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Subsonic flutter calculation of an aircraft with nonlinear
control system based on center-manifold reduction

J. GRZEDZINSKI (WARSZAWA)

THE PAPER PRESENTS a method of calculation of limit cycle subsonic flutter oscillations caused by
structural nonlinearities. Numerical examples assume the nonlinearities to be concentrated in the
hinges of the aircraft control surfaces. Since nonlinear flutter is essentially the Hopf bifurcation,
these oscillations tend asymptotically to a certain two-dimensional attracting subspace called the
center manifold. Consequently, an asymptotic motion of the entire aircraft in the neighbourhood of
bifurcation point is fully described by only two equations. The method of center-manifold reduction
consists in a nonlinear change of coordinates, and transforms the initial multi-dimensional nonlinear
integro-differential flutter equation into a system of two nonlinear ordinary differential equations
of the first order, having phase-shift symmetry. Under the assumption that the nonlinear term
has a formal power series expansion with respect to generalized coordinates (multi-variable Taylor
series), the transformation can be also expressed in the form of a power series, and the limit cycle
amplitude and frequency can be easily calculated.

1. Introduction

DEFORMATIONS of an aircraft structure under aerodynamic loads during flight are
responsible for occurrence of self-excited oscillations, called flutter. These often
destructive oscillations are driven by the transfer of energy from the airstream
to the aircraft structure. The most widely used linear flutter analysis is focused
on the particular critical value of flight velocity, above which the steady motion
of an aircraft becomes unstable. All velocities below this point are considered to
be safe in the sense that any imposed disturbances decay asymptotically in time,
regardless of their initial magnitude. This is no more true if either the flow or
the structure characteristics are nonlinear. It is known that in a nonlinear case,
sufficiently high initial disturbance (e.g. a gust) can trigger self-excited oscillations
even below the critical flutter velocity. Since the flutter phenomenon must be
completely prevented from occurring within the flight envelope, nonlinear flutter
analysis is also of great practical importance.

In the unsteady subsonic motion, the aerodynamic forces depend on the history
of motion as a result of shedding of the vortex wake behind an aircraft. Conse-
quently, the aerodynamic operator, relating the unsteady aerodynamic forces to
the deflection of an aircraft structure (generalized coordinates), is always of the
form of the convolution integral. Thus, in a time domain, the flutter equation
is an integro-differential equation (sometimes with infinite delay). This property
is the main source of difficulties in nonlinear approach, contrary to other aero-
elastic systems described by ordinary differential equations (e.g. supersonic or
panel flutter).
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It is well known from the theory of dynamical systems [1] that their quali-
tative behaviour is essentially the same, no matter what physical background they
originate from. Therefore, if the steady solution, such as a horizontal flight of
an aircraft, bifurcates into the finite amplitude oscillations then the limit cycle
attractor appears in the phase space of the system and the Hopf bifurcation
takes place. Since the point of interest is an asymptotic motion of an aircraft, it
is sufficient to determine only the limit cycle amplitude and frequency for a given
velocity in the neighbourhood of the bifurcation point. In the paper, methods of
the local bifurcation theory are applied thus restricting the validity of analysis to
some finite interval of velocity.

Hopf bifurcation is two-dimensional what means that limit cycle oscillations
are described by only two generalized coordinates, no matter how many de-
grees of freedom are used in order to describe the original aeroelastic system. A
two-dimensional subspace containing these asymptotic oscillations is called the
center manifold. Thus, as far as an asymptotic analysis is concerned, it is possible
to obtain the limit cycle for an entire aircraft from only two differential equations.
Calculation procedure for an aeroelastic system of N degrees of freedom goes
through the following steps [2]:

¢ Replacement of the initial N flutter equations of the second order by a
system of 2N nonlinear integro-differential equations of the first order (all the
methods of the bifurcation theory apply to the first order equations).

¢ Determination of the bifurcation point (critical flutter velocity) by solving
the completely linearized flutter equation.

¢ Unfolding of the aeroelastic system by expanding all functions into power
series with respect to velocity [/, and also considering the velocity being tem-
porarily an additional variable — this increases the total number of equations by
one, and is done in order to work on an interval in velocity space in the vicinity
of a bifurcation point.

¢ Projection of the aeroelastic system onto the appropriate center manifold
by means of nonlinear transformation of variables, which transforms the initial
(2N+1)-dimensional system of integro-differential equations into a two-dimen-
sional system of ordinary differential equations of the first order.

o Normalization of the reduced system by applying the so-called near-identity
change of coordinates, resulting in a much simpler system of equations with
rotational symmetry.

e Calculation of the limit cycle amplitude and frequency for a given flight
velocity — if all nonlinear terms are expanded into multi-variable Taylor series,
then the limit cycle parameters are determined by roots of certain polynomials
with real coefficients.

It is worth noting here that projection onto the center manifold preserves all
information about asymptotic behaviour of the complete initial system and does
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not introduce any simplifying assumptions. Numerical algorithm for the above
scheme worked out for systems with many degrees of freedom is given in Ref. [3],
and Ref. [4] presents the full nonlinear analysis for a single two-dimensional
airfoil.

2. Flutter equation

Displacements of an aircraft during unsteady motion are described by the
M -dimensional vector of physical coordinates u(?) being functions of time ¢. In
the steady motion with undeflected structure all coordinates are equal to zero,
u(t) = 0. Usually, for a conventional aircraft structure, the number M cannot
be less than a few hundreds. This is too many even for the classical (linear)
flutter analysis. The routine procedure saves much of the computing time by using
modal coordinates in order to reduce the total number of equations. Such an
approach assumes the vector of physical coordinates u(?) as a linear combination
of natural vibration modes with coefficients forming new generalized coordinates.
It is sufficient for the flutter analysis to set the number of modal coordinates to
nearly twenty. Modal coordinates can also be used in nonlinear approach without
any changes [5]. [t means that no attempt is made to generalize the natural modes
for nonlinear structures but the same linear modes are applied.

In the absence of external aerodynamic forces and under the assumption that
the problem has been fully linearized, the natural frequencies w; and modes &,
() =1,2.....N; ) < M) can be calculated from the eigenvalue problem:

2.1 WwM®,; =K®;,

where M and K are mass and stiffness matrices, respectively. The set of eigen-
functions of Eq. (2.1) is assumed to describe nonlinear limit cycle oscillations with
sufficient accuracy. The vector q(¢) of modal coordinates is defined by the relation

(2.2) u(t) = ®q(1).

and in the absence of the structural damping forces, satisfies the equation of
motion [6]:

(2.3) q (1) + Kuq(t) + k(q) = Fa(q),

where F 4(q) is the vector of generalized unsteady aerodynamic forces. The matrix
@ is built out of eigenvectors of Eq.(2.1). The diagonal generalized stiffness
matrix K, is composed of squares of the natural frequencies u;lz- G =12,..,N).
Although the source of the nonlinear term k(q) can be either aerodynamics
or the aircraft structure, it is assumed here that only the structure is nonlinear.
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At present, the only general method of describing the center manifold is based
on multi-variable Taylor series [7]. In what follows, it is also assumed that the
nonlinear term k(q) is of the form of a power series of nonlinear coordinates
q. For structural nonlinearities such an expansion can be easily obtained. Let fs
be a m-dimensional vector of nonlinear forces corresponding to the vector of
displacements ¢ in a finite number of structure points:

(2.4) fs = K;¥,

122

where K; are diagonal matrices of known numbers, and the symbol &/ means
that each vector component is raised to the power of j separately. In practical
calculations, the number of terms of Eq.(2.4) remains finite. In particular, the
vector fs can include nonlinear springs present in the structure and modeling
an aircraft control system. On the other hand, Eq.(2.4) can also describe the
properly discretized distributed nonlinearities.

For a given structure it is always possible to find a rectangular matrix R of
order m x M relating the m-dimensional displacement vector ¢ to the M physical
coordinates u:

(2.5) § = Ru.

After using Eqgs.(2.4) and (2.5), the vector k(q) of nonlinear generalized forces
can be written as:

(2.6) k(@) = R®)'f; = (R®)" 3 K;(R® q.

122

The aim is to find the critical flutter speed for the Eq.(2.3) and also the limit
cycle amplitude and frequency in the neighbourhood of the critical point.

Since the aeroelastic system is nonlinear, it is not possible to assume any given
form of the motion during the limit cycle oscillations. Therefore, unsteady aero-
dynamic forces must be written in a general form valid for an arbitrary motion:

ol/? ; b
2.7) Fatw) = & / e(-7)q (f + ﬁr) dr,

where [/ and p denote the flow velocity and density, respectively, and b stands
for the characteristic length. Elements of the matrix g are response functions
corresponding to the impulsive changes of generalized coordinates q. Finally,
the equation of motion (2.3) takes the form of an integro-differential equation
containing an integral of convolution type.

The classical linearized flutter analysis assumes oscillatory motion of an air-
craft:

(2.8) q(t) = Ge™,
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where the complex coefficient
(2.9) s=v+ 1w

includes circular frequency w and damping factor +. For such a motion the vector
of unsteady aerodynamic forces is given by the simple linear relation

(2.10) F'q(q) = A(S; U)(A]f.'”,
where
1 F )
(2.11) A(s;U) = Q; /g(T)e‘;bgT dr
0

is called the aerodynamic matrix. The only case for which it is possible to calculate
the aerodynamic matrix analytically (in terms of Bessel functions) is a thin airfoil
in an incompressible flow [8]. More complex aerodynamic models rely entirely
on numerical methods. There are many of them in the literature (a list of the
most important ones can be found in [9]), all suited for direct calculation of the
aerodynamic matrix, mostly for pure harmonic motion (y = 0), without evaluating
the response matrix g. Although the present method does not assume a harmonic
motion, it does not require the knowledge of the response matrix either.

Local bifurcation theory of dynamical systems [7] has been developed for the
first-order equations. By introducing a 2/NV-dimensional vector of new coordi-
nates y(t):

_Ja®
(2.12) y(t) {(’1(1‘)}’

the first-order flutter equation is obtained:
-
(2.13) §(t) = Dy y(t) + j Gu(~O; Uyt + @VdO + fu(y),
where square matrices of order 2N, Dy, Gy, and the nonlinear term fi;(y) are

given by:
0 0 0
G- =|n s vy | WO = ’
ol g(_('_'(-)) 0 —k(q)

0
Dy =
K, oeu”
2b b

with k(q) given by Eq.(2.6). For oscillatory motion (2.8), the linearized flutter
equation reduces to the eigenvalue problem

(2.14) (A(S; Uy - KW)F] = %4.
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Loss of stability occurs when damping drops to zero (7 = 0 in Eq.(2.9)) and
the flutter boundary is determined by the real negative eigenvalue of Eq.(2.14)

(2.15) 8% = —ws

corresponding to the critical flutter velocity [/ = .

The critical bifurcation point of the first order equation (2.13) is defined by
the eigenvalues of its linear part corresponding to f;;(y) = 0. It can be shown |7,
10] that also in the presence of convolution integral within the linear part, the
eigenfunctions have the form

y(t) = ye*,
where s is given by (2.9). The resulting eigenvalue problem is:
(2.16 0 L=
o Asly-K, ol 7

It follows from comparison with (2.14) that at the flutter boundary, the charac-
teristic matrix of linearized first-order flutter equation has a pair of complex-con-
jugate, pure imaginary eigenvalues s = +iwy.

The eigenvalue problem (2.16) of the linearized flutter analysis can be derived
in a more formal way by applying the Laplace transform, which replaces the
convolution integral in Eq. (2.13) by the product of two functions. In nonlinear
approach there are two possible ways: either the application of Laplace transform
in frequency domain or solution of the problem in time domain. The first method
is suitable for handling convolution integrals but faces more difficulties due to
nonlinear terms. On the other hand, working in time domain shifts the whole
problem to proper treatment of the convolution integral. The present paper uses
the time-domain method.

The qualitative changes in a behaviour of the nonlinear dynamical system are
always indicated by the purely imaginary (or zero) eigenvalues of the linearized
operator of the governing equation. For the nonlinear flutter equation (2.13) this
operator is of the form:

0
Ly(l) = Dy y(1) + / Gu(—6; Uy(t + @)d6.

Since the operator £ maps a space of continuous functions onto the Euclidean
space, then the eigenvalue problem L = A cannot be posed directly. Instead,
an extension of £ is made in order to map a space of continuous functions onto
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itself. An extended operator is the following [10, 11]:

de(@)
de -’

for —00<@<0,

(2.17)  Lye(@) = 0
Dy ¢(0) +/GU(—T;U)tp(T)dT, for @ =0,

and the flutter equation takes the form:

0, for —o0< @ <0,
f(y:(0)), for © =0,

(2.18) d3:(0) = Luy(©) + {

de
where the following notation has been introduced:
y:(O) = y(t + O).

Now, the eigenvalue problem L;/¢p = A can be formulated. First, the form of
the eigenfunction is determined (—occ < @ < 0):

O 0@ = 9(O) = 9O,

and next the eigenproblem for the Euclidean vector ¢(0) is posed

0
(2.]9) Dutp(O) + ( / G[_i(—T;U)E'\TdT) Lp([)) = /\(p(O)

As can be seen, both eigenvalue problems (2.16) and (2.19) are identical. There-
fore, since at criticality there is a pair of pure imaginary eigenvalues, flutter
instability is the Hopf bifurcation [10].

3. Center-manifold reduction

If any bifurcation occurs in a dynamical system, then the phase space splits in
general into three manifolds: stable — generated by eigenvalues with Re () < 0,
unstable — generated by eigenvalues with Re (A) > 0, and center manifold, cor-
responding to Re (\) = 0 [12]. Center manifold is invariant, locally attracting
and asymptotically stable. Moreover, it is of finite dimensions — for the Hopf
bifurcation it is two-dimensional. It means that in the space of all solutions’to
Eq. (2.18), bifurcating solution tends asymptotically to a two-dimensional attract-
ing subspace. The asymptotic solution (limit cycle oscillations) satisfies a cer-
tain system of two nonlinear ordinary differential equations of the first order,
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which can be derived from the integro-differential equation (2.18), written for
many degrees of freedom. This procedure of obtaining a low-dimensional system
of equations from the initial multi-dimensional system is called center-manifold
reduction.

There are two problems associated with the center-manifold reduction. Since
the aim is to calculate asymptotic limit cycle oscillations for a general form of
the nonlinear term f;(y), this term is assumed to have a formal power series
expansion with respect to generalized coordinates y. Consequently, the method
of center-manifold reduction is also based on such expansions. The second prob-
lem concerns the way the velocity / should be treated in. The critical flutter
conditions correspond to a certain critical value of the velocity U/ = Uy, which
in turn determines the existence of purely imaginary eigenvalues of Eq.(2.19)
and the center manifold, as well. At this critical branch point the amplitude of
oscillations tends to zero and, in order to obtain the finite amplitude limit cycle
oscillations, the value of velocity must be different from the critical one. Unfor-
tunately, if [/ # Uy, the characteristic matrix of Eq.(2.19) no longer possesses
pure imaginary eigenvalues and the center manifold simply does not exist. On
the other hand, the existence of the center manifold has been proven in a cer-
tain neighbourhood of equilibrium solution yg(?), corresponding to [/ = Uy, in
the space of solutions y(¢) [10]. For that reason, the center-manifold reduction
usually applies to the so-called suspended systems. Suspended aeroelastic system
is derived from Eq. (2.13) by introducing the difference

(3.1) u=U-Uj

as an additional variable satisfying the equation & = 0. The 2N +1-dimensional
vector of new generalized coordinates is the following:

q(?)
(3-2) x(t) = ¢ 4(t)
and satisfies the equation
0
(3.3) (1) = Dx(1) + / G(-O; wx(t + O)dO + f(x),

where square matrices of order 2N + 1 D, G, and the nonlinear term f(x) are
given by

0 I 0 0 0 0
. oA ;
D=|-K, 0 0|, G(-0;u)= a(Uoz;r tc)g(mlfo;tf(_))
0 0 0 ’

0
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0

f(x) = ¢ —k(q)
0

Since the matrix G(—©;u) now includes the independent variable u instead
of the bifurcation parameter [/, the integral in Eq.(3.3) is no longer linear with
respect to x. In what follows, the matrix G is replaced by the Taylor series

(3.4) G(-O;u) = G(- @oHZ_d_GEin)

It is also assumed that the multi-variable power series expansion for the non-
linear function f(x) at the right-hand side of Eq.(3.3) is known:

(3.5) f(x) = Z ;—1- fx";

v22

where
2N +1

7 P W2 L VAN+L . \
X' = {.1] Xy .1"2N+1}, Z v, =, v; > 0.
i=1

The number of components of the vector x” and also the number of columns
of each matrix f, changes from one term to another and equals the number
¢,2n+1 of compositions of v into 2N + 1 parts

v+ 2N
(3.6) P ).

V-1

The elements of matrices f, can be easily calculated from Eq.(2.6). Substitu-
tion of series (3.4) into Eq. (3.3) yields the integro-differential equation valid in
a certain neighbourhood of the critical bifurcation point:

3.7) (1) = Dx(1) + / G(-O;0)x(t + ) dO + h(x),

where h(x) equals

0 n— )
68 hW=f0+Y o 1)1/ "IG(-0:0) o 4 0340,

n—-1
]>2 du



12 J. GRZEDZINSKI

with x”7 = {.1-’1"-131---.1‘,'2’7\',“;{}, and always n = nyn+1 + 1 (2an4+1 = u) which
2N
implies that Z 1n; = 1. Equation (3.7) will be reduced on the center manifold.
i=1
The linear spectrum of Eq.(3.7) includes one eigenvalue with zero real part
more than the previous spectrum of the non-suspended system (2.13). Hence the
center manifold corresponding to Eq.(3.7) is larger than that of Eq.(2.13) and
has the dimension of three.
Since the center manifold is tangent to the linear subspace spanned by eigen-
vectors ¢, corresponding to the bifurcating eigenvalues of the extended linear
operator Lg derived from Eq. (3.7)

dp(0)

— o< @ <0,
10 for o0 < @ <0

(3.9)  Lop(®) = 0
D (0) +/G(—T;O)lp('r)(lr, for @ =0,

then it is convenient to introduce the three-dimensional vector z(f) of center-
manifold coordinates as follows:

3

(3.10) x(@) = 3 z;(1)9;(0) + w(O, 1),

j=1
with the yet unknown function w(©, ¢) satisfying the conditions:

dw(©,0) _ 0

(3.11) w(O, 1) = w(O, z(1)), w(@,0) =0, =

The above conditions, besides tangency, reflect invariant properties of the center
manifold.

In order to restrict the aeroelastic system to the center manifold, the projection
operator I must be determined, satisfying relations

Px(©) = z(t),

(3.12) Pw(O, 2(1)) = 0.

The projection procedure is based on the so-called outer product [10, 11],
associated with the extended linear operator Ly:

0 1
(3.13) (x",x) = 2T (0)x(0) - ] / 2T (€ - n)G(—n;u)x(£) d€ dn,
-co 0
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with two continuous functions x(£) and x*(n) defined over intervals —oco < £ < 0
and 0 > 7 > oo, respectively. The adjoint operator is defined in a standard way
by the relation:
(x*, Lox) = (Lox",x).

The eigenvalues and eigenvectors of two eigenproblems Ly = A and L =
A" satisfy the equalities A* = A, (., ;) = 6. By using Egs. (3.9) - (3.13), the
simple set of three nonlinear first-order ordinary differential equations describing
asymptotic motion on the center manifold is obtained [10]:

(3.14) i=Az+ ¥ (O)hy,

where A denotes the diagonal matrix of eigenvalues iwg, —twy, 0, and the matrix
W is composed of the corresponding eigenfunctions ¥, (7 = 1,2,3). The 2N +
1)-dimensional vector function w(@, z(¢)) defines essentlally the center manifold
and the projection operator as well. It satisfies the integro-differential equation:

3
- ZE:] (0)hoep;(O), for —o0< O <0,
~3 "%, (O)hop,(0) + hg, for O =0
j=1

and also the orthogonality conditions, which have not yet been implicitly imposed:

(bW =0, j=1,2,3.

Both equations (3.14) and (3.15) are coupled by the right-hand side nonlinear
term:
3
hg = h(x;(0)) = h (Z zi(t)p;(0) + w(z, 0)) ‘
=1
Although the assumption (3.5) describing the nonlinear term by multi-variable
power series has not been used so far, it seems to be rather necessary in order

to solve the system of Egs. (3.14) and (3.15). In what follows, also the function w
is expanded into such a series

(3.16) w(z, 0) = Z w‘,(O)z”(t)
u>2/
In terms of power series, the Eq. (3.15) takes the form
(3]7) Z '[ (W‘,(())A“ [.()Wﬂ (@)) zH
u>2
0, for -0 <@ <0,

= Z r,,(())z + 1 o
> zThO’“ , for © =0,

u>2
v>2
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where y
(Aﬁ')kk = Z /\H{LJ y k= 1?25 vy CU 2N +14

§=1

and the first right-hand series of (3.17) is given by

3
Z ri,(@)z = Z O)hoacj Z/ w,(@)z".

u>2 g=1 w>2

The method of recursive calculations of coefficients of equations (3.14) and (3.17)
is described in details in Ref. [3]. It is worth noting here that calculations can be
carried out up to the desired order of approximation.

From a quite formal point of view, the center-manifold reduction is equivalent
to the appropriate nonlinear change of coordinates given in the form of a series,
linking (3.10) and (3.16):

(3.18) x(t + Q) = Z; w, (@)z"(1),

p>1

where the vector z() of new coordinates has only three components. The matrices
w,(©) of order (2N +1) x ¢, 3, where ¢, 3 denotes the number of compositions of
jt into 3 parts (3.6), are composed of continuous functions defined in the interval
@ € (—00,0]. The algorithm of center-manifold reduction provides the way of
calculating these functions and also the method of simultaneous derivation of the
first-order ordinary differential equation describing the limit cycle oscillations in
terms of new variables z:

(3.19) ity =Az()+ Y : d, 7",

w>2

where A denotes, as before, the diagonal matrix of eigenvalues iwy, —iwg, 0,
and d, are rectangular matrices built out of the already known complex num-
bers. The way in which the suspended system has been introduced implies that
z3=u and also Z;3(1) = 0, which means that an asymptotic motion is essentially
two-dimensional. The third variable u acts once again as a parameter, while the
suspended system serves as a convenient tool for deriving the series expansion
with respect to it.

The next important conclusion drawn from the algorithm of center-manifold
reduction says that there is no need to know the response functions forming
elements of the matrix G(—@;0). This is because the columns w, (@), k£ =
1,2,...,c an+1, f£ > 1, of each matrix w, (@) of the series (3.16), can be only of

the elementary form [3]: _
Wﬂ;\-((')) = \T\’“k(')J 659,
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with integer 7 > 0, and s being an imaginary number. Consequently, all inte-
grals involving the response functions within the algorithm can be carried out as
follows:

0 .
d"'G(-0;0) .: .0 ;4 _ 0"A(s; Up)

—_—0

where » > (), and the only non-zero block of the matrix

0 0 0
A(t-'; ( ;0) = A(.S'; (_"0) 0 0
0 0 0

is the aerodynamic matrix A(s; (/) given by Eq.(2.11) and calculated for a pure
harmonic motion and the critical velocity Uj.

Since Eq.(3.19) is an ordinary differential equation, it can be easily trans-
formed to the so-called Poincaré normal form either by the Lie transforms [7] or
by recursive change of coordinates [13]. Both methods introduce new variables
¢ (1) related to z(t) by the near-identity transformation

(3.21) 1) = (1) + 3 b C (1),

v22 7

This transformation retains the form of Eq.(3.19) also with respect to new
coordinates ( (). The calculation of elements of matrices b, requires to make as
many coefficients d,, equal to zero as possible. The simplification achieved lies
in the phase-shift symmetry introduced by the transformation (3.21). The normal
form of Hopf bifurcation in polar coordinates r, 0:

(3.22) G=ref,  (=(

may be written as [2]:

P (",'(u.) + Z u,J-(u)rzf) ,

7=1

(3.23) N
w(u) + Z bi(u)yr,

i=1

f

where ~(u) + iw(u) is the pair of complex-conjugate eigenvalues (7(0) = 0,
w(0) = wy). All functions y(u), w(u), a;(u), b;(u) are real and have the form of
power series expansions with respect to u. In practical calculations, Egs. (3.23)
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are implemented up to some finite order n (j < n). Therefore, the amplitude
ry of the limit cycle oscillations satisfies an algebraic equation obtained from
Eq.(3.23), by setting 7 = 0:

(3.24) Y(w) + > a;(uyy =0.
=1

For any given u, the left-hand side of Eq. (3.24) is of the form of a polynomial
in r77. Hence all possible limit cycle amplitudes are determined by the real positive
roots of this polynomial. Since limit cycle oscillations (; = (y(t) on the center
manifold are purely harmonic [10]:

(3.25) (y = rge™nt,

then for each amplitude 7y the corresponding frequency wy; is calculated from
(3.26) wy = w(u) + Z b.,‘('u.)r}j'_;i ;
i=1

The sequence of transformations of variables given by Egs.(3.22), (3.21),
(3.18), (3.2), (2.12) and (2.2) yields the final limit cycle oscillations of physi-
cal variables u(?). Since two of these transformations are nonlinear, the physical
variables do not oscillate harmonically in time, contrary to the center-manifold
variables ().

Flutter analysis of an aircraft imposes a number of requirements not satisfied
by solutions of the Hopf bifurcation for functional differential equations, available
in the literature. First of all, it is not sufficient to take into account only the highest
order term of (3.24), which gives the characteristic square-root growth of the limit
cycle amplitude

rg =1/ Pu
where
_ 1 ([“/ (0)
(3:27) T ay(0) du

because the region of validity of this approximation is too close to the bifurcation
point to be of practical importance. An example of such a limited analysis is
included in [10] and has given a good starting point for the present method.
A two-term approximation, however not using the center-manifold reduction, is
given in [14], but because of the very special method of solution of the problem,
it cannot be directly extended to the arbitrary number of terms and to systems
with many degrees of freedom.
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4. Numerical examples

All numerical examples presented in this section assume that the nonlinearities
are concentrated in the points of connection between the lifting and control
surfaces of an aircraft, producing nonlinear restoring moments when the control
surfaces perform rotation about the hinge lines. It is also assumed that each hinge
moment M; is a cubic function of the local angle of rotation 6

(4.1 M;s = K6 + ¢6%),

where /s is a standard linear spring constant, and the coefficient ¢ describes
the strength of nonlinearity. The last assumption means that there is only one
non-zero matrix K, in Eq. (2.4).

Since each nonlinear analysis is essentially an extension of the corresponding
linearized problem, it is impossible to calculate the limit cycle parameters for an
aircraft without having a suitable computer program for the linear flutter analy-
sis. The standard output of such program includes critical flutter velocity (/y, the
corresponding frequency wy and the flutter mode in the form of a right eigenvec-
tor q of Eq.(2.14). For a nonlinear flutter analysis the following additional data
should be supplied:

e elements of the aerodynamic matrix (2.11) corresponding to the flutter point,

e a set of derivatives (3.20) of the aerodynamic matrix corresponding to the
flutter velocity and calculated for s = +iwgy, +2iwy, £32wy ... up to the desired
order of approximation,

e elements of the matrix R (2.5) defining locations of nonlinear springs within
the aircraft structure.

Since the aerodynamic matrix is essentially a function of nondimensional vari-
able p = wb/l/, the derivatives of the aerodynamic matrix with respect to vari-
ables s and [/ can be easily evaluated if the corresponding derivatives with respect
to p are known. For the 72-th order of approximation of the Egs. (3.23), the high-
est derivatives are of order 2n — 1. Although some simpler unsteady aerodynamic
models allow for an analytical calculation of derivatives (e.g. strip theory), it seems
that in general, the only efficient way is numerical differentiation. This is because
in most cases the aerodynamic matrix is known only numerically (i.e. as a set of
numbers). It has been found that satisfactory results, especially for higher-order
derivatives, gives a simple integration scheme based on the Cauchy integral in
the complex p-plane:

d?ag(p) ) ap(2) 7' & akilz)
—— =t p T e = —Az,
~ ¢ : ) Az,
&

dpi " 27 ) (z—pytl T " 2mi — (2 — pyt!

where aj(p) denotes an element of the aerodynamic matrix. Integration nodes
=, are placed on a small circle (" with an origin in the point p. All values of
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argument p of the derivatives appearing in center-manifold reduction are purely
imaginary numbers, hence the standard numerical methods for calculation of the
aerodynamic matrix can be applied.

The number of degrees of freedom of an aircraft may cause some computa-
tional problems since the amount of numerical work required grows very fast. For
an aircraft with only six degrees of freedom (modal coordinates) and four-term
center-manifold approximation (n = 4 in Egs. (3.24) and (3.26)), the number of
components of the last, 9-th vector x7 in Eq.(3.8) equals 293930. Therefore, it
is very important to select only the most significant natural modes out of all the
modes included in the flutter mode, in order to save both the computer time and
memory. Since the center manifold is tangent to the linear subspace spanned by
two complex-conjugate eigenvectors of the linear operator (2.17), such a selection
is done in the same way as in the conventional linear flutter analysis.

Sample calculations of the limit cycle amplitude and frequency were made for
the aileron and flap flutter of two gliders. All hinge springs of the control surfaces
were assumed to produce hardening cubic nonlinearities. The number of physical
degrees of freedom used to calculate the natural modes was equal to nearly
200. Six modal coordinates were taken into account, including two or three rigid
modes. The first glider revealed symmetric and also antisymmetric flap-aileron
flutter at velocities 187 km/h and 178 km/h, respectively. Similar antisymmetric
flutter at 225 km/h occurred for the second glider.

O. 40 ‘n=i
o =
_ == n=3
— h=4
& 8. 20
0.10 — 05—
0. 00

0.92 0.94 0. 96 0.98 1. 00
U/Uo

Fic. 1. Amplitude of center-manifold Hopf limit cycle (symmetric flutter).

Both gliders had one nonlinear aileron hinge spring with ¢ = 50 (4.1). Results
of calculations for the first glider are presented in Figs. 1-8. Figures 9-12 con-
cern the second glider. Symbol n in all figures denotes the number of terms of the
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Fi1a. 2. Frequency of center-manifold Hopf limit cycle (symmetric flutter).

0. 05

0. 04—

0.03

OF

0.02¢

0. 01

0. 00

0.92 0.94 0.96 0.98 1.00
U/Uo

Fi1a. 3. Flap limit cycle amplitude (symmetric flutter).

series (3.24) and (3.26). As the final results of calculations, the Hopf limit cycle
amplitude rp; (3.24), normalized with respect to /7 (3.27), and frequency wy /wy
(3.26) are plotted against the nondimensional velocity {//l/,. There is a sequence
of five approximations in each chart, corresponding to n = 1,2,3,4,5. Note that
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I'1G. 4. Aileron limit cycle amplitude (symmetric flutter).
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FiG. 5. Amplitude of center-manifold Hopf limit cycle (antisymmetric flutter).

n-th order approximation of a center-manifold limit cycle requires 2n + 1 terms
in the power series expansion (3.18).

Once the center manifold limit cycle parameters are known, it is possible to
calculate the physical deflections of a glider during oscillations. Only two of them

http://rcin.org.pl
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I'1G. 6. Frequency of center-manifold Hopf limit cycle (antisymmetric flutter).
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1. 7. Flap limit cycle amplitude (antisymmetric flutter).

are plotted: local hinge-line rotation of flap 6z and aileron ¢ 4. Both correspond
to the location of nonlinear springs and are measured in radians. Because physi-
cal coordinates do not oscillate harmonically in time (though in a very similar
manner), the amplitude of oscillations is not well-defined. Therefore, 6 and 6 4

http://rcin.org.pl
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0. 80 0. 85 0.90 0.95 1.00
U/Uo

F1G. 8. Aileron limit cycle amplitude (antisymmetric flutter).

denote maximum values of the rotation angle reached during a single period. In
all figures the unstable limit cycles appear in the vicinity of the corresponding
bifurcation points.

In almost every chart there is an additional line taken from Ref. [17], and
denoted HB, describing the amplitude of limit cycle oscillations calculated by the
harmonic balance method [15], by using the continuation subroutines package
[16]. Harmonic balance method replaces each nonlinear restoring force by the
first term of its Fourier transform. If there is only one nonlinear force present in a
system, then for any given limit cycle amplitude the linearized flutter equation can
be solved for the corresponding flight velocity. Multiple nonlinearities result in
greater complexity of calculations, because the amplitudes of aircraft deflections
at concentration points are not known prior to the calculations, but their ratios
are determined by the resulting flutter mode.

There is a very good agreement between the results of the present method
and the harmonic balance method, in a range of a few percent below the linear
flutter velocity [/y. However, beyond this interval a qualitative discrepancy of the
results of both methods are observed, and also the power series derived by the
present method are not convergent anymore.

It was impossible to establish the real behaviour of limit cycle oscillations of
the gliders because neither the flight tests nor direct numerical integration of
the nonlinear flutter equation were performed. Nevertheless, it is important that
the limit cycle oscillations are detected below the linear flutter velocity despite
the fact that their amplitude is uncertain. These oscillations can be initiated by a
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I'1G. 9. Amplitude of center-manifold Hopf limit cycle (antisymmetric flutter).
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FiaG. 10. Frequency of center-manifold Hopf limit cycle (antisymmetric flutter).

sufficiently high disturbance, the magnitude of which is known from the presented
results of calculations and which is given by the unstable branch of amplitude
curves (the part of plots between the bifurcation point and the turning point in
Figs. 11 and 12).

http://rcin.org.pl
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F1a. 11. Flap limit cycle amplitude (antisymmetric flutter).
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Fia. 12. Aileron limit cycle amplitude (antisymmetric flutter).

5. Concluding remarks

The discrepancy between the present method and the harmonic balance
method in a region located not very close to the bifurcation point is not an
unexpected result. The harmonic balance method assumes pure harmonic oscil-
lations of a structure, that may not be satisfied, and also treats nonlinear springs
in a simplified manner. The method of center-manifold reduction is a method
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of local validity and, afterwards, is based on asymptotic series expansions, the
usefulness of which cannot be expected in a wide range of velocity. Nevertheless,
there is a good agreement between these two methods locally. Hence, the main
advantage of the center-manifold reduction lies in a possibility of extension of this
method to such aeroelastic systems for which harmonic balance method cannot
be handled easily (e.g. multiple concentrated nonlinearities), and to systems for
which the direct numerical integration method cannot be used in a sufficiently
effective way.

The method of center-manifold reduction does not limit the number of de-
grees of freedom. The problem of treatment of higher degree of freedom systems
affects only the efficiency of calculations. The method itself (and the correspond-
ing computer code as well) can be applied to any number of degrees of freedom
“as it is”. However, the hardware used may bound this number significantly if
there is not enough RAM available. It has been found that the computer direct
access memory is the bottle-neck of the calculations. The reason is that the main
series (3.18) is not a series of numbers but rather a series of functions. These
functions are described by a rapidly growing number of parameters, when the
number of terms increases, and moreover, all of them must be stored in memory
during the entire computation process. On the other hand, not very high number
of terms is sufficient to determine the behaviour of the aeroelastic system under
considerations in the neighbourhood of a bifurcation point.

The method of center manifold reduction is an asymptotic and local method
(i.e. looking near a single point) and, therefore, is not suited for treatment of more
complex global bifurcations or transition to chaotic oscillations. Such oscillations
appear also in aeroelastic systems.
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Lagrange’s equations for holonomic systems with rigid bodies

A. MORRO (GENOVA)

A HOLONOMIC SYSTEM is considered which consists of rigid bodies and material points. Any rigid
body is regarded as a continuous system and its position is described by the so-called angular vectors.
Starting from the characterization of the constraints and using some identities for the angular
vectors, the motion of the holonomic system is shown to be governed by the usual Lagrange’s
cquations. The essential role of the angular vectors is emphasized through comparison with a
previous approach.

1. Introduction

A RIGID BODY is a system with a number of degrees of freedom not greater than 6.
Nevertheless, treatments of analytical mechanics deal only with material points
and hence rigid bodies are modelled as a set of material points though such
points are not characterized operatively. The results are then deemed to apply
for continuous bodies by merely replacing the summation over the particles by a
volume integration, with the point mass becoming a mass density (cf. [1-5]).

Quite naturally, instead, a rigid body might be viewed as a continuous body
whose mechanical state in space is characterized by the position of a point and
the orientation of a rigidly attached triple of non-coplanar axes. This view is
customary in connection with the kinematics of rigid body motion and Euler’s
equations of motion where angular vectors are used to describe the position of
the body (cf. [6-8]).

The standard approach of analytical mechanics can be modified so that both
the material points and the rigid bodies are incorporated and, moreover, rigid
bodies are considered systematically as continuous bodies with the correspond-
ing number of degrees of freedom. It is the purpose of this note to derive the
equations of motion from the characterization of the constraints. The system 5
under consideration is holonomic and consists of /N material points and B rigid
bodies. The approach is based on the use of angular vectors [9]. As a result, the
motion of the system is shown to be governed by the usual form of Lagrange’s
equations.

To the author’s knowledge, the literature shows one previous approach to
Lagrange’s equations, where the rigid body was viewed as a continuum [10].
An immediate comparison emphasizes the conceptual difficulty that arises if the
angular vectors are not involved.



28 A. MoRrro

2. Angular vectors and characterization of the constraints

Let P be any point of a rigid body, & the center of gravity, and w the angular
velocity. The velocities v, and v of P and (7 are related by

Ve =V + wx (P - G).

The tirne -dependent velocity field vp(t) = v(F,?) is then characterized by the

two time-dependent vectors v,(1) and w(f). Two pairs v\, w® and v, @@
determine the corresponding fields

v = v 4w (P - (@), v = v 4 WO (P - G).

A field of virtual velocity v is defined to be the difference of any pair of velocity
fields. Analogously, a virtual angular velocity w is defined to be the difference
of any pair of angular velocities. Hence, letting v = v(!) — v, g = () — (@
we have

(2.1) Ve =V, + WX (P - G).

The vectors w and w are now related to the generalized coordinates.
Let {e, } be the unit vectors of a Cartesian set of axes fixed in the rigid body,
h = 1,2, 3. For greater generality we let

e, = exlq,1),

where ¢ = ¢(t) is a set of generalized (or Lagrangian) coordinates for the body.
By definition, the angular velocity is given by

1 . ()eh . deh
=5 enxé, = Zeh 5 22% =
h ¢

where a superposed dot denotes the (total) time derivative d/dt; the sum over
repeated indices is understood. Define the angular vectors 2, £2; as

de;, 1 ()eh
S Q== —.
Z h X dq; ¢ 22}1:%)( Bl

We have
whence
2.2) =

o5
=)
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.(1 (2 . " ; ;
Let {qf, i | qf- : } be the sets of generalized velocities associated with v(,,l), vg) ‘

. ; .(2
Letting ; = (/J-l - (/5 ) we have

JdF,
(2.3) Va = 50 TS 2;1;.

For later use we need the expression of the time derivative €2;. Letting

2;p = Qe

and
e,; = de,/dq;, en: = Oey/0t,
we obtain
i 1 1 1
-Q.;p == Z(eh X eh,_j) €y = 3 Z(ep X eh)' €hi = 3 Z Ephi€h,j* €]
2 A - h 2 h,l
and

enrl, ten = Qrxenq, + 2 xe, = wxey.

Substitution and some rearrangement yield

. ] i l
Djp = 5epnienindi + €nje) e+ sepnen ;- wxe
o 0 wxe),- e e L WX Eh € + =Ephi€h it WX E
- 0(1_, prh[ h % Zvy)hl h*€l g 2*~phl h,j l
ow, 1 1
= = — (e, xep) e (wxe) (€2 xe) + (e, xen) e (2;xep) (wxe)
dg, 2 5
ow, 1 1
= ()([ e z(wxeh)'[QJ‘X(ep Xeh)] -+ E(ijeh).[wx(e;ﬁxeh)]
J
(')u.‘r 1 ] 1
= L — —(wxey) e, + =(2; xep) wre,.
(',)(/J‘ 2( e}) 7h€ 2( ] ef,) W€y
Accordingly we have
2 Ow,
Lip = ()—(]j + Q.}’Xw-ep_

Hence the time differentiation of ; = (2;,e, yields

. Ow
2.4 Q. = —Le,.
(2.4) = Dg; €p

Let &, be the force of constraint at any point ¢ of .5, namely, at any material
point or at any point of the rigid bodies. Denote by v; the virtual velocity of
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the point ¢ and let A be the set of labels for the constrained points. Hence we
characterize the constraints by assuming that

(2.5) Y v =0

€A

for every set of virtual velocities {v,;} compatible with the constraints.

For formal convenience we separate the values of : pertaining to the material
points from those pertaining to rigid bodies; we label by a = 1, .., N the material
points, and by the pair b 3, b = 1, ..., B, 3, = 1,..., N}, we denote the constrained
points of the B rigid bodies. Denote by Rj and M7, the total constraint force
and the total constraint torque acting on the body b, i.e.

R; = Z d)b;;',, Z(Pbﬁl — Gy x ¢‘bﬁ,,-

ﬁh jb

The total applied force R} and the total applied torque M¢, are defined anal-
ogously by replacing the constraint forces with the applied forces. By means of
(2.1) we have

Z ¢b;j,, *Vis, = Z ¢b4,‘3,, Vg, + Z ¢bﬁb Wy X (P, —Gh) = R} Vg, t M?;,, * Wy -

b8y b, By b,By

For any body b, the balance of linear momentum, P;, and of angular momen-
tum, L,, is written as

P,=R;+R), L,=M+Mj.
The equation of motion for any material point « is given in the form
/I‘naa = FL‘I + d)u ]

where 4, is the mass, a,, — the acceleration, F, — the applied force. Substitution
enables us to write the condition (2.5) in the form

2.6) S (ftads — F.)ve + 3 (B —RY)vg, + > (Ly — M2 ), = 0.
[&} b b

3. Lagrange’s equations

Let now ¢ = (¢, ....¢,) be the set of generalized coordinates for the whole
holonomic system. Substitution of (2.3) into (2.6) yields

(g — Fa) ) ’L, ()

G
,, Kt Z(P,, R})- ,,, + Z(L;) M:)-Qip; = 0.
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The arbitrariness of the n-tuple 7, ..., 7, implies that
(31) T_]'--Q_,' =0, j=1....,n,

where

(3.2) T = Z;t{.a,-, 5 ZPb- + ZLb-Qb
(Nu ZRb ()( +ZM5'

It is natural to view 7; (();) as the j-th component of the generalized inertia
force (generalized force).

To find a convenient form of 7; we observe that, for any material point P of
mass ¢, by means of the known ldentmes we have

ar dv 9P a’( dv) dv _d 91 , 91 ,

dGb

(3.3) Z F,-

la'aTﬁi:,Ud—/'—g)'q—h=m lV"a—q—h — LV'E’[Z=EB—(}’]§'U.V —%iﬂ.v
In the same manner, since P = myv., we have
O G i J 1 Jd 1
P-(— = oC = S L = —mv{

= Mags 75— = — ——=MV5
Aqu, o dgn - dt 9g, 2'"e dqn 2

Let I be the inertia tensor of a body, relative to the corresponding center of
gravity. Hence L = I w. We now use (2.2) and (2.4) to obtain

dt aq,

_ 1 (lﬂpl_ 1
_(T/[E("'["’]_(I dt (lf[Z } dqh[ww]'

The expression of the kinetic energy of the system, viz.

1 1 1
T = Z E;Lﬂv% + Xb: Embvf:,.b F ; iwb'lb Wy

allows 7; to be written as

(3.4) e or

(3.5) “'**—'—;—_=QJ‘, g = Lo, By

namely Lagrange’s equations of the second kind.
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4. Comparison with a previous approach

The view that the rigid body is a continuum rather than a set of material points,
is expressed in [10]. A comparison is then necessary to assess the conceptual
improvement in the present approach.

The approach in [10] starts from the D’Alembert principle for a single body
which, in the notation of this note, may be written in the form

(4.1) RYv;+ Ml .-w — /Qu-a(lv =0,

where o is the mass density; the integral over the region R, occupied by the body,
is regarded as the power of inertia forces. The assumption (2.5) seems to be more
convincing. Yet it follows easily that Eqgs. (2.6) and (4.1) are equivalent when a
single body is involved, since the observation that

()_P . ([ d 1 2 () 12
9g; T A9y, 2 0q 2

and substitution of v = (JF/dq;)n; yields

/gu-a dv = 1;1;,
R

where 7; has the form (3.4) in terms of the kinetic energy. Here, the expression
(3.2) also leads to (3.4).

The crucial point consists in expressing the power R* «v + M.+ @ in terms of
the generalized coordinates. First, the “primitive” coordinates A, are considered
and the power R“ v, + M’ . is written as a linear form in the virtual time
derivatives of Ag; the correspondmg coeflicients are denoted by A,. Hence, for
holonomic systems A; = A;(¢,?) and it follows that

R*vs +Méw =) Qn;,
j

where

N,
Qi = ZS: A ()(IJ

Accordingly, the arbitrariness of the set {1} implies that Lagrange’s equations
(3.5) hold. Unfortunately, without the angular vectors, the quantities (}; are not
defined per se. Indeed, (); can be viewed as the coefficient of 7; in the expression
of the virtual power. The use of the angular vectors, instead, allows us to write
(), in the form (3.3). The occurrence of the angular vectors €2; makes it apparent
why we are unable to write the expression for (J; if the angular vectors are not
considered.
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Asymptotic expansion of solution of the torsion problem
for an elastic rod with a cavity and a thin bonded multilayer

G.S. MISHURIS (RZESZOW)

THE FIRST TERM of the asymptotic expansion of the solution of the torsion problem for an elastic
rod is derived using the method of a matched asymptotic expansion. The prismatic rod is weakened
by an internal cavity with angular points, one of which is situated on the exterior boundary. The
exterior boundary of the rod is reinforced by a thin elastic multilayer. Difference between the
exact and approximate solution of the problem are estimated by the norm of the Sobolev spaces.
Relations for stress intensity factors in the angular points are found and verified.

