqh 2 

The expression of the kinetic energy of the system, viz. 

allows Tj to be written as 

d ar ar 
T.i = --.--- . 

cLt o q1 o qj 
(3.4) 

Accordingly, the conditions (3.1) become 

(3 .5) 
c1 o'l' ar - -. -. - -. - = Q.i ' 
dt oq . o qj 

.1 

j = 1, ... , n , 

namely Lagrange's equations of the second kind. 
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4. Comparison with a previous approach 

The view that the rigid body is a continuum rather than a set of material points, 
is expressed in [10] . A comparison is then necessary to assess the conceptual 
improvement in the present approach. 

The approach in [10] starts from the D ' AJembert principle for a single body 
which, in the no tation of this note, may be written in the form 

(4.1) Ra •Vc +M~ •'W - j {? V·a clv = 0, 
R 

where &~ is the mass density; the integral over the region R, occupied by the body, 
is regarded as the power of inertia forces. The assumption (2.5) seems to be more 
convincing. Yet it follows easily that Eqs. (2.6) and (4.1) are equivalent when a 
single body is involved, since the observatio n that 

f)P cl 8 1 2 8 1 2 - ·a= ---v ---v 
8q.i dt 8qj 2 oq.i 2 

and substitutio n of v = (fJP / O(jj )fJj yields 

J &~ V·a dv = T ·17 · , .7 .1 

'R. 

where Tj has the form (3.4) in terms of the kinetic energy. H ere, the expression 
(3.2) also leads to (3.4). 

The crucial point consists in expressing the power Ra ·Vc +M~ · w in terms of 
the generalized coordinates. First, the "primitive" coordinates As are considered 
and the power Ra ·Vc + M~ · w is written as a linear form in the virtual time 
derivatives of As; the correspo nding coefficients are denoted by ll s. Hence, for 
holonomic systems As = As ( q, t ) and it follows that 

where 

R(L ·Vc +M~ • 'W = L Q.i fl .i, 
j 

Q.i = L 11 s ~As . 
s qJ 

Accordingly, the arbitrariness of the set { fJJ} implies that Lagrange's equations 
(3.5) ho ld. Unfortunately, without the angular vectors, the quantities Q.i are not 
defined per se. Indeed, Q.i can be viewed as the coefficient of fJ j in the expression 
of the virtual power. The use of the angular vectors, instead, allows us to write 
Qj in th e form (3 .3). The occurrence of the angular vectors Q J makes it apparent 
why we are unable to write the expression fo r QJ if the angular vectors are not 
considered. 
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Asymptotic expansion of solution of the torsion problem 
for an elastic rod with a cavity and a thin bonded multilayer 

G. S. MISHURIS (RZESZOW) 

THE FIRST TERM of the asympto tic expansion of the solution of the torsion problem for an e lastic 
rod is derived using the method of a matched asymptotic expansio n. The prismatic rod is weakened 
by an imernal cavi ty wi th angular points, one of which is situated o n the exterior boundary. The 
exte rio r boundary of the rod is reinforced by a thin elastic multilayer. Difference be tween the 
exact and approximate solution of the problem are estimated by the norm of the Sobolev spaces. 
Relatio ns for stress intensity factors in the angular points are found and verified. 

1. Introduction 

STRUCfURAL ELEMENTS reinforced by thin surface layers have found wide appli
ca tion in modern technology. Such elements can seriously change the elastic and 
strength properties of the structures. The corresponding boundary value prob
lems have been investigated in [2, 3, 4, 20]. In those problems it is assumed that 
curvature of the thin layers is small. In this way, note paper [9] , in which "av
eraged" boundary conditions are obtained for a thin surface layer with arbitrary 
cutvature by th e operator method. All the mentioned problems are related to the 
so-called boundary value problems with regular perturbations of the boundaries 
[7' 8]. 

However, in the cases when stress concentrators are situated near the thin 
layer, singular perturbations of the boundaries appear. The methods of solution 
of such problems have been proposed in [6, 12, 19]. One of them is the method of 
matched asymptotic expansion. It consists in the solution of the limiting (internal 
and exte rnal) problems, and later - in their coordination in some intermediate 
region [6, 12]. 

In paper [1 5] th e method of solving the boundary value problems in infinite 
domains represented by wedges and layers is proposed. For some values of the 
parameters, ho mogeneous problems discussed in [15] have nontrivial solutions, 
which are of some class of solutio ns of the internal limiting boundary value prob
lems. These solutio ns can be calculated by functions belonging to the kernel 
of special singular integral operators [14, 15]. In [1 3] the numerical method of 
deriving the functio ns from the kernel of the operators has been introduced. 

In the paper, a singular pe rturbed boundary value problem is considered, 
wh ich co rrespo nds to the to rsion problem of a prismatic rod with a cavity and 
a thin multilayer. A similar problem for a homogeneous rod with a linear crack 
was investigated in [1]. 
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2. Formulation of the problem 

Let us consider a domain fh with compact closure fh c JR2
, smooth exterior 

boundary r e (for example, Fe E c I), and piecewise smooth interior boundary To 
(ofh = TeuTo). By f1 we denote the closed curve: T1 = {PE !h : dist(P,o.Oh) = h}, 
(see Fig. 1 ) . 

F IG.]. 

Assume tha t A, B E I 'o are corner points which divide the closed curve F0 = 
1 0+ u ro-' and 

(2 .1 ) 

(i) 

(ii) 

(iii) 

dist( A, 1 e)= h ~ 1, rn. ~ 1, dist(B , Te) "' 1, 

L(TI ' ro±)]A = 7r / 2 =F cPA ' L(To+' ro- )]B = 2c/JB' 

kn(A) = kr.± (A) = kr.± (B ) = 0, 
0 • (I 

where 0 .. 1 , cPB E (0, 1r / 2), /,:n (A ), kr.± (A ) are curvatures of the curves T 1, and 
0 

Tl in point A, but Tn. = sup{r : Er C De} is the Chebyshev radius of the 
domain r2r (here 8.0( = re, and B,. is open disk of a radius r ). 

Let(~. n ) be a local coo rdinate system connected with the curve T1. Its o rigin 
is at the po in t A E f 1, and n > 0 along the outer no rmal. A Cartesian coordinate 
system (:T, y) coincides with the local system (s, n ) at po int A (A = (0, 0)). 

If m. E N, f lO, f l j E IR+ (j = 1, 2, .. . , 1n ) are some positive constants, and 
0 = ho < h 1 < ... < hj < ... < h m- l < hm = h, then we co nsider the step 
function: 

(2.2) { 
1-'·j + l ' 

I' c~ ' n) = 
f.lo , 

(. , n) E J?h 1\ hj < n < h.i+I , 

(s, n) E .Qh 1\ - < n < 0, 

and fro m the assumption it fo llows 

(2.3) 0 < min {f.t1} = f.l ~ 1-l (x, y) ~ 71 = max {vd < oo. 
O'SJ'Sm - O'S.1'Sm 
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We shall use also the symbols (j = 0, 1, ... , m ): 

(2.4) 
[2~ = f2~tn {(:r.y ): f1 (X, y)= J1j }, 

r j+ l = {(s, n): (s, n) E fh 1\ n = hj }· 

37 

We shall seek a harmonic function 'U ( x, y) in each domain [2~ (the torsion 
funct ion [18]), satisfying along the interior boundaries r j (j = 1) 2, .. . ) m ) be
tween di1Terent materials the conditions: 

(2.5) 

But along dfh we have 

(2. 6) 
a 

flm ~'l.lmlr = f m(X, y), un e 

a 
11o ~tto1 ± = - ft (x, y), un ro 

with some functions f i , f t E C00 (l~i ) (see (18]), so that the following conditions 
are satisfied: 

(2.7) a . h ) a f. ) as } j (O , j, as· o(O, O rv 1. 

For solvabili ty of the problem we should assume, in addition [18], that 

m +l 

L j j j ( s) ds = 0, 
J=O r] 

(2.8) 

where f 111 + 1 = re, but to secure the uniqueness of the solution we normalize it 
by the condition: 

(2.9) u(B) = 0. 

Using the resul ts from [10], one can show that the linear problem (2.4) - (2.8) 
has the unique solution 'l.lh in the space 1V} (f2h, B ) = { 'U E W}(D~t ) A u(B) = 0}. 
It can be easily seen on the basis of the results of [5], that the solution belongs 
to C'00 (DD. Besides, we can prove that tt~t E C(!h ), however, uh rf_ W{(f2~t ). To 
verify the first fact, it is sufficient to investigate the asymptotic behaviour of the 
solution near any point situated on the interior boundary r1 (j = 1, .. . , m ); but 
to check the second conclusion, we should know the behaviour of the solution in 
the neighbourhood of points A or B. We shall consider in detail only the second 
proposition. Namely, let us represent the solution near these points in the form: 
uh = \ (1' /E )uh + (1 - '( (7 '/c))H!t with some small c > 0 (c < h1). Here and 
further on, by \ E C00 (IR+ ), we shall understand a cut-off function defined by 

(2.10) { 
1, 

\ (t)= 0, 
0 ::; 1 ::; 1/ 3, 

2/ 3 ::; l < 00 . 
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Let us note that the function u.!: ll = x (r /t:)uhlt E L 1(1R.+), where lis an ar
bitrary radius with origin at point A (B) so that l n fh ::f 0. Then applying 
the Mellin transform technique to the corresponding problem for the function 
u,!; = x (r /t:)tlh, and taking into account the assumptions on curvatures (2.1), we 
obtain 

1lh(h. , r ,if>) = dA + CA VA_ 1rvA F (if> ) + 0 (1'0A), 1' --+ 0, 

uh(h. , 7', </>) = da + caiJ8 1rv8 F (if>) + O(r88
) , r """" 0, 

(2.11) 

where (r, if>) are local coordinates connected with point A (or B), and the angle 
if> calculated with respect to the bisector of the corresponding corner angles, are 
situated in the domains n,~ en~, respectively), but 

(2.12) 
{ 

sin if> v 

F _ sin(?Tv/ 2) ' 
(if>)- . ,~, cos(1r - </>o -1 </>1) 11 

s~n~ , 
cos( 1r / 2 - </>o) 11 

1</>1 ~ 7T /2, 

1r /2 < 1</>1 < 1r - if>o , 

where if>o = if>A (if>a ), da = 0 (uh E W}(n,., B)), but constants vA, va E (0, 1) 
are the first zeros of the function: 

Llc(s ) = K, Cos if>os- cos(1r - </>o)s, 
f.lO - f.ll 

K,A = ' 
f.lo + 111 

K,B = 0, 

which are the nearest to the imaginary axis. Since K,B = 0, the relation for the 
function F'(</>) at point B has a similar form for 1</>1 ~ 1r / 2 as well as for 1</>1 > 1r / 2. 
Here the values of the parameters 5 A , 58 E (1 , 2) in (2.11) are calculated as 
fo llows: 

c . { (2) } UA =mm /JA 1 TA 1 
c . { (2) } u a = mm v 8 , Ta , 

where 11~2), v~> are the second zeros of the function Llc(s ), but TA , Ta are the 
first zeros (TA, Ta > 0) of the function: Lls(s ) = s-1[n: sin </>os + sin(1r- if>o)s], 
with the respective value of the parameter 1\, (!i:A , 1\,a). 

The constants CA , ea in (2.11) p lay an important role in fracture mechan
ics [17] (stress intensity factors). The next mechanical parameter which can be 
calculated from the solution uh of the problem (2.5)- (2.9) is the stiffness [18]: 

(2.13) C' = jj f..l( r, y) (a:2 + y2 + ( x gy - y ;,.c) tl ~t (h, x, y)) dJ2 . 
f'l,. 

However, the numerical process used for solving the problem (2.5)- (2.9) is 
difficult in view of the existence of the small parameter h, and of the singularity of 
the solution in the neighbourhood of point A situated near the exterior boundary 
of the domain. Further o n, we find the first term of the asymptotic expansion of 
the solution uh, which is close to ·uh in the norm W2

1(J2h ), and makes it possible 
to obtain the values of coefficients eA, ea, C from (2.11), (2.13). 
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3. Limiting boundary value problems 

3.1. Externa l problem 

Now we consider similar problem but the domain will be somewhat different. 
Namely, by Do we denote the simply connected domain with boundary oD0 = 
o[h u i\!Ji u M0- , where !v!f = {(x, y) : 0 < y < h 1\ x = 0± }. Along the 
curves M0 we define functions f~(s) = 0, hence, the condition (2.9) holds true 
and the function along the boundary oDo is continuous. Problem (2.5)- (2.9) in 
the domain Do also has a unique solution u0, belonging to WJ(fto , B). Besides, 

uo E C00 (D~ ), ·uo E C(Do), but uo rt C(Do). This is because the domain fto has 
not the "segment" property (see [10]), and u0 E WJ(D0 , B) is a multifunction 
near the parts Nif of the boundary oD0 (as (x, y) tends to a point (0, y.) on 
the boundaries Mf from different sides of the domain D0, the function u0 has 
different limiting values). 

The solution uo exhibits the asymptotic behaviour (2.11)2 near point B with 
a constant c~, but in the neighbourhood of the point A 

(3.1) uo(h ,:r, y)=±dt + O(r-rA ), r --. 0, 0 <±c/J< 7r-cPA· 

Hence, u 0 cannot be considered as an approximation of t t h near the zero point. 

3.2. Green's function 

We shall also need th e Green function g A ( x, y) for this problem in the domain 
D0, with delta-functions concen trated near point A . It will be normalized by the 
relation (2.9). Asymptotic behaviour of the Green function near point B is of 
the form (2.11) (similar to uh and u0) with dB = 0 and the constant c = gB, but 
near the zero point 

(3.2) r --. 0, 0 < ±c/> < 7r- cPA, 

where gt are some constants. 
Let us note that the Green function g A is uniquely determined, and can be 

calculated using the representation 

9 11 = x (r/h )·sign c/> ·ln r + v0 , 

where the function v0 E 1;VJ (D0, B) satisfies Poisson equation with the right-hand 
side: sign q> ·(ln n:l \ (r/h) + 2(1·h)- 1x '(r/ h)) and the boundary conditions (2.5), 

(2.6) with functions fj(s ) = ~ [\(r/h)ln r ] along the curves l j . All these func-. on 
tions are smooth, and ./10 (y) = 0, ]f" (A), } 1(A) = 0, in view of the assump
tion (2.1) for curvatures of the curves near point A. Hence, the problem for 
the function vo E Mfj (Do, B) and the problem of the Subs. 3.1 for the function 
uo E WJ (Do, B) are similar from the point of view of their numerical realization. 
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3.3. Internal problem 

Now let us consider the infinite domain G = G~ u G.i represented in Fig. 2, 
and try to find nontrivial harmonic function w(x' , y') satisfying the homogeneous 
internal boundary conditions (2.6) along the boundaries (j+l = { (x', y') : y' = 
Yj = hj/ h, x' E IR} between the domains Gj_1, Gj (j = 1... , m ), and homoge
neous conditions (2.8) along the boundaries (m+ 1) et 

(m+l (3 (2 
x' 

c+ 0 

y' 
G2 G1 cpA 

Y2 Y1 c-
0 

1 

FrG. 2. 

At infinity we assume, in addition, that w = O (ln 7' ), r ___, oo . The re are two 
linearly independent harmonic functions satisfying such conditio ns: w 1 ( x' , y') = 
const- even functio n with respect to argument x ' , and odd funct ion w2(x' , y'). 
The function w2(x' , y') can be calculated, using the inverse Fourier transform, 
by the nontrivial solution z(O of the singular integral equation obtained in [15] 
(the corresponding equation (3.16)). From theorem B.4 [15], it follows that z E 
W(t)"'•13(1R+) for any l E N, p E [1 , ), a > 0, /3 < VA, a nd 

(3.3) 
z(O = In ~ + zo + oce), ~ ~ 0, 

(2) 
z (O = Z00~ -v.4 + O(C " A ) , ~ -, 00 . 

Here, \1!1(tr·13 (IR+) is the space of functions, which are summable (together with 

their !-derivatives) with a special weight (see [14]). The space vV(tt ·13(1R+) does 

not coincide with usua l Sobolev spaces HI7~ (1R+ ). In turn, the method of numerical 
calculation of this non trivia l solution has been proposed in [13]. F inally, w 2(x ' , y') 
can be determined (with accuracy to a multiplier) from the rela tio n: 

00 

(3.4) w2(x' , y') = 2 j [ch y'~ + [~fll l\1'p (0]- 1 sh y'~) z (O sin(x'Od~ , 
0 

(x ' , y') E C l , 
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(3.4) 
ioo - 6 

w2(:r1
, y1

) = ~ j L'(s ) sin(1r s / 2) cos(1r- rpA - rp )s 
1rz cos( 1r / 2 - rpa)s 

-ioo- r5 
fcont.] 

00 

. j z(0(r 0 -s d~ ds , 

0 

(:r1
, y 1

) E Gd" , 

where 0 < 8 < 1111 , the function M11 ( 0 can be calculated by recurrence formulae 
from [15) , and besides, !V£71(0 = 0((- 2), ~ _. 0, M11(0 = - (tt10-1 +0(e-2~x 1 ), 
( -

Using this information, we can show that the asymptotic behaviour of the 
function w2(;r1

, y 1
) near the zero point is of the form (2.11), with the constant 

r ,u = 21r - 1z F(l-v4 )sin(1r v4 / 2), dw = 0, and v~2) instead of the parameter 
8; but at infinity we obtain 

I I { In 7' + I + zo ' 
(3.5) w2(1· , y ) = ± 

In l:r11 + 1 + zo , 

(x 1 , y1
) EGo , + 

0 
_2 

( 
I I) G' (r ), x , y E 7j , 

T _. 00, ±x1 > 0, 

where 1 = r' 1 (1) is the Euler constant. 

4. Main result 

Using the method of matched asymptotic expansion (see [6, 19]), we shall con
sider function w2(s / h, n/ h)+ const as an approximation of the solution uh in the 
neighbourhood of point A, but a linear combination of the functions u0(h, x, y), 
~111 ( h, :r . y) in the remaining part of domai·n fh . Let erE (0, 1) be some constant, 
and 

(4.1) u~tl)(h ,x , y ) = (1 - x (r / ha))[uo(h.x,y)+ D9A(h , x, y)] 

+ x (r-j ha)[Dw2(sj h, n / h) + E ]. 

Unknown constants D , E should be calculated in such a way that both parts 
(internal and external) of the solution ( 4.1) will coincide on the distance T = 
h'' / 2: 

uo(h ,.r, y) +D9A (h , ~:, y)-Dw2(sj h , njh) - E = 0 (hmin{TAa ,2- 2a }) , 

(4.2) 'V [uo(h. ,&. y)+ D911 (h , x, y) - Dw2(sjh ,njh) - E ] 
= 0 (hmin{rAa,2- 2a }-o ) 

for h.0 / 3 < r < 2h 0 / 3 uni form ly with respect to the angular coordinate B; then 

(4.3) D = dti + d() E 1 [d+ d- + D( + - )] 
2(zo + I - In h) - 9d - 9o , = 2 o - o 9o - 9o . 
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Let us note, that the function 1l~,1 ) from (4.1) belongs to the space Wj(fh, B ), 
and the constants in the main terms of asymptotics (2.11) near points A, B are: 

(4.4) - o D ea = ea + ga. 

THEOREM 1. L et a E (0, 1) and h ~ 1, then for the function u~l ) E Wj (fh, B), 
the following estimates hold true: 

lluh - U~J )II wi = 0 (hmin{a(TA -1),2-3a} ) l 

C' _ C = 0 (hmin{a(-rr1),2-3a}) , 

CA _ CA = 0 (hmin{a(-rA-vA ),2-a(2+vA)}) 
1 

Ca _ CB = 0 ( hmin{a ('T;t + VA ),2-a(2-vA)} ) . 

P r o o f. F irst of all note, that the difference between uh and u~,1 ) in each 

domain D!t satisfi es the Poisson equation with the right-hand side R (1) ( h, x, y ): 

R(l)(l~,1· ,y) = R~ 1 ) (h ,.t, y ) - R~1) (h,x,y) , 

R~1\h , 1· , y ) = [uo(h, x y ) + D9A (h , x , y ) - Dw2 (sj h , n/ h ) - E]ilX(T/ het ) 

+ 2\l [uo(h, .r, y ) + D9A (h, x , y ) - Dw2(s / h, n/ h) - E ]\lx (r'/ ha), 

R~1\h,x.y ) = D;.._ (r/ha)Ax,yW2(s/h,n/h), 

and fu lfi lls the boundary conditions (2.5), (2.6) with the functions 

/f1
) = y_(T/ ha)fj + (Jl_i - l -Vi) [·uo + D9A - Dw2(sj h, n/ h) 

- E] :n >._ (T/ h0
) , 

/6 1
) = \ (1-j ha)fo - flo [uo(x, y ) + D9A (.r , y ) - Dw2(s j h, n/ h) 

-E] i_X(T/ h" ) an / ) 

n1> = \ (r/ ha)fm + Pm [uo (x, y ) + DgA (x , y ) - Dw2(s j h, n/ h) 

() 
- E] an\ (T/ ho ), 

instead of J~ . Such a problem (for the function Uh - u~,1 ) ) has also a unique 
solution in the space liVJ (fh , B ). 
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Taking into account ( 4.2), we can obtain for h ---+ 0 

R~l ) (h , X, y) = O(hmin{O'('Tr 2) ,2- 40'}), 

suppR~1 ) = { (x, y ) E fh : hO' / 3 < 1' < 2h0' / 3}, 
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but to estimate the function R~1 )(h , x , y) (suppR~1 ) = { (x , y) E fh : 0 < T < 
hO' / 3} ), the Laplace operator should be considered in the cmvilinear coordinate 
system (s , n): 

1 [ a ( aw2) !1,,_.,y w2(0jh, n/h) = 1 - nk(s ) on (1 - nk(s )) on 

a ( 1 fJw2)] 
+ o s 1 - nk(s ) o s · 

Denoting ~ = / h, 17 = n/ h, we can conclude, in view of assumption (2.1) on the 
curves f , , and taking into account the asymptotic formula (3.5) for the function 

w2, that R~1 ) (h ,.t , y ) = R~1 ) (~ , 7] ) + O(h), where 

p __, 0, p -+ 00 . 

The functions / ; 1
) in the boundary conditions (2.5), (2.6) can be represented 

as a sum j ji ) = /~ 1 + /12, which at h ~ 0 have the properties: 

/ ii = O(hu), 

f- = O(h min {2-3a,cv(Trl)}) 
. ) 2 ) 

We can then conclude that 

suppf j i = {(x , y) E fh : 0 < 7' < 2h0' / 3}, 

supp}j 2 = {(:r,y) E Ih : h0'/3 < 1' < 2h0'/3} . 

Now, the first conclusion of T heorem 1 fo llows from the results [10]. However, 
the constant in the estimate ( jjuh - ii:~1 ) 11 ~ Const hmin{O' (Tr~ - l ) , 2- 3a} ) cannot be 
effectively obtained. I t depends on the norm of the inverse operator of problem 
(2.5) - (2.9). The second relation fo llows immediately from the Holder inequali ty. 

For estimation of the constants CA , cs in the main terms of the asymptotics 
(2.11), we shall use the M AZ'YA, P LAMENEYSKY method [11]. Following [11] (see 
also [17]), we can define "non-energetic" harmonic funct ion tJi:4 E L2(Dh ) sat
isfYing the homogeneous problem (2.5)- (2.9) with asymptotic behaviour (2.11) 
nea r poin t /-3, but in the neighbourhood of point A satisfying the condition 

(4.5) 1' - 0, 
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where function F(rfy ) is defined in (2.11). The function lft;;_ (x , y) can be calculated 
from the representation (c < h 1): 

because the corresponding problem fo r function 1ft; has a unique solution in the 
space Wd(.(h , B). Further o n we define we = {(x,y): T < c:} and write the 

Green formulae for the functions as uh = tlh - u~1 ) and 1ft;;_ in the do mains of 

[2~ \ w", f?1~ \we , [2~ (j = 2, ... , m). The sum of the corresponding relations is in 
the fo rm of: 

j j p(x , y) [wAL\t'lh - il~t L\lft.4] clr2 = j !lm [w;;. ~~;~ - uh 
8fff] clo-

nh \w, r m +l 

or taking into account the eq uations and the boundary conditions for functio ns 
fi.h and if!;;. , this relatio n can be rewritten as fo llows (c: < h1) : 

m +l 

= ;; j w;;. j} 1)da- + j w;; /i1)da- + j w;;)a1
)da-

] - r } rJn(n,\w, ) rc,n(nh \w, ) 

-J J {l(X , y)lft;;_ [R~l)(h , x, y) - R~1)(h , x, y)] dr2. 
nh.\w, 

The net result will be obtained by passing to the limit c: - 0: 

Here we use informatio n (2.11) and (4.5) about the asymptotic behaviour of the 
funct ions 'Oh, 1ft;;_ near point A fo r calcu lating the integral o n the left-hand side 
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of (4.6): 

(4.8) { 
7rVA-Sin 7ri/A 

iP(p0, ft, , <PA ) = 2 11,-
1
---

_ COS 'Tr VA 
(1r- 2</JA)VA + sin(7r - 2</JA)VA} 

+ flo ,~, ) · 1 + cos( 1r - 2'~" A v A 

The first and the fourth terms on the right-hand side of ( 4.7) are estimated as 
O ( h c•{2-vA ) ) , but the remaining two terms are O (hmin{a{rA-vA),2- 0! (2+ vA)} ). Con-
sequently, the third conclusion of Theorem 1 is proved. The remaining estimation 
of Theorem 1 is performed in a similar manner. For this purpose, we should take 
the "non-energetic" function !]ia (instead of !]i;;, ), which exhibits the asymptotic 
behaviour (2.11) near the point A, but in the neighbourhood of point B in the 
form of ( 4.5) with 11 B . Then, repeating the same reasoning, we obtain the fourth 
conclusion of Theorem 1. Let us note that the constants in the last two estimates 
have been obtained effectively. 

COROLLARY 1. The optimal value of the parameter a is a. = 2/ (2 + r A), then 
the estimates are: 

c .. \ -CA = O(h2-a .(rA +vA) ), CB- CB = O(h2-0< . ('TrvA )). 

REMARK 1. As it fo llows from the proof of Theorem 1, the results would 
be improved, if we could more precisely estimate the terms of solution uo and 
the Green function gA of the asymptotic behaviour: O(T r A), T ~ 0. For this 
purpose, note that the corresponding problem for function uo is the perturba
tion boundary va lue problem with the regular boundary layer near F m+ 1 = J"'e . 
The main terms of such problems have been constructed in [4]. Basing on the 
results from [4] , one can show that the term 0(1sA ) in (3.1) can be estimated 
as: const(h)l< (cp)T rA, where const(h.) = O(h f3 ) with some 0 < (3 ::; r~ - TA. 

Here, T.~ is the corresponding parameter in (3.1) fo r the solution tt8(~r, y) of the 
non perturbed problem (p(1·, y) = fto, h = 0). In a similar manner, the estimation 
of the corresponding term of the Green function (3.2) can be obtained. Then we 
can formulate 

TH EOREM 2. Let 0 E (0. 1) and h ~ 1. then for function u~J) E Wi(f?h, B) 
estimates hold true: 

11 - {1)11 O(h rnin{O<,(J+O<{rA- 1),2- 30!} ) , 
Uh- Uh Wi = 

C _ (; = O(h rnin{O<,(Jh{'TA- 1),2-30!} ) , 

CA _CA = O(h. min{0< (2-vA),(J+O<{rA-vA),2- 0<(2 +vA )}) , 

rB- CB O(hmin {0<(2+ vA),(J + O<{rA+vA ),2-a(2-vA)} ) . 
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COROLLARY 2. Then the optimal value of the parameter a in Corollary 1 is 

a .. = max {1/ 2, (2 - (J)/ (2 + TA )}. 

5. Remarks and conclusions 

In this section we propose some generalizations under which the mentioned 
results of the theorems wi ll hold true. 

First of all note that from [18] it follows that .fj = (J.t1_1 - J.l j )[y cos(n, x ) 
:1.: cos(n , y)], f m+t = J.lm [Y cos(n , x )-;t cos(n, y)] , fo = J.lo [Y cos(n , x )-x cos(n, y )]. 
Consequently, these functions satisfy the conditions (2.7). Nevertheless, the re
sults still remain valid, if the functions are " little affected" in the neighbourhood 
of point A. For this purpose, it is sufficient to find the so lution in the form: 
uh = uh + '( (1· j h)v 1(s , n ), where the function is v 1 = a.i + bj s + Cjn in each 
region n{ The constants a1 , bj, Cj should be ca lculated so that v1 is continuous 
along Fi , but fo r funct ion uh the conditions (2.7) have been satisfied. 

Further on, note that the conditions (iii) in (2.1) can be weakened like this: 
k r, (A), k r.± (A), k r.± (B ) "' 1. The angle of corner A can be nonsymmetric with 

(J 0 

respect to the no rmal to the boundary 10 at this point, in contrast to (ii). Then 
the functions F'(</J ) in (2.11) and the transcendental functions Lls(c)(s ) (necessary 
to determine th e parameters T 11 ) should be corrected; but the corresponding 
internal boundary value problems can be calculated by so lving of the systems of 
singular integral equations [15], instead of the singular integral equations as it is 
in the symmetric cases. 

The step function J.l (.r, y ) allows for the fo llowing generalization: 
1. The boundaries of disco ntinuity r j of functio n J.l (X, y) can be defined as in 

(2.2) with functions h1(s) instead of parameters h1. We should assume only that: 
h.i (s) > hj_ 1(s), hm(s) = O(h), hj (O) = 0, h'j(O)"' 1. 

2. In each domain [2~ the conditio ns are true: J.l E C2(J2~ ) , and : x J.t (O , y) = 0, 

~ . . a ~ 
ch·2 p(O,y) "' 1, (O, y) E [2~ (J > 0), 0,.p(O, O) = 0, OT2 J.t(O O)rv l , (0 , 0) E D~) . 
The fun ction J.t (.r, y) depends weakly on the argument x in the multilayer near 
the angle vertex. Then we shall find so lution vh of equatio n 'V(J.l (::r, y)\luh) = 0 
instead of the Laplace equation b.uh = 0 used in the paper. Such a problem 
correspo nds to the general case of a nonho mogeneous elastic rod. Note in this 
connection that the internal boundary value problems (Sec. (3.2)) can be also 
solved in this case by the me thod [15] (see Appendix in [16]). 

T he boundary conditions can be also generalized. Namely, the first of the con-

d itions (2.5) can be represented in the fo rm: [uh]- a( ) : n uh = /j, a'(O) = 0, 

a"(O) "' 1, instead of [uh] = 0. The corresponding internal boundary value prob
lems can be solved by the same method [1 5, 16]. 



http://rcin.org.pl

ASYMPTOTIC E XP ANSION OF SOLUT ION OF T HE T ORSION PROBLEM 47 

Let us note in conclusion, that the first two conditions (i) cannot be modified, 
of course (these conditions make it possible to use the asymptotic methods). 
If the third condition is not true and dist(B , Fe) = O(h ), then the asymptotic 
expansion of the solution can also be constructed. However, the corresponding 
external boundary value problems are different from those shown in the paper 
(Sec. (3.1)), and the representation of the solution (4.1) should be changed. In 
(19], such a problem in a homogeneous domain with the linear crack has been 
considered. 
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A formulation of continuum mechanics as a dimensional 
reduction of a finite-dimensional dynamical system 

J. KACZMAREK (GDANSK) 

IN THE PAPER a gene ralized formulation of the continuu m mechanics is suggested. The generaliza
tion consists in the assumption that the energy balance equat ion is not satisfied for all subbodies 
of a body but only for their chosen family. This formulation leads to fields in the continuum which 
create a fin ite-d imensional space. With the help of the chosen family of subbodies, a volume of 
averaging re lated to the continuum model is defi ned. T his volume is connected with a more e le
mentary dynamical system which takes part in determination of the form of constitutive equa tions. 
In general, the mechanical model of the continuum is seen as a dimensiona l reduction of the more 
elementary dynamical system related to another continuum or to a discrete set of material points. 

l. Introduction 

PHYSICAL PH ENOMENA related to a microstructure are frequently taken into con
side rations in mechanical modelling of material behaviour [1 , 2, 3]. 

The evolution of the microstructure can be quite complicated. In such cases 
it is difficul t to postulate the fo rm of the equations, and particularly the form of 
the co nsti tutive equations for highly averaged models of the continuum. 

A good illustration of such a situatio n is the martensitic transformation re
lated to the shape memory alloys. In small scale we observe different martensite 
variants, d ifferent kinds of moving interfaces, shuffles, interna l rotatio ns, stabi
lization of the martensite etc. These pheno mena make a mechanical descriptio n 
in the small scale quite co mplicated. O n the other hand, simpler descriptions 
can be carried out for a more averaged continuum. H owever, it is then difficult 
to determine the form of constitutive equations. This suggests a multiscale ap
proach, where the equations rela ted to a small scale should fo rm the theoretical 
and n umerical base fo r those related to the larger scale. Such an approach was 
proposed and discussed in [12, 13, 14]. 

Considerations related to the model with a small scale create, in turn , new 
difficulties. The determination of all constants and functions related to material 
propert ies of the model in small scale often req uire complex d iscrete calculations. 
Then, a discrete model can fo rm a foundation fo r the continuous one. 

At the moment we have the fo llowing problem. All discrete models are finite
dimensional ones. During reformula ting them into a continuum model, the de
scrip tion itse lf undergoes a simplifica tion but all the fields obtained in the con
tinuous body become infinite-dimensiona l o nes. It is expected that continuous 
model sho uld be dimensionally reduced as compared with a discrete one, and 
the refore the co ntinuum theory should be finite-d imensional as well. 



http://rcin.org.pl

50 J. l<ACZM AREI< 

The next problem is related to the degree of averaging. The notion of the 
volume of averaging is intuitively intelligible. On the other hand, it is related to 
physical foundations of the mechanical model. Therefore, the notion of volume 
of averaging should be introduced and elucidated in detail. 

The above mentioned remarks suggest that in considering complicated mi
crostructure, it is difficult to avoid discrete calculations. 

There are many efforts to provide discrete foundations for continuum mech
anics [7 - 11] as well as simplifications in the description of complex discrete 
systems. The statistical mechanics reduces enormous number of degrees of free
dom by the statistical averaging [4, 5]. In analytical mechanics, the well known 
method of constraints reduces the number of degrees of freedom [26] . There is 
an averaging method known in nonlinear dynamical systems [6] which leads to 
replacement of the complicated evolution by a simpler one. Thus, simplifications 
in mathematica l description of complicated systems were frequently studied in 
literature. 

The aim of this paper is to give a generalized formulation of the continuum 
mechanics. This formulatio n is in a position to adopt the point of view that the 
continuum appears as a dimensionally reduced discrete system, or another more 
complicated continuum system. Furthermore, in the frame of this formulation, 
the notion of volume of averaging is elucidated sufficiently. 

2. An idea of a dimensional reduction 

The discussion carried out in the introductio n suggests that the continuum 
models should appear as a dimensional reductio n of discre te systems. Behaviour 
of a system of atoms in many cases can be we ll approximated by a classical system 
of material particles. It can be obtained with the help of the Born - Oppenheimer 
approximation [27]. 

Therefore, at the beginning of our considerations an idea of a dimensional 
reduction of a dynamical system described by the Hamilton equations will be 
discussed. 

Let us consider a system of N material points with masses m i, i E IN = 
{l , .. . , JV}. The position of the -i -th mass is given by Qi = {q1, q2 , q3} , the 
velocity by v; = qi, and the linear momentum by Pi = m ;vi . Let 11 stand for the 
H amiltonian of the system under consideration, and let fi be the force related to 
the i -th po int. 

Equations of mo tion for this system of points are are discussed in analytical 
mechanics and are given in the well known form [26] 

(2.1) 
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Let us introduce the concise notations d; = {q;, v;}, d = {d;}, f = {f;} , 

{ oH 1 ( aH ) } . . L (d, f) = ~' -. -~ + f; , zE IN. Then, Eqs.(2.1) can be rewntten 
u pt m.t uqt 

concisely as d = L( d , t) . 
The evolution function for the dynamical system defined by (2.1) can be ex

pressed as a generalization of linearized solutions of these equations (see for 
instance [28]) in the fo rm 

(2.2) J.
t 8 L 

y(do, t)(t) = e to Fd(d, f) dt do' 

where the existence of 8 L I ad is assumed. 
We would like to introduce a dynamical system which would have a consider

ably lower dimension than the original one. Let M be a manifold consisting of all 
admissible d. A dimensional reduction relies on introducing a smaller number of 
variables and on deriving a new appropriate evolution equation. Let d be a vari
able of such a new kind of a system, and let, by analogy M = {d }. The connection 
between these variables can be given with the help of a map 1r : M _, M . 

External forces undergo a dimensional reduction as well. Indeed, the reduced 
dynamical system should be insensitive to some fine fea tures of forces { fi } related 
to a more complicated system. Therefore, by analogy, we define F = { f}, F = {f"} 
and 1r 1 : F - F. 

T he map 7f formally reduces the dimension of the system. However, such a 
reduction can be accompanied by a simplificat ion of behaviour of the system in 
some time interval T = [t0, Lo + T ]. 

Let (A1 x T)1 = {x(d0 , t)(L): t E 'T, do E M} . This set consists of elements 
which are possible solutions of the eq uation (2.1) with the ini tia l condition d(to) = 
do and the given function f(t ) E FT, where FT = {f(t ) : t E 'T} . In a similar way 
we define the sets (M x T )7 = {x(do, t) : t E 'T, do E M} and FT = {f(t) : 
L E 'T} . With the help of these sets we can introduce new maps 1r T : (M x T)J _, 
(M x 'T )j and 1fJT : FT__,_ FT . 

For convenience, let us introduce a more general set of all continuous func
tions with sufficiently high ti me derivative C (do) = { ~(t) : ~ : 'T _, M , ~(to) = do} . 

The relation between 1r and 1r T lies in the fact that fo r each t = I , 1r T (l ) has 
the same domain and range as 1r. Thus, 1r T does not in troduce new variables. 

The evolutio n function x : 'T _, J\.1 for the dimensio nally reduced dynamical 
system is unknown. Let us assume that the form of x can be expressed as 

(2.3) 

where C E C, with C being a set of all admissible constants C. T hus, the expression 
(aij od)(C , d. t) is postula ted to be dependent on C and operation 8/8d is 
assu med to be realizable. Consequently, the determination of a dimensionally 
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reduced dynamical system rests on finding 1r, 1r r , 1r 1, 1r JT and the best C* E C. 
To this end appropriate criteria should be formulated. 

We can consider two kinds of dimensionally reduced time processes. The first 
one is induced by the Hamiltonian system. We have x (do, f)(t) E (M x T)1. 
With the help of the introduced mappings {1rr, 1r1r}, we obtain induced process 
if r CX(do, f)(t)) which belongs to a new set (1r M x T )y- The second time process 

is related to the evolution function :X(C, d0, t')(t) which is parametrized by C. Let 
us assume that for each C the evolution function X is determined. Then we are 
able to define a new set (M e x T )y = {:X(C, d0, f)(t) : t E T, doE M} and two 

injections i : (1r Jvt x T)y --+ C' and ic : (Jvt c x T )y ~ C' . 
Now we have a possibility to compare two processes introduced previously. To 

this end, a metric on C' has to be introduced. Thus, let p : C' x C' ___. R+ U {0} 
be a metric on C' . 

With the help of the assumption (2.3) we can generate a famjly of processes 
dependent on C in the form :X(C, do , t)(t ), C E C, do = 7r (do), f = 1r JT(t), where 
do and f are applied to determine the Hamiltonian process x (do, f)( t). 

Let us define a function 

(2.4) h(d0, t) = inf p(i c(x (C, d0, t)(t )) , i (ifr (x (do, t)(t))). 
CEC 

By C* we denote the constant C E C which mjnimizes the function h. Accordingly, 
C"' = e(do, t). A satisfactory approximation should have the property that C* 
displays a weak dependence on do and I". It depends, in turn, on an assumed 
function ifT for the dimensional reduction. Finally, 

(2.5) C = Av{C* : C"' = C(do, f) , do E M , f"E F r}, 

where Av means an averaging operation. Thus, C determines the evolutio n func
tion of the reduced system :X(C)( l ). 

Thus, as a result of the dimensional reduction, we have obtained a new dy
namical system. Let us characterize the main elements of the dimensional re
duction. First, we have to choose new variables represented by d. Similarly, 
the forces are also dimensiona lly reduced to the I". Next, we have to assume 
or to infer the form of expression (fJL j fJd)(C, d, t). This equation creates 
a skeleton of a new dynamical system S D S which can be characterized by 
. 'D S(C) = {d, f, (fJL j fJd)(C, d, t)}. We should also determine the family 
of maps {if} = { 1r, 1r r, if 1, 1r JT } . Dimensionally reduced dynamical system 
RDS(C) is obtained with the help of an approximation method app given by 
(2.4), (2.5). Consequently, the dimensional reduction operation can be charac
terized by DR = {S D S, {1r }, app} . Finally, the pair {ED S, DR} leads to 
RDS(C), where E OS is the elementary dynamical system determined in (2.1). 

Continuum models should be such dynamical systems which describe a ma
terial behaviour. Thus, they should appear as dimensionally reduced dynamical 
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systems describing a behavio ur of a set of atoms which constitute the material of 
the body. Therefore, in the paper, just such a formulation of continuum mechan
ics is discu ssed. 

3. A generalized formulation of continuum mechanics 

The continuum mechanics has been developed by creating its precise mathe
matical foundations. These problems were widely discussed in the literature, for 
instance in [J 5, J 6, 17, 18, 19]. 

In this paper we propose a generalization of the formulation of the continuum 
theory. This generalizatio n is based on weakening of an assumption that the 
energy balance equation is satisfied for each subbody of the body B. It is assumed 
he re that this is the case o nly fo r a distinguished family of subbodies of B. Such 
a theory comprises the traditio nal formulation as well, since the distinguished 
family of subbodies can, in particular, co nsist of a ll subbodies of B. 

Le t us note that fo r discrete system, energy depends on a finite number of 
variables wich are related to positio ns and velocities of particles of the discrete 
system. During a dimensio nal reduction the number of variables decreases. Such 
a new variable represents usually a group of particles from its discrete set. This 
leads to justifica tio n of the theorem that the balance of e nergy can be introduced 
fo r the finite subbodies of the whole body only. 

Let us consider a set B and a family of its subsets which create a countable 
additive fi eld S . 

D EFIN IT ION l. The body B is a space with a positive measure M : S ---. R+ U 0. 
The measure JI is caLled the mass. 

DEFINITION 2. The body B is the continuous body if it is endowed with a stntcture 
defined by a non-empty class C of maps which satisfy the fo Llowing axioms: 

a. The members of C are invertible maps from B onto open subsets of the Eu
clidean space. 

b. if,..., 1 E C. then ,... o ,-I is a homeomotphism in E 3. 

c. if ,... E C. A is a homeomotphism in E 3 and Range ,..., 
A o,..., E C. 

D a m A, then 

The members of C a re called the placements of B. The range "'(B), ,..., E C, is 
called the regio n occupied by B in the placement "'· 

T he function ,\ = 1 o ,..- I is called the d isplacement function between place
ment ,... and / · The last defi nitio n fo llows from [J 9]. 

D EFINfT !ON 3. The continuous map of the time intetval [0, T ] onto the set C is 
caLled the motion of the body B . 



http://rcin.org.pl

54 J. l<AC ZMAREK 

Let \ (X, t ) be a motion of the body B, where X E B. The velocity vis defined 
fJ 

as v = fJt \(X, t ). 
Let K = {1\i : f{i E S , i E 1}, I = {1, 2, ... , N }, J{i n I\j = 0 for each 

i , j E I and U;o 1\·i = B. Thus, K c S is a subfamily of subsets of B which 
represents a decomposition of the body into subsets K;, i E I. 

Let us consider a function X : K---+ R3, x (I<h ) = Xh E R3 . Let IJ; c I, h E I 
and {X m} be a set of values of the function x for m E I h_ . We can define the set 
<Pa = { ah : ah : L\'m} ......, RP, m E IJ:. , p E N }. Then, we introduce a function 
a : K """" <Pa, a(I\h) = ah . 

The function x assigns a set of discrete values of the field ;\h , h E I to the 
body B with the help of the family K . Similarly, the function a assigns a set of 
discrete values of the field ah , h E I . However, ah depends on the finite set of 
values Am> m E lJ'; . The definition of the finite set is introduced with the help 
of a set of indices IJ:.. This set in turn, contains numbers of elements of K which 
have influence on the value of ah . Usually, it will be some neighbourhood sets 
S ; for [( h · Thus, the functions y and a together can express nonlocal properties 

of .\.h · 
Let V 0 = { {x, a} : {Xh , ah }, h E 1} . Let us define the space V,.. of 

displacement fu nctions \:"' of the body B with respect to a configuration "' as 
V,.. = {x,. : \ ,.. = >. o /\ - I,>. , "' E C}. Let furthermore, a : V 0 ---+ V,. be a linear 
function and \~ = a( {Xh, ah} ). 

Let us consider a Cartesian coordinate system. Then, X = (X 1, X 2 , X3). We 
defi ne a function C"' : K ........ R3, C,.. (I\ h) = X~t . We assume that in particular 
cases the function ah can be expressed as ah = {a1h, ... , aLh}· In this case we 
assume that the function a satisfies also the fo llowing conditions 

i 1 + ... + im = i , i E {1, 2, .. . , L}, k, l1 , ... , lm E h= {1 , 2, 3}. 

fJ JC 
Then, (a Ih)kl = ~'(.X}k can be interpreted as an approximation of the gradient 

of deformation and we can consider ((a 1h ) - 1 ht as well. 

D EFTNTT ION 4. The displacement function associated with the family of sets K is 
afunction \ ~· ofthe form X~ = a ({Yh, ah} ). 

The function a assigns a displacement function field x~ to the set of discrete 
values. The aim of this function is to introduce a continuous fi eld x o n the body 
B. Thus, the space of such fields Im a c V,. is finite-dimensional, where Im cjJ 
means the image of a function c/J . 

D EFINITION 5. The motion of the body B associated with the family of sets K is 
a continuous nzap Yt : [0, T ] ---+ { y~ } . 
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We also introduce a function T on fC, which will represent temperature, as 
T : fC - R, T(T\h) = 1\ . Let I f. c I and {Tn} be a set of values of the function 

T for nE Ik. We define a set <Pb = {bh: bh : {Tn} ___. R q,n E IK, q EN} . 
Similarly as for the function a, we introduce a function b : fC - <Pb, b(I<h) = bh. 
Let VT = { {T. b} : {T , bL = {Th, bh} , h E !}, Vr = {T(X): X E B}. Let 
us consider a function f3 : V T ---. VT which is linear by definition and TIC = 

f3 r )( T fJTK b ( {Th , bh} ). We assume also that T (Xh) = h and ax
1 

(Xh) = h· 

D EFlNlTlON 6. The temperature field T IC associated with the family fC is the field 
obtained with the help of function f3 as TIC = {3 ( {Th, bh} ). 

Thus, we have obtained a finite-dimensional space of temperature fields Im f3 c 
\f..r in the body B. 

Let us consider the functions: the internal energy £ 1, the entropy S't. the 
energy flux W 1, the power of inertia forces P1, the entropy flux H 1, the energy 
source Rt. and the entropy source N1• Here Et : fC - R, 5'1 : fC ___. R , Wt : 
afC - R, P1 : A:. ~ R, H1 : 8/C - R, R1 : fC - R, N1 : fC - R, where 8JC is 
the fa mily of sets K i n 8B. These functions are determined for any time instant, 
thus they represent some processes. It is also assumed that they are differentiable 
enough with respect to time. 

Neglecting at the moment the detailed representations of these functions, we 
assume the energy balance equation in the form 

(3 .1) 

where 

. . 
Et (B)- P t(B) + Wt(8B) - Rt(B) = 0 , 

8B = UFj naB. 
j 

The second law of thermodynamics is expressed with the help of the entropy 
balance equ ation and takes the form 

(3.2) S't (B) + H t(8B) - t(B) ~ 0 . 

We introduce also the function tJt1 : fC - R which is interpreted as the free 
ene rgy. 

4. An example of a continuum with finite-dimensional fields 

An example of a finite-dimensional continuum presented here is connected 
with a special cho ice of the fam ily fC, functions which appear in (3.1 ), (3.2), the 
variables and the form of constitutive equations. 

Let A._: = {X i }, i E I be a division of the body B into a sum of geometrical 
complexes A"; which have a cubicoid form. Let the coordinate axes {X1 , X2 , X3} 
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be prependicular to the faces of cuboids in the undeformed state. We can intro
duce a discrete field on the set of complexes 1\i. Then, we assign a value of a 
field to the center of gravity of each ]{;, i E I. 

We have introduced discre te fields related to the family !C. Thus, the following 
expressions will be helpful in what follows: 

1 
D2(Ym) = 21l (Ym+l - Ym-I), 

(4.1) 
1 

A(ym) = 2 (Ym+l + Ym- 1), 

D2(YmZm ) = D2(Ym)A(zm ) + D2(Zm )A(ym), 

where ll is a distance between centers of neighbourhood complexes ]{ m . It is 
assumed that, for simplicity, ll is the same for the whole body. Let D2i(Yh) = 
(1 / 21l)(Yh, 2 - Yh11 ), i = 1, 2 , 3, where h i2, h;1 stand, respectively, for indices of two 
neighbourhood complexes for J(h in the direction X ;. By analogy, we introduce 
also A;(yh ) = (1 / 2)(Yh,2 + Yho~ ) · 

Let Ph = {Phi, i E h} be a discrete field assigned to the center of ](h. By 
means of the above formulas we can introduce a discrete version of the G auss 
theorem which is convenient for our purposes 

(4.2) 

where Ps,,i is the same field Ph which has been assigned to the center of face s, 
of the complex /{ h, Ns, are componen ts of the unit vector normal to the face 

. 's, · Furthermore, Phi = J(a-;;, )ikPhk is a connection between vecto rs dependent 
on space and material variables. 

In general we assum e that Ps,i = ).(phi, Pt i), where h, l a re indices related 
to complexes which have common face , 's, . ).. is a function chosen in such a way 
that the formula ( 4.2) would be satisfactorily sa tisfied. 

Let us introduce a function ah of the form ah = { D 21 (X h) , D22(Xh), D23(Xh)}, 
\ h = {\Jm }, n E h = {1, 2 , 3} , h E T. Thus, ah = { ahnd , n, i E T3. 

We assume the following representations fo r functions related to the energy 
balance equation and the seco nd law of thermodynamics: 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
(4.7) 

E (I\h) = E~t, . . . . . . 
E(I\~t ) = Eh, E(J\h ) = t[J h + ShTh + ShTh, 

P(A"~t ) = -mh \ hi \ hi + D2m (i~tmn ahkn )Xhk , 
R (I\h) = R eh + fhi ~hi, 
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(4.8) 

(4.9) 

(4.10) 

H (of\ h) = L ; qshi shi, 
Sh Sh 

N (J\h) = Tl R eh , 
h 

where mh is a mass assigned to the complex J(h , -ihnm is an inertia tensor related 
to 1\h .. h = {fhi} and R eh are a force and a heat source related to J(h· q5 " = 
{ qs11 i} and Ps" = {Ps,d are a heat flux and a surface force related to the surface 
S's, . Let us no te that the expression ( 4.6) is obtained with the help of definition 
of the kinetic energy Ek = J 2x):idV . 

We assume that the energy balance equation is fulfilled fo r each f { h E K 
separate ly. Then, the energy balance equation takes the form 

. . . 
(4. 11) l}h + S'~tTh + S'~tTh + mh Xhi Xhi 

- 02m Ci hmn ci hkn )Xhk - R eh + L qshi N s,i - ] hi X hi- L Ps,iXshi = 0 . 

(4.12) 

where the properties given by the fo rmula (4.1 ) have been used. The summation 
convention does no t concern the index i in A i. Furthermore, we assume that 
!1; (\_ h,J >:::: \ /m · 

With the help of (4.12) and the discrete G auss theorem (4.2), we can transform 
(4.11) into the fo rm 

(4.13) 

T hen assuming that an arbitrary time process \ h is admissible, we obtain from 
(4.13) the fo llowing system of equations: 

(4. 14) D ( fJ !J!h ) f. .. D . .. ) 
- 2i -0-- - . lm + rnh Xim - 2m (zhmp a hnp = 0 

a lm i 
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( 4.15) 

. 
(4.16) S'~tTh + D2i (q~ti ) - R eh = 0 

and 

(4.17) 

The Clausius - Duhem inequality can be expressed with the help of (3.2), ( 4.8)
(4.10) as 

(4.18) 

Taking into account dissipative processes and introducing internal state vari
ables ~h we can generalize Eqs. (4.14)-(4.16) to the form 

(4.19) 

(4.20) 

(4.21) 

D ( 
f} l]!h d ) f .. D ( . .. ) 0 

- 2i -f) . + t hni - . hn + n~h Xhn - 2m Zimt]) a hnp = ' 
ahm 

·. T D (- ) R ·dr' · d • f) l]!h / - 0 
• h h + 2i q hi - eh + '- h h - t hnia hni + f}~h <.,h - · 

The constitutive equations should be assumed for the functions Tit = {Wh, h, 

t h, Qh} and t h = ( fJ I]!h/ fJa h) + t~ . The constitutive equations will then depend 
on the va riables h h = {\ lt, ah, T h , b~t } and ~h · We assume that the equations 
take the form 

( 4.22) 

(4.23) 

(4.24) 

(4.25} 

(4.26) 

l]!h = l]!h(C !J; , h~t, ~h ) , 

S'h = S'~t (Cs, h~t ~h ) , 

th = t~t (Ct. h ~t ~h ) , 

Qh = Qh(Cq, h h, ~h) 

~h = Ah(CA, h ~t, ~h ) , 

where C = {C : C = {C ~. , C5 , Ct. Cq , CA}} are constants which define these 
constitutive equations. 
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The generalization in our formulation rests on the fact that our theory is 
formulated for a given subfamily K. In the particular case when K = S we obtain 
the classical continuum theory. 

It is possible to carry out two different procedures for obtaining a continuous 
field from the discrete one given on the family K. 

The first procedure, called further the A-procedure, consists in the interpola
tion of the sets of the discrete values. It can be performed with the help of maps 
a , (3 introduced above, which replace the discrete fields {Xh, ah, Th , bh} by 
some continuous ones. 

We should also introduce some additional maps which will be useful for in
terpolation of the remaining variables which appear in our description. Thus, let 
us introduce the following spaces 

Vu ={rn. : m = {mh}, hE!} , Vu = {g(X): X E B} , 

\!,. = {T: 1' = {!Ph, Sh, t h, Qh} , h E 1} , 

1~. = {r(X): T(X) = {'!j; (X) , s (X) t(X), q(X)}, X E B}, 

V~ = { ~ : ~ = { ~h} , h E I}, ~ = {e(x) : X E B} , 

V1 = {{ f, Re, p} : { fh, Reh, Ph}, h E I} , 

Vf = { {f(X), re (X) p(X)} : X E B}. 

Let us consider the following maps which act on the introduced spaces p : 
Vu- Vu, { t : V,. ---- V,., tt~ : lie -. ~' 11: \If- \If . The introduced maps are 
linear by assumption and with the help of these maps, discrete fields are replaced 
by continuous ones. However, in order to obtain satisfactory approximation, the 
continuous fields obtained above should satisfactorily fulfill the fo llowing condi-
tions 

(4.27) 

m h = j gdV, !Ph = j g'lj; dV , Sh = j gs dV , 
r,·,. j,·,. 

D2;(t lmi ) = j Lij,i d\1 = j lnk Nk dA , 
h.h at,·,. 

D2;(qh; ) = j Cfi,i d\1 = j q~.:N~.: dA , 

.h = j J dV 
,,.h 

,,.h ar,·h 

R eh = j T e dV 
]\'h 

Ps~t i = j Pi dA, 
aK,. 

where qhl.: = J(ah_ 1 
)kiQhl , t hni = J(a h_ 1

) id hnl are quantities determined with 
respect to the reference configuration. Finally, we obtain continuous finite-di
mensional fie lds on the continuum with the help of the A-procedure. 
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The second procedure, called further the L-procedure, is connected with a 
limit transition. Let B = U iE l K ;, K ; E K be a division of the body B. Let us 
consider a sequence of {Km}, 1n = 1, 2, 3, ... of such divisions and K 1 = K. 
Thus, for each m , B = u iElm ICni , J{mi E K m . Let us assume that constants c 
are already determined for the family K. 

For each Km we introduce the sets of indices .T,~~h ' .T~th. Consequently, we have 
sequences {.Tm}, {Km}, {.T,~th }, {.T,~th }, h E .T," rn = 1, 2 , 3, ... . With the help 
of these sequences we can carry out a limit L for the equat ions ( 4.18)- ( 4.21) 
and the constitutive equations ( 4.22)- ( 4.26). However, in order to make this 
operation realizable, let us assume that variables which appear in ( 4.18)- ( 4.21) 
have representations in the fo rm given by (4.27). We assume also that during 
this operation limm~oo o(l\mi ) = 0, where o is a diameter of the set K mi · It is 
assumed that the constants related to the constitutive equat ions do not undergo 
any change. 

During this limit transition h~t -+ h appears, where h = {X;, (ox;/ oXn), T , 
(oTj o)::n)} in the considered case. The final form of this limit depends on the 
previously assumed functions ah, bh. In particular, limits connected with these 
functio ns can lead also to higher gradients of x and T. 

The limit form of Eqs. ( 4.18)- ( 4.21) can be obtained by dividing them first 
by volume of 1\h marked by \ljt · Next, during the limit transition we obtain 
ihmn - 0, (mh/Vh) - g, D2i(qhi ) -+ Divq, D2;(t hni ) - Div t. Finally, we 
obtain the well known expressions for the local forms of balance eq uations and 
the Clausius - Duhem inequality [16]. 

Let us note that the L procedure leads to the infin ite-dimensional fi elds on the 
continuum. However, the starting point of this procedure has decisive meaning. 
Namely, the first element K1 of the sequence {Km} is assumed. This element 
influences the final form of the constitutive equations. 

The first element of the sequence {/\:m} will be related to the volume of 
averaging. This problem will be discussed in the next section. The volume of 
averaging is especially connected wi th the form of the constitutive equations. 

5. Volume of averaging related to the continuum model 

The primary motivation for discussing the continuum theory suggested in the 
paper is to create a possibi li ty of determining the equations of the continuum 
(for instance ( 4.18)- ( 4.26)) from a more elementary level. This elementary level 
can be connected with a discrete system of material points or with a continuum 
wh ich is much more complicated. 

Let us assume that on the more elementary level, the behaviour of a body is 
described by a dynamical system. Let d be a variable of this system, V = { d} is a 
set of admissible values of this variable, and let 'P : [0, T ] ~ V be an evolution 
function of the dynamical system. 
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On the other hand, let d = { {A:h, ah, Xh, cth, Th , bh, ~h} : h E I}, 
V = {d}, I·= { rh, Reh, Ph} and let <p : [0 , T ] ~ V be an evolution function 
which is determined by equations ( 4.18)- ( 4.26). 

At this moment we can return to notations from the Sec. 2 where we have de
fined two dynamical systems and a dimensional reduction method . The S DS in
troducedinSec.2canbenow identifiedwith S'D S'(C) = {K , d, f, {BE , T(C)}}, 
where K is the previously discussed family of subsets of the body and influences 
the option of variables d and forces f. BE means the set of balance equations 
( 4.18) - ( 4.21) and T(C) represents the parametrized family of constitutive equa-

tions (4.22) - (4.26). The pair {B E, T(C)} corresponds to ~i(C) which describes 

evolution of S DS . The dimensional reduction method has the same form as pre
viously DR = {SD S, {rr}, app} . 

In this sectio n we discuss the continuum dynamical system C D S which should 
be obtained as a result of the dimensional reduction. This system can be charac
terized by C D S(C) = SD S' (C) . Thus, we can choose an elementary dynamical 
system E D S which can be a discrete or a continuous one but more complicated 
than S'D S' (C). Then, {E D S, DR} creates an RDS(C) = C D S(C) . 

Now, we are able to define a volume of averaging related to the continuum 
model. Let A... be a fam ily of sets k i and B = Ui f { i, f{i n J(j = 0. Let cp be a 
dynamical system whereby the discrete field related to K is determined. Next, let 
the L-procedure o r the A-procedure be applied in order to attain the continuum 
model. Then, the average of values fJ.. (/\ i) represents a volume of averaging for 
the co ntinuum model obtained, where fJ.. is the volume measure. 

In a natural way, we can generalize this approach to a multiscale description. 
Then, (C OS),. = { (C DS')11 _ 1 , (DR)n-1 }, where (C D S')n-1 represents the more 
elementary dynamical system and (DJt )n- 1 means a dimensional reduction which 
is then applied. 

6. Volume of averaging con nected with the martensitic transformation 

The martensitic transformation, especially the one related to the shape mem
ory a lloys, exh ibits a complicated structure and moving interfaces. As it has been 
discussed previously, difTerent scales sho uld be taken into account in a mechanical 
modelling of this transfo rmation. Let us try to discuss what these scales should 
mean. 

In a small scale, we can observe the single martensite variants. They can create 
fine twins o r selfaccomodating groups. In a larger scale, such structures usually 
create a complicated composition. However, in a large scale a coalescence of 
martensite variants ca n appear, and only o ne martensite variant is also possible. 

Let us consider, for instance, the CuAJ alloy. We observe twenty four marten
site variants which create six selfaccomodating groups [22]. In F ig. 1, the struc-
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FIG. 1. Structure of austeoite and marteosite in CuAI alloy. 

ture of austenite and martensite unit fo r CuAl alloy is shown. They have nine 
atomic layers which characterize this unit and define fully this martensite variant. 
The austenite structure and stress-induced martensite variants for CuAlNi alloy 
is shown in Fig. 2, where eighteen atom layers define the martensite unit [23]. 
Consequently, a linear dimensio n which characterizes the small volume of aver
aging in the considered cases should exceed the dimension of the martensite unit 
and should be between 10- 9 m and w-8 m. On this level of description, single 
martensite variants and single interfaces will be distinguished. 

In F ig. 3 the selfaccomodating group is shown for CuAl alloy. In this structure 
different kinds of single martensite variants are composed. Ano ther structure 
related to the fine twinning of martensite for CuAlNi alloy is shown in F ig. 4. 
Compositions of this kind of structures bring a considerable nonhomogeneity. 
Therefore, the scale of averaging for theories which do not distinguish different 
martensite variants should be connected with such a volume in which the compo
sition of martensities can be approximated by a homogeneous structure. Taking 
into account observable structures [24, 25], one should assume that the linear 
dimension re lated to the volume of averaging is between w-6 m and 10- 4 m for 
models with the larger scale. 

In papers [12, 13] a continuum model related to the small volume of averaging 
is introd uced. As a consequence of this kind of averaging shuffles are taken into 
considerations. They are introduced with the help of the relative displacement 
vectors w.\ which are shown in Fig. 1. The role of shuffles is valid on this level of 
description. They take p lace in determining the martensite variants. They have 
also some influence on the kind of internal ro tation of the martensite variant 
towards the habit plane. Thus, the dynamical system related to this model has 
variable d = {x, x, wA, wA, T , a, fJ, 8} , where a , fJ , 6 are internal variables 
related to dissipation connected with shuffles, related to jumps of the creating 
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FIG. 2. Structure of stress-induced marteosite in CuAINi alloy. 

FIG. 3. The selfaccomodating group of martensite variants in CuAI alloy. 
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martensitic structure over an anergetic barrier and stabilization of the martensite, 
respectively. 

On the o ther hand, we can introduce variable d given in previous section, 
where ( can be in particular connected with the mass of martensite in the whole 
structure. Then, the model of larger scale of averaging is considered. Such models 
have been discussed in literature [20, 21 ]. 
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FIG . 4. The fine twinning which appears in CuAINi alloy. 

With the help of the procedure given in Sec. 4, a connection between these 
two models could be determined. However, such procedure will certainly be not 
simple. It requires, first, precise identification of the constants and functions re
lated to material properties for the model with the small scale. Then, another 
difficult problem appears. This is connected with a satisfactory form of approxi
mation given by (2.4 ), a form of dependence of functions in ( 4.22) - ( 4.26) on C 
and choosing an appropriate kind of internal variables f 

7. Final remarks 

The suggested formulation of continuum mechanics makes it possible to obtain 
a continuum model as a dimensional reduction of a discrete system. It seems to 
be convenient to consider a discrete dynamical system as a physical basis for 
continuum model. Furthermore, multiscale approach for continuum description 
can also be introduced in this way. 

The main stress has been laid on the description of dynamics. It is displayed 
by the introduced method of dynamical reduction by means of maps 1r T ' 1r JT> and 
by introduction of internal state variables in dimensionally reduced systems. Such 
an approach is suggeSted by the example of a moving microstructure in case of 
the martensitic transformation. Then, it is difficult to use, for instance, the ho
mogenization method since we do not know the dynamical laws of microstructure 
evolution. 

Furthermore, it is hoped that the suggested procedure will be convenient in 
determination of the constants and functions connected with the material consid-
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erect. It is valid especially for small scale of the averaging models. Then, we have 
not too many possibilities to obtain such constants and functions experimentally. 
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Uniqueness in nonlinear theory of porous elastic materials 

R. QUINTANTLLA (BARCELONA) 

THIS NOTE is concerned with static deformations in a nonlinear theory of elastic materials with 
vo ids. First we extend some conservation laws to the nonlinear theory. A uniqueness result is 
presented under a condition related to the quasi-convexity assumptions. 

l. Introduction 

IN [1 ], KNoPs AND STUART proved the uniqueness of the solutions to certain 
displacement boundary-value problems in the context of the nonlinear theory of 
homogeneous hyperelasticity for a body occupying a star-shaped bounded region. 
Recently, this result has been extended to the theory of interacting continua [22]. 
In this paper we extend some of these results to the theory of nonlinear elastic 
materials with voids. 

The theory of elastic materials with voids is a recent extension of the classical 
th eory of elasticity. The nonlinear theory has been established by NUNZIATO and 
CowrN [2]. In this theory the bulk density is the product of two scalar fields, the 
matrix material density and the volume fraction field . An intensive work on this 
kind of materials is developing currently [3 -9]. An extensive review on elastic 
ma terials with voids has been presented in [10] . 

Existence and uniqueness results in the statical linear theory of an elastic 
material with voids have been presented [10, 11]; meanwhile many o ther theorems 
have been presented for the dynamic case [12-14], and in [15] for the dynamical 
nonlinear problem. We remark that in [10] ClARLETTA and I~AN have obtained 
a uniqueness and existence theorem for the static equations of porous elastic 
ma terials, but the authors noted that their results apply the one-dimensiona l case 
only. 

We consider the homogeneous deformation (x, v): X -. (M X+ b, vo), where 
M is a fixed regular sq ua re matrix such that det(M) > 0, b is a fixed vector, 
0 < 110 ~ 1 is a constant number and X represents the material point. We suppose 
that this deformation is a solution to the equilibrium problem with boundary 
conditio ns (x, v) : X - (M X + b, v0). For star-shaped elastic materials we will 
prove, under suitable assumptions concerning the energy function ~. that there 
is no other solution satisfying these boundaty conditions. 

The method follows the ideas of [1]. We first extend a conservation law estab
lished by GREEN [16] in the case of hyperelasticity. 

Following the method used in [1 ], we impose start with a basic assumption on 
the energy to obtain our result. We suppose that the energy satisfies a condition 
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rel ated with the quasi-convexity, an assumption introduced by MORREY [17] and 
employed in the classical works of BALL [18-20]. Nevertheless, in this paper we 
are not concerned with the problem of existence of solutions. 

In Sec. 2 we state the basic equations and the assumptions. We also extend 
some consetvation laws to the nonlinear theory of elastic materials with voids. 
The uniqueness result is presented in Sec. 3. 

2. Preliminaries 

We consider a body which occupies a bounded regular region B of the Eu
clidean n -dimensional space with the boundary surface aB. We assume that B is 
star-shaped and that aB is sufficiently regular to ensure the validity of the usual 
laws of transformat ion of surface integrals. 

Throughout this paper we employ the usual summation and differentiation 
conventions: subscripts preceded by a comma denote partial differentiation with 
respect to the corresponding Cartesian coordinate; \1 is the gradient operator 
with respect to the position X. We let N A be the components of the outward unit 
normal to dB a nd denote the scalar product of two tensors by an interposed dot. 
By a (>) b we denote the tensor product of the vectors a and b. 

We as ume that B is occupied by an elastic material with voids. A deformation 
in 8 is described by the spatial position field x and the volume fraction fi eld v. 
The deformations determine the deformation gradient F = \lx, and the gradien t 
of the volume fraction G = \111. By M + we deno te the set of all real square 
matrices F of o rder n such that det(F) > 0. As 'usu al, we suppose that F E ;\..1 + 
and 0 < 11 ::; 1 fo r all deformatio ns. 

We also assume that the materia l possesses internal energy ~ per unit initial 
volume. We denote by T the first Piola - Kirchhofi stress tensor, S the equilibrated 
stress and by g the equil ibrated body force per unit volume. In what follows, oc
casio nally it will be convenient to write various expressions in component form 
and to represent the vector and tensor fi elds by their components referred to 
the considered system of Cartesian axes. Thus, the components of the deforma
tion (x. 11) will be denoted by (J·;, 11), while the components of the deformation 
gradient fi elds F and G will be denoted by J~A and G A, respectively. 

A deformation (x. 11) in B, defin ed for all X in B, is a smooth equilibrium 
solution provided .J:i, 11 E C'2( 8 , Rn) n C' 1 (13 , R11

) and the equilibrium eq uatio ns 
(see, e.g. [10]) 

(1) 

a re satisfi ed. 

TA i ,A = 0, 

• 'A,A + g = 0, 
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The material at the point X is characterized by the constitutive relations 

(2) 
~ = ~*(F, G, v), 

s = S"(F, G, IJ), 

where 2..."', T*, S", g* are smooth funct ions. 

T = T'"(F, G, v) , 

g = g"(F, G, v) , 
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We suppose that the Piola - Kirchhoff stress tensor, the equilibrated stress and 
equilibrated body force are related to the energy in the fo llowing manner: 

(3) (0-')T 
T = oF 

EJ r, 
g = - 01/ 0 

We recall that equalities (3) are used in the analysis of elastic materials with voids 
in the absence of dissipation (see [10]). 

Let us assume that M is a fixed regular square matrix in M +, b is a fixed 
vector and 0 < 110 ::; 1 is a constant number. In this paper we suppose that the 
motion 

(4) X= MX + b, v = vo in B , 

is a solution of the problem determ ined by the equilibrium equations (1) and the 
boundary conditions 

(5) X= MX + b, v = vo in EJB. 

It is clear that the equali ty 

(6) 
0--~ 
~ (M , 0, ,;0) = 0, 
Ull 

is the necessary and sufficient condition for the energy function L to ensure that 
the deformation (4) is a solution to the problem determined by the equilibrium 
eq uations (1) and the boundary conditions (5). 

Let us also note for later use that the divergence theorem applied to the 
equilibri um equations gives 

(7) j T·N ds = 0. 

i'I H 

and Js ·N ds +j gdv = O. 
o B B 

In order to obtain the uniqueness result, we will introduce some assumptions on 
the energy function. We suppose that 

(i) ~ is rank-one convex at (M, 0 11o), i.e. the fo llowing inequality holds 

(8) ~(M +a 0 d. a, v0) ~ 2... (M , 0, IJo) + ~;(M , 0, v0)a ® d + ~~(M, 0, v0)a, 

for all a, d, a in an n -dimensional Euclidean space, and 
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(ii) E satisfies the inequality 

(9) j [E(M + 'V cp(X), 'VV; (X), tlo + 17(X)) 
D 

1 8E ] - -:;; av (M+ 'V cp(X) , \17/;(X), Vo + 1J(X)) •1J(X) dv 

2:: E(M, 0, vo) volume (D) . 

for all non-empty bounded subsets D and for all Lipschitz-continuous vectorial 
fields 1J, cp and V; which vanish on the boundary of D, such that M+ 'V </J (X) E A1 + 
for all X E B and 'V 1J = 'V V;. Furthermore we suppose that equality holds only 
when r; = V; = 0 and cp = 0. 

We remark that the last condition is related to a quasi-convexity assumption. 
The rank-one convexity and quasi-convexity assumptions are usual in the studies 
of nonlinear elasticity [1 , 18-21 ]. One expects that the energetic condition: 

(ii' ) E satisfies the inequality 

j [E(M + 'V cp(X), 'V1f-!{X) , v0 + 17 (X))] dv 2:: E (M, 0, tlo) volume (D) 
D 

and (i) could be sufficient to allow our uniqueness result, but our analysis does 
not guarantee it. 

We can obtain a family of functions satisfying (i) and (ii). Let vli(F, G, v) be 
a function satifying (i) and (ii' ) and 8W / Oti (M , 0, 11o) = 0, and let E(F, G, v) be 
the solutio n of the equation 

nE + (v0 - t; )aE/ 0 11 = lill. 

Then L satisfi es conditions (i) and (ii). An easy quadrature shows that 

vo 

~(F, G, v ) = (v- vor j W (F, G, 0(~- vo)-(n+l) d~. 
V 

We finish this section by stating a Lemma on equalities of the conservation 
type. 

LEMMA 1. Let (x, v) be a solution to the equations of equilibrium (1). Then 
the fo llowing equalities are satisfi ed: 

(i) (TAi:""Ci + S'Av ),A = TA i·""Ci,A + S'Ati ,A - 911, 

(ii) E ,1\· = (TAiXi ,f\. + S'Av,f\' ),A, 

(iii) nE - 911 + (XJ\· (TA iXi ,r\· + S AvF)),A = (Xr\·E)F + (TA iXi + S;~v) ,A. 
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P r o o f. The first equality follows from multiplying the first equation (1) by 
.r:; and the second by v . After addition we have 

0 = TA i,A:t; + (S'A,A + g)v = (TA;X; + SAv),A- {TAiXi ,A + SAv,A- gv } . 

Thus, the first equality is proved. 
To obtain the second equality we proceed in a similar way, but multiply by 

Xi,f,- and ;.t,J,-, respectively, to obtain 

which on using (3), becomes 

and the second equality is proved. 
The third equality is obtained from the second one by multiplying by X K. We 

have 

0 =X[,- {(TA;X;,J,- + SA II}\"),A- L: ,J\} 

= (X ,,- (T4;X;,J,· + SAv,x )),A + nL:- (1AiXi,A + SA v,A)- (XJ{L: ),I,· . 

From the equality (i), we finally obtain 

0 = (n~- gv) + (Xx (TAiXi,J\ + S AVi,!,-)),A- (X f,-<-J ),K - (TA;X; + SAv ),A, 

which implies (iii). 

3. The uniqueness result 

In this sectio n we obtain a uniqueness theorem to the problem determined 
by the equilibrium equations (1) and the boundary conditions (5). To this end, it 
will be useful to introduce the function 

(10) J (x , v) = j L: clv - ~ j gl/ clv. 
B B 

Throughout this section, we suppose that B is an open bounded domain of the 
three-dimensional Euclidean space and that B is star-shaped with respect the 
origin which is located in B . It is clear that 

(11) X·N ~ 0, for all X E oB. 

We have the fo llowing result: 
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LEMMA 2. Let B be defined as above. Let (x, v) be a smooth equilibrium 
solution to the system (1). Then 

(12) nJ(x , 1; )= J { (N · X)E +TT ·[N ® (x -T~;)] 
8B 

where T = (X· X)112. 

P r o o f. The proof follows by application of the divergence theorem to 
equali ty (iii) and use of the identities T(oxjfh-) =X· \7x and T(fJvjfJ1·) = X· \7v. 

Our uniqueness theorem fo llows by considering the difference between two 
solutions and using the function J. 

Let (x, v) and (x, v ) be two solutions to the equilibrium equations (1) satisfying 
the same boundary conditio ns (5). Then we have 

n(J(x, v) - J (x, v)) = j (N ·X) { (Vx, \7v, v)- E(Vx, \71/, v)} ds 
8 B 

+ j ( TT(\7x, \7v,v)·[N ® (x - 7·~;)] 
BB 

- TT (Vx, \71/ v) · [ N @ ( x - T ~~) ] ) ds 

+ j ( s T(\7x,\7v,v)·[N ® (v -T~~)] 
DB 

- s T (Vx, vv, V) · [N 0 (v - 1· ~~)]) d~. 

Now, o n f) 8 the two solutions (x, 1;) and (x, v ) coincide, so that 

x=x=MX+b and IJ = v = IJo, on oB 

and we deduce 



http://rcin.org.pl

U IQUENESS IN NONLINEAR T HEORY OF POROU ELASTIC MATERI ALS 73 

and 

ST(Vx, VIJ, l!) · [N 0 c~-r~~) ] - ST(Vx, VI7, v)·[N 0 (v-r~:) J 
= s T (vx, V!J, v) . [N 0 (T' ov Br ov) ] 

+ [s T(v x, vv,v) - ST(vx, vi7, !;)] · [N 0 (v-T~:)J . 

We also recall the following identities on oB (see [1]) 

T o(x - x) = (N. X)o(x - x) 
or oN ' 

ro(v - v) = (N·X) o(v- v) 
or oN 

and 

o(x - x) 
vx = vx + Vx- v x = Vx + oN 0 N, 

o(v- v) 
vv = v v + vv - v // = v v + oN 0 N. 

Fro m the previous equalities we deduce 

(l3) n(J (x , //) - J (x, 17)) = J (N. x){ ~(vx , VIJ, 11) 
C!B 

( 
ox - ox av - a 1/ ) 

- ~ Vx + oN 0 N, Vt1 + oN 0 N, 1J 

+ T(vx, 'VII, 11) · [ f)xo-Nox 0 N] + S(vx, V/7, 11) · [ 0170~01/ 0 N] } cls 

+ J { [T(Vx, V v , 11) - T(Vx, V/7, 11 )] • [ ( x- T ~~) 0 N] 
oB 

+ [S(vx, V//, v)X- S(vx, V/7, 11 )] • [ (v - 1' ~:) 0 N] } ds. 

Now, we may state: 

LEMMA 3. Let B be defined as above and let (x , 1J ) be a smooth solution to 
the equilibrium system (1) such that boundary conditions (5) are satisfied. Let us 
suppose tha t ~ satisfi es the condition (8). Then 

(14) J (x, 1J) + ~ j g clv ~ J (x, v), 
8 

wh ere (x. 11) is a solution defin ed by (4). 
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P r o o f. We apply the inequalities (8) and (11) to the first integrand on the 
right-hand side of equality (13) to conclude that 

(15) n (J (x , v) - J (x, v)) 

~ j { [T(\lx, \lv, 11) - T(\lx, \7i7, v)] o [ ( x - 1· ~~) ® NJ 
oB 

+ [S(\lx, \11J, 11) - S(\lx, \lv, v)] o [ ( v- 7' ~:) ® NJ} ds . 

On the other hand, from (4), we have \lx = M for all X E B. Then it follows 
that 

8x x- r - = b 
81· 

and inequality (15) therefore yields 

and 
av v- r - = v0 8r ' 

n (.J(x, 11) - J (x, v)) ~ j [T(\lx, \l JJ, v) - T(\lx, \lv , v)] o [b ® N] ds 

oB 
+ [S(\lx, \7 v, IJo) - S(\lx, \lv , v0)] o [1;0 ® N] ds . 

Inequality (14) follows from (7) on recalling that b and vo are constants. 
Now, we may state the uniqueness result: 

T HEOREM 1. Let B , (x, v ) (X, v ), M and vo be as in the previous Lemma, and 
let the energy E satisfy the condition (9). Then (x, v) is a solution defined by ( 4). 

Pr oo f. Let us suppose that (x, 11) ::f (x, v ) = (M X+ b, v0). Then assumption 
(9) implies 

J (x , v) < J (x , v) + ~ j g dv , 
B 

which contradicts Lemma 3. Hence (x , 11) = (x, v) for all X E B . 
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An idea of thin-plate thermal mirror 
I. Mirror created by a heat pulse 

Z. PLOCHOCKI (WARSZAWA) 

and A. MIODUCHOWSKI (EDMONTON) 

AN IDEA AND THE THEORY of thermal mirrors created on the surfaces of a simply suppo rted thin 
plane circular plate of an isotropic the rmoelastic solid material by a uniform heat pulse, which is 
applied to one of the plate surfaces, is presented. Such a thermal mirror is - within the approxi
ma tions applied for obtaining the solutions of the heat conduction and thermoelasticity equations 
-an ideal {aberration-free) optical mirror. The optical properties of the thermal mirror and their 
time evolution arc derived and d iscussed in two asymptotical time regimes: the short-time and 
the long-time ones. Observability conditions for optical characteristics of the thermal mirror are 
estimated. Theoretica l possibilities of an application of the thermal mirror to experimental deter
minat ion of the tempera ture conductivity of a mate rial are discussed. The theory presented can be 
also used for estimations of distortions of optical properties of pulse high power optical systems, 
originated by absorption of light by optical mirrors in such systems. 

1. Introduction 

IN T HE PREV IOUS PAPER by the Authors [5] the idea of thermal mirror was pre
sented following an example of the thermal mirro r created by a focused heat 
pulse on the surface of an isotropic thermoelastic solid material half-space. In 
the present paper an opposite (in some sense) case is examined, namely - the 
thermal mirror created on the surfaces of a simply supported thin p lane circular 
plate of a ma terial of the same kind by a heat pulse, which is appl ied to one of the 
plate surfaces and is homogeneous across the surface. The aim is to calculate the 
fundamental optical properties of the mirror (i.e. - its aberration characteristic, 
optical power, and focal length ), and their time evolution. 

All the fundamenta l assumptions adopted here are the same as in the previous 
paper [5]; these are: thermal stresses theory approximation (rigid heat conduc
tor approximation), quasi-static treatment of all the mechanical phenomena, and 
linearization of: the thermoelasticity and the heat conduction equations, and suit
able boundary conditio ns (wh ich a re fo rmulated at the undeformed surfaces of 
the plate); the plate is also assumed to be adiabatically insulated o n its sur
faces . Criteria of applicability of the thermal stresses theory approximation and 
the quasi-stat ic displacement fie ld one will be discussed in a separate paper by 
the Authors; here we note o nly that the former approximation depends on ne
glecting the influence of deformation rate on heat conduction processes, and the 
latter one denotes, th at a ll the pheno mena are observed in the time scale specific 
fo r heat conduction processes (the time scale specific for dynamic mechanical 
processes is much shorter) . Some comments on the quasi-static displacement 
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field approximation and on the adiabatic insulation are given in Secs. 7 and 8, 
respectively. 

Main symbols 

cp specific heat (the value of cp for the numerical estimations is assumed together 
with eo), 

D = 1 / f optical power, 
E Young's modulus, 
f focal length, 
h half-thickness of the (unperturbed) plate (the numerical estimations are 

pelformed for 2h = w-J m, and w-2 m), 
ierfc( x ) integral complementary error function: 

ierfc(x) = fxoo erfc(t) dt , erfc(t ) = 1- erf(t) = -};; J,co exp( - y2
] dy, 

l (subscript) refers to the lower surface of the plate, 
Mr see suitable equation at the beginning of Sec. 4 and Eq. (4.1)2, 
Nr see suitable equation at the beginning of Sec. 4 and Eq. (4.1)1, 

0 ' assumed small number ( < 1), determining the accuracy of a given 
approximation (the value of the order of 0.01 is assumed for 
the numerical estimations), 

Q,o, total energy of the heat pulse, 
T , cp , z cylindrical coordinates, 

ro radius of the (unperturbed) plate (for the numerical estimations r 0 is assumed 
to be of the order of 10·(2h)), 

t time, 
T temperature, measured from an initial (constant) value, 

T. final temperature, defined by Eq. (3.1), 
u (superscript) refers to the upper surface of the plate, 

u o a--th coordinate of the displacement vector, 
U vertical displacement (shift) of the surface with respect to its initial 

(unperturbed) level (Fig. 1), 
z see ,,., cp, z, 

a- linear heat expansion coeffi cient (the value of the order of 10- 5 1/K 
is assumed for the numerical estimations), 

o(x - J:o) Dirac's delta distribution, 
fju . 6, small te rms (Eqs. ( 4.4) ), 

t::,U(T) := U(O) - U(T) , 
c: deflection angle (Fig. 2), 
( := z/(2h) - dimensionless z-coordinate, 

0 = T /Too - dimension less temperature, 
,_ := >.. f (gocp ) - temperature conductivity (beat diffusivity), (>.. - beat conductivity), 

(the values of the order of (10- 7
- 10- 4

) m2/s are assumed for the numerical 
estimations, where the fi rst value refers to the worst temperature conductors, 
and the second to the best ones), 

v Poisson's coefficient, 
eo mass density of the (unperturbed) material (the value of g0cp, as being of the 

order of 5 ·10° J/(m3 K), is assumed for the numerical estimations), 
r := t " / (211)2

- dimensio nless time, 
cp see T , cp, z, 

- reads: is o f the order of. 
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2. Statement of the problem 

Let us consider a plane circular plate of an isotropic thermoelastic solid ma
terial of thickness 2h and of radius r 0 (Fig. 1 ). The plate is described using the 
cylindrical coordinate system with the origin located in the center of the plate and 
with z-axis perpendicular to the main surfaces of the plate (before deformation). 
The plate is perturbed thermally by a heat pulse (in Fig. 1 the pulse is applied to 
the upper surface), which is homogeneous across the surface. 

F1c. 1. Geometry of displacements. 