1. Introduction

STRUCTURAL ELEMENTS reinforced by thin surface layers have found wide appli-
cation in modern technology. Such elements can seriously change the elastic and
strength properties of the structures. The corresponding boundary value prob-
lems have been investigated in [2, 3, 4, 20]. In those problems it is assumed that
curvature of the thin layers is small. In this way, note paper [9], in which “av-
eraged” boundary conditions are obtained for a thin surface layer with arbitrary
curvature by the operator method. All the mentioned problems are related to the
so-called boundary value problems with regular perturbations of the boundaries
[7, 8].

However, in the cases when stress concentrators are situated near the thin
layer, singular perturbations of the boundaries appear. The methods of solution
of such problems have been proposed in [6, 12, 19]. One of them is the method of
matched asymptotic expansion. It consists in the solution of the limiting (internal
and external) problems, and later — in their coordination in some intermediate
region [6, 12].

In paper [15] the method of solving the boundary value problems in infinite
domains represented by wedges and layers is proposed. For some values of the
parameters, homogeneous problems discussed in [15] have nontrivial solutions,
which are of some class of solutions of the internal limiting boundary value prob-
lems. These solutions can be calculated by functions belonging to the kernel
of special singular integral operators [14, 15]. In [13] the numerical method of
deriving the functions from the kernel of the operators has been introduced.

In the paper, a singular perturbed boundary value problem is considered,
which corresponds to the torsion problem of a prismatic rod with a cavity and
a thin multilayer. A similar problem for a homogeneous rod with a linear crack
was investigated in [1].
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2. Formulation of the problem

Let us consider a domain (2, with compact closure 2, C Rz, smooth exterior
boundary [, (for example, /. € C'!), and piecewise smooth interior boundary /7
(092, =I.Ul}). By I we denote the closed curve: [1={P¢€ {2, : dist(P,02;)=h},
(see Fig.1).

FiG. 1.

Assume that A, B € [ are corner points which divide the closed curve /{ =
Iruly, and
0 0>

(i) dist(A, Iy =h <1, rg >1, dist(B,1.)~1,
@n G L T, =7/2F da, LU T3, =248,
(iii) kry(A) = kps(A) = kps (B) =0,

where ¢4, 05 € (0,7/2), kr,(A), ll\.']}i (A) are curvatures of the curves /', and

[ in point A, but ro, = sup{r : B, C {2.} is the Chebyshev radius of the
domain (2, (here df2. = [, and B, is open disk of a radius r).

Let (s.n) be a local coordinate system connected with the curve /7. Its origin
is at the point A € [, and n > 0 along the outer normal. A Cartesian coordinate
system (r,y) coincides with the local system (s,n) at point A (A = (0,0)).

If me N p.p; € Ry ) = 1,2,...,m) are some positive constants, and
0=hy<h <..<hj<..<hy_1<hy = h, then we consider the step

function:

lj+15 $;)E S Ah; << higr,
(2.2) p(s,n) = { Hi+1 (s,n) ! J i+l

Lo 5 (s,n) e A —c0 < n <0,
and from the assumption it follows

(2.3) 0< Og}igrg”{m} =p < ple,y)<p= Og}fgn{ﬂj} < oo.

http://rcin.org.pl
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We shall use also the symbols (7 = 0,1,...,m):

25 = Qun{(z,y) : lz,y) = ps},

(2.4) ;
['iv1 = {(s,n):(s,n) € 2, An = h;}.

We shall seek a harmonic function u(x,y) in each domain Qi (the torsion
function [18]), satisfying along the interior boundaries /', (; = 1,2,...,m) be-
tween different materials the conditions:

d X
25 (=ui)yy, =0 o-(uguy = piaaui-))y, = fi(,y).
But along d{2, we have
J J il
(26) Hm %Um[n = fm(ma TI)a F‘O%UO|FC§: = "_j() ('Ev l/)’

with some functions [, f5* € C"°°(1}) (see [18]), so that the following conditions
are satisfied:

: . a ., Jd .,
(2.7) £i(0, k), f57(0,0) = 0, 52110, 1), 5= fo(0,0) ~ 1.
For solvability of the problem we should assume, in addition [18], that
m+1
(2.8) 3 / fi(s)ds = 0,
=0 I

where /,,,1 = I, but to secure the uniqueness of the solution we normalize it
by the condition:

(2.9) u(B) = 0.

Using the results from [10], one can show that the linear problem (2.4)—(2.8)
has the unique solution wy, in the space W, (§2;,, B) = {u € W3 (£2,)Au(B) = 0}.
It can be easily seen on the basis of the results of [5], that the solution belongs
to C'°°(§2}). Besides, we can prove that u, € C'(£2,), however, u), ¢ W#(§2;). To
verify the first fact, it is sufficient to investigate the asymptotic behaviour of the
solution near any point situated on the interior boundary /'; ( = 1, ....m); but
to check the second conclusion, we should know the behaviour of the solution in
the neighbourhood of points A or /5. We shall consider in detail only the second
proposition. Namely, let us represent the solution near these points in the form:
up = y(r/euy, + (1 — y(r/e))u;, with some small € > 0 (¢ < hy). Here and
further on, by \ € ("*(R.), we shall understand a cut-off function defined by

L, 0<t<1/3,
;] 1) = o
(210) () {0, 2/3< t < 0.

http://rcin.org.pl
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Let us note that the function u.|; = y(r/e)un|; € Ly(R+), where [ is an ar-
bitrary radius with origin at point A (B) so that [ n {2, # (. Then applying
the Mellin transform technique to the corresponding problem for the function
w. = Y(r/e)uy, and taking into account the assumptions on curvatures (2.1), we
obtain

up(h,r, @) = da + c‘.;z/‘zlr“ F(¢) + O@®4), r—0,

2.11) . .
up(h,r,¢) = dp + cgrg r*2F(¢) + O(°8), r —0,

where (r, ¢) are local coordinates connected with point A (or B), and the angle
¢ calculated with respect to the bisector of the corresponding corner angles, are
situated in the domains 2} ({27, respectively), but

sin ¢ v
sin(rv/2)
cos(r — 6o — |41 ¥
cos(m/2 — go)v

where ¢g = ¢4(¢B), dg = 0 (uy, € lflf'zl(ﬂh, B)), but constants v4 ,vp € (0,1)
are the first zeros of the function:

lp] < 7/2,
(2.12) F(¢) =
T[2<|pl < T~ ¢o,

signg

Ho — 1
= BB g =0,

Ho +
which are the nearest to the imaginary axis. Since kg = 0, the relation for the
function '(¢) at point B has a similar form for |¢| < 7 /2 as well as for |¢| > 7 /2.
Here the values of the parameters ¢4,60p € (1,2) in (2.11) are calculated as
follows:

Ac(s) = rcosgs — cos(T — do)s, K

b4 = min{r/ff), Ta}, o = min{ug), rm},

where z/gz). ug') are the second zeros of the function A.(s), but 74, 7p are the
first zeros (74,75 > 0) of the function: A (s) = s~ [k sindgs + sin(m — @p)s],
with the respective value of the parameter « (x4, £g).

The constants ¢4 ,cp in (2.11) play an important role in fracture mechan-
ics [17] (stress intensity factors). The next mechanical parameter which can be
calculated from the solution wu, of the problem (2.5)-(2.9) is the stiffness [18]:

(2.13) ("= // e, y) (.1‘2 +y?+ (1% - ;r/é—i_) up(h, x, y)) df?.
i . :

However, the numerical process used for solving the problem (2.5)-(2.9) is
difficult in view of the existence of the small parameter £, and of the singularity of
the solution in the neighbourhood of point A situated near the exterior boundary
of the domain. Further on, we find the first term of the asymptotic expansion of
the solution wy, which is close to u), in the norm il'l»’zl(!'.)h), and makes it possible
to obtain the values of coefficients ¢4, ¢p, C' from (2.11), (2.13).
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3. Limiting boundary value problems
3.1. External problem

Now we consider similar problem but the domain will be somewhat different.
Namely, by {/y we denote the simply connected domain with boundary 9/, =
2 U My U My, where Mg = {(z,y) : 0 < y < h Az = 0+)}. Along the
curves M(f we define functions ff,(s) = 0, hence, the condition (2.9) holds true
and the function along the boundary {2 is continuous. Problem (2.5)-(2.9) in
the domain {2 also has a unique solution ug, belonging to W. 1(£20, B). Besides,
ug € C(123), ug € C(§2), but ug ¢ C($20). This is because the domain 2 has
not the ° segment” property (see [10]), and ug € W} (§2y, B) is a multifunction
near the parts ’UO of the boundary df2 (as (x,y) tends to a point (0,.) on
the boundaries M from different sides of the domain 2y, the function wug has
different limiting values).

The solutlon ug exhibits the asymptotic behaviour (2.11); near point B with
a constant ¢! H, but in the neighbourhood of the point A

(3.1) ug(h, x,y) = £dF + O(r™), r — 0, O0<tp<T—04.
Hence, u( cannot be considered as an approximation of w; near the zero point.
3.2. Green’s function

We shall also need the Green function G 4(x, y) for this problem in the domain
2, with delta-functions concentrated near point A. It will be normalized by the
relation (2.9). Asymptotic behaviour of the Green function near point B is of
the form (2.11) (similar to u; and ug) with dg = 0 and the constant ¢ = gg, but
near the zero point

(32)  Gath,z,y)=+tlr+gEf+00™), r—0, 0<+d<7-¢a,

where g7 are some constants.
Let us note that the Green function G4 is uniquely determined, and can be
calculated using the representation

Ga = x(r/h)+signg«Inr + vg,

where the function vy € W.'(£2y, B) satisfies Poisson equation with the right-hand

side: signo«(InrAy(r/h) + 2(rh)~'\'(r/h)) and the boundary conditions (2.5),

(2.6) with functions f;(s) = (,)i[\(r/h) In 7] along the curves /. All these func-
: v .

tions are smooth, and [i;(y) = 0, fF(A), f/i(A) = 0, in view of the assump-

tion (2.1) for curvatures of the curves near point A. Hence, the problem for

the function vy € W} (f2y. B) and the problem of the Subs.3.1 for the function
wy € H'zl(f?n. B) are similar from the point of view of their numerical realization.
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3.3. Internal problem

Now let us consider the infinite domain (7 = Goi U (7; represented in Fig. 2,
and try to find nontrivial harmonic function w(z’, y') satisfying the homogeneous
internal boundary conditions (2.6) along the boundanes CG+1 ={E"y):y =
y; = h;/h, 2’ € R} between the domains G;_;, G (] = 1...,m), and homoge-
neous conditions (2.8) along the boundaries (,, 1, Co

Cm+1 CB C2 /

z ’
I o
y el & | & ’\\ i
‘ ‘ i 4,
1 ‘ ' Y2 | N s ™
| N
FiG. 2.

At infinity we assume, in addition, that w = O(Inr), » — oo. There are two
linearly independent harmonic functions satisfying such conditions: wy(2’, y’) =
const — even function with respect to argument z’, and odd function w,(z’, y").
The function w, (2, y") can be calculated, using the inverse Fourier transform,
by the nontrivial solution z(¢) of the singular integral equation obtained in [15]
(the corresponding equation (3.16)). From theorem B.4 [15], it follows that =z €

W (‘;)“ f(RJ,) forany e N, p € [1, ), @ > 0,8 < r4, and
2(6) = Iné+ 20+ 0%, £—0,

2(6) = 2™ + O(ETR), £ — 0.

(3.3)

Here, W/ "(IR ;) is the space of functions, which are summable (together with

(1)
their /-derivatives) with a special weight (see [14]). The space 1/1*”(’1’5‘“3(R+) does

not coincide with usual Sobolev spaces ‘IV'T/";(RWL). In turn, the method of numerical
calculation of this nontrivial solution has been proposed in [13]. Finally, wo(z", )
can be determined (with accuracy to a multiplier) from the relation:

B4 w2 y)= 2] [ch y'E + [Epi M, (6)]'sh y'g] 2(€)sin(2'€)de,
0
(z',y") € Gy,
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ino—0

(3-4) ey = L (Y ain (o ) SO = G4 — @)s
[cont.] “’2(. .J) 7”._'/_5 . (._)Sm(ﬂ-‘ /2) COS('TI‘/Z = 560)""
. /:({)(7'{)“5 d€ ds, (z',y) e Gy,
0

where 0 < 6 < 14, the function M, (£) can be calculated by recurrence formulae
from [15], and besides, M,(€) = O(672), £ — 0, M,(£) = — (1)1 +O(e~%),
£ — 0.

Using this information, we can show that the asymptotic behaviour of the
function wy(’, ) near the zero point is of the form (2.11), with the constant

co = 2 2o I'(1 = v4)sin(m v4/2), dy, = 0, and uflz ! instead of the parameter

0; but at infinity we obtain

Inr + 9+ 2, (', y") € Gy,

ln|z|+v+25, (@.9)€G;;
r — 0o, +z' > 0,

(3.5) w(@',y)=+ { +0(r™?),

where v = [”(1) is the Euler constant.

4. Main result

Using the method of matched asymptotic expansion (see [6, 19]), we shall con-
sider function wy(s/h, n/h)+ const as an approximation of the solution u,, in the
neighbourhood of point A, but a linear combination of the functions ugy(%, z, y),
Ga(h. 2, y)in the remaining part of domain (2. Let @ € (0, 1) be some constant,
and
@D @y = (1= xO/h ) ok, 2, y) + DGalh. 2, y)]

+x(r/h)[Dwy(s/h,n/h) + E].
Unknown constants /), £/ should be calculated in such a way that both parts
(internal and external) of the solution (4.1) will coincide on the distance r =
Sl
ug(h, @, y)+ DGa(h,x,y)— Dwy(s/h,n/h)-FE = O (/T.mi"{f'“‘""z_z“}) ;
(4.2) VIuo(h, z,y) + DGa(h, x,y) — Dwy(s/h,n/h) - K]
=0 (hmin{r,\a,2—2u}—u) .

for h /3 < r < 2h*/3 uniformly with respect to the angular coordinate #; then
. dy + dy
C 2z + 7y - Inh) - 9 - 95

43) D E = %[d[{ —ds + D(ag - 97)]-
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Let us note, that the function uf ) from (4.1) belongs to the space W3 ({2, B),
and the constants in the main terms of asymptotics (2.11) near points A, B are:

(4.4) Ca = %:,)QDh“’A ['(1 = va)sin(r va/2), ég =c§ + Dygp.

THEOREM 1. Let o € (0,1) and h < 1, then for the function uh) € W2, B)
the following estimates hold true:

“U'h _ ”h ||Vl i hmm{n(n\ 1),2— 30'})

o

== (/zmm{a(m—l),z—h})
(hm“‘{ﬂ(m v4)2—a(2+u,,)})
o

O ( pmin{a(ra+va)2- a(Z-—u,;)})

P r o o f. First of all note, that the difference between w,;, and '&gl) in each
domain (2] satisfies the Poisson equation with the right-hand side RW(h, z,y):

RW(h,2,y) = ’Rgl)(h. T,y)— 'Rgl)(h, z, ),
Ri“(/r. v, y) = [uolh, 2, y)+ DGa(h,z,y)— Dwy(s/h,n/h)— ElAx(r/h")
+2V[ug(h, 2, y) + DGa(h,2,y) — Dwy(s/h,n/h) — E]Vx(r/h®),

Rgl)(/z. x,y) = Dx(r/h*)A, ywa(s/h,n/h),
and fulfills the boundary conditions (2.5), (2.6) with the functions
fl“) = \(r/h*)f; + (-1 — ,u‘,-)[‘u.o + DG4 — Dwa(s/h,n/h)
d
- F} %\(1 [h)
x(r/h*) fo — 1o [ug(.r, y)+ DGa(x,y) — Dwy(s/h.n/h)
—E] 5-x(r/h%),
T = (/A frn + fim [uo(.r. y)+ DGa(x,y) — Dwy(s/h,n/h)

J
- E] 2-x(r/h%)

I

F(1)
Jo

instead of f,. Such a problem (for the function u; — -175,1)) has also a unique
solution in the space W) (12, B).
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Taking into account (4.2), we can obtain for A — 0

'R,(ll)(h\ z, y) s O(hmin{a(r,\—Z),Z—-ﬂ«a})’
suppR\"Y = {(z,y) € 2 : h*/3 < r < 2h%/3},
but to estimate the function Rgl)(h,:c,y) (suppRgl) ={(z,y) € 2 :0<r <

h® /3}), the Laplace operator should be considered in the curvilinear coordinate
system (s, n):

B 1 ) Ow,

AJ’._;/(! 2(.\//1, H/h) = l—_——‘,m [E{ ((l — HI\(S))W)

S fa——
ds \1=nk(s) ds /|’

Denoting £ = s/h,n = n/h, we can conclude, in view of assumption (2.1) on the
curves /', and taking into account the asymptotic formula (3.5) for the function

wa, that R, x, y) = R{V(E, 1) + O(h), where

ROE M =00,  p—0, RYEDN=01), p—ox

i(

The functions ‘/11) in the boundary conditions (2.5), (2.6) can be represented

as a sum ,/_:I“) = ./'1,1 + f:‘2, which at & — 0 have the properties:
O(h™), suppfi1 = {(z,y) € 2, : 0 < r < 2h/3},
.f.‘_/Z = ()(hmin(Z—fS(:‘m'(T_4—1)|'), Suppij - {(l,lj) c (2}1 . ha/3 <r< 2h_(r/3}_

—
Il

We can then conclude that

R in{o (74— =3 (1 _ .

HR(] )Hllz(ﬁu) = O(hmm{ (ra=1)2-3 }) “R(z )HLz(Qn) = 0(h®),
pll in{a(rs— —Sa =(1 »

||j>,(1)Hl-z("J) = ()(hmm{ (ra-1/2),2-5 /2})’ ”-/J(Z)HM(/}) = O(h3 /2).

Now, the first conclusion of Theorem 1 follows from the results [10]. However,
the constant in the estimate (|[u;, — .| < Const Amin{e(za=12-32}) cannot be
effectively obtained. It depends on the norm of the inverse operator of problem
(2.5)-(2.9). The second relation follows immediately from the Holder inequality.

For estimation of the constants ¢4, cp in the main terms of the asymptotics
(2.11), we shall use the Maz'ya, PLAMENEVSKY method [11]. Following [11] (see
also [17]), we can define “non-energetic” harmonic function ¥ € L,(f2,) sat-
isfying the homogeneous problem (2.5)-(2.9) with asymptotic behaviour (2.11)
near point /3, but in the neighbourhood of point A satisfying the condition

(4.5) W (z,y)=r A F (@) + O@4),  r—0,

http://rcin.org.pl



44 G. S. MISHURIS

where function £'(¢) is defined in (2.11). The function ¥ (z, y) can be calculated
from the representation (¢ < hy):

Ui y)= X/ A F(@)+ U7 (2,y), ¥ € Wy(i, B),

because the corresponding problem for function ¥ has a unique solution in the
space W3 (2, B). Further on we define w. = {(x,y) : r < ¢} and write the
Green formulae for the functions as 1, = uy, — ilfll) and ¥ in the domains of

029\ we, 21\ we, .Q (7 = 2,...,m). The sum of the corresponding relations is in
the form of

Aty . OV}
/ p(x, y) (I/ LAl — 4,A% ](]Q = /,um [w— C)U/ B uh(aﬁ } do

!}h\# 17711+I

i o, oy _ot . Ovy
+ Z / {p,‘,- [![’_4 vy i - Up—== = ] — ftj—1 [J/A f)—nh - uhé)—vj] } do

=1 ry(2n\we)
- / 1o {!l/; dd!:h ip, ()(;I/ } do — / iz, y) [gp; (i}l:h Uy, a;p ] do.
Ton( 25 \we) e

or taking into account the equations and the boundary conditions for functions
i, and ¥, this relation can be rewritten as follows (¢ < hy):

B (}uh p oy
(4.6) /,u(z Y) [l[/ 5, ~ g f)'n do
m+1 I g
Z /IP /( Vo + / tP_;f{l)(lrf + / W;_/}gl)da
=2 1 FIO(Q;,\w() ”]ﬁ(nh\wf)
- [[ n@, i [ROG,2.9) - RO B2, p)] .
Qh\.w&'
The net result will be obtained by passing to the limit ¢ — 0:
(4.7)  D(po, p1, Pa)(ca — €a)
m+1
Z /(p FQ+ 79 do - [fuwz [RE - REY) a2

2y

Here we use information (2.11) and (4.5) about the asymptotic behaviour of the
functions @y, ¥ near point A for calculating the integral on the left-hand side



ASYMPTOTIC EXPANSION OF SOLUTION OF THE TORSION PROBLEM 45

of (4.6):

TUA — SIN TV,

(4.8) D(pg, pt1,04) =2 {#1 1—cosmry

% ”O(ﬂ’ =204 w4 +sin(m — 20 4)v4 } .

1+ cos(m — 2¢4)v4

The first and the fourth terms on the right-hand side of (4.7) are estimated as
O(he=¥4)), but the remaining two terms are Q(hmM{a(ra=va).2-a(Z+va)}y Con-
sequently, the third conclusion of Theorem 1 is proved. The remaining estimation
of Theorem 1 is performed in a similar manner. For this purpose, we should take
the “non-energetic” function ¥ (instead of ¥ ), which exhibits the asymptotic
behaviour (2.11) near the point A, but in the neighbourhood of point B in the
form of (4.5) with vg. Then, repeating the same reasoning, we obtain the fourth
conclusion of Theorem 1. Let us note that the constants in the last two estimates
have been obtained effectively.

CoroLLARY 1. The optimal value of the parameter « is a. = 2/(2+ 74), then
the estimates are:

1 , ~ .
lun = 5 g, IC = €| = O(h2=3),

ca — (-% == O(hZ—n.(r‘.\+u,\)). cg — (—,B = O(hZ—cy.(T_.g—uA))_

Remark 1. As it follows from the proof of Theorem 1, the results would
be improved, if we could more precisely estimate the terms of solution g and
the Green function G, of the asymptotic behaviour: O(r™), » — 0. For this
purpose, note that the corresponding problem for function wug is the perturba-
tion boundary value problem with the regular boundary layer near [, = /..
The main terms of such problems have been constructed in [4]. Basing on the
results from [4], one can show that the term O(r™4) in (3.1) can be estimated
as: const(h)F.(¢)r™, where const(h) = O(h”) with some 0 < 3 < 7§ — 7,.
Here, 71 is the corresponding parameter in (3.1) for the solution ug(;r, y) of the
nonperturbed problem (u(x,y) = o, h = 0). In a similar manner, the estimation
of the corresponding term of the Green function (3.2) can be obtained. Then we
can formulate

THEOREM 2. Let o € (0.1) and h < 1, then for function ﬁ'g) € W2y, B)
estimates hold true:

()(h min{n,l'i+a(r_.;—1).2—3a})‘

~(1

l|lwn — “S, )Hu'zl
C— (—:’v = ()(hmin{(v,/}-!-n(r,;—l),2——3(\})1
e = (14 = O(hmin{(r(l—u,\),;zﬂ)ra(r<,‘—1;44),2—a'(2+u_,\)})!

cp— g = ()(hmin{¢'v(2+u,.\),ﬂ+(\(T,|+lt_4).2—0(2-u,.l)})‘

http://rcin.org.pl



46 G. S. MISHURIS

CoroLLARY 2. Then the optimal value of the parameter « in Corollary 1 is

a.=max {1/2,2- 58)/(2+ 74)} .

5. Remarks and conclusions

In this section we propose some generalizations under which the mentioned
results of the theorems will hold true.

First of all note that from [18] it follows that f; = (y;_1 — pt;)[y cos(n, ) —
xcos(n, y)], frn+1= pm[y cos(n, x)—z cos(n, )], fo= poly cos(n, z)—2 cos(n, y)).
Consequently, these functions satisfy the conditions (2.7). Nevertheless, the re-
sults still remain valid, if the functions are “little affected” in the neighbourhood
of point A. For this purpose, it is sufficient to find the solution in the form:
up = @, + \y(r/h)vi(s.n), where the function is v = a; + b;s + ¢;n in each
region {2]. The constants «; , b; , ¢; should be calculated so that v; is continuous
along [, but for function i, the conditions (2.7) have been satisfied.

Further on, note that the conditions (iii) in (2.1) can be weakened like this:
kr (A), /\T,;‘i(/l), A*F"i(b’) ~ 1. The angle of corner A can be nonsymmetric with

respect to the normal to the boundary [ at this point, in contrast to (ii). Then
the functions /'(¢) in (2.11) and the transcendental functions A,(s) (necessary
to determine the parameters 7, ) should be corrected; but the corresponding
internal boundary value problems can be calculated by solving of the systems of
singular integral equations [15], instead of the singular integral equations as it is
in the symmetric cases.

The step function p(x, y) allows for the following generalization:

1. The boundaries of discontinuity /; of function u(x, y) can be defined as in
(2.2) with functions /;(s) instead of parameters /;. We should assume only that:
hi(s) > hi_1(8), hm(s) = O(h), b’ “(0) = 0, 2/(0) ~ 1.

" 0

2. In each domain !.)J the conditions are true: ;2 € C'*(£2]), and i—,u(O Y) =
')2 d?
- 2,u(O y)~1,0,y)€ £ (7 >0), P p(() 0) = 5y =—1(0,0)~1, (0,0) € (2}
The function y(r,y) depends weakly on the argument 2 in the multilayer near
the angle vertex. Then we shall find solution u;, of equation V(i (x,y)Vuy) =
instead of the Laplace equation Aw;, = 0 used in the paper. Such a pmblem
corresponds to the general case of a nonhomogeneous elastic rod. Note in this
connection that the internal boundary value problems (Sec.(3.2)) can be also
solved in this case by the method [15] (see Appendix in [16]).

The boundary conditions can be also generalized. Namely the first of the con-

ditions (2.5) can be represented in the form: [uy] — a(s ) ~Up = _/_,r, a'(0) =

a”(0) ~ 1, instead of [u;,] = 0. The corresponding mternal houndary value proh-
lems can be solved by the same method [15, 16].
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Let us note in conclusion, that the first two conditions (i) cannot be modified,

of course (these conditions make it possible to use the asymptotic methods).
If the third condition is not true and dist(B, [.) = O(h), then the asymptotic
expansion of the solution can also be constructed. However, the corresponding
external boundary value problems are different from those shown in the paper
(Sec.(3.1)), and the representation of the solution (4.1) should be changed. In
[19], such a problem in a homogeneous domain with the linear crack has been
considered.
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A formulation of continuum mechanics as a dimensional
reduction of a finite-dimensional dynamical system

J. KACZMAREK (GDANSK)

IN THE PAPER a generalized formulation of the continuum mechanics is suggested. The generaliza-
tion consists in the assumption that the energy balance equation is not satisfied for all subbodies
of a body but only for their chosen family. This formulation leads to fields in the continuum which
create a finite-dimensional space. With the help of the chosen family of subbodies, a volume of
averaging related to the continuum model is defined. This volume is connected with a more ele-
mentary dynamical system which takes part in determination of the form of constitutive equations.
[n general, the mechanical model of the continuum is seen as a dimensional reduction of the more
elementary dynamical system related to another continuum or to a discrete set of material points.

1. Introduction

PHYSICAL PHENOMENA related to a microstructure are frequently taken into con-
siderations in mechanical modelling of material behaviour [1, 2, 3].

The evolution of the microstructure can be quite complicated. In such cases
it is difficult to postulate the form of the equations, and particularly the form of
the constitutive equations for highly averaged models of the continuum.

A good illustration of such a situation is the martensitic transformation re-
lated to the shape memory alloys. In small scale we observe different martensite
variants, different kinds of moving interfaces, shuffles, internal rotations, stabi-
lization of the martensite etc. These phenomena make a mechanical description
in the small scale quite complicated. On the other hand, simpler descriptions
can be carried out for a more averaged continuum. However, it is then difficult
to determine the form of constitutive equations. This suggests a multiscale ap-
proach, where the equations related to a small scale should form the theoretical
and numerical base for those related to the larger scale. Such an approach was
proposed and discussed in [12, 13, 14].

Considerations related to the model with a small scale create, in turn, new
difficulties. The determination of all constants and functions related to material
properties of the model in small scale often require complex discrete calculations.
Then, a discrete model can form a foundation for the continuous one.

At the moment we have the following problem. All discrete models are finite-
dimensional ones. During reformulating them into a continuum model, the de-
scription itself undergoes a simplification but all the fields obtained in the con-
tinuous body become infinite-dimensional ones. It is expected that continuous
model should be dimensionally reduced as compared with a discrete one, and
therefore the continuum theory should be finite-dimensional as well.
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The next problem is related to the degree of averaging. The notion of the
volume of averaging is intuitively intelligible. On the other hand, it is related to
physical foundations of the mechanical model. Therefore, the notion of volume
of averaging should be introduced and elucidated in detail.

The above mentioned remarks suggest that in considering complicated mi-
crostructure, it is difficult to avoid discrete calculations.

There are many efforts to provide discrete foundations for continuum mech-
anics [7-11] as well as simplifications in the description of complex discrete
systems. The statistical mechanics reduces enormous number of degrees of free-
dom by the statistical averaging [4, 5]. In analytical mechanics, the well known
method of constraints reduces the number of degrees of freedom [26]. There is
an averaging method known in nonlinear dynamical systems [6] which leads to
replacement of the complicated evolution by a simpler one. Thus, simplifications
in mathematical description of complicated systems were frequently studied in
literature.

The aim of this paper is to give a generalized formulation of the continuum
mechanics. This formulation is in a position to adopt the point of view that the
continuum appears as a dimensionally reduced discrete system, or another more
complicated continuum system. Furthermore, in the frame of this formulation,
the notion of volume of averaging is elucidated sufficiently.

2. An idea of a dimensional reduction

The discussion carried out in the introduction suggests that the continuum
models should appear as a dimensional reduction of discrete systems. Behaviour
of a system of atoms in many cases can be well approximated by a classical system
of material particles. It can be obtained with the help of the Born - Oppenheimer
approximation [27].

Therefore, at the beginning of our considerations an idea of a dimensional
reduction of a dynamical system described by the Hamilton equations will be
discussed.

Let us consider a system of N material points with masses m;, 1 € Iy =
{1,..., N'}. The position of the ¢-th mass is given by q; = {q1, ¢2, ¢3}, the
velocity by v; = q,, and the linear momentum by p, = m,v;. Let / stand for the
Hamiltonian of the system under consideration, and let f; be the force related to
the z-th point.

Equations of motion for this system of points are are discussed in analytical
mechanics and are given in the well known form [26]

dq; _ OH dp; _ OH

(2.1) ke op; e B o
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Let us introduce the concise notations d; = {q;, v;}, d = {d;}, f = {f;},

doH 1 oH . .
[, f; ; a (2.
L, f) = {dpl = ( 0. + )}, i € Iy. Then, Egs.(2.1) can be rewritten

concisely as d= L, f).

The evolution function for the dynamical system defined by (2.1) can be ex-
pressed as a generalization of linearized solutions of these equations (see for
instance [28]) in the form

22) (o, (1) = el S0
where the existence of JL/dd is assumed.

We would like to introduce a dynamical system which would have a consider-
ably lower dimension than the original one. Let M be a manifold consisting of all
admissible d. A dimensional reduction relies on introducing a smaller number of
variables and on deriving a new appropriate evolution equation. Let d be a vari-
able of such a new kind of a system, and let, by analogy M = {d}. The connection
between these variables can be given with the help of a map 7 : M — M.

External forces undergo a dimensional reduction as well. Indeed, the reduced
dynamical system should be insensitive to some fine features of forces {f;} related
to a more complicated system. Therefore, by analogy, we define 7 = {t}, 7 = {f}
and 7y : F — F.

The map 7 formally reduces the dimension of the system. However, such a
reduction can be accompanied by a simplification of behaviour of the system in
some time interval 7' = [tg, to + T'].

Let (M x T = {x(dg, £)(t) : t € T, dyg € M}. This set consists of elements
which are possible solutions of the equation (2.1) with the initial condition d(tg) =
dy and the given function f(t) € Fr, where 7, = {f(t) : ¢ € T'}. In a similar way
we define the sets (M x Th= {X(dg, F) : t €T, dg€ M} and F, = {f(¢):
t € T'}. With the help of these sets we can introduce new maps 7, : (M x 1)y —
(M x T);and 7pp @ F, — F,.

For convenience, let us introduce a more general set of all continuous func-
tions with sufficiently high time derivative C'(dg) = {¢(1) : ¢ : T'— M, p(to) = do}.

The relation between 7 and 7. lies in the fact that for each ¢ = {, 7,.(f) has
the same domain and range as =. Thus 7, does not introduce new variables.

The evolution function Y: 7' — M for the dimensionally reduced dynamical
system is unknown. Let us assume that the form of Y can be expressed as

dg .

L OL(c, d, Dt

(2.3) (T, @y, (1) = I @ EDG,

where C € (, with C being a set of all admissible constants C. Thus, the expression
(0L /0d)C, d, f) is postulated to be dependent on C and operation d/dd is
assumed to be realizable. Consequently, the determination of a dimensionally
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reduced dynamical system rests on finding =, 7, 7y, 7,, and the best C* € C.
To this end appropriate criteria should be formulated.

We can consider two kinds of dimensionally reduced time processes. The first
one is induced by the Hamiltonian system. We have y(dy, f)(t) € (M x T');.
With the help of the introduced mappings {7, 7, }, we obtain induced process
7, (x(dg, f)(t)) which belongs to a new set (r.M x T)T' The second time process

is related to the evolution function Y(C, dy, f)(t) which is parametrized by C. Let
us assume that for each C the evolution function Y is determined. Then we are
able to define a new set (Mc x 1) = {X(C, do, D)) : t € T, dy € M} and two
injections ¢ : (M x T); — C andi.: (M. x T); — C.

Now we have a possibility to compare two processes introduced previously. To
this end, a metric on (' has to be introduced. Thus, let o : C' x ' — R* U {0}
be a metric on (.

With the help of the assumption (2.3) we can generate a family of processes
dependent on C in the form Y(C, dy, f)(), C € C, dg = 7(dy), f = 77 (f), where
dy and f are applied to determine the Hamiltonian process y(dg, f)(7).

Let us define a function

(2.4) i(do, ) = jnf o(i(x(C, do, H()), i(xr(x(do, H(1))).

By C* we denote the constant C € C which minimizes the function /. Accordingly,
C* = C*(dy. f). A satisfactory approximation should have the property that C*
displays a weak dependence on dy and f. It depends, in turn, on an assumed
function 7, for the dimensional reduction. Finally,

(2.5) C= Av{C*: C*=C*(dg, D, dy e M, fe Fr},

where Av means an averaging operation. Thus, C determines the evolution func-
tion of the reduced system Y(C)(1).

Thus, as a result of the dimensional reduction, we have obtained a new dy-
namical system. Let us characterize the main elements of the dimensional re-
duction. First, we have to choose new variables represented by d. Similarly,
the forces are also dimensionally reduced to the f. Next, we have to assume
or to infer the form of expression (JL/dd)(C, d, f). This equation creates
a skeleton of a new dynamical system S1).S which can be characterized by
SDS(C) = {d, f, (JL/od)(C, d, f)}. We should also determine the family
of maps {7} = {r. 7, 7, 7, }. Dimensionally reduced dynamical system
RDS(C) is obtained with the help of an approximation method app given by
(2.4), (2.5). Consequently, the dimensional reduction operation can be charac-
terized by DR = {SDS, {r}, app}. Finally, the pair {£/DS, DR} leads to
RDS(C), where F'DS is the elementary dynamical system determined in (2.1).

Continuum models should be such dynamical systems which describe a ma-
terial behaviour. Thus, they should appear as dimensionally reduced dynamical
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systems describing a behaviour of a set of atoms which constitute the material of
the body. Therefore, in the paper, just such a formulation of continuum mechan-
ics is discussed.

3. A generalized formulation of continuum mechanics

The continuum mechanics has been developed by creating its precise mathe-
matical foundations. These problems were widely discussed in the literature, for
instance in [15, 16, 17, 18, 19].

In this paper we propose a generalization of the formulation of the continuum
theory. This generalization is based on weakening of an assumption that the
energy balance equation is satisfied for each subbody of the body B. It is assumed
here that this is the case only for a distinguished family of subbodies of 5. Such
a theory comprises the traditional formulation as well, since the distinguished
family of subbodies can, in particular, consist of all subbodies of 5.

Let us note that for discrete system, energy depends on a finite number of
variables wich are related to positions and velocities of particles of the discrete
system. During a dimensional reduction the number of variables decreases. Such
a new variable represents usually a group of particles from its discrete set. This
leads to justification of the theorem that the balance of energy can be introduced
for the finite subbodies of the whole body only.

Let us consider a set 5 and a family of its subsets which create a countable
additive field §S.

DEFINITION 1. The body B is a space with a positive measure M : S — R* U{.
The measure M is called the mass.

DerFINITION 2. The body B is the continuous body if it is endowed with a structure
defined by a non-empty class C of maps which satisfy the following axioms:

a. The members of C are invertible maps from B onto open subsets of the Eu-
clidean space.

Y is a homeomorphism in I

b.If k, v €C, then K o~vy~
c. If Kk € C. X is a homeomorphism in E* and Range « = Dom )\ then

/\ 0O R E (1

The members of C are called the placements of 5. The range «(B), « € C, is
called the region occupied by B in the placement .

The function A = v o k™! is called the displacement function between place-
ment » and ~. The last definition follows from [19].

DEFINITION 3. The continuous map of the time interval [0,T'] onto the set C is
called the motion of the body B.

http://rcin.org.pl
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Let \(X, ?) be a motion of the body B, where X € B. The velocity v is defined

asv= g\(X t).

Let A {(Ki: K;e S, 1el},1={1,2..,N}, K;nK; = { for each
t, j € I and (J;c; Ay = B. Thus, K C S is a subfamily of subsets of B which
represents a decomposition of the body into subsets A, ¢ € /.

Let us consider a function Y: K — B3, Y(K)) =xn € RP. Letlf c I, hel
and {\.,} be a set of values of the function Y for m € ;. We can define the set
b, = {ap: ap: {xm} — R?, m € [}, p € N}. Then, we introduce a function
a: K — &, a(ky) = ap.

The function Y assigns a set of discrete values of the field \;, h € [ to the
body B with the help of the family A. Similarly, the function a assigns a set of
discrete values of the field a;, h € [. However, a; depends on the finite set of
values \,,, m € [}. The definition of the finite set is introduced with the help
of a set of indices /;. This set in turn, contains numbers of elements of X which
have influence on the value of a;. Usually, it will be some neighbourhood sets
K; for K. Thus, the functions Y\ and « together can express nonlocal properties
of X he

Let Vp = {{X, a} : {xn, an}, h € I}. Let us define the space V. of
dlsplacement functions \h of the body B with respect to a configuration x as

= {xx: \h = \ox~!, A, & €C}. Let furthermore, o : Vo — V, be a linear
functlon and xX = a({\;,,, (1h})

Let us consider a Cartesian coordinate system. Then, X = (X, X3, X3). We
define a function ', : K — R3, C.(K}) = X;,. We assume that in particular

cases the function a; can be expressed as a, = {ay,...,ars}. In this case we
assume that the function « satisfies also the following conditions
' 9" (XK
K r.
“(X1) = vi, ain ke = ——5— _—(X3),
\n ( I ) \I ( l")'(\l'l---fyn ()”-\'ll---dhn-\l,,. ( h)
ot .. +i, =1, t€ {1, 2. ..., L}, k, L,....ln€ 13 ={1, 2, 3}.
B OOk : o .
Then, (ayp)i = X, can be interpreted as an approximation of the gradient
Aj

of deformation and we can consider ((a;;)™1) as well.

DEerFINITION 4. The displacement function associated with the family of sets K is
a function \% of the form \X = a({yn, a,}).

The function « assigns a displacement function field \* to the set of discrete
values. The aim of this function is to introduce a continuous field y on the body
5. Thus, the space of such fields Ima C V is finite-dimensional, where Im ¢
means the image of a function ¢.

DEFINITION 5. The motion of the body B associated with the family of sets K is
a continuous map x, : [0, T] — {\}}.
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_ We also introduce a function T on K, which will represent temperature, as
T:X—+ R T K) = T,. Let I,’j C [ and {7,,} be a set of values of the function
T for n € I}. We define a set ¢, = {b, : b, : {T,} = R',n € I},q € N}.
Similarly as for the function «, we introduce a function b : K — @;, b(K}) = by,.
Let Vo = {{T, b} : {T, b} = {T, by}, h € I}, Vp = {T(X) : X € B}. Let

us consider a function 4 : V7 — Vi which is linear by definition and 7% =
97K

B({Ty. by}). We assume also that T%(X,,) = 7}, and %%(Xh) = B,

Pa Vi

DEFINITION 6. The temperature field TK. associated with the family K is the field
obtained with the help of function 3 as T* = B({Th, bi}).

Thus, we have obtained a finite-dimensional space of temperature fields Im 3 C
Vr in the body B.

Let us consider the functions: the internal energy £, the entropy .S, the
energy flux W, the power of inertia forces P, the entropy flux //,, the energy
source Ft;, and the entropy source ;. Here £, : K — R, 5, : K — R, W, :
OK - R, P:K—-R, H:0— R, R : K- R, N; : K — R, where 0K is
the family of sets A'; N dB. These functions are determined for any time instant,
thus they represent some processes. It is also assumed that they are differentiable
enough with respect to time.

Neglecting at the moment the detailed representations of these functions, we
assume the energy balance equation in the form

(3.1) 2.(B) — Pu(B) + W,(9B) — Ry(B) =0,

where
B= U K, K, ek, 0B = UI\’J’ N JB.
: J
The second law of thermodynamics is expressed with the help of the entropy
balance equation and takes the form

(3.2) S(B) + H,(0B) — Ni(B) > 0.

We introduce also the function ¥, : K — R which is interpreted as the free
energy.

4. An example of a continuum with finite-dimensional fields

An example of a finite-dimensional continuum presented here is connected
with a special choice of the family A, functions which appear in (3.1), (3.2), the
variables and the form of constitutive equations.

Let K = {A,}, 1 € [ be a division of the body B into a sum of geometrical
complexes A'; which have a cubicoid form. Let the coordinate axes { X'y, X,, X3}
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be prependicular to the faces of cuboids in the undeformed state. We can intro-
duce a discrete field on the set of complexes /;. Then, we assign a value of a
field to the center of gravity of each A, 7 € [.

We have introduced discrete fields related to the family K. Thus, the following
expressions will be helpful in what follows:

1
DZ(?}m) = ﬂ(ym-\\-l 0 ym—l)s

1
(41) A(ym) = E(ym+l + ym—l)a
DZ(ym:m) = DZ(!/?H)44(3m) + DZ(sm)A(ym)\

where A is a distance between centers of neighbourhood complexes A,,. It is
assumed that, for simplicity, A is the same for the whole body. Let Dy, (y;) =
(1/28)(yn,, — Yr, ), ¢ = 1,2,3,where h;3, h;y stand, respectively, for indices of two
neighbourhood complexes for A’ in the direction X;. By analogy, we introduce
also Ai(yn) = (1/2)(n,, + Yniy)-

Let pp = {pni, ¢t € I3} be a discrete field assigned to the center of A. By
means of the above formulas we can introduce a discrete version of the Gauss
theorem which is convenient for our purposes

(4.2) Y Dy} * Y Y PayilVayis

hel hel sp€lp

where p;, ; is the same field p, which has been assigned to the center of face 5,
of the complex A, N;, are components of the unit vector normal to the face
S, . Furthermore, py; = J (u,l*hl)ikﬁ,fk is a connection between vectors dependent
on space and material variables.

In general we assume that p,,; = A(pni, pi;), where h, [ are indices related
to complexes which have common face .9',,.,'. A is a function chosen in such a way
that the formula (4.2) would be satisfactorily satisfied.

Let us introduce a function a, of the form a;, = { D1 (x 1), D2a(x1n), D23(xn)},
Xn = {Xu}, n € 3 ={1, 2, 3}, h € I. Thus, ap, = {anni}, n, 2 € I3.

We assume the following representations for functions related to the energy
balance equation and the second law of thermodynamics:

(43) E(Ky) = Bn,  E() =9 + SiTh,

(4.4) E(Ky) = B, B(KR) =Wy + STy + STy,
(4'5) ”" ((L)]\‘h) = Z q.ﬂ'h i ‘;\‘r'sh i Z l)sh ¢ i.&’hl‘ "

(46) ])(]\’h) = —=my -.\.hi {h.i + ])Zm(]:/mm H-hkn)i_h}; 3

(4.7) R(Ky) = Rer + friXpi
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(4.8) S(Ky) = Sy, SUG) = S,
(4.9) HOK,) = Z 7}—(1%1']\/'5,,:‘-

Sh Sh
(4.10) N(K,) = li iy

h

where 1), is a mass assigned to the complex 1\, 75, is an inertia tensor related
to Ky. fi = {fni} and R, are a force and a heat source related to K. ¢, =
{qs,:} and p,, = {ps,:} are a heat flux and a surface force related to the surface
S5, - Let us note that the expression (4.6) is obtained with the help of definition
of the kinetic energy ) = [ o&;&;dV.