The aim is to calculate the fundamental optical properties of the thermal 
mirror, i.e. - its aberration characteristic and optical power (focal length). 

inc 

u"ro; 
/ 

I 
:---7--

L[ / --/ 

1/ 
. I 

k 

I 

Ftc. 2. Geometry of light rays. 

The aberration characteristic is understood as a dependence: c; = c: (7'), where 
c; is an angle between incident testing light ray parallel to the symmetry axis 
and this ray after reflection from the mirror (Fig.2). The deflection angle c; is 
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understood to be negative in the case of defocusing mirror (the upper surface in 
our case), and positive in the case of focusing mirror (the lower surface in our 
case). 

The relatio nship between the deflection angle c: and the function U, which 
describes the vertical displacement of the surface with respect to its initial (un
perturbed) level (Figs. 1 and 2), is (for both the upper and lower surfaces): 

c: fJU 
tan - = -

2 fJT 
or 

fJU 
2 fJT 

tan c: = - -."'-!...-""" 

1-(8U)2 ' 
fJT 

therefore the aberration characteristic of the mirror is given by the formula: 

(2.1) 

fJU 
fJU 2-

c. = 2 arctan - = arctan fJT 
OT (f)U) 2 1- -

OT 

where the approximation is valid if: 

(2.2) (orr) 2 
< 30* '='= ,. 

OT - 1 + O· - 3 0 ' 

where, in turn, 0 * stands for an assumed small number, which determines an 
approximation accuracy in the sense, that a relative erro r of an approximation 
does no t exceed 0". 

The classical definition of the focal length is used [2), namely: the focal length 
f of the mirror is defined as a distance of the focal po int F from the mirro r along 
the mirro r symmetry axis (Fig. 2); the focal length is understood to be negative 
in the case of defocusing mirror (the uppper surface in our case), and positive 
in the case of focusing mirror (the lower surface in our case). According to this 
definition we have (Fig. 2): 

T 
tan c. = ...,......--=-=---,-I + t::.U(T) ) 

where 

(2.3) t::.U (T) := U(O) - U(T); 

therefore the optical power D and the foca l length I of the mirrors are given by 
the formula: 

D = 2_ = tan c. 1 2 f) U 1 

.f r 1 - t::. U tan c: - ~ 01" (oU)2 2 oU 
1 - - ---t::.U 

T Or r Or 

(2.4) '='= 2 oU 
r 81· ' 



http://rcin.org.pl

AN IDEA OF' T I-ILN-PLATE T HERMAL MIRROR . PART I 81 

where the approximation holds, if 

(2.5) 
I 
(au)2 + ~ ~u t:J.uj S: o*. 

OT T o·r 
In an ideal case both D and f do no t depend on r, i.e. - each of these two 

functions has the same value fo r each testing ray, or - the focal point F is the 
same for all the testing rays, independently of r·. Such a situation takes p lace 
when u is simply proportional to r 2 (parabo lic mirro r) e). 

Thus, in o rder to fi nd the fundamental optical characteristics of the mirro r 
and their time evolu tion, it is suffic ient to find the function U(T, t ). 

The function U (T, t ) is determined by both coordinates 'U :; and 'U,. of the 
displacement fie ld in the material at a given surface (at z = ± h, Fig. 1): 

(2.6) 
Uz (1'~, h) - tt z(To, -h), 

ll ::- (To , - h) - 'tl z (T~, -h), 

where T~ (1· ) and 1·~(r ) are solutions of the equations: T± + u,. (T±, ±h) = T 
with respect to T±, respectively (criteria of linearization of these formulae, which 
depend on the approximation: T± ~ 1· , are given in Sec. 6). 

Thus, in order to fi nd the fundamental optical characteristics of the mirror, 
it is suffic ient to find the displacement field (the vertical displacement Uz only, 
if linearized Eqs. (2.6) are appl ied) at a given surface. This information will be 
deduced from the solution of the Lame thermoelasticity equation, for which we 
need th e solution of the heat conduction equation fi rst. Thus, we will examine, 
first, the th ermal part of the problem, and next - the thermoelast ic part. Having 
suitable informa tion we will come back to the analysis of the optical properties 
of the mirror. 

3. Thermal problem 

Following the specification of the thermal perturbation, the temperature field 
in th e ma terial is assumed to be dependent on z and t only: 1' = T'(:;, t). T here
fo re, according to the general assumptions adopted, the heat conduction equation 
IS: 

()f) ()2(9 ( 1) - = - + 8(r - 0) 8 ' - -
i:h 8(2 " 2 ) 

(') Both cri teria expressed by lneqs. (2.2) and (2.5) determine the so-called paraxial optics approximation: 

D 
_ I _ e _ 2 &U 
- f -; - ~ &r · 

An ideal case in this approximation is character ized by simple propo rtional ity of e to ,.. 
[ t will be proved later that this approx imatio n is not necessary for the mirrors examined, because for such 

mirrors the left-ha nd side of lneq. (2.5) is identically equal to zero (and only the approximation arctan :r ~ x 
may be applied). 
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- z 
~ := 2h 

stand for dimensionless time and z-coordinate, respectively, "' = >. j (go cv) is the 
temperature conductivity (heat diffusivity) of a given material, ).., g0 and cp stand 
for heat conductivity, density and specific heat of a given material, respectively, 
fi (x - x0) stands for the Dirac's delta distribution, and 

G(( T) = T [z = z((), t = t (T)] 
Too 

stands for dimensionless temperature (as a function of dimensionless variables), 
where, in turn, 

(3 .1) 

and Q tot stands for the total energy of the heat pulse. The boundary and initial 
conditions are: 

ae ( _ 1) a( ~ = ±2 = o = G(T = o). 

The Green function for the thermal problem in the whole space is known [3]. 
Applying therefore the method of sources and sinks one may write the solution 
of our problem in the form : 

(3 .2) G = _ 1 L{exp [-(2m+ ~ - (r1 +exp r-~(2m + ~ +()21} 
JiT m =O 4T 4T 

where the first line represents the original solution obtained using the method 
mentionede), and the second one - that solution after expansion into Fourier 
cosine seriesC ) (the function G((, T) is symmetric with respect to ( + 1/ 2, and 
it satisfies tbe Dirichlet co nditions). 

(') The same result is obtainable by applying the Laplacc transformation method to solve the following 
equivalent problem: 

80 820 
or - ""5(2 ' ~0 (c = - ~) = o 

i:l ( 2 ' 
80 ( J) - ( = - = Ei ( r - 0) 
8( 2 ' 

0 ( r = 0) = 0. 

(
3

) The same result is obtainable by applying the Fourier method of separation of independent variables to 
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4. The thermoelastic problem 

The solution of the Lame thermoelasticity equation for a simply supported 
plane finite thin plate (4) with T = T (z ) and with no external forces is known (1] 
(in the approximation, which depends od replacing the local boundary conditions 
for the stress tensor coordinates at the side surface of the plate by suitable integral 
ones); in the case of circular plate we have: 

where o stands for the (linear) heat expansion coefficient, E - for the Young's 
modulus, v - for the Poisson's coefficient, and 

h 

NT := aE j T dz, 
-h 

h 

MT := aE j T z dz . 
-h 

Using the formulae representing the solution of the thermal problem (Eq. (3.2)) 
we have: 

NT = 2hEetT'00 , 

(4.1) !Vfr = 2h2 EaT00 [1 - ~ .Ji- 8/T f ( - 1)mierfc ~] 
Ji m=! 2/T 

2 ~ 8 1 2 2 = 2h EaT00 ~ 71" 2 (2k _ 1)2 exp(- (2k - 1) 7r T], 

where ierfc(:r) stands for the integral complementary error function: 

'XI 00 

ierfc(x ) = / erfc(t) dt , erfc(t) = 1 - erf(t) = }rr j exp[ - y2
] dy. 

X 

solve the fo llowing equivalent problem: 

ee e2e ee ( 1) 8( ( = ± 2 = O, Dr 8(2' 

t 

e (r =O)= s (c- D · 

It may be useful to note that, if the initial condition is not specified, then the solution of the heat conduc
tion equation has the same form with coefficients 2( - I )k replaced by unknown coefficients ak (which are 
determinable from the initial condition after it will be specified), i.e. the structure of time-dependence of the 
solution (in the Fourier cosine representation) does no t depend on the initial condition. 

(') The plate is understood to be thin in the sense that the following approximate conditions for the stress 
tensor coordinates are val id: <r,., = <r"'o = a zz = 0. 
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Using these formulae one may rewrite Eqs. (2.6) in the form: 

(4.2) 

where 

(4.3) 

(4.4) 

L "· = 
1
'; + Umax [1 - c:~r (1 +

1
81,)2] ~ 1i + Umax [1 - c:~) 

2

] , 

U, = - Umax [ 1-c~J 
2 

(1 _\
1
) 2 ] ~ - Umax [1 -( ;J 2] , 

_ 3Nh .2 
[ max - 4h3E 10 , 

8[ = ± -ur(r·, ±h) = -- ±Nr + -Mr , 1 1 [ 3 ] 
1· 2hE h 

where, in turn: the superscript u and the upper sign refer to the upper surface 
of the plate; the subscript l and the lower sign refer to the lower surface; Nr is 
given by Eq. (4.1)1 and kfr - by Eq. (4.1)2 or Eq. (4.1)3; and the approximations 
in Eqs. (4.2) (which correspond to the linearization of Eqs. (2.6)) are valid if the 
funct ions 8 can be neglected (see Sec. 6). 

5. The optical problem 

After substitution of Eqs. (4.2) into Eq. (2.1), the aberrat ion characteristic of 
th e thermal mirrors examined is obtained: 

(5.1) _ u _ 2 [2Umax 1' 1 . ] 
.:.1 - =f arctan -- - ( c )2 To 1'o 1 ± u[ 

rv 2 [2Lfmax 1'] ,...., 4Umax T = =f arctan -- - = =f -- - . 
1'0 1'0 1'0 1'0 

where (as previously): the superscript u and the upper sign refer to the upper 
surface of the plate; the subscript l and the lower sign refer to the lower surface; 
l ·max is given by Eq. (4.3) with Eqs. (4.1)2,3 ; 8 are given by Eq. (4.4) with Eqs. (4.1); 
the fi rst approxjmation (which corresponds to the linearization of Eqs. (2.6)) is 
valid, if the funct ions 8 can be neglected (see Sec. 6), and the second one (the 
paraxial optics approximation) - if (in addition) 

(5 .2) (
2Umax)

2 
T

2 < 3 o~ ~ 3 a~ 
1·o 1·6 - 1 + o~ ' 

where o· is an assumed small number. 
It may be useful to comment at this place on the conditio n of applicability 

of the paraxial optics approximation, as given by Ineq. (5.2). The functions 8 are 
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assumed to be negligible. As it follows from Eqs. (4.1)2,3, the function Mr is a 
monotonically decreasing one from 2h2Ea.T - to 0, as time varies from 0 to oo, 
respectively. Therefore, according to Eq. (4.3) we have: 

Umax 1' o T 
0 ~ -- ~ 3- h a. 00 ' 

To 2 

where the right-hand side of this inequality represents the value of Umax at T = 0, 
and the left -hand o ne - at T = . The criterion of applicability of the paraxial 
optics approximation can be therefore written in the form: 

( 
7' ) 

2 
1 0 * ( 2h) 

2 
1 

To ~ 12] + 0* ro (o:T(xY 

Assuming 

• 0 "' = JQ- 2' 

• TO ='= 10 • (2h ), 
• 0: = JQ- 5 1/K , 

• T.XJ ='= (1 - 10) K , 
(the sign = reads: is of the o rder of) and taking into account that the maximum 
value of 1· is very close to 1·0, o ne can see, that the right-hand side of the inequality 
given above is of the o rder of 105 - 103, so the criterion examined is well satisfied 
(it can be vio lated o nly in a case of very stro ng requirements; if for instance: 
0* = JQ- 4, 1·0 = 102 • (2h.), and a.7"'co = JQ- 4, then the right-hand side of the 
inequality given above may be even of the o rder of JQ- 1 in the worst case). 

The abe rratio n characteristic obtained represents an ideal case, therefo re 
both the upper and lower surfaces of the plate co nsidered represent an ideal 
(parabolic) mirro r (the upper - defocusing mirror, and the lower - focusing one). 
In fact, substitu ting Eqs. (4.2) into Eq. (2.4) we o btain the optical powe r D and 
the foca l length I of the mirro r as independent of distance r : 

(5 .3) D" 1 4 U 1 ""' 4 U 
I = .f/' = i= 1'6 max (1 ± 0[ )2 = i= rfi max , 

where ( ·max is given by E q. (4.3) with Eq. (4.1)2.3, and o are given by Eqs. (4.4) 
with Eqs. ( 4.1 ); and the approximatio n holds, if the functio ns o can be neglected 
(see Sec. 6). 

The results expressed by E qs. (5.3) denote, t hat the mirrors considered a re 
aberration-free, a nd no paraxial optics approximation is needed to idealize them 
(altho ugh this approximatio n may be applied fo r simplifying the formulae fo r the 
fun ctions E, if it is allowable (see comment given above)). It should be noted, 
th at o ur results are not valid fo r an arbitrary p late, because they were obtained 
under defi ned assumptio ns. 
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As it is seen from the formulae given above, the time evolution of the displace
ment function U and the optical properties of the thermal mirror is governed by 
the dependence of the function Umax (Eqs. (4.3) and (4.1)) and, in addition, by 
that of the functions 8 - on time. This dependence is complicated and difficult 
for a simple interpretation. It can be simplified in two steps: first, by neglecting 
the functions 8 in the suitable expressions (see Sec. 6); then, second, significant 
simplification can be obtained for sufficiently short or long time (see Secs. 7 or 8, 
respectively). 

6. Criterion for neglecting the functions 8 

Because the quantity Nr (Eqs. ( 4.1 )1) is independent of time, and the quantity 
M'r (Eqs. (4.1)2,3) is a monotonically decreasing function of time, which varies 
from 2h2 Ea T oo at T = 0 to 0 at T = oo, therefore the functions 8 vary within 
the limits: 

aT00 ~ 5u ~ 4aT00 , 

- a Too ~ 81 ~ 2a Too, 

where the right-hand side limits correspond to T = 0, and the left-hand side ones 
- to T = . Adopting the previously assumed values for a and T 00 one has: 

fJt• ~ 4. (lo-s - 10-4), 

i8Li ~ 2 · (lo- s - 10- 4
) , 

where the first value in the brackets corresponds to T 00 = 1 K, and the second 
o ne - to T = 10 K. 

Thus, in practical cases the functions 8 are in fact small quantities in compar
ison with unity. Criteria for neglecting these fuctions in each of the formulae for 
uu, U1, t:u , t:1 and D = 1/ .f are examined in details in the Appendix. This discus
sion suggests the following assumption as the common criterion for neglecting the 
functions 8 in all the formulae mentioned (in the sense, that a relative error of 
an approximation in any case does not exceed o·, if this criterion is satisfied)e): 

(6.1) I[Jt'l < 4 aT < ~0* I- oo _ 2 

(which is approximated in some cases, with a reasonable accuracy however, as it 
is pointed out in the Appendix). This assumptio n implies no limitation for the 
distance 7' in the case of the functions t: and D = 1/ J, whereas in the case of 

(' ) [f this criterion would be formulated for the upper jind the lower surfaces separately, then for the upper 
sutface it would have the form as given by [neq. (6.1), and for the lower one - by the same inequali ty with 
only number 4 replaced by number 2. 
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the functions U it is (approximately) equivalent to the following condition for T 
(see Appendix): 

T ~ ~1'Q ~ 0.707] TQ. 

It may be useful to note here, that using Eq. (3.1) one can rewrite Ineq. (6.1) 
as a criterion for the maximum pulse energy Q10r, for which Ineq. (6.1) is satisfied. 
Assuming (in addition to the assumptions of this kind adopted previously): 

• (!QCp :::: 5 ·106 J/(m3K) 

we obtain in this way 

Q tot ~ 
{ 2 ·10

2 
J , for 2h = 10-3 m, 

2 ·105 J , for 2h = 10- 2 m · 
(6.2) ' 

Q tot for 2h = 10- 3 m 
' { 6 . 105 J / m 2 ' 

< 
7fT2 - 6 ·106 J j m2

, for 2h = 10- 2 m . 0 

7. Short-time regime 

For sufficiently short time the sum in the brackets in Eq. (4.1)2 can be truncated 
after the second term. Let us no te, that because ierfc ( x) is a mono tonically 
decreasing function, therefore ierfc(rn/2-fi) > ierfc[(m + 1)/ 2JTJ. In addition, 
if T < 1r / 16 ~ 0 .196, then ierfc(1/ 2 /T) < 1/ 2ft. The whole sum in the brackets 
in Eq. (4.1)2 can be therefore treated as a Leibniz-type series(6 ) . Then, the sum 
considered can be approximated by the first two terms only with an accuracy to 
0*, if 

8 /T ierfc 2~ ~ 0* (1 -4
;). 

This inequality is satisfi ed, if 

{ 6 ) The Lcibniz-type series (LS) is understood to be a convergent series of the type: 
00 

LS:= 2.:{- l)"'a,, a,.> am+ l > 0. 
n1=0 

Such a series can be precisely estimated as follows (Le ibniz's theorem): 

2k 2k- l 

2.:{-l)mam > LS > L{-l)"'a,.. 

m=O tn=O 

[n particular case o ne may obtain 
an- a 1 + a2 > L S > an- a , , 

therefore LS ":!!an - a 1 with an accuracy too · , if a 2 ~ o •(an- a 1) . 
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where .1:0 stands for a solution of the equation: ierfc x = 0 * ( ~ - 2~) with 

respect to x . 
Assuming (as previously) 0* = 0.01, one may find x 0 ~ 1.87, and 

(7.1) 

Assuming, in addition 

• 1\, = cw-7- w-4) m2/s, 

where the first value in the brackets refers to the worst temperature conductors 
and the second one - to the best temperature conductors, one may rewrite the 
criterion expressed by Ineq_ (7.1) in dimensional fo rmC) 

for 2h ~ w- 3 m 
) 

(7.2) t <t =t = ) { 
7 . (10- 1 - w- 4) s 

- short 2 7 ,(10 - 1Q-2)s , for 2h ~ w-2 m. 

By the way let us note here that all the mechanical phenomena are treateted 
in the quasi-static approximation, i.e. observation time T should be sufficiently 
large. The fo llowing criterion is assumed: 

(7.3) 
1 ro K. 

T ~ Tmin = O* C 4h2 1 

1 1"0 

t ~ Lmin = O• c 1 

where the first condition is written in the dimensionless form (in the time scale 
applied in the paper), the second condition is written in the usual dimensional 
form, and c stands for velocity of sound in a given material. Assuming (in addition 
to the assumptions of this kind adopted previously): 

• c = 2 · 103 m/s, 

we have ( in dimensionless and in dimensional forms): 

fo r 2h ~ w- 3 m 
1 

T ~ Tmin ~ { 
5 . (lo- 5 - w-2), 

5 . (1 o- 6 - lo- 3) , for 2h. = w- 2 m , 
(7.4) 

. { 5 · 10-4 s, 
t > t . = 

- nun . 5 .J0- 3 s, 
for 2h = 10-3 m , 
for 2h. = w-2 m. 

Comparing Ineqs. (7.4) and (7.1) [(7.2)] one can see, that within the quasi-static 
displacement fie lds approximation, there exists a relatively large fi eld fo r the 
short- time regime approximatio n(8). 

e) Fo r o • = 10- 3 or JQ-4 one may fi nd xo ~ 2.25 or 2.61, respectively, and the number 7 in [neqs. (7.1) 
and (7.2) is replaced by the number 5 or 4, respectively. 

( 8 ) Let us note in addition, that the perturbing heat pulse is assumed to be instantaneous, therefo re the 
observation time has to be much longer than the time of duration of the real physical pulse. 
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If th e crite rio n expressed by Ineq. (7.1) (or (7.2)) is satisfied, then the sum in 
the brackets in Eq. ( 4.1 h can be approximated by its first two terms only, wh ich 
is decreasing from 1 to about 0.4 as T is increasing from 0 to Tshort = 7 · 10- 2. 

Thus, if the criteria expressed by Ineqs. (7.1) (or (7.2)) and (6.1) are satisfi ed, 
then the sum in the brackets in Eq. (4.1)2 can be truncated after the second 
term, and the functions 8 can be ignored (the to tal relative erro r of this double 
approximation does not exceed (1 + 0 *)2 - 1 ~ 20*). In this approximation , the 
function l 'max, and therefore also U, D, and f are linear functions of JT: 

(7.5) 

l 'max = f f max (0) ( 1 - ~ VT) , 

U" = Umax (O) { ~ (~: ) 
2 

+ [ 1- ( ;J 2] (1- ~ .jT) }, 

f ·, = - U max (0) [ 1 - ( 7~0 ) 
2

] ( 1 - ~ VT) , 
0 {' = ./~u = =F 1~ Urnax (O) ( 1 - ~ VT) , 

where the supe rscript 11 and the upper sign refer to the upper surface of the plate, 
and the subscript l and the lower sign - to the lower surface, 

7'2 Q 
Umax (O) := 3~ (2/0)2 .2 tot . 

l. 7r 7 0 l?O Cp 

T he defl ection angle 

(7.6) ~'/' = =F 2 arctan [2 Umax(O) !..._ ( 1 _ ~ vr)] 
I'O 1'0 Ji 

~ =F 4 Umax (O) !..._ ( 1 _ ~ .JT) 
I'O I'O Jif 

is a linear functio n of JT only in the paraxial optics approximation (the app roxi
ma ted pa rt of Eq. (7.6)), which holds (with an accuracy to o~), if (cf. Ineq. (2 .2)) 

1~ U~ax (O) C'J 2 

(1- ~ vr) 
2 

~ 1 :o;* ~ 30 " 

( the total re lative erro r of th is trip le approximation does no t exceed (1 + 0 ")3 -
] ~ 30~ ). 

Thus, the sho rt-time approximation seems to be realistic (except for very thin 
pla tes with the best tempe rature conductors) and offering simple interpretatio n 
o f the time evolu tio n of the o ptical properties of the mirror considered. 
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8. Long-time regime 

Although the short-time regime, discussed in the previous section, seems to 
be sufficient for use and interpretation of the results obtained earlier, we will 
discuss shortly the opposite regime - the long-time one for the completeness of 
the picture. For this purpose it is more convenient to use the second version of 
the solution of the thermal problem (Eq. (3.2)2), and therefore - also the second 
version of the function lvh (Eq. (4.1)3). 

The idea of the long-time approximation is similar to that used previously in 
the case of the short-time approximation. We have to find criteria, which allow us 
to simplify the expression for the function lvfr as far as possible (the assumption, 
that the functions o can be ignored, will also be used). 

For sufficiently long time, the series in Eq. (4.1)3 can be approximated by its 
first term only with an accuracy to an assumed small number 0*. For this purpose 
it is sufficient to require: 

• the second term of the series to be much smaller than the first one in the 
following sense: 

1 
9 exp[ - 81r2T] ~ 0. 9 0 * , 

• and the (k + 1)-th term, k 2: 2, to be not larger than 0.1 of the k-th term: 

(
2k + 1)2 

exp[ - 8k1r2T] ~ 0.1 
2

k _ 
1 

These inequalities are satisfied if, respectively: 

T > 

-
1
-· [- In 8.1 0*] 

87r2 

-- In 10 . 1 [ (2k- 1 )
2

] 
87r2k 2k + 1 

The latter inequality is the strongest one for k = 2, therefore we have: 

T 2: T3/ 2 := 

8
: 2 [- In 8.1 0*], 

~In 3.6~ 8.1·10- 3 . 
167r 

Because T2; 1 ~ T3;2 for 0" ~ 6.5 ·10- 2, therefore for 0 * < 6.5 ·10- 2 the first 
of these two conditions is stronger than the second one, and inversely for 0* > 
6.5 · 10- 2. 

Assuming (as previously) O· = 0.01 we havee): 

(8.1) 

(") Foro·= 10-3 or 10- 4 the number 3.2 in lneqs. (8.1) and (8.2) is replaced by the number 6.1 or 9.0, 
respectively. 
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assuming also (as previously) K = (10- 7 - 10- 4) m2/s, we rewrite criterion ex
pressed by Ineq. (8.1) in the dimensional fo rm: 

(8.2) { 
3.2 . (10- 1 - 10- 4) s 

t> t - t ..:. , 
- long - 2/1 - 3.2 • (10 - 10- 2) s, 

for 2h = 10- 3 m , 
for 2h = 10- 2 m. 

Let us no te by the way, comparing Ineqs. (8.1) [(8.2)] and (7.4), that the latter 
one is always fu lfilled in the long-time regime. 

If the criterion expressed by Ineq. (8.1) (or (8.2)) is satisfied, then the series 
in E q. ( 4.1 )3 can be approximated by its first term only, which for T = T211 ~ 

3.2 · 10- 2 is equal to about 0.59, whereas the whole series for T = 0 is equal to 
uni ty (see [4]). 

Thus, if the criteria expressed by Ineqs. (8.1) (or (8.2)) and (6.1) are satis
fied, then the series in E q. ( 4.1 )3 reduces to the first term, and the functions 8 
in E qs. (5.1) and (5 .3) are neglected (the to tal relative error of this double ap
proximatio n does no t exceed (1 + 0*)2 - 1 ~ 20*). Then the quantity Umax, and 
therefore a lso the functions uu - uu·(T = 0), u,, D and f - depend on time 
exponentia lly: 

(8.3) 

where the superscript u and the upper sign refer to the upper surface of the 
plate, and the subscript l and the lower sign - to the lower surface, and Umax (O) 
is defined by the equation fo llowing Eqs. (7.5). T he defl ection angle 

(8.4) c)' = =f 2 arc tan [ 
16 Umax (O) T [ 2 J] - - exp -1r T 
1f2 TO TO 

""' 32 Umax (O) T [ 2 ] = =f - - exp -1r T 
1f2 To To 

depends expo nentially on time only in the paraxial optics approximation (the 
approximated part of Eq. (8.4)), which holds (with an accuracy to 0 *), if (cf. 
Ineq. (2.2)) 
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(the to tal relative error of this triple approximatio n does no t exceed (1 + 0*)3 -

1 ';;:E 30*). 
Let us note by the way, that T can no t be too large. The pla te is assumed to be 

adiabatically insu lated on a ll its surfaces. This assumption can be vio la ted, after 
sufficiently lo ng time, at least by the radiation heat exchange between the plate 
and its surroundings. The (dimensionless) relaxation time for the latter p rocess 
Tract (in the time scale applied in the paper) may be estimated as fo llows. We start 
from the heat conduction equation with no heat sources, assuming the boundary 
conditions in the form (see Footnote 3): 

f}f) ( 1) ( 1) 8( ( = 2 = -!31 f) ( = 2 ' f} f) ( 1) ( 1) 8( ( = - 2 = !32 f) ( = - 2 ' 

where /31, f:h stand for (dimensionless) coefficients of surface losses (assumed to 
be constan ts). The solutio n of the heat conduction equation with these bo undary 
condi tions (as obtained using the Fourier method of separating the independent 
variables) has the form: 

where f3z Ak = J.lk Bk , coefficients Ak (or Bk) are (in principle) determinable 
from an initial condition, and /-lk stands for positive solutions of the following 
characteristic equation: 

J.l( j3 l + (32) 
tan 1-• = 2 j3 4 p - l f-/2 

For small surface losses ({31, (32 ~ J) one may obtain (in the linear approxima
tion): 

therefore: 
exp[-J.•f r ] ';;:E exp[-!.:2

?r
2 T]exp[- 2(j31 + j32)T]. 

Thus, the (dimension less) rela;xation time connected with the sutiace losses is 

If the plate loses its energy through its surfaces by thermal radiation only, then 
using the linearized Stefan - Boltzmann law one may write: 
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where O"sB stands for the Stefan - Bo ltzmann constant, b- fo r a correction factor 
fo r a real body as compared with the perfectly black one, and 10 -for the initial 
temperature (before the perturbatio n); thus, 

/1, f20Cp 
Trad = -

2h. 8bO"sa TJ 

The thermal radiation losses can be therefore neglected, if the obsetvation 
t ime T is much shorter than Trad : 

·- Q* - Q* 1\: f20Cp 
T~Tmax· - Trad - 2h8bO"saTJ ' 

where 0* stands for an assumed small number. 
Assuming (in addition to th e assumptions of this kind adopted previously): 

• b = 0. 1, 
• O"sa ~ 5.67 · 10- 8 J/(m2s K4), 

• T0 ::::: 3 · 1 02 K, 
we have (in dimensionless and in dimensional forms) : 

T ~ Tmax ::::: 

(8.5) 
. { 40s , 

I ~ lmax = 2 
4 ·10 s , 

for 2h = 10- 3 m , 

fo r 2h = 10- 2 m , 

fo r 2h = 10- 3 m 
' 

for 2h = 10- 2 m. 

This crite rio n restricts the applicability of the theory presented, however there 
still remains a re latively large fi eld fo r application o f the long- time regime (as it is 
seen by comparison of Ineqs. (8.5) with (8.1) [(8.2)]). Thus, the long-time regime 
seems to be a realist ic and useful supplement to the sho rt-time regimeC 0). It starts 
relatively quickly. The values of U max a t the beginning of th is regime are only a 
dozen percent lower than the initial value of U rnax· By comparing Ineqs. (8.1) and 
(7.1) one may see, that for 0* = 0.01 both regimes- the sho rt- and the long- time 
OneS - COVer the full time range from Tmin tO Tmax (for Smaller o~ the Situation 
i · not so comfortable- see Footnotes 7 and 9). 

9. Estimations tor poss ible experiments 

9. 1. Int roductory remarks 

Tn princip le , the thermal mirror co nsidered may be experimentally studied by 
investigating the funct ions: U, c: and f. Each of these quantities can be experi
mentally investigated and interpreted using the theoretical scheme presented, if 
some conditio ns are fulfilled. 

( ' ") Supplement o nly, because of the restriction mentioned in Subsec. 9.2 (see also est imations given in 
Subsecs. 9.3, 9.4, 9.5, and cf. Ineq. (9.J ) and lncqs. (9.3), (9.4), (9.5)). 
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9.2. General conditions 

Some general conditions, which should be taken into account in any experi
ment, were discussed earlier. Here the last such a condition will be mentioned. 
It follows from the requirement that the heat perturbation can not significantly 
change the properties of the material. Assuming the perturbation region to be a 
layer of thickness !:lh, and the temperature not to exceed some critical value T*, 
we can write this requirement in the form: 

Assuming (in addition to the assumptions of this kind adopted previously): 

• T * ::::: 2.102 K, 
• !:lh = 0.05·(2h), 

we have: 

{ 15 J ' for 2h = w-3 m 
Qtot < Qmax 

) 

-
1.5 · 104 J ) 2h = w-2 m for ) 

(9.1) 
2h = w-3 m Q tot Qmax for ) 

- { 5 · 10
4 

J j m 
2 

, < 
7rr2 7f7'2 5 ·105 J j m2 , 2h = w- 2 m . - for 0 0 

Comparing the conditions expressed by Ineqs. (9.1) and (6.2) one may see, 
that the latter is weaker than the former one, i.e. if Ineq. (9.1) is satisfied, then 
the functions 5 can be neglected in all the previous formulae. 

9.3. Observability conditions for U 

According to Eqs. (7.5) and (8.3) (for the short- and the long-time regimes, 
respectively), the condition for the minimum pulse energy Qtot allowing U to be 
observable on the level at least of U* can be written in the form: 

Q Qu . _ U* f!o Cp 1 2 1r 1 ·'· tot~ min. - ~ (2 ~) 3 ( 7, )2 'f/ (T), 
1 - -

ro 

where 

(9.2) 
{ 

[ 
4 ] - 1 

1 - - /T in the short-time regime , 
V' (T) ~ Ji 

7[2 
S exp( 1r

2 T] in the long-time regime , 

and the contribution of Ny to u u was neglected. 
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Assuming (in addition to the assumptions of this kind adopted previously): 

• U* = 10- 6 m, 
• r ~ r 0 , 

• T = 7 .IQ- 2 (see Ineqs. (7.1) and (8.1)) 

we have: 

Q~in { 1 J , for 
Qtot > -

102 J , for 
(9.3) 

Qtot > QU 
m in = 4·103 J j m2 

7rT2 - 7rr2 
0 0 

(cf. Ineqs. (9.1), (9.4) and (9.5)). 

9.4. Observability conditions for € 

2h = 10- 3 m 
' 

2h = 10- 2 m ) 

95 

According to Eqs. (7.6) and (8.4) (for the short- and the long-time regimes, 
respectively) the condition for the minimum pulse energy Q101 allowing € to be 
observable o n the level at least of c"' can be written in the form: 

Q Q~ ·- * f!OCp I )2 1 1TT5 ·'·( ) tot~ min .- € --;-- (2 1 12 ---:;:-- 'f' T ' 

where 1i'(T) is given by Eq. (9.2). 
Assuming (in addition to the assumptions of this kind adopted previously): 

• s* = 10- 4 rad, 

• ·r ~ ro 

we have: 

(9.4) 
Qtot > Q~in :::: { 10

3 
1/ m

2
, 

1rrfi- 1rr5 104 J / m2 , 

(cf. Ineqs. (9.1), (9.3) and (9.5)). 

9.5. Observability conditions for f 

for 2h = I0- 3 m ) 

for 2h = I0- 2 m ) 

for 2h = I0- 3 m ) 

for 2h = I0- 2 m 

According to Eqs. (7.5) and (8.3) (for the short- and the long-time regimes, 
respectively), the mjnimum pulse energy Q101 a llowing f to be observable on the 
level not higher than r can be written in the form: 

f 1 f!O Cp 2 1 2 
Qtot ~ Q min := I* a (2h) 12 7r ro 1/;( T ) , 

where the function !/; (T) is given by Eq. (9.2). 
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Assuming (in addition to the assumptions of this kind adopted previously) 

• f* = 40 m 
we have: 

Q~in { 0.81 ' for 2h = 10- 3 m 
Qtot > 

) = 
8 ·103 J ) for 2h = 10- 2 m ) 

(9.5) 

Q~in { 3 · 10
3 J I m 

2 
, 2h = 10- 3 m Qtot > for 

' 
irT2 -

3 ·105 1I m2
, 2h = 10- 2 m 7i7'2 - fo r 0 0 

(cf. Ineqs. (9.1), (9.3) and (9.4)). 

10. Possible applications for determining the temperature conductivity (and the 
surface losses coefficients) 

As it is seen from the suitable formulae given above (after coming back to d i
mensional time l = T (2h)2 I"- ), the time evolution of the thermal mirror depends, 
among o thers, on temperature conductivity "' of the material. Measuring suitable 
properties of the mirro r it is therefore possible to determine "'· H owever, as it 
is seen from the fo rmulae mentioned , such a p rocedure performed in arbitrary 
cond itions may require some additional information (which should be known or 
measured), and may prove to be complicated for inte rpretation. 

The problem simp lifi es in th e sho rt-time and the long-time regimes. In fact, 
as it fo llows from Eqs. (7.5) and (7.6), in the sho rt-time regime the quantities: 
U, tan(-::12), and f are linear funct ions of J[ with coefficient (a t .J£) eq ual to 
4.Jf{.l (2h Jif). Measuring the evolution of these quantities one may therefore 
determine this coefficient and, knowing it and the plate thickness 2h of the pla te 
- find "' of a given material. 

An alogously, as it fo llows from Eqs. (8 .3) and (8.4), logarithms of the fo llowing 
quantities: uu(r = 0) - U 11 (T), lULl, I tan(c: l 2)1 and 1/1 in the long-time regime 
are linear funct ions of tim e t with the coefficient (at t ) equal to 1i

2 r< l (2hi . 
Measuring the evol ution of these quantities one may therefore determine this 
coefficient, and knowing it and the plate thickness 2h - determine ,..., of a given 
material. 

By the way let us note shortly, that one may think a lso on applying the thermal 
mirrors considered for experimental determin ing the surface losses coefficients 
!31, or ;72 (see the end of Sec.8), if the temperature conductivity ,..., of a given 
material is known. Using equa tions given at the end of Sec. 8 for 8 and suitable 
equat ions for the optical characteristics of the mirror, and applying the same 
argumentation as it was used fo r specification the long-time regime, one may 
conclude that fo r sufficiently long time the suitable optical characteristics F of 
the mirror are simply proportio nal to exp[ - J-l f T ]. From measurements of the time 
evolution of In IFI o ne may therefore determine the quantity fJ, 1• Then from the 
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characteristic equation for fl one may determine: fJ2 = 1-l t tan {t 1, if /31 = 0 (an 
ideal thermal insulation on the perturbed surface); /31 = p.1 tan f l 1, if /32 = 0 (an 
ideal thermal insulation on the opposite surface); (31 = -!'·tf tanflt, if /32 = 
(ideal losses on the opposite surface, realized for instance by a thermostate). 

11. Remark on distortion of properties of optical mirrors 

Absorption of light by mirrors in high power optical systems causes thermal 
deformation of the mirrors, and therefore changes their optical properties. The 
theory presented may be useful for estimatio ns of such effects in light-pulse optical 
systems. In particular, the criteria given in Subsecs. 9.3, 9.4 and 9.5 may be useful 
(in reversed form) for estimation of the maximum allowable energy of light pulse, 
which do not distort optical properties of the mirrors over an assumed level. 

12. Conclusions 

The thermal mirrors created on the surfaces of a thin plate of an isotropic 
thermoelastic solid material by a heat pulse, which is applied to one of the plate 
surface and is homogeneous across this surface, is - within the approximations 
applied in the paper - an ideal (aberration-free) optical mirror. These mirror ef
fects are relatively very small , however they may be studied experimentally using 
high precision optics. The variations of the optical properties of the mirror con
sidered are comparable with those of the half-space thermal mirror [5], however, 
because the thin -plate thermal mirror is free of aberrations, therefore it seems 
to be easier for experimental research. 

In general, the time dependence of the thin-p late thermal mirror is compli
cated. However, there exist two regimes: the short-time and the long-time ones, 
in wh ich th is dependence becomes much simpler and easy for interpretation. In 
these conditions the thermal mirror considered may be, in principle, used for 
experimental determination of the temperature conductivity of a material. 

Appendix. Detailed criteria for neglecting the functions 8 

A. I. C riterion fo r neglecting ~" in the formula for U" 

The relative error of neglecting the function D1
' in Eq. (4.2) 1 does not exceed 

o~' if the fo llowing criterion is satisfied : 

or 

( r)2 . ( N ) ~ [0~ + Du (2 + 8")] ~a~ (1 + 8u )2 ] + , T . 
to E Umax 



http://rcin.org.pl

98 Z. PLOCHOCKI AND A . MIODUCHOWSKI 

Three cases should be considered to analyze this criterion. If 

then the criterion considered is always satisfied for an arbitrary 8u, i.e. - for 
sufficiently small r the function 81L can be always neglected in Eq. ( 4.2)1. 

If 

o· (1 + E ~ax ) < (;~r < (1 + E~ax ) , 
then the criterion considered is satisfied for 

8!1 < (;J J1- o· 
---;:::.==:======== - ] 

(!:...)2- 0 * (1 + Nr ) 
ro E Umax 

or 

If, in particular, 

then the latter inequality is satisfied for 

If 

( 
.,. )

2 
( Nr ) 

ro 2:: 
1 

+ E U max ' 

then there exists no function 81
' satisfying the criterion considered, i.e. - fo r 

sufficiently large .,. the function 8" can not be neglected in Eq. ( 4.2)1 (however, 
this case may have only symbolical meaning, because of the approximation applied 
fo r solving the the rmoelastic ity equation, as it was mentioned at the beginning of 
Sec. 4). 

A.2. Criterion for neglecting 61 in the formula for u, 

Because the function 81 decreases from 2aT oo to - aT oo as T varies from 0 
to oo (see Sec. 6), therefore the criterion for neglecting the function 81 in the 
formula for U1 should be examined separately fo r 81 2:: 0 and 8, ~ 0. 
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A.2.1. The case of 6t ;:: 0. The relative error of neglecting the function 81 ~ 0 in 
Eq. ( 4.2)2 does not exceed 0*, if the fo llowing criterion is satisfi ed. 

or 

or 

(!...)2 
[O* + 5,(2- 5,)] ~ o· (1- 5,)2. 

To 
If T = 0, then this criterion is satisfied for an arbitrary 81• 

If T ::j:. 0, then the criterion considered is satisfied forct1) 

T J1 + 0 * 
8, ~ 1-- --;===== 

ro (!...)2 + O* 
ro 

0 * (1 - 8, )2 

0* + 8,(2 - 8,) 

If, in particular, 

8, ~ ~ 0* ' 

then the latter inequality is satisfied for 

(!...)' :o ~ (1- ~o·)' _ 1 
-r0 2 1 _ ~ O* = 2 ' 

8 

(exactly: fo r 0* = 0.01 , 0.001, 0.0001 the double right-hand side of this inequal
ity is equal to 0.99126, 0.999125, 0.9999125, respectively). 

A.2.2. The case of 61 :S 0. The discussio n and the conclusion in this case are exactly 
the same as in the case examined in Subsec. A1 with NT = 0 and 5u replaced 
by 18tl . 
A.3. Criterion for neglecting 6" in the formula for c-'' 

The relative error of neglecting the function 5u in Eq. (5.1) fo r [ 1
' does not 

exceed o·' if the fo llowing criterion is satisfi ed: 

[
2Umax r] O [2Urnax r 1 ] arctan -- - ~ (1 + "' ) arctan -- ( c )2 . 

ro To To r0 1 + uu 

( 11 ) This is a very fa ir condition in case of small ,. , If, for instance, r = 0.1 ro and o· = 0.01 , then this 
inequality reads: S ~ 0.2893 (see Sec. 6 and cf. Sec.A.l). 
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Because :r arctan y ~ arctan xy for x ~ 1, y ~ 1, therefore this criterion may be 
replaced by the following stronger one: 

(51
' )

2 + 25tl - 0* ~ 0 ' 

which is satisfied for 

5n < J 1 + 0* - 1 ~ ~ 0 * - 2 

(exactly: fo r o· = 0.01 , 0.001 , 0 .00001 the double right-hand side of this in
equ ality divided by 0* is 0.9975 , 0.99975, 0.99997, respectively). 

A.4. Criterion for neglecting o, in the formula for e1 

The relative error of neglecting the function 51 2:: 0 in Eq. (5.1) fo r £ 1 does no t 
exceed 0 *, if the following criterion is sa tisfied: 

[
2Urnax T] O [2Umax 1' 1 ] arc tan -- - 2:: (1 - *) arc tan - .- - (

1 
c )2 . 

To T o 1'0 To - U[ 

Because :r arctan y 2:: arctan ·:ry fo r .T 2:: 1, y ~ 1, therefore this crite rio n may be 
replaced by the fo llowing stronger one: 

which is satisfi ed for 

5u < ~ 0 * < 1 - J1 - 0 * . - 2 -

The discussion and th e conclusion in the case of 5t < 0 are exactly the same 
as in the case examined in Subsec. A 3 with only 5u replaced by 15tl. 

A.S. Crite ria for neglecting 6 in the fo rmulae for D = 1/ f 

The relative error of neglecting the functions 5 in Eqs. (5.3) does no t exceed 
0 *, if the fo llowing criteria are satisfi ed: 

52 + 25 - 0 * < 0 - ) 

51 - 25t + o- 2:: o, 

for the uppe r surface and the lower one, respectively. These inequalities are 
satisfied fo r 

5 < J l + O·- 1 ~ ~0* - 2 ) 
1 

81 < - o· < 1 - J1- O* - 2 - ' 

5 = 5u, -51> 0, 

(see and cf. Subsecs. A3, A.4) . 
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A.6. Conclusion 

The crite ria for neglecting the functions 8 in the suitable formulae are different 
in various cases. In o rder to discuss this problem in a uniform way for all the 
cases, one needs a common criterion, which will be satisfied in all the cases. Such 
a criterion is proposed in Sec. 6 (see Ineq. (6.1)). 
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Can the system of discrete vortices imitate a boundary layer? 

T. LIPNIACKJ (WARSZAWA) 

THE PROIJLEM of dissipative flow of superfluid due to the vortex interaction with the boundary is 
considered within the hydrodynamics approximation. The numerical simulations were applied to 
show that, when the boundary starts moving, the vortices pinned to microscopic surface irregular
ities can stretch. The array of the growing vortices give rise to the specific boundary layer, which 
in some aspects is similar to the boundary layer in viscous fluids. 

Su PERFLUTD 4He behaves as an ideal fluid with rotation restricted to quantized 
vortex fi laments. The experiments of AwscHALOM and SCHWARZ [1] suggest that 
some remnant vortices are always expected to occur. The essentially hydrodynam
ics description of its dynamics is val id down to a scale comparable to the core . 
rad ius of the vortex a0 which is of order l A. In the zero temperature limit, when 
the interaction between the vortex and the thermal excitation gas (the normal 
fluid) may be neglected, the motion of an individual quantized vortex S(~, t) (in 
local induction approximation - LIA) is accurately described by [2] 

(1) S = f]S' X S" + Vs, 

where Vs is th e local average superfluid velocity, and f3 = (K/4rr) * ln(cJ/ S"a0), 
with c1 constan t of o rder 1 and "' = h/mHe quantum of circulation. The primes 
denote d ifferent iat ion with respect to arc length. The equation must be supple
mented by a non local interaction term when the vortex approaches another vortex 
o r a boundary. 

The a im of present paper is to consider the dynamics of vortices termjnating 
o n the fl at infinite boundary. The problem of vortex dissipative line dynamics 
in relatively narrow channels has been already studied by SCHWARZ [3, 4] who 
pointed earlier [4] that the moving vortex may be pinned to the microscopic sur
face irregularities. We recall [5] that a vortex fi lament termina ting on a perfectly 
smooth surface will move without h indrance. When the end of the vortex enco un
ter a bump, however, it will remain pinned there until it bows over up to some 
critical angle with the surface. Next it jumps off and resumes its motion. Quan
tized vortices may pin on bumps of only a few Angstroms, so that in practice 
this p rocess is a lways expected to occur. Moreover Schwarz, while considering 
the static case, concluded that the depinnig angle (angle between the vortex end 
and the normal to the surface) depends logarithmically on the size of the pinning 
site. It means that the leading ro le may be played by small protrusions which 
are more ab undant. SCHWARZ [3, 4] fo und that the p inning and release process 
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makes the vortex line elongate across the channel. In such a p rocess the energy is 
dissipated by being fed into the growing vortex lines which then annihilate a t the 
opposite wall. The vortices also transfer the momentum between the boundary 
and the superfluid; the vortex exerts the stream-wise force on the boundary via 
its interaction with the pinning site. Respectively, the boundary must be exert ing 
a retarding fo rce on the superfluid via its interaction with the vortex. 

In some important aspects, the vortex dynamics in the vicinity of a single 
surface is different from the dynamics described by Schwarz in narrow channels. 
F irst of all, vortices can no t be spanned between perpendicular o r opposite walls, 
and second, there is no opposite wall to annihilate the growing vortices. 

Consider at the beginning the simple example of a vortex pinned to z = 0 
plane and subjected to the applied velocity v5 in the i directio n. Assume that 
initially the vortex fi lament having the shape of a half circle of radius R lies in 
plane :r = 0 (i.e. plane perpendicular to the applied velocity and the boundary 
p lane). If the driving velocity is equal in the value but opposite in direction to 
the self-induced velocity 

(2) 
(3 

V i = R := Vcr , 

the configuration is stationary. T he higher applied velocity bends the vor tex 
stream-wise and stretches it out. At some cri tical angle of declination (i.e . depin
ning angle dependent on the size of pinning site) the ends of the vortex dep in . 
If the d riving velocity is smalle r than the cri tical one, the vortex bows against 
the fl ow and decreases. The vortex oriented in ano ther direction, so that the 
d riving velocity adds to the self-induced one, will bow with the flow, bu t then 
the self-induced velocity d irects it to the boundary, where it annihi lates. T he 
numerical simulat io ns do ne by the author confi rm the above conside rations. 

Statistically, when the driving velocity is applied (or the bo undary starts mov
ing), roughly a ha lf of the pinned vortices has a chance to grow, o ther will anni
hil ate. It means that the mo tion of the boun dary introduces some orde r, and it 
is easy to check that the o rientation of the remaining vortices is such , that close 
to the bo undary the superOuid is moving in the same direction as the wall. 

As it was stated above, the end of vortex dep ins a t some critical angle, depen
dent on the size of the pinning site, and then moves freely till the next bump. 
The two end points of a filament may encounter various irregularities and conse
quently must dep in simultaneously. H ence, one can conclude, from the preced ing 
ana lysis tha t a "well o riented" big enough vortex loop will grow any time, when 
pinned, while other loops will decrease. The situation simplifies when the small 
pro trusions occur so densely, that the pinning and release events are so frequent, 
that the intermi ttent mo tion of vortex end points may be approximated by a con
tinuous motion with fr ictio n. W hen the friction is present, the moving end of 
vortex is bowed to the boundary at such angle that tangent component of tensio n 
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force equals the friction force f s· Namely 

(3) . e f s 
Sill- = -

f t' 

where 8 is the angle between the vortex at its end points and the normal to 
the boundary, and It is the value of tension force. The angle e, corresponding 
to the average angle of decl inatio n, may be considered as the material constant 
depending on the density and the size of boundary irregularities. It means that 
fo r normally "smooth" surface sin 0 is small when compared to uni ty. 

Consider then the fo llowing example: 

Let the boundary plane :: = 0 be moving with constant velocity \Id = (Vd, 0, 0) 
with respect to the fluid. Consider the dynamics of a vortex which at the initial 
time has the shape of a half circle symmetrically placed with respect to plane 
!J = 0, and th e d riving velocity. Assume that the self-induced velocity \~ is smaller 
than the driving velocity VJ, and that the vortex loop is moving so that the angle 
between the vortex at its end points and the normal to the boundary is e. The 
self-induced velocity (in LIA), at the given point of the vortex, is binormal to 
the vortex line at that point. Hence, at the ends of the vortex, the angle between 
the self- induced velocity and the wall is 0, but for one (positive) orientation of 
the vortex the self- induced velocity is directed out fro m the wall , and for another 
(negative) o rienta tio n it is di rected to the bounda1y . For the posi tive orientation 
the vortex loop will be growing. The rate of growth may be calculated as fo llows: 
let a be a point moving with the vortex and p be a vortex end point (Fig. 1). 

I 

p' 

I 

I 
I 

I 

I 
I 

I 

p 

a 

FIG. J. Fragment of the vortex close to the boundaty. The vortex moves so that point a goes 

to a' while e nd point p goes top' . Vector a]J is paralle l to the vector a' p' . 

In a sho rt time !J. L the point a moves to a' = a + !J. L v;. In the same time the 
- -

end poin t moves to such a po int z7' that a'p' is parallel to ap. If so, the initial 
fragment of vortex line grows up by !J.t\li sin 8 . Because there are two ends, the 
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vortex growing rate az 1 fJt satisfies the condition 

(4) 
fJL+ 
fJt ::;:: 2'-'i (t) sine ' 

where + means the growing vortex. The oppositely oriented vortex is decreasing 
at the rate 

(5) 
f)l -
fJt ::;:: -2Vi (t) sine ' 

where sign - means a shrinking vortex. 

P IG. 2. Motion of a vortex when fri ction is present. The figure shows the projection of vortex 
filament on the plane perpendicu lar to the boundary and the driving velocity. 

It may look curio us that the driving velocity does not appear in Eqs. (4), 
(5) . However it plays an important role: only these vortex loops for wh ich the 
self- induced velocity is smaller than the imposed one, can grow. So for bigger 
driving velocity another smaller loops can grow, and as one can see from the last 
equation, smaller loops grow faster. It should be said also, that Eqs. ( 4), (5) are 
no t valid fo r the drivi ng velocities only slightly bigger than the critical one. When 
there is no friction (i.e. for e ::;:: 0), the vortex maintains its shape of a half circle. 
Also for small declinatio n angles (sin G < 0.3), numerical simulations (Fig. 2) 
show that the vo rtex grows maintaining approximately the shape of a ha lf circle. 
For bigger declination angles, however, the vortex becomes elongated. The in
stant radius of uniformly growing loop is R = l j 1r, while its self-induced velocity 
is vi = (Jj R. Those relations put into Eqs.(4), (5) give the equation for R(t): 

(6) 
fJ R± 2{3 sin G 
Tt = ± 1rR 

leading to 

(7) 
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Consider now the array of vortices with end points on the boundary. If at 
time t = 0 the boundary wall starts moving with some constant velocity V, , some 
vortices will grow and some will decrease. As a result, a layer of superfluid close 
to the boundary starts moving in the same direction as the wall. 

To consider this mechanism in more detail, assume that, at the time t = 0: 

• all vortices have the shape of the half circle of the same radius R0 ; 

• the vortex loops form a regular pattern where half of the loops have posi
tive orientation (positive vortices) and another half has the negative orientation 
(negative vortices); 

• the driving velocity vb is bigger than the initial critical one so the positive 
vortices can grow (i.e. vb > f3 I Ro); 

• the declination 8 is small, so as was stated above, the vortex loops maintain 
their shape of a half circle; 

• there are n growing vortices and n decreasing. 

Then Eq. (7) allows to calculate the average velocity at a given distance from 
the wall z . The velocities V+ and v- generated by positive and negative vortices, 
respectively, will be calculated separately. The resultant velocity is V = v+ - v-. 

The average velocity v+ (at a given distance z) may be calculated from the 
Ampere principle. Let F be the surface z = zo. For zo < R+ cos 8 that surface 
is pierced twice by every vortex loop. The distance between the piercing points, 
(or the diameter of "the cut-off'' loop segment) is: 

(8) for z < R+ cos 8 . 

Above the large square lying on the surface F there are Ns = nA 2 positive 
loops (where A is the side of the square). It means that in average, above a line 
with length A lying on F along the x axis, there are Na = s+ An vortex segments. 
Then from the Ampere principle, which states that the circulation of the velocity 
field around a closed path is equal to the flux of the vorticity linked through this 
path, the average induced velocity is 

(9) 

The v- velocity may be calculated similarly. In the explicit form both velocities 
read: 

(10) r; ±( " ) = ~ 4 tsmo R2 _ _ z_ 
( 

f3 . C\ 2 ) 1/ 2 

I -, t Kn ± + 0 2 D 
7f cos 0 

At the time Tc = 1r R0/ ( 4/3 sin 8) the decreasing loops vanish, and so, the 
velocity V- becomes zero everywhere. 



http://rcin.org.pl

108 

For times t < T~ the induced velocity V is: 

(11) 
{

0 
v = v+ 

v+- v-
For times t > T~ , V is: 

(12) V = {0 v+ 
since v- = 0. 

for z > R+ cos() , 

for z E (R- cos G, R+ cos()) , 

for z E (0 , R- cos G). 

for z > R+ cos() , 

for z E (0, R+ cos()) , 

T. L IP ' IAC I\1 

One can see from Eq. (12) that the thickness of the boundary layer (i .e. that 
layer where the velocity V > 0) grows as R+ cos() proportio nally to J j3t sin G . 
The induced velocity has the same direction as the velocity of the boundary, so 
it reduces the relative velocity between the superfluid and the boundary. 

Recall that velocity of a viscous fluid in the boundary layer appearing when 
the wall starts moving with some constant velocity vb, is described by the diffusion 
equation: 

(13) 
av 82v 
-- 1/ - = 0 Dt az2 · 

The usua l assumption that there is no slip, leads to the boundary condition 
u(O, t ) = V&. Then with the ini tial condition v(O, t) = Vb the equation lead to 

(14) v(z , t) = vbiP (2~), 
where 

X 

iP(l -) = ~ J 
0 

(1 5) 
2 

-a cla . 

One can see that in a viscous fluid, the characteristic thickness of the boundary 
layer is 11/[ . 

In the considered "vortex boundary layer", if there are few vortices at the 
beginning, the re is a slip i.e. the fluid velocity at the boundary is different fro m 
the velocity of the wall. The role of the viscosity is played here by the pa rameter 
j3 sin 8 - proportional to the quantum of circulat ion and surface roughn ess. The 
fact that the "nonsmooth" velocity profi les were obtained is due to the assump
tion, that at th e beginning a ll vortex loops were identical. 

In conclusio n, a consideration of vortex friction on microscopic boundary 
ro ughness leads to the mechanisms of the o rigin of specific vortex boundary 
layer in some aspects similar to the boundary layer in viscous fluids. It is still 
interesting, however, to consider that problem under more gene ral assumptions, 
namely when there are different vortices and they interact with each other. 
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Unsteady compressible boundary layer flow at the stagnation 
point of a rotating sphere with an applied magnetic field 

A. SAU and G. NATH (BANGALORE) 

THE PAPER is concerned with the unsteady compressible boundary layer flow near the forward 
stagnation point of a rotating sphere in a uniform axial stream of conducting fluid, with magnetic 
field normal to the surface. The unsteadiness in the flow is created by (i) giving a sudden change in 
the wall temperature (enthalpy) as the impulsive motion has started, (ii) impulsive change of the 
rotation of the sphere, and (iii) sudden changing of the free stream velocity. The motion is governed 
by a coupled set of three nonlinear time-dependent partial differential equations which are solved 
accurately by Newton's linearization technique and an implicit finite difference scheme. Attention 
is given to the transient phenomenon from the initial flow to the final steady state solution. The 
numerical results show changes in the flow pattern with time, rotation and strength of the magnetic 
field, and are in good agreement with earlier theoretical results. The calculated skin friction, heat 
transfer, displacement thickness and enthalpy thickness show interesting dependence on time and 
the physical parameters, which are quite similar to the earlier investigations, and the mechanism 
of dependence is closely examined. 

1. Introduction 

CuRRENT usE of blunt bodies of revolution for the solution of hypersonic flight 
problems has placed special emphasis on accurate prediction of aerodynamic 
heating. Design of hypersonic re-entty vehicles such as a re-entering satellite 
requires reasonably accurate predictions of the stagnation point heat transfer to 
obtain optimum configurations. The high stagnation temperature accompanying 
flight at high Mach numbers renders the air sufficiently ionized behind the bow 
shock so that it may be considered as an electrically conducting fluid . Under these 
circumstances, the presence of a magnetic field will tend to modify both the flow 
field and the heat transfer. 

An axisymmetric boundary layer flow over a rotational symmetric body set 
into impulsive axial motion was first studied by BOLTZE [1 ], who expanded the 
stream function and vorticity in series of powers of time (t) after the impulsive 
tart and obtained numerical solutio n for terms up to t3 . D EN Nrs and WALKER 

[2] improved the accuracy of Boltze solution by numerically computing the solu
tion for terms up to L7. The unsteady flow past an impulsively started sphere has 
also been discussed by D ENNIS and WALKER [3] and the results were extended to 
larger values of time. The boundary layer growth near the equator of an impul
sively started sphere was considered by BANKS and ZATUSKA [4] . The evolution 
of unsteady boundary layers close to the stagnation region of a slender prolate 
spheroid in uniform mot ion at constant angle of attack after an impulsive start 
have been discussed by CEBECI et al. [5]. D ENNlS and D ucK [6] have presented 
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the Navier -Stokes so lutions for an impulsively started rotating sphere. In a re
cent study D ucK [7] investigated the effect of small amplitude, time-periodic, free 
stream disturbances on the axisymmetric boundary layers. The unsteady bound
ary layer flow past an impulsively started translating and spinning, rotatio naly 
symmetric body has been studied by EcE [8], and he obtained initial stages of 
flow by expanding the stream function and swirl velocity in se ries of power of 
time. All the above studies deal wi th incompressible flows. K u MARI and NATH 
[9] have studied the unsteady compressible stagnation po int bou ndary layer flow 
over a rotating body of revolution (sphere) when the free stream velocity, rota
tion, the surface mass transfer and the wall temperature varied arbitrarily with 
time. V rMALA and NATH [10] have solved the two-dimensional stagnation point 
flow for accelerating and oscillating free streams. 

In this paper we evaluate the characteristics of unsteady compressible bound
ary laye r flow of an electrically conducting flu id near the forward stagnation point 
of a rotating sphere, immersed in a uniform flow and having a normal magnetic 
field applied a t the surface. Three separate situations have been considered in 
which the re is an initial steady state that is perturbed by either (i) a step change 
in the wall enthalpy, (ii) a sudden change in the rotational velocity, and (iii) a 
sudden change in mainstream speed. T he t ime-dependent development of the 
boundary layer is computed until a new steady state is reached. E xtensive numer
ical resul ts are p resented showing the temporal development of various bou ndary 
layer properties. 

2. Basic equations and boundary conditions 

To fix the problem mathematica lly, we consider an orthogonal curvilinear coor
dinate system (Fig. l ) in which :z.: measures the distance along a merid ian from the 
f01ward stagnatio n po int, y represents the d istance in the d irection of rotation , 
an d ::: its d istance normal to the body. We assume th e flow to be axisymmetric 
and the external flow is homentrop ic, the dissipation te rms and effect of surface 
curvature being negligible near the stagnation po int; T(.1: ), the no rmal d istance of 
a po int o n the body fro m the axis of rotation is equa l to x in the neighbou rhood 
of the po le (or stagnation point in this case). A un ifo rm magnetic fi eld of strength 
Bo is applied to the boundary layer in the ::: -d irectio n. The magnetic Reynolds 
number is co nsidered to be small, hence the magnetic fi eld becomes independent 
of fl uid motion. At timet ~ 0, the total enthalpy at the wall is Hw, and at l > 0 it 
is impulsively changed to H,:. Alternatively, a t time L ~ 0, the angular velocity of 
ro tation is (2, and at l > 0 it is impulsively changed to [!* . Similarly at i ~ 0, the 
meridional component of free-stream velocity is He, and at time l > 0 it is su d
denly changed to u;. T hese sudden changes cause unsteadiness in the flow fie ld. 
U nder the foregoing assumptions, the boundary layer equatio ns fo r the unsteady 
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u.., 

f'l. 

0 

F IG . 1. Flow model and coordinate system for a rotating body of revolution. 

compressible flow are given by [11, 12) 

(2.1) (gx )t + (gxu )x + (gxw)z = 0, 

g(u t + Ull:r + WU 2 - v2 jx ) 

= {!e [(ue)t + lle(lte),J + ( f.lU z)z - BJ(!JU - 17eUe), 

(2.2) (!(Vt + 'LlVx + WVz + uvjx ) = (f.lVz)z -!7BJv , 

e(Ht + u Hx + wHz) = ( ;rHz) z, 

where u , u, w are the velocity components alo ng the x , y, z axes, respectively. 
g, f.t, 17 and Pr are, respectively, the density, viscosity, electrical conductivity and 
the Prandtl number; H is the total enthalpy and ue is the x -component of the 
flow velocity at the edge of the boundary layer. The subscripts denote the partial 
derivatives with respect to the corresponding variables. 

The initial and boundary conditions are: 

at L = 0: 

(2.3) 
and for t > 0 : 

u(x 0, z ) = u;(x, z ), 

w(x, 0, z ) = wi(x, z), 

v (x, 0, z ) = v;(x , z ), 

H(x , 0, z ) = H;(x, z), 

u(x , t , 0) = 0, v (x , t , 0) = .J?*x , 

w (x, t , 0) = W w, H(x, t , 0) = H:U , 
u(1·,t , oo) = 'tt ;(x, t ), v(x, t , oo) = 0, 

H(x , t , oo) = He , 

The subscripts i, w, e denote initial conditions, conditions at the wall and at the 
edge of the boundary layer, respectively. 
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3. Boundary layer transformations 

Now we introduce the transformations 

( 
2age) 1/2 Jz (! 

77 = -- -dz, 
f..l e f!e 

0 

t* = at , 

a is a constant having dimension (time)- 1 , 

U = UeF (ry , t* ), F = f' , Ue = ax , 

'V = 'Vw S (TJ, t* ), 'Vw = nx, H = Heg(ry , t* ). 

We assume that the fluid has variable properties f! ex T-1, f..l ex yw, a ex yn, 
where T is the temperature, 0 < w ~ 1 is the index in the power-law variation of 
viscosity and n is the exponent in the power-law variation of electrical co nductivity 
of the fluid. The set of Eqs. (2.2), with the help of continuity Eq. (2.1) and the 
above transformations, reduce, respectively, to 

(N F')' + fF' + (g - F 2)12 + )..2s2 12 - lvfg(Fgn- 1)12 - Ft· 12 = 0, 

(3.1) (N s')' + f s' - Fs- M sgn+l 12 - St• 12 = 0, 

(Ng' )' + Pr fg'- Pr gt· l 2 = 0, 

where F, s and g are non-dimensional meridional and azimuthal velocity and 
non-dimensional total enthalpy, respectively. The prime and the subscript t * de
note the partial differentiation with respect to the variables 77 and t * , respectively. 

Use is made of the fo llowing rela tio ns: 

(since hi he ~ HI He at th e stagnation region, h being the specific enthalpy), 

N = f! f..tl f!ef..le = (T l1~r- l = gw- l , 

.A = J2 I a is the ro tation parameter, 

J\1[ = ponderomotive force = a eB'Jx 
inertia force f!e Ue 

The ini tial conditions are governed by the solution of the corresponding steady 
state equations obtained from Eqs. (3.1) by putting F1• = St· = 9t• = 0 in them. 
As stated earlier, there will be three different cases under the present study and 
the relevant boundaty conditions corresponding to each case are: 

CASE 1. At time t * ~ 0, let the wall enthalpy be Hw (constant), and at time 
tx > 0, there is a sudden change ~1 in the wall enthalpy and it is then maintained 
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for subsequent time (i.e., for C > 0, H:V = Hw(1 + Ll1)), whereas free stream 
velocity in x -direction U e and the angular velocity of rotation [2 remain the same 
for all time. In such a case, the boundary conditions in non-dimensional form 
reduce to : 

for t* > 0, 
J = f w , .F = 0, s = 1, 

9 = 9w + Ll, (Ll = Ll1 9w) at 1] = 0 , 

(3.2) .F = 1, s = 0, 
g = 1 as 1] __, oo, 

and at t* = 0, 
Ll = 0. 

C ASE 2. In this case, instead of changing the wall enthalpy, a sudden change 
(J?* = r2 (1 +Ll), b. = 0 for t* ::; 0 and Ll = const for t* > 0) in the angular velocity 
of rotation is considered, so that the boundary conditions in non-dimensional form 
become: 

for t* > 0, 
J = fw , F = 0, 

s = 1 + Ll , 9 = 9w at 1] = 0 , 

(3.3) F = 1, s = 0, 
g = 1 as 1] __, oo, 

and a t t* = 0, 
b.= 0. 

C ASE 3. An impulsive change in the free-stream velocity in meridional direc
tion is considered in this case. Fo r time t* ::; 0, let the velocity be Ue and at time 
t* = 0, an impulsive change u; = u e(1 + Ll) to the free stream velocity is given 
and kept steady thereafter. So the boundary co nditions in non-dimensional form 
reduce to : 

for t* > 0, 
J = f w , .F = 0, 

s = 1, 9 = 9w a t 1] = 0, 

(3.4) F = 1 +b., s = 0, 
g = 1 as 1] __, oo, 

a nd at t * = 0, 
b.= 0, 

where 
,., 

f = / .F d7] + j~ and f~ = - (ew)w(Re x/ 2)112 
/ fl eUe 

0 
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is constant under the assumption that (ew )w is constant. The parameter f~u is 
called the mass transfer parameter and it corresponds to suction or injection, 
according to whether f w > 0 or .f~ < 0 and Rex = tteX I v e is the local Reynolds 
number. 

4. Results and discussions 

The time-dependent boundary layer Eqs. (3.1) subject to the boundary con
ditions (3.2) o r (3.3) or (3.4) which correspond to the different types of flow 
situations considered and the initial conditions have been solved numerica lly 
using Newton's linearization method and an implicit finite difference scheme 
of the Crank - Nico lson type. The grid sizes that we have used are as fo llows: 
/){" = 0.00025 fo r l " ~ 0.05, 8t" = 0.001 for 0.05 < t * ~ 0.1 , ol * = 0.005 for 
0.1 < ,. ~ 0.5, ot• = 0.01 for l * > 0.5, and or; = 0.01 is kept fixed throughout 
the computation. The choice of grid lengths has been found to be optimum since 
further reduction does not affect the results at least up to the fourth decimal 
place. The selection of or; is made such that it does not affect the results, even 
when r; = O((L*)112) and t * is small. The solutions were iterated until the con
vergence criterion based on the wall shear and the heat transfer parameters F:U, 
s:V, g:V is satisfied, that is 

where o1 is a tolerance parameter which was set equal to I0- 4 in the calculations. 
The quantities of physical inte rest are the skin friction and heat transfer coef

ficients, displacement and enthalpy thicknesses. Based on u -velocity, the equation 
defining the skin friction coefficien t is · 

2 (!L au ) 
C = oz 1) =0 = 23/ 2Re- l/2 N F' = 23/ 2Re- lf2C 

f x ( 2) 3' 'lU W X f x ' 
[!e u e t•=o 

where C fr = N u,F':_u. 
Displacement and enthalpy thicknesses based on u-velocity are defined as [11] 

00 

o; = J [1 - .qv I Qe lle] d:: = 1:(2Rex)- 112 J (g- F ) dr; = x (2Re:r. )- 1128;, 
0 0 

7* - C*(2R )1 /21 .. ux - ux ex 1. , 

- 00 

OH:r = j _!!_!!___ [
1
h - 1] dz = x (2Rexr 112 j F (g - 1) d17 = x (2Rex)- 1

/
28H, , 

f!e f.L e 1. e 
0 0 

- 1/ 2 0 H.r = 0 Fi:J2Rex) /:t . 



http://rcin.org.pl

U NSTEADY COMPRESSffiLE. BOUNDARY LAYER FLOW 117 

Analogously, we define the quantities based o n v-profiles; 

00 

8* = j ~d,. = :r (2Re )- 112 j g sdn y - ' X W '/ l 

f! w V w 
0 0 

•X> 00 

[J f-fy = j ~ [-
1
h - 1] dz = x(2Rex)- 112 j sgw(g - 1) dTJ. 

f! w Vw 1e 
0 0 

However, in the present study only 5; and 5Hx will be presented. 
The heat transfer coefficient in terms of the Stanton number is 

( 
fL a H) 

_ Pr oz 11 =0 _ - 1 I -1 / 2 , I _ I - 1/ 2-
St- (T-T _ H ) ( ) - Pr (Rex 2) Nwgw (1 - 9w) - (Rex 2) St, 

- e w f! e lle t • =O 

where 
St = Pr- 1 Nwg~l(1 - 9w)· 

F;u and s~u are called skin fr iction parameters in the respective directions and g'w 
is the heat transfer parameter. 

Table 1. Comparison of skin fri ction and heat transfer parameters (F~, g~ ) 

wilh B ADE [13] for Pr = 2/ 3, f , = 0.0, ,\ = 0 and M = 0. 

w Yw F ' w 
I 

Yw 

Presen t study BADE [13] Present study B ADE (13) 

1.0 0.2 0.6304 0.6303 0.3437 0.3438 
1.0 0.8 0.8565 0.8566 0.0910 0.0909 
0.7 0.4 0.5838 0.5837 0.2125 0.2125 
0.7 0.8 0.8203 0.8202 0.0866 0.0865 
0.5 0.2 0.3445 0.3447 0.1797 0.1796 
0.5 0.4 0.5139 0.5137 0.1846 0.1845 

Computations have been carried out on a CYBER-992 computer for various 
values of }~ ( - 0.5 ::; fw ::; 0.5), A (2 ::; A ::; 10), J\1[ (5 ::; M ::; 10), w 
(0.5 ::; w ::; 1.0) and 9w (0.6 ::; gw ::; 2.2). For all the results which we present 
here we have assumed the Prandtl number Pr = 0.72 and n = 1 .5. In order to 
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accommodate the rapid thickening of boundary layer as the impulsive motion 
has started, we have taken the far field conditions at TJ = "'eo = 20. At this point 
we should mention that our steady equations for a stationary sphere and without 
magnetic field coincides with those of VrMALA and NATH [10], when we replace 
a by a/ 2 in the definition of ry . A table of comparison (Table 1) and Fig. 2 show 
encouraging agreement with previous theories [10, 13] for some special cases. 
Moreover, our steady results for uniform rotation show excellent agreement with 
Ref. [9], but the comparison is not shown here for the sake of brevity. 

,.or-----------~~~~===---------~ 

o.s 
F 

0 2 

T) 

T) 

5 

3 4 5 

F IG. 2. Comparison of velocity (F) and enthalpy (g) profil es with the results of V IMALA and N ATH 

(10] fort' = 0, Pr = 0.72, w = 1, f w = 0, >. = 0, M = 0; o results due to Ref. (10]; 
--- present study. 

CASE 1. Unsteadiness caused by sudden change in wall enthalpy 

The sphere is assumed to be rotating with constant angular velocity in a uni
form stream of conducting fluid. A forced convection thermal boundary layer 
is then produced by impulsive changing of the wall temperature ( enthalpy) of 
the sphere which was initially kept at a temperature ( enthalpy) higher than the 
surrounding fluid temperature ( enthalpy). 

Figure 3 shows the effects of rotation (~and magnetic parameter (M ) on the 
skin friction and beat transfer coefficients (C 1, , -C /y , St) and their variation with 
time when the wall enthalpy is changed im.E._ulsively. The results show that both 
meridional skin friction and heat transfer [C1,, St] increase (decrease) suddenly 
to a maximum (minimum) value from their initial steady state (depending on the 
impulsive increase or decrease in the wall enthalpy), as the impulse is given at 
time t* > 0. And then the quantities steadily decrease (increase) with time, finally 
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F IG . 3. Effects of rotation (..\), and magnetic parameter (M) on skin frictions and heat transfer 
(E fr, -Cf., St) for f w = 0, w = 0.5 and 9w = 1.4; (unsteadiness due to impulsive change 

in wall enthalpy). 

asymptotically approaching a clearly defined new steady state. From the inset of 
Fig. 3 (showing the behaviour of the physical quantities at time t* = 0+) we see 
that mostly heat transfer suffers sudden change immediately after the impulse, 
whereas azimuthal skin friction [ -C 1Y] shows its smooth transition. Moreover, 
it is observed that the skin frictions reach their steady state fas ter than the heat 
transfer. This is due to the fact that we have considered the case of impulsive 
wall heating (cooli ng), which also causes a rapid change in the heat transfer at 
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the wall near t * = 0. As rotation ( ,\) increases, both skin friction and heat trans
fer increase (however, its effect on the heat transfer is not shown here for the 
sake of compactness), and the effect is more pronounced on the azimuthal skjn 
friction [C Jy ]. This is because the shear force between the sphere and the adja
cent fluid layer increases for higher rotation and its component in the azimuthal 
direction dominates for the simple reason that the direction of rotation of the 
sphere coincides with the azimuthal direction. But the basic trend of the flow 
behaviour immediately after the impulse remains the same for higher rotation. 
Figure 3 also shows that an increase in magnetic field strength (M) causes skin 
frictions to increase, whereas its effect is observed to be negligible on the heat 
transfer. Another phenomenon may be observed that an impulsive increase and 
an impulsive decrease of wall enthalpy by the same amount does not reflect its 
effect on the physical quantities as mirror images. It can be seen more clearly in 
the subsequent figures that the impulsive decreasing processes take more time to 
reach a new steady state compared to the impulsive increasing processes. 

'· ' -0 . s . ~ = s. ~· ' s 

0.0 . s' s 

o.o. s. 10 

3 

2 

FIG. 4. Effects of mass transfer (fw), rotation (>.), and magnetic parameter (M) on displacement 
and enthalpy thickness [5;, 5H,. ] for t:l = 0.8, w = 0.5 and 9w = 1.4; 

(unsteadiness due to impulsive increase in wall enthalpy). 

F igure 4 shows the effects of mass transfer (/~ ), rotation (.\) and the magnetic 

parameter (NI) on displacement thickness (o:) and enthalpy thickness (SH:. ) when 
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an impulsive increase in the wall enthalpy is considered. Both the displacement 
and enthalpy thickness are found to increase with time and they reach a steady 
state value for ! "' ~ 3, and do not show any singular behaviour. With injection 
Uw < 0), both displacement and entalphy thickness are found to increase but 
they show reverse effect with suction (f w > 0). This is due to the fact that the 
injected coolant pushes the boundary layer away from the surface and establishes 
a heat insulating layer, whereas suction works in the reverse way. As rotation(,\) 

increases, the displacement thickness (~) decreases but the enthalpy thickness 
(5 HT) increases. The reason behind this is that when we increase rotation of 
the sphere, the flow in the meridional direction gets reduced considerably in the 
boundary layer whereas it helps to increase the azimuthal flow. On the other 
hand, due to increase in rotation, the flow interaction in the boundary layer 
increases which helps in enhancing the enthalpy thickness (8H:J· An increase in 
the magnetic field strength (M) causes reduction in enthalpy thickness whereas it 
increases the displacement thickness. The boundary layer displacement thickness 
(5;. ) becomes negative for cases of favourable pressure gradient with very low 
wall enthalpy (temperature). This occurs because the surface cooling produces 
an increase in density near the wall , so that there is more mass flow per unit 
now area within the boundary layer than in the external fl ow [14] . However, such 
results are not shown here. 

Figure 5 shows the effect of ro tation (,\) and time (t"') on the growth of ve
locity and enthalpy distribution (F, 0 , g). The cause of unsteadiness is the same 
as that described in Fig. 3. It is observed that the meridional velocity (F) shows 
overshoot for high rotation (>. = 10) and with time, when an impulsive decrease 
in the wall enthalpy is considered, whereas impulsively increasing wall enthalpy 
process does not show any overshoot fort* > 0.1, but it shows oscillatory nature 
in the new steady state (L . = 2). The meridional velocity is especially affected 
by compressibility. When the wa ll is heated, the density within certain layers of 
the boundary layer is reduced significantly, in spite of viscous retardation, the 
local flow is accelerated more than th e external flow. Then velocity (F) in some 
portion of the boundary layer reaches a maximum value greater than 1.0 before 
returning to its final value 1.0. The phenomenon can occur even when the wall 
temperature is less than the recovery temperature [14]. Here an increase in rota
tio n has th e effect of increasing the excess of the local velocities over the external 
velocity. Another interesting observation from Fig. 5 is that both meridional and 
azimuthal velocity (F &s) overshoot temporarily the eventual steady state value 
when an impulsive increase in the wall enthalpy is considered, whereas in the im
pulsive decreasing process they increase with time and finally reach a new steady 
state. The enthalpy profiles (g) show that a t each point inside the boundary layer, 
enthalpy increases or decreases with time while approaching a new steady state, 
depending on the situatio n whether an impulsive increase or decrease of wall en
thalpy is considered. It may also be observed that the enthalpy thickness increases 
when an impulsive increase in wall enthalpy is considered. 
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M = 5, f w = 0.0, 9w = 1.4 and w = 0.5; (unsteadiness due to impulsive change in wall enthalpy). 

[122] 
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CASE 2. In this case unsteadiness is caused by a sudden change in rotation of 
the sphere 

Here we describe the transient motion when an impulsive change is given to 
the angular rotation of the sphere placed in a uniform axial stream of electrically 
conducting fluid . 

. Fi~ure 6 shows the variation of skin friction and heat transfer [C 1,, - C Jy, St) 
With t1me, and the effects of wall enthalpy (gw) and the viscosity index (w) on 
the above mentioned quantities when the angular rotation of the sphere is sud
denly changed to a new constant value. As it can be observed from the inset 
of Fig. 6, showing the effect of impulse immediately after it is imparted, the az
imuthal skin friction [ - C Jy] suffers much change in the beginning (t* = 0+ ). It 
increases or decreases to a maximum or minimum value from the initial (t* = 0) 
steady state and then decreases or increases with time (depending on whether 
impulsive increase or decrease in rotation is considered) while approaching a 
new steady state in an asymptotic way. This is due to the fact that the rotation is 
considered along the azimuthal direction and an impulsive change in the rotation 
of the sphere causes an instantaneous steep change in the azimuthal shear at 
the surface of the sphere. The transition for meridional skin friction and heat 
transfer (C 1, &St) is observed to be smooth. It may also be observed that it is 
the azimuthal skin friction [ -C fv] which reaches the new steady state faster, 
whereas the heat transfer takes more time to settle down. Moreover, once again 
it is observed that the transition time for impulsive decay process is longer than 
the impulsive increasing process as observed in Case 1. Figure 6 also shows that 
as wall enthalpy (gw) increases, both meridional skin friction and heat transfer 
(C fx, St) decrease, whereas the azimuthal skin friction [ -C Jy ] shows the opposite 
effect. The effect of variat ion of the density-viscosity product across the boundary 
laye r is characterized by the parameter w. Both skin friction and heat transfer are 
found to increase significantly as the viscosity-index w increases, however resul ts 
are shown only for meridional skin friction for the sake of brevity. 

Figure 7 shows the distribution of velocity field [ F, s] with time and the effect 
of magnetic parameter J\1! on them. The meridional velocity (F ) shows overshoot 
when an impulsive increase in rotation is considered. An interesting observation 
is that the meridional velocity oscillates within the boundary layer (for impul
sive increase in rotation), but does not show any overshoot, when magnetic field 
strength (!\1) is increased, whereas the rest of the profiles approach their free 
stream value in a monotonic fashion. It may also be observed that the azimuthal 
velocity (s ) reaches its new steady state faster ( l" = 0.1) when the impulsive in
crease in ro tation is considered, whereas it takes longer time to settle down when 
the rotation of the sphere is reduced impulsively. In the case of impulsive de
crease in rotation, both the velocities (F &s ) overshoot temporarily the eventual 
o r new steady state value. 
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f tG. 6. Effects of wall enthalpy (gw) and viscosity-index (w) on skin frictions and heat transfer 
(CJx . -C1., St) for f w = 0, M = 5 and .X = 6; (unsteadiness due to impu lsive change 

in rotation). 

[124] 
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CASE 3. Unsteadiness caused by sudden change in the meridional free-stream 
velocity 

Figure 8 shows the distribution of meridional velocity ( F) when its free stream 
value is changed impulsively. The velocities overshoot inside the boundary layer 
before approach ing their free stream value. The new steady W = 2) profile 
shows its oscillatory nature when the impulsive decrease in the free stream is 
considered. Moreover, it has been observed that at time t· = 0.1 its (F) value 
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at any. ~oint inside t~e b~un~a~ layer is higher than the profile in its new steady 
state (t. = 2) . . The Situation IS JUSt reverse when an impulsive increase in the free 
stream IS considered. The unsteady profiles (t* > 0) show its monotonic nature 
at the edge of the boundary layer; this is probably because the impulse is given 
at the free stream. 

, .6 c--- --r- - --.--- --.-----, 

1.4 

1.2 

F 

0.6 

0.6 
- . t"=o 

0.4 
- ·- ·-. t" =0.1 

0.2 - - - . t• = 2 

O L-----~------~------~----~ 
0 2 .) 4 

F1c. 8. The velocity (F) profiles for f w = 0, M = 5, 9 w = 1.4, .X= 7 and w = 0.5; 
(unsteadiness due to impulsive change in the meridional free stream velocity). 

5. Conclusions 

The transient behaviour of flow and heat transfer over a rotating sphere has 
been investigated numerically due to impulsive changes in the flow physics. A 
large change in the flow is observed at the early stage of transient motion. The 
rotation increases friction, heat transfer at the surface and the enthalpy thickness. 
The meridional velocity (F) shows overshoot for high rotation and fo r the im
pulsive reductio n of the wall enthalpy. It oscillates inside the boundary layer for 
higher magnetic fi eld strength when an impulsive increase in rotation is consid
ered. The transition time is lo nger for impulsive reduction processes, compared 
to impulsive increasing processes. Heat transfer takes longer time to settle down 
than skin frictions. For both impulsive increase in wall enthalpy and impulsive 
decrease in ro tation of the sphere, the velocities overshoot temporari ly before 
getting settled to the eventual steady state value, whereas, for the impulsive de
crease in wall enthalpy or fo r the impulsive increase in ro tation, the velocities 
increase with time while approaching a new steady state. 
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in a wind tunnel. A semi-direct boundary element method in the study of an in
compressible flow in a channel was also applied by A CARABINEANU and A DrNu 
[2). They used the stream function. 

2. Mathematical formulation 

A fluid flow of velocity U00 = (Uy(l-y) , 0), is placed between two walls being 
parallel to the Ox-axis. It is perturbed by the presence of an obstacle r2;, with 
the boundary r. We determine the perturbation produced and the hydrodynamic 
forces acting on the obstacle. We suppose that the walls, denoted by L 1 and L 2 , 

have the equations: 

L1 = {(x, y) I x E IR, 
L2 = {(x, y) I x E IR, 

y = 0} ' 
y = l} ) 

where l > 0, and xOy is a Cartesian system of coordinates. 
Also, the Reynolds number of the flow, denoted by Re, is supposed to be very 

small and hence the motion equations can be reduced to the creep equations and 
continuity equations, respectively (i.e. the Stokes equations): 

(2.1) 
divv(x) = 0, 

grad P(x) - J.Lb.v(x ) = 0, 

X E D , 

X E D , 

where v(u, v ) is the global fluid velocity, P the global pressure and J.l the dynamic 
viscosity of the fluid. By D we denote the domain of the flow (Fig. 1 ). 

t y 
I L2 

D 

.r 

I 
0 

X 

FIG. 1. 

Using the stream function 'lj; , the above equations are reduced to the bihar
monic equation 

(2.2) tl2'lj; = 0 
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with the following boundary conditions: 

(2.3) 

where C and b are unknown constants. 
We have the following asymptotic conditions at infinity: 

(2.4) 

lim 
lxl-

(1j; (x, y) -Uy2 (~-~)) =0, 

81/; oy = Uy (l - y), as lxl ___.. oo. 

oV; = o ox ) 

131 

After a simple analysis, we deduce that the rate of the flow in the channel, 
denoted by Q, is given by 

(2.5) Q = C. 