We assume that the energy balance equation is fulfilled for each K), € K
separately. Then, the energy balance equation takes the form

(4.11) U+ STy + SpTh + my ,.\.,“- i,“-
= [)2111 (jhm.n &hkn)ihk o 1{5[, + Z QS,,istl.Li - fhi..\:h,' = Zpshiilshi =0
Sh

Sh

The term ¥, can be expressed as

(')(l’jl . ()lﬂh f)dlh ()ph

— T, = - Dy, + —
d(’hrpi h” )IF : ()(l-hm 2(\,1”) ]h h

_ ) ()wh . aglh e ()w,ll p
= [)2: (0”’””. \lm) B L)Zi (dah.n.i) -L(\hn) )11 el h s

where the properties given by the formula (4.1) have been used. The summation
convention does not concern the index ¢ in A;. Furthermore, we assume that
“‘(i/rn) ~ (f;n‘

With the help of (4.12) and the discrete Gauss theorem (4.2), we can transform
(4.11) into the form

4.12) ¥, =

(4.13) [—1)2, ( IV

) ) = .fhn. + my, Xhn —[)Zm(’hmp (lhn'p)] Xrn
Ol pni

N (0%
AT,

+ s'h) Th + SuTh
v,

d”s;, ni

+ Doi(qni) — Ren + z ( ps,,n) Xopn = 0.

S/

Then assuming that an arbitrary time process Y, is admissible, we obtain from
(4.13) the following system of equations:

v, : - . s
(4]4) i l)?.i <(—’> gl fhn. + my Xhn —DZm(“me ahnp) = ()

()(l hni

http://rcin.org.pl
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. oy,
z of B =
(4.15) ) aT,
(4.16) SiTh + D7i(qni) — Rer =0
and
(4.17) s, Nyyi = Payn = 0.

Bashm-

The Clausius - Duhem inequality can be expressed with the help of (3.2), (4.8) -
(4.10) as

. 1 1
(4.18) B, = RchT_h + Dy (thﬁ) >0.

Taking into account dissipative processes and introducing internal state vari-
ables £;, we can generalize Eqs. (4.14)-(4.16) to the form

(419) —[)Zi (ﬁ + f.(lim') - fhn + my Xin _DZm(thp ah.np) = O,
~ a‘I’;, 1d
. Sy = ——+ 57,
(4.20) =~ + 51
. . =08 . 3 wi .
(421) 'k;h’[ n+ 1)25(?]!1:') - ]{Eh ¥ 'S;{Tf! - ffl{niahni + (())5; éh = 0

The constitutive equations should be assumed for the functions r, = {¥,, S,
t,, q.) and t, = (0¥,/Ja;) + t!. The constitutive equations will then depend
on the variables h;, = {\, a,, 1). by} and &,. We assume that the equations
take the form

(4.22) ¥, = W(Cy, hy, &),
(423) Sh = Sh(css h/u 6/4)-
(424) th = th(Clw h/)t Eh)#

(4.25) an = qn(Cq, hp, &),
(4.26) Z/. = Ap(Ca, hy, &),

where ¢ = {C: C = {Cy, C,, C, Cg, C4}} are constants which define these
constitutive equations.
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The generalization in our formulation rests on the fact that our theory is
formulated for a given subfamily K. In the particular case when K = S we obtain
the classical continuum theory.

It is possible to carry out two different procedures for obtaining a continuous
field from the discrete one given on the family A

The first procedure, called further the A-procedure, consists in the interpola-
tion of the sets of the discrete values. It can be performed with the help of maps
«, [3 introduced above, which replace the discrete fields {x,, an, Ty, by} by
some continuous ones.

We should also introduce some additional maps which will be useful for in-
terpolation of the remaining variables which appear in our description. Thus, let
us introduce the following spaces

Vo={m: m={my}, hel}, Ve = {o(X) : X € B},

_\—, ={r: r={¥, Sh, th, q.}, hel},
V, = {r(X) : r(X) = {$(X), s(X), (X), a(X)}, X € B},
Ve={&: E=1{&}, hel},  Ve={{X): XeB},
Tf = {{f- HE> P} . {f/n I{r,hs Ph}s h € ]}
Vi = {{f(X), r.(X), p(X)} : X € B}.
~ Let us consider the following maps which act on the introduced spaces p :
Vo= Veuu:V, =V, pe: Ve = Ve, v : Vi — Vy. The introduced maps are
linear by assumption and with the help of these maps, discrete fields are replaced

by continuous ones. However, in order to obtain satisfactory approximation, the
continuous fields obtained above should satisfactorily fulfill the following condi-

tions
my = fg dV . v, = / opdV , Sy, = /[).'i dV,
l\.;, l\-h, ]\-h
])zi(f/,m) = /ii_}.i dV = / /,,,kj\'rk dA .
[;-h ;-J.I\"i
(4.27) Dyi(qri) = / gi;dV = / geNpdA ,
K oK),
Iw= /_/'([V. By = /n dV . Pspi = / pidA,
[;')1 Ky, 't"ll\'h
where gur = J(a; DG thee = J(a; alnu are quantities determined with

respect to the reference configuration. Finally, we obtain continuous finite-di-
mensional fields on the continuum with the help of the A-procedure.
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The second procedure, called further the L-procedure, is connected with a
limit transition. Let B = [J,c; i, K; € K be a division of the body B. Let us
consider a sequence of {K,,}, m = 1,2,3,... of such divisions and X; = K.
Thus, for each m, B = U;¢;, Kmi, Kni € K. Let us assume that constants C
are already determined for the family A’

For each K ,,, we introduce the sets of indices 7% ,, I° Consequently, we have

mh® *mh*

sequences {1}, {Kn}, {12}, {I%.), b € In, m = 1,2,3, ... With the help
of these sequences we can carry out a limit L for the equations (4.18)-(4.21)
and the constitutive equations (4.22)-(4.26). However, in order to make this
operation realizable, let us assume that variables which appear in (4.18) - (4.21)
have representations in the form given by (4.27). We assume also that during
this operation lim,, .. 6(/,,;) = 0, where ¢ is a diameter of the set i,,;. It is
assumed that the constants related to the constitutive equations do not undergo
any change.

During this limit transition h, — h appears, where h = {y;. (Jx;/0X,), T,
(07'/0X,)} in the considered case. The final form of this limit depends on the
previously assumed functions aj, by,. In particular, limits connected with these
functions can lead also to higher gradients of \ and 7.

The limit form of Egs. (4.18)—(4.21) can be obtained by dividing them first
by volume of A, marked by Vj. Next, during the limit transition we obtain
bimn — 0, (mp/Vy) — o, Dy(qri) — Divq, Dyi(thn.) — Divt. Finally, we
obtain the well known expressions for the local forms of balance equations and
the Clausius - Duhem inequality [16].

Let us note that the L procedure leads to the infinite-dimensional fields on the
continuum. However, the starting point of this procedure has decisive meaning.
Namely, the first element A’y of the sequence {K,,} is assumed. This element
influences the final form of the constitutive equations.

The first element of the sequence {K,,} will be related to the volume of
averaging. This problem will be discussed in the next section. The volume of
averaging is especially connected with the form of the constitutive equations.

5. Volume of averaging related to the continuum model

The primary motivation for discussing the continuum theory suggested in the
paper is to create a possibility of determining the equations of the continuum
(for instance (4.18)—(4.26)) from a more elementary level. This elementary level
can be connected with a discrete system of material points or with a continuum
which is much more complicated.

Let us assume that on the more elementary level, the behaviour of a body is
described by a dynamical system. Let d be a variable of this system, V' = {d} is a
set of admissible values of this variable, and let o : [0, 1] — V' be an evolution
function of the dynamical system.
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On the other hand, let d = {{xn, an, X, @n, Th, bn, &} : h € I},
V= {d},f={fy, R po) and let T : [0, T] — V be an evolution function
which is determined by equations (4.18)-(4.26).

At this moment we can return to notations from the Sec. 2 where we have de-
fined two dynamical systems and a dimensional reduction method. The S DS in-
troduced in Sec. 2 can be now identified with SDS(C) = {K, d, f, {BE, r(C)}},
where A is the previously discussed family of subsets of the body and influences
the option of variables d and forces f. BF means the set of balance equations
(4.18)—(4.21) and r(C) represents the parametrized family of constitutive equa-

tions (4.22) - (4.26). The pair { BE, r(C)} corresponds to g—g(C) which describes

evolution of S 125, The dimensional reduction method has the same form as pre-
viously DR = {SDS, {x}, app}.

In this section we discuss the continuum dynamical system (') S which should
be obtained as a result of the dimensional reduction. This system can be charac-
terized by ("D S(C) = SDS(C). Thus, we can choose an elementary dynamical
system /7[0S which can be a discrete or a continuous one but more complicated
than SD.S(C). Then, {£ DS, DR} creates an RDS(C) = C'DS(C).

Now, we are able to define a volume of averaging related to the continuum
model. Let K be a family of sets A; and B = |J; i;, A;n K; = (. Let ¢ be a
dynamical system whereby the discrete field related to K is determined. Next, let
the L-procedure or the A-procedure be applied in order to attain the continuum
model. Then, the average of values u (/) represents a volume of averaging for
the continuum model obtained, where g is the volume measure.

In a natural way, we can generalize this approach to a multiscale description.
Then, (C'DS), = {(CDS),—1,(DR), -1}, where (C'DS),_; represents the more
elementary dynamical system and (/) 1), _; means a dimensional reduction which
is then applied.

6. Volume of averaging connected with the martensitic transformation

The martensitic transformation, especially the one related to the shape mem-
ory alloys, exhibits a complicated structure and moving interfaces. As it has been
discussed previously, different scales should be taken into account in a mechanical
modelling of this transformation. Let us try to discuss what these scales should
mean.

In a small scale, we can observe the single martensite variants. They can create
fine twins or selfaccomodating groups. In a larger scale, such structures usually
create a complicated composition. However, in a large scale a coalescence of
martensite variants can appear, and only one martensite variant is also possible.

Let us consider, for instance, the CuAl alloy. We observe twenty four marten-
site variants which create six selfaccomodating groups [22]. In Fig. 1, the struc-



62 J. KACZMAREK
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F1G. 1. Structure of austenite and martensite in CuAl alloy.

ture of austenite and martensite unit for CuAl alloy is shown. They have nine
atomic layers which characterize this unit and define fully this martensite variant.
The austenite structure and stress-induced martensite variants for CuAINi alloy
is shown in Fig.2, where eighteen atom layers define the martensite unit [23].
Consequently, a linear dimension which characterizes the small volume of aver-
aging in the considered cases should exceed the dimension of the martensite unit
and should be between 10~°m and 10~ m. On this level of description, single
martensite variants and single interfaces will be distinguished.

In Fig. 3 the selfaccomodating group is shown for CuAl alloy. In this structure
different kinds of single martensite variants are composed. Another structure
related to the fine twinning of martensite for CuAINi alloy is shown in Fig. 4.
Compositions of this kind of structures bring a considerable nonhomogeneity.
Therefore, the scale of averaging for theories which do not distinguish different
martensite variants should be connected with such a volume in which the compo-
sition of martensities can be approximated by a homogeneous structure. Taking
into account observable structures [24, 25], one should assume that the linear
dimension related to the volume of averaging is between 10~%m and 10~*m for
models with the larger scale.

In papers [12, 13] a continuum model related to the small volume of averaging
is introduced. As a consequence of this kind of averaging shuffles are taken into
considerations. They are introduced with the help of the relative displacement
vectors w, which are shown in Fig. 1. The role of shuffles is valid on this level of
description. They take place in determining the martensite variants. They have
also some influence on the kind of internal rotation of the martensite variant
towards the habit plane. Thus, the dynamical system related to this model has
variable d = {x, x, wy, wy, T, a, [, 6}, where o, 3, é are internal variables
related to dissipation connected with shuffles, related to jumps of the creating
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['1G. 3. The selfaccomodating group of martensite variants in CuAl alloy.

martensitic structure over an anergetic barrier and stabilization of the martensite,

respectively.

On the other hand, we can introduce variable d given in previous section,
where £ can be in particular connected with the mass of martensite in the whole
structure. Then, the model of larger scale of averaging is considered. Such models
have been discussed in literature [20, 21].

http://rcin.org.pl
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1§

I'1G. 4. The fine twinning which appears in CuAINi alloy.

With the help of the procedure given in Sec.4, a connection between these
two models could be determined. However, such procedure will certainly be not
simple. It requires, first, precise identification of the constants and functions re-
lated to material properties for the model with the small scale. Then, another
difficult problem appears. This is connected with a satisfactory form of approxi-
mation given by (2.4), a form of dependence of functions in (4.22)-(4.26) on C
and choosing an appropriate kind of internal variables £.

7. Final remarks

The suggested formulation of continuum mechanics makes it possible to obtain
a continuum model as a dimensional reduction of a discrete system. It seems to
be convenient to consider a discrete dynamical system as a physical basis for
continuum model. Furthermore, multiscale approach for continuum description
can also be introduced in this way.

The main stress has been laid on the description of dynamics. It is displayed
by the introduced method of dynamical reduction by means of maps 7., 7., and
by introduction of internal state variables in dimensionally reduced systems. Such
an approach is suggested by the example of a moving microstructure in case of
the martensitic transformation. Then, it is difficult to use, for instance, the ho-
mogenization method since we do not know the dynamical laws of microstructure
evolution.

Furthermore, it is hoped that the suggested procedure will be convenient in
determination of the constants and functions connected with the material consid-
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ered. It is valid especially for small scale of the averaging models. Then, we have
not too many possibilities to obtain such constants and functions experimentally.
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Uniqueness in nonlinear theory of porous elastic materials

R. QUINTANILLA (BARCELONA)

THIS NOTE is concerned with static deformations in a nonlinear theory of elastic materials with
voids. First we extend some conservation laws to the nonlinear theory. A uniqueness result is
presented under a condition related to the quasi-convexity assumptions.

1. Introduction

In [1], KnoPs AND STUART proved the uniqueness of the solutions to certain
displacement boundary-value problems in the context of the nonlinear theory of
homogeneous hyperelasticity for a body occupying a star-shaped bounded region.
Recently, this result has been extended to the theory of interacting continua [22].
In this paper we extend some of these results to the theory of nonlinear elastic
materials with voids.

The theory of elastic materials with voids is a recent extension of the classical
theory of elasticity. The nonlinear theory has been established by Nunziato and
Cowin [2]. In this theory the bulk density is the product of two scalar fields, the
matrix material density and the volume fraction field. An intensive work on this
kind of materials is developing currently [3-9]. An extensive review on elastic
materials with voids has been presented in [10].

Existence and uniqueness results in the statical linear theory of an elastic
material with voids have been presented [10, 11]; meanwhile many other theorems
have been presented for the dynamic case [12-14], and in [15] for the dynamical
nonlinear problem. We remark that in [10] CIARLETTA and IESAN have obtained
a uniqueness and existence theorem for the static equations of porous elastic
materials, but the authors noted that their results apply the one-dimensional case
only.

We consider the homogeneous deformation (x, ) : X — (M X + b, 1), where
M is a fixed regular square matrix such that det(M) > 0, b is a fixed vector,
0 < vy < 1is a constant number and X represents the material point. We suppose
that this deformation is a solution to the equilibrium problem with boundary
conditions (x, ) : X — (MX + b, 1j). For star-shaped elastic materials we will
prove, under suitable assumptions concerning the energy function X, that there
is no other solution satisfying these boundary conditions.

The method follows the ideas of [1]. We first extend a conservation law estab-
lished by GREEN [16] in the case of hyperelasticity.

Following the method used in [1], we impose start with a basic assumption on
the energy to obtain our result. We suppose that the energy satisfies a condition
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related with the quasi-convexity, an assumption introduced by Morrey [17] and
employed in the classical works of BaLL [18-20]. Nevertheless, in this paper we
are not concerned with the problem of existence of solutions.

In Sec.2 we state the basic equations and the assumptions. We also extend
some conservation laws to the nonlinear theory of elastic materials with voids.
The uniqueness result is presented in Sec. 3.

2. Preliminaries

We consider a body which occupies a bounded regular region 5 of the Eu-
clidean n-dimensional space with the boundary surface 9 8. We assume that B is
star-shaped and that J B is sufficiently regular to ensure the validity of the usual
laws of transformation of surface integrals.

Throughout this paper we employ the usual summation and differentiation
conventions: subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate; V is the gradient operator
with respect to the position X. We let N4 be the components of the outward unit
normal to J B and denote the scalar product of two tensors by an interposed dot.
By a ¢ b we denote the tensor product of the vectors a and b.

We assume that B is occupied by an elastic material with voids. A deformation
in B is described by the spatial position field x and the volume fraction field ».
The deformations determine the deformation gradient F = Vx, and the gradient
of the volume fraction G = Vv. By M* we denote the set of all real square
matrices F of order n such that det(F) > 0. As usual, we suppose that F € M*
and 0 < v < 1 for all deformations.

We also assume that the material possesses internal energy ¥ per unit initial
volume. We denote by T the first Piola - Kirchhoff stress tensor, S the equilibrated
stress and by ¢ the equilibrated body force per unit volume. In what follows, oc-
casionally it will be convenient to write various expressions in component form
and to represent the vector and tensor fields by their components referred to
the considered system of Cartesian axes. Thus, the components of the deforma-
tion (x, ) will be denoted by (z,, ), while the components of the deformation
gradient fields F and G will be denoted by /4 and (i 4, respectively.

A deformation (x, ~) in [3, defined for all X in /3, is a smooth equilibrium
solution provided ;, v € C2(B, R")n C''(B, R™) and the equilibrium equations
(see, e.g. [10])

’1“.1[',1 = O

(1) ;
D4 A F g = 0,

are satisfied.
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The material at the point X is characterized by the constitutive relations

Y*(F, G, v), T = T*(F., G, v),
S = §*(F, G, v), g = g*(F,G,v),

\
24

(2)

where ¥, T*, S8*, ¢” are smooth functions.
We suppose that the Piola - Kirchhoff stress tensor, the equilibrated stress and
equilibrated body force are related to the energy in the following manner:

gz " T\ " Jx
" -(F) 0 s=() - omw

We recall that equalities (3) are used in the analysis of elastic materials with voids
in the absence of dissipation (see [10]).

Let us assume that M is a fixed regular square matrix in M*, b is a fixed
vector and 0 < v < 1 is a constant number. In this paper we suppose that the
motion

4) x=MX+b, v=uvy in B,

is a solution of the problem determined by the equilibrium equations (1) and the
boundary conditions

(5) x=MX+b, v=1 in JB.
It is clear that the equality

A I%
(6) W(M 0,19) =0,

is the necessary and sufficient condition for the energy function ¥ to ensure that
the deformation (4) is a solution to the problem determined by the equilibrium
equations (1) and the boundary conditions (§).

Let us also note for later use that the divergence theorem applied to the
equilibrium equations gives

(7) / T.Nds=0, and / S-Nds + /_qdz,' -

3B 5B B
In order to obtain the uniqueness result, we will introduce some assumptions on
the energy function. We suppose that

(i) ¥ is rank-one convex at (M. 0, 1), i.e. the following inequality holds
(8) Y(M +a®d,a, ) > U(M,0, 1) + @\'*(M 0,p)acd+ 0\‘(M 0. vp)a
a®d.a. i I -_— i & —_— LU, 2
) b JF . oG L

for all a, d, a in an n-dimensional Euclidean space, and

http://rcin.org.pl
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(ii) ¥ satisfies the inequality

O [[50n+ Tox), o), 00 + 1)
D
- LO% M+ Vo(x), VU, 10 + (X)) - (X)] o

> Y(M,0,19) volume (D).

for all non-empty bounded subsets [ and for all Lipschitz-continuous vectorial
fields 7, ¢ and » which vanish on the boundary of D, such that M+ V¢ (X) € M*
for all X € B and Vi = V. Furthermore we suppose that equality holds only
when 7 = ¢ = 0 and ¢ = 0.

We remark that the last condition is related to a quasi-convexity assumption.
The rank-one convexity and quasi-convexity assumptions are usual in the studies
of nonlinear elasticity [1, 18-21]. One expects that the energetic condition:

(i) ¥ satisfies the inequality

J IS0+ Vo), V(%) v + n(XD] do > S(M,0,51) volume (D)
D
and (i) could be sufficient to allow our uniqueness result, but our analysis does
not guarantee it.
We can obtain a family of functions satisfying (i) and (ii). Let W (F, G, v) be
a function satifying (i) and (ii") and OW/0v(M, 0, vy) = 0, and let ¥(F, G, v) be
the solution of the equation

ny + (vp — v)OX/ov = W.

Then ¥ satisfies conditions (i) and (ii). An easy quadrature shows that
]
S(,Gv) = (v = 10)" | W(E,G, E)E - vo) "D de.

We finish this section by stating a Lemma on equalities of the conservation
type.

LemMA 1. Let (x, ) be a solution to the equations of equilibrium (1). Then
the following equalities are satisfied:

(i) (Taixi + Sav)a = Taizia+ Sav,a — gv,

(i) g =Tazix +Savk)a,

(lll) ny —gr+ (‘X-/\‘(:["q,.n_[\’ + 54 U‘[\'))_A = (_\:[\'l})‘]\' + (:[‘_43'.17,' + SA!/)_A ;
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Proof. The first equality follows from multiplying the first equation (1) by
r; and the second by v. After addition we have

0="T4 a2+ (Saa+ 9w =(Taix;+ Sav) s — {Taivia + Sav.a — gv}.

Thus, the first equality is proved.
To obtain the second equality we proceed in a similar way, but multiply by
x; i and p -, respectively, to obtain

0="Taavix +(Saa+ 9k
= (Thizik + Savr)a — (Taiziax + Savka — gv i),
which on using (3), becomes
0= (Taizix + Sai¥ik)a—-Zk,

and the second equality is proved.
The third equality is obtained from the second one by multiplying by X . We
have

0= Xg {(Taivix + Savig)a— Lk}
= (Xg(Taizix + Savg)) 4 + nE — (Laizia + Sav,a) — (XkZ) k-

From the equality (i), we finally obtain

0= (”S = .(/V) + (-X’I\’(TM?FLI\' + S.‘i”i,]\'))y_.q - (‘\:1\'3),1\' - (TA-ilTi * SAV),A 3
which implies (iii).
3. The uniqueness result

In this section we obtain a uniqueness theorem to the problem determined
by the equilibrium equations (1) and the boundary conditions (5). To this end, it
will be useful to introduce the function

(10) J(x,v) = /Edu - %fgu dv.
B B

Throughout this section, we suppose that /3 is an open bounded domain of the
three-dimensional Euclidean space and that B is star-shaped with respect the
origin which is located in B. It is clear that

(11) XN >0, forall X e dB.

We have the following result:
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LemMa 2. Let B be defined as above. Let (x, ) be a smooth equilibrium
solution to the system (1). Then

12) I ) = / {(N.x)g 17, [N ® (x = 7@)]

aB

where r = (X X)1/2,

P r o o f. The proof follows by application of the divergence theorem to
equality (iii) and use of the identities r(dx/dr) = X+ Vx and r(dv/dr) = X+ V.

Our uniqueness theorem follows by considering the difference between two
solutions and using the function 7.

Let (x, ») and (X, ) be two solutions to the equilibrium equations (1) satisfying
the same boundary conditions (5). Then we have

n(J(x,v)— JEX 7)) = /(N X)) {Z(Vx, Vv, v) — Z(VX, VT, 7)} ds
i

+ / (TT(Vx, Vv, v). [N ® (x = IS—T)]

aB

- TT(VX, V7,7)- [N ® (i - 1()—x)D ds
+ / (ST(VX. Vv, v). [N ® (i/ - 7%)}
aB
v
- ST(VK. Vv, v). {N ® (17 — 1%)}) ds.
Now, on dFB the two solutions (x, ) and (X, 7) coincide, so that
X=X=MX+b and v=v=1, on 0B
and we deduce
T'(Vx, Vi, v)e {N ® (x — )%)] - TT(VX, V7, v). [N ® (i — :QEH
' ) or ) dr

= TT(V)L Vi, ). [N ® (,1 Jx ._—v()x)}

+ [TT(Vx. Vu,v) - T (Vx, V7, ”)} : {N ® (i 'y ’_)]
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and

ST(Vx, Vi, 1) {N ® (1/ — 7%)] ~ ST(VX, V7, v)- [N ® (1/ -r %—;j)]

= ST (Vx, Vv, v). [N ® ( ()U()ir{)u”

ar

We also recall the following identities on d 5 (see [1])

_ J(X —x) A(X - x) (9(1/ V) -v)
=GR 2O L 2R
and
VE = Tx V- Va=Tat D g n
ON
Vv =Vr+Vv-Vv=Vv+ a(V()N V) @ N.
From the previous equalities we deduce
(13) n(J(x,v) - J(X, 7)) = /(NoX){S(Vx, Vv, v)
9B
oxX — Ox ov —dv _
(\_’ + ()N 0 Iq7 Vv + T & N, I/)
e OX — dx v — v _ ]
+ T(VX,. V7, ). [ N N] + S(VX, V7, 1) {r)—N ® N} }(15

o =, - ) e

+ [S(Vx, Vv, v)X - §(VX, V7, v)] - [(u - 7%) ®) NJ } ds.

Now, we may state:

Lemma 3. Let B be defined as above and let (x, #) be a smooth solution to
the equilibrium system (1) such that boundary conditions (5) are satisfied. Let us
suppose that ¥ satisfies the condition (8). Then

(14) J(x,v) + %/q dv < J(X,7),
B

where (X.7) is a solution defined by (4).
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Proof We apply the inequalities (8) and (11) to the first integrand on the
right-hand side of equality (13) to conclude that
(15)  n(I(xv) - TEP)
< / {[T(Vx,vy, v) - T(VX, V7, )] - [(sz— 73—:) ® N]
9B

+ [S(Vx, Vr,v) — S(VX, VT, v)] [(D‘ -r (d)z) ® N] } ds.

On the other hand, from (4), we have VX = M for all X € B. Then it follows
that

X—Tg = and V—T—— =1y,

and inequality (15) therefore yields

(T (x, v) - T(X, 7)) < f [T(Vx, Vi, v) — T(VX, V7,7)] -[b @ N] ds
aB
+ [S(Vx, Vi, 1) — S(VX, V7, 19)] +[vo @ N] ds.

Inequality (14) follows from (7) on recalling that b and v are constants.
Now, we may state the uniqueness result:

THEOREM 1. Let B, (x,v),(X,7), M and vy be as in the previous Lemma, and
let the energy ¥ satisfy the condition (9). Then (x,v) is a solution defined by (4).

Proof. Letussuppose that (x, ) # (X,7) = (MX+b, /). Then assumption
(9) implies

T®7) < T(v)+ - / g,
B
which contradicts Lemma 3. Hence (x, v) = (X,7) for all X € B.
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An idea of thin-plate thermal mirror
I. Mirror created by a heat pulse

Z. PLOCHOCKI (WARSZAWA)
and A. MIODUCHOWSKI (EDMONTON)

AN IDEA AND THE THEORY of thermal mirrors created on the surfaces of a simply supported thin
plane circular plate of an isotropic thermoelastic solid material by a uniform heat pulse, which is
applied to one of the plate surfaces, is presented. Such a thermal mirror is — within the approxi-
mations applied for obtaining the solutions of the heat conduction and thermoelasticity equations
— an ideal (aberration-free) optical mirror. The optical properties of the thermal mirror and their
time evolution are derived and discussed in two asymptotical time regimes: the short-time and
the long-time ones. Observability conditions for optical characteristics of the thermal mirror are
estimated. Theoretical possibilities of an application of the thermal mirror to experimental deter-
mination of the temperature conductivity of a material are discussed. The theory presented can be
also used for estimations of distortions of optical properties of pulse high power optical systems,
originated by absorption of light by optical mirrors in such systems.

1. Introduction

IN THE PREVIOUS PAPER by the Authors [5] the idea of thermal mirror was pre-
sented following an example of the thermal mirror created by a focused heat
pulse on the surface of an isotropic thermoelastic solid material half-space. In
the present paper an opposite (in some sense) case is examined, namely — the
thermal mirror created on the surfaces of a simply supported thin plane circular
plate of a material of the same kind by a heat pulse, which is applied to one of the
plate surfaces and is homogeneous across the surface. The aim is to calculate the
fundamental optical properties of the mirror (i.e. — its aberration characteristic,
optical power, and focal length), and their time evolution.

All the fundamental assumptions adopted here are the same as in the previous
paper [5]; these are: thermal stresses theory approximation (rigid heat conduc-
tor approximation), quasi-static treatment of all the mechanical phenomena, and
linearization of: the thermoelasticity and the heat conduction equations, and suit-
able boundary conditions (which are formulated at the undeformed surfaces of
the plate); the plate is also assumed to be adiabatically insulated on its sur-
faces. Criteria of applicability of the thermal stresses theory approximation and
the quasi-static displacement field one will be discussed in a separate paper by
the Authors; here we note only that the former approximation depends on ne-
glecting the influence of deformation rate on heat conduction processes, and the
latter one denotes, that all the phenomena are observed in the time scale specific
for heat conduction processes (the time scale specific for dynamic mechanical
processes is much shorter). Some comments on the quasi-static displacement
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field approximation and on the adiabatic insulation are given in Secs.7 and 8,

respectively.

Main symbols

Cp
D=1/f
E

¥

h
ierfe(z)

{ (subscript)
My

Nr

O’

Qo
Te, z
To

t

T

T

u (superscript)

U

U

8(x — xg)
5", 8
AlU(r)

Do

[ Y

specific heat (the value of ¢, for the numerical estimations is assumed together
with g),

optical power,

Young’s modulus,

focal length,

half-thickness of the (unperturbed) plate (the numerical estimations are
performed for 2h = 10~ m, and 10"2m),

integral complementary error function:

ierfe(z) = [~ erfe(t)dt, erfe(t) = 1—erf(t) = v 17 exp[—y*) dy,

refers to the lower surface of the plate,

see suitable equation at the beginning of Sec. 4 and Eq. (4.1),,

see suitable equation at the beginning of Sec. 4 and Eq. (4.1),

assumed small number (< 1), determining the accuracy of a given
approximation (the value of the order of 0.01 is assumed for

the numerical estimations),

total energy of the heat pulse,

cylindrical coordinates,

radius of the (unperturbed) plate (for the numerical estimations ry is assumed
to be of the order of 10-(2h)),

time,

temperature, measured from an initial (constant) value,

final temperature, defined by Eq. (3.1),

refers to the upper surface of the plate,

a-th coordinate of the displacement vector,

vertical displacement (shift) of the surface with respect to its initial
(unperturbed) level (Fig. 1),

see 1, ¢, z,

linear heat expansion coefficient (the value of the order of 107> 1/K

is assumed for the numerical estimations),

Dirac’s delta distribution,

small terms (Eqs. (4.4)),

=U(0)-U(r)

deflection angle (Fig. 2),

:= z/(2h) — dimensionless z-coordinate,

=T/T. - dimensionless temperature,

= A/(eocp) — temperature conductivity (heat diffusivity), (A — heat conductivity),
(the values of the order of (10~7 — 10~*) m%/s are assumed for the numerical
estimations, where the first value refers to the worst temperature conductors,
and the second to the best ones),

Poisson’s coefficient,

mass density of the (unperturbed) material (the value of goc,, as being of the
order of 5-10* J/(m*K), is assumed for the numerical estimations),

= m/(2h)2 — dimensionless time,

see 1, @, 2,

reads: is of the order of.
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2. Statement of the problem

Let us consider a plane circular plate of an isotropic thermoelastic solid ma-
terial of thickness 2h and of radius ¢ (Fig. 1). The plate is described using the
cylindrical coordinate system with the origin located in the center of the plate and
with z-axis perpendicular to the main surfaces of the plate (before deformation).
The plate is perturbed thermally by a heat pulse (in Fig. 1 the pulse is applied to
the upper surface), which is homogeneous across the surface.

z .
l

=

(=]

=it _’T._.

'
- 5

F'16. 1. Geometry of displacements.

The aim is to calculate the fundamental optical properties of the thermal
mirror, i.e. — its aberration characteristic and optical power (focal length).

z
/ z ,
mc /

L 7
h'\\/fc‘”

FiG. 2. Geometry of light rays.

The aberration characteristic is understood as a dependence: ¢ = £(r), where
£ is an angle between incident testing light ray parallel to the symmetry axis
and this ray after reflection from the mirror (Fig.2). The deflection angle ¢ is
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understood to be negative in the case of defocusing mirror (the upper surface in
our case), and positive in the case of focusing mirror (the lower surface in our

case).
The relationship between the deflection angle ¢ and the function U/, which

describes the vertical displacement of the surface with respect to its initial (un-
perturbed) level (Figs. 1 and 2), is (for both the upper and lower surfaces):
d( )

()z

aLry*’
1*(7)?)

therefore the aberration characteristic of the mirror is given by the formula:

tan or tan ¢ =

=2
I

t\.)lf‘;

r)(’
- e U _ ()7 ()V
(2.1) ¢ = 2 arctan o = arctan 1 U2 (?r
NC
where the approximation is valid if:
oUN? 30"
. =1 £ ——830",
&2 (07') ~1+0* ey

where, in turn, O* stands for an assumed small number, which determines an
approximation accuracy in the sense, that a relative error of an approximation
does not exceed O~.

The classical definition of the focal length is used [2], namely: the focal length
[ of the mirror is defined as a distance of the focal point /' from the mirror along
the mirror symmetry axis (Fig.2); the focal length is understood to be negative
in the case of defocusing mirror (the uppper surface in our case), and positive
in the case of focusing mirror (the lower surface in our case). According to this
definition we have (Fig.2):

"

tane = TT/'(T)!

where
(2.3) AU(r) := U@Q) - U(r);

therefore the optical power [) and the focal length [ of the mirrors are given by
the formula:

24) ’)z%ztarf 1tar1~ _%(())_I; ou 21 29U gfg(‘))—[’
i - AU— 1_(' ) AU

ar) r or
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where the approximation holds, if

77 2 arr
(2.5) (%—i) + 29 spl < o,

r i

In an ideal case both [) and f do not depend on r, i.e. — each of these two
functions has the same value for each testing ray, or — the focal point [ is the
same for all the testing rays, independently of r. Such a situation takes place
when (/ is simply proportional to r? (parabolic mirror) (*).

Thus, in order to find the fundamental optical characteristics of the mirror
and their time evolution, it is sufficient to find the function U(r,1).

The function U(r,t) is determined by both coordinates u. and wu, of the
displacement field in the material at a given surface (at z = £/, Fig. 1):

Ut(r) = u.(r',, h) — u.(rg, —h),
Ur(r) = uz(ro, —h) — u.(rl, =h),

where 77, (r) and r’_(r) are solutions of the equations: ry + u,(ry,+h) = r
with respect to 17, respectively (criteria of linearization of these formulae, which
depend on the approximation: r, = r, are given in Sec. 6).

Thus, in order to find the fundamental optical characteristics of the mirror,
it is sufficient to find the displacement field (the vertical displacement w. only,
if linearized Egs. (2.6) are applied) at a given surface. This information will be
deduced from the solution of the Lamé thermoelasticity equation, for which we
need the solution of the heat conduction equation first. Thus, we will examine,
first, the thermal part of the problem, and next — the thermoelastic part. Having
suitable information we will come back to the analysis of the optical properties
of the mirror.

(2.6)

3. Thermal problem

Following the specification of the thermal perturbation, the temperature field
in the material is assumed to be dependent on z and ¢ only: 7" = 7T'(z, t). There-
fore, according to the general assumptions adopted, the heat conduction equation
is:

06 9?0 | : 1
— = = +0(r -0 (‘)(“—-),
ar = a2 U003
(') Both criteria expressed by Inegs. (2.2) and (2.5) determine the so-called paraxial optics approximation:
1 = 208U

D==-=2=222
f r roOr
An ideal case in this approximation is characterized by simple proportionality of = to 7.
It will be proved later that this approximation is not necessary for the mirrors examined, because for such
mirrors the left-hand side of Ineq. (2.5) is identically equal to zero (and only the approximation arctanz = x
may be applied).
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where
K g z

T = —(2h)2t, (= E

stand for dimensionless time and z-coordinate, respectively, = A/(ggc,) is the
temperature conductivity (heat diffusivity) of a given material, A, gy and ¢, stand
for heat conductivity, density and specific heat of a given material, respectively,
6(x — xq) stands for the Dirac’s delta distribution, and

R LEOLLG)

stands for dimensionless temperature (as a function of dimensionless variables),
where, in turn,

(3.1) Ty i T = ) = Qo 1

3 ’
wré 2hooc,

and () stands for the total energy of the heat pulse. The boundary and initial
conditions are: 96 "
()—C(Q =ﬂ:§) =0=Q(T=O)
The Green function for the thermal problem in the whole space is known [3].
Applying therefore the method of sources and sinks one may write the solution

of our problem in the form:

2 2
| (21:1 + % - Q) (2”, + % 4 Q)
. 6 = = _
62 6= 2w | tew it

1+ 22(—1)" exp[—k2r?7] cos krr (C + %) 5

k=1

where the first line represents the original solution obtained using the method
mentioned(?), and the second one - that solution after expansion into Fourier
cosine series(®) (the function @((, 7) is symmetric with respect to { + 1/2, and
it satisfies the Dirichlet conditions).

() The same result is obtainable by applying the Laplace transformation method to solve the following

equivalent problem:

00 9@ BIC] 1 96 1
= . e i ¢ = 2 ) = 8(r=0), @(r=0)=0.
ar ag¢? ac (4 2) i a¢ (Q 2) (r ) (r )

(*) The same result is obtainable by applying the Fourier method of separation of independent variables to
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4. The thermoelastic problem

The solution of the Lamé thermoelasticity equation for a simply supported
plane finite thin plate (*) with 7' = T'(~) and with no external forces is known [1]
(in the approximation, which depends od replacing the local boundary conditions
for the stress tensor coordinates at the side surface of the plate by suitable integral
ones); in the case of circular plate we have:

N] 3z
2h 2h3

o 31\11_2 1 e vz, 3ul
0, ) = = (1+U)QO/T¢_E.N - siMr |

un(r,z) =

MT]

where o stands for the (linear) heat expansion coefficient, /2 — for the Young’s
modulus,  — for the Poisson’s coefficient, and

h h
Ny = o /T(lz, My := QE/TZ(J;.

—./l —-h

Using the formulae representing the solution of the thermal problem (Eq.(3.2))
we have:

= 2hFEaT,,,

2h*EaT,, [1 - T VT =81 Z( 1)"ierfe 7]

exp[—(2k — 1)27T2T],

(4.1) My
m=1

1

22k —1)2

2h2EaT., Z

where ierfc () stands for the integral complementary error function:

o5
ierfc(z) = / erfc(t) di | erfc(t) = 1 —erf(t) = 77 /exp ] dy.
solve the following equivalent problem:
90  8*e a0 ( 1\ . 1
T=JC2' T(‘((,—ii)—o. @(T-—O)—O(C—i)

It may be useful to note that, if the initial condition is not specified, then the solution of the heat conduc-
tion equation has the same form with coefficients 2(—1)¥ replaced by unknown coefficients aj (which are
determinable from the initial condition after it will be specified), i.c. the structure of time-dependence of the
solution (in the Fourier cosine representation) does not depend on the initial condition.

(*) The plate is understood to be thin in the sense that the following approximate conditions for the stress
tensor coordinates are valid: ¢,. = 0, = 0., = 0.
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Using these formulae one may rewrite Eqgs. (2.6) in the form:

w_ Nr . o r\2 1 o Ny r\2
( _?Hm[l—(a) m]_—ﬁﬂ'ma"ll_(ﬁ) ,
(4.2)
Ut = — Uppax |1 ("—')2 : S Uy |1 (")2
where
, _ 3Mg ,
(4.3) [max = 4—_113[3"01
v gl o =1 Sar.
(4.4) o = ir u(r, £ h) = ShE [i Nt + h.’l];].

where, in turn: the superscript u and the upper sign refer to the upper surface
of the plate; the subscript / and the lower sign refer to the lower surface; N7 is
given by Eq.(4.1); and M7 - by Eq.(4.1); or Eq.(4.1)3; and the approximations
in Egs. (4.2) (which correspond to the linearization of Egs. (2.6)) are valid if the
functions ¢ can be neglected (see Sec.6).

5. The optical problem

After substitution of Egs.(4.2) into Eq.(2.1), the aberration characteristic of
the thermal mirrors examined is obtained:

2Umax T 1 .
3 ey 2 arct: — ,
(5.1) i = F2arctan { o o (% b;’)z]

20 s r] I 4Umnax T

12

ro To

F 2 arctan {
o To

where (as previously): the superscript v and the upper sign refer to the upper
surface of the plate; the subscript / and the lower sign refer to the lower surface;
{max 18 given by Eq. (4.3) with Eqs. (4.1), 3; ¢ are given by Eq. (4.4) with Egs. (4.1);
the first approximation (which corresponds to the linearization of Egs.(2.6)) is
valid, if the functions ¢ can be neglected (see Sec.6), and the second one (the
paraxial optics approximation) — if (in addition)

Wae \2 12 307
5. —"““) — < =30,
(5.2) ( w ) 251500 30

where O" is an assumed small number.
It may be useful to comment at this place on the condition of applicability
of the paraxial optics approximation, as given by Ineq. (5.2). The functions ¢ are
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assumed to be negligible. As it follows from Egs. (4.1); 3, the function My is a
monotonically decreasing one from 2h2FEaT., to 0, as time varies from 0 to oc,
respectively. Therefore, according to Eq. (4.3) we have:

where the right-hand side of this inequality represents the value of Upae at 7 = 0,
and the left-hand one - at 7 = oc. The criterion of applicability of the paraxial
optics approximation can be therefore written in the form:

G) 2t o) Grp
ro) ~121+0*\ry) (@Tx)? "

Assuming

o O =102,

e 1y = 10-(2h),

o a=10"% 1K,

e 1. =(1-10)K,

(the sign = reads: is of the order of) and taking into account that the maximum
value of r is very close to r, one can see, that the right-hand side of the inequality
given above is of the order of 10° — 10, so the criterion examined is well satisfied
(it can be violated only in a case of very strong requirements; if for instance:
O* = 1074 rg = 10%+(2h), and T, = 1074, then the right-hand side of the
inequality given above may be even of the order of 10~! in the worst case).

The aberration characteristic obtained represents an ideal case, therefore
both the upper and lower surfaces of the plate considered represent an ideal
(parabolic) mirror (the upper - defocusing mirror, and the lower — focusing one).
In fact, substituting Egs.(4.2) into Eq.(2.4) we obtain the optical power ) and
the focal length [ of the mirror as independent of distance r:

1 4 1 4
5. /)”:—_—: __(r' _—
@) : + r2 (1 62

‘/[u =+ }—%{ max »
where (/. i given by Eq.(4.3) with Eq.(4.1)23, and ¢ are given by Egs. (4.4)
with Eqgs. (4.1); and the approximation holds, if the functions 6 can be neglected
(see Sec.0).

The results expressed by Egs. (5.3) denote, that the mirrors considered are
aberration-free, and no paraxial optics approximation is needed to idealize them
(although this approximation may be applied for simplifying the formulae for the
functions &, if it is allowable (see comment given above)). It should be noted,
that our results are not valid for an arbitrary plate, because they were obtained
under defined assumptions.
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As it is seen from the formulae given above, the time evolution of the displace-
ment function {/ and the optical properties of the thermal mirror is governed by
the dependence of the function Upax (Egs.(4.3) and (4.1)) and, in addition, by
that of the functions ¢ — on time. This dependence is complicated and difficult
for a simple interpretation. It can be simplified in two steps: first, by neglecting
the functions ¢ in the suitable expressions (see Sec.6); then, second, significant
simplification can be obtained for sufficiently short or long time (see Secs. 7 or 8,
respectively).

6. Criterion for neglecting the functions 6

Because the quantity N7 (Egs. (4.1);) is independent of time, and the quantity
M7 (Egs.(4.1)23) is a monotonically decreasing function of time, which varies
from 2h%FEaT,. at 7 = 0 to 0 at 7 = oo, therefore the functions § vary within
the limits:

ol
— o1

4aT,, |
2aT ,

IA A

6" <
o <

where the right-hand side limits correspond to 7 = 0, and the left-hand side ones
- to 7 = oo. Adopting the previously assumed values for « and 7, one has:

6" < 4+(107° = 107%),
8] < 2-(107° = 107%),

where the first value in the brackets corresponds to 7., = 1K, and the second
one-to 7T, =10K.

Thus, in practical cases the functions ¢ are in fact small quantities in compar-
ison with unity. Criteria for neglecting these fuctions in each of the formulae for
U, U, v, epand D = 1/ f are examined in details in the Appendix. This discus-
sion suggests the following assumption as the common criterion for neglecting the
functions ¢ in all the formulae mentioned (in the sense, that a relative error of
an approximation in any case does not exceed (O, if this criterion is satisfied)(”):

6.1) |&%§4aﬂQ§%U*

(which is approximated in some cases, with a reasonable accuracy however, as it
is pointed out in the Appendix). This assumption implies no limitation for the
distance r in the case of the functions ¢ and D) = 1/f, whereas in the case of

(*) If this criterion would be formulated for the upper and the lower surfaces separately, then for the upper
surface it would have the form as given by Ineq. (6.1), and for the lower one — by the same inequality with
only number 4 replaced by number 2.
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the functions {/ it is (approximately) equivalent to the following condition for »
(see Appendix):

P& % 1o = 0.7071 rg.

It may be useful to note here, that using Eq.(3.1) one can rewrite Ineq. (6.1)
as a criterion for the maximum pulse energy (1o, for which Ineq. (6.1) is satisfied.
Assuming (in addition to the assumptions of this kind adopted previously):

o g9, = 5-108 J(m*K)
we obtain in this way

2.10% 7, for 2h = 10~3m,
(QIOI S

2.10° J, for 2h =107 m;

(ot - {6-105 J/m?, for 2h=10"3m,

3 ~ | 6-10°J/m?, for 2h =10"%m.

(6.2)

7. Short-time regime

For sufficiently short time the sum in the brackets in Eq. (4.1), can be truncated
after the second term. Let us note, that because ierfc(z) is a monotonically
decreasing function, therefore ierfc(m /2/7) > ierfc[(m + 1)/2\/7]. In addition,
if 7 < /16 = 0.196, then ierfc(1/2/7) < 1/2/7. The whole sum in the brackets
in Eq.(4.1); can be therefore treated as a Leibniz-type series(®). Then, the sum
considered can be approximated by the first two terms only with an accuracy to

O, if
g 1 . 4./

This inequality is satisfied, if

(%) The Leibniz-type series (1.5) is understood to be a convergent series of the type:
oo
LS := Z(H])"' am , am > amseq > 0.
m=0
Such a series can be precisely estimated as follows (Leibniz’s theorem):
2% 2%k—1
Z(—l)"' am > L8> Z(—l)”‘n,,,.
m=0 m=0

In particular case one may obtain
ag—ay+az > LS > ap—ay,
therefore .S = aj — a; with an accuracy to O*, if a; < O%(ag — ay).
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; x 1
wnere @y stands Ior a solution O € equation: 1eric & @) (4 Zﬁ) with

respect to .
Assuming (as previously) O* = 0.01, one may find zg = 1.87, and

(7.1) T < Tahort = T2 = 741072

Assuming, in addition
o k= (1077 -10"%) m?s,
where the first value in the brackets refers to the worst temperature conductors

and the second one — to the best temperature conductors, one may rewrite the
criterion expressed by Ineq. (7.1) in dimensional form(”)

7-(1071 - 10%)s, for 2h =10"3m,

7.2 t < b= 1g =
(7:2) =L HTRE {7-(10 ~10-%)s,  for 2h=10"2m.

By the way let us note here that all the mechanical phenomena are treateted
in the quasi-static approximation, i.e. observation time 7 should be sufficiently
large. The following criterion is assumed:

1 o K 1 o
i e t 2 lmin = A7 —>
O ¢ 4h?’ =THR R g
where the first condition is written in the dimensionless form (in the time scale
applied in the paper), the second condition is written in the usual dimensional
form, and ¢ stands for velocity of sound in a given material. Assuming (in addition

to the assumptions of this kind adopted previously):
o c=2.10°mys,

we have (in dimensionless and in dimensional forms):

(7.3) T T =

T 2 Tmin =

5.(105-10"2), for 2k =10"%m,
5+(10°% - 107%, for 2h = 1072m,

(7.4)
4 {5-10—4&, for 2h=10"3m.
> "min =

5.1073s, for 2h =10"%m.

Comparing Inegs. (7.4) and (7.1) [(7.2)] one can see, that within the quasi-static
displacement fields approximation, there exists a relatively large field for the
short-time regime approximation(®).

(") For O* = 10~ or 10~* one may find xq = 2.25 or 2.61, respectively, and the number 7 in Inegs. (7.1)
and (7.2) is replaced by the number 5 or 4, respectively.

(®) Let us note in addition, that the perturbing heat pulse is assumed to be instantaneous, therefore the
observation time has to be much longer than the time of duration of the real physical pulse.
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If the criterion expressed by Ineq. (7.1) (or (7.2)) is satisfied, then the sum in
the brackets in Eq.(4.1); can be approximated by its first two terms only, which
is decreasing from 1 to about 0.4 as 7 is increasing from 0 to Tghort = 7+ 102,

Thus, if the criteria expressed by Inegs. (7.1) (or (7.2)) and (6.1) are satisfied,
then the sum in the brackets in Eq.(4.1); can be truncated after the second
term, and the functions ¢ can be ignored (the total relative error of this double
approximation does not exceed (1 + 0*)? — 1 = 20~). In this approximation, the
function /., and therefore also (/, D, and f are linear functions of /7:

Unax = Unax(0) (1 : \%\/?).

w0 (57 - ()] - 9}

-t (2] (- ).

1 4 4
Di = 5= % o3 Um0 (1 S= V7))
| -/“u ."(2)' ( ) ﬁ \/_

where the superscript « and the upper sign refer to the upper surface of the plate,
and the subscript / and the lower sign — to the lower surface,

"(2} Qrot
(2,1‘)2 T '.8 00(‘]) ‘

['u

(7.5)
U,

I

Umax(0) := 3a

The deflection angle

; ( 'ma. (O) r 4
7.6 ¢ = F 2 arctan [2 : - (l - — r”
(7.6) l + o o NG VT

{ “'I'I]U.X (0) ' ( 4 )
=714 — (1= —= /T
B ' o ﬁ f

is a linear function of /7 only in the paraxial optics approximation (the approxi-
mated part of Eq. (7.6)), which holds (with an accuracy to O*), if (cf. Ineq. (2.2))

4 r\2 4 )2 30" .
— " =— — L =
,-3,"“3’*(0)( ) (1 ﬁﬁ =1+ 0~ 30

(the total relative error of this triple approximation does not exceed (1 + O*)? —
1 & 307,

Thus, the short-time approximation seems to be realistic (except for very thin
plates with the best temperature conductors) and offering simple interpretation
of the time evolution of the optical properties of the mirror considered.

0

http://rcin.org.pl
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8. Long-time regime

Although the short-time regime, discussed in the previous section, seems to
be sufficient for use and interpretation of the results obtained earlier, we will
discuss shortly the opposite regime — the long-time one for the completeness of
the picture. For this purpose it is more convenient to use the second version of
the solution of the thermal problem (Eq. (3.2);), and therefore - also the second
version of the function My (Eq.(4.1)3).

The idea of the long-time approximation is similar to that used previously in
the case of the short-time approximation. We have to find criteria, which allow us
to simplify the expression for the function M7 as far as possible (the assumption,
that the functions ¢ can be ignored, will also be used).

For sufficiently long time, the series in Eq.(4.1); can be approximated by its
first term only with an accuracy to an assumed small number O*. For this purpose
it is sufficient to require:

e the second term of the series to be much smaller than the first one in the
following sense:

%exp[—Sﬂ”zT] <090,
e and the (£+1)-th term, & > 2, to be not larger than 0.1 of the £-th term:
2k + 1)2
2k-1/

These inequalities are satisfied if, respectively:

exp[-8k727] < 0.1 (

. %[- In 8.107],

1 2k —1\?
T2 82k i [10 <2A: + 1)

The latter inequality is the strongest one for £ = 2, therefore we have:

T2 Ty = In 8.107].

1
grz L™
1
Tom? |
Because 75/ = 735 for O = 6.5-1072, therefore for O* < 6.5:1072 the first
of theseztwo conditions is stronger than the second one, and inversely for O* >

6.5-107~.
Assuming (as previously) O = 0.01 we have(®):

T 2 Ty i= In3.6=8.1.107°.

(8.1) T2 Tiong = oy ¥ 3.24107%;

(*) For O* = 103 or 10~* the number 3.2 in Inegs. (8.1) and (8.2) is replaced by the number 6.1 or 9.0,
respectively.
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assuming also (as previously) x = (1077 — 10~%) m?/s, we rewrite criterion ex-
pressed by Ineq.(8.1) in the dimensional form:

3.2.(10"1 - 10"%s, for 2h=10"3m

8.2 t > tiong =1
(8:2) long = t2/1 = {3_2 «(10 — 1072y s, for 2h =10"2m.

Let us note by the way, comparing Inegs. (8.1) [(8.2)] and (7.4), that the latter
one is always fulfilled in the long-time regime.

If the criterion expressed by Ineq. (8.1) (or (8.2)) is satisfied, then the series
in Eq.(4.1)3 can be approximated by its first term only, which for 7 = 7, =

3.2.1072 is equal to about 0.59, whereas the whole series for 7 = 0 is equal to
unity (see [4]).

Thus, if the criteria expressed by Inegs. (8.1) (or (8.2)) and (6.1) are satis-
fied, then the series in Eq.(4.1); reduces to the first term, and the functions ¢
in Egs. (5.1) and (5.3) are neglected (the total relative error of this double ap-
proximation does not exceed (1 + O*)* — 1 = 20*). Then the quantity Unax, and
therefore also the functions /¥ — U¥(r = 0), U/;, D and f - depend on time
exponentially:

= Umax(O)Eexp[—wz T,

) 2} r 2 8
i im0 32+ - (5)] S ).
(83) ~12] 8
Ui = ~Unax(0) [1 = (%) l = exp[-n27],
Dy = ji = 2 Unu(0) o exp[-727],
I 0

where the superscript v and the upper sign refer to the upper surface of the
plate, and the subscript [ and the lower sign — to the lower surface, and Upax(0)
is defined by the equation following Egs.(7.5). The deflection angle

mdx(()) r

(8.4) £/ = F2 arctan
o To

exp[—~ T]

~ d4 mdx(o) r
= 3 71-2 = — exp[-7 r]

7T2

depends exponentially on time only in the paraxial optics approximation (the
approximated part of Eq.(8.4)), which holds (with an accuracy to O%), if (cf.
Ineq. (2.2))

256 U2,.(0) / r\? 5 30+ :
max - __2‘ < E‘ *
™ 72 (-,-0) Spl=2rtrl gy -
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(the total relative error of this triple approximation does not exceed (1 + O*)? —
1 & 30F).

Let us note by the way, that 7 can not be too large. The plate is assumed to be
adiabatically insulated on all its surfaces. This assumption can be violated, after
sufficiently long time, at least by the radiation heat exchange between the plate
and its surroundings. The (dimensionless) relaxation time for the latter process
Trad (in the time scale applied in the paper) may be estimated as follows. We start
from the heat conduction equation with no heat sources, assuming the boundary
conditions in the form (see Footnote 3):

00 (. 1\ _ o8 90 (. 1 1
(=D hoc-D). B (et -mofcn))

where /4, (4 stand for (dimensionless) coefficients of surface losses (assumed to
be constants). The solution of the heat conduction equation with these boundary
conditions (as obtained using the Fourier method of separating the independent
variables) has the form:

Z N; {,-1/; COS fi1; (( + %) + By sin py (Q n %)] ‘

where 3, Ay = i By, coeflicients A (or ;) are (in principle) determinable
from an initial condition, and ;. stands for positive solutions of the following
characteristic equation:

_ (B + o)

B ,HZ = 51;12 ‘

For small surface losses (/71, [/, < 1) one may obtain (in the linear approxima-
tion):

tan p

Kk = }xn ""' (31 /1%2).

therefore;
exp[— 2 7] = exp[— k7 T] exp[-2(51 + 1) T].

Thus, the (dimensionless) relaxation time connected with the surface losses is

I
Trel = 208, + )

If the plate loses its energy through its surfaces by thermal radiation only, then
using the linearized Stefan - Boltzmann law one may write:

2h 4b JOsB T()3

K 00C)

1'_}1 = ,“'.fz =
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where o stands for the Stefan - Boltzmann constant, b — for a correction factor
for a real body as compared with the perfectly black one, and 7j - for the initial
temperature (before the perturbation); thus,

" K 00Cp
rad = — =
20 8bosp Ty

The thermal radiation losses can be therefore neglected, if the observation
time 7 is much shorter than 7,,4:

x « K 00Cp
T & Tinax 35 O Tigq = 0 ﬂm.
where (* stands for an assumed small number.
Assuming (in addition to the assumptions of this kind adopted previously):
o b=0.1,
o 055 & 5.67-1078J/(m*s KY),
o Ty =3.10%K,
we have (in dimensionless and in dimensional forms):

] , {4.(1 —10%, for 2h =107*m,

< ” =
" TS Tma T 401071 —102),  for 2k = 10-2m,
3)
o & 40, for 2h=10"3m.
= M) 4010%s. for 2h = 10"%m.

This criterion restricts the applicability of the theory presented, however there
still remains a relatively large field for application of the long-time regime (as it is
seen by comparison of Inegs. (8.5) with (8.1) [(8.2)]). Thus, the long-time regime
seems to be a realistic and useful supplement to the short-time regime(1?). It starts
relatively quickly. The values of [/, at the beginning of this regime are only a
dozen percent lower than the initial value of [/ ;.. By comparing Inegs. (8.1) and
(7.1) one may see, that for O* = 0.01 both regimes — the short- and the long-time
ones — cover the full time range from 7, t0 Tmay (for smaller O the situation
is not so comfortable — see Footnotes 7 and 9).

9. Estimations for possible experiments
9.1. Introductory remarks

In principle, the thermal mirror considered may be experimentally studied by
investigating the functions: [/, and [. Each of these quantities can be experi-
mentally investigated and interpreted using the theoretical scheme presented, if
some conditions are fulfilled.

(") Supplement only, because of the restriction mentioned in Subsec.9.2 (see also estimations given in
Subsecs. 9.3, 9.4, 9.5, and cf. Ineq. (9.1) and Inegs. (9.3), (9.4), (9.5)).
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9.2. General conditions

Some general conditions, which should be taken into account in any experi-
ment, were discussed earlier. Here the last such a condition will be mentioned.
It follows from the requirement that the heat perturbation can not significantly
change the properties of the material. Assuming the perturbation region to be a
layer of thickness Ah, and the temperature not to exceed some critical value 7™,
we can write this requirement in the form:

Qtot € Qmax := poc, T Ah 7r7'6.

Assuming (in addition to the assumptions of this kind adopted previously):
o T* =210%°K,
o Ah =0.05-(2h),

we have:
. [157, for 2h =10"m,
< ( ——
- Dt £ G {1.5-1041, for 2h=10"2m,
9.1
Qrot < Qmax 5:10°J/m?, for 2h =10""m,
rrg = wry  |5-10°7/m?, for 2h=10"%m.

Comparing the conditions expressed by Inegs.(9.1) and (6.2) one may see,
that the latter is weaker than the former one, i.e. if Ineq.(9.1) is satisfied, then
the functions 6 can be neglected in all the previous formulae.

9.3. Observability conditions for U

According to Egs.(7.5) and (8.3) (for the short- and the long-time regimes,
respectively), the condition for the minimum pulse energy ()i allowing U to be
observable on the level at least of [/* can be written in the form:

; . D0Cp i 1 ,
Quot 2 Quain 1= U™ =22 (@) 3 ————5 9(7),
! 3 T
- (=
ro
where
4 -1
[l - — \/?] in the short-time regime,
(9.2) syl VT -
T 2 s s .
3 exp[7“ 7] in the long-time regime,

and the contribution of Ny to {/* was neglected.
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Assuming (in addition to the assumptions of this kind adopted previously):
o U"=10"°m

e 1 L 1,
o 7 =7-10"2 (see Inegs. (7.1) and (8.1))
we have:
17 for 2h=10"%m
C > ‘ “' ﬁ ;]
ot 2 i { 102, for 2h=10"2m,
(9.3)

"
Qo 5 Ynin £ 4,103 /m?
TI'T‘O 7T7'O

(cf. Inegs. (9.1), (9.4) and (9.5)).

9.4. Observability conditions for =

According to Egs.(7.6) and (8.4) (for the short- and the long-time regimes,
respectively) the condition for the minimum pulse energy ()i allowing ¢ to be
observable on the level at least of ¢* can be written in the form:

- . DoC 1 #rd
Qrot > Qrpin := € Tp (2h)y? 1 _79 (),

where 1»(7) is given by Eq.(9.2).
Assuming (in addition to the assumptions of this kind adopted previously):
o £* = 10"%rad,

e I = o
we have:
] 3.107'J, for 2h=10"3m,
¢ > ., =
dot 2 Qmin {3-1021, for 2h =10"2m
(9.4)

Qut o Qmin - 103J/m?,  for 2h =10"3m,
10*J/m?, for 2h =10"2m

m'% - 771'%
(cf. Inegs. (9.1), (9.3) and (9.5)).
9.5. Observability conditions for f

According to Egs. (7.5) and (8.3) (for the short- and the long-time regimes,
respectively), the minimum pulse energy (Jio allowing f to be observable on the
level not higher than [* can be written in the form:

1 ogc,
(gtot me = / it (2/ )2 7'70 U’(T)

where the function () is given by Eq.(9.2).
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Assuming (in addition to the assumptions of this kind adopted previously)

e f*<40m
we have:
L -3
N T
9.5) .
Qut o Qin - {3-103J/m?~. for 2h=10"3m,
nrE . ArE 3.10°J/m?, for 2h=10"?m

(cf. Inegs. (9.1), (9.3) and (9.4)).

10. Possible applications for determining the temperature conductivity (and the
surface losses coefficients)

As it is seen from the suitable formulae given above (after coming back to di-
mensional time ¢ = 7 (2h)?/x), the time evolution of the thermal mirror depends,
among others, on temperature conductivity « of the material. Measuring suitable
properties of the mirror it is therefore possible to determine x. However, as it
is seen from the formulae mentioned, such a procedure performed in arbitrary
conditions may require some additional information (which should be known or
measured), and may prove to be complicated for interpretation.

The problem simplifies in the short-time and the long-time regimes. In fact,
as it follows from Egs.(7.5) and (7.6), in the short-time regime the quantities:
[/, tan(=/2), and f are linear functions of v/ with coefficient (at v/#) equal to
4/ /(2h\/7). Measuring the evolution of these quantities one may therefore
determine this coefficient and, knowing it and the plate thickness 2/ of the plate
— find » of a given material.

Analogously, as it follows from Egs. (8.3) and (8.4), logarithms of the following
quantities: {/“(r = 0) — UU"(r), ||, | tan(=/2)| and |f]| in the long-time regime
are linear functions of time  with the coefficient (at ¢) equal to 72 /(2h)*.
Measuring the evolution of these quantities one may therefore determine this
coefficient, and knowing it and the plate thickness 2/ — determine  of a given
material.

By the way let us note shortly, that one may think also on applying the thermal
mirrors considered for experimental determining the surface losses coefficients
71, or /3, (see the end of Sec.8), if the temperature conductivity » of a given
material is known. Using equations given at the end of Sec.8 for @ and suitable
equations for the optical characteristics of the mirror, and applying the same
argumentation as it was used for specification the long-time regime, one may
conclude that for sufficiently long time the suitable optical characteristics /' of
the mirror are simply proportional to exp[ -7 7]. From measurements of the time
evolution of In|/’| one may therefore determine the quantity z¢;. Then from the
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characteristic equation for ;2 one may determine: /3 = y tanjuy, if 5y = 0 (an
ideal thermal insulation on the perturbed surface); 3 = jy tan yy, if 4, = 0 (an
ideal thermal insulation on the opposite surface); 5 = —uy/ tan g, if Fp =
(ideal losses on the opposite surface, realized for instance by a thermostate).

11. Remark on distortion of properties of optical mirrors

Absorption of light by mirrors in high power optical systems causes thermal
deformation of the mirrors, and therefore changes their optical properties. The
theory presented may be useful for estimations of such effects in light-pulse optical
systems. In particular, the criteria given in Subsecs. 9.3, 9.4 and 9.5 may be useful
(in reversed form) for estimation of the maximum allowable energy of light pulse,
which do not distort optical properties of the mirrors over an assumed level.

12. Conclusions

The thermal mirrors created on the surfaces of a thin plate of an isotropic
thermoelastic solid material by a heat pulse, which is applied to one of the plate
surface and is homogeneous across this surface, is — within the approximations
applied in the paper — an ideal (aberration-free) optical mirror. These mirror ef-
fects are relatively very small, however they may be studied experimentally using
high precision optics. The variations of the optical properties of the mirror con-
sidered are comparable with those of the half-space thermal mirror [5], however,
because the thin-plate thermal mirror is free of aberrations, therefore it seems
to be easier for experimental research.

In general, the time dependence of the thin-plate thermal mirror is compli-
cated. However, there exist two regimes: the short-time and the long-time ones,
in which this dependence becomes much simpler and easy for interpretation. In
these conditions the thermal mirror considered may be, in principle, used for
experimental determination of the temperature conductivity of a material.

Appendix. Detailed criteria for neglecting the functions o0
A.l. Criterion for neglecting 4“ in the formula for (/“

The relative error of neglecting the function ¢* in Eq. (4.2), does not exceed
()%, if the following criterion is satisfied:
2 r T 2
P Nr : Nt r
— ] =0 14+ —— "2+ 6O |1+ — - —
|i("ﬂ> ( lf[mux)] ( )< ( El max) (”0) ]

(LY [07 + 82+ 6] <O (A + 6" (1 b ) _

g E Unax

or
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Three cases should be considered to analyze this criterion. If

2
r ]VT
—) <O (14 ——
(%) <o (+ 7o)
then the criterion considered is always satisfied for an arbitrary ¢, i.e. — for
sufficiently small » the function 6* can be always neglected in Eq.(4.2);.

If
i ]\-"'T r 2 NT
o (1+ EUmax) < (%) . (” EUmax)’

then the criterion considered is satisfied for

Su < (?_> v 1~ O*
0 r 2 i NT
\/(E) -0 (1+ i)

N
* u\2 T
(7_>2<O (1+48%) (1+EUmax)
= O~ + 62 % 69

-1

or

If, in particular,
1
(()‘u _ *
< 20 ,

then the latter inequality is satisfied for
() <
—1 &=
ro =2
ry\ 2 ( Nr
= > {1+ ",—.*—’) y
("O) N E Urnax

then there exists no function 6" satisfying the criterion considered, i.e. — for
sufficiently large » the function §" can not be neglected in Eq.(4.2); (however,
this case may have only symbolical meaning, because of the approximation applied
for solving the thermoelasticity equation, as it was mentioned at the beginning of
Sec. 4).

If

A.2. Criterion for neglecting &; in the formula for U/,

Because the function ¢; decreases from 2a7.. to —al., as 7 varies from 0
to o (see Sec.6), therefore the criterion for neglecting the function ¢, in the
formula for {/; should be examined separately for 6, > 0 and ¢; < 0.
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A.2.1. The case of & > 0. The relative error of neglecting the function 6; > 0 in
Eq.(4.2), does not exceed O, if the following criterion is satisfied.

[(;_0)2 +0" |82~ &) < 0" {1 & (vl_oﬂ

or
2
(?) [0" +&(2-8)] <O (1 - &)
ro
If » = 0, then this criterion is satisfied for an arbitrary ;.
If » # 0, then the criterion considered is satisfied for('!)
51 < 1- x _1+—20*
ro
(1) + O
o
or

( P )2 o 1- 6[)2
— < =
0 -0+ 61(2 - é[)
If, in particular,

L
&S507

then the latter inequality is satisfied for

1 2
r\? 1(]‘50) .
(—>35*1—=§~
ro .
B =
8(_)

(exactly: for O* = 0.01, 0.001, 0.0001 the double right-hand side of this inequal-
ity is equal to 0.99126, 0.999125, 0.9999125, respectively).

A.2.2. The case of &, < 0. The discussion and the conclusion in this case are exactly
the same as in the case examined in Subsec. A.1 with N7 = 0 and ¢* replaced
by |d4].

A.3. Criterion for neglecting 4" in the formula for "

The relative error of neglecting the function ¢* in Eq.(5.1) for ¢* does not
exceed O, if the following criterion is satisfied:

Ui 7 Wy T 1
arctan [ ol —J < (1+ O0*) arctan | ——= — —=1 .
ro 1o o To (1 + (S“)
(') This is a very fair condition in case of small ». If, for instance, » = 0.1rg and O* = 0.01, then this

inequality reads: § < 0.2893 (see Sec. 6 and cf. Sec.A.1).
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Because «x arctany < arctan zy for @ < 1, y <« 1, therefore this criterion may be
replaced by the following stronger one:

(5H)2+25“—O* <0,
which is satisfied for g
6% < 1+O*—1E§O*

(exactly: for O* = 0.01, 0.001, 0.00001 the double right-hand side of this in-
equality divided by O~ is 0.9975, 0.99975, 0.99997, respectively).

A.4. Criterion for neglecting &; in the formula for ;

The relative error of neglecting the function ¢; > 0 in Eq. (5.1) for £; does not
exceed O, if the following criterion is satisfied:

2Umax T % 2Umax 7 1
; : S _ . .
arctan [ o 7‘0} > (1 — O) arctan o rod=0)

Because « arctan y > arctan xy for @ > 1, y < 1, therefore this criterion may be
replaced by the following stronger one:

(02 — 26"+ 0" > 0,

which is satisfied for
&% L

<30°<1-vI-0r.
The discussion and the conclusion in the case of ¢; < 0 are exactly the same
as in the case examined in Subsec. A.3 with only 6" replaced by |¢,|.

A.5. Criteria for neglecting & in the formulae for D = 1/f

The relative error of neglecting the functions & in Egs. (5.3) does not exceed
O, if the following criteria are satisfied:

02 +26-0* <0, 8=, & >0,
62 - 26+ O > 0, & > 0,

for the upper surface and the lower one, respectively. These inequalities are
satisfied for

IA

§< VITO -12 %O*. §=6u  —§>0,
é,<%()*§1~\/17()*. o >0

(see and cf. Subsecs. A.3, A4).
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A.6. Conclusion

The criteria for neglecting the functions ¢ in the suitable formulae are different
in various cases. In order to discuss this problem in a uniform way for all the
cases, one needs a common criterion, which will be satisfied in all the cases. Such
a criterion is proposed in Sec. 6 (see Ineq. (6.1)).
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Can the system of discrete vortices imitate a boundary layer ?

T. LIPNIACKI (WARSZAWA)

Tue prOBLEM of dissipative flow of superfluid due to the vortex interaction with the boundary is
considered within the hydrodynamics approximation. The numerical simulations were applied to
show that, when the boundary starts moving, the vortices pinned to microscopic surface irregular-
ities can stretch. The array of the growing vortices give rise to the specific boundary layer, which
in some aspects is similar to the boundary layer in viscous fluids.

SuperrLUID *He behaves as an ideal fluid with rotation restricted to quantized
vortex filaments. The experiments of AwscHALOM and ScHWARZ [1] suggest that
some remnant vortices are always expected to occur. The essentially hydrodynam-
ics description of its dynamics is valid down to a scale comparable to the core

radius of the vortex ay which is of order 1A. In the zero temperature limit, when
the interaction between the vortex and the thermal excitation gas (the normal
fluid) may be neglected, the motion of an individual quantized vortex S(,t) (in
local induction approximation — LIA) is accurately described by [2]

(1) S=p5xS5"+V,,

where V; is the local average superfluid velocity, and 3 = (x/47) * In(c; /5" ay),
with ¢; constant of order 1 and x# = h/my. quantum of circulation. The primes
denote differentiation with respect to arc length. The equation must be supple-
mented by a nonlocal interaction term when the vortex approaches another vortex
or a boundary.

The aim of present paper is to consider the dynamics of vortices terminating
on the flat infinite boundary. The problem of vortex dissipative line dynamics
in relatively narrow channels has been already studied by ScHwARZ [3, 4] who
pointed earlier [4] that the moving vortex may be pinned to the microscopic sur-
face irregularities. We recall [5] that a vortex filament terminating on a perfectly
smooth surface will move without hindrance. When the end of the vortex encoun-
ters a bump, however, it will remain pinned there until it bows over up to some
critical angle with the surface. Next it jumps off and resumes its motion. Quan-
tized vortices may pin on bumps of only a few Angstroms, so that in practice
this process is always expected to occur. Moreover Schwarz, while considering
the static case, concluded that the depinnig angle (angle between the vortex end
and the normal to the surface) depends logarithmically on the size of the pinning
site. It means that the leading role may be played by small protrusions which
are more abundant. SCHWARZ [3, 4] found that the pinning and release process
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makes the vortex line elongate across the channel. In such a process the energy is
dissipated by being fed into the growing vortex lines which then annihilate at the
opposite wall. The vortices also transfer the momentum between the boundary
and the superfluid; the vortex exerts the stream-wise force on the boundary via
its interaction with the pinning site. Respectively, the boundary must be exerting
a retarding force on the superfluid via its interaction with the vortex.

In some important aspects, the vortex dynamics in the vicinity of a single
surface is different from the dynamics described by Schwarz in narrow channels.
First of all, vortices can not be spanned between perpendicular or opposite walls,
and second, there is no opposite wall to annihilate the growing vortices.

Consider at the beginning the simple example of a vortex pinned to z = 0
plane and subjected to the applied velocity v, in the # direction. Assume that
initially the vortex filament having the shape of a half circle of radius £ lies in
plane > = 0 (i.e. plane perpendicular to the applied velocity and the boundary
plane). If the driving velocity is equal in the value but opposite in direction to
the self-induced velocity

(2) Vi = = 1= Vg,

the configuration is stationary. The higher applied velocity bends the vortex
stream-wise and stretches it out. At some critical angle of declination (i.e. depin-
ning angle dependent on the size of pinning site) the ends of the vortex depin.
If the driving velocity is smaller than the critical one, the vortex bows against
the flow and decreases. The vortex oriented in another direction, so that the
driving velocity adds to the self-induced one, will bow with the flow, but then
the self-induced velocity directs it to the boundary, where it annihilates. The
numerical simulations done by the author confirm the above considerations.

Statistically, when the driving velocity is applied (or the boundary starts mov-
ing), roughly a half of the pinned vortices has a chance to grow, other will anni-
hilate. It means that the motion of the boundary introduces some order, and it
is easy to check that the orientation of the remaining vortices is such, that close
to the boundary the superfluid is moving in the same direction as the wall.

As it was stated above, the end of vortex depins at some critical angle, depen-
dent on the size of the pinning site, and then moves freely till the next bump.
The two end points of a filament may encounter various irregularities and conse-
quently must depin simultaneously. Hence, one can conclude, from the preceding
analysis that a “well oriented” big enough vortex loop will grow any time, when
pinned, while other loops will decrease. The situation simplifies when the small
protrusions occur so densely, that the pinning and release events are so frequent,
that the intermittent motion of vortex end points may be approximated by a con-
tinuous motion with friction. When the friction is present, the moving end of
vortex is bowed to the boundary at such angle that tangent component of tension
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force equals the friction force f,. Namely
3) sin@ = -

where @ is the angle between the vortex at its end points and the normal to
the boundary, and [, is the value of tension force. The angle @, corresponding
to the average angle of declination, may be considered as the material constant
depending on the density and the size of boundary irregularities. It means that
for normally “smooth” surface sin f is small when compared to unity.

Consider then the following example:

Let the boundary plane = = 0 be moving with constant velocity V,; = (V,0,0)
with respect to the fluid. Consider the dynamics of a vortex which at the initial
time has the shape of a half circle symmetrically placed with respect to plane
y = 0, and the driving velocity. Assume that the self-induced velocity V; is smaller
than the driving velocity V}, and that the vortex loop is moving so that the angle
between the vortex at its end points and the normal to the boundary is @. The
self-induced velocity (in LIA), at the given point of the vortex, is binormal to
the vortex line at that point. Hence, at the ends of the vortex, the angle between
the self-induced velocity and the wall is , but for one (positive) orientation of
the vortex the self-induced velocity is directed out from the wall, and for another
(negative) orientation it is directed to the boundary. For the positive orientation
the vortex loop will be growing. The rate of growth may be calculated as follows:
let a be a point moving with the vortex and p be a vortex end point (Fig.1).

F'ia. 1. Fr 15mu1£ of the vortex close to the bounddry The vortex moves so that pomt @ goes
to «" while end point p goes to p’. Vector up is parallel to the vector o'p’.

In a short time Af the point ¢ moves to u’ = a + AtV,. In | the same time the

end point moves to such a point p' that a’p’ is parallel to ap. If so, the initial
fragment of vortex line grows up by AtV sin @. Because there are two ends, the
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vortex growing rate J(/0t satisfies the condition

ot !
4) v 2V;(t)sin @ ,
where + means the growing vortex. The oppositely oriented vortex is decreasing
at the rate
(5) 5 = ~2Vi(t)sin @,

where sign — means a shrinking vortex.

FiG. 2. Motion of a vortex when friction is present. The figure shows the projection of vortex
filament on the plane perpendicular to the boundary and the driving velocity.

It may look curious that the driving velocity does not appear in Egs. (4),
(5). However it plays an important role: only these vortex loops for which the
self-induced velocity is smaller than the imposed one, can grow. So for bigger
driving velocity another smaller loops can grow, and as one can see from the last
equation, smaller loops grow faster. It should be said also, that Eqs. (4), (5) are
not valid for the driving velocities only slightly bigger than the critical one. When
there is no friction (i.e. for @ = 0), the vortex maintains its shape of a half circle.
Also for small declination angles (sin @ < 0.3), numerical simulations (Fig.2)
show that the vortex grows maintaining approximately the shape of a half circle.
For bigger declination angles, however, the vortex becomes elongated. The in-
stant radius of uniformly growing loop is /# = [/7, while its self-induced velocity

is v; = 4/ R. Those relations put into Egs. (4), (5) give the equation for F(?):
OR* 23sin @

() BT - =R

leading to

- 1/2
(7) R* = (i—4m e, 1@5) .

™
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Consider now the array of vortices with end points on the boundary. If at
time ¢ = 0 the boundary wall starts moving with some constant velocity V}, some
vortices will grow and some will decrease. As a result, a layer of superfluid close
to the boundary starts moving in the same direction as the wall.

To consider this mechanism in more detail, assume that, at the time ¢ = 0:

e all vortices have the shape of the half circle of the same radius F;

e the vortex loops form a regular pattern where half of the loops have posi-
tive orientation (positive vortices) and another half has the negative orientation
(negative vortices);

o the driving velocity V} is bigger than the initial critical one so the positive
vortices can grow (i.e. V, > 3/ Ry);

e the declination @ is small, so as was stated above, the vortex loops maintain
their shape of a half circle;

e there are n growing vortices and n decreasing.

Then Eq.(7) allows to calculate the average velocity at a given distance from
the wall z. The velocities V' * and V ~ generated by positive and negative vortices,
respectively, will be calculated separately. The resultant velocityis V = V-V,

The average velocity V" (at a given distance z) may be calculated from the
Ampere principle. Let /' be the surface z = zj. For zy < R* cos @ that surface
is pierced twice by every vortex loop. The distance between the piercing points,
(or the diameter of “the cut-off” loop segment) is:

(8) st =2 ((H*)2 — 2%/ cos? (-))1/2 for z < R*cos®.

Above the large square lying on the surface F' there are N, = nA? positive
loops (where A is the side of the square). It means that in average, above a line
with length A lying on F' along the # axis, there are N, = s* An vortex segments.
Then from the Ampere principle, which states that the circulation of the velocity
field around a closed path is equal to the flux of the vorticity linked through this
path, the average induced velocity is

9) V*e=s5%en.
The V'~ velocity may be calculated similarly. In the explicit form both velocities
read:

t a1 -
(10) VE(z, 1) = kn (iw

Ho - cos? (-)) '

At the time 7. = mHy/(43sin @) the decreasing loops vanish, and so, the
velocity V'~ becomes zero everywhere.
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For times ¢ < 7 the induced velocity V' is:
0 for z> R*cosd,
(11) V=XV for =z € (R cos@, R* cost),
V¥ -V~ for z€(0,R cosO).
For times ¢ > T, V is:
7 o {O for z> R*cosf,

12
(12) V' for € (0, R* cosf),

18

since V'~ = 0.

One can see from Eq.(12) that the thickness of the boundary layer (i.e. that
layer where the velocity V' > () grows as 24 cos @ proportionally to /3t sin @ .
The induced velocity has the same direction as the velocity of the boundary, so
it reduces the relative velocity between the superfluid and the boundary.

Recall that velocity of a viscous fluid in the boundary layer appearing when
the wall starts moving with some constant velocity vy, is described by the diffusion
equation:

dv 9%v
(13) il 0.

The usual assumption that there is no slip, leads to the boundary condition

v(0,1) = v,. Then with the initial condition v(0,t) = v} the equation leads to

14 v(z,t) = v,® (;) 3
(14) (z,t) = v T
where
15 O(z) = —= /— la
(15) r) = ﬁh ¢ dev .
One can see that in a viscous fluid, the characteristic thickness of the boundary
layer is /vl .

In the considered “vortex boundary layer”, if there are few vortices at the
beginning, there is a slip i.e. the fluid velocity at the boundary is different from
the velocity of the wall. The role of the viscosity is played here by the parameter
/3sin @ — proportional to the quantum of circulation and surface roughness. The
fact that the “nonsmooth” velocity profiles were obtained is due to the assump-
tion, that at the beginning all vortex loops were identical.

In conclusion, a consideration of vortex friction on microscopic boundary
roughness leads to the mechanisms of the origin of specific vortex boundary
layer in some aspects similar to the boundary layer in viscous fluids. It is still
interesting, however, to consider that problem under more general assumptions,
namely when there are different vortices and they interact with each other.
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Unsteady compressible boundary layer flow at the stagnation
point of a rotating sphere with an applied magnetic field

A.SAU and G.NATH (BANGALORE)

THE PAPER is concerned with the unsteady compressible boundary layer flow near the forward
stagnation point of a rotating sphere in a uniform axial stream of conducting fluid, with magnetic
field normal to the surface. The unsteadiness in the flow is created by (i) giving a sudden change in
the wall temperature (enthalpy) as the impulsive motion has started, (ii) impulsive change of the
rotation of the sphere, and (iii) sudden changing of the free stream velocity. The motion is governed
by a coupled set of three nonlinear time-dependent partial differential equations which are solved
accurately by Newton’s linearization technique and an implicit finite difference scheme. Attention
is given to the transient phenomenon from the initial flow to the final steady state solution. The
numerical results show changes in the flow pattern with time, rotation and strength of the magnetic
field, and are in good agreement with earlier theoretical results. The calculated skin friction, heat
transfer, displacement thickness and enthalpy thickness show interesting dependence on time and
the physical parameters, which are quite similar to the earlier investigations, and the mechanism
of dependence is closely examined.

1. Introduction

CuUrRreNT USE of blunt bodies of revolution for the solution of hypersonic flight
problems has placed special emphasis on accurate prediction of aerodynamic
heating. Design of hypersonic re-entry vehicles such as a re-entering satellite
requires reasonably accurate predictions of the stagnation point heat transfer to
obtain optimum configurations. The high stagnation temperature accompanying
flight at high Mach numbers renders the air sufficiently ionized behind the bow
shock so that it may be considered as an electrically conducting fluid. Under these
circumstances, the presence of a magnetic field will tend to modify both the flow
field and the heat transfer.

An axisymmetric boundary layer flow over a rotational symmetric body set
into impulsive axial motion was first studied by Borrze [1], who expanded the
stream function and vorticity in series of powers of time (1) after the impulsive
start and obtained numerical solution for terms up to 3. DENNIS and WALKER
[2] improved the accuracy of Boltze solution by numerically computing the solu-
tion for terms up to /7. The unsteady flow past an impulsively started sphere has
also been discussed by DENNIS and WALKER [3] and the results were extended to
larger values of time. The boundary layer growth near the equator of an impul-
sively started sphere was considered by BAnks and Zatuska [4]. The evolution
of unsteady boundary layers close to the stagnation region of a slender prolate
spheroid in uniform motion at constant angle of attack after an impulsive start
have been discussed by CeBEcI et al. [5]. DEnNis and Duck [6] have presented
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the Navier - Stokes solutions for an impulsively started rotating sphere. In a re-
cent study Duck [7] investigated the effect of small amplitude, time-periodic, free
stream disturbances on the axisymmetric boundary layers. The unsteady bound-
ary layer flow past an impulsively started translating and spinning, rotationaly
symmetric body has been studied by Eck [8], and he obtained initial stages of
flow by expanding the stream function and swirl velocity in series of power of
time. All the above studies deal with incompressible flows. KUMART and NATH
[9] have studied the unsteady compressible stagnation point boundary layer flow
over a rotating body of revolution (sphere) when the free stream velocity, rota-
tion, the surface mass transfer and the wall temperature varied arbitrarily with
time. ViMALA and NatH [10] have solved the two-dimensional stagnation point
flow for accelerating and oscillating free streams.

In this paper we evaluate the characteristics of unsteady compressible bound-
ary layer flow of an electrically conducting fluid near the forward stagnation point
of a rotating sphere, immersed in a uniform flow and having a normal magnetic
field applied at the surface. Three separate situations have been considered in
which there is an initial steady state that is perturbed by either (i) a step change
in the wall enthalpy, (ii) a sudden change in the rotational velocity, and (iii) a
sudden change in mainstream speed. The time-dependent development of the
boundary layer is computed until a new steady state is reached. Extensive numer-
ical results are presented showing the temporal development of various boundary
layer properties.

2. Basic equations and boundary conditions

To fix the problem mathematically, we consider an orthogonal curvilinear coor-
dinate system (Fig. 1) in which = measures the distance along a meridian from the
forward stagnation point, y represents the distance in the direction of rotation,
and - its distance normal to the body. We assume the flow to be axisymmetric
and the external flow is homentropic, the dissipation terms and effect of surface
curvature being negligible near the stagnation point; (), the normal distance of
a point on the body from the axis of rotation is equal to @ in the neighbourhood
of the pole (or stagnation point in this case). A uniform magnetic field of strength
By is applied to the boundary layer in the z-direction. The magnetic Reynolds
number is considered to be small, hence the magnetic field becomes independent
of fluid motion. At time { < 0, the total enthalpy at the wall is //,,, and at ¢ >0 it
is impulsively changed to H},. Alternatively, at time { < 0, the angular velocity of
rotation is 2, and at { > 0 it is impulsively changed to (2~. Similarly at # <0, the
meridional component of free-stream velocity is u,, and at time { > 0 it is sud-
denly changed to u;. These sudden changes cause unsteadiness in the flow field.
Under the foregoing assumptions, the boundary layer equations for the unsteady
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['1G. 1. Flow model and coordinate system for a rotating body of revolution.

compressible flow are given by [11, 12]
(2.1) (o) + (ozu), + (prw), = 0,

o(uy + wuy + wu, — v?¥/x)

= 0, [(we): + velue)e] + (pus), — Bg(au — Tele),
(2.2) o(v, + uv, + wo. + uv/x) = (Uv.). — e Biv,

ol H; 4 ull, % wH) = (ﬁﬁg) ,
Pr .
where u, v, w are the velocity components along the x, y, z axes, respectively.
o, jt, o and Pr are, respectively, the density, viscosity, electrical conductivity and
the Prandtl number; H is the total enthalpy and wu, is the x-component of the
flow velocity at the edge of the boundary layer. The subscripts denote the partial
derivatives with respect to the corresponding variables.
The initial and boundary conditions are:

at 1 =0:
u(x,0,2) = ui(x, 2), v(z,0, 2) = vi(z, 2),
w(x, 0, 2) = wi(z, 2), H(z,0,z) = Hi(z, 2),
and for ¢ > 0:
(2.3) u(z,t,0) = 0, v(z,1,0) = 2z,

w(z,t,0) = wy, H(z,t,0) = H;,

w(xz,t,00) = ui(z,t), v(z,t,00) = 0,
H(z,t,00) = H,.

The subscripts 7, w, ¢ denote initial conditions, conditions at the wall and at the
edge of the boundary layer, respectively.
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3. Boundary layer transformations

Now we introduce the transformations

7
n= (g—%) ﬁdz, t* = at,
,Ue 0 Qe

a is a constant having dimension (time)~!,
u = uF(n,t"), F=f Ue = AT,
v=v,5(n,t7), vy =80z, H=Hg(@,t).

We assume that the fluid has variable properties o o« 77!, pp x T%, o « T",
where T is the temperature, 0 < w < 1 is the index in the power-law variation of
viscosity and n is the exponent in the power-law variation of electrical conductivity
of the fluid. The set of Egs. (2.2), with the help of continuity Eq.(2.1) and the
above transformations, reduce, respectively, to

(NF'Y + fF' + (g — F}/2 + N*s*/2 - Mg(Fg" —1)/2 - Fpn /2 = 0,

(3.1) (Ns'Y + fs' = Fs = Msg™"t' /2 — 54+ /2 = 0,
(Ng'Y +Prfg —Prg /2 = 0,
where [, s and ¢ are non-dimensional meridional and azimuthal velocity and
non-dimensional total enthalpy, respectively. The prime and the subscript * de-

note the partial differentiation with respect to the variables  and ¢*, respectively.
Use is made of the following relations:

oefo=T[T.=h/h.=H/H. =g
(since h/h. — H/H, at the stagnation region, h being the specific enthalpy),
N = oufope = (/T = ¢, o =a(T/T.)" = o.g",
A = {2/a is the rotation parameter,

V= ponderomotive force _ o, B3z

inertia force Delle

The initial conditions are governed by the solution of the corresponding steady
state equations obtained from Egs. (3.1) by putting Fi+ = s;+ = g4+ = 0 in them.
As stated earlier, there will be three different cases under the present study and
the relevant boundary conditions corresponding to each case are:

Case 1. At time t* < 0, let the wall enthalpy be H,, (constant), and at time
t* > 0, there is a sudden change A, in the wall enthalpy and it is then maintained
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for subsequent time (ie., for t* > 0, H = H,(1 + A;)), whereas free stream
velocity in z-direction v, and the angular velocity of rotation {2 remain the same
for all time. In such a case, the boundary conditions in non-dimensional form
reduce to:

for t* >0, _
f=Ttu, F =0, s =1,
g=0gutd,  (A=Ayg,) atn=0,
(32) F=1, s = 0,
g=1 as n — oo,
and at t* = 0,
A=0.