On the other hand, from the boundary condition (2.3)2, we obtain 

(2.6) 

Let us now denote by <P the stream function of the perturbation flow. Using the 
form of the stream function at infinity, we obtain that the global stream function 
can be written as: 

(2.7) 1/J (x, y) = Uy
2 (~- ~) + </J(x y). 

The perturbation will be evaluated from the biharmonic equation 

(2 .8) t} <fy(x, y) = 0 in n, 

with the boundary conditions: 

(2.9) 
<Pj = <P j = 0, 

.~.., £2 

and the asymptotic conditions at infinity 

(2.10) lim </J(x, y) = lim grad </J(x, y) = 0. 
lxl-oo lxl-oo 
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3. The Green function of the biharmonic equation in an arbitrary simply 
connected domain 

Let D be a simply connected domain in the (z ) plane, z = x + iy, with the 
boundary C, and let w = f (zo, z) be the conformal mapping of the domain D 
onto the domain lwl < 1, in the w plane, such that the fixed point zo E D is 
mapped in w = 0. 

We determine the function G(.A10 , M ), where the points M0 and M corre
spond to zo and ::: , with the fo llowing conditions: 

a) flx,,G(Mo NI) = o, for M ::f J'vi0, 

b) in the neighbourhood of the point j'vf0 , G has the representation 

1 
G(Nfo NI) = 

8
7r llvfoMI2 [In IMoMI - 1] + g(Mo , NI ), 

where the functio n g(J\110 , j'vf) is a biharmonic function with respect to the point 
M, throughout the domain D; and 

c) G(Nfo, NI ) = 0. 
The following theorem determines the function G. 

THEOREM. 7he function G is given by 

(3.1) G(Mo M) = 8~ lz- zol2 ln lf (zo, z) l. 

Pr oof. We prove that the function defined by (3.1) satisfies the conditions a), 
b), c). Because the function w = f( z0 , .: ) defines -a confo rmal mapping between 
D and the unit disc, then it is an analytic function , with f( z, zo) :f 0 fo r z :f zo. 

Also the function log f( zo ::: ) = In lf(zo, z)l + i arg f(zo z) is analytic in 
the domain lJ, with the exceptio n of the point :::o. The function In lf (zo, :::)1 = 
Re logf(zo, :::) is a harmonic function and hence G given by (3.1), satisfy the 
condition a). Since .f'(:::, :::0) ::f 0 in the domain D including the point z = :::o 
and f (:::0 , zo) = 0, the po int zo is a first order zero of the function f. Then, in a 
neighbourhood of this po int we have: 

(3.2) f( z, zo) = (.:-- zo)<,o(z, zo), 

where ;,p(z :::0) is an analytic function in the respective neighbourhood of zo, and 

;,p(:::, zo) :f 0. So 

C(NJ0 . AJ) = 2_1:::- zol2[ln 1:::- :::ol- 1] + -
8
1 

lz- zol
2

ln el<,o(:::, zo)l, 
87r 7r 

and the last function is denoted by g(.M0 , 1\1!). The condition b) is a lso satisfied. 
Since f (::: . ::o) lc = 1, from (3.1) fo llows the condition c). 
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COROLLARY. The Green function of the biharmonic equation in the domain 
r2 = {(:e, y) I .rE JR., 0 < y < l} is given by 

7r 7r 
1 ch - (x-x0) - cos - (y-y0) 

G(Mo, M) = 1:"6 [ex- x0)
2 + (y- y0)

2] ln fr. fr. , 
7r eh y (x - xo)- cos y (Y + Yo) 

(3.3) 

where Mo(::ro .. Yo) and ./III( x, y ) belong to n. 

P r o o f. The conformal mapping of the domain [2 o nto the interior of the 
circle lwl < 1, has the fo rm 

. _ _ exp ( T z) - exp ( T zo) 
J(~o ,z)- ( ) ( ) . 

exp Tz - exp ?[zo 
Performing elementary computations and applying the above theorem, we obtain 
E q. (3.3). 

4. The integral representation of solution 

We remark that the biharmo nic equation t::.2cp = 0 is equivalent to the fo llow
ing system: 

( 4.1) 
t::. cp = w, 

t::.w = 0, 

where u) represents the vorticity of the perturbatio n flow. 
In the preceding section we have determined the Green function G fo r the 

biharmonic operator in the infinite strip [2 = {(x, y) lx E JR., 0 < y < l} . 
This function satisfies the fo llowing equation: 

(4.2) t::.~G(p, q) = c5(1JJ- ql) , for 0 < 17 < l , 

where 8 is the D irac distributio n, p(x, y) is a variable po int in [2 where the 
so lu tio n is sought, and q(e , 17) is a general point located on the boundary o r in 
the domain [2 . From (3.3) we have 

7r 7r 
1 eh- ( x - 0 - cos - (y -17) 

G'(T,y;C77) = -16 [C:r- 0 2 + (y -77)2] In fr. fr. ' 
7r eh T ( x - O - cos T (y + 17 ) 

( 4.3) 
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The Green function F of the Laplace operator in the strip [2 satisfies the 
following equation: 

(4.4) l).qF(p , q) = o(IP- ql) , for 0 < 7J < l 

and is given by (see [2]): 

7r 7r 
1 eh- ( x - 0 - cos - (y -7]) 

F (x y· t n) = -In l l ., , ~, , . , 4 7r 7r ) 
7r ch y (x -0- cos y(y+ry) 

(4.5) 
sh 2 ~ ( x - 0 + sin 2 ~ (y - 7]) 

F 1 2l 2l " (x, y;~ , ry)=27r ln 21r ·2 7r · 
sh 21 ( x - 0 + sm 2zCY + 7] ) 

Using Green's identity for the functions cjJ and l).qG, w and G, and for the 
functions w and F, we obtain the following integral representations: 

c/J(p) = j [c/J(q) 0~~G) (p , q) - l).qG(p , q) g: (q)l dsq 
&D q q 

(4.6) + j [w(q) 
0~~; q) - G(p, q) 

0~~:)] dsq, 
&D 

p E D , 

w(p) = j [ w( q) g~ -F ::J dsq , p E D , 
&D 

where D is the domain of the flow, exterior to the obstacle Di and enclosed by 
the walls La, L1• 

By 8/ Onq we denote the differentiation with respect to the outward normal 
of D, in a point q of the boundary, denoted by fJD . 

We have satisfied the following properties: 

(4.7) 

(4.8) 

and 

(4.9) 

F (x, O;C17 ) = F(x,l ; ~, 7J ) = 0, G(x, O;Cry ) = G(x, l ; ~,7J) = 0, 

oF j oF oG 
~ (x, 0; C 77) = ~(x , l; ~ , 17) = ~(x, 0; ~, 17 ) 
u nq an u nq u nq 

fJG = ~(x, l;~ , 17) = 0 
unq 
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Also, we have 

(4.9') 2.f(q) = 0 
anq 

for 1J = 0 or 1J = l . 

Using the above properties and the asymptotic conditions at infinity (2.10), 
we derive the integral representation of solution, valid in any point of the flow 
domain: 

( 4.10) p E D , 

p E D, 

where 

aF(p , q) = ..!._ [sh }- (x- On1 -sin }-(y+ry)n 2 

anq 4[ ch~ (x-0 - cos ~ (y +ry) 
l l 

_ sh T ( x - On 1 + sin T (y - ry )n2 ] 
1r 1r , 

chT(x -0- cos T (y-ry) 

( 4.11) 

1r 1r 
fJG(p ) 1 ch- (x- O - cos-,(y-ry) 

r ,q = -- [(x- 0n1 +(y - ry )n 2]1n fr 1r 

anq 81r ch T (x-O-cos T (y + ry ) 

1 [shT(x- O n1-sin T (y + 77)n2 
--. [cx- 02 +(y-ry)2] 1r 1r 

16l ch T (x- O - cos T(y + ry) 

_ sh T (x- O n 1 +sin T (y-77)n2 ] 
1r 1r . 

eh T ( x - ~) - cos T (y -ry) 
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Now, we suppose that the rigid obstacle denoted by Di with ani = r, is 
fixed. The physical implication of vanishing of the fluid velocity on the boundary 
r provides that there is no tangential velocity on r, hence 

( 4.12) a~f; I = o an r l 

and so 

- = - Uy (l- y)_}j_ . ac/J I a I an r an r 
If we use the Green's identity in the domain Di, we obtain that the second 

integral term in ( 4.1 0) 1 is given by 

)
. [ ( 2 (l 17))a(D.G) 877 ] b- U17 --- . + U D.G-. - ds 

2 3 Onq anq q 
r 

. [ fJG fJ l = -U j (2ry- l)~(p, q) - G(p, q)~(2ry - l ) dsq . 
unq u n q 

r 

We remark that we must satisfy the boundary conditions (2.9). Using the 
properties ( 4.7) - ( 4.9), it is easy to show that for p E D _, p0 E L 1 or L 2, 

we obtain the equality with zero on the two sides of (4.10)1. Using the Plemelj 's 
form ula (see [6]) and the equation (4.10)2, we deduce the equali ty: w(po) = w(po), 
for all Po E L1 or L2 . For p - Po E r, from ( 4.10), we obtain a set of two 
equations with four unknowns: w and (owjonq) on r, and won L 1 u L2• Then 
we impose the followi ng arbitra1y condition on the walls: 

(4.13) w(:r, 0) = w(x·, l) = 0, V x E JR. 

From ( 4.10) - ( 4.13), we obtain the following integral representation on the 
boundary r only: 

c/J(p) = j [w(q) ()(~~; q) - G(y, q) 
0~~~)] dsq 

r 

/
. [ fJG I f) l (4.14) - U . (277 - l) fJnq (p, q) - G(p, q) dnq (2ry - l) dsq, 

r 

P E r , 

w(p) = j [w(q) al~~]J , q) - F (p, q) a~(q)l ds9 , ]J E r. 
n q unq 

r 

The integrals which appear at the right-hand side of Eqs. (4.14) can be under
stood as a principal value in Cauchy' sense. 
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Because the fluid pressure P must be 21r -periodic around the obstacle [2 we a ' 
require / az: ds = o, where a 1 at represents the differentiation with respect to 

r 
the unit tangent vector of r . If we use the property that the functions w and p 
are harmonically conjugate (see [6]), then we obtain the equation 

( 4.15) l aw 
an ds = 0. 

r 

5. Discretization of the integral equations 

If p E f, from Eqs. (4.14) and (4.15) we obtain the following Fredholm integral 
system: 

. 2 ( l y) J [ aG(p, q) I ow(q)l b - Uy - - - = w(q) - C(p , q)-- dsq 
2 3 anq anq 

r 

(5 .1) 

I· [ aG a ] - U j (2ry - l) an: (p, q)- G(p, q) onq (217 - l) dsq, 
r 

~ i.<-' (P) = I [w(q) a F(p, q) - F( p, q) a~ (q)l dsq, 
2 . On q anq 

r 

I aw(q)d = 0 
·-) Sq ' 

. Onq 
r 

where the symbol 1 means the principal value in Cauchy's sense of the integral. 
For simplicity, this symbol will be o mitted. 

Our unknowns are the functions w, aw I on on r and the constant b. 
In o rder to reduce the integral system (5 .1 ) to an algebraic system, we use the 

collocation method. The contour T is approxjmated by a polygonal line deter
mined by the segments !j (j = 1, 1'/ ) , and it is supposed that the midpoints 
.\ 1.

1 
(.r~ . u; ) of these segments are representative. Assuming the discretizatio n 

equations (5 .1) to be satisfi ed for (x, y) = (:t:i, y'[), i = 1, N, we obtain the 
fo llowing linear system: 

(5 .2) (
f ~) N N (f) ) b - Ul'J~ __ V, ="' w ·A · +"' __!::!__ B-. ' 2 3 L..._.- J !J L..._.- an . !J 

;=1 J = l J 

N N 

-U L(2Y.i- l)Aij + 2U L n21B ij, 
j = l j = l 
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(5 .2) 

[cont.] 

N (f)w) L fJn . j dsq = 0, 
J = l Jr 

J 

i = 1,N, 

where w; = w(:r:i,yi), (~~) i = ~~(x;", yi), and n2(x;", yi) = (ni , nD is the 

normal unit vector to the segment F;. 
The coefficients of the above system are given by: 

1 . . ch~(xi -O - cos ~ (yi -77) 
A ij =si [Cxi-Oni + (yi -17)n~] In ~ ~ clsq 

1r r
1 

cby(xi-O-cosy(Yi + 17 ) 

1 j [ * 2 * 2] [sh y ( xi-. On{- sin y(Yi + 77)n; -w (xi - 0 +(y; - 77) 1r ·* 1r * 
T] eh T ( x; - 0 - cos T (y i + 77) 

h 1r ( , * 1:) j . 1r ( * ) j l s T x. i - ., n1 - sm T Yi -17 n2 
- 1r 1r dsq , 

chy(xi - 0 - cos y (Yi - 77) 

1 eh ~ (xi - 0 - cos ~ (y;" - 17) 
B i.i = --

6
-j [Cxi- 0 2 +(yi -77)2] tn ~ ~ ds9 , 

1 1r r
1 

chy (xi -0- cos y (y,* + 77 ) 
(5.3) 

: = ~ .J [sh y (:r ;" - On·{- sin T. (y;" + 77)n~ 
c,.l 4l 7r 1r 

r
1 

chy (.?;i-O- cosy(Yi + 17) 

h 1r ( ·* 1:) .i . 7r ( * ) j l s T X;-., n 1 - sm T Yi - 17 n2 
- 7r 7r dsq, 

ch y (xi - 0 - cos y (Yi -17 ) 

_ 1 chy (x;"- O-cosT(y;" + 17) 
Di; - - - jln 7r 1r dsq , i,j =1 ,N. 

· 4
1r r

1 
chy (xi- O - cos y Cvi-17 ) 

To evaluate the above integrals, we denote by (xi, y{) and (:z: ~, YD the coor
dinates of the ends of segment F;, in the order leaving the inside of the obstacle 
to the right. Then r i will be parametrized by taking (see for example, [5]): 

(5.4) 
'> ' j - ,.J ,, 2 ,, 1 

.r = .r.i + 
2 

t , iE [- 1, 1], 
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where xj = (:r{ + x~)/2, Y.i = (y{ + YD/ 2 are the coordinates of the midpoints 

of the segment l j , j = 1, N . 
From Eqs. (5.4), it fo llows that ds = (L / 2) dt, where L is the length of the 

segment r i, given by 

(5.5) 

The coordinates of the unit vector ni will be calculated as fo llows: 

(5.5') J - . 2 1 '" 2 .... 1 . ( y.i - y j ~.J - ~j ) 
n- L ,- L. 

For i = j we obtain: 

(5.6) 

f t ;; = 8~j [Cxi -Oni + (y£-ry)ni] tn[ch y (xi-0-cosy(Yi +ry)]clsq 
r, 

+ _2__ j [ sh ftc.ri -Och ffi (xi -Oni -si: ftCYi + 17 ) cos ftCYi + ry)n~l 
16/ r, sh 2 2/(xi - 0 + sin2 2l(yi +ry)(y'j' +17) 

· [Cx;' - 0 2 + (yi - ry)2
] dsq, 

8 ;; = 1 ~7!' j [Cxi - 02 + (y;" - 17)2] tn [chy(xi-0 - cosy(y;" +ry)] dsq 

n 

. = _2_
1 

- n 1sh21 x;- ( ch21 X; - <., n t 

[ 

i 7l' ( * ) 7l' ( "' {:) 

c" 1 7l' 7l' 4 ·h 2 ( * {: ) . 2 ( * ) r, s 21 xi-'> + sm 21 Yi +ry 

n 2 sm 21. Yi + 1J cos 21 y.; + 1J i . 7l' ( * ) 7l' ( * ) l 
+ 7l' 7l' ds9 , 

sh 2 
21

(xi - O + sin2 
2/ yi + ry ) 

D = -- In . 1 ; · 
ll 271' 

r, L 
1 7l' L L In 2 

+ - L In - - - + - -
27!' 2/ 271' 271' 

The coefficients (5.6) may be computed numerically, using the same technique 
as for the coefficients (5.2) - (5.3). 
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6. Numerical results 

From ( 4.1 0), we can obtain the discretization form of the total stream function 
·tj; in any point of the domain D: 

(6.1) "·(p) _ u · 2 (z v) ~ J oG(p,q)d 1~-' - y - - - + ~w s 
2 3 . 

1 
1 on9 

9 

J = r ) 

N (ow) j N * j oG - L on . ' G(p, q) dsq - u L(2yj - l ) on (p, q) dsq 
J = l J r J =l r q 

J J 

N 

+ U L n2j j G(p, q) dsq, 
J =l r ) 

p E D . 

Numerical computatio ns of th e method were performed for a fixed circular 
obstacle. It was considered that the circle had the center (Xo , Yo), 0 < Yo < l 
and the radius a. The maximum value chosen for N was 60. Also, we supposed 
that the segmen ts ri were of the same length. 

The test of the method is given for the drag coefficient C'o, defined by: 

where B( q) is th e angle between the unit normal vector n( q) to the boundary r, 
and the positive Ox-axis. Symbols 

(6 .3) 
o2'lj; 

~tt = - P + -
oton 

denote the components of the stress tensor referred to the (t, n) axes. 
From (2.1)1 and using the fo llowing property (see (8]): 

(6.4) 
o24, - o27/J 1 o?/J 
ot2 - os2 - ~ on ) 

we obtain the drag coefficient C' o in the fo rm: 

2 J ( ow 1 ) 2Yo J (6.5) Co = ga2U2f4 77 on (q) - ~w(q) dsq - ga3U2 w(q) dsq . 
r r 

If we assume (} = 0.8, a = 1, l = 4, U = 1, X 0 = 0, }'0 = 2, then for 
47 ::; N ::; 60, we obtain the same value for the drag coefficient: C'o = 7.8537. 
Also, if we choose (} = 0.8, a = 1, l = 4, U = 2, X0 = 0, Y0 = 2, and 
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47 ::; N ::; 60, it follows that C 0 = 3.92699. These remarks show the extremely 
rapid convergence of the results when the number N of discretization elements 
increases. Tn the first case the constant b is equal to 0.5, for all N 2:: 47, and in 
the last case b is equal to 0.3. 

The Table J gives the values of the drag coefficients as the function of the 
velocity U, when a = 1, l = 4, X 0 = C1-, Yo = 2. We observe that if the Reynolds 
number (Re = (gaU !2)/ J.l, (!, J.l are supposed to be fixed) increases, then the 
drag coefficient C 0 decreases. 

Table 1. Table 2. 

(j N Drag coefficient C'o !} N Drag coefficient C' o 

1 60 7.8537861 0.8 60 7.8537861 

1.5 60 5.2352625 0.6 60 10.4717147 

2 60 3.9269824 0.5 60 12.5660577 

4 60 0.4908738 

For U = 1, a = 1, l = 4, X 0 = 0 and Y0 = 2, respectively, the Thble 2 gives 
the values of the coefficient C 0 for some values of the density g. Finally, Figs. 2 
and 3 represent the spectrum of the flow in the case a = 1, l = 4, X 0 = 0, Yo = 2 
and }'0 = 2.5, respectively. 
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Stability of micro-periodic materials 
under finite deformations 

E. WTERZBICKI (WARSZAWA), c. WOZNIAK (CZ~TOCHOWA) 
and M. WOZNIAK (LODZ) 

A NE W APPROACH to the stability analysis for highly-elastic micro-periodic composite mate rials 
subjected to finite deformations is proposed. The analysis is based on the refined macrodynamics 
of periodic structures which describes the effect of the microstructure size on the dynamic body 
behaviour. it is shown that the loss of stabili ty ca n take place both on the macro- and micro-level 
and that the inte rnal dynamic instability depends on the microstructure size. The obtained results 
a re illustrated by a s imple example. 

1. Introduction 

STABILITY OF HOMOGENEOUS e lastic materials under finite deformations was in
vestigated in the series of papers [1-9, 11-15, 18]; the main results can be found 
in the monograph [10]. The aim of this contribution is to o utline a new approach 
to the problem of stability for composite bodies made of perfectly bonded elastic 
constituents subjected to large strains. It is assumed that in the natural configu
ration the material structure of the body is micro-periodic. The analysis is based 
on the refined macro-dynamics of composite materials, introduced in the frame
work of linear e lasticity in [19] and extended to finite elastic deformations in [16, 
17]. The effect of the unit cell length dimensions on the dynamic stability of a 
micro-periodic body and the existence of new kinds of material stability, related 
to the microstructure of a composite, are most important features of the proposed 
approach. 

Notations 

Indices o. , f-], ... and i, j, .. . run over 1, 2, 3 and are related to the material and 
spatial coordinate systems, respectively. Capital Latin indices A, B , ... run over 
1, ... , N ; N ~ 1. Summation convention holds for all aforementioned indices if 
not o therwise stated. By \IR we denote the region ( - lJ/2, lJ/2) x ( - l2/2, 12/ 2) x 
( - 13 /2, 13/ 2) in a three-space of points X = (X a). An averaged value of any 
integrable llw periodic function f ( ·) of X will be denoted by 

(f (X)) := -
1
- ; · f(X) dX 1 clX 2 dX 3

. 
/1 12/3 

VR 

Here and in the sequel the subscript R is related to the known reference configur
atio n of the body under investigation. 
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2. Foundations 

Le t the highly-elastic composite body in the natural (reference) configuration 
occupy a region (2 R in a physical three-space and have in this configuration 
the Vwperiodic structure. The microstructure length parameter defined by l : = 
j (l1) 2 + (l2) 2 + (l3)2 is assumed to be sufficiently small compared to the smallest 

characteristic length dimension of [2 R· The position of an arbitrary point X, 
X E nR, of the body at an instant t, t 2: 0, will be denoted by X = p(X, t), 
X = (X o- ) E Dn. Hence u(X, t ) := p(X, t)- X is a displacement vector from 
the natural configuration . The properties of the composite under consideration 
are determined by a mass density gR( · ) and a strain energy density function 
ER( · '\' p), which are 11wperiodic functions defined almost everywhe re on nR 
and related, as densities, to the reference configuration . 

The idea of the refined macrodynamics, explained in [19) and applied in a 
series of related papers, is based on the heuristic constraint assumptio n that the 
displacemen ts ui(X, t ) in a periodic composite can be represented by certain 
averaged displacements Ui( · , l ) on which highly-oscillating disturbances are su
perimposed, caused by the micro-inhomogeneity of a medium. To describe this 
situatio n, the concept of a regular macro-function was introduced in [19); roughly 
speaking, a function F: [2R - R is called a macro-function (for the known mi
crostructure length parameter l and a certain accuracy t- p assigned to numerical 
calcul ations of the values of F ) if for every X, Z E nR such that IIX - Zll < L 
condition jF(X - F (Z) I < Ep holds. If similar conditions also hold for a ll deriva
tives of F then F is said to be a regular macro-function. The aforementioned 
constraint assumption specifies a class of motions given by 

(2. 1) X E f2n, t 2: 0, 

where l/i( · , l), Q;4 ( • . l) are certain arbitraty regular macro-functions, and hA ( ·) 
are the postulated a priori Vwperiodic functions (hence depending on l ), satis
fying for evety X the conditions hA(X) E O(l), hA ,o- (X) E 0(1) as well as the 
co ndition (hA ) = 0. Functions h11 ( · ) are called micro-shape functions and from 
the qualitative viewpoint, they determine the investigated class of disturbances in 
displacements caused by the IIR-period ic structure of the composite. Functions 
t ·i ( • ) , Q;1 ( · ) a re the basic dynamic variables of the re fined macrodynamic be
ing referred to as macro-displacements and macro-internal variables, respectively. 
By virtue of Eq. (2.1), macro-internal vari ables Qf describe the aforementioned 
disturbances in d isplacements from a quantitative viewpoint. Defi ne by F a fi eld 
with components 

which will be called th e macro-deformation gradient. H ence every p ier ( · , 1;), 
I 2: 0, is a certain regular macro-function. In the framework of the refin ed macro
dynamics the deformation gradient \7 p is approximated by F + \7 hAQA, [J 9). It 
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fo llows that th e function rr R defi ned by 

represents an averaged strain ene rgy. Macro-deformation gradients F and macro
internal variables QA are restricted by the condition 

Let us defin e gA := L-1hA; obviously, values of functions gA satisfy conditio ns 
gA (X) E 0(1). The field equations for Ui ( • ), Qf ( · ) which were obtained in [17), 
after neglecting the body fo rces, can be written down in the form 

(2.2) 

where 

(2.3) c;io fJrr R 
._ R = :::lp.,. ' 

U ZC\ 

fi Ai = 8rrn 
R fJQf . 

F ields ,C,'jf and 11 k are called the Pio la - Kirchho1I macro-stresses and the micro
dynamic fo rces (re lated to Dn), respectively. In the natural configuration, i.e. fo r 
F = 1 and Q = 0, the macro-stresses S'if and micro-dynamic forces 11 ~i have 
to be equa l to zero. If this condition is not satisfi ed by the de rivatives of (en) 
with respect to F and Q then the strain energy functio n 1r R in Eqs. (2.3) has to 
be assumed in the fo rm 

where 

(2.5) Ai · - 8(cn) I 
f l n .- fJQ" · 

t F = l , Q = O 

Formula (2.4) defi nes the macro-stra in energy function related to the natural 
configuration of the body. 

Let f'n be a part of fJDn on which surface tractions s~ (averaged over the 
surface a rea) are known. The related boundary conditions are given by 

(2.6) 

with nn as a unit outward normal to fJDn . It will be also assumed that on 
(}f! 11\1 'n, values np of macro-displacements are prescribed: 

(2.7) 
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Equations (2.2), (2.3) and boundary conditions (2.6), (2.7) hold for every l > 0 

and together with initial conditions for U;, iJi, Q~, Qf, describe a certain bound
ary-value problem formulated in the framework of the refined macro-dynamics 
of a highly-elastic micro-periodic body and for a class of motions given by (2.1). 
The main feature of the refined macrodynamks is that the above problem takes 
into account the effect of the microstructure length-parameter l on the dynamic 
behaviour of the composite. It has to be emphasized that a solution to this prob
lem has a physical sense only if [ ;( · , t), Qi4 ( · , t) are regular macro-functions 
for every t ~ 0. For more detailed information the reader is referred to the 
references given in Introduction. 

3. Analysis 

Let us assume that a certain static deformation of the composite described 
by Eq. (2.1) is known, where the fields Ui = Ui (X) , Qi4 = Qf1(X), X E f2R are 
constant in time and hence satisfy in f2 R the fi eld equations 

(3.1) 
07rR(F(X), Q(X)) = O 

aQt ' 
and fulfil on f)[! R the time-independent boundary conditions of the fo rm (2.6), 
(2.7); in (3.1) F(X) = 1 + vU(X). Every static deformation of the composite, 
defined by a pair E = (U( · ) , Q( ·))satisfying Eqs. (3.1), will be referred to as the 
equilibrium state. In order to investigate the stability of the above equilibrium 
state, the line of approach described in [10) will be applied. To this end let 
us assume that on the stat ic deformation represented by a displacement field 
u, (X) = fi;(X) + h·"{X)Qf (X), X E f2R , a small deformation is superimposed, 
given by :; 'tti (X.l) = E['Ui (X, t ) + hA (X) 'Q;'(X , t)], t ~ 0, where E is a small 
paramete r, the sq uares and higher powers of which will be neglected as compared 
to :;, and where 'U;(· , l), 'Q ;4 ( · ,t) are arbitrary regular macro-functions. Using 
Eqs. (2.2), (2.3), (2.6), (2.7) and denoting 

1
io .J!3 ·- U27rR(F(X), Q(X)) 

I H .-
OF;0 0F1(3 

(3.2) 

BAjio · - U27rH(F(X), Q(X)) 
R . - !:! 'fi:· fJQ.4 , 

U . tcv J 

('ABi1 ·- U27rH(F(X), Q(X)) 
n .- oQ;tDQf X E f2R, 

after simple manipulations we obtain the linearized homogeneous fie ld equations 
for 'U;, 'Q ;'' , wh ich have to be satisfied in f2R X (0 ): 

(3.3) 
(

A ioJ13 'Lf · + 13 B jia 'QB ) _ (n ) 1 [i i = 0 
R J,fi H J r= R ' 

.0 

12( A B) 'Q .. B + c ·ABi.i ' QB + BAijcv ' LI - 0 
{}R9 9 1 ' R ' j H J ,c'< - ' 
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together with the homogeneous boundary conditions: 

(3.4) 
(A~'i/3 1Ui,fJ + B~jia 1Qf) nRC< = 0 

1U; = 0 

on TR X (O,oo), 

on Of2R\ TR X (0, oo). 

From the definitions (3.2) and since F = 1 + VU, it follows that solutions 1 U;, 
1Q;4 to the boundary-value problems described by Eqs. (3.3), (3.4) depend on the 
known static deformation represented by the equilibrium state E = (U( · ) , Q( · )). 
At the same time, every pair (F. Q) satisfyi.ng the last of Eqs. (3 .1) will be referred 
to as the local equilibrium state. Obviously, if a composite is in the equilibrium 
state (U( · ) , Q( · )) then every (F(X) , Q(X)), X E nR, represents a certain local 
equilibrium state (but not conversely). 

Now we shall pass to the analysis of some special cases. 
First, let us assume that the superimposed deformations are time-independent, 

t.e. : 
1Ui = 1U;(X) , 1Q'/ = 1Qt (X) , 

Under this assumption two special cases of instability can take place. 

CASE 1.1. Let for every X E [2 R the linear transformation R3N ___, R3N given 
by C'~Bij be invertible for the known equilibrium state E = (U( • ) , Q( · )). In this 
case the macro-internal variables 1Qf can be eliminated from Eqs. (3.3), (3.4) 
and we arrive at 

( Nfri{J I u j.(J ) = o m nR, 
,C< 

(3.5) N ie>J/3 1U . R j,(JnHC< = 0 on rR , 
IU; =0 on Or2R\ TR , 

where we have denoted 

Nie>j(J ·- A iC<j(J B 'UiC< D!l.Bkl BBij(J 
R . - H - Fl R R 

and where o~Bkl determines the linear transformation R3N ___, R3N inverse to 
that given by C~Bkl_ If there exist non-trivial solutions to Eqs. (3.5) then the 
body in the equilibrium state E = (U( • ), Q( · )) is assumed to have a hidden 
macro-instability, [10], and we deal with a bifurcation of the equilibrium state E. 
Moreover, if rR = 0 then we arrive at the problem of the internal m acro-instability 
investigated by BLOT [1, 2] as the internal buckling. 

C ASE 1.2. Now assume that under the known equilibrium state, a linear trans
formation R3N - R3N determined by c~Bkl is singular for some local equilib
rium state (F(X) , Q(X)). In this case the body at the point X is said to be in the 
state of a hidden micro-instability and we deal with a bifurcation of the local equi
librium state (F(X) , Q(X)). Moreover if F = const, Q = const in [2R and rR = 0, 
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then Eqs. (3.3) are satisfyied by 1 U; = 0, 1 Qf = const in [2 R and we deal with 
what can be called the internal micro-instability. 

Second, let us assume that the superimposed motion is given by 

1lf;(X , t) = U; (X)eiwt, 1Qf(X , t ) = Qf (X)eiwt, 

where w is a certain complex number. Substituting the right-hand sides of the 
above formulae into Eqs. (3.3), (3.4) we obtain for Ui , Qf the following system 
of equations 

(3.6) 
( A;it3Ui,t3 + B~iicxQjt ) .a - (gR)w2Ui = 0, 

( c~Bi.i- l2 (gRgAgB ) 8ijw2) Qf + B~ijcx Uj,cx = 0, 

together with the boundary conditions 

(3.7) 
(A ia.it3 u. + BAjicxQA) = 0 R J,{3 H. J nH.a 

ui = o 
o n JR., 

It has to be remembered that the eigenvalues w2 in Eqs. (3.6) depend on the 
known equilibrium state E = (U( · ) , Q( · )) since the coefficients in Eqs. (3.6), 
(3.7) are functions of F(X) = 1 + V'U(X) and Q(X), cf. formulae (3.2). The 
analy is of Eqs. (3.6), (3.7) leads to the so-called dynamic instability, [10]. Two 
special cases will be considered below. 

C ASE 2.1 . Let us assume that fo r the known eq uilibrium state E = (U( ·) Q( · )) 
and for every X E [2R the linear transformation R3N ___, R3N given by C~Bij
L2(gRgA g··1 )8iiw2 is invertible. Then every inverse transformation can be repre
sented in the form of the asymptotic expansion 

D~Bkl + L2w2 D~Dik ( gRgO.gE)D~Bil + o(l2). 

Neglecting terms o(L2) we can eliminate Qf from Eqs. (3 .6), (3 .7). Defining 

M{i'j{J := B~1ko DADkl(gRgDgE)D~B/mB~jm{J( gR)- 1. 

after some manipulations we a rrive at the fo llowing system of equations for Ui, 
which have to be satisfied in f2R X (0, ): 

(3.8) (N~ajf3 U.i.t3) . + (gR) [ui - 12 (Mf:fjt3U1,t3) ] w2 = 0 
.7,0 ,er 

together with the bo undary conditions 

(N;f"i13
- ( gFi. ) l2w2 J\!f~aj{3 ) Uj,{3nRcx = 0 

(3.9) 
On FR X (0 , ), 

on [8f2n\FR] x (0, ) . 
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Following [10] we shall assume that if Im w ~ 0 then the equilibrium state 
E = (U( · ) , Q( · )) is stable. If in the vicinity of E there exists a passage fro m 
I m w ~ 0 to I m w < 0, then we deal with the loss of the macro-vibrational stability 
(provided that Re w f 0) or the loss of the macro-static stability (if Re w = 0) in 
this state. Moreover, if r R = 0 then it is the loss of the internal macro-vibrational 
or macro-static stab ili ty, respectively. 

CASE 2.2. Assume that for the known equilibrium state values w2 are the 
generalized eigenvalues given by (C~Bij - l2w2(gRgAg8 )8ii )Qf = 0 for some 
local eq uilibrium state (F(X) , Q (X)). If Im w attains a negative value in this local 
equilibrium state then we shall deal with the loss of the m icro-vibrational stability 
(for Re w f 0) or the micro-static stability (for Re w = 0). Moreover if F = const, 
Q = const, in Dn and rR = 0 then E qs. (3.6) are satisfyied by 'U; = 0, 'Qf = 
const in [2R and we arrive at the problem of the loss of internal micro-vibrational 
or nzicro-sraric stability, respectively. 

All the afo rementio ned cases of instability can be referred to as the local loss 
of stability. However, fo r micro-periodic highly-elastic materials we can also deal 
with the special case of a non-local instability described below. 

CASE 3. Let us assume that fo r a certain X E DR there exists the macro
deformation gradient F(X) fo r which the last of E qs. (3.1) has mo re than one 
solution Q satisfying together with F condit io n det(F + \1 hA (Z)QA) > 0 for 
every Z E VR + X. In this case we deal with the non-local micro-instability. T his 
kind of instabili ty can be also referred to as the material instability strictly related 
to the micro-periodic heterogeneous structure of the composite body. 

Summing up, the stabili ty analysis fo r highly-elastic micro-periodic composites 
leads to the fo llowing three types of stabil ity: 

1. Local macro-stability described by Cases 1.1 and 2.1, which can be investi 
gated similarly to the instability of homogeneous body. 

2. Local micro-stability described by Cases 1.2 and 2.2 related to the investi

gations o f the linear transfo rmation given by C~i.B (F, Q). 

3. Non-local micro-stability described by Case 3, related to the analysis of the 
last ofEqs. (3.1). 

The problem of the non-local macro-stability is not investigated in this con
tribution. It has to be emphasized that the concept of the micro-stability is char
acteristic for composite micro-periodic bodies subjected to finite deformatio ns. 

4. Analysis : incompressible bodies 

The refin ed macrodynamics of micro-periodic composites made of highly-elas
tic incompressible constitu ents will take as a starting point the averaged incom
pressibility condition 

( 4.]) 
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It has to be emphasized that in the framework of the proposed macro-model, 
the exact incompressibility condition det(F + \7 hA (X)QA) - 1 = 0 may not be 
satisfied at every point X of [2 R· Equation ( 4.1) can be also written in the explicit 
form 

(4.2) detF + ~ c;i.i kc;afh (3 (hA ,ah8 ,(3 )QAi QBi }k'"Y 

+ ( hA ,o: hB ,(J hC,~I) QA i QBjQCk) - 1 = 0, 

where ciJk, c;o:Jh are the Ricci symbols. 
In many special problems the analysis can be confined to a class of motions 

(2.1) in which all micro-shape functions satisfy the conditions: 

(4.3) 
if 0: t- (3) 

if o: f. (3 f 1 f. a . 

This situation is typical for many disturbances investigated in dynamics of com
posite materials. In the simplest case relations ( 4.3) hold if every micro-shape 
function hA ( ·) depends exclusively on one arbitrary material coordinate x o: . 
Under ( 4.3) the averaged incompressibility condition ( 4.2) reduces to the follow
ing one 

(4.4) det F - 1 = 0 

being independent of macro-internal variables Qf . The above condition repre
sents the internal constraints imposed on the class of motions determined by 
Eqs. (2.J ). Introducing the concept of a macro-pressure PR = pn(X) as a La
grange multiplier related to Eq. (4.4), bearing in mind definitions (2.5) and mod
ifying Eq. (2.4) to the form 

(4.5) 1rR = 7rn(F, Q) := (t:R(X, F + \7hA(X)QA)) 

- AW. (Fiet- bio: ) - ft~o: Qf + PR(detF - 1), 

we sha ll assume that the equilibrium equations (3.1) holds also for incompressible 
bodies (in the averaged sense explained above). 

Summing up, under definitions (4.5), (2.5) and bearing in mind that F = 
1 +VU, the eq uilibrium equations of the form (3 .1) together with Eq. (4.4) lead 
to a system of eq uations for macro-displacements U, macro-internal variables Q A 
and a macro-pressure pn. . This result holds true under conditions (4.3). If the 
above conditions do not hold then the averaged incompressibility condition has 
to be taken in its general form ( 4.2), and in Eq. ( 4.5) the term det F - 1 has to 
be replaced by the left- hand side of Eq. ( 4.2). 

The stability analysis for incompressible bodies has to be carried out similarly 
to that of the compressible bodies described in Sec. 3. Apart from the superim
posed small motions c('Ui + hA 'Q f ), also a sma ll excess of a macro-pressure 
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.:: 'PR has to be superimposed on PR· Hence in the incremental equations, which 
for compressible bodies were given by Eqs. (3.3)-(3.9), we deal with terms involv
ing '7m and with the incremental form of Eq. (4.4). Under notation LR := F- 1 

this equation is given by 
L io· 'U· -0 R t,O - . 

The general line of approach to the stability analysis for incompressible com
posites, outlined in this section, will be illustrated by a simple example in the 
subsequ ent section of the paper. 

5. Example 

The general results obtained in this contribution will be now illustrated by 
the micro-stability analysis for a laminated body made of two perfectly bonded 
incompressible isot ropic rubber-like materials. The scheme of the laminate is 
shown in the left-hand side of Fig. 1. Moreover, every lamina is assumed to be 

1! 2 1/2 
~------~-------+. h(X~ 

11 T~:::::...-=====t=====:---r----'-----'7 

--,"-
/ / /~/ / "// '///'·~0'h'/, --; "-11 

0 0 0 0 12 
/ 

--,"-

--,<-

0 0 0 0 

x .l 
~ 

0 0 0 0 

~/ / / :· // // 

X I 

F I G. 1. 

reinforced by a system of periodically d istributed inextensible fi bres parallel to 
the _\ 3-ax.is . Let the body be subjected to fini te defo rmations caused by the 
uniform axial macro-strains along the coordinate axes. Using (3.1 ), the class of 
displacement fie lds under consideration will be expected in the form 

tt1 = U1(X1) + h1(X1)Qj + h\.)(2)Qf , 
(5 .1) u2 = L 2(X2) + h2(X 1 )Q~. 

where 

and (for the t ime being) F11 , Fn Q}, Qf, Q~ are constants constitu ting the 
system of basic u nknowns. We have tacitly assumed that the effect of periodic 
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inhomogeneity along X 2-axis on the displacement field is small and can be ne
glected. That is why a term h4 ()(2 )Q~ in the second equa tion of (5.1) was not 
taken into account; the analysis involving this term is more complicated and will 
be given separately. The d iagram of the micro-shape function h 1 ( · ) is shown 
on the right-hand side in Fig.1; we also assume h2(X1) = l cos(27r X 1j l) and 
h3(X 2) = /2 sin(27r X 2 / l2), where /2 is the period of the reinforcement along 
X2-axis. In the problem under consideration \IR = ( - l / 2 , l / 2) x ( - l2/2, !2/ 2) 
and it is assumed that X 1 = 0 is the plane of symmetry of the ma terial structure 
of \111. 

Let us deno te the basic unknown variables by means of 

F\ := F1 1 , Q := Qt 

It can be shown that the averaged incompressibility conditio n (4.1) yields 

(5 .2) 

Under Eq. (5.2) every quintuplet (F1, F2, Q, Q ~, Q2) represents a certain micro
equilibrium state (now constant throughout the whole body) provided that the last 
of the equilibrium equations (3.1) holds; the first of these equations is identically 
satisfied since S}f are constant. 

As we have stated in Sec. 2, in the framework of the refined macrodynamics 
th e defo rmation gradient is approximated by F + \7hA(X)QA, where now X= 
(.\:. 1 , )(2) . In the problem under co nsideratio n, under extra no tations 

d = d(X 1
) := h1,t(X 1

) , 

d1 = d1(X 1
) := h2

,1(X 1
) , 

d2 = cl2 (X 2) := h2,2(-Y2
) , 

the deformation gradient matrix is given by 

[

PI + dQ d2Q l 

d1Q2 F2 
0 0 ~] 

and for every X E V R : = [ -l / 2 , l / 2] x [ - !2/ 2, !2 / 2] has to satisfy conditio ns 

(5.3) 
F1 + d(X)Q > 0. 

The components Ccxf3 of the deformed body metric tensor are given by the matrix 

[ 

( "'1 + dQ )2 + ( dl Q2)2 

c/2(P1 + dQ)~J + cl1 F2Q2 
cl2 (F1 + c!Q)Qt + cl1 fi'2 Q2 0~] 

Pi + (cl2QJ )2 

0 
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and the strain invariants I 1, h , h are equal to 

I t = 8c'f3 c<Yf3 = 1 + F,2 + F:j + 2dFlQ + (dQ )2 + (dl Q t)2 + (d2Q2)2, 

h = I 38o,3co f3 = 1 + Ff + F:j + 2cl(Fl + F2 )Q + (clQ)2(1 + F:j ) + (cl2Q1)2 

+(d1Q2)2 + (d1d2Q 1Q2)2 - 2d1d2Q 1Q2- 2dd1d2F2QQ1Q2, 

h = detca13 = [(Fl + dQ)F2 - cl1d2Q1Q2f. 

It has to be emphasized that in the applied approach, the local incompressibility 
condition VJ3 - 1 = 0 does not hold and we deal exclusively with the averaged 
form of this condition, given by Eq. (4.1) which now reduces to Eq. (5.2). 

The strain energy function for rubber-like materials will be assumed in the 
known form 

ER = C (Il - 3) + D(h- 3), 

where the material moduli C, D are now !-periodic functio ns of X 1, attaining 
difre rent values in the adjacent lam inae. Due to the presence of a reinforcement 
we shall also treat C, D as l2-periodic functions of X 2

. Hence C and D as well 
as the invariants ! 1, h are Vwperiodic functio ns of X = (X 1, X 2). The formula 
( 4.5) for the macro-strain energy funct ion of an incompressible isotropic material 
is given by 

where the averaging operation has to be carried out with respect to X, and A Yf. , 
ft~(Y are defined by Eqs. (2.5). After some calculations we obtain 

7rR = (C' + D )(F? + F:j - 2) + 2 [((C + D)d)Ft + (Del) P2] Q 

+ [{cc + D)d2) + (Dcf2 )F'f] Q2 + ((C + D)cl~ ) Qf 

+ ((C + D)df )Q~ + (D(d1d2f )(Q1Q2)2 

- 2 [(Ddtd2) + (Ddcl1cl2 )F2Q] Q1Q2- (C + D )(F1 + F2 - 2) 

- 2[(cc + D)d) + (DcL)J Q + PRCF1r2 - 1). 

U nder no tations 

o := ((C' + D)cf2 ), CY ] := ((C + D)df), 

/3 := (D (d td2)2), 

!' := ((C + D)d), 

1 := (Dcf2 ), 

v := (Del), 

and setting 

LY2 := ((C + D)cl~ ), 

cp := (Ddcl1d2), 

X := (Dd1d2) 
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the second of the equilibrium equations (3.1) takes the form 

(a + 1F 2)FQ - cjJF 2Q1Q2 + (1 - F)(!-l - vF) = 0, 

(5.4) (a 1 Q2 + ,8)Q2QI - (x + c/JFQ)Ql = 0, 

(a2Q1 + ,B)Ql Q~ - (X + c/YFQ)Q2 = 0. 

At the beginning let us consider two special cases. 
First, assume that the laminae are not reinforced. In this case C( ·) and D( ·) 

are independent of X 2 and 

cjJ := (Ddd1d2 ) = (Ddd1)(d2 ) = 0, 

\' := (Dd1d2) = (Dcl1)(d2) = 0, 

because of (d2) = 0. In this case there exists the unique solution to Eqs. (5.4) 
given by 

(5.5) 
(F - 1)(/t - vF) 

Q = (a + 1 F 2)F ' 

Second, let the body be homogeneous. Then, apart from conditions cjJ = x = 0, 
we also obtain p = 0 and v = 0. In this case Q = Q1 = Q2 = 0 and by means of 
Egs. (5.1), an arbitra ry uniform biaxial strain , given by F 1 = F - 1, f2 = F, holds 
for every F > 0. 

Now we shall pass to the general case of the micro-periodic body under con
sideration. In order to investigate the bifurcation of a micro-equilibrium state 
(F\ , F2 . Q , 0, 0) let us assume that Q1 = c: ' Q~> Q2 = c: 'Q2, where E ~ 0. Let us 
also denote 

fj : = \ - J (\ 1 a2 ' b := \ + Ja1 o·2 

and assume that fJb f. 0. If cjJ f. 0 then the non-zero solutions Q1, Q2 to the 
second and third of Egs. (5.4) exist eithe r if 

(5.6) 

o r if 

(5.7) 

fj 
Q = - 

cjJF 

b 
Q = - cjJF . 

The two aforem entioned conditions will be treated separately. 
Substituting the right-hand side of E g. (5.6) into the first of Eqs. (5.4) (where 

now Q1 Q2 = .:2 'Q1 'Q2 - 0) we arrive at 

(5 .8) 
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The above equation together with the condition F > 0 represent the solution 
in which the bifurcation of a micro-equilibrium state (F - 1 , F, Q, 0, 0), where 
Q = -5( cpF)- 1

, takes place. Now assume 

(5.9) 

and define 

(5 .10) b ·= c/Y(!l + v) 
· 18 - vcp ' 

Tt can be shown that the bifurcation can take place in the fo llowing cases: 

(i) If c < 0 and 1 + b + c < 0 then there exists one positive root F = FE of 
Eq. (5 .8) such that FE > 1. In this case the bifurcation occurs under extension of 
the body along X 2-axis. 

(ii) If c < 0 and 1 + b + c < 0 then there exists one positive root F = Fe 
of Eq. (5 .8) satisfying condition 0 < Fe < 1 and the bifurcation occurs under 
compression of the body along X 2-axis. 

(iii) If c > 0 and 1 + b + c < 0 then there exist two positive roots F = Fe , 
1"' = F'E of Eq. (5.8) related to the compression and extension of the body along 
)(2-axis, respectively, i.e., 0 < Fe < 1 and FE > 1. 

(iv) If 11</J - 18 = 0 and 
F = f.L <P- a5 

, 5 + f.L <P ) 

then we obtain F' = F1:: > 1 if (5 / </J)(Il + u) > 0 or F = Fe , 0 < Fe < 1, if 
(8/<D)(tt + 11 ) < min {O, (lt /a )(f.L + v)} . 

Let us also observe that since 5 :f 0, a > 0 and 1 > 0, then the bifu rcation 
cannot take place in the natural state in which F = 1. 

If one from the above conditions takes place, then the value of Q fo r which the 
bifurcation occurs is determined by Eq. (5 .6). Tbe analysis similar to that given 
above can be carried out if the constant 5 will be replaced by the constant 8. In 
this case the value of Q related to the bifurcation state will be determined by 
Eq. (5.7) and instead of parameters b, c, under condition 

v</J - 18 :f 0, 

we shall introduce the parameters 

b := </J (J l + v) . 
18 - u</J ' 

Hence the discussion of cases (i) - (iii) remains unchanged if moduli b, c will 
be replaced by moduli b, c, respectively. Similarly, in the case (iv) 8 has to be 
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replaced by 8. It means that apart from values F'c , FE of a macro-deformation 
~adients for which the bifurcation_c~n take place, w~also obtain two other values 
F' c , F E related to the constants 8, band c, where F' c E (0, 1), and F' E > 1. 

Now let us investigate the problem of the nonlocal (postbifurcation) microsta
bi lity. To simplify the calculations let us assume o 1 = o 2 an denote o 0 = o 1 = o 2. 
Using this assumption from Eqs. (5.4) we obtain either 

(o' + 1P 2)F'Q - <P(FQ 1)
2 + (1 - F')(J.L- vF) = 0, 

(5.11) ooQI + f3Qi- (\' + <PFQ)Ql = 0, 

Q2 = Ql 

or 

(o + 1F'2)F'Q + <P(PQl/ + (1 - F')(J.L - vF') = 0, 

(5.12) ooQ J + fJ Qf + (x + <PFQ)Ql = 0, 

Q2 = - Ql . 

The two above cases have to be treated separately. 

CASE 1. From Eqs. (5.11), apart from the solution 

(5.13) 
(F- l)(J.L - vF') 

Q = (o + , F 2)F' ' 

which holds for every F > 0 (and coincides with that given by Eqs. (5.5)), we also 
obtain two other solutions 

(5 .14) 

Q = _ (/311 + oo<fJ- \ <P)F'2- /3 (1' + 11)P + f3tt 
[o f] + (/3! - <P2)F2]P 

Q2 = -{3 (11cP - 18)F2 - cP(J.L + v )F - !l cP + o8 
1 Cl /3 + (/3! _ <P2)F2 ' 

where we have denoted 8 := \ - oo. 

CASE 2. From Eqs. (5.12), apart from the solution (5.13) which holds for every 
F > 0 we obtain two other solutions 

(5.15) 

Q = _ (/3v- ao<P- \'cP)P2- fJ (J.L + 11)F + f] p 
[ o/3 + (/3! _ cP2)F2] p 

Q2 = /3 (11</J- 1b)F2 - cP(J.L + v)F - fl cP - a8 
1 a j3 + (/3/ - <~J2)F2 ' 

where 8 := \ + o o. 
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Under assu mption !3! > cp2 and using no tations introduced above solu tions 
(5.14) hold, fo r F E (0, Fe ] and F 2:: FE, where Fe < 1 <FE. If F E (Fe , FE) 
then there exists solutio n given by_E qs. (5.13)_:__At the sam~ time solutions (5.15) 
hold fo r 1" E (0 , Fe ] and F 2:: FE, where Fe < 1 < F E. If F E (Fe, F E) 
the so lution is given by Eqs. (5 .13). It means that there can exist two kinds of 
bifurcations; in t he fi rst case after the bifurcation we obtain Q1 = Q2 and in the 
second Ql = - Q2. 

It has to be remembered that all the obtained results have the physical sense 
if and only if conditions (5.3) ho ld for every X E V R · 

The micro-bifurcation cannot take place in materials fo r which either condi
tions b2 < 4c and P < 4c o r conditions b ~ 0, c 2:: 0 and b ~ 0, c 2:: 0 hold. 
In this case there exist one micro-equilibrium path (1"1, F2, Q, Q1, Q2) in which 
F2 = F, F1 = F - 1 and Eqs. (5 .5) hold for every F > 0. 

To make the above example more clear from the physical viewpoint we have 
stated at the begining of this section that the variables F!, F2 as well as Q1 , Q2, 
Q3 are constant throughout the body. However, a ll investigations given above also 
ho ld true if the aforementioned variables are arbitrary regular macro-functions 
of X E J!R . In th is case we can also take into account the first of Eqs. (3.1) and 
after that pass to the analysis of the macro-stability of a body. 

6. Conclusions 

The obtained general relations concerning stability of highly-elastic periodic 
composites under finite deformations yield the analytical basis for calculations of 
different special p roblems. Following the general comments given a t the end 
of Sec. 3 we can mention here the problems of macro-stability and those of 
the local and non-local micro-stability. It can be seen that in the problems of 
macro-stability, after neglect ing the effect of the microstructure length dimen
sio n on the dynamic behaviour of the body, the obtained formulae are similar 
to those of the nonlinear elasticity of homogeneous bodies. U nder this approxi
mation terms involving l2 drop out fro m Eqs. (3.8), (3 .9). Hence the fi rst new 
resul t is the investigation of the effect of the microstructure length parameter l 
o n the dynamic macro-stability of the body. T he second new result is the exis
tence of the local and non-local micro-stabil ity in highly-elast ic composites. This 
phenomeno n is due to the micro-periodic material structure of the body and was 
illustra ted in Sec. 5. More gene ral applications of the obtained results are under 
conside ration and will be presented in a separate paper. 
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Plasma double layer system leading to chaos, intermittency 
and flicker noise 

A. J. TURSKI and B. ATAMANIUK (WARSZAWA) 

ELEcrROSTATIC DOUBLE LAYERS appear in plasma and semiconductor systems with flow of e lectric 
current. The systems display bifurcations, chaos, imermittency and power-law of spectral power 
density that is 1/ j -noise a lso called flicker noise. Fractal analysis of experimental data recorded 
in time (t ime-series analysis) indicates that the plasma dynamic systems are of low dimension. 
Colorcd and fractal noise influence on measured data may disqualify that conclusion. A piecewise 
linear dynamical system is considered to clarify this problem. Bifurcatio n tree, intermittent chaos 
and If j -noise arc revealed by the dynamic system. 

1. Introduction 

THE STUDY OF PLASMA systems may be performed by analyzing experimental data 
recorded as a series of measurements in time of pertinent and easily accessible 
state variables of the system, e.g. electric current, voltage, densities and veloc
ities. In most cases, such variables describe a global or averaged properties of 
the system. AJthough there a lready exists a vast literature describing experimen
tal results concern ing bifurcation, intermittency and chaos in plasma d ischarge 
and turbul ent systems, a complete and coherent discussion and theory derived 
from plasma eq uations are st ill lacking. P lasma discharges produced by electric 
current flow a nd reveal ing self-osci lla tions (Hopf bifurcation), saddle-node and 
period-doubli ng bifurcations, intermittency and chaos are of our interest. We as
sume that the cause of the occurring phenomena is charge separation leading to 
double layers (DL), wh ich are localized in space. The wave length of the wave 
phenomena is much greater than the physical size of the system and we can 
conside r DL as a lumped element. The assumption allow us to construct a sim
pl ified model. 1t is based on piecewise linear voltage-charge characteristic of a 
capacitor simulating DL. The mode l can be realized in the form of nonlinear 
electrica l circuit and the measured variables are to he compared with those an
a lytically computed. By virtue of the circui t eq uation analysis [1), Poincare map 
is derived. Calculat ion of bifu rcation trees and strange attractors fo r different 
parameter sets are displayed and intermittency, saddle-node and period-doubling 
bifurcations are revealed. 

Plasma experimental data recorded as a series of measurements in t ime are 
analyzed by use of fractal dimension and the average dimension, most often cor
relation dimension, is low and that implies the low-dimensional dynamical system 
[2, 3). T his conclusion was vety recently cri ticized for the two reasons. One stems 
from the fact that the apparent correlat ion dimension may result from the class of 
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stochastic noises with a power-law of spectral power density, f -a , the so-called 
colo red noise, which leads to a low finite value for the correlation dimension 
see [4). The second reason is related to intermj.ttency which leads to the sam~ 
power-law spectra and low fractal dimension. The low correlatio n dimension of 
such noise means th at the trajectories in the state space exhibit fractal behaviour 
alo ng the trajectories, while the fractality of a strange attractor associated with a 
chaotic system is perpendicular to the motion such that each trajectory returns 
at time close to the starting points. The methods which have been used in the 
stud ies of the correlation dimension [3, 4] do not distinguish between these two 
kinds of fractalities. The situation around this topic has remained unclear and 
we offer some no nlinear circuit analogue models, which show promising results. 
We introduce two notio ns - one is a colored stochastic noise and its power-law 
spectra fo r low frequencies, and the o ther one is intermittent chaos leading to 
f -a noise. It deserves notice that the .r-rx noises are ubiquitous phenomena con
cerning elements of electronics, acoustics, mechanics, traffics, etc., see [5, 6, 7]. 
Considerat ion of dynamkal system with piecewise linear nonlinearity may con
tribute to understanding of the problem. 

2. Colored noise 

Colored stochastic no ise 17(t ) is based on an extension of the space of variables 
so that 7J (i ) itself becomes a variable driven by white no ise ( (L). In particular, 
if 7J (i ) is exponentially correlated Gaussian noise then one can write the set of 
stochastic differential equations 

(2.1) 

(2.2) 

x(t ) = G(x) + g(x ) 7J (L), 
. 1 

7] (L) = - - 7] (i ) + ( (t ) , 
Tc 

where G(.r ) is the determ inistic "force" and ( (t ) is Gau ssian white noise with 

correlation function 

(2.3) (((t)((T)) = 2D o(t- T). 

Then it can be easily seen that (2.2) leads to the exponentia l correlation function 

(2.4) 
D -lt-rl 

(17 (i)7] ( T)) = -e-re- . 
Tc 

The probability density P(x, 7] ; (t jx0), 7Jo ) obeys a Fokker - Planck equati~n. 
Bicolored stochastic noise assumes two additiona l variables 7]1 (t ) and 7J2( t) w1th 
co nstants Tc

1 
and Tc

2
, see Eq. (2.2), driven by white no ises with D1 and D 2, 

respectively. 
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We note that colored noise had a low correlation dimension as determined 
from the G rassberger - Procaccia (GP) algorithm [4). The stochastic process gen
erated by one or two colors can be expressed as discrete Fourier series [4) 

N/2 

(2.5) X(i) = L Ck cos(21rik jN- cPk ), 
k =l 

where cbk are random phases in the range [0 , 27f] for each wave number k, f = 
~"/N is a frequency, and the coefficients Ck are related to the power spectrum 
P(~· ) = Q k-o, that is 

(2.6) 

fo r bicolored noise, we have two powers a 1, a 2, and a 1 is valid for the range 
k < /,;c and o·2 is valid fo r k > kc. Critical value kc is such that it relates to 
a frequency at whi.ch there is a break in the power spectrum of the measured 
variable. The condition of continui ty is fulfilled if Q1k-cq = Q2k- C'l2 . 

fl . 
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FI G . 1. Exponential correlation fu nctions - f 1, f2, f3, versus .,:, related Fourier transforms 
F 11 F21 F31 and power Fourier transforms PF11 PF21 P F31 versus j . 

Computer calcu lated and p lotted Fig. 1 refers to the correlation functions (2.4) 
and exh ibits .hi = A exp ( - k, L;), where l = 1, 2, 3; k1 = 0.25, k2 = 1, k3 = J .5 
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and -L; = 0 -:- 63. Also Fourier transforms F1,j = FFT(f1) , F2,j , F3,j are shown 

as well as power spectra P F1,j = (jF1,ji)
2

, P F2,j , and P F3,j are depicted. 
The Fourier transform 

(2 .7) F/ . = At 1 
.J 7f w2 + k-2 , 

j •t 
l = 1, 2, 3 

is the well known Lorentzian spectral density revealing flicker noise. This ap
proach is to be used in cases of more complex correlation functions. 

3. Intermittency and flicker noises 

The phenomena of flicker noise have long posed some enigmatic questions. 
First and foremost is the question of how is it possible that in systems of minute 
physical size there occur processes on the time scale so long as to allow for 
divergences in their spectra? The appearance of broadband spectra and, at the 
same time, the rising of the low-frequency end have long been associated with the 
onset of chaotic behaviour. Chaotic signals as well as stochastic ones are assumed 
to have stationary statistic and the correlation function 

(3.1 ) 

Since noise waves have infinite energy but finite power, we must define a power 
spectral density. 

The autocorrelatio n function for a noise wave :r(t) is defined as the time av
erage 

(3.2) 

and then 

T 

C/,_.(T) = 1 !~00 2~, j ~r(t + T) x (t) ell 
-T 

The spectral density of the noise wave .'l.: {l) is defined as the Fourier transform 

•X> 

(3.3) S:r(f) = / C(T) e-2
" i 

7 f cLT, 

-= 

where S_,. (f) must be real and positive and if x(t ) is real, we have 

S',_,{f) = S,_,(- f). 
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Bifurcation and chaotic features of dynamical systems of finite number of 
freedom-degrees are investigated by use of Poincare maps, which are discrete 
processes. In case of one-dimensional map 

(3.4) Xn+l = g(xn ), 

the discrete autocorrelation function Cx(m) of Xn is 

(3.5) 

and spectral density 

(3.6) 

1 N 
Cx(m) = lim 2 N L :rn+m Xn, 

N~oo • + 1 " 
?1 =- / v 

00 

S:r(f) = L C'x(m) e-27rmif . 

m = -oo 

By virtue of symmetry, we have 
•XI 

(3.7) sf = L C (m.) cos(27r m f) , 
m =O 

where 

1 N 
(3.8) C.u(m) = lim i\{ L :rn+m Xn . 

N~co h 
n =O 

Let us consider a logistic map 

(3.9) 1:n+l = R xn (1 + Xn ) = g(xn ) 

where 0 < R < 4. 
Just below period 3, there is a saddle-node bifurcation for Re = 1 + (8)112 and 

then at R = Re - .:::, an intermittent signal appears. For any c > 0, correlation 
functions C',. (m ) decay exponen tially with a decay time T rv c 112, see [5] . By 
plotting the power spectrum of the third iterate g3(x ) we can thus get an apparent 
1 I f2 divergence, with a cut-off that can again be pushed down to arbitrarily small 
frequencies by lowering c. There are three types of intermittencies. The first one 
is connected with transition from saddle-node bifurcation to chaos, second with 
Hopf bifurcation and the third one with period doubling bifurcation. Figure 2 
demonstrates the computed results of the in termittent signal Xn versus n for 
F? = 3.74474 < Re, its correlation function 

(3.10) 
1 (N+l-s ) 

C's = V L l 'k+s Xs 
j + 2 - S k =O 

and Fourier transfo rm 1\ Cs := F FT(Cs) as well as power spectral density, that 
is P ;,· C's : = Cl F C'5 If Spectral densities reveal 1 If divergence in vicinity of 
I = 0, (s = 0). This approach is to be used in cases of more complex Poincare 
maps. 
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FIG. 2. a) Intermittent signal Xn versus n for logistic map Xn+I = Rxn (l - xn) where 
R = 3.74474 and its correlation function C', . b) Fourier transfotm K C', and PI\' ·• versus s. 

The right-hand side drawings of /1-C', and P X c. are enlarged in vicinity of s = 0 and 
demonstrate 1/ f - noise behaviour. 

4. Charge separation and double layer s imulations 

Charge separation in plasmas takes p lace due to electric current flow. Forma
tion of DL starts when electron and ion convection velocities of the flow satisfy 
Bohm condit ions, e.g. see Galeev and Sagdeev, Ch. 1 in the monograph [8]. The 
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negative anomalous resistivity of plasma discharges leads to self-oscillation [9] 
and then nonlinear voltage-charge characteristic is responsible for bifurcation, 
intermittency and chaos. The characteristic is simi lar, if not identical, to that of 
junction capacitance of semiconductor diode, which is based on charge separation. 
Self-oscill ations of plasma discharges are revealed by use of electrical circuit with 
no nlinear resistance, e.g. see [10]. The problem is classical in plasma discharges. 
The next step is a simulation of plasma discharge system by a driven R- L-Diode 
circuit, see [1 , 9]. The circuit ordinary differential equations are reduced to the 
following 2-D Poincare map [1 , 9]: 

{ a1xn for Xn 2:: 0, 
Xn+l = Y n - 1 + 

for Xn < 0, - a 2Xn 
( 4.1) 

= bxn, Y n +l 

where X n and Y n are responsible for charge and current in the circuit, and 

(4.2) 

R, L, C1, C2 are circuit elements and f is the frequency of the driving voltage. 
Characteristic values .A 1,2 are real or complex conjugate, hence a1 and b are 
always real positive and real negative numbers, respectively. A piecewise linear 
characteristic (C1 , C2) is a satisfactory substitute for the nonlinear voltage-charge 
characteristic, see [1 , 9]. The coefficient a2 depends on amplitude and frequency 
of the driving voltage and can be numerically determined. The graphs of a2 versus 
driving voltage for a given number of frequencies f are given in [1 ]. We note, 
that the following equation 

(4.3) 

where 

d2u du ., ., 
d 2 + h'-l + f(u ) +Eo = £ (t) , 

l G l 

{ 
au 

f(u) = /3tL 
for u 2:: 0 , 

fo r u < 0 

is a piecewise linear funct ion and 

J.!)(t) = £ 0 sin(wt) :::= sgn (sin(wt)) ) 

possesses the Poincare map given by Eq. (4.1). 
From extensive laboratory measurements and digital computer simulations, 

S. T ANAKA et al. [1], have fo und that in order to reproduce the same qualitative 
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behaviour of the dynamical system, a piecewise linear voltage-charge characteris
tic is satisfactory. Furthermore, it was observed that the sinusoidal voltage source 
can be replaced by square wave voltage of the source period T = 1 If without 
altering the bifurcation structures. Therefore, we analyze Eq. (4.1) as a structure 
representing dynamics of the system with a nonlinear element responsible for 
charge separation. We believe, that intermittent chaos and flicker noise have not 
yet been revealed for the system. We exh.ibit our numerical calculation results. 
Figure 3 shows the "bifurcation tree" that is Xi ,m versus a 2 where l = 650, 651, 
... 750 represents the iteration number, see Eq. (4.1) where n = l , whereas m 
is responsible for a 2(m ), which changes from 0 to 10 as m changes from 0 to 
M, e.g. fd = 200. The second variable Yl,m is similar since Yl+ l ,m = bx1 ,m· 
It reflects the physical situation that each point in this bifurcation tree diagram 
represents a 1-D Poincare section of electric current trajectory taken at each fun
damental period T = 1 If of the sinusoidal voltage source. Iteration results for 
l = 0, 1, 2, .. . 649 are not depicted here. They concern mainly transition points 
to periodic and chaotic states. The fo llowing striking features are seen in this 
diagram. 

10 

8 

6 

~ .m 

4 

2 

0 

0 2 4 6 8 10 

al( m) 

PIG. 3. Bifurcation tree of Eq. (4.1 ), I = 650, ... 750, I is iteration number n ~ I and m is 
responsible for a2 ( m) changes aloog horizontal axis. 

(i) A successio n of large periodic windows whose periods increase exactly 
by one as we move from one window to the next at its right side (saddle-node 
bifurcat io n). On the left side of each chaotic band we observe transition to chaos 
via period-doubling bifurcation. 
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(ii) Going along trajectories we can expect a 1st-type intermittency at the 
right-hand side of boundary of each band of chaos and a 3rd-type one at the left 
side of the boundary of chaotic bands. 

0 I 

~.1 

~.2 

~.· 

-1 

\ 

' ' 

....... ·.· ,. 

.. .. ,.~,. .. 

'1,40 

F IG. 4. Strange attractor fo r a2 = 4. 
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F IG. 5. Strange attractor for a2 = 8. 

Figures 4 and 5 show a 2-D Poincare sections taken fo r a2 = 4 and a2 = 8, 
that is the second and th ird chaotic bands, see Fig. 3. They are strange attractors 
associated with a chaotic mo tion perpendicular to the trajecto ries. The attractors 
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are composed of a number of branches and the number increases as we move 
from left to the right bands. 

40 .-------.-------.-------.-------~------~ 

30 

zo 
~ . m 

10 

0 ·-········ --- ~a uij]~ 

0 z 4 6 8 10 
al( m ) 

F rG. 6. Bifurcation tree for Eq. (4.1), Xt ,m versus a2 (m) =?m, where l is iteration number and 
(L J = 1.13, b = - 0.5 . 
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F rG. 7. Strange attractor for a2 = 3. 

Figures 6, 7 and 8 show the bifurcation tree and strange attractors for selected 
parameters a 1 = 1.13 and b = - 0.5. There is only one chaotic band and two large 
periodic windows. The strange attractors are composed of 5 branches for a 2 = 3 
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and 3.5. The number of periods jumps from 1 to 5 as we move from left to the 
right-hand periodic windows. O ne can expect 1/ f fluctuat ions along trajectories 
due to the 1-st and 3-rd- type of intermittency. 

·., 

.. .... 
, .. '':_.·.·.:··· 

·.·, .. 

·.,. 

•, 

'• 
•., 

. ..... -

; ..... 

'·. 

~~--~~--~~~--~~ --~~----~'· ---J'----~' ~ 
~ -l 

"1. 35 

F IG. 8. Strange attractor for a2 = 3.5. 

Figure 9 exhibits computed Lyapunov exponents->-x determining varia tion of 
.r n versus a2 for the bifu rcation tree depicted above. We note that the calcula ted 
negative values of Ax and stable periodic windows of the bifurcation tree as well 
as positive values of Ax and chaotic band are related, respectively. 

To demonstrate intermittency of our system given by Eq. ( 4.1) we determined 
a number of values of a2 fo r which intermittent chaos occurs. We may expect such 
values of a2 at the transition of periodic windows and chaotic bands. It is wo rth 
noting that, in some cases, very high precisio n of calculation of a2 is necessary. 

F igure 10 shows intermi ttent state variable (signal) X n versus n, strange at
tractor Vn versus T n , power spectrum P Xn that is a fast Fourier transform (FFT) 
of .r;, correlation function Cs computed according to Eq. (3.10) and its power 
spectrum density for a selected value a 2 = 1.94610199282. This figure shows 
intermittency of saddle-node type, which is located at the boundary of the first 
chaos band and 3-period window, see Fig. 3. The intermittent signal consists of 
chaotic part and inclusions of 2, 3 and 4-periodic parts. Also, the strange attractor 
reveals periodic parts in the form of isolated points. Power spectrum density -
PXn displays 1/ I fluctuations (flicker noise) in the vicinity of n = 0. The cor
relation function diagram and th e power spectrum of the function confi.rm this 
property. 
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15.------.------~------.------. 

10 

002.------.-------.------.-------. 

;\xH ,I 

FIG. 9. Lyapunov exponent A:r versus a.2 in re lation to bifurcation tree of Eq. (4.1) et , = 0.7, 
b = - 0.13, and a2 = 0 -:--10. 

F igures 11 and 12 show two intermittently chaotic regimes. They concern 
transitio n from the chaotic band to the 4-periodic window (Fig. 3). For a given 
value of a2 , see Fig.11 , we have predominantly chaotic X n but if we add only 10- 14 

to a2 then .l'n changes drastica lly (4-periodicity prevails). The shape of strange 
attractors is nearly th e same but that one responsible fo r the more chaotic case 
seems to be more "dense". Also here, the power spectrum has no sharp peaks, 
in contrast to the less chaotic case. Correlation functions are d istinctly different. 
One is similar to the purely chaotic correlatio n and the other one to the periodic 
case. F licker noise compo nents are mo re significa nt for the case of less chao tic 
variable. 

The last figure, Fig. 13, shows the state variable X n versus n for the bifur
catio n tree presented in F ig. 6. We found the value of a2 = 3.7241, which is 
characteristic for a transition from chaotic band to 5-periodic window. The se
lected value of a2 is such that nearly a half of the variable Xn is chaotic and a ha lf 
is 5-periodic. Power spectrum correlation funct ion and flicker noise contributions 
are characteristic for intermittency. 
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F tG. 10. Intermittent state variab le x, versus n (here time), strange attractor Yn versus x, , 
power spectrum P .\', = F FT(x~,) versus 11 (here frequency), the correlation function C, versus 
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F IG . 12. Interm ittent state variable Xn versus n (here time), strange attractor Yn versus Xn, 

power spectrum PXn = F FT(x;.) versus n (here frequency). Parameter of Eq. (4.1); ctt = 0.7, 
b = - 0.13 and az = 4.57988001000012. 

The intermittent signals p resented here were selected from a great number of 
computed examples of chaotic regimes. We note that the state variable Yn can be 
easily obtained in virtue of the fo llowing relation: Yn+ l = bxn, see Eq. (4.1). We 
see that the chaotic bands are self-simjlar and therefore, intermittent variables Xn 

can be fou nd inside of each chaotic band. For instance, the central chaotic band 
of F ig. 3 is composed of three self-similar sections, which appear as we divide the 
band by two horizontal lines and each sect ion is similar to the entity. The same 
p roperty shows all chaotic bands of Fig. 3. 
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[174] 



http://rcin.org.pl

PLASM A DOUBLE LAYER SYSTEM LEADING TO CHAOS 175 

5. Conclusions 

The dynamical system considered here is advantageous as it may be easily mea
sured and computed. There are three parameters a 1, b and a2 which allow for 
applications and simulations of d ifferent dynamica l processes. Three fundamental 
features deserve attention. The assumed piecewise linear approximations of non
linear characteristics allow to expose the most complex properties of nonlinear 
systems, e.g. important types of bifurcations, self-similarity, chaos, intermittency, 
fractality and flicker noise. A number of papers are devoted to the theory of 
piecewise linear maps, we refer to the following [5, 11, 12] and [13]. 

The next features concern flicker noise or 1/ f fluctuations of intermittently 
chaotic variables. In principle, we are not able to distinguish colored noise, com
ing from outside to the system, from the intermittent signal of the system, which 
generates the noise. In the case of colored noise, however, the trajectory produces 
a fractal curve that wanders erratically; the correlation dimension is a measure 
of the fractal dimension of this curve and is unrelated to the existence of an 
attractor. In addition, the correlation dimension is related to the power law spec
tral index o.·(f-o ) by Dcr = 2/ (o.- 1), see [4] . Fractal dimension of strange 
attractors is the last feature of our comments. Varying the parameter a2 we may 
select intermittently chaotic variable of higher or lower contents of chaos. In this 
way, we may change fractal dimensions of an attractor as well as the power law 
spectra l index o·. According to our computer calculations, lowering content of 
chaos in intermittent signal causes higher content of .r-a fluctuations but lowers 
fractal dimension of strange attractors. This conclusion concerns only the ranges 
of parameters u.1, b and a2 considered here. 
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Slow viscous flow about a permeable circular cylinder 

SUJIT KUMAR KHAN and D. PALANIAPPAN (SANDUR) 

Stow STEADY two-dimensional motion of a viscous incompressible fluid about a porous circular 
cylinder is considered, using Darcy law for the flow in the porous region and Jones conditions on 
the contour of the cylinder. The problem is formulated in terms of Stokes stream function and 
velocity, and pressure fields of the modified fl ow in the presence of porous cylindrical boundary 
are obtained explicitly. lt is obsetved that the Stokes paradox exists even in this case. Several other 
illustrative examples are presented to justify the usefu lness of the method. It is found that the 
potential (point) singularities in the presence of a cylinder produce uniform flow at large distances, 
its strength being independent of porosity. However, the Stokes singularities (such as Stokeslet 
etc.) produce uniform flow at infinity, and its strength depends on the porosity as well as on the 
location of those singularities in the presence of the cylinder. The known results in two-dimensional 
Stokes flow are deduced as special cases from our result. 

1. Introduction 

THERE EXISTS an extensive literature on two-dimensional creeping flow (Stokes 
flow) problems, in which the inertial effects are negligible in comparison with the 
viscous effects in a viscous incompressible fluid . The problem, in general, can be 
reduced to finding so lution of biharmonic equation that represents two-dimen
sional slow viscous flow past a finite body. It is quite well-known that there is 
no solution of the biharmonic equation for the streaming flow past a finite body, 
what is widely known as Stokes paradox. However, the slow streaming flow at 
large distances from a fini te body may be obtained from the solution of the bi
harmonic equation for locally generated two-dimensional flows in an unbounded 
fluid. JEFFERY [1 J has shown that two rigid circular cylinders of equal radius, ro
ta ting with equal but opposite angular velocities, produce a uniform stream at 
large distances. DORREPAAL et al. [2] have also explained such phenomenon by 
considering a rotlet or a Stokeslet in fron t of a rigid circular cylinder which lead 
to a uniform fl ow at infinity. SMITH [3] considered the simplest situation of a 
single sink positioned in front of a circular cylinder, and concluded that there 
was a un iform stream in this case also. The solutio n due to SMTTH [3) was also 
obtained earlier by AvuDAINAYAGAM and JOTHIRAM [4] by an approach similar to 
that of DORREPAAL et al. [2). 

The purpose of the present paper is to discuss the solution of biharmonic equa
tion representing the two-dimensional Stokes flow in the presence of a porous 
circul ar cylinder. The corresponding three-dimensional problem with spherical 
and p lane boundaries have been investigated by several authors in different con
texts [5 - 12]. In this paper, we consider a general Stokes flow past a stationary 
infinite circular porous cylinder (using D arcy model) in a viscous, inco mpressible 
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Auid. The velocity and pressure fields in the Stokes region are obtained explic
itly from the stream function which satisfies the biharmonic equation. The Darcy 
region velocity is derived by using the fact that the Darcy pressure satisfies the 
Laplace equation. The solutions of the two regions are matched at the contour 
of the cylinder using the boundary conditions due to JONES [13]. It is shown that 
the Stokes paradox continues to exist with these conditions at the contour of the 
cylinder. Several illustrative examples are worked out to justify the usefulness of 
the present method. It is noted that the point singularities located in front of the 
cylinder produce a uniform stream at infinity, and its speed 

1) depends on their location alone in the case of potential singularities; 
2) depends o n their location as well as porosity in the case of Stokes singu

larities. 
This fact may be due to the validity of the Darcy equations which are restricted 

to low porosity of the region. The above observation would have to be checked 
by using Brinkman model equations which are valid for high porosity. 

2. Mathematical formulation 

Consider the slow steady fl ow (creeping flow or Stokes flow) of a viscous 
incompressible fluid past an infinite circular permeable (porous) cylinder (Darcy 
region) of radius a. Fo r the flow o utside the cylinder, the governing equations 
are the linearised Navier - Stokes equations o r simply the Stokes equations 

(2.1) 

(2.2) 

fl\72q = \lp, 

V ·q = 0. 

Here q is the velocity vector with components (q,., qo, 0) in the radial and trans
verse d irections (1·, B) respectively, p the p ressure and fl the coefficient of viscosity 
of the flu id. 

The flow inside the porous infinite cylinder (0 ::; r ::; a) is governed by D arcy's 
law 

(2.3) 

,, 
Q = --vP, 

f l 

\l ·Q = 0, 

where Q is the volume rate per uni t cross-sectional area, P the Darcy p ressure 
and k > 0 is the permeabili ty coefficient. 

The appropriate boundary conditions on 1· = a are as fo llows: 

(i) the pressure is continuous across the boundary of the cylinder 

(2.4) p(a, 0) = P(a, 0); 
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(ii) the radial velocity is continuous at the boundary of the cylinder 

(2.5) 

(iii) } ONES condition [13) fo r tangential velocity on the cylinder is that the 
tangential stress is proportional to the difference in the tangential velocities of 
the two regions, i.e 

T = , [~ aq,. + 1·..§__ (qe)] = ~ - Q 
(2.6) ,.o j-r=a. f 1' ()() 01' r ,·=a /7:: [qe o],·=a ' 

where T,.0 is the tangential stress component and a is a parameter which com
pletely depends on the porous medium. 

3. Method of solution 

It is well-known that the Stokes equations (2.1) and (2.2) in two dimensions, 
when expressed in terms of stream function, reduce to 

(3.]) 

where 

and 

(3.2) 

(3 .3) 

q,., q0 are the components of velocity along T and 0 directions, respectively. The 
general solu tion of (3 .1) in polar coordinates is given by 

(3 .4) 
•X• [ C' D ] 

!l' = """ A 1.n + B 1.n + 2 + ___::: + _n_ (cos nO + sin nO) 
, ~ n n T n rn-2 ' 

n=O 

where we have excluded the terms which give nonzero vorticity at infinity. The 
constants : \, and 8 11 are assumed to be known and will be determined from the 
given flow fi eld. For co nvenience we proceed further with the terms involving 
sin nO in the Fourier expansion (3.4) on ly, since the calculation for the other part 
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involving cos nO is similar. Now the components of velocity and pressure in the 
Stokes region obtained from (3.2), (3.3) and (2.1) are 

CO [ c D ] qr = - "' Anrn- l + B nrn+l + _ n_ + _n_ ncos nfJ 
~ rn+l 1'n-l ' 
n=l 

(3.5) qe = "' [nAnrn- 1 + (n + 2)Bnr·n+ l - nCn - (n - 2) Dn ] sin nfJ 
~ rn+l rn-1 ' 
n=l 

7J = Po - 11 t [4(n + 1)Bnrn + 4(n- 1)~nn ] cos n O. 
n=l 

In the porous region (i.e r < a) the Darcy pressure satisfies the La place equation 
\12 P = 0. Therefore, 

00 

(3 .6) P = Po + L En1' 11 cos nfJ. 
n=l 

The components of velocity inside the porous cylinder in r and 0 directions now 
become 

Q /.; fJ p k ~ E n-1 0 ,. = - - ~ = --~ n -'n T cos n · , 
11 U1' 11 n=l 

k fJP k oo 
Qe = --- = - L nEnrn-l sin n fJ. 

11 roB lt n=I 

(3.7) 

The stream funct ion for the Darcy region may also be defined and given by 

(3. ) 

where V24•+ = 0. It should be noted here that in (3.6) we have omitted the terms 
which do not produce finite velocities at the origin. 

The general expressions for the pressure and velocity fields in both the regions 
will now be solved for the constants Cn, 0 11 , .C'n expressed in terms of An and 
Bn using the boundary conditions (2.4)- (2.6). 

Application of the bouncl31y conditions (2.4)- (2.6) in the general solutions 
yields 

(3. 9) 
( (n - 1) oa -

4
k n (n- 1)2) An Jf a2 

Mn 

( - 2n + ~n + 4~(n - 1)(n + 2)) a2Bn 

+ Mn 
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(3.9) 

!cont.] 

where 
oa Jk 4k 

lVIn = 2n + IT + 4o-n(n - 1) + 2 n(n + 1)(n- 1). 
vk a a 

4. Examples 

4.1. Uniform flow a long OX 

For the uniform flow with a speed U along OX, we have 

qr = -U cosB, qo = u sin e 

and 

(4.1) '1/Jo = Unin e. 

Threfore we have A1 = U, An = 0 for all n ~ 2 and En = 0 for all n. The 
coefficients Cn, On and En as calculated from (3.9) -(3.11) are 

(4.2) 

This implies 1/' = 0. Thus a uniform flow about a porous cylinder is not possible, 
which is the usual Stokes paradox known in the literature. 

4.2. Quad ratic polenial flow 

In th is case 

(4.3) 
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([I / 3 is a shear velocity) and A1 = A2 = 0, A3 = -U / 3, An = 0 for all .,.~, 2: 4 
and B11 = 0 for all n. The coefficients C'3 and D 3 are found from (3.9) and are 
given by 

(2 aa - 48~) (- U) a6 

/k a2 3 C'3 = -:-_____..:.--'-'-------=--'------:-

(
6 + o·a + 24 aVk + 96~) ' 

J[ a a2 

(4.4) 
( 2 + aa) Ua4 

J[ 

[6 + aa + 24 a JJ: + 96.!::.._] 
Jf a a2 

2 (2 + aa) 
£3 = - 4[t u !k 

a2 (6 + aa + 24 a!k + 96 k) 
Vk a a2 

Now the complete stream function for the two flow fields are given by 

(4.5) 
( 

2 + aa) I 
+ 3 ---,(,_ ___ ___,_v'-'-~k=----:-) c~

4 

sin 30 , 
6 + aa + 24 av k + 96.!::._ 

Vk a a2 

( 2 + na) 
Vf r 3 sin 30. 

Stream lines in Stokes' region are plotted for difierent values of porosity in Fig. 1. 
We observe that in the li mit (a) Ji:) - , k = 0, we recover in (4.5)1 the 
stream functio n fo r the quadratic potential flow past a circular cylinder [14). 
When (Ct/ Jf) = 0, k = 0, we obtain the quadratic potential flow past a shear-free 
cyl inder [15). 
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k = l0-9 (Avudainayagam c l al.) 

0.1 

3 4 

l.f/ = -0.05 
u 0.12 

a = 109 

a 1.0 

F I G. I. Stream fu nction ~·(r , B) in Sto kes region. 
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183 

6 

Another interesting special case may be deduced from Eq. (4.5)1. If we let 
(o/ Jf) - (J / A!t) and k = 0, then (4.5) 1 reduces to 

(4.6) { ' [ 3 2(1 - 11) a6 3{3 a4
] . 

tl' = 3 _,. - (,3 + 2) 0 + (f-J + 2) --;. sm 3B, 

where ,j = 1 + (o/2A!t). This solution co rresponds to the quadratic flow past 
a cirular cylinder with mixed sli p-stick conditions [16]. In the present case the 
boundary condition (2.6) becomes q0 = AT,.0 on ,. = a where A is here the 
slip parameter. Thus our solution includes all the possible quadratic flows past 
a cylinder indicating that the boundary conditions (2.4)- (2.6) are assumed in a 
more general fo rm. 