Case 2. In this case, instead of changing the wall enthalpy, a sudden change
(27 = 2(1+A),A = Ofor t* < 0and A = const for * > 0) in the angular velocity
of rotation is considered, so that the boundary conditions in non-dimensional form
become:

for t* >0,
. =fw3 F=07
s=1+A, g = Gu at n =0,
@) F=1, s =0,
g =] as 17 — oo,
and at t* =0,
A=0.

Case 3. An impulsive change in the free-stream velocity in meridional direc-
tion is considered in this case. For time ¢* < 0, let the velocity be u, and at time
t* = 0, an impulsive change u; = u.(1 + A) to the free stream velocity is given
and kept steady thereafter. So the boundary conditions in non-dimensional form
reduce to:

for t* >0, i
f=rw, F =0,
s =1, g = Gu at =0,
(3.4) F=1+4, s=0,
g=1 as 1 — oo,
and at ¥ =0,
A =0,
where

= / Fdyp+ fo  and  fu = —(0w)w(Re2/2)?/ 0.t
0
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is constant under the assumption that (pw),, is constant. The parameter f,, is
called the mass transfer parameter and it corresponds to suction or injection,
according to whether f,, > 0 or f,, < 0 and Re, = u.x /v, is the local Reynolds
number.

4. Results and discussions

The time-dependent boundary layer Eqgs. (3.1) subject to the boundary con-
ditions (3.2) or (3.3) or (3.4) which correspond to the different types of flow
situations considered and the initial conditions have been solved numerically
using Newton’s linearization method and an implicit finite difference scheme
of the Crank - Nicolson type. The grid sizes that we have used are as follows:
ot* = 0.00025 for (* < 0.05, 6t = 0.001 for 0.05 < t* < 0.1, 6t = 0.005 for
0.1 < 1 <0.5, 60" =0.01 for t* > 0.5, and 657 = 0.01 is kept fixed throughout
the computation. The choice of grid lengths has been found to be optimum since
further reduction does not affect the results at least up to the fourth decimal
place. The selection of 67 is made such that it does not affect the results, even
when 1 = O((t*)"/?) and ¢* is small. The solutions were iterated until the con-
vergence criterion based on the wall shear and the heat transfer parameters F,
., 1s satisfied, that is

S u’

Maximum H(F’ Jrt — (LY ] < by,

Jes = [l - @l

where &, is a tolerance parameter which was set equal to 10~% in the calculations.

The quantities of physical interest are the skin friction and heat transfer coef-
ficients, displacement and enthalpy thicknesses. Based on u -velocity, the equation
defining the skin friction coefficient is

(o2
Oy, = L = 23/2Re:1/2]\fw[‘1':. = 23/2[;\61—‘1/2?[r )
L g (”2)1._0 § g

where (' 5. = NLF,.
Displacement and enthalpy thicknesses based on u-velocity are defined as [11]

/ [1- ou/ocue] dz = 1(2Rej)“1/2[(J-1)([1) = z(2Re,) V26,
0

6. = 62(2Re,)?/x;

oy, = / eu [/—T - 1] dz = .1'(2Re;l.)']/2/F(g—1) dn = x(2Re,) V%5 y, .
0

Defls |

Sn, = 6m, (2Re,)' /.
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Analogously, we define the quantities based on v-profiles;

2('1[;01)

- 9z / y=0 3/2p.—1/2\ AT 32 a-1/277

) = = 2¥2Re; 2NN, 5, = 2%/*Re; 12Ty,
€ \Ye/te=()

where Ffu = AN,s.,

o, = / 0 4z = .'z'(ZReT)‘I/Z/g,ﬂs dn,
) - U'U-’J!
0 0
[ ov_[h ~1/2 !
8y, = / L= 1] d= = a(@Re) / sgu(g — 1) dn.
0 ' w € 0

However, in the present study only 0% and 67, will be presented.
The heat transfer coefficient in terms of the Stanton number is

(ﬁ 0_H>
Pr d: n=0 .

(H, — Hy)oo(u)mo

St = Pr!(Re./2)"" 2 Nugl,/(1 - gu) = (Rez/2)" /78,

where -
St=PrIN,g', /(1 - gu).

F! and s/, are called skin friction parameters in the respective directions and ¢/,
is the heat transfer parameter.

Table 1. Comparison of skin friction and heat transfer parameters (F,, g/, )
with Bape [13] for Pr = 2/3, f, = 0.0, A = 0 and M = (.

ot /
w Guw Fe Jw

Present study Bape [13] Present study Bapk [13]

1.0 0.2 0.6304 0.6303 0.3437 0.3438
1.0 0.8 0.8565 0.8566 0.0910 0.0909
0.7 0.4 0.5838 0.5837 0.2125 0.2125
0.7 0.8 0.8203 0.8202 0.0866 0.0865
0.5 0.2 0.3445 0.3447 0.1797 0.1796
0.5 0.4 0.5139 0.5137 0.1846 0.1845

Computations have been carried out on a CYBER-992 computer for various
values of f, (05 < f, <05, A 2 <A <10),M (5 <M <10),w
(0.5 <w <1.0) and ¢, (0.6 < g,, < 2.2). For all the results which we present
here we have assumed the Prandtl number Pr = 0.72 and n = 1.5. In order to
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accommodate the rapid thickening of boundary layer as the impulsive motion
has started, we have taken the far field conditions at = 7., = 20. At this point
we should mention that our steady equations for a stationary sphere and without
magnetic field coincides with those of VIMALA and NATH [10], when we replace
a by a/2 in the definition of 7. A table of comparison (Table 1) and Fig. 2 show
encouraging agreement with previous theories [10, 13] for some special cases.
Moreover, our steady results for uniform rotation show excellent agreement with
Ref. [9], but the comparison is not shown here for the sake of brevity.

1.0 —
ngo.s

0.0

1 Il 1 |
0 1 2 3 4 4
n
F1G. 2. Comparison of velocity (/') and enthalpy (g) profiles with the results of Vimara and Naru
[10] for t* = 0,Pr =0.72,w = 1, fu =0, X = 0, M = 0; o results due to Ref. [10];
present study.

Cast 1. Unsteadiness caused by sudden change in wall enthalpy

The sphere is assumed to be rotating with constant angular velocity in a uni-
form stream of conducting fluid. A forced convection thermal boundary layer
is then produced by impulsive changing of the wall temperature (enthalpy) of
the sphere which was initially kept at a temperature (enthalpy) higher than the
surrounding fluid temperature (enthalpy).

Figure 3 shows the effects of rotation (\) and magnetic parameter (M) on the
skin friction and heat transfer coefficients (C'y,, ~C,, St) and their variation with
time when the wall enthalpy is changed impulsively. The results show that both
meridional skin friction and heat transfer [(' , St] increase (decrease) suddenly
to a maximum (minimum) value from their initial steady state (depending on the
impulsive increase or decrease in the wall enthalpy), as the impulse is given at
time ¢* > 0. And then the quantities steadily decrease (increase) with time, finally
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0 0.2 0.4 0.6 0.8 1

Fia. 3. Effects of rotation (A), and magnetic parameter (M) on skin frictions and heat transfer
(Ct., —ny. St) for f, =0, w = 0.5 and g, = 1.4; (unsteadiness due to impulsive change
in wall enthalpy).

asymptotically approaching a clearly defined new steady state. From the inset of
Fig. 3 (showing the behaviour of the physical quantities at time ¢* = 0+) we see
that mostly heat transfer suffers sudden change immediately after the impulse,
whereas azimuthal skin friction [—?fy] shows its smooth transition. Moreover,
it is observed that the skin frictions reach their steady state faster than the heat
transfer. This is due to the fact that we have considered the case of impulsive

wall heating (cooling), which also causes a rapid change in the heat transfer at
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the wall near {* = (. As rotation () increases, both skin friction and heat trans-
fer increase (however, its effect on the heat transfer is not shown here for the
sake of compactness), and the effect is more pronounced on the azimuthal skin
friction [C';, ]. This is because the shear force between the sphere and the adja-
cent fluid layer increases for higher rotation and its component in the azimuthal
direction dominates for the simple reason that the direction of rotation of the
sphere coincides with the azimuthal direction. But the basic trend of the flow
behaviour immediately after the impulse remains the same for higher rotation.
Figure 3 also shows that an increase in magnetic field strength (M) causes skin
frictions to increase, whereas its effect is observed to be negligible on the heat
transfer. Another phenomenon may be observed that an impulsive increase and
an impulsive decrease of wall enthalpy by the same amount does not reflect its
effect on the physical quantities as mirror images. It can be seen more clearly in
the subsequent figures that the impulsive decreasing processes take more time to
reach a new steady state compared to the impulsive increasing processes.

Q.5 1.0 1.5 2.0 3.0

I'1G. 4. Effects of mass transfer (f.), rotation (1), and magnetic parameter (M) on displacement
and enthalpy thickness [5_:, dp,]for A =038, w =0.5and g, = 1.4;
(unsteadiness due to impulsive increase in wall enthalpy).

Figure 4 shows the effects of mass transfer (f,,), rotation (A) and the magnetic
parameter (M) on displacement thickness (8, ) and enthalpy thickness (3, ) when
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an impulsive increase in the wall enthalpy is considered. Both the displacement
and enthalpy thickness are found to increase with time and they reach a steady
state value for 1 > 3, and do not show any singular behaviour. With injection
(f.. < 0), both displacement and entalphy thickness are found to increase but
they show reverse effect with suction (f,, > 0). This is due to the fact that the
injected coolant pushes the boundary layer away from the surface and establishes
a heat insulating layer, whereas suction works in the reverse way. As rotation (\)
increases, the displacement thickness (9,) decreases but the enthalpy thickness
(0p,) increases. The reason behind this is that when we increase rotation of
the sphere, the flow in the meridional direction gets reduced considerably in the
boundary layer whereas it helps to increase the azimuthal flow. On the other
hand, due to increase in rotation, the flow interaction in the boundary layer
increases which helps in enhancing the enthalpy thickness (65, ). An increase in
the magnetic field strength (M) causes reduction in enthalpy thickness whereas it
increases the displacement thickness. The boundary layer displacement thickness
(0,) becomes negative for cases of favourable pressure gradient with very low
wall enthalpy (temperature). This occurs because the surface cooling produces
an increase in density near the wall, so that there is more mass flow per unit
flow area within the boundary layer than in the external flow [14]. However, such
results are not shown here.

Figure 5 shows the effect of rotation (\) and time (#*) on the growth of ve-
locity and enthalpy distribution (1, s, ¢). The cause of unsteadiness is the same
as that described in Fig. 3. It is observed that the meridional velocity (/') shows
overshoot for high rotation (A = 10) and with time, when an impulsive decrease
in the wall enthalpy is considered, whereas impulsively increasing wall enthalpy
process does not show any overshoot for £* > (.1, but it shows oscillatory nature
in the new steady state (1~ = 2). The meridional velocity is especially affected
by compressibility. When the wall is heated, the density within certain layers of
the boundary layer is reduced significantly, in spite of viscous retardation, the
local flow is accelerated more than the external flow. Then velocity (/') in some
portion of the boundary layer reaches a maximum value greater than 1.0 before
returning to its final value 1.0. The phenomenon can occur even when the wall
temperature is less than the recovery temperature [14]. Here an increase in rota-
tion has the effect of increasing the excess of the local velocities over the external
velocity. Another interesting observation from Fig. 5 is that both meridional and
azimuthal velocity (/"&s) overshoot temporarily the eventual steady state value
when an impulsive increase in the wall enthalpy is considered, whereas in the im-
pulsive decreasing process they increase with time and finally reach a new steady
state. The enthalpy profiles (¢) show that at each point inside the boundary layer,
enthalpy increases or decreases with time while approaching a new steady state,
depending on the situation whether an impulsive increase or decrease of wall en-
thalpy is considered. It may also be observed that the enthalpy thickness increases
when an impulsive increase in wall enthalpy is considered.
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A =10,A=-0.8 ]

10, 0 1

0.8

Fic. 5. Effects of rotation (\) and time (¢*) on the velocity and enthalpy (F, s, g) profiles for
M =5, fu =0.0, g» = 1.4 and w = 0.5; (unsteadiness due to impulsive change in wall enthalpy).
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Case 2. In this case unsteadiness is caused by a sudden change in rotation of
the sphere

Here we describe the transient motion when an impulsive change is given to
the angular rotation of the sphere placed in a uniform axial stream of electrically
conducting fluid.

Figure 6 shows the variation of skin friction and heat transfer [C';,, -Cy,, St
with time, and the effects of wall enthalpy (¢,,) and the viscosity index (w) on
the above mentioned quantities when the angular rotation of the sphere is sud-
denly changed to a new constant value. As it can be observed from the inset
of Fig. 6, showing the effect of impulse immediately after it is imparted, the az-
imuthal skin friction [-C', ] suffers much change in the beginning (* = 0+). It
increases or decreases to a maximum or minimum value from the initial (¢* = 0)
steady state and then decreases or increases with time (depending on whether
impulsive increase or decrease in rotation is considered) while approaching a
new steady state in an asymptotic way. This is due to the fact that the rotation is
considered along the azimuthal direction and an impulsive change in the rotation
of the sphere causes an instantaneous steep change in the azimuthal shear at
the surface of the sphere. The transition for meridional skin friction and heat
transfer (C';, &St) is observed to be smooth. It may also be observed that it is
the azimuthal skin friction [—ny] which reaches the new steady state faster,
whereas the heat transfer takes more time to settle down. Moreover, once again
it is observed that the transition time for impulsive decay process is longer than
the impulsive increasing process as observed in Case 1. Figure 6 also shows that
as wall enthalpy (¢,) increases, both meridional skin friction and heat transfer
(C';..St) decrease, whereas the azimuthal skin friction [—?fy] shows the opposite
effect. The effect of variation of the density-viscosity product across the boundary
layer is characterized by the parameter w. Both skin friction and heat transfer are
found to increase significantly as the viscosity-index w increases, however results
are shown only for meridional skin friction for the sake of brevity.

Figure 7 shows the distribution of velocity field [/, s] with time and the effect
of magnetic parameter M on them. The meridional velocity (/') shows overshoot
when an impulsive increase in rotation is considered. An interesting observation
is that the meridional velocity oscillates within the boundary layer (for impul-
sive increase in rotation), but does not show any overshoot, when magnetic field
strength (M) is increased, whereas the rest of the profiles approach their free
stream value in a monotonic fashion. It may also be observed that the azimuthal
velocity (s) reaches its new steady state faster (1* = 0.1) when the impulsive in-
crease in rotation is considered, whereas it takes longer time to settle down when
the rotation of the sphere is reduced impulsively. In the case of impulsive de-
crease in rotation, both the velocities (/'&s) overshoot temporarily the eventual
or new steady state value.
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Fic. 6. Effects of wall enthalpy (g, ) and viscosity-index (w) on skin frictions and heat transfer
(Cy,,~Cy, .Sty for f,, =0, M =5 and A = 6; (unsteadiness due to impulsive change

in rotation).
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I"1G. 7. Effects of magnetic parameter (M) and time (t*) on the velocity (F, s) profiles for
fu=0,90 =14, A =7and w = 0.5; (unsteadiness due to impulsive change in rotation).

Cask 3. Unsteadiness caused by sudden change in the meridional free-stream
velocity

Figure 8 shows the distribution of meridional velocity (/') when its free stream
value is changed impulsively. The velocities overshoot inside the boundary layer
before approaching their free stream value. The new steady (¢ = 2) profile
shows its oscillatory nature when the impulsive decrease in the free stream is
considered. Moreover, it has been observed that at time ¢~ = 0.1 its (/) value

http://rcin.org.pl
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at any point inside the boundary layer is higher than the profile in its new steady
state (t*‘ = 2). The situation is just reverse when an impulsive increase in the free
stream is considered. The unsteady profiles (¢* > 0) show its monotonic nature
at the edge of the boundary layer; this is probably because the impulse is given
at the free stream.

1.6

0.8

0.6

0.4

02

3 4

F1G. 8. The velocity (') profiles for f, =0, M =5, g, = 1.4, A = 7 and w = 0.5;
(unsteadiness due to impulsive change in the meridional free stream velocity).

5. Conclusions

The transient behaviour of flow and heat transfer over a rotating sphere has
been investigated numerically due to impulsive changes in the flow physics. A
large change in the flow is observed at the early stage of transient motion. The
rotation increases friction, heat transfer at the surface and the enthalpy thickness.
The meridional velocity (/') shows overshoot for high rotation and for the im-
pulsive reduction of the wall enthalpy. It oscillates inside the boundary layer for
higher magnetic field strength when an impulsive increase in rotation is consid-
ered. The transition time is longer for impulsive reduction processes, compared
to impulsive increasing processes. Heat transfer takes longer time to settle down
than skin frictions. For both impulsive increase in wall enthalpy and impulsive
decrease in rotation of the sphere, the velocities overshoot temporarily before
getting settled to the eventual steady state value, whereas, for the impulsive de-
crease in wall enthalpy or for the impulsive increase in rotation, the velocities
increase with time while approaching a new steady state.
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Boundary element method to the study of a Stokes flow
past an obstacle in a channel

M. KOHR (CLUJ-NAPOCA)

IN THIS PAPER the author gives an integral representation for the stream function and for the
vorticity, corresponding to the problem of the Stokes flow past an obstacle in a channel. Using the
Green’s functions of the biharmonic equation and of the Laplace equation for the infinite horizontal
strip, the above problem is reduced to a set of integral equations on the boundary of the obstacle.
The boundary element method is used to solve these integral equations. The numerical results are
given for the case of a circular obstacle.

1. Introduction

IN THIS PAPER We describe a semi-direct boundary integral method which is used to
the study of a two-dimensional Stokes flow in a wind tunnel past a rigid obstacle.
To derive the set of boundary integral equations for the stream function and the
flow vorticity, we construct the Green function of the biharmonic equation in
an arbitrary simply connected domain. As a consequence, we obtain the Green
function of the strip or of the half-plane.

The derived integral equations, which are valid in any point of the flow do-
main, are applied at the boundary of the domain resulting in a system of two
scalar Fredholm integral equations on the boundary obstacle only for the stream
function and vorticity. In fact, these equations represent the boundary integral
formulation of our problem.

It should be noted that G. BEzINE and D. BONNEAU [1] presented an alternative
boundary integral representation for the stream function in terms of boundary
distributions of the velocity, shear stress, and the normal derivative of the vorticity,
corresponding to a two-dimensional Stokes flow. Also, C.J. COLEMAN [3] has
developed a semi-direct boundary integral representation in complex variables,
using the stream function and the Airy stress function for the study of a plane
creeping viscous flow.

Let us remark that a direct boundary-integral method for the solution of Stokes
equations in an arbitrary two-dimensional domain was given by J.J.L. HiGDON
[7]. He used the fundamental solution of the Stokes equation and he obtained
a representation of the flow in terms of the velocity, the pressure and the stress
tensor, respectively.

A nice direct method of integral equations was recently proposed by L. DRAGOS
and A. DiNU [4] for the study of a subsonic flow with circulation past thin airfoils
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in a wind tunnel. A semi-direct boundary element method in the study of an in-
compressible flow in a channel was also applied by A. CARABINEANU and A. DiNu
[2]. They used the stream function.

2. Mathematical formulation

A fluid flow of velocity Uy, = (Uy(l-y),0), is placed between two walls being
parallel to the Oz-axis. It is perturbed by the presence of an obstacle §2;, with
the boundary /. We determine the perturbation produced and the hydrodynamic
forces acting on the obstacle. We suppose that the walls, denoted by L, and L,
have the equations:

Ly ={(z,y)| 2€R, y=0},
Ly ={(z,y)| z€R, y=1},
where [ > 0, and Oy is a Cartesian system of coordinates.

Also, the Reynolds number of the flow, denoted by Re, is supposed to be very
small and hence the motion equations can be reduced to the creep equations and
continuity equations, respectively (i.e. the Stokes equations):

divv(z) = 0, zeD,

(2.1)
grad P(z) — pAv(z) = 0, ze D,

where v(u, v) is the global fluid velocity, P the global pressure and i the dynamic
viscosity of the fluid. By D) we denote the domain of the flow (Fig.1).

L,

|
I
|
|
I
|
I
|
|
|

Fic. 1.

Using the stream function 1>, the above equations are reduced to the bihar-
monic equation

(2.2) A% =0
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with the following boundary conditions:

(2.3) "*""Ll =0, u:]Lz =C, ¥l =b

where (' and b are unknown constants.
We have the following asymptotic conditions at infinity:

im (v@)-0Ug(3-4)) =0, =y
ol 273 3z =
2.4) .

'a% =Uy(l —y), as |z| — oo.

After a simple analysis, we deduce that the rate of the flow in the channel,
denoted by (), is given by

(2.5) Q=C.
On the other hand, from the boundary condition (2.3),, we obtain

L uP
(2.6) C=Q=—.

Let us now denote by ¢ the stream function of the perturbation flow. Using the
form of the stream function at infinity, we obtain that the global stream function
can be written as:

. [
(2.7) v =Us(5-§) + o)
The perturbation will be evaluated from the biharmonic equation
(2.8) A’¢(z,y)=0 in 2,

with the boundary conditions:

(2.9)

I 1
, _ B ’,’2 __i
Q(r =b-Uy (2 3)

and the asymptotic conditions at infinity

r

(2.10) F lkim' o(x,y) = | i|irn’ grad ¢(x,y) = 0.
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3. The Green function of the biharmonic equation in an arbitrary simply
connected domain

Let [ be a simply connected domain in the (z) plane, = = z + 1y, with the
boundary (', and let w = [(zg, z) be the conformal mapping of the domain D
onto the domain |w| < 1, in the w plane, such that the fixed point zo € D) is
mapped in w = 0.

We determine the function (Mg, M), where the points My and M corre-
spond to zy and z, with the following conditions:

a) A3, G(Mo, M) =0, for M # M,

b) in the neighbourhood of the point My, (+ has the representation

G(Mg, M) = -;?mwﬁ [In|MoM| - 1] + (Mo, M),

where the function ¢(Mg, M) is a biharmonic function with respect to the point
M, throughout the domain [); and

¢) G(My, M) = 0.

The following theorem determines the function .

THEOREM. The function (i is given by
1 :
(3.1) G(My, M) = 87]: — zp*In | f (20, 2)|-

Proof. Weprove that the function defined by (3.1) satisfies the conditions a),
b), ¢). Because the function w = f(z0, z) defines a conformal mapping between
1) and the unit disc, then it is an analytic function, with f(z, z9) # 0 for = £ Zp.

Also the function log f(z0,2) = In|f(z0.2)| + iarg [(z0,z) is analytic in
the domain 1), with the exception of the point zp. The function In | f(z0,2)| =
Re log f(z0, z) is a harmonic function and hence (i given by (3.1), satisfy the
condition a). Since f'(z,z) # 0 in the domain D including the point z = 2
and [(zg. z9) = 0, the point zp is a first order zero of the function f. Then, in a
neighbourhood of this point we have:

(3.2) [(z. 20) = (z = z0)¢(2, 20),
where (=, o) is an analytic function in the respective neighbourhood of =y, and
75(: -'JU) 7"5 0. So

1 1
G(My. M) = |z - zo|[In |z — 20| — 1] + galz - zo|2Ine|o(z, z0)l,
and the last function is denoted by ¢(Mg, M). The condition b) is also satisfied.
Since f(z.z0)|~ = 1, from (3.1) follows the condition c).
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Cororrary. The Green function of the biharmonic equation in the domain
2={(x,y)| reR, 0<y<l}is given by

ch %(l‘ — () — COS %(yhyo)

A 1

3.3)  G(My, M) = — |(z — z0)* + (y — yo)*| In ;
167 [ ] Ch?(ﬂ‘,—;'!:o)—COSZ[r—(y+y0)

where Mo(xg. yo) and M (x, ) belong to 12.

P r oo f. The conformal mapping of the domain {2 onto the interior of the
circle |w| < 1, has the form

O e i G )
exp (%:) — exp (%EO)

Performing elémentary computations and applying the above theorem, we obtain
Eq.(3.3).

4. The integral representation of solution

We remark that the biharmonic equation A%¢ = 0 is equivalent to the follow-
ing system:

Ap = w,

4.1
“. Aw = 0,

where w represents the vorticity of the perturbation flow.

In the preceding section we have determined the Green function (7 for the
biharmonic operator in the infinite strip {2 = {(z,y) [zt € R, 0 <y <[}

This function satisfies the following equation:

(4.2) AZG(p,q) = 8(Ip—ql),  for 0<p<l,

where ¢ is the Dirac distribution, p(x,y) is a variable point in (2 where the
solution is sought, and ¢(£,7) is a general point located on the boundary or in
the domain {2. From (3.3) we have

ch%(;z' — &) — cos zlr—(y—n)
™

ch?(l‘—é) —cos - (y+n) 7

1
G yi&m) = o= [ = 7 + v~ In

(4.3)

sh2 X (=€) +sin —(y—1)
o€ = o= [~ &P + (g —n)]in |2 =

8w - 2 e a2 T o ’
sh ZZ(UL &)+ sin 21(.?l+7})
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The Green function F' of the Laplace operator in the strip {2 satisfies the
following equation:

(4.4) AF(p,q)=06(p—-4ql), for 0<y<l

and is given by (see [2]):

™ ™
1 chy(@—€)—cos(y-n)
F(17,y;§,77)——‘1n ™ T 3
W (@ —€) — cos T(y+1)

4.5

(=) 1 shzz(ar—f)+sin2 I(y—n)

F(z,y;€,m) = — 2( 21 _
7y ’T’ 27r 277' " 2 ﬂ'

sh ﬁ(m—£)+sm ﬂ(y+7])

Using Green’s identity for the functions ¢ and A,G, w and G, and for the
functions w and F', we obtain the following integral representations:

o0 = [ |60% 0.0 - 8,660,052 )] s
aD I
(“.6) + [ 0?5220 6.0% 90 as,. e,
ap q q
aF J
wip) = [ [ @) g - 0;;’] ds,, peD,
D A

where [ is the domain of the flow, exterior to the obstacle {2; and enclosed by
the walls L, L.

By d/dn, we denote the differentiation with respect to the outward normal
of D, in a point ¢ of the boundary, denoted by 9D.

We have satisfied the following properties:

4.7) F(z,0;¢,n) = F(z, '{,1})= C(l O €,n)=G(z,L¢7)=0
oF
489 oo| @oen=gben=;
?( (@, €,7) =
and

(4.9) AG(x,0,€,m) = AG(z, 1;6,m) =0
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Also, we have
(4.9 dnq(q)— for =0 or n=1L

Using the above properties and the asymptotic conditions at infinity (2.10),
we derive the integral representation of solution, valid in any point of the flow
domain:

o) = [ o0 2520 - 66,9590 as
r q
!

(410) ¢ [zt peD,

LiuL,

o) = [ | [ (1 2 Lo 38 @,%} ds,

T

0¢>(q)

q

d)(q)a (4,G) - A,G

¢ [e@gwa.  peD.

LiUL,
where
OP(pq) 1 |h@=Em—sin T(y+mn;
2 [ ch%(-ﬁ—é’)—ms;(yw)
sh-rli(;r,—{)nl + sin %(y—n;)nz
 chT@—€)-cos T (y-) }
™ m
@i 20D e O+ -l :é:_g_z::%z:]))

sh7(z—E)n1 -~ Slnl(y+77)n2
ch T (z — )~ cos 7 (y-+1)

shj(w-é)m + sin T(y—ﬂ)nz}
chT(@—6)—cos T(y=7) |

2 [ €7 + - Y] [
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Now, we suppose that the rigid obstacle denoted by (2; with d{2; = I, is
fixed. The physical implication of vanishing of the fluid velocity on the boundary
[I" provides that there is no tangential velocity on /', hence

o _
(4.12) Bl = 0,
and so 04 5
. Y
o Uy(l - y)

If we use the Green’s identity in the domain Q;, we obtain that the second
integral term in (4.10), is given by

! a0 ) 0(AG) dn
n2fl 1 - O |
[j [(l) - Uy (2 3)> an, + UAG — Bn. ds,

" , aG ; J ]
5= =) / [(21] - [)Td—n—q(p’ q) — G(p, q)aT%(Zvy —1)| ds,.

I

We remark that we must satisfy the boundary conditions (2.9). Using the
properties (4.7)-(4.9), it is easy to show that for p € D — py € L) or Ly,
we obtain the equality with zero on the two sides of (4.10);. Using the Plemelj’s
formula (see [6]) and the equation (4.10),, we deduce the equality: w(py) = w(po),
for all py € Ly or Ly. For p — pg € I', from (4.10), we obtain a set of two
equations with four unknowns: w and (Jw/dn,) on ', and w on L; U L,. Then
we impose the following arbitrary condition on the walls:

(4.13) w(x,0) = w(z,l) =0, VzelR

From (4.10)-(4.13), we obtain the following integral representation on the
boundary /" only:

(l ), ; )w(
o(p)—/{ @50 - o) )7“)}

r
(4.14) - U / {(21} =B G(p, q) ) /)] ds, . pel,
= ()1(/) (/) o 0@ b
w(p) = / { () ——=-F(p,q) an, ](Lq, pel.

T

The integrals which appear at the right-hand side of Eqs. (4.14) can be under-
stood as a principal value in Cauchy’ sense.
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Because the fluid pressure /> must be 27-periodic around the obstacle (2, we

. [Op .y . - ;
require / ()—‘71 ds = 0, where d/0t represents the differentiation with respect to
the unit tangent vector of /. If we use the property that the functions w and p

are harmonically conjugate (see [6]), then we obtain the equation

(4.15) %ds = {).

5. Discretization of the integral equations

If p € I', from Eqgs. (4.14) and (4.15) we obtain the following Fredholm integral
system:

-0 (5-4) = [ |0 522 - 6052 s

an,

A
-U ”(271-0) (. q) - G(p, q)) 11(2?/ )} ds,

(5.1) 1@\(;)4/ (()r)l«(; .q) F(p())w(q) ds
gl / dn, + an, |0
/ ()“"((/)/
dn,

where the symbol ' means the principal value in Cauchy’s sense of the integral.
For simplicity, this symbol will be omitted.

Our unknowns are the functions w, dw/dn on " and the constant b.

In order to reduce the integral system (5.1) to an algebraic system, we use the
collocation method. The contour /' is approximated by a polygonal line deter-
mined by the segments /), (j = 1,N), and it is supposed that the midpoints
M (x*.y7) of these segments are representative. Assuming the discretization
equations (5.1) to be satisfied for (x,y) = («7.y7), « = 1, N, we obtain the
following linear system:

62 b=y (3-%) = Zw; ’ Z(%}‘ﬁ)_&j
i=1 1
N

f\,'
- Z(Zu; — Z)A,‘J' + 2[,";2 na; B,‘J,‘ .
1=1

J=1
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N :
(5.2) (d_“’) /dsq =1,
[cont.] 7 on j

J=1 I;

T N e

Ewi = ijC',-j S Z (-d%) . D,‘j 5 1= 1,JV,
1=1 1=l J

Ow Ow .
where w; = w(at,y7), (55) = SEG7,u7), and ma(as,y?) = (nd, ) s the
normal unit vector to the segm!ent I

The coefficients of the above system are given by:
ch T (x; ~€) — cos T(y7 —1)

ch 7 (w7 —€) —cos T(y7 +1)

as,

1 . j . j
Ay = g [ [@i-6mi + @ =mnd] n
I;

sh%(m;‘ = {)n{ —sin %(y;‘ -+ n)n%

__L o 2 i oy 74
161[{[(?’2 £ + (vi 7)] ch%(;p;_f)_cos?(y;ﬂ?)

Sh'fl‘r'(-‘ﬂf i f)n{ — sin %(y? = T))né
ch 7 (a} —€) —cos 7(y; —n)

ch 7 (a7 =€) — cos 7 (v 1)

[

N i _Fl"'i{ [(;z";‘~§)2 i (y:_n)z] . ch%(qef"f)—cos %(yf +1) 5
. w2 sh;r—l(.’z'}'w-f)n:{—sin —?(y?+n)né
(iiuznz Ch§@f—£%4DS§WE+n)
sh%(;r’{—{)n-{ —sin %(g;"—n)né (
= S0y

ch (27 —€) ~ cos T(u 1)
chT (7 —€) — cos T(y7 +1)

1 :
1%=——/m ] { ds,, ij=T.N.
4y ch(er—€)—oos T(yf 1)

To evaluate the above integrals, we denote by (;1'{, y{) and (;1'5, y'zi) the coor-
dinates of the ends of segment /7, in the order leaving the inside of the obstacle
to the right. Then /7; will be parametrized by taking (see for example, [5]):

o 3 .
(5.4) = a7+ . Lllf., y=y;+ yz—zﬂf, L€ [~1, 1],
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where 1% = (] + 23)/2, y7 = (y{ + y3)/2 are the coordinates of the midpoints
of the segment [, , 7 = 1, V.

From Egs.(5.4), it follows that ds = (L/2)dt, where L is the length of the
segment [, given by

(5.5) L= \F—f‘ Jl).

The coordinates of the unit vector n/ will be calculated as follows:

” o (2 )

L’ L

For : = j we obtain:

A ] [(z —En + (7 - n)né] In [ch%(.zr:—f)—cos %(y;‘+n)} ds,

77 e T * i A ™ = ™ ¥ E
/ h 5 ~{)ch 7 (& —{)ny — sin ﬂ(yi +1) cos El'(yi +n)ny
T * . 7r * *
i shzﬂ(:rg —~£) + sin® 7T+ +1)
T - O+ @r - )] ds,

=1 X EY 4 (yF=n)? Tz —£) - Ty ]
Bi = o= [ (7 -67 + G- In [eh T (w7 -&) - cos Tu7 +m) s,
I
;!
— |42 T i miNg i i
(5.6) 32Wft In [chzl(.rl xy)l — cos 2J,(yl yz)t] dt,
Z1
—nish (2} —€)ch = (at - E)n
1 5727 =&
(_,l_iz_%/ — 21 '22l7r
sh Z(.rl-~§)+sm _27(%'“’)
nysin 2 (y7 +1) cos 2 (y; +1)
P 2l 227! da;y,
27 (o in? —(uy*
h?7 (a7 =€) + sin’ 25 (7 +7)
et T Jnl e i (i + ) ds
D = —E_/ In \/5h 2[(.11- £) + sin Zl(yi + 1) ds,
I; L
Lln—=
m L )

The coefficients (5.6) may be computed numerically, using the same technique
as for the coefficients (5.2)-(5.3).
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6. Numerical results

From (4.10), we can obtain the discretization form of the total stream function
v in any point of the domain [):

6.1)  P@p) = Uy? ( ) Z /()(;)(1;(1)
_ﬁ;(@n) /(T (, Q)(lé"_(IZ(ZyJ [)/() (P, q)ds,

W3 [GoDd,  peD

Numerical computations of the method were performed for a fixed circular
obstacle. It was considered that the circle had the center (Xy, ¥p), 0 < Yy < (
and the radius a. The maximum value chosen for N was 60. Also, we supposed
that the segments /; were of the same length.

The test of the method is given for the drag coefficient ('p, defined by:

(6.2) Cp = 17— [ {7n(0)c030() = Gualg) sin b(@)} ds,.
277274
—oa*U“1* p
2-
where /(¢) is the angle between the unit normal vector n(¢) to the boundary [,
and the positive Ox-axis. Symbols
9% oxp O 9%
. g T =L o g gy B T = e =-P+ —
6:3) o F 20'1',()1‘1, e an?  0Ot2’ a5 dton
denote the components of the stress tensor referred to the (t, n) axes.
From (2.1); and using the following property (see [8]):

0% B oy 1

(6.4) o2 ~ 9s:  aon’

we obtain the drag coefficient (') in the form:
, ¢ dw 1 ) 2Yy 7
(65) ( D = m/ ] (;};(q) = Ew(q)) (lbq 55 W{/w((j) (].Sq .
% :

If we assume 0 = 0.8, = 1,1 =4, U =1, Xg = 0, Yy = 2, then for
47 < N < 60, we obtain the same value for the drag coefficient: C'p = 7.8537.
Also, if we choose p = 0.8, a = 1,1 =4, U =2, Xy =0, Yy = 2, and
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47 < N < 60, it follows that ('p = 3.92699. These remarks show the extremely
rapid convergence of the results when the number N of discretization elements
increases. In the first case the constant b is equal to 0.5, for all N > 47, and in
the last case b is equal to 0.3.

The Table 1 gives the values of the drag coefficients as the function of the
velocity (/, when a = 1, [ = 4, Xy = 6, Y = 2. We observe that if the Reynolds
number (Re = (oal’l*)/y, o, jt are supposed to be fixed) increases, then the
drag coefficient (', decreases.

Table 1. Table 2.
{7 | N | Drag coefficient C'p o | N | Drag coefficient Cp
L] 60 7.8537861 0.8 | 60 7.8537861
1.5 | 60 5.2352625 0.6 | 60 10.4717147
2 | 60 3.9269824 0.5 | 60 12.5660577
4 | 60 0.4908738

For/ =1,a=1,1=4, Xy =0 and Yy = 2, respectively, the Table 2 gives
the values of the coefficient (', for some values of the density p. Finally, Figs. 2
and 3 represent the spectrum of the flow in thecase a = 1,/ =4, Xy =0, Yy = 2
and Yy = 2.5, respectively.

http://rcin.org.pl
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Stability of micro-periodic materials
under finite deformations

E. WIERZBICKI (WARSZAWA), C. WOZNIAK (CZESTOCHOWA)
and M. WOZNIAK (LODZ)

A NEW APPROACH to the stability analysis for highly-elastic micro-periodic composite materials
subjected to finite deformations is proposed. The analysis is based on the refined macrodynamics
of periodic structures which describes the effect of the microstructure size on the dynamic body
behaviour. It is shown that the loss of stability can take place both on the macro- and micro-level
and that the internal dynamic instability depends on the microstructure size. The obtained results
are illustrated by a simple example.

1. Introduction

STABILITY OF HOMOGENEOUS elastic materials under finite deformations was in-
vestigated in the series of papers [1-9, 11-15, 18]; the main results can be found
in the monograph [10]. The aim of this contribution is to outline a new approach
to the problem of stability for composite bodies made of perfectly bonded elastic
constituents subjected to large strains. It is assumed that in the natural configu-
ration the material structure of the body is micro-periodic. The analysis is based
on the refined macro-dynamics of composite materials, introduced in the frame-
work of linear elasticity in [19] and extended to finite elastic deformations in [16,
17]. The effect of the unit cell length dimensions on the dynamic stability of a
micro-periodic body and the existence of new kinds of material stability, related
to the microstructure of a composite, are most important features of the proposed
approach.

Notations

Indices a, /3, ... and ¢, 7, ... run over 1, 2, 3 and are related to the material and
spatial coordinate systems, respectively. Capital Latin indices A, B, ... run over
I, ..., N; N > 1. Summation convention holds for all aforementioned indices if
not otherwise stated. By Vi we denote the region (—{1/2,1;/2) x (=13/2,13/2) x
(—13/2,13/2) in a three-space of points X = (X). An averaged value of any
integrable V-periodic function f(+) of X will be denoted by

. 1 [ pron vl vz g
([(X)) := @‘/ FX)dX' dX?dX?,

Here and in the sequel the subscript /7 is related to the known reference configur-
ation of the body under investigation.



144 E. WiErzBIcKI, C. WOZNIAK AND M. WOZNIAK

2. Foundations

Let the highly-elastic composite body in the natural (reference) configuration
occupy a region {/p in a physical three-space and have in this configuration
the Vi-periodic structure. The microstructure length parameter defined by [ :=

\/ (11)? + (I2)* + (I3)?* is assumed to be sufficiently small compared to the smallest

characteristic length dimension of (2. The position of an arbitrary point X,
X € (g, of the body at an instant ¢, ¢ > 0, will be denoted by x = p(X,1),
X = (X?) € 2. Hence u(X.1) := p(X,?) — X is a displacement vector from
the natural configuration. The properties of the composite under consideration
are determined by a mass density op(+) and a strain energy density function
cr(+.Vp), which are Vi-periodic functions defined almost everywhere on {2y
and related, as densities, to the reference configuration.

The idea of the refined macrodynamics, explained in [19] and applied in a
series of related papers, is based on the heuristic constraint assumption that the
displacements (X, 1) in a periodic composite can be represented by certain
averaged displacements (/;(-,!) on which highly-oscillating disturbances are su-
perimposed, caused by the micro-inhomogeneity of a medium. To describe this
situation, the concept of a regular macro-function was introduced in [19]; roughly
speaking, a function F: {2y — R is called a macro-function (for the known mi-
crostructure length parameter / and a certain accuracy ¢ assigned to numerical
calculations of the values of [) if for every X,Z € (25 such that | X - Z|| < [
condition | (X — F(Z)| < ¢ holds. If similar conditions also hold for all deriva-
tives of /' then /' is said to be a regular macro-function. The aforementioned
constraint assumption specifies a class of motions given by

21 wX )= UX )+ X)X 1), Xefgp, t20,

where (/;(+.1), Q*(+.1) are certain arbitrary regular macro-functions, and 1 (+)
are the postulated a priori Vip-periodic functions (hence depending on /), satis-
fying for every X the conditions £4(X) € O(/), k" (X) € O(1) as well as the
condition (h') = 0. Functions h*'(+) are called micro-shape functions and from
the qualitative viewpoint, they determine the investigated class of disturbances in
displacements caused by the Vj-periodic structure of the composite. Functions
[7;(+), Q3(+) are the basic dynamic variables of the refined macrodynamics be-
ing referred to as macro-displacements and macro-internal variables, respectively.
By virtue of Eq.(2.1), macro-internal variables ():' describe the aforementioned
disturbances in displacements from a quantitative viewpoint. Define by F a field
with components
Fiy:=8,+U",

which will be called the macro-deformation gradient. Hence every Fi (+,1),
t > 0, is a certain regular macro-function. In the framework of the refined macro-
dynamics the deformation gradient Vp is approximated by F + VA1Q*, [19]. Tt



STABILITY OF MICRO-PERIODIC MATERIALS UNDER FINITE DEFORMATIONS 145

follows that the function 75 defined by
= 7r(F.Q) := (cp(X,F + VAA(X)Q1)), Q:=(Q,....Q")

represents an averaged strain energy. Macro-deformation gradients F and macro-
internal variables Q' are restricted by the condition

det(F + VA'Q™") > 0.

Let us define ¢! := [~'h*; obviously, values of functions ¢ satisfy conditions
¢ (X) € O(1). The field equations for (/;(+), Q(+) which were obtained in [17],
after neglecting the body forces, can be written down in the form

(2.2) S o —(or) U1 =0,  HPE + Porg*gP) OB =0,
where

0T R . drp

Htu — Al -
(33 R =R, MR =508

Fields S}y and Hj}' are called the Piola - Kirchhoff macro-stresses and the micro-
dynamic forces (related to {2p), respectively. In the natural configuration, i.e. for
F = 1 and Q = 0, the macro-stresses S}%" and micro-dynamic forces 1]}’ have
to be equal to zero. If this condition is not satisfied by the derivatives of (cp)
with respect to F and Q then the strain energy function 75 in Egs.(2.3) has to
be assumed in the form

(2.4) rr = 1a(F, Q) := (er(X,F + VAA(X)Q?)) — AS(Fia — bia) — n8 Q4 ,
where

deR) Ao d(er)
OFia |F=1, =0 o Q!

(2.5) M re :
F=1, Q=0

Formula (2.4) defines the macro-strain energy function related to the natural
configuration of the body.

Let /'; be a part of d2x on which surface tractions s}, (averaged over the
surface area) are known. The related boundary conditions are given by

(2()) H “)‘ NRa = \{H on 11[?

with ny; as a unit outward normal to df2p. It will be also assumed that on
A2p\ ', values ["f’ of macro-displacements are prescribed:

(2.7) U=UY on 92p\Igr.

t

http://rcin.org.pl
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Equations (2.2), (2.3) and boundary conditions (2.6), (2.7) hold for every ¢ > 0

and together with initial conditions for [/;, {7;, Q#, Q#, describe a certain bound-
ary-value problem formulated in the framework of the refined macro-dynamics
of a highly-elastic micro-periodic body and for a class of motions given by (2.1).
The main feature of the refined macrodynamics is that the above problem takes
into account the effect of the microstructure length-parameter / on the dynamic
behaviour of the composite. It has to be emphasized that a solution to this prob-
lem has a physical sense only if (/;(-,1), Q(-,t) are regular macro-functions
for every t > (. For more detailed information the reader is referred to the
references given in Introduction.

3. Analysis

Let us assume that a certain static deformation of the composite described
by Eq.(2.1) is known, where the fields U; = U;(X), Q = Q4(X), X ¢ 2 are
constant in time and hence satisfy in (25 the field equations

o (CmEE00N _,  mCU.000) .,y g,

and fulfil on Jf2p the time-independent boundary conditions of the form (2.6),
(2.7); in (3.1) F(X) = 1 + VU(X). Every static deformation of the composite,
defined by a pair E = (U(-), Q(+)) satisfying Eqgs. (3.1), will be referred to as the
equilibrium state. In order to investigate the stability of the above equilibrium
state, the line of approach described in [10] will be applied. To this end let
us assume that on the static deformation represented by a displacement field
w,(X) = U(X) + 1 (X)QA(X), X € 25, a small deformation is superimposed,
given by ¢ ‘u;(X. 1) = [ U(X, 1) + hA4(X) 'QA(X, )], t > 0, where ¢ is a small
parameter, the squares and higher powers of which will be neglected as compared
to =, and where 'U/;(+, 1), ‘Q:(+, 1) are arbitrary regular macro-functions. Using
Egs.(2.2), (2.3), (2.6), (2.7) and denoting

O*7p(F(X), Q(X)) B

vjio . PPTR(E(X), QX))

J.H_)./j o
.‘I‘l o

OFWwdFys R T T ak,007
(32) ‘
‘ 0?7 r(F(X), Q(X)) ,
(R ey X THC s Xes,
R 9QIQP Sk

after simple manipulations we obtain the linearized homogeneous field equations
for ", 'Q#, which have to be satisfied in {25 x (0, c0):

('/:il.’-:;'j.i f( -_/",f & ]3;,?2'(\ 1(25{) _ <QR> /[" i

SO

i
S

(3.3)

Il
=

/2(9[\){/;1!]1'3) ’(.2 :’3 0 (l;é]ﬁi.,r I(Jl:i 4+ 131;”“ I[,'_/,!\
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together with the homogeneous boundary conditions:

(tflg];\']h ,(,"y]‘h,'j EE ngla /QB) NRo = 0 on _INR % (0’ DC),

J

(34) I(,"ri =0 on BQR\FR X (O OO)
From the definitions (3.2) and since F = 1 + VU, it follows that solutions ’'{/;,
'()4 to the boundary-value problems described by Egs. (3.3), (3.4) depend on the
known static deformation represented by the equilibrium state E = (U(+), Q(*)).
At the same time, every pair (F, Q) satisfying the last of Egs. (3.1) will be referred
to as the local equilibrium state. Obviously, if a composite is in the equilibrium
state (U(+),Q(+)) then every (F(X), Q(X)), X € {2p, represents a certain local
equilibrium state (but not conversely).

Now we shall pass to the analysis of some special cases.

First, let us assume that the superimposed deformations are time-independent,
e

U= "UyX), 'Qf="Q4X), Xelg.
Under this assumption two special cases of instability can take place.

Cask 1.1. Let for every X € {2 the linear transformation R*Y — RV given
by (,-'ﬁB” be invertible for the known equilibrium state E = (U(+), Q(+)). In this
case the macro-internal variables ‘(¢ can be eliminated from Egs.(3.3), (3.4)
and we arrive at

(J’V}?'iﬂ ’[’r.l-«ﬁ) =1 in QR 5

e d
riayf3 T 2}
(3.5) :\’;—;ﬂ I(‘j‘;_'{l'lna =0 on [y,

I[”[ =0 on aﬂﬁ\f}g F
where we have denoted
riajfl  _  piagf D Akio MABEL Bl

and where DAP* determines the linear transformation R*¥ — R*" inverse to
that given by C'AZ* If there exist non-trivial solutions to Egs.(3.5) then the
body in the equilibrium state E = (U(+),Q(+)) is assumed to have a hidden
macro-instability, [10], and we deal with a bifurcation of the equilibrium state E.
Moreover, if /' = () then we arrive at the problem of the internal macro-instability
investigated by Biot [1, 2] as the internal buckling.

Case 1.2. Now assume that under the known equilibrium state, a linear trans-
formation R*V — R*V determined by C'i5* is singular for some local equilib-
rium state (F(X), Q(X)). In this case the body at the point X is said to be in the
state of a hidden micro-instability and we deal with a bifurcation of the local equi-
librium state (F(X), Q(X)). Moreover if F = const, Q = const in {5 and [’ = 0,
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then Egs.(3.3) are satisfyied by 'l/; = 0, 'Q# = const in 2z and we deal with
what can be called the internal micro-instability.
Second, let us assume that the superimposed motion is given by

UiX ) = Ui, QX t) = @ (X)e™,
where w is a certain complex number. Substituting the right-hand sides of the
above formulae into Egs.(3.3), (3.4) we obtain for U/;, Q7 the following system
of equations
(AR T, + BQ}) | = (er)™T" = 0,

(3.6)
(CR® = Plong"y®) 69?) QF + B Uja = 0, in 2,
together with the boundary conditions

(AS9T ;0 + BN nna =0 on Tn,

3.7
( ) [.,f,' =0 on (").QR\FR.

It has to be remembered that the eigenvalues w? in Egs.(3.6) depend on the
known equilibrium state E = (U(-),Q(+)) since the coefficients in Egs. (3.6),
(3.7) are functions of F(X) = 1 + VU(X) and Q(X), cf. formulae (3.2). The
analysis of Egs.(3.6), (3.7) leads to the so-called dynamic instability, [10]. Two
special cases will be considered below.

Cask 2.1. Let us assume that for the known equilibrium state E = (U(+), Q( )
and for every X € (25 the linear transformation R*N — RV given by (57" -
?{org”g*)6"w? is invertible. Then every inverse transformatlon can be repre-
sented in the form of the asymptotic expansion

DB + Pu2DRP* (orgRg®) DEPY + o(1%).
Neglecting terms o(/%) we can eliminate Qf from Egs. (3.6), (3.7). Defining
“U;;’.l-‘f o Bi}’k“ /)ﬁ[)ki(e’{guglf)I')gh’lm Bg_l”!J(QH)—I.

after some manipulations we arrive at the following system of equations for [/,
which have to be satisfied in {25 x (0, 00):

(3.8) (N&T5) .+ (on) [Fi - P (Mi9T ;) ] =0
together with the boundary conditions
(N7 - (g;;)[zu.'z/\f};"”‘j) U;pnpe =0 on I x(0,0),

(3.9) .
Uj' = () on [f).QR\FIQ] X (0. X)
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Following [10] we shall assume that if Imw > 0 then the equilibrium state
E = (U(+),Q(-)) is stable. If in the vicinity of E there exists a passage from
Imw > 0to Imw < 0, then we deal with the loss of the macro-vibrational stability
(provided that Rew # 0) or the loss of the macro-static stability (if Rew = 0) in
this state. Moreover, if /' = () then it is the loss of the internal macro-vibrational
or macro-static stability, respectively.

Case 2.2. Assume that for the known equilibrium state values w? are the

generalized eigenvalues given by (C'n"" — 2w (opg?gP)67)QP = 0 for some
local equilibrium state (F(X), Q(X)). If Imw attains a negative value in this local
equilibrium state then we shall deal with the loss of the micro-vibrational stability
(for Rew # 0) or the micro-static stability (for Rew = 0). Moreover if F = const,
Q = const, in {25 and I'y = () then Egs.(3.6) are satisfyied by 'U; = 0, 'Q# =
const in {/; and we arrive at the problem of the loss of internal micro-vibrational
or micro-static stability, respectively.

All the aforementioned cases of instability can be referred to as the local loss
of stability. However, for micro-periodic highly-elastic materials we can also deal
with the special case of a non-local instability described below.

Case 3. Let us assume that for a certain X € {2p there exists the macro-
deformation gradient F(X) for which the last of Eqs.(3.1) has more than one
solution Q satisfying together with F condition det(F + VA4(Z)Q") > 0 for
every Z € V;; + X! In this case we deal with the non-local micro-instability. This
kind of instability can be also referred to as the material instability strictly related
to the micro-periodic heterogeneous structure of the composite body.

Summing up, the stability analysis for highly-elastic micro-periodic composites
leads to the following three types of stability:

1. Local macro-stability described by Cases 1.1 and 2.1, which can be investi-
gated similarly to the instability of homogeneous body.

2. Local micro-stability described by Cases 1.2 and 2.2 related to the investi-
gations of the linear transformation given by ("}}""H(F. Q).

3. Non-local micro-stability described by Case 3, related to the analysis of the
last of Egs.(3.1).

The problem of the non-local macro-stability is not investigated in this con-
tribution. It has to be emphasized that the concept of the micro-stability is char-
acteristic for composite micro-periodic bodies subjected to finite deformations.

4. Analysis: incompressible bodies

The refined macrodynamics of micro-periodic composites made of highly-elas-
tic incompressible constituents will take as a starting point the averaged incom-
pressibility condition

(4.1) (det(F + VA*(X)Q*)) — 1 = 0.
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It has to be emphasized that in the framework of the proposed macro-model,
the exact incompressibility condition det(F + V/A*4(X)Q*) — 1 = 0 may not be
satisfied at every point X of (2. Equation (4.1) can be also written in the explicit
form

1 s
(42)  detF+ ze'heo (3(h* oh® 5)Q%: Q; Fi,
+(h ohP 5hC QA QP Q%) —1=0,

where %, £/ are the Ricci symbols.
In many special problems the analysis can be confined to a class of motions
(2.1) in which all micro-shape functions satisfy the conditions:

(A hB sy =0 if a# 3,

(4.3) :
(hAahBshC L) =0 if a#B#v#a

This situation is typical for many disturbances investigated in dynamics of com-
posite materials. In the simplest case relations (4.3) hold if every micro-shape
function ~(+) depends exclusively on one arbitrary material coordinate X°.
Under (4.3) the averaged incompressibility condition (4.2) reduces to the follow-
ing one

(4.4) detF—1=0

being independent of macro-internal variables Q. The above condition repre-
sents the internal constraints imposed on the class of motions determined by
Eqgs.(2.1). Introducing the concept of a macro-pressure pp = pr(X) as a La-
grange multiplier related to Eq. (4.4), bearing in mind definitions (2.5) and mod-
ifying Eq.(2.4) to the form

45) 7 =Tr(F,Q):= (cr(X,F + VA4(X)Q"))
—A§ (Fia = bia) = n* Q' + pr(detF - 1),

we shall assume that the equilibrium equations (3.1) holds also for incompressible
bodies (in the averaged sense explained above).

Summing up, under definitions (4.5), (2.5) and bearing in mind that F =
1+ VU, the equilibrium equations of the form (3.1) together with Eq. (4.4) lead
to a system of equations for macro-displacements U, macro-internal variables Q!
and a macro-pressure pp. This result holds true under conditions (4.3). If the
above conditions do not hold then the averaged incompressibility condition has
to be taken in its general form (4.2), and in Eq.(4.5) the term detF — 1 has to
be replaced by the left-hand side of Eq.(4.2).

The stability analysis for incompressible bodies has to be carried out similarly
to that of the compressible bodies described in Sec.3. Apart from the superim-
posed small motions =("U; + h* 'Q%), also a small excess of a macro-pressure
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2 'pr has to be superimposed on pr. Hence in the incremental equations, which
for compressible bodies were given by Egs. (3.3)-(3.9), we deal with terms involv-
ing 'pp and with the incremental form of Eq.(4.4). Under notation Ly := F~!
this equation is given by
LRm ’[,r’ri,ﬂ = 0.

The general line of approach to the stability analysis for incompressible com-
posites, outlined in this section, will be illustrated by a simple example in the
subsequent section of the paper.

5. Example

The general results obtained in this contribution will be now illustrated by
the micro-stability analysis for a laminated body made of two perfectly bonded
incompressible isotropic rubber-like materials. The scheme of the laminate is
shown in the left-hand side of Fig. 1. Moreover, every lamina is assumed to be

L /2 /2 . ;
g = TR
[ [1 N — ! ¥
[e} o (<] o) [1 = S LRSS Sl s R i
[ [} o °© o )
3 2
IR X ,X
/
[e] o (e} o
) X
X!

reinforced by a system of periodically distributed inextensible fibres parallel to
the \3-axis. Let the body be subjected to finite deformations caused by the
uniform axial macro-strains along the coordinate axes. Using (3.1), the class of
displacement fields under consideration will be expected in the form

uy = U(XY) + AI(XHQE + R3(XHQ3,
(5.1) uy = Up(X?) + h3(XHQ3,

uz = 0,

where

U (XY = (Fy - DX, Up(X?) = (Fpp — 1)X2,
and (for the time being) /1, I, Q1, @3, Q3 are constants constituting the
system of basic unknowns. We have tacitly assumed that the effect of periodic
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inhomogeneity along X?-axis on the displacement field is small and can be ne-
glected. That is why a term A*(X?)Q4 in the second equation of (5.1) was not
taken into account; the analysis involving this term is more complicated and will
be given separately. The diagram of the micro-shape function h!(+) is shown
on the right-hand side in Fig. 1; we also assume h?(X') = [cos(2rX'/l) and
h3(X?) = lysin(2r X? /1), where [, is the period of the reinforcement along
X?2-axis. In the problem under consideration Vi = (—1/2,1/2) x (—13/2,15/2)
and it is assumed that X! = 0 is the plane of symmetry of the material structure
of VR.
Let us denote the basic unknown variables by means of

Fie=Fy, F=Fp, Q=Qi, Q=@, Q=0
It can be shown that the averaged incompressibility condition (4.1) yields
(5.2) FiF,-1=0.

Under Eq.(5.2) every quintuplet (F}, /5, (0, (1, (J2) represents a certain micro-
equilibrium state (now constant throughout the whole body) provided that the last
of the equilibrium equations (3.1) holds; the first of these equations is identically
satisfied since Sy are constant.

As we have stated in Sec.2, in the framework of the refined macrodynamics
the deformation gradient is approximated by F + VA4(X)Q", where now X =
(X1, X2). In the problem under consideration, under extra notations

a &= (/(.\"]) = /11‘1(.\'1),
dy = di(XY) = P00,
('[2 = ([2(4\'—2) = 112‘2(,¥2).

the deformation gradient matrix is given by
Fy+dQ dy@)y 0
er o0
0 0 1
and for every X € Vp :=[~1/2,1/2] x [~12/2, /2] has to satisfy conditions
Fi+dX)Q) > 0, F >0,
1By + d(X) [0 — di(X)d2(X)Q1 62 > 0.
The components ¢, 3 of the deformed body metric tensor are given by the matrix
(Fy +dQP + (1Q2)F  doFy + dQ)Qy + dy50Q; 0

(!’2(/"] s (ZCJ)QI -+ ([1 '?2(22 [)22 + ((12621)2 0
0 0 1

(5.3)
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and the strain invariants /1, [, [3 are equal to

Iy = 6%%c,s =1+ FE+ F3} 4+ 2dFQ + (dQ) + (d1Q1)* + (d2Q2),
Iy = I36,3¢"" = 1+ FE + FF + 2d(Fy + 1)Q + (dQ)*(1 + FP) + (d,Q1)
+(d1Q2)* + (d1d2Q1Q2)* — 2d1d2Q1Q2 — 2ddydy F,QQ1Qs
Iy = detcyp = [(F1 + ([Q)Fg = (ll(lele]z.
It has to be emphasized that in the applied approach, the local incompressibility
condition /13 — 1 = 0 does not hold and we deal exclusively with the averaged
form of this condition, given by Eq.(4.1) which now reduces to Eq.(5.2).

The strain energy function for rubber-like materials will be assumed in the
known form

ern=C(l —3)+ DI, - 3),

where the material moduli (', [) are now [-periodic functions of X1, attaining
different values in the adjacent laminae. Due to the presence of a reinforcement
we shall also treat (', I as l-periodic functions of X2. Hence (' and D as well
as the invariants /,, I, are Vp-periodic functions of X = (X', X?). The formula
(4.5) for the macro-strain energy function of an incompressible isotropic material
is given by

mr = (ep(X, 1(X), LX) — A (Fia — 6ia) — pA' Q2 + pr(detF — 1),

where the averaging operation has to be carried out with respect to X, and \g,

pp* are defined by Egs. (2.5). After some calculations we obtain

= (C+ DYFE+ FF=2)+2[((C + D)) Fy + (Dd)F>] Q
+ [((C + D)d) + (DAY FF) Q* + ((C + D)d3)Q}
+((C' + D)d}) Q5 + (D(drd2)*)(Q1Q2)?

“2[(Ddydy) + (Dddidy) F5Q1Q1Q2 — (C + DY(F, + F5 - 2)
2[UC + DY) + (D)) Q + pr(F1Fs — 1).

Under notations
o= (C + D)d?), oy := ((C + D)d?), az == ((C + D)d3),

3= <[)((ll(l2)2>, ¥ = (Ddz), ¢ := (Dddyd,),
po= ((C + D)), v = (Dd), X = (Ddydy)

and setting

Fi=Fy= ()7,
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the second of the equilibrium equations (3.1) takes the form

(@ +YFHFQ - ¢F*Q1Qr + (1 - F)(u - vF) = 0,
(5.4) (1Q2 + A)Q207 ~ (x + ¢F Q)1 = 0,
(@2Q1 + A)1Q3 — (x + ¢FQ)Q2 = 0.
At the beginning let us consider two special cases.
First, assume that the laminae are not reinforced. In this case C'(+) and D(+)
are independent of X'? and
¢ := (Dddydy) = (Dddy){(d,) = 0,
Y = (Ddydy) = (Ddy)(d) = 0,
because of (d;) = 0. In this case there exists the unique solution to Egs.(5.4)
given by
(F - 1) - vF)
5. ) =
(5-5) Q=T FF

Q1 =02=0.

Second, let the body be homogeneous. Then, apart from conditions ¢ = y = 0,
we also obtain ¢ = 0 and v = 0. In this case () = ()1 = ()2 = 0 and by means of
Egs. (5.1), an arbitrary uniform biaxial strain, given by /} = F'=1, [, = [, holds
for every [ > 0.

Now we shall pass to the general case of the micro-periodic body under con-
sideration. In order to investigate the bifurcation of a micro-equilibrium state
(F1, F2,Q,0,0) let us assume that Q1 = ¢ 'Qy, Q)2 = ¢ '(),, where ¢ — 0. Let us

also denote B
6=y — Jaas, 0= x + Joaz

and assume that 60 # 0. If ¢ # 0 then the non-zero solutions ()}, ()5 to the
second and third of Egs. (5.4) exist either if

. 5
(5.6) & = ~0—[
or if

6
(5.7) 0= Yk

The two aforementioned conditions will be treated separately.
Substituting the right-hand side of Eq.(5.6) into the first of Eqs. (5.4) (where
now (0100, = =2'Q1 'Q, — 0) we arrive at

(5.8) (vp — ¥ — ¢ + V)F + j1p — ad = 0.
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The above equation together with the condition /' > 0 represent the solution
in which the bifurcation of a micro-equilibrium state (F'~!, F,Q,0,0), where

Q) = —&(oF) ", takes place. Now assume

-9 vg—v6#0

and define

(5.10) p .= Yty _ ab—ug

T b —ve’ €= v —vo

It can be shown that the bifurcation can take place in the following cases:

(i) If c <0 and 1 + b+ ¢ < 0 then there exists one positive root /' = Fp of
Eq.(5.8) such that F; > 1. In this case the bifurcation occurs under extension of
the body along X 2-axis.

(ii) If c < 0 and 1 + b + ¢ < O then there exists one positive root F' = Fp
of Eq.(5.8) satisfying condition 0 < F» < 1 and the bifurcation occurs under
compression of the body along X 2-axis.

(i) If ¢ > O and 1 + b + ¢ < O then there exist two positive roots /' = Fi,
I" = Iy of Eq.(5.8) related to the compression and extension of the body along
X2.axis, respectively, i.e., 0 < Fi < 1 and F > 1.

(iv) If v — 46 = 0 and

P 1o — ad
Y6+ pg’
then we obtain /' = Iy > 1if (6/d)(u+v)>0o0r F' = Fr,0 < Fo < 1, if
(/o) + v) < min{0, (u/a)(p + v)}.

Let us also observe that since ¢ # 0, a > 0 and v > 0, then the bifurcation
cannot take place in the natural state in which /' = 1.

If one from the above conditions takes place, then the value of () for which the
bifurcation occurs is determined by Eq.(5.6). The analysis similar to that given
above can be carried out if the constant 6 will be replaced by the constant . In
this case the value of () related to the bifurcation state will be determined by
Eq.(5.7) and instead of parameters b, ¢, under condition

v -0 # 0,
we shall introduce the parameters

7 o + ) . b — o
D= ————— Gl =—————

0 —vo 76 —vo
Hence the discussion of cases (i)-(iii) remains unchanged if moduli b, ¢ will
be replaced by moduli b, ¢, respectively. Similarly, in the case (iv) 6 has to be
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replaced by 6. It means that apart from values /', Fr of a macro-deformation
gradients for which the bifurcation can take place, we also obtain two other values
Fe, Fp related to the constants 0, b and ¢, where F¢: € (0,1), and F > 1.

Now let us investigate the problem of the nonlocal (postbifurcation) microsta-
bility. To simplify the calculations let us assume «; = « an denote ap = o = .
Using this assumption from Eqgs. (5.4) we obtain either

(@ + Y FHFQ = $(FQ1)* + (1 - F)(p - vF) = 0,
(5.11) aQ1 + AQ1 - (x + ¢FQ)Qy = 0,
Qz = Ql«

or
(@ +YFHFQ + ¢(FQ1)* + (1 - F)(u - vF) = 0,
(5.12) ag@Qr + Q7 + (x + ¢FQ)Q1 = 0,
Q2= -Q.
The two above cases have to be treated separately.
Case 1. From Egs. (5.11), apart from the solution

(F = 1)(u - vF)
(o + v FHF

(5.13) Q= Q1=Qr=0

which holds for every /' > 0 (and coincides with that given by Egs. (5.5)), we also
obtain two other solutions
B & (B + agd — xYO)VF? — B(u+ v)F + Bu
a [af + (87 — ) F2F

(5.14) ;
_7,(114) —AOVE? — (e + V) — pgp + ab

2 e =(
Q1 =~ af + (B - A2 @2 =

where we have denoted 6 := y — ay.

Case 2. From Egs. (5.12), apart from the solution (5.13) which holds for every
I > 0 we obtain two other solutions

Br — agp — xO)F? — B(i + v)F + Bu
/ -

) = =
¢ [af + (By — ¢2)F2F
(5.15) , .
— YO)F? — ¢ + V)F — pop — o
2 _j(“é 7 = .
(21 o H ry (Hj“ gﬁz)[ﬂz ’ (22 Q] 3

where § := \ + .

http://rcin.org.pl
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Under assumption 3y > ¢? and using notations introduced above solutions
(5.14) hold, for /' € (0, F] and I > F, where Fo <1< Fg. If F' € (F¢, Fg)
then there exists solution given by Egs. (5.13). At the same time solutions (5.15)
hold for I € (0, F¢] and I > Fp, where Fe <1 < Fp. If F e (Fe,Fg)
the solution is given by Egs. (5.13). It means that there can exist two kinds of
bifurcations; in the first case after the bifurcation we obtain (); = (), and in the
second ()1 = —(Q)s.

It has to be remembered that all the obtained results have the physical sense
if and only if conditions (5.3) hold for every X € Vp

The micro-bifurcation cannot take place in materials for which either condi-
tions 0® < 4¢ and b* < 4% or conditions b < 0, ¢ > 0 and b < 0, ¢ > 0 hold.
In this case there exist one micro-equilibrium path (£}, I3, ¢, @1, )2) in which
Iy = I, Fy = F'~! and Egs. (5.5) hold for every I' > 0.

To make the above example more clear from the physical viewpoint we have
stated at the begining of this section that the variables F}, I as well as (1, ()7,
()3 are constant throughout the body. However, all investigations given above also
hold true if the aforementioned variables are arbitrary regular macro-functions
of X € {/g. In this case we can also take into account the first of Egs.(3.1) and
after that pass to the analysis of the macro-stability of a body.

6. Conclusions

The obtained general relations concerning stability of highly-elastic periodic
composites under finite deformations yield the analytical basis for calculations of
different special problems. Following the general comments given at the end
of Sec.3 we can mention here the problems of macro-stability and those of
the local and non-local micro-stability. It can be seen that in the problems of
macro-stability, after neglecting the effect of the microstructure length dimen-
sion on the dynamic behaviour of the body, the obtained formulae are similar
to those of the nonlinear elasticity of homogeneous bodies. Under this approxi-
mation terms involving /? drop out from Egs.(3.8), (3.9). Hence the first new
result is the investigation of the effect of the microstructure length parameter /
on the dynamic macro-stability of the body. The second new result is the exis-
tence of the local and non-local micro-stability in highly-elastic composites. This
phenomenon is due to the micro-periodic material structure of the body and was
illustrated in Sec. 5. More general applications of the obtained results are under
consideration and will be presented in a separate paper.
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Plasma double layer system leading to chaos, intermittency
and flicker noise

A.J. TURSKI and B. ATAMANIUK (WARSZAWA)

ELECTROSTATIC DOUBLE LAYERS appear in plasma and semiconductor systems with flow of electric
current. The systems display bifurcations, chaos, intermittency and power-law of spectral power
density that is 1/ f-noise also called flicker noise. Fractal analysis of experimental data recorded
in time (time-series analysis) indicates that the plasma dynamic systems are of low dimension.
Colored and fractal noise influence on measured data may disqualify that conclusion. A piecewise
lincar dynamical system is considered to clarify this problem. Bifurcation tree, intermittent chaos
and 1/ f-noise are revealed by the dynamic system.

1. Introduction

THE STUDY OF PLASMA systems may be performed by analyzing experimental data
recorded as a series of measurements in time of pertinent and easily accessible
state variables of the system, e.g. electric current, voltage, densities and veloc-
ities. In most cases, such variables describe a global or averaged properties of
the system. Although there already exists a vast literature describing experimen-
tal results concerning bifurcation, intermittency and chaos in plasma discharge
and turbulent systems, a complete and coherent discussion and theory derived
from plasma equations are still lacking. Plasma discharges produced by electric
current flow and revealing self-oscillations (Hopf bifurcation), saddle-node and
period-doubling bifurcations, intermittency and chaos are of our interest. We as-
sume that the cause of the occurring phenomena is charge separation leading to
double layers (DL), which are localized in space. The wave length of the wave
phenomena is much greater than the physical size of the system and we can
consider DL as a lumped element. The assumption allow us to construct a sim-
plified model. Tt is based on piecewise linear voltage-charge characteristic of a
capacitor simulating DL. The model can be realized in the form of nonlinear
electrical circuit and the measured variables are to be compared with those an-
alytically computed. By virtue of the circuit equation analysis [1], Poincaré map
is derived. Calculation of bifurcation trees and strange attractors for different
parameter sets are displayed and intermittency, saddle-node and period-doubling
bifurcations are revealed.

Plasma experimental data recorded as a series of measurements in time are
analyzed by use of fractal dimension and the average dimension, most often cor-
relation dimension, is low and that implies the low-dimensional dynamical system
[2, 3]. This conclusion was very recently criticized for the two reasons. One stems
from the fact that the apparent correlation dimension may result from the class of
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stochastic noises with a power-law of spectral power density, f~“, the so-called
colored noise, which leads to a low finite value for the correlation dimension,
see [4]. The second reason is related to intermittency which leads to the same
power-law spectra and low fractal dimension. The low correlation dimension of
such noise means that the trajectories in the state space exhibit fractal behaviour
along the trajectories, while the fractality of a strange attractor associated with a
chaotic system is perpendicular to the motion such that each trajectory returns
at time close to the starting points. The methods which have been used in the
studies of the correlation dimension [3, 4] do not distinguish between these two
kinds of fractalities. The situation around this topic has remained unclear and
we offer some nonlinear circuit analogue models, which show promising results.
We introduce two notions — one is a colored stochastic noise and its power-law
spectra for low frequencies, and the other one is intermittent chaos leading to
/= noise. It deserves notice that the /= noises are ubiquitous phenomena con-
cerning elements of electronics, acoustics, mechanics, traffics, etc., see [5, 6, 7].
Consideration of dynamical system with piecewise linear nonlinearity may con-
tribute to understanding of the problem.

2. Colored noise

Colored stochastic noise 7(t) is based on an extension of the space of variables
so that 7(1) itself becomes a variable driven by white noise ¢(f). In particular,
if 7(1) is exponentially correlated Gaussian noise then one can write the set of
stochastic differential equations

(2.1) 2(t) = G(z) + g(@)n(t),
(22) o) = ——n(t) + )

where (/(r) is the deterministic “force” and ((?) is Gaussian white noise with
correlation function

2.3) (C)(r) = 2D 8(t = 7).
Then it can be easily seen that (2.2) leads to the exponential correlation function

=lt—l

D
@24 (o) = =™

The probability density P (z,7; (¢ /0),10) obeys a.Fokker—Planck equati(?n.
Bicolored stochastic noise assumes two additional variables m(i') and 7y(t) with
constants 7., and 7., see Eq.(2.2), driven by white noises with Dy and Dy,

respectively.
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We note that colored noise had a low correlation dimension as determined
from the Grassberger - Procaccia (GP) algorithm [4]. The stochastic process gen-
erated by one or two colors can be expressed as discrete Fourier series [4]

N/2

(2.5) X(i) =Y Creos2rik/N - ¢y),

k=1

where ¢, are random phases in the range [0, 27] for each wave number £, f =
k/N is a frequency, and the coefficients (). are related to the power spectrum
P(k) = @ k=2, that is

(2.6) O, = {P(k)%’r]uz

for bicolored noise, we have two powers «j, aj, and «; is valid for the range
k< k. and aj is valid for k& > k.. Critical value k. is such that it relates to
a frequency at which there is a break in the power spectrum of the measured
variable. The condition of continuity is fulfilled if () k=1 = k2.
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F1G. 1. Exponential correlation functions — f1, f2; f3; versus i, related Fourier transforms
F1, F2, I3, and power Fourier transforms PF1, PF2, PF3, versus j.

Computer calculated and plotted Fig. 1 refers to the correlation functions (2.4)
and exhibits f;; = Aexp(—kit;), where [ = 1,2,3; k; =025, k; =1, k3 = 1.5
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and ¢; = 0+ 63. Also Fourier transforms /'y ; = FFT'(f), I3, I'3; are shown
PF,;, and PF3; are depicted.

as well as power spectra PFy ; = (|F] 35
The Fourier transform

(2.7) F= AL i=i93

AR
is the well known Lorentzian spectral density revealing flicker noise. This ap-
proach is to be used in cases of more complex correlation functions.

3. Intermittency and flicker noises

The phenomena of flicker noise have long posed some enigmatic questions.
First and foremost is the question of how is it possible that in systems of minute
physical size there occur processes on the time scale so long as to allow for
divergences in their spectra? The appearance of broadband spectra and, at the
same time, the rising of the low-frequency end have long been associated with the
onset of chaotic behaviour. Chaotic signals as well as stochastic ones are assumed
to have stationary statistic and the correlation function

(3.1) (x(1) x(1)) = Cu(7).

Since noise waves have infinite energy but finite power, we must define a power
spectral density.

The autocorrelation function for a noise wave x(7) is defined as the time av-
erage

T
(3.2) C,(r) = Jim 2}[1/ ot + ) 2(t) di
- =T
and then

Co(r) = Co(~7).

The spectral density of the noise wave () is defined as the Fourier transform
(3.3) S.(f) = / C(r)e 271 dr,

where S5,.(f) must be real and positive and if () is real, we have

Sx(f) = Sz(= 1)
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Bifurcation and chaotic features of dynamical systems of finite number of
freedom-degrees are investigated by use of Poincaré maps, which are discrete
processes. In case of one-dimensional map

(3.4) Tnt1 = g(Tn),
the discrete autocorrelation function C',.(m) of ., is

.
(3.9) Ce(m) = 2\r1+ 1 n;\] B o B
and spectral density
(3.6) S:(f) = i Co(m)e 2,
By virtue of symmetry, we have -
(3.7) Sy = i C'(m) cos(2m m f),
m=0
where
(3.8) Cr(m) = 11m» 7\—, z:ﬂ Ticesor Tt +

Let us consider a logistic map
(3.9) Tpt1 = R, (1 + 2,) = g(z,)

where 0 < R < 4.

Just below period 3, there is a saddle-node bifurcation for /2. = 1+ (8)!/? and
then at £ = R, — =, an intermittent signal appears. For any ¢ > 0, correlation
functions (',(in) decay exponentially with a decay time 7 ~ £~1/2, see [5]. By
plotting the power spectrum of the third iterate ¢3(x) we can thus get an apparent
1/ [* divergence, with a cut-off that can again be pushed down to arbitrarily small
frequencies by lowering . There are three types of intermittencies. The first one
is connected with transition from saddle-node bifurcation to chaos, second with
Hopf bifurcation and the third one with period doubling bifurcation. Figure 2
demonstrates the computed results of the intermittent signal x, versus n for
K = 3.74474 < K., its correlation function

) 1 N+1-s
(310) (.r‘; - m Z Th+sTg

k=0

and Fourier transform A := F'FT(C) as well as power spectral density, that
is PRNC', = (|N(])% Spectral densities reveal 1/ f divergence in vicinity of
[ =0, (s = 0). This approach is to be used in cases of more complex Poincaré
maps.
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FiG. 2. a) Intermittent signal z,, versus « for logistic map xz,4; = Rx,(1 — z,) where
R = 3.74474 and its correlation function C'.. b) Fourier transform A'C, and PK C. versus s.
The right-hand side drawings of A'C'. and P C. are enlarged in vicinity of s = (0 and
demonstrate 1/f - noise behaviour.

4. Charge separation and double layer simulations

Charge separation in plasmas takes place due to electric current flow. Forma-
tion of DL starts when electron and ion convection velocities of the flow satisfy
Bohm conditions, e.g. see Galeev and Sagdeev, Ch. 1 in the monograph [8]. The

http://rcin.org.pl
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negative anomalous resistivity of plasma discharges leads to self-oscillation [9]
and then nonlinear voltage-charge characteristic is responsible for bifurcation,
intermittency and chaos. The characteristic is similar, if not identical, to that of
junction capacitance of semiconductor diode, which is based on charge separation.
Self-oscillations of plasma discharges are revealed by use of electrical circuit with
nonlinear resistance, e.g. see [10]. The problem is classical in plasma discharges.
The next step is a simulation of plasma discharge system by a driven R-L-Diode
circuit, see [1, 9]. The circuit ordinary differential equations are reduced to the
following 2-D Poincaré map [1, 9]:

for a1TH for z, =1,
i = Un—
n+1 Yn —aTy for Ty < 0*

(4.1)

Yn+1 = bfl'”.
where 7, and y,, are responsible for charge and current in the circuit, and

a; = eM+ e
(42) b = _6'\1+'\2 = _C,—R/ZLf!

\ _iiL(E)Z_LW
V2= rf T 2f I\T LCia|

R, L, (', (’y are circuit elements and [ is the frequency of the driving voltage.
Characteristic values Ay, are real or complex conjugate, hence a; and b are
always real positive and real negative numbers, respectively. A piecewise linear
characteristic ((', (') is a satisfactory substitute for the nonlinear voltage-charge
characteristic, see [1, 9]. The coefficient a; depends on amplitude and frequency
of the driving voltage and can be numerically determined. The graphs of a; versus
driving voltage for a given number of frequencies [ are given in [1]. We note,
that the following equation

2
(4.3) @u

di2 7/7 + f (“) + b‘O = LU)*

where

Py = au for u >0,
Ju) = Bu for u <0

is a piecewise linear function and
E(t) = EYsin(wt) ~ sgn (sin(wt)),

possesses the Poincaré map given by Eq. (4.1).
From extensive laboratory measurements and digital computer simulations,
S. TANAKA et al. [1], have found that in order to reproduce the same qualitative
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behaviour of the dynamical system, a piecewise linear voltage-charge characteris-
tic is satisfactory. Furthermore, it was observed that the sinusoidal voltage source
can be replaced by square wave voltage of the source period 7' = 1/ f without
altering the bifurcation structures. Therefore, we analyze Eq.(4.1) as a structure
representing dynamics of the system with a nonlinear element responsible for
charge separation. We believe, that intermittent chaos and flicker noise have not
yet been revealed for the system. We exhibit our numerical calculation results.
Figure 3 shows the “bifurcation tree” that is x;,, versus a, where [ = 650, 651,
... 750 represents the iteration number, see Eq.(4.1) where n = [, whereas m
is responsible for a;(im), which changes from 0 to 10 as m changes from 0 to
M, e.g. M = 200. The second variable y,,, is similar since 41, = bxyn.
It reflects the physical situation that each point in this bifurcation tree diagram
represents a 1-D Poincaré section of electric current trajectory taken at each fun-
damental period 7' = 1/ f of the sinusoidal voltage source. Iteration results for
[ =0,1.2,... 649 are not depicted here. They concern mainly transition points
to periodic and chaotic states. The following striking features are seen in this
diagram.

. _

"

B

gl b
6 8 10

a2(m)

Fic. 3. Bifurcation tree of Eq.(4.1), [ = 650, ... 750,  is iteration number n < [ and m is
responsible for az(m) changes along horizontal axis.

(i) A succession of large periodic windows whose periods increase exactly
by one as we move from one window to the next at its right side (saddle-node
bifurcation). On the left side of each chaotic band we observe transition to chaos
via period-doubling bifurcation.
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(if) Going along trajectories we can expect a Ist-type intermittency at the
right-hand side of boundary of each band of chaos and a 3rd-type one at the left
side of the boundary of chaotic bands.

T T T T |
01l g e BT .
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FiG. 4. Strange attractor for a; = 4.
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X]’ 80
FiG. 5. Strange attractor for a; = 8.

Figures 4 and 5 show a 2-D Poincaré sections taken for ¢y = 4 and ap = 8,

that is the second and third chaotic bands, see Fig. 3. They are strange attractors
associated with a chaotic motion perpendicular to the trajectories. The attractors

http://rcin.org.pl
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are composed of a number of branches and the number increases as we move
from left to the right bands.

40 | | | |
| =
0 | L 16 ; 10

aZ(m)

FiG. 6. Bifurcation tree for Eq.(4.1), @1, versus az(m) = m, where [ is iteration number and
a; = 113,56 = —0.5.

| | | 1 | | |
- | 0 1 2 3 4 5 G

* 30
F1G. 7. Strange attractor for a; = 3.

e

Figures 6, 7 and 8 show the bifurcation tree and strange attractors for selected
parameters ¢; = 1.13 and b = —0.5. There is only one chaotic band and two large
periodic windows. The strange attractors are composed of 5 branches for ay = 3



PLASMA DOUBLE LAYER SYSTEM LEADING TO CHAOS 169

and 3.5. The number of periods jumps from 1 to 5 as we move from left to the
right-hand periodic windows. One can expect 1/ f fluctuations along trajectories
due to the 1-st and 3-rd- type of intermittency.

RS S e .

1 1 1 | | | |
-2 -1 0 1 2 3 4 5 3

1,35

Fic. 8. Strange attractor for a; = 3.5.

Figure 9 exhibits computed Lyapunov exponents-A, determining variation of
r,, versus ay for the bifurcation tree depicted above. We note that the calculated
negative values of A, and stable periodic windows of the bifurcation tree as well
as positive values of A, and chaotic band are related, respectively.

To demonstrate intermittency of our system given by Eq. (4.1) we determined
a number of values of a; for which intermittent chaos occurs. We may expect such
values of a at the transition of periodic windows and chaotic bands. It is worth
noting that, in some cases, very high precision of calculation of «; is necessary.

Figure 10 shows intermittent state variable (signal) x, versus n, strange at-
tractor y,, versus r,, power spectrum P X, that is a fast Fourier transform (FFT)
of x2, correlation function (', computed according to Eq.(3.10) and its power
spectrum density for a selected value a; = 1.94610199282. This figure shows
intermittency of saddle-node type, which is located at the boundary of the first
chaos band and 3-period window, see Fig.3. The intermittent signal consists of
chaotic part and inclusions of 2, 3 and 4-periodic parts. Also, the strange attractor
reveals periodic parts in the form of isolated points. Power spectrum density —
PX, displays 1/ f fluctuations (flicker noise) in the vicinity of n = 0. The cor-
relation function diagram and the power spectrum of the function confirm this
property.
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I'1G. 9. Lyapunov exponent A, versus «; in relation to bifurcation tree of Eq. (4.1) ay = 0.7,
b = -0.13, and «, = 0+ 10.

Figures 11 and 12 show two intermittently chaotic regimes. They concern
transition from the chaotic band to the 4-periodic window (Fig.3). For a given
value of a5, see Fig. 11, we have predominantly chaotic 2, but if we add only 10~
to a; then r,, changes drastically (4-periodicity prevails). The shape of strange
attractors is nearly the same but that one responsible for the more chaotic case
seems to be more “dense”. Also here, the power spectrum has no sharp peaks,
in contrast to the less chaotic case. Correlation functions are distinctly different.
One is similar to the purely chaotic correlation and the other one to the periodic
case. Flicker noise components are more significant for the case of less chaotic
variable.

The last figure, Fig. 13, shows the state variable x, versus n for the bifur-
cation tree presented in Fig.6. We found the value of a; = 3.7241, which is
characteristic for a transition from chaotic band to 5-periodic window. The se-
lected value of a5 is such that nearly a half of the variable x,, is chaotic and a half
is 5-periodic. Power spectrum correlation function and flicker noise contributions
are characteristic for intermittency.
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The intermittent signals presented here were selected from a great number of
computed examples of chaotic regimes. We note that the state variable y,, can be
easily obtained in virtue of the following relation: v, +1 = bz, see Eq.(4.1). We
see that the chaotic bands are self-similar and therefore, intermittent variables x,,
can be found inside of each chaotic band. For instance, the central chaotic band
of Fig. 3 is composed of three self-similar sections, which appear as we divide the
band by two horizontal lines and each section is similar to the entity. The same
property shows all chaotic bands of Fig. 3.
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5. Conclusions

The dynamical system considered here is advantageous as it may be easily mea-
sured and computed. There are three parameters «y, b and a; which allow for
applications and simulations of different dynamical processes. Three fundamental
features deserve attention. The assumed piecewise linear approximations of non-
linear characteristics allow to expose the most complex properties of nonlinear
systems, e.g. important types of bifurcations, self-similarity, chaos, intermittency,
fractality and flicker noise. A number of papers are devoted to the theory of
piecewise linear maps, we refer to the following [5, 11, 12] and [13].

The next features concern flicker noise or 1/ fluctuations of intermittently
chaotic variables. In principle, we are not able to distinguish colored noise, com-
ing from outside to the system, from the intermittent signal of the system, which
generates the noise. In the case of colored noise, however, the trajectory produces
a fractal curve that wanders erratically; the correlation dimension is a measure
of the fractal dimension of this curve and is unrelated to the existence of an
attractor. In addition, the correlation dimension is related to the power law spec-
tral index a(f~®) by Dy = 2/(a — 1), see [4]. Fractal dimension of strange
attractors is the last feature of our comments. Varying the parameter a, we may
select intermittently chaotic variable of higher or lower contents of chaos. In this
way, we may change fractal dimensions of an attractor as well as the power law
spectral index . According to our computer calculations, lowering content of
chaos in intermittent signal causes higher content of [~ fluctuations but lowers
fractal dimension of strange attractors. This conclusion concerns only the ranges
of parameters ay, b and a; considered here.
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Slow viscous flow about a permeable circular cylinder

SUJIT KUMAR KHAN and D.PALANIAPPAN (SANDUR)

SLOW STEADY two-dimensional motion of a viscous incompressible fluid about a porous circular
cylinder is considered, using Darcy law for the flow in the porous region and Jones conditions on
the contour of the cylinder. The problem is formulated in terms of Stokes stream function and
velocity, and pressure fields of the modified flow in the presence of porous cylindrical boundary
are obtained explicitly. It is observed that the Stokes paradox exists even in this case. Several other
illustrative examples are presented to justify the usefulness of the method. It is found that the
potential (point) singularities in the presence of a cylinder produce uniform flow at large distances,
its strength being independent of porosity. However, the Stokes singularities (such as Stokeslet
etc.) produce uniform flow at infinity, and its strength depends on the porosity as well as on the
location of those singularities in the presence of the cylinder. The known results in two-dimensional
Stokes flow are deduced as special cases from our result.

1. Introduction

THERE EXISTS an extensive literature on two-dimensional creeping flow (Stokes
flow) problems, in which the inertial effects are negligible in comparison with the
viscous effects in a viscous incompressible fluid. The problem, in general, can be
reduced to finding solution of biharmonic equation that represents two-dimen-
sional slow viscous flow past a finite body. It is quite well-known that there is
no solution of the biharmonic equation for the streaming flow past a finite body,
what is widely known as Stokes paradox. However, the slow streaming flow at
large distances from a finite body may be obtained from the solution of the bi-
harmonic equation for locally generated two-dimensional flows in an unbounded
fluid. JerrFeRY [1] has shown that two rigid circular cylinders of equal radius, ro-
tating with equal but opposite angular velocities, produce a uniform stream at
large distances. DORREPAAL et al. [2] have also explained such phenomenon by
considering a rotlet or a Stokeslet in front of a rigid circular cylinder which lead
to a uniform flow at infinity. SMITH [3] considered the simplest situation of a
single sink positioned in front of a circular cylinder, and concluded that there
was a uniform stream in this case also. The solution due to SmiTH [3] was also
obtained earlier by AVUDAINAYAGAM and JOTHIRAM [4] by an approach similar to
that of DORREPAAL ef al. [2].

The purpose of the present paper is to discuss the solution of biharmonic equa-
tion representing the two-dimensional Stokes flow in the presence of a porous
circular cylinder. The corresponding three-dimensional problem with spherical
and plane boundaries have been investigated by several authors in different con-
texts [S—12]. In this paper, we consider a general Stokes flow past a stationary
infinite circular porous cylinder (using Darcy model) in a viscous, incompressible
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fluid. The velocity and pressure fields in the Stokes region are obtained explic-
itly from the stream function which satisfies the biharmonic equation. The Darcy
region velocity is derived by using the fact that the Darcy pressure satisfies the
Laplace equation. The solutions of the two regions are matched at the contour
of the cylinder using the boundary conditions due to JonEgs [13]. It is shown that
the Stokes paradox continues to exist with these conditions at the contour of the
cylinder. Several illustrative examples are worked out to justify the usefulness of
the present method. It is noted that the point singularities located in front of the
cylinder produce a uniform stream at infinity, and its speed

1) depends on their location alone in the case of potential singularities;

2) depends on their location as well as porosity in the case of Stokes singu-
larities.