4.3. Source outside a circular cy linder 

Consider a source of unit strength located at (c. 0), c > a . The stream function 
corresponding to a source in an unbounded flow is 

1· sin 0 
(4.7) 1/'o(r, 0) = tan - 1 . 

c- r cosO 

Eq uation (4.7) may be expanded into a Fourier series as 

(4.8) 
fX, 1'" 

li'o = "'"' - sin 110. 
L ne" 
ll= l 
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Therefore An = 1/ncn and Bn = 0 for all n . The coefficients Cn and Dn can 
be calculated from (3.9) and the modified stream function in the presence of a 
porous cylinder is: 

for T > a, 

(4.9) 1/; (r, () ) = "' T n + /k a 2 
00 [ ((n- 1) cw -

4
k n(n- 1)2

) 

~ Nfn 1'
11 

for 1· < a 

(4.10) 
( aa) 

4k oo 2 + -. T n 

V'+ = - "'· /k (n- 1)- sin ne. a2 ~ M ~ 
n = l n 

1 . () - sm n · 
ncn ' 

It will be of some interest to study the asymptotic behaviour of ( 4.9) as T ap-
proaches infini ty. In the limit as 7· - , Eq. (4.9) becomes 

(4.11) 

This is a unifo rm flow along the negative x -direction at large distance from the 
porous cylinder. 

This conclusio n has already been drawn by SMTTH [3] in the case of a source 
acting ou tside a rigid cylinder. We remark that the porosity has no effect on the 
speed of the uniform stream at large distance. Perhaps, this may be due to the 
fact that the porosity is smal l in Darcy flow. 

4.4. Stokeslet outside a circu lar cylinder 

Now let us consider a Stokeslet of strength F located at (0, c), c > a. The 
stream function corresponding to the Stokeslet in an unbounded region is 

(4.12) ·l/Jo = F(r cos() -c) log R1 , 

where Rf = 1·
2 + c2 - 2c1·cos B. The constants An, En, Cn, Dn. and En can 

be obtained in the similar way as that explained in the above example. The 
st ream-funct ions fo r the two flow fields in the presence of a Stokeslet in front of a 
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po rous circular cylinder may be constructed with these constants. The asymptot ic 
form of th e perturbed external flow fi eld as .,. - is given by 

F [- (2 + a a) ~ + (a a + 4 aVk + 8k ) ~] 
Jk 2 Jk a a2 2c2 

( 4.13) v(r, O) = [ ] 7' COS 8 . 
2 

a a 
+ -

v'k 
Hence, at large d istances, the Stokesle t produces a unifo rm flow whose strength 
depends on the location of the singularity and on the porosity. The variation of 
the speed for d ifferent values of aj v'k are shown graphically (see Fig. 2). The 

'2 
<l) 
0.. 

(/) 

0.7 

k = 1.0 

0.95 

0.85 

0.75 

0.65 

0.55 

0.50 

0.1 

0 1'-0 .T'J ::....._....___,~~'-;;---"--'-'-'--'--".J.LJ'-:--"--'-'-'-'...W...O...I OL-,;2,-----.........,__,_.-'-'--'-'-'10 3 

a I lk 
I~ I G. 2. Stokeslet-cyl indcr combination-effect of permeabil ity on the speed at large distances. 

effect of porosity o n the stream fu nction at large distances is shown in Fig. 3. 
In the limit when 1.: = 0 and (oaf Jf) - , we recover the resul t obtained by 
D oRREPAAL et al . (2] fo r a rigid circular cylinder. In the limit of (a/ Vk) = 0 and 
1.: = 0 we get 

( 4. 14) 

Therefore a Stokeslet in the presence of a shear-free circular cylinder produces a 
uniform now at large d istances, its strength be ing independent of the location and 

porosity. If we let c;,_ = -i- = 2((3 -
1
) , where (3 = 1 + (a / 2--\;.t) as in example 

v 1.: /\;.t a 
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8 =0. a =l.O 

C = 1.5. f' = J.O 
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_ 7 9 I! a - 10. 10, 10 120 
8 =0 , a =l.O et = lO: 10? 10 12 

C=1.5, f' = J. O 

,. =200 

40 

If/ 

k 

-80 

- 120 

Fie. 3. Stokeslet-cylinder combination-effect of porosity on the stream function at large distance. 

(4.2), Eq. (4.13) reduces to 

(4.15) [ 
a2 ] - ;-J + (/3- l) -

1/1 = F' c
2 

.,. cos 0 2p . 

This solution corresponds to the asymptotic behaviour of the Stokeslet in front 
of the cylinder when mixed slip-stick conditions are applied at the contour of the 
cylinder. 
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Second sound speed in a crystal of NaF at low temperature 

w. KOSINSKI (WARSZAWA), 

K. SAXTON and R. SAXTON (NEW ORLEANS) 

W E DERIVE a physically justifiable model of heat conduction for rigid heat conductors based on 
a recent approach involving the gradient generalization of an internal state variable. The model 
accounts for observable pheno mena in solid die lectric crystals, related to wave-like conduction of 
heat in certain ranges of low temperatures and a rapid decay of the speed of thermal waves close 
to a temperature value iJ A, at which the conductivity of the material reaches a peak. 

1. Introduction 

FINITE SPEED thermal waves, known collectively as second sound, distinguishing 
them from generally faster propagating mechanical waves, were first detected in 
3He, ((1 ]), and then in high purity dielectric crystals of sodium fluoride, NaF, 
((8]), and bismuth, Bi, ((16]). It has been observed that there exists a (material
dependent) temperature value below which second sound begins to be observed. 
The temperature values of this type have been measured to be close to those 
at which the conductivity of the material reaches a peak, a useful discussion of 
which can be found in the review papers [6, 10, 11]. 

In order to match regimes of different material behaviour, we will adapt the 
gradient generalization of the inte rnal state variable theory in [14] to qualita
tive experi mental results from the literature, so as to specify admissible forms 
of constitutive equations and material functions. In particular, our derivation is 
based on two experimentally observed phenomena not included in existing ther
modynamic theories of second sound. The first is related to the propagatio n of 
heat pulses in solid specimens. It has been observed, ([8]), that in some range 
of temperature at wh ich experiments have been performed, the time of arrival 
of heat pulses sent through a specimen is an approximately linear function of 
the reference temperature. However near the upper limit of measured tempera
ture values, the time, measured by the leading edge of heat pulses, rises rapidly 
with increasing temperature. The latter corresponds to a very fast decay (with 
respect to temperature) of th e second sound speed. The second phenomenon 
concerns th e heat conductivity, in that close to a particular temperature the con
ductivity of the material reaches a peak, ([9]). In our model, motivated by the 
experimental data, we make the hypothesis that the temperature of maximum 
heat conductivity coincides with that below which second sound appears. Above 
this temperature value the heat conduction becomes purely diffusive, obeying a 
general non li near Fourier law. We call this critical temperature{) ,\ · Furthermore, 
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our approach allows us to re late ·8 .\, the temperature at which heat conductiv
ity reaches a maximum, to dm, a temperature separating two distinct families of 
discontinuity waves. 

2. General framework 

In [1 2], the material gradient of an internal, scalar, state variable was intro
duced as a fundamental state variable in the response functions of thermoelastic 
materials. In the course of obtaining consequences for the laws of thermodynam
ics, a modified Fourier-type law was found leading to finite speeds of propagation 
of thermal and thermomechanical waves. This model differed from an earlier one, 
([13]), in the form of the evolution and constitutive equations, however essen
tially the same model as earlier has been used in the investigation of second 
sound phenomena ([3, 4]). 

In th e present paper we will begin with the generalized semi-empirical model, 
developed recently in [14]. The principal assertion is that the thermodynamic 
temperature rJ is not by itself sufficient in describing some highly nonequilibrium 
p henomena, including the observed occurrence of low temperature heat pulses. 
Thus, besides the temperature and its gradient, a further interna l variable, (3 , 
and its gradien t are introduced into the constitutive equa tions. The variable (3 is 
in a certa in sense a nonequiJibrium temperature, related to the thermodynamic 
temperature through an initial value problem, and represents a history of the 
temperature field. 

A rather general dependence of the free energy 1j; was allowed in [14] on the 
various variables. However to avoid constraints between fJ and jJ, this framework 
reduces to the fo llowing set of constitutive relations, 

(2.1) 

(2.2) 

1/' = ?j'('rJ ' (3' \1 (3 )' 1] = - 01) t/'('13' !3' \78)' 

q = q(fJ , vd ,(J, v f3), f3 = f(rJ ,(J), 

in which the symbol v denotes the gradient operator. Here q is the heat flux 
vecto r, .,, the entropy density, 1? the thermodynamic temperature measured on the 
absolute scale, and V' the free energy per unit volume related to c , the internal 
ene rgy per unit volume, by 

(2.3) 

Balance of energy and the second law of thermodynamics imply 

(2.4) 

(2.5) 

St + d ivq = r , 

1]t + div(q/ t~) ?: r /19 , 
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where ·r is the body heat supply per unit volume. In this case the second law will 
take the form of the residual inequality 

Tn the isotropic case, the dependence of q on the gradients \1{} and \1 f3 can take 
the form 

(2.7) q = - ~\1{) - a\lf]' 

where the coefficients /,· and a may depend on the scalar quantities rJ, ;3, l\1·191, 
lvfJI and \1{) ·\,d . 

However, as discussed in [2], it becomes reasonable to make the following 
a~'sumptions while remaining consistent with classical thermostatics, at the same 
ti1ne making it st raightforward to use experimental results to identify the material 
fqnctions needed: 

• the free energy is independent of f3 and quadratic in IV /3 1, 
• the coefficients /,· and a depend only o n {) . 

Then we have the fo llowing representation for the free energy (cf. [2]) 

(2.8) 

and the residual inequality simplifies to the form 

We note that the form (2.8) is one of consequences of the second law of ther
modynamics in the o riginal semi-empirical theory (i.e. when k = 0) under the 
hypothesis that n depends only on {), as we have assumed above. 

It is not hard to show that the last inequality wil l be satisfied for any choice 
of \ {J and \ j-J if and only if 

(2.10) /.: ({}) 2: 0 

and 

(2 . ll) 

The latter inequality should hold for any cho ice of /.; ({}) 2: 0, in particular for 
k(1J) = 0. This gives the compatibility condition 

(2.12) a('J) = {hh (t9)8-a f(D , /3) 
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(cf. (2]). From (2.12), we obtain the consequence Of3 0rd({), /3) = 0, which leads 
to the existence of two single-variable functions h, h, and to the splitting 

(2.13) f ({) l /3) = f 1 ({}) + h(/3). 

In this way we have the same set of compatibility conditions as in the previous 
setup, however, now the heat flux vector can satisfy the more general constitutive 
equation (2.7). 

3. The NaF model 

We now specialize to one space dimension and make some refinements in the 
behaviour of constitutive terms, particularly in the light of experimental evidence 
concerning NaF, ((9]). In the absence of a body heat supply, the balance of energy, 
Eq. (2.4 ), reduces to 

(3 .1) 

and, using (2.2) and (2.13), the evolution of j3 is described by 

(3.2) f3t = fi (iJ ) + .f2(/3). 

The heat flux, (2.7), is given by 

(3.3) q = -k(fJ )fJ x - a(iJ )f3x, 

while the second law implies 

(3.4) 

by (2.12) and the fo llowing particular choice 

(3.5) 
1 2 

1/; = 1/;1({)) + 21/J2oiJ /3~, 

for ·1b, where 1h(iJ ) = 1h0{) , and 1/;20 is a constant (see (2.8). In this case c reduces 
to a function of {) alone, by (2.1) and (2.3). 

Finally, we define the specific heat Cv by 

(3.6) 

where eo denotes D ebye's constant. 
Combining Eqs. (3.1), (3 .3) and (3.6) provides an equation describing the evo

lution of{), which can be used in conjunction with (3.2) to give a third order 
system in the pair ( {), /3), 

(3.7) 
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As concrete examples, let us define two C1-homeomorphisms 

/1 : IR - (- , 0), and h: IR _, JR. 

For the first, we set 

(3.8) 1 < p < 2, 

where o is a positive constant, and the subscript _ means that when z ~ 0, f1 is 
taken to be zero. For the second, put 

(3.9) h > _P_ 
- 2- p ) 

where b is another positive constant. In both cases, z represents d - d ,\ where 
1? .\ denotes the critical temperature at which the heat conductivity o f the material 
reaches a peak. 

The basic form of f 1 becomes evident when the characteristic velocity, as a 
function of temperature, is compared with empirical data (cf. Fig. 1). The form of 
./2, however, is taken in order to describe qualitatively the observed phenomenon 
of the heat conductivity peak; further experimental data for heat conduction 
obtained under quasi-sta tic conditions would be useful to refine this. 

UE (cm I ~-tsec) 
0 . 

0. 

r---------. ~ 
~ r------~ 

"\ 

0.2 

0.1 ~ 

0 . 

0.0 ~ 

12 1 4 ' 16 18 8 ( K ) 

FIG. I. Characteristic velocity (sol id cutve), U E = 0.85(18.5 - {) )0 
Cl4 / 0° 5, ahead of wave for 

J1 = 1.04, 0>. = 18.5, together with empirical data (dotted clllve), LIE = (9 .09 + 0.00222v 3· I) -
0
·5 , 

( C OLEMAN and N EwMAN, (4)). 

It can be shown th at in the quasi-static case, for which f 1 (d ) + h(/3) = 0, (i.e. 
,-J is a function of d), the heat flux (3.3) now reduces to 

(3.1 0) 

where c depends on a , b, p and h. 



http://rcin.org.pl

t ':l4 V/ . 1\os iNSKI , 1\ . S A XTON AND R . SAxToN 

Moreover, an expression for the second sound speed, U E, ( the speed of small 
ampli tude waves fo r the case /.;({} ) = 0) is given by 

(3. 11) Li 2 _ 1h o 2. 2( ·'' .11 ) 2(p- J) 
E - coiJ a p v - u .\ - . 

We note that (3.10) predicts a peak in heat conductivity as {) tends to {) .\ from 
below, fo llowed by a sharp drop. At the same time, in particul ar if p is close to 1, 
{3.11) delive rs a sudden drop to zero of the wave speed UE . Bo th phenomena are 
to be expected on leaving the second sound regime and entering one o f purely 
d iffusive heat co nductivity. 

R aw data fo r [/ E(7'J) has been given for crystals of NaF of varying purity in [8], 
with an empirica l re lation, U E = (9 .09 + 0.002227'J3·t)- 0·5 cml~-~.sec provided in [4]. 
T he dependence of conductivity on temperature and puri ty is also described in [9], 
temperature of peak conductivity increasing with purity. The purest sample had a 
peak in conductivity at around 18.5 K which we take here to be {) ,\ , below which 
second sound waves began to appea r. In the figure above, we observe qualitatively 
and qua ntitatively similar behaviour (over the regio n of data availability) to the 
empirica l fo rm of U £ (?~ ) in [4, 7]. In the p resent approach we have o btained 
this be haviour using the examp le fo r f t above, when p = 26/ 25 . The rap id 
drop at J8.5 K reflects our assumption that UE vanishes at d ,\ · O n reaching this 
tempera ture the pulse disappea res into the diffusive signal. 

The cho ices we have made for f t and ./2 in this special case lead to a fi nite 
conduct ivity peak as {) - 18.5 K if h = 13/ 12, and to infin ite conductivity in 
the sa me limit if h > 13/ 12. T he defin ition of f t (lJ - 1?.\), (3.8), then makes the 
conductivity d rop to /,·(1?) for {) > iJ .\ · 

It is possible to investigate the behaviour of shock waves fo r the system (3.J ) 
and (3.2), fo r which the temperature {) has a d iscontinuity when !.:({} ) = 0. Thee 
hocks, prop agating to the right into an unperturbed state t?+, satisfy L ax's ad

missibili ty co nd ition, ([5]), if 8 ,. ::; CJ ::; .·1, where CJ = CJ (7'J +, iJ - ) is the shock 
speed, and .~ 1 = s 1(rJ + . t~ - ) , s ,. = s,. (1J+ ) deno te the characteristic speeds, re
spective ly in front of and behind th e shock. Note tha t 8 ,. = L' E , evaluated at 11 + . 

The cho ice of the functions It , ./2, pred icts a temperature state v + = 1~ , < lJ .\ 
into which shocks do not p ro pagate. This temperature is found to be rela ted to 
!l .\ acco rd ing to 

(3.12) lJ ] .<l 
lt m = -3 2U .\ . p -

If u + < 1J 111 , then fo r adm issible shocks, the temperature, 1)-, behind the 
wave lies between [J + and v*" ({} ,.. < 11m is a temperature depending on lJ+ ) 
and is grea ter than 7'J +. If [) + > {) m, the temperature behi nd the wave lies 
between t'J + and '~ * - (now v*. > 1?m), wh ich is here less than 11 +. These two 
cases co rrespond to "hot" and "co ld" shocks, respectively. A similar result was 
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obtained in [1 7] , however th e current model manages to connect the observed 
transition to d iffusive behaviour at IJ ., with the change in wave propagation at 13m. 

This model appears to have some additional flexibility as compared to o ther 
theories where second sound persists to certain degrees at all temperatures, ([8, 
15]). The presence of two regimes, hyperbolic and parabolic, provides the pos
sibili ty of describing further phenomena related to ballist ic phonons and second 
sound as d iscussed in [6], including broadening of smooth heat pulses, ([8, 9]), 
and diffusive heat conduction related to the parabolic regime. 
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An integrity basis for plane elasticity tensors 

M. VIANELLO (MTLANO) 

AN ISOTROPIC functional basis of 5 polynomials is shown to be a lso an integrity basis for the space 
of plane elastic ity tensors. A decomposition of each clement in this space into a direct sum of 
" harmonic" tensors is used to compute or estimate the distance between an arbitrary elasticity 
tensor and the three non-trivial symmetry classes, to allow for the determination of the material 
symmetry when the elastic coefficients are known o nly to within a given approximation. 

1. Introduction 

LET lEla BE THE SPACE of two-dimensional elasticity tensors, which describe the 
constitutive equations for plane linarly elastic bodies, and let 0 (2) be the group of 
orthogonal transformations on the two-dimensional Euclidean space. A function 
tl.• defined on lEia is isotropic, or, equivalently, an 0 (2)-invariant, if 'lj;(C) = 
1 1(Q *C) for all C E lE la and Q E 0 (2), where, as we shall see more precisely 
later on, the asterisk denotes an action of 0(2) on lE ia. A finite collection B of 
such invariants is a fun ctional basis if each other invariant is a function of the 
elements of B. If these elements are polynomials, and all isotropic polynomials 
are also expressible as polynomial functions of them, this collection is an integrity 
basis (or Hilhert hasis ) for the action of 0(2). A similar set of definitions covers 
the case in which the action of the group of proper rotations 5 0(2) is considered, 
and the corresponding invariants are said to be hemitropic . 

It is a classical result that every integrity basis is also a fu nctional basis. The 
proof, which is far from trivial, is based on a lemma which shows that "polynomials 
separate the orbits". More explicitly, this statement means that whenever two 
elements do not lie on the same orbit, there is at least one invariant polynomial 
which takes difTerent values on them. For a modern proof of this important result 
we refer to the paper by WtNEMAN and PrPKlN [17, Sec. 6). On the other hand, it 
is not difficult to provide counterexamples showing that, in general, a functional 
basis is not an integrity basis. 

In Sec. 4 we construct a functional basis of 5 polynomials 1n for the isotropic 
invariants on lEla. Similar results were recently obtained by ZHENG [18] and by 
BLLNOWSKl, 0 STROWSKA-MACfEJEWSKA and RYCHLEWSKI [3]. Indeed, the technique 
used in the present paper is very similar to the discussion contained there, and 
the basis found is essentially equivalent. However, in addition, here it is shown 
that the set { In} is also an integrity basis for the action of 0(2) on lE la, which is 
the main goal of this paper. 

For the sake of clarity and self-completeness we choose to ofTer a detailed 
presentation of some mathematical preliminaries, even if this can be seen as an 
alternative derivation of similar results contained in [3]. 
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The key mathematical step is the decomposition of an elasticity tensor into 
a quadruplet formed by: two scalars ). and fl, a second-order tensor H and a 
fourth-order tensor ![(, both symmetric and traceless. A description of this tech
nique, when applied for other goals to the three-dimensional case, is contained 
in some papers by BACK US (1 ), BA ER HElM (2), COWlN (6), FORTE and V!ANELLO (8) 
and, moreover, in a classical treatise by SCHOUTEN (15]. However, except for ref
erence (3], we are not aware of any other presentation of a simi lar decomposition 
for plane elasticity. 

The insight coming from this approach is used to represent the action of 0 (2) 
on IEla through a pair of orthogonal transformations on the two-dimensional 
spaces to wh ich H and ]!( belong. This point of view allows for a natural construc
tion of a functional basis, thus providing a confirmation, with a slightly different 
approach, of a similar conclusion reached in (3]. Moreover, the proof that the set 
{J, } is an in tegrity basis is strongly dependent on the isomorphism between the 
action of 0 (2) on IEla and the action of the same group on products of complex 
planes, wh ich can be easily deduced only in view of the previous considerations. 

Constitutive equations for two-dimensional linearly elastic bodies are divided 
into four symmetry classes by a relation stating that two elasticity tensors are 
equivalent when their symmetry groups are conjugate in 0 (2). Once a functional 
basis has been established, it is not difficul t, through its geometric interpretation, 
to obtain a complete characterization of the symmetry classes as zero-sets of ap
prop riate collections of invariant polynomials. As noticed in (3], this is a useful 
resul t in itself, since it allows fo r an easy determination of the symmetry class of 
an elasticity tensor. Moreover, it shows clearly that the collection of tensors with 
non-minimal symmetry group is a set of measure zero . 

An interesting problem originates from the experimen tal errors contained in 
the numerical data describing elasticity tensors, as it was recently noted also by 
FRA <;OIS, 13ERTHAUD and GEYMONAT [5]. In view of the above considerations, 
the question of symmetry class has, with "probabili ty one", the same answer: 
The material has no special symmetry. What is really important is a comparison 
between the precision of our experimental apparatus and the distance between 
CC and the closest tensor of a given symmetry. If this distance is smaller than 
a certain value, we may reasonably say that, within the approximation allowed, 
the material described by CC does belong to that symmetry class. In view of our 
geometric approach, we propose some fo rmulas, ready fo r applications, which 
allow for a quick evaluation of the relevant distances. We believe some of the 
results to be new. 

2. Symmetry groups and symmetry classes 

We use small (resp., capital) boldface letters for vectors (resp., second-order 
tensors) of V, the translation space of a two-dimensional Euclidean space [. 
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Scalars are denoted by Greek letters and fourth-order tensors are wri tten with a 
blackboard bold fon t, such as <C. A superscript T is used for the transpose and the 
space of symmetric tensors is called Sym. We use subscripts for the components 
of vectors or tensors with respect to a fixed orthonormal basis e i (i = 1 2). Thus, 
for instance, v = viei and T = 1';.iei @ ej, where the sum over repeated indexes is 
understood and the symbol 0 stands for the tensor product. The subspace of Sym 
formed by all traceless tensors (such that A ii = 0) is Dev, while the space of all 
fourth-order tensors IHI which are symmetric and traceless is IDev. More precisely, 
IHI E IDev if I f i.ikt is unchanged by any permutation of the indexes and, moreover, 
H;,kt = 0. The group of orthogonal transformations of V is 0(2), where the unit 
element is denoted by I , and the subgroup of rotations, formed by all Q E 0 (2) 
with determinant equal to one, is 80(2). We write Q(O) fo r the rotation such 
that 

(2. 1) 

- -and we denote by Q the reflection with respect to the e1 direction: Qe1 = e1, 

Qe2 = - e2. Obviously, 0 (2) is generated by .5'0(2) and Q. 
For an extensive introd uction to linear elasticity we refer to classical conven

tions (see, e.g., GuRTIN (10]). Here, we simply recall that an eLasticity tensor <C 
is a symmetric linear map of Sym, which gives the stress tensor T as a function 
of the infin itesimal strain E: T = <C[E]. Thus, the components of <C satisfy the 
fo llowing index symmetries: 

ci.1"' = cl'"' = e;j,k = C\.,,j . 
The .\ynzmetJy group g(<C) is the collection of all orthogonal transformations 

Q such that 
\f E E Sym. 

It is convenient to define an action of 0(2) on !E ia, the 6-dimensional space of 
(plane) elasticity tensors. For each Q E 0(2) and each <C E !E l a, let Q * <C be 
defi ned by 

(Q * <C)1J<1rs := CJ p,CJqjQ,.kQs/C';jk/ · 

Thus, the symmetry group is 

g(<C) := {Q E 0 (2) IQ* <C = <C} . 

A straightfOiward consequence of this defin ition is that g(Q *<C) = Qg(<C)QT. 
Moreover, by continu ity, g(<C) is cLosed. Hence, as a consequence of classical 
resul ts (see, e.g., the book by GoLuBrTSKY, STEW ART and SCHAEFFER (9, Ch. XIII, 
Th . 6.1 ]), we know that g(<C) is conjugate to exactly one of the elements in the 
following co llection: 

5; := {I, Z,, D 11 , .5'0(2), 0(2)} (n ~ 2) , 
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where Zn and Dn denote, respectively, the cyclic and dihedraL groups of order n 
(for an extensive coverage of this topic see also MrLLER'S book [11 ]). 

The space lEla is divided into symm el!y classes by a relation defining C1 and 
C2 as equivalent when g(C1) is conjugate to g(C2) in 0 (2). Let lE la( G) be the 
collection of all elasticity tensors such that their symmetry groups are conjugate 
to 0 E E. Then, C1 and C2 have conjugate symmetry groups if and only if they 
belong to the same lE la(C'), and the problem of finding the number and type of 
symmetry classes is equivalent to the problem of determining which lEla(G) are 
empty and which are not. The answer is known (see, e.g., RYCHLEWSKI [14, Sec. 8]), 
even if some contradictory statements can still be found in the literature (cf., e.g., 
ZHENG [1 9, Sec. 3.3), where the Author seems to suggest otherwise). However, 
the discussion of Sec. 3 has the fo llowing statement as a direct consequence: There 
are exactly four non-empty sets lE la(G). for G = Z2, D2, D4, 0(2). 

We use the fo llowing terminology to classify the symmetries, depending on 
which element of~ the group g(C) is conjugate to: anisotropic fo r Z2, otthotropic 
for 0 2, tetragonal fo r 0 4 and isotropic for 0(2). Notice that only lEla(0(2)) is a 
linear subspace of lE la. 

As mentioned before, it is almost impossible that an elasticity tensor obtained 
from experimental data might have any special symmetry at all. As we recall in 
Sec. 5, the set of tensors with symmetry D2, D4 or 0(2) has the structure of an 
algebraic manifold of measure zero, formed by the null-set of a finite number of 
polynomials. Thus, an isotropic elasticity tensors are dense in lE la. From this point 
of view, the quest ion of interest becomes a different one: We would like to know 
how close a given C is to classes of non-minimal symmetry. 

The fi nal section contains a computation of the distance between C and 
lEia(C), fo r G = 0 2, 0 4 or 0 (2), which is defin ed to be the infimum of the 
distance between C and C*, as the latter varies over lE la(G) (an obvious Eu
clidean norm and a corresponding distance are defined in the space of elasticity 
tensors). 

3. A decomposition for the space of elasticity tensors 

A fin ite-dimensional vector space is decomposed into a direct sum of subspaces 
which are irreducible under the action of a compact group (see, e.g .. [9] o r [11 ]). 
In our particular context it is possible to show that the decomposition of lE la is 
described by an 5'0 (2)-invariant isomorphism which maps C in to a quadruplet 
(A , f1, H, OC), where A and 1-l are scalars, while H and !I( belong to Dev and IO>ev, 
respectively. More explicitly, fo r a given C E lEla: 

A = (3 Cppqq - 2Cpqpq )j 8, p = (2Cpqpq- Cppqq )/8, 
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h ·i.ik' = C;k,- [8;jCkptp + 8ktCipjp + 8;kCipjp + btjCipkp + b;tCjpkp + bjkCiplp]/ 6 

+ [Cpqpq(Sb;jbkt- o;kbtj - 8il8jk)] / 12 - [Cppqq (3 5;jbkt- 5;kbtj- 8i,5jk)] / 8, 

( b;.J is Kronecker's delta). Vice versa, the elasticity tensor C corresponding to 
(.-\ , ft, H, OC) is: 

C';.~kl = 1\;j'" + b;j Hk, + H ;j bk, + 5;kHlj + H ;kblj + 8;,H jk + H ;,5jk 

+ .A 8;j5k, + f-l (b;kblj + 8;,5jk )· 

The validity of this decomposition can be di rectly checked through substitu
tions fo llowed by lengthy computations. Moreover, it is not difficult to see that 
this is a variation, and an indirect confirmation, of a quite similar result presented 
by B LINOWSK.I et al. [3]. However, it is perhaps useful to spend a few words on a 
short description of the rationale behind our derivation, for which we followed 
the scheme adopted by B AERHEIM [2] in three dimensions. The first step con
sists in writing C;.ikl as the sum of a completely symmetric part S'ijkt and an 
"asymmetric" part A ;j~:( 

sijkl := ccijkl + ciklj + ciljk )/ 3, 

This corresponds to a decomposition of IE la into a direct sum of two orthogonal 
subspaces. Since the dimension of lE la is 6 and the space of completely symmetric 
fo urth-order tensors has dimension 5, it fo llows that A ikl is a scalar multiple of 
a fixed asymmetric tensor, say: 

Next, we use the fact that fo r each S'iikl there is a unique pair of tensors A E Sym 
and ![{ E IDev such that 

S'i.ikl = 1\ijkl + 5(i.i Akl)' 

where the parenthesis denotes full symmetrization with respect to the enclosed 
set of indexes or, more precisely, 

This property is a refo rmulation of a well-known result on polynomials, which 
naturally correspond to symmetric tensors, as discussed in [9, Ch. XIII, Sec. 7, 
Prop. 7.1]. 

Finally, we use the decomposition of each element of Sym into the sum of a 
"spherical" part (i.e., a multiple of I) and an element H of Dev, so that we may 
wri te 
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Trivial substitutions followed by an appropriate change of names yield the de
composition, which, with obvious meaning, is written as 

(3 .1) 

An action of 0(2) on Dev is defined by 

Q * A := QAQT, 't/ Q E 0 (2), 't/ A E Dev. 

It is a matter of simple computations to check that 

Q *C = (A , ft , Q * H, Q *OC), 'V Q E 0(2) , 

and, conseq uently, g(C) = g(H) n g(OC), where g(H) is defin ed in the natural 
way. It is now clear why the action of 0(2) on Dev and Dev is of great interest, 
and the importance of the geometric description of this action wh ich is obtained 
in the fina l part of this section. 

It is convenient to define an appropriate orthonormal basis in each of these 
spaces. For Dev we use: 

/2 
E, := 2 (e, 0 e, - e2 C·.J e2), 

The basis fo r Dev is more complex: 

vs 
lE,: = 8 (e, 1e, o e1 ~-' e, +e2 r., e20 e20 e2- et 0 CJ 0 e20 e2- e1® e2® e10 e2 

- e2 0 e, LV Ct (·) e2 - e2 ('J CJ Q'l e2 0 e1 - e1 0 e2 C3J e2 (~ e1 - e2 0 e2 0 e, 0 e1 ), 

vs 
IE2 := 8 (e1 v1 e1 ·J e , ·-) e2 +el ~· J e , \) e2 (:') e 1 +e, c e2® e1 0 eJ +c20 e, (c) e10 e, 

- e2 e2 · ·, e2 : J e1 - e2 \') e2 < J CJ 0 e2 - e2 0 e, C.:l e2 0 e2 - e, 0 e2 0 e2 0 e2) . 

In view of (2.1), through direct substitution it is not difficult to show that 

Q(O) * E1 = cos(20)E1 + sin(20)E2 . Q(O) * E2 = - sin (20)E1 + cos(28)E2 , 

while more lengthy computations are needed to prove that 

Q(O) * IE1 = cos(40)1E1 + sin(40)1E2. Q(O) * IE2 = - sin(48)1E1 + cos(40)lE2 . 

Tn conclusion, each Q(O) acts on Dev as a ro tation of 20 and o n D ev as a 
rotation of 40, while Q is simply a reflection with respect to the "horizontal" 
axes spanned by E1 and lE 1• The geometric insigh t provided by this poin t of view 
makes easy a proof of the fact that there are only symmetry classes corresponding 
to groups l 2, /J2 , /J4, and 0(2). 
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4. An integrity basis 

The Euclidean structure of Dev and ][J)ev is obtained by introducing the inner 
products A· B = / l i.J B ;J and JHl . !I( = H ijkl [{ijkl · We use the symbol 1· 1 to denote 
the norm in both spaces. For a given C = (,\, p., H, IK), let a be the angle between 
H and E~, and let d be the angle between !I( and IE 1. Furthermore, we need the 
fo llowing defi nitions: 

(4.1) 
u, := IHI COS C\' = H · El ' 

/\·, := lOCI cos /3 = !I( · IE1 , 

H2 := IHI sin a = H · E2 , 

X2 := IOCi sin /3 = OC · IE2 . 

The geometric view of the action of 0 (2) on Dev and ][J)ev makes the choice 
of jour independent polynomial invariants quite obvious: 

h := fl, 

Thus, we only need to find a fifth invariant, and, to this end, we consider the 
angle 1 : = 2o - f-J. Since the action of Q(O) maps a onto a + 20 and j3 onto 
,1 + 40, it f~ lows that 1 is left fixed. However, it is also straightforward to see 
that, under Q, 1 is mapped onto -1 . Thus, the conclusion is that this angle is an 
:·>0(2)-invariant, but not an 0 (2)-invariant. A natural choice fo r the fifth isotropic 
invariant I is the cosine of 1 : 

I := cos / = cos(2o- (:J ). 

This fun ction is not a polynomial and thus we expand it as 

I = (cos2 n - sin2 o) cos {1 + 2 sin a cos a sin f] 

and use defin itions ( 4.1 ) to obtain the fi fth polynomial isotropic invariant: 

The steps followed for the construction of the collection { 1,1 } show that a 
necessary and sufficient condition for C 1 and <C2 to be on the same orbit is that 
f, (C 1) = f 11 (C2) (1 :S n :S 5). It is a well-known resul t that th is condition is 
necessary and sufficient for {in} to be a functional basis (see, e.g., WEYL [16], 
WINEMAN and PrPKJ N [17, Sec. 4, p.i90]). 

As an add itional remark, we notice that if the .5'0(2)-invariant polynomial 

is added to the previous list, we obtain a functional basis for S0(2)-invariant 
functions on !El a. However, in this case, there is a relation (or .syzygy) among the 
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elements of the collection Um} (1 ~ m ~ 6): Iff + fg = l lh This is obviously 
due to the trigonometric identity between sin 1 and cos I · 

Our aim is now to prove that the collection of invariants {!71 } is indeed an 
integrity basis, and not only a functional basis. 

T EOREM 1. For each 0 (2)-invariant real-valued polynomial p on lE la, there is a 
polynomial 1r in 5 l'ariables such that 

p(<C) = rr (I1(<C), h(<C), h(C), I4(C), Is(<C)), VC E IEla. 

A convenient technique of proof is based on the idea of looking at the action 
of 0(2) on Dev and [l)ev as an action on the complex plane C, and then to apply 
straightforward considerations from the complex number theory. This method 
was applied by PIERCE [12] to a similar problem. 

More ·precisely, the product between Dev and [l)ev is seen as C2. Then, the 
act ion of a ro ta tion Q(O) E 5'0 (2) on this space is defined through the unit 
complex number exp(iO) as 

Q * (ZJ,Z2) := (exp(i20)zJ, exp(i40).::2), '1/ (..:1 Z2) E C2. 

Moreover, the action of Q (reflection with respect to the "horizontal" axes) cor
responds to complex conjugation: Q * (.:1 , .:-2) := (z1, 22). According to this point 
of view, we rewrite three of the invariants as 

(4.2) 

In view of the decomposition of !El a described in Sec. 3, we now choose to 
look at polynomial functions of elasticity tensors as being defined on R 2 x C2. 

Mo reover, we notice that each polynomial in the real variables :r and y can be 
written as a polynomial in the complex variables z and z , where z = x + iy . For 
this reason, we have · 

(4.3) l')(<C ) _ ~ C \ 1
1
lm _,. ;:s _t :;11 

- L /m,·stu A r ~ ~ - 1 -2~2 ' 

where the index range depends on the degree of p. However, since we are only 
interested in real-valued polyno mials, the restriction c,m,·stu = Cims,·ut must be 
satisfi ed. Moreover, invariance under the action of Q is guaranteed by Cimrstu = 
c1owu~> which combined with the previous condition, implies tha t all the coeffi
cients are real. 

The action of Q(O) E 5'0(2) yields 

p(Q *<C) = L Cimrstt, A
1
ftm zj' zf z~z2 exp[i (2T- 2s + 4t - 4u )] 

and, from p(<C ) = p(Q *C), we deduce that invariance under the action '0(2) 
is guaranteed when the non-zero coefficients in (4.3) satisfy a relation which 
simplifies to 

T- s = 2(u- t ). 
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Thus, by inspection, we deduce that there are three types of non-zero terms in 
the sum defining p: (a) Those for which 7' = s and u = t; (b) Those for which 
T := 'lt - l and T - s = 2T are positive integers; (c) Those for which T := t - u 
and s - 1· = 2T are positive integers. 

Case (a) is simple, because we rewrite each such addendum as 

C. \ /1-, m ( - .:: ) " ( - .:: )u - C \ lf-tm l ,. 12''1z 12u lm?TtLtl /\ • ~ 1 -" I ~2 -2 - lmn uuA - 1 2 ' (no sum), 

and, in view of (4.2), this is a mo nomia l in the invariants hand 14. The symmetries 
of the coefficients Ctm,·stu imply that the sum of the terms corresponding to cases 
(b) and (c) can be written as 

T' < S, t < U 

which is 
2 ~ C d 11 m <n[zr :;s ,.t .::u] 
~ lm1·stu /\ r :ll 1 " 1 -2"'2 ' r < s, L < u . 

Since 1· = s + 2 T and u = t + T, we conclude that this sum is 

r < s, t < u. 

F inally, in view of the binomial formula, the real part of zT is always a polynomial 
in the variables .r := 1)(.:: and y2 := ('s z )2 = lzl2 - :r2. Thus, we deduce that 
1)~ [(.:: f z2)'] is a polynomial in h, 14 and 15, and this concludes the proof that 
the collection { f 11 } is an integrity basis. As a final remark, we wish to draw the 
reader's attention to the fact that, with a similar technique, it is possible to prove 
that this co llection, plus the sixth invariant 16, is also an integrity basis for the 
action of the gro up 80(2) on !Ela. 

5. Symmetry classes and invariants 

A complete characterization of each one of the three non-trivial symmetry 
classes mentioned in Theorem 1 as the intersection of the zero-sets of isotropic 
polynom ials is d irectly deducible from the geometric interpretation of the invari
ants in troduced. Th is was also shown in [3], but , for the reader's convenience, 
we repeat here a formulat ion of this result, which can be easily proved u sing the 
concepts previously introduced. 

PROPOSITION 1. 

1ff - lti4 = 0, 

iff- i ff /4 -:f 0. 
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We are now left with the problem of determi ning the distance between an 
elasticity tensor obtained through experimental obseiVations of a given material 
of unknown symmetry and the symmet1y classes !Ela(0 (2)), !Ela(D 4) and !Ela(D 2) . 

As we shall see, only the distance with the first two classes can be computed 
explicitly, while for the th ird one the problem is left in a more general setting. 

Before completing this discussion, it is important to make clear a further 
point. In principle, we are not so much interested in the distance between a 
given <C, which here we shall assume to be anisotropic, and the other three sym
metry classes, but, rather, in the distance between them and the orbit of <C. The 
reason is clear when we th ink that two different elasticity tensors <C1 and <C2 

lying on the same orbit (i.e., such that there is an orthogonal Q with the prop
erty that <C 1 = Q * <C2 ) represent the same material differently rotated in space. 
Thus, properly speaking, physical meaning pertains to the orbits, rather than 
to the elasticity tensors themselves. T his obseiVation, which is also discussed by 
BoEHLER, KlRtLLOY and 0 NAT [4), shows the importance of having at our dis
posal a functional basis of isotropic invariants, to separate the orbits and decide 
when two elas ticity tensors correspond to the same material body. Incidentally, 
we note that a functional basis for three-dimensional elasticity is not yet known, 
even if a partial answer is provided in [4), and a complete solution was recently 
announced by ZHENG and BETIEN [20, Abstract] and is expected to be published 
in a forthcoming paper by the same Authors. 

However, we now prove that all the elasticity tensors on the same orbit have 
equal distance from any given symmetry class. D irect substitution shows that the 
action of 0 (2) on !El a is distance-preseiVing: d(<C 1, <C2) = d(Q * <C1 , Q * <C2), for 
all Q E 0 (2). In other words, th is action is a homomorphism of 0 (2) into the 
group of orthogonal transformations of !Eia. For convenience of notation, we let 
S be any one of the fo ur symmetry classes of elasticity tensors. Then Q * S = S 
for all orthogonal Q. Thus, 

d(Q * C S):= inf d(Q * <C, <Cx ) = inf d(Q * <C, Q * <C~ ) 
C ' ES C' ES 

= inf cl(<C ,<C'' ) = : cl(<C ,S) . 
iC" ES 

The interested reader will fin d a more complete discussion of many aspects of 
the geometty of the orbits of elasticity tensors under the act ion of the orthogonal 
group in a paper by R YCHLEWSKJ (13). 

Our goal is now to compute explicitly the square of the distance between a 
given Lensor <C = (,\, p . H, !K), which is assumed to be aelotropic, and each one 
of the three remaining symmetry classes. We write this quantity as fo llows: 

~(<C. Q) := lcl(<C, !Ela(Q)) I2 -

Let ~~ = 0 (2). Then, fo r a generic isotropic <Cx we may write the decomposi-
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tion (3.1) as C~ = (A ~ , ft*. 0, 0). Thus, 

ldCC. c~ ) l 2 = (A - A"' )2 + (fl - rt"' )2 + IHI2 + IIKI2-

Tt is now obvious that minimization as c· varies over lEla(0(2)) requires C"' = 
(A . f'· 0. 0) and, consequently, 

~(C, 0 (2)) = IHI2 + IIKI2 = h + 14 . 

A geometric interpretation of this result is straightforward: C* is simply the 
orthogonal projection of C onto the subspace of isotropic tensors, and ~(C , 0 (2)) 
is the square of the distance between the two. The problem of determining the 
isotropic elasticity tensor which is the closest to a given C is classical and, for 
th ree-dimensional elasticity, this solution is discussed in many textbooks (see, e.g., 
F EDOROV [7, Ch. 5, Sec. 26, pp. 174--175). 