This fact may be due to the validity of the Darcy equations which are restricted
to low porosity of the region. The above observation would have to be chécked
by using Brinkman model equations which are valid for high porosity.

2. Mathematical formulation

Consider the slow steady flow (creeping flow or Stokes flow) of a viscous
incompressible fluid past an infinite circular permeable (porous) cylinder (Darcy
region) of radius a. For the flow outside the cylinder, the governing equations
are the linearised Navier - Stokes equations or simply the Stokes equations

(2.1) ;szq = Vp,
(2.2) V.q=0.

Here q is the velocity vector with components (¢, ¢s. 0) in the radial and trans-
verse directions (1, #) respectively, p the pressure and s the coefficient of viscosity

of the fluid.
The flow inside the porous infinite cylinder (0 < r < a) is governed by Darcy’s

law
/‘.
Q=--VP,
/I

2.3
(23) vV.Q =0,

where Q is the volume rate per unit cross-sectional area, P the Darcy pressure
and & > 0 is the permeability coefficient.
The appropriate boundary conditions on 1 = « are as follows:

(i) the pressure is continuous across the boundary of the cylinder

(2.4) pla,0) = P(a,d);
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(ii) the radial velocity is continuous at the boundary of the cylinder
(2.5) q-(a,0) = Q,(a,0);

(iii) Jones condition [13] for tangential velocity on the cylinder is that the
tangential stress is proportional to the difference in the tangential velocities of
the two regions, i.e

. . _ 1dg, 0 (qs o«
(26) //'ﬁlr=u =p {,_ W + ()_T (7—‘)];'=u - ﬁ [(]9 - Q0]1‘=!1 )

where 7’4 is the tangential stress component and « is a parameter which com-
pletely depends on the porous medium.
3. Method of solution

It is well-known that the Stokes equations (2.1) and (2.2) in two dimensions,
when expressed in terms of stream function, reduce to

(3.1) v = 0,

where
L’i 18 . 1 9%

72 — ST <
il ot o Or + r2 )02
and
_10¢
(3.2) TR
& _ o
(‘)‘3) dp = EF )

(., qo are the components of velocity along r and 0 directions, respectively. The
general solution of (3.1) in polar coordinates is given by

Cu + D”2 (cos nll + sinnh),

].71 7-71—

(3.4) = [.4” r* + B,r"t? +
n=0

where we have excluded the terms which give nonzero vorticity at infinity. The
constants A4, and B3, are assumed to be known and will be determined from the
given flow field. For convenience we proceed further with the terms involving
sin 16/ in the Fourier expansion (3.4) only, since the calculation for the other part
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involving cosn6 is similar. Now the components of velocity and pressure in the
Stokes region obtained from (3.2), (3.3) and (2.1) are

- . D,
g = — Z [Anr”'l + B,r**1 4+ ,.E+1 + T_TT} ncosnf,
n=1
- n=1 nCp P.1.
(33) ¢ = Z [nA L+ (n+ 2)Brtt! - 1 (- 2);;—_7] sin nf,

n=1
o0

p=po— p Z [4(12 + 1)B,r" + 4(n - l)%] cosnd.

n=1

In the porous region (i.e » < «) the Darcy pressure satisfies the Laplace equation
V2P = 0. Therefore,

(3.6) P =P+ > E.r"cosnb.

n=1

The components of velocity inside the porous cylinder in r and ¢ directions now
become

Qr=-——5—=—— nE,r"!cosnd,
(3.7) =t
Qs = _/_1 HW = — Zn E,r" sinnf.

The stream function for the Darcy region may also be defined and given by

(3.8) W — Z E,r" sinnf,

n=1

where V2" = 0. It should be noted here that in (3.6) we have omitted the terms
which do not produce finite velocities at the origin.

The general expressions for the pressure and velocity fields in both the regions
will now be solved for the constants (', [),,, I, expressed in terms of 4, and
B, using the boundary conditions (2.4) - (2.6).

Application of the boundary conditions (2.4)-(2.6) in the general solutions
yields

aa 4k
. ( 1)\/_ azn(n - 1)2> A

a®n M,

(2'n+ —n+4
5 vk

a\/_

(n—1)(n+ 2))
J’\f[n
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(2 + ﬁi) nA,

(3.9) B . vk
foont ] q2n—2 - A/In
(i’/_(]\i o Mn + z—];n(n + 1)) (n + 1)a’B,
+ M, ’
aa
B 4 (2+ ﬁ) - 1A
I (Lz ]\/_’[n
aa
(Zn, — (P}~ 2)) (n +1)a®B,
+ vk ’
M,

where

. k 3
M, =2n + a3 40’%—_77(77 -1)+ %é—n.('n, + 1)(n —1).

vk

4. Examples
4.1. Uniform flow along OX
For the uniform flow with a speed U/ along OX, we have
qr = —U cos @, qs = Usind
and
(4.1) g = Ursind.

Threfore we have A, = U, A, = 0 for all n > 2 and B, = 0 for all n. The
coefficients (', D, and F,, as calculated from (3.9)-(3.11) are

(42) (-"1 = 0, 1’)] = —(,/, E] = 0.

This implies 1> = 0. Thus a uniform flow about a porous cylinder is not possible,
which is the usual Stokes paradox known in the literature.

4.2. Quadratic potenial flow

In this case

U
(4.3) Yo(r,0) = — ?P sin 3¢
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(U'/3 is a shear velocity) and A} = Ay =0, A3 = -U/3, A, =0forall n > 4
and B, = 0 for all n. The coefficients (5 and D5 are found from (3.9) and are
given by
aa k U\ &
i (2\/1T 48“2) ( ?) a
aa avk kY’
6+ —=+24—— + 96—
(s+ 255 4953
(2 ¥ ﬂ) Ud
(4.4) D3 = ‘/I\/_
aa a
6+ Tr + 24— = + 96— ]
aa
2 (2 + )
i E

a

2
‘ (6+\/k_+24m/_+96 )

Now the complete stream function for the two flow fields are given by

2 48k
vl . (F-E) e
5

ad \/1._ kY r3
6+ + 24 + 96—
( VET T )

(2 i cm)
T 4
vk i sin 36,

aa avk 7
6+ 22 + 242YE 496"
(o4 G222t +053)

(4.5) +3

=)
o+ = By vk r3 sin 36.

i =g
‘ (6+:}(Ai+24nﬂ+96A)

Stream lines in Stokes’ region are plotted for different values of porosity in Fig. 1.
We observe that in the limit (a/vk) — oo, k = 0, we recover in (4.5); the
stream function for the quadratic potential flow past a circular cylinder [14].
When (a/Vk) = 0, k = 0, we obtain the quadratic potential flow past a shear-free
cylinder [15].

http://rcin.org.pl
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k=10" (Avudainayagam et al.)

4 5 6

v =-0.05
= 0.12

100
1.0

1. 1. Stream function ¢(r, #) in Stokes region.

Another interesting special case may be deduced from Eq.(4.5),. If we let
(a/Vk) — (1/Xj) and k = 0, then (4.5), reduces to
U 2(1 - 3) r_:(_’ i 33 ot

W % | sin30,
¥ 3{’ B+ @+ | "

(4.6)

where 7 = 1+ (a/2Ay). This solution corresponds to the quadratic flow past
a cirular cylinder with mixed slip-stick conditions [16]. In the present case the
boundary condition (2.6) becomes ¢; = A7,; on r = a where A is here the
slip parameter. Thus our solution includes all the possible quadratic flows past
a cylinder indicating that the boundary conditions (2.4) —(2.6) are assumed in a
more general form.
4.3. Source outside a circular cylinder

Consider a source of unit strength located at (c. 0), ¢ > «. The stream function
corresponding to a source in an unbounded flow is
rsin {/
4.7 o(r, ) = tan™! ———— .
(47) o(r, 0) = t ¢ —1rcost

Equation (4.7) may be expanded into a Fourier series as

(4.8) o =3 — sinnd.
’ nct

n=1
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Therefore A, = 1/nc" and B, = 0 for all n. The coefficients C,, and D,, can
be calculated from (3.9) and the modified stream function in the presence of a
porous cylinder is:

for r > a,
aa 4k
N el (-1 - Zgntn = 17) a0
( . ) Y (7? )_ ngl rt+ Aﬁrn P
aa
(2 + ﬁ) noam-z| g _
a M, rn=2 | ncn £
forr < a
o
(2 ” _) .
(4.10) it = Z f - Y2l (n - ) sinnd.

n=1

It will be of some interest to study the asymptotic behaviour of (4.9) as r ap-
proaches infinity. In the limit as » — oo, Eq.(4.9) becomes

1
(4.11) P = ~;rsinf).

This is a uniform flow along the negative x-direction at large distance from the
porous cylinder.

This conclusion has already been drawn by SmitH [3] in the case of a source
acting outside a rigid cylinder. We remark that the porosity has no effect on the
speed of the uniform stream at large distance. Perhaps, this may be due to the
fact that the porosity is small in Darcy flow.

4.4. Stokeslet outside a circular cylinder

Now let us consider a Stokeslet of strength /' located at (0,c¢), ¢ > a. The
stream function corresponding to the Stokeslet in an unbounded region is

(4.12) o = F(rcosf — ¢)log Ry,
where /2 = 1% + ¢* — 2¢rcosf. The constants A,, B, (., D, and E, can

be obtdmed in the similar way as that explained in the above example. The
stream-functions for the two flow fields in the presence of a Stokeslet in front of a



SLOW VISCOUS FLOW ABOUT A PERMEABLE CIRCULAR CYLINDER 185

porous circular cylinder may be constructed with these constants. The asymptotic
form of the perturbed external flow field as » — oo is given by

Fl (2+ ;%)%+(7%+4O;/_+ )262]

)

Hence, at large distances, the Stokeslet produces a uniform flow whose strength
depends on the location of the singularity and on the porosity. The variation of
the speed for different values of ov//k are shown graphically (see Fig.2). The

071
L a

(4.13) h(r,0) = rcosfl.

1.0
1.5 k

[
nn

1.0

el " L o TR |
-1 0 1 2 3
10 10 10 G N 10 10

I"1G. 2. Stokeslet-cylinder combination-effect of permeability on the speed at large distances.

effect of porosity on the stream function at large distances is shown in Fig. 3.
In the limit when & = 0 and (aa/Vk) — o, we recover the result obtained by
DORREPAAL et al. [2] for a rigid circular cylinder. In the limit of (a/v/k) = 0 and
k=0 we get

=

(4.14) p(r,0) = —%rcos().

Therefore a Stokeslet in the presence of a shear-free circular cylinder produces a

uniform flow at large distances, its strength being independent of the location and
1 2(B- .
porosity. If we let I (<o , where 3 =1+ (a/2Ap) as in example

Vk  Au a

http://rcin.org.pl
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#=0, a=10 a=10" 10 10" 6=0, a=10 «a=10! 10! 10"
600 i : v o 0T

C=135, F=1.0 C=135, F=1.0

i r=1000 100 i r =200 10"
400 10710 80 101"
200 40
Yy W
0 I 0 L
1.0 4 o,
200 -40
-400 -80
Dorrepaal et al. Dorrepaal et al.

-600 — -120-

I1c:. 3. Stokeslet-cylinder combination-effect of porosity on the stream function at large distance.
(4.2), Eq. (4.13) reduces to

2
—B+(B-1)=
=
243

(4.15) U 1cos ().

This solution corresponds to the asymptotic behaviour of the Stokeslet in front
of the cylinder when mixed slip-stick conditions are applied at the contour of the
cylinder.
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Second sound speed in a crystal of NaF at low temperature

W. KOSINSKI (WARSZAWA),
K. SAXTON and R.SAXTON (NEW ORLEANS)

WE DERIVE a physically justifiable model of heat conduction for rigid heat conductors based on
a recent approach involving the gradient generalization of an internal state variable. The model
accounts for observable phenomena in solid dielectric crystals, related to wave-like conduction of
heat in certain ranges of low temperatures and a rapid decay of the speed of thermal waves close
to a temperature value 7, at which the conductivity of the material reaches a peak.

1. Introduction

FiniTe spEED thermal waves, known collectively as second sound, distinguishing
them from generally faster propagating mechanical waves, were first detected in
*He, ([1]), and then in high purity dielectric crystals of sodium fluoride, NaF,
([8]), and bismuth, Bi, ([16]). It has been observed that there exists a (material-
dependent) temperature value below which second sound begins to be observed.
The temperature values of this type have been measured to be close to those
at which the conductivity of the material reaches a peak, a useful discussion of
which can be found in the review papers [6, 10, 11].

In order to match regimes of different material behaviour, we will adapt the
gradient generalization of the internal state variable theory in [14] to qualita-
tive experimental results from the literature, so as to specify admissible forms
of constitutive equations and material functions. In particular, our derivation is
based on two experimentally observed phenomena not included in existing ther-
modynamic theories of second sound. The first is related to the propagation of
heat pulses in solid specimens. It has been observed, ([8]), that in some range
of temperature at which experiments have been performed, the time of arrival
of heat pulses sent through a specimen is an approximately linear function of
the reference temperature. However near the upper limit of measured tempera-
ture values, the time, measured by the leading edge of heat pulses, rises rapidly
with increasing temperature. The latter corresponds to a very fast decay (with
respect to temperature) of the second sound speed. The second phenomenon
concerns the heat conductivity, in that close to a particular temperature the con-
ductivity of the material reaches a peak, ([9]). In our model, motivated by the
experimental data, we make the hypothesis that the temperature of maximum
heat conductivity coincides with that below which second sound appears. Above
this temperature value the heat conduction becomes purely diffusive, obeying a
general nonlinear Fourier law. We call this critical temperature /. Furthermore,
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our approach allows us to relate /), the temperature at which heat conductiv-
ity reaches a maximum, to v/,,, a temperature separating two distinct families of
discontinuity waves.

2. General framework

In [12], the material gradient of an internal, scalar, state variable was intro-
duced as a fundamental state variable in the response functions of thermoelastic
materials. In the course of obtaining consequences for the laws of thermodynam-
ics, a modified Fourier-type law was found leading to finite speeds of propagation
of thermal and thermomechanical waves. This model differed from an earlier one,
([13]), in the form of the evolution and constitutive equations, however essen-
tially the same model as earlier has been used in the investigation of second
sound phenomena ([3, 4]).

In the present paper we will begin with the generalized semi-empirical model,
developed recently in [14]. The principal assertion is that the thermodynamic
temperature ¢ is not by itself sufficient in describing some highly nonequilibrium
phenomena, including the observed occurrence of low temperature heat pulses.
Thus, besides the temperature and its gradient, a further internal variable, /3,
and its gradient are introduced into the constitutive equations. The variable 7 is
in a certain sense a nonequilibrium temperature, related to the thermodynamic
temperature through an initial value problem, and represents a history of the
temperature field.

A rather general dependence of the free energy 1> was allowed in [14] on the
various variables. However to avoid constraints between ¢/ and /4, this framework
reduces to the following set of constitutive relations,

1,"‘(‘[}. J Vf) ]] e —(.')1) {“"‘([‘). fj. le’)‘
qW, Vi, 3.V8), B=f@,5),

(2.1) W
(2.2) q

in which the symbol V denotes the gradient operator. Here q is the heat flux
vector, 1) the entropy density, ¢/ the thermodynamic temperature measured on the
absolute scale, and 1 the free energy per unit volume related to ¢, the internal
energy per unit volume, by

(2.3) h=c—nu.

Balance of energy and the second law of thermodynamics imply

1

rld .

) g + divq
(2.5) n: + div(q/v)

v
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where 1 is the body heat supply per unit volume. In this case the second law will
take the form of the residual inequality

(26) —r‘}v:,z;‘ . ()jf\_”z - f),';‘l[,"f = ('()\7,3 Iffagf + ﬁ_lq)-VU > 0.

In the isotropic case, the dependence of q on the gradients Vi) and V3 can take
the form

(2.7) q=—-kVid-aVj,

where the coefficients & and o may depend on the scalar quantities v, /3, |V,
V3| and Vv -V /3.

However, as discussed in [2], it becomes reasonable to make the following
assumptions while remaining consistent with classical thermostatics, at the same
time making it straightforward to use experimental results to identify the material
fynctions needed:

o the free energy is independent of 3 and quadratic in [V /3],
o the coefficients & and o depend only on 1.
Then we have the following representation for the free energy (cf. [2])

1
(2.8) b = P1(d) + 3 Dy ()| V 312
and the residual inequality simplifies to the form
(2.9) ~unda VB2 + (V7 a = 2da f) VI -VB + 971 K|V > 0.
We note that the form (2.8) is one of consequences of the second law of ther-
modynamics in the original semi-empirical theory (i.e. when & = 0) under the
hypothesis that o depends only on /, as we have assumed above.

It is not hard to show that the last inequality will be satisfied for any choice
of Vo' and V3 if and only if

(2.10) s [, Do) <0, k() >0
and
(2.11) (00 f (0. By - u—ln(u))z < 405 [ (0, BYa (D)~ k(D).

The latter inequality should hold for any choice of £(J) > 0, in particular for
k(1)) = 0. This gives the compatibility condition

(2.12) a(W) = Ui (WN)dy [0, 3)
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(cf. [2]). From (2.12), we obtain the consequence dzdys f(¥, f) = 0, which leads
to the existence of two single-variable functions f;, f>, and to the splitting

(2.13) [, 8) = L) + o(B).

In this way we have the same set of compatibility conditions as in the previous
setup, however, now the heat flux vector can satisfy the more general constitutive
equation (2.7).

3. The NaF model

We now specialize to one space dimension and make some refinements in the
behaviour of constitutive terms, particularly in the light of experimental evidence
concerning NaF, ([9]). In the absence of a body heat supply, the balance of energy,
Eq.(2.4), reduces to

(3]) 5{.+q1r=0w

and, using (2.2) and (2.13), the evolution of /3 is described by

(3.2) By = f1(9) + fo( B).
The heat flux, (2.7), is given by
(3.3) q = —k@@), — a()j;,

while the second law implies
(3-4) a(¥) = i fi(?),

by (2.12) and the following particular choice
/ wr 1, a2
(35) P = ‘Ir"‘l(l)) 1 5‘:’"207).51-

for ¢/, where ¢(V) = 1097, and 1)y is a constant (see (2.8). In this case ¢ reduces
to a function of ¥ alone, by (2.1) and (2.3).
Finally, we define the specific heat ¢, by

(3.6) co(¥) = ') = 3,

where ¢y denotes Debye’s constant.

Combining Egs. (3.1), (3.3) and (3.6) provides an equation describing the evo-
lution of v, which can be used in conjunction with (3.2) to give a third order
system in the pair (¥, 3),

(3.7) oM, — (RN, + a(D)B,)s = 0.
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As concrete examples, let us define two (''-homeomorphisms
fi: R — (—00,0], and fr:R—=R.
For the first, we set
(3.8) fi(2) = a(|z|P712)-, 1<p<2,

where « is a positive constant, and the subscript _ means that when z > 0, f; is
taken to be zero. For the second, put

P
2-p’

(3.9) fa(2) = =blz|* 1z, h>

where b is another positive constant. In both cases, = represents v/ — v/, where
i, denotes the critical temperature at which the heat conductivity of the material
reaches a peak.

The basic form of f; becomes evident when the characteristic velocity, as a
function of temperature, is compared with empirical data (cf. Fig. 1). The form of
[2, however, is taken in order to describe qualitatively the observed phenomenon
of the heat conductivity peak; further experimental data for heat conduction
obtained under quasi-static conditions would be useful to refine this.

Ue (cm/ psec)

0.3 S— g
0.25 S
—_‘_\
J 2 fr—— 777|777 — - m— S ——— | -.'..“- —ﬁ:_‘
0.15—— -
0.1 —
0.05
1
12 12 16 ICEERALY

Fia. 1. Characteristic velocity (solid curve), Uz = 0.85(18.5 — 9)"™ /9", ahead of wave for
p = 1.04, 7, = 185, together with empirical data (dotted curve), Uz = (9.09 + 0.002225%")~",
(Coreman and NEwman, [4]).

It can be shown that in the quasi-static case, for which f (V) + f2(3) = 0, (i.e.
7 is a function of /), the heat flux (3.3) now reduces to

(3.10) g = —(k() + chyg??| (9 — 9,)_ [PAFP=2)y

where ¢ depends on a. b, p and h.

http://rcin.org.pl
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Moreover, an expression for the second sound speed, Ug, (the speed of small
amplitude waves for the case k() = 0) is given by

(311) {% = EQ (1,21)2(” . ‘.)‘\)E(p—l).
e

We note that (3.10) predicts a peak in heat conductivity as ¢ tends to ¢/, from
below, followed by a sharp drop. At the same time, in particular if p is close to 1,
(3.11) delivers a sudden drop to zero of the wave speed (/. Both phenomena are
to be expected on leaving the second sound regime and entering one of purely
diffusive heat conductivity.

Raw data for (/;(¢/) has been given for crystals of NaF of varying purity in [8],
with an empirical relation, (/z = (9.09 4+ 0.002220°")~%3 cm/usec provided in [4].
The dependence of conductivity on temperature and purity is also described in [9],
temperature of peak conductivity increasing with purity. The purest sample had a
peak in conductivity at around 18.5 K which we take here to be /), below which
second sound waves began to appear. In the figure above, we observe qualitatively
and quantitatively similar behaviour (over the region of data availability) to the
empirical form of U/z(v) in [4, 7]. In the present approach we have obtained
this behaviour using the example for f; above, when p = 26/25. The rapid
drop at 18.5K reflects our assumption that {/; vanishes at v/,. On reaching this
temperature the pulse disappeares into the diffusive signal.

The choices we have made for f; and [, in this special case lead to a finite
conductivity peak as ¥ — 18.5K if # = 13/12, and to infinite conductivity in
the same limit if 2 > 13/12. The definition of f,(V — 1)), (3.8), then makes the
conductivity drop to k(1)) for J > o,.

It is possible to investigate the behaviour of shock waves for the system (3.1)
and (3.2), for which the temperature ¥/ has a discontinuity when &(1/) = 0. These
shocks, propagating to the right into an unperturbed state v, satisfy Lax’s ad-
missibility condition, ([3]), if s, < ¢ < s, where o = o(J*,07) is the shock
speed, and s, = s, (V7. 07), s, = s,.(J7*) denote the characteristic speeds, re-
spectively in front of and behind the shock. Note that s, = [/, evaluated at V™.
The choice of the functions [}, [>, predicts a temperature state V" = o, < U/,
into which shocks do not propagate. This temperature is found to be related to
i\ according to

1
m = Jy.
3p-2

(3.12) )

If v* < ,, then for admissible shocks, the temperature, /=, behind the
wave lies between ¥ and V.. (J.. < ¥, is a temperature depending on ")
and is greater than o*. If v* > 4, the temperature behind the wave lies
between v* and .. (now .. > 1,,), which is here less than /*. These two
cases correspond to “hot” and “cold” shocks, respectively. A similar result was
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obtained in [17], however the current model manages to connect the observed
transition to diffusive behaviour at «/\ with the change in wave propagation at 1/,,,.

This model appears to have some additional flexibility as compared to other
theories where second sound persists to certain degrees at all temperatures, (|8,
15]). The presence of two regimes, hyperbolic and parabolic, provides the pos-
sibility of describing further phenomena related to ballistic phonons and second
sound as discussed in [6], including broadening of smooth heat pulses, ([8, 9]),
and diffusive heat conduction related to the parabolic regime.
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An integrity basis for plane elasticity tensors

M. VIANELLO (MILANO)

AN 1s0TROPIC functional basis of 5 polynomials is shown to be also an integrity basis for the space
of plane elasticity tensors. A decomposition of each element in this space into a direct sum of
“harmonic” tensors is used to compute or estimate the distance between an arbitrary elasticity
tensor and the three non-trivial symmetry classes, to allow for the determination of the material
symmetry when the elastic coefficients are known only to within a given approximation.

1. Introduction

Ler Ela BE THE SPaCE of two-dimensional elasticity tensors, which describe the
constitutive equations for plane linarly elastic bodies, and let O(2) be the group of
orthogonal transformations on the two-dimensional Euclidean space. A function
¢ defined on Ela is isotropic, or, equivalently, an O(2)-invariant, if (C) =
(Q + C) for all C € Ela and Q € O(2), where, as we shall see more precisely
later on, the asterisk denotes an action of O(2) on Ela. A finite collection B of
such invariants is a functional basis if each other invariant is a function of the
elements of 5. If these elements are polynomials, and all isotropic polynomials
are also expressible as polynomial functions of them, this collection is an integrity
basis (or Hilbert basis) for the action of O(2). A similar set of definitions covers
the case in which the action of the group of proper rotations S((2) is considered,
and the corresponding invariants are said to be hemitropic.

It is a classical result that every integrity basis is also a functional basis. The
proof, which is far from trivial, is based on a lemma which shows that “polynomials
separate the orbits”. More explicitly, this statement means that whenever two
elements do not lie on the same orbit, there is at least one invariant polynomial
which takes different values on them. For a modern proof of this important result
we refer to the paper by WINEMAN and PipkiN [17, Sec. 6]. On the other hand, it
is not difficult to provide counterexamples showing that, in general, a functional
basis is not an integrity basis.

In Sec.4 we construct a functional basis of 5 polynomials /,, for the isotropic
invariants on [Ela. Similar results were recently obtained by ZHENG [18] and by
BLINOWSKI, OSTROWSKA-MACIEJEWSKA and RycHLEwsKI [3]. Indeed, the technique
used in the present paper is very similar to the discussion contained there, and
the basis found is essentially equivalent. However, in addition, here it is shown
that the set {/,} is also an integrity basis for the action of O(2) on Ela, which is
the main goal of this paper.

For the sake of clarity and self-completeness we choose to offer a detailed
presentation of some mathematical preliminaries, even if this can be seen as an
alternative derivation of similar results contained in [3].
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The key mathematical step is the decomposition of an elasticity tensor into
a quadruplet formed by: two scalars A and , a second-order tensor H and a
fourth-order tensor K, both symmetric and traceless. A description of this tech-
nique, when applied for other goals to the three-dimensional case, is contained
in some papers by Backus [1], BAERHEIM [2], CowiN [6], FORTE and VIANELLO [8]
and, moreover, in a classical treatise by SCHOUTEN [15]. However, except for ref-
erence [3], we are not aware of any other presentation of a similar decomposition
for plane elasticity.

The insight coming from this approach is used to represent the action of O(2)
on Ela through a pair of orthogonal transformations on the two-dimensional
spaces to which H and KK belong. This point of view allows for a natural construc-
tion of a functional basis, thus providing a confirmation, with a slightly different
approach, of a similar conclusion reached in [3]. Moreover, the proof that the set
{/,} is an integrity basis is strongly dependent on the isomorphism between the
action of (J(2) on Ela and the action of the same group on products of complex
planes, which can be easily deduced only in view of the previous considerations.

Constitutive equations for two-dimensional linearly elastic bodies are divided
into four symmetry classes by a relation stating that two elasticity tensors are
equivalent when their symmetry groups are conjugate in (J(2). Once a functional
basis has been established, it is not difficult, through its geometric interpretation,
to obtain a complete characterization of the symmetry classes as zero-sets of ap-
propriate collections of invariant polynomials. As noticed in [3], this is a useful
result in itself, since it allows for an easy determination of the symmetry class of
an elasticity tensor. Moreover, it shows clearly that the collection of tensors with
non-minimal symmetry group is a set of measure zero.

An interesting problem originates from the experimental errors contained in
the numerical data describing elasticity tensors, as it was recently noted also by
Frangots, BERTHAUD and GEYMONAT [5]. In view of the above considerations,
the question of symmetry class has, with “probability one”, the same answer:
The material has no special symmetry. What is really important is a comparison
between the precision of our experimental apparatus and the distance between
C and the closest tensor of a given symmetry. If this distance is smaller than
a certain value, we may reasonably say that, within the approximation allowed,
the material described by C does belong to that symmetry class. In view of our
geometric approach, we propose some formulas, ready for applications, which
allow for a quick evaluation of the relevant distances. We believe some of the
results 1o be new.

2. Symmetry groups and symmetry classes

We use small (resp., capital) boldface letters for vectors (resp., second-order

tensors) of V, the translation space of a two-dimensional Euclidean space &.



AN INTEGRITY BASIS FOR PLANE ELASTICITY TENSORS 199

Scalars are denoted by Greek letters and fourth-order tensors are written with a
blackboard bold font, such as C. A superscript 7" is used for the transpose and the
space of symmetric tensors is called Sym. We use subscripts for the components
of vectors or tensors with respect to a fixed orthonormal basis e; (2 = 1, 2). Thus,
for instance, v = v;e; and T = 1},e; - e;, where the sum over repeated indexes is
understood and the symbol ¢ stands for the tensor product. The subspace of Sym
formed by all traceless tensors (such that A;; = 0) is Dev, while the space of all
fourth-order tensors H which are symmetric and traceless is Dev. More precisely,
H € Dev if H,,;; is unchanged by any permutation of the indexes and, moreover,
H, . = 0. The group of orthogonal transformations of V is O(2), where the unit
element is denoted by I, and the subgroup of rotations, formed by all Q € O(2)
with determinant equal to one, is SO(2). We write Q(#) for the rotation such
that

(2.1) Qe = cosfle; + sinlle; . Qe; = —sinlfle; + cosle; ,

and we denote by Q the reflection with respect to the e; direction: Qel = e,
Qe; = —e;. Obviously, O(2) is generated by SO(2) and Q.

For an extensive introduction to linear elasticity we refer to classical conven-
tions (see, e.g., GURTIN [10]). Here, we simply recall that an elasticity tensor C
is a symmetric linear map of Sym, which gives the stress tensor T as a function
of the infinitesimal strain E: T = C[E]. Thus, the components of C satisfy the
following index symmetries:

Ciirt = Ciirt = Cijik = Chaij -

The symmetry group ¢(C) is the collection of all orthogonal transformations
Q such that
CIQEQ'] = QCI[EIQ’, VE € Sym.
It is convenient to define an action of ()(2) on [Ela, the 6-dimensional space of
(plane) elasticity tensors. For each Q € O(2) and each C € Ela, let Q + C be
defined by

(Q* Clpgrs 1= QpiQg; Qi QsiClija -
Thus, the symmetry group is

g(C):={Qe 02)|Q+C =C}.

A straightforward consequence of this definition is that ¢(Q + C) = Qg(C)Q”.
Moreover, by continuity, ¢(C) is closed. Hence, as a consequence of classical
results (see, e.g., the book by GoLUBITSKY, STEWART and SCHAEFFER [9, Ch. XITII,
Th.6.1]), we know that ¢(C) is conjugate to exactly one of the elements in the
following collection:

Y= {17, D, S0Q),0Q2)} (0 >2),
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where 7, and D), denote, respectively, the cyclic and dihedral groups of order n
(for an extensive coverage of this topic see also MILLER'S book [11]).

The space Ela is divided into symmetry classes by a relation defining C; and
C; as equivalent when ¢(C,) is conjugate to ¢(C;) in O(2). Let Ela((¥) be the
collection of all elasticity tensors such that their symmetry groups are conjugate
to (+ € Y. Then, C; and C, have conjugate symmetry groups if and only if they
belong to the same Ela((+), and the problem of finding the number and type of
symmetry classes is equivalent to the problem of determining which Ela((7) are
empty and which are not. The answer is known (see, e.g., RycHLEWSsKI [14, Sec. 8]),
even if some contradictory statements can still be found in the literature (cf., e.g.,
ZHENG [19, Sec.3.3], where the Author seems to suggest otherwise). However,
the discussion of Sec. 3 has the following statement as a direct consequence: There
are exactly four non-empty sets Ela((?), for GG = Z, D, Dy, O(2).

We use the following terminology to classify the symmetries, depending on
which element of X the group ¢(C) is conjugate to: anisotropic for Z,, orthotropic
for 1)y, tetragonal for Dy and isotropic for O(2). Notice that only Ela(O(2)) is a
linear subspace of Ela.

As mentioned before, it is almost impossible that an elasticity tensor obtained
from experimental data might have any special symmetry at all. As we recall in
Sec. 5, the set of tensors with symmetry 1)y, D4 or O(2) has the structure of an
algebraic manifold of measure zero, formed by the null-set of a finite number of
polynomials. Thus, anisotropic elasticity tensors are dense in [Ela. From this point
of view, the question of interest becomes a different one: We would like to know
how close a given C is to classes of non-minimal symmetry.

The final section contains a computation of the distance between C and
Ela((/), for ¢ = D4, D4 or O(2), which is defined to be the infimum of the
distance between C and C~, as the latter varies over Ela((:) (an obvious Eu-
clidean norm and a corresponding distance are defined in the space of elasticity
tensors).

3. A decomposition for the space of elasticity tensors

A finite-dimensional vector space is decomposed into a direct sum of subspaces
which are irreducible under the action of a compact group (see, e.g.. [9] or [11]).
In our particular context it is possible to show that the decomposition of Ela is
described by an SO(2)-invariant isomorphism which maps C into a quadruplet
(A, 1, H, K), where A and y are scalars, while H and K belong to Dev and Dev,
respectively. More explicitly, for a given C € Ela:

A= (3Cppgq — 2(7'r>ww)/8- n= (2 papg — (—.M}w)/&

f[”\' = [2(—11'1)1.'].- - (’pqméi/\']/lzu
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Kkt = Gzt =[085 Crpty + 011G ingp + Ok Chin + O Cinkp + 081G 1kp + 65 Clinitn | /6
+ [Crapq(56ij0k1 — 6irbi; — 6:10;1)1/12 — [Coopeq(36i6k1 — binbij — 66;x)]/8,

(0.; is Kronecker’s delta). Vice versa, the elasticity tensor C corresponding to
(A, e, HLK) s

(VUU = ]\'e‘jkl + (SgJ'HM + Hijékf + 6;kf[[j + Hgkéu + 6i1ffjk + ff“(sjk
+ X6ij0k + p(dirby; + 610 jk).

The validity of this decomposition can be directly checked through substitu-
tions followed by lengthy computations. Moreover, it is not difficult to see that
this is a variation, and an indirect confirmation, of a quite similar result presented
by BrLiNvowsk1 et al. [3]. However, it is perhaps useful to spend a few words on a
short description of the rationale behind our derivation, for which we followed
the scheme adopted by BAERHEIM [2] in three dimensions. The first step con-
sists in writing (';;;; as the sum of a completely symmetric part .S;;;; and an
“asymmetric” part A; ;.

Siiet = {Cuu + Comy + Ciize)/3, Aijri = C5ju — Cikiy — Cuji)/3.

This corresponds to a decomposition of Ela into a direct sum of two orthogonal
subspaces. Since the dimension of Ela is 6 and the space of completely symmetric
fourth-order tensors has dimension 3, it follows that A;;;; is a scalar multiple of
a fixed asymmetric tensor, say:

Aijrt = a(26;01 — 8ikbij — 0:10;1).

Next, we use the fact that for each S;;;; there is a unique pair of tensors A € Sym
and K € Dev such that
.qz'./';\.[ = 1\’”“ + 6(1'.-;’/’1};1)-

where the parenthesis denotes full symmetrization with respect to the enclosed
set of indexes or, more precisely,

f)(i-'[- 4’11.-!) = ())j\‘,.""l,[‘-j + .-*"\,",'(SA-[ + 5,’1‘./1[_,‘ + /'1”,5“ + (5,'[,-4‘,';\- + Ai[CSJ'k .

This property is a reformulation of a well-known result on polynomials, which
naturally correspond to symmetric tensors, as discussed in [9, Ch. XIII, Sec.7,
Prop. 7.1].

Finally, we use the decomposition of each element of Sym into the sum of a
“spherical” part (i.e., a multiple of I) and an element H of Dev, so that we may
write

/'lz‘_/' = ]1,‘11 + /360‘/2.
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Trivial substitutions followed by an appropriate change of names yield the de-
composition, which, with obvious meaning, is written as

(3.1) C = (A, pu, H, K).
An action of ()(2) on Dev is defined by
Q+A:=QAQY, VQeO(2), VAc Dev.
It is a matter of simple computations to check that
Q+xC=(\p,Q+H,Q+xK), VQe 0O(),

and, consequently, ¢(C) = g(H)N ¢(K), where g(H) is defined in the natural
way. It is now clear why the action of (O(2) on Dev and Dev is of great interest,
and the importance of the geometric description of this action which is obtained
in the final part of this section.

It is convenient to define an appropriate orthonormal basis in each of these

spaces. For Dev we use:

2 2
E,:= —Z—(el © e — ey e), E, := \/7_(e1 ey +e®ep).

The basis for Dev is more complex:

V8 A ’ .
Ey:= ?(el epheReteaRea@erer—e e Re@Re—eer@e@De;
—gRe e e —eeNene —eReNe e —e e e ®ep),
V8 , o
E, := —(e1eReReyte e ReaReteRede e teaRe Ve Re

8
—epeene —elele e —eRe DepDe —e Dederdey).

In view of (2.1), through direct substitution it is not difficult to show that
Q") + E; = cos(20)E, + sin(20)E, . Q) + E; = —sin(20)E, + cos(20)E; .
while more lengthy computations are needed to prove that
Q(0) * E; = cos(40)E; + sin(40)E, . Q)  E; = —sin(40)E, + cos(40)E, .
Moreover, since Qel = ¢, and Qez = —gy,

Q+E, =E. Q+E; = -E,, Q+E,=E,, Q+«E, = -E,.

In conclusion, each Q(#) acts on Dev as a rotation of 20 and on Dev as a
rotation of 44, while Q is simply a reflection with respect to the “horizontal”
axes spanned by E; and E,. The geometric insight provided by this point of view
makes easy a proof of the fact that there are only symmetry classes corresponding
to groups 7, Dj, Dy, and O(2).

http://rcin.org.pl
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4. An integrity basis

The Euclidean structure of Dev and Dev is obtained by introducing the inner
products A-B = A, B;; and H-K = H, ;1 ;1. We use the symbol | +| to denote
the norm in both spaces. For a given C = (), i, H, K), let a be the angle between
H and E, and let / be the angle between K and E;. Furthermore, we need the
following definitions:

Iy := |H|cosa = H-E; , H, = |H|sina = HE, ,

4.1 ‘
*-1 |IK|cos3 = K-E,, Ky = |K|sing = K:E,.

[\1:

The geometric view of the action of O(2) on Dev and Dev makes the choice
of four independent polynomial invariants quite obvious:

L=\ Lw=pu L:=H? L:=K>

Thus, we only need to find a fifth invariant, and, to this end, we consider the
angle v := 2a — /3. Since the action of Q(f) maps a onto « + 26 and /3 onto
7+ 40, it follows that ~ is left fixed. However, it is also straightforward to see
that, under Q, 7 is mapped onto —~. Thus, the conclusion is that this angle is an
SO(2)-invariant, but not an O(2)-invariant. A natural choice for the fifth isotropic
invariant 7 is the cosine of ~:

1 := cosy = cos(2a — F).
This function is not a polynomial and thus we expand it as
T = (cos® o — sin? @) cos F + 2sin a cos a sin /3
and use definitions (4.1) to obtain the fifth polynomial isotropic invariant:
Is = HP|K|Z = (H? - H})K, + 2H,H, K, .

The steps followed for the construction of the collection {/,} show that a
necessary and sufficient condition for C; and C, to be on the same orbit is that
[.(Cy) = [,(Cy) (1 < n < 5). Itis a well-known result that this condition is
necessary and sufficient for {/,} to be a functional basis (see, e.g., WEYL [16],
WiNEMAN and PrekiN [17, Sec. 4, p.190]).

As an additional remark, we notice that if the SO(2)-invariant polynomial

lo = HPK|siny = 2H\ Hy Ky — (H} - HHK,

is added to the previous list, we obtain a functional basis for SO(2)-invariant
functions on [Ela. However, in this case, there is a relation (or syzygy) among the
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elements of the collection {/,,} (1 < m < 6): IZ + [} = [}1,. This is obviously
due to the trigonometric identity between sin~y and cos .

Our aim is now to prove that the collection of invariants {/,} is indeed an
integrity basis, and not only a functional basis.

TeOREM 1. For each O(2)-invariant real-valued polynomial p on Ela, there is a
polynomial 7 in 5 variables such that

p(C) = 7(I(C), I(C), I3(C), 14(C), Is(C)), V¥ C € Ela.

A convenient technique of proof is based on the idea of looking at the action
of O(2) on Dev and [Dev as an action on the complex plane C, and then to apply
straightforward considerations from the complex number theory. This method
was applied by PIErRCE [12] to a similar problem.

More ‘precisely, the product between Dev and Dev is seen as C2. Then, the
action of a rotation Q(/) € SO(2) on this space is defined through the unit
complex number exp(:f) as

Q * (21, 22) := (exp(i20)z1, exp(i40)zy), ¥ (21, 22) € C%

Moreover, the action of Q (reflection with respect to the “horizontal” axes) cor-
responds to complex conjugation: Q * (z1, z2) := (21, Z2). According to this point
of view, we rewrite three of the invariants as

s L=z’ L=l=? 5= RGE5).

In view of the decomposition of Ela described in Sec.3, we now choose to
look at polynomial functions of elasticity tensors as being defined on R? x (2,
Moreover, we notice that each polynomial in the real variables = and y can be

written as a polynomial in the complex variables » and Z, where z = x + 1y. For
this reason, we have

— 5 I, m._r=s_tz
(4.3) p(C) = Z ChinratuX B 21212523 5
where the index range depends on the degree of p. However, since we are only
interested in real-valued polynomials, the restriction ¢j, 500 = Crsrut Mmust be

satisfied. Moreover, invariance under the action of Q is guaranteed by ¢, 50 =
Clmsrut, Which combined with the previous condition, implies that all the coeffi-

cients are real.
The action of Q(f) € SO(2) yields

PQ*C) =" Clmpsra N 1" 2] 2] 2525 exp[i(2r — 2s + 4t — 4u)]

and, from p(C) = p(Q * C), we deduce that invariance under the action SO(2)
is guaranteed when the non-zero coefficients in (4.3) satisfy a relation which
simplifies to

r—s=2(u-t).
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Thus, by inspection, we deduce that there are three types of non-zero terms in
the sum defining p: (a) Those for which » = s and v = ¢; (b) Those for which
7:=u—tand r — s = 27 are positive integers; (c) Those for which 7 := 1 — u
and s — r = 27 are positive integers.

Case (a) is simple, because we rewrite each such addendum as

ml:’,l[Zr IZuﬂ

Clmrrun A ™ (2121) (2222)" = Clmprun Al gt |22 (no sum),

and, in view of (4.2), this is a monomial in the invariants /3 and /4. The symmetries
of the coefficients ¢;,,,, ., imply that the sum of the terms corresponding to cases
(b) and (c) can be written as

[ mp.r=s_t= Bl ot =t - y .
Z("Hll'slu’\ H “[“'{'ls~2"5 ;5 ‘f";“‘g“ﬂ]‘ r<s, t < U,
which is
ZZ C,m,.sf,,/\’,u'" R[=] 25 2525], T8, <

Since » = s + 27 and u = 1 + 7, we conclude that this sum is
22('[,,l,,_“u,\‘{/ﬂ”].:1|2‘9[:2|2t?}1‘[(31252)r], FLe, €U

Finally, in view of the binomial formula, the real part of z7 is always a polynomial
in the variables = := Rz and y? := (3z)? = |z|? — 2%. Thus, we deduce that
R[(z%2,)7] is a polynomial in /3, [4 and /s, and this concludes the proof that
the collection {/,} is an integrity basis. As a final remark, we wish to draw the
reader’s attention to the fact that, with a similar technique, it is possible to prove
that this collection, plus the sixth invariant /g, is also an integrity basis for the
action of the group SO(2) on Ela.

5. Symmetry classes and invariants

A complete characterization of each one of the three non-trivial symmetry
classes mentioned in Theorem 1 as the intersection of the zero-sets of isotropic
polynomials is directly deducible from the geometric interpretation of the invari-
ants introduced. This was also shown in [3], but, for the reader’s convenience,
we repeat here a formulation of this result, which can be easily proved using the
concepts previously introduced.

ProrosITion 1.

CeFEla(OR) & 3=14=0, CecEla(Dy)e =0, I;#0,
I3#0, I;=0,

I#0, I, #0, I2-131,=0,
CeEla(Z) e #0, L,#0, I2-I121,#0.

CEEMHQ@{
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We are now left with the problem of determining the distance between an
elasticity tensor obtained through experimental observations of a given material
of unknown symmetry and the symmetry classes Ela(0(2)), Ela(D4) and Ela(D)>,).
As we shall see, only the distance with the first two classes can be computed
explicitly, while for the third one the problem is left in a more general setting.

Before completing this discussion, it is important to make clear a further
point. In principle, we are not so much interested in the distance between a
given C, which here we shall assume to be anisotropic, and the other three sym-
metry classes, but, rather, in the distance between them and the orbit of C. The
reason is clear when we think that two different elasticity tensors C; and C,
lying on the same orbit (i.e., such that there is an orthogonal Q with the prop-
erty that C, = Q * C,) represent the same material differently rotated in space.
Thus, properly speaking, physical meaning pertains to the orbits, rather than
to the elasticity tensors themselves. This observation, which is also discussed by
BoeHLER, KiriLLOV and ONAT [4], shows the importance of having at our dis-
posal a functional basis of isotropic invariants, to separate the orbits and decide
when two elasticity tensors correspond to the same material body. Incidentally,
we note that a functional basis for three-dimensional elasticity is not yet known,
even if a partial answer is provided in [4], and a complete solution was recently
announced by ZHENG and BETTEN [20, Abstract] and is expected to be published
in a forthcoming paper by the same Authors.