We now address the issue of determining ~(C, D4). The decomposition of a 
generic tetragonal elasticity tensor is: C"' = (A~ , fl * , 0, IK"' ). Thus, 

and minimization implies that C"' = (A f.t , 0, IK). In conclusion, 

The computation of ~(C. D2) is more complex. In view of Proposition 1, the 
symmetry class !Ela(D2) can be seen as the union of two disjoin t subsets S 1 and 
S2, fo rmed, respectively, by elasticity tensors such that 14 = 0 and such that 
/ 4 -:f 0 with ll = ! } !4 . Minimization of the distance between a given C and S1 
yield the inequality 

Cl(C. D2) ~ !4 . 

which, in any case, is a useful estimate of Cl(C , D2). To complete our analysis we 
need a better description of the set <;2, which is characterized by the condition 
cos 1 = ± 1. Let 1/ ' and q> be the angles that the two tensor components in the 
deco mposition (3.1) of a generic element of S2 form, respectively, with E 1 and 
IE 1. Then, 11' = 9/2 + br / 2, for some integer k . The element of S2 minimizing 
the di tance from C = (A , p . H. IK) is obviously C"' = (A, p , H"', IK"'), where H"' 
and oc· are chosen in such a way that the sum IH- H*l2 + IlK -IK"' I2 is an absolute 
minimum. We may now use elementa1y geometry considerations to show that 

Let Cl~ be the minimum of th is distance as <P varies over [0. 27r). In view of the 
defi nitions (4.1 ) we ded uce that 

Cl " = min {IIKI2sin2(4; -/3) + IHI2sin2(4;/2 - a)}. 
</>E l0.2rr ) 
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Moreover, since this quantity is invariant under the action of 0 (2) on C we may 
also assume that a = 0 and, as a consequence, 1 = -/3. Thus, in conclusion, 

!::.* = min {14sin2(</> + 1) + hsin2(</>/2)}, 
.PE[0,2 rr ) 

and 

The research supported by GNFM of CNR (Italy). 
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The stochastic vortex method for viscous incompressible flows 
in a spatially periodic domain 

J. SZUMBARSKI and A. STYCZEK (WARSZAWA) 

Tii£ RANDOM voKrEX METHOD for two-dimensional, nonstationary flows of a viscous liquid in 
a spatially periodic, iniinite system of airfoils is considered. The main idea is to approximate 
the evolution of the vorticity by a large set of small "vortex particles" (vortex blobs), which are 
transported in the velocity field (convection) and perform random walks according to Wiener 
process with standard deviation depending on the viscosity {diffusion). The velocity field is due 
to the induction of vortex blobs and includes also certain potentia l components. Since the fl ow 
domain is not simply connected, additional constraints concerning the vort icity production on 
the boundaries are introduced. They are necessary to obta in a solution with physically correct, 
single-valued pressure fie ld. The resu lts of numerical calcula tions are also presented. 

1. Introduction 

D uRING LAST TWO DECADES, large amount of research work has been devoted 
to the development of more sophisticated variants of vortex methods, to widen
ing the range of their applications and improving their computational efficiency. 
Since 1973, when CHORlN published his fundamental paper [1], many authors 
have applied a stochastic approach to calculate flows with various geometrical 
configurations. However, a majority of available publications on external flows 
focus on flows a round individual contours only, although, from the engineering 
po int of view, mu lti-body systems are even more important. 

The aim of th is paper is to present the ·rando m vortex algorithm for flows 
which are periodic with respect to one spatial variab le. The standard engineering 
example is a flow in a cascade of airfo ils, which is used as a model of turboma
chinery flows. The numerical method constructed here is a natural extension of 
the method proposed by STYCZEK [2] and its primary version was also the subject 
of the thesis of one of the authors (see [3]). The current version includes careful 
treatment of the pressure problem arising due to multiply connected geometry 
of the flow domain . More refi ned numerical results are also obtained. 

We remind briefly the general idea of the stochastic approach to viscous liquid 
motion (more detailed discussion and examples of applications can be found in 
[2, 4, 5 and 6]). The equa tion of the vorticity transport (Helmholtz equation) in an 
incompressible, viscous and two-dimensional flow can be written in the following 
form: 

(1 .l) 

This equation is formally identical to the Fokker - Planck equation corresponding 
to a diffusive stochastic process with the convective vector equal to the velocity of 



http://rcin.org.pl

210 J. SZUMBAI1.51<J AND A . STYCZEI< 

the flow V= [H, v] and with the diagonal matrix of diffusion Diag[2v, 211]. Thus 
the evolution of the vorticity field can be described on the "microscopic level" as 
a movement of a large (theoretically infinite) set of "vortex particles", governed 
by the following Ito equations 

(J .2) 
dx(t) = tt (t , x (t ), y(t)) dt + & dvlfx, 

dy (t ) = u (t, x (t) , y(t)) dL + -.)2; dVV" . 

Here W~. and W y are independent Wiener processes. 
In a numerical simulation "vortex particles" can be constructed in many ways. 

Here the vortex blobs i.e. small circular vortices with uniform vorticity distri
bution are used. It should be emphasised that there is no natural, independent 
boundary condition for the vorticity field - there are only conditions for the vel
ocity. It is known, however, that the vorticity is produced on the bounda ries. 
In the vortex method new vortex blobs are created on the boundaries in each 
rime step in o rder to satisfy the boundary condition for the velocity. Some of 
these blobs subseq uently enter the flow domain, while the others move randomly 
across the boundary and are eliminated. This process gives rise to the diffusive 
nux of the vorticity through the contours of embedded bodies. All vortex blobs 
are convected in the velocity field which is partly due to the induction, and also 
has additional potential components necessary to fulfil boundary conditions and 
providing appropriate asymptotic behaviour of the velocity field (the condition at 
infini ty). 

In the case of a cascade flow the domain is not simply connected. Then there 
exist velocity and vortici ty fi elds which satisfy the continuity and Helmholtz equ a
tions, but correspond to meaningless, multivalued pressure distributions. In order 
to avo id such "solutions", additional constraints should be imposed on the veloc
ity field (. ee, for instance, [6] o r [7]). These constraints have the form of following 
integral equa lities: 

(1.3) d J: ;· ( · d ) dt J fT~ (:i) d.~+ U_;' w - 11 dn w (s) ds = 0, 
ck c1, 

where (\ denotes 1.:-th component of the boundary of a multiply connected now 
regio n and L '9 is the boundary velocity d istribution. If U9 is fixed in time then we 
have the condition 

(J.4) J (TfnW - /I!!_W) (s)c/s = 0 
9 dn 

c ,. 

which means that the total nux (convective and diffusive) of the vorticity through 
the contour (\. sho uld be zero . In particular, on an impermeable boundary we 
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have simply 

(1.5) f _ld w ds = 0. 
Gn 

ck 

211 

Tt is inte resting that the stochastic vortex method developed by Styczek au
tomatically ensures the equality (1.5) in the case of an external flow around a 
single conto ur. If the geometry is more complicated, the conditions (1.4) or (1.5) 
must be stated explicitly. However, direct implementation of the above equali
ties requires sufficient regularity of the vorticity fie ld. In the considered method 
the vorticity is a piecewise constant function of space variables and its normal 
derivative on the boundary is not properly defined. We show that this d ifficulty 
can be overcome by writing explicitly the conditions for the balance between the 
vo rticity productio n and vorticity flux across the boundaries during one time step. 

2. Formulation of the problem 

We consider the viscous liquid motion in the exterior of the spatially periodic 
system of airfo ils. The period of the cascade geometry and of the flow field is 
assumed to be 2;rr . The inlet line is identified with v -axis. The computational 
domain is a strip region shown in Fig. 1. Boundary conditions for the velocity 
fi eld are prescribed on the inlet line segment 8Dw and on the contour of the 
airfoil aD p. 

2n 

X 

FIG. 1. The computational domain. 
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The mathematical formulation, which is adequate for the vortex method is 
fo llowing: 

Determine the velocity V= [u (t , x, y), v(t , x, y)] and the vorticity 

w = w(t, X, y) = Ox V- OyU 

satisfying 
1) Helmholtz and the continuity equation 

OtW + UOxW + V OyW = v8w , 

Ox 'l.l + OyV = 0; 

2) conditions of y-periodicity 

u(t ,x, y + 21rk) = u(t ,x, y ) 

v (t, :.r, y + 21rk) = v (L, x, y), 

w(t . x y + 21r k) = w(t x, y) , k = .. . ,-2, - 1,0, 1,2, .. . ; 

3) boundary conditions 

u/ = 0, 
&Dp 

v/ = 0, 
&Dp 

u/ = Hw(y), 
&Dw 

v / = v w (y). 
8Dw 

This formulation is purely kinematic - the pressure has been eliminated, but 
it can be recovered a posterioti from the velocity and vorticity fi elds. The results 
of such calculations are physically sensible provided that the velocity and vorticity 
were constructed taking pressure correctness conditions (1.4) into account. 

3. Elements of the numerical method 

3.1. )-' -periodic vortex b lob 

The velocity field induced by the vortex blobs must be y-periodic. To satisfy 
this demand we use y-periodic vortex blobs (PVB) which are simply infinite, 
y-periodic systems of ordinary vortex blobs (with identical radii e and charge of 
vorticity r) uniformly spaced with the distance 21r along straight lines parallel 
to the y-axis. The position of a PVB is a pair (x0, y0) of the coordinates of this 
vortex blob in the system which is located in the computational domain. The 
velocity induced by a PVB is given by the fo llowing expressions 

(3.1) l~nd = l 
L _I_ 1 = _[__ coth (z-zo) 

n=-oo 27ri z- (zo+27rn) 4ni 2 
---,----::---.,.,-

[' I (z-zo) I' 1 r z- (zo+ 2ni ) - cot 1 -- -- + -
4ni 2 2ni z- ( zo + 2n1ri) 2ni e2 · 
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We apply here a convenient complex no tation. The upper fo rmula is used when 
the point ::: = J.: + iy is located outside the PVB's vortex cores and is no thing 
more than the well known fo rmula for spatially periodic system of po int vortices 
(see [9]). The lower fo rmula is applied when the point z happens to drop inside 
the n -th vo rtex core of the PVB, the center of which is z0 + 2mri, z0 = x 0 + iyo. 

The velocity fie ld ind uced by a PVB has an important asymptotic property, 
na me ly 

1 r 
lim Vinct H ind _, 0, 

4ni 
=> Vind - 4n ' 

(3.2) 
r~oo 

r r 
lim Vinct = => 'U ind _, 0, Vind _, - 47r . 

x--oo 4ni 

Thus, if we consider the inductio n of a system of PVBs, then the behaviour of the 
velocity at infi nity is determined by the to tal vo rticity charge of this system - in 
particular the velocity vanishes a t infini ty only when the total charge of vorticity 
is zero. This is an important difference as compa red with any finite system of 
vo rtex blobs, where the velocity at infini ty tends to zero in any case. 

3.2. Y -per iod ic ideal fl uid flow 

We are going to co nstruct the to tal velocity fi eld as a sum of several compo
ne nts. So me of them carry vorticity, the other are po te ntia l. I t is reasonable to 
consider separately an ideal liquid flow since it p rovides a natural way to satisfy 
a part of boundary co nditions on the inlet line and to prescribe the velocity a t 
infin ity. The n the fo llowing mathematical p roblem is to be solved: 

D etermin e the potent ial of the velocity !J5 p such that: 

1) (/; p is a harmo nic functio n in the do main D; 
2) th e velocity V p = \lCP p is y -periodic i.e. 

V p (l ,x , y + 2kn ) = Vp (L,x,y), k=0,±1. 2, ... ; 

3) th e Neumann boundary cond ition is satisfi ed: 

dc:P jJ { 0 
----;r;; = 'U w (y) 

on oDp, 
on 8Dw , 

where Vtd Y) = u w (y + 2/.·n), k· = 0 , ± 1, 2, ... ; 

4) the circulation of Vp along the inlet 8Dw is given 

r[. = - j vw (y) dy . 
J Dw 

8 Dw 
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Vector [uw, vw] denotes the given velocity distribution on oDw. It is conve
nient to seek (j) p in the form of 

where meanings of the symbols are the fo llowing: 

(3.4) 

2rr 

Uoo = 2~ j ttw (y ) dy , 
0 

271' 

V co = 2~ j v w(y)dy , 
0 

fp - the circulation of an airfoil-connected vortex, ifJc - the po tential of the 
velocity field induced by a unitary airfo il-connected vortex, defined as 

(3.5) ,., R [ 1 L . h z - zc] 
'±'C = e 2ni n sm 2 . 

iP 1, iP 2 - additio na l y -periodic harmonic functions, their derivatives vanishing at 
infinity. The potential iP p fulfils the imposed boundary conditions if 

(3.6) and 

d ( y ) - - + iPc + iP2 = 0 dn 4n 

on oDp, 
on oDw, 

on oDp u 8Dw. 

Thus we obtain the fo llowing Neumann conditions for iP 1 and iP2: 

cM1 { - V00 ·n on aDp , 
dn = uw (y) - U00 on oDw , 

(3.7) 
diP2 diPc ny 

oDp u oDw , = --- -- o n 
dn dn 47!" 

where n = [n_,., ny] is the intern al normal vector on the boundary. 
Assume that the functions iP 1 and iP2 have been already determined. Then 

the d ifferentiation of(/) e o n the boundary yields 

(3.8) 

where t = [i.r · t y] denotes the tangent vector o n the boundary and s is the 
arc length coordinate. If we assume that the va lue s = 0 corresponds to the 
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rear stagnation point then the condition 1/t (O) = 0 yields the circulation of the 
airfoil-connected vortex Fp 

- cl 
Voo ·t+ -

1 
<P1 _ et 

Fp - 1 cl . . 
- ty + -cl (<P c + <P2) 
411" s 

(3 .9) 

Now we describe briefly the mathematical technique we apply to find the 
harmonic functions <P 1 and i/J2• If we consider a y-periodic function <P, harmonic 
in the domain D and such that 

I clw(Q) t - o 
CSQ -

. clnQ 
ao 

and J dc;P(Q) ds = 0 
ds Q 

J D Q 

i.e. it is not a real or an imaginary part of any multivalued complex function, 
then the function c;P is the only solution of the boundary integral equation (see 
[9] and [1 0]) 

1 ;· (1 7Q- 7p ) iP(P) + ; Re 2 coth -
2 

- · nQ w(Q ) dsQ 
DD 

(3 .] 0) 1 j R (L . h ZQ - :::p) dw (Q) d = - e n sm SQ 
7f 2 dnQ ' 

.9 0 

71Q = (n ~. + iny)(sQ ) -

This is the Fredbolm second kind integral equation. If the curvature of the 
boundary is finite, the kernel is bounded. This equation can be solved numerically 
using, for instance, the Boundary Element Method. 

Having the boundary distribution of the function (/>, we can calculate the vector 
fie ld V = vC/J using the fo llowing procedure. First we determine the boundary 
value of this fi eld 

1-'(s,) = ( c/1(/) - /dl<P ) (sp)· L"(sp ), 
c -~ n 

Next we are able to calculate \/(z) fo r any complex :: = x + iy by means of the 
u-periodic Cauchy integral 

(3. 11 ) 11 (.:: ) = -
1
- . j \l (() coth (-.:: d( . 

4 11"1. 2 
EJ D 

It is important that the solution of the boundary integral equation defines the 
mappmg 

(3 .12) L . cl15 _ cliP 
· dn d:o 
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i.e., in the hydrodynamic context, it transfo rms the normal velocity to the tangent 
one. This mapping is a unique, linear and continuous operator. We will use this 
operator in the next section while deriving an equation for the boundary vortex 
layer. 

3.3. Construction of the complete velocity field 

Tbe full velocity of a viscous, y-period ic flow is expressed as 

(3 .13) V= Vp + Vo + V w + VA + Ve + Vv. 

In (3.13) we denote 
V p the velocity of the po tential flow (previous section), 
V0 the velocity induced by old i.e. previously created PVBs, 
Vw the velocity induced by new, boundary PVBs, 
V e the velocity induced by an additional, ai rfo il-connected vortex with 

the circulation re, 
V A an additional potential velocity fi eld vanishing at infinity, 
Vv a unifo rm, vertical stream i.e. Vv = [0, vv ]. 

All the velocity compo nents are y-periodic vector fi elds. In each time step the 
following unknowns should be calculated: 

1) the circulations of new PVBs b1 , ... , IN}, 
2) the circula tion re, 
3) the vertical fl ow vv , 
4) th e po tential velocity field VA . 

The role of all unknowns will be explained further on. In general, new PVBs 
and the velocity VA are necessary to fulfi l the boundary conditions for the veloc
ity. Additional "free parameters" l G and v v are included in order to satisfy a 
co ndition at infi nity and to ensure correctness of the pressure. 

The ve locity decomposition wri tten in natural coord inates fo r boundary points 
on () Dw yie lds 

(3.14) 
v~ + v; + 1 ~ + 116 + ~~~-~ - vv + v lN = o, 

v; +VB + v\v + Vd = o. 

We have taken into account that V? = 'U tN, llv = 0 and VJ = -urN· 

Analogously, for the points on the airfo il conto ur aD p we obtain 

(3. 14') 
11) + Vj + \16 + ~~' + 116 + VJ ~ 0, 

v: + VB + v~~ + vc~ + vvt = o. 

This time the equality lip- = 0 has been used. 
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From (3 .14), the normal velocity VAn can be expressed as 

(3.15) 
vAn = - (Vc) + Vw + VC' ) 

V,4 = - (V0 + \l;v + Vet + VJ ) 

on 8Dw , 

on a.Dp . 

The boundary operator L applied to VJ gives Vl expressed in terms of other 
velocity components. This results in the following equation 

V~ + V6 + V~ + V6- V v + VIN - L(Vc) + Vw + Vet) = 0 on 8Dw , 
(3.16) 

Vfi + V6 + V~- L(V0 + Vv~ + Vc + VJ ) = 0 on a.Dp. 

We call (3 .16) the equation of the bounda~y vortex Layer since the unknown here 
is the distribution of the vorticity (circulation) generated on the boundary. We 
approximate this vortex layer by a finite set of PVBs located on the boundary and 
inducing the velocity component Vw. The circulations {/I , ... , /N} of these PVBs 
are to be determined. Since new PVBs are born always in the same positions, we 
can introduce two sets of functions {T;(s), i = 1, ... , N}, {N; (s), i = 1, ... , N}, 
which describe tangent and normal velocity distributions induced by the boundary 
PVBs with unitary circulations. Then the components of Vw can be written as 
fo llows 

N N 

(3.17) vy~ = ~ ! J i (s), Vw (s ) = ~ .,;N;(s). 
i =l i = l 

Equation (3 .16) can be solved in the mean integral sense over a finite set of 
boundary segments. The division of the boundary lines into segments is quite 
natural -each boundary PVB overlaps a small part of the inlet line o r the airfoil 
contour. In other words, the boundary is divided into N separate segments, each 
accompanied by an adjacent PVB. If we now substitute (3.17) to (3 .16) and 
integrate the latter on each segment O"j = [sj, Sj+ t] then the following system of 
linear equations will be obtained: 

~ V m- LN,)(s) ds ]· -y; =-! (v~ + Vc\ + Vc\ + " "') (s ) d 

+ j L(V0 + llc )(s) ds + vv (sj+ l - sj ) for O"j E 8Dw, 

(3.18) 

~ V('!';- LN;)(s)ds ]·?; = -! (v~ + Vc\ + Vt +vs) (s) ds 

+ j L(V0 + Vc + VJ )(s)ds for O"j E a.Dp. 
aJ 
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The system (3.1 8) consists of N = Nw + N p equations. However, it is not closed 
since we have two additional unknowns r c (hidden in V c ) and vv . In order to 
obtain a solvable problem we have to formulate two equations more. 

First we consider the behaviour of the velocity field at infinity. The following 
condition of asymptotic consistency of nonviscous (potential) flow V p and full , 
viscous flow V is postulated 

(3.19) lim V= lim Vp => lim(Vo +Vw +Wc +Vv)=O. 
x- _- .r- oc' x - oo 

Taking into account the asymptotic formulas (3.2) the condition (3 .19) implies 
that 

(3 .20) Io + rw + re: + 4 7TV\( = 0. 

The velocity fi elds V p and V are y-periodic, their circulations along the inlet line 
8Dw are eq ual and they are asymptotically consistent at infinity. Then, from the 
Stokes theorem, one concludes that the total charge of the vorticity in the flow is 
equal to Fp. This means, in particular, that the total amount ofvorticity in the flow 
is fixed in time. This conclusion is important for further considerations concerning 
the pressure condition (1 .4 ). It should be also noticed tha t total vorticity charge 
is no t identical to to tal charge of the circulation of PVBs. The reason is that the 
vo rtex cores of PVBs have finite dimensions, and some of them pro trude partly 
from the computational domain. 

Now we focus o n the problem of the pressure correctness. In order to ob
tai n physically meaningful pressure fi eld, the total vorticity production on each 
boundary line must be equal to zero. Since the total charge of th e vorticity within 
the flow is fixed due to the asympto tic consistency condition (3 .19), it suffices to 
consider the vorticity generatio n process only on one of the boundary lines - it 
is more convenient to choose 8 0 p . 

The amo unt of the vorticity created on the airfo il contour in one time step 
is defined as the difference between the co ntribution of new PVBs located on 
this contour and the vorticity charge carried by these PVBs which have left the 
computational domain in the previo us time tep by penetrating the inte rior of 
the airfo il. More precisely, the flux of the vorticity through the airfo il contour 
emerges for two reasons: 

A) some PVBs protruding from the co mputational domain into the airfo il 
interior move to differe nt positions, 

B) some PVI3s (in particular those located closely to the airfoil contour) can 
jump randomly out of the computatio nal domain - they are eliminated. 

Both types of the events mentioned above give rise to the vorticity flux across 
u Op. However, the d irect calculation of th is flux (especially due to even ts of 
A type) is a rather stren uous problem. Fortunately, we have a very convenient 
indicator of the vorticity flux - the circulation of the velocity on the airfoil con
tour. At the beginning of each time step ( i.e. before the PVBs' movement), the 
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boundary conditions are satisfied and the velocity circulation on aD p is exactly 
zero. As a result of PVBs' motion, the boundary distribution of the velocity is 
sl ightly perturbed - its circulation on aDp is, in general, different from zero. 
This variation is related directly to the amount of vorticity which left the flow 
domain due to PVl3s' motion. This amount should be balanced by the contribu
tion of new PVBs generated on fJDp at the beginning of the next time step. The 
mathematical expression for this balance is the following 

(3. 21) 

In (3.21) we have used the following notation: 
n;!71(aDp) - the contribution of new PVBs (i.e. created at th e beginning of 

the (n+l)-th time step) on aDp, 
n~; (Dp)- the amount ofvorticity carried by o ld PVBs, which sticks out from 

the computatio na l domain o r, equivalently, is inside the airfo il Dp, 
1 OUT( aD p) - the sum of circulations of PVBs removed from the computa

tional domain because they have penetrated into D p. 

Now, the following equality ho lds 

(3 .22) 

where l't(71 denotes the sum of circulations of new PVBs on aD p, whileS? ~;1(D p) 
denotes the amount of vorticity carried by these PVBs, but sticking out from the 
flow domain into Dp. 

From (3.21) and (3 .22) we derive the equation 

(3.23) 

The velocity fi eld V fulfils the boundary co nditio ns at the beginning of the 
(11 + 1 )-th time step. Thus its circulat ion along 8 0 p is equal to zero, which imp lies 
that 

(3.24) 
n+ l n n n n+ l Fp + r c + J t 0 ( D P) + J , 1\f ( D P) = 0. 

The last eq uation allows for eliminating troublesome quantities n ;~+ I (D p) and 

I?~ (f) p ). Finally we obtain the eq uation involving only the circulations 

(3.25) 

Eq ua tions (3.20) and (3.25) supplement the system (3.18) giving together a solv
able algebraic problem. However, it is interesting to show that Eq. (3.20) can be 
rep laced by the other one, which is, in a certain sense, symmetric to Eq. (3.25). 
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If we subtract Eq. (3.20) written for the n -th time step fro m the same equation 
but written for the next, (n + 1)-th step , then the result will be as follows: 

(3 .26) r a+l - r 3 + rw+l - rw + r e+l - r e + 47r (vv+l - vv ) = o. 

Now, from Eq. (3.25) we have 

(3.27) 

The substitution of (3.27) to (3 .26) yields 

(3.28) r !)+ 1
- r !) + r~/ 1 - r~, + rouT(fJDp) - r~/ 1 (aDp) 

+47r(vv+l - vv ) = o. 

Writing the balance of the total charge of circulations of PVBs 

(3.29) 

we are able to eliminate F0+1 from (3.28). Moreover, the following equality holds 

(3.30) 

After su bstitution of (3.29) and (3.30) to (3.26) most of the terms cancel and we 
end up with the fo llowing, simple condition 

(3.31) 

Summarising, the linear, algebraic system (3.18) can be completed by the pair of 
additional equations, which read 

Np 

"L , ,n+l = rouTCaDp) - cre +l - r e), 

(3.32) 
i =l 

Np +N ,,, 

"L ,,n+l = r ouT(fJDw) - 47r (vv+1 - vv ). 
i=Np + l 

T hese equatio ns are remarkably symmetrical. T he fi rst one describes the variation 
of the airfo il-connected vortex and involves the information concerning only the 
airfoi l contour. The second equation describes the variation of the additional, 
vertical stream and involves the information concern ing only the in let line. The 
vortex and the vertical stream provide the mechanism for controlling the vorticity 
productio n on the airfoil and o n the inlet line, respectively, which in turn ensures 
physical correctness of the pressure fie ld. 
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3.4. Summa ry of the computa tional a lgorithm 

We summarise briefly main steps of the numerical method. The calculation 
of each step of the flow evolution begins with the computation of the right-hand 
sides of the system (3.18). Then the linear equations (3.18) coupled with the 
pair of Eqs. (3.32) are solved. As a result, the circulations of new PVBs, the 
airfoil-connected circulation Fe and the vertical stream velocity vv for the new 
time step are determined. Next the boundary distribution of V;\ is evaluated from 
(3.15). The solution of the boundary integral equation yields the value of the har
mon ic potential cJ) A and, after differentiation, the tangent velocity Vl . This way 
the complete velocity V A on the boundary is known and can be reconstructed in 
the flow domain (in particular in PVBs centres) via y-periodic Cauchy integral. 
Other components of the velocity field can be calculated directly from the induc
tion formu las (1.4) (Vo, Vw and Vc ) or are determined in advance (Vp) and 
interpolated to PVB centres from nodes of an auxiliary grid. 

The key problem is the computational efficiency. Actually direct application of 
the induction formu las for all PVBs leads to enormous computational cost exclud
ing the possibility to perform computations on widely available, small computers. 
A natural way to overcome this difficulty is to calculate the induced velocity only 
in the grid points and then interpolate it. However, two problems appear im
mediately. First, the interpolation of velocity smooths out fine, local variations, 
which can remove important details of the flow pattern. Secondly, the velocity 
interpolation should be divergence-free. To avoid these problems we applied a 
hybrid approach - the interaction between close PVBs is calculated from exact 
formulas (3.1), while distant induction is determined via an interpolation. The 
interpolating algorithm is based o n the fact that the velocity induced by a PVB 
is potential outside the vortex core. Thus we can calculate the complex potentia l 
function of this velocity in grid points and then interpolate it in grid cells by com
plex polynomials to obtain , after difTerentiation, a divergence-free approximation 
of the velocity. This method has an obvious disadvantage - the approximate ve
locity fi eld is not continuous on the cell sides. In other words, the approximation 
of the velocity is divergence-free only in a weak sense. This difficulty can be partly 
cured by using more complicated, Hermitean interpolation algorithms. 

Now the problem of ini tial condition will be considered shortly. While dealing 
with external flows we have generally two possibi lities: 

1) sudden "switching on" of the viscosity, o r 
2) continuous accelera tion from the state of rest. 
In the first case the viscosity suddenly appears in an ideal liquid flow, which 

causes first generation of the vortex particles to be created. Tn the second one, the 
flow is viscous fro m the very beginning and is progressively accelerated by chang
ing the free stream velocity. Both methods have certain good and weak points. 
The first one is not physical and, which is much worse, the primary generated 
vortex particles are charged with relatively large circulations - they can induce 
locally a velocity comparable in magnitude with the free stream velocity. The sec-
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ond method is more natural but during acceleration one has to deal with a more 
complicated version of the pressure problem. If the acceleration is performed by 
rescaling the "ideal-flow background" V p, then the total amount of the vorticity 
in the flow field changes in time and this fact must be taken into account while 
formulating the pressure correctness condition. Our choice is the first method 
supplemented by the concept of vortex particle splitting. The idea is to limit the 
permissible value of the velocity induced by a single PVB to small fraction of 
the free-stream velocity, say to several percent. This means that every PVB born 
on the boundary, which is too "strong", is immediately split into a number of 
"weaker" PVBs moving separately (their trajectories diverge since they perform 
separate random walks). Although this procedure brings rapid increase of the 
number of PVBs, in the computations it has also significant advantages. It pro
vides fast saturation of the computational domain with the vortex particles which 
is desirable when one is interested mainly in the final , quasi-stationary state, not 
a transient one. 

Another important problem is associated with artificial or numerical viscos
ity. Although the vortex methods are, at least in principle, grid-free, the built-in 
vorticity discretization produces inevitably an effect of additional, nonphysical 
diffusion rate. This phenomenon is connected with two parameters of vortex par
ticles, theoretically infinitesimal, but in practice always finite - a radius and a 
circulat ion charge. It is quite obvious that the radii of the PVBs vortex cores 
should be as small as possible - otherwise the method would be unable to resolve 
fine-scale details of the vorticity and velocity fields. Large PVBs mean that the 
flow is too organised spatially - relatively large portions of fluid are in regular 
(" lam inar") movement. In the language of modern dynamical system theory, the 
number of degrees of freedom of such fl ow is too small - the corresponding, 
effective "viscosity" is larger than that assumed in the random walk process. Sim
ilar effect is obtained when the vortex particles are too "strong". Regions of weak 
vorticity cannot be reproduced properly, the vort icity gradients are exaggerated 
and strong, local variations of the induced velocity make PVBs to spread rapidly 
in all directions like in a diffusion process. I t should be emphasised that the above 
description is on ly a simple heuristics- no systematic investigatio n of the artificial 
viscosity in vortex methods is known to the authors. The practical experience says 
that the limit of the induced velocity on the level of several percent is sufficient 
in a sense, that further splitting of PVBs does not make any visible effects on the 
velocity and vorticity field. Nevertheless, the "real" Reynolds number obtained 
in our simulations is surely lower than the " theoretical" o ne resulting from the 
assumed value of the viscosity. 

4. Results of numerical computations 

The general data chosen in sample calculations are the following: 
• The inlet line 8D 111 is divided uniformly into 120 segments while the airfo il 
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FIG. 3 a. The PVBs and instantaneous velocity field at t = 2.0 (case II). 
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F I G . 3 b. The PYBs and instantaneous velocity field at t = 6.0 (case Il). 
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contour 8 D p into 520 segments. The dimension of the algebraic system connected 
with the boundary integral equ ation is 640; 

• Each PVB of next generation is adjacent to four subsequent segments, hence 
Nw = 30 and Np = 130; 

• T he inlet line velocity distribution is uniform and fixed in time; 
• Reynolds number calculated o n the basis of a characteristic length (the 

chord of the ailioil), the assumed viscosity and the valu e of the inlet ve locity is 
approximately 105; 

• Time step is fixed (!1t = 0.05) and the Ito equations are solved by the E uler 
integration scheme. 

Three cases of flow with d ifferent inlet conditions are presented: 
1) low angle of incidence flow uw = 1.0, vw = -0.2, 
2) high positive angle of incidence flow uw = 1.0, vw = 1.0, 
3) high negative angle of incidence flow uw = 1.0, vw = - 1.0. 
The instantaneous positions of PVBs and the velocity fi eld calculated in the 

first case are presented in Fig. 2. Analogous results fo r the second case are shown 
in F ig. 3 and, for the third case, in Fig. 4. In all cases the growth of vortical struc
tures in wakes is apparent. In the cases of a high angle of attack, the closed 
separation regions appear and evolve in time. Figure 5 a shows locations of the 
sections perpendicular to the airfoil contour, where the averaged velocity distri
butions of the boundary layer were calculated in the fi rst case. The computed 
velocity profiles are shown in Fig. 5 b. 

5. Concluding remarks 

The stochastic vortex method proposed above seems to be capable of re
producing characterist ic features of nonstationary viscous flows in spatially peri
odic domains. T he efrect of local separation has been captured and th e velocity 
d istributio n in the boundary layer exhibits reasonable qual itative features. The 
boundary layer thickness is, however, much exaggerated. The reason is that the 
characteristic dimension of PVBs is of the same order (or even grater) as this 
th ickn ess at the considered Reynolds number. Obviously, flow details of such 
a spatial scale cannot be properly resolved. It can be expected that significant 
improvement would be achieved if the number of PVBs were much greater and 
their vortex cores were much finer. Also some other types of vortex particles (like 
y-periodic vortex sheets) could be applied in the vicinity of the airfoil conto urs. 

Altho ugh on ly stationary inlet velocity distributio ns a re considered here, it is 
not d ifficult to generalise the method to nonstationaty o r even random inlet con
di tions. Such generalisation wo uld allow us to pe rform approximate calculations 
of mul ti-stage cascade flows: the velocity beh ind a row of blades and relative 
movement of the rows wou ld yie ld the nonstatiomuy inlet conditions for the next 
row. Randomness of the inle t conditions can be appl ied to simulate turbulent 
Ouctuations in an incoming stream. 
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BRIEF NOTES 

Non-polynomial representations of orthotropic tensor 
functions in the three-dimensional case: 
an alternative approach 

S. JEMIOLO and J.J. TELEGA (WARSZAWA) 

THE OIJJECn vE of this paper is to extend some of the results obtained in(!] to the three-dimensional 
case. Functional bases and generators for symmetric second-order orthotropic tensor functions are 
derived. 

1. Introduction 

THE T HEORY of representation of tensor functions has been developed for more 
than thirty years [2 - 5). The results obtained within the framework of this theory 
yield general forms of isotropic [6 - 15) and anisotropic [16- 22) tensor functions. 
Most complete results were obtained for scalar-valued, vector-valued, symmetric 
and skew-symmetric tensor-valued functions of the second order, dependent on 
vectors as well as symmetric and skew-symmetric tensors of the second order. 

Theoretical foundatio ns of the formulation of anisotropic constitutive rela
tionships were laid, among others, in the books [23- 26). There the group theory 
and the theory of representation of tensor functions were exploited. Anisotropic 
materials consti tute an important class of structural materials in many fields of 
engineering. Hence the need for further development of the constitutive theory, 
where the theory of representation of tensor functions plays an important role, 
cf. [3, 27 - 30). 

The determination of a representation of a tensor function in the so-called 
canonical form reduces to finding irreducible sets of basic invariants and gener
ators of this function. One distinguishes polynomial and non-polynomial repre
sentations of tensor functions [3, 23). To find the polynomial representation of a 
tensor function it is sufficient to determine the relevant integrity basis. Once this 
basis is established, generators are obtained by a simple process of in tegration 
[23). An integrity basis is said to be irreducible if none of its elements can be 
expressed as a polynomial in the remaining elements, cf. [23). A set of invari
ants is said to constitute a funct ional basis, for given arguments and a symmetry 
group of the considered function, if any other invariant of the same arguments 
can be expressed as a scalar function of these invariants. A non-polynomial rep
resentation is irreducible if none of the generators can be expressed as a linear 
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combination of the remaining generators, with the coefficients being arbi:rary 
functions of the functional basis. WANG [6 -8), SMITH [9, 10) and BOEHLER [11] 
proved that in the general case a non-polynomial representation, if compared 
with the corresponding polynomial representation, contains less generators and 
invariants. 

The aim of this note is the determination of the representation of a non-poly
nomial orthotropic scalar function as well as orthotropic, symmetric tensor-valued 
function of the second order. Our approach is alternative to that used by B OEH.LER 

[1 8, 19). Those functions depend on a finite number of symmetric, second crder 
tensors. Thus we extend to the three-dimensional case the results presented in 
our earlier paper [1) . 

2. Formulation of the problem 

Our aim is to determine the non-polynomial representations of the following 
functions 

(J) 

f: Ts X . . . X Ts - R. 
· ~ 

(P+l)- times 

F: Ts X ... X Ts - Ts , 
~ 

(P+l)- times 

where A" are symmetric second order tensors, Ap E 1~ , 1 ~ = {A E T : A= AT}, 
p = 1, .... p and 'r = E n £ ; AT stands for the transpose of a tensor A. Here E 
is the three-dimensional E uclidean space and H is a symmetric, positive-de:inite 
tensor of the second order. The tensor H plays the role of a parametric t nsor, 
i.e. H = const. The function I is a scalar-valued function while F is a symmetric, 
second order tensor function . Suppose that (1) are to be constitutive relat ionships. 
Then Ap are causes, H model the structure of a material while s and are 
responses or effects. Within the framework of the classical continuum mechmics, 
such relationships should be invariant with respect to the group of automorphisms 
of the space E, cf. [25). In other words, they have to satisfy the so-called principle 
of isotropy of the physical space. Consequently, the functions appearing i:1 (1) 
fulfil the follow ing conditions: 

f (Ap; H) = f (QAPQ:r; QHQ'~') , 

Q F(A11 ; H)QT = F ( Q A"QT; Q H Q7') , 

where 0 denotes the full orthogonal group, that is 

VQ E 0: 
(2) 

(3) 

Here I stands for the identity tensor. 
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According to our assumption, the tensor H has three distinct eigenvalues, say 
lJ; (i = 1, 2. 3). Thus we may write 

(4) 

where e; are unit eigenvectors of the tensor H . We observe that the group of 
external symmetries of the tensor H, given by 

(5) 

is the ortho tropy group. Moreover, the eigenvectors of H determine the so-called 
principal axes of ortho tropy of a materia l. This statement becomes obvious if we 
compare ( 4) and (5) with the corresponding definitions given in the papers [3, 
18-20, 25]. 

Let 

(6) (no summation on i = 1, 2, 3) , 

then we recover, by taking account o f (4) and (6) in (1), provided that (2) ts 
satisfied, the problem considered in the papers [18, 19]. 

From (2) and (5) it fo llows that 

.f(A71 ; H) = f (QAPQT; H) , \:IQ E S': 
(7) 

Q F(A71 ; H)QT = F ( Q ApQT; H). 

Tn other words, the funct ions f( ... ; H), F( ... ; H) are orthotropic functions of the 
tensors Ap. 

3. Determination of the orthotropic functional basis 

Since the tensor H has three d istinct eigenvalues, therefore in order to deter
mine the fu nctional basis fo r the scalar function (1)1 we may explo it the results 
obtained by SMITH [10]. To this end it is sufficient to consider the case (2 ii) stud
ied by SMITH [1 0, pp. 905- 907]. The functional basis derived in this manner is 
presented in Table 1. 

Tt can easily be proved that the representa tion of the scalar function (1 ) 1 

depicted in Table 1 is equivalent to the results ob ta ined by BOEHLER in [1 8, 19]. 
Boehler's o rthotropic functio nal basis is presented in Table 2. 

Both funct ional bases are equivalent because: 

trAp = trM 1A71 + trMzAp + trM3A71 , 

trA~ = trM1A~ + trMzA; + trM3A;, 

(8) trH"A~ = 1If trM 1A~ + HftrMzA~ + H3'trM3A~, 
tr ApAc1 = tr M 1 ApAq + tr M2ApAq + tr M3ApAq , 
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where tr stands for the trace of a tensor; for instance trA B = tr(A B), where 
AB= tr (2,3)A 0 B. 

Table J. Functional basis for the scalar function (1)1• 

Arguments Basic invariants 

Ap trAp, tr Ai,, tr A~, tr HAp, tr H2 Ap, tr HAi,, tr H2 Ai, 
Ap, Aq tr ApAq, tr A~Aq, tr ApA~, tr HApAq, tr H2 ApAq 

Ap, Aq, Ar trApAqAr, p, q, r = 1, .. . P; p < q < r 

Table 2. Ortbotropic functional basis after BoEHLER [19]. 

Arguments l3asic invariants 

Ap tr M, Ap, trM,Ai,, trA~ , trMzAp, trMzAi,, tr M3Ap, trM3A~ 

Ap, Aq trM 1ApAq, trAi,Aq, trApA! , trM2ApAq, tr M3ApAq 

Ap. Aq , Ar trApAqAr, p, q, r = l , ... P; ]J < q < T 

4. Determination of generators of an orthotropic tensor-valued function 
of the second order 

In order to derive the representation of the function (1 )2 under the condition 
(2)2, we shall apply the method similar to that used in the papers [1 , 13, 14, 31, 
32]. This method is based on the idea primarily proposed in the paper by the 
second author [30]. First, we construct a scalar function, say g, defined by 

(9) g =trF C, 

linear with respect to the second argument or C. Here C is a symmetric second 
order tensor while F is the function (1)2. The function g has the following form: 

s 
(1 0) g(Ap, C; H)= g(Jt, Js) = 2:::: r/;(It)ls, 

s= l 

where 11 are invariants listed in Table 1 whereas } 5 are invariants linear in C, see 
Table 3 below. 

The canonical fo rm of the tensor-valued function (1)2 i found from 

(11) 
1 

( 
~) ;::} ) ~) $ ::l J s ug ug ug · u. s ~ 

F(Ap. H) = 2 a C + a CT = 8C = 2:::: rPs CTt) a C = 2:::: IPs Ut)Gs . 
s = l s =l 

The results of calculations are summarised in Table 4, where the generators Gs 
are listed. 
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Table 3. lnvaria nts linear in C. 

Arguments T nvariants J. 

c trC, tr H C, tr H2C 

C, Ap tr ApC, tr A~ C. tr HApC, tr H2 ApC 

C, Ap. Aq trApAqC, p, q, r = l , ... P ; p < q 

Table 4. Genera tors of the function (1)2 . 

Arguments Generators 

I, H, H2 

Ap Ap, A~, H Ap + ApH, H2Ap + ApH2 

Ap, Aq ApAq + AqAp, p,q = l , ... P ; p < q 

The generators obtained in th is way are equivalent to those derived by 
BOEHLER [19] and listed in Table 5. To corroborate this statement, it is sufficient 
to exploit the fo llowing identities: 

I = M I + M2 + M3 ' 
Ha = I1f M1 + H 2". M2 + H ) M3 , a = 1, 2, 

(12) 2Ap = M1Ap + M1Ap + M2Ap + M2Ap + M3Ap + M3Ap, 

Ha Ap + f-JO AP = // I(M,Ap +M tAp)+ 112_ (M2Ap 

+M2Ap) + H3(M3Ap + M3Ap)· 

Table S. Boehler's [SJ generators of the orthotrop ic tensor function. 

Arguments Generators 

M~, M2, M3 

AI, MIA]> + MIAp, M2Ap + M2Ap, M3Ap + M3Ap. ~ 
Ap. Aq ApAq + AqAp, 71 , q = l , ... P; p<q 
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