However, we now prove that all the elasticity tensors on the same orbit have
equal distance from any given symmetry class. Direct substitution shows that the
action of O(2) on Ela is distance-preserving: d(Cy, C;) = d(Q + C;,Q + Cy), for
all Q € O(2). In other words, this action is a homomorphism of O(2) into the
group of orthogonal transformations of Ela. For convenience of notation, we let
S be any one of the four symmetry classes of elasticity tensors. Then Q+S§ = §
for all orthogonal Q. Thus,

nf d(Q + C,Q + C7)

d(Q + C.8):= inf d(Q + C.C") = i
‘L‘ES o
= inf d(C,C") =:d(C,S).
CTes

Cres

The interested reader will find a more complete discussion of many aspects of
the geometry of the orbits of elasticity tensors under the action of the orthogonal
group in a paper by RyCHLEWSKI [13].

Our goal is now to compute explicitly the square of the distance between a
given tensor C = (\, u. H. K), which is assumed to be aelotropic, and each one
of the three remaining symmetry classes. We write this quantity as follows:

A(C, G) := |d(C, Ela(G))*.

Let G = ((2). Then, for a generic isotropic C™ we may write the decomposi-
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tion (3.1) as C* = (A", ;*,0,0). Thus,
1d(C,C)> = (A= A+ (u— p*)? + H? + K%

It is now obvious that minimization as C™ varies over Ela(O(2)) requires C™ =
(A, 42.0.0) and, consequently,

AC,0Q)) = H> + |K|* = I3 + 1.

A geometric interpretation of this result is straightforward: C” is simply the
orthogonal projection of C onto the subspace of isotropic tensors, and A(C, O(2))
is the square of the distance between the two. The problem of determining the
isotropic elasticity tensor which is the closest to a given C is classical and, for
three-dimensional elasticity, this solution is discussed in many textbooks (see, e.g.,
Feporov [7, Ch. 5, Sec. 26, pp. 174-175].

We now address the issue of determining A(C, Dy4). The decomposition of a
generic tetragonal elasticity tensor is: C™ = (\*, p*, 0, K™). Thus,

|d(C,CH>= (A= AP+ (- P + H? + |K - K2,
and minimization implies that C™ = (A, z1, 0, K). In conclusion,
A(C,Dy) = |H? = I.

The computation of A(C. ;) is more complex. In view of Proposition 1, the
symmetry class Ela(/);) can be seen as the union of two disjoint subsets S; and
S», formed, respectively, by elasticity tensors such that /4 = 0 and such that
Iy # 0 with [2 = [}],. Minimization of the distance between a given C and S,
yields the inequality

A(C, D,) < 14,

which, in any case, is a useful estimate of A(C, 7);). To complete our analysis we
need a better description of the set S,, which is characterized by the condition
cosy = +1. Let ¢» and ¢ be the angles that the two tensor components in the
decomposition (3.1) of a generic element of S, form, respectively, with E; and
E,. Then, v» = ¢/2 + kx /2, for some integer k. The element of $; minimizing
the distance from C = (A, p, H, K) is obviously C* = (A, u, H*, K"), where H*
and [K" are chosen in such a way that the sum |[H— H*|?>+ |K — K"|? is an absolute
minimum. We may now use elementary geometry considerations to show that

H - H >+ |K - K*|?> = (K, sin ¢ — K, cos ¢)? + (H, sin(¢/2) — Hycos(¢/2))>.

Let A™ be the minimum of this distance as ¢ varies over [0, 27). In view of the
definitions (4.1) we deduce that

A* = nlq],-rzl ){|K|Zsin2(r;; — ) + |H|?sin%(¢/2 — a)}.
¢ee|02r

http://rcin.org.pl
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Moreover, since this quantity is invariant under the action of O(2) on C we may
also assume that o = 0 and, as a consequence, v = — /3. Thus, in conclusion,

¥ — i  Bps o s B
A* = ¢$2:)“4 sin“(¢ + ) + I3sin“(¢/2)},

and

A((C, Dz) = min{]4, A*}

The research supported by GNFM of CNR (Italy).

References

1. G. Backus, A Geomerical picture of anisotropic elastic tensors, Reviews of Geophysics and Space Physics,
8, 3, 633-671, 1970.

2. R. BAERHEIM, Harmonic decomposition of the anisotropic elasticity tensor, Q.J. Mech. Appl. Math., 46, 3,
391-419, 1993.

3. A. BLINOWSKL, J. OSTROWSKA-MACIEJIEWSKA and J. RYCHLEWSKI, Two-dimensional Hooke's tensors —
isotropic decomposition, effective symmeny criteria, Arch. Mech., 48, 2, 325-345, 1996.

4. J.P. BOEHLER, A.A. KiriLLOV and E.T. ONAT, On the polynomial invariants of the elasticity tensor, J. Elastic-
ity, 34, 97-110, 1994.

5. M. Frangois, Y. BERTHAUD and G. GEYMONAT, Une nouvelle analyse des syménies d'un matériau élastique
anisotrope. Exemple d'utilisation a partir de mesures ultrasonores, C.R. Acad. Sci. Paris, 322 (Série II b),
87-94, 1996.

6. S.C. Cown, Properties of the anisotropic elasticity tensor, Q.J. Mech. Appl. Math., 42, 2, 249-266, 1989.

7. F.IL. Feporov, Theory of elastic waves in crystals, Plenum Press, New York 1968.

8. S. Forte and M. VIANELLO, Symmetry classes for elasticity tensors, 1. Elasticity, 43, 2, 81-108, 1996.

9. M. Gorubrrtsky, I. STEWART and D.G. SCHAEFFER, Singularities and groups in bifurcation theory, vol. 2,
Springer-Verlag, New York — Berlin 1985.

10. M.E. GurtiN, The linear theory of elasticity, [in:] Mechanics of Solids IT, C. TRUESDELL [Ed.], volume VIa/2,
Handbuch der Physik, pp. 1-295, Springer, Berlin 1972,

11. W. MILLER, Symmetry groups and their applications, Academic Press, New York — London 1972.

12. ).F. PIERCE, Representations for transversely hemitropic and transversely isotropic stress-strain relations, J. Elas-
ticity, 37, 243-280, 1995.

13. J. RYCHLEWSKL, Zur Abschdtzung der Anisotropie, Z. Angew. Math. Mech. (ZAMM), 65, 6, 256-258, 1985.

14. J. RYCHLEWSKL, Unconventional approach to linear elasticity, Arch. Mech., 47, 2, 149-171, 1995.

15. J.A. SCHOUTEN, Tensor analysis for physicists, Oxford University Press, London 1951.

16. H. WeyL, The classical groups, their invariants and representations, Princeton University Press, Princeton
1946.

17. AS. WiNneMAN and A.C. PiekIN, Material symmeny restrictions on constitutive equations, Arch. Rational
Mech. Anal., 17, 184-214, 1964,

18. Q.-S. ZHENG, A note on representation for isotropic functions of 4th-order tensors in 2-dimensional space,
Z. Angew. Math. Mech. (ZAMM), 74, 8, 357-359, 1994,

19. Q.-S. ZHENG, Theory of representations for tensor functions — a unified invariant approach to constitilive
equations, AMR, Applied Mech. Reviews, 47, 11, 545-587, 1994.

20. Q.-S. ZHENG and J. BETTEN, On the tensor function representations of 2nd-order and 4th-order tensors. Part 1,
Z.Angew. Math. Mech. (ZAMM), 75, 4, 269-281, 1995.

DIPARTIMENTO DI MATEMATICA
POLITECNICO DI MILANO, ITALY

¢-mail: mauvia@mate.polimi.it

Received September 23, 1996.

http://rcin.org.pl



Arch. Mech,, 49, 1, pp. 209-232, Warszawa 1997

The stochastic vortex method for viscous incompressible flows
in a spatially periodic domain

J. SZUMBARSKI and A.STYCZEK (WARSZAWA)

THE RANDOM VORTEX METHOD for two-dimensional, nonstationary flows of a viscous liquid in
a spatially periodic, infinite system of airfoils is considered. The main idea is to approximate
the evolution of the vorticity by a large set of small “vortex particles” (vortex blobs), which are
transported in the velocity field (convection) and perform random walks according to Wiener
process with standard deviation depending on the viscosity (diffusion). The velocity field is due
to the induction of vortex blobs and includes also certain potential components. Since the flow
domain is not simply connected, additional constraints concerning the vorticity production on
the boundaries are introduced. They are necessary to obtain a solution with physically correct,
single-valued pressure field. The results of numerical calculations are also presented.

1. Introduction

DURING LAST TWO DECADES, large amount of research work has been devoted
to the development of more sophisticated variants of vortex methods, to widen-
ing the range of their applications and improving their computational efficiency.
Since 1973, when CHORIN published his fundamental paper [1], many authors
have applied a stochastic approach to calculate flows with various geometrical
configurations. However, a majority of available publications on external flows
focus on flows around individual contours only, although, from the engineering
point of view, multi-body systems are even more important.

The aim of this paper is to present the -random vortex algorithm for flows
which are periodic with respect to one spatial variable. The standard engineering
example is a flow in a cascade of airfoils, which is used as a model of turboma-
chinery flows. The numerical method constructed here is a natural extension of
the method proposed by STyczek [2] and its primary version was also the subject
of the thesis of one of the authors (see [3]). The current version includes careful
treatment of the pressure problem arising due to multiply connected geometry
of the flow domain. More refined numerical results are also obtained.

We remind briefly the general idea of the stochastic approach to viscous liquid
motion (more detailed discussion and examples of applications can be found in
[2, 4,5 and 6]). The equation of the vorticity transport (Helmholtz equation) in an
incompressible, viscous and two-dimensional flow can be written in the following
form:

(1.1) Ow + Op(uw) + 0y (vw) = vAw.

This equation is formally identical to the Fokker - Planck equation corresponding
to a diffusive stochastic process with the convective vector equal to the velocity of
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the flow V = [u, v] and with the diagonal matrix of diffusion Diag[2r, 2v]. Thus
the evolution of the vorticity field can be described on the “microscopic level” as
a movement of a large (theoretically infinite) set of “vortex particles”, governed
by the following Ito equations

da(t) = u(t,a(t), y(t) dt + V2 dW,,

(o
) dy(t) = v (t, (), y(1)) di +V2v dW,.
‘Here W, and W, are independent Wiener processes.

In a numerical simulation “vortex particles” can be constructed in many ways.
Here the vortex blobs i.e. small circular vortices with uniform vorticity distri-
bution are used. It should be emphasised that there is no natural, independent
boundary condition for the vorticity field — there are only conditions for the vel-
ocity. It is known, however, that the vorticity is produced on the boundaries.
In the vortex method new vortex blobs are created on the boundaries in each
time step in order to satisfy the boundary condition for the velocity. Some of
these blobs subsequently enter the flow domain, while the others move randomly
across the boundary and are eliminated. This process gives rise to the diffusive
flux of the vorticity through the contours of embedded bodies. All vortex blobs
are convected in the velocity field which is partly due to the induction, and also
has additional potential components necessary to fulfil boundary conditions and
providing appropriate asymptotic behaviour of the velocity field (the condition at
infinity).

In the case of a cascade flow the domain is not simply connected. Then there
exist velocity and vorticity fields which satisfy the continuity and Helmholtz equa-
tions, but correspond to meaningless, multivalued pressure distributions. In order
to avoid such “solutions”, additional constraints should be imposed on the veloc-
ity field (see, for instance, [6] or [7]). These constraints have the form of following
integral equalities:

d [0\ i d N, _
(1.3) pr ¢ [ g(.\)(/.s 4 / (1 g - i/-(/”..«,)(,s)clh = 0.
Cy (

k

where (', denotes k-th component of the boundary of a multiply connected flow
region and (/, is the boundary velocity distribution. If {/, is fixed in time then we
have the condition

| 5 ity | )l =
(1.4) /(( g u([”w)(.)(. =0
Cy.

which means that the total flux (convective and diffusive) of the vorticity through
the contour (', should be zero. In particular, on an impermeable boundary we
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have simply

d
(1.5) 5{ Twds = 0.

C,

It is interesting that the stochastic vortex method developed by Styczek au-
tomatically ensures the equality (1.5) in the case of an external flow around a
single contour. If the geometry is more complicated, the conditions (1.4) or (1.5)
must be stated explicitly. However, direct implementation of the above equali-
ties requires sufficient regularity of the vorticity field. In the considered method
the vorticity is a piecewise constant function of space variables and its normal
derivative on the boundary is not properly defined. We show that this difficulty
can be overcome by writing explicitly the conditions for the balance between the
vorticity production and vorticity flux across the boundaries during one time step.

2. Formulation of the problem

We consider the viscous liquid motion in the exterior of the spatially periodic
system of airfoils. The period of the cascade geometry and of the flow field is
assumed to be 27. The inlet line is identified with y-axis. The computational
domain is a strip region shown in Fig. 1. Boundary conditions for the velocity
field are prescribed on the inlet line segment JDy and on the contour of the
airfoil JDp.
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I'1G. 1. The computational domain.
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The mathematical formulation, which is adequate for the vortex method is
following:
Determine the velocity V = [u(t, z,y), v(f,z,y)] and the vorticity
w=w(t,z,y) = ;v — dyu
satisfying
1) Helmholtz and the continuity equation
Ow + udw + vOw = véw,
Ozu + Oyv = 0;
2) conditions of y-periodicity
u(t,z,y + 21k) = u(t, z,y),
v(t,z,y + 2rk) = v(t, z,y),

w(t,z,y +27k) = w(t, z,y), k=.. -2 -101,2..;

3) boundary conditions

=0, =0,

aDp ’ U’;—JDP
u.l = uw(y),

u

9Dw U"__’DW = vw(y).

This formulation is purely kinematic — the pressure has been eliminated, but
it can be recovered a posteriori from the velocity and vorticity fields. The results
of such calculations are physically sensible provided that the velocity and vorticity
were constructed taking pressure correctness conditions (1.4) into account.

3. Elements of the numerical method

3.1. Y -periodic vortex blob

The velocity field induced by the vortex blobs must be y-periodic. To satisfy
this demand we use y-periodic vortex blobs (PVB) which are simply infinite,
y-periodic systems of ordinary vortex blobs (with identical radii o and charge of
vorticity /') uniformly spaced with the distance 27 along straight lines parallel
to the y-axis. The position of a PVB is a pair (zg, yg) of the coordinates of this
vortex blob in the system which is located in the computational domain. The
velocity induced by a PVB is given by the following expressions

i “L _—1;‘“ = [— coth (——:_ZO)
, ”:_\‘27r1' z—(z9+2mn) " 4w 2
G Va={ <

z—z I 1 ' z—(z0+2m1)
i ( 2 21 z—(z0+2nmi)  2me 0?
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We apply here a convenient complex notation. The upper formula is used when
the point = = = + 1y is located outside the PVB’s vortex cores and is nothing
more than the well known formula for spatially periodic system of point vortices
(see [9]). The lower formula is applied when the point z happens to drop inside
the n-th vortex core of the PVB, the center of which is zo + 2n7i, 29 = g + 2¥o.

The velocity field induced by a PVB has an important asymptotic property,
namely

S I ')
Jim Ving = 77— = Uina = 0, Vind — o=
(32) o ! T
. 7 a F
A Viod = g < wa =0 e g

Thus, if we consider the induction of a system of PVBs, then the behaviour of the
velocity at infinity is determined by the total vorticity charge of this system — in
particular the velocity vanishes at infinity only when the total charge of vorticity
is zero. This is an important difference as compared with any finite system of
vortex blobs, where the velocity at infinity tends to zero in any case.

3.2, Y -periodic ideal fluid flow

We are going to construct the total velocity field as a sum of several compo-
nents. Some of them carry vorticity, the other are potential. It is reasonable to
consider separately an ideal liquid flow since it provides a natural way to satisfy
a part of boundary conditions on the inlet line and to prescribe the velocity at
infinity. Then the following mathematical problem is to be solved:

Determine the potential of the velocity @ p such that:

1) @p is a harmonic function in the domain [);

2) the velocity Vp = V@ p is y-periodic i.e.
Ve(t,z,y + 2km) = Vp(i, z,y), k=0,£1,2,...;
3) the Neumann boundary condition is satisfied:

dép 10 on dDp,
dn uw (y) on JdDw,

where uw (y) = uw(y + 2km), k=0,£1,2,...;
4) the circulation of Vp along the inlet Dy is given

= — / vw (y) dy.

Dy

IDw

http://rcin.org.pl
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Vector [uyy, vy] denotes the given velocity distribution on d Dy . It is conve-
nient to seek ¢ p in the form of

-

3.3 Pp(r,y) = Uoo + Ty + ]—}iy + [pPc+ &1+ ['p®y
4

where meanings of the symbols are the following:

2r 27
17 1
(3.4) loo = 5 / uwy)dy, Vo = 5 ] vw (y) dy,
0 0

['p — the circulation of an airfoil-connected vortex, @, - the potential of the
velocity field induced by a unitary airfoil-connected vortex, defined as

i ‘ Z = Z(C
3. > = — .
(3.5) ®c- = Re {27” Lnsinh 5 ]
&4, ®, - additional y-periodic harmonic functions, their derivatives vanishing at

infinity. The potential @ p fulfils the imposed boundary conditions if

0 on dDp,
uw (y) on JDw,

& (TooT + Ty + D7) = {

dn

(3.6) and
d (i+(1)(,+(])2> =10 on 0DpUIDw.

dn \4r

Thus we obtain the following Neumann conditions for @; and ®;:

d¢; [ ~V.+n on JDp,
dn uw(y) — Uoo on dDy,
o, - —dﬂ - on ODpUJIDyw,

dn dn 47

(3.7)

where n = [, n,] is the internal normal vector on the boundary.
Assume that the functions @; and @, have been already determined. Then
the differentiation of @p on the boundary yields

(38) \((N) = V\ «t+ % + 1}) (

4r ds ds

/,_t, ('Ikb(' ([CDQ)
ds '

where t = [/,.1,] denotes the tangent vector on the boundary and s is the
arc length coordinate. If we assume that the value s = 0 corresponds to the
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rear stagnation point then the condition V;(0) = 0 yields the circulation of the
airfoil-connected vortex ['p
— d

Voot + ;ﬁ@l

(3.9) Ip= . .
Ify + (l_s ((bc . i @2)

L
47
Now we describe briefly the mathematical technique we apply to find the

harmonic functions @ and ¢,. If we consider a y-periodic function @, harmonic
in the domain ) and such that

/- ‘M(Q)dsq = ens / ‘@(Q)dw -0

dn ds
aD @ aD R

i.e. it is not a real or an imaginary part of any multivalued complex function,
then the function ¢ is the only solution of the boundary integral equation (see
[9] and [10])

i 1/ 1 g — 2
Q(P) + = / Re (5 coth =2 5 £ -nQ) D(Q) dsg

aD
(3.10) = / Re (Ln sinh “9—°F ) 88 o
0 2 an

<||p._.\

\

ng = (e +1my)(sg).

This is the Fredholm second kind integral equation. If the curvature of the
boundary is finite, the kernel is bounded. This equation can be solved numerically
using, for instance, the Boundary Element Method.

Having the boundary distribution of the function ¢, we can calculate the vector
field V. = V& using the following procedure. First we determine the boundary
value of this field

: o do ) . . .
| (S]:) = (((/_n — I#) (.'»‘['))-f (.‘3’[')), t (.';‘]J) = (f»r = iﬁy)(-'ip), PeaoD.
Next we are able to calculate V' (z) for any complex = = = + 1y by means of the
y-periodic Cauchy integral
} | (—2z ..
3. (z) = — ' - ¢ .
(3.11) V() = g / V(C) coth >

abD
It is important that the solution of the boundary integral equation defines the
mapping
_dd AP

" dn ds

(3.12)
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i.e., in the hydrodynamic context, it transforms the normal velocity to the tangent
one. This mapping is a unique, linear and continuous operator. We will use this
operator in the next section while deriving an equation for the boundary vortex
layer.

3.3. Construction of the complete velocity field

The full velocity of a viscous, y-periodic flow is expressed as
(3.13) V=Vp+Vo+Vw +V4+Veo+Vy.

In (3.13) we denote
Vp  the velocity of the potential flow (previous section),
Vo the velocity induced by old i.e. previously created PVBs,
Vi the velocity induced by new, boundary PVBs,
V¢ the velocity induced by an additional, airfoil-connected vortex with
the circulation [,
V. an additional potential velocity field vanishing at infinity,
Vv a uniform, vertical stream i.e. Vy = [0, vy ].

All the velocity components are y-periodic vector fields. In each time step the
following unknowns should be calculated:

1) the circulations of new PVBs {71, ..., 7n},

2) the circulation /-,

3) the vertical flow vy,

4) the potential velocity field V4.

The role of all unknowns will be explained further on. In general, new PVBs
and the velocity V4 are necessary to fulfil the boundary conditions for the veloc-
ity. Additional “free parameters” /¢ and vy are included in order to satisfy a
condition at infinity and to ensure correctness of the pressure.

The velocity decomposition written in natural coordinates for boundary points
on J Dy yields

VE+VE+VE+VE+ V) —vv + o =0,

3.14
(3.14) ViV + W+ VE =0,

We have taken into account that V5 = un, Vi# =0 and V! = —uN.
Analogously, for the points on the airfoil contour dDp we obtain

AV VE+ Vi, +VE+VE =0,

(3.14)) Vi+Ve+ Vi + Ve +V
| Vit Ve + Vg + Ve + 1 =0

This time the equality V)5 = 0 has been used.
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From (3.14), the normal velocity V}' can be expressed as

Vi=-(Vd+Vip + Vi) on dDy,

(3.15) A i i r
Vi= -3+ Vi + VW) on aDp.

The boundary operator L applied to V' gives V| expressed in terms of other
velocity components. This results in the following equation

VeE+VE+ Vi + Ve —ovv +om=L(VG+Vig +VE) =0 on dDyw,

(3.16) W 9 R o T L O = :
‘/P + I"O + ‘/H" =2 ]j(‘/o + Vwr + ‘/C- + ‘/1) = 0 on ()DP.

We call (3.16) the equation of the boundary vortex layer since the unknown here
is the distribution of the vorticity (circulation) generated on the boundary. We
approximate this vortex layer by a finite set of PVBs located on the boundary and
inducing the velocity component Vi . The circulations {7y, ..., yn} of these PVBs
are to be determined. Since new PVBs are born always in the same positions, we
can introduce two sets of functions {7;(s), ¢ =1,..., N},{N(s), i =1,..., N},
which describe tangent and normal velocity distributions induced by the boundary
PVBs with unitary circulations. Then the components of Vi can be written as
follows

N N
(3.17) Vi = > %Ti(s), Viv(s) = Z ¥ N; (8)-

=1 =1

Equation (3.16) can be solved in the mean integral sense over a finite set of
boundary segments. The division of the boundary lines into segments is quite
natural — each boundary PVB overlaps a small part of the inlet line or the airfoil
contour. In other words, the boundary is divided into NV separate segments, each
accompanied by an adjacent PVB. If we now substitute (3.17) to (3.16) and
integrate the latter on each segment o; = [s;, s,,1] then the following system of
linear equations will be obtained:

N ! .
3 / (Li — LN;)(s)ds| v = - / (Vi + V5 + Vi + o) (5) ds
i=1 ,}j 3 .

oy

+ /'L(vg + VE)s)ds + vy (sje1 —s;)  for o; € dDw,
(3.18) %

N i .

3 / (T; — LN;)(s)ds| »y; = — j (Vi + V5 + VE+ W) (s)ds
i=1 (}J o,

% / LVE + V2 +Vo)s)ds  for o, € dDp.
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The system (3.18) consists of N = Ny + Np equations. However, it is not closed
since we have two additional unknowns /¢ (hidden in V¢ ) and vy. In order to
obtain a solvable problem we have to formulate two equations more.

First we consider the behaviour of the velocity field at infinity. The following
condition of asymptotic consistency of nonviscous (potential) flow Ve and full,
viscous flow V is postulated

(3.19) lim V= lim Vp = lim (Vo + Viv + We +Vy) = 0.

Taking into account the asymptotic formulas (3.2) the condition (3.19) implies
that

(3.20) [0+ 1I'w+ I[c+4mvy =0.

The velocity fields Vp and V are y-periodic, their circulations along the inlet line
J Dy are equal and they are asymptotically consistent at infinity. Then, from the
Stokes theorem, one concludes that the total charge of the vorticity in the flow is
equal to /p. This means, in particular, that the total amount of vorticity in the flow
is fixed in time. This conclusion is important for further considerations concerning
the pressure condition (1.4). It should be also noticed that total vorticity charge
is not identical to total charge of the circulation of PVBs. The reason is that the
vortex cores of PVBs have finite dimensions, and some of them protrude partly
from the computational domain.

Now we focus on the problem of the pressure correctness. In order to ob-
tain physically meaningful pressure field, the total vorticity production on each
boundary line must be equal to zero. Since the total charge of the vorticity within
the flow is fixed due to the asymptotic consistency condition (3.19), it suffices to
consider the vorticity generation process only on one of the boundary lines — it
is more convenient to choose J D p.

The amount of the vorticity created on the airfoil contour in one time step
is defined as the difference between the contribution of new PVBs located on
this contour and the vorticity charge carried by these PVBs which have left the
computational domain in the previous time step by penetrating the interior of
the airfoil. More precisely, the flux of the vorticity through the airfoil contour
emerges for two reasons:

A) some PVBs protruding from the computational domain into the airfoil
interior move to different positions,

B) some PVBs (in particular those located closely to the airfoil contour) can
jump randomly out of the computational domain - they are eliminated.

Both types of the events mentioned above give rise to the vorticity flux across
JDp. However, the direct calculation of this flux (especially due to events of
A type) is a rather strenuous problem. Fortunately, we have a very convenient
indicator of the vorticity flux — the circulation of the velocity on the airfoil con-
tour. At the beginning of each time step (i.e. before the PVBs’ movement), the
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boundary conditions are satisfied and the velocity circulation on dDp is exactly
zero. As a result of PVBs’ motion, the boundary distribution of the velocity is
slightly perturbed — its circulation on dDp is, in general, different from zero.
This variation is related directly to the amount of vorticity which left the flow
domain due to PVBs’ motion. This amount should be balanced by the contribu-
tion of new PVBs generated on J)p at the beginning of the next time step. The
mathematical expression for this balance is the following

(3.21) QY ADp) = Tp + TE + 2,5(Dp) + [Eur(dDp).

In (3.21) we have used the following notation:

(2071 Dp) ~ the contribution of new PVBs (i.e. created at the beginning of
the (n +1)-th time step) on dDp,

25(Dp) - the amount of vorticity carried by old PVBs, which sticks out from
the computationdl domain or, equivalently, is inside the airfoil Dp,

[ &ur(@Dp) — the sum of circulations of PVBs removed from the computa-

tional domain because they have penetrated into Dp.

Now, the following equality holds

—n+l

(3.22) QYA Dp) = 'Y (@Dp) - 2y (Dp),
where /! denotes the sum of circulations of new PVBs on dDp, while ﬁ;;ﬂ([)p)
denotes the amount of vorticity carried by these PVBs, but sticking out from the
flow domain into Dp.

From (3.21) and (3.22) we derive the equation

—n+1

(3.23) I3*YAD») = e+ I+ Fosr(8Dp) + Ta(Dp) + T (Dp).

The velocity field V fulfils the boundary conditions at the beginning of the
(124 1)-th time step. Thus its circulation along D p is equal to zero, which implies
that

n+1

(3.24) Tp+ TE + Qo(Dp) + 2y (Dp) =0

The last equation allows for eliminating troublesome quantities f)” ([)1 ») and
25(Dp). Finally we obtain the equation involving only the circulations

(3.25) @Dy = I (0Dp)— (5 — I8
Equations (3.20) and (3.25) supplement the system (3.18) giving together a solv-

able algebraic problem. However, it is interesting to show that Eq.(3.20) can be
replaced by the other one, which is, in a certain sense, symmetric to Eq.(3.25).

http://rcin.org.pl
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If we subtract Eq. (3.20) written for the n-th time step from the same equation
but written for the next, (n+ 1)-th step, then the result will be as follows:

(3.26) PP e PB4 I = T3 4 T3% = IR 4 Ao = 02) =0
Now, from Eq.(3.25) we have

(3.27) [t = It = I8u(8Dp) = It (@Dp).

The substitution of (3.27) to (3.26) yields

(328) ] n+1 F e [m+1 1’1‘:{ 1HUT(0DP) F,H_I(ODP)
+4m(wEtt —vE) = 0.

Writing the balance of the total charge of circulations of PVBs

(3.29) I3t =TE+ 1% (0Dw)+ I (0@Dp) — IEur(@Dp) — I'5yr(@Dw)
we are able to eliminate /%! from (3.28). Moreover, the following equality holds
(3.30) I+t = rpti0Dp) + IO Dw).

After substitution of (3.29) and (3.30) to (3.26) most of the terms cancel and we
end up with the following, simple condition

(3.31) F 1 @Dw) = Tour(@Dw) — 4 (i = of).

Summarising, the linear, algebraic system (3.18) can be completed by the pair of
additional equations, which read

Np
Z n+1 = OUT(()DI") o (1 n+1 [‘(n ‘
3.32 -
( ) ,\vp+t\n'
S At = Eur(@Dw) — 4x (it — o).
i=Np+1

These equations are remarkably symmetrical. The first one describes the variation
of the airfoil-connected vortex and involves the information concerning only the
airfoil contour. The second equation describes the variation of the additional,
vertical stream and involves the information concerning only the inlet line. The
vortex and the vertical stream provide the mechanism for controlling the vorticity
production on the airfoil and on the inlet line, respectively, which in turn ensures
physical correctness of the pressure field.
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3.4. Summary of the computational algorithm

We summarise briefly main steps of the numerical method. The calculation
of each step of the flow evolution begins with the computation of the right-hand
sides of the system (3.18). Then the linear equations (3.18) coupled with the
pair of Egs.(3.32) are solved. As a result, the circulations of new PVBs, the
airfoil-connected circulation /- and the vertical stream velocity vy for the new
time step are determined. Next the boundary distribution of V] is evaluated from
(3.15). The solution of the boundary integral equation yields the value of the har-
monic potential ¢ 4 and, after differentiation, the tangent velocity V. This way
the complete velocity V4 on the boundary is known and can be reconstructed in
the flow domain (in particular in PVBs centres) via y-periodic Cauchy integral.
Other components of the velocity field can be calculated directly from the induc-
tion formulas (1.4) (Vo, Vi and V¢ ) or are determined in advance (Vp) and
interpolated to PVB centres from nodes of an auxiliary grid.

The key problem is the computational efficiency. Actually direct application of
the induction formulas for all PVBs leads to enormous computational cost exclud-
ing the possibility to perform computations on widely available, small computers.
A natural way to overcome this difficulty is to calculate the induced velocity only
in the grid points and then interpolate it. However, two problems appear im-
mediately. First, the interpolation of velocity smooths out fine, local variations,
which can remove important details of the flow pattern. Secondly, the velocity
interpolation should be divergence-free. To avoid these problems we applied a
hybrid approach — the interaction between close PVBs is calculated from exact
formulas (3.1), while distant induction is determined via an interpolation. The
interpolating algorithm is based on the fact that the velocity induced by a PVB
is potential outside the vortex core. Thus we can calculate the complex potential
function of this velocity in grid points and then interpolate it in grid cells by com-
plex polynomials to obtain, after differentiation, a divergence-free approximation
of the velocity. This method has an obvious disadvantage — the approximate ve-
locity field is not continuous on the cell sides. In other words, the approximation
of the velocity is divergence-free only in a weak sense. This difficulty can be partly
cured by using more complicated, Hermitean interpolation algorithms.

Now the problem of initial condition will be considered shortly. While dealing
with external flows we have generally two possibilities:

1) sudden “switching on” of the viscosity, or

2) continuous acceleration from the state of rest.

In the first case the viscosity suddenly appears in an ideal liquid flow, which
causes first generation of the vortex particles to be created. In the second one, the
flow is viscous from the very beginning and is progressively accelerated by chang-
ing the free stream velocity. Both methods have certain good and weak points.
The first one is not physical and, which is much worse, the primary generated
vortex particles are charged with relatively large circulations — they can induce
locally a velocity comparable in magnitude with the free stream velocity. The sec-
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ond method is more natural but during acceleration one has to deal with a more
complicated version of the pressure problem. If the acceleration is performed by
rescaling the “ideal-flow background” Vp, then the total amount of the vorticity
in the flow field changes in time and this fact must be taken into account while
formulating the pressure correctness condition. Our choice is the first method
supplemented by the concept of vortex particle splitting. The idea is to limit the
permissible value of the velocity induced by a single PVB to small fraction of
the free-stream velocity, say to several percent. This means that every PVB born
on the boundary, which is too “strong”, is immediately split into a number of
“weaker” PVBs moving separately (their trajectories diverge since they perform
separate random walks). Although this procedure brings rapid increase of the
number of PVBs, in the computations it has also significant advantages. It pro-
vides fast saturation of the computational domain with the vortex particles which
is desirable when one is interested mainly in the final, quasi-stationary state, not
a transient one.

Another important problem is associated with artificial or numerical viscos-
ity. Although the vortex methods are, at least in principle, grid-free, the built-in
vorticity discretization produces inevitably an effect of additional, nonphysical
diffusion rate. This phenomenon is connected with two parameters of vortex par-
ticles, theoretically infinitesimal, but in practice always finite — a radius and a
circulation charge. It is quite obvious that the radii of the PVBs vortex cores
should be as small as possible — otherwise the method would be unable to resolve
fine-scale details of the vorticity and velocity fields. Large PVBs mean that the
flow is too organised spatially — relatively large portions of fluid are in regular
(“laminar”) movement. In the language of modern dynamical system theory, the
number of degrees of freedom of such flow is too small — the corresponding,
effective “viscosity” is larger than that assumed in the random walk process. Sim-
ilar effect is obtained when the vortex particles are too “strong”. Regions of weak
vorticity cannot be reproduced properly, the vorticity gradients are exaggerated
and strong, local variations of the induced velocity make PVBs to spread rapidly
in all directions like in a diffusion process. It should be emphasised that the above
description is only a simple heuristics — no systematic investigation of the artificial
viscosity in vortex methods is known to the authors. The practical experience says
that the limit of the induced velocity on the level of several percent is sufficient
in a sense, that further splitting of PVBs does not make any visible effects on the
velocity and vorticity field. Nevertheless, the “real” Reynolds number obtained
in our simulations is surely lower than the “theoretical” one resulting from the
assumed value of the viscosity.

4. Results of numerical computations

The general data chosen in sample calculations are the following:
e The inlet line J Dy is divided uniformly into 120 segments while the airfoil
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contour J ) p into 520 segments. The dimension of the algebraic system connected
with the boundary integral equation is 640;

¢ Each PVB of next generation is adjacent to four subsequent segments, hence
Ny = 30 and Np = 130;

¢ The inlet line velocity distribution is uniform and fixed in time;

¢ Reynolds number calculated on the basis of a characteristic length (the
chord of the airfoil), the assumed viscosity and the value of the inlet velocity is
approximately 10°;

o Time step is fixed (Al = 0.05) and the Ito equations are solved by the Euler
integration scheme.

Three cases of flow with different inlet conditions are presented:

1) low angle of incidence flow uw = 1.0, vy = —0.2,
2) high positive angle of incidence flow vy = 1.0, vy = 1.0,
3) high negative angle of incidence flow uy = 1.0, vy = —1.0.

The instantaneous positions of PVBs and the velocity field calculated in the
first case are presented in Fig. 2. Analogous results for the second case are shown
in Fig. 3 and, for the third case, in Fig.4. In all cases the growth of vortical struc-
tures in wakes is apparent. In the cases of a high angle of attack, the closed
separation regions appear and evolve in time. Figure 5a shows locations of the
sections perpendicular to the airfoil contour, where the averaged velocity distri-
butions of the boundary layer were calculated in the first case. The computed
velocity profiles are shown in Fig. 5b.

5. Concluding remarks

The stochastic vortex method proposed above seems to be capable of re-
producing characteristic features of nonstationary viscous flows in spatially peri-
odic domains. The effect of local separation has been captured and the velocity
distribution in the boundary layer exhibits reasonable qualitative features. The
boundary layer thickness is, however, much exaggerated. The reason is that the
characteristic dimension of PVBs is of the same order (or even grater) as this
thickness at the considered Reynolds number. Obviously, flow details of such
a spatial scale cannot be properly resolved. It can be expected that significant
improvement would be achieved if the number of PVBs were much greater and
their vortex cores were much finer. Also some other types of vortex particles (like
y-periodic vortex sheets) could be applied in the vicinity of the airfoil contours.

Although only stationary inlet velocity distributions are considered here, it is
not difficult to generalise the method to nonstationary or even random inlet con-
ditions. Such generalisation would allow us to perform approximate calculations
of multi-stage cascade flows: the velocity behind a row of blades and relative
movement of the rows would yield the nonstationary inlet conditions for the next
row. Randomness of the inlet conditions can be applied to simulate turbulent
fluctuations in an incoming stream.
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BRIEF NOTES

Non-polynomial representations of orthotropic tensor
functions in the three-dimensional case:
an alternative approach

S.JEMIOLO and JJ. TELEGA (WARSZAWA)

THE oBIECTIVE Of this paper is to extend some of the results obtained in [1] to the three-dimensional
case. Functional bases and generators for symmetric second-order orthotropic tensor functions are
derived.

1. Introduction

THE THEORY of representation of tensor functions has been developed for more
than thirty years [2-5]. The results obtained within the framework of this theory
yield general forms of isotropic [6—15] and anisotropic [16—22] tensor functions.
Most complete results were obtained for scalar-valued, vector-valued, symmetric
and skew-symmetric tensor-valued functions of the second order, dependent on
vectors as well as symmetric and skew-symmetric tensors of the second order.

Theoretical foundations of the formulation of anisotropic constitutive rela-
tionships were laid, among others, in the books [23 -26]. There the group theory
and the theory of representation of tensor functions were exploited. Anisotropic
materials constitute an important class of structural materials in many fields of
engineering. Hence the need for further development of the constitutive theory,
where the theory of representation of tensor functions plays an important role,
cf. [3, 27-30].

The determination of a representation of a tensor function in the so-called
canonical form reduces to finding irreducible sets of basic invariants and gener-
ators of this function. One distinguishes polynomial and non-polynomial repre-
sentations of tensor functions [3, 23]. To find the polynomial representation of a
tensor function it is sufficient to determine the relevant integrity basis. Once this
basis is established, generators are obtained by a simple process of integration
[23]. An integrity basis is said to be irreducible if none of its elements can be
expressed as a polynomial in the remaining elements, cf. [23]. A set of invari-
ants is said to constitute a functional basis, for given arguments and a symmetry
group of the considered function, if any other invariant of the same arguments
can be expressed as a scalar function of these invariants. A non-polynomial rep-
resentation is irreducible if none of the generators can be expressed as a linear
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combination of the remaining generators, with the coefficients being arbirary
functions of the functional basis. WANG [6-8], SmiTH [9, 10] and BOEHLER [11]
proved that in the general case a non-polynomial representation, if compared
with the corresponding polynomial representation, contains less generators and
invariants.

The aim of this note is the determination of the representation of a non-poly-
nomial orthotropic scalar function as well as orthotropic, symmetric tensor-velued
function of the second order. Our approach is alternative to that used by BOEHLER
[18, 19]. Those functions depend on a finite number of symmetric, second crder
tensors. Thus we extend to the three-dimensional case the results presented in
our earlier paper [1].

2. Formulation of the problem

Our aim is to determine the non-polynomial representations of the following
functions

s = [(Ap; H), Fily X e X Ty== B,
—/_J
(] ) (P+1)—times
S = F(A,; H). BT % ¥ Ty =T,
—_

(P+1)—times

where A, are symmetric second order tensors, A, € T}, T, = {A € T:A = AT},
p=1.....pand T'= F ¢ I; A stands for the transpose of a tensor A. Here £
is the three-dimensional Euclidean space and H is a symmetric, positive-deinite
tensor of the second order. The tensor H plays the role of a parametric teasor,
i.e. H = const. The function [ is a scalar-valued function while F is a symmetric,
second order tensor function. Suppose that (1) are to be constitutive relationships.
Then A, are causes, H models the structure of a material while s and § are
responses or effects. Within the framework of the classical continuum mechznics,
such relationships should be invariant with respect to the group of automorphisms
of the space /7, cf. [25]. In other words, they have to satisfy the so-called principle
of isotropy of the physical space. Consequently, the functions appearing in (1)
fulfil the following conditions:

o vQ € O: f(A;H) = [ (QA,Q7;QHQY),
QF(A,;H)Q" = F(QA,Q";QHQ")

where () denotes the full orthogonal group, that is

3) 0= {QE 7 QQ' =Q'Q= 1}.

Here I stands for the identity tensor.
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According to our assumption, the tensor H has three distinct eigenvalues, say
H; (: = 1,2,3). Thus we may write

(4) H= e ©e,+ Hyep ey + Hies ey, Hy # Hy # Hy; # H,

where e; are unit eigenvectors of the tensor H. We observe that the group of
external symmetries of the tensor H, given by

(5) S = {Qe O: QHQ"‘=H}~

is the orthotropy group. Moreover, the eigenvectors of H determine the so-called
principal axes of orthotropy of a material. This statement becomes obvious if we
compare (4) and (5) with the corresponding definitions given in the papers [3,
18-20, 25].

Let

(6) M =e ¢ (no summation on : = 1,2, 3),

then we recover, by taking account of (4) and (6) in (1), provided that (2) is
satisfied, the problem considered in the papers [18, 19].
From (2) and (5) it follows that

¥Qe S: [(A,;H)

/(QA,Q";H),
QF(A,;H)Q" = F(QA,Q":H) .

In other words, the functions f(...; H), F(...; H) are orthotropic functions of the
tensors A,

(7

3. Determination of the orthotropic functional basis

Since the tensor H has three distinct eigenvalues, therefore in order to deter-
mine the functional basis for the scalar function (1); we may exploit the results
obtained by Smrta [10]. To this end it is sufficient to consider the case (Z2ii) stud-
ied by Smrth [10, pp.905-907]. The functional basis derived in this manner is
presented in Table 1.

It can easily be proved that the representation of the scalar function (1),
depicted in Table 1 is equivalent to the results obtained by BOEHLER in [18, 19].
Boehler’s orthotropic functional basis is presented in Table 2.

Both functional bases are equivalent because:

trA, = trMjA, + trMA, + trM;A,
trA2 = trMjAZ + trMA2 + trM3A?
(8) rH'A) = H{tuMA) + HitrMpA) + HitrM3A)
erI‘A’i = terApA,] =+ terAPA,] i o trM3A,,,A,,,

trH'A A, = H{trM A A, + HitrtMoA A, + HitrM3AA,, a,b=1,2,
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where tr stands for the trace of a tensor; for instance trAB = tr(A B), where
AB =trp3A @ B.

Table 1. Functional basis for the scalar function (1);.

Arguments Basic invariants

A, trA,, trAl trA), trHA,, trH?A,, trHAZ, trH?A?
Ay, A, trAA,, trAZA,, trA A2, trHA,A,, trH?A A,
Ap, Ay, A trAAAy, pqr=1.P;, p<q<r

Table 2. Orthotropic functional basis after BorHLER [19].

Arguments Basic invariants

A, trMyA,, trMAL, trA), trMLA,, trMAL, trMGA,, trMA2
Ay, Aq trMiA A, trAZA,, trA, AL, trMaA A, trM3ALA,

Ay, A, A trA,AqAr, p,gr=1,..P; p<qg<r

4. Determination of generators of an orthotropic tensor-valued function
of the second order

In order to derive the representation of the function (1); under the condition
(2)2, we shall apply the method similar to that used in the papers [1, 13, 14, 31,
32]. This method is based on the idea primarily proposed in the paper by the
second author [30]. First, we construct a scalar function, say ¢, defined by

(9) g =trFC,

linear with respect to the second argument or C. Here C is a symmetric second
order tensor while F is the function (1),. The function ¢ has the following form:

(10) 9(Ay CH) = (1, ) = 3 61,
s=1
where /; are invariants listed in Table 1 whereas .J, are invariants linear in C, see

Table 3 below.
The canonical form of the tensor-valued function (1), is found from

_1/0dg dg \ _ dg _ g od, _ 2 .
(1) F(A.H) = (UC + UC.,,) =l = Sgos(lf)a—c = g‘los(h)bs.

The results of calculations are summarised in Table 4, where the generators G,
are listed.

http://rcin.org.pl
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Table 3. Invariants linear in C.

Arguments Invariants J.

i trC, trHC, trH*C

C, A, trA, C, trAZC, trHA,C, trH?A,C
C, Ay, A, trA,AC, pgr=1,...P;, p<yq

Table 4. Generators of the function (1);.

Arguments Generators

I, H, H?
A, Ay, A2, HA, + A H, H’A, + A, H
Ay, Ay ApA, +AA, pg=1,..P;, p<q

The generators obtained in this way are equivalent to those derived by
BoeHLER [19] and listed in Table 5. To corroborate this statement, it is sufficient
to exploit the following identities:

I=M; +M;+ My,
H" HiM, +H2”M2+H§M3, a=1,2,
(12) 2A, = MiA, + MiA, + MpA, + MpA, + M3A, + M3A,,,
H°A, + H°A, Hi’(M]AP + MjA,) + Hi"(MzAp
+M2Ap) + H;(M3Ap & M3A1,).

Table 5. Boehler’s [5] generators of the orthotropic tensor function.

Arguments Generators
M;, Mz, M;
Ay MiA, + MjA,, MoA, + MaA,, M3A, + MaA,, A2
Ay, Ay AA +HAA, pg=1.P, p<y
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